MCNP Version 6.2 Release Notes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werner, Christopher John; Bull, Jeffrey S.; Solomon, C. J.
Monte Carlo N-Particle or MCNP ® is a general-purpose Monte Carlo radiation-transport code designed to track many particle types over broad ranges of energies. This MCNP Version 6.2 follows the MCNP6.1.1 beta version and has been released in order to provide the radiation transport community with the latest feature developments and bug fixes for MCNP. Since the last release of MCNP major work has been conducted to improve the code base, add features, and provide tools to facilitate ease of use of MCNP version 6.2 as well as the analysis of results. These release notes serve as a general guidemore » for the new/improved physics, source, data, tallies, unstructured mesh, code enhancements and tools. For more detailed information on each of the topics, please refer to the appropriate references or the user manual which can be found at http://mcnp.lanl.gov. This release of MCNP version 6.2 contains 39 new features in addition to 172 bug fixes and code enhancements. There are still some 33 known issues the user should familiarize themselves with (see Appendix).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zehtabian, M; Zaker, N; Sina, S
2015-06-15
Purpose: Different versions of MCNP code are widely used for dosimetry purposes. The purpose of this study is to compare different versions of the MCNP codes in dosimetric evaluation of different brachytherapy sources. Methods: The TG-43 parameters such as dose rate constant, radial dose function, and anisotropy function of different brachytherapy sources, i.e. Pd-103, I-125, Ir-192, and Cs-137 were calculated in water phantom. The results obtained by three versions of Monte Carlo codes (MCNP4C, MCNPX, MCNP5) were compared for low and high energy brachytherapy sources. Then the cross section library of MCNP4C code was changed to ENDF/B-VI release 8 whichmore » is used in MCNP5 and MCNPX codes. Finally, the TG-43 parameters obtained using the MCNP4C-revised code, were compared with other codes. Results: The results of these investigations indicate that for high energy sources, the differences in TG-43 parameters between the codes are less than 1% for Ir-192 and less than 0.5% for Cs-137. However for low energy sources like I-125 and Pd-103, large discrepancies are observed in the g(r) values obtained by MCNP4C and the two other codes. The differences between g(r) values calculated using MCNP4C and MCNP5 at the distance of 6cm were found to be about 17% and 28% for I-125 and Pd-103 respectively. The results obtained with MCNP4C-revised and MCNPX were similar. However, the maximum difference between the results obtained with the MCNP5 and MCNP4C-revised codes was 2% at 6cm. Conclusion: The results indicate that using MCNP4C code for dosimetry of low energy brachytherapy sources can cause large errors in the results. Therefore it is recommended not to use this code for low energy sources, unless its cross section library is changed. Since the results obtained with MCNP4C-revised and MCNPX were similar, it is concluded that the difference between MCNP4C and MCNPX is their cross section libraries.« less
The MCNP-DSP code for calculations of time and frequency analysis parameters for subcritical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valentine, T.E.; Mihalczo, J.T.
1995-12-31
This paper describes a modified version of the MCNP code, the MCNP-DSP. Variance reduction features were disabled to have strictly analog particle tracking in order to follow fluctuating processes more accurately. Some of the neutron and photon physics routines were modified to better represent the production of particles. Other modifications are discussed.
Review of heavy charged particle transport in MCNP6.2
NASA Astrophysics Data System (ADS)
Zieb, K.; Hughes, H. G.; James, M. R.; Xu, X. G.
2018-04-01
The release of version 6.2 of the MCNP6 radiation transport code is imminent. To complement the newest release, a summary of the heavy charged particle physics models used in the 1 MeV to 1 GeV energy regime is presented. Several changes have been introduced into the charged particle physics models since the merger of the MCNP5 and MCNPX codes into MCNP6. This paper discusses the default models used in MCNP6 for continuous energy loss, energy straggling, and angular scattering of heavy charged particles. Explanations of the physics models' theories are included as well.
Review of Heavy Charged Particle Transport in MCNP6.2
Zieb, Kristofer James Ekhart; Hughes, Henry Grady III; Xu, X. George; ...
2018-01-05
The release of version 6.2 of the MCNP6 radiation transport code is imminent. To complement the newest release, a summary of the heavy charged particle physics models used in the 1 MeV to 1 GeV energy regime is presented. Several changes have been introduced into the charged particle physics models since the merger of the MCNP5 and MCNPX codes into MCNP6. Here, this article discusses the default models used in MCNP6 for continuous energy loss, energy straggling, and angular scattering of heavy charged particles. Explanations of the physics models’ theories are included as well.
Zaker, Neda; Zehtabian, Mehdi; Sina, Sedigheh; Koontz, Craig; Meigooni, Ali S
2016-03-08
Monte Carlo simulations are widely used for calculation of the dosimetric parameters of brachytherapy sources. MCNP4C2, MCNP5, MCNPX, EGS4, EGSnrc, PTRAN, and GEANT4 are among the most commonly used codes in this field. Each of these codes utilizes a cross-sectional library for the purpose of simulating different elements and materials with complex chemical compositions. The accuracies of the final outcomes of these simulations are very sensitive to the accuracies of the cross-sectional libraries. Several investigators have shown that inaccuracies of some of the cross section files have led to errors in 125I and 103Pd parameters. The purpose of this study is to compare the dosimetric parameters of sample brachytherapy sources, calculated with three different versions of the MCNP code - MCNP4C, MCNP5, and MCNPX. In these simulations for each source type, the source and phantom geometries, as well as the number of the photons, were kept identical, thus eliminating the possible uncertainties. The results of these investigations indicate that for low-energy sources such as 125I and 103Pd there are discrepancies in gL(r) values. Discrepancies up to 21.7% and 28% are observed between MCNP4C and other codes at a distance of 6 cm for 103Pd and 10 cm for 125I from the source, respectively. However, for higher energy sources, the discrepancies in gL(r) values are less than 1.1% for 192Ir and less than 1.2% for 137Cs between the three codes.
Mashnik, Stepan Georgievich; Kerby, Leslie Marie; Gudima, Konstantin K.; ...
2017-03-23
We extend the cascade-exciton model (CEM), and the Los Alamos version of the quark-gluon string model (LAQGSM), event generators of the Monte Carlo N-particle transport code version 6 (MCNP6), to describe production of energetic light fragments (LF) heavier than 4He from various nuclear reactions induced by particles and nuclei at energies up to about 1 TeV/nucleon. In these models, energetic LF can be produced via Fermi breakup, preequilibrium emission, and coalescence of cascade particles. Initially, we study several variations of the Fermi breakup model and choose the best option for these models. Then, we extend the modified exciton model (MEM)more » used by these codes to account for a possibility of multiple emission of up to 66 types of particles and LF (up to 28Mg) at the preequilibrium stage of reactions. Then, we expand the coalescence model to allow coalescence of LF from nucleons emitted at the intranuclear cascade stage of reactions and from lighter clusters, up to fragments with mass numbers A ≤ 7, in the case of CEM, and A ≤ 12, in the case of LAQGSM. Next, we modify MCNP6 to allow calculating and outputting spectra of LF and heavier products with arbitrary mass and charge numbers. The improved version of CEM is implemented into MCNP6. Lastly, we test the improved versions of CEM, LAQGSM, and MCNP6 on a variety of measured nuclear reactions. The modified codes give an improved description of energetic LF from particle- and nucleus-induced reactions; showing a good agreement with a variety of available experimental data. They have an improved predictive power compared to the previous versions and can be used as reliable tools in simulating applications involving such types of reactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mashnik, Stepan Georgievich; Kerby, Leslie Marie; Gudima, Konstantin K.
We extend the cascade-exciton model (CEM), and the Los Alamos version of the quark-gluon string model (LAQGSM), event generators of the Monte Carlo N-particle transport code version 6 (MCNP6), to describe production of energetic light fragments (LF) heavier than 4He from various nuclear reactions induced by particles and nuclei at energies up to about 1 TeV/nucleon. In these models, energetic LF can be produced via Fermi breakup, preequilibrium emission, and coalescence of cascade particles. Initially, we study several variations of the Fermi breakup model and choose the best option for these models. Then, we extend the modified exciton model (MEM)more » used by these codes to account for a possibility of multiple emission of up to 66 types of particles and LF (up to 28Mg) at the preequilibrium stage of reactions. Then, we expand the coalescence model to allow coalescence of LF from nucleons emitted at the intranuclear cascade stage of reactions and from lighter clusters, up to fragments with mass numbers A ≤ 7, in the case of CEM, and A ≤ 12, in the case of LAQGSM. Next, we modify MCNP6 to allow calculating and outputting spectra of LF and heavier products with arbitrary mass and charge numbers. The improved version of CEM is implemented into MCNP6. Lastly, we test the improved versions of CEM, LAQGSM, and MCNP6 on a variety of measured nuclear reactions. The modified codes give an improved description of energetic LF from particle- and nucleus-induced reactions; showing a good agreement with a variety of available experimental data. They have an improved predictive power compared to the previous versions and can be used as reliable tools in simulating applications involving such types of reactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zieb, Kristofer James Ekhart; Hughes, Henry Grady III; Xu, X. George
The release of version 6.2 of the MCNP6 radiation transport code is imminent. To complement the newest release, a summary of the heavy charged particle physics models used in the 1 MeV to 1 GeV energy regime is presented. Several changes have been introduced into the charged particle physics models since the merger of the MCNP5 and MCNPX codes into MCNP6. Here, this article discusses the default models used in MCNP6 for continuous energy loss, energy straggling, and angular scattering of heavy charged particles. Explanations of the physics models’ theories are included as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Bryan Scott; MacQuigg, Michael Robert; Wysong, Andrew Russell
In this document, the code MCNP is validated with ENDF/B-VII.1 cross section data under the purview of ANSI/ANS-8.24-2007, for use with uranium systems. MCNP is a computer code based on Monte Carlo transport methods. While MCNP has wide reading capability in nuclear transport simulation, this validation is limited to the functionality related to neutron transport and calculation of criticality parameters such as k eff.
Comparisons between MCNP, EGS4 and experiment for clinical electron beams.
Jeraj, R; Keall, P J; Ostwald, P M
1999-03-01
Understanding the limitations of Monte Carlo codes is essential in order to avoid systematic errors in simulations, and to suggest further improvement of the codes. MCNP and EGS4, Monte Carlo codes commonly used in medical physics, were compared and evaluated against electron depth dose data and experimental backscatter results obtained using clinical radiotherapy beams. Different physical models and algorithms used in the codes give significantly different depth dose curves and electron backscattering factors. The default version of MCNP calculates electron depth dose curves which are too penetrating. The MCNP results agree better with experiment if the ITS-style energy-indexing algorithm is used. EGS4 underpredicts electron backscattering for high-Z materials. The results slightly improve if optimal PRESTA-I parameters are used. MCNP simulates backscattering well even for high-Z materials. To conclude the comparison, a timing study was performed. EGS4 is generally faster than MCNP and use of a large number of scoring voxels dramatically slows down the MCNP calculation. However, use of a large number of geometry voxels in MCNP only slightly affects the speed of the calculation.
Preliminary results of 3D dose calculations with MCNP-4B code from a SPECT image.
Rodríguez Gual, M; Lima, F F; Sospedra Alfonso, R; González González, J; Calderón Marín, C
2004-01-01
Interface software was developed to generate the input file to run Monte Carlo MCNP-4B code from medical image in Interfile format version 3.3. The software was tested using a spherical phantom of tomography slides with known cumulated activity distribution in Interfile format generated with IMAGAMMA medical image processing system. The 3D dose calculation obtained with Monte Carlo MCNP-4B code was compared with the voxel S factor method. The results show a relative error between both methods less than 1 %.
Zaker, Neda; Sina, Sedigheh; Koontz, Craig; Meigooni1, Ali S.
2016-01-01
Monte Carlo simulations are widely used for calculation of the dosimetric parameters of brachytherapy sources. MCNP4C2, MCNP5, MCNPX, EGS4, EGSnrc, PTRAN, and GEANT4 are among the most commonly used codes in this field. Each of these codes utilizes a cross‐sectional library for the purpose of simulating different elements and materials with complex chemical compositions. The accuracies of the final outcomes of these simulations are very sensitive to the accuracies of the cross‐sectional libraries. Several investigators have shown that inaccuracies of some of the cross section files have led to errors in 125I and 103Pd parameters. The purpose of this study is to compare the dosimetric parameters of sample brachytherapy sources, calculated with three different versions of the MCNP code — MCNP4C, MCNP5, and MCNPX. In these simulations for each source type, the source and phantom geometries, as well as the number of the photons, were kept identical, thus eliminating the possible uncertainties. The results of these investigations indicate that for low‐energy sources such as 125I and 103Pd there are discrepancies in gL(r) values. Discrepancies up to 21.7% and 28% are observed between MCNP4C and other codes at a distance of 6 cm for 103Pd and 10 cm for 125I from the source, respectively. However, for higher energy sources, the discrepancies in gL(r) values are less than 1.1% for 192Ir and less than 1.2% for 137Cs between the three codes. PACS number(s): 87.56.bg PMID:27074460
NASA Astrophysics Data System (ADS)
Jung, Seongmoon; Sung, Wonmo; Lee, Jaegi; Ye, Sung-Joon
2018-01-01
Emerging radiological applications of gold nanoparticles demand low-energy electron/photon transport calculations including details of an atomic relaxation process. Recently, MCNP® version 6.1 (MCNP6.1) has been released with extended cross-sections for low-energy electron/photon, subshell photoelectric cross-sections, and more detailed atomic relaxation data than the previous versions. With this new feature, the atomic relaxation process of MCNP6.1 has not been fully tested yet with its new physics library (eprdata12) that is based on the Evaluated Atomic Data Library (EADL). In this study, MCNP6.1 was compared with GATEv7.2, PENELOPE2014, and EGSnrc that have been often used to simulate low-energy atomic relaxation processes. The simulations were performed to acquire both photon and electron spectra produced by interactions of 15 keV electrons or photons with a 10-nm-thick gold nano-slab. The photon-induced fluorescence X-rays from MCNP6.1 fairly agreed with those from GATEv7.2 and PENELOPE2014, while the electron-induced fluorescence X-rays of the four codes showed more or less discrepancies. A coincidence was observed in the photon-induced Auger electrons simulated by MCNP6.1 and GATEv7.2. A recent release of MCNP6.1 with eprdata12 can be used to simulate the photon-induced atomic relaxation.
Burn, K W; Daffara, C; Gualdrini, G; Pierantoni, M; Ferrari, P
2007-01-01
The question of Monte Carlo simulation of radiation transport in voxel geometries is addressed. Patched versions of the MCNP and MCNPX codes are developed aimed at transporting radiation both in the standard geometry mode and in the voxel geometry treatment. The patched code reads an unformatted FORTRAN file derived from DICOM format data and uses special subroutines to handle voxel-to-voxel radiation transport. The various phases of the development of the methodology are discussed together with the new input options. Examples are given of employment of the code in internal and external dosimetry and comparisons with results from other groups are reported.
Duggan, Dennis M
2004-12-01
Improved cross-sections in a new version of the Monte-Carlo N-particle (MCNP) code may eliminate discrepancies between radial dose functions (as defined by American Association of Physicists in Medicine Task Group 43) derived from Monte-Carlo simulations of low-energy photon-emitting brachytherapy sources and those from measurements on the same sources with thermoluminescent dosimeters. This is demonstrated for two 125I brachytherapy seed models, the Implant Sciences Model ISC3500 (I-Plant) and the Amersham Health Model 6711, by simulating their radial dose functions with two versions of MCNP, 4c2 and 5.
Comparison of EGS4 and MCNP Monte Carlo codes when calculating radiotherapy depth doses.
Love, P A; Lewis, D G; Al-Affan, I A; Smith, C W
1998-05-01
The Monte Carlo codes EGS4 and MCNP have been compared when calculating radiotherapy depth doses in water. The aims of the work were to study (i) the differences between calculated depth doses in water for a range of monoenergetic photon energies and (ii) the relative efficiency of the two codes for different electron transport energy cut-offs. The depth doses from the two codes agree with each other within the statistical uncertainties of the calculations (1-2%). The relative depth doses also agree with data tabulated in the British Journal of Radiology Supplement 25. A discrepancy in the dose build-up region may by attributed to the different electron transport algorithims used by EGS4 and MCNP. This discrepancy is considerably reduced when the improved electron transport routines are used in the latest (4B) version of MCNP. Timing calculations show that EGS4 is at least 50% faster than MCNP for the geometries used in the simulations.
MCNP4A: Features and philosophy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendricks, J.S.
This paper describes MCNP, states its philosophy, introduces a number of new features becoming available with version MCNP4A, and answers a number of questions asked by participants in the workshop. MCNP is a general-purpose three-dimensional neutron, photon and electron transport code. Its philosophy is ``Quality, Value and New Features.`` Quality is exemplified by new software quality assurance practices and a program of benchmarking against experiments. Value includes a strong emphasis on documentation and code portability. New features are the third priority. MCNP4A is now available at Los Alamos. New features in MCNP4A include enhanced statistical analysis, distributed processor multitasking, newmore » photon libraries, ENDF/B-VI capabilities, X-Windows graphics, dynamic memory allocation, expanded criticality output, periodic boundaries, plotting of particle tracks via SABRINA, and many other improvements. 23 refs.« less
MCNP6 Simulation of Light and Medium Nuclei Fragmentation at Intermediate Energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mashnik, Stepan Georgievich; Kerby, Leslie Marie
2015-05-22
MCNP6, the latest and most advanced LANL Monte Carlo transport code, representing a merger of MCNP5 and MCNPX, is actually much more than the sum of those two computer codes; MCNP6 is available to the public via RSICC at Oak Ridge, TN, USA. In the present work, MCNP6 was validated and verified (V&V) against different experimental data on intermediate-energy fragmentation reactions, and results by several other codes, using mainly the latest modifications of the Cascade-Exciton Model (CEM) and of the Los Alamos version of the Quark-Gluon String Model (LAQGSM) event generators CEM03.03 and LAQGSM03.03. It was found that MCNP6 usingmore » CEM03.03 and LAQGSM03.03 describes well fragmentation reactions induced on light and medium target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below, and can serve as a reliable simulation tool for different applications, like cosmic-ray-induced single event upsets (SEU’s), radiation protection, and cancer therapy with proton and ion beams, to name just a few. Future improvements of the predicting capabilities of MCNP6 for such reactions are possible, and are discussed in this work.« less
MCNP (Monte Carlo Neutron Photon) capabilities for nuclear well logging calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forster, R.A.; Little, R.C.; Briesmeister, J.F.
The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. The general-purpose continuous-energy Monte Carlo code MCNP (Monte Carlo Neutron Photon), part of the LARTCS, provides a computational predictive capability for many applications of interest to the nuclear well logging community. The generalized three-dimensional geometry of MCNP is well suited for borehole-tool models. SABRINA, another component of the LARTCS, is a graphics code that can be used to interactively create a complex MCNP geometry. Users can define many source and tally characteristics with standard MCNP features. The time-dependent capabilitymore » of the code is essential when modeling pulsed sources. Problems with neutrons, photons, and electrons as either single particle or coupled particles can be calculated with MCNP. The physics of neutron and photon transport and interactions is modeled in detail using the latest available cross-section data. A rich collections of variance reduction features can greatly increase the efficiency of a calculation. MCNP is written in FORTRAN 77 and has been run on variety of computer systems from scientific workstations to supercomputers. The next production version of MCNP will include features such as continuous-energy electron transport and a multitasking option. Areas of ongoing research of interest to the well logging community include angle biasing, adaptive Monte Carlo, improved discrete ordinates capabilities, and discrete ordinates/Monte Carlo hybrid development. Los Alamos has requested approval by the Department of Energy to create a Radiation Transport Computational Facility under their User Facility Program to increase external interactions with industry, universities, and other government organizations. 21 refs.« less
Features of MCNP6 Relevant to Medical Radiation Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, H. Grady III; Goorley, John T.
2012-08-29
MCNP (Monte Carlo N-Particle) is a general-purpose Monte Carlo code for simulating the transport of neutrons, photons, electrons, positrons, and more recently other fundamental particles and heavy ions. Over many years MCNP has found a wide range of applications in many different fields, including medical radiation physics. In this presentation we will describe and illustrate a number of significant recently-developed features in the current version of the code, MCNP6, having particular utility for medical physics. Among these are major extensions of the ability to simulate large, complex geometries, improvement in memory requirements and speed for large lattices, introduction of mesh-basedmore » isotopic reaction tallies, advances in radiography simulation, expanded variance-reduction capabilities, especially for pulse-height tallies, and a large number of enhancements in photon/electron transport.« less
Juste, B; Miro, R; Gallardo, S; Santos, A; Verdu, G
2006-01-01
The present work has simulated the photon and electron transport in a Theratron 780 (MDS Nordion) (60)Co radiotherapy unit, using the Monte Carlo transport code, MCNP (Monte Carlo N-Particle), version 5. In order to become computationally more efficient in view of taking part in the practical field of radiotherapy treatment planning, this work is focused mainly on the analysis of dose results and on the required computing time of different tallies applied in the model to speed up calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Bryan Scott; Gough, Sean T.
This report documents a validation of the MCNP6 Version 1.0 computer code on the high performance computing platform Moonlight, for operations at Los Alamos National Laboratory (LANL) that involve plutonium metals, oxides, and solutions. The validation is conducted using the ENDF/B-VII.1 continuous energy group cross section library at room temperature. The results are for use by nuclear criticality safety personnel in performing analysis and evaluation of various facility activities involving plutonium materials.
Total reaction cross sections in CEM and MCNP6 at intermediate energies
Kerby, Leslie M.; Mashnik, Stepan G.
2015-05-14
Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore » the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less
Total reaction cross sections in CEM and MCNP6 at intermediate energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerby, Leslie M.; Mashnik, Stepan G.
Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore » the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less
Natto, S A; Lewis, D G; Ryde, S J
1998-01-01
The Monte Carlo computer code MCNP (version 4A) has been used to develop a personal computer-based model of the Swansea in vivo neutron activation analysis (IVNAA) system. The model included specification of the neutron source (252Cf), collimators, reflectors and shielding. The MCNP model was 'benchmarked' against fast neutron and thermal neutron fluence data obtained experimentally from the IVNAA system. The Swansea system allows two irradiation geometries using 'short' and 'long' collimators, which provide alternative dose rates for IVNAA. The data presented here relate to the short collimator, although results of similar accuracy were obtained using the long collimator. The fast neutron fluence was measured in air at a series of depths inside the collimator. The measurements agreed with the MCNP simulation within the statistical uncertainty (5-10%) of the calculations. The thermal neutron fluence was measured and calculated inside the cuboidal water phantom. The depth of maximum thermal fluence was 3.2 cm (measured) and 3.0 cm (calculated). The width of the 50% thermal fluence level across the phantom at its mid-depth was found to be the same by both MCNP and experiment. This benchmarking exercise has given us a high degree of confidence in MCNP as a tool for the design of IVNAA systems.
A Monte-Carlo Benchmark of TRIPOLI-4® and MCNP on ITER neutronics
NASA Astrophysics Data System (ADS)
Blanchet, David; Pénéliau, Yannick; Eschbach, Romain; Fontaine, Bruno; Cantone, Bruno; Ferlet, Marc; Gauthier, Eric; Guillon, Christophe; Letellier, Laurent; Proust, Maxime; Mota, Fernando; Palermo, Iole; Rios, Luis; Guern, Frédéric Le; Kocan, Martin; Reichle, Roger
2017-09-01
Radiation protection and shielding studies are often based on the extensive use of 3D Monte-Carlo neutron and photon transport simulations. ITER organization hence recommends the use of MCNP-5 code (version 1.60), in association with the FENDL-2.1 neutron cross section data library, specifically dedicated to fusion applications. The MCNP reference model of the ITER tokamak, the `C-lite', is being continuously developed and improved. This article proposes to develop an alternative model, equivalent to the 'C-lite', but for the Monte-Carlo code TRIPOLI-4®. A benchmark study is defined to test this new model. Since one of the most critical areas for ITER neutronics analysis concerns the assessment of radiation levels and Shutdown Dose Rates (SDDR) behind the Equatorial Port Plugs (EPP), the benchmark is conducted to compare the neutron flux through the EPP. This problem is quite challenging with regard to the complex geometry and considering the important neutron flux attenuation ranging from 1014 down to 108 n•cm-2•s-1. Such code-to-code comparison provides independent validation of the Monte-Carlo simulations, improving the confidence in neutronic results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-08-01
Version 00 COG LibMaker contains various utilities to convert common data formats into a format usable by the COG - Multi-particle Monte Carlo Code System package, (C00777MNYCP01). Utilities included: ACEtoCOG - ACE formatted neutron data: Currently ENDFB7R0.BNL, ENDFB7R1.BNL, JEFF3.1, JEFF3.1.1, JEFF3.1.2, MCNP.50c, MCNP.51c, MCNP.55c, MCNP.66c, and MCNP.70c. ACEUtoCOG - ACEU formatted photonuclear data: Currently PN.MCNP.30c and PN.MCNP.70u. ACTLtoCOG - Creates a COG library from ENDL formatted activation data COG library. EDDLtoCOG - Creates a COG library from ENDL formatted LLNL deuteron data. ENDLtoCOG - Creates a COG library from ENDL formatted LLNL neutron data. EPDLtoCOG - Creates a COG librarymore » from ENDL formatted LLNL photon data. LEX - Creates a COG dictionary file. SAB.ACEtoCOG - Creates a COG library from ACE formatted S(a,b) data. SABtoCOG - Creates a COG library from ENDF6 formatted S(a,b) data. URRtoCOG - Creates a COG library from ACE formatted probability table data. This package also includes library checking and bit swapping capability.« less
Benchmark study for charge deposition by high energy electrons in thick slabs
NASA Technical Reports Server (NTRS)
Jun, I.
2002-01-01
The charge deposition profiles created when highenergy (1, 10, and 100 MeV) electrons impinge ona thick slab of elemental aluminum, copper, andtungsten are presented in this paper. The chargedeposition profiles were computed using existing representative Monte Carlo codes: TIGER3.0 (1D module of ITS3.0) and MCNP version 4B. The results showed that TIGER3.0 and MCNP4B agree very well (within 20% of each other) in the majority of the problem geometry. The TIGER results were considered to be accurate based on previous studies. Thus, it was demonstrated that MCNP, with its powerful geometry capability and flexible source and tally options, could be used in calculations of electron charging in high energy electron-rich space radiation environments.
TRIPOLI-4® - MCNP5 ITER A-lite neutronic model benchmarking
NASA Astrophysics Data System (ADS)
Jaboulay, J.-C.; Cayla, P.-Y.; Fausser, C.; Lee, Y.-K.; Trama, J.-C.; Li-Puma, A.
2014-06-01
The aim of this paper is to present the capability of TRIPOLI-4®, the CEA Monte Carlo code, to model a large-scale fusion reactor with complex neutron source and geometry. In the past, numerous benchmarks were conducted for TRIPOLI-4® assessment on fusion applications. Experiments (KANT, OKTAVIAN, FNG) analysis and numerical benchmarks (between TRIPOLI-4® and MCNP5) on the HCLL DEMO2007 and ITER models were carried out successively. In this previous ITER benchmark, nevertheless, only the neutron wall loading was analyzed, its main purpose was to present MCAM (the FDS Team CAD import tool) extension for TRIPOLI-4®. Starting from this work a more extended benchmark has been performed about the estimation of neutron flux, nuclear heating in the shielding blankets and tritium production rate in the European TBMs (HCLL and HCPB) and it is presented in this paper. The methodology to build the TRIPOLI-4® A-lite model is based on MCAM and the MCNP A-lite model (version 4.1). Simplified TBMs (from KIT) have been integrated in the equatorial-port. Comparisons of neutron wall loading, flux, nuclear heating and tritium production rate show a good agreement between the two codes. Discrepancies are mainly included in the Monte Carlo codes statistical error.
2013-07-01
also simulated in the models. Data was derived from calculations using the three-dimensional Monte Carlo radiation transport code MCNP (Monte Carlo N...32 B. MCNP PHYSICS OPTIONS ......................................................................................... 33 C. HAZUS...input deck’) for the MCNP , Monte Carlo N-Particle, radiation transport code. MCNP is a general-purpose code designed to simulate neutron, photon
Comparison of the thermal neutron scattering treatment in MCNP6 and GEANT4 codes
NASA Astrophysics Data System (ADS)
Tran, H. N.; Marchix, A.; Letourneau, A.; Darpentigny, J.; Menelle, A.; Ott, F.; Schwindling, J.; Chauvin, N.
2018-06-01
To ensure the reliability of simulation tools, verification and comparison should be made regularly. This paper describes the work performed in order to compare the neutron transport treatment in MCNP6.1 and GEANT4-10.3 in the thermal energy range. This work focuses on the thermal neutron scattering processes for several potential materials which would be involved in the neutron source designs of Compact Accelerator-based Neutrons Sources (CANS), such as beryllium metal, beryllium oxide, polyethylene, graphite, para-hydrogen, light water, heavy water, aluminium and iron. Both thermal scattering law and free gas model, coming from the evaluated data library ENDF/B-VII, were considered. It was observed that the GEANT4.10.03-patch2 version was not able to account properly the coherent elastic process occurring in crystal lattice. This bug is treated in this work and it should be included in the next release of the code. Cross section sampling and integral tests have been performed for both simulation codes showing a fair agreement between the two codes for most of the materials except for iron and aluminium.
Verification of MCNP6.2 for Nuclear Criticality Safety Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.; Rising, Michael Evan; Alwin, Jennifer Louise
2017-05-10
Several suites of verification/validation benchmark problems were run in early 2017 to verify that the new production release of MCNP6.2 performs correctly for nuclear criticality safety applications (NCS). MCNP6.2 results for several NCS validation suites were compared to the results from MCNP6.1 [1] and MCNP6.1.1 [2]. MCNP6.1 is the production version of MCNP® released in 2013, and MCNP6.1.1 is the update released in 2014. MCNP6.2 includes all of the standard features for NCS calculations that have been available for the past 15 years, along with new features for sensitivity-uncertainty based methods for NCS validation [3]. Results from the benchmark suitesmore » were compared with results from previous verification testing [4-8]. Criticality safety analysts should consider testing MCNP6.2 on their particular problems and validation suites. No further development of MCNP5 is planned. MCNP6.1 is now 4 years old, and MCNP6.1.1 is now 3 years old. In general, released versions of MCNP are supported only for about 5 years, due to resource limitations. All future MCNP improvements, bug fixes, user support, and new capabilities are targeted only to MCNP6.2 and beyond.« less
MCNP capabilities for nuclear well logging calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forster, R.A.; Little, R.C.; Briesmeister, J.F.
The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. This paper discusses how the general-purpose continuous-energy Monte Carlo code MCNP ({und M}onte {und C}arlo {und n}eutron {und p}hoton), part of the LARTCS, provides a computational predictive capability for many applications of interest to the nuclear well logging community. The generalized three-dimensional geometry of MCNP is well suited for borehole-tool models. SABRINA, another component of the LARTCS, is a graphics code that can be used to interactively create a complex MCNP geometry. Users can define many source and tallymore » characteristics with standard MCNP features. The time-dependent capability of the code is essential when modeling pulsed sources. Problems with neutrons, photons, and electrons as either single particle or coupled particles can be calculated with MCNP. The physics of neutron and photon transport and interactions is modeled in detail using the latest available cross-section data.« less
NASA Astrophysics Data System (ADS)
Muratov, V. G.; Lopatkin, A. V.
An important aspect in the verification of the engineering techniques used in the safety analysis of MOX-fuelled reactors, is the preparation of test calculations to determine nuclide composition variations under irradiation and analysis of burnup problem errors resulting from various factors, such as, for instance, the effect of nuclear data uncertainties on nuclide concentration calculations. So far, no universally recognized tests have been devised. A calculation technique has been developed for solving the problem using the up-to-date calculation tools and the latest versions of nuclear libraries. Initially, in 1997, a code was drawn up in an effort under ISTC Project No. 116 to calculate the burnup in one VVER-1000 fuel rod, using the MCNP Code. Later on, the authors developed a computation technique which allows calculating fuel burnup in models of a fuel rod, or a fuel assembly, or the whole reactor. It became possible to apply it to fuel burnup in all types of nuclear reactors and subcritical blankets.
2014-03-27
VERIFICATION AND VALIDATION OF MONTE CARLO N- PARTICLE CODE 6 (MCNP6) WITH NEUTRON PROTECTION FACTOR... PARTICLE CODE 6 (MCNP6) WITH NEUTRON PROTECTION FACTOR MEASUREMENTS OF AN IRON BOX THESIS Presented to the Faculty Department of Engineering...STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED iv AFIT-ENP-14-M-05 VERIFICATION AND VALIDATION OF MONTE CARLO N- PARTICLE CODE 6
Neutrons Flux Distributions of the Pu-Be Source and its Simulation by the MCNP-4B Code
NASA Astrophysics Data System (ADS)
Faghihi, F.; Mehdizadeh, S.; Hadad, K.
Neutron Fluence rate of a low intense Pu-Be source is measured by Neutron Activation Analysis (NAA) of 197Au foils. Also, the neutron fluence rate distribution versus energy is calculated using the MCNP-4B code based on ENDF/B-V library. Theoretical simulation as well as our experimental performance are a new experience for Iranians to make reliability with the code for further researches. In our theoretical investigation, an isotropic Pu-Be source with cylindrical volume distribution is simulated and relative neutron fluence rate versus energy is calculated using MCNP-4B code. Variation of the fast and also thermal neutrons fluence rate, which are measured by NAA method and MCNP code, are compared.
CREPT-MCNP code for efficiency calibration of HPGe detectors with the representative point method.
Saegusa, Jun
2008-01-01
The representative point method for the efficiency calibration of volume samples has been previously proposed. For smoothly implementing the method, a calculation code named CREPT-MCNP has been developed. The code estimates the position of a representative point which is intrinsic to each shape of volume sample. The self-absorption correction factors are also given to make correction on the efficiencies measured at the representative point with a standard point source. Features of the CREPT-MCNP code are presented.
NASA Astrophysics Data System (ADS)
Tayama, Ryuichi; Wakasugi, Kenichi; Kawanaka, Ikunori; Kadota, Yoshinobu; Murakami, Yasuhiro
We measured the skyshine dose from turbine buildings at Shimane Nuclear Power Station Unit 1 (NS-1) and Unit 2 (NS-2), and then compared it with the dose calculated with the Monte Carlo transport code MCNP5. The skyshine dose values calculated with the MCNP5 code agreed with the experimental data within a factor of 2.8, when the roof of the turbine building was precisely modeled. We concluded that our MCNP5 calculation was valid for BWR turbine skyshine dose evaluation.
TORT/MCNP coupling method for the calculation of neutron flux around a core of BWR.
Kurosawa, Masahiko
2005-01-01
For the analysis of BWR neutronics performance, accurate data are required for neutron flux distribution over the In-Reactor Pressure Vessel equipments taking into account the detailed geometrical arrangement. The TORT code can calculate neutron flux around a core of BWR in a three-dimensional geometry model, but has difficulties in fine geometrical modelling and lacks huge computer resource. On the other hand, the MCNP code enables the calculation of the neutron flux with a detailed geometry model, but requires very long sampling time to give enough number of particles. Therefore, a TORT/MCNP coupling method has been developed to eliminate the two problems mentioned above in each code. In this method, the TORT code calculates angular flux distribution on the core surface and the MCNP code calculates neutron spectrum at the points of interest using the flux distribution. The coupling method will be used as the DOT-DOMINO-MORSE code system. This TORT/MCNP coupling method was applied to calculate the neutron flux at points where induced radioactivity data were measured for 54Mn and 60Co and the radioactivity calculations based on the neutron flux obtained from the above method were compared with the measured data.
FY2012 summary of tasks completed on PROTEUS-thermal work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C.H.; Smith, M.A.
2012-06-06
PROTEUS is a suite of the neutronics codes, both old and new, that can be used within the SHARP codes being developed under the NEAMS program. Discussion here is focused on updates and verification and validation activities of the SHARP neutronics code, DeCART, for application to thermal reactor analysis. As part of the development of SHARP tools, the different versions of the DeCART code created for PWR, BWR, and VHTR analysis were integrated. Verification and validation tests for the integrated version were started, and the generation of cross section libraries based on the subgroup method was revisited for the targetedmore » reactor types. The DeCART code has been reorganized in preparation for an efficient integration of the different versions for PWR, BWR, and VHTR analysis. In DeCART, the old-fashioned common blocks and header files have been replaced by advanced memory structures. However, the changing of variable names was minimized in order to limit problems with the code integration. Since the remaining stability problems of DeCART were mostly caused by the CMFD methodology and modules, significant work was performed to determine whether they could be replaced by more stable methods and routines. The cross section library is a key element to obtain accurate solutions. Thus, the procedure for generating cross section libraries was revisited to provide libraries tailored for the targeted reactor types. To improve accuracy in the cross section library, an attempt was made to replace the CENTRM code by the MCNP Monte Carlo code as a tool obtaining reference resonance integrals. The use of the Monte Carlo code allows us to minimize problems or approximations that CENTRM introduces since the accuracy of the subgroup data is limited by that of the reference solutions. The use of MCNP requires an additional set of libraries without resonance cross sections so that reference calculations can be performed for a unit cell in which only one isotope of interest includes resonance cross sections, among the isotopes in the composition. The OECD MHTGR-350 benchmark core was simulated using DeCART as initial focus of the verification/validation efforts. Among the benchmark problems, Exercise 1 of Phase 1 is a steady-state benchmark case for the neutronics calculation for which block-wise cross sections were provided in 26 energy groups. This type of problem was designed for a homogenized geometry solver like DIF3D rather than the high-fidelity code DeCART. Instead of the homogenized block cross sections given in the benchmark, the VHTR-specific 238-group ENDF/B-VII.0 library of DeCART was directly used for preliminary calculations. Initial results showed that the multiplication factors of a fuel pin and a fuel block with or without a control rod hole were off by 6, -362, and -183 pcm Dk from comparable MCNP solutions, respectively. The 2-D and 3-D one-third core calculations were also conducted for the all-rods-out (ARO) and all-rods-in (ARI) configurations, producing reasonable results. Figure 1 illustrates the intermediate (1.5 eV - 17 keV) and thermal (below 1.5 eV) group flux distributions. As seen from VHTR cores with annular fuels, the intermediate group fluxes are relatively high in the fuel region, but the thermal group fluxes are higher in the inner and outer graphite reflector regions than in the fuel region. To support the current project, a new three-year I-NERI collaboration involving ANL and KAERI was started in November 2011, focused on performing in-depth verification and validation of high-fidelity multi-physics simulation codes for LWR and VHTR. The work scope includes generating improved cross section libraries for the targeted reactor types, developing benchmark models for verification and validation of the neutronics code with or without thermo-fluid feedback, and performing detailed comparisons of predicted reactor parameters against both Monte Carlo solutions and experimental measurements. The following list summarizes the work conducted so far for PROTEUS-Thermal Tasks: Unification of different versions of DeCART was initiated, and at the same time code modernization was conducted to make code unification efficient; (2) Regeneration of cross section libraries was attempted for the targeted reactor types, and the procedure for generating cross section libraries was updated by replacing CENTRM with MCNP for reference resonance integrals; (3) The MHTGR-350 benchmark core was simulated using DeCART with VHTR-specific 238-group ENDF/B-VII.0 library, and MCNP calculations were performed for comparison; and (4) Benchmark problems for PWR and BWR analysis were prepared for the DeCART verification/validation effort. In the coming months, the work listed above will be completed. Cross section libraries will be generated with optimized group structures for specific reactor types.« less
An improved MCNP version of the NORMAN voxel phantom for dosimetry studies.
Ferrari, P; Gualdrini, G
2005-09-21
In recent years voxel phantoms have been developed on the basis of tomographic data of real individuals allowing new sets of conversion coefficients to be calculated for effective dose. Progress in radiation studies brought ICRP to revise its recommendations and a new report, already circulated in draft form, is expected to change the actual effective dose evaluation method. In the present paper the voxel phantom NORMAN developed at HPA, formerly NRPB, was employed with MCNP Monte Carlo code. A modified version of the phantom, NORMAN-05, was developed to take into account the new set of tissues and weighting factors proposed in the cited ICRP draft. Air kerma to organ equivalent dose and effective dose conversion coefficients for antero-posterior and postero-anterior parallel photon beam irradiations, from 20 keV to 10 MeV, have been calculated and compared with data obtained in other laboratories using different numerical phantoms. Obtained results are in good agreement with published data with some differences for the effective dose calculated employing the proposed new tissue weighting factors set in comparison with previous evaluations based on the ICRP 60 report.
NASA Astrophysics Data System (ADS)
Karriem, Veronica V.
Nuclear reactor design incorporates the study and application of nuclear physics, nuclear thermal hydraulic and nuclear safety. Theoretical models and numerical methods implemented in computer programs are utilized to analyze and design nuclear reactors. The focus of this PhD study's is the development of an advanced high-fidelity multi-physics code system to perform reactor core analysis for design and safety evaluations of research TRIGA-type reactors. The fuel management and design code system TRIGSIMS was further developed to fulfill the function of a reactor design and analysis code system for the Pennsylvania State Breazeale Reactor (PSBR). TRIGSIMS, which is currently in use at the PSBR, is a fuel management tool, which incorporates the depletion code ORIGEN-S (part of SCALE system) and the Monte Carlo neutronics solver MCNP. The diffusion theory code ADMARC-H is used within TRIGSIMS to accelerate the MCNP calculations. It manages the data and fuel isotopic content and stores it for future burnup calculations. The contribution of this work is the development of an improved version of TRIGSIMS, named TRIGSIMS-TH. TRIGSIMS-TH incorporates a thermal hydraulic module based on the advanced sub-channel code COBRA-TF (CTF). CTF provides the temperature feedback needed in the multi-physics calculations as well as the thermal hydraulics modeling capability of the reactor core. The temperature feedback model is using the CTF-provided local moderator and fuel temperatures for the cross-section modeling for ADMARC-H and MCNP calculations. To perform efficient critical control rod calculations, a methodology for applying a control rod position was implemented in TRIGSIMS-TH, making this code system a modeling and design tool for future core loadings. The new TRIGSIMS-TH is a computer program that interlinks various other functional reactor analysis tools. It consists of the MCNP5, ADMARC-H, ORIGEN-S, and CTF. CTF was coupled with both MCNP and ADMARC-H to provide the heterogeneous temperature distribution throughout the core. Each of these codes is written in its own computer language performing its function and outputs a set of data. TRIGSIMS-TH provides an effective use and data manipulation and transfer between different codes. With the implementation of feedback and control- rod-position modeling methodologies, the TRIGSIMS-TH calculations are more accurate and in a better agreement with measured data. The PSBR is unique in many ways and there are no "off-the-shelf" codes, which can model this design in its entirety. In particular, PSBR has an open core design, which is cooled by natural convection. Combining several codes into a unique system brings many challenges. It also requires substantial knowledge of both operation and core design of the PSBR. This reactor is in operation decades and there is a fair amount of studies and developments in both PSBR thermal hydraulics and neutronics. Measured data is also available for various core loadings and can be used for validation activities. The previous studies and developments in PSBR modeling also aids as a guide to assess the findings of the work herein. In order to incorporate new methods and codes into exiting TRIGSIMS, a re-evaluation of various components of the code was performed to assure the accuracy and efficiency of the existing CTF/MCNP5/ADMARC-H multi-physics coupling. A new set of ADMARC-H diffusion coefficients and cross sections was generated using the SERPENT code. This was needed as the previous data was not generated with thermal hydraulic feedback and the ARO position was used as the critical rod position. The B4C was re-evaluated for this update. The data exchange between ADMARC-H and MCNP5 was modified. The basic core model is given a flexibility to allow for various changes within the core model, and this feature was implemented in TRIGSIMS-TH. The PSBR core in the new code model can be expanded and changed. This allows the new code to be used as a modeling tool for design and analyses of future code loadings.
Shahmohammadi Beni, Mehrdad; Ng, C Y P; Krstic, D; Nikezic, D; Yu, K N
2017-01-01
Radiotherapy is a common cancer treatment module, where a certain amount of dose will be delivered to the targeted organ. This is achieved usually by photons generated by linear accelerator units. However, radiation scattering within the patient's body and the surrounding environment will lead to dose dispersion to healthy tissues which are not targets of the primary radiation. Determination of the dispersed dose would be important for assessing the risk and biological consequences in different organs or tissues. In the present work, the concept of conversion coefficient (F) of the dispersed dose was developed, in which F = (Dd/Dt), where Dd was the dispersed dose in a non-targeted tissue and Dt is the absorbed dose in the targeted tissue. To quantify Dd and Dt, a comprehensive model was developed using the Monte Carlo N-Particle (MCNP) package to simulate the linear accelerator head, the human phantom, the treatment couch and the radiotherapy treatment room. The present work also demonstrated the feasibility and power of parallel computing through the use of the Message Passing Interface (MPI) version of MCNP5.
Krstic, D.; Nikezic, D.
2017-01-01
Radiotherapy is a common cancer treatment module, where a certain amount of dose will be delivered to the targeted organ. This is achieved usually by photons generated by linear accelerator units. However, radiation scattering within the patient’s body and the surrounding environment will lead to dose dispersion to healthy tissues which are not targets of the primary radiation. Determination of the dispersed dose would be important for assessing the risk and biological consequences in different organs or tissues. In the present work, the concept of conversion coefficient (F) of the dispersed dose was developed, in which F = (Dd/Dt), where Dd was the dispersed dose in a non-targeted tissue and Dt is the absorbed dose in the targeted tissue. To quantify Dd and Dt, a comprehensive model was developed using the Monte Carlo N-Particle (MCNP) package to simulate the linear accelerator head, the human phantom, the treatment couch and the radiotherapy treatment room. The present work also demonstrated the feasibility and power of parallel computing through the use of the Message Passing Interface (MPI) version of MCNP5. PMID:28362837
Automated variance reduction for MCNP using deterministic methods.
Sweezy, J; Brown, F; Booth, T; Chiaramonte, J; Preeg, B
2005-01-01
In order to reduce the user's time and the computer time needed to solve deep penetration problems, an automated variance reduction capability has been developed for the MCNP Monte Carlo transport code. This new variance reduction capability developed for MCNP5 employs the PARTISN multigroup discrete ordinates code to generate mesh-based weight windows. The technique of using deterministic methods to generate importance maps has been widely used to increase the efficiency of deep penetration Monte Carlo calculations. The application of this method in MCNP uses the existing mesh-based weight window feature to translate the MCNP geometry into geometry suitable for PARTISN. The adjoint flux, which is calculated with PARTISN, is used to generate mesh-based weight windows for MCNP. Additionally, the MCNP source energy spectrum can be biased based on the adjoint energy spectrum at the source location. This method can also use angle-dependent weight windows.
Analysis of JSI TRIGA MARK II reactor physical parameters calculated with TRIPOLI and MCNP.
Henry, R; Tiselj, I; Snoj, L
2015-03-01
New computational model of the JSI TRIGA Mark II research reactor was built for TRIPOLI computer code and compared with existing MCNP code model. The same modelling assumptions were used in order to check the differences of the mathematical models of both Monte Carlo codes. Differences between the TRIPOLI and MCNP predictions of keff were up to 100pcm. Further validation was performed with analyses of the normalized reaction rates and computations of kinetic parameters for various core configurations. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Jia, Mingchun; Gong, Junjun; Xia, Wenming
2017-08-01
The linear attenuation coefficient, mass attenuation coefficient and mean free path of various Lead-Boron Polyethylene (PbBPE) samples which can be used as the photon shielding materials in marine reactor have been simulated using the Monte Carlo N-Particle (MCNP)-5 code. The MCNP simulation results are in good agreement with the XCOM values and the reported experimental data for source Cesium-137 and Cobalt-60. Thus, this method based on MCNP can be used to simulate the photon attenuation characteristics of various types of PbBPE materials.
Modification and benchmarking of MCNP for low-energy tungsten spectra.
Mercier, J R; Kopp, D T; McDavid, W D; Dove, S B; Lancaster, J L; Tucker, D M
2000-12-01
The MCNP Monte Carlo radiation transport code was modified for diagnostic medical physics applications. In particular, the modified code was thoroughly benchmarked for the production of polychromatic tungsten x-ray spectra in the 30-150 kV range. Validating the modified code for coupled electron-photon transport with benchmark spectra was supplemented with independent electron-only and photon-only transport benchmarks. Major revisions to the code included the proper treatment of characteristic K x-ray production and scoring, new impact ionization cross sections, and new bremsstrahlung cross sections. Minor revisions included updated photon cross sections, electron-electron bremsstrahlung production, and K x-ray yield. The modified MCNP code is benchmarked to electron backscatter factors, x-ray spectra production, and primary and scatter photon transport.
2014-01-01
and 50 kT, to within 30% of first-principles code ( MCNP ) for complicated cities and 10% for simpler cities. 15. SUBJECT TERMS Radiation Transport...Use of MCNP for Dose Calculations .................................................................... 3 2.3 MCNP Open-Field Absorbed Dose...Calculations .................................................. 4 2.4 The MCNP Urban Model
Verification of MCNP simulation of neutron flux parameters at TRIGA MK II reactor of Malaysia.
Yavar, A R; Khalafi, H; Kasesaz, Y; Sarmani, S; Yahaya, R; Wood, A K; Khoo, K S
2012-10-01
A 3-D model for 1 MW TRIGA Mark II research reactor was simulated. Neutron flux parameters were calculated using MCNP-4C code and were compared with experimental results obtained by k(0)-INAA and absolute method. The average values of φ(th),φ(epi), and φ(fast) by MCNP code were (2.19±0.03)×10(12) cm(-2)s(-1), (1.26±0.02)×10(11) cm(-2)s(-1) and (3.33±0.02)×10(10) cm(-2)s(-1), respectively. These average values were consistent with the experimental results obtained by k(0)-INAA. The findings show a good agreement between MCNP code results and experimental results. Copyright © 2012 Elsevier Ltd. All rights reserved.
Implementation of a tree algorithm in MCNP code for nuclear well logging applications.
Li, Fusheng; Han, Xiaogang
2012-07-01
The goal of this paper is to develop some modeling capabilities that are missing in the current MCNP code. Those missing capabilities can greatly help for some certain nuclear tools designs, such as a nuclear lithology/mineralogy spectroscopy tool. The new capabilities to be developed in this paper include the following: zone tally, neutron interaction tally, gamma rays index tally and enhanced pulse-height tally. The patched MCNP code also can be used to compute neutron slowing-down length and thermal neutron diffusion length. Copyright © 2011 Elsevier Ltd. All rights reserved.
MCNP output data analysis with ROOT (MODAR)
NASA Astrophysics Data System (ADS)
Carasco, C.
2010-12-01
MCNP Output Data Analysis with ROOT (MODAR) is a tool based on CERN's ROOT software. MODAR has been designed to handle time-energy data issued by MCNP simulations of neutron inspection devices using the associated particle technique. MODAR exploits ROOT's Graphical User Interface and functionalities to visualize and process MCNP simulation results in a fast and user-friendly way. MODAR allows to take into account the detection system time resolution (which is not possible with MCNP) as well as detectors energy response function and counting statistics in a straightforward way. New version program summaryProgram title: MODAR Catalogue identifier: AEGA_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGA_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 150 927 No. of bytes in distributed program, including test data, etc.: 4 981 633 Distribution format: tar.gz Programming language: C++ Computer: Most Unix workstations and PCs Operating system: Most Unix systems, Linux and windows, provided the ROOT package has been installed. Examples where tested under Suse Linux and Windows XP. RAM: Depends on the size of the MCNP output file. The example presented in the article, which involves three two dimensional 139×740 bins histograms, allocates about 60 MB. These data are running under ROOT and include consumption by ROOT itself. Classification: 17.6 Catalogue identifier of previous version: AEGA_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 1161 External routines: ROOT version 5.24.00 ( http://root.cern.ch/drupal/) Does the new version supersede the previous version?: Yes Nature of problem: The output of a MCNP simulation is an ascii file. The data processing is usually performed by copying and pasting the relevant parts of the ascii file into Microsoft Excel. Such an approach is satisfactory when the quantity of data is small but is not efficient when the size of the simulated data is large, for example when time-energy correlations are studied in detail such as in problems involving the associated particle technique. In addition, since the finite time resolution of the simulated detector cannot be modeled with MCNP, systems in which time-energy correlation is crucial cannot be described in a satisfactory way. Finally, realistic particle energy deposit in detectors is calculated with MCNP in a two step process involving type-5 then type-8 tallies. In the first step, the photon flux energy spectrum associated to a time region is selected and serves as a source energy distribution for the second step. Thus, several files must be manipulated before getting the result, which can be time consuming if one needs to study several time regions or different detectors performances. In the same way, modeling counting statistics obtained in a limited acquisition time requires several steps and can also be time consuming. Solution method: In order to overcome the previous limitations, the MODAR C++ code has been written to make use of CERN's ROOT data analysis software. MCNP output data are read from the MCNP output file with dedicated routines. Two dimensional histograms are filled and can be handled efficiently within the ROOT framework. To keep a user friendly analysis tool, all processing and data display can be done by means of ROOT Graphical User Interface. Specific routines have been written to include detectors finite time resolution and energy response function as well as counting statistics in a straightforward way. Reasons for new version: For applications involving the Associate Particle Technique, a large number of gamma rays are produced by the fast neutrons interactions. To study the energy spectra, it is useful to identify the gamma-ray energy peaks in a straightforward way. Therefore, the possibility to show gamma rays corresponding to specific reactions has been added in MODAR. Summary of revisions: It is possible to use a gamma ray database to better identify in the energy spectra gamma ray peaks with their first and second escapes. Histograms can be scaled by the number of source particle to evaluate the number of counts that is expected without statistical uncertainties. Additional comments: The possibility of adding tallies has also been incorporated in MODAR in order to describe systems in which the signal from several detectors can be summed. Moreover, MODAR can be adapted to handle other problems involving two dimensional data. Running time: The CPU time needed to smear a two dimensional histogram depends on the size of the histogram. In the presented example, the time-energy smearing of one of the 139×740 two dimensional histograms takes 3 minutes with a DELL computer equipped with INTEL Core 2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.; Rising, Michael Evan; Alwin, Jennifer Louise
2017-01-26
Whisper is a statistical analysis package developed in 2014 to support nuclear criticality safety (NCS) validation [1-3]. It uses the sensitivity profile data for an application as computed by MCNP6 [4-6] along with covariance files [7,8] for the nuclear data to determine a baseline upper-subcritical-limit (USL) for the application. Whisper version 1.0 was first developed and used at LANL in 2014 [3]. During 2015- 2016, Whisper was updated to version 1.1 and is to be included with the upcoming release of MCNP6.2. This document describes the user input and options for running whisper-1.1, including 2 perl utility scripts that simplifymore » ordinary NCS work, whisper_mcnp.pl and whisper_usl.pl. For many detailed references on the theory, applications, nuclear data & covariances, SQA, verification-validation, adjointbased methods for sensitivity-uncertainty analysis, and more – see the Whisper – NCS Validation section of the MCNP Reference Collection at mcnp.lanl.gov. There are currently over 50 Whisper reference documents available.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.; Rising, Michael Evan; Alwin, Jennifer Louise
Whisper is a statistical analysis package developed in 2014 to support nuclear criticality safety (NCS) validation [1-3]. It uses the sensitivity profile data for an application as computed by MCNP6 [4-6] along with covariance files [7,8] for the nuclear data to determine a baseline upper-subcritical-limit (USL) for the application. Whisper version 1.0 was first developed and used at LANL in 2014 [3]. During 2015-2016, Whisper was updated to version 1.1 [9] and is to be included with the upcoming release of MCNP6.2. This document describes the Whisper-1.1 package that will be included with the MCNP6.2 release during 2017. Specific detailsmore » are provided on the computer systems supported, the software quality assurance (SQA) procedures, installation, and testing. This document does not address other important topics, such as the importance of sensitivity-uncertainty (SU) methods to NCS validation, the theory underlying SU methodology, tutorials on the usage of MCNP-Whisper, practical approaches to using SU methodology to support and extend traditional validation, etc. There are over 50 documents included with Whisper-1.1 and available in the MCNP Reference Collection on the MCNP website (mcnp.lanl.gov) that address all of those topics and more. In this document, however, a complete bibliography of relevant MCNP-Whisper references is provided.« less
Performance of MCNP4A on seven computing platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendricks, J.S.; Brockhoff, R.C.
1994-12-31
The performance of seven computer platforms has been evaluated with the MCNP4A Monte Carlo radiation transport code. For the first time we report timing results using MCNP4A and its new test set and libraries. Comparisons are made on platforms not available to us in previous MCNP timing studies. By using MCNP4A and its 325-problem test set, a widely-used and readily-available physics production code is used; the timing comparison is not limited to a single ``typical`` problem, demonstrating the problem dependence of timing results; the results are reproducible at the more than 100 installations around the world using MCNP; comparison ofmore » performance of other computer platforms to the ones tested in this study is possible because we present raw data rather than normalized results; and a measure of the increase in performance of computer hardware and software over the past two years is possible. The computer platforms reported are the Cray-YMP 8/64, IBM RS/6000-560, Sun Sparc10, Sun Sparc2, HP/9000-735, 4 processor 100 MHz Silicon Graphics ONYX, and Gateway 2000 model 4DX2-66V PC. In 1991 a timing study of MCNP4, the predecessor to MCNP4A, was conducted using ENDF/B-V cross-section libraries, which are export protected. The new study is based upon the new MCNP 25-problem test set which utilizes internationally available data. MCNP4A, its test problems and the test data library are available from the Radiation Shielding and Information Center in Oak Ridge, Tennessee, or from the NEA Data Bank in Saclay, France. Anyone with the same workstation and compiler can get the same test problem sets, the same library files, and the same MCNP4A code from RSIC or NEA and replicate our results. And, because we report raw data, comparison of the performance of other compute platforms and compilers can be made.« less
Culbertson, C N; Wangerin, K; Ghandourah, E; Jevremovic, T
2005-08-01
The goal of this study was to evaluate the COG Monte Carlo radiation transport code, developed and tested by Lawrence Livermore National Laboratory, for neutron capture therapy related modeling. A boron neutron capture therapy model was analyzed comparing COG calculational results to results from the widely used MCNP4B (Monte Carlo N-Particle) transport code. The approach for computing neutron fluence rate and each dose component relevant in boron neutron capture therapy is described, and calculated values are shown in detail. The differences between the COG and MCNP predictions are qualified and quantified. The differences are generally small and suggest that the COG code can be applied for BNCT research related problems.
MCNP-model for the OAEP Thai Research Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallmeier, F.X.; Tang, J.S.; Primm, R.T. III
An MCNP input was prepared for the Thai Research Reactor, making extensive use of the MCNP geometry`s lattice feature that allows a flexible and easy rearrangement of the core components and the adjustment of the control elements. The geometry was checked for overdefined or undefined zones by two-dimensional plots of cuts through the core configuration with the MCNP geometry plotting capabilities, and by a three-dimensional view of the core configuration with the SABRINA code. Cross sections were defined for a hypothetical core of 67 standard fuel elements and 38 low-enriched uranium fuel elements--all filled with fresh fuel. Three test calculationsmore » were performed with the MCNP4B-code to obtain the multiplication factor for the cases with control elements fully inserted, fully withdrawn, and at a working position.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karthikeyan, R.; Tellier, R. L.; Hebert, A.
2006-07-01
The Coolant Void Reactivity (CVR) is an important safety parameter that needs to be estimated at the design stage of a nuclear reactor. It helps to have an a priori knowledge of the behavior of the system during a transient initiated by the loss of coolant. In the present paper, we have attempted to estimate the CVR for a CANDU New Generation (CANDU-NG) lattice, as proposed at an early stage of the Advanced CANDU Reactor (ACR) development. We have attempted to estimate the CVR with development version of the code DRAGON, using the method of characteristics. DRAGON has several advancedmore » self-shielding models incorporated in it, each of them compatible with the method of characteristics. This study will bring to focus the performance of these self-shielding models, especially when there is voiding of such a tight lattice. We have also performed assembly calculations in 2 x 2 pattern for the CANDU-NG fuel, with special emphasis on checkerboard voiding. The results obtained have been validated against Monte Carlo codes MCNP5 and TRIPOLI-4.3. (authors)« less
Addressing Fission Product Validation in MCNP Burnup Credit Criticality Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Don; Bowen, Douglas G; Marshall, William BJ J
2015-01-01
The US Nuclear Regulatory Commission (NRC) Division of Spent Fuel Storage and Transportation issued Interim Staff Guidance (ISG) 8, Revision 3 in September 2012. This ISG provides guidance for NRC staff members’ review of burnup credit (BUC) analyses supporting transport and dry storage of pressurized water reactor spent nuclear fuel (SNF) in casks. The ISG includes guidance for addressing validation of criticality (k eff) calculations crediting the presence of a limited set of fission products and minor actinides (FP&MAs). Based on previous work documented in NRC Regulatory Guide (NUREG) Contractor Report (CR)-7109, the ISG recommends that NRC staff members acceptmore » the use of either 1.5 or 3% of the FP&MA worth—in addition to bias and bias uncertainty resulting from validation of k eff calculations for the major actinides in SNF—to conservatively account for the bias and bias uncertainty associated with the specified unvalidated FP&MAs. The ISG recommends (1) use of 1.5% of the FP&MA worth if a modern version of SCALE and its nuclear data are used and (2) 3% of the FP&MA worth for well qualified, industry standard code systems other than SCALE with the Evaluated Nuclear Data Files, Part B (ENDF/B),-V, ENDF/B-VI, or ENDF/B-VII cross sections libraries. The work presented in this paper provides a basis for extending the use of the 1.5% of the FP&MA worth bias to BUC criticality calculations performed using the Monte Carlo N-Particle (MCNP) code. The extended use of the 1.5% FP&MA worth bias is shown to be acceptable by comparison of FP&MA worths calculated using SCALE and MCNP with ENDF/B-V, -VI, and -VII–based nuclear data. The comparison supports use of the 1.5% FP&MA worth bias when the MCNP code is used for criticality calculations, provided that the cask design is similar to the hypothetical generic BUC-32 cask model and that the credited FP&MA worth is no more than 0.1 Δk eff (ISG-8, Rev. 3, Recommendation 4).« less
A comparison of skyshine computational methods.
Hertel, Nolan E; Sweezy, Jeremy E; Shultis, J Kenneth; Warkentin, J Karl; Rose, Zachary J
2005-01-01
A variety of methods employing radiation transport and point-kernel codes have been used to model two skyshine problems. The first problem is a 1 MeV point source of photons on the surface of the earth inside a 2 m tall and 1 m radius silo having black walls. The skyshine radiation downfield from the point source was estimated with and without a 30-cm-thick concrete lid on the silo. The second benchmark problem is to estimate the skyshine radiation downfield from 12 cylindrical canisters emplaced in a low-level radioactive waste trench. The canisters are filled with ion-exchange resin with a representative radionuclide loading, largely 60Co, 134Cs and 137Cs. The solution methods include use of the MCNP code to solve the problem by directly employing variance reduction techniques, the single-scatter point kernel code GGG-GP, the QADMOD-GP point kernel code, the COHORT Monte Carlo code, the NAC International version of the SKYSHINE-III code, the KSU hybrid method and the associated KSU skyshine codes.
Considerations of MCNP Monte Carlo code to be used as a radiotherapy treatment planning tool.
Juste, B; Miro, R; Gallardo, S; Verdu, G; Santos, A
2005-01-01
The present work has simulated the photon and electron transport in a Theratron 780® (MDS Nordion)60Co radiotherapy unit, using the Monte Carlo transport code, MCNP (Monte Carlo N-Particle). This project explains mainly the different methodologies carried out to speedup calculations in order to apply this code efficiently in radiotherapy treatment planning.
MCNP5 CALCULATIONS REPLICATING ARH-600 NITRATE DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
FINFROCK SH
This report serves to extend the previous document: 'MCNP Calculations Replicating ARH-600 Data' by replicating the nitrate curves found in ARH-600. This report includes the MCNP models used, the calculated critical dimension for each analyzed parameter set, and the resulting data libraries for use with the CritView code. As with the ARH-600 data, this report is not meant to replace the analysis of the fissile systems by qualified criticality personnel. The M CNP data is presented without accounting for the statistical uncertainty (although this is typically less than 0.001) or bias and, as such, the application of a reasonable safetymore » margin is required. The data that follows pertains to the uranyl nitrate and plutonium nitrate spheres, infinite cylinders, and infinite slabs of varying isotopic composition, reflector thickness, and molarity. Each of the cases was modeled in MCNP (version 5.1.40), using the ENDF/B-VI cross section set. Given a molarity, isotopic composition, and reflector thickness, the fissile concentration and diameter (or thicknesses in the case of the slab geometries) were varied. The diameter for which k-effective equals 1.00 for a given concentration could then be calculated and graphed. These graphs are included in this report. The pages that follow describe the regions modeled, formulas for calculating the various parameters, a list of cross-sections used in the calculations, a description of the automation routine and data, and finally the data output. The data of most interest are the critical dimensions of the various systems analyzed. This is presented graphically, and in table format, in Appendix B. Appendix C provides a text listing of the same data in a format that is compatible with the CritView code. Appendices D and E provide listing of example Template files and MCNP input files (these are discussed further in Section 4). Appendix F is a complete listing of all of the output data (i.e., all of the analyzed dimensions and the resulting k{sub eff} values).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Der Marck, S. C.
Three nuclear data libraries have been tested extensively using criticality safety benchmark calculations. The three libraries are the new release of the US library ENDF/B-VII.1 (2011), the new release of the Japanese library JENDL-4.0 (2011), and the OECD/NEA library JEFF-3.1 (2006). All calculations were performed with the continuous-energy Monte Carlo code MCNP (version 4C3, as well as version 6-beta1). Around 2000 benchmark cases from the International Handbook of Criticality Safety Benchmark Experiments (ICSBEP) were used. The results were analyzed per ICSBEP category, and per element. Overall, the three libraries show similar performance on most criticality safety benchmarks. The largest differencesmore » are probably caused by elements such as Be, C, Fe, Zr, W. (authors)« less
Gamma irradiator dose mapping simulation using the MCNP code and benchmarking with dosimetry.
Sohrabpour, M; Hassanzadeh, M; Shahriari, M; Sharifzadeh, M
2002-10-01
The Monte Carlo transport code, MCNP, has been applied in simulating dose rate distribution in the IR-136 gamma irradiator system. Isodose curves, cumulative dose values, and system design data such as throughputs, over-dose-ratios, and efficiencies have been simulated as functions of product density. Simulated isodose curves, and cumulative dose values were compared with dosimetry values obtained using polymethyle-methacrylate, Fricke, ethanol-chlorobenzene, and potassium dichromate dosimeters. The produced system design data were also found to agree quite favorably with those of the system manufacturer's data. MCNP has thus been found to be an effective transport code for handling of various dose mapping excercises for gamma irradiators.
