Science.gov

Sample records for mcz-si strip detectors

  1. Processing of n+/p-/p+ strip detectors with atomic layer deposition (ALD) grown Al2O3 field insulator on magnetic Czochralski silicon (MCz-si) substrates

    NASA Astrophysics Data System (ADS)

    Härkönen, J.; Tuovinen, E.; Luukka, P.; Gädda, A.; Mäenpää, T.; Tuominen, E.; Arsenovich, T.; Junkes, A.; Wu, X.; Li, Z.

    2016-08-01

    Detectors manufactured on p-type silicon material are known to have significant advantages in very harsh radiation environment over n-type detectors, traditionally used in High Energy Physics experiments for particle tracking. In p-type (n+ segmentation on p substrate) position-sensitive strip detectors, however, the fixed oxide charge in the silicon dioxide is positive and, thus, causes electron accumulation at the Si/SiO2 interface. As a result, unless appropriate interstrip isolation is applied, the n-type strips are short-circuited. Widely adopted methods to terminate surface electron accumulation are segmented p-stop or p-spray field implantations. A different approach to overcome the near-surface electron accumulation at the interface of silicon dioxide and p-type silicon is to deposit a thin film field insulator with negative oxide charge. We have processed silicon strip detectors on p-type Magnetic Czochralski silicon (MCz-Si) substrates with aluminum oxide (Al2O3) thin film insulator, grown with Atomic Layer Deposition (ALD) method. The electrical characterization by current-voltage and capacitance-voltage measurement shows reliable performance of the aluminum oxide. The final proof of concept was obtained at the test beam with 200 GeV/c muons. For the non-irradiated detector the charge collection efficiency (CCE) was nearly 100% with a signal-to-noise ratio (S/N) of about 40, whereas for the 2×1015 neq/cm2 proton irradiated detector the CCE was 35%, when the sensor was biased at 500 V. These results are comparable with the results from p-type detectors with the p-spray and p-stop interstrip isolation techniques. In addition, interestingly, when the aluminum oxide was irradiated with Co-60 gamma-rays, an accumulation of negative fixed oxide charge in the oxide was observed.

  2. Gated strip proportional detector

    DOEpatents

    Morris, Christopher L.; Idzorek, George C.; Atencio, Leroy G.

    1987-01-01

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10.sup.6. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  3. Gated strip proportional detector

    DOEpatents

    Morris, C.L.; Idzorek, G.C.; Atencio, L.G.

    1985-02-19

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10/sup 6/. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  4. Strip interpolation in silicon and germanium strip detectors.

    SciTech Connect

    Wulf, E. A.; Phlips, B. F.; Johnson, W. N.; Kurfess, J. D.; Lister, C. J.; Kondev, F.; Physics; Naval Research Lab.

    2004-01-01

    The position resolution of double-sided strip detectors is limited by the strip pitch and a reduction in strip pitch necessitates more electronics. Improved position resolution would improve the imaging capabilities of Compton telescopes and PET detectors. Digitizing the preamplifier waveform yields more information than can be extracted with regular shaping electronics. In addition to the energy, depth of interaction, and which strip was hit, the digitized preamplifier signals can locate the interaction position to less than the strip pitch of the detector by looking at induced signals in neighboring strips. This allows the position of the interaction to be interpolated in three dimensions and improve the imaging capabilities of the system. In a 2 mm thick silicon strip detector with a strip pitch of 0.891 mm, strip interpolation located the interaction of 356 keV gamma rays to 0.3 mm FWHM. In a 2 cm thick germanium detector with a strip pitch of 5 mm, strip interpolation of 356 keV gamma rays yielded a position resolution of 1.5 mm FWHM.

  5. Superconducting nano-strip particle detectors

    NASA Astrophysics Data System (ADS)

    Cristiano, R.; Ejrnaes, M.; Casaburi, A.; Zen, N.; Ohkubo, M.

    2015-12-01

    We review progress in the development and applications of superconducting nano-strip particle detectors. Particle detectors based on superconducting nano-strips stem from the parent devices developed for single photon detection (SSPD) and share with them ultra-fast response times (sub-nanosecond) and the ability to operate at a relatively high temperature (2-5 K) compared with other cryogenic detectors. SSPDs have been used in the detection of electrons, neutral and charged ions, and biological macromolecules; nevertheless, the development of superconducting nano-strip particle detectors has mainly been driven by their use in time-of-flight mass spectrometers (TOF-MSs) where the goal of 100% efficiency at large mass values can be achieved. Special emphasis will be given to this case, reporting on the great progress which has been achieved and which permits us to overcome the limitations of existing mass spectrometers represented by low detection efficiency at large masses and charge/mass ambiguity. Furthermore, such progress could represent a breakthrough in the field. In this review article we will introduce the device concept and detection principle, stressing the peculiarities of the nano-strip particle detector as well as its similarities with photon detectors. The development of parallel strip configuration is introduced and extensively discussed, since it has contributed to the significant progress of TOF-MS applications.

  6. Single-sided CZT strip detectors

    NASA Astrophysics Data System (ADS)

    Macri, John R.; Dönmez, Burçin; Widholm, Mark; Hamel, Louis-Andre; Julien, Manuel; Narita, Tomohiko; Ryan, James M.; McConnell, Mark L.

    2004-09-01

    We report progress in the study of thick CZT strip detectors for 3-d imaging and spectroscopy and discuss two approaches to device design. We present the spectroscopic, imaging, detection efficiency and response uniformity performance of prototype devices. Unlike double-sided strip detectors, these devices feature both row and column contacts implemented on the anode surface. This electron-only approach circumvents problems associated with poor hole transport in CZT that normally limit the thickness and energy range of double-sided strip detectors. These devices can achieve similar performance to pixel detectors. The work includes laboratory and simulation studies aimed at developing compact, efficient, detector modules for 0.05 to 1 MeV gamma radiation measurements. The low channel count strip detector approach can significantly reduce the complexity and power requirements of the readout electronics. This is particularly important in space-based coded aperture or Compton telescope instruments requiring large area, large volume detector arrays. Such arrays will be required for NASA's Black Hole Finder Probe (BHFP) and Advanced Compton Telescope (ACT).

  7. TCT measurements with slim edge strip detectors

    NASA Astrophysics Data System (ADS)

    Mandić, Igor; Cindro, Vladimir; Gorišek, Andrej; Kramberger, Gregor; Mikuž, Marko; Zavrtanik, Marko; Fadeyev, Vitaliy; Sadrozinski, Hartmut F.-W.; Christophersen, Marc; Phlips, Bernard

    2014-07-01

    Transient current technique (TCT) measurements with focused laser light on miniature silicon strip detectors (n+-type strips on p-type bulk) with one inactive edge thinned to about 100 μm using the Scribe-Cleave-Passivate (SCP) method are presented. Pulses of focused IR (λ=1064 nm) laser light were directed to the surface of the detector and charge collection properties near the slim edge were investigated. Measurements before and after irradiation with reactor neutrons up to 1 MeV equivalent fluence of 1.5×1015 neq/cm2 showed that SCP thinning of detector edge does not influence its charge collection properties. TCT measurements were done also with focused red laser beam (λ=640 nm) directed to the SCP processed side of the detector. The absorption length of red light in silicon is about 3 μm so with this measurement information about the electric field at the edge can be obtained. Observations of laser induced signals indicate that the electric field distribution along the depth of the detector at the detector edge is different than in the detector bulk: electric field is higher near the strip side and lower at the back side. This is a consequence of negative surface charge caused by passivation of the cleaved edge with Al2O3. The difference between bulk and edge electric field distributions gets smaller after irradiation.

  8. Characterisation of a Si(Li) orthogonal-strip detector

    NASA Astrophysics Data System (ADS)

    Harkness, L. J.; Judson, D. S.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Nolan, P. J.; Sweeney, A.; Beau, J.; Lampert, M.; Pirard, B.; Zuvic, M.

    2013-10-01

    A Compton camera composed of an orthogonal-strip Si(Li) detector and an orthogonal-strip HPGe SmartPET detector is under investigation at the University of Liverpool. To optimise the performance of the system, it is essential to quantify the response of the detectors to gamma irradiation. Such measurements have previously been reported for the SmartPET detector and in this work we report on the experimental characterisation of the Si(Li) detector. Precision scans of the detector have been performed using a finely collimated 241Am gamma-ray source to determine the uniformity and charge collection properties of the detector.

  9. Development, prototyping and characterization of double sided silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Topkar, Anita; Singh, Arvind; Aggarwal, Bharti; Kumar, Amit; Kumar, Arvind; Murali Krishna, L. V.; Das, D.

    2016-10-01

    Double sided DC-coupled silicon strip detectors with geometry of 65 mm×65 mm have been developed in India for nuclear physics experiments. The detectors have 64 P+ strips on the front side and 64 N+ strips on the backside with a pitch of 0.9 mm. These detectors were fabricated using a twelve mask layer process involving double sided wafer processing technology. Semiconductor process and device simulations were carried out in order to theoretically estimate the impact of important design and process parameters on the breakdown voltage of detectors. The performance of the first lot of prototype detectors has been studied using static characterization tests and using an alpha source. The characterization results demonstrate that the detectors have low leakage currents and good uniformity over the detector area of about 40 cm2. Overview of the detector design, fabrication process, simulation results and initial characterization results of the detectors are presented in this paper.

  10. Characterization and Calibration of Large Area Resistive Strip Micromegas Detectors

    NASA Astrophysics Data System (ADS)

    Lösel, Philipp; ATLAS Muon Collaboration

    2016-07-01

    Resistive strip Micromegas detectors have been tested extensively as small detectors of about 10×10 cm2 in size and they work reliably at high rates of 100 kHz/cm2 and above. Tracking resolution well below 100 μm has been observed for 100 GeV muons and pions. Micromegas detectors are meanwhile proposed as large area muon precision trackers of 2-3 m2 in size. To investigate possible differences between small and large detectors, a 1 m2 detector with 2048 resistive strips at a pitch of 450 μm was studied in the LMU Cosmic Ray Measurement Facility (CRMF) using two 4×2.2 m2 large Monitored Drift Tube (MDT) chambers for cosmic muon reference tracking. A segmentation of the resistive strip anode plane in 57.6 mm×93 mm large areas has been realized by the readout of 128 strips with one APV25 chip each and by eleven 93 mm broad trigger scintillators placed along the readout strips. This allows for mapping of homogeneity in pulse height and efficiency, determination of signal propagation along the 1 m long anode strips and calibration of the position of the anode strips.

  11. Optimization of Single-Sided Charge-Sharing Strip Detectors

    NASA Technical Reports Server (NTRS)

    Hamel, L.A.; Benoit, M.; Donmez, B.; Macri, J. R.; McConnell, M. L.; Ryan, J. M.; Narita, T.

    2006-01-01

    Simulation of the charge sharing properties of single-sided CZT strip detectors with small anode pads are presented. The effect of initial event size, carrier repulsion, diffusion, drift, trapping and detrapping are considered. These simulations indicate that such a detector with a 150 m pitch will provide good charge sharing between neighboring pads. This is supported by a comparison of simulations and measurements for a similar detector with a coarser pitch of 225 m that could not provide sufficient sharing. The performance of such a detector used as a gamma-ray imager is discussed.

  12. Fabrication of double-sided thallium bromide strip detectors

    NASA Astrophysics Data System (ADS)

    Hitomi, Keitaro; Nagano, Nobumichi; Onodera, Toshiyuki; Kim, Seong-Yun; Ito, Tatsuya; Ishii, Keizo

    2016-07-01

    Double-sided strip detectors were fabricated from thallium bromide (TlBr) crystals grown by the traveling-molten zone method using zone-purified materials. The detectors had three 3.4-mm-long strips with 1-mm widths and a surrounding electrode placed orthogonally on opposite surfaces of the crystals at approximately 6.5×6.5 mm2 in area and 5 mm in thickness. Excellent charge transport properties for both electrons and holes were observed from the TlBr crystals. The mobility-lifetime products for electrons and holes in the detector were measured to be ~3×10-3 cm2/V and ~1×10-3 cm2/V, respectively. The 137Cs spectra corresponding to the gamma-ray interaction position were obtained from the detector. An energy resolution of 3.4% of full width at half maximum for 662-keV gamma rays was obtained from one "pixel" (an intersection of the strips) of the detector at room temperature.

  13. A Diamond Micro-strip Electron Detector for Compton Polarimetry

    NASA Astrophysics Data System (ADS)

    Narayan, Amrendra

    2012-03-01

    The Qweak experiment at Jefferson Lab aims to measure the weak charge of the proton with a precision of 4.1% by measuring the parity violating asymmetry in polarized electron-proton elastic scattering. Beam polarimetry is the largest experimental contribution to the error budget. A new Compton polarimeter was installed in Fall 2010 for a non-invasive and continuous monitoring of the electron beam polarization in Hall C at Jefferson Lab. The Compton-scattered electrons are detected in four planes of diamond micro-strip detectors. This is the first use of diamond micro-strip detectors as a tracking device in a physics experiment. These detectors are read out using custom built electronic modules that include a pre-amplifier, a pulse shaping amplifier and a discriminator for each detector micro-strip. We use Field Programmable Gate Array based general purpose logic modules for event selection and histogramming. This polarimeter is being used for online monitoring of beam polarization in the experiment. We have achieved the design goals of 1% statistical uncertainity per hour and expect to achieve 1% systematic uncertainity. We will discuss the details of our polarimetry setup, the analysis approach and the preliminary results.

  14. A silicon strip detector dose magnifying glass for IMRT dosimetry

    SciTech Connect

    Wong, J. H. D.; Carolan, M.; Lerch, M. L. F.; Petasecca, M.; Khanna, S.; Perevertaylo, V. L.; Metcalfe, P.; Rosenfeld, A. B.

    2010-02-15

    Purpose: Intensity modulated radiation therapy (IMRT) allows the delivery of escalated radiation dose to tumor while sparing adjacent critical organs. In doing so, IMRT plans tend to incorporate steep dose gradients at interfaces between the target and the organs at risk. Current quality assurance (QA) verification tools such as 2D diode arrays, are limited by their spatial resolution and conventional films are nonreal time. In this article, the authors describe a novel silicon strip detector (CMRP DMG) of high spatial resolution (200 {mu}m) suitable for measuring the high dose gradients in an IMRT delivery. Methods: A full characterization of the detector was performed, including dose per pulse effect, percent depth dose comparison with Farmer ion chamber measurements, stem effect, dose linearity, uniformity, energy response, angular response, and penumbra measurements. They also present the application of the CMRP DMG in the dosimetric verification of a clinical IMRT plan. Results: The detector response changed by 23% for a 390-fold change in the dose per pulse. A correction function is derived to correct for this effect. The strip detector depth dose curve agrees with the Farmer ion chamber within 0.8%. The stem effect was negligible (0.2%). The dose linearity was excellent for the dose range of 3-300 cGy. A uniformity correction method is described to correct for variations in the individual detector pixel responses. The detector showed an over-response relative to tissue dose at lower photon energies with the maximum dose response at 75 kVp nominal photon energy. Penumbra studies using a Varian Clinac 21EX at 1.5 and 10.0 cm depths were measured to be 2.77 and 3.94 mm for the secondary collimators, 3.52 and 5.60 mm for the multileaf collimator rounded leaf ends, respectively. Point doses measured with the strip detector were compared to doses measured with EBT film and doses predicted by the Philips Pinnacle treatment planning system. The differences were 1

  15. Beam tests of ATLAS SCT silicon strip detector modules

    SciTech Connect

    Campabadal, F.; Fleta, C.; Key, M.; Lozano, M.; Martinez, C.; Pellegrini, G.; Rafi, J.M.; Ullan, M.; Johansen, L.; Pommeresche, B.; Stugu, B.; Ciocio, A.; Fadeyev, V.; Gilchriese, M.; Haber, C.; Siegrist,J.; Spieler, H.; Vu, C.; Bell, P.J.; Charlton, D.G.; Dowell, J.D.; Gallop, B.J.; Homer, R.J.; Jovanovic, P.; Mahout, G.; McMahon, T.J.; Wilson, J.A.; Barr, A.J.; Carter, J.R.; Fromant, B.P.; Goodrick, M.J.; Hill, J.C.; Lester, C.G.; Palmer, M.J.; Parker, M.A.; Robinson, D.; Sabetfakhri, A.; Shaw, R.J.; Anghinolfi, F.; Chesi, E.; Chouridou, S.; Fortin, R.; Grosse-Knetter, M.; Gruwe, M.; Ferrari, P.; Jarron, P.; Kaplon, J.; Macpherson, A.; Niinikoski, T.; Pernegger, H.; Roe, S.; Rudge, A.; Ruggiero, G.; Wallny, R.; Weilhammer, P.; Bialas, W.; Dabrowski, W.; Grybos, P.; Koperny, S.; Blocki, J.; Bruckman, P.; Gadomski, S.; Godlewski, J.; Gornicki, E.; Malecki, P.; Moszczynski, A.; Stanecka, E.; Stodulski, M.; Szczygiel, R.; Turala, M.; Wolter, M.; Ahmad, A.; Benes, J.; Carpentieri, C.; Feld, L.; Ketterer, C.; Ludwig,J.; Meinhardt, J.; Runge, K.; Mikulec, B.; Mangin-Brinet, M.; D'Onofrio,M.; Donega, M.; Moed, S.; Sfyrla, A.; Ferrere, D.; Clark, A.G.; Perrin,E.; Weber, M.; Bates, R.L.; Cheplakov, A.; Saxon, D.H.; O'Shea, V.; Smith, K.M.; Iwata, Y.; Ohsugi, T.; Kohriki, T.; Kondo, T.; Terada, S.; Ujiie, N.; Ikegami, Y.; Unno, Y.; Takashima, R.; Brodbeck, T.; Chilingarov, A.; Hughes, G.; Ratoff, P.; Sloan, T.; Allport, P.P.; Casse,G.-L.; Greenall, A.; Jackson, J.N.; Jones, T.J.; King, B.T.; Maxfield,S.J.; Smith, N.A.; Sutcliffe, P.; Vossebeld, J.; Beck, G.A.; Carter,A.A.; Lloyd, S.L.; Martin, A.J.; Morris, J.; Morin, J.; Nagai, K.; Pritchard, T.W.; Anderson, B.E.; Butterworth, J.M.; Fraser, T.J.; Jones,T.W.; Lane, J.B.; Postranecky, M.; Warren, M.R.M.; Cindro, V.; Kramberger, G.; Mandic, I.; Mikuz, M.; Duerdoth, I.P.; Freestone, J.; Foster, J.M.; Ibbotson, M.; Loebinger, F.K.; Pater, J.; Snow, S.W.; Thompson, R.J.; Atkinson, T.M.; et al.

    2004-08-18

    The design and technology of the silicon strip detector modules for the Semiconductor Tracker (SCT) of the ATLAS experiment have been finalized in the last several years. Integral to this process has been the measurement and verification of the tracking performance of the different module types in test beams at the CERN SPS and the KEK PS. Tests have been performed to explore the module performance under various operating conditions including detector bias voltage, magnetic field, incidence angle, and state of irradiation up to 3 1014 protons per square centimeter. A particular emphasis has been the understanding of the operational consequences of the binary readout scheme.

  16. A Proposal to Upgrade the Silicon Strip Detector

    SciTech Connect

    Matis, Howard; Michael, LeVine; Jonathan, Bouchet; Stephane, Bouvier; Artemios, Geromitsos; Gerard, Guilloux; Sonia, Kabana; Christophe, Renard; Howard, Matis; Jim, Thomas; Vi Nham, Tram

    2007-11-05

    The STAR Silicon Strip Detector (SSD) was built by a collaboration of Nantes, Strasbourg and Warsaw collaborators. It is a beautiful detector; it can provide 500 mu m scale pointing resolution at the vertex when working in combination with the TPC. It was first used in Run 4, when half the SSD was installed in an engineering run. The full detector was installed for Run 5 (the Cu-Cu run) and the operation and performance of the detector was very successful. However, in preparation for Run 6, two noisy ladders (out of 20) were replaced and this required that the SSD be removed from the STAR detector. The re-installation of the SSD was not fully successful and so for the next two Runs, 6 and 7, the SSD suffered a cooling system failure that allowed a large fraction of the ladders to overheat and become noisy, or fail. (The cause of the SSD cooling failure was rather trivial but the SSD could not be removed betweens Runs 6 and 7 due to the inability of the STAR detector to roll along its tracks at that time.)