Enger, Shirin A; Munck af Rosenschöld, Per; Rezaei, Arash; Lundqvist, Hans
2006-02-01
GEANT4 is a Monte Carlo code originally implemented for high-energy physics applications and is well known for particle transport at high energies. The capacity of GEANT4 to simulate neutron transport in the thermal energy region is not equally well known. The aim of this article is to compare MCNP, a code commonly used in low energy neutron transport calculations and GEANT4 with experimental results and select the suitable code for gadolinium neutron capture applications. To account for the thermal neutron scattering from chemically bound atoms [S(alpha,beta)] in biological materials a comparison of thermal neutron fluence in tissue-like poly(methylmethacrylate) phantom is made with MCNP4B, GEANT4 6.0 patch1, and measurements from the neutron capture therapy (NCT) facility at the Studsvik, Sweden. The fluence measurements agreed with MCNP calculated results considering S(alpha,beta). The location of the thermal neutron peak calculated with MCNP without S(alpha,beta) and GEANT4 is shifted by about 0.5 cm towards a shallower depth and is 25%-30% lower in amplitude. Dose distribution from the gadolinium neutron capture reaction is then simulated by MCNP and compared with measured data. The simulations made by MCNP agree well with experimental results. As long as thermal neutron scattering from chemically bound atoms are not included in GEANT4 it is not suitable for NCT applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bull, Jeffrey S.
This presentation describes how to build MCNP 6.2. MCNP®* 6.2 can be compiled on Macs, PCs, and most Linux systems. It can also be built for parallel execution using both OpenMP and Messing Passing Interface (MPI) methods. MCNP6 requires Fortran, C, and C++ compilers to build the code.
Criticality Calculations with MCNP6 - Practical Lectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.; Rising, Michael Evan; Alwin, Jennifer Louise
2016-11-29
These slides are used to teach MCNP (Monte Carlo N-Particle) usage to nuclear criticality safety analysts. The following are the lecture topics: course information, introduction, MCNP basics, criticality calculations, advanced geometry, tallies, adjoint-weighted tallies and sensitivities, physics and nuclear data, parameter studies, NCS validation I, NCS validation II, NCS validation III, case study 1 - solution tanks, case study 2 - fuel vault, case study 3 - B&W core, case study 4 - simple TRIGA, case study 5 - fissile mat. vault, criticality accident alarm systems. After completion of this course, you should be able to: Develop an input modelmore » for MCNP; Describe how cross section data impact Monte Carlo and deterministic codes; Describe the importance of validation of computer codes and how it is accomplished; Describe the methodology supporting Monte Carlo codes and deterministic codes; Describe pitfalls of Monte Carlo calculations; Discuss the strengths and weaknesses of Monte Carlo and Discrete Ordinants codes; The diffusion theory model is not strictly valid for treating fissile systems in which neutron absorption, voids, and/or material boundaries are present. In the context of these limitations, identify a fissile system for which a diffusion theory solution would be adequate.« less
V&V of MCNP 6.1.1 Beta Against Intermediate and High-Energy Experimental Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mashnik, Stepan G
This report presents a set of validation and verification (V&V) MCNP 6.1.1 beta results calculated in parallel, with MPI, obtained using its event generators at intermediate and high-energies compared against various experimental data. It also contains several examples of results using the models at energies below 150 MeV, down to 10 MeV, where data libraries are normally used. This report can be considered as the forth part of a set of MCNP6 Testing Primers, after its first, LA-UR-11-05129, and second, LA-UR-11-05627, and third, LA-UR-26944, publications, but is devoted to V&V with the latest, 1.1 beta version of MCNP6. The MCNP6more » test-problems discussed here are presented in the /VALIDATION_CEM/and/VALIDATION_LAQGSM/subdirectories in the MCNP6/Testing/directory. README files that contain short descriptions of every input file, the experiment, the quantity of interest that the experiment measures and its description in the MCNP6 output files, and the publication reference of that experiment are presented for every test problem. Templates for plotting the corresponding results with xmgrace as well as pdf files with figures representing the final results of our V&V efforts are presented. Several technical “bugs” in MCNP 6.1.1 beta were discovered during our current V&V of MCNP6 while running it in parallel with MPI using its event generators. These “bugs” are to be fixed in the following version of MCNP6. Our results show that MCNP 6.1.1 beta using its CEM03.03, LAQGSM03.03, Bertini, and INCL+ABLA, event generators describes, as a rule, reasonably well different intermediate- and high-energy measured data. This primer isn’t meant to be read from cover to cover. Readers may skip some sections and go directly to any test problem in which they are interested.« less
Radioactive ion beams produced by neutron-induced fission at ISOLDE
NASA Astrophysics Data System (ADS)
Catherall, R.; Lettry, J.; Gilardoni, S.; Köster, U.; Isolde Collaboration
2003-05-01
The production rates of neutron-rich fission products for the next-generation radioactive beam facility EURISOL [EU-RTD Project EURISOL (HPRI-CT-1999-50001)] are mainly limited by the maximum amount of power deposited by protons in the target. An alternative approach is to use neutron beams to induce fission in actinide targets. This has the advantage of reducing: the energy deposited by the proton beam in the target; contamination from neutron-deficient isobars that would be produced by spallation; and mechanical stress on the target. At ISOLDE CERN [E. Kugler, Hyperfine Interact. 129 (2000) 23], tests have been made on standard ISOLDE actinide targets using fast-neutron bunches produced by bombarding thick, high- Z metal converters with 1 and 1.4 GeV proton pulses. This paper reviews the first applications of converters used at ISOLDE. It highlights the different geometries and the techniques used to compare fission yields produced by the proton beam directly on the target with neutron-induced fission. Results from the six targets already tested, namely UC 2/graphite and ThO 2 targets with tungsten and tantalum converters, are presented. To gain further knowledge for the design of a dedicated target as required by the TARGISOL project [EU-RTD Project TARGISOL (HPRI-CT-2001-50033)], the results are compared to simulations, using the MARS [N.V. Mokhov, S.I. Striganov, A. Van Ginneken, S.G. Mashnik, A.J. Sierk, J. Ranft, MARS code developments, in: 4th Workshop on Simulating Accelerator Radiation Environments, SARE-4, Knoxville, USA, 14-15.9.1998, FERMILAB-PUB-98-379, nucl-th/9812038; N.V. Mokhov, The Mars Code System User's Guide, Fermilab-FN-628, 1995; N.V. Mokhov, MARS Code Developments, Benchmarking and Applications, Fermilab-Conf-00-066, 2000; O.E. Krivosheev, N.V. Mokhov, A New MARS and its Applications, Fermilab-Conf-98/43, 1998] code interfaced with MCNP [J.S. Hendrics, MCNP4C LANL Memo X-5; JSH-2000-3; J.F. Briemesteir (Ed.), MCNP - A General Montecarlo N-Particle Transport Code, Version 4C, LA-13709-M] libraries, of the neutron flux from the converters interacting with the actinide targets.
Radioactive ion beams produced by neutron-induced fission at ISOLDE
NASA Astrophysics Data System (ADS)
Isolde Collaboration; Catherall, R.; Lettry, J.; Gilardoni, S.; Köster, U.
2003-05-01
The production rates of neutron-rich fission products for the next-generation radioactive beam facility EURISOL [EU-RTD Project EURISOL (HPRI-CT-1999-50001)] are mainly limited by the maximum amount of power deposited by protons in the target. An alternative approach is to use neutron beams to induce fission in actinide targets. This has the advantage of reducing: the energy deposited by the proton beam in the target; contamination from neutron-deficient isobars that would be produced by spallation; and mechanical stress on the target. At ISOLDE CERN [E. Kugler, Hyperfine Interact. 129 (2000) 23], tests have been made on standard ISOLDE actinide targets using fast-neutron bunches produced by bombarding thick, high-/Z metal converters with 1 and 1.4 GeV proton pulses. This paper reviews the first applications of converters used at ISOLDE. It highlights the different geometries and the techniques used to compare fission yields produced by the proton beam directly on the target with neutron-induced fission. Results from the six targets already tested, namely UC2/graphite and ThO2 targets with tungsten and tantalum converters, are presented. To gain further knowledge for the design of a dedicated target as required by the TARGISOL project [EU-RTD Project TARGISOL (HPRI-CT-2001-50033)], the results are compared to simulations, using the MARS [N.V. Mokhov, S.I. Striganov, A. Van Ginneken, S.G. Mashnik, A.J. Sierk, J. Ranft, MARS code developments, in: 4th Workshop on Simulating Accelerator Radiation Environments, SARE-4, Knoxville, USA, 14-15.9.1998, FERMILAB-PUB-98-379, nucl-th/9812038; N.V. Mokhov, The Mars Code System User's Guide, Fermilab-FN-628, 1995; N.V. Mokhov, MARS Code Developments, Benchmarking and Applications, Fermilab-Conf-00-066, 2000; O.E. Krivosheev, N.V. Mokhov, A New MARS and its Applications, Fermilab-Conf-98/43, 1998] code interfaced with MCNP [J.S. Hendrics, MCNP4C LANL Memo X-5; JSH-2000-3; J.F. Briemesteir (Ed.), MCNP - A General Montecarlo N-Particle Transport Code, Version 4C, LA-13709-M] libraries, of the neutron flux from the converters interacting with the actinide targets.
MCNP6 Fission Multiplicity with FMULT Card
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, Trevor; Fensin, Michael Lorne; Hendricks, John S.
With the merger of MCNPX and MCNP5 into MCNP6, MCNP6 now provides all the capabilities of both codes allowing the user to access all the fission multiplicity data sets. Detailed in this paper is: (1) the new FMULT card capabilities for accessing these different data sets; (2) benchmark calculations, as compared to experiment, detailing the results of selecting these separate data sets for thermal neutron induced fission on U-235.
NASA Astrophysics Data System (ADS)
Hartling, K.; Ciungu, B.; Li, G.; Bentoumi, G.; Sur, B.
2018-05-01
Monte Carlo codes such as MCNP and Geant4 rely on a combination of physics models and evaluated nuclear data files (ENDF) to simulate the transport of neutrons through various materials and geometries. The grid representation used to represent the final-state scattering energies and angles associated with neutron scattering interactions can significantly affect the predictions of these codes. In particular, the default thermal scattering libraries used by MCNP6.1 and Geant4.10.3 do not accurately reproduce the ENDF/B-VII.1 model in simulations of the double-differential cross section for thermal neutrons interacting with hydrogen nuclei in a thin layer of water. However, agreement between model and simulation can be achieved within the statistical error by re-processing ENDF/B-VII.I thermal scattering libraries with the NJOY code. The structure of the thermal scattering libraries and sampling algorithms in MCNP and Geant4 are also reviewed.
Elaborate SMART MCNP Modelling Using ANSYS and Its Applications
NASA Astrophysics Data System (ADS)
Song, Jaehoon; Surh, Han-bum; Kim, Seung-jin; Koo, Bonsueng
2017-09-01
An MCNP 3-dimensional model can be widely used to evaluate various design parameters such as a core design or shielding design. Conventionally, a simplified 3-dimensional MCNP model is applied to calculate these parameters because of the cumbersomeness of modelling by hand. ANSYS has a function for converting the CAD `stp' format into an MCNP input in the geometry part. Using ANSYS and a 3- dimensional CAD file, a very detailed and sophisticated MCNP 3-dimensional model can be generated. The MCNP model is applied to evaluate the assembly weighting factor at the ex-core detector of SMART, and the result is compared with a simplified MCNP SMART model and assembly weighting factor calculated by DORT, which is a deterministic Sn code.
NASA Astrophysics Data System (ADS)
Lin, Yi-Chun; Liu, Yuan-Hao; Nievaart, Sander; Chen, Yen-Fu; Wu, Shu-Wei; Chou, Wen-Tsae; Jiang, Shiang-Huei
2011-10-01
High energy photon (over 10 MeV) and neutron beams adopted in radiobiology and radiotherapy always produce mixed neutron/gamma-ray fields. The Mg(Ar) ionization chambers are commonly applied to determine the gamma-ray dose because of its neutron insensitive characteristic. Nowadays, many perturbation corrections for accurate dose estimation and lots of treatment planning systems are based on Monte Carlo technique. The Monte Carlo codes EGSnrc, FLUKA, GEANT4, MCNP5, and MCNPX were used to evaluate energy dependent response functions of the Exradin M2 Mg(Ar) ionization chamber to a parallel photon beam with mono-energies from 20 keV to 20 MeV. For the sake of validation, measurements were carefully performed in well-defined (a) primary M-100 X-ray calibration field, (b) primary 60Co calibration beam, (c) 6-MV, and (d) 10-MV therapeutic beams in hospital. At energy region below 100 keV, MCNP5 and MCNPX both had lower responses than other codes. For energies above 1 MeV, the MCNP ITS-mode greatly resembled other three codes and the differences were within 5%. Comparing to the measured currents, MCNP5 and MCNPX using ITS-mode had perfect agreement with the 60Co, and 10-MV beams. But at X-ray energy region, the derivations reached 17%. This work shows us a better insight into the performance of different Monte Carlo codes in photon-electron transport calculation. Regarding the application of the mixed field dosimetry like BNCT, MCNP with ITS-mode is recognized as the most suitable tool by this work.
Delta-ray Production in MCNP 6.2.0
NASA Astrophysics Data System (ADS)
Anderson, C.; McKinney, G.; Tutt, J.; James, M.
Secondary electrons in the form of delta-rays, also referred to as knock-on electrons, have been a feature of MCNP for electron and positron transport for over 20 years. While MCNP6 now includes transport for a suite of heavy-ions and charged particles from its integration with MCNPX, the production of delta-rays was still limited to electron and positron transport. In the newest release of MCNP6, version 6.2.0, delta-ray production has now been extended for all energetic charged particles. The basis of this production is the analytical formulation from Rossi and ICRU Report 37. This paper discusses the MCNP6 heavy charged-particle implementation and provides production results for several benchmark/test problems.
Wangerin, K; Culbertson, C N; Jevremovic, T
2005-08-01
The goal of this study was to evaluate the COG Monte Carlo radiation transport code, developed and tested by Lawrence Livermore National Laboratory, for gadolinium neutron capture therapy (GdNCT) related modeling. The validity of COG NCT model has been established for this model, and here the calculation was extended to analyze the effect of various gadolinium concentrations on dose distribution and cell-kill effect of the GdNCT modality and to determine the optimum therapeutic conditions for treating brain cancers. The computational results were compared with the widely used MCNP code. The differences between the COG and MCNP predictions were generally small and suggest that the COG code can be applied to similar research problems in NCT. Results for this study also showed that a concentration of 100 ppm gadolinium in the tumor was most beneficial when using an epithermal neutron beam.
Chibani, Omar; Li, X Allen
2002-05-01
Three Monte Carlo photon/electron transport codes (GEPTS, EGSnrc, and MCNP) are bench-marked against dose measurements in homogeneous (both low- and high-Z) media as well as at interfaces. A brief overview on physical models used by each code for photon and electron (positron) transport is given. Absolute calorimetric dose measurements for 0.5 and 1 MeV electron beams incident on homogeneous and multilayer media are compared with the predictions of the three codes. Comparison with dose measurements in two-layer media exposed to a 60Co gamma source is also performed. In addition, comparisons between the codes (including the EGS4 code) are done for (a) 0.05 to 10 MeV electron beams and positron point sources in lead, (b) high-energy photons (10 and 20 MeV) irradiating a multilayer phantom (water/steel/air), and (c) simulation of a 90Sr/90Y brachytherapy source. A good agreement is observed between the calorimetric electron dose measurements and predictions of GEPTS and EGSnrc in both homogeneous and multilayer media. MCNP outputs are found to be dependent on the energy-indexing method (Default/ITS style). This dependence is significant in homogeneous media as well as at interfaces. MCNP(ITS) fits more closely the experimental data than MCNP(DEF), except for the case of Be. At low energy (0.05 and 0.1 MeV), MCNP(ITS) dose distributions in lead show higher maximums in comparison with GEPTS and EGSnrc. EGS4 produces too penetrating electron-dose distributions in high-Z media, especially at low energy (<0.1 MeV). For positrons, differences between GEPTS and EGSnrc are observed in lead because GEPTS distinguishes positrons from electrons for both elastic multiple scattering and bremsstrahlung emission models. For the 60Co source, a quite good agreement between calculations and measurements is observed with regards to the experimental uncertainty. For the other cases (10 and 20 MeV photon sources and the 90Sr/90Y beta source), a good agreement is found between the three codes. In conclusion, differences between GEPTS and EGSnrc results are found to be very small for almost all media and energies studied. MCNP results depend significantly on the electron energy-indexing method.
NASA Astrophysics Data System (ADS)
Paiva Fonseca, Gabriel; Landry, Guillaume; White, Shane; D'Amours, Michel; Yoriyaz, Hélio; Beaulieu, Luc; Reniers, Brigitte; Verhaegen, Frank
2014-10-01
Accounting for brachytherapy applicator attenuation is part of the recommendations from the recent report of AAPM Task Group 186. To do so, model based dose calculation algorithms require accurate modelling of the applicator geometry. This can be non-trivial in the case of irregularly shaped applicators such as the Fletcher Williamson gynaecological applicator or balloon applicators with possibly irregular shapes employed in accelerated partial breast irradiation (APBI) performed using electronic brachytherapy sources (EBS). While many of these applicators can be modelled using constructive solid geometry (CSG), the latter may be difficult and time-consuming. Alternatively, these complex geometries can be modelled using tessellated geometries such as tetrahedral meshes (mesh geometries (MG)). Recent versions of Monte Carlo (MC) codes Geant4 and MCNP6 allow for the use of MG. The goal of this work was to model a series of applicators relevant to brachytherapy using MG. Applicators designed for 192Ir sources and 50 kV EBS were studied; a shielded vaginal applicator, a shielded Fletcher Williamson applicator and an APBI balloon applicator. All applicators were modelled in Geant4 and MCNP6 using MG and CSG for dose calculations. CSG derived dose distributions were considered as reference and used to validate MG models by comparing dose distribution ratios. In general agreement within 1% for the dose calculations was observed for all applicators between MG and CSG and between codes when considering volumes inside the 25% isodose surface. When compared to CSG, MG required longer computation times by a factor of at least 2 for MC simulations using the same code. MCNP6 calculation times were more than ten times shorter than Geant4 in some cases. In conclusion we presented methods allowing for high fidelity modelling with results equivalent to CSG. To the best of our knowledge MG offers the most accurate representation of an irregular APBI balloon applicator.
On the effect of updated MCNP photon cross section data on the simulated response of the HPA TLD.
Eakins, Jonathan
2009-02-01
The relative response of the new Health Protection Agency thermoluminescence dosimeter (TLD) has been calculated for Narrow Series X-ray distribution and (137)Cs photon sources using the Monte Carlo code MCNP5, and the results compared with those obtained during its design stage using the predecessor code, MCNP4c2. The results agreed at intermediate energies (approximately 0.1 MeV to (137)Cs), but differed at low energies (<0.1 MeV) by up to approximately 10%. This disparity has been ascribed to differences in the default photon interaction data used by the two codes, and derives ultimately from the effect on absorbed dose of the recent updates to the photoelectric cross sections. The sources of these data have been reviewed.
Source terms, shielding calculations and soil activation for a medical cyclotron.
Konheiser, J; Naumann, B; Ferrari, A; Brachem, C; Müller, S E
2016-12-01
Calculations of the shielding and estimates of soil activation for a medical cyclotron are presented in this work. Based on the neutron source term from the 18 O(p,n) 18 F reaction produced by a 28 MeV proton beam, neutron and gamma dose rates outside the building were estimated with the Monte Carlo code MCNP6 (Goorley et al 2012 Nucl. Technol. 180 298-315). The neutron source term was calculated with the MCNP6 code and FLUKA (Ferrari et al 2005 INFN/TC_05/11, SLAC-R-773) code as well as with supplied data by the manufacturer. MCNP and FLUKA calculations yielded comparable results, while the neutron yield obtained using the manufacturer-supplied information is about a factor of 5 smaller. The difference is attributed to the missing channels in the manufacturer-supplied neutron source terms which considers only the 18 O(p,n) 18 F reaction, whereas the MCNP and FLUKA calculations include additional neutron reaction channels. Soil activation was performed using the FLUKA code. The estimated dose rate based on MCNP6 calculations in the public area is about 0.035 µSv h -1 and thus significantly below the reference value of 0.5 µSv h -1 (2011 Strahlenschutzverordnung, 9 Auflage vom 01.11.2011, Bundesanzeiger Verlag). After 5 years of continuous beam operation and a subsequent decay time of 30 d, the activity concentration of the soil is about 0.34 Bq g -1 .
Evaluation of RAPID for a UNF cask benchmark problem
NASA Astrophysics Data System (ADS)
Mascolino, Valerio; Haghighat, Alireza; Roskoff, Nathan J.
2017-09-01
This paper examines the accuracy and performance of the RAPID (Real-time Analysis for Particle transport and In-situ Detection) code system for the simulation of a used nuclear fuel (UNF) cask. RAPID is capable of determining eigenvalue, subcritical multiplication, and pin-wise, axially-dependent fission density throughout a UNF cask. We study the source convergence based on the analysis of the different parameters used in an eigenvalue calculation in the MCNP Monte Carlo code. For this study, we consider a single assembly surrounded by absorbing plates with reflective boundary conditions. Based on the best combination of eigenvalue parameters, a reference MCNP solution for the single assembly is obtained. RAPID results are in excellent agreement with the reference MCNP solutions, while requiring significantly less computation time (i.e., minutes vs. days). A similar set of eigenvalue parameters is used to obtain a reference MCNP solution for the whole UNF cask. Because of time limitation, the MCNP results near the cask boundaries have significant uncertainties. Except for these, the RAPID results are in excellent agreement with the MCNP predictions, and its computation time is significantly lower, 35 second on 1 core versus 9.5 days on 16 cores.
Bahreyni Toossi, M T; Moradi, H; Zare, H
2008-01-01
In this work, the general purpose Monte Carlo N-particle radiation transport computer code (MCNP-4C) was used for the simulation of X-ray spectra in diagnostic radiology. The electron's path in the target was followed until its energy was reduced to 10 keV. A user-friendly interface named 'diagnostic X-ray spectra by Monte Carlo simulation (DXRaySMCS)' was developed to facilitate the application of MCNP-4C code for diagnostic radiology spectrum prediction. The program provides a user-friendly interface for: (i) modifying the MCNP input file, (ii) launching the MCNP program to simulate electron and photon transport and (iii) processing the MCNP output file to yield a summary of the results (relative photon number per energy bin). In this article, the development and characteristics of DXRaySMCS are outlined. As part of the validation process, output spectra for 46 diagnostic radiology system settings produced by DXRaySMCS were compared with the corresponding IPEM78. Generally, there is a good agreement between the two sets of spectra. No statistically significant differences have been observed between IPEM78 reported spectra and the simulated spectra generated in this study.
Delta-ray Production in MCNP 6.2.0
Anderson, Casey Alan; McKinney, Gregg Walter; Tutt, James Robert; ...
2017-10-26
Secondary electrons in the form of delta-rays, also referred to as knock-on electrons, have been a feature of MCNP for electron and positron transport for over 20 years. While MCNP6 now includes transport for a suite of heavy-ions and charged particles from its integration with MCNPX, the production of delta-rays was still limited to electron and positron transport. In the newest release of MCNP6, version 6.2.0, delta-ray production has now been extended for all energetic charged particles. The basis of this production is the analytical formulation from Rossi and ICRU Report 37. As a result, this paper discusses the MCNP6more » heavy charged-particle implementation and provides production results for several benchmark/test problems.« less
The MCNP6 Analytic Criticality Benchmark Suite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.
2016-06-16
Analytical benchmarks provide an invaluable tool for verifying computer codes used to simulate neutron transport. Several collections of analytical benchmark problems [1-4] are used routinely in the verification of production Monte Carlo codes such as MCNP® [5,6]. Verification of a computer code is a necessary prerequisite to the more complex validation process. The verification process confirms that a code performs its intended functions correctly. The validation process involves determining the absolute accuracy of code results vs. nature. In typical validations, results are computed for a set of benchmark experiments using a particular methodology (code, cross-section data with uncertainties, and modeling)more » and compared to the measured results from the set of benchmark experiments. The validation process determines bias, bias uncertainty, and possibly additional margins. Verification is generally performed by the code developers, while validation is generally performed by code users for a particular application space. The VERIFICATION_KEFF suite of criticality problems [1,2] was originally a set of 75 criticality problems found in the literature for which exact analytical solutions are available. Even though the spatial and energy detail is necessarily limited in analytical benchmarks, typically to a few regions or energy groups, the exact solutions obtained can be used to verify that the basic algorithms, mathematics, and methods used in complex production codes perform correctly. The present work has focused on revisiting this benchmark suite. A thorough review of the problems resulted in discarding some of them as not suitable for MCNP benchmarking. For the remaining problems, many of them were reformulated to permit execution in either multigroup mode or in the normal continuous-energy mode for MCNP. Execution of the benchmarks in continuous-energy mode provides a significant advance to MCNP verification methods.« less
Benchmark of PENELOPE code for low-energy photon transport: dose comparisons with MCNP4 and EGS4.
Ye, Sung-Joon; Brezovich, Ivan A; Pareek, Prem; Naqvi, Shahid A
2004-02-07
The expanding clinical use of low-energy photon emitting 125I and 103Pd seeds in recent years has led to renewed interest in their dosimetric properties. Numerous papers pointed out that higher accuracy could be obtained in Monte Carlo simulations by utilizing newer libraries for the low-energy photon cross-sections, such as XCOM and EPDL97. The recently developed PENELOPE 2001 Monte Carlo code is user friendly and incorporates photon cross-section data from the EPDL97. The code has been verified for clinical dosimetry of high-energy electron and photon beams, but has not yet been tested at low energies. In the present work, we have benchmarked the PENELOPE code for 10-150 keV photons. We computed radial dose distributions from 0 to 10 cm in water at photon energies of 10-150 keV using both PENELOPE and MCNP4C with either DLC-146 or DLC-200 cross-section libraries, assuming a point source located at the centre of a 30 cm diameter and 20 cm length cylinder. Throughout the energy range of simulated photons (except for 10 keV), PENELOPE agreed within statistical uncertainties (at worst +/- 5%) with MCNP/DLC-146 in the entire region of 1-10 cm and with published EGS4 data up to 5 cm. The dose at 1 cm (or dose rate constant) of PENELOPE agreed with MCNP/DLC-146 and EGS4 data within approximately +/- 2% in the range of 20-150 keV, while MCNP/DLC-200 produced values up to 9% lower in the range of 20-100 keV than PENELOPE or the other codes. However, the differences among the four datasets became negligible above 100 keV.
NASA Astrophysics Data System (ADS)
Esfandiari, M.; Shirmardi, S. P.; Medhat, M. E.
2014-06-01
In this study, element analysis and the mass attenuation coefficient for matrixes of gold, bronze and water with various impurities and the concentrations of heavy metals (Cu, Mn, Pb and Zn) are evaluated and calculated by the MCNP simulation code for photons emitted from Barium-133, Americium-241 and sources with energies between 1 and 100 keV. The MCNP data are compared with the experimental data and WinXCom code simulated results by Medhat. The results showed that the obtained results of bronze and gold matrix are in good agreement with the other methods for energies above 40 and 60 keV, respectively. However for water matrixes with various impurities, there is a good agreement between the three methods MCNP, WinXCom and the experimental one in low and high energies.
Prompt Radiation Protection Factors
2018-02-01
dimensional Monte-Carlo radiation transport code MCNP (Monte Carlo N-Particle) and the evaluation of the protection factors (ratio of dose in the open to...radiation was performed using the three dimensional Monte- Carlo radiation transport code MCNP (Monte Carlo N-Particle) and the evaluation of the protection...by detonation of a nuclear device have placed renewed emphasis on evaluation of the consequences in case of such an event. The Defense Threat
Geometry creation for MCNP by Sabrina and XSM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Riper, K.A.
The Monte Carlo N-Particle transport code MCNP is based on a surface description of 3-dimensional geometry. Cells are defined in terms of boolean operations on signed quadratic surfaces. MCNP geometry is entered as a card image file containing coefficients of the surface equations and a list of surfaces and operators describing cells. Several programs are available to assist in creation of the geometry specification, among them Sabrina and the new ``Smart Editor`` code XSM. We briefly describe geometry creation in Sabrina and then discuss XSM in detail. XSM is under development; our discussion is based on the state of XSMmore » as of January 1, 1994.« less
MCNP-REN - A Monte Carlo Tool for Neutron Detector Design Without Using the Point Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abhold, M.E.; Baker, M.C.
1999-07-25
The development of neutron detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model fails to accurately predict detector response in common applications. For this reason, the general Monte Carlo N-Particle code (MCNP) was modified to simulate the pulse streams that would be generated by a neutron detector and normally analyzed by a shift register. This modified code, MCNP - Random Exponentially Distributed Neutron Source (MCNP-REN), along with the Time Analysis Program (TAP) predict neutron detector response without using the pointmore » reactor model, making it unnecessary for the user to decide whether or not the assumptions of the point model are met for their application. MCNP-REN is capable of simulating standard neutron coincidence counting as well as neutron multiplicity counting. Measurements of MOX fresh fuel made using the Underwater Coincidence Counter (UWCC) as well as measurements of HEU reactor fuel using the active neutron Research Reactor Fuel Counter (RRFC) are compared with calculations. The method used in MCNP-REN is demonstrated to be fundamentally sound and shown to eliminate the need to use the point model for detector performance predictions.« less
Multigroup cross section library for GFR2400
NASA Astrophysics Data System (ADS)
Čerba, Štefan; Vrban, Branislav; Lüley, Jakub; Haščík, Ján; Nečas, Vladimír
2017-09-01
In this paper the development and optimization of the SBJ_E71 multigroup cross section library for GFR2400 applications is discussed. A cross section processing scheme, merging Monte Carlo and deterministic codes, was developed. Several fine and coarse group structures and two weighting flux options were analysed through 18 benchmark experiments selected from the handbook of ICSBEP and based on performed similarity assessments. The performance of the collapsed version of the SBJ_E71 library was compared with MCNP5 CE ENDF/B VII.1 and the Korean KAFAX-E70 library. The comparison was made based on integral parameters of calculations performed on full core homogenous models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinilla, Maria Isabel
This report seeks to study and benchmark code predictions against experimental data; determine parameters to match MCNP-simulated detector response functions to experimental stilbene measurements; add stilbene processing capabilities to DRiFT; and improve NEUANCE detector array modeling and analysis using new MCNP6 and DRiFT features.
A New Source Biasing Approach in ADVANTG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bevill, Aaron M; Mosher, Scott W
2012-01-01
The ADVANTG code has been developed at Oak Ridge National Laboratory to generate biased sources and weight window maps for MCNP using the CADIS and FW-CADIS methods. In preparation for an upcoming RSICC release, a new approach for generating a biased source has been developed. This improvement streamlines user input and improves reliability. Previous versions of ADVANTG generated the biased source from ADVANTG input, writing an entirely new general fixed-source definition (SDEF). Because volumetric sources were translated into SDEF-format as a finite set of points, the user had to perform a convergence study to determine whether the number of sourcemore » points used accurately represented the source region. Further, the large number of points that must be written in SDEF-format made the MCNP input and output files excessively long and difficult to debug. ADVANTG now reads SDEF-format distributions and generates corresponding source biasing cards, eliminating the need for a convergence study. Many problems of interest use complicated source regions that are defined using cell rejection. In cell rejection, the source distribution in space is defined using an arbitrarily complex cell and a simple bounding region. Source positions are sampled within the bounding region but accepted only if they fall within the cell; otherwise, the position is resampled entirely. When biasing in space is applied to sources that use rejection sampling, current versions of MCNP do not account for the rejection in setting the source weight of histories, resulting in an 'unfair game'. This problem was circumvented in previous versions of ADVANTG by translating volumetric sources into a finite set of points, which does not alter the mean history weight ({bar w}). To use biasing parameters without otherwise modifying the original cell-rejection SDEF-format source, ADVANTG users now apply a correction factor for {bar w} in post-processing. A stratified-random sampling approach in ADVANTG is under development to automatically report the correction factor with estimated uncertainty. This study demonstrates the use of ADVANTG's new source biasing method, including the application of {bar w}.« less
Daures, J; Gouriou, J; Bordy, J M
2011-03-01
This work has been performed within the frame of the European Union ORAMED project (Optimisation of RAdiation protection for MEDical staff). The main goal of the project is to improve standards of protection for medical staff for procedures resulting in potentially high exposures and to develop methodologies for better assessing and for reducing, exposures to medical staff. The Work Package WP2 is involved in the development of practical eye-lens dosimetry in interventional radiology. This study is complementary of the part of the ENEA report concerning the calculations with the MCNP-4C code of the conversion factors related to the operational quantity H(p)(3). In this study, a set of energy- and angular-dependent conversion coefficients (H(p)(3)/K(a)), in the newly proposed square cylindrical phantom made of ICRU tissue, have been calculated with the Monte-Carlo code PENELOPE and MCNP5. The H(p)(3) values have been determined in terms of absorbed dose, according to the definition of this quantity, and also with the kerma approximation as formerly reported in ICRU reports. At a low-photon energy (up to 1 MeV), the two results obtained with the two methods are consistent. Nevertheless, large differences are showed at a higher energy. This is mainly due to the lack of electronic equilibrium, especially for small angle incidences. The values of the conversion coefficients obtained with the MCNP-4C code published by ENEA quite agree with the kerma approximation calculations obtained with PENELOPE. We also performed the same calculations with the code MCNP5 with two types of tallies: F6 for kerma approximation and *F8 for estimating the absorbed dose that is, as known, due to secondary electrons. PENELOPE and MCNP5 results agree for the kerma approximation and for the absorbed dose calculation of H(p)(3) and prove that, for photon energies larger than 1 MeV, the transport of the secondary electrons has to be taken into account.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, Timothy P.; Martz, Roger L.; Kiedrowski, Brian C.
New unstructured mesh capabilities in MCNP6 (developmental version during summer 2012) show potential for conducting multi-physics analyses by coupling MCNP to a finite element solver such as Abaqus/CAE[2]. Before these new capabilities can be utilized, the ability of MCNP to accurately estimate eigenvalues and pin powers using an unstructured mesh must first be verified. Previous work to verify the unstructured mesh capabilities in MCNP was accomplished using the Godiva sphere [1], and this work attempts to build on that. To accomplish this, a criticality benchmark and a fuel assembly benchmark were used for calculations in MCNP using both the Constructivemore » Solid Geometry (CSG) native to MCNP and the unstructured mesh geometry generated using Abaqus/CAE. The Big Ten criticality benchmark [3] was modeled due to its geometry being similar to that of a reactor fuel pin. The C5G7 3-D Mixed Oxide (MOX) Fuel Assembly Benchmark [4] was modeled to test the unstructured mesh capabilities on a reactor-type problem.« less
Maigne, L; Perrot, Y; Schaart, D R; Donnarieix, D; Breton, V
2011-02-07
The GATE Monte Carlo simulation platform based on the GEANT4 toolkit has come into widespread use for simulating positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging devices. Here, we explore its use for calculating electron dose distributions in water. Mono-energetic electron dose point kernels and pencil beam kernels in water are calculated for different energies between 15 keV and 20 MeV by means of GATE 6.0, which makes use of the GEANT4 version 9.2 Standard Electromagnetic Physics Package. The results are compared to the well-validated codes EGSnrc and MCNP4C. It is shown that recent improvements made to the GEANT4/GATE software result in significantly better agreement with the other codes. We furthermore illustrate several issues of general interest to GATE and GEANT4 users who wish to perform accurate simulations involving electrons. Provided that the electron step size is sufficiently restricted, GATE 6.0 and EGSnrc dose point kernels are shown to agree to within less than 3% of the maximum dose between 50 keV and 4 MeV, while pencil beam kernels are found to agree to within less than 4% of the maximum dose between 15 keV and 20 MeV.
Radiation shielding quality assurance
NASA Astrophysics Data System (ADS)
Um, Dallsun
For the radiation shielding quality assurance, the validity and reliability of the neutron transport code MCNP, which is now one of the most widely used radiation shielding analysis codes, were checked with lot of benchmark experiments. And also as a practical example, follows were performed in this thesis. One integral neutron transport experiment to measure the effect of neutron streaming in iron and void was performed with Dog-Legged Void Assembly in Knolls Atomic Power Laboratory in 1991. Neutron flux was measured six different places with the methane detectors and a BF-3 detector. The main purpose of the measurements was to provide benchmark against which various neutron transport calculation tools could be compared. Those data were used in verification of Monte Carlo Neutron & Photon Transport Code, MCNP, with the modeling for that. Experimental results and calculation results were compared in both ways, as the total integrated value of neutron fluxes along neutron energy range from 10 KeV to 2 MeV and as the neutron spectrum along with neutron energy range. Both results are well matched with the statistical error +/-20%. MCNP results were also compared with those of TORT, a three dimensional discrete ordinates code which was developed by Oak Ridge National Laboratory. MCNP results are superior to the TORT results at all detector places except one. This means that MCNP is proved as a very powerful tool for the analysis of neutron transport through iron & air and further it could be used as a powerful tool for the radiation shielding analysis. For one application of the analysis of variance (ANOVA) to neutron and gamma transport problems, uncertainties for the calculated values of critical K were evaluated as in the ANOVA on statistical data.
Using NJOY to Create MCNP ACE Files and Visualize Nuclear Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahler, Albert Comstock
We provide lecture materials that describe the input requirements to create various MCNP ACE files (Fast, Thermal, Dosimetry, Photo-nuclear and Photo-atomic) with the NJOY Nuclear Data Processing code system. Input instructions to visualize nuclear data with NJOY are also provided.
Calculated organ doses for Mayak production association central hall using ICRP and MCNP.
Choe, Dong-Ok; Shelkey, Brenda N; Wilde, Justin L; Walk, Heidi A; Slaughter, David M
2003-03-01
As part of an ongoing dose reconstruction project, equivalent organ dose rates from photons and neutrons were estimated using the energy spectra measured in the central hall above the graphite reactor core located in the Russian Mayak Production Association facility. Reconstruction of the work environment was necessary due to the lack of personal dosimeter data for neutrons in the time period prior to 1987. A typical worker scenario for the central hall was developed for the Monte Carlo Neutron Photon-4B (MCNP) code. The resultant equivalent dose rates for neutrons and photons were compared with the equivalent dose rates derived from calculations using the conversion coefficients in the International Commission on Radiological Protection Publications 51 and 74 in order to validate the model scenario for this Russian facility. The MCNP results were in good agreement with the results of the ICRP publications indicating the modeling scenario was consistent with actual work conditions given the spectra provided. The MCNP code will allow for additional orientations to accurately reflect source locations.
Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry.
Yoriyaz, H; Stabin, M G; dos Santos, A
2001-04-01
This study was intended to verify the capability of the Monte Carlo MCNP-4B code to evaluate spatial dose distribution based on information gathered from CT or SPECT. A new three-dimensional (3D) dose calculation approach for internal emitter use in radioimmunotherapy (RIT) was developed using the Monte Carlo MCNP-4B code as the photon and electron transport engine. It was shown that the MCNP-4B computer code can be used with voxel-based anatomic and physiologic data to provide 3D dose distributions. This study showed that the MCNP-4B code can be used to develop a treatment planning system that will provide such information in a time manner, if dose reporting is suitably optimized. If each organ is divided into small regions where the average energy deposition is calculated with a typical volume of 0.4 cm(3), regional dose distributions can be provided with reasonable central processing unit times (on the order of 12-24 h on a 200-MHz personal computer or modest workstation). Further efforts to provide semiautomated region identification (segmentation) and improvement of marrow dose calculations are needed to supply a complete system for RIT. It is envisioned that all such efforts will continue to develop and that internal dose calculations may soon be brought to a similar level of accuracy, detail, and robustness as is commonly expected in external dose treatment planning. For this study we developed a code with a user-friendly interface that works on several nuclear medicine imaging platforms and provides timely patient-specific dose information to the physician and medical physicist. Future therapy with internal emitters should use a 3D dose calculation approach, which represents a significant advance over dose information provided by the standard geometric phantoms used for more than 20 y (which permit reporting of only average organ doses for certain standardized individuals)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, T.D. Jr.
1996-05-01
The Monte Carlo Model System (MCMS) for the Washington State University (WSU) Radiation Center provides a means through which core criticality and power distributions can be calculated, as well as providing a method for neutron and photon transport necessary for BNCT epithermal neutron beam design. The computational code used in this Model System is MCNP4A. The geometric capability of this Monte Carlo code allows the WSU system to be modeled very accurately. A working knowledge of the MCNP4A neutron transport code increases the flexibility of the Model System and is recommended, however, the eigenvalue/power density problems can be run withmore » little direct knowledge of MCNP4A. Neutron and photon particle transport require more experience with the MCNP4A code. The Model System consists of two coupled subsystems; the Core Analysis and Source Plane Generator Model (CASP), and the BeamPort Shell Particle Transport Model (BSPT). The CASP Model incorporates the S({alpha}, {beta}) thermal treatment, and is run as a criticality problem yielding, the system eigenvalue (k{sub eff}), the core power distribution, and an implicit surface source for subsequent particle transport in the BSPT Model. The BSPT Model uses the source plane generated by a CASP run to transport particles through the thermal column beamport. The user can create filter arrangements in the beamport and then calculate characteristics necessary for assessing the BNCT potential of the given filter want. Examples of the characteristics to be calculated are: neutron fluxes, neutron currents, fast neutron KERMAs and gamma KERMAs. The MCMS is a useful tool for the WSU system. Those unfamiliar with the MCNP4A code can use the MCMS transparently for core analysis, while more experienced users will find the particle transport capabilities very powerful for BNCT filter design.« less
Chiavassa, S; Lemosquet, A; Aubineau-Lanièce, I; de Carlan, L; Clairand, I; Ferrer, L; Bardiès, M; Franck, D; Zankl, M
2005-01-01
This paper aims at comparing dosimetric assessments performed with three Monte Carlo codes: EGS4, MCNP4c2 and MCNPX2.5e, using a realistic voxel phantom, namely the Zubal phantom, in two configurations of exposure. The first one deals with an external irradiation corresponding to the example of a radiological accident. The results are obtained using the EGS4 and the MCNP4c2 codes and expressed in terms of the mean absorbed dose (in Gy per source particle) for brain, lungs, liver and spleen. The second one deals with an internal exposure corresponding to the treatment of a medullary thyroid cancer by 131I-labelled radiopharmaceutical. The results are obtained by EGS4 and MCNPX2.5e and compared in terms of S-values (expressed in mGy per kBq and per hour) for liver, kidney, whole body and thyroid. The results of these two studies are presented and differences between the codes are analysed and discussed.
A comparison between EGS4 and MCNP computer modeling of an in vivo X-ray fluorescence system.
Al-Ghorabie, F H; Natto, S S; Al-Lyhiani, S H
2001-03-01
The Monte Carlo computer codes EGS4 and MCNP were used to develop a theoretical model of a 180 degrees geometry in vivo X-ray fluorescence system for the measurement of platinum concentration in head and neck tumors. The model included specification of the photon source, collimators, phantoms and detector. Theoretical results were compared and evaluated against X-ray fluorescence data obtained experimentally from an existing system developed by the Swansea In Vivo Analysis and Cancer Research Group. The EGS4 results agreed well with the MCNP results. However, agreement between the measured spectral shape obtained using the experimental X-ray fluorescence system and the simulated spectral shape obtained using the two Monte Carlo codes was relatively poor. The main reason for the disagreement between the results arises from the basic assumptions which the two codes used in their calculations. Both codes assume a "free" electron model for Compton interactions. This assumption will underestimate the results and invalidates any predicted and experimental spectra when compared with each other.
NASA Astrophysics Data System (ADS)
Ortego, Pedro; Rodriguez, Alain; Töre, Candan; Compadre, José Luis de Diego; Quesada, Baltasar Rodriguez; Moreno, Raul Orive
2017-09-01
In order to increase the storage capacity of the East Spent Fuel Pool at the Cofrentes NPP, located in Valencia province, Spain, the existing storage stainless steel racks were replaced by a new design of compact borated stainless steel racks allowing a 65% increase in fuel storing capacity. Calculation of the activation of the used racks was successfully performed with the use of MCNP4B code. Additionally the dose rate at contact with a row of racks in standing position and behind a wall of shielding material has been calculated using MCNP4B code as well. These results allowed a preliminary definition of the burnker required for the storage of racks. Recently the activity in the racks has been recalculated with SEACAB system which combines the mesh tally of MCNP codes with the activation code ACAB, applying the rigorous two-step method (R2S) developed at home, benchmarked with FNG irradiation experiments and usually applied in fusion calculations for ITER project.
Lecture Notes on Criticality Safety Validation Using MCNP & Whisper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.; Rising, Michael Evan; Alwin, Jennifer Louise
Training classes for nuclear criticality safety, MCNP documentation. The need for, and problems surrounding, validation of computer codes and data area considered first. Then some background for MCNP & Whisper is given--best practices for Monte Carlo criticality calculations, neutron spectra, S(α,β) thermal neutron scattering data, nuclear data sensitivities, covariance data, and correlation coefficients. Whisper is computational software designed to assist the nuclear criticality safety analyst with validation studies with the Monte Carlo radiation transport package MCNP. Whisper's methodology (benchmark selection – C k's, weights; extreme value theory – bias, bias uncertainty; MOS for nuclear data uncertainty – GLLS) and usagemore » are discussed.« less
Covariance Data File Formats for Whisper-1.0 & Whisper-1.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.; Rising, Michael Evan
2017-01-09
Whisper is a statistical analysis package developed in 2014 to support nuclear criticality safety (NCS) validation. It uses the sensitivity profile data for an application as computed by MCNP6 along with covariance files for the nuclear data to determine a baseline upper-subcritical-limit (USL) for the application. Whisper version 1.0 was first developed and used at LANL in 2014. During 2015-2016, Whisper was updated to version 1.1 and is to be included with the upcoming release of MCNP6.2. This report describes the file formats used for the covariance data in both Whisper-1.0 and Whisper-1.1.
MC2-3 / DIF3D Analysis for the ZPPR-15 Doppler and Sodium Void Worth Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Micheal A.; Lell, Richard M.; Lee, Changho
This manuscript covers validation efforts for our deterministic codes at Argonne National Laboratory. The experimental results come from the ZPPR-15 work in 1985-1986 which was focused on the accuracy of physics data for the integral fast reactor concept. Results for six loadings are studied in this document and focus on Doppler sample worths and sodium void worths. The ZPPR-15 loadings are modeled using the MC2-3/DIF3D codes developed and maintained at ANL and the MCNP code from LANL. The deterministic models are generated by processing the as-built geometry information, i.e. MCNP input, and generating MC2-3 cross section generation instructions and amore » drawer homogenized equivalence problem. The Doppler reactivity worth measurements are small heated samples which insert very small amounts of reactivity into the system (< 2 pcm). The results generated by the MC2-3/DIF3D codes were excellent for ZPPR-15A and ZPPR-15B and good for ZPPR-15D, compared to the MCNP solutions. In all cases, notable improvements were made over the analysis techniques applied to the same problems in 1987. The sodium void worths from MC2-3/DIF3D were quite good at 37.5 pcm while MCNP result was 33 pcm and the measured result was 31.5 pcm. Copyright © (2015) by the American Nuclear Society All rights reserved.« less
An investigation of voxel geometries for MCNP-based radiation dose calculations.
Zhang, Juying; Bednarz, Bryan; Xu, X George
2006-11-01
Voxelized geometry such as those obtained from medical images is increasingly used in Monte Carlo calculations of absorbed doses. One useful application of calculated absorbed dose is the determination of fluence-to-dose conversion factors for different organs. However, confusion still exists about how such a geometry is defined and how the energy deposition is best computed, especially involving a popular code, MCNP5. This study investigated two different types of geometries in the MCNP5 code, cell and lattice definitions. A 10 cm x 10 cm x 10 cm test phantom, which contained an embedded 2 cm x 2 cm x 2 cm target at its center, was considered. A planar source emitting parallel photons was also considered in the study. The results revealed that MCNP5 does not calculate total target volume for multi-voxel geometries. Therefore, tallies which involve total target volume must be divided by the user by the total number of voxels to obtain a correct dose result. Also, using planar source areas greater than the phantom size results in the same fluence-to-dose conversion factor.
NASA Astrophysics Data System (ADS)
Marashdeh, Mohammad W.; Al-Hamarneh, Ibrahim F.; Abdel Munem, Eid M.; Tajuddin, A. A.; Ariffin, Alawiah; Al-Omari, Saleh
Rhizophora spp. wood has the potential to serve as a solid water or tissue equivalent phantom for photon and electron beam dosimetry. In this study, the effective atomic number (Zeff) and effective electron density (Neff) of raw wood and binderless Rhizophora spp. particleboards in four different particle sizes were determined in the 10-60 keV energy region. The mass attenuation coefficients used in the calculations were obtained using the Monte Carlo N-Particle (MCNP5) simulation code. The MCNP5 calculations of the attenuation parameters for the Rhizophora spp. samples were plotted graphically against photon energy and discussed in terms of their relative differences compared with those of water and breast tissue. Moreover, the validity of the MCNP5 code was examined by comparing the calculated attenuation parameters with the theoretical values obtained by the XCOM program based on the mixture rule. The results indicated that the MCNP5 process can be followed to determine the attenuation of gamma rays with several photon energies in other materials.
NASA Astrophysics Data System (ADS)
Liu, Tianyu; Wolfe, Noah; Lin, Hui; Zieb, Kris; Ji, Wei; Caracappa, Peter; Carothers, Christopher; Xu, X. George
2017-09-01
This paper contains two parts revolving around Monte Carlo transport simulation on Intel Many Integrated Core coprocessors (MIC, also known as Xeon Phi). (1) MCNP 6.1 was recompiled into multithreading (OpenMP) and multiprocessing (MPI) forms respectively without modification to the source code. The new codes were tested on a 60-core 5110P MIC. The test case was FS7ONNi, a radiation shielding problem used in MCNP's verification and validation suite. It was observed that both codes became slower on the MIC than on a 6-core X5650 CPU, by a factor of 4 for the MPI code and, abnormally, 20 for the OpenMP code, and both exhibited limited capability of strong scaling. (2) We have recently added a Constructive Solid Geometry (CSG) module to our ARCHER code to provide better support for geometry modelling in radiation shielding simulation. The functions of this module are frequently called in the particle random walk process. To identify the performance bottleneck we developed a CSG proxy application and profiled the code using the geometry data from FS7ONNi. The profiling data showed that the code was primarily memory latency bound on the MIC. This study suggests that despite low initial porting e_ort, Monte Carlo codes do not naturally lend themselves to the MIC platform — just like to the GPUs, and that the memory latency problem needs to be addressed in order to achieve decent performance gain.
AN ASSESSMENT OF MCNP WEIGHT WINDOWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. S. HENDRICKS; C. N. CULBERTSON
2000-01-01
The weight window variance reduction method in the general-purpose Monte Carlo N-Particle radiation transport code MCNPTM has recently been rewritten. In particular, it is now possible to generate weight window importance functions on a superimposed mesh, eliminating the need to subdivide geometries for variance reduction purposes. Our assessment addresses the following questions: (1) Does the new MCNP4C treatment utilize weight windows as well as the former MCNP4B treatment? (2) Does the new MCNP4C weight window generator generate importance functions as well as MCNP4B? (3) How do superimposed mesh weight windows compare to cell-based weight windows? (4) What are the shortcomingsmore » of the new MCNP4C weight window generator? Our assessment was carried out with five neutron and photon shielding problems chosen for their demanding variance reduction requirements. The problems were an oil well logging problem, the Oak Ridge fusion shielding benchmark problem, a photon skyshine problem, an air-over-ground problem, and a sample problem for variance reduction.« less
Bohm, Tim D; DeLuca, Paul M; DeWerd, Larry A
2003-04-01
Permanent implantation of low energy (20-40 keV) photon emitting radioactive seeds to treat prostate cancer is an important treatment option for patients. In order to produce accurate implant brachytherapy treatment plans, the dosimetry of a single source must be well characterized. Monte Carlo based transport calculations can be used for source characterization, but must have up to date cross section libraries to produce accurate dosimetry results. This work benchmarks the MCNP code and its photon cross section library for low energy photon brachytherapy applications. In particular, we calculate the emitted photon spectrum, air kerma, depth dose in water, and radial dose function for both 125I and 103Pd based seeds and compare to other published results. Our results show that MCNP's cross section library differs from recent data primarily in the photoelectric cross section for low energies and low atomic number materials. In water, differences as large as 10% in the photoelectric cross section and 6% in the total cross section occur at 125I and 103Pd photon energies. This leads to differences in the dose rate constant of 3% and 5%, and differences as large as 18% and 20% in the radial dose function for the 125I and 103Pd based seeds, respectively. Using a partially updated photon library, calculations of the dose rate constant and radial dose function agree with other published results. Further, the use of the updated photon library allows us to verify air kerma and depth dose in water calculations performed using MCNP's perturbation feature to simulate updated cross sections. We conclude that in order to most effectively use MCNP for low energy photon brachytherapy applications, we must update its cross section library. Following this update, the MCNP code system will be a very effective tool for low energy photon brachytherapy dosimetry applications.
Han, Min Cheol; Yeom, Yeon Soo; Lee, Hyun Su; Shin, Bangho; Kim, Chan Hyeong; Furuta, Takuya
2018-05-04
In this study, the multi-threading performance of the Geant4, MCNP6, and PHITS codes was evaluated as a function of the number of threads (N) and the complexity of the tetrahedral-mesh phantom. For this, three tetrahedral-mesh phantoms of varying complexity (simple, moderately complex, and highly complex) were prepared and implemented in the three different Monte Carlo codes, in photon and neutron transport simulations. Subsequently, for each case, the initialization time, calculation time, and memory usage were measured as a function of the number of threads used in the simulation. It was found that for all codes, the initialization time significantly increased with the complexity of the phantom, but not with the number of threads. Geant4 exhibited much longer initialization time than the other codes, especially for the complex phantom (MRCP). The improvement of computation speed due to the use of a multi-threaded code was calculated as the speed-up factor, the ratio of the computation speed on a multi-threaded code to the computation speed on a single-threaded code. Geant4 showed the best multi-threading performance among the codes considered in this study, with the speed-up factor almost linearly increasing with the number of threads, reaching ~30 when N = 40. PHITS and MCNP6 showed a much smaller increase of the speed-up factor with the number of threads. For PHITS, the speed-up factors were low when N = 40. For MCNP6, the increase of the speed-up factors was better, but they were still less than ~10 when N = 40. As for memory usage, Geant4 was found to use more memory than the other codes. In addition, compared to that of the other codes, the memory usage of Geant4 more rapidly increased with the number of threads, reaching as high as ~74 GB when N = 40 for the complex phantom (MRCP). It is notable that compared to that of the other codes, the memory usage of PHITS was much lower, regardless of both the complexity of the phantom and the number of threads, hardly increasing with the number of threads for the MRCP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerby, Leslie Marie
Emission of light fragments (LF) from nuclear reactions is an open question. Different reaction mechanisms contribute to their production; the relative roles of each, and how they change with incident energy, mass number of the target, and the type and emission energy of the fragments is not completely understood. None of the available models are able to accurately predict emission of LF from arbitrary reactions. However, the ability to describe production of LF (especially at energies ≳ 30 MeV) from many reactions is important for different applications, such as cosmic-ray-induced Single Event Upsets (SEUs), radiation protection, and cancer therapy withmore » proton and heavy-ion beams, to name just a few. The Cascade-Exciton Model (CEM) version 03.03 and the Los Alamos version of the Quark-Gluon String Model (LAQGSM) version 03.03 event generators in Monte Carlo N-Particle Transport Code version 6 (MCNP6) describe quite well the spectra of fragments with sizes up to ⁴He across a broad range of target masses and incident energies (up to ~ 5 GeV for CEM and up to ~ 1 TeV/A for LAQGSM). However, they do not predict the high energy tails of LF spectra heavier than ⁴He well. Most LF with energies above several tens of MeV are emitted during the precompound stage of a reaction. The current versions of the CEM and LAQGSM event generators do not account for precompound emission of LF larger than ⁴He. The aim of our work is to extend the precompound model in them to include such processes, leading to an increase of predictive power of LF-production in MCNP6. This entails upgrading the Modified Exciton Model currently used at the preequilibrium stage in CEM and LAQGSM. It also includes expansion and examination of the coalescence and Fermi break-up models used in the precompound stages of spallation reactions within CEM and LAQGSM. Extending our models to include emission of fragments heavier than ⁴He at the precompound stage has indeed provided results that have much better agreement with experimental data.« less
Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code.
Yoriyaz, H; dos Santos, A; Stabin, M G; Cabezas, R
2000-07-01
A new approach for calculating internal dose estimates was developed through the use of a more realistic computational model of the human body. The present technique shows the capability to build a patient-specific phantom with tomography data (a voxel-based phantom) for the simulation of radiation transport and energy deposition using Monte Carlo methods such as in the MCNP-4B code. MCNP-4B absorbed fractions for photons in the mathematical phantom of Snyder et al. agreed well with reference values. Results obtained through radiation transport simulation in the voxel-based phantom, in general, agreed well with reference values. Considerable discrepancies, however, were found in some cases due to two major causes: differences in the organ masses between the phantoms and the occurrence of organ overlap in the voxel-based phantom, which is not considered in the mathematical phantom.
Comparative Dosimetric Estimates of a 25 keV Electron Micro-beam with three Monte Carlo Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mainardi, Enrico; Donahue, Richard J.; Blakely, Eleanor A.
2002-09-11
The calculations presented compare the different performances of the three Monte Carlo codes PENELOPE-1999, MCNP-4C and PITS, for the evaluation of Dose profiles from a 25 keV electron micro-beam traversing individual cells. The overall model of a cell is a water cylinder equivalent for the three codes but with a different internal scoring geometry: hollow cylinders for PENELOPE and MCNP, whereas spheres are used for the PITS code. A cylindrical cell geometry with scoring volumes with the shape of hollow cylinders was initially selected for PENELOPE and MCNP because of its superior simulation of the actual shape and dimensions ofmore » a cell and for its improved computer-time efficiency if compared to spherical internal volumes. Some of the transfer points and energy transfer that constitute a radiation track may actually fall in the space between spheres, that would be outside the spherical scoring volume. This internal geometry, along with the PENELOPE algorithm, drastically reduced the computer time when using this code if comparing with event-by-event Monte Carlo codes like PITS. This preliminary work has been important to address dosimetric estimates at low electron energies. It demonstrates that codes like PENELOPE can be used for Dose evaluation, even with such small geometries and energies involved, which are far below the normal use for which the code was created. Further work (initiated in Summer 2002) is still needed however, to create a user-code for PENELOPE that allows uniform comparison of exact cell geometries, integral volumes and also microdosimetric scoring quantities, a field where track-structure codes like PITS, written for this purpose, are believed to be superior.« less
SIGACE Code for Generating High-Temperature ACE Files; Validation and Benchmarking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Amit R.; Ganesan, S.; Trkov, A.
2005-05-24
A code named SIGACE has been developed as a tool for MCNP users within the scope of a research contract awarded by the Nuclear Data Section of the International Atomic Energy Agency (IAEA) (Ref: 302-F4-IND-11566 B5-IND-29641). A new recipe has been evolved for generating high-temperature ACE files for use with the MCNP code. Under this scheme the low-temperature ACE file is first converted to an ENDF formatted file using the ACELST code and then Doppler broadened, essentially limited to the data in the resolved resonance region, to any desired higher temperature using SIGMA1. The SIGACE code then generates a high-temperaturemore » ACE file for use with the MCNP code. A thinning routine has also been introduced in the SIGACE code for reducing the size of the ACE files. The SIGACE code and the recipe for generating ACE files at higher temperatures has been applied to the SEFOR fast reactor benchmark problem (sodium-cooled fast reactor benchmark described in ENDF-202/BNL-19302, 1974 document). The calculated Doppler coefficient is in good agreement with the experimental value. A similar calculation using ACE files generated directly with the NJOY system also agrees with our SIGACE computed results. The SIGACE code and the recipe is further applied to study the numerical benchmark configuration of selected idealized PWR pin cell configurations with five different fuel enrichments as reported by Mosteller and Eisenhart. The SIGACE code that has been tested with several FENDL/MC files will be available, free of cost, upon request, from the Nuclear Data Section of the IAEA.« less
Calculation of the effective dose from natural radioactivity in soil using MCNP code.
Krstic, D; Nikezic, D
2010-01-01
Effective dose delivered by photon emitted from natural radioactivity in soil was calculated in this work. Calculations have been done for the most common natural radionuclides in soil (238)U, (232)Th series and (40)K. A ORNL human phantoms and the Monte Carlo transport code MCNP-4B were employed to calculate the energy deposited in all organs. The effective dose was calculated according to ICRP 74 recommendations. Conversion factors of effective dose per air kerma were determined. Results obtained here were compared with other authors. Copyright 2009 Elsevier Ltd. All rights reserved.
Accelerating Pseudo-Random Number Generator for MCNP on GPU
NASA Astrophysics Data System (ADS)
Gong, Chunye; Liu, Jie; Chi, Lihua; Hu, Qingfeng; Deng, Li; Gong, Zhenghu
2010-09-01
Pseudo-random number generators (PRNG) are intensively used in many stochastic algorithms in particle simulations, artificial neural networks and other scientific computation. The PRNG in Monte Carlo N-Particle Transport Code (MCNP) requires long period, high quality, flexible jump and fast enough. In this paper, we implement such a PRNG for MCNP on NVIDIA's GTX200 Graphics Processor Units (GPU) using CUDA programming model. Results shows that 3.80 to 8.10 times speedup are achieved compared with 4 to 6 cores CPUs and more than 679.18 million double precision random numbers can be generated per second on GPU.
An Electron/Photon/Relaxation Data Library for MCNP6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, III, H. Grady
The capabilities of the MCNP6 Monte Carlo code in simulation of electron transport, photon transport, and atomic relaxation have recently been significantly expanded. The enhancements include not only the extension of existing data and methods to lower energies, but also the introduction of new categories of data and methods. Support of these new capabilities has required major additions to and redesign of the associated data tables. In this paper we present the first complete documentation of the contents and format of the new electron-photon-relaxation data library now available with the initial production release of MCNP6.
Benchmarking study of the MCNP code against cold critical experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitaraman, S.
1991-01-01
The purpose of this study was to benchmark the widely used Monte Carlo code MCNP against a set of cold critical experiments with a view to using the code as a means of independently verifying the performance of faster but less accurate Monte Carlo and deterministic codes. The experiments simulated consisted of both fast and thermal criticals as well as fuel in a variety of chemical forms. A standard set of benchmark cold critical experiments was modeled. These included the two fast experiments, GODIVA and JEZEBEL, the TRX metallic uranium thermal experiments, the Babcock and Wilcox oxide and mixed oxidemore » experiments, and the Oak Ridge National Laboratory (ORNL) and Pacific Northwest Laboratory (PNL) nitrate solution experiments. The principal case studied was a small critical experiment that was performed with boiling water reactor bundles.« less
Performance upgrades to the MCNP6 burnup capability for large scale depletion calculations
Fensin, M. L.; Galloway, J. D.; James, M. R.
2015-04-11
The first MCNP based inline Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. With the merger of MCNPX and MCNP5, MCNP6 combined the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. The new MCNP6 depletion capability was first showcased at the International Congress for Advancements in Nuclear Power Plants (ICAPP) meeting in 2012. At that conference the new capabilities addressed included the combined distributive and shared memory parallel architecture for the burnup capability, improved memory management, physics enhancements, and newmore » predictability as compared to the H.B Robinson Benchmark. At Los Alamos National Laboratory, a special purpose cluster named “tebow,” was constructed such to maximize available RAM per CPU, as well as leveraging swap space with solid state hard drives, to allow larger scale depletion calculations (allowing for significantly more burnable regions than previously examined). As the MCNP6 burnup capability was scaled to larger numbers of burnable regions, a noticeable slowdown was realized.This paper details two specific computational performance strategies for improving calculation speedup: (1) retrieving cross sections during transport; and (2) tallying mechanisms specific to burnup in MCNP. To combat this slowdown new performance upgrades were developed and integrated into MCNP6 1.2.« less
Impact of thorium based molten salt reactor on the closure of the nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Jaradat, Safwan Qasim Mohammad
Molten salt reactor (MSR) is one of six reactors selected by the Generation IV International Forum (GIF). The liquid fluoride thorium reactor (LFTR) is a MSR concept based on thorium fuel cycle. LFTR uses liquid fluoride salts as a nuclear fuel. It uses 232Th and 233U as the fertile and fissile materials, respectively. Fluoride salt of these nuclides is dissolved in a mixed carrier salt of lithium and beryllium (FLiBe). The objective of this research was to complete feasibility studies of a small commercial thermal LFTR. The focus was on neutronic calculations in order to prescribe core design parameter such as core size, fuel block pitch (p), fuel channel radius, fuel path, reflector thickness, fuel salt composition, and power. In order to achieve this objective, the applicability of Monte Carlo N-Particle Transport Code (MCNP) to MSR modeling was verified. Then, a prescription for conceptual small thermal reactor LFTR and relevant calculations were performed using MCNP to determine the main neutronic parameters of the core reactor. The MCNP code was used to study the reactor physics characteristics for the FUJI-U3 reactor. The results were then compared with the results obtained from the original FUJI-U3 using the reactor physics code SRAC95 and the burnup analysis code ORIPHY2. The results were comparable with each other. Based on the results, MCNP was found to be a reliable code to model a small thermal LFTR and study all the related reactor physics characteristics. The results of this study were promising and successful in demonstrating a prefatory small commercial LFTR design. The outcome of using a small core reactor with a diameter/height of 280/260 cm that would operate for more than five years at a power level of 150 MWth was studied. The fuel system 7LiF - BeF2 - ThF4 - UF4 with a (233U/ 232Th) = 2.01 % was the candidate fuel for this reactor core.
Shielding analysis of the Microtron MT-25 bunker using the MCNP-4C code and NCRP Report 51.
Casanova, A O; López, N; Gelen, A; Guevara, M V Manso; Díaz, O; Cimino, L; D'Alessandro, K; Melo, J C
2004-01-01
A cyclic electron accelerator Microtron MT-25 will be installed in Havana, Cuba. Electrons, neutrons and gamma radiation up to 25 MeV can be produced in the MT-25. A detailed shielding analysis for the bunker is carried out using two ways: the NCRP-51 Report and the Monte Carlo Method (MCNP-4C Code). The walls and ceiling thicknesses are estimated with dose constraints of 0.5 and 20 mSv y(-1), respectively, and an area occupancy factor of 1/16. Both results are compared and a preliminary bunker design is shown. Copyright 2004 Oxford University Press
Dose mapping using MCNP code and experiment for SVST-Co-60/B irradiator in Vietnam.
Tran, Van Hung; Tran, Khac An
2010-06-01
By using MCNP code and ethanol-chlorobenzene (ECB) dosimeters the simulations and measurements of absorbed dose distribution in a tote-box of the Cobalt-60 irradiator, SVST-Co60/B at VINAGAMMA have been done. Based on the results Dose Uniformity Ratios (DUR), positions and values of minimum and maximum dose extremes in a tote-box, and efficiency of the irradiator for the different dummy densities have been gained. There is a good agreement between simulation and experimental results in comparison and they have valuable meanings for operation of the irradiator. Copyright 2010 Elsevier Ltd. All rights reserved.