  17. EMC Diagnosis and Corrective Actions for Silicon Strip Tracker Detectors

    SciTech Connect

    Arteche, F.; Rivetta, C.; /SLAC

    2006-06-06

    The tracker sub-system is one of the five sub-detectors of the Compact Muon Solenoid (CMS) experiment under construction at CERN for the Large Hadron Collider (LHC) accelerator. The tracker subdetector is designed to reconstruct tracks of charged sub-atomic particles generated after collisions. The tracker system processes analogue signals from 10 million channels distributed across 14000 silicon micro-strip detectors. It is designed to process signals of a few nA and digitize them at 40 MHz. The overall sub-detector is embedded in a high particle radiation environment and a magnetic field of 4 Tesla. The evaluation of the electromagnetic immunity of the system is very important to optimize the performance of the tracker sub-detector and the whole CMS experiment. This paper presents the EMC diagnosis of the CMS silicon tracker sub-detector. Immunity tests were performed using the final prototype of the Silicon Tracker End-Caps (TEC) system to estimate the sensitivity of the system to conducted noise, evaluate the weakest areas of the system and take corrective actions before the integration of the overall detector. This paper shows the results of one of those tests, that is the measurement and analysis of the immunity to CM external conducted noise perturbations.

  18. Fabrication of CdZnTe strip detectors for large area arrays

    SciTech Connect

    Stahle, C.M.; Shi, Z.Q.; Hu, K.

    1998-12-31

    A CdZnTe strip detector large area array ({approximately} 60 cm{sup 2} with 36 detectors) with capabilities for high resolution imaging and spectroscopy has been built as a prototype for a space flight gamma ray burst instrument. The detector array also has applications in nuclear medical imaging. Two dimensional orthogonal strip detectors with 100 {micro}m pitch have been fabricated and tested. Details for the array design, fabrication and evaluation of the detectors will be presented.

  19. The readout chain for the bar PANDA MVD strip detector

    NASA Astrophysics Data System (ADS)

    Schnell, R.; Brinkmann, K.-Th.; Di Pietro, V.; Kleines, H.; Goerres, A.; Riccardi, A.; Rivetti, A.; Rolo, M. D.; Sohlbach, H.; Zaunick, H.-G.

    2015-02-01

    The bar PANDA (antiProton ANnihilation at DArmstadt) experiment will study the strong interaction in annihilation reactions between an antiproton beam and a stationary gas jet target. The detector will comprise different sub-detectors for tracking, particle identification and calorimetry. The Micro-Vertex Detector (MVD) as the innermost part of the tracking system will allow precise tracking and detection of secondary vertices. For the readout of the double-sided silicon strip sensors a custom-made ASIC is being developed, employing the Time-over-Threshold (ToT) technique for digitization and utilize time-to-digital converters (TDC) to provide a high-precision time stamp of the hit. A custom-made Module Data Concentrator ASIC (MDC) will multiplex the data of all front-ends of one sensor towards the CERN-developed GBT chip set (GigaBit Transceiver). The MicroTCA-based MVD Multiplexer Board (MMB) at the off-detector site will receive and concentrate the data from the GBT links and transfer it to FPGA-based compute nodes for global event building.

  20. Efficient data transmission from silicon wafer strip detectors

    SciTech Connect

    Cooke, B.J.; Lackner, K.S.; Palounek, A.P.T.; Sharp, D.H.; Winter, L.; Ziock, H.J.

    1991-12-31

    An architecture for on-wafer processing is proposed for central silicon-strip tracker systems as they are currently designed for high energy physics experiments at the SSC, and for heavy ion experiments at RHIC. The data compression achievable with on-wafer processing would make it possible to transmit all data generated to the outside of the detector system. A set of data which completely describes the state of the wafer for low occupancy events and which contains important statistical information for more complex events can be transmitted immediately. This information could be used in early trigger decisions. Additional data packages which complete the description of the state of the wafer vary in size and are sent through a second channel. By buffering this channel the required bandwidth can be kept far below the peak data rates which occur in rate but interesting events. 18 refs.

  1. Readout of silicon strip detectors with position and timing information

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Irmler, C.; Pernicka, M.

    2009-01-01

    Low-noise front-end amplifiers for silicon strip detectors are already available for decades, providing excellent signal-to-noise ratio and thus very precise spatial resolution, but at the cost of a long shaping time in the microsecond range. Due to occupancy and pile-up issues, modern experiments need much faster electronics. With submicron ASICs, adequate readout and data processing, it is possible to obtain not only spatial hit data, but also accurate timing information—a feature which is rarely exploited so far. We present the concept of a silicon vertex detector readout system intended for an upgrade of the Belle experiment at KEK (Tsukuba, Japan). The APV25 front-end chip, originally developed for CMS at CERN, is used in a way where it delivers multiple samples along the shaped waveform, such that not only the analog pulse height, but also the timing of each particle hit can be determined. We developed a complete readout system including an FADC +Processor VME module which performs zero-suppression in FPGAs. The hit time measurement is also planned on the same module. As fast amplifiers are inherently more susceptible to noise, which largely depends on the load capacitance, the front-end chips should be located as close to the detector as possible. On the other hand, the material budget, especially in a low-energy electron-positron machine such as Belle, should be minimized. We tried to merge those demands with a fully functional "Flex_Module", where thinned APV25 readout chips are mounted on the silicon sensor.

  2. Optimizing the Intrinsic Signal-to-Noise Ratio of MRI Strip Detectors

    PubMed Central

    Kumar, Ananda; Bottomley, Paul A.

    2007-01-01

    An MRI detector is formed from a conducting strip separated by a dielectric substrate from a ground plane, and tuned to a quarter-wavelength. By distributing discrete tuning elements along the strip, the geometric design may be adjusted to optimize the signal-to-noise ratio (SNR) for a given application. Here a numerical electromagnetic (EM) method of moments (MoM) is applied to determine the length, width, substrate thickness, dielectric constant, and number of tuning elements that yield the best intrinsic SNR (ISNR) of the strip detector at 1.5 Tesla. The central question of how strip performance compares with that of a conventional optimized loop coil is also addressed. The numerical method is validated against the known ISNR performance of loop coils, and its ability to predict the tuning capacitances and performance of seven experimental strip detectors of varying length, width, substrate thickness, and dielectric constant. We find that strip detectors with low-dielectric constant, moderately thin-substrate, and length about 1.3 (±0.2) times the depth of interest perform best. The ISNR of strips is comparable to that of loops (i.e., higher close to the detector but lower at depth). The SNR improves with two inherently-decoupled strips, whose sensitivity profile is well-suited to parallel MRI. The findings are summarized as design “rules of thumb.” PMID:16724302

  3. Thick Silicon Double-Sided Strip Detectors for Low-Energy Small-Animal SPECT

    PubMed Central

    Shokouhi, Sepideh; McDonald, Benjamin S.; Durko, Heather L.; Fritz, Mark A.; Furenlid, Lars R.; Peterson, Todd E.

    2010-01-01

    This work presents characterization studies of thick silicon double-sided strip detectors for a high-resolution small-animal SPECT. The dimension of these detectors is 60.4 mm × 60.4 mm × 1 mm. There are 1024 strips on each side that give the coordinates of the photon interaction, with each strip processed by a separate ASIC channel. Our measurement shows that intrinsic spatial resolution equivalent to the 59 μm strip pitch is attainable. Good trigger uniformity can be achieved by proper setting of a 4-bit DAC in each ASIC channel to remove trigger threshold variations. This is particularly important for triggering at low energies. The thick silicon DSSD (Double-sided strip detector) shows high potential for small-animal SPECT. PMID:20686626

  4. Quasiparticle Self-Recombination in Double STJs Strip X-ray Detectors

    SciTech Connect

    Andrianov, V. A.; Gorkov, V. P.

    2009-12-16

    The quasiparticle self-recombination was considered in the frame of 2D diffusion model of the strip X-ray detectors. The detector consists of a long superconducting strip, which is ended by the trapping layers and superconducting tunnel junctions at each end. The model takes into account the 2D-diffusion of the excess quasiparticles, quasiparticle trapping at the tunnel junctions and quasiparticle losses in the volume of the strip and at the strip boundaries. Self-recombination was described by a quadratic term. As the analytical solution is absent, the numeric calculations were carried out. It has been shown that the self-recombination as well as quasiparticle losses at the strip boundaries caused the dependence of the signals on the photon absorption site in transverse direction. The latter worsens the energy resolution and transforms the spectral line of the detector to nongaussian shape.

  5. Performance of a double sided silicon strip detector as a transmission detector for heavy ions

    NASA Astrophysics Data System (ADS)

    Han, Jian-Long; Ma, Jun-Bing; Cao, Xi-Guang; Wang, Qi; Wang, Jian-Song; Yang, Yan-Yun; Ma, Peng; Huang, Mei-Rong; Jin, Shi-Lun; Rong, Xin-Juan; Bai, Zhen; Fu, Fen; Hu, Qiang; Chen, Ruo-Fu; Xu, Shi-Wei; Chen, Jiang-Bo; Jin, Lei; Li, Yong; Zhao, Ming-Hui; Xu, Hu-Shan

    2014-05-01

    The performance of a double sided silicon strip detector (DSSSD), which is used for the position and energy detection of heavy ions, is reported. The analysis shows that although the incomplete charge collection (ICC) and charge sharing (CS) effects of the DSSSD give rise to a loss of energy resolution, the position information is recorded without ambiguity. Representations of ICC/CS events in the energy spectra are shown and their origins are confirmed by correlation analysis of the spectra from both the junction side and ohmic side of the DSSSD.

  6. Characterization of Single-Sided Charge-Sharing CZT Strip Detectors for Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Donmez, Burcin; Macri, John R.; Ryan, James M.; Legere, Jason S.; McConnell, Mark L.; Widholm, Mark; Narita, Tomohiko; Hamel, Louis-Andre

    2006-01-01

    We report progress in the study of thick single-sided charge-sharing cadmium zinc telluride (CZT) strip detector modules designed to perform spectroscopy and 3-D imaging of gamma-rays. We report laboratory measurements including spectroscopy, efficiency and 3-D imaging capability of prototype detectors (15 15 7.5 cu mm) with 11x11 unit cells. We also report on Monte Carlo simulations (GEANT4 v7.1) to investigate the effect of multihits on detector performance in both spectroscopy and imaging. We compare simulation results with data obtained from laboratory measurements and discuss the implications for future strip detector designs. Keywords: CZT, strip detectors, gamma-ray

  7. Si-strip photon counting detectors for contrast-enhanced spectral mammography

    NASA Astrophysics Data System (ADS)

    Chen, Buxin; Reiser, Ingrid; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasi; Chen, Chin-Tu; Iwanczyk, Jan S.; Barber, William C.

    2015-08-01

    We report on the development of silicon strip detectors for energy-resolved clinical mammography. Typically, X-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a-Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting Si strip detectors. The required performance for mammography in terms of the output count rate, spatial resolution, and dynamic range must be obtained with sufficient field of view for the application, thus requiring the tiling of pixel arrays and particular scanning techniques. Room temperature Si strip detector, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the X-ray energy ranges of the application. We present our methods and results from the optimization of Si-strip detectors for contrast enhanced spectral mammography. We describe the method being developed for quantifying iodine contrast using the energy-resolved detector with fixed thresholds. We demonstrate the feasibility of the method by scanning an iodine phantom with clinically relevant contrast levels.

  8. A new semicustom integrated bipolar amplifier for silicon strip detectors

    SciTech Connect

    Zimmerman, T.

    1989-07-11

    The QPA02 is a four channel DC coupled two stage transimpedance amplifier designed at Fermilab on a semicustom linear array (Quickchip 2S) manufactured by Tektronix. The chip was developed as a silicon strip amplifier but may have other applications as well. Each channel consists of a preamplifier and a second stage amplifier/sharper with differential output which can directly drive a transmission line (90 to 140 ohms). External bypass capacitors are the only discrete components required. QPA02 has been tested and demonstrated to be an effective silicon strip amplifier. Other applications may exist which can use this amplifier or a modified version of this amplifier. For example, another design is now in progress for a wire chamber amplifier, QPA03, to be reported later. Only a relatively small effort was required to modify the design and layout for this application. 11 figs.

  9. Development of a silicon micro-strip detector for tracking high intensity secondary beams

    NASA Astrophysics Data System (ADS)

    Kiuchi, R.; Asano, H.; Hasegawa, S.; Honda, R.; Ichikawa, Y.; Imai, K.; Joo, C. W.; Nakazawa, K.; Sako, H.; Sato, S.; Shirotori, K.; Sugimura, H.; Tanida, K.; Watabe, T.

    2014-11-01

    A single-sided silicon micro-strip detector (SSD) has been developed as a tracking detector for hadron experiments at J-PARC where secondary meson beams with intensities of up to 108 Hz are available. The performance of the detector has been investigated and verified in a series of test beam experiments in the years 2009-2011. The hole mobility was deduced from the analysis of cluster events. The beam rate dependence was measured in terms of timing resolution, signal-to-noise ratio, and hit efficiency. This paper describes the detector with its read-out system, details of the test experiments, and discusses the performance achieved.

  10. Performance of a large-area GEM detector read out with wide radial zigzag strips

    NASA Astrophysics Data System (ADS)

    Zhang, Aiwu; Bhopatkar, Vallary; Hansen, Eric; Hohlmann, Marcus; Khanal, Shreeya; Phipps, Michael; Starling, Elizabeth; Twigger, Jessie; Walton, Kimberly

    2016-03-01

    A 1-meter-long trapezoidal Triple-GEM detector with wide readout strips was tested in hadron beams at the Fermilab Test Beam Facility in October 2013. The readout strips have a special zigzag geometry and run radially with an azimuthal pitch of 1.37 mrad to measure the azimuthal ϕ-coordinate of incident particles. The zigzag geometry of the readout reduces the required number of electronic channels by a factor of three compared to conventional straight readout strips while preserving good angular resolution. The average crosstalk between zigzag strips is measured to be an acceptable 5.5%. The detection efficiency of the detector is (98.4±0.2)%. When the non-linearity of the zigzag-strip response is corrected with track information, the angular resolution is measured to be (193±3) μrad, which corresponds to 14% of the angular strip pitch. Multiple Coulomb scattering effects are fully taken into account in the data analysis with the help of a stand-alone Geant4 simulation that estimates interpolated track errors.

  11. Chemical etching and post-annealing for high performance CdZnTe strip detectors

    SciTech Connect

    Shi, Z.Q.; Stahle, C.M.; Shu, P.

    1998-12-31

    One of the critical issues in CdZnTe detector fabrication is the surface treatment. This will not only affect the electrical properties, such as leakage current, but also influence the physical properties, such as smoothness and adhesion between the metal and the semiconductor. The latter will determine the wire bonding yield. Historically, there has been a problem in achieving both low leakage current and excellent wire bonding yield. In this paper, the authors report their new approach to fabricate high performance doubled sided CdZnTe strip detectors. The new surface treatments involve chemical etching and post-annealing. The leakage current, interstrip resistance and energy resolution were studied as a function of different etchants/time and post-annealing temperature. It was found that a chemical etch with bromine in ethylene glycol (Br/EG) is suitable for the double sided strip detector process. Keeping a relatively smooth surface is critical for achieving a high yield of good strips. To improve the adhesion of the metal to CdZnTe for wire bonding, the detectors were annealed from 100 to 175 C for 10 hours. It has been observed that after annealing, not only has the strip leakage current decreased, but the interstrip resistance is increased for a temperature less than 150 C.

  12. Further studies of single-sided charge-sharing CZT strip detectors

    NASA Astrophysics Data System (ADS)

    Donmez, Burcin; Macri, John R.; McConnell, Mark L.; Ryan, James M.; Widholm, Mark; Narita, Tomohiko; Hamel, Louis-Andre

    2005-08-01

    We report progress in the study of a thick CZT strip detector module designed to perform gamma-ray spectroscopy and 3-D imaging. We report preliminary performance measurements of 7.5 mm thick single-sided charge-sharing strip detector prototype devices. This design features both row and column contacts on the anode surface. This electron-only approach addresses problems associated with poor hole transport in CZT that limit the thickness and energy range of double-sided strip detectors. This work includes laboratory and simulation studies aimed at developing compact, efficient, detector modules for 0.05 to 1 MeV gamma measurements while minimizing the number and complexity of the electronic readout channels. This is particularly important in space-based coded aperture and Compton telescope instruments that require large area, large volume detector arrays. Such arrays will be required for the NASA Black Hole Finder Probe (BHFP)and Advanced Compton Telescope (ACT). This new design requires an anode pattern with contacts whose dimensions and spacing are roughly the size of the ionization charge cloud. The first prototype devices have 125 μm anode contacts on 225 μm pitch. Our results demonstrate the principle of operation but suggest that even finer anode contact feature sizes will be necessary to achieve the desired performance.

  13. Thicker, more efficient superconducting strip-line detectors for high throughput macromolecules analysis

    SciTech Connect

    Casaburi, A.; Ejrnaes, M.; Cristiano, R.; Zen, N.; Ohkubo, M.; Pagano, S.

    2011-01-10

    Fast detectors with large area are required in time-of-flight mass spectrometers for high throughput analysis of biological molecules. We fabricated and characterized subnanosecond 1x1 mm{sup 2} NbN superconducting strip-line detectors. The influence of the strip-line thickness on the temporal characteristics and efficiency of the detector for the impacts of keV accelerated molecules is investigated. We find that the increase of thickness improves both efficiency and response time. In the thicker sample we achieved a rise time of 380 ps, a fall time of 1.38 ns, and a higher count rate. The physics involved in this behavior is investigated.

  14. Recent developments in transition-edge strip detectors for solar x-rays

    NASA Astrophysics Data System (ADS)

    Rausch, Adam J.; Deiker, Steven W.; Hilton, Gene; Irwin, Kent D.; Martinez-Galarce, Dennis S.; Shing, Lawrence; Stern, Robert A.; Ullom, Joel N.; Vale, Leila R.

    2008-07-01

    LMSAL and NIST are developing position-sensitive x-ray strip detectors based on Transition Edge Sensor (TES) microcalorimeters optimized for solar physics. By combining high spectral (E/ΔE ~1600) and temporal (single photon Δt ~10μs) resolutions with imaging capabilities, these devices will be able to study high-temperature (>10 MK) x-ray lines as never before. Diagnostics from these lines should provide significant new insight into the physics of both microflares and the early stages of flares. Previously, the large size of traditional TESs, along with the heat loads associated with wiring large arrays, presented obstacles to using these cryogenic detectors for solar missions. Implementing strip detector technology at small scales, however, addresses both issues: here, a line of substantially smaller effective pixels requires only two TESs, decreasing both the total array size and the wiring requirements for the same spatial resolution. Early results show energy resolutions of Δ ΕFWHM ~30eV and spatial resolutions of ~10-15 μm, suggesting the strip-detector concept is viable.

  15. Recent Developments in Transition-Edge Strip Detectors for Solar X-Rays

    NASA Technical Reports Server (NTRS)

    Rausch, Adam J.; Deiker, Steven W.; Hilton, Gene; Irwin, Kent D.; Martinez-Galarce, Dennis S.; Shing, Lawrence; Stern, Robert A.; Ullom, Joel N.; Vale, Leila R.

    2008-01-01

    LMSAL and NIST are developing position-sensitive x-ray strip detectors based on Transition Edge Sensor (TES) microcalorimeters optimized for solar physics. By combining high spectral (E/ delta E approximately equals 1600) and temporal (single photon delta t approximately equals 10 micro s) resolutions with imaging capabilities, these devices will be able to study high-temperature (>l0 MK) x-ray lines as never before. Diagnostics from these lines should provide significant new insight into the physics of both microflares and the early stages of flares. Previously, the large size of traditional TESs, along with the heat loads associated with wiring large arrays, presented obstacles to using these cryogenic detectors for solar missions. Implementing strip detector technology at small scales, however, addresses both issues: here, a line of substantially smaller effective pixels requires only two TESs, decreasing both the total array size and the wiring requirements for the same spatial resolution. Early results show energy resolutions of delta E(sub fwhm) approximately equals 30 eV and spatial resolutions of approximately 10-15 micron, suggesting the strip-detector concept is viable.

  16. A Laser Testing Facility for the Characterization of Silicon Strip Detectors

    NASA Astrophysics Data System (ADS)

    Phillips, Sarah

    2011-04-01

    Silicon strip detectors are used for high-precision tracking systems in particle physics experiments. During the 12 GeV upgrade to the accelerator at Jefferson Lab, a new spectrometer, CLAS12, will be built in Hall B. The University of New Hampshire is part of the collaboration designing and building CLAS12. Among the detector systems being developed for CLAS12 is a silicon vertex tracker that will be placed close to the target, providing excellent position resolution for vertex determination. It is vital to have the ability to perform quality assurance tests and to evaluate the performance of the individual silicon strip detectors before installation in CLAS12. UNH is designing and building a laser testing facility to perform this task. The design consists of an infrared laser system and a precision computer-controlled positioning system that scans the laser light on the detector. The detector signals are read out by a data acquisition system for analysis. The facility includes a cleanroom area and a dry storage containment system. The facility allows the characterization of the large number of detectors before the final assembly of the silicon vertex tracker.

  17. First implementation of the MEPHISTO binary readout architecture for strip detectors

    NASA Astrophysics Data System (ADS)

    Fischer, P.

    2001-04-01

    Today's front-end readout chips for multi-channel silicon strip detectors use pipeline-like structures for temporary storage of hit information until arrival of a trigger signal. This approach leads to large-area chips when long trigger latencies are necessary. The MEPHISTO architecture uses a different concept. Hit strips are identified in real time and only the relevant binary hit information is stored in FIFOs. For the typical occupancies in LHC detectors of ≈1 hit per clock cycle this architecture requires less than half the chip area of a typical binary pipeline. This reduces the system cost considerably. At a lower data rate, operation with very long trigger latencies or even without any trigger is possible due to the real-time data sparsification. The Mephisto II architecture is presented and the expected performance is discussed.

  18. The Atlas Tracker Upgrade:. Short Strips Detectors for the sLHC

    NASA Astrophysics Data System (ADS)

    Soldevila, Unnila; Miñano, M.; Garcia, C.; Lacasta, C.; Marti, S.

    2010-04-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN around 20I8 by about an order of magnitude, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for sLHC operation. In order to cope with the order of magnitude increase in pile-up backgrounds at the higher luminosity, an all silicon detector tracker is being designed. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. A massive R&D program is underway to develop silicon sensors with sufficient radiation hardness. New front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics will be shown. Planar detectors to be made on p-type wafers in a number of different designs have been developed. These prototype detectors were then produced by a leading manufacturers and irradiated to a set of fluences matched to sLHC expectations. The irradiated sensors were subsequently tested with LHC-readout-electronics in order to study the radiation-induced degradation, and determine their performance after serious hadron irradiation of up to 1015 neqcm-2. The signal suffers degradation as a function of irradiation. It is however evident that sufficient charge can still be recorded even at the highest fluence. We will give an overview of the ATLAS tracker upgrade, in particular focusing on innermost silicon strip layers. We will draw conclusions on what type and design of strip detectors to employ for the upgrades of the tracking layers in the sLHC upgrades of LHC experiments.

  19. Development of Silicon Strip Detector for the measurement of the {Xi}-atom X-rays

    SciTech Connect

    Sugimura, H.; Adachi, S.; Imai, K.; Sako, H.; Sato, S.; Tanida, K.; Kiuchi, R.; Joo, C. W.

    2011-10-21

    We have developed the Silicon Strip Detector (SSD) for the experiment to measure X-ray from {Xi}-atom. The feature of the SSD is to measure positions of particles and energy deposit. We have carried out the test experiment at J-PARC K1.8 beam line. The three SSDs were installed in front of the target and we tested by using kaon beam. In this paper, the results of the test experiment is presented.

  20. Elemental Discrimination of Low-energy Ions Using Risetime Analysis of Silicon-strip Detector Signals

    SciTech Connect

    Bardayan, Daniel W; Moazen, Brian; Pain, Steven D; Smith, Michael Scott

    2009-01-01

    To make measurements with the intense (but often contaminated) radioactive beams available today, one often needs to identify the reaction products to determine the events of interest. The low energies required for many astrophysics measurements make impossible the use of traditional energy loss techniques, and additional constraints are required. We demonstrate a simple technique to measure the risetimes of silicon strip-detector signals and show partial discrimination can be obtained even at energies below 1 MeV/u.

  1. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-09-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  2. Integrated USB based readout interface for silicon strip detectors of the ATLAS SCT module

    NASA Astrophysics Data System (ADS)

    Masek, P.; Linhart, V.; Granja, C.; Pospisil, S.; Husak, M.

    2011-12-01

    An integrated portable USB based readout interface for the ATLAS semiconductor trackers (SCT) has been built. The ATLAS SCT modules are large area silicon strip detectors designed for tracking of high-energy charged particles resulting in collisions on Large Hadron Collider (LHC) in CERN. These modules can be also used on small accelerators for medical or industry applications where a compact and configurable readout interface would be useful. A complete custom made PC-host software tool was written for Windows platform for control and DAQ with build-in online visualization. The new constructed interface provides integrated power, control and DAQ and configurable communication between the detector module and the controlling PC. The interface is based on the Field Programmable Gate Array (FPGA) and the high speed USB 2.0 standard. This design permits to operate the modules under high particle fluence while minimizing the dead time of the whole detection system. Utilization of the programmable device simplifies the operation and permits future expansion of the functionality without any hardware changes. The device includes the high voltage source for detector bias up to 500 V and it is equipped with number of devices for monitoring the operation and conditions of measurement (temperature, humidity, voltage). These features are particularly useful as the strip detector must be operated in a well controlled environment. The operation of the interface will be demonstrated on data measured with different particles from radiation sources.

  3. Count rate performance of a silicon-strip detector for photon-counting spectral CT

    NASA Astrophysics Data System (ADS)

    Liu, X.; Grönberg, F.; Sjölin, M.; Karlsson, S.; Danielsson, M.

    2016-08-01

    A silicon-strip detector is developed for spectral computed tomography. The detector operates in photon-counting mode and allows pulse-height discrimination with 8 adjustable energy bins. In this work, we evaluate the count-rate performance of the detector in a clinical CT environment. The output counts of the detector are measured for x-ray tube currents up to 500 mA at 120 kV tube voltage, which produces a maximum photon flux of 485 Mphotons/s/mm2 for the unattenuated beam. The corresponding maximum count-rate loss of the detector is around 30% and there are no saturation effects. A near linear relationship between the input and output count rates can be observed up to 90 Mcps/mm2, at which point only 3% of the input counts are lost. This means that the loss in the diagnostically relevant count-rate region is negligible. A semi-nonparalyzable dead-time model is used to describe the count-rate performance of the detector, which shows a good agreement with the measured data. The nonparalyzable dead time τn for 150 evaluated detector elements is estimated to be 20.2±5.2 ns.

  4. Energy-resolved CT imaging with a photon-counting silicon-strip detector

    NASA Astrophysics Data System (ADS)

    Persson, Mats; Huber, Ben; Karlsson, Staffan; Liu, Xuejin; Chen, Han; Xu, Cheng; Yveborg, Moa; Bornefalk, Hans; Danielsson, Mats

    2014-11-01

    Photon-counting detectors are promising candidates for use in the next generation of x-ray computed tomography (CT) scanners. Among the foreseen benefits are higher spatial resolution, better trade-off between noise and dose and energy discriminating capabilities. Silicon is an attractive detector material because of its low cost, mature manufacturing process and high hole mobility. However, it is sometimes overlooked for CT applications because of its low absorption efficiency and high fraction of Compton scatter. The purpose of this work is to demonstrate that silicon is a feasible material for CT detectors by showing energy-resolved CT images acquired with an 80 kVp x-ray tube spectrum using a photon-counting silicon-strip detector with eight energy thresholds developed in our group. We use a single detector module, consisting of a linear array of 50 0.5 × 0.4 mm detector elements, to image a phantom in a table-top lab setup. The phantom consists of a plastic cylinder with circular inserts containing water, fat and aqueous solutions of calcium, iodine and gadolinium, in different concentrations. By using basis material decomposition we obtain water, calcium, iodine and gadolinium basis images and demonstrate that these basis images can be used to separate the different materials in the inserts. We also show results showing that the detector has potential for quantitative measurements of substance concentrations.

  5. Cross strip anode readouts for microchannel plate detectors: developing flight qualified prototypes

    NASA Astrophysics Data System (ADS)

    Vallerga, John; Cooney, M.; Raffanti, R.; Varner, G.; Siegmund, O.; McPhate, J. B.; Tremsin, A.

    2014-01-01

    Photon counting microchannel plate (MCP) imagers have been the detector of choice for most UV astronomical missions over the last two decades (eg. EUVE, FUSE, COS on Hubble etc.). Over this duration, improvements in the MCP laboratory readout technology have resulted in better spatial resolution (x10), temporal resolution (x 1000) and output event rate (x100), all the while operating at lower gain (x 10) resulting in lower high voltage requirements and longer MCP lifetimes. One such technology is the parallel cross strip (PXS) readout. The PXS anode is a set of orthogonal conducting strips (80 x 80), typically spaced at a 635 micron pitch onto which charge clouds from MCP amplified events land. Each strip has its own charge sensitive amplifier that is sampled continuously by a dedicated analog to digital (ADC) converter at 50MHz. All of the 160 ADC digital output lines are fed into a field programmable gate array (FGPA) which can detect charge events landing on the strips, measure the peak amplitudes of those charge events and calculate their spatial centroid along with their time of arrival (X,Y,T). Laboratory versions of these electronics have demonstrated < 20 microns FWHM spatial resolution, count rates on the order of 2 MHz, and temporal resolution of ~ 1ns. In 2012 the our group at U.C. Berkeley, along with our partners at the U. Hawaii, received a Strategic Astrophysics Technology grant to raise the TRL of the PXS detector from 4 to 6 by replacing most of the 19" rack mounted, high powered electronics with application specific integrated circuits (ASICs) which will lower the power, mass and volume requirements of the PXS detector. We were also tasked to design and fabricate a "standard" 50mm square active area MCP detector incorporating these electronics that can be environmentally qualified for flight (temperature, vacuum, vibration). This detector design could then be modified for individual flight opportunities with a higher level of confidence than

  6. Evaluation of New Contact Technology for A Planar High-Purity Germanium Double-Sided Strip Detector

    NASA Astrophysics Data System (ADS)

    Jackson, E.; Chowdhury, P.; Lister, C. J.; Diaz, C.; Skinner, M.; Hull, E.; Pehl, R.

    2013-10-01

    New technologies for making position sensitive γ-ray detectors have applications in space science, medical imaging, homeland security, and nuclear structure research. One promising approach uses high-purity germanium wafers in Low Energy Photon Spectrometer (LEPS) geometry, where segmentation of the electrodes into strips forms a Double-Sided Strip Detector (DSSD). The position-sensitivity afforded by the many strips is ideal for the study of Compton scattering and polarization. However, challenges with the manufacture and performance of the rectifying contacts continue to plague the advancement of planar DSSDs. The data gathered from the combination of multiple strips' signals suffers from cross-talk between the strips and charge loss due to wide inter-strip gaps. A planar, high-purity DSSD has been developed by PHDs Co. with an alternative electrode material, amorphous germanium, that can be placed such that the gaps between the strips are half the width required by other contact material. This research seeks to quantify the performance gains of the amorphous germanium contacts and smaller inter-strip gaps while exploring the possibilities for this DSSD as an imager and polarization detector. Research supported by the U.S. Department of Energy (DE-FG02-94ER40848).

  7. A feasibility study of a data acquisition system for a silicon strip detector with a digital readout scheme

    NASA Astrophysics Data System (ADS)

    Ikeda, Hirokazu; Ikeda, Mitsuo; Inaba, Susumu; Tanaka, Manobu

    1993-06-01

    We describe a prototype data acquisition system for a silicon strip detector, which has been developed in terms of a digital readout scheme. The system consists of a master timing generator, readout controller, and a detector emulator card on which we use custom VLSI shift registers with operating clock frequency of 30 MHz.

  8. A feasibility study of a PET/MRI insert detector using strip-line and waveform sampling data acquisition

    NASA Astrophysics Data System (ADS)

    Kim, H.; Chen, C.-T.; Eclov, N.; Ronzhin, A.; Murat, P.; Ramberg, E.; Los, S.; Wyrwicz, A. M.; Li, L.; Kao, C.-M.

    2015-06-01

    We are developing a time-of-flight Positron Emission Tomography (PET) detector by using silicon photo-multipliers (SiPM) on a strip-line and high speed waveform sampling data acquisition. In this design, multiple SiPMs are connected on a single strip-line and signal waveforms on the strip-line are sampled at two ends of the strip to reduce readout channels while fully exploiting the fast time response of SiPMs. In addition to the deposited energy and time information, the position of the hit SiPM along the strip-line is determined by the arrival time difference of the waveform. Due to the insensitivity of the SiPMs to magnetic fields and the compact front-end electronics, the detector approach is highly attractive for developing a PET insert system for a magnetic resonance imaging (MRI) scanner to provide simultaneous PET/MR imaging. To investigate the feasibility, experimental tests using prototype detector modules have been conducted inside a 9.4 T small animal MRI scanner (Bruker BioSpec 94/30 imaging spectrometer). On the prototype strip-line board, 16 SiPMs (5.2 mm pitch) are installed on two strip-lines and coupled to 2×8 LYSO scintillators (5.0×5.0×10.0 mm3 with 5.2 mm pitch). The outputs of the strip-line boards are connected to a Domino-Ring-Sampler (DRS4) evaluation board for waveform sampling. Preliminary experimental results show that the effect of interference on the MRI image due to the PET detector is negligible and that PET detector performance is comparable with the results measured outside the MRI scanner.

  9. A feasibility study of a PET/MRI insert detector using strip-line and waveform sampling data acquisition

    PubMed Central

    Kim, H.; Chen, C.-T.; Eclov, N.; Ronzhin, A.; Murat, P.; Ramberg, E.; Los, S.; Wyrwicz, Alice M.; Li, Limin; Kao, C.-M.

    2014-01-01

    We are developing a time-of-flight Positron Emission Tomography (PET) detector by using silicon photo-multipliers (SiPM) on a strip-line and high speed waveform sampling data acquisition. In this design, multiple SiPMs are connected on a single strip-line and signal waveforms on the strip-line are sampled at two ends of the strip to reduce readout channels while fully exploiting the fast time response of SiPMs. In addition to the deposited energy and time information, the position of the hit SiPM along the strip-line is determined by the arrival time difference of the waveform. Due to the insensitivity of the SiPMs to magnetic fields and the compact front-end electronics, the detector approach is highly attractive for developing a PET insert system for a magnetic resonance imaging (MRI) scanner to provide simultaneous PET/MR imaging. To investigate the feasibility, experimental tests using prototype detector modules have been conducted inside a 9.4 Tesla small animal MRI scanner (Bruker BioSpec 94/30 imaging spectrometer). On the prototype strip-line board, 16 SiPMs (5.2 mm pitch) are installed on two strip-lines and coupled to 2 × 8 LYSO scintillators (5.0 × 5.0 × 10.0 mm3 with 5.2 mm pitch). The outputs of the strip-line boards are connected to a Domino-Ring-Sampler (DRS4) evaluation board for waveform sampling. Preliminary experimental results show that the effect of interference on the MRI image due to the PET detector is negligible and that PET detector performance is comparable with the results measured outside the MRI scanner. PMID:25937685

  10. A new inner layer silicon micro-strip detector for D0

    SciTech Connect

    Weber, Michael S.; /Fermilab

    2006-01-01

    The D{O} experiment at the Fermilab Tevatron is building a new inner layer detector (Layer-0) to be installed inside the existing D{O} Silicon Micro-strip Tracker (SMT). The Layer-0 detector is based on R&D performed for the RunIIb silicon upgrade, which was canceled in the fall of 2003. Layer-0 will be installed between the bean pipe and the the 2.2cm radius opening available in the SMT support structure. The radius of the first sampling will be reduced from 2.7cm to 1.6cm. Layer-0 will be radiation harder than the current SMT, thus ensuring that the silicon tracker remains viable through Tevatron RunII.

  11. Silicon strip tracking detector development and prototyping for the Phase-II upgrade of the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Kuehn, S.

    2016-07-01

    In about ten years from now, the Phase-II upgrade of the LHC will be carried out. Due to increased luminosity, a severe radiation dose and high particle rates will occur for the experiments. In consequence, several detector components will have to be upgraded. In the ATLAS experiment, the current inner detector will be replaced by an all-silicon tracking detector with the goal of at least delivering the present detector performance also in the harsh Phase-II LHC conditions. This report presents the current planning and results from first prototype measurements of the upgrade silicon strip tracking detector.

  12. Volumetric CT with sparse detector arrays (and application to Si-strip photon counters).

    PubMed

    Sisniega, A; Zbijewski, W; Stayman, J W; Xu, J; Taguchi, K; Fredenberg, E; Lundqvist, Mats; Siewerdsen, J H

    2016-01-01

    Novel x-ray medical imaging sensors, such as photon counting detectors (PCDs) and large area CCD and CMOS cameras can involve irregular and/or sparse sampling of the detector plane. Application of such detectors to CT involves undersampling that is markedly different from the commonly considered case of sparse angular sampling. This work investigates volumetric sampling in CT systems incorporating sparsely sampled detectors with axial and helical scan orbits and evaluates performance of model-based image reconstruction (MBIR) with spatially varying regularization in mitigating artifacts due to sparse detector sampling. Volumetric metrics of sampling density and uniformity were introduced. Penalized-likelihood MBIR with a spatially varying penalty that homogenized resolution by accounting for variations in local sampling density (i.e. detector gaps) was evaluated. The proposed methodology was tested in simulations and on an imaging bench based on a Si-strip PCD (total area 5 cm  ×  25 cm) consisting of an arrangement of line sensors separated by gaps of up to 2.5 mm. The bench was equipped with translation/rotation stages allowing a variety of scanning trajectories, ranging from a simple axial acquisition to helical scans with variable pitch. Statistical (spherical clutter) and anthropomorphic (hand) phantoms were considered. Image quality was compared to that obtained with a conventional uniform penalty in terms of structural similarity index (SSIM), image uniformity, spatial resolution, contrast, and noise. Scan trajectories with intermediate helical width (~10 mm longitudinal distance per 360° rotation) demonstrated optimal tradeoff between the average sampling density and the homogeneity of sampling throughout the volume. For a scan trajectory with 10.8 mm helical width, the spatially varying penalty resulted in significant visual reduction of sampling artifacts, confirmed by a 10% reduction in minimum SSIM (from 0.88 to 0.8) and a 40

  13. Volumetric CT with sparse detector arrays (and application to Si-strip photon counters)

    PubMed Central

    Sisniega, A; Zbijewski, W; Stayman, J W; Xu, J; Taguchi, K; Fredenberg, E; Lundqvist, Mats; Siewerdsen, J H

    2016-01-01

    Novel x-ray medical imaging sensors, such as photon counting detectors (PCDs) and large area CCD and CMOS cameras can involve irregular and/or sparse sampling of the detector plane. Application of such detectors to CT involves undersampling that is markedly different from the commonly considered case of sparse angular sampling. This work investigates volumetric sampling in CT systems incorporating sparsely sampled detectors with axial and helical scan orbits and evaluates performance of model-based image reconstruction (MBIR) with spatially varying regularization in mitigating artifacts due to sparse detector sampling. Volumetric metrics of sampling density and uniformity were introduced. Penalized-likelihood MBIR with a spatially varying penalty that homogenized resolution by accounting for variations in local sampling density (i.e. detector gaps) was evaluated. The proposed methodology was tested in simulations and on an imaging bench based on a Si-strip PCD (total area 5 cm × 25 cm) consisting of an arrangement of line sensors separated by gaps of up to 2.5 mm. The bench was equipped with translation/rotation stages allowing a variety of scanning trajectories, ranging from a simple axial acquisition to helical scans with variable pitch. Statistical (spherical clutter) and anthropomorphic (hand) phantoms were considered. Image quality was compared to that obtained with a conventional uniform penalty in terms of structural similarity index (SSIM), image uniformity, spatial resolution, contrast, and noise. Scan trajectories with intermediate helical width (~10 mm longitudinal distance per 360° rotation) demonstrated optimal tradeoff between the average sampling density and the homogeneity of sampling throughout the volume. For a scan trajectory with 10.8 mm helical width, the spatially varying penalty resulted in significant visual reduction of sampling artifacts, confirmed by a 10% reduction in minimum SSIM (from 0.88 to 0.8) and a 40% reduction in the

  14. Comprehensive simulation of the response of a silicon strip detector for position-sensitive measurements of X-rays

    NASA Astrophysics Data System (ADS)

    Wiącek, P.; Dąbrowski, W.

    2005-10-01

    The paper describes a comprehensive simulation method to evaluate X-ray imaging response of a silicon strip detector with particular emphasis on the charge-sharing effects. The simulation steps include: generation of the initial charge distribution in the detector volume, transport of generated charge in the detector volume, calculation of charges induced in the readout strips, discrimination of noisy electronic signals, and finally determination of the count efficiency vs. photon position as a function of the discrimination threshold. The developed simulation tools are useful for optimising the designs and operating parameters of silicon strip detectors used as 1-D position sensitive devices in experimental techniques like X-ray powder diffraction, X-ray high-resolution diffraction and small angle X-ray scattering, using laboratory X-ray sources. The response of the detector as a function of the detector bias and discrimination threshold has been investigated for two measurement configurations: irradiation from the strip-side and from the back-side.