Anisn-Dort Neutron-Gamma Flux Intercomparison Exercise for a Simple Testing Model
NASA Astrophysics Data System (ADS)
Boehmer, B.; Konheiser, J.; Borodkin, G.; Brodkin, E.; Egorov, A.; Kozhevnikov, A.; Zaritsky, S.; Manturov, G.; Voloschenko, A.
2003-06-01
The ability of transport codes ANISN, DORT, ROZ-6, MCNP and TRAMO, as well as nuclear data libraries BUGLE-96, ABBN-93, VITAMIN-B6 and ENDF/B-6 to deliver consistent gamma and neutron flux results was tested in the calculation of a one-dimensional cylindrical model consisting of a homogeneous core and an outer zone with a single material. Model variants with H2O, Fe, Cr and Ni in the outer zones were investigated. The results are compared with MCNP-ENDF/B-6 results. Discrepancies are discussed. The specified test model is proposed as a computational benchmark for testing calculation codes and data libraries.
Enhancements to the MCNP6 background source
McMath, Garrett E.; McKinney, Gregg W.
2015-10-19
The particle transport code MCNP has been used to produce a background radiation data file on a worldwide grid that can easily be sampled as a source in the code. Location-dependent cosmic showers were modeled by Monte Carlo methods to produce the resulting neutron and photon background flux at 2054 locations around Earth. An improved galactic-cosmic-ray feature was used to model the source term as well as data from multiple sources to model the transport environment through atmosphere, soil, and seawater. A new elevation scaling feature was also added to the code to increase the accuracy of the cosmic neutronmore » background for user locations with off-grid elevations. Furthermore, benchmarking has shown the neutron integral flux values to be within experimental error.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendoza, Paul Michael
The Monte Carlo N-Particle (MCNP) transport code developed at Los Alamos National Laboratory (LANL) utilizes nuclear cross-section data in a compact ENDF (ACE) format. The accuracy of MCNP calculations depends on the accuracy of nuclear ACE data tables, which depends on the accuracy of the original ENDF files. There are some noticeable differences in ENDF files from one generation to the next, even among the more common fissile materials. As the next generation of ENDF files is being prepared, several software tools were developed to simulate a large number of benchmarks in MCNP (over 1000), collect data from these simulations,more » and visually represent the results.« less
NASA Astrophysics Data System (ADS)
Kouznetsov, A.; Cully, C. M.
2017-12-01
During enhanced magnetic activities, large ejections of energetic electrons from radiation belts are deposited in the upper polar atmosphere where they play important roles in its physical and chemical processes, including VLF signals subionospheric propagation. Electron deposition can affect D-Region ionization, which are estimated based on ionization rates derived from energy depositions. We present a model of D-region ion production caused by an arbitrary (in energy and pitch angle) distribution of fast (10 keV - 1 MeV) electrons. The model relies on a set of pre-calculated results obtained using a general Monte Carlo approach with the latest version of the MCNP6 (Monte Carlo N-Particle) code for the explicit electron tracking in magnetic fields. By expressing those results using the ionization yield functions, the pre-calculated results are extended to cover arbitrary magnetic field inclinations and atmospheric density profiles, allowing ionization rate altitude profile computations in the range of 20 and 200 km at any geographic point of interest and date/time by adopting results from an external atmospheric density model (e.g. NRLMSISE-00). The pre-calculated MCNP6 results are stored in a CDF (Common Data Format) file, and IDL routines library is written to provide an end-user interface to the model.
Extensions of the MCNP5 and TRIPOLI4 Monte Carlo Codes for Transient Reactor Analysis
NASA Astrophysics Data System (ADS)
Hoogenboom, J. Eduard; Sjenitzer, Bart L.
2014-06-01
To simulate reactor transients for safety analysis with the Monte Carlo method the generation and decay of delayed neutron precursors is implemented in the MCNP5 and TRIPOLI4 general purpose Monte Carlo codes. Important new variance reduction techniques like forced decay of precursors in each time interval and the branchless collision method are included to obtain reasonable statistics for the power production per time interval. For simulation of practical reactor transients also the feedback effect from the thermal-hydraulics must be included. This requires coupling of the Monte Carlo code with a thermal-hydraulics (TH) code, providing the temperature distribution in the reactor, which affects the neutron transport via the cross section data. The TH code also provides the coolant density distribution in the reactor, directly influencing the neutron transport. Different techniques for this coupling are discussed. As a demonstration a 3x3 mini fuel assembly with a moving control rod is considered for MCNP5 and a mini core existing of 3x3 PWR fuel assemblies with control rods and burnable poisons for TRIPOLI4. Results are shown for reactor transients due to control rod movement or withdrawal. The TRIPOLI4 transient calculation is started at low power and includes thermal-hydraulic feedback. The power rises about 10 decades and finally stabilises the reactor power at a much higher level than initial. The examples demonstrate that the modified Monte Carlo codes are capable of performing correct transient calculations, taking into account all geometrical and cross section detail.
Preliminary Analysis of the BASALA-H Experimental Programme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaise, Patrick; Fougeras, Philippe; Philibert, Herve
2002-07-01
This paper is focused on the preliminary analysis of results obtained on the first cores of the first phase of the BASALA (Boiling water reactor Advanced core physics Study Aimed at mox fuel Lattice) programme, aimed at studying the neutronic parameters in ABWR core in hot conditions, currently under investigation in the French EOLE critical facility, within the framework of a cooperation between NUPEC, CEA and Cogema. The first 'on-line' analysis of the results has been made, using a new preliminary design and safety scheme based on the French APOLLO-2 code in its 2.4 qualified version and associated CEA-93 V4more » (JEF-2.2) Library, that will enable the Experimental Physics Division (SPEx) to perform future core designs. It describes the scheme adopted and the results obtained in various cases, going to the critical size determination to the reactivity worth of the perturbed configurations (voided, over-moderated, and poisoned with Gd{sub 2}O{sub 3}-UO{sub 2} pins). A preliminary study on the experimental results on the MISTRAL-4 is resumed, and the comparison of APOLLO-2 versus MCNP-4C calculations on these cores is made. The results obtained show very good agreements between the two codes, and versus the experiment. This work opens the way to the future full analysis of the experimental results of the qualifying teams with completely validated schemes, based on the new 2.5 version of the APOLLO-2 code. (authors)« less
Sensitivity-Uncertainty Based Nuclear Criticality Safety Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.
2016-09-20
These are slides from a seminar given to the University of Mexico Nuclear Engineering Department. Whisper is a statistical analysis package developed to support nuclear criticality safety validation. It uses the sensitivity profile data for an application as computed by MCNP6 along with covariance files for the nuclear data to determine a baseline upper-subcritical-limit for the application. Whisper and its associated benchmark files are developed and maintained as part of MCNP6, and will be distributed with all future releases of MCNP6. Although sensitivity-uncertainty methods for NCS validation have been under development for 20 years, continuous-energy Monte Carlo codes such asmore » MCNP could not determine the required adjoint-weighted tallies for sensitivity profiles. The recent introduction of the iterated fission probability method into MCNP led to the rapid development of sensitivity analysis capabilities for MCNP6 and the development of Whisper. Sensitivity-uncertainty based methods represent the future for NCS validation – making full use of today’s computer power to codify past approaches based largely on expert judgment. Validation results are defensible, auditable, and repeatable as needed with different assumptions and process models. The new methods can supplement, support, and extend traditional validation approaches.« less
Determination of neutron flux distribution in an Am-Be irradiator using the MCNP.
Shtejer-Diaz, K; Zamboni, C B; Zahn, G S; Zevallos-Chávez, J Y
2003-10-01
A neutron irradiator has been assembled at IPEN facilities to perform qualitative-quantitative analysis of many materials using thermal and fast neutrons outside the nuclear reactor premises. To establish the prototype specifications, the neutron flux distribution and the absorbed dose rates were calculated using the MCNP computer code. These theoretical predictions then allow one to discuss the optimum irradiator design and its performance.
SABRINA: an interactive three-dimensional geometry-mnodeling program for MCNP
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, J.T. III
SABRINA is a fully interactive three-dimensional geometry-modeling program for MCNP, a Los Alamos Monte Carlo code for neutron and photon transport. In SABRINA, a user constructs either body geometry or surface geometry models and debugs spatial descriptions for the resulting objects. This enhanced capability significantly reduces effort in constructing and debugging complicated three-dimensional geometry models for Monte Carlo analysis. 2 refs., 33 figs.
Characterization of Filters Loaded With Reactor Strontium Carbonate - 13203
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josephson, Walter S.; Steen, Franciska H.
A collection of three highly radioactive filters containing reactor strontium carbonate were being prepared for disposal. All three filters were approximately characterized at the time of manufacture by gravimetric methods. The first filter had been partially emptied, and the quantity of residual activity was uncertain. Dose rate to activity modeling using the Monte-Carlo N Particle (MCNP) code was selected to confirm the gravimetric characterization of the full filters, and to fully characterize the partially emptied filter. Although dose rate to activity modeling using MCNP is a common technique, it is not often used for Bremsstrahlung-dominant materials such as reactor strontium.more » As a result, different MCNP modeling options were compared to determine the optimum approach. This comparison indicated that the accuracy of the results were heavily dependent on the MCNP modeling details and the location of the dose rate measurement point. The optimum model utilized a photon spectrum generated by the Oak Ridge Isotope Generation and Depletion (ORIGEN) code and dose rates measured at 30 cm. Results from the optimum model agreed with the gravimetric estimates within 15%. It was demonstrated that dose rate to activity modeling can be successful for Bremsstrahlung-dominant radioactive materials. However, the degree of success is heavily dependent on the choice of modeling techniques. (authors)« less
NASA Astrophysics Data System (ADS)
Lin, Yi-Chun; Huang, Tseng-Te; Liu, Yuan-Hao; Chen, Wei-Lin; Chen, Yen-Fu; Wu, Shu-Wei; Nievaart, Sander; Jiang, Shiang-Huei
2015-06-01
The paired ionization chambers (ICs) technique is commonly employed to determine neutron and photon doses in radiology or radiotherapy neutron beams, where neutron dose shows very strong dependence on the accuracy of accompanying high energy photon dose. During the dose derivation, it is an important issue to evaluate the photon and electron response functions of two commercially available ionization chambers, denoted as TE(TE) and Mg(Ar), used in our reactor based epithermal neutron beam. Nowadays, most perturbation corrections for accurate dose determination and many treatment planning systems are based on the Monte Carlo technique. We used general purposed Monte Carlo codes, MCNP5, EGSnrc, FLUKA or GEANT4 for benchmark verifications among them and carefully measured values for a precise estimation of chamber current from absorbed dose rate of cavity gas. Also, energy dependent response functions of two chambers were calculated in a parallel beam with mono-energies from 20 keV to 20 MeV photons and electrons by using the optimal simple spherical and detailed IC models. The measurements were performed in the well-defined (a) four primary M-80, M-100, M120 and M150 X-ray calibration fields, (b) primary 60Co calibration beam, (c) 6 MV and 10 MV photon, (d) 6 MeV and 18 MeV electron LINACs in hospital and (e) BNCT clinical trials neutron beam. For the TE(TE) chamber, all codes were almost identical over the whole photon energy range. In the Mg(Ar) chamber, MCNP5 showed lower response than other codes for photon energy region below 0.1 MeV and presented similar response above 0.2 MeV (agreed within 5% in the simple spherical model). With the increase of electron energy, the response difference between MCNP5 and other codes became larger in both chambers. Compared with the measured currents, MCNP5 had the difference from the measurement data within 5% for the 60Co, 6 MV, 10 MV, 6 MeV and 18 MeV LINACs beams. But for the Mg(Ar) chamber, the derivations reached 7.8-16.5% below 120 kVp X-ray beams. In this study, we were especially interested in BNCT doses where low energy photon contribution is less to ignore, MCNP model is recognized as the most suitable to simulate wide photon-electron and neutron energy distributed responses of the paired ICs. Also, MCNP provides the best prediction of BNCT source adjustment by the detector's neutron and photon responses.
NASA Astrophysics Data System (ADS)
Elbashir, B. O.; Dong, M. G.; Sayyed, M. I.; Issa, Shams A. M.; Matori, K. A.; Zaid, M. H. M.
2018-06-01
The mass attenuation coefficients (μ/ρ), effective atomic numbers (Zeff) and electron densities (Ne) of some amino acids obtained experimentally by the other researchers have been calculated using MCNP5 simulations in the energy range 0.122-1.330 MeV. The simulated values of μ/ρ, Zeff, and Ne were compared with the previous experimental work for the amino acids samples and a good agreement was noticed. Moreover, the values of mean free path (MFP) for the samples were calculated using MCNP5 program and compared with the theoretical results obtained by XCOM. The investigation of μ/ρ, Zeff, Ne and MFP values of amino acids using MCNP5 simulations at various photon energies when compared with the XCOM values and previous experimental data for the amino acids samples revealed that MCNP5 code provides accurate photon interaction parameters for amino acids.
Simulations of neutron transport at low energy: a comparison between GEANT and MCNP.
Colonna, N; Altieri, S
2002-06-01
The use of the simulation tool GEANT for neutron transport at energies below 20 MeV is discussed, in particular with regard to shielding and dose calculations. The reliability of the GEANT/MICAP package for neutron transport in a wide energy range has been verified by comparing the results of simulations performed with this package in a wide energy range with the prediction of MCNP-4B, a code commonly used for neutron transport at low energy. A reasonable agreement between the results of the two codes is found for the neutron flux through a slab of material (iron and ordinary concrete), as well as for the dose released in soft tissue by neutrons. These results justify the use of the GEANT/MICAP code for neutron transport in a wide range of applications, including health physics problems.
Comparison of scientific computing platforms for MCNP4A Monte Carlo calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendricks, J.S.; Brockhoff, R.C.
1994-04-01
The performance of seven computer platforms is evaluated with the widely used and internationally available MCNP4A Monte Carlo radiation transport code. All results are reproducible and are presented in such a way as to enable comparison with computer platforms not in the study. The authors observed that the HP/9000-735 workstation runs MCNP 50% faster than the Cray YMP 8/64. Compared with the Cray YMP 8/64, the IBM RS/6000-560 is 68% as fast, the Sun Sparc10 is 66% as fast, the Silicon Graphics ONYX is 90% as fast, the Gateway 2000 model 4DX2-66V personal computer is 27% as fast, and themore » Sun Sparc2 is 24% as fast. In addition to comparing the timing performance of the seven platforms, the authors observe that changes in compilers and software over the past 2 yr have resulted in only modest performance improvements, hardware improvements have enhanced performance by less than a factor of [approximately]3, timing studies are very problem dependent, MCNP4Q runs about as fast as MCNP4.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adigun, Babatunde John; Fensin, Michael Lorne; Galloway, Jack D.
Our burnup study examined the effect of a predicted critical control rod position on the nuclide predictability of several axial and radial locations within a 4×4 graphite moderated gas cooled reactor fuel cluster geometry. To achieve this, a control rod position estimator (CRPE) tool was developed within the framework of the linkage code Monteburns between the transport code MCNP and depletion code CINDER90, and four methodologies were proposed within the tool for maintaining criticality. Two of the proposed methods used an inverse multiplication approach - where the amount of fissile material in a set configuration is slowly altered until criticalitymore » is attained - in estimating the critical control rod position. Another method carried out several MCNP criticality calculations at different control rod positions, then used a linear fit to estimate the critical rod position. The final method used a second-order polynomial fit of several MCNP criticality calculations at different control rod positions to guess the critical rod position. The results showed that consistency in prediction of power densities as well as uranium and plutonium isotopics was mutual among methods within the CRPE tool that predicted critical position consistently well. Finall, while the CRPE tool is currently limited to manipulating a single control rod, future work could be geared toward implementing additional criticality search methodologies along with additional features.« less
Pölz, Stefan; Laubersheimer, Sven; Eberhardt, Jakob S; Harrendorf, Marco A; Keck, Thomas; Benzler, Andreas; Breustedt, Bastian
2013-08-21
The basic idea of Voxel2MCNP is to provide a framework supporting users in modeling radiation transport scenarios using voxel phantoms and other geometric models, generating corresponding input for the Monte Carlo code MCNPX, and evaluating simulation output. Applications at Karlsruhe Institute of Technology are primarily whole and partial body counter calibration and calculation of dose conversion coefficients. A new generic data model describing data related to radiation transport, including phantom and detector geometries and their properties, sources, tallies and materials, has been developed. It is modular and generally independent of the targeted Monte Carlo code. The data model has been implemented as an XML-based file format to facilitate data exchange, and integrated with Voxel2MCNP to provide a common interface for modeling, visualization, and evaluation of data. Also, extensions to allow compatibility with several file formats, such as ENSDF for nuclear structure properties and radioactive decay data, SimpleGeo for solid geometry modeling, ImageJ for voxel lattices, and MCNPX's MCTAL for simulation results have been added. The framework is presented and discussed in this paper and example workflows for body counter calibration and calculation of dose conversion coefficients is given to illustrate its application.
Monte Carlo modelling of TRIGA research reactor
NASA Astrophysics Data System (ADS)
El Bakkari, B.; Nacir, B.; El Bardouni, T.; El Younoussi, C.; Merroun, O.; Htet, A.; Boulaich, Y.; Zoubair, M.; Boukhal, H.; Chakir, M.
2010-10-01
The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucléaires de la Maâmora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S( α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file "up259". The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.
MCNP Output Data Analysis with ROOT (MODAR)
NASA Astrophysics Data System (ADS)
Carasco, C.
2010-06-01
MCNP Output Data Analysis with ROOT (MODAR) is a tool based on CERN's ROOT software. MODAR has been designed to handle time-energy data issued by MCNP simulations of neutron inspection devices using the associated particle technique. MODAR exploits ROOT's Graphical User Interface and functionalities to visualize and process MCNP simulation results in a fast and user-friendly way. MODAR allows to take into account the detection system time resolution (which is not possible with MCNP) as well as detectors energy response function and counting statistics in a straightforward way. Program summaryProgram title: MODAR Catalogue identifier: AEGA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 155 373 No. of bytes in distributed program, including test data, etc.: 14 815 461 Distribution format: tar.gz Programming language: C++ Computer: Most Unix workstations and PC Operating system: Most Unix systems, Linux and windows, provided the ROOT package has been installed. Examples where tested under Suse Linux and Windows XP. RAM: Depends on the size of the MCNP output file. The example presented in the article, which involves three two-dimensional 139×740 bins histograms, allocates about 60 MB. These data are running under ROOT and include consumption by ROOT itself. Classification: 17.6 External routines: ROOT version 5.24.00 ( http://root.cern.ch/drupal/) Nature of problem: The output of an MCNP simulation is an ASCII file. The data processing is usually performed by copying and pasting the relevant parts of the ASCII file into Microsoft Excel. Such an approach is satisfactory when the quantity of data is small but is not efficient when the size of the simulated data is large, for example when time-energy correlations are studied in detail such as in problems involving the associated particle technique. In addition, since the finite time resolution of the simulated detector cannot be modeled with MCNP, systems in which time-energy correlation is crucial cannot be described in a satisfactory way. Finally, realistic particle energy deposit in detectors is calculated with MCNP in a two-step process involving type-5 then type-8 tallies. In the first step, the photon flux energy spectrum associated to a time region is selected and serves as a source energy distribution for the second step. Thus, several files must be manipulated before getting the result, which can be time consuming if one needs to study several time regions or different detectors performances. In the same way, modeling counting statistics obtained in a limited acquisition time requires several steps and can also be time consuming. Solution method: In order to overcome the previous limitations, the MODAR C++ code has been written to make use of CERN's ROOT data analysis software. MCNP output data are read from the MCNP output file with dedicated routines. Two-dimensional histograms are filled and can be handled efficiently within the ROOT framework. To keep a user friendly analysis tool, all processing and data display can be done by means of ROOT Graphical User Interface. Specific routines have been written to include detectors finite time resolution and energy response function as well as counting statistics in a straightforward way. Additional comments: The possibility of adding tallies has also been incorporated in MODAR in order to describe systems in which the signal from several detectors can be summed. Moreover, MODAR can be adapted to handle other problems involving two-dimensional data. Running time: The CPU time needed to smear a two-dimensional histogram depends on the size of the histogram. In the presented example, the time-energy smearing of one of the 139×740 two-dimensional histograms takes 3 minutes with a DELL computer equipped with INTEL Core 2.
MCNP/X TRANSPORT IN THE TABULAR REGIME
DOE Office of Scientific and Technical Information (OSTI.GOV)
HUGHES, H. GRADY
2007-01-08
The authors review the transport capabilities of the MCNP and MCNPX Monte Carlo codes in the energy regimes in which tabular transport data are available. Giving special attention to neutron tables, they emphasize the measures taken to improve the treatment of a variety of difficult aspects of the transport problem, including unresolved resonances, thermal issues, and the availability of suitable cross sections sets. They also briefly touch on the current situation in regard to photon, electron, and proton transport tables.
MCNP modelling of scintillation-detector gamma-ray spectra from natural radionuclides.
Hendriks, P H G M; Maucec, M; de Meijer, R J
2002-09-01
gamma-ray spectra of natural radionuclides are simulated for a BGO detector in a borehole geometry using the Monte Carlo code MCNP. All gamma-ray emissions of the decay of 40K and the series of 232Th and 238U are used to describe the source. A procedure is proposed which excludes the time-consuming electron tracking in less relevant areas of the geometry. The simulated gamma-ray spectra are benchmarked against laboratory data.
Monte Carlo N Particle code - Dose distribution of clinical electron beams in inhomogeneous phantoms
Nedaie, H. A.; Mosleh-Shirazi, M. A.; Allahverdi, M.
2013-01-01
Electron dose distributions calculated using the currently available analytical methods can be associated with large uncertainties. The Monte Carlo method is the most accurate method for dose calculation in electron beams. Most of the clinical electron beam simulation studies have been performed using non- MCNP [Monte Carlo N Particle] codes. Given the differences between Monte Carlo codes, this work aims to evaluate the accuracy of MCNP4C-simulated electron dose distributions in a homogenous phantom and around inhomogeneities. Different types of phantoms ranging in complexity were used; namely, a homogeneous water phantom and phantoms made of polymethyl methacrylate slabs containing different-sized, low- and high-density inserts of heterogeneous materials. Electron beams with 8 and 15 MeV nominal energy generated by an Elekta Synergy linear accelerator were investigated. Measurements were performed for a 10 cm × 10 cm applicator at a source-to-surface distance of 100 cm. Individual parts of the beam-defining system were introduced into the simulation one at a time in order to show their effect on depth doses. In contrast to the first scattering foil, the secondary scattering foil, X and Y jaws and applicator provide up to 5% of the dose. A 2%/2 mm agreement between MCNP and measurements was found in the homogenous phantom, and in the presence of heterogeneities in the range of 1-3%, being generally within 2% of the measurements for both energies in a "complex" phantom. A full-component simulation is necessary in order to obtain a realistic model of the beam. The MCNP4C results agree well with the measured electron dose distributions. PMID:23533162
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Morgan C.
2000-07-01
The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a selectmore » group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V&V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second, the ability to calculate radiation dose due to the neutron environment around a MEA is shown. An uncertainty of a factor of three in the MEA calculations is shown to be due to uncertainties in the geometry modeling. It is believed that the methodology is sound and that good agreement between simulation and experiment has been demonstrated.« less
EBR-II Static Neutronic Calculations by PHISICS / MCNP6 codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paolo Balestra; Carlo Parisi; Andrea Alfonsi
2016-02-01
The International Atomic Energy Agency (IAEA) launched a Coordinated Research Project (CRP) on the Shutdown Heat Removal Tests (SHRT) performed in the '80s at the Experimental fast Breeder Reactor EBR-II, USA. The scope of the CRP is to improve and validate the simulation tools for the study and the design of the liquid metal cooled fast reactors. Moreover, training of the next generation of fast reactor analysts is being also considered the other scope of the CRP. In this framework, a static neutronic model was developed, using state-of-the art neutron transport codes like SCALE/PHISICS (deterministic solution) and MCNP6 (stochastic solution).more » Comparison between both solutions is briefly illustrated in this summary.« less
Visualization of nuclear particle trajectories in nuclear oil-well logging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Case, C.R.; Chiaramonte, J.M.
Nuclear oil-well logging measures specific properties of subsurface geological formations as a function of depth in the well. The knowledge gained is used to evaluate the hydrocarbon potential of the surrounding oil field. The measurements are made by lowering an instrument package into an oil well and slowly extracting it at a constant speed. During the extraction phase, neutrons or gamma rays are emitted from the tool, interact with the formation, and scatter back to the detectors located within the tool. Even though only a small percentage of the emitted particles ever reach the detectors, mathematical modeling has been verymore » successful in the accurate prediction of these detector responses. The two dominant methods used to model these devices have been the two-dimensional discrete ordinates method and the three-dimensional Monte Carlo method has routinely been used to investigate the response characteristics of nuclear tools. A special Los Alamos National Laboratory version of their standard MCNP Monte carlo code retains the details of each particle history of later viewing within SABRINA, a companion three-dimensional geometry modeling and debugging code.« less
Calculation of self–shielding factor for neutron activation experiments using GEANT4 and MCNP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero–Barrientos, Jaime, E-mail: jaromero@ing.uchile.cl; Universidad de Chile, DFI, Facultad de Ciencias Físicas Y Matemáticas, Avenida Blanco Encalada 2008, Santiago; Molina, F.
2016-07-07
The neutron self–shielding factor G as a function of the neutron energy was obtained for 14 pure metallic samples in 1000 isolethargic energy bins from 1·10{sup −5}eV to 2·10{sup 7}eV using Monte Carlo simulations in GEANT4 and MCNP6. The comparison of these two Monte Carlo codes shows small differences in the final self–shielding factor mostly due to the different cross section databases that each program uses.
Monte Carlo Techniques for Nuclear Systems - Theory Lectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.
These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. Thesemore » lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo calculations. Beginning MCNP users are encouraged to review LA-UR-09-00380, "Criticality Calculations with MCNP: A Primer (3nd Edition)" (available at http:// mcnp.lanl.gov under "Reference Collection") prior to the class. No Monte Carlo class can be complete without having students write their own simple Monte Carlo routines for basic random sampling, use of the random number generator, and simplified particle transport simulation.« less
Adigun, Babatunde John; Fensin, Michael Lorne; Galloway, Jack D.; ...
2016-10-01
Our burnup study examined the effect of a predicted critical control rod position on the nuclide predictability of several axial and radial locations within a 4×4 graphite moderated gas cooled reactor fuel cluster geometry. To achieve this, a control rod position estimator (CRPE) tool was developed within the framework of the linkage code Monteburns between the transport code MCNP and depletion code CINDER90, and four methodologies were proposed within the tool for maintaining criticality. Two of the proposed methods used an inverse multiplication approach - where the amount of fissile material in a set configuration is slowly altered until criticalitymore » is attained - in estimating the critical control rod position. Another method carried out several MCNP criticality calculations at different control rod positions, then used a linear fit to estimate the critical rod position. The final method used a second-order polynomial fit of several MCNP criticality calculations at different control rod positions to guess the critical rod position. The results showed that consistency in prediction of power densities as well as uranium and plutonium isotopics was mutual among methods within the CRPE tool that predicted critical position consistently well. Finall, while the CRPE tool is currently limited to manipulating a single control rod, future work could be geared toward implementing additional criticality search methodologies along with additional features.« less
Validation of the WIMSD4M cross-section generation code with benchmark results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leal, L.C.; Deen, J.R.; Woodruff, W.L.
1995-02-01
The WIMSD4 code has been adopted for cross-section generation in support of the Reduced Enrichment for Research and Test (RERTR) program at Argonne National Laboratory (ANL). Subsequently, the code has undergone several updates, and significant improvements have been achieved. The capability of generating group-collapsed micro- or macroscopic cross sections from the ENDF/B-V library and the more recent evaluation, ENDF/B-VI, in the ISOTXS format makes the modified version of the WIMSD4 code, WIMSD4M, very attractive, not only for the RERTR program, but also for the reactor physics community. The intent of the present paper is to validate the procedure to generatemore » cross-section libraries for reactor analyses and calculations utilizing the WIMSD4M code. To do so, the results of calculations performed with group cross-section data generated with the WIMSD4M code will be compared against experimental results. These results correspond to calculations carried out with thermal reactor benchmarks of the Oak Ridge National Laboratory(ORNL) unreflected critical spheres, the TRX critical experiments, and calculations of a modified Los Alamos highly-enriched heavy-water moderated benchmark critical system. The benchmark calculations were performed with the discrete-ordinates transport code, TWODANT, using WIMSD4M cross-section data. Transport calculations using the XSDRNPM module of the SCALE code system are also included. In addition to transport calculations, diffusion calculations with the DIF3D code were also carried out, since the DIF3D code is used in the RERTR program for reactor analysis and design. For completeness, Monte Carlo results of calculations performed with the VIM and MCNP codes are also presented.« less
Using Machine Learning to Predict MCNP Bias
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grechanuk, Pavel Aleksandrovi
For many real-world applications in radiation transport where simulations are compared to experimental measurements, like in nuclear criticality safety, the bias (simulated - experimental k eff) in the calculation is an extremely important quantity used for code validation. The objective of this project is to accurately predict the bias of MCNP6 [1] criticality calculations using machine learning (ML) algorithms, with the intention of creating a tool that can complement the current nuclear criticality safety methods. In the latest release of MCNP6, the Whisper tool is available for criticality safety analysts and includes a large catalogue of experimental benchmarks, sensitivity profiles,more » and nuclear data covariance matrices. This data, coming from 1100+ benchmark cases, is used in this study of ML algorithms for criticality safety bias predictions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clovas, A.; Zanthos, S.; Antonopoulos-Domis, M.
2000-03-01
The dose rate conversion factors {dot D}{sub CF} (absorbed dose rate in air per unit activity per unit of soil mass, nGy h{sup {minus}1} per Bq kg{sup {minus}1}) are calculated 1 m above ground for photon emitters of natural radionuclides uniformly distributed in the soil. Three Monte Carlo codes are used: (1) The MCNP code of Los Alamos; (2) The GEANT code of CERN; and (3) a Monte Carlo code developed in the Nuclear Technology Laboratory of the Aristotle University of Thessaloniki. The accuracy of the Monte Carlo results is tested by the comparison of the unscattered flux obtained bymore » the three Monte Carlo codes with an independent straightforward calculation. All codes and particularly the MCNP calculate accurately the absorbed dose rate in air due to the unscattered radiation. For the total radiation (unscattered plus scattered) the {dot D}{sub CF} values calculated from the three codes are in very good agreement between them. The comparison between these results and the results deduced previously by other authors indicates a good agreement (less than 15% of difference) for photon energies above 1,500 keV. Antithetically, the agreement is not as good (difference of 20--30%) for the low energy photons.« less
Shielding properties of 80TeO2-5TiO2-(15-x) WO3-xAnOm glasses using WinXCom and MCNP5 code
NASA Astrophysics Data System (ADS)
Dong, M. G.; El-Mallawany, R.; Sayyed, M. I.; Tekin, H. O.
2017-12-01
Gamma ray shielding properties of 80TeO2-5TiO2-(15-x) WO3-xAnOm glasses, where AnOm is Nb2O5 = 0.01, 5, Nd2O3 = 3, 5 and Er2O3 = 5 mol% have been achieved. Shielding parameters; mass attenuation coefficients, half value layers, and macroscopic effective removal cross section for fast neutrons have been computed by using WinXCom program and MCNP5 Monte Carlo code. In addition, by using Geometric Progression method (G-P), exposure buildup factor values were also calculated. Variations of shielding parameters are discussed for the effect of REO addition into the glasses and photon energy.
Neutron flux and power in RTP core-15
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabir, Mohamad Hairie, E-mail: m-hairie@nuclearmalaysia.gov.my; Zin, Muhammad Rawi Md; Usang, Mark Dennis
PUSPATI TRIGA Reactor achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution of TRIGA core. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core withmore » literally no physical approximation. The consistency and accuracy of the developed RTP MCNP model was established by comparing calculations to the available experimental results and TRIGLAV code calculation.« less
Validation of the WIMSD4M cross-section generation code with benchmark results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deen, J.R.; Woodruff, W.L.; Leal, L.E.
1995-01-01
The WIMSD4 code has been adopted for cross-section generation in support of the Reduced Enrichment Research and Test Reactor (RERTR) program at Argonne National Laboratory (ANL). Subsequently, the code has undergone several updates, and significant improvements have been achieved. The capability of generating group-collapsed micro- or macroscopic cross sections from the ENDF/B-V library and the more recent evaluation, ENDF/B-VI, in the ISOTXS format makes the modified version of the WIMSD4 code, WIMSD4M, very attractive, not only for the RERTR program, but also for the reactor physics community. The intent of the present paper is to validate the WIMSD4M cross-section librariesmore » for reactor modeling of fresh water moderated cores. The results of calculations performed with multigroup cross-section data generated with the WIMSD4M code will be compared against experimental results. These results correspond to calculations carried out with thermal reactor benchmarks of the Oak Ridge National Laboratory (ORNL) unreflected HEU critical spheres, the TRX LEU critical experiments, and calculations of a modified Los Alamos HEU D{sub 2}O moderated benchmark critical system. The benchmark calculations were performed with the discrete-ordinates transport code, TWODANT, using WIMSD4M cross-section data. Transport calculations using the XSDRNPM module of the SCALE code system are also included. In addition to transport calculations, diffusion calculations with the DIF3D code were also carried out, since the DIF3D code is used in the RERTR program for reactor analysis and design. For completeness, Monte Carlo results of calculations performed with the VIM and MCNP codes are also presented.« less
NASA Astrophysics Data System (ADS)
Samarin, S. N.; Saramad, S.
2018-05-01
The spatial resolution of a detector is a very important parameter for x-ray imaging. A bulk scintillation detector because of spreading of light inside the scintillator does't have a good spatial resolution. The nanowire scintillators because of their wave guiding behavior can prevent the spreading of light and can improve the spatial resolution of traditional scintillation detectors. The zinc oxide (ZnO) scintillator nanowire, with its simple construction by electrochemical deposition in regular hexagonal structure of Aluminum oxide membrane has many advantages. The three dimensional absorption of X-ray energy in ZnO scintillator is simulated by a Monte Carlo transport code (MCNP). The transport, attenuation and scattering of the generated photons are simulated by a general-purpose scintillator light response simulation code (OPTICS). The results are compared with a previous publication which used a simulation code of the passage of particles through matter (Geant4). The results verify that this scintillator nanowire structure has a spatial resolution less than one micrometer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klasky, Marc Louis; Myers, Steven Charles; James, Michael R.
To facilitate the timely execution of System Threat Reviews (STRs) for DNDO, and also to develop a methodology for performing STRs, LANL performed comparisons of several radiation transport codes (MCNP, GADRAS, and Gamma-Designer) that have been previously utilized to compute radiation signatures. While each of these codes has strengths, it is of paramount interest to determine the limitations of each of the respective codes and also to identify the most time efficient means by which to produce computational results, given the large number of parametric cases that are anticipated in performing STR's. These comparisons serve to identify regions of applicabilitymore » for each code and provide estimates of uncertainty that may be anticipated. Furthermore, while performing these comparisons, examination of the sensitivity of the results to modeling assumptions was also examined. These investigations serve to enable the creation of the LANL methodology for performing STRs. Given the wide variety of radiation test sources, scenarios, and detectors, LANL calculated comparisons of the following parameters: decay data, multiplicity, device (n,γ) leakages, and radiation transport through representative scenes and shielding. This investigation was performed to understand potential limitations utilizing specific codes for different aspects of the STR challenges.« less
Calculation of conversion coefficients for clinical photon spectra using the MCNP code.
Lima, M A F; Silva, A X; Crispim, V R
2004-01-01
In this work, the MCNP4B code has been employed to calculate conversion coefficients from air kerma to the ambient dose equivalent, H*(10)/Ka, for monoenergetic photon energies from 10 keV to 50 MeV, assuming the kerma approximation. Also estimated are the H*(10)/Ka for photon beams produced by linear accelerators, such as Clinac-4 and Clinac-2500, after transmission through primary barriers of radiotherapy treatment rooms. The results for the conversion coefficients for monoenergetic photon energies, with statistical uncertainty <2%, are compared with those in ICRP publication 74 and good agreements were obtained. The conversion coefficients calculated for real clinic spectra transmitted through walls of concrete of 1, 1.5 and 2 m thick, are in the range of 1.06-1.12 Sv Gy(-1).
NASA Astrophysics Data System (ADS)
Castanier, Eric; Paterne, Loic; Louis, Céline
2017-09-01
In the nuclear engineering, you have to manage time and precision. Especially in shielding design, you have to be more accurate and efficient to reduce cost (shielding thickness optimization), and for this, you use 3D codes. In this paper, we want to see if we can easily applicate the CADIS methods for design shielding of small pipes which go through large concrete walls. We assess the impact of the WW generated by the 3D-deterministic code ATTILA versus WW directly generated by MCNP (iterative and manual process). The comparison is based on the quality of the convergence (estimated relative error (σ), Variance of Variance (VOV) and Figure of Merit (FOM)), on time (computer time + modelling) and on the implement for the engineer.
Cai, Yao; Hu, Huasi; Pan, Ziheng; Hu, Guang; Zhang, Tao
2018-05-17
To optimize the shield for neutrons and gamma rays compact and lightweight, a method combining the structure and components together was established employing genetic algorithms and MCNP code. As a typical case, the fission energy spectrum of 235 U which mixed neutrons and gamma rays was adopted in this study. Six types of materials were presented and optimized by the method. Spherical geometry was adopted in the optimization after checking the geometry effect. Simulations have made to verify the reliability of the optimization method and the efficiency of the optimized materials. To compare the materials visually and conveniently, the volume and weight needed to build a shield are employed. The results showed that, the composite multilayer material has the best performance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Khattab, K; Sulieman, I
2009-04-01
The MCNP-4C code, based on the probabilistic approach, was used to model the 3D configuration of the core of the Syrian miniature neutron source reactor (MNSR). The continuous energy neutron cross sections from the ENDF/B-VI library were used to calculate the thermal and fast neutron fluxes in the inner and outer irradiation sites of MNSR. The thermal fluxes in the MNSR inner irradiation sites were also measured experimentally by the multiple foil activation method ((197)Au (n, gamma) (198)Au and (59)Co (n, gamma) (60)Co). The foils were irradiated simultaneously in each of the five MNSR inner irradiation sites to measure the thermal neutron flux and the epithermal index in each site. The calculated and measured results agree well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Seung Jun; Buechler, Cynthia Eileen
The current study aims to predict the steady state power of a generic solution vessel and to develop a corresponding heat transfer coefficient correlation for a Moly99 production facility by conducting a fully coupled multi-physics simulation. A prediction of steady state power for the current application is inherently interconnected between thermal hydraulic characteristics (i.e. Multiphase computational fluid dynamics solved by ANSYS-Fluent 17.2) and the corresponding neutronic behavior (i.e. particle transport solved by MCNP6.2) in the solution vessel. Thus, the development of a coupling methodology is vital to understand the system behavior at a variety of system design and postulated operatingmore » scenarios. In this study, we report on the k-effective (keff) calculation for the baseline solution vessel configuration with a selected solution concentration using MCNP K-code modeling. The associated correlation of thermal properties (e.g. density, viscosity, thermal conductivity, specific heat) at the selected solution concentration are developed based on existing experimental measurements in the open literature. The numerical coupling methodology between multiphase CFD and MCNP is successfully demonstrated, and the detailed coupling procedure is documented. In addition, improved coupling methods capturing realistic physics in the solution vessel thermal-neutronic dynamics are proposed and tested further (i.e. dynamic height adjustment, mull-cell approach). As a key outcome of the current study, a multi-physics coupling methodology between MCFD and MCNP is demonstrated and tested for four different operating conditions. Those different operating conditions are determined based on the neutron source strength at a fixed geometry condition. The steady state powers for the generic solution vessel at various operating conditions are reported, and a generalized correlation of the heat transfer coefficient for the current application is discussed. The assessment of multi-physics methodology and preliminary results from various coupled calculations (power prediction and heat transfer coefficient) can be further utilized for the system code validation and generic solution vessel design improvement.« less
NASA Astrophysics Data System (ADS)
Burns, Kimberly Ann
The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples. In these applications, high-resolution gamma-ray spectrometers are used to preserve as much information as possible about the emitted photon flux, which consists of both continuum and characteristic gamma rays with discrete energies. Monte Carlo transport is the most commonly used modeling tool for this type of problem, but computational times for many problems can be prohibitive. This work explores the use of coupled Monte Carlo-deterministic methods for the simulation of neutron-induced photons for high-resolution gamma-ray spectroscopy applications. RAdiation Detection Scenario Analysis Toolbox (RADSAT), a code which couples deterministic and Monte Carlo transport to perform radiation detection scenario analysis in three dimensions [1], was used as the building block for the methods derived in this work. RADSAT was capable of performing coupled deterministic-Monte Carlo simulations for gamma-only and neutron-only problems. The purpose of this work was to develop the methodology necessary to perform coupled neutron-photon calculations and add this capability to RADSAT. Performing coupled neutron-photon calculations requires four main steps: the deterministic neutron transport calculation, the neutron-induced photon spectrum calculation, the deterministic photon transport calculation, and the Monte Carlo detector response calculation. The necessary requirements for each of these steps were determined. A major challenge in utilizing multigroup deterministic transport methods for neutron-photon problems was maintaining the discrete neutron-induced photon signatures throughout the simulation. Existing coupled neutron-photon cross-section libraries and the methods used to produce neutron-induced photons were unsuitable for high-resolution gamma-ray spectroscopy applications. Central to this work was the development of a method for generating multigroup neutron-photon cross-sections in a way that separates the discrete and continuum photon emissions so the neutron-induced photon signatures were preserved. The RADSAT-NG cross-section library was developed as a specialized multigroup neutron-photon cross-section set for the simulation of high-resolution gamma-ray spectroscopy applications. The methodology and cross sections were tested using code-to-code comparison with MCNP5 [2] and NJOY [3]. A simple benchmark geometry was used for all cases compared with MCNP. The geometry consists of a cubical sample with a 252Cf neutron source on one side and a HPGe gamma-ray spectrometer on the opposing side. Different materials were examined in the cubical sample: polyethylene (C2H4), P, N, O, and Fe. The cross sections for each of the materials were compared to cross sections collapsed using NJOY. Comparisons of the volume-averaged neutron flux within the sample, volume-averaged photon flux within the detector, and high-purity gamma-ray spectrometer response (only for polyethylene) were completed using RADSAT and MCNP. The code-to-code comparisons show promising results for the coupled Monte Carlo-deterministic method. The RADSAT-NG cross-section production method showed good agreement with NJOY for all materials considered although some additional work is needed in the resonance region and in the first and last energy bin. Some cross section discrepancies existed in the lowest and highest energy bin, but the overall shape and magnitude of the two methods agreed. For the volume-averaged photon flux within the detector, typically the five most intense lines agree to within approximately 5% of the MCNP calculated flux for all of materials considered. The agreement in the code-to-code comparisons cases demonstrates a proof-of-concept of the method for use in RADSAT for coupled neutron-photon problems in high-resolution gamma-ray spectroscopy applications. One of the primary motivators for using the coupled method over pure Monte Carlo method is the potential for significantly lower computational times. For the code-to-code comparison cases, the run times for RADSAT were approximately 25--500 times shorter than for MCNP, as shown in Table 1. This was assuming a 40 mCi 252Cf neutron source and 600 seconds of "real-world" measurement time. The only variance reduction technique implemented in the MCNP calculation was forward biasing of the source toward the sample target. Improved MCNP runtimes could be achieved with the addition of more advanced variance reduction techniques.
Preliminary Analysis of the Transient Reactor Test Facility (TREAT) with PROTEUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connaway, H. M.; Lee, C. H.
The neutron transport code PROTEUS has been used to perform preliminary simulations of the Transient Reactor Test Facility (TREAT). TREAT is an experimental reactor designed for the testing of nuclear fuels and other materials under transient conditions. It operated from 1959 to 1994, when it was placed on non-operational standby. The restart of TREAT to support the U.S. Department of Energy’s resumption of transient testing is currently underway. Both single assembly and assembly-homogenized full core models have been evaluated. Simulations were performed using a historic set of WIMS-ANL-generated cross-sections as well as a new set of Serpent-generated cross-sections. To supportmore » this work, further analyses were also performed using additional codes in order to investigate particular aspects of TREAT modeling. DIF3D and the Monte-Carlo codes MCNP and Serpent were utilized in these studies. MCNP and Serpent were used to evaluate the effect of geometry homogenization on the simulation results and to support code-to-code comparisons. New meshes for the PROTEUS simulations were created using the CUBIT toolkit, with additional meshes generated via conversion of selected DIF3D models to support code-to-code verifications. All current analyses have focused on code-to-code verifications, with additional verification and validation studies planned. The analysis of TREAT with PROTEUS-SN is an ongoing project. This report documents the studies that have been performed thus far, and highlights key challenges to address in future work.« less
New Tools to Prepare ACE Cross-section Files for MCNP Analytic Test Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.
Monte Carlo calculations using one-group cross sections, multigroup cross sections, or simple continuous energy cross sections are often used to: (1) verify production codes against known analytical solutions, (2) verify new methods and algorithms that do not involve detailed collision physics, (3) compare Monte Carlo calculation methods with deterministic methods, and (4) teach fundamentals to students. In this work we describe 2 new tools for preparing the ACE cross-section files to be used by MCNP ® for these analytic test problems, simple_ace.pl and simple_ace_mg.pl.
Validation of MCNP: SPERT-D and BORAX-V fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, C.; Palmer, B.
1992-11-01
This report discusses critical experiments involving SPERT-D{sup 1,2} fuel elements and BORAX-V{sup 3-8} fuel which have been modeled and calculations performed with MCNP. MCNP is a Monte Carlo based transport code. For this study continuous-energy nuclear data from the ENDF/B-V cross section library was used. The SPERT-D experiments consisted of various arrays of fuel elements moderated and reflected with either water or a uranyl nitrate solution. Some SPERT-D experiments used cadmium as a fixed neutron poison, while others were poisoned with various concentrations of boron in the moderating/reflecting solution. ne BORAX-V experiments were arrays of either boiling fuel rod assembliesmore » or superheater assemblies, both types of arrays were moderated and reflected with water. In one boiling fuel experiment, two fuel rods were replaced with borated stainless steel poison rods.« less
Validation of MCNP: SPERT-D and BORAX-V fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, C.; Palmer, B.
1992-11-01
This report discusses critical experiments involving SPERT-D[sup 1,2] fuel elements and BORAX-V[sup 3-8] fuel which have been modeled and calculations performed with MCNP. MCNP is a Monte Carlo based transport code. For this study continuous-energy nuclear data from the ENDF/B-V cross section library was used. The SPERT-D experiments consisted of various arrays of fuel elements moderated and reflected with either water or a uranyl nitrate solution. Some SPERT-D experiments used cadmium as a fixed neutron poison, while others were poisoned with various concentrations of boron in the moderating/reflecting solution. ne BORAX-V experiments were arrays of either boiling fuel rod assembliesmore » or superheater assemblies, both types of arrays were moderated and reflected with water. In one boiling fuel experiment, two fuel rods were replaced with borated stainless steel poison rods.« less
NASA Astrophysics Data System (ADS)
Yang, Zi-Yi; Tsai, Pi-En; Lee, Shao-Chun; Liu, Yen-Chiang; Chen, Chin-Cheng; Sato, Tatsuhiko; Sheu, Rong-Jiun
2017-09-01
The dose distributions from proton pencil beam scanning were calculated by FLUKA, GEANT4, MCNP, and PHITS, in order to investigate their applicability in proton radiotherapy. The first studied case was the integrated depth dose curves (IDDCs), respectively from a 100 and a 226-MeV proton pencil beam impinging a water phantom. The calculated IDDCs agree with each other as long as each code employs 75 eV for the ionization potential of water. The second case considered a similar condition of the first case but with proton energies in a Gaussian distribution. The comparison to the measurement indicates the inter-code differences might not only due to different stopping power but also the nuclear physics models. How the physics parameter setting affect the computation time was also discussed. In the third case, the applicability of each code for pencil beam scanning was confirmed by delivering a uniform volumetric dose distribution based on the treatment plan, and the results showed general agreement between each codes, the treatment plan, and the measurement, except that some deviations were found in the penumbra region. This study has demonstrated that the selected codes are all capable of performing dose calculations for therapeutic scanning proton beams with proper physics settings.
NASA Astrophysics Data System (ADS)
Gonzales, Matthew Alejandro
The calculation of the thermal neutron Doppler temperature reactivity feedback co-efficient, a key parameter in the design and safe operation of advanced reactors, using first order perturbation theory in continuous energy Monte Carlo codes is challenging as the continuous energy adjoint flux is not readily available. Traditional approaches of obtaining the adjoint flux attempt to invert the random walk process as well as require data corresponding to all temperatures and their respective temperature derivatives within the system in order to accurately calculate the Doppler temperature feedback. A new method has been developed using adjoint-weighted tallies and On-The-Fly (OTF) generated continuous energy cross sections within the Monte Carlo N-Particle (MCNP6) transport code. The adjoint-weighted tallies are generated during the continuous energy k-eigenvalue Monte Carlo calculation. The weighting is based upon the iterated fission probability interpretation of the adjoint flux, which is the steady state population in a critical nuclear reactor caused by a neutron introduced at that point in phase space. The adjoint-weighted tallies are produced in a forward calculation and do not require an inversion of the random walk. The OTF cross section database uses a high order functional expansion between points on a user-defined energy-temperature mesh in which the coefficients with respect to a polynomial fitting in temperature are stored. The coefficients of the fits are generated before run- time and called upon during the simulation to produce cross sections at any given energy and temperature. The polynomial form of the OTF cross sections allows the possibility of obtaining temperature derivatives of the cross sections on-the-fly. The use of Monte Carlo sampling of adjoint-weighted tallies and the capability of computing derivatives of continuous energy cross sections with respect to temperature are used to calculate the Doppler temperature coefficient in a research version of MCNP6. Temperature feedback results from the cross sections themselves, changes in the probability density functions, as well as changes in the density of the materials. The focus of this work is specific to the Doppler temperature feedback which result from Doppler broadening of cross sections as well as changes in the probability density function within the scattering kernel. This method is compared against published results using Mosteller's numerical benchmark to show accurate evaluations of the Doppler temperature coefficient, fuel assembly calculations, and a benchmark solution based on the heavy gas model for free-gas elastic scattering. An infinite medium benchmark for neutron free gas elastic scattering for large scattering ratios and constant absorption cross section has been developed using the heavy gas model. An exact closed form solution for the neutron energy spectrum is obtained in terms of the confluent hypergeometric function and compared against spectra for the free gas scattering model in MCNP6. Results show a quick increase in convergence of the analytic energy spectrum to the MCNP6 code with increasing target size, showing absolute relative differences of less than 5% for neutrons scattering with carbon. The analytic solution has been generalized to accommodate piecewise constant in energy absorption cross section to produce temperature feedback. Results reinforce the constraints in which heavy gas theory may be applied resulting in a significant target size to accommodate increasing cross section structure. The energy dependent piecewise constant cross section heavy gas model was used to produce a benchmark calculation of the Doppler temperature coefficient to show accurate calculations when using the adjoint-weighted method. Results show the Doppler temperature coefficient using adjoint weighting and cross section derivatives accurately obtains the correct solution within statistics as well as reduce computer runtimes by a factor of 50.
Benchmark study for total enery electrons in thick slabs
NASA Technical Reports Server (NTRS)
Jun, I.
2002-01-01
The total energy deposition profiles when highenergy electrons impinge on a thick slab of elemental aluminum, copper, and tungsten have been computed using representative Monte Carlo codes (NOVICE, TIGER, MCNP), and compared in this paper.
Image enhancement using MCNP5 code and MATLAB in neutron radiography.
Tharwat, Montaser; Mohamed, Nader; Mongy, T
2014-07-01
This work presents a method that can be used to enhance the neutron radiography (NR) image for objects with high scattering materials like hydrogen, carbon and other light materials. This method used Monte Carlo code, MCNP5, to simulate the NR process and get the flux distribution for each pixel of the image and determines the scattered neutron distribution that caused image blur, and then uses MATLAB to subtract this scattered neutron distribution from the initial image to improve its quality. This work was performed before the commissioning of digital NR system in Jan. 2013. The MATLAB enhancement method is quite a good technique in the case of static based film neutron radiography, while in neutron imaging (NI) technique, image enhancement and quantitative measurement were efficient by using ImageJ software. The enhanced image quality and quantitative measurements were presented in this work. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, R; Li, X A
2001-02-01
The dose parameters for the beta-particle emitting 90Sr/90Y source for intravascular brachytherapy (IVBT) have been calculated by different investigators. At a distant distance from the source, noticeable differences are seen in these parameters calculated using different Monte Carlo codes. The purpose of this work is to quantify as well as to understand these differences. We have compared a series of calculations using an EGS4, an EGSnrc, and the MCNP Monte Carlo codes. Data calculated and compared include the depth dose curve for a broad parallel beam of electrons, and radial dose distributions for point electron sources (monoenergetic or polyenergetic) and for a real 90Sr/90Y source. For the 90Sr/90Y source, the doses at the reference position (2 mm radial distance) calculated by the three code agree within 2%. However, the differences between the dose calculated by the three codes can be over 20% in the radial distance range interested in IVBT. The difference increases with radial distance from source, and reaches 30% at the tail of dose curve. These differences may be partially attributed to the different multiple scattering theories and Monte Carlo models for electron transport adopted in these three codes. Doses calculated by the EGSnrc code are more accurate than those by the EGS4. The two calculations agree within 5% for radial distance <6 mm.
Evaluation and Testing of the ADVANTG Code on SNM Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaver, Mark W.; Casella, Andrew M.; Wittman, Richard S.
2013-09-24
Pacific Northwest National Laboratory (PNNL) has been tasked with evaluating the effectiveness of ORNL’s new hybrid transport code, ADVANTG, on scenarios of interest to our NA-22 sponsor, specifically of detection of diversion of special nuclear material (SNM). PNNL staff have determined that acquisition and installation of ADVANTG was relatively straightforward for a code in its phase of development, but probably not yet sufficient for mass distribution to the general user. PNNL staff also determined that with little effort, ADVANTG generated weight windows that typically worked for the problems and generated results consistent with MCNP. With slightly greater effort of choosingmore » a finer mesh around detectors or sample reaction tally regions, the figure of merit (FOM) could be further improved in most cases. This does take some limited knowledge of deterministic transport methods. The FOM could also be increased by limiting the energy range for a tally to the energy region of greatest interest. It was then found that an MCNP run with the full energy range for the tally showed improved statistics in the region used for the ADVANTG run. The specific case of interest chosen by the sponsor is the CIPN project from Las Alamos National Laboratory (LANL), which is an active interrogation, non-destructive assay (NDA) technique to quantify the fissile content in a spent fuel assembly and is also sensitive to cases of material diversion. Unfortunately, weight windows for the CIPN problem cannot currently be properly generated with ADVANTG due to inadequate accommodations for source definition. ADVANTG requires that a fixed neutron source be defined within the problem and cannot account for neutron multiplication. As such, it is rendered useless in active interrogation scenarios. It is also interesting to note that this is a difficult problem to solve and that the automated weight windows generator in MCNP actually slowed down the problem. Therefore, PNNL had determined that there is not an effective tool available for speeding up MCNP for problems such as the CIPN scenario. With regard to the Benchmark scenarios, ADVANTG performed very well for most of the difficult, long-running, standard radiation detection scenarios. Specifically, run time speedups were observed for spatially large scenarios, or those having significant shielding or scattering geometries. ADVANTG performed on par with existing codes for moderate sized scenarios, or those with little to moderate shielding, or multiple paths to the detectors. ADVANTG ran slower than MCNP for very simply, spatially small cases with little to no shielding that run very quickly anyway. Lastly, ADVANTG could not solve problems that did not consist of fixed source to detector geometries. For example, it could not solve scenarios with multiple detectors or secondary particles, such as active interrogation, neutron induced gamma, or fission neutrons.« less
Efficiency of whole-body counter for various body size calculated by MCNP5 software.
Krstic, D; Nikezic, D
2012-11-01
The efficiency of a whole-body counter for (137)Cs and (40)K was calculated using the MCNP5 code. The ORNL phantoms of a human body of different body sizes were applied in a sitting position in front of a detector. The aim was to investigate the dependence of efficiency on the body size (age) and the detector position with respect to the body and to estimate the accuracy of real measurements. The calculation work presented here is related to the NaI detector, which is available in the Serbian Whole-body Counter facility in Vinca Institute.
Radulović, Vladimir; Štancar, Žiga; Snoj, Luka; Trkov, Andrej
2014-02-01
The calculation of axial neutron flux distributions with the MCNP code at the JSI TRIGA Mark II reactor has been validated with experimental measurements of the (197)Au(n,γ)(198)Au reaction rate. The calculated absolute reaction rate values, scaled according to the reactor power and corrected for the flux redistribution effect, are in good agreement with the experimental results. The effect of different cross-section libraries on the calculations has been investigated and shown to be minor. Copyright © 2013 Elsevier Ltd. All rights reserved.
MCNP calculations for container inspection with tagged neutrons
NASA Astrophysics Data System (ADS)
Boghen, G.; Donzella, A.; Filippini, V.; Fontana, A.; Lunardon, M.; Moretto, S.; Pesente, S.; Zenoni, A.
2005-12-01
We are developing an innovative tagged neutrons inspection system (TNIS) for cargo containers: the system will allow us to assay the chemical composition of suspect objects, previously identified by a standard X-ray radiography. The operation of the system is extensively being simulated by using the MCNP Monte Carlo code to study different inspection geometries, cargo loads and hidden threat materials. Preliminary simulations evaluating the signal and the signal over background ratio expected as a function of the system parameters are presented. The results for a selection of cases are briefly discussed and demonstrate that the system can operate successfully in different filling conditions.
Skyshine line-beam response functions for 20- to 100-MeV photons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brockhoff, R.C.; Shultis, J.K.; Faw, R.E.
1996-06-01
The line-beam response function, needed for skyshine analyses based on the integral line-beam method, was evaluated with the MCNP Monte Carlo code for photon energies from 20 to 100 MeV and for source-to-detector distances out to 1,000 m. These results are compared with point-kernel results, and the effects of bremsstrahlung and positron transport in the air are found to be important in this energy range. The three-parameter empirical formula used in the integral line-beam skyshine method was fit to the MCNP results, and values of these parameters are reported for various source energies and angles.
Background-Source Cosmic-Photon Elevation Scaling and Cosmic-Neutron/Photon Date Scaling in MCNP6
Tutt, James Robert; Anderson, Casey Alan; McKinney, Gregg Walter
2017-10-26
Here, cosmic neutron and photon fluxes are known to scale exponentially with elevation. Consequently, cosmic neutron elevation scaling was implemented for use with the background-source option shortly after its introduction into MCNP6, whereby the neutron flux weight factor was adjusted by the elevation scaling factor when the user-specified elevation differed from the selected background.dat grid-point elevation. At the same time, an elevation scaling factor was suggested for the cosmic photon flux, however, cosmic photon elevation scaling is complicated by the fact that the photon background consists of two components: cosmic and terrestrial. Previous versions of the background.dat file did notmore » provide any way to separate these components. With Rel. 4 of this file in 2015, two new columns were added that provide the energy grid and differential cosmic photon flux separately from the total photon flux. Here we show that the cosmic photon flux component can now be scaled independently and combined with the terrestrial component to form the total photon flux at a user-specified elevation in MCNP6.« less
Background-Source Cosmic-Photon Elevation Scaling and Cosmic-Neutron/Photon Date Scaling in MCNP6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tutt, James Robert; Anderson, Casey Alan; McKinney, Gregg Walter
Here, cosmic neutron and photon fluxes are known to scale exponentially with elevation. Consequently, cosmic neutron elevation scaling was implemented for use with the background-source option shortly after its introduction into MCNP6, whereby the neutron flux weight factor was adjusted by the elevation scaling factor when the user-specified elevation differed from the selected background.dat grid-point elevation. At the same time, an elevation scaling factor was suggested for the cosmic photon flux, however, cosmic photon elevation scaling is complicated by the fact that the photon background consists of two components: cosmic and terrestrial. Previous versions of the background.dat file did notmore » provide any way to separate these components. With Rel. 4 of this file in 2015, two new columns were added that provide the energy grid and differential cosmic photon flux separately from the total photon flux. Here we show that the cosmic photon flux component can now be scaled independently and combined with the terrestrial component to form the total photon flux at a user-specified elevation in MCNP6.« less
Ford Motor Company NDE facility shielding design.
Metzger, Robert L; Van Riper, Kenneth A; Jones, Martin H
2005-01-01
Ford Motor Company proposed the construction of a large non-destructive evaluation laboratory for radiography of automotive power train components. The authors were commissioned to design the shielding and to survey the completed facility for compliance with radiation doses for occupationally and non-occupationally exposed personnel. The two X-ray sources are Varian Linatron 3000 accelerators operating at 9-11 MV. One performs computed tomography of automotive transmissions, while the other does real-time radiography of operating engines and transmissions. The shield thickness for the primary barrier and all secondary barriers were determined by point-kernel techniques. Point-kernel techniques did not work well for skyshine calculations and locations where multiple sources (e.g. tube head leakage and various scatter fields) impacted doses. Shielding for these areas was determined using transport calculations. A number of MCNP [Briesmeister, J. F. MCNPCA general Monte Carlo N-particle transport code version 4B. Los Alamos National Laboratory Manual (1997)] calculations focused on skyshine estimates and the office areas. Measurements on the operational facility confirmed the shielding calculations.
Yoriyaz, Hélio; Moralles, Maurício; Siqueira, Paulo de Tarso Dalledone; Guimarães, Carla da Costa; Cintra, Felipe Belonsi; dos Santos, Adimir
2009-11-01
Radiopharmaceutical applications in nuclear medicine require a detailed dosimetry estimate of the radiation energy delivered to the human tissues. Over the past years, several publications addressed the problem of internal dose estimate in volumes of several sizes considering photon and electron sources. Most of them used Monte Carlo radiation transport codes. Despite the widespread use of these codes due to the variety of resources and potentials they offered to carry out dose calculations, several aspects like physical models, cross sections, and numerical approximations used in the simulations still remain an object of study. Accurate dose estimate depends on the correct selection of a set of simulation options that should be carefully chosen. This article presents an analysis of several simulation options provided by two of the most used codes worldwide: MCNP and GEANT4. For this purpose, comparisons of absorbed fraction estimates obtained with different physical models, cross sections, and numerical approximations are presented for spheres of several sizes and composed as five different biological tissues. Considerable discrepancies have been found in some cases not only between the different codes but also between different cross sections and algorithms in the same code. Maximum differences found between the two codes are 5.0% and 10%, respectively, for photons and electrons. Even for simple problems as spheres and uniform radiation sources, the set of parameters chosen by any Monte Carlo code significantly affects the final results of a simulation, demonstrating the importance of the correct choice of parameters in the simulation.
Intrinsic Radiation Source Generation with the ISC Package: Data Comparisons and Benchmarking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, Clell J. Jr.
The characterization of radioactive emissions from unstable isotopes (intrinsic radiation) is necessary for shielding and radiological-dose calculations from radioactive materials. While most radiation transport codes, e.g., MCNP [X-5 Monte Carlo Team, 2003], provide the capability to input user prescribed source definitions, such as radioactive emissions, they do not provide the capability to calculate the correct radioactive-source definition given the material compositions. Special modifications to MCNP have been developed in the past to allow the user to specify an intrinsic source, but these modification have not been implemented into the primary source base [Estes et al., 1988]. To facilitate the descriptionmore » of the intrinsic radiation source from a material with a specific composition, the Intrinsic Source Constructor library (LIBISC) and MCNP Intrinsic Source Constructor (MISC) utility have been written. The combination of LIBISC and MISC will be herein referred to as the ISC package. LIBISC is a statically linkable C++ library that provides the necessary functionality to construct the intrinsic-radiation source generated by a material. Furthermore, LIBISC provides the ability use different particle-emission databases, radioactive-decay databases, and natural-abundance databases allowing the user flexibility in the specification of the source, if one database is preferred over others. LIBISC also provides functionality for aging materials and producing a thick-target bremsstrahlung photon source approximation from the electron emissions. The MISC utility links to LIBISC and facilitates the description of intrinsic-radiation sources into a format directly usable with the MCNP transport code. Through a series of input keywords and arguments the MISC user can specify the material, age the material if desired, and produce a source description of the radioactive emissions from the material in an MCNP readable format. Further details of using the MISC utility can be obtained from the user guide [Solomon, 2012]. The remainder of this report presents a discussion of the databases available to LIBISC and MISC, a discussion of the models employed by LIBISC, a comparison of the thick-target bremsstrahlung model employed, a benchmark comparison to plutonium and depleted-uranium spheres, and a comparison of the available particle-emission databases.« less
Shahbazi-Gahrouei, Daryoush; Ayat, Saba
2012-01-01
Radioiodine therapy is an effective method for treating thyroid cancer carcinoma, but it has some affects on normal tissues, hence dosimetry of vital organs is important to weigh the risks and benefits of this method. The aim of this study is to measure the absorbed doses of important organs by Monte Carlo N Particle (MCNP) simulation and comparing the results of different methods of dosimetry by performing a t-paired test. To calculate the absorbed dose of thyroid, sternum, and cervical vertebra using the MCNP code, *F8 tally was used. Organs were simulated by using a neck phantom and Medical Internal Radiation Dosimetry (MIRD) method. Finally, the results of MCNP, MIRD, and Thermoluminescent dosimeter (TLD) measurements were compared by SPSS software. The absorbed dose obtained by Monte Carlo simulations for 100, 150, and 175 mCi administered 131I was found to be 388.0, 427.9, and 444.8 cGy for thyroid, 208.7, 230.1, and 239.3 cGy for sternum and 272.1, 299.9, and 312.1 cGy for cervical vertebra. The results of paired t-test were 0.24 for comparing TLD dosimetry and MIRD calculation, 0.80 for MCNP simulation and MIRD, and 0.19 for TLD and MCNP. The results showed no significant differences among three methods of Monte Carlo simulations, MIRD calculation and direct experimental dosimetry using TLD. PMID:23717806
Benchmarking of MCNP for calculating dose rates at an interim storage facility for nuclear waste.
Heuel-Fabianek, Burkhard; Hille, Ralf
2005-01-01
During the operation of research facilities at Research Centre Jülich, Germany, nuclear waste is stored in drums and other vessels in an interim storage building on-site, which has a concrete shielding at the side walls. Owing to the lack of a well-defined source, measured gamma spectra were unfolded to determine the photon flux on the surface of the containers. The dose rate simulation, including the effects of skyshine, using the Monte Carlo transport code MCNP is compared with the measured dosimetric data at some locations in the vicinity of the interim storage building. The MCNP data for direct radiation confirm the data calculated using a point-kernel method. However, a comparison of the modelled dose rates for direct radiation and skyshine with the measured data demonstrate the need for a more precise definition of the source. Both the measured and the modelled dose rates verified the fact that the legal limits (<1 mSv a(-1)) are met in the area outside the perimeter fence of the storage building to which members of the public have access. Using container surface data (gamma spectra) to define the source may be a useful tool for practical calculations and additionally for benchmarking of computer codes if the discussed critical aspects with respect to the source can be addressed adequately.