  15. Single-Sided Charge-Sharing CZT Strip Detectors for Gamma Ray Astronomy

    NASA Astrophysics Data System (ADS)

    Donmez, Burcin; Ryan, James; Macri, John; McConnell, Mark; Narita, Tomohiko; Hamel, Louis-Andre

    2006-04-01

    We report progress in the study of thick single-sided charge-sharing cadmium zinc telluride (CZT) strip detector modules designed to perform gamma-ray spectroscopy and 3-D imaging. We report laboratory and simulation measurements of prototype detectors with 11x11 unit cells (15x15x7.5mm^3). We report measurements of the 3-D spatial resolution. Our studies are aimed at developing compact, efficient, detector modules for 0.05 to 1 MeV gamma measurements while minimizing the number and complexity of the electronic readout channels. This is particularly important in space-based coded aperture and Compton telescope instruments that require large area, large volume detector arrays. Such arrays will be required for the NASA's Black Hole Finder Probe (BHFP) and Advanced Compton Telescope (ACT). This design requires an anode pattern with contacts whose dimensions and spacing are roughly the size of the ionization charge cloud. The first prototype devices have 125 μm anode contacts on 225 μm pitch. Our studies conclude that finer pitch contacts will be required to improve imaging efficiency.

  16. Fisher Information Analysis of Depth-of-Interaction Estimation in Double-Sided Strip Detectors

    PubMed Central

    Salçin, Esen; Barrett, Harrison H.; Barber, H. Bradford; Takeda, Shin’ichiro; Watanabe, Shin; Takahashi, Tadayuki; Furenlid, Lars R.

    2015-01-01

    In very-high-spatial-resolution gamma-ray imaging applications, such as preclinical PET and SPECT, estimation of 3D interaction location inside the detector crystal can be used to minimize parallax error in the imaging system. In this work, we investigate the effect of bias voltage setting on depth-of-interaction (DOI) estimates for a semiconductor detector with a double-sided strip geometry. We first examine the statistical properties of the signals and develop expressions for likelihoods for given gamma-ray interaction positions. We use Fisher Information to quantify how well (in terms of variance) the measured signals can be used for DOI estimation with different bias-voltage settings. We performed measurements of detector response versus 3D position as a function of applied bias voltage by scanning with highly collimated synchrotron radiation at the Advanced Photon Source at Argonne National Laboratory. Experimental and theoretical results show that the optimum bias setting depends on whether or not the estimated event position will include the depth of interaction. We also found that for this detector geometry, the z-resolution changes with depth. PMID:26160984

  17. Contrast cancellation technique applied to digital x-ray imaging using silicon strip detectors

    SciTech Connect

    Avila, C.; Lopez, J.; Sanabria, J. C.; Baldazzi, G.; Bollini, D.; Gombia, M.; Cabal, A.E.; Ceballos, C.; Diaz Garcia, A.; Gambaccini, M.; Taibi, A.; Sarnelli, A.; Tuffanelli, A.; Giubellino, P.; Marzari-Chiesa, A.; Prino, F.; Tomassi, E.; Grybos, P.; Idzik, M.; Swientek, K.

    2005-12-15

    Dual-energy mammographic imaging experimental tests have been performed using a compact dichromatic imaging system based on a conventional x-ray tube, a mosaic crystal, and a 384-strip silicon detector equipped with full-custom electronics with single photon counting capability. For simulating mammal tissue, a three-component phantom, made of Plexiglass, polyethylene, and water, has been used. Images have been collected with three different pairs of x-ray energies: 16-32 keV, 18-36 keV, and 20-40 keV. A Monte Carlo simulation of the experiment has also been carried out using the MCNP-4C transport code. The Alvarez-Macovski algorithm has been applied both to experimental and simulated data to remove the contrast between two of the phantom materials so as to enhance the visibility of the third one.

  18. Development of front-end readout electronics for silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Qian, Yi; Su, Hong; Kong, Jie; Dong, Cheng-Fu; Ma, Xiao-Li; Li, Xiao-Gang

    2013-01-01

    Front-end readout electronics have been developed for silicon strip detectors at our institute. In this system an Application Specific Integrated Circuit (ASIC) ATHED is used to realize multi-channel energy and time measurements. The slow control of ASIC chips is achieved by parallel port and the timing control signals of ASIC chips are implemented with the CPLD. The data acquisition is carried out with a PXI-DAQ card. The software has a user-friendly GUI developed with LabWindows/CVI in the Windows XP operating system. The test results show that the energy resolution is about 1.14% for alpha at 5.48 MeV and the maximum channel crosstalk of the system is 4.60%. The performance of the system is very reliable and is suitable for nuclear physics experiments.

  19. SALT, a dedicated readout chip for high precision tracking silicon strip detectors at the LHCb Upgrade

    NASA Astrophysics Data System (ADS)

    Bugiel, Sz.; Dasgupta, R.; Firlej, M.; Fiutowski, T.; Idzik, M.; Kuczynska, M.; Moron, J.; Swientek, K.; Szumlak, T.

    2016-02-01

    The Upstream Tracker (UT) silicon strip detector, one of the central parts of the tracker system of the modernised LHCb experiment, will use a new 128-channel readout ASIC called SALT. It will extract and digitise analogue signals from the UT sensors, perform digital signal processing and transmit a serial output data. The SALT is being designed in CMOS 130 nm process and uses a novel architecture comprising of analog front-end and fast (40 MSps) ultra-low power (<0.5 mW) 6-bit ADC in each channel. The prototype ASICs of important functional blocks, like analogue front-end, 6-bit SAR ADC, PLL, and DLL, were designed, fabricated and tested. A prototype of an 8-channel version of the SALT chip, comprising all important functionalities was also designed and fabricated. The architecture and design of the SALT, together with the selected preliminary tests results, are presented.

  20. Study of spatial resolution of proton computed tomography using a silicon strip detector

    NASA Astrophysics Data System (ADS)

    Saraya, Y.; Izumikawa, T.; Goto, J.; Kawasaki, T.; Kimura, T.

    2014-01-01

    Proton computed tomography (CT) is an imaging technique using a high-energy proton beam penetrating the human body and shows promise for improving the quality of cancer therapy with high-energy particle beams because more accurate electron density distribution measurements can be achieved with proton CT. The deterioration of the spatial resolution owing to multiple Coulomb scattering is, however, a crucial issue. The control of the radiation dose and the long exposure time are also problems to be solved. We have developed a prototype system for proton CT with a silicon strip detector and performed a beam test for imaging. The distribution of the electron density has been measured precisely. We also demonstrated an improvement in spatial resolution by reconstructing the proton trajectory. A spatial resolution of 0.45 mm is achieved for a 25-mm-thick polyethylene object. This will be a useful result for upgrading proton CT application for practical use.

  1. Non-invasive characterization and quality assurance of silicon micro-strip detectors using pulsed infrared laser

    NASA Astrophysics Data System (ADS)

    Ghosh, P.

    2016-01-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of roughly 1300 double sided silicon micro-strip detectors of 3 different dimensions. For the quality assurance of prototype micro-strip detectors a non-invasive detector charaterization is developed. The test system is using a pulsed infrared laser for charge injection and characterization, called Laser Test System (LTS). The system is aimed to develop a set of characterization procedures which are non-invasive (non-destructive) in nature and could be used for quality assurances of several silicon micro-strip detectors in an efficient, reliable and reproducible way. The procedures developed (as reported here) uses the LTS to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype detector modules which are tested with the LTS so far have 1024 strips with a pitch of 58 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm, wavelength = 1060 nm). The pulse with a duration of ≈ 10 ns and power ≈ 5 mW of the laser pulse is selected such, that the absorption of the laser light in the 300 μm thick silicon sensor produces ≈ 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. The laser scans different prototype sensors and various non-invasive techniques to determine characteristics of the detector modules for the quality assurance is reported.

  2. Anamorphic preclinical SPECT imaging with high-resolution silicon double-sided strip detectors

    NASA Astrophysics Data System (ADS)

    Durko, Heather L.

    Preclinical single-photon emission computed tomography (SPECT) is an essential tool for studying progression, response to treatment, and physiological changes in small animal models of human disease. The wide range of imaging applications is often limited by the static design of many preclinical SPECT systems. We have developed a prototype imaging system that replaces the standard static pinhole aperture with two sets of movable, keel-edged copper-tungsten blades configured as crossed (skewed) slits. These apertures can be positioned independently between the object and detector, producing an anamorphic image in which the axial and transaxial magnications are not constrained to be equal. We incorporated a 60 mm x 60 mm, millimeter-thick megapixel silicon double-sided strip detector that permits ultrahigh-resolution imaging. While the stopping power of silicon is low for many common clinical radioisotopes, its performance is sufficient in the range of 20-60 keV to allow practical imaging experiments. The low-energy emissions of 125I fall within this energy window, and the 60-day half life provides an advantage for longitudinal studies. The flexible nature of this system allows the future application of adaptive imaging techniques. We have demonstrated ˜225-mum axial and ˜175-mum transaxial resolution across a 2.65 cm3 cylindrical field of view, as well as the capability for simultaneous multi-isotope acquisitions. We describe the key advancements that have made this system operational, including bringing up a new detector readout ASIC, development of detector control software and data-processing algorithms, and characterization of operating characteristics. We describe design and fabrication of the adjustable slit aperture platform, as well as the development of an accurate imaging forward model and its application in a novel geometric calibration technique and a GPU-based ultrahigh-resolution reconstruction code.

  3. Development of a 512-Channel Module for Digital X-Ray Imaging Systems with Silicon Strip Detectors

    SciTech Connect

    Bolanos, L.; Cabal, A. E.; Grybos, P.; Maj, P.; Swientek, K.; Szczygiel, R.; Marzari, A.; Prino, F.; Ramello, L.

    2008-08-11

    We present the development of a 512-channel module for high counting rate digital X-ray imaging systems. The module consists of 512 silicon micro-strips equipped with 8 64-channel readout ASICs called DEDIX. The detectors of 300 {mu}m thickness have strips with 100 micron pitch and strip length of 1 or 2 cm. Detectors were designed with the possibility of choosing the cutting edge distance from the active area in the range from 60 {mu}m down to 20 {mu}m. To obtain good detection efficiency at the relevant energies (10-50 keV) the module works in edge-on configuration: strips are oriented parallel to the incoming X-ray beam. The DEDIX ASIC has a binary readout architecture. Each channel is built of a charge sensitive amplifier (CSA) with pole-zero cancellation circuit, a shaper, two independent discriminators and two independent 20-bit counters. Internal correction DAC implemented in each channel independently ensures a low spread of discriminator effective threshold. This module has been characterized for noise and matching performance having in mind possible future applications like dual energy mammography and angiography. An equivalent noise charge is below 210 el rms for a 1 cm long strip detector and below 250 el. rms for 2 cm long strip detector with 100 {mu}m pitch. The spread of discriminator effective threshold for 512 channels is 16 el. rms, while the high counting rate performance has been demonstrated by the measurement up to 1 MHz average rate of input signals per single channel.

  4. Modeling and simulation of Positron Emission Mammography (PEM) based on double-sided CdTe strip detectors

    NASA Astrophysics Data System (ADS)

    Ozsahin, I.; Unlu, M. Z.

    2014-03-01

    Breast cancer is the most common leading cause of cancer death among women. Positron Emission Tomography (PET) Mammography, also known as Positron Emission Mammography (PEM), is a method for imaging primary breast cancer. Over the past few years, PEMs based on scintillation crystals dramatically increased their importance in diagnosis and treatment of early stage breast cancer. However, these detectors have significant limitations like poor energy resolution resulting with false-negative result (missed cancer), and false-positive result which leads to suspecting cancer and suggests an unnecessary biopsy. In this work, a PEM scanner based on CdTe strip detectors is simulated via the Monte Carlo method and evaluated in terms of its spatial resolution, sensitivity, and image quality. The spatial resolution is found to be ~ 1 mm in all three directions. The results also show that CdTe strip detectors based PEM scanner can produce high resolution images for early diagnosis of breast cancer.

  5. A low noise front end electronics for micro-channel plate detector with wedge and strip anode

    NASA Astrophysics Data System (ADS)

    Hu, K.; Li, F.; Liang, F.; Chen, L.; Jin, G.

    2016-03-01

    A low noise Front End Electronics (FEE) for two-dimensional position sensitive Micro-Channel Plate (MCP) detector has been developed. The MCP detector is based on Wedge and Strip Anode (WSA) with induction readout mode. The WSA has three electrodes, the wedge electrode, the strip electrode, and the zigzag electrode. Then, three readout channels are designed in the Printed Circuit Board (PCB). The FEE is calibrated by a pulse generator from Agilent. We also give an analysis of the charge loss from the CSA. The noise levels of the three channels are less than 1 fC RMS at the shaping time of 200 ns. The experimental result shows that the position resolution of the MCP detector coupled with the designed PCB can reach up to 110 μm.

  6. Characterization of a double-sided silicon strip detector autoradiography system

    SciTech Connect

    Örbom, Anders Ahlstedt, Jonas; Östlund, Karl; Strand, Sven-Erik; Serén, Tom; Auterinen, Iiro; Kotiluoto, Petri; Hauge, Håvard; Olafsen, Tove; Wu, Anna M.; Dahlbom, Magnus

    2015-02-15

    Purpose: The most commonly used technology currently used for autoradiography is storage phosphor screens, which has many benefits such as a large field of view but lacks particle-counting detection of the time and energy of each detected radionuclide decay. A number of alternative designs, using either solid state or scintillator detectors, have been developed to address these issues. The aim of this study is to characterize the imaging performance of one such instrument, a double-sided silicon strip detector (DSSD) system for digital autoradiography. A novel aspect of this work is that the instrument, in contrast to previous prototype systems using the same detector type, provides the ability for user accessible imaging with higher throughput. Studies were performed to compare its spatial resolution to that of storage phosphor screens and test the implementation of multiradionuclide ex vivo imaging in a mouse preclinical animal study. Methods: Detector background counts were determined by measuring a nonradioactive sample slide for 52 h. Energy spectra and detection efficiency were measured for seven commonly used radionuclides under representative conditions for tissue imaging. System dead time was measured by imaging {sup 18}F samples of at least 5 kBq and studying the changes in count rate over time. A line source of {sup 58}Co was manufactured by irradiating a 10 μm nickel wire with fast neutrons in a research reactor. Samples of this wire were imaged in both the DSSD and storage phosphor screen systems and the full width at half maximum (FWHM) measured for the line profiles. Multiradionuclide imaging was employed in a two animal study to examine the intratumoral distribution of a {sup 125}I-labeled monoclonal antibody and a {sup 131}I-labeled engineered fragment (diabody) injected in the same mouse, both targeting carcinoembryonic antigen. Results: Detector background was 1.81 × 10{sup −6} counts per second per 50 × 50 μm pixel. Energy spectra and

  7. Spectral CT of the extremities with a silicon strip photon counting detector

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Zbijewski, W.; Stayman, J. W.; Xu, J.; Taguchi, K.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Photon counting x-ray detectors (PCXDs) are an important emerging technology for spectral imaging and material differentiation with numerous potential applications in diagnostic imaging. We report development of a Si-strip PCXD system originally developed for mammography with potential application to spectral CT of musculoskeletal extremities, including challenges associated with sparse sampling, spectral calibration, and optimization for higher energy x-ray beams. Methods: A bench-top CT system was developed incorporating a Si-strip PCXD, fixed anode x-ray source, and rotational and translational motions to execute complex acquisition trajectories. Trajectories involving rotation and translation combined with iterative reconstruction were investigated, including single and multiple axial scans and longitudinal helical scans. The system was calibrated to provide accurate spectral separation in dual-energy three-material decomposition of soft-tissue, bone, and iodine. Image quality and decomposition accuracy were assessed in experiments using a phantom with pairs of bone and iodine inserts (3, 5, 15 and 20 mm) and an anthropomorphic wrist. Results: The designed trajectories improved the sampling distribution from 56% minimum sampling of voxels to 75%. Use of iterative reconstruction (viz., penalized likelihood with edge preserving regularization) in combination with such trajectories resulted in a very low level of artifacts in images of the wrist. For large bone or iodine inserts (>5 mm diameter), the error in the estimated material concentration was <16% for (50 mg/mL) bone and <8% for (5 mg/mL) iodine with strong regularization. For smaller inserts, errors of 20-40% were observed and motivate improved methods for spectral calibration and optimization of the edge-preserving regularizer. Conclusion: Use of PCXDs for three-material decomposition in joint imaging proved feasible through a combination of rotation-translation acquisition trajectories and

  8. The use of a silicon strip detector dose magnifying glass in stereotactic radiotherapy QA and dosimetry

    SciTech Connect

    Wong, J. H. D.; Knittel, T.; Downes, S.; Carolan, M.; Lerch, M. L. F.; Petasecca, M.; Perevertaylo, V. L.; Metcalfe, P.; Jackson, M.; Rosenfeld, A. B.

    2011-03-15

    Purpose: Stereotactic radiosurgery/therapy (SRS/SRT) is the use of radiation ablation in place of conventional surgical excision to remove or create fibrous tissue in small target volumes. The target of the SRT/SRS treatment is often located in close proximity to critical organs, hence the requirement of high geometric precision including a tight margin on the planning target volume and a sharp dose fall off. One of the major problems with quality assurance (QA) of SRT/SRS is the availability of suitable detectors with the required spatial resolution. The authors present a novel detector that they refer to as the dose magnifying glass (DMG), which has a high spatial resolution (0.2 mm) and is capable of meeting the stringent requirements of QA and dosimetry in SRS/SRT therapy. Methods: The DMG is an array of 128 phosphor implanted n{sup +} strips on a p-type Si wafer. The sensitive area defined by a single n{sup +} strip is 20x2000 {mu}m{sup 2}. The Si wafer is 375 {mu}m thick. It is mounted on a 0.12 mm thick Kapton substrate. The authors studied the dose per pulse (dpp) and angular response of the detector in a custom-made SRS phantom. The DMG was used to determine the centers of rotation and positioning errors for the linear accelerator's gantry, couch, and collimator rotations. They also used the DMG to measure the profiles and the total scatter factor (S{sub cp}) of the SRS cones. Comparisons were made with the EBT2 film and standard S{sub cp} values. The DMG was also used for dosimetric verification of a typical SRS treatment with various noncoplanar fields and arc treatments when applied to the phantom. Results: The dose per pulse dependency of the DMG was found to be <5% for a dpp change of 7.5 times. The angular response of the detector was investigated in the azimuthal and polar directions. The maximum polar angular response was 13.8% at the gantry angle of 320 deg., which may be partly due to the phantom geometry. The maximum azimuthal angular response

  9. Characterisation of micro-strip and pixel silicon detectors before and after hadron irradiation

    NASA Astrophysics Data System (ADS)

    Allport, P. P.; Ball, K.; Casse, G.; Chmill, V.; Forshaw, D.; Hadfield, K.; Pritchard, A.; Pool, P.; Tsurin, I.

    2012-01-01

    The use of segmented silicon detectors for tracking and vertexing in particle physics has grown substantially since their introduction in 1980. It is now anticipated that roughly 50,000 six inch wafers of high resistivity silicon will need to be processed into sensors to be deployed in the upgraded experiments in the future high luminosity LHC (HL-LHC) at CERN. These detectors will also face an extremely severe radiation environment, varying with distance from the interaction point. The volume of required sensors is large and their delivery is required during a relatively short time, demanding a high throughput from the chosen suppliers. The current situation internationally, in this highly specialist market, means that security of supply for large orders can therefore be an issue and bringing additional potential vendors into the field can only be an advantage. Semiconductor companies that could include planar sensors suitable for particle physics in their product lines will, however, need to prove their products meet all the stringent technical requirements. A semiconductor company with very widespread experience of producing science grade CCDs (including deep depletion devices) has adapted their CCD process to fabricate for the first time several wafers of pixel and micro-strip radiation hard sensors, suitable for future high energy physics experiments. The results of the pre-irradiation characterization of devices fabricated with different processing parameters and the measurements of charge collection properties after different hadron irradiation doses up to those anticipated for the (larger area) outer pixel layers at the high-luminosity LHC (HL-LHC) are presented and compared with results from more established particle physics suppliers.

  10. Development of a novel depth of interaction PET detector using highly multiplexed G-APD cross-strip encoding

    SciTech Connect

    Kolb, A. Parl, C.; Liu, C. C.; Pichler, B. J.; Mantlik, F.; Lorenz, E.; Renker, D.

    2014-08-15

    Purpose: The aim of this study was to develop a prototype PET detector module for a combined small animal positron emission tomography and magnetic resonance imaging (PET/MRI) system. The most important factor for small animal imaging applications is the detection sensitivity of the PET camera, which can be optimized by utilizing longer scintillation crystals. At the same time, small animal PET systems must yield a high spatial resolution. The measured object is very close to the PET detector because the bore diameter of a high field animal MR scanner is limited. When used in combination with long scintillation crystals, these small-bore PET systems generate parallax errors that ultimately lead to a decreased spatial resolution. Thus, we developed a depth of interaction (DoI) encoding PET detector module that has a uniform spatial resolution across the whole field of view (FOV), high detection sensitivity, compactness, and insensitivity to magnetic fields. Methods: The approach was based on Geiger mode avalanche photodiode (G-APD) detectors with cross-strip encoding. The number of readout channels was reduced by a factor of 36 for the chosen block elements. Two 12 × 2 G-APD strip arrays (25μm cells) were placed perpendicular on each face of a 12 × 12 lutetium oxyorthosilicate crystal block with a crystal size of 1.55 × 1.55 × 20 mm. The strip arrays were multiplexed into two channels and used to calculate the x, y coordinates for each array and the deposited energy. The DoI was measured in step sizes of 1.8 mm by a collimated {sup 18}F source. The coincident resolved time (CRT) was analyzed at all DoI positions by acquiring the waveform for each event and applying a digital leading edge discriminator. Results: All 144 crystals were well resolved in the crystal flood map. The average full width half maximum (FWHM) energy resolution of the detector was 12.8% ± 1.5% with a FWHM CRT of 1.14 ± 0.02 ns. The average FWHM DoI resolution over 12 crystals was 2.90

  11. Thin silicon strip detectors for beam monitoring in Micro-beam Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Povoli, M.; Alagoz, E.; Bravin, A.; Cornelius, I.; Bräuer-Krisch, E.; Fournier, P.; Hansen, T. E.; Kok, A.; Lerch, M.; Monakhov, E.; Morse, J.; Petasecca, M.; Requardt, H.; Rosenfeld, A. B.; Röhrich, D.; Sandaker, H.; Salomé, M.; Stugu, B.

    2015-11-01

    Microbeam Radiation Therapy (MRT) is an emerging cancer treatment that is currently being developed at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. This technique uses a highly collimated and fractionated X-ray beam array with extremely high dose rate and very small divergence, to benefit from the dose-volume effect, thus sparing healthy tissue. In case of any beam anomalies and system malfunctions, special safety measures must be installed, such as an emergency safety shutter that requires continuous monitoring of the beam intensity profile. Within the 3DMiMic project, a novel silicon strip detector that can tackle the special features of MRT, such as the extremely high spatial resolution and dose rate, has been developed to be part of the safety shutter system. The first prototypes have been successfully fabricated, and experiments aimed to demonstrate their suitability for this unique application have been performed. Design, fabrication and the experimental results as well as any identified inadequacies for future optimisation are reported and discussed in this paper.

  12. Diagnostic Analysis of Silicon Strips Detector Readout in the ATLAS Semi-Conductor Tracker Module Production

    SciTech Connect

    Ciocio, Alessandra; ATLAS SCT Collaboration

    2004-10-31

    The ATLAS Semi-Conductor Tracker (SCT) Collaboration is currently in the production phase of fabricating and testing silicon strips modules for the ATLAS detector at the Large Hadron Collider being built at the CERN laboratory in Geneva, Switzerland. A small but relevant percentage of ICs developed a new set of defects after being mounted on hybrids that were not detected in the wafer screening. To minimize IC replacement and outright module failure, analysis methods were developed to study IC problems during the production of SCT modules. These analyses included studying wafer and hybrid data correlations to finely tune the selection of ICs and tests to utilize the ability to adjust front-end parameters of the IC in order to reduce the rejection and replacement rate of fabricated components. This paper will discuss a few examples of the problems encountered during the production of SCT hybrids and modules in the area of ICs performance, and will demonstrate the value of the flexibility built into the ABCD3T chip.

  13. A detector to measure transverse profiles and energy of an H- beam using gas stripping and laser photo neutralization

    NASA Astrophysics Data System (ADS)

    Connolly, R.; Degen, C.; DeSanto, L.; Raparia, D.

    2012-02-01

    A detector has been developed at Brookhaven National Lab (BNL) [1] and installed in the exit beam line of the BNL H- linear accelerator (linac) to measure transverse beam profiles, average beam energy and beam-energy spread. These beam properties are found by deflecting beam electrons, produced by both gas stripping and laser neutralization, into a detector. An H- ion, with a first ionization potential of 0.756 eV, can be neutralized by collisions with background gas and by absorbing the energy of a photon of wavelength shorter than 1.64 m. Free electrons produced by both mechanisms are deflected out of the H- beam by a dipole magnet and into a chamber which measures electron charge vs. energy. Ion-beam profiles are measured by scanning a laser beam across the H- beam and measuring the laser-stripped electron charge vs. laser position. Beam energy is deduced by measuring either the laser-stripped or gas-stripped electron charge which passes through a retarding-voltage grid vs. the grid voltage. Since beam electrons have the same velocities as beam protons, the beam proton energy is the electron energy multiplied by mp/me=1836, [E=(γ-1)mc2].

  14. Parallel Configuration For Fast Superconducting Strip Line Detectors With Very Large Area In Time Of Flight Mass Spectrometry

    SciTech Connect

    Casaburi, A.; Zen, N.; Suzuki, K.; Ohkubo, M.; Ejrnaes, M.; Cristiano, R.; Pagano, S.

    2009-12-16

    We realized a very fast and large Superconducting Strip Line Detector based on a parallel configuration of nanowires. The detector with size 200x200 {mu}m{sup 2} recorded a sub-nanosecond pulse width of 700 ps in FWHM (400 ps rise time and 530 ps relaxation time) for lysozyme monomers/multimers molecules accelerated at 175 keV in a Time of Flight Mass Spectrometer. This record is the best in the class of superconducting detectors and comparable with the fastest NbN superconducting single photon detector of 10x10 {mu}m{sup 2}. We succeeded in acquiring mass spectra as the first step for a scale-up to {approx}mm pixel size for high throughput MS analysis, while keeping a fast response.

  15. Characterisation of edgeless technologies for pixellated and strip silicon detectors with a micro-focused X-ray beam

    NASA Astrophysics Data System (ADS)

    Bates, R.; Blue, A.; Christophersen, M.; Eklund, L.; Ely, S.; Fadeyev, V.; Gimenez, E.; Kachkanov, V.; Kalliopuska, J.; Macchiolo, A.; Maneuski, D.; Phlips, B. F.; Sadrozinski, H. F.-W.; Stewart, G.; Tartoni, N.; Zain, R. M.

    2013-01-01

    Reduced edge or ``edgeless'' detector design offers seamless tileability of sensors for a wide range of applications from particle physics to synchrotron and free election laser (FEL) facilities and medical imaging. Combined with through-silicon-via (TSV) technology, this would allow reduced material trackers for particle physics and an increase in the active area for synchrotron and FEL pixel detector systems. In order to quantify the performance of different edgeless fabrication methods, 2 edgeless detectors were characterized at the Diamond Light Source using an 11 μm FWHM 15 keV micro-focused X-ray beam. The devices under test were: a 150 μm thick silicon active edge pixel sensor fabricated at VTT and bump-bonded to a Medipix2 ROIC; and a 300 μm thick silicon strip sensor fabricated at CIS with edge reduction performed by SCIPP and the NRL and wire bonded to an ALiBaVa readout system. Sub-pixel resolution of the 55 μm active edge pixels was achieved. Further scans showed no drop in charge collection recorded between the centre and edge pixels, with a maximum deviation of 5% in charge collection between scanned edge pixels. Scans across the cleaved and standard guard ring edges of the strip detector also show no reduction in charge collection. These results indicate techniques such as the scribe, cleave and passivate (SCP) and active edge processes offer real potential for reduced edge, tiled sensors for imaging detection applications.

  16. Characterisation of strip silicon detectors for the ATLAS Phase-II Upgrade with a micro-focused X-ray beam

    NASA Astrophysics Data System (ADS)

    Poley, L.; Blue, A.; Bates, R.; Bloch, I.; Díez, S.; Fernandez-Tejero, J.; Fleta, C.; Gallop, B.; Greenall, A.; Gregor, I.-M.; Hara, K.; Ikegami, Y.; Lacasta, C.; Lohwasser, K.; Maneuski, D.; Nagorski, S.; Pape, I.; Phillips, P. W.; Sperlich, D.; Sawhney, K.; Soldevila, U.; Ullan, M.; Unno, Y.; Warren, M.

    2016-07-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential through a sizable increase in the luminosity up to 6·1034 cm‑2s‑1. A consequence of this increased luminosity is the expected radiation damage at 3000 fb‑1 after ten years of operation, requiring the tracking detectors to withstand fluences to over 1·1016 1 MeV neq/cm2. In order to cope with the consequent increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk). Two proposed detectors for the ATLAS strip tracker region of the ITk were characterized at the Diamond Light Source with a 3 μm FWHM 15 keV micro focused X-ray beam. The devices under test were a 320 μm thick silicon stereo (Barrel) ATLAS12 strip mini sensor wire bonded to a 130 nm CMOS binary readout chip (ABC130) and a 320 μm thick full size radial (end-cap) strip sensor - utilizing bi-metal readout layers - wire bonded to 250 nm CMOS binary readout chips (ABCN-25). A resolution better than the inter strip pitch of the 74.5 μm strips was achieved for both detectors. The effect of the p-stop diffusion layers between strips was investigated in detail for the wire bond pad regions. Inter strip charge collection measurements indicate that the effective width of the strip on the silicon sensors is determined by p-stop regions between the strips rather than the strip pitch.

  17. Characterisation of strip silicon detectors for the ATLAS Phase-II Upgrade with a micro-focused X-ray beam

    NASA Astrophysics Data System (ADS)

    Poley, L.; Blue, A.; Bates, R.; Bloch, I.; Díez, S.; Fernandez-Tejero, J.; Fleta, C.; Gallop, B.; Greenall, A.; Gregor, I.-M.; Hara, K.; Ikegami, Y.; Lacasta, C.; Lohwasser, K.; Maneuski, D.; Nagorski, S.; Pape, I.; Phillips, P. W.; Sperlich, D.; Sawhney, K.; Soldevila, U.; Ullan, M.; Unno, Y.; Warren, M.

    2016-07-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential through a sizable increase in the luminosity up to 6·1034 cm-2s-1. A consequence of this increased luminosity is the expected radiation damage at 3000 fb-1 after ten years of operation, requiring the tracking detectors to withstand fluences to over 1·1016 1 MeV neq/cm2. In order to cope with the consequent increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk). Two proposed detectors for the ATLAS strip tracker region of the ITk were characterized at the Diamond Light Source with a 3 μm FWHM 15 keV micro focused X-ray beam. The devices under test were a 320 μm thick silicon stereo (Barrel) ATLAS12 strip mini sensor wire bonded to a 130 nm CMOS binary readout chip (ABC130) and a 320 μm thick full size radial (end-cap) strip sensor - utilizing bi-metal readout layers - wire bonded to 250 nm CMOS binary readout chips (ABCN-25). A resolution better than the inter strip pitch of the 74.5 μm strips was achieved for both detectors. The effect of the p-stop diffusion layers between strips was investigated in detail for the wire bond pad regions. Inter strip charge collection measurements indicate that the effective width of the strip on the silicon sensors is determined by p-stop regions between the strips rather than the strip pitch.

  18. Tests of the radiation hardness of VLSI Integrated Circuits and Silicon Strip Detectors for the SSC (Superconducting Super Collider) under neutron, proton, and gamma irradiation

    SciTech Connect

    Ziock, H.J.; Milner, C.; Sommer, W.F. ); Carteglia, N.; DeWitt, J.; Dorfan, D.; Hubbard, B.; Leslie, J.; O'Shaughnessy, K.F.; Pitzl, D.; Rowe, W.A.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E. . Inst. for Particle Physics); Ellison, J.A. ); Ferguson, P. ); Giubellino

    1990-01-01

    As part of a program to develop a silicon strip central tracking detector system for the Superconducting Super Collider (SSC) we are studying the effects of radiation damage in silicon detectors and their associated front-end readout electronics. We report on the results of neutron and proton irradiations at the Los Alamos National Laboratory (LANL) and {gamma}-ray irradiations at UC Santa Cruz (UCSC). Individual components on single-sided AC-coupled silicon strip detectors and on test structures were tested. Circuits fabricated in a radiation hard CMOS process and individual transistors fabricated using dielectric isolation bipolar technology were also studied. Results indicate that a silicon strip tracking detector system should have a lifetime of at least one decade at the SSC. 17 refs., 17 figs.

  19. Design, fabrication and characterization of multi-guard-ring furnished p+n-n+ silicon strip detectors for future HEP experiments

    NASA Astrophysics Data System (ADS)

    Lalwani, Kavita; Jain, Geetika; Dalal, Ranjeet; Ranjan, Kirti; Bhardwaj, Ashutosh

    2016-07-01

    Si detectors, in various configurations (strips and pixels), have been playing a key role in High Energy Physics (HEP) experiments due to their excellent vertexing and high precision tracking information. In future HEP experiments like upgrade of the Compact Muon Solenoid experiment (CMS) at the Large Hadron Collider (LHC), CERN and the proposed International Linear Collider (ILC), the Si tracking detectors will be operated in a very harsh radiation environment, which leads to both surface and bulk damage in Si detectors which in turn changes their electrical properties, i.e. change in the full depletion voltage, increase in the leakage current and decrease in the charge collection efficiency. In order to achieve the long term durability of Si-detectors in future HEP experiments, it is required to operate these detectors at very high reverse biases, beyond the full depletion voltage, thus requiring higher detector breakdown voltage. Delhi University (DU) is involved in the design, fabrication and characterization of multi-guard-ring furnished ac-coupled, single sided, p+n-n+ Si strip detectors for future HEP experiments. The design has been optimized using a two-dimensional numerical device simulation program (TCAD-Silvaco). The Si strip detectors are fabricated with eight-layers mask process using the planar fabrication technology by Bharat Electronic Lab (BEL), India. Further an electrical characterization set-up is established at DU to ensure the quality performance of fabricated Si strip detectors and test structures. In this work measurement results on non irradiated Si Strip detectors and test structures with multi-guard-rings using Current Voltage (IV) and Capacitance Voltage (CV) characterization set-ups are discussed. The effect of various design parameters, for example guard-ring spacing, number of guard-rings and metal overhang on breakdown voltage of test structures have been studied.

  20. Cross strip anode readouts for large format, photon counting microchannel plate detectors: developing flight qualified prototypes of the detector and electronics

    NASA Astrophysics Data System (ADS)

    Vallerga, John; Raffanti, Rick; Cooney, Michael; Cumming, Harley; Varner, Gary; Seljak, Andrej

    2014-07-01

    Photon counting microchannel plate (MCP) imagers have been the detector of choice for most UV astronomical missions over the last two decades (e.g. EUVE, FUSE, COS on Hubble etc.). Over this duration, improvements in the MCP laboratory readout technology have resulted in better spatial resolution (x10), temporal resolution (x1000) and output event rate (x100), all the while operating at lower gain (x 10) resulting in lower high voltage requirements and longer MCP lifetimes. One such technology is the parallel cross strip (PXS) readout. Laboratory versions of PXS electronics have demonstrated < 20 μm FWHM spatial resolution, count rates on the order of 2 MHz, and temporal resolution of ~ 1ns. In 2012 our group at U.C. Berkeley, along with our partners at the U. Hawaii, received a Strategic Astrophysics Technology grant to raise the TRL of the PXS detector and electronics from 4 to 6 by replacing most of the high powered electronics with application specific integrated circuits (ASICs) which will lower the power, mass and volume requirements of the PXS detector. We were also tasked to design and fabricate a "standard" 50mm square active area MCP detector incorporating these electronics that can be environmentally qualified for flight (temperature, vacuum, vibration). The first ASICs designed for this program have been fabricated and are undergoing testing. We present the latest progress on these ASIC designs and performance and show imaging results from the new 50 x 50 mm XS detector.

  1. FPGA-based signal processing for the LHCb silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Haefeli, G.; Bay, A.; Gong, A.

    2006-12-01

    We have developed an electronic board (TELL1) to interface the DAQ system of the LHCb experiment at CERN. Two hundred and eighty-nine TELL1 boards are needed to read out the different subdetectors including the silicon VEertex LOcator (VELO) (172 k strips), the Trigger Tracker (TT) (147 k strips) and the Inner Tracker (129 k strips). Each board can handle either 64 analog or 24 digital optical links. The TELL1 mother board provides common mode correction, zero suppression, data formatting, and a large network interface buffer. To satisfy the different requirements we have adopted a flexible FPGA design and made use of mezzanine cards. Mezzanines are used for data input from digital optical and analog copper links as well as for the Gigabit Ethernet interface to DAQ.

  2. DETECTORS AND EXPERIMENTAL METHODS: Performance testing of a long-strip two-end readout multi-gap resistive plate chamber

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Bin; Wang, Yi; Luo, Ming; Li, Yuan-Jing; Cheng, Jian-Ping

    2009-02-01

    Multi-gap Resistive Plate Chamber (MRPC) is a new generation of gas detector with good timing and spacial resolution, whose technique is widely applied in some recent high energy (nuclear) physics experiments. In this letter, we report a long-strip two-end readout MRPC and its test beam performance. The measurements show that the long-strip performs a transmission line characteristic and the impedance is independent of the length of strip. The MRPC module we developed is presented to gain a timing resolution of ~80 ps and a spacial resolution of ~6.4 mm. The possible application of the MRPC is also discussed.

  3. Developing silicon strip detectors with a large-scale commercial foundry

    NASA Astrophysics Data System (ADS)

    König, A.; Bartl, U.; Bergauer, T.; Dragicevic, M.; Hacker, J.; Treberspurg, W.

    2016-07-01

    Since 2009 the Institute of High Energy Physics (HEPHY) in Vienna is developing a production process for planar silicon strip sensors on 6-in. wafers together with the semiconductor manufacturer Infineon Technologies. Four runs with several batches of wafers, each comprising six different sensors, were manufactured and characterized. A brief summary of the recently completed 6-in. campaign is given. Milestones in sensor development as well as techniques to improve the sensor quality are discussed. Particular emphasis is placed on a failure causing areas of defective strips which accompanied the whole campaign. Beam tests at different irradiation facilities were conducted to validate the key capability of particle detection. Another major aspect is to prove the radiation hardness of sensors produced by Infineon. Therefore, neutron irradiation studies were performed.

  4. TU-F-18C-08: Micro-Calcification Detectability Using Spectral Breast CT Based On a Si Strip Detector

    SciTech Connect

    Cho, H; Ding, H; Molloi, S; Barber, W; Iwanczyk, J

    2014-06-15

    Purpose: To investigate the feasibility of micro-calcification (μCa) detectability by using an energy-resolved photon-counting Si strip detector for spectral breast computed tomography (CT). Methods: A bench-top CT system was constructed using a tungsten anode x-ray source with a focal spot size of 0.8 mm and a single line 256-pixel Si strip photon counting detector with a pixel pitch of 100 μm. The slice thickness was 0.5 mm. Five different size groups of calcium carbonate grains, from 105 to 215 μm in diameter, were embedded in a cylindrical resin phantom with a diameter of 16 mm to simulate μCas. The phantoms were imaged at 65 kVp with an Entrance Skin Air Kerma (ESAK) of 1.2, 3, 6, and 8 mGy. The images were reconstructed using a standard filtered back projection (FBP) with a ramp filter. A total of 200 μCa images (5 different sizes of μCas × 4 different doses × 10 images for each setting) were combined with another 200 control images without μCas, to ultimately form 400 images for the reader study. The images were displayed in random order to three blinded observers, who were asked to give a binary score on each image regarding the presence of μCas. The μCa detectability for each image was evaluated in terms of binary decision theory metrics. The sensitivity, specificity, and accuracy were calculated to study the size and dose-dependence for μCa detectability. Additionally, the influence of the partial volume effect on the μCa detectability was investigated by simulation. Results: For a μCa larger than 140 μm in diameter, detection accuracy of above 90 % was achieved with the investigated prototype spectral CT system at ESAK of 1.2 mGy. Conclusion: The proposed Si strip detector is expected to offer superior image quality with the capability to detect μCas for low dose breast imaging.

  5. Characteristic performance evaluation of a photon counting Si strip detector for low dose spectral breast CT imaging

    PubMed Central

    Cho, Hyo-Min; Barber, William C.; Ding, Huanjun; Iwanczyk, Jan S.; Molloi, Sabee

    2014-01-01

    Purpose: The possible clinical applications which can be performed using a newly developed detector depend on the detector's characteristic performance in a number of metrics including the dynamic range, resolution, uniformity, and stability. The authors have evaluated a prototype energy resolved fast photon counting x-ray detector based on a silicon (Si) strip sensor used in an edge-on geometry with an application specific integrated circuit to record the number of x-rays and their energies at high flux and fast frame rates. The investigated detector was integrated with a dedicated breast spectral computed tomography (CT) system to make use of the detector's high spatial and energy resolution and low noise performance under conditions suitable for clinical breast imaging. The aim of this article is to investigate the intrinsic characteristics of the detector, in terms of maximum output count rate, spatial and energy resolution, and noise performance of the imaging system. Methods: The maximum output count rate was obtained with a 50 W x-ray tube with a maximum continuous output of 50 kVp at 1.0 mA. A109Cd source, with a characteristic x-ray peak at 22 keV from Ag, was used to measure the energy resolution of the detector. The axial plane modulation transfer function (MTF) was measured using a 67 μm diameter tungsten wire. The two-dimensional (2D) noise power spectrum (NPS) was measured using flat field images and noise equivalent quanta (NEQ) were calculated using the MTF and NPS results. The image quality parameters were studied as a function of various radiation doses and reconstruction filters. The one-dimensional (1D) NPS was used to investigate the effect of electronic noise elimination by varying the minimum energy threshold. Results: A maximum output count rate of 100 million counts per second per square millimeter (cps/mm2) has been obtained (1 million cps per 100 × 100 μm pixel). The electrical noise floor was less than 4 keV. The energy resolution

  6. Application of neural networks to digital pulse shape analysis for an array of silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Flores, J. L.; Martel, I.; Jiménez, R.; Galán, J.; Salmerón, P.