Zhang, Xiaomin; Xie, Xiangdong; Cheng, Jie; Ning, Jing; Yuan, Yong; Pan, Jie; Yang, Guoshan
2012-01-01
A set of conversion coefficients from kerma free-in-air to the organ absorbed dose for external photon beams from 10 keV to 10 MeV are presented based on a newly developed voxel mouse model, for the purpose of radiation effect evaluation. The voxel mouse model was developed from colour images of successive cryosections of a normal nude male mouse, in which 14 organs or tissues were segmented manually and filled with different colours, while each colour was tagged by a specific ID number for implementation of mouse model in Monte Carlo N-particle code (MCNP). Monte Carlo simulation with MCNP was carried out to obtain organ dose conversion coefficients for 22 external monoenergetic photon beams between 10 keV and 10 MeV under five different irradiation geometries conditions (left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic). Organ dose conversion coefficients were presented in tables and compared with the published data based on a rat model to investigate the effect of body size and weight on the organ dose. The calculated and comparison results show that the organ dose conversion coefficients varying the photon energy exhibits similar trend for most organs except for the bone and skin, and the organ dose is sensitive to body size and weight at a photon energy approximately <0.1 MeV.
Cagnazzo, M; Borio di Tigliole, A; Böck, H; Villa, M
2018-05-01
Aim of this work was the detection of fission products activity distribution along the axial dimension of irradiated fuel elements (FEs) at the TRIGA Mark II research reactor of the Technische Universität (TU) Wien. The activity distribution was measured by means of a customized fuel gamma scanning device, which includes a vertical lifting system to move the fuel rod along its vertical axis. For each investigated FE, a gamma spectrum measurement was performed along the vertical axis, with steps of 1 cm, in order to determine the axial distribution of the fission products. After the fuel elements underwent a relatively short cooling down period, different fission products were detected. The activity concentration was determined by calibrating the gamma detector with a standard calibration source of known activity and by MCNP6 simulations for the evaluation of self-absorption and geometric effects. Given the specific TRIGA fuel composition, a correction procedure is developed and used in this work for the measurement of the fission product Zr 95 . This measurement campaign is part of a more extended project aiming at the modelling of the TU Wien TRIGA reactor by means of different calculation codes (MCNP6, Serpent): the experimental results presented in this paper will be subsequently used for the benchmark of the models developed with the calculation codes. Copyright © 2018 Elsevier Ltd. All rights reserved.
a Proposed Benchmark Problem for Scatter Calculations in Radiographic Modelling
NASA Astrophysics Data System (ADS)
Jaenisch, G.-R.; Bellon, C.; Schumm, A.; Tabary, J.; Duvauchelle, Ph.
2009-03-01
Code Validation is a permanent concern in computer modelling, and has been addressed repeatedly in eddy current and ultrasonic modeling. A good benchmark problem is sufficiently simple to be taken into account by various codes without strong requirements on geometry representation capabilities, focuses on few or even a single aspect of the problem at hand to facilitate interpretation and to avoid that compound errors compensate themselves, yields a quantitative result and is experimentally accessible. In this paper we attempt to address code validation for one aspect of radiographic modeling, the scattered radiation prediction. Many NDT applications can not neglect scattered radiation, and the scatter calculation thus is important to faithfully simulate the inspection situation. Our benchmark problem covers the wall thickness range of 10 to 50 mm for single wall inspections, with energies ranging from 100 to 500 keV in the first stage, and up to 1 MeV with wall thicknesses up to 70 mm in the extended stage. A simple plate geometry is sufficient for this purpose, and the scatter data is compared on a photon level, without a film model, which allows for comparisons with reference codes like MCNP. We compare results of three Monte Carlo codes (McRay, Sindbad and Moderato) as well as an analytical first order scattering code (VXI), and confront them to results obtained with MCNP. The comparison with an analytical scatter model provides insights into the application domain where this kind of approach can successfully replace Monte-Carlo calculations.
Richard, Joshua; Galloway, Jack; Fensin, Michael; ...
2015-04-04
A novel object-oriented modular mapping methodology for externally coupled neutronics–thermal hydraulics multiphysics simulations was developed. The Simulator using MCNP with Integrated Thermal-Hydraulics for Exploratory Reactor Studies (SMITHERS) code performs on-the-fly mapping of material-wise power distribution tallies implemented by MCNP-based neutron transport/depletion solvers for use in estimating coolant temperature and density distributions with a separate thermal-hydraulic solver. The key development of SMITHERS is that it reconstructs the hierarchical geometry structure of the material-wise power generation tallies from the depletion solver automatically, with only a modicum of additional information required from the user. In addition, it performs the basis mapping from themore » combinatorial geometry of the depletion solver to the required geometry of the thermal-hydraulic solver in a generalizable manner, such that it can transparently accommodate varying levels of thermal-hydraulic solver geometric fidelity, from the nodal geometry of multi-channel analysis solvers to the pin-cell level of discretization for sub-channel analysis solvers.« less
MCNP modelling of the wall effects observed in tissue-equivalent proportional counters.
Hoff, J L; Townsend, L W
2002-01-01
Tissue-equivalent proportional counters (TEPCs) utilise tissue-equivalent materials to depict homogeneous microscopic volumes of human tissue. Although both the walls and gas simulate the same medium, they respond to radiation differently. Density differences between the two materials cause distortions, or wall effects, in measurements, with the most dominant effect caused by delta rays. This study uses a Monte Carlo transport code, MCNP, to simulate the transport of secondary electrons within a TEPC. The Rudd model, a singly differential cross section with no dependence on electron direction, is used to describe the energy spectrum obtained by the impact of two iron beams on water. Based on the models used in this study, a wall-less TEPC had a higher lineal energy (keV.micron-1) as a function of impact parameter than a solid-wall TEPC for the iron beams under consideration. An important conclusion of this study is that MCNP has the ability to model the wall effects observed in TEPCs.
Development of a patient-specific dosimetry estimation system in nuclear medicine examination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, H. H.; Dong, S. L.; Yang, H. J.
2011-07-01
The purpose of this study is to develop a patient-specific dosimetry estimation system in nuclear medicine examination using a SimSET-based Monte Carlo code. We added a dose deposition routine to store the deposited energy of the photons during their flights in SimSET and developed a user-friendly interface for reading PET and CT images. Dose calculated on ORNL phantom was used to validate the accuracy of this system. The S values for {sup 99m}Tc, {sup 18}F and {sup 131}I obtained by the system were compared to those from the MCNP4C code and OLINDA. The ratios of S values computed by thismore » system to those obtained with OLINDA for various organs were ranged from 0.93 to 1.18, which are comparable to that obtained from MCNP4C code (0.94 to 1.20). The average ratios of S value were 0.99{+-}0.04, 1.03{+-}0.05, and 1.00{+-}0.07 for isotopes {sup 131}I, {sup 18}F, and {sup 99m}Tc, respectively. The simulation time of SimSET was two times faster than MCNP4C's for various isotopes. A 3D dose calculation was also performed on a patient data set with PET/CT examination using this system. Results from the patient data showed that the estimated S values using this system differed slightly from those of OLINDA for ORNL phantom. In conclusion, this system can generate patient-specific dose distribution and display the isodose curves on top of the anatomic structure through a friendly graphic user interface. It may also provide a useful tool to establish an appropriate dose-reduction strategy to patients in nuclear medicine environments. (authors)« less
Lung Dosimetry for Radioiodine Treatment Planning in the Case of Diffuse Lung Metastases
Song, Hong; He, Bin; Prideaux, Andrew; Du, Yong; Frey, Eric; Kasecamp, Wayne; Ladenson, Paul W.; Wahl, Richard L.; Sgouros, George
2010-01-01
The lungs are the most frequent sites of distant metastasis in differentiated thyroid carcinoma. Radioiodine treatment planning for these patients is usually performed following the Benua– Leeper method, which constrains the administered activity to 2.96 GBq (80 mCi) whole-body retention at 48 h after administration to prevent lung toxicity in the presence of iodine-avid lung metastases. This limit was derived from clinical experience, and a dosimetric analysis of lung and tumor absorbed dose would be useful to understand the implications of this limit on toxicity and tumor control. Because of highly nonuniform lung density and composition as well as the nonuniform activity distribution when the lungs contain tumor nodules, Monte Carlo dosimetry is required to estimate tumor and normal lung absorbed dose. Reassessment of this toxicity limit is also appropriate in light of the contemporary use of recombinant thyrotropin (thyroid-stimulating hormone) (rTSH) to prepare patients for radioiodine therapy. In this work we demonstrated the use of MCNP, a Monte Carlo electron and photon transport code, in a 3-dimensional (3D) imaging–based absorbed dose calculation for tumor and normal lungs. Methods A pediatric thyroid cancer patient with diffuse lung metastases was administered 37MBq of 131I after preparation with rTSH. SPECT/CT scans were performed over the chest at 27, 74, and 147 h after tracer administration. The time–activity curve for 131I in the lungs was derived from the whole-body planar imaging and compared with that obtained from the quantitative SPECT methods. Reconstructed and coregistered SPECT/CT images were converted into 3D density and activity probability maps suitable for MCNP4b input. Absorbed dose maps were calculated using electron and photon transport in MCNP4b. Administered activity was estimated on the basis of the maximum tolerated dose (MTD) of 27.25 Gy to the normal lungs. Computational efficiency of the MCNP4b code was studied with a simple segmentation approach. In addition, the Benua–Leeper method was used to estimate the recommended administered activity. The standard dosing plan was modified to account for the weight of this pediatric patient, where the 2.96-GBq (80 mCi) whole-body retention was scaled to 2.44 GBq (66 mCi) to give the same dose rate of 43.6 rad/h in the lungs at 48 h. Results Using the MCNP4b code, both the spatial dose distribution and a dose–volume histogram were obtained for the lungs. An administered activity of 1.72 GBq (46.4 mCi) delivered the putative MTD of 27.25 Gy to the lungs with a tumor absorbed dose of 63.7 Gy. Directly applying the Benua–Leeper method, an administered activity of 3.89 GBq (105.0 mCi) was obtained, resulting in tumor and lung absorbed doses of 144.2 and 61.6 Gy, respectively, when the MCNP-based dosimetry was applied. The voxel-by-voxel calculation time of 4,642.3 h for photon transport was reduced to 16.8 h when the activity maps were segmented into 20 regions. Conclusion MCNP4b–based, patient-specific 3D dosimetry is feasible and important in the dosimetry of thyroid cancer patients with avid lung metastases that exhibit prolonged retention in the lungs. PMID:17138741
NASA Astrophysics Data System (ADS)
Rogov, A.; Pepyolyshev, Yu.; Carta, M.; d'Angelo, A.
Scintillation detector (SD) is widely used in neutron and gamma-spectrometry in a count mode. The organic scintillators for the count mode of the detector operation are investigated rather well. Usually, they are applied for measurement of amplitude and time distributions of pulses caused by single interaction events of neutrons or gamma's with scintillator material. But in a large area of scientific research scintillation detectors can alternatively be used on a current mode by recording the average current from the detector. For example,the measurements of the neutron pulse shape at the pulsed reactors or another pulsed neutron sources. So as to get a rather large volume of experimental data at pulsed neutron sources, it is necessary to use the current mode detector for registration of fast neutrons. Many parameters of the SD are changed with a transition from an accounting mode to current one. For example, the detector efficiency is different in counting and current modes. Many effects connected with time accuracy become substantial. Besides, for the registration of solely fast neutrons, as must be in many measurements, in the mixed radiation field of the pulsed neutron sources, SD efficiency has to be determined with a gamma-radiation shield present. Here is no calculations or experimental data on SD current mode operation up to now. The response functions of the detectors can be either measured in high-precision reference fields or calculated by a computer simulation. We have used the MCNP code [1] and carried out some experiments for investigation of the plastic performances in a current mode. There are numerous programs performing simulating similar to the MCNP code. For example, for neutrons there are [2-4], for photons - [5-8]. However, all known codes to use (SCINFUL, NRESP4, SANDYL, EGS49) have more stringent restrictions on the source, geometry and detector characteristics. In MCNP code a lot of these restrictions are absent and you need only to write special additions for proton and electron recoil and transfer energy to light output. These code modifications allow taking into account all processes in organic scintillator influence the light yield.
MCNP simulation of a Theratron 780 radiotherapy unit.
Miró, R; Soler, J; Gallardo, S; Campayo, J M; Díez, S; Verdú, G
2005-01-01
A Theratron 780 (MDS Nordion) 60Co radiotherapy unit has been simulated with the Monte Carlo code MCNP. The unit has been realistically modelled: the cylindrical source capsule and its housing, the rectangular collimator system, both the primary and secondary jaws and the air gaps between the components. Different collimator openings, ranging from 5 x 5 cm2 to 20 x 20 cm2 (narrow and broad beams) at a source-surface distance equal to 80 cm have been used during the study. In the present work, we have calculated spectra as a function of field size. A study of the variation of the electron contamination of the 60Co beam has also been performed.
Neutron and photon shielding benchmark calculations by MCNP on the LR-0 experimental facility.
Hordósy, G
2005-01-01
In the framework of the REDOS project, the space-energy distribution of the neutron and photon flux has been calculated over the pressure vessel simulator thickness of the LR-0 experimental reactor, Rez, Czech Republic. The results calculated by the Monte Carlo code MCNP4C are compared with the measurements performed in the Nuclear Research Institute, Rez. The spectra have been measured at the barrel, in front of, inside and behind the pressure vessel in different configurations. The neutron measurements were performed in the energy range 0.1-10 MeV. This work has been done in the frame of the 5th Frame Work Programme of the European Community 1998-2002.
The viability of ADVANTG deterministic method for synthetic radiography generation
NASA Astrophysics Data System (ADS)
Bingham, Andrew; Lee, Hyoung K.
2018-07-01
Fast simulation techniques to generate synthetic radiographic images of high resolution are helpful when new radiation imaging systems are designed. However, the standard stochastic approach requires lengthy run time with poorer statistics at higher resolution. The investigation of the viability of a deterministic approach to synthetic radiography image generation was explored. The aim was to analyze a computational time decrease over the stochastic method. ADVANTG was compared to MCNP in multiple scenarios including a small radiography system prototype, to simulate high resolution radiography images. By using ADVANTG deterministic code to simulate radiography images the computational time was found to decrease 10 to 13 times compared to the MCNP stochastic approach while retaining image quality.
NASA Astrophysics Data System (ADS)
Tiyapun, K.; Chimtin, M.; Munsorn, S.; Somchit, S.
2015-05-01
The objective of this work is to demonstrate the method for validating the predication of the calculation methods for neutron flux distribution in the irradiation tubes of TRIGA research reactor (TRR-1/M1) using the MCNP computer code model. The reaction rate using in the experiment includes 27Al(n, α)24Na and 197Au(n, γ)198Au reactions. Aluminium (99.9 wt%) and gold (0.1 wt%) foils and the gold foils covered with cadmium were irradiated in 9 locations in the core referred to as CT, C8, C12, F3, F12, F22, F29, G5, and G33. The experimental results were compared to the calculations performed using MCNP which consisted of the detailed geometrical model of the reactor core. The results from the experimental and calculated normalized reaction rates in the reactor core are in good agreement for both reactions showing that the material and geometrical properties of the reactor core are modelled very well. The results indicated that the difference between the experimental measurements and the calculation of the reactor core using the MCNP geometrical model was below 10%. In conclusion the MCNP computational model which was used to calculate the neutron flux and reaction rate distribution in the reactor core can be used for others reactor core parameters including neutron spectra calculation, dose rate calculation, power peaking factors calculation and optimization of research reactor utilization in the future with the confidence in the accuracy and reliability of the calculation.
Benchmark of neutron production cross sections with Monte Carlo codes
NASA Astrophysics Data System (ADS)
Tsai, Pi-En; Lai, Bo-Lun; Heilbronn, Lawrence H.; Sheu, Rong-Jiun
2018-02-01
Aiming to provide critical information in the fields of heavy ion therapy, radiation shielding in space, and facility design for heavy-ion research accelerators, the physics models in three Monte Carlo simulation codes - PHITS, FLUKA, and MCNP6, were systematically benchmarked with comparisons to fifteen sets of experimental data for neutron production cross sections, which include various combinations of 12C, 20Ne, 40Ar, 84Kr and 132Xe projectiles and natLi, natC, natAl, natCu, and natPb target nuclides at incident energies between 135 MeV/nucleon and 600 MeV/nucleon. For neutron energies above 60% of the specific projectile energy per nucleon, the LAQGMS03.03 in MCNP6, the JQMD/JQMD-2.0 in PHITS, and the RQMD-2.4 in FLUKA all show a better agreement with data in heavy-projectile systems than with light-projectile systems, suggesting that the collective properties of projectile nuclei and nucleon interactions in the nucleus should be considered for light projectiles. For intermediate-energy neutrons whose energies are below the 60% projectile energy per nucleon and above 20 MeV, FLUKA is likely to overestimate the secondary neutron production, while MCNP6 tends towards underestimation. PHITS with JQMD shows a mild tendency for underestimation, but the JQMD-2.0 model with a modified physics description for central collisions generally improves the agreement between data and calculations. For low-energy neutrons (below 20 MeV), which are dominated by the evaporation mechanism, PHITS (which uses GEM linked with JQMD and JQMD-2.0) and FLUKA both tend to overestimate the production cross section, whereas MCNP6 tends to underestimate more systems than to overestimate. For total neutron production cross sections, the trends of the benchmark results over the entire energy range are similar to the trends seen in the dominate energy region. Also, the comparison of GEM coupled with either JQMD or JQMD-2.0 in the PHITS code indicates that the model used to describe the first stage of a nucleus-nucleus collision also affects the low-energy neutron production. Thus, in this case, a proper combination of two physics models is desired to reproduce the measured results. In addition, code users should be aware that certain models consistently produce secondary neutrons within a constant fraction of another model in certain energy regions, which might be correlated to different physics treatments in different models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haghighat, A.; Sjoden, G.E.; Wagner, J.C.
In the past 10 yr, the Penn State Transport Theory Group (PSTTG) has concentrated its efforts on developing accurate and efficient particle transport codes to address increasing needs for efficient and accurate simulation of nuclear systems. The PSTTG's efforts have primarily focused on shielding applications that are generally treated using multigroup, multidimensional, discrete ordinates (S{sub n}) deterministic and/or statistical Monte Carlo methods. The difficulty with the existing public codes is that they require significant (impractical) computation time for simulation of complex three-dimensional (3-D) problems. For the S{sub n} codes, the large memory requirements are handled through the use of scratchmore » files (i.e., read-from and write-to-disk) that significantly increases the necessary execution time. Further, the lack of flexible features and/or utilities for preparing input and processing output makes these codes difficult to use. The Monte Carlo method becomes impractical because variance reduction (VR) methods have to be used, and normally determination of the necessary parameters for the VR methods is very difficult and time consuming for a complex 3-D problem. For the deterministic method, the authors have developed the 3-D parallel PENTRAN (Parallel Environment Neutral-particle TRANsport) code system that, in addition to a parallel 3-D S{sub n} solver, includes pre- and postprocessing utilities. PENTRAN provides for full phase-space decomposition, memory partitioning, and parallel input/output to provide the capability of solving large problems in a relatively short time. Besides having a modular parallel structure, PENTRAN has several unique new formulations and features that are necessary for achieving high parallel performance. For the Monte Carlo method, the major difficulty currently facing most users is the selection of an effective VR method and its associated parameters. For complex problems, generally, this process is very time consuming and may be complicated due to the possibility of biasing the results. In an attempt to eliminate this problem, the authors have developed the A{sup 3}MCNP (automated adjoint accelerated MCNP) code that automatically prepares parameters for source and transport biasing within a weight-window VR approach based on the S{sub n} adjoint function. A{sup 3}MCNP prepares the necessary input files for performing multigroup, 3-D adjoint S{sub n} calculations using TORT.« less
NASA Astrophysics Data System (ADS)
Mariani, A.; Passard, C.; Jallu, F.; Toubon, H.
2003-11-01
The design of a specific nuclear assay system for a dedicated application begins with a phase of development, which relies on information from the literature or on knowledge resulting from experience, and on specific experimental verifications. The latter ones may require experimental devices which can be restricting in terms of deadline, cost and safety. One way generally chosen to bypass these difficulties is to use simulation codes to study particular aspects. This paper deals with the potentialities offered by the simulation in the case of a passive-active neutron (PAN) assay system for alpha low level waste characterization; this system has been carried out at the Nuclear Measurements Development Laboratory of the French Atomic Energy Commission. Due to the high number of parameters to be taken into account for its development, this is a particularly sophisticated example. Since the PAN assay system, called PROMETHEE (prompt epithermal and thermal interrogation experiment), must have a detection efficiency of more than 20% and preserve a high level of modularity for various applications, an improved version has been studied using the MCNP4 (Monte Carlo N-Particle) transport code. Parameters such as the dimensions of the assay system, of the cavity and of the detection blocks, and the thicknesses of the nuclear materials of neutronic interest have been optimised. Therefore, the number of necessary experiments was reduced.
Neutronics Investigations for the Lower Part of a Westinghouse SVEA-96+ Assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, M.F.; Luethi, A.; Seiler, R.
2002-05-15
Accurate critical experiments have been performed for the validation of total fission (F{sub tot}) and {sup 238}U-capture (C{sub 8}) reaction rate distributions obtained with CASMO-4, HELIOS, BOXER, and MCNP4B for the lower axial region of a real Westinghouse SVEA-96+ fuel assembly. The assembly comprised fresh fuel with an average {sup 235}U enrichment of 4.02 wt%, a maximum enrichment of 4.74 wt%, 14 burnable-absorber fuel pins, and full-density water moderation. The experimental configuration investigated was core 1A of the LWR-PROTEUS Phase I project, where 61 different fuel pins, representing {approx}64% of the assembly, were gamma-scanned individually. Calculated (C) and measured (E)more » values have been compared in terms of C/E distributions. For F{sub tot}, the standard deviations are 1.2% for HELIOS, 0.9% for CASMO-4, 0.8% for MCNP4B, and 1.7% for BOXER. Standard deviations of 1.1% for HELIOS, CASMO-4, and MCNP4B and 1.2% for BOXER were obtained in the case of C{sub 8}. Despite the high degree of accuracy observed on the average, it was found that the five burnable-absorber fuel pins investigated showed a noticeable underprediction of F{sub tot}, quite systematically, for the deterministic codes evaluated (average C/E for the burnable-absorber fuel pins in the range 0.974 to 0.988, depending on the code)« less
The X6XS. 0 cross section library for MCNP-4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruvost, N.L.; Seamon, R.E.; Rombaugh, C.T.
1991-06-01
This report documents the work done by X-6, HSE-6, and CTR Technical Services to produce a comprehensive working cross-section library for MCNP-4 suitable for SUN workstations and similar environments. The resulting library consists of a total of 436 files (one file for each ZAID). The library is 152 Megabytes in Type 1 format and 32 Megabytes in Type 2 format. Type 2 can be used when porting the library from one computer to another of the same make. Otherwise, Type 1 must be used to ensure portability between different computer systems. Instructions for installing the library and adding ZAIDs tomore » it are included here. Also included is a description of the steps necessary to install and test version 4 of MCNP. To improve readability of this report, certain commands and filenames are given in uppercase letters. The actual command or filename on the SUN workstation, however, must be specified in lowercase letters. Any questions regarding the data contained in the library should be directed to X-6 and any questions regarding the installation of the library and the testing that was performed should be directed to HSE-6. 9 refs., 7 tabs.« less
Evaluation of the DRAGON code for VHTR design analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taiwo, T. A.; Kim, T. K.; Nuclear Engineering Division
2006-01-12
This letter report summarizes three activities that were undertaken in FY 2005 to gather information on the DRAGON code and to perform limited evaluations of the code performance when used in the analysis of the Very High Temperature Reactor (VHTR) designs. These activities include: (1) Use of the code to model the fuel elements of the helium-cooled and liquid-salt-cooled VHTR designs. Results were compared to those from another deterministic lattice code (WIMS8) and a Monte Carlo code (MCNP). (2) The preliminary assessment of the nuclear data library currently used with the code and libraries that have been provided by themore » IAEA WIMS-D4 Library Update Project (WLUP). (3) DRAGON workshop held to discuss the code capabilities for modeling the VHTR.« less
On the development of radiation tolerant surveillance camera from consumer-grade components
NASA Astrophysics Data System (ADS)
Klemen, Ambrožič; Luka, Snoj; Lars, Öhlin; Jan, Gunnarsson; Niklas, Barringer
2017-09-01
In this paper an overview on the process of designing a radiation tolerant surveillance camera from consumer grade components and commercially available particle shielding materials is given. This involves utilization of Monte-Carlo particle transport code MCNP6 and ENDF/B-VII.0 nuclear data libraries, as well as testing the physical electrical systems against γ radiation, utilizing JSI TRIGA mk. II fuel elements as a γ-ray sources. A new, aluminum, 20 cm × 20 cm × 30 cm irradiation facility with electrical power and signal wire guide-tube to the reactor platform, was designed and constructed and used for irradiation of large electronic and optical components assemblies with activated fuel elements. Electronic components to be used in the camera were tested against γ-radiation in an independent manner, to determine their radiation tolerance. Several camera designs were proposed and simulated using MCNP, to determine incident particle and dose attenuation factors. Data obtained from the measurements and MCNP simulations will be used to finalize the design of 3 surveillance camera models, with different radiation tolerances.
Sheu, R J; Sheu, R D; Jiang, S H; Kao, C H
2005-01-01
Full-scale Monte Carlo simulations of the cyclotron room of the Buddhist Tzu Chi General Hospital were carried out to improve the original inadequate maze design. Variance reduction techniques are indispensable in this study to facilitate the simulations for testing a variety of configurations of shielding modification. The TORT/MCNP manual coupling approach based on the Consistent Adjoint Driven Importance Sampling (CADIS) methodology has been used throughout this study. The CADIS utilises the source and transport biasing in a consistent manner. With this method, the computational efficiency was increased significantly by more than two orders of magnitude and the statistical convergence was also improved compared to the unbiased Monte Carlo run. This paper describes the shielding problem encountered, the procedure for coupling the TORT and MCNP codes to accelerate the calculations and the calculation results for the original and improved shielding designs. In order to verify the calculation results and seek additional accelerations, sensitivity studies on the space-dependent and energy-dependent parameters were also conducted.
Gamma-ray dose from an overhead plume
McNaughton, Michael W.; Gillis, Jessica McDonnel; Ruedig, Elizabeth; ...
2017-05-01
Standard plume models can underestimate the gamma-ray dose when most of the radioactive material is above the heads of the receptors. Typically, a model is used to calculate the air concentration at the height of the receptor, and the dose is calculated by multiplying the air concentration by a concentration-to-dose conversion factor. Models indicate that if the plume is emitted from a stack during stable atmospheric conditions, the lower edges of the plume may not reach the ground, in which case both the ground-level concentration and the dose are usually reported as zero. However, in such cases, the dose frommore » overhead gamma-emitting radionuclides may be substantial. Such underestimates could impact decision making in emergency situations. The Monte Carlo N-Particle code, MCNP, was used to calculate the overhead shine dose and to compare with standard plume models. At long distances and during unstable atmospheric conditions, the MCNP results agree with the standard models. As a result, at short distances, where many models calculate zero, the true dose (as modeled by MCNP) can be estimated with simple equations.« less
Path Toward a Unified Geometry for Radiation Transport
NASA Astrophysics Data System (ADS)
Lee, Kerry
The Direct Accelerated Geometry for Radiation Analysis and Design (DAGRAD) element of the RadWorks Project under Advanced Exploration Systems (AES) within the Space Technology Mission Directorate (STMD) of NASA will enable new designs and concepts of operation for radiation risk assessment, mitigation and protection. This element is designed to produce a solution that will allow NASA to calculate the transport of space radiation through complex CAD models using the state-of-the-art analytic and Monte Carlo radiation transport codes. Due to the inherent hazard of astronaut and spacecraft exposure to ionizing radiation in low-Earth orbit (LEO) or in deep space, risk analyses must be performed for all crew vehicles and habitats. Incorporating these analyses into the design process can minimize the mass needed solely for radiation protection. Transport of the radiation fields as they pass through shielding and body materials can be simulated using Monte Carlo techniques or described by the Boltzmann equation, which is obtained by balancing changes in particle fluxes as they traverse a small volume of material with the gains and losses caused by atomic and nuclear collisions. Deterministic codes that solve the Boltzmann transport equation, such as HZETRN (high charge and energy transport code developed by NASA LaRC), are generally computationally faster than Monte Carlo codes such as FLUKA, GEANT4, MCNP(X) or PHITS; however, they are currently limited to transport in one dimension, which poorly represents the secondary light ion and neutron radiation fields. NASA currently uses HZETRN space radiation transport software, both because it is computationally efficient and because proven methods have been developed for using this software to analyze complex geometries. Although Monte Carlo codes describe the relevant physics in a fully three-dimensional manner, their computational costs have thus far prevented their widespread use for analysis of complex CAD models, leading to the creation and maintenance of toolkit specific simplistic geometry models. The work presented here builds on the Direct Accelerated Geometry Monte Carlo (DAGMC) toolkit developed for use with the Monte Carlo N-Particle (MCNP) transport code. The work-flow for doing radiation transport on CAD models using MCNP and FLUKA has been demonstrated and the results of analyses on realistic spacecraft/habitats will be presented. Future work is planned that will further automate this process and enable the use of multiple radiation transport codes on identical geometry models imported from CAD. This effort will enhance the modeling tools used by NASA to accurately evaluate the astronaut space radiation risk and accurately determine the protection provided by as-designed exploration mission vehicles and habitats.
Monte Carlo N-particle simulation of neutron-based sterilisation of anthrax contamination
Liu, B; Xu, J; Liu, T; Ouyang, X
2012-01-01
Objective To simulate the neutron-based sterilisation of anthrax contamination by Monte Carlo N-particle (MCNP) 4C code. Methods Neutrons are elementary particles that have no charge. They are 20 times more effective than electrons or γ-rays in killing anthrax spores on surfaces and inside closed containers. Neutrons emitted from a 252Cf neutron source are in the 100 keV to 2 MeV energy range. A 2.5 MeV D–D neutron generator can create neutrons at up to 1013 n s−1 with current technology. All these enable an effective and low-cost method of killing anthrax spores. Results There is no effect on neutron energy deposition on the anthrax sample when using a reflector that is thicker than its saturation thickness. Among all three reflecting materials tested in the MCNP simulation, paraffin is the best because it has the thinnest saturation thickness and is easy to machine. The MCNP radiation dose and fluence simulation calculation also showed that the MCNP-simulated neutron fluence that is needed to kill the anthrax spores agrees with previous analytical estimations very well. Conclusion The MCNP simulation indicates that a 10 min neutron irradiation from a 0.5 g 252Cf neutron source or a 1 min neutron irradiation from a 2.5 MeV D–D neutron generator may kill all anthrax spores in a sample. This is a promising result because a 2.5 MeV D–D neutron generator output >1013 n s−1 should be attainable in the near future. This indicates that we could use a D–D neutron generator to sterilise anthrax contamination within several seconds. PMID:22573293
Development and Validation of a Monte Carlo Simulation Tool for Multi-Pinhole SPECT
Mok, Greta S. P.; Du, Yong; Wang, Yuchuan; Frey, Eric C.; Tsui, Benjamin M. W.
2011-01-01
Purpose In this work, we developed and validated a Monte Carlo simulation (MCS) tool for investigation and evaluation of multi-pinhole (MPH) SPECT imaging. Procedures This tool was based on a combination of the SimSET and MCNP codes. Photon attenuation and scatter in the object, as well as penetration and scatter through the collimator detector, are modeled in this tool. It allows accurate and efficient simulation of MPH SPECT with focused pinhole apertures and user-specified photon energy, aperture material, and imaging geometry. The MCS method was validated by comparing the point response function (PRF), detection efficiency (DE), and image profiles obtained from point sources and phantom experiments. A prototype single-pinhole collimator and focused four- and five-pinhole collimators fitted on a small animal imager were used for the experimental validations. We have also compared computational speed among various simulation tools for MPH SPECT, including SimSET-MCNP, MCNP, SimSET-GATE, and GATE for simulating projections of a hot sphere phantom. Results We found good agreement between the MCS and experimental results for PRF, DE, and image profiles, indicating the validity of the simulation method. The relative computational speeds for SimSET-MCNP, MCNP, SimSET-GATE, and GATE are 1: 2.73: 3.54: 7.34, respectively, for 120-view simulations. We also demonstrated the application of this MCS tool in small animal imaging by generating a set of low-noise MPH projection data of a 3D digital mouse whole body phantom. Conclusions The new method is useful for studying MPH collimator designs, data acquisition protocols, image reconstructions, and compensation techniques. It also has great potential to be applied for modeling the collimator-detector response with penetration and scatter effects for MPH in the quantitative reconstruction method. PMID:19779896
Monte Carlo N-particle simulation of neutron-based sterilisation of anthrax contamination.
Liu, B; Xu, J; Liu, T; Ouyang, X
2012-10-01
To simulate the neutron-based sterilisation of anthrax contamination by Monte Carlo N-particle (MCNP) 4C code. Neutrons are elementary particles that have no charge. They are 20 times more effective than electrons or γ-rays in killing anthrax spores on surfaces and inside closed containers. Neutrons emitted from a (252)Cf neutron source are in the 100 keV to 2 MeV energy range. A 2.5 MeV D-D neutron generator can create neutrons at up to 10(13) n s(-1) with current technology. All these enable an effective and low-cost method of killing anthrax spores. There is no effect on neutron energy deposition on the anthrax sample when using a reflector that is thicker than its saturation thickness. Among all three reflecting materials tested in the MCNP simulation, paraffin is the best because it has the thinnest saturation thickness and is easy to machine. The MCNP radiation dose and fluence simulation calculation also showed that the MCNP-simulated neutron fluence that is needed to kill the anthrax spores agrees with previous analytical estimations very well. The MCNP simulation indicates that a 10 min neutron irradiation from a 0.5 g (252)Cf neutron source or a 1 min neutron irradiation from a 2.5 MeV D-D neutron generator may kill all anthrax spores in a sample. This is a promising result because a 2.5 MeV D-D neutron generator output >10(13) n s(-1) should be attainable in the near future. This indicates that we could use a D-D neutron generator to sterilise anthrax contamination within several seconds.
Neutron streaming studies along JET shielding penetrations
NASA Astrophysics Data System (ADS)
Stamatelatos, Ion E.; Vasilopoulou, Theodora; Batistoni, Paola; Obryk, Barbara; Popovichev, Sergey; Naish, Jonathan
2017-09-01
Neutronic benchmark experiments are carried out at JET aiming to assess the neutronic codes and data used in ITER analysis. Among other activities, experiments are performed in order to validate neutron streaming simulations along long penetrations in the JET shielding configuration. In this work, neutron streaming calculations along the JET personnel entrance maze are presented. Simulations were performed using the MCNP code for Deuterium-Deuterium and Deuterium- Tritium plasma sources. The results of the simulations were compared against experimental data obtained using thermoluminescence detectors and activation foils.
Parameter dependence of the MCNP electron transport in determining dose distributions.
Reynaert, N; Palmans, H; Thierens, H; Jeraj, R
2002-10-01
In this paper, a detailed study of the electron transport in MCNP is performed, separating the effects of the energy binning technique on the energy loss rate, the scattering angles, and the sub-step length as a function of energy. As this problem is already well known, in this paper we focus on the explanation as to why the default mode of MCNP can lead to large deviations. The resolution dependence was investigated as well. An error in the MCNP code in the energy binning technique in the default mode (DBCN 18 card = 0) was revealed, more specific in the updating of cross sections when a sub-step is performed corresponding to a high-energy loss. This updating error is not present in the ITS mode (DBCN 18 card = 1) and leads to a systematically lower dose deposition rate in the default mode. The effect is present for all energies studied (0.5-10 MeV) and depends on the geometrical resolution of the scoring regions and the energy grid resolution. The effect of the energy binning technique is of the same order of that of the updating error for energies below 2 MeV, and becomes less important for higher energies. For a 1 MeV point source surrounded by homogeneous water, the deviation of the default MCNP results at short distances attains 9% and remains approximately the same for all energies. This effect could be corrected by removing the completion of an energy step each time an electron changes from an energy bin during a sub-step. Another solution consists of performing all calculations in the ITS mode. Another problem is the resolution dependence, even in the ITS mode. The higher the resolution is chosen (the smaller the scoring regions) the faster the energy is deposited along the electron track. It is proven that this is caused by starting a new energy step when crossing a surface. The resolution effect should be investigated for every specific case when calculating dose distributions around beta sources. The resolution should not be higher than 0.85*(1-EFAC)*CSDA, where EFAC is the energy loss per energy step and CSDA a continuous slowing down approximation range. This effect could as well be removed by determining the cross sections for energy loss and multiple scattering at the average energy of an energy step and by sampling the cross sections for each sub-step. Overall, we conclude that MCNP cannot be used without a caution due to possible errors in the electron transport. When care is taken, it is possible to obtain correct results that are in agreement with other Monte Carlo codes.
Monte Carlo calculation for the development of a BNCT neutron source (1eV-10KeV) using MCNP code.
El Moussaoui, F; El Bardouni, T; Azahra, M; Kamili, A; Boukhal, H
2008-09-01
Different materials have been studied in order to produce the epithermal neutron beam between 1eV and 10KeV, which are extensively used to irradiate patients with brain tumors such as GBM. For this purpose, we have studied three different neutrons moderators (H(2)O, D(2)O and BeO) and their combinations, four reflectors (Al(2)O(3), C, Bi, and Pb) and two filters (Cd and Bi). Results of calculation showed that the best obtained assembly configuration corresponds to the combination of the three moderators H(2)O, BeO and D(2)O jointly to Al(2)O(3) reflector and two filter Cd+Bi optimize the spectrum of the epithermal neutron at 72%, and minimize the thermal neutron to 4% and thus it can be used to treat the deep tumor brain. The calculations have been performed by means of the Monte Carlo N (particle code MCNP 5C). Our results strongly encourage further studying of irradiation of the head with epithermal neutron fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eder, D C; Anderson, R W; Bailey, D S
2009-10-05
The generation of neutron/gamma radiation, electromagnetic pulses (EMP), debris and shrapnel at mega-Joule class laser facilities (NIF and LMJ) impacts experiments conducted at these facilities. The complex 3D numerical codes used to assess these impacts range from an established code that required minor modifications (MCNP - calculates neutron and gamma radiation levels in complex geometries), through a code that required significant modifications to treat new phenomena (EMSolve - calculates EMP from electrons escaping from laser targets), to a new code, ALE-AMR, that is being developed through a joint collaboration between LLNL, CEA, and UC (UCSD, UCLA, and LBL) for debrismore » and shrapnel modelling.« less
Treating electron transport in MCNP{sup trademark}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, H.G.
1996-12-31
The transport of electrons and other charged particles is fundamentally different from that of neutrons and photons. A neutron, in aluminum slowing down from 0.5 MeV to 0.0625 MeV will have about 30 collisions; a photon will have fewer than ten. An electron with the same energy loss will undergo 10{sup 5} individual interactions. This great increase in computational complexity makes a single- collision Monte Carlo approach to electron transport unfeasible for many situations of practical interest. Considerable theoretical work has been done to develop a variety of analytic and semi-analytic multiple-scattering theories for the transport of charged particles. Themore » theories used in the algorithms in MCNP are the Goudsmit-Saunderson theory for angular deflections, the Landau an theory of energy-loss fluctuations, and the Blunck-Leisegang enhancements of the Landau theory. In order to follow an electron through a significant energy loss, it is necessary to break the electron`s path into many steps. These steps are chosen to be long enough to encompass many collisions (so that multiple-scattering theories are valid) but short enough that the mean energy loss in any one step is small (for the approximations in the multiple-scattering theories). The energy loss and angular deflection of the electron during each step can then be sampled from probability distributions based on the appropriate multiple- scattering theories. This subsumption of the effects of many individual collisions into single steps that are sampled probabilistically constitutes the ``condensed history`` Monte Carlo method. This method is exemplified in the ETRAN series of electron/photon transport codes. The ETRAN codes are also the basis for the Integrated TIGER Series, a system of general-purpose, application-oriented electron/photon transport codes. The electron physics in MCNP is similar to that of the Integrated TIGER Series.« less
Cai, Zhongli; Pignol, Jean-Philippe; Chan, Conrad; Reilly, Raymond M
2010-03-01
Our objective was to compare Monte Carlo N-particle (MCNP) self- and cross-doses from (111)In to the nucleus of breast cancer cells with doses calculated by reported analytic methods (Goddu et al. and Farragi et al.). A further objective was to determine whether the MCNP-predicted surviving fraction (SF) of breast cancer cells exposed in vitro to (111)In-labeled diethylenetriaminepentaacetic acid human epidermal growth factor ((111)In-DTPA-hEGF) could accurately predict the experimentally determined values. MCNP was used to simulate the transport of electrons emitted by (111)In from the cell surface, cytoplasm, or nucleus. The doses to the nucleus per decay (S values) were calculated for single cells, closely packed monolayer cells, or cell clusters. The cell and nucleus dimensions of 6 breast cancer cell lines were measured, and cell line-specific S values were calculated. For self-doses, MCNP S values of nucleus to nucleus agreed very well with those of Goddu et al. (ratio of S values using analytic methods vs. MCNP = 0.962-0.995) and Faraggi et al. (ratio = 1.011-1.024). MCNP S values of cytoplasm and cell surface to nucleus compared fairly well with the reported values (ratio = 0.662-1.534 for Goddu et al.; 0.944-1.129 for Faraggi et al.). For cross doses, the S values to the nucleus were independent of (111)In subcellular distribution but increased with cluster size. S values for monolayer cells were significantly different from those of single cells and cell clusters. The MCNP-predicted SF for monolayer MDA-MB-468, MDA-MB-231, and MCF-7 cells agreed with the experimental data (relative error of 3.1%, -1.0%, and 1.7%). The single-cell and cell cluster models were less accurate in predicting the SF. For MDA-MB-468 cells, relative error was 8.1% using the single-cell model and -54% to -67% using the cell cluster model. Individual cell-line dimensions had large effects on S values and were needed to estimate doses and SF accurately. MCNP simulation compared well with the reported analytic methods in the calculation of subcellular S values for single cells and cell clusters. Application of a monolayer model was most accurate in predicting the SF of breast cancer cells exposed in vitro to (111)In-DTPA-hEGF.
SUMCOR: Cascade summing correction for volumetric sources applying MCNP6.
Dias, M S; Semmler, R; Moreira, D S; de Menezes, M O; Barros, L F; Ribeiro, R V; Koskinas, M F
2018-04-01
The main features of code SUMCOR developed for cascade summing correction for volumetric sources are described. MCNP6 is used to track histories starting from individual points inside the volumetric source, for each set of cascade transitions from the radionuclide. Total and FEP efficiencies are calculated for all gamma-rays and X-rays involved in the cascade. Cascade summing correction is based on the matrix formalism developed by Semkow et al. (1990). Results are presented applying the experimental data sent to the participants of two intercomparisons organized by the ICRM-GSWG and coordinated by Dr. Marie-Cristine Lépy from the Laboratoire National Henri Becquerel (LNE-LNHB), CEA, in 2008 and 2010, respectively and compared to the other participants in the intercomparisons. Copyright © 2017 Elsevier Ltd. All rights reserved.
An analysis of MCNP cross-sections and tally methods for low-energy photon emitters.
Demarco, John J; Wallace, Robert E; Boedeker, Kirsten
2002-04-21
Monte Carlo calculations are frequently used to analyse a variety of radiological science applications using low-energy (10-1000 keV) photon sources. This study seeks to create a low-energy benchmark for the MCNP Monte Carlo code by simulating the absolute dose rate in water and the air-kerma rate for monoenergetic point sources with energies between 10 keV and 1 MeV. The analysis compares four cross-section datasets as well as the tally method for collision kerma versus absorbed dose. The total photon attenuation coefficient cross-section for low atomic number elements has changed significantly as cross-section data have changed between 1967 and 1989. Differences of up to 10% are observed in the photoelectric cross-section for water at 30 keV between the standard MCNP cross-section dataset (DLC-200) and the most recent XCOM/NIST tabulation. At 30 keV, the absolute dose rate in water at 1.0 cm from the source increases by 7.8% after replacing the DLC-200 photoelectric cross-sections for water with those from the XCOM/NIST tabulation. The differences in the absolute dose rate are analysed when calculated with either the MCNP absorbed dose tally or the collision kerma tally. Significant differences between the collision kerma tally and the absorbed dose tally can occur when using the DLC-200 attenuation coefficients in conjunction with a modern tabulation of mass energy-absorption coefficients.
Investigation of Natural and Man-Made Radiation Effects on Crews on Long Duration Space Missions
NASA Technical Reports Server (NTRS)
Bolch, Wesley E.; Parlos, Alexander
1996-01-01
Over the past several years, NASA has studied a variety of mission scenarios designed to establish a permanent human presence on the surface of Mars. Nuclear electric propulsion (NEP) is one of the possible elements in this program. During the initial stages of vehicle design work, careful consideration must be given to not only the shielding requirements of natural space radiation, but to the shielding and configuration requirements of the on-board reactors. In this work, the radiation transport code MCNP has been used to make initial estimates of crew exposures to reactor radiation fields for a specific manned NEP vehicle design. In this design, three 25 MW(sub th), scaled SP-100-class reactors are shielded by three identical shields. Each shield has layers of beryllium, tungsten, and lithium hydride between the reactor and the crew compartment. Separate calculations are made of both the exiting neutron and gamma fluxes from the reactors during beginning-of-life, full-power operation. This data is then used as the source terms for particle transport in MCNP. The total gamma and neutron fluxes exiting the reactor shields are recorded and separate transport calculations are then performed for a 10 g/sq cm crew compartment aluminum thickness. Estimates of crew exposures have been assessed for various thicknesses of the shield tungsten and lithium hydride layers. A minimal tungsten thickness of 20 cm is required to shield the reactor photons below the 0.05 Sv/y man-made radiation limit. In addition to a 20-cm thick tungsten layer, a 40-cm thick lithium hydride layer is required to shield the reactor neutrons below the annual limit. If the tungsten layer is 30-cm thick, the lithium hydride layer should be at least 30-cm thick. These estimates do not take into account the photons generated by neutron interactions inside the shield because the MCNP neutron cross sections did not allow reliable estimates of photon production in these materials. These results, along with natural space radiation shielding estimates calculated by NASA Langley Research Center, have been used to provide preliminary input data into a new Macintosh-based software tool. A skeletal version of this tool being developed will allow rapid radiation exposure and risk analyses to be performed on a variety of Lunar and Mars missions utilizing nuclear-powered vehicles.
Los Alamos radiation transport code system on desktop computing platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briesmeister, J.F.; Brinkley, F.W.; Clark, B.A.
The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. These codes were originally developed many years ago and have undergone continual improvement. With a large initial effort and continued vigilance, the codes are easily portable from one type of hardware to another. The performance of scientific work-stations (SWS) has evolved to the point that such platforms can be used routinely to perform sophisticated radiation transport calculations. As the personal computer (PC) performance approaches that of the SWS, the hardware options for desk-top radiation transport calculations expands considerably. Themore » current status of the radiation transport codes within the LARTCS is described: MCNP, SABRINA, LAHET, ONEDANT, TWODANT, TWOHEX, and ONELD. Specifically, the authors discuss hardware systems on which the codes run and present code performance comparisons for various machines.« less
Measurement and simulation of thermal neutron flux distribution in the RTP core
NASA Astrophysics Data System (ADS)
Rabir, Mohamad Hairie B.; Jalal Bayar, Abi Muttaqin B.; Hamzah, Na'im Syauqi B.; Mustafa, Muhammad Khairul Ariff B.; Karim, Julia Bt. Abdul; Zin, Muhammad Rawi B. Mohamed; Ismail, Yahya B.; Hussain, Mohd Huzair B.; Mat Husin, Mat Zin B.; Dan, Roslan B. Md; Ismail, Ahmad Razali B.; Husain, Nurfazila Bt.; Jalil Khan, Zareen Khan B. Abdul; Yakin, Shaiful Rizaide B. Mohd; Saad, Mohamad Fauzi B.; Masood, Zarina Bt.
2018-01-01
The in-core thermal neutron flux distribution was determined using measurement and simulation methods for the Malaysian’s PUSPATI TRIGA Reactor (RTP). In this work, online thermal neutron flux measurement using Self Powered Neutron Detector (SPND) has been performed to verify and validate the computational methods for neutron flux calculation in RTP calculations. The experimental results were used as a validation to the calculations performed with Monte Carlo code MCNP. The detail in-core neutron flux distributions were estimated using MCNP mesh tally method. The neutron flux mapping obtained revealed the heterogeneous configuration of the core. Based on the measurement and simulation, the thermal flux profile peaked at the centre of the core and gradually decreased towards the outer side of the core. The results show a good agreement (relatively) between calculation and measurement where both show the same radial thermal flux profile inside the core: MCNP model over estimation with maximum discrepancy around 20% higher compared to SPND measurement. As our model also predicts well the neutron flux distribution in the core it can be used for the characterization of the full core, that is neutron flux and spectra calculation, dose rate calculations, reaction rate calculations, etc.
Path Toward a Unifid Geometry for Radiation Transport
NASA Technical Reports Server (NTRS)
Lee, Kerry; Barzilla, Janet; Davis, Andrew; Zachmann
2014-01-01
The Direct Accelerated Geometry for Radiation Analysis and Design (DAGRAD) element of the RadWorks Project under Advanced Exploration Systems (AES) within the Space Technology Mission Directorate (STMD) of NASA will enable new designs and concepts of operation for radiation risk assessment, mitigation and protection. This element is designed to produce a solution that will allow NASA to calculate the transport of space radiation through complex computer-aided design (CAD) models using the state-of-the-art analytic and Monte Carlo radiation transport codes. Due to the inherent hazard of astronaut and spacecraft exposure to ionizing radiation in low-Earth orbit (LEO) or in deep space, risk analyses must be performed for all crew vehicles and habitats. Incorporating these analyses into the design process can minimize the mass needed solely for radiation protection. Transport of the radiation fields as they pass through shielding and body materials can be simulated using Monte Carlo techniques or described by the Boltzmann equation, which is obtained by balancing changes in particle fluxes as they traverse a small volume of material with the gains and losses caused by atomic and nuclear collisions. Deterministic codes that solve the Boltzmann transport equation, such as HZETRN [high charge and energy transport code developed by NASA Langley Research Center (LaRC)], are generally computationally faster than Monte Carlo codes such as FLUKA, GEANT4, MCNP(X) or PHITS; however, they are currently limited to transport in one dimension, which poorly represents the secondary light ion and neutron radiation fields. NASA currently uses HZETRN space radiation transport software, both because it is computationally efficient and because proven methods have been developed for using this software to analyze complex geometries. Although Monte Carlo codes describe the relevant physics in a fully three-dimensional manner, their computational costs have thus far prevented their widespread use for analysis of complex CAD models, leading to the creation and maintenance of toolkit-specific simplistic geometry models. The work presented here builds on the Direct Accelerated Geometry Monte Carlo (DAGMC) toolkit developed for use with the Monte Carlo N-Particle (MCNP) transport code. The workflow for achieving radiation transport on CAD models using MCNP and FLUKA has been demonstrated and the results of analyses on realistic spacecraft/habitats will be presented. Future work is planned that will further automate this process and enable the use of multiple radiation transport codes on identical geometry models imported from CAD. This effort will enhance the modeling tools used by NASA to accurately evaluate the astronaut space radiation risk and accurately determine the protection provided by as-designed exploration mission vehicles and habitats
Background-Source Cosmic-Photon Elevation Scaling and Cosmic-Neutron/Photon Date Scaling in MCNP6
NASA Astrophysics Data System (ADS)
Tutt, J.; Anderson, C.; McKinney, G.
Cosmic neutron and photon fluxes are known to scale exponentially with elevation. Consequently, cosmic neutron elevation scaling was implemented for use with the background-source option shortly after its introduction into MCNP6, whereby the neutron flux weight factor was adjusted by the elevation scaling factor when the user-specified elevation differed from the selected background.dat grid-point elevation. At the same time, an elevation scaling factor was suggested for the cosmic photon flux, however, cosmic photon elevation scaling is complicated by the fact that the photon background consists of two components: cosmic and terrestrial. Previous versions of the background.dat file did not provide any way to separate these components. With Rel. 4 of this file in 2015, two new columns were added that provide the energy grid and differential cosmic photon flux separately from the total photon flux. Here we show that the cosmic photon flux component can now be scaled independently and combined with the terrestrial component to form the total photon flux at a user-specified elevation in MCNP6. Cosmic background fluxes also scale with the solar cycle due to solar modulation. This modulation has been shown to be nearly sinusoidal over time, with an inverse effect - increased modulation leads to a decrease in cosmic fluxes. This effect was initially included with the cosmic source option in MCNP6 and has now been extended for use with the background source option when: (1) the date is specified in the background.dat file, and (2) when the user specifies a date on the source definition card. A description of the cosmic-neutron/photon date scaling feature will be presented along with scaling results for past and future date extrapolations.
Testing of ENDF71x: A new ACE-formatted neutron data library based on ENDF/B-VII.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardiner, S. J.; Conlin, J. L.; Kiedrowski, B. C.
The ENDF71x library [1] is the most thoroughly tested set of ACE-format data tables ever released by the Nuclear Data Team at Los Alamos National Laboratory (LANL). It is based on ENDF/B-VII. 1, the most recently released set of evaluated nuclear data files produced by the US Cross Section Evaluation Working Group (CSEWG). A variety of techniques were used to test and verify the ENDF7 1x library before its public release. These include the use of automated checking codes written by members of the Nuclear Data Team, visual inspections of key neutron data, MCNP6 calculations designed to test data formore » every included combination of isotope and temperature as comprehensively as possible, and direct comparisons between ENDF71x and previous ACE library releases. Visual inspection of some of the most important neutron data revealed energy balance problems and unphysical discontinuities in the cross sections for some nuclides. Doppler broadening of the total cross sections with increasing temperature was found to be qualitatively correct. Test calculations performed using MCNP prompted two modifications to the MCNP6 source code and also exposed bad secondary neutron yields for {sup 231,233}Pa that are present in both ENDF/B-VII.1 and ENDF/B-VII.0. A comparison of ENDF71x with its predecessor ACE library, ENDF70, showed that dramatic changes have been made in the neutron cross section data for a number of isotopes between ENDF/B-VII.0 and ENDF/B-VII.1. Based on the results of these verification tests and the validation tests performed by Kahler, et al. [2], the ENDF71x library is recommended for use in all Monte Carlo applications. (authors)« less
Khajepour, Abolhasan; Rahmani, Faezeh
2017-01-01
In this study, a 90 Sr radioisotope thermoelectric generator (RTG) with power of milliWatt was designed to operate in the determined temperature (300-312K). For this purpose, the combination of analytical and Monte Carlo methods with ANSYS and COMSOL software as well as the MCNP code was used. This designed RTG contains 90 Sr as a radioisotope heat source (RHS) and 127 coupled thermoelectric modules (TEMs) based on bismuth telluride. Kapton (2.45mm in thickness) and Cryotherm sheets (0.78mm in thickness) were selected as the thermal insulators of the RHS, as well as a stainless steel container was used as a generator chamber. The initial design of the RHS geometry was performed according to the amount of radioactive material (strontium titanate) as well as the heat transfer calculations and mechanical strength considerations. According to the Monte Carlo simulation performed by the MCNP code, approximately 0.35 kCi of 90 Sr is sufficient to generate heat power in the RHS. To determine the optimal design of the RTG, the distribution of temperature as well as the dissipated heat and input power to the module were calculated in different parts of the generator using the ANSYS software. Output voltage according to temperature distribution on TEM was calculated using COMSOL. Optimization of the dimension of the RHS and heat insulator was performed to adapt the average temperature of the hot plate of TEM to the determined hot temperature value. This designed RTG generates 8mW in power with an efficiency of 1%. This proposed approach of combination method can be used for the precise design of various types of RTGs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Benchmark of Atucha-2 PHWR RELAP5-3D control rod model by Monte Carlo MCNP5 core calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pecchia, M.; D'Auria, F.; Mazzantini, O.
2012-07-01
Atucha-2 is a Siemens-designed PHWR reactor under construction in the Republic of Argentina. Its geometrical complexity and peculiarities require the adoption of advanced Monte Carlo codes for performing realistic neutronic simulations. Therefore core models of Atucha-2 PHWR were developed using MCNP5. In this work a methodology was set up to collect the flux in the hexagonal mesh by which the Atucha-2 core is represented. The scope of this activity is to evaluate the effect of obliquely inserted control rod on neutron flux in order to validate the RELAP5-3D{sup C}/NESTLE three dimensional neutron kinetic coupled thermal-hydraulic model, applied by GRNSPG/UNIPI formore » performing selected transients of Chapter 15 FSAR of Atucha-2. (authors)« less
Feasibility study for wax deposition imaging in oil pipelines by PGNAA technique.
Cheng, Can; Jia, Wenbao; Hei, Daqian; Wei, Zhiyong; Wang, Hongtao
2017-10-01
Wax deposition in pipelines is a crucial problem in the oil industry. A method based on the prompt gamma-ray neutron activation analysis technique was applied to reconstruct the image of wax deposition in oil pipelines. The 2.223MeV hydrogen capture gamma rays were used to reconstruct the wax deposition image. To validate the method, both MCNP simulation and experiments were performed for wax deposited with a maximum thickness of 20cm. The performance of the method was simulated using the MCNP code. The experiment was conducted with a 252 Cf neutron source and a LaBr 3 : Ce detector. A good correspondence between the simulations and the experiments was observed. The results obtained indicate that the present approach is efficient for wax deposition imaging in oil pipelines. Copyright © 2017 Elsevier Ltd. All rights reserved.
Proton Dose Assessment to the Human Eye Using Monte Carlo N-Particle Transport Code (MCNPX)
2006-08-01
current treatments are applied using an infrared diode laser 10 (projecting a spot size of 2-3 mm), used for about 1 minute per exposure. The laser heats...1983. Shultis J, Faw R. An MCNP Primer. Available at: http:// ww2 .mne.ksu.edu/-jks/MCNPprmr.pdf. Accessed 3 January 2006. Stys P, Lopachin R
Ryde, S J; al-Agel, F A; Evans, C J; Hancock, D A
2000-05-01
The use of a hydrogen internal standard to enable the estimation of absolute mass during measurement of total body nitrogen by in vivo neutron activation is an established technique. Central to the technique is a determination of the H prompt gamma ray counts arising from the subject. In practice, interference counts from other sources--e.g., neutron shielding--are included. This study reports use of the Monte Carlo computer code, MCNP-4A, to investigate the interference counts arising from shielding both with and without a phantom containing a urea solution. Over a range of phantom size (depth 5 to 30 cm, width 20 to 40 cm), the counts arising from shielding increased by between 4% and 32% compared with the counts without a phantom. For any given depth, the counts increased approximately linearly with width. For any given width, there was little increase for depths exceeding 15 centimeters. The shielding counts comprised between 15% and 26% of those arising from the urea phantom. These results, although specific to the Swansea apparatus, suggest that extraneous hydrogen counts can be considerable and depend strongly on the subject's size.
Performance of the MTR core with MOX fuel using the MCNP4C2 code.
Shaaban, Ismail; Albarhoum, Mohamad
2016-08-01
The MCNP4C2 code was used to simulate the MTR-22 MW research reactor and perform the neutronic analysis for a new fuel namely: a MOX (U3O8&PuO2) fuel dispersed in an Al matrix for One Neutronic Trap (ONT) and Three Neutronic Traps (TNTs) in its core. Its new characteristics were compared to its original characteristics based on the U3O8-Al fuel. Experimental data for the neutronic parameters including criticality relative to the MTR-22 MW reactor for the original U3O8-Al fuel at nominal power were used to validate the calculated values and were found acceptable. The achieved results seem to confirm that the use of MOX fuel in the MTR-22 MW will not degrade the safe operational conditions of the reactor. In addition, the use of MOX fuel in the MTR-22 MW core leads to reduce the uranium fuel enrichment with (235)U and the amount of loaded (235)U in the core by about 34.84% and 15.21% for the ONT and TNTs cases, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, William R.; Lee, John C.; baxter, Alan
Information and measured data from the intial Fort St. Vrain (FSV) high temperature gas reactor core is used to develop a benchmark configuration to validate computational methods for analysis of a full-core, commercial HTR configuration. Large uncertainties in the geometry and composition data for the FSV fuel and core are identified, including: (1) the relative numbers of fuel particles for the four particle types, (2) the distribution of fuel kernel diameters for the four particle types, (3) the Th:U ratio in the initial FSV core, (4) and the buffer thickness for the fissile and fertile particles. Sensitivity studies were performedmore » to assess each of these uncertainties. A number of methods were developed to assist in these studies, including: (1) the automation of MCNP5 input files for FSV using Python scripts, (2) a simple method to verify isotopic loadings in MCNP5 input files, (3) an automated procedure to conduct a coupled MCNP5-RELAP5 analysis for a full-core FSV configuration with thermal-hydraulic feedback, and (4) a methodology for sampling kernel diameters from arbitrary power law and Gaussian PDFs that preserved fuel loading and packing factor constraints. A reference FSV fuel configuration was developed based on having a single diameter kernel for each of the four particle types, preserving known uranium and thorium loadings and packing factor (58%). Three fuel models were developed, based on representing the fuel as a mixture of kernels with two diameters, four diameters, or a continuous range of diameters. The fuel particles were put into a fuel compact using either a lattice-bsed approach or a stochastic packing methodology from RPI, and simulated with MCNP5. The results of the sensitivity studies indicated that the uncertainties in the relative numbers and sizes of fissile and fertile kernels were not important nor were the distributions of kernel diameters within their diameter ranges. The uncertainty in the Th:U ratio in the intial FSV core was found to be important with a crude study. The uncertainty in the TRISO buffer thickness was estimated to be unimportant but the study was not conclusive. FSV fuel compacts and a regular FSV fuel element were analyzed with MCNP5 and compared with predictions using a modified version of HELIOS that is capable of analyzing TRISO fuel configurations. The HELIOS analyses were performed by SSP. The eigenvalue discrepancies between HELIOS and MCNP5 are currently on the order of 1% but these are still being evaluated. Full-core FSV configurations were developed for two initial critical configurations - a cold, clean critical loading and a critical configuration at 70% power. MCNP5 predictions are compared to experimental data and the results are mixed. Analyses were also done for the pulsed neutron experiments that were conducted by GA for the initial FSV core. MCNP5 was used to model these experiments and reasonable agreement with measured results has been observed.« less
Neutron dose rate analysis on HTGR-10 reactor using Monte Carlo code
NASA Astrophysics Data System (ADS)
Suwoto; Adrial, H.; Hamzah, A.; Zuhair; Bakhri, S.; Sunaryo, G. R.
2018-02-01
The HTGR-10 reactor is cylinder-shaped core fuelled with kernel TRISO coated fuel particles in the spherical pebble with helium cooling system. The outlet helium gas coolant temperature outputted from the reactor core is designed to 700 °C. One advantage HTGR type reactor is capable of co-generation, as an addition to generating electricity, the reactor was designed to produce heat at high temperature can be used for other processes. The spherical fuel pebble contains 8335 TRISO UO2 kernel coated particles with enrichment of 10% and 17% are dispersed in a graphite matrix. The main purpose of this study was to analysis the distribution of neutron dose rates generated from HTGR-10 reactors. The calculation and analysis result of neutron dose rate in the HTGR-10 reactor core was performed using Monte Carlo MCNP5v1.6 code. The problems of double heterogeneity in kernel fuel coated particles TRISO and spherical fuel pebble in the HTGR-10 core are modelled well with MCNP5v1.6 code. The neutron flux to dose conversion factors taken from the International Commission on Radiological Protection (ICRP-74) was used to determine the dose rate that passes through the active core, reflectors, core barrel, reactor pressure vessel (RPV) and a biological shield. The calculated results of neutron dose rate with MCNP5v1.6 code using a conversion factor of ICRP-74 (2009) for radiation workers in the radial direction on the outside of the RPV (radial position = 220 cm from the center of the patio HTGR-10) provides the respective value of 9.22E-4 μSv/h and 9.58E-4 μSv/h for enrichment 10% and 17%, respectively. The calculated values of neutron dose rates are compliant with BAPETEN Chairman’s Regulation Number 4 Year 2013 on Radiation Protection and Safety in Nuclear Energy Utilization which sets the limit value for the average effective dose for radiation workers 20 mSv/year or 10μSv/h. Thus the protection and safety for radiation workers to be safe from the radiation source has been fulfilled. From the result analysis, it can be concluded that the model of calculation result of neutron dose rate for HTGR-10 core has met the required radiation safety standards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daily, Charles R.
2015-10-01
An assessment of the impact on the High Flux Isotope Reactor (HFIR) reactor vessel (RV) displacements-per-atom (dpa) rates due to operations with the proposed low enriched uranium (LEU) core described by Ilas and Primm has been performed and is presented herein. The analyses documented herein support the conclusion that conversion of HFIR to low-enriched uranium (LEU) core operations using the LEU core design of Ilas and Primm will have no negative impact on HFIR RV dpa rates. Since its inception, HFIR has been operated with highly enriched uranium (HEU) cores. As part of an effort sponsored by the National Nuclearmore » Security Administration (NNSA), conversion to LEU cores is being considered for future HFIR operations. The HFIR LEU configurations analyzed are consistent with the LEU core models used by Ilas and Primm and the HEU balance-of-plant models used by Risner and Blakeman in the latest analyses performed to support the HFIR materials surveillance program. The Risner and Blakeman analyses, as well as the studies documented herein, are the first to apply the hybrid transport methods available in the Automated Variance reduction Generator (ADVANTG) code to HFIR RV dpa rate calculations. These calculations have been performed on the Oak Ridge National Laboratory (ORNL) Institutional Cluster (OIC) with version 1.60 of the Monte Carlo N-Particle 5 (MCNP5) computer code.« less
Multiple Detector Optimization for Hidden Radiation Source Detection
2015-03-26
important in achieving operationally useful methods for optimizing detector emplacement, the 2-D attenuation model approach promises to speed up the...process of hidden source detection significantly. The model focused on detection of the full energy peak of a radiation source. Methods to optimize... radioisotope identification is possible without using a computationally intensive stochastic model such as the Monte Carlo n-Particle (MCNP) code
Calculations of skyshine from an intense portable electron linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estes, G.P.; Hughes, H.G.; Fry, D.A.