    2016-09-01

    The new generation of nuclear physics detectors that used to study nuclear reactions is considering the use of digital pulse shape analysis techniques (DPSA) to obtain the (A,Z) values of the reaction products impinging in solid state detectors. This technique can be an important tool for selecting the relevant reaction channels at the HYDE (HYbrid DEtector ball array) silicon array foreseen for the Low Energy Branch of the FAIR facility (Darmstadt, Germany). In this work we study the feasibility of using artificial neural networks (ANNs) for particle identification with silicon detectors. Multilayer Perceptron networks were trained and tested with recent experimental data, showing excellent identification capabilities with signals of several isotopes ranging from 12C up to 84Kr, yielding higher discrimination rates than any other previously reported.

  7. Wedge-and-strip anodes for centroid-finding position-sensitive photon and particle detectors

    NASA Technical Reports Server (NTRS)

    Martin, C.; Jelinsky, P.; Lampton, M.; Malina, R. F.

    1981-01-01

    The paper examines geometries employing position-dependent charge partitioning to obtain a two-dimensional position signal from each detected photon or particle. Requiring three or four anode electrodes and signal paths, images have little distortion and resolution is not limited by thermal noise. An analysis of the geometrical image nonlinearity between event centroid location and the charge partition ratios is presented. In addition, fabrication and testing of two wedge-and-strip anode systems are discussed. Images obtained with EUV radiation and microchannel plates verify the predicted performance, with further resolution improvements achieved by adopting low noise signal circuitry. Also discussed are the designs of practical X-ray, EUV, and charged particle image systems.

  8. Design and performance of the ABCD3TA ASIC for readout of silicon strip detectors in the ATLAS semiconductor tracker

    NASA Astrophysics Data System (ADS)

    Campabadal, F.; Fleta, C.; Key, M.; Lozano, M.; Martinez, C.; Pellegrini, G.; Rafi, J. M.; Ullan, M.; Johansen, L. G.; Mohn, B.; Oye, O.; Solberg, A. O.; Stugu, B.; Ciocio, A.; Ely, R.; Fadeyev, V.; Gilchriese, M.; Haber, C.; Siegrist, J.; Spieler, H.; Vu, C.; Bell, P. J.; Charlton, D. G.; Dowell, J. D.; Gallop, B. J.; Homer, R. J.; Jovanovic, P.; Mahout, G.; McMahon, T. J.; Wilson, J. A.; Barr, A. J.; Carter, J. R.; Goodrick, M. J.; Hill, J. C.; Lester, C. G.; Parker, M. A.; Robinson, D.; Anghinolfi, F.; Chesi, E.; Jarron, P.; Kaplon, J.; Macpherson, A.; Pernegger, H.; Pritchard, T.; Roe, S.; Rudge, A.; Weilhammer, P.; Bialas, W.; Dabrowski, W.; Dwuznik, M.; Toczek, B.; Koperny, S.; Bruckman, P.; Gadomski, S.; Gornicki, E.; Malecki, P.; Moszczynski, A.; Stanecka, E.; Szczygiel, R.; Turala, M.; Wolter, M.; Feld, L.; Ketterer, C.; Ludwig, J.; Meinhardt, J.; Runge, K.; Clark, A. G.; Donega, M.; D'Onofrio, M.; Ferrere, D.; La Marra, D.; Macina, D.; Mangin-Brinet, M.; Mikulec, B.; Zsenei, A.; Bates, R. L.; Cheplakov, A.; Iwata, Y.; Ohsugi, T.; Ikegami, Y.; Kohriki, T.; Kondo, T.; Terada, S.; Ujiie, N.; Unno, Y.; Takashima, R.; Allport, P. P.; Greenall, A.; Jackson, J. N.; Jones, T. J.; Smith, N. A.; Beck, G. A.; Carter, A. A.; Morris, J.; Morin, J.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Duerdoth, I. P.; Foster, J. M.; Pater, J.; Snow, S. W.; Thompson, R. J.; Atkinson, T. M.; Dick, B.; Fares, F.; Moorhead, G. F.; Taylor, G. N.; Andricek, L.; Bethke, S.; Hauff, D.; Kudlaty, J.; Lutz, G.; Moser, H.-G.; Nisius, R.; Richter, R.; Schieck, J.; Colijn, A.-P.; Cornelissen, T.; Gorfine, G. W.; Hartjes, F. G.; Hessey, N. P.; de Jong, P.; Kluit, R.; Koffeman, E.; Muijs, A. J. M.; Peeters, S. J. M.; van Eijk, B.; Nakano, I.; Tanaka, R.; Dorholt, O.; Danielsen, K. M.; Huse, T.; Sandaker, H.; Stapnes, S.; Kundu, N.; Nickerson, R. B.; Weidberg, A.; Bohm, J.; Mikestikova, M.; Stastny, J.; Broklova, Z.; Broz, J.; Dolezal, Z.; Kodys, P.; Kubik, P.; Reznicek, P.; Vorobel, V.; Wilhelm, I.; Cermák, P.; Chren, D.; Horazdovský, T.; Linhart, V.; Pospísil, S.; Sinor, M.; Solar, M.; Sopko, B.; Stekl, I.; Apsimon, R. J.; Batchelor, L. E.; Bizzell, J. P.; Falconer, N. G.; French, M. J.; Gibson, M. D.; Haywood, S. J.; Matson, R. M.; McMahon, S. J.; Morrissey, M.; Murray, W. J.; Phillips, P. W.; Tyndel, M.; Villani, E. G.; Cosgrove, D. P.; Dorfan, D. E.; Grillo, A. A.; Kachiguine, S.; Rosenbaum, F.; Sadrozinski, H. F.-W.; Seiden, A.; Spencer, E.; Wilder, M.; Akimoto, T.; Hara, K.; Tanizaki, K.; Bingefors, N.; Brenner, R.; Ekelof, T.; Eklund, L.; Bernabeu, J.; Civera, J. V.; Costa, M. J.; Fuster, J.; Garcia, C.; Garcia-Navarro, J. E.; Gonzalez-Sevilla, S.; Lacasta, C.; Llosa, G.; Marti-Garcia, S.; Modesto, P.; Sanchez, F. J.; Sospedra, L.; Vos, M.

    2005-11-01

    The ABCD3TA is a 128-channel ASIC with binary architecture for the readout of silicon strip particle detectors in the Semiconductor Tracker of the ATLAS experiment at the Large Hadron Collider (LHC). The chip comprises fast front-end and amplitude discriminator circuits using bipolar devices, a binary pipeline for first level trigger latency, a second level derandomising buffer and data compression circuitry based on CMOS devices. It has been designed and fabricated in a BiCMOS radiation resistant process. Extensive testing of the ABCD3TA chips assembled into detector modules show that the design meets the specifications and maintains the required performance after irradiation up to a total ionising dose of 10 Mrad and a 1-MeV neutron equivalent fluence of 2×10 14 n/cm 2, corresponding to 10 years of operation of the LHC at its design luminosity. Wafer screening and quality assurance procedures have been developed and implemented in large volume production to ensure that the chips assembled into modules meet the rigorous acceptance criteria.

  9. A time-based front-end ASIC for the silicon micro strip sensors of the bar PANDA Micro Vertex Detector

    NASA Astrophysics Data System (ADS)

    Di Pietro, V.; Brinkmann, K.-Th.; Riccardi, A.; Ritman, J.; Rivetti, A.; Rolo, M. D.; Stockmanns, T.; Zambanini, A.

    2016-03-01

    The bar PANDA (Antiproton Annihilation at Darmstadt) experiment foresees many detectors for tracking, particle identification and calorimetry. Among them, the innermost is the MVD (Micro Vertex Detector) responsible for a precise tracking and the reconstruction of secondary vertices. This detector will be built from both hybrid pixel (two inner barrels and six forward disks) and double-sided micro strip (two outer barrels and outer rim of the last two disks) silicon sensors. A time-based approach has been chosen for the readout ASIC of the strip sensors. The PASTA (bar PANDA Strip ASIC) chip aims at high resolution time-stamping and charge information through the Time over Threshold (ToT) technique. It benefits from a Time to Digital Converter (TDC) allowing a time bin width down to 50 ps. The analog front-end was designed to serve both n-type and p-type strips and the performed simulations show remarkable performances in terms of linearity and electronic noise. The TDC consists of an analog interpolator, a digital local controller, and a digital global controller as the common back-end for all of the 64 channels.

  10. Development of CZT strip detector modules for 0.05- to 1-MeV gamma-ray imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Ryan, James M.; Donmez, B.; Macri, John R.; McClish, Mickel; McConnell, Mark L.; Miller, Richard S.; Widholm, Mark; Hamel, Louis-Andre; Julien, Manuel

    2003-03-01

    We report progress in our study of cadmium zinc telluride (CZT) strip detectors featuring orthogonal coplanar anode contacts. We specifically report on the performance, characterization and stability of 5 and 10 mm thick prototype CZT detectors fabricated using material from several manufacturers. Our ongoing work includes laboratory and simulation studies aimed at optimizing and developing compact, efficient, high performance detector modules for 0.05 to 1 MeV gamma radiation measurements with space-based instrumentation. The coplanar anode strip configuration retains many of the performance advantages of pixel detectors yet requires far fewer electronic channels to perform both 3-d imaging and spectroscopy. Minimizing the channel count is important for large balloon or space instruments including coded aperture telescopes (such as MARGIE or EXIST) and Compton imaging telescopes (such as TIGRE or ACT). We also present plans for developing compact, space qualified imaging modules designed for integration into closely packed large area detector arrays. We discuss issues associated with detector module and array electronics design and development.

  11. Orthogonal strip HPGe planar SmartPET detectors in Compton configuration

    NASA Astrophysics Data System (ADS)

    Boston, H. C.; Gillam, J.; Boston, A. J.; Cooper, R. J.; Cresswell, J.; Grint, A. N.; Mather, A. R.; Nolan, P. J.; Scraggs, D. P.; Turk, G.; Hall, C. J.; Lazarus, I.; Berry, A.; Beveridge, T.; Lewis, R.

    2007-10-01

    The evolution of Germanium detector technology over the last decade has lead to the possibility that they can be employed in medical and security imaging. The potential of excellent energy resolution coupled with good position information that Germanium affords removes the necessity for mechanical collimators that would be required in a conventional gamma camera system. By removing this constraint, the overall dose to the patient can be reduced or the throughput of the system can be increased. An additional benefit of excellent energy resolution is that tight gates can be placed on energies from either a multi-lined gamma source or from multi-nuclide sources increasing the number of sources that can be used in medical imaging. In terms of security imaging, segmented Germanium gives directionality and excellent spectroscopic information.

  12. Nanoparticle-Based Immunochromatographic Test Strip with Fluorescent Detector for Quantification of Phosphorylated Acetycholinesterase: An Exposure Biomarker of Organophosphorous Agents

    SciTech Connect

    Zhang, Weiying; Ge, Xiaoxiao; Tang, Yong; Du, Dan; Liu, Deli; Lin, Yuehe

    2013-09-21

    A nanoparticle-based fluorescence immunochromatographic test strip (FITS) coupled with a hand-held detector for highly selective and sensitive detection of phosphorylated acetylcholinesterase (AChE), an exposure biomarker of organophosphate (OP) pesticides and nerve agents, is reported. In this approach, OP-AChE adducts were selectively captured by quantum dot-tagged anti-AChE antibodies (Qdot-anti-AChE) and zirconia nanoparticles (ZrO2 NPs). The sandwich-like immunoreactions were performed among the Qdot-anti-AChE, OP-AChE and ZrO2 NPs to form Qdot-anti-AChE/OP-AChE/ZrO2 complex, which was detected by recording the fluorescence intensity of Qdot captured on the test line. Paraoxon was used as the model OP pesticides. Under optimal conditions, this portable FITS immunosensor demonstrates a highly linear absorption response over the range of 0.01 nM to 10 nM OP-AChE, with a detection limit of 4 pM, coupled with a good reproducibility. Moreover, the FITS immunosensor has been validated with OP-AChE spiked human plasma samples. This is the first report on the development of ZrO2 NPs-based FITS for detection of OP-AChE adduct. The FITS immunosensor provides a sensitive and low-cost sensing platform for on-site screening/evaluating OP pesticides and nerve agents poisoning.

  13. D0 Silicon Strip Detector Upgrade Project SVX Sequencer Controller Board

    SciTech Connect

    Utes, M.; /Fermilab

    2001-05-29

    The Sequencer Controller boards are 9U by 340mm circuit boards that will reside in slot 1 of each of eight Sequencer crates in the D0 detector platform. The primary purpose is to control the Sequencers during data acquisition based on trigger information from the D0 Trigger Framework. Functions and features are as follows: (1) Receives the Serial Command Link (SCL) from the D0 Trigger System and controls the operation of the Sequencers by forming a custom serial control link (NRZ/Clock) which is distributed individually to each Sequencer via the 11 Backplane; (2) Controllable delays adjust NRZ control link phasing to compensate for the various cable-length delays between the Sequencers and SVX chips, delay control is common for slots 2-11, and for slots 12-21 of the crate; (3) Each NRZ control link is phase controlled so that commands reach each Sequencer in a given half-crate simultaneously, i.e., the link is compensated for backplane propagation delays; (4) External communication via MIL-STD-1553; (5) Stand-alone operation via 1553 trigger commands in absence of an SCL link; (6) 1553-writeable register for triggering a laser, etc. followed by an acquisition cycle; (7) TTL front panel input to trigger an acquisition cycle, e.g. from a scintillator; (8) Synch Trig, Veto, Busy and Preamp Reset TTL outputs on front panel LEMOs; (9) On-board 53.104 MHz oscillator for stand-alone operation; (10) 1553 or SCL-triggerable Cal-inject cycle; (11) Front-panel inputs to accept NRZ/Clock link from the VRB Controller; (12) Front panel displays and LEDs show the board status at a glance; and (13) In-system programmable EPLDs are programmed via Altera's 'Byteblaster'.

  14. Evaluation of the performance of irradiated silicon strip sensors for the forward detector of the ATLAS Inner Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Mori, R.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Arratia-Munoz, M. I.; Hommels, L. B. A.; Ullan, M.; Fleta, C.; Fernandez-Tejero, J.; Bloch, I.; Gregor, I. M.; Lohwasser, K.; Poley, L.; Tackmann, K.; Trofimov, A.; Yildirim, E.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Parzefall, U.; Clark, A.; Ferrere, D.; Sevilla, S. Gonzalez; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O'Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Garcia, S. Marti i.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    The upgrade to the High-Luminosity LHC foreseen in about ten years represents a great challenge for the ATLAS inner tracker and the silicon strip sensors in the forward region. Several strip sensor designs were developed by the ATLAS collaboration and fabricated by Hamamatsu in order to maintain enough performance in terms of charge collection efficiency and its uniformity throughout the active region. Of particular attention, in the case of a stereo-strip sensor, is the area near the sensor edge where shorter strips were ganged to the complete ones. In this work the electrical and charge collection test results on irradiated miniature sensors with forward geometry are presented. Results from charge collection efficiency measurements show that at the maximum expected fluence, the collected charge is roughly halved with respect to the one obtained prior to irradiation. Laser measurements show a good signal uniformity over the sensor. Ganged strips have a similar efficiency as standard strips.

  15. TOT01, a time-over-threshold based readout chip in 180nm CMOS technology for silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Kasinski, K.; Szczygiel, R.; Gryboś, P.

    2011-01-01

    This work is focused on the development of the TOT01 prototype front-end ASIC for the readout of long silicon strip detectors in the STS (Silicon Tracking System) of the CBM experiment at FAIR - GSI. The deposited charge measurement is based on the Time-over-Threshold method which allows integration of a low-power ADC into each channel. The TOT01 chip comprises 30 identical channels and 1 test channel which is supplied with additional test pads. The major blocks of each channel are the CSA (charge sensitive amplifier) with two switchable constant-current discharge circuits and additional test features. The architecture of the CSA core is based on the folded cascode. The input p-channel MOSFET device, biased at a drain current 500 μA, was optimized for 30 pF detector capacitance while keeping in mind the area constraints — W/L = 1800 μm / 0.180 μm. The main advantage of this solution is high gain (GBW = 1.2 GHz) and low power consumption at the same time. The amplifier is followed by the discriminator circuit. The discriminator allows for a global (multi-channel) differential threshold setting and independent compensation for the CSA output DC-level deviations in each channel by means of a 6-bit digital to analog converter (DAC). The output pulse of this processing chain is fed through a 31:1 multiplexer structure to the output of the chip for further processing. The TOT01 chip has been fabricated in the UMC 0.18 μm CMOS process (Europractice mini@sic). It has 78 pads, measures approximately 1.5x3.2 mm2 and dissipates 33 mW. The channels have 50 μm pitch and each consumes 1.05 mW of power. The chip has been successfully tested. Charge sensitivity parameters, noise performance and first X-ray acquisitions are presented.

  16. Particle impact location detector

    NASA Technical Reports Server (NTRS)

    Auer, S. O.

    1974-01-01

    Detector includes delay lines connected to each detector surface strip. When several particles strike different strips simultaneously, pulses generated by each strip are time delayed by certain intervals. Delay time for each strip is known. By observing time delay in pulse, it is possible to locate strip that is struck by particle.

  17. SU-F-18C-05: Characterization of a Silicon Strip Photon-Counting Detector in the Presence of Compton Scatter: A Simulation Study

    SciTech Connect

    Ziemer, B; Ding, H; Cho, H

    2014-06-15

    Purpose: To investigate the effect of Compton scatter on detection efficiency and charge-sharing for a Si strip photon-counting detector as a function of pixel pitch, slice thickness and total pixel length. Methods: A CT imaging system employing a silicon photon-counting detector was implemented using the GATE Monte Carlo package. A focal spot size of 300 µm, magnification of 1.33, and pixel pitches of 0.1 and 0.5mm were initially investigated. A 60 kVp spectrum with 3 mm Al filter was used and energy spectral degradation based on a prototype detector was simulated. To study charge-sharing, a single pixel was illuminated, and the detector response in neighboring pixels was investigated. A longitudinally semiinfinite detector was simulated to optimize the quantum detection efficiency of the imaging system as a function of pixel pitch, slice thickness and depth of interaction. A 2.5 mm thick tungsten plate with a 0.01 mm by 1.5 mm slit was implemented to calculate the modulation transfer function (MTF) from projection-based images. A threshold of 15 keV was implemented in the detector simulation. The preliminary charge sharing investigation results considered only scattering effects and the detector electronics related factors were neglected. Results: Using a 15 keV threshold, 1% of the pixel charge migrated into neighboring pixels with a pixel size of 0.1×0.1 mm{sup 2}. The quantum detection efficiency was 77%, 84%, 87% and 89% for 15 mm, 22.5 mm, 30 mm, and 45 mm length silicon detector pixels, respectively. For a pixel pitch of 0.1 mm, the spatial frequency at 10% of the maximum MTF was found to be 5.2 lp/mm. This agreed with an experimental MTF measurement of 5.3 lp/mm with a similar detector configuration. Conclusion: Using optimized design parameters, Si strip photon-counting detectors can offer high detection efficiency and spatial resolution even in the presence of Compton scatter.

  18. DETECTORS AND EXPERIMENTAL METHODS: Design and test of a Multi-gap Resistive Plate Chamber with Long readout-strip (LMRPC)

    NASA Astrophysics Data System (ADS)

    Sun, Yong-Jie; Li, Cheng; Zhou, Yi; Shao, Ming; Zhao, Yan-E.; Chen, Hong-Fang

    2009-02-01

    A new kind (two end readout) of Multi-gap Resistive Plate Chamber with long readout-strip (LMRPC) is developed to be used at the large-area Muon Telescope Detector (MTD) at mid-rapidity at RHIC/STAR experiment for Time-of-Flight (TOF) measurement. The LMRPC has an active area of 87 cm × 17 cm, 10 gas gaps of 250 μm arranged in 2 stacks, with readout strips of 2.5 cm wide and 90 cm long. The considerations in LMRPC design related to its performance are discussed in this paper. The cosmic ray test results of a prototype LMRPC show a detection efficiency >95% and the time resolution ~70 ps.

  19. Noise evaluation of silicon strip super-module with ABCN250 readout chips for the ATLAS detector upgrade at the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Todome, K.; Jinnouchi, O.; Clark, A.; Barbier, G.; Cadoux, F.; Favre, Y.; Ferrere, D.; Gonzalez-Sevilla, S.; Iacobucci, G.; La Marra, D.; Perrin, E.; Weber, M.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Tojo, J.; Kono, T.; Hanagaki, K.; Hirose, M.; Homma, Y.; Sato, S.; Hara, K.; Sato, K.