1994-12-31
The MCNP Monte carlo code has been used at Los Alamos to calculate skyshine and terrain albedo efects from an intense portable electron linear accelerator that is to be used by the Russian Federation to radiograph nuclear weapons that may have been damaged by accidents. Relative dose rate profiles have been calculated. The design of the accelerator, along with a diagram, is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mokhov, Nikolai
MARS is a Monte Carlo code for inclusive and exclusive simulation of three-dimensional hadronic and electromagnetic cascades, muon, heavy-ion and low-energy neutron transport in accelerator, detector, spacecraft and shielding components in the energy range from a fraction of an electronvolt up to 100 TeV. Recent developments in the MARS15 physical models of hadron, heavy-ion and lepton interactions with nuclei and atoms include a new nuclear cross section library, a model for soft pion production, the cascade-exciton model, the quark gluon string models, deuteron-nucleus and neutrino-nucleus interaction models, detailed description of negative hadron and muon absorption and a unified treatment ofmore » muon, charged hadron and heavy-ion electromagnetic interactions with matter. New algorithms are implemented into the code and thoroughly benchmarked against experimental data. The code capabilities to simulate cascades and generate a variety of results in complex media have been also enhanced. Other changes in the current version concern the improved photo- and electro-production of hadrons and muons, improved algorithms for the 3-body decays, particle tracking in magnetic fields, synchrotron radiation by electrons and muons, significantly extended histograming capabilities and material description, and improved computational performance. In addition to direct energy deposition calculations, a new set of fluence-to-dose conversion factors for all particles including neutrino are built into the code. The code includes new modules for calculation of Displacement-per-Atom and nuclide inventory. The powerful ROOT geometry and visualization model implemented in MARS15 provides a large set of geometrical elements with a possibility of producing composite shapes and assemblies and their 3D visualization along with a possible import/export of geometry descriptions created by other codes (via the GDML format) and CAD systems (via the STEP format). The built-in MARS-MAD Beamline Builder (MMBLB) was redesigned for use with the ROOT geometry package that allows a very efficient and highly-accurate description, modeling and visualization of beam loss induced effects in arbitrary beamlines and accelerator lattices. The MARS15 code includes links to the MCNP-family codes for neutron and photon production and transport below 20 MeV, to the ANSYS code for thermal and stress analyses and to the STRUCT code for multi-turn particle tracking in large synchrotrons and collider rings.« less
Pavlou, Andrew T.; Ji, Wei; Brown, Forrest B.
2016-01-23
Here, a proper treatment of thermal neutron scattering requires accounting for chemical binding through a scattering law S(α,β,T). Monte Carlo codes sample the secondary neutron energy and angle after a thermal scattering event from probability tables generated from S(α,β,T) tables at discrete temperatures, requiring a large amount of data for multiscale and multiphysics problems with detailed temperature gradients. We have previously developed a method to handle this temperature dependence on-the-fly during the Monte Carlo random walk using polynomial expansions in 1/T to directly sample the secondary energy and angle. In this paper, the on-the-fly method is implemented into MCNP6 andmore » tested in both graphite-moderated and light water-moderated systems. The on-the-fly method is compared with the thermal ACE libraries that come standard with MCNP6, yielding good agreement with integral reactor quantities like k-eigenvalue and differential quantities like single-scatter secondary energy and angle distributions. The simulation runtimes are comparable between the two methods (on the order of 5–15% difference for the problems tested) and the on-the-fly fit coefficients only require 5–15 MB of total data storage.« less
Sogbadji, R B M; Abrefah, R G; Nyarko, B J B; Akaho, E H K; Odoi, H C; Attakorah-Birinkorang, S
2014-08-01
The americium-beryllium neutron irradiation facility at the National Nuclear Research Institute (NNRI), Ghana, was re-designed with four 20 Ci sources using Monte Carlo N-Particle (MCNP) code to investigate the maximum amount of flux that is produced by the combined sources. The results were compared with a single source Am-Be irradiation facility. The main objective was to enable us to harness the maximum amount of flux for the optimization of neutron activation analysis and to enable smaller sample sized samples to be irradiated. Using MCNP for the design construction and neutronic performance calculation, it was realized that the single-source Am-Be design produced a thermal neutron flux of (1.8±0.0007)×10(6) n/cm(2)s and the four-source Am-Be design produced a thermal neutron flux of (5.4±0.0007)×10(6) n/cm(2)s which is a factor of 3.5 fold increase compared to the single-source Am-Be design. The criticality effective, k(eff), of the single-source and the four-source Am-Be designs were found to be 0.00115±0.0008 and 0.00143±0.0008, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
Banaee, Nooshin; Asgari, Sepideh; Nedaie, Hassan Ali
2018-07-01
The accuracy of penumbral measurements in radiotherapy is pivotal because dose planning computers require accurate data to adequately modeling the beams, which in turn are used to calculate patient dose distributions. Gamma knife is a non-invasive intracranial technique based on principles of the Leksell stereotactic system for open deep brain surgeries, invented and developed by Professor Lars Leksell. The aim of this study is to compare the penumbra widths of Leksell Gamma Knife model C and Gamma ART 6000. Initially, the structure of both systems were simulated by using Monte Carlo MCNP6 code and after validating the accuracy of simulation, beam profiles of different collimators were plotted. MCNP6 beam profile calculations showed that the penumbra values of Leksell Gamma knife model C and Gamma ART 6000 for 18, 14, 8 and 4 mm collimators are 9.7, 7.9, 4.3, 2.6 and 8.2, 6.9, 3.6, 2.4, respectively. The results of this study showed that since Gamma ART 6000 has larger solid angle in comparison with Gamma Knife model C, it produces better beam profile penumbras than Gamma Knife model C in the direct plane. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lapins, Janis; Guilliard, Nicole; Bernnat, Wolfgang; Buck, Arnulf
2017-09-01
During heavy ion irradiation therapy the patient has to be located exactly at the right position to make sure that the Bragg peak occurs in the tumour. The patient has to be moved in the range of millimetres to scan the ill tissue. For that reason a special table was developed which allows exact positioning. The electronic control can be located outside the surgery. But that has some disadvantage for the construction. To keep the system compact it would be much more comfortable to put the electronic control inside the surgery. As a lot of high energetic secondary particles are produced during the therapy causing a high dose in the room it is important to find positions with low dose rates. Therefore, investigations are needed where the electronic devices should be located to obtain a minimum of radiation, help to prevent the failure of sensitive devices. The dose rate was calculated for carbon ions with different initial energy and protons over the entire therapy room with Monte Carlo particle tracking using MCNP6. The types of secondary particles were identified and the dose rate for a thin silicon layer and an electronic mixture material was determined. In addition, the shielding effect of several selected material layers was calculated using MCNP6.
Andrews, M. T.; Rising, M. E.; Meierbachtol, K.; ...
2018-06-15
Wmore » hen multiple neutrons are emitted in a fission event they are correlated in both energy and their relative angle, which may impact the design of safeguards equipment and other instrumentation for non-proliferation applications. The most recent release of MCNP 6 . 2 contains the capability to simulate correlated fission neutrons using the event generators CGMF and FREYA . These radiation transport simulations will be post-processed by the detector response code, DRiFT , and compared directly to correlated fission measurements. DRiFT has been previously compared to single detector measurements, its capabilities have been recently expanded with correlated fission simulations in mind. Finally, this paper details updates to DRiFT specific to correlated fission measurements, including tracking source particle energy of all detector events (and non-events), expanded output formats, and digitizer waveform generation.« less
Spectral unfolding of fast neutron energy distributions
NASA Astrophysics Data System (ADS)
Mosby, Michelle; Jackman, Kevin; Engle, Jonathan
2015-10-01
The characterization of the energy distribution of a neutron flux is difficult in experiments with constrained geometry where techniques such as time of flight cannot be used to resolve the distribution. The measurement of neutron fluxes in reactors, which often present similar challenges, has been accomplished using radioactivation foils as an indirect probe. Spectral unfolding codes use statistical methods to adjust MCNP predictions of neutron energy distributions using quantified radioactive residuals produced in these foils. We have applied a modification of this established neutron flux characterization technique to experimentally characterize the neutron flux in the critical assemblies at the Nevada National Security Site (NNSS) and the spallation neutron flux at the Isotope Production Facility (IPF) at Los Alamos National Laboratory (LANL). Results of the unfolding procedure are presented and compared with a priori MCNP predictions, and the implications for measurements using the neutron fluxes at these facilities are discussed.
NASA Astrophysics Data System (ADS)
Sboev, A. G.; Ilyashenko, A. S.; Vetrova, O. A.
1997-02-01
The method of bucking evaluation, realized in the MOnte Carlo code MCS, is described. This method was applied for calculational analysis of well known light water experiments TRX-1 and TRX-2. The analysis of this comparison shows, that there is no coincidence between Monte Carlo calculations, obtained by different ways: the MCS calculations with given experimental bucklings; the MCS calculations with given bucklings evaluated on base of full core MCS direct simulations; the full core MCNP and MCS direct simulations; the MCNP and MCS calculations, where the results of cell calculations are corrected by the coefficients taking into the account the leakage from the core. Also the buckling values evaluated by full core MCS calculations have differed from experimental ones, especially in the case of TRX-1, when this difference has corresponded to 0.5 percent increase of Keff value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, M. T.; Rising, M. E.; Meierbachtol, K.
Wmore » hen multiple neutrons are emitted in a fission event they are correlated in both energy and their relative angle, which may impact the design of safeguards equipment and other instrumentation for non-proliferation applications. The most recent release of MCNP 6 . 2 contains the capability to simulate correlated fission neutrons using the event generators CGMF and FREYA . These radiation transport simulations will be post-processed by the detector response code, DRiFT , and compared directly to correlated fission measurements. DRiFT has been previously compared to single detector measurements, its capabilities have been recently expanded with correlated fission simulations in mind. Finally, this paper details updates to DRiFT specific to correlated fission measurements, including tracking source particle energy of all detector events (and non-events), expanded output formats, and digitizer waveform generation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bily, T.
Thermoluminescent dosimeters represent very useful tool for gamma fields parameters measurements at nuclear research reactors, especially at zero power ones. {sup 7}LiF:Mg,Ti and {sup 7}LiF:Mg,Cu,P type TL dosimeters enable determination of only gamma component in mixed neutron - gamma field. At VR-1 reactor operated within the Faculty of Nuclear Sciences and Physical Engineering at the Czech Technical University in Prague the integral characteristics of gamma rays field were investigated, especially its spatial distribution and time behaviour, i.e. the non-saturated delayed gamma ray emission influence. Measured spatial distributions were compared with monte carlo code MCNP5 calculations. Although MCNP cannot generate delayedmore » gamma rays from fission, the relative gamma dose rate distribution is within {+-} 15% with measured values. The experiments were carried out with core configuration C1 consisting of LEU fuel IRT-4M (19.7 %). (author)« less
Gas Core Reactor Numerical Simulation Using a Coupled MHD-MCNP Model
NASA Technical Reports Server (NTRS)
Kazeminezhad, F.; Anghaie, S.
2008-01-01
Analysis is provided in this report of using two head-on magnetohydrodynamic (MHD) shocks to achieve supercritical nuclear fission in an axially elongated cylinder filled with UF4 gas as an energy source for deep space missions. The motivation for each aspect of the design is explained and supported by theory and numerical simulations. A subsequent report will provide detail on relevant experimental work to validate the concept. Here the focus is on the theory of and simulations for the proposed gas core reactor conceptual design from the onset of shock generations to the supercritical state achieved when the shocks collide. The MHD model is coupled to a standard nuclear code (MCNP) to observe the neutron flux and fission power attributed to the supercritical state brought about by the shock collisions. Throughout the modeling, realistic parameters are used for the initial ambient gaseous state and currents to ensure a resulting supercritical state upon shock collisions.
Cinelli, Giorgia; Tositti, Laura; Mostacci, Domiziano; Baré, Jonathan
2016-05-01
In view of assessing natural radioactivity with on-site quantitative gamma spectrometry, efficiency calibration of NaI(Tl) detectors is investigated. A calibration based on Monte Carlo simulation of detector response is proposed, to render reliable quantitative analysis practicable in field campaigns. The method is developed with reference to contact geometry, in which measurements are taken placing the NaI(Tl) probe directly against the solid source to be analyzed. The Monte Carlo code used for the simulations was MCNP. Experimental verification of the calibration goodness is obtained by comparison with appropriate standards, as reported. On-site measurements yield a quick quantitative assessment of natural radioactivity levels present ((40)K, (238)U and (232)Th). On-site gamma spectrometry can prove particularly useful insofar as it provides information on materials from which samples cannot be taken. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Ceccolini, E.; Gerardy, I.; Ródenas, J.; van Dycke, M.; Gallardo, S.; Mostacci, D.
Brachytherapy is an advanced cancer treatment that is minimally invasive, minimising radiation exposure to the surrounding healthy tissues. Microselectron© Nucletron devices with 192Ir source can be used for gynaecological brachytherapy, in patients with vaginal or uterine cancer. Measurements of isodose curves have been performed in a PMMA phantom and compared with Monte Carlo calculations and TPS (Plato software of Nucletron BPS 14.2) evaluation. The isodose measurements have been performed with radiochromic films (Gafchromic EBT©). The dose matrix has been obtained after digitalisation and use of a dose calibration curve obtained with a 6 MV photon beam provided by a medical linear accelerator. A comparison between the calculated and the measured matrix has been performed. The calculated dose matrix is obtained with a simulation using the MCNP5 Monte Carlo code (F4MESH tally).
NASA Astrophysics Data System (ADS)
Ardiyati, Tanti; Rozali, Bang; Kasmudin
2018-02-01
An analysis of radiation penetration through the U-shaped joints of cast concrete shielding in BATAN’s multipurpose gamma irradiator has been carried out. The analysis has been performed by calculating the radiation penetration through the U-shaped joints of the concrete shielding using MCNP computer code. The U-shaped joints were a new design in massive concrete construction in Indonesia and, in its actual application, it is joined by a bonding agent. In the MCNP simulation model, eight detectors were located close to the observed irradiation room walls of the concrete shielding. The simulation results indicated that the radiation levels outside the concrete shielding was less than the permissible limit of 2.5 μSv/h so that the workers could safely access electrical room, control room, water treatment facility and outside irradiation room. The radiation penetration decreased as the density of material increased.
Novel low-kVp beamlet system for choroidal melanoma
Esquivel, Carlos; Fuller, Clifton D; Waggener, Robert G; Wong, Adrian; Meltz, Martin; Blough, Melissa; Eng, Tony Y; Thomas, Charles R
2006-01-01
Background Treatment of choroidal melanoma with radiation often involves placement of customized brachytherapy eye-plaques. However, the dosimetric properties inherent in source-based radiotherapy preclude facile dose optimization to critical ocular structures. Consequently, we have constructed a novel system for utilizing small beam low-energy radiation delivery, the Beamlet Low-kVp X-ray, or "BLOKX" system. This technique relies on an isocentric rotational approach to deliver dose to target volumes within the eye, while potentially sparing normal structures. Methods Monte Carlo N-Particle (MCNP) transport code version 5.0(14) was used to simulate photon interaction with normal and tumor tissues within modeled right eye phantoms. Five modeled dome-shaped tumors with a diameter and apical height of 8 mm and 6 mm, respectively, were simulated distinct positions with respect to the macula iteratively. A single fixed 9 × 9 mm2 beamlet, and a comparison COMS protocol plaque containing eight I-125 seeds (apparent activity of 8 mCi) placed on the scleral surface of the eye adjacent to the tumor, were utilized to determine dosimetric parameters at tumor and adjacent tissues. After MCNP simulation, comparison of dose distribution at each of the 5 tumor positions for each modality (BLOKX vs. eye-plaque) was performed. Results Tumor-base doses ranged from 87.1–102.8 Gy for the BLOKX procedure, and from 335.3–338.6 Gy for the eye-plaque procedure. A reduction of dose of at least 69% to tumor base was noted when using the BLOKX. The BLOKX technique showed a significant reduction of dose, 89.8%, to the macula compared to the episcleral plaque. A minimum 71.0 % decrease in dose to the optic nerve occurred when the BLOKX was used. Conclusion The BLOKX technique allows more favorable dose distribution in comparison to standard COMS brachytherapy, as simulated using a Monte Carlo iterative mathematical modeling. Future series to determine clinical utility of such an approach are warranted. PMID:16965624
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, Robert P.; Miller, Paul; Howley, Kirsten
The NNSA Laboratories have entered into an interagency collaboration with the National Aeronautics and Space Administration (NASA) to explore strategies for prevention of Earth impacts by asteroids. Assessment of such strategies relies upon use of sophisticated multi-physics simulation codes. This document describes the task of verifying and cross-validating, between Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL), modeling capabilities and methods to be employed as part of the NNSA-NASA collaboration. The approach has been to develop a set of test problems and then to compare and contrast results obtained by use of a suite of codes, includingmore » MCNP, RAGE, Mercury, Ares, and Spheral. This document provides a short description of the codes, an overview of the idealized test problems, and discussion of the results for deflection by kinetic impactors and stand-off nuclear explosions.« less
Thanh, Tran Thien; Vuong, Le Quang; Ho, Phan Long; Chuong, Huynh Dinh; Nguyen, Vo Hoang; Tao, Chau Van
2018-04-01
In this work, an advanced analytical procedure was applied to calculate radioactivity in spiked water samples in a close geometry gamma spectroscopy. It included MCNP-CP code in order to calculate the coincidence summing correction factor (CSF). The CSF results were validated by a deterministic method using ETNA code for both p-type HPGe detectors. It showed that a good agreement for both codes. Finally, the validity of the developed procedure was confirmed by a proficiency test to calculate the activities of various radionuclides. The results of the radioactivity measurement with both detectors using the advanced analytical procedure were received the ''Accepted'' statuses following the proficiency test. Copyright © 2018 Elsevier Ltd. All rights reserved.
Copper benchmark experiment for the testing of JEFF-3.2 nuclear data for fusion applications
NASA Astrophysics Data System (ADS)
Angelone, M.; Flammini, D.; Loreti, S.; Moro, F.; Pillon, M.; Villar, R.; Klix, A.; Fischer, U.; Kodeli, I.; Perel, R. L.; Pohorecky, W.
2017-09-01
A neutronics benchmark experiment on a pure Copper block (dimensions 60 × 70 × 70 cm3) aimed at testing and validating the recent nuclear data libraries for fusion applications was performed in the frame of the European Fusion Program at the 14 MeV ENEA Frascati Neutron Generator (FNG). Reaction rates, neutron flux spectra and doses were measured using different experimental techniques (e.g. activation foils techniques, NE213 scintillator and thermoluminescent detectors). This paper first summarizes the analyses of the experiment carried-out using the MCNP5 Monte Carlo code and the European JEFF-3.2 library. Large discrepancies between calculation (C) and experiment (E) were found for the reaction rates both in the high and low neutron energy range. The analysis was complemented by sensitivity/uncertainty analyses (S/U) using the deterministic and Monte Carlo SUSD3D and MCSEN codes, respectively. The S/U analyses enabled to identify the cross sections and energy ranges which are mostly affecting the calculated responses. The largest discrepancy among the C/E values was observed for the thermal (capture) reactions indicating severe deficiencies in the 63,65Cu capture and elastic cross sections at lower rather than at high energy. Deterministic and MC codes produced similar results. The 14 MeV copper experiment and its analysis thus calls for a revision of the JEFF-3.2 copper cross section and covariance data evaluation. A new analysis of the experiment was performed with the MCNP5 code using the revised JEFF-3.3-T2 library released by NEA and a new, not yet distributed, revised JEFF-3.2 Cu evaluation produced by KIT. A noticeable improvement of the C/E results was obtained with both new libraries.
Monte Carlo simulation of x-ray spectra in diagnostic radiology and mammography using MCNP4C
NASA Astrophysics Data System (ADS)
Ay, M. R.; Shahriari, M.; Sarkar, S.; Adib, M.; Zaidi, H.
2004-11-01
The general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C) was used for the simulation of x-ray spectra in diagnostic radiology and mammography. The electrons were transported until they slow down and stop in the target. Both bremsstrahlung and characteristic x-ray production were considered in this work. We focus on the simulation of various target/filter combinations to investigate the effect of tube voltage, target material and filter thickness on x-ray spectra in the diagnostic radiology and mammography energy ranges. The simulated x-ray spectra were compared with experimental measurements and spectra calculated by IPEM report number 78. In addition, the anode heel effect and off-axis x-ray spectra were assessed for different anode angles and target materials and the results were compared with EGS4-based Monte Carlo simulations and measured data. Quantitative evaluation of the differences between our Monte Carlo simulated and comparison spectra was performed using student's t-test statistical analysis. Generally, there is a good agreement between the simulated x-ray and comparison spectra, although there are systematic differences between the simulated and reference spectra especially in the K-characteristic x-rays intensity. Nevertheless, no statistically significant differences have been observed between IPEM spectra and the simulated spectra. It has been shown that the difference between MCNP simulated spectra and IPEM spectra in the low energy range is the result of the overestimation of characteristic photons following the normalization procedure. The transmission curves produced by MCNP4C have good agreement with the IPEM report especially for tube voltages of 50 kV and 80 kV. The systematic discrepancy for higher tube voltages is the result of systematic differences between the corresponding spectra.
Theory and Performance of AIMS for Active Interrogation
NASA Astrophysics Data System (ADS)
Walters, William J.; Royston, Katherine E. K.; Haghighat, Alireza
2014-06-01
A hybrid Monte Carlo and deterministic methodology has been developed for application to active interrogation systems. The methodology consists of four steps: i) determination of neutron flux distribution due to neutron source transport and subcritical multiplication; ii) generation of gamma source distribution from (n, γ) interactions; iii) determination of gamma current at a detector window; iv) detection of gammas by the detector. This paper discusses the theory and results of the first three steps for the case of a cargo container with a sphere of HEU in third-density water. In the first step, a response-function formulation has been developed to calculate the subcritical multiplication and neutron flux distribution. Response coefficients are pre-calculated using the MCNP5 Monte Carlo code. The second step uses the calculated neutron flux distribution and Bugle-96 (n, γ) cross sections to find the resulting gamma source distribution. Finally, in the third step the gamma source distribution is coupled with a pre-calculated adjoint function to determine the gamma flux at a detector window. A code, AIMS (Active Interrogation for Monitoring Special-Nuclear-materials), has been written to output the gamma current for an source-detector assembly scanning across the cargo using the pre-calculated values and takes significantly less time than a reference MCNP5 calculation.
NASA Astrophysics Data System (ADS)
Gerardy, I.; Rodenas, J.; Van Dycke, M.; Gallardo, S.; Tondeur, F.
2008-02-01
Brachytherapy is a radiotherapy treatment where encapsulated radioactive sources are introduced within a patient. Depending on the technique used, such sources can produce high, medium or low local dose rates. The Monte Carlo method is a powerful tool to simulate sources and devices in order to help physicists in treatment planning. In multiple types of gynaecological cancer, intracavitary brachytherapy (HDR Ir-192 source) is used combined with other therapy treatment to give an additional local dose to the tumour. Different types of applicators are used in order to increase the dose imparted to the tumour and to limit the effect on healthy surrounding tissues. The aim of this work is to model both applicator and HDR source in order to evaluate the dose at a reference point as well as the effect of the materials constituting the applicators on the near field dose. The MCNP5 code based on the Monte Carlo method has been used for the simulation. Dose calculations have been performed with *F8 energy deposition tally, taking into account photons and electrons. Results from simulation have been compared with experimental in-phantom dose measurements. Differences between calculations and measurements are lower than 5%.The importance of the source position has been underlined.
NASA Astrophysics Data System (ADS)
Dixon, David A.; Hughes, H. Grady
2017-09-01
This paper presents a validation test comparing angular distributions from an electron multiple-scattering experiment with those generated using the MCNP6 Monte Carlo code system. In this experiment, a 13- and 20-MeV electron pencil beam is deflected by thin foils with atomic numbers from 4 to 79. To determine the angular distribution, the fluence is measured down range of the scattering foil at various radii orthogonal to the beam line. The characteristic angle (the angle for which the max of the distribution is reduced by 1/e) is then determined from the angular distribution and compared with experiment. Multiple scattering foils tested herein include beryllium, carbon, aluminum, copper, and gold. For the default electron-photon transport settings, the calculated characteristic angle was statistically distinguishable from measurement and generally broader than the measured distributions. The average relative difference ranged from 5.8% to 12.2% over all of the foils, source energies, and physics settings tested. This validation illuminated a deficiency in the computation of the underlying angular distributions that is well understood. As a result, code enhancements were made to stabilize the angular distributions in the presence of very small substeps. However, the enhancement only marginally improved results indicating that additional algorithmic details should be studied.
Application of Aeroelastic Solvers Based on Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Srivastava, Rakesh
1998-01-01
A pre-release version of the Navier-Stokes solver (TURBO) was obtained from MSU. Along with Dr. Milind Bakhle of the University of Toledo, subroutines for aeroelastic analysis were developed and added to the TURBO code to develop versions 1 and 2 of the TURBO-AE code. For specified mode shape, frequency and inter-blade phase angle the code calculates the work done by the fluid on the rotor for a prescribed sinusoidal motion. Positive work on the rotor indicates instability of the rotor. The version 1 of the code calculates the work for in-phase blade motions only. In version 2 of the code, the capability for analyzing all possible inter-blade phase angles, was added. The version 2 of TURBO-AE code was validated and delivered to NASA and the industry partners of the AST project. The capabilities and the features of the code are summarized in Refs. [1] & [2]. To release the version 2 of TURBO-AE, a workshop was organized at NASA Lewis, by Dr. Srivastava and Dr. M. A. Bakhle, both of the University of Toledo, in October of 1996 for the industry partners of NASA Lewis. The workshop provided the potential users of TURBO-AE, all the relevant information required in preparing the input data, executing the code, interpreting the results and bench marking the code on their computer systems. After the code was delivered to the industry partners, user support was also provided. A new version of the Navier-Stokes solver (TURBO) was later released by MSU. This version had significant changes and upgrades over the previous version. This new version was merged with the TURBO-AE code. Also, new boundary conditions for 3-D unsteady non-reflecting boundaries, were developed by researchers from UTRC, Ref. [3]. Time was spent on understanding, familiarizing, executing and implementing the new boundary conditions into the TURBO-AE code. Work was started on the phase lagged (time-shifted) boundary condition version (version 4) of the code. This will allow the users to calculate non-zero interblade phase angles using, only one blade passage for analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taneja, S; Bartol, L; Culberson, W
2015-06-15
Purpose: The calibration of radiation protection instrumentation including ionization chambers, scintillators, and Geiger Mueller (GM) counters used as survey meters are often done using {sup 137}Cs irradiators. During calibration, irradiators use a combination of attenuators with various thicknesses to modulate the beam to a known air-kerma rate. The variations in energy spectra as a result of these attenuators are not accounted for and may play a role in the energy-dependent response of survey meters. This study uses an experimentally validated irradiator geometry modeled in the MCNP5 transport code to characterize the effects of attenuation on the energy spectrum. Methods: Amore » Hopewell Designs G-10 {sup 137}Cs irradiator with lead attenuators of thicknesses of 0.635, 1.22, 2.22, and 4.32 cm, was used in this study. The irradiator geometry was modeled in MCNP5 and validated by comparing measured and simulated percent depth dose (PDD) and cross-field profiles. Variations in MCNP5 simulated spectra with increasing amounts of attenuation were characterized using the relative intensity of the 662 keV peak and the average energy. Results: Simulated and measured PDDs and profiles agreed within the associated uncertainty. The relative intensity of the 662 keV peak for simulated spectra normalized to the intensity of the unattenuated spectra ranged from 0.16% to 100% based on attenuation thickness. The average energy for simulated spectra for attenuators ranged from 582 keV with no attenuation to 653 keV with 5.54 cm of attenuation. Statistical uncertainty for MCNP5 simulations ranged from 0.11% to 3.69%. Conclusion: This study successfully used MCNP5 to validate a {sup 137}Cs irradiator geometry and characterize variations in energy spectra between different amounts of attenuation. Variations in the average energy of up to 12% were determined through simulations, and future work will aim to determine the effects of these differences on survey meter response and calibration.« less
Gschwind, Michael K
2013-07-23
Mechanisms for aggressively optimizing computer code are provided. With these mechanisms, a compiler determines an optimization to apply to a portion of source code and determines if the optimization as applied to the portion of source code will result in unsafe optimized code that introduces a new source of exceptions being generated by the optimized code. In response to a determination that the optimization is an unsafe optimization, the compiler generates an aggressively compiled code version, in which the unsafe optimization is applied, and a conservatively compiled code version in which the unsafe optimization is not applied. The compiler stores both versions and provides them for execution. Mechanisms are provided for switching between these versions during execution in the event of a failure of the aggressively compiled code version. Moreover, predictive mechanisms are provided for predicting whether such a failure is likely.
Possible Improvements to MCNP6 and its CEM/LAQGSM Event-Generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mashnik, Stepan Georgievich
2015-08-04
This report is intended to the MCNP6 developers and sponsors of MCNP6. It presents a set of suggested possible future improvements to MCNP6 and to its CEM03.03 and LAQGSM03.03 event-generators. A few suggested modifications of MCNP6 are quite simple, aimed at avoiding possible problems with running MCNP6 on various computers, i.e., these changes are not expected to change or improve any results, but should make the use of MCNP6 easier; such changes are expected to require limited man-power resources. On the other hand, several other suggested improvements require a serious further development of nuclear reaction models, are expected to improvemore » significantly the predictive power of MCNP6 for a number of nuclear reactions; but, such developments require several years of work by real experts on nuclear reactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Don E.; Marshall, William J.; Wagner, John C.
The U.S. Nuclear Regulatory Commission (NRC) Division of Spent Fuel Storage and Transportation recently issued Interim Staff Guidance (ISG) 8, Revision 3. This ISG provides guidance for burnup credit (BUC) analyses supporting transport and storage of PWR pressurized water reactor (PWR) fuel in casks. Revision 3 includes guidance for addressing validation of criticality (k eff) calculations crediting the presence of a limited set of fission products and minor actinides (FP&MA). Based on previous work documented in NUREG/CR-7109, recommendation 4 of ISG-8, Rev. 3, includes a recommendation to use 1.5 or 3% of the FP&MA worth to conservatively cover the biasmore » due to the specified FP&MAs. This bias is supplementary to the bias and bias uncertainty resulting from validation of k eff calculations for the major actinides in SNF and does not address extension to actinides and fission products beyond those identified herein. The work described in this report involves comparison of FP&MA worths calculated using SCALE and MCNP with ENDF/B-V, -VI, and -VII based nuclear data and supports use of the 1.5% FP&MA worth bias when either SCALE or MCNP codes are used for criticality calculations, provided the other conditions of the recommendation 4 are met. The method used in this report may also be applied to demonstrate the applicability of the 1.5% FP&MA worth bias to other codes using ENDF/B V, VI or VII based nuclear data. The method involves use of the applicant s computational method to generate FP&MA worths for a reference SNF cask model using specified spent fuel compositions. The applicant s FP&MA worths are then compared to reference values provided in this report. The applicants FP&MA worths should not exceed the reference results by more than 1.5% of the reference FP&MA worths.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verbeke, J. M.; Randrup, J.; Vogt, R.
The purpose of this paper is to present the main differences between FREYA versions 1.0 and 2.0.2. FREYA (Fission Reaction Event Yield Algorithm) is a fission event generator which models complete fission events. As such, it automatically includes fluctuations as well as correlations between observables, resulting from conservation of energy and momentum. The main differences between the two versions are: additional fissionable isotopes, angular momentum conservation, Giant Dipole Resonance form factor for the statistical emission of photons, improved treatment of fission photon emission using RIPL database, and dependence on the incident neutron direction. FREYA 2.0.2 has been integrated into themore » LLNL Fission Library 2.0.2, which has itself been integrated into MCNP6.2, TRIPOLI-4.10, and can be called from Geant4.10.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatzidakis, Stylianos; Greulich, Christopher
A cosmic ray Muon Flexible Framework for Spectral GENeration for Monte Carlo Applications (MUFFSgenMC) has been developed to support state-of-the-art cosmic ray muon tomographic applications. The flexible framework allows for easy and fast creation of source terms for popular Monte Carlo applications like GEANT4 and MCNP. This code framework simplifies the process of simulations used for cosmic ray muon tomography.
COMPTEL neutron response at 17 MeV
NASA Technical Reports Server (NTRS)
Oneill, Terrence J.; Ait-Ouamer, Farid; Morris, Joann; Tumer, O. Tumay; White, R. Stephen; Zych, Allen D.
1992-01-01
The Compton imaging telescope (COMPTEL) instrument of the Gamma Ray Observatory was exposed to 17 MeV d,t neutrons prior to launch. These data were analyzed and compared with Monte Carlo calculations using the MCNP(LANL) code. Energy and angular resolutions are compared and absolute efficiencies are calculated at 0 and 30 degrees incident angle. The COMPTEL neutron responses at 17 MeV and higher energies are needed to understand solar flare neutron data.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.
1992-01-01
The Penn State Finite Difference Time Domain Electromagnetic Code Version B is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). The supplied version of the code is one version of our current three dimensional FDTD code set. This manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into 14 sections: introduction, description of the FDTD method, operation, resource requirements, Version B code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file, a discussion of radar cross section computations, a discussion of some scattering results, a sample problem setup section, a new problem checklist, references and figure titles.
NASA Astrophysics Data System (ADS)
Lodwick, Camille J.
This research utilized Monte Carlo N-Particle version 4C (MCNP4C) to simulate K X-ray fluorescent (K XRF) measurements of stable lead in bone. Simulations were performed to investigate the effects that overlying tissue thickness, bone-calcium content, and shape of the calibration standard have on detector response in XRF measurements at the human tibia. Additional simulations of a knee phantom considered uncertainty associated with rotation about the patella during XRF measurements. Simulations tallied the distribution of energy deposited in a high-purity germanium detector originating from collimated 88 keV 109Cd photons in backscatter geometry. Benchmark measurements were performed on simple and anthropometric XRF calibration phantoms of the human leg and knee developed at the University of Cincinnati with materials proven to exhibit radiological characteristics equivalent to human tissue and bone. Initial benchmark comparisons revealed that MCNP4C limits coherent scatter of photons to six inverse angstroms of momentum transfer and a Modified MCNP4C was developed to circumvent the limitation. Subsequent benchmark measurements demonstrated that Modified MCNP4C adequately models photon interactions associated with in vivo K XRF of lead in bone. Further simulations of a simple leg geometry possessing tissue thicknesses from 0 to 10 mm revealed increasing overlying tissue thickness from 5 to 10 mm reduced predicted lead concentrations an average 1.15% per 1 mm increase in tissue thickness (p < 0.0001). An anthropometric leg phantom was mathematically defined in MCNP to more accurately reflect the human form. A simulated one percent increase in calcium content (by mass) of the anthropometric leg phantom's cortical bone demonstrated to significantly reduce the K XRF normalized ratio by 4.5% (p < 0.0001). Comparison of the simple and anthropometric calibration phantoms also suggested that cylindrical calibration standards can underestimate lead content of a human leg up to 4%. The patellar bone structure in which the fluorescent photons originate was found to vary dramatically with measurement angle. The relative contribution of lead signal from the patella declined from 65% to 27% when rotated 30°. However, rotation of the source-detector about the patella from 0 to 45° demonstrated no significant effect on the net K XRF response at the knee.
Distributed multitasking ITS with PVM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, W.C.; Halbleib, J.A. Sr.
1995-12-31
Advances in computer hardware and communication software have made it possible to perform parallel-processing computing on a collection of desktop workstations. For many applications, multitasking on a cluster of high-performance workstations has achieved performance comparable to or better than that on a traditional supercomputer. From the point of view of cost-effectiveness, it also allows users to exploit available but unused computational resources and thus achieve a higher performance-to-cost ratio. Monte Carlo calculations are inherently parallelizable because the individual particle trajectories can be generated independently with minimum need for interprocessor communication. Furthermore, the number of particle histories that can be generatedmore » in a given amount of wall-clock time is nearly proportional to the number of processors in the cluster. This is an important fact because the inherent statistical uncertainty in any Monte Carlo result decreases as the number of histories increases. For these reasons, researchers have expended considerable effort to take advantage of different parallel architectures for a variety of Monte Carlo radiation transport codes, often with excellent results. The initial interest in this work was sparked by the multitasking capability of the MCNP code on a cluster of workstations using the Parallel Virtual Machine (PVM) software. On a 16-machine IBM RS/6000 cluster, it has been demonstrated that MCNP runs ten times as fast as on a single-processor CRAY YMP. In this paper, we summarize the implementation of a similar multitasking capability for the coupled electronphoton transport code system, the Integrated TIGER Series (ITS), and the evaluation of two load-balancing schemes for homogeneous and heterogeneous networks.« less
Coupled Monte Carlo neutronics and thermal hydraulics for power reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernnat, W.; Buck, M.; Mattes, M.
The availability of high performance computing resources enables more and more the use of detailed Monte Carlo models even for full core power reactors. The detailed structure of the core can be described by lattices, modeled by so-called repeated structures e.g. in Monte Carlo codes such as MCNP5 or MCNPX. For cores with mainly uniform material compositions, fuel and moderator temperatures, there is no problem in constructing core models. However, when the material composition and the temperatures vary strongly a huge number of different material cells must be described which complicate the input and in many cases exceed code ormore » memory limits. The second problem arises with the preparation of corresponding temperature dependent cross sections and thermal scattering laws. Only if these problems can be solved, a realistic coupling of Monte Carlo neutronics with an appropriate thermal-hydraulics model is possible. In this paper a method for the treatment of detailed material and temperature distributions in MCNP5 is described based on user-specified internal functions which assign distinct elements of the core cells to material specifications (e.g. water density) and temperatures from a thermal-hydraulics code. The core grid itself can be described with a uniform material specification. The temperature dependency of cross sections and thermal neutron scattering laws is taken into account by interpolation, requiring only a limited number of data sets generated for different temperatures. Applications will be shown for the stationary part of the Purdue PWR benchmark using ATHLET for thermal- hydraulics and for a generic Modular High Temperature reactor using THERMIX for thermal- hydraulics. (authors)« less
Benchmarking the MCNP Monte Carlo code with a photon skyshine experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsher, R.H.; Hsu, Hsiao Hua; Harvey, W.F.
1993-07-01
The MCNP Monte Carlo transport code is used by the Los Alamos National Laboratory Health and Safety Division for a broad spectrum of radiation shielding calculations. One such application involves the determination of skyshine dose for a variety of photon sources. To verify the accuracy of the code, it was benchmarked with the Kansas State Univ. (KSU) photon skyshine experiment of 1977. The KSU experiment for the unshielded source geometry was simulated in great detail to include the contribution of groundshine, in-silo photon scatter, and the effect of spectral degradation in the source capsule. The standard deviation of the KSUmore » experimental data was stated to be 7%, while the statistical uncertainty of the simulation was kept at or under 1%. The results of the simulation agreed closely with the experimental data, generally to within 6%. At distances of under 100 m from the silo, the modeling of the in-silo scatter was crucial to achieving close agreement with the experiment. Specifically, scatter off the top layer of the source cask accounted for [approximately]12% of the dose at 50 m. At distance >300m, using the [sup 60]Co line spectrum led to a dose overresponse as great as 19% at 700 m. It was necessary to use the actual source spectrum, which includes a Compton tail from photon collisions in the source capsule, to achieve close agreement with experimental data. These results highlight the importance of using Monte Carlo transport techniques to account for the nonideal features of even simple experiments''.« less
Thanh, Minh‐Tri Ho; Munro, John J.
2015-01-01
The Source Production & Equipment Co. (SPEC) model M−15 is a new Iridium−192 brachytherapy source model intended for use as a temporary high‐dose‐rate (HDR) brachytherapy source for the Nucletron microSelectron Classic afterloading system. The purpose of this study is to characterize this HDR source for clinical application by obtaining a complete set of Monte Carlo calculated dosimetric parameters for the M‐15, as recommended by AAPM and ESTRO, for isotopes with average energies greater than 50 keV. This was accomplished by using the MCNP6 Monte Carlo code to simulate the resulting source dosimetry at various points within a pseudoinfinite water phantom. These dosimetric values next were converted into the AAPM and ESTRO dosimetry parameters and the respective statistical uncertainty in each parameter also calculated and presented. The M−15 source was modeled in an MCNP6 Monte Carlo environment using the physical source specifications provided by the manufacturer. Iridium−192 photons were uniformly generated inside the iridium core of the model M−15 with photon and secondary electron transport replicated using photoatomic cross‐sectional tables supplied with MCNP6. Simulations were performed for both water and air/vacuum computer models with a total of 4×109 sources photon history for each simulation and the in‐air photon spectrum filtered to remove low‐energy photons below δ=10%keV. Dosimetric data, including D(r,θ),gL(r),F(r,θ),Φan(r), and φ¯an, and their statistical uncertainty were calculated from the output of an MCNP model consisting of an M−15 source placed at the center of a spherical water phantom of 100 cm diameter. The air kerma strength in free space, SK, and dose rate constant, Λ, also was computed from a MCNP model with M−15 Iridium−192 source, was centered at the origin of an evacuated phantom in which a critical volume containing air at STP was added 100 cm from the source center. The reference dose rate, D˙(r0,θ0)≡D˙(1cm,π/2), is found to be 4.038±0.064 cGy mCi−1 h−1. The air kerma strength, SK, is reported to be 3.632±0.086 cGy cm2 mCi−1 g−1, and the dose rate constant, Λ, is calculated to be 1.112±0.029 cGy h−1 U−1. The normalized dose rate, radial dose function, and anisotropy function with their uncertainties were computed and are represented in both tabular and graphical format in the report. A dosimetric study was performed of the new M−15 Iridium−192 HDR brachytherapy source using the MCNP6 radiation transport code. Dosimetric parameters, including the dose‐rate constant, radial dose function, and anisotropy function, were calculated in accordance with the updated AAPM and ESTRO dosimetric parameters for brachytherapy sources of average energy greater than 50 keV. These data therefore may be applied toward the development of a treatment planning program and for clinical use of the source. PACS numbers: 87.56.bg, 87.53.Jw PMID:26103489
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.
1991-01-01
The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Versions TEA and TMA are two dimensional numerical electromagnetic scattering codes based upon the Finite Difference Time Domain Technique (FDTD) first proposed by Yee in 1966. The supplied version of the codes are two versions of our current two dimensional FDTD code set. This manual provides a description of the codes and corresponding results for the default scattering problem. The manual is organized into eleven sections: introduction, Version TEA and TMA code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include files (TEACOM.FOR TMACOM.FOR), a section briefly discussing scattering width computations, a section discussing the scattering results, a sample problem set section, a new problem checklist, references and figure titles.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.
1991-01-01
The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Versions TEA and TMA are two dimensional electromagnetic scattering codes based on the Finite Difference Time Domain Technique (FDTD) first proposed by Yee in 1966. The supplied version of the codes are two versions of our current FDTD code set. This manual provides a description of the codes and corresponding results for the default scattering problem. The manual is organized into eleven sections: introduction, Version TEA and TMA code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include files (TEACOM.FOR TMACOM.FOR), a section briefly discussing scattering width computations, a section discussing the scattering results, a sample problem setup section, a new problem checklist, references, and figure titles.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.
1991-01-01
The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Version C is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). The supplied version of the code is one version of our current three dimensional FDTD code set. This manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into fourteen sections: introduction, description of the FDTD method, operation, resource requirements, Version C code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMONC.FOR), a section briefly discussing Radar Cross Section (RCS) computations, a section discussing some scattering results, a sample problem setup section, a new problem checklist, references and figure titles.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.
1991-01-01
The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Version D is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). The supplied version of the code is one version of our current three dimensional FDTD code set. This manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into fourteen sections: introduction, description of the FDTD method, operation, resource requirements, Version D code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMOND.FOR), a section briefly discussing Radar Cross Section (RCS) computations, a section discussing some scattering results, a sample problem setup section, a new problem checklist, references and figure titles.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.
1992-01-01
The Penn State Finite Difference Time Domain (FDTD) Electromagnetic Scattering Code Version A is a three dimensional numerical electromagnetic scattering code based on the Finite Difference Time Domain technique. The supplied version of the code is one version of our current three dimensional FDTD code set. The manual provides a description of the code and the corresponding results for the default scattering problem. The manual is organized into 14 sections: introduction, description of the FDTD method, operation, resource requirements, Version A code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMONA.FOR), a section briefly discussing radar cross section (RCS) computations, a section discussing the scattering results, a sample problem setup section, a new problem checklist, references, and figure titles.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.
1992-01-01
The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Version C is a three-dimensional numerical electromagnetic scattering code based on the Finite Difference Time Domain (FDTD) technique. The supplied version of the code is one version of our current three-dimensional FDTD code set. The manual given here provides a description of the code and corresponding results for several scattering problems. The manual is organized into 14 sections: introduction, description of the FDTD method, operation, resource requirements, Version C code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMONC.FOR), a section briefly discussing radar cross section computations, a section discussing some scattering results, a new problem checklist, references, and figure titles.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.
1991-01-01
The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Version B is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). The supplied version of the code is one version of our current three dimensional FDTD code set. This manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into fourteen sections: introduction, description of the FDTD method, operation, resource requirements, Version B code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMONB.FOR), a section briefly discussing Radar Cross Section (RCS) computations, a section discussing some scattering results, a sample problem setup section, a new problem checklist, references and figure titles.
An MCNP-based model of a medical linear accelerator x-ray photon beam.
Ajaj, F A; Ghassal, N M
2003-09-01
The major components in the x-ray photon beam path of the treatment head of the VARIAN Clinac 2300 EX medical linear accelerator were modeled and simulated using the Monte Carlo N-Particle radiation transport computer code (MCNP). Simulated components include x-ray target, primary conical collimator, x-ray beam flattening filter and secondary collimators. X-ray photon energy spectra and angular distributions were calculated using the model. The x-ray beam emerging from the secondary collimators were scored by considering the total x-ray spectra from the target as the source of x-rays at the target position. The depth dose distribution and dose profiles at different depths and field sizes have been calculated at a nominal operating potential of 6 MV and found to be within acceptable limits. It is concluded that accurate specification of the component dimensions, composition and nominal accelerating potential gives a good assessment of the x-ray energy spectra.
Analysis of MCNP simulated gamma spectra of CdTe detectors for boron neutron capture therapy.
Winkler, Alexander; Koivunoro, Hanna; Savolainen, Sauli
2017-06-01
The next step in the boron neutron capture therapy (BNCT) is the real time imaging of the boron concentration in healthy and tumor tissue. Monte Carlo simulations are employed to predict the detector response required to realize single-photon emission computed tomography in BNCT, but have failed to correctly resemble measured data for cadmium telluride detectors. In this study we have tested the gamma production cross-section data tables of commonly used libraries in the Monte Carlo code MCNP in comparison to measurements. The cross section data table TENDL-2008-ACE is reproducing measured data best, whilst the commonly used ENDL92 and other studied libraries do not include correct tables for the gamma production from the cadmium neutron capture reaction that is occurring inside the detector. Furthermore, we have discussed the size of the annihilation peaks of spectra obtained by cadmium telluride and germanium detectors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of low level 226Ra analysis for live fish using gamma-ray spectrometry
NASA Astrophysics Data System (ADS)
Chandani, Z.; Prestwich, W. V.; Byun, S. H.
2017-06-01
A low level 226Ra analysis method for live fish was developed using a 4π NaI(Tl) gamma-ray spectrometer. In order to find out the best algorithm for accomplishing the lowest detection limit, the gamma-ray spectrum from a 226Ra point was collected and nine different methods were attempted for spectral analysis. The lowest detection limit of 0.99 Bq for an hour counting occurred when the spectrum was integrated in the energy region of 50-2520 keV. To extend 226Ra analysis to live fish, a Monte Carlo simulation model with a cylindrical fish in a water container was built using the MCNP code. From simulation results, the spatial distribution of the efficiency and the efficiency correction factor for the live fish model were determined. The MCNP model will be able to be conveniently modified when a different fish or container geometry is employed as fish grow up in real experiments.
An evaluation of a manganese bath system having a new geometry through MCNP modelling.
Khabaz, Rahim
2012-12-01
In this study, an approximate symmetric cylindrical manganese bath system with equal diameter and height was appraised using a Monte Carlo simulation. For nine sizes of the tank filled with MnSO(4).H(2)O solution of three different concentrations, the necessary correction factors involved in the absolute measurement of neutron emission rate were determined by a detailed modelling of the MCNP4C code with the ENDF/B-VII.0 neutron cross section data library. The results obtained were also used to determine the optimum dimensions of the bath for each concentration of solution in the calibration of (241)Am-Be and (252)Cf sources. Also, the amount of gamma radiation produced as a result of (n,γ) the reaction with the nuclei of the manganese sulphate solution that escaped from the boundary of each tank was evaluated. This gamma can be important for the background in NaI(Tl) detectors and issues concerned with radiation protection.
Multi-group Fokker-Planck proton transport in MCNP{trademark}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, K.J.
1997-11-01
MCNP has been enhanced to perform proton transport using a multigroup Fokker Planck (MGFP) algorithm with primary emphasis on proton radiography simulations. The new method solves the Fokker Planck approximation to the Boltzmann transport equation for the small angle multiple scattering portion of proton transport. Energy loss is accounted for by applying a group averaged stopping power over each transport step. Large angle scatter and non-inelastic events are treated as extinction. Comparisons with the more rigorous LAHET code show agreement to a few per cent for the total transmitted currents. The angular distributions through copper and low Z compounds showmore » good agreement between LAHET and MGFP with the MGFP method being slightly less forward peaked and without the large angle tails apparent in the LAHET simulation. Suitability of this method for proton radiography simulations is shown for a simple problem of a hole in a copper slab. LAHET and MGFP calculations of position, angle and energy through more complex objects are presented.« less
MCNP-based computational model for the Leksell gamma knife.
Trnka, Jiri; Novotny, Josef; Kluson, Jaroslav
2007-01-01
We have focused on the usage of MCNP code for calculation of Gamma Knife radiation field parameters with a homogenous polystyrene phantom. We have investigated several parameters of the Leksell Gamma Knife radiation field and compared the results with other studies based on EGS4 and PENELOPE code as well as the Leksell Gamma Knife treatment planning system Leksell GammaPlan (LGP). The current model describes all 201 radiation beams together and simulates all the sources in the same time. Within each beam, it considers the technical construction of the source, the source holder, collimator system, the spherical phantom, and surrounding material. We have calculated output factors for various sizes of scoring volumes, relative dose distributions along basic planes including linear dose profiles, integral doses in various volumes, and differential dose volume histograms. All the parameters have been calculated for each collimator size and for the isocentric configuration of the phantom. We have found the calculated output factors to be in agreement with other authors' works except the case of 4 mm collimator size, where averaging over the scoring volume and statistical uncertainties strongly influences the calculated results. In general, all the results are dependent on the choice of the scoring volume. The calculated linear dose profiles and relative dose distributions also match independent studies and the Leksell GammaPlan, but care must be taken about the fluctuations within the plateau, which can influence the normalization, and accuracy in determining the isocenter position, which is important for comparing different dose profiles. The calculated differential dose volume histograms and integral doses have been compared with data provided by the Leksell GammaPlan. The dose volume histograms are in good agreement as well as integral doses calculated in small calculation matrix volumes. However, deviations in integral doses up to 50% can be observed for large volumes such as for the total skull volume. The differences observed in treatment of scattered radiation between the MC method and the LGP may be important in this case. We have also studied the influence of differential direction sampling of primary photons and have found that, due to the anisotropic sampling, doses around the isocenter deviate from each other by up to 6%. With caution about the details of the calculation settings, it is possible to employ the MCNP Monte Carlo code for independent verification of the Leksell Gamma Knife radiation field properties.
Development of the 3DHZETRN code for space radiation protection
NASA Astrophysics Data System (ADS)
Wilson, John; Badavi, Francis; Slaba, Tony; Reddell, Brandon; Bahadori, Amir; Singleterry, Robert
Space radiation protection requires computationally efficient shield assessment methods that have been verified and validated. The HZETRN code is the engineering design code used for low Earth orbit dosimetric analysis and astronaut record keeping with end-to-end validation to twenty percent in Space Shuttle and International Space Station operations. HZETRN treated diffusive leakage only at the distal surface limiting its application to systems with a large radius of curvature. A revision of HZETRN that included forward and backward diffusion allowed neutron leakage to be evaluated at both the near and distal surfaces. That revision provided a deterministic code of high computational efficiency that was in substantial agreement with Monte Carlo (MC) codes in flat plates (at least to the degree that MC codes agree among themselves). In the present paper, the 3DHZETRN formalism capable of evaluation in general geometry is described. Benchmarking will help quantify uncertainty with MC codes (Geant4, FLUKA, MCNP6, and PHITS) in simple shapes such as spheres within spherical shells and boxes. Connection of the 3DHZETRN to general geometry will be discussed.
Neutron Radiography and Computed Tomography at Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raine, Dudley A. III; Hubbard, Camden R.; Whaley, Paul M.
1997-12-31
The capability to perform neutron radiography and computed tomography is being developed at Oak Ridge National Laboratory. The facility will be located at the High Flux Isotope Reactor (HFIR), which has the highest steady state neutron flux of any reactor in the world. The Monte Carlo N-Particle transport code (MCNP), versions 4A and 4B, has been used extensively in the design phase of the facility to predict and optimize the operating characteristics, and to ensure the safety of personnel working in and around the blockhouse. Neutrons are quite penetrating in most engineering materials and can be useful to detect internalmore » flaws and features. Hydrogen atoms, such as in a hydrocarbon fuel, lubricant or a metal hydride, are relatively opaque to neutron transmission. Thus, neutron based tomography or radiography is ideal to image their presence. The source flux also provides unparalleled flexibility for future upgrades, including real time radiography where dynamic processes can be observed. A novel tomography detector has been designed using optical fibers and digital technology to provide a large dynamic range for reconstructions. Film radiography is also available for high resolution imaging applications. This paper summarizes the results of the design phase of this facility and the potential benefits to science and industry.« less
Assay of the Martian Regolith with Neutrons
NASA Technical Reports Server (NTRS)
Drake, Darrell M.
1997-01-01
The purpose of the research is to combine experiments and Monte Carlo transport of neutrons through volume of soil in an attempt to model neutron leakage from planetary surfaces. Emphasis is given to the change of neutron spectra as a function of water content and location. During the first stage of effort, two experiments were conducted in which leakage of neutrons from a Pu-Be source through about 30 g/cm(exp 2) of soil were measured with several counters. A Monte Carlo code, MCNP, has been used to model many of the 100 individual runs of the experiment. Hydrogen is the element that has the most dramatic effect on the neutron spectrum and its effect on the neutron spectrum is almost the same whether it is in the form of water or polyethylene. In order to simulate various water configurations, sheets of polyethylene have been used between layers of soil as well as water in several concentrations up to 18%. Comparison of experimental results to theoretical predictions made with the MCNP code were disappointing for low concentrations of water. We have made extensive calculations to see if room return could be the cause of the discrepancies. Water concentrations of the 'dry' soil were measured by two different laboratories and differed only by 0.5%. We have made calculations to optimize the next experiment and are investigating other methods of determining the water content of 'dry' soil.
Pohorecki, Wladyslaw; Obryk, Barbara
2017-09-29
The results of nuclear heating measured by means of thermoluminescent dosemeters (TLD-LiF) in a Cu block irradiated by 14 MeV neutrons are presented. The integral Cu experiment relevant for verification of copper nuclear data at neutron energies characteristic for fusion facilities was performed in the ENEA FNG Laboratory at Frascati. Five types of TLDs were used: highly photon sensitive LiF:Mg,Cu,P (MCP-N), 7LiF:Mg,Cu,P (MCP-7) and standard, lower sensitivity LiF:Mg,Ti (MTS-N), 7LiF:Mg,Ti (MTS-7) and 6LiF:Mg,Ti (MTS-6). Calibration of the detectors was performed with gamma rays in terms of air-kerma (10 mGy of 137Cs air-kerma). Nuclear heating in the Cu block was also calculated with the use of MCNP transport code Nuclear heating in Cu and air in TLD's positions was calculated as well. The nuclear heating contribution from all simulated by MCNP6 code particles including protons, deuterons, alphas tritons and heavier ions produced by the neutron interactions were calculated. A trial of the direct comparison between experimental results and results of simulation was performed. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Investigation on gamma and neutron radiation shielding parameters for BaO/SrO‒Bi2O3‒B2O3 glasses
NASA Astrophysics Data System (ADS)
Sayyed, M. I.; Lakshminarayana, G.; Dong, M. G.; Ersundu, M. Çelikbilek; Ersundu, A. E.; Kityk, I. V.
2018-04-01
In this work, mass attenuation coefficients (μ/ρ), effective atomic number (Zeff), electron density (Ne), mean free path (MFP), and half-value layer (HVL) of 20 BaO/SrO‒(x) Bi2O3‒(80‒x) B2O3 glasses (where x=10, 20, 30, 40, 50 and 60 mol%) were calculated using WinXCom program and MCNP5 code. The obtained (μ/ρ) results using both MCNP5 code and WinXCom program were in good agreement. It is found that the addition of Bi2O3 leads to increase the Zeff values in both BaO/SrO‒Bi2O3‒B2O3 glass systems. However, the Zeff values of the BaO‒Bi2O3‒B2O3 glass system are higher than those of the SrO‒Bi2O3‒B2O3 glasses. The fast neutrons effective removal cross sections (ΣR) for 20 SrO‒40 Bi2O3‒40 B2O3 glass is the highest among all studied glasses. The calculated half-value layer values were compared with different glass systems and it was found that the shielding properties of the selected glasses are comparable or even better than other glass systems such as phosphate glasses.
Coupled neutronics and thermal-hydraulics numerical simulations of a Molten Fast Salt Reactor (MFSR)
NASA Astrophysics Data System (ADS)
Laureau, A.; Rubiolo, P. R.; Heuer, D.; Merle-Lucotte, E.; Brovchenko, M.
2014-06-01
Coupled neutronics and thermalhydraulic numerical analyses of a molten salt fast reactor are presented. These preliminary numerical simulations are carried-out using the Monte Carlo code MCNP and the Computation Fluid Dynamic code OpenFOAM. The main objectives of this analysis performed at steady-reactor conditions are to confirm the acceptability of the current neutronic and thermalhydraulic designs of the reactor, to study the effects of the reactor operating conditions on some of the key MSFR design parameters such as the temperature peaking factor. The effects of the precursor's motion on the reactor safety parameters such as the effective fraction of delayed neutrons have been evaluated.
Fission Reaction Event Yield Algorithm FREYA 2.0.2
Verbeke, J. M.; Randrup, J.; Vogt, R.
2017-09-01
The purpose of this paper is to present the main differences between FREYA versions 1.0 and 2.0.2. FREYA (Fission Reaction Event Yield Algorithm) is a fission event generator which models complete fission events. As such, it automatically includes fluctuations as well as correlations between observables, resulting from conservation of energy and momentum. The main differences between the two versions are: additional fissionable isotopes, angular momentum conservation, Giant Dipole Resonance form factor for the statistical emission of photons, improved treatment of fission photon emission using RIPL database, and dependence on the incident neutron direction. FREYA 2.0.2 has been integrated into themore » LLNL Fission Library 2.0.2, which has itself been integrated into MCNP6.2, TRIPOLI-4.10, and can be called from Geant4.10.« less
Analysis of activation and shutdown contact dose rate for EAST neutral beam port
NASA Astrophysics Data System (ADS)
Chen, Yuqing; Wang, Ji; Zhong, Guoqiang; Li, Jun; Wang, Jinfang; Xie, Yahong; Wu, Bin; Hu, Chundong
2017-12-01
For the safe operation and maintenance of neutral beam injector (NBI), specific activity and shutdown contact dose rate of the sample material SS316 are estimated around the experimental advanced superconducting tokamak (EAST) neutral beam port. Firstly, the neutron emission intensity is calculated by TRANSP code while the neutral beam is co-injected to EAST. Secondly, the neutron activation and shutdown contact dose rates for the neutral beam sample materials SS316 are derived by the Monte Carlo code MCNP and the inventory code FISPACT-2007. The simulations indicate that the primary radioactive nuclides of SS316 are 58Co and 54Mn. The peak contact dose rate is 8.52 × 10-6 Sv/h after EAST shutdown one second. That is under the International Thermonuclear Experimental Reactor (ITER) design values 1 × 10-5 Sv/h.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mollerach, R.; Leszczynski, F.; Fink, J.
2006-07-01
In 2005 the Argentine Government took the decision to complete the construction of the Atucha-II nuclear power plant, which has been progressing slowly during the last ten years. Atucha-II is a 745 MWe nuclear station moderated and cooled with heavy water, of German (Siemens) design located in Argentina. It has a pressure-vessel design with 451 vertical coolant channels, and the fuel assemblies (FA) are clusters of 37 natural UO{sub 2} rods with an active length of 530 cm. For the reactor physics area, a revision and update calculation methods and models (cell, supercell and reactor) was recently carried out coveringmore » cell, supercell (control rod) and core calculations. As a validation of the new models some benchmark comparisons were done with Monte Carlo calculations with MCNP5. This paper presents comparisons of cell and supercell benchmark problems based on a slightly idealized model of the Atucha-I core obtained with the WIMS-D5 and DRAGON codes with MCNP5 results. The Atucha-I core was selected because it is smaller, similar from a neutronic point of view, and more symmetric than Atucha-II Cell parameters compared include cell k-infinity, relative power levels of the different rings of fuel rods, and some two-group macroscopic cross sections. Supercell comparisons include supercell k-infinity changes due to the control rods (tubes) of steel and hafnium. (authors)« less
Rates for neutron-capture reactions on tungsten isotopes in iron meteorites. [Abstract only
NASA Technical Reports Server (NTRS)
Masarik, J.; Reedy, R. C.
1994-01-01
High-precision W isotopic analyses by Harper and Jacobsen indicate the W-182/W-183 ratio in the Toluca iron meteorite is shifted by -(3.0 +/- 0.9) x 10(exp -4) relative to a terrestrial standard. Possible causes of this shift are neutron-capture reactions on W during Toluca's approximately 600-Ma exposure to cosmic ray particles or radiogenic growth of W-182 from 9-Ma Hf-182 in the silicate portion of the Earth after removal of W to the Earth's core. Calculations for the rates of neutron-capture reactions on W isotopes were done to study the first possibility. The LAHET Code System (LCS) which consists of the Los Alamos High Energy Transport (LAHET) code and the Monte Carlo N-Particle(MCNP) transport code was used to numerically simulate the irradiation of the Toluca iron meteorite by galactic-cosmic-ray (GCR) particles and to calculate the rates of W(n, gamma) reactions. Toluca was modeled as a 3.9-m-radius sphere with the composition of a typical IA iron meteorite. The incident GCR protons and their interactions were modeled with LAHET, which also handled the interactions of neutrons with energies above 20 MeV. The rates for the capture of neutrons by W-182, W-183, and W-186 were calculated using the detailed library of (n, gamma) cross sections in MCNP. For this study of the possible effect of W(n, gamma) reactions on W isotope systematics, we consider the peak rates. The calculated maximum change in the normalized W-182/W-183 ratio due to neutron-capture reactions cannot account for more than 25% of the mass 182 deficit observed in Toluca W.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacFarlane, R. E.
An accurate representation of the scattering of neutrons by the materials used to build cold sources at neutron scattering facilities is important for the initial design and optimization of a cold source, and for the analysis of experimental results obtained using the cold source. In practice, this requires a good representation of the physics of scattering from the material, a method to convert this into observable quantities (such as scattering cross sections), and a method to use the results in a neutron transport code (such as the MCNP Monte Carlo code). At Los Alamos, the authors have been developing thesemore » capabilities over the last ten years. The final set of cold-moderator evaluations, together with evaluations for conventional moderator materials, was released in 1994. These materials have been processed into MCNP data files using the NJOY Nuclear Data Processing System. Over the course of this work, they were able to develop a new module for NJOY called LEAPR based on the LEAP + ADDELT code from the UK as modified by D.J. Picton for cold-moderator calculations. Much of the physics for methane came from Picton`s work. The liquid hydrogen work was originally based on a code using the Young-Koppel approach that went through a number of hands in Europe (including Rolf Neef and Guy Robert). It was generalized and extended for LEAPR, and depends strongly on work by Keinert and Sax of the University of Stuttgart. Thus, their collection of cold-moderator scattering kernels is truly an international effort, and they are glad to be able to return the enhanced evaluations and processing techniques to the international community. In this paper, they give sections on the major cold moderator materials (namely, solid methane, liquid methane, and liquid hydrogen) using each section to introduce the relevant physics for that material and to show typical results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, J; Culberson, W; DeWerd, L
Purpose: To test the validity of a windowless extrapolation chamber used to measure surface dose rate from planar ophthalmic applicators and to compare different Monte Carlo based codes for deriving correction factors. Methods: Dose rate measurements were performed using a windowless, planar extrapolation chamber with a {sup 90}Sr/{sup 90}Y Tracerlab RA-1 ophthalmic applicator previously calibrated at the National Institute of Standards and Technology (NIST). Capacitance measurements were performed to estimate the initial air gap width between the source face and collecting electrode. Current was measured as a function of air gap, and Bragg-Gray cavity theory was used to calculate themore » absorbed dose rate to water. To determine correction factors for backscatter, divergence, and attenuation from the Mylar entrance window found in the NIST extrapolation chamber, both EGSnrc Monte Carlo user code and Monte Carlo N-Particle Transport Code (MCNP) were utilized. Simulation results were compared with experimental current readings from the windowless extrapolation chamber as a function of air gap. Additionally, measured dose rate values were compared with the expected result from the NIST source calibration to test the validity of the windowless chamber design. Results: Better agreement was seen between EGSnrc simulated dose results and experimental current readings at very small air gaps (<100 µm) for the windowless extrapolation chamber, while MCNP results demonstrated divergence at these small gap widths. Three separate dose rate measurements were performed with the RA-1 applicator. The average observed difference from the expected result based on the NIST calibration was −1.88% with a statistical standard deviation of 0.39% (k=1). Conclusion: EGSnrc user code will be used during future work to derive correction factors for extrapolation chamber measurements. Additionally, experiment results suggest that an entrance window is not needed in order for an extrapolation chamber to provide accurate dose rate measurements for a planar ophthalmic applicator.« less
NASA Astrophysics Data System (ADS)
Makarevich, K. O.; Minenko, V. F.; Verenich, K. A.; Kuten, S. A.
2016-05-01
This work is dedicated to modeling dental radiographic examinations to assess the absorbed doses of patients and effective doses. For simulating X-ray spectra, the TASMIP empirical model is used. Doses are assessed on the basis of the Monte Carlo method by using MCNP code for voxel phantoms of ICRP. The results of the assessment of doses to individual organs and effective doses for different types of dental examinations and features of X-ray tube are presented.
NASA Astrophysics Data System (ADS)
Antoni, Rodolphe; Bourgois, Laurent
2017-12-01
In this work, the calculation of specific dose distribution in water is evaluated in MCNP6.1 with the regular condensed history algorithm the "detailed electron energy-loss straggling logic" and the new electrons transport algorithm proposed the "single event algorithm". Dose Point Kernel (DPK) is calculated with monoenergetic electrons of 50, 100, 500, 1000 and 3000 keV for different scoring cells dimensions. A comparison between MCNP6 results and well-validated codes for electron-dosimetry, i.e., EGSnrc or Penelope, is performed. When the detailed electron energy-loss straggling logic is used with default setting (down to the cut-off energy 1 keV), we infer that the depth of the dose peak increases with decreasing thickness of the scoring cell, largely due to combined step-size and boundary crossing artifacts. This finding is less prominent for 500 keV, 1 MeV and 3 MeV dose profile. With an appropriate number of sub-steps (ESTEP value in MCNP6), the dose-peak shift is almost complete absent to 50 keV and 100 keV electrons. However, the dose-peak is more prominent compared to EGSnrc and the absorbed dose tends to be underestimated at greater depths, meaning that boundaries crossing artifact are still occurring while step-size artifacts are greatly reduced. When the single-event mode is used for the whole transport, we observe the good agreement of reference and calculated profile for 50 and 100 keV electrons. Remaining artifacts are fully vanished, showing a possible transport treatment for energies less than a hundred of keV and accordance with reference for whatever scoring cell dimension, even if the single event method initially intended to support electron transport at energies below 1 keV. Conversely, results for 500 keV, 1 MeV and 3 MeV undergo a dramatic discrepancy with reference curves. These poor results and so the current unreliability of the method is for a part due to inappropriate elastic cross section treatment from the ENDF/B-VI.8 library in those energy ranges. Accordingly, special care has to be taken in setting choice for calculating electron dose distribution with MCNP6, in particular with regards to dosimetry or nuclear medicine applications.