    2016-09-01

    Toward High Luminosity LHC (HL-LHC), the whole ATLAS inner tracker will be replaced, including the semiconductor tracker (SCT) which is the silicon micro strip detector for tracking charged particles. In development of the SCT, integration of the detector is the important issue. One of the concepts of integration is the "super-module" in which individual modules are assembled to produce the SCT ladder. A super-module prototype has been developed to demonstrate its functionality. One of the concerns in integrating the super-modules is the electrical coupling between each module, because it may increase intrinsic noise of the system. To investigate the electrical performance of the prototype, the new Data Acquisition (DAQ) system has been developed by using SEABAS. The electric performance of the super-module prototype, especially the input noise and random noise hit rate, was investigated by using SEABAS system.

  20. An Efficient, FPGA-Based, Cluster Detection Algorithm Implementation for a Strip Detector Readout System in a Time Projection Chamber Polarimeter

    NASA Technical Reports Server (NTRS)

    Gregory, Kyle J.; Hill, Joanne E. (Editor); Black, J. Kevin; Baumgartner, Wayne H.; Jahoda, Keith

    2016-01-01

    A fundamental challenge in a spaceborne application of a gas-based Time Projection Chamber (TPC) for observation of X-ray polarization is handling the large amount of data collected. The TPC polarimeter described uses the APV-25 Application Specific Integrated Circuit (ASIC) to readout a strip detector. Two dimensional photoelectron track images are created with a time projection technique and used to determine the polarization of the incident X-rays. The detector produces a 128x30 pixel image per photon interaction with each pixel registering 12 bits of collected charge. This creates challenging requirements for data storage and downlink bandwidth with only a modest incidence of photons and can have a significant impact on the overall mission cost. An approach is described for locating and isolating the photoelectron track within the detector image, yielding a much smaller data product, typically between 8x8 pixels and 20x20 pixels. This approach is implemented using a Microsemi RT-ProASIC3-3000 Field-Programmable Gate Array (FPGA), clocked at 20 MHz and utilizing 10.7k logic gates (14% of FPGA), 20 Block RAMs (17% of FPGA), and no external RAM. Results will be presented, demonstrating successful photoelectron track cluster detection with minimal impact to detector dead-time.

  1. An efficient, FPGA-based, cluster detection algorithm implementation for a strip detector readout system in a Time Projection Chamber polarimeter

    NASA Astrophysics Data System (ADS)

    Gregory, Kyle J.; Hill, Joanne E.; Black, J. Kevin; Baumgartner, Wayne H.; Jahoda, Keith

    2016-05-01

    A fundamental challenge in a spaceborne application of a gas-based Time Projection Chamber (TPC) for observation of X-ray polarization is handling the large amount of data collected. The TPC polarimeter described uses the APV-25 Application Specific Integrated Circuit (ASIC) to readout a strip detector. Two dimensional photo- electron track images are created with a time projection technique and used to determine the polarization of the incident X-rays. The detector produces a 128x30 pixel image per photon interaction with each pixel registering 12 bits of collected charge. This creates challenging requirements for data storage and downlink bandwidth with only a modest incidence of photons and can have a significant impact on the overall mission cost. An approach is described for locating and isolating the photoelectron track within the detector image, yielding a much smaller data product, typically between 8x8 pixels and 20x20 pixels. This approach is implemented using a Microsemi RT-ProASIC3-3000 Field-Programmable Gate Array (FPGA), clocked at 20 MHz and utilizing 10.7k logic gates (14% of FPGA), 20 Block RAMs (17% of FPGA), and no external RAM. Results will be presented, demonstrating successful photoelectron track cluster detection with minimal impact to detector dead-time.

  2. Recent T980 Crystal Collimation Studies at the Tevatron Exploiting a Pixel Detector System and a Multi-Strip Crystal Array

    SciTech Connect

    Still, D.; Annala, G.E.; Carrigan, R.A.; Drozhdin, A.I.; Johnson, T.R.; Mokhov, N.V.; Previtali, V.; Rivera, R.; Shiltsev, V.; Zagel, J.; Zvoda, V.V.; / /CERN /INFN, Pisa / /

    2012-05-15

    With the shutdown of the Tevatron, the T-980 crystal collimation experiment at Fermilab has been successfully completed. Results of dedicated beam studies in May 2011 are described in this paper. For these studies, two multi-strip crystals were installed in the vertical goniometer and an O-shaped crystal installed in a horizontal goniometer. A two-plane CMS pixel detector was also installed in order to enhance the experiment with the capability to image the profile of crystal channeled or multiple volume reflected beam. The experiment successfully imaged channeled beam from a crystal for 980-GeV protons for the first time. This new enhanced hardware yielded impressive results. The performance and characterization of the crystals studied have been very reproducible over time and consistent with simulations.

  3. Calorimetric Low Temperature Detectors for High Resolution X-ray Spectroscopy on Stored Highly Stripped Heavy Ions

    SciTech Connect

    Bleile, A.; Egelhof, P.; Kluge, H.J.; Liebisch, U.; McCammon, D.; Meier, H.J.; Sebastian, O.; Stahle, C.K.; Stoehlker, T.; Weber, M.

    2000-12-31

    The precise determination of the Lamb shift in heavy hydrogen-like ions provides a sensitive test of QED in very strong Coulomb fields, not accessible otherwise, and has also the potential to deduce nuclear charge radii. A brief overview on the present status of such experiments, performed at the storage ring ESR at GSI Darmstadt, is given. For the investigation of the Lyman-{alpha} transitions in Au{sup 78+} or U{sup 91+} ions with improved accuracy, a high-resolution calorimetric low-temperature detector for hard x-rays (E {le} 100 keV) has been recently developed. The detector modules consist of arrays of silicon thermistors and of x-ray absorbers made of high-Z material to optimize the absorption efficiency. The detectors are housed in a specially designed {sup 3}He/{sup 4}He dilution refrigerator which fits to the geometry of the ESR target. The detector performance presently achieved is already close to fulfilling the demands of the Lamb shift experiment. For a prototype detector an energy resolution of {Delta}E{sub FWHM} = 75 eV is obtained for 60-keV x-rays.

  4. About NICADD extruded scintillating strips

    SciTech Connect

    Dyshkant, A.; Beznosko, D.; Blazey, G.; Chakraborty, D.; Francis, K.; Kubik, D.; Lima, J.G.; Rykalin, V.; Zutshi, v.; Baldina, E.; Bross, A.; Deering, P.; Nebel, T.; Pla-Dalmau, A.; Schellpfeffer, J.; Serritella, C.; Zimmerman, J.; /Fermilab

    2005-04-01

    The results of control measurements of extruded scintillating strip responses to a radioactive source Sr-90 are provided, and details of strip choice, preparation, and method of measurement are included. About four hundred one meter long extruded scintillating strips were measured at four different points. These results were essential for prototyping a tail catcher and muon tracker for a future international electron positron linear collider detector.

  5. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  6. Studies of NICADD Extruded Scintillator Strips

    SciTech Connect

    Dychkant, Alexandre; et al.

    2005-03-01

    About four hundred one meter long, 10 cm wide and 5 mm thick extruded scintillating strips were measured at four different points. The results of measurements strip responses to a radioactive source {sup 90}Sr are provided, and details of strip choice, preparation, and method of measurement are included. This work was essential for prototyping a tail catcher and muon tracker for a future international electron positron linear collider detector.

  7. Range gated strip proximity sensor

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance.

  8. Range gated strip proximity sensor

    DOEpatents

    McEwan, T.E.

    1996-12-03

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.

  9. Robotic Stripping

    NASA Technical Reports Server (NTRS)

    2000-01-01

    UltraStrip Systems, Inc.'s M-200 removes paint from the hulls of ships faster than traditional grit-blasting methods. And, it does so without producing toxic airborne particles common to traditional methods. The M-2000 magnetically attaches itself to the hull of the ship. Its water jets generate 40,000 pounds of pressure per square inch, blasting away paint down to the ships steel substrate. The only by product is water and dried paint chips and these are captured by a vacuum system so no toxic residue can escape. It was built out of a partnership between the Jet Propulsion Laboratory and the National Robotics Engineering Consortium.

  10. DETECTORS AND EXPERIMENTAL METHODS: Study of a multi-wire proportional chamber with a cathode strip and delay-line readout

    NASA Astrophysics Data System (ADS)

    Han, Li-Ying; Li, Qi-Te; Faisal, Q.; Ge, Yu-Cheng; Liu, Hong-Tao; Ye, Yan-Lin

    2009-05-01

    The design principle for a multi-wire proportional chamber with a cathode strip and delay-line readout is described. A prototype chamber of a size of 10 cm ×10 cm was made together with the readout electronics circuit. A very clean signal with very low background noise was obtained by applying a transformer between the delay-line and the pre-amplifier in order to match the resistance. Along the anode wire direction a position resolution of less than 0.5 mm was achieved with a 55Fe-5.9 keV X ray source. The simple structure, large effective area and high position resolution allow the application of a gas chamber of this kind to many purposes.

  11. Photovoltaic radiation detector element

    DOEpatents

    Agouridis, D.C.

    1980-12-17

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips.

  12. Photovoltaic radiation detector element

    DOEpatents

    Agouridis, Dimitrios C.

    1983-01-01

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein the edge of which closely approaches but is spaced from the current collector strips.

  13. Simulation study of an energy sensitive photon counting silicon strip detector for computed tomography: identifying strengths and weaknesses and developing work-arounds

    NASA Astrophysics Data System (ADS)

    Bornefalk, Hans; Xu, Cheng; Svensson, Christer; Danielsson, Mats

    2010-04-01

    We model the effect of signal pile-up on the energy resolution of a photon counting silicon detector designed for high flux spectral CT with sub-millimeter pixel size. Various design parameters, such as bias voltage, lower threshold level for discarding of electronic noise and the entire electronic read out chain are modeled and realistic parameter settings are determined. We explicitly model the currents induced on the collection electrodes of a pixel and superimpose signals emanating from events in neighboring pixels, either due to charge sharing or signals induced during charge collection. Electronic noise is added to the pulse train before feeding it through a model of the read out electronics where the pulse height spectrum is saved to yield the detector energy response function. The main result of this study is that a lower threshold of 5 keV and a rather long time constant of the shaping filter (τ0 = 30 ns) are needed to discard induced pulses from events in neighboring pixels. These induction currents occur even if no charge is being deposited in the analyzed pixel from the event in the neighboring pixel. There is also only a limited gain in energy resolution by increasing the bias voltage to 1000 V from 600 V. We show that with these settings the resulting energy resolution, as measured by the FWHM/E of the photo peak, is 5% at 70 keV.

  14. Approximate strip exchanging.

    PubMed

    Roy, Swapnoneel; Thakur, Ashok Kumar

    2008-01-01

    Genome rearrangements have been modelled by a variety of primitives such as reversals, transpositions, block moves and block interchanges. We consider such a genome rearrangement primitive Strip Exchanges. Given a permutation, the challenge is to sort it by using minimum number of strip exchanges. A strip exchanging move interchanges the positions of two chosen strips so that they merge with other strips. The strip exchange problem is to sort a permutation using minimum number of strip exchanges. We present here the first non-trivial 2-approximation algorithm to this problem. We also observe that sorting by strip-exchanges is fixed-parameter-tractable. Lastly we discuss the application of strip exchanges in a different area Optical Character Recognition (OCR) with an example.

  15. Lateral flow strip assay

    DOEpatents

    Miles, Robin R.; Benett, William J.; Coleman, Matthew A.; Pearson, Francesca S.; Nasarabadi, Shanavaz L.

    2011-03-08

    A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

  16. Vertex detectors

    SciTech Connect

    Lueth, V.

    1992-07-01

    The purpose of a vertex detector is to measure position and angles of charged particle tracks to sufficient precision so as to be able to separate tracks originating from decay vertices from those produced at the interaction vertex. Such measurements are interesting because they permit the detection of weakly decaying particles with lifetimes down to 10{sup {minus}13} s, among them the {tau} lepton and charm and beauty hadrons. These two lectures are intended to introduce the reader to the different techniques for the detection of secondary vertices that have been developed over the past decades. The first lecture includes a brief introduction to the methods used to detect secondary vertices and to estimate particle lifetimes. It describes the traditional technologies, based on photographic recording in emulsions and on film of bubble chambers, and introduces fast electronic registration of signals derived from scintillating fibers, drift chambers and gaseous micro-strip chambers. The second lecture is devoted to solid state detectors. It begins with a brief introduction into semiconductor devices, and then describes the application of large arrays of strip and pixel diodes for charged particle tracking. These lectures can only serve as an introduction the topic of vertex detectors. Time and space do not allow for an in-depth coverage of many of the interesting aspects of vertex detector design and operation.

  17. Anatomy comic strips.

    PubMed

    Park, Jin Seo; Kim, Dae Hyun; Chung, Min Suk

    2011-01-01

    Comics are powerful visual messages that convey immediate visceral meaning in ways that conventional texts often cannot. This article's authors created comic strips to teach anatomy more interestingly and effectively. Four-frame comic strips were conceptualized from a set of anatomy-related humorous stories gathered from the authors' collective imagination. The comics were drawn on paper and then recreated with digital graphics software. More than 500 comic strips have been drawn and labeled in Korean language, and some of them have been translated into English. All comic strips can be viewed on the Department of Anatomy homepage at the Ajou University School of Medicine, Suwon, Republic of Korea. The comic strips were written and drawn by experienced anatomists, and responses from viewers have generally been favorable. These anatomy comic strips, designed to help students learn the complexities of anatomy in a straightforward and humorous way, are expected to be improved further by the authors and other interested anatomists.

  18. Directional detector of gamma rays

    DOEpatents

    Cox, Samson A.; Levert, Francis E.

    1979-01-01

    A directional detector of gamma rays comprises a strip of an electrical cuctor of high atomic number backed with a strip of a second electrical conductor of low atomic number. These elements are enclosed within an electrical conductor that establishes an electrical ground, maintains a vacuum enclosure and screens out low-energy gamma rays. The detector exhibits a directional sensitivity marked by an increased output in the favored direction by a factor of ten over the output in the unfavored direction.

  19. Prefix Stripping Revisited.

    ERIC Educational Resources Information Center

    Taft, Marcus

    1981-01-01

    Presents and analyzes three experiments on prefix stripping. Results show that pseudoprefixed words are indiscriminately treated as prefixed words and concludes that prefix stripping does occur in word recognition and that prefixed words are accessed through a representation of their stem. (Author/BK)

  20. Anatomy Comic Strips

    ERIC Educational Resources Information Center

    Park, Jin Seo; Kim, Dae Hyun; Chung, Min Suk

    2011-01-01

    Comics are powerful visual messages that convey immediate visceral meaning in ways that conventional texts often cannot. This article's authors created comic strips to teach anatomy more interestingly and effectively. Four-frame comic strips were conceptualized from a set of anatomy-related humorous stories gathered from the authors' collective…

  1. Science Comic Strips

    ERIC Educational Resources Information Center

    Kim, Dae Hyun; Jang, Hae Gwon; Shin, Dong Sun; Kim, Sun-Ja; Yoo, Chang Young; Chung, Min Suk

    2012-01-01

    Science comic strips entitled Dr. Scifun were planned to promote science jobs and studies among professionals (scientists, graduate and undergraduate students) and children. To this end, the authors collected intriguing science stories as the basis of scenarios, and drew four-cut comic strips, first on paper and subsequently as computer files.…

  2. Study the Z-Plane Strip Capacitance

    SciTech Connect

    Parikh, H.; Swain, S.; /SLAC

    2005-12-15

    The BaBaR detector at the Stanford Linear Accelerator Center is currently undergoing an upgrade to improve its muon and neutral hadron detection system. The Resistive Plate Chambers (RPCs) that had been used till now have deteriorated in performance over the past few years and are being replaced by Limited Streamer Tube (LSTs). Each layer of the system consists of a set of up to 10 streamer tube modules which provide one coordinate ({phi} coordinate) and a single ''Z-plane'' which provides the Z coordinate of the hit. The large area Z-planes (up to 12m{sup 2}) are 1mm thick and contain 96 copper strips that detect the induced charge from avalanches created in the streamer tube wires. All the Z-planes needed for the upgrade have already been constructed, but only a third of the planes were installed last summer. After installing the 24 Z-planes last year, it was learned that 0.7% of the strips were dead when put inside the detector. This was mainly due to the delicate solder joint between the read-out cable and the strip, and since it is difficult to access or replace the Z-planes inside the detector, it is very important to perform various tests to make sure that the Z-planes will be efficient and effective in the long term. We measure the capacitance between the copper strips and the ground plane, and compare it to the theoretical value that we expect. Instead of measuring the capacitance channel by channel, which would be a very tedious job, we developed a more effective method of measuring the capacitance. Since all the Z-planes were built at SLAC, we also built a smaller 46 cm by 30 cm Z-plane with 12 strips just to see how they were constructed and to gain a better understanding about the solder joints.

  3. Method of "Active Correlations" for DSSSD detector application

    NASA Astrophysics Data System (ADS)

    Tsyganov, Yu. S.

    2015-01-01

    Real-time PC based algorithm is developed for DSSSD ( Double Side Silicon Strip Detector) detector. Brief description of the detection system is also presented. Complete fusion nuclear reaction nat Yt + 48 Ca → 217 Th is used to test this algorithm at 48Ca beam. Example of successful application of a former algorithm for resistive strip PIPS (resistive strip Passivated Implanted Planar Silicon) detector is presented too.

  4. The CDFII Silicon Detector

    SciTech Connect

    Julia Thom

    2004-07-23

    The CDFII silicon detector consists of 8 layers of double-sided silicon micro-strip sensors totaling 722,432 readout channels, making it one of the largest silicon detectors in present use by an HEP experiment. After two years of data taking, we report on our experience operating the complex device. The performance of the CDFII silicon detector is presented and its impact on physics analyses is discussed. We have already observed measurable effects from radiation damage. These results and their impact on the expected lifetime of the detector are briefly reviewed.

  5. Stripping with dry ice

    NASA Astrophysics Data System (ADS)

    Malavallon, Olivier

    1995-04-01

    Mechanical-type stripping using dry ice (solid CO2) consists in blasting particles of dry ice onto the painted surface. This surface can be used alone or in duplex according to type of substrate to be treated. According to operating conditions, three physical mechanisms may be involved when blasting dry ice particles onto a paint system: thermal shock, differential thermal contraction, and mechanical shock. The blast nozzle, nozzle travel speed, blast angle, stripping distance, and compressed air pressure and media flow rate influence the stripping quality and the uniformity and efficiency obtained.

  6. The diagonal strip system in the Macro experiment

    NASA Astrophysics Data System (ADS)

    Devicenzi, M.; Lipari, P.; Martellotti, G.; Pellizzoni, G.

    1988-11-01

    The Macro scintillation counter modular system with streamer tubes and track-etch detectors is presented, and the characteristics, manufacturing, and assembling of its pick-up strips are described. The strips are composed of thin conducting plates 31 mm long, spaced 2.6 mm apart, and bonded on a 1 mm polyvinyl chloride (PVC) ribbon with a grounded metal surface on the other side of the ribbon. The manufacturing is done by bonding the aluminum elements on the PVC ribbon.

  7. Hydrocarbon product stripping

    SciTech Connect

    Harandi, M.N.; Owen, H.; Siuta, M.T.

    1989-04-18

    A method is described for stripping light gasiform components from the liquid effluent of a catalytic hydrodesulfurization process, which comprises separating the liquid effluent containing relatively low boiling hydrocarbon components, relatively high boiling hydrocarbon components, hydrogen, and hydrogen sulfide.

  8. Air stripping industrial wastewater

    SciTech Connect

    Lamarre, B.; Shearouse, D.

    1994-09-01

    Industrial wastewater can be quickly, efficiently and economically treated using air strippers. Air stripping removes a range of volatile and semi-volatile contaminants from water. And the performance of various types and sizes of tray-type air stripper for treating contaminated water now is highly predictable because of laboratory studies. Air stripping can be a fast, efficient and economical approach to treating industrial wastewater. However, since every industrial wastewater stream is unique, each must be evaluated to determine its constituents, its potentially adverse effects on treatability, and any pretreatment steps necessary to ensure desired results. The general principles of air stripping are simple. In an air stripper, the surfaces area of a film of contaminated water is maximized while air is directed across it. Contaminants at the air/water interface volatilize and are discharged to the atmosphere or to an off-gas treatment system.

  9. Hybrid superconducting neutron detectors

    SciTech Connect

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  10. Hybrid superconducting neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Salvato, M.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-01

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, 10B + n → α + 7Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  11. Retractable barrier strip

    DOEpatents

    Marts, D.J.; Barker, S.G.; McQueen, M.A.