NASA Astrophysics Data System (ADS)
Poškus, A.
2016-09-01
This paper evaluates the accuracy of the single-event (SE) and condensed-history (CH) models of electron transport in MCNP6.1 when simulating characteristic Kα, total K (=Kα + Kβ) and Lα X-ray emission from thick targets bombarded by electrons with energies from 5 keV to 30 keV. It is shown that the MCNP6.1 implementation of the CH model for the K-shell impact ionization leads to underestimation of the K yield by 40% or more for the elements with atomic numbers Z < 15 and overestimation of the Kα yield by more than 40% for the elements with Z > 25. The Lα yields are underestimated by more than an order of magnitude in CH mode, because MCNP6.1 neglects X-ray emission caused by electron-impact ionization of L, M and higher shells in CH mode (the Lα yields calculated in CH mode reflect only X-ray fluorescence, which is mainly caused by photoelectric absorption of bremsstrahlung photons). The X-ray yields calculated by MCNP6.1 in SE mode (using ENDF/B-VII.1 library data) are more accurate: the differences of the calculated and experimental K yields are within the experimental uncertainties for the elements C, Al and Si, and the calculated Kα yields are typically underestimated by (20-30)% for the elements with Z > 25, whereas the Lα yields are underestimated by (60-70)% for the elements with Z > 49. It is also shown that agreement of the experimental X-ray yields with those calculated in SE mode is additionally improved by replacing the ENDF/B inner-shell electron-impact ionization cross sections with the set of cross sections obtained from the distorted-wave Born approximation (DWBA), which are also used in the PENELOPE code system. The latter replacement causes a decrease of the average relative difference of the experimental X-ray yields and the simulation results obtained in SE mode to approximately 10%, which is similar to accuracy achieved with PENELOPE. This confirms that the DWBA inner-shell impact ionization cross sections are significantly more accurate than the corresponding ENDF/B cross sections when energy of incident electrons is of the order of the binding energy.
NASA Technical Reports Server (NTRS)
Suhs, Norman E.; Dietz, William E.; Rogers, Stuart E.; Nash, Steven M.; Onufer, Jeffrey T.
2000-01-01
PEGASUS 5.1 is the latest version of the PEGASUS series of mesh interpolation codes. It is a fully three-dimensional code. The main purpose for the development of this latest version was to significantly decrease the number of user inputs required and to allow for easier operation of the code. This guide is to be used with the user's manual for version 4 of PEGASUS. A basic description of methods used in both versions is described in the Version 4 manual. A complete list of all user inputs used in version 5.1 is given in this guide.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.
1991-01-01
The Finite Difference Time Domain Electromagnetic Scattering Code Version A is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). This manual provides a description of the code and corresponding results for the default scattering problem. In addition to the description, the operation, resource requirements, version A code capabilities, a description of each subroutine, a brief discussion of the radar cross section computations, and a discussion of the scattering results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiller, Mauritius M.; Veinot, Kenneth G.; Easterly, Clay E.
In this study, methods are addressed to reduce the computational time to compute organ-dose rate coefficients using Monte Carlo techniques. Several variance reduction techniques are compared including the reciprocity method, importance sampling, weight windows and the use of the ADVANTG software package. For low-energy photons, the runtime was reduced by a factor of 10 5 when using the reciprocity method for kerma computation for immersion of a phantom in contaminated water. This is particularly significant since impractically long simulation times are required to achieve reasonable statistical uncertainties in organ dose for low-energy photons in this source medium and geometry. Althoughmore » the MCNP Monte Carlo code is used in this paper, the reciprocity technique can be used equally well with other Monte Carlo codes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, T. F.; Chen, Z. J.; Peng, X. Y.
A radiation shielding has been designed to reduce scattered neutrons and background gamma-rays for the new double-ring Time Of Flight Enhanced Diagnostics (TOFED). The shielding was designed based on simulation with the Monte Carlo code MCNP5. Dedicated model of the EAST tokamak has been developed together with the emission neutron source profile and spectrum; the latter were simulated with the Nubeam and GENESIS codes. Significant reduction of background radiation at the detector can be achieved and this satisfies the requirement of TOFED. The intensities of the scattered and direct neutrons in the line of sight of the TOFED neutron spectrometermore » at EAST are studied for future data interpretation.« less
Mohammadi, A; Hassanzadeh, M; Gharib, M
2016-02-01
In this study, shielding calculation and criticality safety analysis were carried out for general material testing reactor (MTR) research reactors interim storage and relevant transportation cask. During these processes, three major terms were considered: source term, shielding, and criticality calculations. The Monte Carlo transport code MCNP5 was used for shielding calculation and criticality safety analysis and ORIGEN2.1 code for source term calculation. According to the results obtained, a cylindrical cask with body, top, and bottom thicknesses of 18, 13, and 13 cm, respectively, was accepted as the dual-purpose cask. Furthermore, it is shown that the total dose rates are below the normal transport criteria that meet the standards specified. Copyright © 2015 Elsevier Ltd. All rights reserved.
High-Fidelity Coupled Monte-Carlo/Thermal-Hydraulics Calculations
NASA Astrophysics Data System (ADS)
Ivanov, Aleksandar; Sanchez, Victor; Ivanov, Kostadin
2014-06-01
Monte Carlo methods have been used as reference reactor physics calculation tools worldwide. The advance in computer technology allows the calculation of detailed flux distributions in both space and energy. In most of the cases however, those calculations are done under the assumption of homogeneous material density and temperature distributions. The aim of this work is to develop a consistent methodology for providing realistic three-dimensional thermal-hydraulic distributions by coupling the in-house developed sub-channel code SUBCHANFLOW with the standard Monte-Carlo transport code MCNP. In addition to the innovative technique of on-the fly material definition, a flux-based weight-window technique has been introduced to improve both the magnitude and the distribution of the relative errors. Finally, a coupled code system for the simulation of steady-state reactor physics problems has been developed. Besides the problem of effective feedback data interchange between the codes, the treatment of temperature dependence of the continuous energy nuclear data has been investigated.
Suárez, H Saurí; Becker, F; Klix, A; Pang, B; Döring, T
2018-06-07
To store and dispose spent nuclear fuel, shielding casks are employed to reduce the emitted radiation. To evaluate the exposure of employees handling such casks, Monte Carlo radiation transport codes can be employed. Nevertheless, to assess the reliability of these codes and nuclear data, experimental checks are required. In this study, a neutron generator (NG) producing neutrons of 2.5 MeV was employed to simulate neutrons produced in spent nuclear fuel. Different configurations of shielding layers of steel and polyethylene were positioned between the target of the NG and a NE-213 detector. The results of the measurements of neutron and γ radiation and the corresponding simulations with the code MCNP6 are presented. Details of the experimental set-up as well as neutron and photon flux spectra are provided as reference points for such NG investigations with shielding structures.
Monte Carlo simulations in Nuclear Medicine
NASA Astrophysics Data System (ADS)
Loudos, George K.
2007-11-01
Molecular imaging technologies provide unique abilities to localise signs of disease before symptoms appear, assist in drug testing, optimize and personalize therapy, and assess the efficacy of treatment regimes for different types of cancer. Monte Carlo simulation packages are used as an important tool for the optimal design of detector systems. In addition they have demonstrated potential to improve image quality and acquisition protocols. Many general purpose (MCNP, Geant4, etc) or dedicated codes (SimSET etc) have been developed aiming to provide accurate and fast results. Special emphasis will be given to GATE toolkit. The GATE code currently under development by the OpenGATE collaboration is the most accurate and promising code for performing realistic simulations. The purpose of this article is to introduce the non expert reader to the current status of MC simulations in nuclear medicine and briefly provide examples of current simulated systems, and present future challenges that include simulation of clinical studies and dosimetry applications.
Review and verification of CARE 3 mathematical model and code
NASA Technical Reports Server (NTRS)
Rose, D. M.; Altschul, R. E.; Manke, J. W.; Nelson, D. L.
1983-01-01
The CARE-III mathematical model and code verification performed by Boeing Computer Services were documented. The mathematical model was verified for permanent and intermittent faults. The transient fault model was not addressed. The code verification was performed on CARE-III, Version 3. A CARE III Version 4, which corrects deficiencies identified in Version 3, is being developed.
Iwatani, K; Hoshi, M; Shizuma, K; Hiraoka, M; Hayakawa, N; Oka, T; Hasai, H
1994-10-01
A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated 252Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate 152Eu and 60Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated 252Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen.
NASA Astrophysics Data System (ADS)
Neves, Lucio P.; Santos, William S.; Gorski, Ronan; Perini, Ana P.; Maia, Ana F.; Caldas, Linda V. E.; Orengo, Gilberto
2014-11-01
Several radioisotopes are produced at Instituto de Pesquisas Energéticas e Nucleares for the use in medical treatments, including the activation of 192Ir sources. These sources are suitable for brachytherapy treatments, due to their low or high activity, depending on the concentration of 192Ir, easiness to manufacture, small size, stable daughter products and the possibility of re-utilization. They may be used for the treatment of prostate, cervix, head and neck, skin, breast, gallbladder, uterus, vagina, lung, rectum, and eye cancer treatment. In this work, the use of some 192Ir sources was studied for the treatment of esophagus cancer, especially the dose determination of important structures, such as those on the mediastinum. This was carried out utilizing a FASH anthropomorphic phantom and the MCNP5 Monte Carlo code to transport the radiation through matter. It was possible to observe that the doses at lungs, breast, esophagus, thyroid and heart were the highest, which was expected due to their proximity to the source. Therefore, the data are useful to assess the representative dose specific to brachytherapy treatments on the esophagus for radiation protection purposes. The use of brachytherapy sources was studied for the treatment of esophagus cancer. FASH anthropomorphic phantom and MCNP5 Monte Carlo code were employed. The doses at lungs, breast, esophagus, thyroid and heart were the highest. The data is useful to assess the representative doses of treatments on the esophagus.
Shielding calculations for industrial 5/7.5MeV electron accelerators using the MCNP Monte Carlo Code
NASA Astrophysics Data System (ADS)
Peri, Eyal; Orion, Itzhak
2017-09-01
High energy X-rays from accelerators are used to irradiate food ingredients to prevent growth and development of unwanted biological organisms in food, and by that extend the shelf life of the products. The production of X-rays is done by accelerating 5 MeV electrons and bombarding them into a heavy target (high Z). Since 2004, the FDA has approved using 7.5 MeV energy, providing higher production rates with lower treatments costs. In this study we calculated all the essential data needed for a straightforward concrete shielding design of typical food accelerator rooms. The following evaluation is done using the MCNP Monte Carlo code system: (1) Angular dependence (0-180°) of photon dose rate for 5 MeV and 7.5 MeV electron beams bombarding iron, aluminum, gold, tantalum, and tungsten targets. (2) Angular dependence (0-180°) spectral distribution simulations of bremsstrahlung for gold, tantalum, and tungsten bombarded by 5 MeV and 7.5 MeV electron beams. (3) Concrete attenuation calculations in several photon emission angles for the 5 MeV and 7.5 MeV electron beams bombarding a tantalum target. Based on the simulation, we calculated the expected increase in dose rate for facilities intending to increase the energy from 5 MeV to 7.5 MeV, and the concrete width needed to be added in order to keep the existing dose rate unchanged.
INDIVIDUAL DOSIMETRY IN DISPOSAL REPOSITORY OF HEAT-GENERATING NUCLEAR WASTE.
Pang, Bo; Saurí Suárez, Héctor; Becker, Frank
2016-09-01
Certain working scenarios in a disposal facility of heat-generating nuclear waste might lead to an enhanced level of radiation exposure for workers in such facilities. Hence, a realistic estimation of the personal dose during individual working scenarios is desired. In this study, the general-purpose Monte Carlo N-Particle code MCNP6 (Pelowitz, D. B. (ed). MCNP6 user manual LA-CP-13-00634, Rev. 0 (2013)) was applied to simulate a representative radiation field in a disposal facility. A tool to estimate the personal dose was then proposed by taking into account the influence of individual motion sequences during working scenarios. As basis for this approach, a movable whole-body phantom was developed to describe individual body gestures of the workers during motion sequences. In this study, the proposed method was applied to the German concept of geological disposal in rock salt. The feasibility of the proposed approach was demonstrated with an example of working scenario in an emplacement drift of a rock salt mine. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Cai, Yao; Hu, Huasi; Lu, Shuangying; Jia, Qinggang
2018-05-01
To minimize the size and weight of a vehicle-mounted accelerator-driven D-T neutron source and protect workers from unnecessary irradiation after the equipment shutdown, a method to optimize radiation shielding material aiming at compactness, lightweight, and low activation for the fast neutrons was developed. The method employed genetic algorithm, combining MCNP and ORIGEN codes. A series of composite shielding material samples were obtained by the method step by step. The volume and weight needed to build a shield (assumed as a coaxial tapered cylinder) were adopted to compare the performance of the materials visually and conveniently. The results showed that the optimized materials have excellent performance in comparison with the conventional materials. The "MCNP6-ACT" method and the "rigorous two steps" (R2S) method were used to verify the activation grade of the shield irradiated by D-T neutrons. The types of radionuclide, the energy spectrum of corresponding decay gamma source, and the variation in decay gamma dose rate were also computed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Advances in the computation of the Sjöstrand, Rossi, and Feynman distributions
Talamo, A.; Gohar, Y.; Gabrielli, F.; ...
2017-02-01
This study illustrates recent computational advances in the application of the Sjöstrand (area), Rossi, and Feynman methods to estimate the effective multiplication factor of a subcritical system driven by an external neutron source. The methodologies introduced in this study have been validated with the experimental results from the KUKA facility of Japan by Monte Carlo (MCNP6 and MCNPX) and deterministic (ERANOS, VARIANT, and PARTISN) codes. When the assembly is driven by a pulsed neutron source generated by a particle accelerator and delayed neutrons are at equilibrium, the Sjöstrand method becomes extremely fast if the integral of the reaction rate frommore » a single pulse is split into two parts. These two integrals distinguish between the neutron counts during and after the pulse period. To conclude, when the facility is driven by a spontaneous fission neutron source, the timestamps of the detector neutron counts can be obtained up to the nanosecond precision using MCNP6, which allows obtaining the Rossi and Feynman distributions.« less
Moradi, Farhad; Mahdavi, Seyed Rabi; Mostaar, Ahmad; Motamedi, Mohsen
2012-01-01
In this study the commissioning of a dose calculation algorithm in a currently used treatment planning system was performed and the calculation accuracy of two available methods in the treatment planning system i.e., collapsed cone convolution (CCC) and equivalent tissue air ratio (ETAR) was verified in tissue heterogeneities. For this purpose an inhomogeneous phantom (IMRT thorax phantom) was used and dose curves obtained by the TPS (treatment planning system) were compared with experimental measurements and Monte Carlo (MCNP code) simulation. Dose measurements were performed by using EDR2 radiographic films within the phantom. Dose difference (DD) between experimental results and two calculation methods was obtained. Results indicate maximum difference of 12% in the lung and 3% in the bone tissue of the phantom between two methods and the CCC algorithm shows more accurate depth dose curves in tissue heterogeneities. Simulation results show the accurate dose estimation by MCNP4C in soft tissue region of the phantom and also better results than ETAR method in bone and lung tissues. PMID:22973081
Neutron-gamma flux and dose calculations in a Pressurized Water Reactor (PWR)
NASA Astrophysics Data System (ADS)
Brovchenko, Mariya; Dechenaux, Benjamin; Burn, Kenneth W.; Console Camprini, Patrizio; Duhamel, Isabelle; Peron, Arthur
2017-09-01
The present work deals with Monte Carlo simulations, aiming to determine the neutron and gamma responses outside the vessel and in the basemat of a Pressurized Water Reactor (PWR). The model is based on the Tihange-I Belgian nuclear reactor. With a large set of information and measurements available, this reactor has the advantage to be easily modelled and allows validation based on the experimental measurements. Power distribution calculations were therefore performed with the MCNP code at IRSN and compared to the available in-core measurements. Results showed a good agreement between calculated and measured values over the whole core. In this paper, the methods and hypotheses used for the particle transport simulation from the fission distribution in the core to the detectors outside the vessel of the reactor are also summarized. The results of the simulations are presented including the neutron and gamma doses and flux energy spectra. MCNP6 computational results comparing JEFF3.1 and ENDF-B/VII.1 nuclear data evaluations and sensitivity of the results to some model parameters are presented.
NASA Astrophysics Data System (ADS)
Kuznetsov, Andrey; Evsenin, Alexey; Gorshkov, Igor; Osetrov, Oleg; Vakhtin, Dmitry
2009-12-01
Device for detection of explosives, radioactive and heavily shielded nuclear materials in luggage and cargo containers based on Nanosecond Neutron Analysis/Associated Particles Technique (NNA/APT) is under construction. Detection module consists of a small neutron generator with built-in position-sensitive detector of associated alpha-particles, and several scintillator-based gamma-ray detectors. Explosives and other hazardous chemicals are detected by analyzing secondary high-energy gamma-rays from reactions of fast neutrons with materials inside a container. The same gamma-ray detectors are used to detect unshielded radioactive and nuclear materials. An array of several neutron detectors is used to detect fast neutrons from induced fission of nuclear materials. Coincidence and timing analysis allows one to discriminate between fission neutrons and scattered probing neutrons. Mathematical modeling by MCNP5 and MCNP-PoliMi codes was used to estimate the sensitivity of the device and its optimal configuration. Comparison of the features of three gamma detector types—based on BGO, NaI and LaBr3 crystals is presented.
Reanalysis of tritium production in a sphere of /sup 6/LiD irradiated by 14-MeV neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fawcett, L.R. Jr.
1985-08-01
Tritium production and activation of radiochemical detector foils in a sphere of /sup 6/LiD irradiated by a central source of 14-MeV neutrons has been reanalyzed. The /sup 6/LiD sphere consisted of 10 solid hemispherical nested shells with ampules of /sup 6/LiH, /sup 7/LiH, and activation foils located 2.2, 5, 7.7, 12.6, 20, and 30 cm from the center. The Los Alamos Monte Carlo Neutron Photon Transport Code (MCNP) was used to calculate neutron transport through the /sup 6/LiD, tritium production in the ampules, and foil activation. The MCNP input model was three-dimensional and employed ENDF/B-V cross sections for transport, tritiummore » production, and (where available) foil activation. The reanalyzed experimentally observed-to-calculated values of tritium production were 1.053 +- 2.1% in /sup 6/LiH and 0.999 +- 2.1% in /sup 7/LiH. The recalculated foil activation observed-to-calculated ratios were not generally improved over those reported in the original analysis.« less
Abou-Taleb, W M; Hassan, M H; El Mallah, E A; Kotb, S M
2018-05-01
Photoneutron production, and the dose equivalent, in the head assembly of the 15 MV Elekta Precise medical linac; operating in the faculty of Medicine at Alexandria University were estimated with the MCNP5 code. Photoneutron spectra were calculated in air and inside a water phantom to different depths as a function of the radiation field sizes. The maximum neutron fluence is 3.346×10 -9 n/cm 2 -e for a 30×30 cm 2 field size to 2-4 cm-depth in the phantom. The dose equivalent due to fast neutron increases as the field size increases, being a maximum of 0.912 ± 0.05 mSv/Gy at depth between 2 and 4 cm in the water phantom for 40×40 cm 2 field size. Photoneutron fluence and dose equivalent are larger to 100 cm from the isocenter than to 35 cm from the treatment room wall. Copyright © 2018 Elsevier Ltd. All rights reserved.
VENTURE/PC manual: A multidimensional multigroup neutron diffusion code system. Version 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapiro, A.; Huria, H.C.; Cho, K.W.
1991-12-01
VENTURE/PC is a recompilation of part of the Oak Ridge BOLD VENTURE code system, which will operate on an IBM PC or compatible computer. Neutron diffusion theory solutions are obtained for multidimensional, multigroup problems. This manual contains information associated with operating the code system. The purpose of the various modules used in the code system, and the input for these modules are discussed. The PC code structure is also given. Version 2 included several enhancements not given in the original version of the code. In particular, flux iterations can be done in core rather than by reading and writing tomore » disk, for problems which allow sufficient memory for such in-core iterations. This speeds up the iteration process. Version 3 does not include any of the special processors used in the previous versions. These special processors utilized formatted input for various elements of the code system. All such input data is now entered through the Input Processor, which produces standard interface files for the various modules in the code system. In addition, a Standard Interface File Handbook is included in the documentation which is distributed with the code, to assist in developing the input for the Input Processor.« less
Development of the ICD-10 simplified version and field test.
Paoin, Wansa; Yuenyongsuwan, Maliwan; Yokobori, Yukiko; Endo, Hiroyoshi; Kim, Sukil
2018-05-01
The International Statistical Classification of Diseases and Related Health Problems, 10th Revision (ICD-10) has been used in various Asia-Pacific countries for more than 20 years. Although ICD-10 is a powerful tool, clinical coding processes are complex; therefore, many developing countries have not been able to implement ICD-10-based health statistics (WHO-FIC APN, 2007). This study aimed to simplify ICD-10 clinical coding processes, to modify index terms to facilitate computer searching and to provide a simplified version of ICD-10 for use in developing countries. The World Health Organization Family of International Classifications Asia-Pacific Network (APN) developed a simplified version of the ICD-10 and conducted field testing in Cambodia during February and March 2016. Ten hospitals were selected to participate. Each hospital sent a team to join a training workshop before using the ICD-10 simplified version to code 100 cases. All hospitals subsequently sent their coded records to the researchers. Overall, there were 1038 coded records with a total of 1099 ICD clinical codes assigned. The average accuracy rate was calculated as 80.71% (66.67-93.41%). Three types of clinical coding errors were found. These related to errors relating to the coder (14.56%), those resulting from the physician documentation (1.27%) and those considered system errors (3.46%). The field trial results demonstrated that the APN ICD-10 simplified version is feasible for implementation as an effective tool to implement ICD-10 clinical coding for hospitals. Developing countries may consider adopting the APN ICD-10 simplified version for ICD-10 code assignment in hospitals and health care centres. The simplified version can be viewed as an introductory tool which leads to the implementation of the full ICD-10 and may support subsequent ICD-11 adoption.
NASA Astrophysics Data System (ADS)
Mortuza, Md Firoz; Lepore, Luigi; Khedkar, Kalpana; Thangam, Saravanan; Nahar, Arifatun; Jamil, Hossen Mohammad; Bandi, Laxminarayan; Alam, Md Khorshed
2018-03-01
Characterization of a 90 kCi (3330 TBq), semi-industrial, cobalt-60 gamma irradiator was performed by commissioning dosimetry and in-situ dose mapping experiments with Ceric-cerous and Fricke dosimetry systems. Commissioning dosimetry was carried out to determine dose distribution pattern of absorbed dose in the irradiation cell and products. To determine maximum and minimum absorbed dose, overdose ratio and dwell time of the tote boxes, homogeneous dummy product (rice husk) with a bulk density of 0.13 g/cm3 were used in the box positions of irradiation chamber. The regions of minimum absorbed dose of the tote boxes were observed in the lower zones of middle plane and maximum absorbed doses were found in the middle position of front plane. Moreover, as a part of dose mapping, dose rates in the wall positions and some selective strategic positions were also measured to carry out multiple irradiation program simultaneously, especially for low dose research irradiation program. In most of the cases, Monte Carlo simulation data, using Monte Carlo N-Particle eXtended code version MCNPX 2.7., were found to be in congruence with experimental values obtained from Ceric-cerous and Fricke dosimetry; however, in close proximity positions from the source, the dose rate variation between chemical dosimetry and MCNP was higher than distant positions.
MCNP HPGe detector benchmark with previously validated Cyltran model.
Hau, I D; Russ, W R; Bronson, F
2009-05-01
An exact copy of the detector model generated for Cyltran was reproduced as an MCNP input file and the detection efficiency was calculated similarly with the methodology used in previous experimental measurements and simulation of a 280 cm(3) HPGe detector. Below 1000 keV the MCNP data correlated to the Cyltran results within 0.5% while above this energy the difference between MCNP and Cyltran increased to about 6% at 4800 keV, depending on the electron cut-off energy.
Rezaeian, M; Kamali, J
2017-01-01
Dual-purpose casks can be utilized for dry interim storage and transportation of the highly radioactive spent fuel assemblies (SFAs) of Bushehr Nuclear Power Plant (NPP). Criticality safety analysis was carried out using the MCNP code for the cask containing 12, 18, or 19 SFAs. The basket materials of borated stainless steel and Boral (Al-B 4 C) were investigated, and the minimum required receptacle pitch of the basket was determined. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cullen, Dermott E.
2017-01-30
Here I attempt to explain what physically happens when we pulse an object with neutrons, specifically what we expect the time dependent behavior of the neutron population to look like. Emphasis is on the time dependent emission of both prompt and delayed neutrons. I also describe how the TART Monte Carlo transport code models this situation; see the appendix for a complete description of the model used by TART. I will also show that, as we expect, MCNP and MERCURY, produce similar results using the same delayed neutron model (again, see the appendix).
CFL3D Version 6.4-General Usage and Aeroelastic Analysis
NASA Technical Reports Server (NTRS)
Bartels, Robert E.; Rumsey, Christopher L.; Biedron, Robert T.
2006-01-01
This document contains the course notes on the computational fluid dynamics code CFL3D version 6.4. It is intended to provide from basic to advanced users the information necessary to successfully use the code for a broad range of cases. Much of the course covers capability that has been a part of previous versions of the code, with material compiled from a CFL3D v5.0 manual and from the CFL3D v6 web site prior to the current release. This part of the material is presented to users of the code not familiar with computational fluid dynamics. There is new capability in CFL3D version 6.4 presented here that has not previously been published. There are also outdated features no longer used or recommended in recent releases of the code. The information offered here supersedes earlier manuals and updates outdated usage. Where current usage supersedes older versions, notation of that is made. These course notes also provides hints for usage, code installation and examples not found elsewhere.
Maxis-A rezoning and remapping code in two dimensional cylindrical geometry
NASA Astrophysics Data System (ADS)
Lin, Zhiwei; Jiang, Shaoen; Zhang, Lu; Kuang, Longyu; Li, Hang
2018-06-01
This paper presents the new version of our code Maxis (Lin et al., 2011). Maxis is a local rezoning and remapping code in two dimensional cylindrical geometry, which can be employed to address the grid distortion problem of unstructured meshes. The new version of Maxis is mostly programmed in the C language which considerably improves its computational efficiency with respect to the former Matlab version. A new algorithm for determining the intersection of two arbitrary convex polygons is also incorporated into the new version. Some additional linking functions are further provided in the new version for the purpose of combining Maxis and MULTI2D.
Benchmarking comparison and validation of MCNP photon interaction data
NASA Astrophysics Data System (ADS)
Colling, Bethany; Kodeli, I.; Lilley, S.; Packer, L. W.
2017-09-01
The objective of the research was to test available photoatomic data libraries for fusion relevant applications, comparing against experimental and computational neutronics benchmarks. Photon flux and heating was compared using the photon interaction data libraries (mcplib 04p, 05t, 84p and 12p). Suitable benchmark experiments (iron and water) were selected from the SINBAD database and analysed to compare experimental values with MCNP calculations using mcplib 04p, 84p and 12p. In both the computational and experimental comparisons, the majority of results with the 04p, 84p and 12p photon data libraries were within 1σ of the mean MCNP statistical uncertainty. Larger differences were observed when comparing computational results with the 05t test photon library. The Doppler broadening sampling bug in MCNP-5 is shown to be corrected for fusion relevant problems through use of the 84p photon data library. The recommended libraries for fusion neutronics are 84p (or 04p) with MCNP6 and 84p if using MCNP-5.
The multidimensional Self-Adaptive Grid code, SAGE, version 2
NASA Technical Reports Server (NTRS)
Davies, Carol B.; Venkatapathy, Ethiraj
1995-01-01
This new report on Version 2 of the SAGE code includes all the information in the original publication plus all upgrades and changes to the SAGE code since that time. The two most significant upgrades are the inclusion of a finite-volume option and the ability to adapt and manipulate zonal-matching multiple-grid files. In addition, the original SAGE code has been upgraded to Version 1.1 and includes all options mentioned in this report, with the exception of the multiple grid option and its associated features. Since Version 2 is a larger and more complex code, it is suggested (but not required) that Version 1.1 be used for single-grid applications. This document contains all the information required to run both versions of SAGE. The formulation of the adaption method is described in the first section of this document. The second section is presented in the form of a user guide that explains the input and execution of the code. The third section provides many examples. Successful application of the SAGE code in both two and three dimensions for the solution of various flow problems has proven the code to be robust, portable, and simple to use. Although the basic formulation follows the method of Nakahashi and Deiwert, many modifications have been made to facilitate the use of the self-adaptive grid method for complex grid structures. Modifications to the method and the simple but extensive input options make this a flexible and user-friendly code. The SAGE code can accommodate two-dimensional and three-dimensional, finite-difference and finite-volume, single grid, and zonal-matching multiple grid flow problems.
Integral experiments on thorium assemblies with D-T neutron source
NASA Astrophysics Data System (ADS)
Liu, Rong; Yang, Yiwei; Feng, Song; Zheng, Lei; Lai, Caifeng; Lu, Xinxin; Wang, Mei; Jiang, Li
2017-09-01
To validate nuclear data and code in the neutronics design of a hybrid reactor with thorium, integral experiments in two kinds of benchmark thorium assemblies with a D-T fusion neutron source have been performed. The one kind of 1D assemblies consists of polyethylene and depleted uranium shells. The other kind of 2D assemblies consists of three thorium oxide cylinders. The capture reaction rates, fission reaction rates, and (n, 2n) reaction rates in 232Th in the assemblies are measured by ThO2 foils. The leakage neutron spectra from the ThO2 cylinders are measured by a liquid scintillation detector. The experimental uncertainties in all the results are analyzed. The measured results are compared to the calculated ones with MCNP code and ENDF/B-VII.0 library data.
Reducing statistical uncertainties in simulated organ doses of phantoms immersed in water
Hiller, Mauritius M.; Veinot, Kenneth G.; Easterly, Clay E.; ...
2016-08-13
In this study, methods are addressed to reduce the computational time to compute organ-dose rate coefficients using Monte Carlo techniques. Several variance reduction techniques are compared including the reciprocity method, importance sampling, weight windows and the use of the ADVANTG software package. For low-energy photons, the runtime was reduced by a factor of 10 5 when using the reciprocity method for kerma computation for immersion of a phantom in contaminated water. This is particularly significant since impractically long simulation times are required to achieve reasonable statistical uncertainties in organ dose for low-energy photons in this source medium and geometry. Althoughmore » the MCNP Monte Carlo code is used in this paper, the reciprocity technique can be used equally well with other Monte Carlo codes.« less
NASA Astrophysics Data System (ADS)
Basiri, H.; Tavakoli-Anbaran, H.
2018-01-01
Am-Be neutrons source is based on (α, n) reaction and generates neutrons in the energy range of 0-11 MeV. Since the thermal neutrons are widely used in different fields, in this work, we investigate how to improve the source configuration in order to increase the thermal flux. These suggested changes include a spherical moderator instead of common cylindrical geometry, a reflector layer and an appropriate materials selection in order to achieve the maximum thermal flux. All calculations were done by using MCNP1 Monte Carlo code. Our final results indicated that a spherical paraffin moderator, a layer of beryllium as a reflector can efficiently increase the thermal neutron flux of Am-Be source.
Status Report on the MCNP 2020 Initiative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.; Rising, Michael Evan
2017-10-02
The discussion below provides a status report on the MCNP 2020 initiative. It includes discussion of the history of MCNP 2020, accomplishments during 2013-17, priorities for near-term development, other related efforts, a brief summary, and a list of references for the plans and work accomplished.
Monte Carlo simulation of energy-dispersive x-ray fluorescence and applications
NASA Astrophysics Data System (ADS)
Li, Fusheng
Four key components with regards to Monte Carlo Library Least Squares (MCLLS) have been developed by the author. These include: a comprehensive and accurate Monte Carlo simulation code - CEARXRF5 with Differential Operators (DO) and coincidence sampling, Detector Response Function (DRF), an integrated Monte Carlo - Library Least-Squares (MCLLS) Graphical User Interface (GUI) visualization System (MCLLSPro) and a new reproducible and flexible benchmark experiment setup. All these developments or upgrades enable the MCLLS approach to be a useful and powerful tool for a tremendous variety of elemental analysis applications. CEARXRF, a comprehensive and accurate Monte Carlo code for simulating the total and individual library spectral responses of all elements, has been recently upgraded to version 5 by the author. The new version has several key improvements: input file format fully compatible with MCNP5, a new efficient general geometry tracking code, versatile source definitions, various variance reduction techniques (e.g. weight window mesh and splitting, stratifying sampling, etc.), a new cross section data storage and accessing method which improves the simulation speed by a factor of four and new cross section data, upgraded differential operators (DO) calculation capability, and also an updated coincidence sampling scheme which including K-L and L-L coincidence X-Rays, while keeping all the capabilities of the previous version. The new Differential Operators method is powerful for measurement sensitivity study and system optimization. For our Monte Carlo EDXRF elemental analysis system, it becomes an important technique for quantifying the matrix effect in near real time when combined with the MCLLS approach. An integrated visualization GUI system has been developed by the author to perform elemental analysis using iterated Library Least-Squares method for various samples when an initial guess is provided. This software was built on the Borland C++ Builder platform and has a user-friendly interface to accomplish all qualitative and quantitative tasks easily. That is to say, the software enables users to run the forward Monte Carlo simulation (if necessary) or use previously calculated Monte Carlo library spectra to obtain the sample elemental composition estimation within a minute. The GUI software is easy to use with user-friendly features and has the capability to accomplish all related tasks in a visualization environment. It can be a powerful tool for EDXRF analysts. A reproducible experiment setup has been built and experiments have been performed to benchmark the system. Two types of Standard Reference Materials (SRM), stainless steel samples from National Institute of Standards and Technology (NIST) and aluminum alloy samples from Alcoa Inc., with certified elemental compositions, are tested with this reproducible prototype system using a 109Cd radioisotope source (20mCi) and a liquid nitrogen cooled Si(Li) detector. The results show excellent agreement between the calculated sample compositions and their reference values and the approach is very fast.
Confirmation of a realistic reactor model for BNCT dosimetry at the TRIGA Mainz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziegner, Markus, E-mail: Markus.Ziegner.fl@ait.ac.at; Schmitz, Tobias; Hampel, Gabriele
2014-11-01
Purpose: In order to build up a reliable dose monitoring system for boron neutron capture therapy (BNCT) applications at the TRIGA reactor in Mainz, a computer model for the entire reactor was established, simulating the radiation field by means of the Monte Carlo method. The impact of different source definition techniques was compared and the model was validated by experimental fluence and dose determinations. Methods: The depletion calculation code ORIGEN2 was used to compute the burn-up and relevant material composition of each burned fuel element from the day of first reactor operation to its current core. The material composition ofmore » the current core was used in a MCNP5 model of the initial core developed earlier. To perform calculations for the region outside the reactor core, the model was expanded to include the thermal column and compared with the previously established ATTILA model. Subsequently, the computational model is simplified in order to reduce the calculation time. Both simulation models are validated by experiments with different setups using alanine dosimetry and gold activation measurements with two different types of phantoms. Results: The MCNP5 simulated neutron spectrum and source strength are found to be in good agreement with the previous ATTILA model whereas the photon production is much lower. Both MCNP5 simulation models predict all experimental dose values with an accuracy of about 5%. The simulations reveal that a Teflon environment favorably reduces the gamma dose component as compared to a polymethyl methacrylate phantom. Conclusions: A computer model for BNCT dosimetry was established, allowing the prediction of dosimetric quantities without further calibration and within a reasonable computation time for clinical applications. The good agreement between the MCNP5 simulations and experiments demonstrates that the ATTILA model overestimates the gamma dose contribution. The detailed model can be used for the planning of structural modifications in the thermal column irradiation channel or the use of different irradiation sites than the thermal column, e.g., the beam tubes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franco, Manuel
The objective of this work was to characterize the neutron irradiation system consisting of americium-241 beryllium (241AmBe) neutron sources placed in a polyethylene shielding for use at Sandia National Laboratories (SNL) Low Dose Rate Irradiation Facility (LDRIF). With a total activity of 0.3 TBq (9 Ci), the source consisted of three recycled 241AmBe sources of different activities that had been combined into a single source. The source in its polyethylene shielding will be used in neutron irradiation testing of components. The characterization of the source-shielding system was necessary to evaluate the radiation environment for future experiments. Characterization of the sourcemore » was also necessary because the documentation for the three component sources and their relative alignment within the Special Form Capsule (SFC) was inadequate. The system consisting of the source and shielding was modeled using Monte Carlo N-Particle transport code (MCNP). The model was validated by benchmarking it against measurements using multiple techniques. To characterize the radiation fields over the full spatial geometry of the irradiation system, it was necessary to use a number of instruments of varying sensitivities. First, the computed photon radiography assisted in determining orientation of the component sources. With the capsule properly oriented inside the shielding, the neutron spectra were measured using a variety of techniques. A N-probe Microspec and a neutron Bubble Dosimeter Spectrometer (BDS) set were used to characterize the neutron spectra/field in several locations. In the third technique, neutron foil activation was used to ascertain the neutron spectra. A high purity germanium (HPGe) detector was used to characterize the photon spectrum. The experimentally measured spectra and the MCNP results compared well. Once the MCNP model was validated to an adequate level of confidence, parametric analyses was performed on the model to optimize for potential experimental configurations and neutron spectra for component irradiation. The final product of this work is a MCNP model validated by measurements, an overall understanding of neutron irradiation system including photon/neutron transport and effective dose rates throughout the system, and possible experimental configurations for future irradiation of components.« less
VENTURE/PC manual: A multidimensional multigroup neutron diffusion code system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapiro, A.; Huria, H.C.; Cho, K.W.
1991-12-01
VENTURE/PC is a recompilation of part of the Oak Ridge BOLD VENTURE code system, which will operate on an IBM PC or compatible computer. Neutron diffusion theory solutions are obtained for multidimensional, multigroup problems. This manual contains information associated with operating the code system. The purpose of the various modules used in the code system, and the input for these modules are discussed. The PC code structure is also given. Version 2 included several enhancements not given in the original version of the code. In particular, flux iterations can be done in core rather than by reading and writing tomore » disk, for problems which allow sufficient memory for such in-core iterations. This speeds up the iteration process. Version 3 does not include any of the special processors used in the previous versions. These special processors utilized formatted input for various elements of the code system. All such input data is now entered through the Input Processor, which produces standard interface files for the various modules in the code system. In addition, a Standard Interface File Handbook is included in the documentation which is distributed with the code, to assist in developing the input for the Input Processor.« less
Standard interface files and procedures for reactor physics codes, version III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmichael, B.M.
Standards and procedures for promoting the exchange of reactor physics codes are updated to Version-III status. Standards covering program structure, interface files, file handling subroutines, and card input format are included. The implementation status of the standards in codes and the extension of the standards to new code areas are summarized. (15 references) (auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostin, Mikhail; Mokhov, Nikolai; Niita, Koji
A parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. It is intended to be used with older radiation transport codes implemented in Fortran77, Fortran 90 or C. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was developed and tested in conjunction with the MARS15 code. It is possible to use it with other codes such as PHITS, FLUKA andmore » MCNP after certain adjustments. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility can be used in single process calculations as well as in the parallel regime. The framework corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.« less
Distributed multitasking ITS with PVM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, W.C.; Halbleib, J.A. Sr.
1995-02-01
Advances of computer hardware and communication software have made it possible to perform parallel-processing computing on a collection of desktop workstations. For many applications, multitasking on a cluster of high-performance workstations has achieved performance comparable or better than that on a traditional supercomputer. From the point of view of cost-effectiveness, it also allows users to exploit available but unused computational resources, and thus achieve a higher performance-to-cost ratio. Monte Carlo calculations are inherently parallelizable because the individual particle trajectories can be generated independently with minimum need for interprocessor communication. Furthermore, the number of particle histories that can be generated inmore » a given amount of wall-clock time is nearly proportional to the number of processors in the cluster. This is an important fact because the inherent statistical uncertainty in any Monte Carlo result decreases as the number of histories increases. For these reasons, researchers have expended considerable effort to take advantage of different parallel architectures for a variety of Monte Carlo radiation transport codes, often with excellent results. The initial interest in this work was sparked by the multitasking capability of MCNP on a cluster of workstations using the Parallel Virtual Machine (PVM) software. On a 16-machine IBM RS/6000 cluster, it has been demonstrated that MCNP runs ten times as fast as on a single-processor CRAY YMP. In this paper, we summarize the implementation of a similar multitasking capability for the coupled electron/photon transport code system, the Integrated TIGER Series (ITS), and the evaluation of two load balancing schemes for homogeneous and heterogeneous networks.« less
Modeling Sodium Iodide Detector Response Using Parametric Equations
2013-03-22
MCNP particle current and pulse height tally functions, backscattering photons are quantified as a function of material thickness and energy...source – detector – scattering medium arrangements were modeled in MCNP using the pulse height tally functions, integrated over a 70 keV – 360 keV energy...15 4.1 MCNP
NASA Astrophysics Data System (ADS)
Huh, Jangyong; Ji, Yunseo; Lee, Rena
2018-05-01
An X-ray control algorithm to modulate the X-ray intensity distribution over the FOV (field of view) has been developed by using numerical analysis and MCNP5, a particle transport simulation code on the basis of the Monte Carlo method. X-rays, which are widely used in medical diagnostic imaging, should be controlled in order to maximize the performance of the X-ray imaging system. However, transporting X-rays, like a liquid or a gas is conveyed through a physical form such as pipes, is not possible. In the present study, an X-ray control algorithm and technique to uniformize the Xray intensity projected on the image sensor were developed using a flattening filter and a collimator in order to alleviate the anisotropy of the distribution of X-rays due to intrinsic features of the X-ray generator. The proposed method, which is combined with MCNP5 modeling and numerical analysis, aimed to optimize a flattening filter and a collimator for a uniform distribution of X-rays. Their size and shape were estimated from the method. The simulation and the experimental results both showed that the method yielded an intensity distribution over an X-ray field of 6×4 cm2 at SID (source to image-receptor distance) of 5 cm with a uniformity of more than 90% when the flattening filter and the collimator were mounted on the system. The proposed algorithm and technique are not only confined to flattening filter development but can also be applied for other X-ray related research and development efforts.
Quantitative basis for component factors of gas flow proportional counting efficiencies
NASA Astrophysics Data System (ADS)
Nichols, Michael C.
This dissertation investigates the counting efficiency calibration of a gas flow proportional counter with beta-particle emitters in order to (1) determine by measurements and simulation the values of the component factors of beta-particle counting efficiency for a proportional counter, (2) compare the simulation results and measured counting efficiencies, and (3) determine the uncertainty of the simulation and measurements. Monte Carlo simulation results by the MCNP5 code were compared with measured counting efficiencies as a function of sample thickness for 14C, 89Sr, 90Sr, and 90Y. The Monte Carlo model simulated strontium carbonate with areal thicknesses from 0.1 to 35 mg cm-2. The samples were precipitated as strontium carbonate with areal thicknesses from 3 to 33 mg cm-2 , mounted on membrane filters, and counted on a low background gas flow proportional counter. The estimated fractional standard deviation was 2--4% (except 6% for 14C) for efficiency measurements of the radionuclides. The Monte Carlo simulations have uncertainties estimated to be 5 to 6 percent for carbon-14 and 2.4 percent for strontium-89, strontium-90, and yttrium-90. The curves of simulated counting efficiency vs. sample areal thickness agreed within 3% of the curves of best fit drawn through the 25--49 measured points for each of the four radionuclides. Contributions from this research include development of uncertainty budgets for the analytical processes; evaluation of alternative methods for determining chemical yield critical to the measurement process; correcting a bias found in the MCNP normalization of beta spectra histogram; clarifying the interpretation of the commonly used ICRU beta-particle spectra for use by MCNP; and evaluation of instrument parameters as applied to the simulation model to obtain estimates of the counting efficiency from simulated pulse height tallies.
Calculated criticality for sup 235 U/graphite systems using the VIM Monte Carlo code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, P.J.; Grasseschi, G.L.; Olsen, D.N.
1992-01-01
Calculations for highly enriched uranium and graphite systems gained renewed interest recently for the new production modular high-temperature gas-cooled reactor (MHTGR). Experiments to validate the physics calculations for these systems are being prepared for the Transient Reactor Test Facility (TREAT) reactor at Argonne National Laboratory (ANL-West) and in the Compact Nuclear Power Source facility at Los Alamos National Laboratory. The continuous-energy Monte Carlo code VIM, or equivalently the MCNP code, can utilize fully detailed models of the MHTGR and serve as benchmarks for the approximate multigroup methods necessary in full reactor calculations. Validation of these codes and their associated nuclearmore » data did not exist for highly enriched {sup 235}U/graphite systems. Experimental data, used in development of more approximate methods, dates back to the 1960s. The authors have selected two independent sets of experiments for calculation with the VIM code. The carbon-to-uranium (C/U) ratios encompass the range of 2,000, representative of the new production MHTGR, to the ratio of 10,000 in the fuel of TREAT. Calculations used the ENDF/B-V data.« less
MuSim, a Graphical User Interface for Multiple Simulation Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Thomas; Cummings, Mary Anne; Johnson, Rolland
2016-06-01
MuSim is a new user-friendly program designed to interface to many different particle simulation codes, regardless of their data formats or geometry descriptions. It presents the user with a compelling graphical user interface that includes a flexible 3-D view of the simulated world plus powerful editing and drag-and-drop capabilities. All aspects of the design can be parametrized so that parameter scans and optimizations are easy. It is simple to create plots and display events in the 3-D viewer (with a slider to vary the transparency of solids), allowing for an effortless comparison of different simulation codes. Simulation codes: G4beamline, MAD-X,more » and MCNP; more coming. Many accelerator design tools and beam optics codes were written long ago, with primitive user interfaces by today's standards. MuSim is specifically designed to make it easy to interface to such codes, providing a common user experience for all, and permitting the construction and exploration of models with very little overhead. For today's technology-driven students, graphical interfaces meet their expectations far better than text-based tools, and education in accelerator physics is one of our primary goals.« less
Adams, Derk; Schreuder, Astrid B; Salottolo, Kristin; Settell, April; Goss, J Richard
2011-07-01
There are significant changes in the abbreviated injury scale (AIS) 2005 system, which make it impractical to compare patients coded in AIS version 98 with patients coded in AIS version 2005. Harborview Medical Center created a computer algorithm "Harborview AIS Mapping Program (HAMP)" to automatically convert AIS 2005 to AIS 98 injury codes. The mapping was validated using 6 months of double-coded patient injury records from a Level I Trauma Center. HAMP was used to determine how closely individual AIS and injury severity scores (ISS) were converted from AIS 2005 to AIS 98 versions. The kappa statistic was used to measure the agreement between manually determined codes and HAMP-derived codes. Seven hundred forty-nine patient records were used for validation. For the conversion of AIS codes, the measure of agreement between HAMP and manually determined codes was [kappa] = 0.84 (95% confidence interval, 0.82-0.86). The algorithm errors were smaller in magnitude than the manually determined coding errors. For the conversion of ISS, the agreement between HAMP versus manually determined ISS was [kappa] = 0.81 (95% confidence interval, 0.78-0.84). The HAMP algorithm successfully converted injuries coded in AIS 2005 to AIS 98. This algorithm will be useful when comparing trauma patient clinical data across populations coded in different versions, especially for longitudinal studies.
Simulation of Charge Collection in Diamond Detectors Irradiated with Deuteron-Triton Neutron Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milocco, Alberto; Trkov, Andrej; Pillon, Mario
2011-12-13
Diamond-based neutron spectrometers exhibit outstanding properties such as radiation hardness, low sensitivity to gamma rays, fast response and high-energy resolution. They represent a very promising application of diamonds for plasma diagnostics in fusion devices. The measured pulse height spectrum is obtained from the collection of helium and beryllium ions produced by the reactions on {sup 12}C. An original code is developed to simulate the production and the transport of charged particles inside the diamond detector. The ion transport methodology is based on the well-known TRIM code. The reactions of interest are triggered using the ENDF/B-VII.0 nuclear data for the neutronmore » interactions on carbon. The model is implemented in the TALLYX subroutine of the MCNP5 and MCNPX codes. Measurements with diamond detectors in a {approx}14 MeV neutron field have been performed at the FNG (Rome, Italy) and IRMM (Geel, Belgium) facilities. The comparison of the experimental data with the simulations validates the proposed model.« less
NASA Astrophysics Data System (ADS)
Juste, B.; Morató, S.; Miró, R.; Verdú, G.; Díez, S.
2017-08-01
Unwanted neutrons in radiation therapy treatments are typically generated by photonuclear reactions. High-energy beams emitted by medical Linear Accelerators (LinAcs) interact with high atomic number materials situated in the accelerator head and release neutrons. Since neutrons have a high relative biological effectiveness, even low neutron doses may imply significant exposure of patients. It is also important to study radioactivity induced by these photoneutrons when interacting with the different materials and components of the treatment head facility and the shielding room walls, since persons not present during irradiation (e.g. medical staff) may be exposed to them even when the accelerator is not operating. These problems are studied in this work in order to contribute to challenge the radiation protection in these treatment locations. The work has been performed by simulation using the latest state of the art of Monte-Carlo computer code MCNP6. To that, a detailed model of particles transport inside the bunker and treatment head has been carried out using a meshed geometry model. The LinAc studied is an Elekta Precise accelerator with a treatment photon energy of 15 MeV used at the Hospital Clinic Universitari de Valencia, Spain.
Thermal Neutron Point Source Imaging using a Rotating Modulation Collimator (RMC)
2010-03-01
Source Details.........................................................................................37 3.5 Simulation of RMC in MCNP ...passed through the masks at each rotation angle. ................................. 42 19. Figure 19: MCNP Generate Modulation Profile for Cadmium. The...Cadmium. The multi-energetic neutron source simulation from MCNP is used for this plot. The energy is values are shown per energy bin. The
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shumaker, Dana E.; Steefel, Carl I.
The code CRUNCH_PARALLEL is a parallel version of the CRUNCH code. CRUNCH code version 2.0 was previously released by LLNL, (UCRL-CODE-200063). Crunch is a general purpose reactive transport code developed by Carl Steefel and Yabusake (Steefel Yabsaki 1996). The code handles non-isothermal transport and reaction in one, two, and three dimensions. The reaction algorithm is generic in form, handling an arbitrary number of aqueous and surface complexation as well as mineral dissolution/precipitation. A standardized database is used containing thermodynamic and kinetic data. The code includes advective, dispersive, and diffusive transport.
The Modified Cognitive Constructions Coding System: Reliability and Validity Assessments
ERIC Educational Resources Information Center
Moran, Galia S.; Diamond, Gary M.
2006-01-01
The cognitive constructions coding system (CCCS) was designed for coding client's expressed problem constructions on four dimensions: intrapersonal-interpersonal, internal-external, responsible-not responsible, and linear-circular. This study introduces, and examines the reliability and validity of, a modified version of the CCCS--a version that…
Comparison of CdZnTe neutron detector models using MCNP6 and Geant4
NASA Astrophysics Data System (ADS)
Wilson, Emma; Anderson, Mike; Prendergasty, David; Cheneler, David
2018-01-01
The production of accurate detector models is of high importance in the development and use of detectors. Initially, MCNP and Geant were developed to specialise in neutral particle models and accelerator models, respectively; there is now a greater overlap of the capabilities of both, and it is therefore useful to produce comparative models to evaluate detector characteristics. In a collaboration between Lancaster University, UK, and Innovative Physics Ltd., UK, models have been developed in both MCNP6 and Geant4 of Cadmium Zinc Telluride (CdZnTe) detectors developed by Innovative Physics Ltd. Herein, a comparison is made of the relative strengths of MCNP6 and Geant4 for modelling neutron flux and secondary γ-ray emission. Given the increasing overlap of the modelling capabilities of MCNP6 and Geant4, it is worthwhile to comment on differences in results for simulations which have similarities in terms of geometries and source configurations.
Characterization of gamma rays existing in the NMIJ standard neutron field.
Harano, H; Matsumoto, T; Ito, Y; Uritani, A; Kudo, K
2004-01-01
Our laboratory provides national standards on fast neutron fluence. Neutron fields are always accompanied by gamma rays produced in neutron sources and surroundings. We have characterised these gamma rays in the 5.0 MeV standard neutron field. Gamma ray measurement was performed using an NE213 liquid scintillator. Pulse shape discrimination was incorporated to separate the events induced by gamma rays from those by neutrons. The measured gamma ray spectra were unfolded with the HEPRO program package to obtain the spectral fluences using the response matrix prepared with the EGS4 code. Corrections were made for the gamma rays produced by neutrons in the detector assembly using the MCNP4C code. The effective dose equivalents were estimated to be of the order of 25 microSv at the neutron fluence of 10(7) neutrons cm(-2).
Impact of ASTM Standard E722 update on radiation damage metrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
DePriest, Kendall Russell
2014-06-01
The impact of recent changes to the ASTM Standard E722 is investigated. The methodological changes in the production of the displacement kerma factors for silicon has significant impact for some energy regions of the 1-MeV(Si) equivalent fluence response function. When evaluating the integral over all neutrons energies in various spectra important to the SNL electronics testing community, the change in the response results in an increase in the total 1-MeV(Si) equivalent fluence of 2 7%. Response functions have been produced and are available for users of both the NuGET and MCNP codes.
Calibration of a portable HPGe detector using MCNP code for the determination of 137Cs in soils.
Gutiérrez-Villanueva, J L; Martín-Martín, A; Peña, V; Iniguez, M P; de Celis, B; de la Fuente, R
2008-10-01
In situ gamma spectrometry provides a fast method to determine (137)Cs inventories in soils. To improve the accuracy of the estimates, one can use not only the information on the photopeak count rates but also on the peak to forward-scatter ratios. Before applying this procedure to field measurements, a calibration including several experimental simulations must be carried out in the laboratory. In this paper it is shown that Monte Carlo methods are a valuable tool to minimize the number of experimental measurements needed for the calibration.
Modelisation and distribution of neutron flux in radium-beryllium source (226Ra-Be)
NASA Astrophysics Data System (ADS)
Didi, Abdessamad; Dadouch, Ahmed; Jai, Otman
2017-09-01
Using the Monte Carlo N-Particle code (MCNP-6), to analyze the thermal, epithermal and fast neutron fluxes, of 3 millicuries of radium-beryllium, for determine the qualitative and quantitative of many materials, using method of neutron activation analysis. Radium-beryllium source of neutron is established to practical work and research in nuclear field. The main objective of this work was to enable us harness the profile flux of radium-beryllium irradiation, this theoretical study permits to discuss the design of the optimal irradiation and performance for increased the facility research and education of nuclear physics.
NASA Technical Reports Server (NTRS)
Carlson, H. W.
1994-01-01
This code was developed to aid design engineers in the selection and evaluation of aerodynamically efficient wing-canard and wing-horizontal-tail configurations that may employ simple hinged-flap systems. Rapid estimates of the longitudinal aerodynamic characteristics of conceptual airplane lifting surface arrangements are provided. The method is particularly well suited to configurations which, because of high speed flight requirements, must employ thin wings with highly swept leading edges. The code is applicable to wings with either sharp or rounded leading edges. The code provides theoretical pressure distributions over the wing, the canard or horizontal tail, and the deflected flap surfaces as well as estimates of the wing lift, drag, and pitching moments which account for attainable leading edge thrust and leading edge separation vortex forces. The wing planform information is specified by a series of leading edge and trailing edge breakpoints for a right hand wing panel. Up to 21 pairs of coordinates may be used to describe both the leading edge and the trailing edge. The code has been written to accommodate 2000 right hand panel elements, but can easily be modified to accommodate a larger or smaller number of elements depending on the capacity of the target computer platform. The code provides solutions for wing surfaces composed of all possible combinations of leading edge and trailing edge flap settings provided by the original deflection multipliers and by the flap deflection multipliers. Up to 25 pairs of leading edge and trailing edge flap deflection schedules may thus be treated simultaneously. The code also provides for an improved accounting of hinge-line singularities in determination of wing forces and moments. To determine lifting surface perturbation velocity distributions, the code provides for a maximum of 70 iterations. The program is constructed so that successive runs may be made with a given code entry. To make additional runs, it is necessary only to add an identification record and the namelist data that are to be changed from the previous run. This code was originally developed in 1989 in FORTRAN V on a CDC 6000 computer system, and was later ported to an MS-DOS environment. Both versions are available from COSMIC. There are only a few differences between the PC version (LAR-14458) and CDC version (LAR-14178) of AERO2S distributed by COSMIC. The CDC version has one main source code file while the PC version has two files which are easier to edit and compile on a PC. The PC version does not require a FORTRAN compiler which supports NAMELIST because a special INPUT subroutine has been added. The CDC version includes two MODIFY decks which can be used to improve the code and prevent the possibility of some infrequently occurring errors while PC-version users will have to make these code changes manually. The PC version includes an executable which was generated with the Ryan McFarland/FORTRAN compiler and requires 253K RAM and an 80x87 math co-processor. Using this executable, the sample case requires about four hours to execute on an 8MHz AT-class microcomputer with a co-processor. The source code conforms to the FORTRAN 77 standard except that it uses variables longer than six characters. With two minor modifications, the PC version should be portable to any computer with a FORTRAN compiler and sufficient memory. The CDC version of AERO2S is available in CDC NOS Internal format on a 9-track 1600 BPI magnetic tape. The PC version is available on a set of two 5.25 inch 360K MS-DOS format diskettes. IBM AT is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation. CDC is a registered trademark of Control Data Corporation. NOS is a trademark of Control Data Corporation.
NASA Technical Reports Server (NTRS)
Darden, C. M.
1994-01-01
This code was developed to aid design engineers in the selection and evaluation of aerodynamically efficient wing-canard and wing-horizontal-tail configurations that may employ simple hinged-flap systems. Rapid estimates of the longitudinal aerodynamic characteristics of conceptual airplane lifting surface arrangements are provided. The method is particularly well suited to configurations which, because of high speed flight requirements, must employ thin wings with highly swept leading edges. The code is applicable to wings with either sharp or rounded leading edges. The code provides theoretical pressure distributions over the wing, the canard or horizontal tail, and the deflected flap surfaces as well as estimates of the wing lift, drag, and pitching moments which account for attainable leading edge thrust and leading edge separation vortex forces. The wing planform information is specified by a series of leading edge and trailing edge breakpoints for a right hand wing panel. Up to 21 pairs of coordinates may be used to describe both the leading edge and the trailing edge. The code has been written to accommodate 2000 right hand panel elements, but can easily be modified to accommodate a larger or smaller number of elements depending on the capacity of the target computer platform. The code provides solutions for wing surfaces composed of all possible combinations of leading edge and trailing edge flap settings provided by the original deflection multipliers and by the flap deflection multipliers. Up to 25 pairs of leading edge and trailing edge flap deflection schedules may thus be treated simultaneously. The code also provides for an improved accounting of hinge-line singularities in determination of wing forces and moments. To determine lifting surface perturbation velocity distributions, the code provides for a maximum of 70 iterations. The program is constructed so that successive runs may be made with a given code entry. To make additional runs, it is necessary only to add an identification record and the namelist data that are to be changed from the previous run. This code was originally developed in 1989 in FORTRAN V on a CDC 6000 computer system, and was later ported to an MS-DOS environment. Both versions are available from COSMIC. There are only a few differences between the PC version (LAR-14458) and CDC version (LAR-14178) of AERO2S distributed by COSMIC. The CDC version has one main source code file while the PC version has two files which are easier to edit and compile on a PC. The PC version does not require a FORTRAN compiler which supports NAMELIST because a special INPUT subroutine has been added. The CDC version includes two MODIFY decks which can be used to improve the code and prevent the possibility of some infrequently occurring errors while PC-version users will have to make these code changes manually. The PC version includes an executable which was generated with the Ryan McFarland/FORTRAN compiler and requires 253K RAM and an 80x87 math co-processor. Using this executable, the sample case requires about four hours to execute on an 8MHz AT-class microcomputer with a co-processor. The source code conforms to the FORTRAN 77 standard except that it uses variables longer than six characters. With two minor modifications, the PC version should be portable to any computer with a FORTRAN compiler and sufficient memory. The CDC version of AERO2S is available in CDC NOS Internal format on a 9-track 1600 BPI magnetic tape. The PC version is available on a set of two 5.25 inch 360K MS-DOS format diskettes. IBM AT is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation. CDC is a registered trademark of Control Data Corporation. NOS is a trademark of Control Data Corporation.
Light-ion Production from O, Si, Fe and Bi Induced by 175 MeV Quasi-monoenergetic Neutrons
NASA Astrophysics Data System (ADS)
Bevilacqua, R.; Pomp, S.; Jansson, K.; Gustavsson, C.; Österlund, M.; Simutkin, V.; Hayashi, M.; Hirayama, S.; Naitou, Y.; Watanabe, Y.; Hjalmarsson, A.; Prokofiev, A.; Tippawan, U.; Lecolley, F.-R.; Marie, N.; Leray, S.; David, J.-C.; Mashnik, S.
2014-05-01
We have measured double-differential cross sections in the interaction of 175 MeV quasi-monoenergetic neutrons with O, Si, Fe and Bi. We have compared these results with model calculations with INCL4.5-Abla07, MCNP6 and TALYS-1.2. We have also compared our data with PHITS calculations, where the pre-equilibrium stage of the reaction was accounted respectively using the JENDL/HE-2007 evaluated data library, the quantum molecular dynamics model (QMD) and a modified version of QMD (MQMD) to include a surface coalescence model. The most crucial aspect is the formation and emission of composite particles in the pre-equilibrium stage.
NASA Astrophysics Data System (ADS)
Kotchenova, Svetlana Y.; Vermote, Eric F.; Matarrese, Raffaella; Klemm, Frank J., Jr.
2006-09-01
A vector version of the 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) radiative transfer code (6SV1), which enables accounting for radiation polarization, has been developed and validated against a Monte Carlo code, Coulson's tabulated values, and MOBY (Marine Optical Buoy System) water-leaving reflectance measurements. The developed code was also tested against the scalar codes SHARM, DISORT, and MODTRAN to evaluate its performance in scalar mode and the influence of polarization. The obtained results have shown a good agreement of 0.7% in comparison with the Monte Carlo code, 0.2% for Coulson's tabulated values, and 0.001-0.002 for the 400-550 nm region for the MOBY reflectances. Ignoring the effects of polarization led to large errors in calculated top-of-atmosphere reflectances: more than 10% for a molecular atmosphere and up to 5% for an aerosol atmosphere. This new version of 6S is intended to replace the previous scalar version used for calculation of lookup tables in the MODIS (Moderate Resolution Imaging Spectroradiometer) atmospheric correction algorithm.
Kotchenova, Svetlana Y; Vermote, Eric F; Matarrese, Raffaella; Klemm, Frank J
2006-09-10
A vector version of the 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) radiative transfer code (6SV1), which enables accounting for radiation polarization, has been developed and validated against a Monte Carlo code, Coulson's tabulated values, and MOBY (Marine Optical Buoy System) water-leaving reflectance measurements. The developed code was also tested against the scalar codes SHARM, DISORT, and MODTRAN to evaluate its performance in scalar mode and the influence of polarization. The obtained results have shown a good agreement of 0.7% in comparison with the Monte Carlo code, 0.2% for Coulson's tabulated values, and 0.001-0.002 for the 400-550 nm region for the MOBY reflectances. Ignoring the effects of polarization led to large errors in calculated top-of-atmosphere reflectances: more than 10% for a molecular atmosphere and up to 5% for an aerosol atmosphere. This new version of 6S is intended to replace the previous scalar version used for calculation of lookup tables in the MODIS (Moderate Resolution Imaging Spectroradiometer) atmospheric correction algorithm.
Inclusion of Scatter in HADES: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aufderheide, M B
Covert nuclear attack is one of the foremost threats facing the United States and is a primary focus of the War on Terror. The Domestic Nuclear Detection Office (DNDO), within the Department of Homeland Security (DHS), is chartered to develop, and improve domestic systems to detect and interdict smuggling for the illicit use of a nuclear explosive device, fissile material or radiologica1 material. The CAARS (Cargo Advanced Automated Radiography System) program is a major part of the DHS effort to enhance US security by harnessing cutting-edge technologies to detect radiological and nuclear threats at points of entry to the Unitedmore » States. DNDO has selected vendors to develop complete radiographic systems. It is crucial that the initial design and testing concepts for the systems be validated and compared prior to the substantial efforts to build and deploy prototypes and subsequent large-scale production. An important aspect of these systems is the scatter which interferes with imaging. Monte Carlo codes, such as MCNP (X-5 Monte Carlo Team, 2005 Revision) allow scatter to be calculatied, but these calculations are very time consuming. It would be useful to have a fast scatter estimation algorithm in a fast ray tracing code. We have been extending the HADES ray-tracing radiographic simulation code to model vendor systems in a flexible and quick fashion and to use this tool to study a variety of questions involving system performance and the comparative value of surrogates. To enable this work, HADES has been linked to the BRL-CAD library (BRL-CAD Open Source Project, 2010), in order to enable the inclusion of complex CAD geometries in simulations, scanner geometries have been implemented in HADES, and the novel detector responses have been included in HADES. A major extension of HADES which has been required by this effort is the inclusion of scatter in these radiographic simulations. Ray tracing codes generally do not easily allow the inclusion of scatter, because these codes define a source and a grid of detector pixels and only compute the attenuation along rays between these points. Scatter is an extremely complex set of processes which can involve rays which change directions many times between the source and detector. Scatter from outside the field of view of the imaging system, as well as within the field of view, can have an important role in image formation. In this report, we will describe how we implemented a treatment of scatter in HADES. We begin with a discussion of how we define scatter in Section 2, followed by a description of how single Compton scatter is now included in HADES in Section 3. In Section 4 we report a set of verification tests against MCNP and tests of how the technique scales with image size, number of scatters allowed and number of processors used in the calculations. In Section 5, we describe how we plan to extend this approach to other forms of scatter and conclude in Section 6. It should be emphasized that the purpose of this report is to show that a form of scatter has been implemented in HADES and has been verified against MCNP. Validation, the process of comparing simulation and experiment, is a future task.« less
Khankook, Atiyeh Ebrahimi; Hakimabad, Hashem Miri
2017-01-01
Abstract Computational models of the human body have gradually become crucial in the evaluation of doses absorbed by organs. However, individuals may differ considerably in terms of organ size and shape. In this study, the authors sought to determine the energy-dependent standard deviations due to lung size of the dose absorbed by the lung during external photon and neutron beam exposures. One hundred lungs with different masses were prepared and located in an adult male International Commission on Radiological Protection (ICRP) reference phantom. Calculations were performed using the Monte Carlo N-particle code version 5 (MCNP5). Variation in the lung mass caused great uncertainty: ~90% for low-energy broad parallel photon beams. However, for high-energy photons, the lung-absorbed dose dependency on the anatomical variation was reduced to <1%. In addition, the results obtained indicated that the discrepancy in the lung-absorbed dose varied from 0.6% to 8% for neutron beam exposure. Consequently, the relationship between absorbed dose and organ volume was found to be significant for low-energy photon sources, whereas for higher energy photon sources the organ-absorbed dose was independent of the organ volume. In the case of neutron beam exposure, the maximum discrepancy (of 8%) occurred in the energy range between 0.1 and 5 MeV. PMID:28077627
RELAP5-3D developmental assessment: Comparison of version 4.2.1i on Linux and Windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayless, Paul D.
2014-06-01
Figures have been generated comparing the parameters used in the developmental assessment of the RELAP5-3D code, version 4.2i, compiled on Linux and Windows platforms. The figures, which are the same as those used in Volume III of the RELAP5-3D code manual, compare calculations using the semi-implicit solution scheme with available experiment data. These figures provide a quick, visual indication of how the code predictions differ between the Linux and Windows versions.
RELAP5-3D Developmental Assessment. Comparison of Version 4.3.4i on Linux and Windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayless, Paul David
2015-10-01
Figures have been generated comparing the parameters used in the developmental assessment of the RELAP5-3D code, version 4.3i, compiled on Linux and Windows platforms. The figures, which are the same as those used in Volume III of the RELAP5-3D code manual, compare calculations using the semi-implicit solution scheme with available experiment data. These figures provide a quick, visual indication of how the code predictions differ between the Linux and Windows versions.
1983-09-01
6ENFRAL. ELECTROMAGNETIC MODEL FOR THE ANALYSIS OF COMPLEX SYSTEMS **%(GEMA CS) Computer Code Documentation ii( Version 3 ). A the BDM Corporation Dr...ANALYSIS FnlTcnclRpr F COMPLEX SYSTEM (GmCS) February 81 - July 83- I TR CODE DOCUMENTATION (Version 3 ) 6.PROMN N.REPORT NUMBER 5. CONTRACT ORGAT97...the ti and t2 directions on the source patch. 3 . METHOD: The electric field at a segment observation point due to the source patch j is given by 1-- lnA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marck, Steven C. van der, E-mail: vandermarck@nrg.eu
Recent releases of three major world nuclear reaction data libraries, ENDF/B-VII.1, JENDL-4.0, and JEFF-3.1.1, have been tested extensively using benchmark calculations. The calculations were performed with the latest release of the continuous energy Monte Carlo neutronics code MCNP, i.e. MCNP6. Three types of benchmarks were used, viz. criticality safety benchmarks, (fusion) shielding benchmarks, and reference systems for which the effective delayed neutron fraction is reported. For criticality safety, more than 2000 benchmarks from the International Handbook of Criticality Safety Benchmark Experiments were used. Benchmarks from all categories were used, ranging from low-enriched uranium, compound fuel, thermal spectrum ones (LEU-COMP-THERM), tomore » mixed uranium-plutonium, metallic fuel, fast spectrum ones (MIX-MET-FAST). For fusion shielding many benchmarks were based on IAEA specifications for the Oktavian experiments (for Al, Co, Cr, Cu, LiF, Mn, Mo, Si, Ti, W, Zr), Fusion Neutronics Source in Japan (for Be, C, N, O, Fe, Pb), and Pulsed Sphere experiments at Lawrence Livermore National Laboratory (for {sup 6}Li, {sup 7}Li, Be, C, N, O, Mg, Al, Ti, Fe, Pb, D2O, H2O, concrete, polyethylene and teflon). The new functionality in MCNP6 to calculate the effective delayed neutron fraction was tested by comparison with more than thirty measurements in widely varying systems. Among these were measurements in the Tank Critical Assembly (TCA in Japan) and IPEN/MB-01 (Brazil), both with a thermal spectrum, two cores in Masurca (France) and three cores in the Fast Critical Assembly (FCA, Japan), all with fast spectra. The performance of the three libraries, in combination with MCNP6, is shown to be good. The results for the LEU-COMP-THERM category are on average very close to the benchmark value. Also for most other categories the results are satisfactory. Deviations from the benchmark values do occur in certain benchmark series, or in isolated cases within benchmark series. Such instances can often be related to nuclear data for specific non-fissile elements, such as C, Fe, or Gd. Indications are that the intermediate and mixed spectrum cases are less well described. The results for the shielding benchmarks are generally good, with very similar results for the three libraries in the majority of cases. Nevertheless there are, in certain cases, strong deviations between calculated and benchmark values, such as for Co and Mg. Also, the results show discrepancies at certain energies or angles for e.g. C, N, O, Mo, and W. The functionality of MCNP6 to calculate the effective delayed neutron fraction yields very good results for all three libraries.« less
RELAP5-3D Developmental Assessment: Comparison of Versions 4.3.4i and 4.2.1i
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayless, Paul David
2015-10-01
Figures have been generated comparing the parameters used in the developmental assessment of the RELAP5-3D code using versions 4.3.4i and 4.2.1i. The figures, which are the same as those used in Volume III of the RELAP5-3D code manual, compare calculations using the semi-implicit solution scheme with available experiment data. These figures provide a quick, visual indication of how the code predictions changed between these two code versions and can be used to identify cases in which the assessment judgment may need to be changed in Volume III of the code manual. Changes to the assessment judgments made after reviewing allmore » of the assessment cases are also provided.« less
RELAP5-3D Developmental Assessment: Comparison of Versions 4.2.1i and 4.1.3i
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayless, Paul D.
2014-06-01
Figures have been generated comparing the parameters used in the developmental assessment of the RELAP5-3D code using versions 4.2.1i and 4.1.3i. The figures, which are the same as those used in Volume III of the RELAP5-3D code manual, compare calculations using the semi-implicit solution scheme with available experiment data. These figures provide a quick, visual indication of how the code predictions changed between these two code versions and can be used to identify cases in which the assessment judgment may need to be changed in Volume III of the code manual. Changes to the assessment judgments made after reviewing allmore » of the assessment cases are also provided.« less
1982-05-01
insufficient need for a hard metric version of the ASME Boiler and Pressure Vessel Code and industry would not support the metric version. The Code Is not...aircraft industry is concerned with certification requirements in metric units. The inch-pound Boiler and Pressure Vessel Code is the current standard
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goorley, John T.
2012-06-25
We, the development teams for MCNP, NJOY, and parts of ENDF, would like to invite you to a proposed 3 day workshop October 30, 31 and November 1 2012, to be held at Los Alamos National Laboratory. At this workshop, we will review new and developing missions that MCNP6 and the underlying nuclear data are being asked to address. LANL will also present its internal plans to address these missions and recent advances in these three capabilities and we will be interested to hear your input on these topics. Additionally we are interested in hearing from you additional technical advances,more » missions, concerns, and other issues that we should be considering for both short term (1-3 years) and long term (4-6 years)? What are the additional existing capabilities and methods that we should be investigating? The goal of the workshop is to refine priorities for mcnp6 transport methods, algorithms, physics, data and processing as they relate to the intersection of MCNP, NJOY and ENDF.« less
NASA Astrophysics Data System (ADS)
Idiri, Z.; Redjem, F.; Beloudah, N.
2016-09-01
An experimental PGNAA set-up using a 1 Ci Am-Be source has been developed and used for analysis of bulk sewage sludge samples issued from a wastewater treatment plant situated in an industrial area of Algiers. The sample dimensions were optimized using thermal neutron flux calculations carried out with the MCNP5 Monte Carlo Code. A methodology is then proposed to perform quantitative analysis using the absolute method. For this, average thermal neutron flux inside the sludge samples is deduced using average thermal neutron flux in reference water samples and thermal flux measurements with the aid of a 3He neutron detector. The average absolute gamma detection efficiency is determined using the prompt gammas emitted by chlorine dissolved in a water sample. The gamma detection efficiency is normalized for sludge samples using gamma attenuation factors calculated with the MCNP5 code for water and sludge. Wet and dehydrated sludge samples were analyzed. Nutritive elements (Ca, N, P, K) and heavy metals elements like Cr and Mn were determined. For some elements, the PGNAA values were compared to those obtained using Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Plasma (ICP) methods. Good agreement is observed between the different values. Heavy element concentrations are very high compared to normal values; this is related to the fact that the wastewater treatment plant is treating not only domestic but also industrial wastewater that is probably rejected by industries without removal of pollutant elements. The detection limits for almost all elements of interest are sufficiently low for the method to be well suited for such analysis.
Dawahra, S; Khattab, K; Saba, G
2015-07-01
Comparative studies for the conversion of the fuel from HEU to LEU in the Miniature Neutron Source Reactor (MNSR) have been performed using the MCNP4C and GETERA codes. The precise calculations of (135)Xe and (149)Sm concentrations and reactivities were carried out and compared during the MNSR operation time and after shutdown for the existing HEU fuel (UAl4-Al, 90% enriched) and the potential LEU fuels (U3Si2-Al, U3Si-Al, U9Mo-Al, 19.75% enriched and UO2, 12.6% enriched) in this paper using the MCNP4C and GETERA codes. It was found that the (135)Xe and (149)Sm reactivities did not reach their equilibrium reactivities during the daily operating time of the reactor. The (149)Sm reactivities could be neglected compared to (135)Xe reactivities during the reactor operating time and after shutdown. The calculations for the UAl4-Al produced the highest (135)Xe reactivity in all the studied fuel group during the reactor operation (0.39 mk) and after the reactor shutdown (0.735 mk), It followed by U3Si-Al (0.34 mk, 0.653 mk), U3Si2-Al (0.33 mk, 0.634 mk), U9Mo-Al (0.3 mk, 0.568 mk) and UO2 (0.24 mk, 0.448 mk) fuels, respectively. Finally, the results showed that the UO2 was the best candidate for fuel conversion to LEU in the MNSR since it gave the lowest (135)Xe reactivity during the reactor operation and after shutdown. Copyright © 2015 Elsevier Ltd. All rights reserved.
Geant4 Modifications for Accurate Fission Simulations
NASA Astrophysics Data System (ADS)
Tan, Jiawei; Bendahan, Joseph
Monte Carlo is one of the methods to simulate the generation and transport of radiation through matter. The most widely used radiation simulation codes are MCNP and Geant4. The simulation of fission production and transport by MCNP has been thoroughly benchmarked. There is an increasing number of users that prefer using Geant4 due to the flexibility of adding features. However, it has been found that Geant4 does not have the proper fission-production cross sections and does not produce the correct fission products. To achieve accurate results for studies in fissionable material applications, Geant4 was modified to correct these inaccuracies and to add new capabilities. The fission model developed by the Lawrence Livermore National Laboratory was integrated into the neutron-fission modeling package. The photofission simulation capability was enabled using the same neutron-fission library under the assumption that nuclei fission in the same way, independent of the excitation source. The modified fission code provides the correct multiplicity of prompt neutrons and gamma rays, and produces delayed gamma rays and neutrons with time and energy dependencies that are consistent with ENDF/B-VII. The delayed neutrons are now directly produced by a custom package that bypasses the fragment cascade model. The modifications were made for U-235, U-238 and Pu-239 isotopes; however, the new framework allows adding new isotopes easily. The SLAC nuclear data library is used for simulation of isotopes with an atomic number above 92 because it is not available in Geant4. Results of the modified Geant4.10.1 package of neutron-fission and photofission for prompt and delayed radiation are compared with ENDFB-VII and with results produced with the original package.
Qiu, Rui; Li, Junli; Zhang, Zhan; Liu, Liye; Bi, Lei; Ren, Li
2009-02-01
A set of conversion coefficients from kerma free-in-air to the organ-absorbed dose are presented for external monoenergetic photon beams from 10 keV to 10 MeV based on the Chinese mathematical phantom, a whole-body mathematical phantom model. The model was developed based on the methods of the Oak Ridge National Laboratory mathematical phantom series and data from the Chinese Reference Man and the Reference Asian Man. This work is carried out to obtain the conversion coefficients based on this model, which represents the characteristics of the Chinese population, as the anatomical parameters of the Chinese are different from those of Caucasians. Monte Carlo simulation with MCNP code is carried out to calculate the organ dose conversion coefficients. Before the calculation, the effects from the physics model and tally type are investigated, considering both the calculation efficiency and precision. In the calculation irradiation conditions include anterior-posterior, posterior-anterior, right lateral, left lateral, rotational and isotropic geometries. Conversion coefficients from this study are compared with those recommended in the Publication 74 of International Commission on Radiological Protection (ICRP74) since both the sets of data are calculated with mathematical phantoms. Overall, consistency between the two sets of data is observed and the difference for more than 60% of the data is below 10%. However, significant deviations are also found, mainly for the superficial organs (up to 65.9%) and bone surface (up to 66%). The big difference of the dose conversion coefficients for the superficial organs at high photon energy could be ascribed to kerma approximation for the data in ICRP74. Both anatomical variations between races and the calculation method contribute to the difference of the data for bone surface.
TREAT Transient Analysis Benchmarking for the HEU Core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontogeorgakos, D. C.; Connaway, H. M.; Wright, A. E.
2014-05-01
This work was performed to support the feasibility study on the potential conversion of the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory from the use of high enriched uranium (HEU) fuel to the use of low enriched uranium (LEU) fuel. The analyses were performed by the GTRI Reactor Conversion staff at the Argonne National Laboratory (ANL). The objective of this study was to benchmark the transient calculations against temperature-limited transients performed in the final operating HEU TREAT core configuration. The MCNP code was used to evaluate steady-state neutronics behavior, and the point kinetics code TREKIN was used tomore » determine core power and energy during transients. The first part of the benchmarking process was to calculate with MCNP all the neutronic parameters required by TREKIN to simulate the transients: the transient rod-bank worth, the prompt neutron generation lifetime, the temperature reactivity feedback as a function of total core energy, and the core-average temperature and peak temperature as a functions of total core energy. The results of these calculations were compared against measurements or against reported values as documented in the available TREAT reports. The heating of the fuel was simulated as an adiabatic process. The reported values were extracted from ANL reports, intra-laboratory memos and experiment logsheets and in some cases it was not clear if the values were based on measurements, on calculations or a combination of both. Therefore, it was decided to use the term “reported” values when referring to such data. The methods and results from the HEU core transient analyses will be used for the potential LEU core configurations to predict the converted (LEU) core’s performance.« less
Raptor: An Enterprise Knowledge Discovery Engine Version 2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
2011-08-31
The Raptor Version 2.0 computer code uses a set of documents as seed documents to recommend documents of interest from a large, target set of documents. The computer code provides results that show the recommended documents with the highest similarity to the seed documents. Version 2.0 was specifically developed to work with SharePoint 2007 and MS SQL server.
Solwnd: A 3D Compressible MHD Code for Solar Wind Studies. Version 1.0: Cartesian Coordinates
NASA Technical Reports Server (NTRS)
Deane, Anil E.
1996-01-01
Solwnd 1.0 is a three-dimensional compressible MHD code written in Fortran for studying the solar wind. Time-dependent boundary conditions are available. The computational algorithm is based on Flux Corrected Transport and the code is based on the existing code of Zalesak and Spicer. The flow considered is that of shear flow with incoming flow that perturbs this base flow. Several test cases corresponding to pressure balanced magnetic structures with velocity shear flow and various inflows including Alfven waves are presented. Version 1.0 of solwnd considers a rectangular Cartesian geometry. Future versions of solwnd will consider a spherical geometry. Some discussions of this issue is presented.
A user's guide to Sandia's latin hypercube sampling software : LHS UNIX library/standalone version.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swiler, Laura Painton; Wyss, Gregory Dane
2004-07-01
This document is a reference guide for the UNIX Library/Standalone version of the Latin Hypercube Sampling Software. This software has been developed to generate Latin hypercube multivariate samples. This version runs on Linux or UNIX platforms. This manual covers the use of the LHS code in a UNIX environment, run either as a standalone program or as a callable library. The underlying code in the UNIX Library/Standalone version of LHS is almost identical to the updated Windows version of LHS released in 1998 (SAND98-0210). However, some modifications were made to customize it for a UNIX environment and as a librarymore » that is called from the DAKOTA environment. This manual covers the use of the LHS code as a library and in the standalone mode under UNIX.« less
Abrefah, R G; Sogbadji, R B M; Ampomah-Amoako, E; Birikorang, S A; Odoi, H C; Nyarko, B J B
2011-01-01
The MCNP model for the Ghana Research Reactor-1 was redesigned to incorporate a boron carbide-shielded irradiation channel in one of the outer irradiation channels. Extensive investigations were made before arriving at the final design of only one boron carbide covered outer irradiation channel; as all the other designs that were considered did not give desirable results of neutronic performance. The concept of redesigning a new MCNP model, which has a boron carbide-shielded channel is to equip the Ghana Research Reactor-1 with the means of performing efficient epithermal neutron activation analysis. After the simulation, a comparison of the results from the original MCNP model for the Ghana Research Reactor-1 and the new redesigned model of the boron carbide shielded channel was made. The final effective criticality of the original MCNP model for the GHARR-1 was recorded as 1.00402 while that of the new boron carbide designed model was recorded as 1.00282. Also, a final prompt neutron lifetime of 1.5245 × 10(-4)s was recorded for the new boron carbide designed model while a value of 1.5571 × 10(-7)s was recorded for the original MCNP design of the GHARR-1. Copyright © 2010 Elsevier Ltd. All rights reserved.
Correlated prompt fission data in transport simulations
Talou, P.; Vogt, R.; Randrup, J.; ...
2018-01-24
Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and γ-ray spectra, angular distributions of the emitted particles, n -n, n - γ, and γ - γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ raysmore » from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX - PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in nonproliferation, safeguards, nuclear energy, and defense programs. Here, this review provides an overview of the topic, starting from theoretical considerations of the fission process, with a focus on correlated signatures. It then explores the status of experimental correlated fission data and current efforts to address some of the known shortcomings. Numerical simulations employing the FREYA and CGMF codes are compared to experimental data for a wide range of correlated fission quantities. The inclusion of those codes into the MCNP6.2 and MCNPX - PoliMi transport codes is described and discussed in the context of relevant applications. The accuracy of the model predictions and their sensitivity to model assumptions and input parameters are discussed. Lastly, a series of important experimental and theoretical questions that remain unanswered are presented, suggesting a renewed effort to address these shortcomings.« less
Correlated prompt fission data in transport simulations
NASA Astrophysics Data System (ADS)
Talou, P.; Vogt, R.; Randrup, J.; Rising, M. E.; Pozzi, S. A.; Verbeke, J.; Andrews, M. T.; Clarke, S. D.; Jaffke, P.; Jandel, M.; Kawano, T.; Marcath, M. J.; Meierbachtol, K.; Nakae, L.; Rusev, G.; Sood, A.; Stetcu, I.; Walker, C.
2018-01-01
Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and γ-ray spectra, angular distributions of the emitted particles, n - n, n - γ, and γ - γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ rays from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX - PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in nonproliferation, safeguards, nuclear energy, and defense programs. This review provides an overview of the topic, starting from theoretical considerations of the fission process, with a focus on correlated signatures. It then explores the status of experimental correlated fission data and current efforts to address some of the known shortcomings. Numerical simulations employing the FREYA and CGMF codes are compared to experimental data for a wide range of correlated fission quantities. The inclusion of those codes into the MCNP6.2 and MCNPX - PoliMi transport codes is described and discussed in the context of relevant applications. The accuracy of the model predictions and their sensitivity to model assumptions and input parameters are discussed. Finally, a series of important experimental and theoretical questions that remain unanswered are presented, suggesting a renewed effort to address these shortcomings.
Correlated prompt fission data in transport simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talou, P.; Vogt, R.; Randrup, J.
Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and γ-ray spectra, angular distributions of the emitted particles, n -n, n - γ, and γ - γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ raysmore » from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX - PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in nonproliferation, safeguards, nuclear energy, and defense programs. Here, this review provides an overview of the topic, starting from theoretical considerations of the fission process, with a focus on correlated signatures. It then explores the status of experimental correlated fission data and current efforts to address some of the known shortcomings. Numerical simulations employing the FREYA and CGMF codes are compared to experimental data for a wide range of correlated fission quantities. The inclusion of those codes into the MCNP6.2 and MCNPX - PoliMi transport codes is described and discussed in the context of relevant applications. The accuracy of the model predictions and their sensitivity to model assumptions and input parameters are discussed. Lastly, a series of important experimental and theoretical questions that remain unanswered are presented, suggesting a renewed effort to address these shortcomings.« less
Spent nuclear fuel assembly inspection using neutron computed tomography
NASA Astrophysics Data System (ADS)
Pope, Chad Lee
The research presented here focuses on spent nuclear fuel assembly inspection using neutron computed tomography. Experimental measurements involving neutron beam transmission through a spent nuclear fuel assembly serve as benchmark measurements for an MCNP simulation model. Comparison of measured results to simulation results shows good agreement. Generation of tomography images from MCNP tally results was accomplished using adapted versions of built in MATLAB algorithms. Multiple fuel assembly models were examined to provide a broad set of conclusions. Tomography images revealing assembly geometric information including the fuel element lattice structure and missing elements can be obtained using high energy neutrons. A projection difference technique was developed which reveals the substitution of unirradiated fuel elements for irradiated fuel elements, using high energy neutrons. More subtle material differences such as altering the burnup of individual elements can be identified with lower energy neutrons provided the scattered neutron contribution to the image is limited. The research results show that neutron computed tomography can be used to inspect spent nuclear fuel assemblies for the purpose of identifying anomalies such as missing elements or substituted elements. The ability to identify anomalies in spent fuel assemblies can be used to deter diversion of material by increasing the risk of early detection as well as improve reprocessing facility operations by confirming the spent fuel configuration is as expected or allowing segregation if anomalies are detected.
Benchmarking Geant4 for simulating galactic cosmic ray interactions within planetary bodies
Mesick, K. E.; Feldman, W. C.; Coupland, D. D. S.; ...
2018-06-20
Galactic cosmic rays undergo complex nuclear interactions with nuclei within planetary bodies that have little to no atmosphere. Radiation transport simulations are a key tool used in understanding the neutron and gamma-ray albedo coming from these interactions and tracing these signals back to geochemical composition of the target. In this paper, we study the validity of the code Geant4 for simulating such interactions by comparing simulation results to data from the Apollo 17 Lunar Neutron Probe Experiment. Different assumptions regarding the physics are explored to demonstrate how these impact the Geant4 simulation results. In general, all of the Geant4 resultsmore » over-predict the data, however, certain physics lists perform better than others. Finally, in addition, we show that results from the radiation transport code MCNP6 are similar to those obtained using Geant4.« less
Development of a new multi-modal Monte-Carlo radiotherapy planning system.
Kumada, H; Nakamura, T; Komeda, M; Matsumura, A
2009-07-01
A new multi-modal Monte-Carlo radiotherapy planning system (developing code: JCDS-FX) is under development at Japan Atomic Energy Agency. This system builds on fundamental technologies of JCDS applied to actual boron neutron capture therapy (BNCT) trials in JRR-4. One of features of the JCDS-FX is that PHITS has been applied to particle transport calculation. PHITS is a multi-purpose particle Monte-Carlo transport code. Hence application of PHITS enables to evaluate total doses given to a patient by a combined modality therapy. Moreover, JCDS-FX with PHITS can be used for the study of accelerator based BNCT. To verify calculation accuracy of the JCDS-FX, dose evaluations for neutron irradiation of a cylindrical water phantom and for an actual clinical trial were performed, then the results were compared with calculations by JCDS with MCNP. The verification results demonstrated that JCDS-FX is applicable to BNCT treatment planning in practical use.
Shutdown Dose Rate Analysis for the long-pulse D-D Operation Phase in KSTAR
NASA Astrophysics Data System (ADS)
Park, Jin Hun; Han, Jung-Hoon; Kim, D. H.; Joo, K. S.; Hwang, Y. S.
2017-09-01
KSTAR is a medium size fully superconducting tokamak. The deuterium-deuterium (D-D) reaction in the KSTAR tokamak generates neutrons with a peak yield of 3.5x1016 per second through a pulse operation of 100 seconds. The effect of neutron generation from full D-D high power KSTAR operation mode to the machine, such as activation, shutdown dose rate, and nuclear heating, are estimated for an assurance of safety during operation, maintenance, and machine upgrade. The nuclear heating of the in-vessel components, and neutron activation of the surrounding materials have been investigated. The dose rates during operation and after shutdown of KSTAR have been calculated by a 3D CAD model of KSTAR with the Monte Carlo code MCNP5 (neutron flux and decay photon), the inventory code FISPACT (activation and decay photon) and the FENDL 2.1 nuclear data library.
Benchmarking Geant4 for simulating galactic cosmic ray interactions within planetary bodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mesick, K. E.; Feldman, W. C.; Coupland, D. D. S.
Galactic cosmic rays undergo complex nuclear interactions with nuclei within planetary bodies that have little to no atmosphere. Radiation transport simulations are a key tool used in understanding the neutron and gamma-ray albedo coming from these interactions and tracing these signals back to geochemical composition of the target. In this paper, we study the validity of the code Geant4 for simulating such interactions by comparing simulation results to data from the Apollo 17 Lunar Neutron Probe Experiment. Different assumptions regarding the physics are explored to demonstrate how these impact the Geant4 simulation results. In general, all of the Geant4 resultsmore » over-predict the data, however, certain physics lists perform better than others. Finally, in addition, we show that results from the radiation transport code MCNP6 are similar to those obtained using Geant4.« less
Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; ...
2015-12-21
This paper discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Somemore » specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000 ® problems. These benchmark and scaling studies show promising results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontogeorgakos, D.; Derstine, K.; Wright, A.
2013-06-01
The purpose of the TREAT reactor is to generate large transient neutron pulses in test samples without over-heating the core to simulate fuel assembly accident conditions. The power transients in the present HEU core are inherently self-limiting such that the core prevents itself from overheating even in the event of a reactivity insertion accident. The objective of this study was to support the assessment of the feasibility of the TREAT core conversion based on the present reactor performance metrics and the technical specifications of the HEU core. The LEU fuel assembly studied had the same overall design, materials (UO 2more » particles finely dispersed in graphite) and impurities content as the HEU fuel assembly. The Monte Carlo N–Particle code (MCNP) and the point kinetics code TREKIN were used in the analyses.« less
DYNA3D Code Practices and Developments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, L.; Zywicz, E.; Raboin, P.
2000-04-21
DYNA3D is an explicit, finite element code developed to solve high rate dynamic simulations for problems of interest to the engineering mechanics community. The DYNA3D code has been under continuous development since 1976[1] by the Methods Development Group in the Mechanical Engineering Department of Lawrence Livermore National Laboratory. The pace of code development activities has substantially increased in the past five years, growing from one to between four and six code developers. This has necessitated the use of software tools such as CVS (Concurrent Versions System) to help manage multiple version updates. While on-line documentation with an Adobe PDF manualmore » helps to communicate software developments, periodically a summary document describing recent changes and improvements in DYNA3D software is needed. The first part of this report describes issues surrounding software versions and source control. The remainder of this report details the major capability improvements since the last publicly released version of DYNA3D in 1996. Not included here are the many hundreds of bug corrections and minor enhancements, nor the development in DYNA3D between the manual release in 1993[2] and the public code release in 1996.« less
NASA Technical Reports Server (NTRS)
Mcgaw, Michael A.; Saltsman, James F.
1993-01-01
A recently developed high-temperature fatigue life prediction computer code is presented and an example of its usage given. The code discussed is based on the Total Strain version of Strainrange Partitioning (TS-SRP). Included in this code are procedures for characterizing the creep-fatigue durability behavior of an alloy according to TS-SRP guidelines and predicting cyclic life for complex cycle types for both isothermal and thermomechanical conditions. A reasonably extensive materials properties database is included with the code.
2nd-Order CESE Results For C1.4: Vortex Transport by Uniform Flow
NASA Technical Reports Server (NTRS)
Friedlander, David J.
2015-01-01
The Conservation Element and Solution Element (CESE) method was used as implemented in the NASA research code ez4d. The CESE method is a time accurate formulation with flux-conservation in both space and time. The method treats the discretized derivatives of space and time identically and while the 2nd-order accurate version was used, high-order versions exist, the 2nd-order accurate version was used. In regards to the ez4d code, it is an unstructured Navier-Stokes solver coded in C++ with serial and parallel versions available. As part of its architecture, ez4d has the capability to utilize multi-thread and Messaging Passage Interface (MPI) for parallel runs.
2007-09-01
performance of the detector, and to compare the performance with sodium iodide and germanium detectors. Monte Carlo ( MCNP ) simulation was used to...aluminum ~50% more efficient), and to estimate optimum shield dimensions for an HPXe based nuclear explosion monitor. MCNP modeling was also used to...detector were calculated with MCNP by using input activity levels as measured in routine NEM runs at Pacific Northwest National Laboratory (PNNL
Modeling of Radioxenon Production and Release Pathways
2010-09-01
MCNP is utilized to model the neutron transport, while ORIGEN 2.2 is utilized to calculate the production and decay of fission products, activation...products, and transuranics resulting from the calculated neutron flux profile. MONTEBURNS is a pearl script that couples the MCNP and ORIGEN 2.2...core enriched to 93.80% 239Pu was used. MCNP was used to determine the thickness of soil or rock necessary to accurately model the attenuation and
Montgomery Point Lock and Dam, White River, Arkansas
2016-01-01
ER D C/ CH L TR -1 6- 1 Monitoring Completed Navigation Projects (MCNP) Program Montgomery Point Lock and Dam, White River, Arkansas Co...Navigation Projects (MCNP) Program ERDC/CHL TR-16-1 January 2016 Montgomery Point Lock and Dam, White River, Arkansas Allen Hammack, Michael Winkler, and...20314-1000 Under MCNP Work Unit: Montgomery Point Lock and Dam, White River, Arkansas ERDC/CHL TR-16-1 ii Abstract Montgomery Point Lock and
NASA Astrophysics Data System (ADS)
Chapoutier, Nicolas; Mollier, François; Nolin, Guillaume; Culioli, Matthieu; Mace, Jean-Reynald
2017-09-01
In the context of the rising of Monte Carlo transport calculations for any kind of application, AREVA recently improved its suite of engineering tools in order to produce efficient Monte Carlo workflow. Monte Carlo codes, such as MCNP or TRIPOLI, are recognized as reference codes to deal with a large range of radiation transport problems. However the inherent drawbacks of theses codes - laboring input file creation and long computation time - contrast with the maturity of the treatment of the physical phenomena. The goals of the recent AREVA developments were to reach similar efficiency as other mature engineering sciences such as finite elements analyses (e.g. structural or fluid dynamics). Among the main objectives, the creation of a graphical user interface offering CAD tools for geometry creation and other graphical features dedicated to the radiation field (source definition, tally definition) has been reached. The computations times are drastically reduced compared to few years ago thanks to the use of massive parallel runs, and above all, the implementation of hybrid variance reduction technics. From now engineering teams are capable to deliver much more prompt support to any nuclear projects dealing with reactors or fuel cycle facilities from conceptual phase to decommissioning.
Design of a fuel element for a lead-cooled fast reactor
NASA Astrophysics Data System (ADS)
Sobolev, V.; Malambu, E.; Abderrahim, H. Aït
2009-03-01
The options of a lead-cooled fast reactor (LFR) of the fourth generation (GEN-IV) reactor with the electric power of 600 MW are investigated in the ELSY Project. The fuel selection, design and optimization are important steps of the project. Three types of fuel are considered as candidates: highly enriched Pu-U mixed oxide (MOX) fuel for the first core, the MOX containing between 2.5% and 5.0% of the minor actinides (MA) for next core and Pu-U-MA nitride fuel as an advanced option. Reference fuel rods with claddings made of T91 ferrite-martensitic steel and two alternative fuel assembly designs (one uses a closed hexagonal wrapper and the other is an open square variant without wrapper) have been assessed. This study focuses on the core variant with the closed hexagonal fuel assemblies. Based on the neutronic parameters provided by Monte-Carlo modeling with MCNP5 and ALEPH codes, simulations have been carried out to assess the long-term thermal-mechanical behaviour of the hottest fuel rods. A modified version of the fuel performance code FEMAXI-SCK-1, adapted for fast neutron spectrum, new fuels, cladding materials and coolant, was utilized for these calculations. The obtained results show that the fuel rods can withstand more than four effective full power years under the normal operation conditions without pellet-cladding mechanical interaction (PCMI). In a variant with solid fuel pellets, a mild PCMI can appear during the fifth year, however, it remains at an acceptable level up to the end of operation when the peak fuel pellet burnup ∼80 MW d kg-1 of heavy metal (HM) and the maximum clad damage of about 82 displacements per atom (dpa) are reached. Annular pellets permit to delay PCMI for about 1 year. Based on the results of this simulation, further steps are envisioned for the optimization of the fuel rod design, aiming at achieving the fuel burnup of 100 MW d kg-1 of HM.
CBP Toolbox Version 3.0 “Beta Testing” Performance Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, III, F. G.
2016-07-29
One function of the Cementitious Barriers Partnership (CBP) is to assess available models of cement degradation and to assemble suitable models into a “Toolbox” that would be made available to members of the partnership, as well as the DOE Complex. To this end, SRNL and Vanderbilt University collaborated to develop an interface using the GoldSim software to the STADIUM @ code developed by SIMCO Technologies, Inc. and LeachXS/ORCHESTRA developed by Energy research Centre of the Netherlands (ECN). Release of Version 3.0 of the CBP Toolbox is planned in the near future. As a part of this release, an increased levelmore » of quality assurance for the partner codes and the GoldSim interface has been developed. This report documents results from evaluation testing of the ability of CBP Toolbox 3.0 to perform simulations of concrete degradation applicable to performance assessment of waste disposal facilities. Simulations of the behavior of Savannah River Saltstone Vault 2 and Vault 1/4 concrete subject to sulfate attack and carbonation over a 500- to 1000-year time period were run using a new and upgraded version of the STADIUM @ code and the version of LeachXS/ORCHESTRA released in Version 2.0 of the CBP Toolbox. Running both codes allowed comparison of results from two models which take very different approaches to simulating cement degradation. In addition, simulations of chloride attack on the two concretes were made using the STADIUM @ code. The evaluation sought to demonstrate that: 1) the codes are capable of running extended realistic simulations in a reasonable amount of time; 2) the codes produce “reasonable” results; the code developers have provided validation test results as part of their code QA documentation; and 3) the two codes produce results that are consistent with one another. Results of the evaluation testing showed that the three criteria listed above were met by the CBP partner codes. Therefore, it is concluded that the codes can be used to support performance assessment. This conclusion takes into account the QA documentation produced for the partner codes and for the CBP Toolbox.« less
Core Physics and Kinetics Calculations for the Fissioning Plasma Core Reactor
NASA Technical Reports Server (NTRS)
Butler, C.; Albright, D.
2007-01-01
Highly efficient, compact nuclear reactors would provide high specific impulse spacecraft propulsion. This analysis and numerical simulation effort has focused on the technical feasibility issues related to the nuclear design characteristics of a novel reactor design. The Fissioning Plasma Core Reactor (FPCR) is a shockwave-driven gaseous-core nuclear reactor, which uses Magneto Hydrodynamic effects to generate electric power to be used for propulsion. The nuclear design of the system depends on two major calculations: core physics calculations and kinetics calculations. Presently, core physics calculations have concentrated on the use of the MCNP4C code. However, initial results from other codes such as COMBINE/VENTURE and SCALE4a. are also shown. Several significant modifications were made to the ISR-developed QCALC1 kinetics analysis code. These modifications include testing the state of the core materials, an improvement to the calculation of the material properties of the core, the addition of an adiabatic core temperature model and improvement of the first order reactivity correction model. The accuracy of these modifications has been verified, and the accuracy of the point-core kinetics model used by the QCALC1 code has also been validated. Previously calculated kinetics results for the FPCR were described in the ISR report, "QCALC1: A code for FPCR Kinetics Model Feasibility Analysis" dated June 1, 2002.
User's Guide for RESRAD-OFFSITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnanapragasam, E.; Yu, C.
2015-04-01
The RESRAD-OFFSITE code can be used to model the radiological dose or risk to an offsite receptor. This User’s Guide for RESRAD-OFFSITE Version 3.1 is an update of the User’s Guide for RESRAD-OFFSITE Version 2 contained in the Appendix A of the User’s Manual for RESRAD-OFFSITE Version 2 (ANL/EVS/TM/07-1, DOE/HS-0005, NUREG/CR-6937). This user’s guide presents the basic information necessary to use Version 3.1 of the code. It also points to the help file and other documents that provide more detailed information about the inputs, the input forms and features/tools in the code; two of the features (overriding the source termmore » and computing area factors) are discussed in the appendices to this guide. Section 2 describes how to download and install the code and then verify the installation of the code. Section 3 shows ways to navigate through the input screens to simulate various exposure scenarios and to view the results in graphics and text reports. Section 4 has screen shots of each input form in the code and provides basic information about each parameter to increase the user’s understanding of the code. Section 5 outlines the contents of all the text reports and the graphical output. It also describes the commands in the two output viewers. Section 6 deals with the probabilistic and sensitivity analysis tools available in the code. Section 7 details the various ways of obtaining help in the code.« less
Parallelization of KENO-Va Monte Carlo code
NASA Astrophysics Data System (ADS)
Ramón, Javier; Peña, Jorge
1995-07-01
KENO-Va is a code integrated within the SCALE system developed by Oak Ridge that solves the transport equation through the Monte Carlo Method. It is being used at the Consejo de Seguridad Nuclear (CSN) to perform criticality calculations for fuel storage pools and shipping casks. Two parallel versions of the code: one for shared memory machines and other for distributed memory systems using the message-passing interface PVM have been generated. In both versions the neutrons of each generation are tracked in parallel. In order to preserve the reproducibility of the results in both versions, advanced seeds for random numbers were used. The CONVEX C3440 with four processors and shared memory at CSN was used to implement the shared memory version. A FDDI network of 6 HP9000/735 was employed to implement the message-passing version using proprietary PVM. The speedup obtained was 3.6 in both cases.
A User''s Guide to the Zwikker-Kosten Transmission Line Code (ZKTL)
NASA Technical Reports Server (NTRS)
Kelly, J. J.; Abu-Khajeel, H.
1997-01-01
This user's guide documents updates to the Zwikker-Kosten Transmission Line Code (ZKTL). This code was developed for analyzing new liner concepts developed to provide increased sound absorption. Contiguous arrays of multi-degree-of-freedom (MDOF) liner elements serve as the model for these liner configurations, and Zwikker and Kosten's theory of sound propagation in channels is used to predict the surface impedance. Transmission matrices for the various liner elements incorporate both analytical and semi-empirical methods. This allows standard matrix techniques to be employed in the code to systematically calculate the composite impedance due to the individual liner elements. The ZKTL code consists of four independent subroutines: 1. Single channel impedance calculation - linear version (SCIC) 2. Single channel impedance calculation - nonlinear version (SCICNL) 3. Multi-channel, multi-segment, multi-layer impedance calculation - linear version (MCMSML) 4. Multi-channel, multi-segment, multi-layer impedance calculation - nonlinear version (MCMSMLNL) Detailed examples, comments, and explanations for each liner impedance computation module are included. Also contained in the guide are depictions of the interactive execution, input files and output files.
Automotive Gas Turbine Power System-Performance Analysis Code
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
1997-01-01
An open cycle gas turbine numerical modelling code suitable for thermodynamic performance analysis (i.e. thermal efficiency, specific fuel consumption, cycle state points, working fluid flowrates etc.) of automotive and aircraft powerplant applications has been generated at the NASA Lewis Research Center's Power Technology Division. The use this code can be made available to automotive gas turbine preliminary design efforts, either in its present version, or, assuming that resources can be obtained to incorporate empirical models for component weight and packaging volume, in later version that includes the weight-volume estimator feature. The paper contains a brief discussion of the capabilities of the presently operational version of the code, including a listing of input and output parameters and actual sample output listings.
NASA Astrophysics Data System (ADS)
Hu, Zhimeng; Zhong, Guoqiang; Ge, Lijian; Du, Tengfei; Peng, Xingyu; Chen, Zhongjing; Xie, Xufei; Yuan, Xi; Zhang, Yimo; Sun, Jiaqi; Fan, Tieshuan; Zhou, Ruijie; Xiao, Min; Li, Kai; Hu, Liqun; Chen, Jun; Zhang, Hui; Gorini, Giuseppe; Nocente, Massimo; Tardocchi, Marco; Li, Xiangqing; Chen, Jinxiang; Zhang, Guohui
2018-07-01
The neutron field measurement was performed in the Experimental Advanced Superconducting Tokamak (EAST) experimental hall using a Bonner sphere spectrometer (BSS) based on a 3He thermal neutron counter. The measured spectra and the corresponding integrated neutron fluence and dose values deduced from the spectra at two exposed positions were compared to the calculated results obtained by a general Monte Carlo code MCNP5, and good agreements were found. The applicability of a homemade dose survey meter installed at EAST was also verified with the comparison of the ambient dose equivalent H*(10) values measured by the meter and BSS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rezaei-Ochbelagh, D.; Salman-Nezhad, S.; Asadi, A.
External photon beam radiotherapy is carried out in a way to achieve an 'as low as possible' a dose in healthy tissues surrounding the target. One of these surroundings can be heart as a vital organ of body. As it is impossible to directly determine the absorbed dose by heart, using phantoms is one way to acquire information around it. The other way is Monte Carlo method. In this work we have presented a simulation of heart geometry by introducing of different surfaces in MCNP code. We used 14 surface equations in order to determine human heart modeling. Those surfacesmore » are borders of heart walls and contents.« less
D-T Neutron Skyshine Experiments at JAERI/FNS
NASA Astrophysics Data System (ADS)
Nishitani, Takeo; Ochiai, Kentaro; Yoshida, Shigeo; Tanaka, Ryohei; Wakisaka, Masashi; Nakao, Makoto; Sato, Satoshi; Yamauchi, Michinori; Hori, Jun-Ichi; Takahashi, Akito; Kaneko, Jun-Ichi; Sawamura, Teruko
The D-T neutron skyshine experiments have been carried out at the Fusion Neutronics Source (FNS) of JAERI with the neutron yield of ˜1.7×1011n/s. The concrete thickness of the roof and the wall of a FNS target room are 1.15 and 2 m, respectively. The FNS skyshine port with a size of 0.9 × 0.9 m2 was open during the experimental period.The radiation dose rate outside the target room was measured as far as about 550 m away from the D-T target point with a spherical rem-counter. The highest neutron dose was about 0.5 μSv/hr at a distance of 30 m from the D-T target point and the dose rate was attenuated to 0.002 μSv/hr at a distance of 550 m. The measured neutron dose distribution was analyzed with Monte Carlo code MCNP-4B and a simple line source model. The MCNP calculation overestimates the neutron dose in the distance range larger than 250 m. The neutron spectra were evaluated with a 3He detector with different thickness of polyethylene neutron moderators. Secondary gamma-rays were measured with high purity Ge detectors and NaI scintillation detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamani, M.; End of North Kargar st, Atomic Energy Organization of Iran, P.O. Box: 14155-1339, Tehran; Kasesaz, Y.
2015-07-01
In order to gain the neutron spectrum with proper components specification for BNCT, it is necessary to design a Beam Shape Assembling (BSA), include of moderator, collimator, reflector, gamma filter and thermal neutrons filter, in front of the initial radiation beam from the source. According to the result of MCNP4C simulation, the Northwest beam tube has the most optimized neuron flux between three north beam tubes of Tehran Research Reactor (TRR). So, it has been chosen for this purpose. Simulation of the BSA has been done in four above mentioned phases. In each stage, ten best configurations of materials withmore » different length and width were selected as the candidates for the next stage. The last BSA configuration includes of: 78 centimeters of air as an empty space, 40 centimeters of Iron plus 52 centimeters of heavy-water as moderator, 30 centimeters of water or 90 centimeters of Aluminum-Oxide as a reflector, 1 millimeters of lithium (Li) as thermal neutrons filter and finally 3 millimeters of Bismuth (Bi) as a filter of gamma radiation. The result of Calculations shows that if we use this BSA configuration for TRR Northwest beam tube, then the best neutron flux and spectrum will be achieved for BNCT. (authors)« less
Experimental characterization of the AFIT neutron facility. Master's thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lessard, O.J.
1993-09-01
AFIT's Neutron Facility was characterized for room-return neutrons using a (252)Cf source and a Bonner sphere spectrometer with three experimental models, the shadow shield, the Eisenhauer, Schwartz, and Johnson (ESJ), and the polynomial models. The free-field fluences at one meter from the ESJ and polynomial models were compared to the equivalent value from the accepted experimental shadow shield model to determine the suitability of the models in the AFIT facility. The polynomial model behaved erratically, as expected, while the ESJ model compared to within 4.8% of the shadow shield model results for the four Bonner sphere calibration. The ratio ofmore » total fluence to free-field fluence at one meter for the ESJ model was then compared to the equivalent ratio obtained by a Monte Cario Neutron-Photon transport code (MCNP), an accepted computational model. The ESJ model compared to within 6.2% of the MCNP results. AFIT's fluence ratios were compared to equivalent ratios reported by three other neutron facilities which verified that AFIT's results fit previously published trends based on room volumes. The ESJ model appeared adequate for health physics applications and was chosen was chosen for calibration of the AFIT facility. Neutron Detector, Bonner Sphere, Neutron Dosimetry, Room Characterization.« less
Fast fission neutron detection using the Cherenkov effect
NASA Astrophysics Data System (ADS)
Millard, Matthew James
The Cherenkov effect in optically clear media of varying indices of refraction and composition was investigated for quantification of fast neutrons. The ultimate application of the proposed detection system is criticality monitoring. The optically clear medium, composed of select target nuclei, was coupled to a photomultiplier tube. Neutron reaction products of the target nuclei contained within the optical medium emit beta particles and gamma rays that produce Cherenkov photons within the medium which can be detected. Assessed media include quartz (SiO2), sapphire (Al2O3), spinel (MgAl2O4), and zinc sulfide (ZnS), which were irradiated with un-moderated 252Cf. Monte Carlo N-Particle (MCNP) code simulations were conducted to quantify the neutron flux incident on the media. High resolution gamma-ray spectroscopic measurements of the samples were conducted to verify the MCNP estimate. The threshold reactions of interest were 28Si (n, p) 28Al, 27 Al (n, p) 27Mg, 24Mg(n, p)24 Na, and 64Zn(n, p)64Cu which have neutron reaction cross sections in the 1 to 10 MeV range on the order of 0.1 barn. The detection system offers a unique way to measure a criticality event; it can count in place, making retrieval by emergency personnel unnecessary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomou, G.; Stratakis, J.; Perisinakis, K.
Purpose: To provide data for estimation of fetal radiation dose (D{sub F}) from prophylactic hypogastric artery balloon occlusion (HABO) procedures. Methods: The Monte-Carlo-N-particle (MCNP) transport code and mathematical phantoms representing a pregnant patient at the ninth month of gestation were employed. PA, RAO 20° and LAO 20° fluoroscopy projections of left and right internal iliac arteries were simulated. Projection-specific normalized fetal dose (NFD) data were produced for various beam qualities. The effects of projection angle, x-ray field location relative to the fetus, field size, maternal body size, and fetal size on NFD were investigated. Presented NFD values were compared tomore » corresponding values derived using a physical anthropomorphic phantom simulating pregnancy at the third trimester and thermoluminescence dosimeters. Results: NFD did not considerably vary when projection angle was altered by ±5°, whereas it was found to markedly depend on tube voltage, filtration, x-ray field location and size, and maternal body size. Differences in NFD < 7.5% were observed for naturally expected variations in fetal size. A difference of less than 13.5% was observed between NFD values estimated by MCNP and direct measurements. Conclusions: Data and methods provided allow for reliable estimation of radiation burden to the fetus from HABO.« less
Carinou, Eleutheria; Stamatelatos, Ion Evangelos; Kamenopoulou, Vassiliki; Georgolopoulou, Paraskevi; Sandilos, Panayotis
The development of a computational model for the treatment head of a medical electron accelerator (Elekta/Philips SL-18) by the Monte Carlo code mcnp-4C2 is discussed. The model includes the major components of the accelerator head and a pmma phantom representing the patient body. Calculations were performed for a 14 MeV electron beam impinging on the accelerator target and a 10 cmx10 cm beam area at the isocentre. The model was used in order to predict the neutron ambient dose equivalent at the isocentre level and moreover the neutron absorbed dose distribution within the phantom. Calculations were validated against experimental measurements performed by gold foil activation detectors. The results of this study indicated that the equivalent dose at tissues or organs adjacent to the treatment field due to photoneutrons could be up to 10% of the total peripheral dose, for the specific accelerator characteristics examined. Therefore, photoneutrons should be taken into account when accurate dose calculations are required to sensitive tissues that are adjacent to the therapeutic X-ray beam. The method described can be extended to other accelerators and collimation configurations as well, upon specification of treatment head component dimensions, composition and nominal accelerating potential.
Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone
Specht, Aaron J; Weisskopf, Marc G; Nie, Linda Huiling
2017-01-01
Objective K-shell x-ray fluorescence (KXRF) techniques have been used to identify health effects resulting from exposure to metals for decades, but the equipment is bulky and requires significant maintenance and licensing procedures. A portable x-ray fluorescence (XRF) device was developed to overcome these disadvantages, but introduced a measurement dependency on soft tissue thickness. With recent advances to detector technology, an XRF device utilizing the advantages of both systems should be feasible. Approach In this study, we used Monte Carlo simulations to test the feasibility of an XRF device with a high-energy x-ray tube and detector operable at room temperature. Main Results We first validated the use of Monte Carlo N-particle transport code (MCNP) for x-ray tube simulations, and found good agreement between experimental and simulated results. Then, we optimized x-ray tube settings and found the detection limit of the high-energy x-ray tube based XRF device for bone lead measurements to be 6.91 μg g−1 bone mineral using a cadmium zinc telluride detector. Significance In conclusion, this study validated the use of MCNP in simulations of x-ray tube physics and XRF applications, and demonstrated the feasibility of a high-energy x-ray tube based XRF for metal exposure assessment. PMID:28169835
Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone.
Specht, Aaron J; Weisskopf, Marc G; Nie, Linda Huiling
2017-03-01
K-shell x-ray fluorescence (KXRF) techniques have been used to identify health effects resulting from exposure to metals for decades, but the equipment is bulky and requires significant maintenance and licensing procedures. A portable x-ray fluorescence (XRF) device was developed to overcome these disadvantages, but introduced a measurement dependency on soft tissue thickness. With recent advances to detector technology, an XRF device utilizing the advantages of both systems should be feasible. In this study, we used Monte Carlo simulations to test the feasibility of an XRF device with a high-energy x-ray tube and detector operable at room temperature. We first validated the use of Monte Carlo N-particle transport code (MCNP) for x-ray tube simulations, and found good agreement between experimental and simulated results. Then, we optimized x-ray tube settings and found the detection limit of the high-energy x-ray tube based XRF device for bone lead measurements to be 6.91 µg g -1 bone mineral using a cadmium zinc telluride detector. In conclusion, this study validated the use of MCNP in simulations of x-ray tube physics and XRF applications, and demonstrated the feasibility of a high-energy x-ray tube based XRF for metal exposure assessment.
Effective dose in the manufacturing process of rutile covered welding electrodes.
Herranz, M; Rozas, S; Pérez, C; Idoeta, R; Núñez-Lagos, R; Legarda, F
2013-03-01
Shielded metal arc welding using covered electrodes is the most common welding process. Sometimes the covering contains naturally occurring radioactive materials (NORMs). In Spain the most used electrodes are those covered with rutile mixed with other materials. Rutile contains some detectable natural radionuclides, so it can be considered a NORM. This paper mainly focuses on the use of MCNP (Monte Carlo N-Particle Transport Code) as a predictive tool to obtain doses in a factory which produces this type of electrode and assess the radiological impact in a specific facility after estimating the internal dose.To do this, in the facility, areas of highest radiation and positions of workers were identified, radioactive content of rutile and rutile covered electrodes was measured, and, considering a worst possible scenario, external dose at working points has been calculated using MCNP. This procedure has been validated comparing the results obtained with those from a pressurised ionisation chamber and TLD dosimeters. The internal dose has been calculated using DCAL (dose and risk calculation). The doses range between 8.8 and 394 μSv yr(-1), always lower than the effective dose limit for the public, 1 mSv yr(-1). The highest dose corresponds to the mixing area.
Development of an Automatic Differentiation Version of the FPX Rotor Code
NASA Technical Reports Server (NTRS)
Hu, Hong
1996-01-01
The ADIFOR2.0 automatic differentiator is applied to the FPX rotor code along with the grid generator GRGN3. The FPX is an eXtended Full-Potential CFD code for rotor calculations. The automatic differentiation version of the code is obtained, which provides both non-geometry and geometry sensitivity derivatives. The sensitivity derivatives via automatic differentiation are presented and compared with divided difference generated derivatives. The study shows that automatic differentiation method gives accurate derivative values in an efficient manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cullen, D.E.
1977-01-12
A code, SIGMA1, has been designed to Doppler broaden evaluated cross sections in the ENDF/B format. The code can only be applied to tabulated data that vary linearly in energy and cross section between tabulated points. This report describes the methods used in the code and serves as a user's guide to the code.
CoCoNuT: General relativistic hydrodynamics code with dynamical space-time evolution
NASA Astrophysics Data System (ADS)
Dimmelmeier, Harald; Novak, Jérôme; Cerdá-Durán, Pablo
2012-02-01
CoCoNuT is a general relativistic hydrodynamics code with dynamical space-time evolution. The main aim of this numerical code is the study of several astrophysical scenarios in which general relativity can play an important role, namely the collapse of rapidly rotating stellar cores and the evolution of isolated neutron stars. The code has two flavors: CoCoA, the axisymmetric (2D) magnetized version, and CoCoNuT, the 3D non-magnetized version.
EVALUATION OF AN INDIVIDUALLY PACED COURSE FOR AIRBORNE RADIO CODE OPERATORS. FINAL REPORT.
ERIC Educational Resources Information Center
BALDWIN, ROBERT O.; JOHNSON, KIRK A.
IN THIS STUDY COMPARISONS WERE MADE BETWEEN AN INDIVIDUALLY PACED VERSION OF THE AIRBORNE RADIO CODE OPERATOR (ARCO) COURSE AND TWO VERSIONS OF THE COURSE IN WHICH THE STUDENTS PROGRESSED AT A FIXED PACE. THE ARCO COURSE IS A CLASS C SCHOOL IN WHICH THE STUDENT LEARNS TO SEND AND RECEIVE MILITARY MESSAGES USING THE INTERNATIONAL MORSE CODE. THE…
Validation of the analytical methods in the LWR code BOXER for gadolinium-loaded fuel pins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paratte, J.M.; Arkuszewski, J.J.; Kamboj, B.K.
1990-01-01
Due to the very high absorption occurring in gadolinium-loaded fuel pins, calculations of lattices with such pins present are a demanding test of the analysis methods in light water reactor (LWR) cell and assembly codes. Considerable effort has, therefore, been devoted to the validation of code methods for gadolinia fuel. The goal of the work reported in this paper is to check the analysis methods in the LWR cell/assembly code BOXER and its associated cross-section processing code ETOBOX, by comparison of BOXER results with those from a very accurate Monte Carlo calculation for a gadolinium benchmark problem. Initial results ofmore » such a comparison have been previously reported. However, the Monte Carlo calculations, done with the MCNP code, were performed at Los Alamos National Laboratory using ENDF/B-V data, while the BOXER calculations were performed at the Paul Scherrer Institute using JEF-1 nuclear data. This difference in the basic nuclear data used for the two calculations, caused by the restricted nature of these evaluated data files, led to associated uncertainties in a comparison of the results for methods validation. In the joint investigations at the Georgia Institute of Technology and PSI, such uncertainty in this comparison was eliminated by using ENDF/B-V data for BOXER calculations at Georgia Tech.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Depriest, Kendall
Unsuccessful attempts by members of the radiation effects community to independently derive the Norgett-Robinson-Torrens (NRT) damage energy factors for silicon in ASTM standard E722-14 led to an investigation of the software coding and data that produced those damage energy factors. The ad hoc collaboration to discover the reason for lack of agreement revealed a coding error and resulted in a report documenting the methodology to produce the response function for the standard. The recommended changes in the NRT damage energy factors for silicon are shown to have significant impact for a narrow energy region of the 1-MeV(Si) equivalent fluence responsemore » function. However, when evaluating integral metrics over all neutrons energies in various spectra important to the SNL electronics testing community, the change in the response results in a small decrease in the total 1- MeV(Si) equivalent fluence of ~0.6% compared to the E722-14 response. Response functions based on the newly recommended NRT damage energy factors have been produced and are available for users of both the NuGET and MCNP codes.« less
Analysis of neutron and gamma-ray streaming along the maze of NRCAM thallium production target room.
Raisali, G; Hajiloo, N; Hamidi, S; Aslani, G
2006-08-01
Study of the shield performance of a thallium-203 production target room has been investigated in this work. Neutron and gamma-ray equivalent dose rates at various points of the maze are calculated by simulating the transport of streaming neutrons, and photons using Monte Carlo method. For determination of neutron and gamma-ray source intensities and their energy spectrum, we have applied SRIM 2003 and ALICE91 computer codes to Tl target and its Cu substrate for a 145 microA of 28.5 MeV protons beam. The MCNP/4C code has been applied with neutron source term in mode n p to consider both prompt neutrons and secondary gamma-rays. Then the code is applied for the prompt gamma-rays as the source term. The neutron-flux energy spectrum and equivalent dose rates for neutron and gamma-rays in various positions in the maze have been calculated. It has been found that the deviation between calculated and measured dose values along the maze is less than 20%.
Bergmann, Ryan M.; Rowland, Kelly L.; Radnović, Nikola; ...
2017-05-01
In this companion paper to "Algorithmic Choices in WARP - A Framework for Continuous Energy Monte Carlo Neutron Transport in General 3D Geometries on GPUs" (doi:10.1016/j.anucene.2014.10.039), the WARP Monte Carlo neutron transport framework for graphics processing units (GPUs) is benchmarked against production-level central processing unit (CPU) Monte Carlo neutron transport codes for both performance and accuracy. We compare neutron flux spectra, multiplication factors, runtimes, speedup factors, and costs of various GPU and CPU platforms running either WARP, Serpent 2.1.24, or MCNP 6.1. WARP compares well with the results of the production-level codes, and it is shown that on the newestmore » hardware considered, GPU platforms running WARP are between 0.8 to 7.6 times as fast as CPU platforms running production codes. Also, the GPU platforms running WARP were between 15% and 50% as expensive to purchase and between 80% to 90% as expensive to operate as equivalent CPU platforms performing at an equal simulation rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergmann, Ryan M.; Rowland, Kelly L.; Radnović, Nikola
In this companion paper to "Algorithmic Choices in WARP - A Framework for Continuous Energy Monte Carlo Neutron Transport in General 3D Geometries on GPUs" (doi:10.1016/j.anucene.2014.10.039), the WARP Monte Carlo neutron transport framework for graphics processing units (GPUs) is benchmarked against production-level central processing unit (CPU) Monte Carlo neutron transport codes for both performance and accuracy. We compare neutron flux spectra, multiplication factors, runtimes, speedup factors, and costs of various GPU and CPU platforms running either WARP, Serpent 2.1.24, or MCNP 6.1. WARP compares well with the results of the production-level codes, and it is shown that on the newestmore » hardware considered, GPU platforms running WARP are between 0.8 to 7.6 times as fast as CPU platforms running production codes. Also, the GPU platforms running WARP were between 15% and 50% as expensive to purchase and between 80% to 90% as expensive to operate as equivalent CPU platforms performing at an equal simulation rate.« less
Alexandrowicz, Rainer W; Friedrich, Fabian; Jahn, Rebecca; Soulier, Nathalie
2015-01-01
The present study compares the 30-, 20-, and 12-items versions of the General Health Questionnaire (GHQ) in the original coding and four different recoding schemes (Bimodal, Chronic, Modified Likert and a newly proposed Modified Chronic) with respect to their psychometric qualities. The dichotomized versions (i.e. Bimodal, Chronic and Modified Chronic) were evaluated with the Rasch-Model and the polytomous original version and the Modified Likert version were evaluated with the Partial Credit Model. In general, the versions under consideration showed agreement with the model assumption. However, the recoded versions exhibited some deficits with respect to the Outfit index. Because of the item deficits and for theoretical reasons we argue in favor of using the any of the three length versions with the original four-categorical coding scheme. Nevertheless, any of the versions appears apt for clinical use from a psychometric perspective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendoza, Paul Michael
2016-08-31
The project goals seek to develop applications in order to automate MCNP criticality benchmark execution; create a dataset containing static benchmark information; combine MCNP output with benchmark information; and fit and visually represent data.
Design of a boron neutron capture enhanced fast neutron therapy assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhonglu
The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator nearmore » the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm 2 treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm 2 collimation was 21.9% per 100-ppm 10B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm 2 fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm 2 collimator. Five 1.0-cm thick 20x20 cm 2 tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm 10B) to measure dose due to boron neutron capture. The measured dose enhancement at 5.0-cm depth in the head phantom for the 5.0-cm thick tungsten filter is (16.6 ± 1.8)%, which agrees well with the MCNP simulation of the simplified BNCEFNT assembly, (16.4 ± 0.5)%. The error in the calculated dose enhancement only considers the statistical uncertainties. The total dose rate measured at 5.0-cm depth using the non-borated ion chamber is (0.765 ± 0.076) Gy/MU, about 61% of the fast neutron standard dose rate (1.255Gy/MU) at 5.0-cm depth for the standard 10x10 cm 2 treatment beam. The increased doses to other organs due to the use of the BNCEFNT assembly were calculated using MCNP5 and a MIRD phantom. The activities of the activation products produced in the BNCEFNT assembly after neutron beam delivery were computed. The photon ambient dose rate due to the radioactive activation products was also estimated.« less
FastDart : a fast, accurate and friendly version of DART code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J.; Taboada, H.
2000-11-08
A new enhanced, visual version of DART code is presented. DART is a mechanistic model based code, developed for the performance calculation and assessment of aluminum dispersion fuel. Major issues of this new version are the development of a new, time saving calculation routine, able to be run on PC, a friendly visual input interface and a plotting facility. This version, available for silicide and U-Mo fuels,adds to the classical accuracy of DART models for fuel performance prediction, a faster execution and visual interfaces. It is part of a collaboration agreement between ANL and CNEA in the area of Lowmore » Enriched Uranium Advanced Fuels, held by the Implementation Arrangement for Technical Exchange and Cooperation in the Area of Peaceful Uses of Nuclear Energy.« less
New Web Server - the Java Version of Tempest - Produced
NASA Technical Reports Server (NTRS)
York, David W.; Ponyik, Joseph G.
2000-01-01
A new software design and development effort has produced a Java (Sun Microsystems, Inc.) version of the award-winning Tempest software (refs. 1 and 2). In 1999, the Embedded Web Technology (EWT) team received a prestigious R&D 100 Award for Tempest, Java Version. In this article, "Tempest" will refer to the Java version of Tempest, a World Wide Web server for desktop or embedded systems. Tempest was designed at the NASA Glenn Research Center at Lewis Field to run on any platform for which a Java Virtual Machine (JVM, Sun Microsystems, Inc.) exists. The JVM acts as a translator between the native code of the platform and the byte code of Tempest, which is compiled in Java. These byte code files are Java executables with a ".class" extension. Multiple byte code files can be zipped together as a "*.jar" file for more efficient transmission over the Internet. Today's popular browsers, such as Netscape (Netscape Communications Corporation) and Internet Explorer (Microsoft Corporation) have built-in Virtual Machines to display Java applets.
User Manual for the NASA Glenn Ice Accretion Code LEWICE: Version 2.0
NASA Technical Reports Server (NTRS)
Wright, William B.
1999-01-01
A research project is underway at NASA Glenn to produce a computer code which can accurately predict ice growth under a wide range of meteorological conditions for any aircraft surface. This report will present a description of the code inputs and outputs from version 2.0 of this code, which is called LEWICE. This version differs from previous releases due to its robustness and its ability to reproduce results accurately for different spacing and time step criteria across computing platform. It also differs in the extensive effort undertaken to compare the results against the database of ice shapes which have been generated in the NASA Glenn Icing Research Tunnel (IRT) 1. This report will only describe the features of the code related to the use of the program. The report will not describe the inner working of the code or the physical models used. This information is available in the form of several unpublished documents which will be collectively referred to as a Programmers Manual for LEWICE 2 in this report. These reports are intended as an update/replacement for all previous user manuals of LEWICE. In addition to describing the changes and improvements made for this version, information from previous manuals may be duplicated so that the user will not need to consult previous manuals to use this code.
2014-04-21
Dixon, a graduate student at the University of New Mexico who introduced us to MCNP . Using what we learned from Dixon, we were able to produce a...curves were produced with MCNP for incident electron energies from 10 to 100 keV in increments of 10 keV, see Figure 9. In this case, the same...the algorithm. Since MCNP does take backscatter into consideration, the comparisons on the vertical scales (energy or number of electrons deposited
Simplification of an MCNP model designed for dose rate estimation
NASA Astrophysics Data System (ADS)
Laptev, Alexander; Perry, Robert
2017-09-01
A study was made to investigate the methods of building a simplified MCNP model for radiological dose estimation. The research was done using an example of a complicated glovebox with extra shielding. The paper presents several different calculations for neutron and photon dose evaluations where glovebox elements were consecutively excluded from the MCNP model. The analysis indicated that to obtain a fast and reasonable estimation of dose, the model should be realistic in details that are close to the tally. Other details may be omitted.
User's Guide for TOUGH2-MP - A Massively Parallel Version of the TOUGH2 Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Earth Sciences Division; Zhang, Keni; Zhang, Keni
TOUGH2-MP is a massively parallel (MP) version of the TOUGH2 code, designed for computationally efficient parallel simulation of isothermal and nonisothermal flows of multicomponent, multiphase fluids in one, two, and three-dimensional porous and fractured media. In recent years, computational requirements have become increasingly intensive in large or highly nonlinear problems for applications in areas such as radioactive waste disposal, CO2 geological sequestration, environmental assessment and remediation, reservoir engineering, and groundwater hydrology. The primary objective of developing the parallel-simulation capability is to significantly improve the computational performance of the TOUGH2 family of codes. The particular goal for the parallel simulator ismore » to achieve orders-of-magnitude improvement in computational time for models with ever-increasing complexity. TOUGH2-MP is designed to perform parallel simulation on multi-CPU computational platforms. An earlier version of TOUGH2-MP (V1.0) was based on the TOUGH2 Version 1.4 with EOS3, EOS9, and T2R3D modules, a software previously qualified for applications in the Yucca Mountain project, and was designed for execution on CRAY T3E and IBM SP supercomputers. The current version of TOUGH2-MP (V2.0) includes all fluid property modules of the standard version TOUGH2 V2.0. It provides computationally efficient capabilities using supercomputers, Linux clusters, or multi-core PCs, and also offers many user-friendly features. The parallel simulator inherits all process capabilities from V2.0 together with additional capabilities for handling fractured media from V1.4. This report provides a quick starting guide on how to set up and run the TOUGH2-MP program for users with a basic knowledge of running the (standard) version TOUGH2 code, The report also gives a brief technical description of the code, including a discussion of parallel methodology, code structure, as well as mathematical and numerical methods used. To familiarize users with the parallel code, illustrative sample problems are presented.« less
High-Speed, Low-Cost Workstation for Computation-Intensive Statistics. Phase 1
1990-06-20
routine implementation and performance. 5 The two compiled versions given in the table were coded in an attempt to obtain an optimized compiled version...level statistics and linear algebra routines (BSAS and BLAS) that have been prototyped in this study. For each routine, both the C code ( Turbo C...OISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Unlimited distribution 13. ABSTRACT (Maximum 200 words) High-performance and low-cost
NASA Astrophysics Data System (ADS)
KIM, Jong Woon; LEE, Young-Ouk
2017-09-01
As computing power gets better and better, computer codes that use a deterministic method seem to be less useful than those using the Monte Carlo method. In addition, users do not like to think about space, angles, and energy discretization for deterministic codes. However, a deterministic method is still powerful in that we can obtain a solution of the flux throughout the problem, particularly as when particles can barely penetrate, such as in a deep penetration problem with small detection volumes. Recently, a new state-of-the-art discrete-ordinates code, ATTILA, was developed and has been widely used in several applications. ATTILA provides the capabilities to solve geometrically complex 3-D transport problems by using an unstructured tetrahedral mesh. Since 2009, we have been developing our own code by benchmarking ATTILA. AETIUS is a discrete ordinates code that uses an unstructured tetrahedral mesh such as ATTILA. For pre- and post- processing, Gmsh is used to generate an unstructured tetrahedral mesh by importing a CAD file (*.step) and visualizing the calculation results of AETIUS. Using a CAD tool, the geometry can be modeled very easily. In this paper, we describe a brief overview of AETIUS and provide numerical results from both AETIUS and a Monte Carlo code, MCNP5, in a deep penetration problem with small detection volumes. The results demonstrate the effectiveness and efficiency of AETIUS for such calculations.
Huang, Huilin; Weng, Hengyou; Sun, Wenju; Qin, Xi; Shi, Hailing; Wu, Huizhe; Zhao, Boxuan Simen; Mesquita, Ana; Liu, Chang; Yuan, Celvie L; Hu, Yueh-Chiang; Hüttelmaier, Stefan; Skibbe, Jennifer R; Su, Rui; Deng, Xiaolan; Dong, Lei; Sun, Miao; Li, Chenying; Nachtergaele, Sigrid; Wang, Yungui; Hu, Chao; Ferchen, Kyle; Greis, Kenneth D; Jiang, Xi; Wei, Minjie; Qu, Lianghu; Guan, Jun-Lin; He, Chuan; Yang, Jianhua; Chen, Jianjun
2018-06-07
In the version of this Article originally published, the authors incorrectly listed an accession code as GES90642. The correct code is GSE90642 . This has now been amended in all online versions of the Article.
User Manual for the NASA Glenn Ice Accretion Code LEWICE. Version 2.2.2
NASA Technical Reports Server (NTRS)
Wright, William B.
2002-01-01
A research project is underway at NASA Glenn to produce a computer code which can accurately predict ice growth under a wide range of meteorological conditions for any aircraft surface. This report will present a description of the code inputs and outputs from version 2.2.2 of this code, which is called LEWICE. This version differs from release 2.0 due to the addition of advanced thermal analysis capabilities for de-icing and anti-icing applications using electrothermal heaters or bleed air applications. An extensive effort was also undertaken to compare the results against the database of electrothermal results which have been generated in the NASA Glenn Icing Research Tunnel (IRT) as was performed for the validation effort for version 2.0. This report will primarily describe the features of the software related to the use of the program. Appendix A of this report has been included to list some of the inner workings of the software or the physical models used. This information is also available in the form of several unpublished documents internal to NASA. This report is intended as a replacement for all previous user manuals of LEWICE. In addition to describing the changes and improvements made for this version, information from previous manuals may be duplicated so that the user will not need to consult previous manuals to use this code.
Assessment of doses caused by electrons in thin layers of tissue-equivalent materials, using MCNP.
Heide, Bernd
2013-10-01
Absorbed doses caused by electron irradiation were calculated with Monte Carlo N-Particle transport code (MCNP) for thin layers of tissue-equivalent materials. The layers were so thin that the calculation of energy deposition was on the border of the scope of MCNP. Therefore, in this article application of three different methods of calculation of energy deposition is discussed. This was done by means of two scenarios: in the first one, electrons were emitted from the centre of a sphere of water and also recorded in that sphere; and in the second, an irradiation with the PTB Secondary Standard BSS2 was modelled, where electrons were emitted from an (90)Sr/(90)Y area source and recorded inside a cuboid phantom made of tissue-equivalent material. The speed and accuracy of the different methods were of interest. While a significant difference in accuracy was visible for one method in the first scenario, the difference in accuracy of the three methods was insignificant for the second one. Considerable differences in speed were found for both scenarios. In order to demonstrate the need for calculating the dose in thin small zones, a third scenario was constructed and simulated as well. The third scenario was nearly equal to the second one, but a pike of lead was assumed to be inside the phantom in addition. A dose enhancement (caused by the pike of lead) of ∼113 % was recorded for a thin hollow cylinder at a depth of 0.007 cm, which the basal-skin layer is referred to in particular. Dose enhancements between 68 and 88 % were found for a slab with a radius of 0.09 cm for all depths. All dose enhancements were hardly noticeable for a slab with a cross-sectional area of 1 cm(2), which is usually applied to operational radiation protection.
Rudresh, Shoorashetty Manohara; Ravi, Giriyapur Siddappa; Sunitha, Lakshminarayanappa; Hajira, Sadiya Noor; Kalaiarasan, Ellappan; Harish, Belgode Narasimha
2017-01-01
PURPOSE: Detection of carbapenemases among Gram-negative bacteria (GNB) is important for both clinicians and infection control practitioners. The Clinical and Laboratory Standards Institute recommends Carba NP (CNP) as confirmatory test for carbapenemase production. The reagents required for CNP test are costly and hence the test cannot be performed on a routine basis. The present study evaluates modifications of CNP test for rapid detection of carbapenemases among GNB. MATERIALS AND METHODS: The GNB were screened for carbapenemase production using CNP, CarbAcineto NP (CANP), and modified CNP (mCNP) test. A multiplex polymerase chain reaction (PCR) was performed on all the carbapenem-resistant bacteria for carbapenemase genes. The results of three phenotypic tests were compared with PCR. RESULTS: A total of 765 gram negative bacteria were screened for carbapenem resistance. Carbapenem resistance was found in 144 GNB. The metallo-β-lactamases were most common carbapenemases followed by OXA-48-like enzymes. The CANP test was most sensitive (80.6%) for carbapenemases detection. The mCNP test was 62.1% sensitive for detection of carbapenemases. The mCNP, CNP, and CANP tests were equally sensitive (95%) for detection of NDM enzymes among Enterobacteriaceae. The mCNP test had poor sensitivity for detection of OXA-48-like enzymes. CONCLUSION: The mCNP test was rapid, cost-effective, and easily adoptable on routine basis. The early detection of carbapenemases using mCNP test will help in preventing the spread of multidrug-resistant organisms in the hospital settings. PMID:28966495
Rudresh, Shoorashetty Manohara; Ravi, Giriyapur Siddappa; Sunitha, Lakshminarayanappa; Hajira, Sadiya Noor; Kalaiarasan, Ellappan; Harish, Belgode Narasimha
2017-01-01
Detection of carbapenemases among Gram-negative bacteria (GNB) is important for both clinicians and infection control practitioners. The Clinical and Laboratory Standards Institute recommends Carba NP (CNP) as confirmatory test for carbapenemase production. The reagents required for CNP test are costly and hence the test cannot be performed on a routine basis. The present study evaluates modifications of CNP test for rapid detection of carbapenemases among GNB. The GNB were screened for carbapenemase production using CNP, CarbAcineto NP (CANP), and modified CNP (mCNP) test. A multiplex polymerase chain reaction (PCR) was performed on all the carbapenem-resistant bacteria for carbapenemase genes. The results of three phenotypic tests were compared with PCR. A total of 765 gram negative bacteria were screened for carbapenem resistance. Carbapenem resistance was found in 144 GNB. The metallo-β-lactamases were most common carbapenemases followed by OXA-48-like enzymes. The CANP test was most sensitive (80.6%) for carbapenemases detection. The mCNP test was 62.1% sensitive for detection of carbapenemases. The mCNP, CNP, and CANP tests were equally sensitive (95%) for detection of NDM enzymes among Enterobacteriaceae. The mCNP test had poor sensitivity for detection of OXA-48-like enzymes. The mCNP test was rapid, cost-effective, and easily adoptable on routine basis. The early detection of carbapenemases using mCNP test will help in preventing the spread of multidrug-resistant organisms in the hospital settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cullen, D.E.
1978-07-04
The code SIGMA1 Doppler broadens evaluated cross sections in the ENDF/B format. The code can be applied only to data that vary as a linear function of energy and cross section between tabulated points. This report describes the methods used in the code and serves as a user's guide to the code. 6 figures, 2 tables.
Chan, Vincy; Thurairajah, Pravheen; Colantonio, Angela
2013-11-13
Although healthcare administrative data are commonly used for traumatic brain injury research, there is currently no consensus or consistency on using the International Classification of Diseases version 10 codes to define traumatic brain injury among children and youth. This protocol is for a systematic review of the literature to explore the range of International Classification of Diseases version 10 codes that are used to define traumatic brain injury in this population. The databases MEDLINE, MEDLINE In-Process, Embase, PsychINFO, CINAHL, SPORTDiscus, and Cochrane Database of Systematic Reviews will be systematically searched. Grey literature will be searched using Grey Matters and Google. Reference lists of included articles will also be searched. Articles will be screened using predefined inclusion and exclusion criteria and all full-text articles that meet the predefined inclusion criteria will be included for analysis. The study selection process and reasons for exclusion at the full-text level will be presented using a PRISMA study flow diagram. Information on the data source of included studies, year and location of study, age of study population, range of incidence, and study purpose will be abstracted into a separate table and synthesized for analysis. All International Classification of Diseases version 10 codes will be listed in tables and the codes that are used to define concussion, acquired traumatic brain injury, head injury, or head trauma will be identified. The identification of the optimal International Classification of Diseases version 10 codes to define this population in administrative data is crucial, as it has implications for policy, resource allocation, planning of healthcare services, and prevention strategies. It also allows for comparisons across countries and studies. This protocol is for a review that identifies the range and most common diagnoses used to conduct surveillance for traumatic brain injury in children and youth. This is an important first step in reaching an appropriate definition using International Classification of Diseases version 10 codes and can inform future work on reaching consensus on the codes to define traumatic brain injury for this vulnerable population.
Preissl, Sebastian; Fang, Rongxin; Huang, Hui; Zhao, Yuan; Raviram, Ramya; Gorkin, David U; Zhang, Yanxiao; Sos, Brandon C; Afzal, Veena; Dickel, Diane E; Kuan, Samantha; Visel, Axel; Pennacchio, Len A; Zhang, Kun; Ren, Bing
2018-03-01
In the version of this article initially published online, the accession code was given as GSE1000333. The correct code is GSE100033. The error has been corrected in the print, HTML and PDF versions of the article.
Checkpointing in speculative versioning caches
Eichenberger, Alexandre E; Gara, Alan; Gschwind, Michael K; Ohmacht, Martin
2013-08-27
Mechanisms for generating checkpoints in a speculative versioning cache of a data processing system are provided. The mechanisms execute code within the data processing system, wherein the code accesses cache lines in the speculative versioning cache. The mechanisms further determine whether a first condition occurs indicating a need to generate a checkpoint in the speculative versioning cache. The checkpoint is a speculative cache line which is made non-speculative in response to a second condition occurring that requires a roll-back of changes to a cache line corresponding to the speculative cache line. The mechanisms also generate the checkpoint in the speculative versioning cache in response to a determination that the first condition has occurred.
NASA Glenn Steady-State Heat Pipe Code GLENHP: Compilation for 64- and 32-Bit Windows Platforms
NASA Technical Reports Server (NTRS)
Tower, Leonard K.; Geng, Steven M.
2016-01-01
A new version of the NASA Glenn Steady State Heat Pipe Code, designated "GLENHP," is introduced here. This represents an update to the disk operating system (DOS) version LERCHP reported in NASA/TM-2000-209807. The new code operates on 32- and 64-bit Windows-based platforms from within the 32-bit command prompt window. An additional evaporator boundary condition and other features are provided.
NASA Technical Reports Server (NTRS)
Lohn, Jason; Smith, David; Frank, Jeremy; Globus, Al; Crawford, James
2007-01-01
JavaGenes is a general-purpose, evolutionary software system written in Java. It implements several versions of a genetic algorithm, simulated annealing, stochastic hill climbing, and other search techniques. This software has been used to evolve molecules, atomic force field parameters, digital circuits, Earth Observing Satellite schedules, and antennas. This version differs from version 0.7.28 in that it includes the molecule evolution code and other improvements. Except for the antenna code, JaveGenes is available for NASA Open Source distribution.
NASA Technical Reports Server (NTRS)
Chanteur, G.; Khanfir, R.
1995-01-01
We have designed a full compressible MHD code working on unstructured meshes in order to be able to compute accurately sharp structures embedded in large scale simulations. The code is based on a finite volume method making use of a kinetic flux splitting. A bidimensional version of the code has been used to simulate the interaction of a moving interstellar medium, magnetized or unmagnetized with a rotating and magnetized heliopspheric plasma source. Being aware that these computations are not realistic due to the restriction to two dimensions, we present it to demonstrate the ability of this new code to handle this problem. An axisymetric version, now under development, will be operational in a few months. Ultimately we plan to run a full 3d version.
Chen, A Y; Liu, Y-W H; Sheu, R J
2008-01-01
This study investigates the radiation shielding design of the treatment room for boron neutron capture therapy at Tsing Hua Open-pool Reactor using "TORT-coupled MCNP" method. With this method, the computational efficiency is improved significantly by two to three orders of magnitude compared to the analog Monte Carlo MCNP calculation. This makes the calculation feasible using a single CPU in less than 1 day. Further optimization of the photon weight windows leads to additional 50-75% improvement in the overall computational efficiency.
Using Neutron Spectroscopy to Constrain the Composition and Provenance of Phobos and Deimos
NASA Technical Reports Server (NTRS)
Elphic, Richard C.
2015-01-01
The origin of the Martian moons Phobos and Deimos is obscure and enigmatic. Hypotheses include the capture of asteroids originally from the outer main belt or beyond, residual material left over from Mars' formation, and accreted ejecta from a large impact on Mars, among others. Measurements of reflectance spectra indicate a similarity to dark, red D-type asteroids, but could indicate a highly space-weathered veneer. Here we suggest a way of constraining the near-surface composition of the two moons, for comparison to known meteoritic compositions. Neutron spectroscopy, particularly the thermal and epithermal neutron flux, distinguishes clearly between various classes of meteorites and varying hydrogen (water) abundances. Perhaps most surprising of all, a rendezvous with Phobos or Deimos is not necessary to achieve this. A low-cost mission based on the LADEE spacecraft design in an eccentric orbit around Mars can encounter Phobos every 2 weeks. As few as five flyby encounters at speeds of 2.3 kilometers per second and closest-approach distance of 3 kilometers provide sufficient data to distinguish between ordinary chondrite, water-bearing carbonaceous chondrite, ureilite, Mars surface, and aubrite compositions. A one-Earth year mission design includes many more flybys at lower speeds and closer approach distances, as well as similar multiple flybys at Deimos in the second mission phase, as described in the Phobos And Deimos Mars Environment (PADME) mission concept. This presentation will describe the expected thermal and epithermal neutron fluxes based on MCNP6 (Monte Carlo N (i.e. Neutron)-Particle transport code (version 6) simulations of different meteorite compositions and their uncertainties.
Khankook, Atiyeh Ebrahimi; Hakimabad, Hashem Miri; Motavalli, Laleh Rafat
2017-05-01
Computational models of the human body have gradually become crucial in the evaluation of doses absorbed by organs. However, individuals may differ considerably in terms of organ size and shape. In this study, the authors sought to determine the energy-dependent standard deviations due to lung size of the dose absorbed by the lung during external photon and neutron beam exposures. One hundred lungs with different masses were prepared and located in an adult male International Commission on Radiological Protection (ICRP) reference phantom. Calculations were performed using the Monte Carlo N-particle code version 5 (MCNP5). Variation in the lung mass caused great uncertainty: ~90% for low-energy broad parallel photon beams. However, for high-energy photons, the lung-absorbed dose dependency on the anatomical variation was reduced to <1%. In addition, the results obtained indicated that the discrepancy in the lung-absorbed dose varied from 0.6% to 8% for neutron beam exposure. Consequently, the relationship between absorbed dose and organ volume was found to be significant for low-energy photon sources, whereas for higher energy photon sources the organ-absorbed dose was independent of the organ volume. In the case of neutron beam exposure, the maximum discrepancy (of 8%) occurred in the energy range between 0.1 and 5 MeV. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadeghi, Mahdi; Taghdiri, Fatemeh; Hamed Hosseini, S.
Purpose: The formalism recommended by Task Group 60 (TG-60) of the American Association of Physicists in Medicine (AAPM) is applicable for {beta} sources. Radioactive biocompatible and biodegradable {sup 153}Sm glass seed without encapsulation is a {beta}{sup -} emitter radionuclide with a short half-life and delivers a high dose rate to the tumor in the millimeter range. This study presents the results of Monte Carlo calculations of the dosimetric parameters for the {sup 153}Sm brachytherapy source. Methods: Version 5 of the (MCNP) Monte Carlo radiation transport code was used to calculate two-dimensional dose distributions around the source. The dosimetric parameters ofmore » AAPM TG-60 recommendations including the reference dose rate, the radial dose function, the anisotropy function, and the one-dimensional anisotropy function were obtained. Results: The dose rate value at the reference point was estimated to be 9.21{+-}0.6 cGy h{sup -1} {mu}Ci{sup -1}. Due to the low energy beta emitted from {sup 153}Sm sources, the dose fall-off profile is sharper than the other beta emitter sources. The calculated dosimetric parameters in this study are compared to several beta and photon emitting seeds. Conclusions: The results show the advantage of the {sup 153}Sm source in comparison with the other sources because of the rapid dose fall-off of beta ray and high dose rate at the short distances of the seed. The results would be helpful in the development of the radioactive implants using {sup 153}Sm seeds for the brachytherapy treatment.« less
NASA Astrophysics Data System (ADS)
Musarudin, M.; Saripan, M. I.; Mashohor, S.; Saad, W. H. M.; Nordin, A. J.; Hashim, S.
2015-10-01
Energy window technique has been implemented in all positron emission tomography (PET) imaging protocol, with the aim to remove the unwanted low energy photons. Current practices in our institution however are performed by using default energy threshold level regardless of the weight of the patient. Phantom size, which represents the size of the patient's body, is the factor that determined the level of scatter fraction during PET imaging. Thus, the motivation of this study is to determine the optimum energy threshold level for different sizes of human-shaped phantom, to represent underweight, normal, overweight and obese patients. In this study, the scanner was modeled by using Monte Carlo code, version MCNP5. Five different sizes of elliptical-cylinder shaped of human-sized phantoms with diameter ranged from 15 to 30 cm were modeled. The tumor was modeled by a cylindrical line source filled with 1.02 MeV positron emitters at the center of the phantom. Various energy window widths, in the ranged of 10-50% were implemented to the data. In conclusion, the phantom mass volume did influence the scatter fraction within the volume. Bigger phantom caused more scattering events and thus led to coincidence counts lost. We evaluated the impact of phantom sizes on the sensitivity and visibility of the simulated models. Implementation of wider energy window improved the sensitivity of the system and retained the coincidence photons lost. Visibility of the tumor improved as an appropriate energy window implemented for the different sizes of phantom.
Gamma-ray spectroscopy measurements and simulations for uranium mining
NASA Astrophysics Data System (ADS)
Marchais, T.; Pérot, B.; Carasco, C.; Allinei, P.-G.; Chaussonnet, P.; Ma, J.-L.; Toubon, H.
2018-01-01
AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration evaluation by means of gamma measurements. This paper reports gamma-ray spectra, recorded with a high-purity coaxial germanium detector, on standard cement blocks with increasing uranium content, and the corresponding MCNP simulations. The detailed MCNP model of the detector and experimental setup has been validated by calculation vs. experiment comparisons. An optimization of the detector MCNP model is presented in this paper, as well as a comparison of different nuclear data libraries to explain missing or exceeding peaks in the simulation. Energy shifts observed between the fluorescence X-rays produced by MCNP and atomic data are also investigated. The qualified numerical model will be used in further studies to develop new gamma spectroscopy approaches aiming at reducing acquisition times, especially for ore samples with low uranium content.
A CT and MRI scan to MCNP input conversion program.
Van Riper, Kenneth A
2005-01-01
We describe a new program to read a sequence of tomographic scans and prepare the geometry and material sections of an MCNP input file. Image processing techniques include contrast controls and mapping of grey scales to colour. The user interface provides several tools with which the user can associate a range of image intensities to an MCNP material. Materials are loaded from a library. A separate material assignment can be made to a pixel intensity or range of intensities when that intensity dominates the image boundaries; this material is assigned to all pixels with that intensity contiguous with the boundary. Material fractions are computed in a user-specified voxel grid overlaying the scans. New materials are defined by mixing the library materials using the fractions. The geometry can be written as an MCNP lattice or as individual cells. A combination algorithm can be used to join neighbouring cells with the same material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liegey, Lauren Rene; Wilcox, Trevor; Mckinney, Gregg Walter
2015-08-07
My internship program was the Domestic Nuclear Detection Office Summer Internship Program. I worked at Los Alamos National Laboratory with Trevor A. Wilcox and Gregg W. McKinney in the NEN-5 group. My project title was “MCNP Physical Model Interoperability & Validation”. The goal of my project was to write a program to predict the solar modulation parameter for dates in the future and then implement it into MCNP6. This update to MCNP6 can be used to calculate the background more precisely, which is an important factor in being able to detect Special Nuclear Material. We will share our work inmore » a published American Nuclear Society (ANS) paper, an ANS presentation, and a LANL student poster session. Through this project, I gained skills in programming, computing, and using MCNP. I also gained experience that will help me decide on a career or perhaps obtain employment in the future.« less
Optimum Vessel Performance in Evolving Nonlinear Wave Fields
2012-11-01
TEMPEST , the new, nonlinear, time-domain ship motion code being developed by the Navy. Table of Contents Executive Summary i List of Figures iii...domain ship motion code TEMPEST . The radiation and diffraction forces in the level 3.0 version of TEMPEST will be computed by the body-exact strip theory...nonlinear responses of a ship to a seaway are being incorporated into version 3 of TEMPEST , the new, nonlinear, time-domain ship motion code that
Simulation of prompt gamma-ray emission during proton radiotherapy.
Verburg, Joost M; Shih, Helen A; Seco, Joao
2012-09-07
The measurement of prompt gamma rays emitted from proton-induced nuclear reactions has been proposed as a method to verify in vivo the range of a clinical proton radiotherapy beam. A good understanding of the prompt gamma-ray emission during proton therapy is key to develop a clinically feasible technique, as it can facilitate accurate simulations and uncertainty analysis of gamma detector designs. Also, the gamma production cross-sections may be incorporated as prior knowledge in the reconstruction of the proton range from the measurements. In this work, we performed simulations of proton-induced nuclear reactions with the main elements of human tissue, carbon-12, oxygen-16 and nitrogen-14, using the nuclear reaction models of the GEANT4 and MCNP6 Monte Carlo codes and the dedicated nuclear reaction codes TALYS and EMPIRE. For each code, we made an effort to optimize the input parameters and model selection. The results of the models were compared to available experimental data of discrete gamma line cross-sections. Overall, the dedicated nuclear reaction codes reproduced the experimental data more consistently, while the Monte Carlo codes showed larger discrepancies for a number of gamma lines. The model differences lead to a variation of the total gamma production near the end of the proton range by a factor of about 2. These results indicate a need for additional theoretical and experimental study of proton-induced gamma emission in human tissue.
Tough2{_}MP: A parallel version of TOUGH2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Keni; Wu, Yu-Shu; Ding, Chris
2003-04-09
TOUGH2{_}MP is a massively parallel version of TOUGH2. It was developed for running on distributed-memory parallel computers to simulate large simulation problems that may not be solved by the standard, single-CPU TOUGH2 code. The new code implements an efficient massively parallel scheme, while preserving the full capacity and flexibility of the original TOUGH2 code. The new software uses the METIS software package for grid partitioning and AZTEC software package for linear-equation solving. The standard message-passing interface is adopted for communication among processors. Numerical performance of the current version code has been tested on CRAY-T3E and IBM RS/6000 SP platforms. Inmore » addition, the parallel code has been successfully applied to real field problems of multi-million-cell simulations for three-dimensional multiphase and multicomponent fluid and heat flow, as well as solute transport. In this paper, we will review the development of the TOUGH2{_}MP, and discuss the basic features, modules, and their applications.« less
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.
1992-01-01
The Penn State Finite Difference Time Domain Electromagnetic Scattering Code version D is a 3-D numerical electromagnetic scattering code based upon the finite difference time domain technique (FDTD). The manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into 14 sections: introduction; description of the FDTD method; operation; resource requirements; version D code capabilities; a brief description of the default scattering geometry; a brief description of each subroutine; a description of the include file; a section briefly discussing Radar Cross Section computations; a section discussing some scattering results; a sample problem setup section; a new problem checklist; references and figure titles. The FDTD technique models transient electromagnetic scattering and interactions with objects of arbitrary shape and/or material composition. In the FDTD method, Maxwell's curl equations are discretized in time-space and all derivatives (temporal and spatial) are approximated by central differences.
Adaptive partially hidden Markov models with application to bilevel image coding.
Forchhammer, S; Rasmussen, T S
1999-01-01
Partially hidden Markov models (PHMMs) have previously been introduced. The transition and emission/output probabilities from hidden states, as known from the HMMs, are conditioned on the past. This way, the HMM may be applied to images introducing the dependencies of the second dimension by conditioning. In this paper, the PHMM is extended to multiple sequences with a multiple token version and adaptive versions of PHMM coding are presented. The different versions of the PHMM are applied to lossless bilevel image coding. To reduce and optimize the model cost and size, the contexts are organized in trees and effective quantization of the parameters is introduced. The new coding methods achieve results that are better than the JBIG standard on selected test images, although at the cost of increased complexity. By the minimum description length principle, the methods presented for optimizing the code length may apply as guidance for training (P)HMMs for, e.g., segmentation or recognition purposes. Thereby, the PHMM models provide a new approach to image modeling.
The Optimal Convergence Rate of the p-Version of the Finite Element Method.
1985-10-01
commercial and research codes. The p-version and h-p versions are new developments. There is only one commercial code, the system PROBE ( Noetic Tech, St...Louis). The theoretical aspects have been studied only recently. The first theoretical paper appeared in 1981 (see [7)). See also [1), [7], [81, [9...model problem (2.2) (2.3) is a classical case of the elliptic equation problem on a nonsmooth domain. The structure of this problem is well studied
Improvements of MCOR: A Monte Carlo depletion code system for fuel assembly reference calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tippayakul, C.; Ivanov, K.; Misu, S.
2006-07-01
This paper presents the improvements of MCOR, a Monte Carlo depletion code system for fuel assembly reference calculations. The improvements of MCOR were initiated by the cooperation between the Penn State Univ. and AREVA NP to enhance the original Penn State Univ. MCOR version in order to be used as a new Monte Carlo depletion analysis tool. Essentially, a new depletion module using KORIGEN is utilized to replace the existing ORIGEN-S depletion module in MCOR. Furthermore, the online burnup cross section generation by the Monte Carlo calculation is implemented in the improved version instead of using the burnup cross sectionmore » library pre-generated by a transport code. Other code features have also been added to make the new MCOR version easier to use. This paper, in addition, presents the result comparisons of the original and the improved MCOR versions against CASMO-4 and OCTOPUS. It was observed in the comparisons that there were quite significant improvements of the results in terms of k{sub inf}, fission rate distributions and isotopic contents. (authors)« less
Computational models for the viscous/inviscid analysis of jet aircraft exhaust plumes
NASA Astrophysics Data System (ADS)
Dash, S. M.; Pergament, H. S.; Thorpe, R. D.
1980-05-01
Computational models which analyze viscous/inviscid flow processes in jet aircraft exhaust plumes are discussed. These models are component parts of an NASA-LaRC method for the prediction of nozzle afterbody drag. Inviscid/shock processes are analyzed by the SCIPAC code which is a compact version of a generalized shock capturing, inviscid plume code (SCIPPY). The SCIPAC code analyzes underexpanded jet exhaust gas mixtures with a self-contained thermodynamic package for hydrocarbon exhaust products and air. A detailed and automated treatment of the embedded subsonic zones behind Mach discs is provided in this analysis. Mixing processes along the plume interface are analyzed by two upgraded versions of an overlaid, turbulent mixing code (BOAT) developed previously for calculating nearfield jet entrainment. The BOATAC program is a frozen chemistry version of BOAT containing the aircraft thermodynamic package as SCIPAC; BOATAB is an afterburning version with a self-contained aircraft (hydrocarbon/air) finite-rate chemistry package. The coupling of viscous and inviscid flow processes is achieved by an overlaid procedure with interactive effects accounted for by a displacement thickness type correction to the inviscid plume interface.
NASA Technical Reports Server (NTRS)
Dash, S. M.; Pergament, H. S.; Thorpe, R. D.
1980-01-01
Computational models which analyze viscous/inviscid flow processes in jet aircraft exhaust plumes are discussed. These models are component parts of an NASA-LaRC method for the prediction of nozzle afterbody drag. Inviscid/shock processes are analyzed by the SCIPAC code which is a compact version of a generalized shock capturing, inviscid plume code (SCIPPY). The SCIPAC code analyzes underexpanded jet exhaust gas mixtures with a self-contained thermodynamic package for hydrocarbon exhaust products and air. A detailed and automated treatment of the embedded subsonic zones behind Mach discs is provided in this analysis. Mixing processes along the plume interface are analyzed by two upgraded versions of an overlaid, turbulent mixing code (BOAT) developed previously for calculating nearfield jet entrainment. The BOATAC program is a frozen chemistry version of BOAT containing the aircraft thermodynamic package as SCIPAC; BOATAB is an afterburning version with a self-contained aircraft (hydrocarbon/air) finite-rate chemistry package. The coupling of viscous and inviscid flow processes is achieved by an overlaid procedure with interactive effects accounted for by a displacement thickness type correction to the inviscid plume interface.
Computer code for the optimization of performance parameters of mixed explosive formulations.
Muthurajan, H; Sivabalan, R; Talawar, M B; Venugopalan, S; Gandhe, B R
2006-08-25
LOTUSES is a novel computer code, which has been developed for the prediction of various thermodynamic properties such as heat of formation, heat of explosion, volume of explosion gaseous products and other related performance parameters. In this paper, we report LOTUSES (Version 1.4) code which has been utilized for the optimization of various high explosives in different combinations to obtain maximum possible velocity of detonation. LOTUSES (Version 1.4) code will vary the composition of mixed explosives automatically in the range of 1-100% and computes the oxygen balance as well as the velocity of detonation for various compositions in preset steps. Further, the code suggests the compositions for which least oxygen balance and the higher velocity of detonation could be achieved. Presently, the code can be applied for two component explosive compositions. The code has been validated with well-known explosives like, TNT, HNS, HNF, TATB, RDX, HMX, AN, DNA, CL-20 and TNAZ in different combinations. The new algorithm incorporated in LOTUSES (Version 1.4) enhances the efficiency and makes it a more powerful tool for the scientists/researches working in the field of high energy materials/hazardous materials.
Hybrid parallel code acceleration methods in full-core reactor physics calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Courau, T.; Plagne, L.; Ponicot, A.
2012-07-01
When dealing with nuclear reactor calculation schemes, the need for three dimensional (3D) transport-based reference solutions is essential for both validation and optimization purposes. Considering a benchmark problem, this work investigates the potential of discrete ordinates (Sn) transport methods applied to 3D pressurized water reactor (PWR) full-core calculations. First, the benchmark problem is described. It involves a pin-by-pin description of a 3D PWR first core, and uses a 8-group cross-section library prepared with the DRAGON cell code. Then, a convergence analysis is performed using the PENTRAN parallel Sn Cartesian code. It discusses the spatial refinement and the associated angular quadraturemore » required to properly describe the problem physics. It also shows that initializing the Sn solution with the EDF SPN solver COCAGNE reduces the number of iterations required to converge by nearly a factor of 6. Using a best estimate model, PENTRAN results are then compared to multigroup Monte Carlo results obtained with the MCNP5 code. Good consistency is observed between the two methods (Sn and Monte Carlo), with discrepancies that are less than 25 pcm for the k{sub eff}, and less than 2.1% and 1.6% for the flux at the pin-cell level and for the pin-power distribution, respectively. (authors)« less
Monte Carlo method for calculating the radiation skyshine produced by electron accelerators
NASA Astrophysics Data System (ADS)
Kong, Chaocheng; Li, Quanfeng; Chen, Huaibi; Du, Taibin; Cheng, Cheng; Tang, Chuanxiang; Zhu, Li; Zhang, Hui; Pei, Zhigang; Ming, Shenjin
2005-06-01
Using the MCNP4C Monte Carlo code, the X-ray skyshine produced by 9 MeV, 15 MeV and 21 MeV electron linear accelerators were calculated respectively with a new two-step method combined with the split and roulette variance reduction technique. Results of the Monte Carlo simulation, the empirical formulas used for skyshine calculation and the dose measurements were analyzed and compared. In conclusion, the skyshine dose measurements agreed reasonably with the results computed by the Monte Carlo method, but deviated from computational results given by empirical formulas. The effect on skyshine dose caused by different structures of accelerator head is also discussed in this paper.
Jovanovic, Z; Krstic, D; Nikezic, D; Ros, J M Gomez; Ferrari, P
2018-03-01
Monte Carlo simulations were performed to evaluate treatment doses with wide spread used radionuclides 133Xe, 99mTc and 81mKr. These different radionuclides are used in perfusion or ventilation examinations in nuclear medicine and as indicators for cardiovascular and pulmonary diseases. The objective of this work was to estimate the specific absorbed fractions in surrounding organs and tissues, when these radionuclides are incorporated in the lungs. For this purpose a voxel thorax model has been developed and compared with the ORNL phantom. All calculations and simulations were performed by means of the MCNP5/X code.
Monte Carlo calculations of lung dose in ORNL phantom for boron neutron capture therapy.
Krstic, D; Markovic, V M; Jovanovic, Z; Milenkovic, B; Nikezic, D; Atanackovic, J
2014-10-01
Monte Carlo simulations were performed to evaluate dose for possible treatment of cancers by boron neutron capture therapy (BNCT). The computational model of male Oak Ridge National Laboratory (ORNL) phantom was used to simulate tumours in the lung. Calculations have been performed by means of the MCNP5/X code. In this simulation, two opposite neutron beams were considered, in order to obtain uniform neutron flux distribution inside the lung. The obtained results indicate that the lung cancer could be treated by BNCT under the assumptions of calculations. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A possible approach to 14MeV neutron moderation: A preliminary study case.
Flammini, D; Pilotti, R; Pietropaolo, A
2017-07-01
Deuterium-Tritium (D-T) interactions produce almost monochromatic neutrons with about 14MeV energy. These neutrons are used in benchmark experiments as well as for neutron cross sections assessment in fusion reactors technology. The possibility to moderate 14MeV neutrons for purposes beyond fusion is worth to be studied in relation to projects of intense D-T sources. In this preliminary study, carried out using the MCNP Monte Carlo code, the moderation of 14MeV neutrons is approached foreseeing the use of combination of metallic materials as pre-moderator and reflectors coupled to standard water moderators. Copyright © 2017 Elsevier Ltd. All rights reserved.
Neutronic Calculation Analysis for CN HCCB TBM-Set
NASA Astrophysics Data System (ADS)
Cao, Qixiang; Zhao, Fengchao; Zhao, Zhou; Wu, Xinghua; Li, Zaixin; Wang, Xiaoyu; Feng, Kaiming
2015-07-01
Using the Monte Carlo transport code MCNP, neutronic calculation analysis for China helium cooled ceramic breeder test blanket module (CN HCCB TBM) and the associated shield block (together called TBM-set) has been carried out based on the latest design of HCCB TBM-set and C-lite model. Key nuclear responses of HCCB TBM-set, such as the neutron flux, tritium production rate, nuclear heating and radiation damage, have been obtained and discussed. These nuclear performance data can be used as the basic input data for other analyses of HCCB TBM-set, such as thermal-hydraulics, thermal-mechanics and safety analysis. supported by the Major State Basic Research Development Program of China (973 Program) (No. 2013GB108000)
MODTRAN6: a major upgrade of the MODTRAN radiative transfer code
NASA Astrophysics Data System (ADS)
Berk, Alexander; Conforti, Patrick; Kennett, Rosemary; Perkins, Timothy; Hawes, Frederick; van den Bosch, Jeannette
2014-06-01
The MODTRAN6 radiative transfer (RT) code is a major advancement over earlier versions of the MODTRAN atmospheric transmittance and radiance model. This version of the code incorporates modern software ar- chitecture including an application programming interface, enhanced physics features including a line-by-line algorithm, a supplementary physics toolkit, and new documentation. The application programming interface has been developed for ease of integration into user applications. The MODTRAN code has been restructured towards a modular, object-oriented architecture to simplify upgrades as well as facilitate integration with other developers' codes. MODTRAN now includes a line-by-line algorithm for high resolution RT calculations as well as coupling to optical scattering codes for easy implementation of custom aerosols and clouds.
Verification of Plutonium Content in PuBe Sources Using MCNP® 6.2.0 Beta with TENDL 2012 Libraries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockhart, Madeline Louise; McMath, Garrett Earl
Although the production of PuBe neutron sources has discontinued, hundreds of sources with unknown or inaccurately declared plutonium content are in existence around the world. Institutions have undertaken the task of assaying these sources, measuring, and calculating the isotopic composition, plutonium content, and neutron yield. The nominal plutonium content, based off the neutron yield per gram of pure 239Pu, has shown to be highly inaccurate. New methods of measuring the plutonium content allow a more accurate estimate of the true Pu content, but these measurements need verification. Using the TENDL 2012 nuclear data libraries, MCNP6 has the capability to simulatemore » the (α, n) interactions in a PuBe source. Theoretically, if the source is modeled according to the plutonium content, isotopic composition, and other source characteristics, the calculated neutron yield in MCNP can be compared to the experimental yield, offering an indication of the accuracy of the declared plutonium content. In this study, three sets of PuBe sources from various backgrounds were modeled in MCNP6 1.2 Beta, according to the source specifications dictated by the individuals who assayed the source. Verification of the source parameters with MCNP6 also serves as a means to test the alpha transport capabilities of MCNP6 1.2 Beta with TENDL 2012 alpha transport libraries. Finally, good agreement in the comparison would indicate the accuracy of the source parameters in addition to demonstrating MCNP's capabilities in simulating (α, n) interactions.« less
Verification of Plutonium Content in PuBe Sources Using MCNP® 6.2.0 Beta with TENDL 2012 Libraries
Lockhart, Madeline Louise; McMath, Garrett Earl
2017-10-26
Although the production of PuBe neutron sources has discontinued, hundreds of sources with unknown or inaccurately declared plutonium content are in existence around the world. Institutions have undertaken the task of assaying these sources, measuring, and calculating the isotopic composition, plutonium content, and neutron yield. The nominal plutonium content, based off the neutron yield per gram of pure 239Pu, has shown to be highly inaccurate. New methods of measuring the plutonium content allow a more accurate estimate of the true Pu content, but these measurements need verification. Using the TENDL 2012 nuclear data libraries, MCNP6 has the capability to simulatemore » the (α, n) interactions in a PuBe source. Theoretically, if the source is modeled according to the plutonium content, isotopic composition, and other source characteristics, the calculated neutron yield in MCNP can be compared to the experimental yield, offering an indication of the accuracy of the declared plutonium content. In this study, three sets of PuBe sources from various backgrounds were modeled in MCNP6 1.2 Beta, according to the source specifications dictated by the individuals who assayed the source. Verification of the source parameters with MCNP6 also serves as a means to test the alpha transport capabilities of MCNP6 1.2 Beta with TENDL 2012 alpha transport libraries. Finally, good agreement in the comparison would indicate the accuracy of the source parameters in addition to demonstrating MCNP's capabilities in simulating (α, n) interactions.« less
A Patch to MCNP5 for Multiplication Inference: Description and User Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, Jr., Clell J.
2014-05-05
A patch to MCNP5 has been written to allow generation of multiple neutrons from a spontaneous-fission event and generate list-mode output. This report documents the implementation and usage of this patch.
Development of N-version software samples for an experiment in software fault tolerance
NASA Technical Reports Server (NTRS)
Lauterbach, L.
1987-01-01
The report documents the task planning and software development phases of an effort to obtain twenty versions of code independently designed and developed from a common specification. These versions were created for use in future experiments in software fault tolerance, in continuation of the experimental series underway at the Systems Validation Methods Branch (SVMB) at NASA Langley Research Center. The 20 versions were developed under controlled conditions at four U.S. universities, by 20 teams of two researchers each. The versions process raw data from a modified Redundant Strapped Down Inertial Measurement Unit (RSDIMU). The specifications, and over 200 questions submitted by the developers concerning the specifications, are included as appendices to this report. Design documents, and design and code walkthrough reports for each version, were also obtained in this task for use in future studies.
Development and application of a hybrid transport methodology for active interrogation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Royston, K.; Walters, W.; Haghighat, A.
A hybrid Monte Carlo and deterministic methodology has been developed for application to active interrogation systems. The methodology consists of four steps: i) neutron flux distribution due to neutron source transport and subcritical multiplication; ii) generation of gamma source distribution from (n, 7) interactions; iii) determination of gamma current at a detector window; iv) detection of gammas by the detector. This paper discusses the theory and results of the first three steps for the case of a cargo container with a sphere of HEU in third-density water cargo. To complete the first step, a response-function formulation has been developed tomore » calculate the subcritical multiplication and neutron flux distribution. Response coefficients are pre-calculated using the MCNP5 Monte Carlo code. The second step uses the calculated neutron flux distribution and Bugle-96 (n, 7) cross sections to find the resulting gamma source distribution. In the third step the gamma source distribution is coupled with a pre-calculated adjoint function to determine the gamma current at a detector window. The AIMS (Active Interrogation for Monitoring Special-Nuclear-Materials) software has been written to output the gamma current for a source-detector assembly scanning across a cargo container using the pre-calculated values and taking significantly less time than a reference MCNP5 calculation. (authors)« less
Optimization of the Efficiency of a Neutron Detector to Measure (α, n) Reaction Cross-Section
NASA Astrophysics Data System (ADS)
Perello, Jesus; Montes, Fernando; Ahn, Tony; Meisel, Zach; Joint InstituteNuclear Astrophysics Team
2015-04-01
Nucleosynthesis, the origin of elements, is one of the greatest mysteries in physics. A recent particular nucleosynthesis process of interest is the charge-particle process (cpp). In the cpp, elements form by nuclear fusion reactions during supernovae. This process of nuclear fusion, (α,n), will be studied by colliding beam elements produced and accelerated at the National Superconducting Cyclotron Laboratory (NSCL) to a helium-filled cell target. The elements will fuse with α (helium nuclei) and emit neutrons during the reaction. The neutrons will be detected for a count of fused-elements, thus providing us the probability of such reactions. The neutrons will be detected using the Neutron Emission Ratio Observer (NERO). Currently, NERO's efficiency varies for neutrons at the expected energy range (0-12 MeV). To study (α,n), NERO's efficiency must be near-constant at these energies. Monte-Carlo N-Particle Transport Code (MCNP6), a software package that simulates nuclear processes, was used to optimize NERO configuration for the experiment. MCNP6 was used to simulate neutron interaction with different NERO configurations at the expected neutron energies. By adding additional 3He detectors and polyethylene, a near-constant efficiency at these energies was obtained in the simulations. With the new NERO configuration, study of the (α,n) reactions can begin, which may explain how elements are formed in the cpp. SROP MSU, NSF, JINA, McNair Society.
NASA Astrophysics Data System (ADS)
Maučec, M.; de Meijer, R. J.; Rigollet, C.; Hendriks, P. H. G. M.; Jones, D. G.
2004-06-01
A joint research project between the British Geological Survey and Nuclear Geophysics Division of the Kernfysisch Versneller Instituut, Groningen, the Netherlands, was commissioned by the United Kingdom Atomic Energy Authority to establish the efficiency of a towed seabed γ-ray spectrometer for the detection of 137Cs-containing radioactive particles offshore Dounreay, Scotland. Using the MCNP code, a comprehensive Monte Carlo feasibility study was carried out to model various combinations of geological matrices, particle burial depth and lateral displacement, source activity and detector material. To validate the sampling and absolute normalisation procedures of MCNP for geometries including multiple (natural and induced) heterogeneous sources in environmental monitoring, a benchmark experiment was conducted. The study demonstrates the ability of seabed γ-ray spectrometry to locate radioactive particles offshore and to distinguish between γ count rate increases due to particles from those due to enhanced natural radioactivity. The information presented in this study will be beneficial for estimation of the inventory of 137Cs particles and their activity distribution and for the recovery of particles from the sea floor. In this paper, the Monte Carlo assessment of the detection limits is presented. The estimation of the required towing speed and acquisition times and their application to radioactive particle detection and discrimination offshore formed a supplementary part of this study.
Algorithm 782 : codes for rank-revealing QR factorizations of dense matrices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bischof, C. H.; Quintana-Orti, G.; Mathematics and Computer Science
1998-06-01
This article describes a suite of codes as well as associated testing and timing drivers for computing rank-revealing QR (RRQR) factorizations of dense matrices. The main contribution is an efficient block algorithm for approximating an RRQR factorization, employing a windowed version of the commonly used Golub pivoting strategy and improved versions of the RRQR algorithms for triangular matrices originally suggested by Chandrasekaran and Ipsen and by Pan and Tang, respectively, We highlight usage and features of these codes.
Adjoint-Based Sensitivity and Uncertainty Analysis for Density and Composition: A User’s Guide
Favorite, Jeffrey A.; Perko, Zoltan; Kiedrowski, Brian C.; ...
2017-03-01
The ability to perform sensitivity analyses using adjoint-based first-order sensitivity theory has existed for decades. This paper provides guidance on how adjoint sensitivity methods can be used to predict the effect of material density and composition uncertainties in critical experiments, including when these uncertain parameters are correlated or constrained. Two widely used Monte Carlo codes, MCNP6 (Ref. 2) and SCALE 6.2 (Ref. 3), are both capable of computing isotopic density sensitivities in continuous energy and angle. Additionally, Perkó et al. have shown how individual isotope density sensitivities, easily computed using adjoint methods, can be combined to compute constrained first-order sensitivitiesmore » that may be used in the uncertainty analysis. This paper provides details on how the codes are used to compute first-order sensitivities and how the sensitivities are used in an uncertainty analysis. Constrained first-order sensitivities are computed in a simple example problem.« less
Consistent criticality and radiation studies of Swiss spent nuclear fuel: The CS2M approach.
Rochman, D; Vasiliev, A; Ferroukhi, H; Pecchia, M
2018-06-15
In this paper, a new method is proposed to systematically calculate at the same time canister loading curves and radiation sources, based on the inventory information from an in-core fuel management system. As a demonstration, the isotopic contents of the assemblies come from a Swiss PWR, considering more than 6000 cases from 34 reactor cycles. The CS 2 M approach consists in combining four codes: CASMO and SIMULATE to extract the assembly characteristics (based on validated models), the SNF code for source emission and MCNP for criticality calculations for specific canister loadings. The considered cases cover enrichments from 1.9 to 5.0% for the UO 2 assemblies and 4.8% for the MOX, with assembly burnup values from 7 to 74 MWd/kgU. Because such a study is based on the individual fuel assembly history, it opens the possibility to optimize canister loadings from the point-of-view of criticality, decay heat and emission sources. Copyright © 2018 Elsevier B.V. All rights reserved.
Cross section of the 197Au(n,2n)196Au reaction
NASA Astrophysics Data System (ADS)
Kalamara, A.; Vlastou, R.; Kokkoris, M.; Diakaki, M.; Serris, M.; Patronis, N.; Axiotis, M.; Lagoyannis, A.
2017-09-01
The 197Au(n,2n)196Au reaction cross section has been measured at two energies, namely at 17.1 MeV and 20.9 MeV, by means of the activation technique, relative to the 27Al(n,α)24Na reference reaction cross section. Quasi-monoenergetic neutron beams were produced at the 5.5 MV Tandem T11/25 accelerator laboratory of NCSR "Demokritos", by means of the 3H(d,n)4He reaction, implementing a new Ti-tritiated target of ˜ 400 GBq activity. The induced γ-ray activity at the targets and reference foils has been measured with HPGe detectors. The cross section for the population of the second isomeric (12-) state m2 of 196Au was independently determined. Auxiliary Monte Carlo simulations were performed using the MCNP code. The present results are in agreement with previous experimental data and with theoretical calculations of the measured reaction cross sections, which were carried out with the use of the EMPIRE code.
Neutron Capture gamma ENDF libraries for modeling and identification of neutron sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sleaford, B
2007-10-29
There are a number of inaccuracies and data omissions with respect to gammas from neutron capture in the ENDF libraries used as field reference information and by modeling codes used in JTOT. As the use of Active Neutron interrogation methods is expanded, these shortfalls become more acute. A new, more accurate and complete evaluated experimental database of gamma rays (over 35,000 lines for 262 isotopes up to U so far) from thermal neutron capture has recently become available from the IAEA. To my knowledge, none of this new data has been installed in ENDF libraries and disseminated. I propose tomore » upgrade libraries of {sup 184,186}W, {sup 56}Fe, {sup 204,206,207}Pb, {sup 104}Pd, and {sup 19}F the 1st year. This will involve collaboration with Richard Firestone at LBL in evaluating the data and installing it in the libraries. I will test them with the transport code MCNP5.« less
Comparison of UWCC MOX fuel measurements to MCNP-REN calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abhold, M.; Baker, M.; Jie, R.
1998-12-31
The development of neutron coincidence counting has greatly improved the accuracy and versatility of neutron-based techniques to assay fissile materials. Today, the shift register analyzer connected to either a passive or active neutron detector is widely used by both domestic and international safeguards organizations. The continued development of these techniques and detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model, as it is currently used, fails to accurately predict detector response in highly multiplying mediums such as mixed-oxide (MOX) lightmore » water reactor fuel assemblies. For this reason, efforts have been made to modify the currently used Monte Carlo codes and to develop new analytical methods so that this model is not required to predict detector response. The authors describe their efforts to modify a widely used Monte Carlo code for this purpose and also compare calculational results with experimental measurements.« less
SABRINA - an interactive geometry modeler for MCNP
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, J.T.; Murphy, J.
One of the most difficult tasks when analyzing a complex three-dimensional system with Monte Carlo is geometry model development. SABRINA attempts to make the modeling process more user-friendly and less of an obstacle. It accepts both combinatorial solid bodies and MCNP surfaces and produces MCNP cells. The model development process in SABRINA is highly interactive and gives the user immediate feedback on errors. Users can view their geometry from arbitrary perspectives while the model is under development and interactively find and correct modeling errors. An example of a SABRINA display is shown. It represents a complex three-dimensional shape.
Modified Mean-Pyramid Coding Scheme
NASA Technical Reports Server (NTRS)
Cheung, Kar-Ming; Romer, Richard
1996-01-01
Modified mean-pyramid coding scheme requires transmission of slightly fewer data. Data-expansion factor reduced from 1/3 to 1/12. Schemes for progressive transmission of image data transmitted in sequence of frames in such way coarse version of image reconstructed after receipt of first frame and increasingly refined version of image reconstructed after receipt of each subsequent frame.
Star adaptation for two-algorithms used on serial computers
NASA Technical Reports Server (NTRS)
Howser, L. M.; Lambiotte, J. J., Jr.
1974-01-01
Two representative algorithms used on a serial computer and presently executed on the Control Data Corporation 6000 computer were adapted to execute efficiently on the Control Data STAR-100 computer. Gaussian elimination for the solution of simultaneous linear equations and the Gauss-Legendre quadrature formula for the approximation of an integral are the two algorithms discussed. A description is given of how the programs were adapted for STAR and why these adaptations were necessary to obtain an efficient STAR program. Some points to consider when adapting an algorithm for STAR are discussed. Program listings of the 6000 version coded in 6000 FORTRAN, the adapted STAR version coded in 6000 FORTRAN, and the STAR version coded in STAR FORTRAN are presented in the appendices.
Development and application of GASP 2.0
NASA Technical Reports Server (NTRS)
Mcgrory, W. D.; Huebner, L. D.; Slack, D. C.; Walters, R. W.
1992-01-01
GASP 2.0 represents a major new release of the computational fluid dynamics code in wide use by the aerospace community. The authors have spent the last two years analyzing the strengths and weaknesses of the previous version of the finite-rate chemistry, Navier Stokes solution algorithm. What has resulted is a completely redesigned computer code that offers two to four times the performance of previous versions while requiring as little as one quarter of the memory requirements. In addition to the improvements in efficiency over the original code, Version 2.0 contains many new features. A brief discussion of the improvements made to GASP, and an application using GASP 2.0 which demonstrates some of the new features are presented.
Palmer, Cameron S; Niggemeyer, Louise E; Charman, Debra
2010-09-01
The 2005 version of the Abbreviated Injury Scale (AIS05) potentially represents a significant change in injury spectrum classification, due to a substantial increase in the codeset size and alterations to the agreed severity of many injuries compared to the previous version (AIS98). Whilst many trauma registries around the world are moving to adopt AIS05 or its 2008 update (AIS08), its effect on patient classification in existing registries, and the optimum method of comparing existing data collections with new AIS05 collections are unknown. The present study aimed to assess the potential impact of adopting the AIS05 codeset in an established trauma system, and to identify issues associated with this change. A current subset of consecutive major trauma patients admitted to two large hospitals in the Australian state of Victoria were double-coded in AIS98 and AIS05. Assigned codesets were also mapped to the other AIS version using code lists supplied in the AIS05 manual, giving up to four AIS codes per injury sustained. Resulting codesets were assessed for agreement in codes used, injury severity and calculated severity scores. 602 injuries sustained by 109 patients were compared. Adopting AIS05 would lead to a decrease in the number of designated major trauma patients in Victoria, estimated at 22% (95% confidence interval, 15-31%). Differences in AIS level between versions were significantly more likely to occur amongst head and chest injuries. Data mapped to a different codeset performed better in paired comparisons than raw AIS98 and AIS05 codesets, with data mapping of AIS05 codes back to AIS98 giving significantly higher levels of agreement in AIS level, ISS and NISS than other potential comparisons, and resulting in significantly fewer conversion problems than attempting to map AIS98 codes to AIS05. This study provides new insights into AIS codeset change impact. Adoption of AIS05 or AIS08 in established registries will decrease major trauma patient numbers. Code mapping between AIS versions can improve comparisons between datasets in different AIS versions, although the injury profile of a trauma population will affect the degree of comparability. At present, mapping AIS05 data back to AIS98 is recommended. 2009 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maekawa, Fujio; Meigo, Shin-ichiro; Kasugai, Yoshimi
2005-05-15
A neutronic benchmark experiment on a simulated spallation neutron target assembly was conducted by using the Alternating Gradient Synchrotron at Brookhaven National Laboratory and was analyzed to investigate the prediction capability of Monte Carlo simulation codes used in neutronic designs of spallation neutron sources. The target assembly consisting of a mercury target, a light water moderator, and a lead reflector was bombarded by 1.94-, 12-, and 24-GeV protons, and the fast neutron flux distributions around the target and the spectra of thermal neutrons leaking from the moderator were measured in the experiment. In this study, the Monte Carlo particle transportmore » simulation codes NMTC/JAM, MCNPX, and MCNP-4A with associated cross-section data in JENDL and LA-150 were verified based on benchmark analysis of the experiment. As a result, all the calculations predicted the measured quantities adequately; calculated integral fluxes of fast and thermal neutrons agreed approximately within {+-}40% with the experiments although the overall energy range encompassed more than 12 orders of magnitude. Accordingly, it was concluded that these simulation codes and cross-section data were adequate for neutronics designs of spallation neutron sources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mille, M; Lee, C; Failla, G
Purpose: To use the Attila deterministic solver as a supplement to Monte Carlo for calculating out-of-field organ dose in support of epidemiological studies looking at the risks of second cancers. Supplemental dosimetry tools are needed to speed up dose calculations for studies involving large-scale patient cohorts. Methods: Attila is a multi-group discrete ordinates code which can solve the 3D photon-electron coupled linear Boltzmann radiation transport equation on a finite-element mesh. Dose is computed by multiplying the calculated particle flux in each mesh element by a medium-specific energy deposition cross-section. The out-of-field dosimetry capability of Attila is investigated by comparing averagemore » organ dose to that which is calculated by Monte Carlo simulation. The test scenario consists of a 6 MV external beam treatment of a female patient with a tumor in the left breast. The patient is simulated by a whole-body adult reference female computational phantom. Monte Carlo simulations were performed using MCNP6 and XVMC. Attila can export a tetrahedral mesh for MCNP6, allowing for a direct comparison between the two codes. The Attila and Monte Carlo methods were also compared in terms of calculation speed and complexity of simulation setup. A key perquisite for this work was the modeling of a Varian Clinac 2100 linear accelerator. Results: The solid mesh of the torso part of the adult female phantom for the Attila calculation was prepared using the CAD software SpaceClaim. Preliminary calculations suggest that Attila is a user-friendly software which shows great promise for our intended application. Computational performance is related to the number of tetrahedral elements included in the Attila calculation. Conclusion: Attila is being explored as a supplement to the conventional Monte Carlo radiation transport approach for performing retrospective patient dosimetry. The goal is for the dosimetry to be sufficiently accurate for use in retrospective epidemiological investigations.« less
FLY MPI-2: a parallel tree code for LSS
NASA Astrophysics Data System (ADS)
Becciani, U.; Comparato, M.; Antonuccio-Delogu, V.
2006-04-01
New version program summaryProgram title: FLY 3.1 Catalogue identifier: ADSC_v2_0 Licensing provisions: yes Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSC_v2_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland No. of lines in distributed program, including test data, etc.: 158 172 No. of bytes in distributed program, including test data, etc.: 4 719 953 Distribution format: tar.gz Programming language: Fortran 90, C Computer: Beowulf cluster, PC, MPP systems Operating system: Linux, Aix RAM: 100M words Catalogue identifier of previous version: ADSC_v1_0 Journal reference of previous version: Comput. Phys. Comm. 155 (2003) 159 Does the new version supersede the previous version?: yes Nature of problem: FLY is a parallel collisionless N-body code for the calculation of the gravitational force Solution method: FLY is based on the hierarchical oct-tree domain decomposition introduced by Barnes and Hut (1986) Reasons for the new version: The new version of FLY is implemented by using the MPI-2 standard: the distributed version 3.1 was developed by using the MPICH2 library on a PC Linux cluster. Today the FLY performance allows us to consider the FLY code among the most powerful parallel codes for tree N-body simulations. Another important new feature regards the availability of an interface with hydrodynamical Paramesh based codes. Simulations must follow a box large enough to accurately represent the power spectrum of fluctuations on very large scales so that we may hope to compare them meaningfully with real data. The number of particles then sets the mass resolution of the simulation, which we would like to make as fine as possible. The idea to build an interface between two codes, that have different and complementary cosmological tasks, allows us to execute complex cosmological simulations with FLY, specialized for DM evolution, and a code specialized for hydrodynamical components that uses a Paramesh block structure. Summary of revisions: The parallel communication schema was totally changed. The new version adopts the MPICH2 library. Now FLY can be executed on all Unix systems having an MPI-2 standard library. The main data structure, is declared in a module procedure of FLY (fly_h.F90 routine). FLY creates the MPI Window object for one-sided communication for all the shared arrays, with a call like the following: CALL MPI_WIN_CREATE(POS, SIZE, REAL8, MPI_INFO_NULL, MPI_COMM_WORLD, WIN_POS, IERR) the following main window objects are created: win_pos, win_vel, win_acc: particles positions velocities and accelerations, win_pos_cell, win_mass_cell, win_quad, win_subp, win_grouping: cells positions, masses, quadrupole momenta, tree structure and grouping cells. Other windows are created for dynamic load balance and global counters. Restrictions: The program uses the leapfrog integrator schema, but could be changed by the user. Unusual features: FLY uses the MPI-2 standard: the MPICH2 library on Linux systems was adopted. To run this version of FLY the working directory must be shared among all the processors that execute FLY. Additional comments: Full documentation for the program is included in the distribution in the form of a README file, a User Guide and a Reference manuscript. Running time: IBM Linux Cluster 1350, 512 nodes with 2 processors for each node and 2 GB RAM for each processor, at Cineca, was adopted to make performance tests. Processor type: Intel Xeon Pentium IV 3.0 GHz and 512 KB cache (128 nodes have Nocona processors). Internal Network: Myricom LAN Card "C" Version and "D" Version. Operating System: Linux SuSE SLES 8. The code was compiled using the mpif90 compiler version 8.1 and with basic optimization options in order to have performances that could be useful compared with other generic clusters Processors
Version 4.0 of code Java for 3D simulation of the CCA model
NASA Astrophysics Data System (ADS)
Fan, Linyu; Liao, Jianwei; Zuo, Junsen; Zhang, Kebo; Li, Chao; Xiong, Hailing
2018-07-01
This paper presents a new version Java code for the three-dimensional simulation of Cluster-Cluster Aggregation (CCA) model to replace the previous version. Many redundant traverses of clusters-list in the program were totally avoided, so that the consumed simulation time is significantly reduced. In order to show the aggregation process in a more intuitive way, we have labeled different clusters with varied colors. Besides, a new function is added for outputting the particle's coordinates of aggregates in file to benefit coupling our model with other models.
TEMPEST: A computer code for three-dimensional analysis of transient fluid dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fort, J.A.
TEMPEST (Transient Energy Momentum and Pressure Equations Solutions in Three dimensions) is a powerful tool for solving engineering problems in nuclear energy, waste processing, chemical processing, and environmental restoration because it analyzes and illustrates 3-D time-dependent computational fluid dynamics and heat transfer analysis. It is a family of codes with two primary versions, a N- Version (available to public) and a T-Version (not currently available to public). This handout discusses its capabilities, applications, numerical algorithms, development status, and availability and assistance.
Orchard, John; Rae, Katherine; Brooks, John; Hägglund, Martin; Til, Lluis; Wales, David; Wood, Tim
2010-01-01
The Orchard Sports Injury Classification System (OSICS) is one of the world’s most commonly used systems for coding injury diagnoses in sports injury surveillance systems. Its major strengths are that it has wide usage, has codes specific to sports medicine and that it is free to use. Literature searches and stakeholder consultations were made to assess the uptake of OSICS and to develop new versions. OSICS was commonly used in the sports of football (soccer), Australian football, rugby union, cricket and tennis. It is referenced in international papers in three sports and used in four commercially available computerised injury management systems. Suggested injury categories for the major sports are presented. New versions OSICS 9 (three digit codes) and OSICS 10.1 (four digit codes) are presented. OSICS is a potentially helpful component of a comprehensive sports injury surveillance system, but many other components are required. Choices made in developing these components should ideally be agreed upon by groups of researchers in consensus statements. PMID:24198559
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acar, Hilal; Chiu-Tsao, Sou-Tung; Oezbay, Ismail
Purpose: (1) To measure absolute dose distributions in eye phantom for COMS eye plaques with {sup 125}I seeds (model I25.S16) using radiochromic EBT film dosimetry. (2) To determine the dose correction function for calculations involving the TG-43 formalism to account for the presence of the COMS eye plaque using Monte Carlo (MC) method specific to this seed model. (3) To test the heterogeneous dose calculation accuracy of the new version of Plaque Simulator (v5.3.9) against the EBT film data for this seed model. Methods: Using EBT film, absolute doses were measured for {sup 125}I seeds (model I25.S16) in COMS eyemore » plaques (1) along the plaque's central axis for (a) uniformly loaded plaques (14-20 mm in diameter) and (b) a 20 mm plaque with single seed, and (2) in off-axis direction at depths of 5 and 12 mm for all four plaque sizes. The EBT film calibration was performed at {sup 125}I photon energy. MC calculations using MCNP5 code for a single seed at the center of a 20 mm plaque in homogeneous water and polystyrene medium were performed. The heterogeneity dose correction function was determined from the MC calculations. These function values at various depths were entered into PS software (v5.3.9) to calculate the heterogeneous dose distributions for the uniformly loaded plaques (of all four sizes). The dose distributions with homogeneous water assumptions were also calculated using PS for comparison. The EBT film measured absolute dose rate values (film) were compared with those calculated using PS with homogeneous assumption (PS Homo) and heterogeneity correction (PS Hetero). The values of dose ratio (film/PS Homo) and (film/PS Hetero) were obtained. Results: The central axis depth dose rate values for a single seed in 20 mm plaque measured using EBT film and calculated with MCNP5 code (both in ploystyrene phantom) were compared, and agreement within 9% was found. The dose ratio (film/PS Homo) values were substantially lower than unity (mostly between 0.8 and 0.9) for all four plaque sizes, indicating dose reduction by COMS plaque compared with homogeneous assumption. The dose ratio (film/PS Hetero) values were close to unity, indicating the PS Hetero calculations agree with those from the film study. Conclusions: Substantial heterogeneity effect on the {sup 125}I dose distributions in an eye phantom for COMS plaques was verified using radiochromic EBT film dosimetry. The calculated doses for uniformly loaded plaques using PS with heterogeneity correction option enabled were corroborated by the EBT film measurement data. Radiochromic EBT film dosimetry is feasible in measuring absolute dose distributions in eye phantom for COMS eye plaques loaded with single or multiple {sup 125}I seeds. Plaque Simulator is a viable tool for the calculation of dose distributions if one understands its limitations and uses the proper heterogeneity correction feature.« less
Adjoint-Based Uncertainty Quantification with MCNP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seifried, Jeffrey E.
2011-09-01
This work serves to quantify the instantaneous uncertainties in neutron transport simulations born from nuclear data and statistical counting uncertainties. Perturbation and adjoint theories are used to derive implicit sensitivity expressions. These expressions are transformed into forms that are convenient for construction with MCNP6, creating the ability to perform adjoint-based uncertainty quantification with MCNP6. These new tools are exercised on the depleted-uranium hybrid LIFE blanket, quantifying its sensitivities and uncertainties to important figures of merit. Overall, these uncertainty estimates are small (< 2%). Having quantified the sensitivities and uncertainties, physical understanding of the system is gained and some confidence inmore » the simulation is acquired.« less