    1996-04-16

    A portable barrier strip is described having retractable tire-puncture means for puncturing a vehicle tire. The tire-puncture means, such as spikes, have an armed position for puncturing a tire and a retracted position for not puncturing a tire. The strip comprises a plurality of barrier blocks having the tire-puncture means removably disposed in a shaft that is rotatably disposed in each barrier block. The shaft removably and pivotally interconnects the plurality of barrier blocks. Actuation cables cause the shaft to rotate the tire-puncture means to the armed position for puncturing a vehicle tire and to the retracted position for not puncturing the tire. Each tire-puncture means is received in a hollow-bed portion of its respective barrier block when in the retracted position. The barrier strip rests in its deployed position and substantially motionless as a tire rolls thereon and over. The strip is rolled up for retrieval, portability, and storage purposes, and extended and unrolled in its deployed position for use. 13 figs.

  12. Retractable barrier strip

    DOEpatents

    Marts, Donna J.; Barker, Stacey G.; Wowczuk, Andrew; Vellenoweth, Thomas E.

    2002-01-01

    A portable barrier strip having retractable tire-puncture spikes for puncturing a vehicle tire. The tire-puncture spikes have an armed position for puncturing a tire and a retracted position for not puncturing a tire. The strip comprises a plurality of barrier blocks having the tire-puncture spikes removably disposed in a shaft that is rotatably disposed in each barrier block. The plurality of barrier blocks hare hingedly interconnected by complementary hinges integrally formed into the side of each barrier block which allow the strip to be rolled for easy storage and retrieval, but which prevent irregular or back bending of the strip. The shafts of adjacent barrier blocks are pivotally interconnected via a double hinged universal joint to accommodate irregularities in a roadway surface and to transmit torsional motion of the shaft from block to block. A single flexshaft cable is connected to the shaft of an end block to allow a user to selectively cause the shafts of a plurality of adjacently connected barrier blocks to rotate the tire-puncture spikes to the armed position for puncturing a vehicle tire, and to the retracted position for not puncturing the tire. The flexshaft is provided with a resiliently biased retracting mechanism, and a release latch for allowing the spikes to be quickly retracted after the intended vehicle tire is punctured.

  13. Retractable barrier strip

    DOEpatents

    Marts, Donna J.; Barker, Stacey G.; McQueen, Miles A.

    1996-01-01

    A portable barrier strip having retractable tire-puncture means for puncturing a vehicle tire. The tire-puncture means, such as spikes, have an armed position for puncturing a tire and a retracted position for not puncturing a tire. The strip comprises a plurality of barrier blocks having the tire-puncture means removably disposed in a shaft that is rotatably disposed in each barrier block. The shaft removably and pivotally interconnects the plurality of barrier blocks. Actuation cables cause the shaft to rotate the tire-puncture means to the armed position for puncturing a vehicle tire and to the retracted position for not puncturing the tire. Each tire-puncture means is received in a hollow-bed portion of its respective barrier block when in the retracted position. The barrier strip rests stable in its deployed position and substantially motionless as a tire rolls thereon and over. The strip is rolled up for retrieval, portability, and storage purposes, and extended and unrolled in its deployed position for use.

  14. Fermilab silicon strip readout chip for BTev

    SciTech Connect

    Yarema, Raymond; Hoff, Jim; Mekkaoui, Abderrezak; Manghisoni, Massimo; Re, Valerio; Angeleri, Valentina; Manfredi, Pier Francesco; Ratti, Lodovico; Speziali, Valeria; /Fermilab /Bergamo U. /INFN, Pavia /Pavia U.

    2005-05-01

    A chip has been developed for reading out the silicon strip detectors in the new BTeV colliding beam experiment at Fermilab. The chip has been designed in a 0.25 {micro}m CMOS technology for high radiation tolerance. Numerous programmable features have been added to the chip, such as setup for operation at different beam crossing intervals. A full size chip has been fabricated and successfully tested. The design philosophy, circuit features, and test results are presented in this paper.

  15. Wide field strip-imaging optical system

    NASA Technical Reports Server (NTRS)

    Vaughan, Arthur H. (Inventor)

    1994-01-01

    A strip imaging wide angle optical system is provided. The optical system is provided with a 'virtual' material stop to avoid aberrational effects inherent in wide angle optical systems. The optical system includes a spherical mirror section for receiving light from a 180-degree strip or arc of a target image. Light received by the spherical mirror section is reflected to a frusto-conical mirror section for subsequent rereflection to a row of optical fibers. Each optical fiber transmits a portion of the received light to a detector. The optical system exploits the narrow cone of acceptance associated with optical fibers to substantially eliminate vignetting effects inherent in wide-angle systems. Further, the optical system exploits the narrow cone of acceptance of the optical fibers to substantially limit spherical aberration. The optical system is ideally suited for any application wherein a 180-degree strip image need be detected, and is particularly well adapted for use in hostile environments such as in planetary exploration.

  16. Recent developments in semiconductor gamma-ray detectors

    SciTech Connect

    Luke, Paul N.; Amman, Mark; Tindall, Craig; Lee, Julie S.

    2003-10-28

    The successful development of lithium-drifted Ge detectors in the 1960's marked the beginning of the significant use of semiconductor crystals for direct detection and spectroscopy of gamma rays. In the 1970's, high-purity Ge became available, which enabled the production of complex detectors and multi-detector systems. In the following decades, the technology of semiconductor gamma-ray detectors continued to advance, with significant developments not only in Ge detectors but also in Si detectors and room-temperature compound-semiconductor detectors. In recent years, our group at Lawrence Berkeley National Laboratory has developed a variety of gamma ray detectors based on these semiconductor materials. Examples include Ge strip detectors, lithium-drifted Si strip detectors, and coplanar-grid CdZnTe detectors. These advances provide new capabilities in the measurement of gamma rays, such as the ability to perform imaging and the realization of highly compact spectroscopy systems.

  17. Spiral Galaxies Stripped Bare

    NASA Astrophysics Data System (ADS)

    2010-10-01

    Six spectacular spiral galaxies are seen in a clear new light in images from ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The pictures were taken in infrared light, using the impressive power of the HAWK-I camera, and will help astronomers understand how the remarkable spiral patterns in galaxies form and evolve. HAWK-I [1] is one of the newest and most powerful cameras on ESO's Very Large Telescope (VLT). It is sensitive to infrared light, which means that much of the obscuring dust in the galaxies' spiral arms becomes transparent to its detectors. Compared to the earlier, and still much-used, VLT infrared camera ISAAC, HAWK-I has sixteen times as many pixels to cover a much larger area of sky in one shot and, by using newer technology than ISAAC, it has a greater sensitivity to faint infrared radiation [2]. Because HAWK-I can study galaxies stripped bare of the confusing effects of dust and glowing gas it is ideal for studying the vast numbers of stars that make up spiral arms. The six galaxies are part of a study of spiral structure led by Preben Grosbøl at ESO. These data were acquired to help understand the complex and subtle ways in which the stars in these systems form into such perfect spiral patterns. The first image shows NGC 5247, a spiral galaxy dominated by two huge arms, located 60-70 million light-years away. The galaxy lies face-on towards Earth, thus providing an excellent view of its pinwheel structure. It lies in the zodiacal constellation of Virgo (the Maiden). The galaxy in the second image is Messier 100, also known as NGC 4321, which was discovered in the 18th century. It is a fine example of a "grand design" spiral galaxy - a class of galaxies with very prominent and well-defined spiral arms. About 55 million light-years from Earth, Messier 100 is part of the Virgo Cluster of galaxies and lies in the constellation of Coma Berenices (Berenice's Hair, named after the ancient Egyptian queen Berenice II). The third

  18. Modulated voltage metastable ionization detector

    NASA Technical Reports Server (NTRS)

    Carle, G. C.; Kojiro, D. R.; Humphrey, D. E. (Inventor)

    1985-01-01

    The output current from a metastable ionization detector (MID) is applied to a modulation voltage circuit. An adjustment is made to balance out the background current, and an output current, above background, is applied to an input of a strip chart recorder. For low level concentrations, i.e., low detected output current, the ionization potential will be at a maximum and the metastable ionization detector will operate at its most sensitive level. When the detected current from the metastable ionization detector increases above a predetermined threshold level, a voltage control circuit is activated which turns on a high voltage transistor which acts to reduce the ionization potential. The ionization potential applied to the metastable ionization detector is then varied so as to maintain the detected signal level constant. The variation in ionization potential is now related to the concentration of the constituent and a representative amplitude is applied to another input of said strip chart recorder.

  19. Multi Electrode Semiconductor Detectors

    NASA Astrophysics Data System (ADS)

    Amendolia, S. R.; Batignani, G.; Bertolucci, E.; Bosisio, L.; Budinich, M.; Bradaschia, C.; Fidecaro, F.; Foà, L.; Focardi, E.; Giazotto, A.; Giorgi, M. A.; Marrocchesi, P. S.; Menzione, A.; Ristori, L.; Rolandi, L.; Scribano, A.; Stefanini, A.; Vincelli, M. L.

    1981-04-01

    Detectors with very high space resolution have been built in our laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments.

  20. Spray Rolling Aluminum Strip

    SciTech Connect

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  1. Paresev on Taxi Strip

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Test pilot Milton Thompson sitting in NASA Flight Research Center-built Paresev 1 (Paraglider Research Vehicle) on the taxi strip in front of the NASA Flight Research Center in 1962. In this photo the control stick can be seen coming from overhead and hanging in front of the pilot. The control system was a direct link with the wing membrane made of doped Irish linen. By maintaining simplicity during construction, it was possible to make control and configuration changes overnight and, in many instances, in minutes.

  2. Superconducting transmission line particle detector

    DOEpatents

    Gray, K.E.

    1988-07-28

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

  3. Superconducting transmission line particle detector

    DOEpatents

    Gray, Kenneth E.

    1989-01-01

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  4. The L3 silicon microvertex detector

    NASA Astrophysics Data System (ADS)

    Acciarri, M.; Adam, A.; Adriani, O.; Ahlen, S.; Alcaraz, J.; Ambrosi, G.; Babucci, E.; Baksay, L.; Baschirotto, A.; Battiston, R.; Baur, W.; Bay, A.; Bencze, Gy. L.; Bertucci, B.; Biasini, M.; Bilei, G. M.; Bobbink, G. J.; Boissevain, J. G.; Bosetti, M.; Brooks, M. L.; Burger, W. J.; Busenitz, J.; Camps, C.; Caria, M.; Castellini, G.; Castello, R.; Checcuccl, B.; Chen, A.; Coan, T. E.; Commichau, V.; DiBitonto, D.; Ding, J.; Duinker, P.; Djambazov, L.; Easo, S.; Extermann, P.; Fiandrini, E.; Gabbanini, A.; Goldstein, J.; Gougas, A.; Hangarter, K.; Hauviller, C.; Herve, A.; Hofer, M.; Hofer, T.; Hou, S.; Josa, M. I.; Kapustinsky, J. S.; Kim, D.; Kinnison, W. W.; Kirst, H.; Kornis, J.; Krastev, V. R.; Ladron, P.; Landi, G.; Lebeau, M.; Lecomte, P.; Lee, D. M.; Leiste, R.; Lejeune, E.; Lin, W. T.; Lohmann, W.; Marin, A.; Massetti, R.; Mills, G. B.; Nowak, H.; Okle, M.; Passaleva, G.; Paul, T.; Pauluzzi, M.; Pensotti, S.; Perrin, E.; Produit, N.; Rancoita, P. G.; Rattaggi, M.; Richeux, J.-P.; Santocchia, A.; Siedling, R.; Sachwitz, M.; Schmitz, P.; Schöneich, B.; Servoli, L.; Subham, K.; Susinno, G. F.; Terza, G.; Tesi, M.; Thompson, T.; Tonisch, F.; Toth, J.; Trowitzsch, G.; Viertel, G.; Tuchscherer, H.; Vogt, H.; Wang, S.; Waldmeier, S.; Weill, R.; Xu, J.; Yeh, S. C.; Zhou, B.; Zilizi, G.

    1994-12-01

    The design and construction of the silicon strip microvertex detector (SMD) of the L3 experiment at LEP are described. We present the sensors, readout electronics, data acquisition system, mechanical assembly and support, displacement monitoring systems and radiation monitoring system of the recently installed double-sided, double-layered SMD. This detector utilizes novel and sophisticated techniques for its readout.

  5. Strip casting apparatus and method

    DOEpatents

    Williams, R.S.; Baker, D.F.

    1988-09-20

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip. 6 figs.

  6. Strip casting apparatus and method

    DOEpatents

    Williams, Robert S.; Baker, Donald F.

    1988-01-01

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip.

  7. Electronic rumble strip

    NASA Astrophysics Data System (ADS)

    Stauffer, Donald R.; Lenz, James

    1997-02-01

    Single vehicle run-off-road accidents are responsible for significant numbers of injuries and fatalities, and significant property damage. This fact spurs interest in warning systems to alert drivers that vehicles are drifting towards the edge of the road, and that a run-off road accident is imminent. An early attempt at such a warning system is the use of machined grooves on the shoulder to create a rumble strip. Such a system only provides warning, however, as the vehicle actually leaves the traffic lane. More desirable is a system that warns in anticipation of such departure. Honeywell has under development a magnetic lateral guidance system that couples a sensitive magnetoresistive transducer with a magnetic traffic marking tape being developed by 3M. While this development was initially undertaken for use in automated highways, or for special tasks such as guiding snowplow owners, the system can provide an effective, all-weather warning system to provide alert of impending departure from the roadway. This electronic rumble strip is actually a simpler system than the baseline guidance system, and can monitor both distance from the traffic lane edge and the speed of approach to the edge with a low cost sensor.

  8. Front End Spectroscopy ASIC for Germanium Detectors

    NASA Astrophysics Data System (ADS)

    Wulf, Eric

    Large-area, tracking, semiconductor detectors with excellent spatial and spectral resolution enable exciting new access to soft (0.2-5 MeV) gamma-ray astrophysics. The improvements from semiconductor tracking detectors come with the burden of high density of strips and/or pixels that require high-density, low-power, spectroscopy quality readout electronics. CMOS ASIC technologies are a natural fit to this requirement and have led to high-quality readout systems for all current semiconducting tracking detectors except for germanium detectors. The Compton Spectrometer and Imager (COSI), formerly NCT, at University of California Berkeley and the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) at Goddard Space Flight Center utilize germanium cross-strip detectors and are on the forefront of NASA's Compton telescope research with funded missions of long duration balloon flights. The development of a readout ASIC for germanium detectors would allow COSI to replace their discrete electronics readout and would enable the proposed Gamma-Ray Explorer (GRX) mission utilizing germanium strip-detectors. We propose a 3-year program to develop and test a germanium readout ASIC to TRL 5 and to integrate the ASIC readout onto a COSI detector allowing a TRL 6 demonstration for the following COSI balloon flight. Our group at NRL led a program, sponsored by another government agency, to produce and integrate a cross-strip silicon detector ASIC, designed and fabricated by Dr. De Geronimo at Brookhaven National Laboratory. The ASIC was designed to handle the large (>30 pF) capacitance of three 10 cm^2 detectors daisy-chained together. The front-end preamplifier, selectable inverter, shaping times, and gains make this ASIC compatible with a germanium cross-strip detector as well. We therefore have the opportunity and expertise to leverage the previous investment in the silicon ASIC for a new mission. A germanium strip detector ASIC will also require precise timing of the signals at

  9. High-resolution ionization detector and array of such detectors

    DOEpatents

    McGregor, Douglas S.; Rojeski, Ronald A.

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  10. Performance studies of the CMS Strip Tracker before installation

    SciTech Connect

    Adam, W.; et al.

    2009-06-01

    In March 2007 the assembly of the Silicon Strip Tracker was completed at the Tracker Integration Facility at CERN. Nearly 15% of the detector was instrumented using cables, fiber optics, power supplies, and electronics intended for the operation at the LHC. A local chiller was used to circulate the coolant for low temperature operation. In order to understand the efficiency and alignment of the strip tracker modules, a cosmic ray trigger was implemented. From March through July 4.5 million triggers were recorded. This period, referred to as the Sector Test, provided practical experience with the operation of the Tracker, especially safety, data acquisition, power, and cooling systems. This paper describes the performance of the strip system during the Sector Test, which consisted of five distinct periods defined by the coolant temperature. Significant emphasis is placed on comparisons between the data and results from Monte Carlo studies.

  11. Bismuth-based electrochemical stripping analysis

    DOEpatents

    Wang, Joseph

    2004-01-27

    Method and apparatus for trace metal detection and analysis using bismuth-coated electrodes and electrochemical stripping analysis. Both anodic stripping voltammetry and adsorptive stripping analysis may be employed.

  12. Stripped Crater Floor

    NASA Technical Reports Server (NTRS)

    2004-01-01

    10 February 2004 This full-resolution Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows details on the floor of an ancient meteor crater in the northeastern part of Noachis Terra. After the crater formed, layers of material--perhaps sediment--were deposited in the crater. These materials became somewhat solidified, but later were eroded to form the patterns shown here. Many windblown ripples in the scene indicate the presence of coarse-grained sediment that was not completely stripped away by wind. The picture is located near 22.1oS, 307.0oW. Sunlight illuminates this scene from the left/upper left; the image covers an area 3 km (1.9 mi) wide.

  13. Microtube Strip Heat Exchanger

    SciTech Connect

    Doty, F.D.

    1990-12-27

    Doty Scientific (DSI) believes their Microtube-Strip Heat Exchanger will contribute significantly to (a) the closed Brayton cycles being pursued at MIT, NASA, and elsewhere; (b) reverse Brayton cycle cryocoolers, currently being investigated by NASA for space missions, being applied to MRI superconducting magnets; and (c) high-efficiency cryogenic gas separation schemes for CO{sub 2} removal from exhaust stacks. The goal of this current study is to show the potential for substantial progress in high-effectiveness, low-cost, gas-to-gas heat exchangers for diverse applications at temperatures from below 100 K to above 1000 K. To date, the highest effectiveness measured is about 98%, and relative pressure drops below 0.1% with a specific conductance of about 45 W/kgK are reported. During the pre-award period DSI built and tested a 3-module heat exchanger bank using 103-tube microtube strip (MTS) modules. To add to their analytical capabilities, DSI has acquired computational fluid dynamics (CFD) software. This report describes the pre-award work and the status of the ten tasks of the current project, which are: analyze flow distribution and thermal stresses within individual modules; design a heat exchanger bank of ten modules with 400 microtube per module; obtain production quality tubestrip die and AISI 304 tubestrips; obtain production quality microtubing; construct revised MTS heat exchanger; construct dies and fixtures for prototype heat exchanger; construct 100 MTS modules; assemble 8-10 prototype MTS heat exchangers; test prototype MTS heat exchanger; and verify test through independent means. 7 refs., 9 figs. 1 tab. (CK)

  14. Superconducting thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Pietropaolo, A.; Celentano, G.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Salvato, M.; Scherillo, A.; Schooneveld, E. M.; Vannozzi, A.

    2016-09-01

    A neutron detection concept is presented that is based on superconductive niobium nitride (NbN) strips coated by a boron (B) layer. The working principle is well described by a hot spot mechanism: upon the occurrence of the nuclear reactions n + 10B → α + 7Li + 2.8 MeV, the energy released by the secondary particles into the strip induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T below 11K and current-biased below the critical current IC, are driven into the normal state upon thermal neutron irradiation. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed and compared to those of a borated Nb superconducting strip.

  15. Architecture of a silicon strip beam position monitor

    NASA Astrophysics Data System (ADS)

    Angstadt, R.; Cooper, W.; Demarteau, M.; Green, J.; Jakubowski, S.; Prosser, A.; Rivera, R.; Turqueti, M.; Utes, M.; Cai, X.

    2010-12-01

    A collaboration between Fermilab and the Institute for High Energy Physics (IHEP), Beijing, has developed a beam position monitor for the IHEP test beam facility. This telescope is based on 5 stations of silicon strip detectors having a pitch of 60 microns. The total active area of each layer of the detector is about 12x10 cm2. Readout of the strips is provided through the use of VA1` ASICs mounted on custom hybrid printed circuit boards and interfaced to Adapter Cards via copper-over-kapton flexible circuits. The Adapter Cards amplify and level-shift the signal for input to the Fermilab CAPTAN data acquisition nodes for data readout and channel configuration. These nodes deliver readout of triggered events and temperature data to an analysis computer over gigabit Ethernet links.

  16. The D0 silicon micro-strip tracker

    SciTech Connect

    Weber, Michael S.; /Fermilab

    2006-01-01

    The D0 silicon micro-strip tracker (SMT) is part of the D0 upgrade for the Tevatron RunII at Fermilab. The detector has been running successfully since the start of the RunII physics data taking. The tracking and vertexing performance match the expectation from Monte-Carlo studies. An additional inner layer (Layer0) of silicon sensors at R = 1.6cm will be installed in 2005.

  17. Commissioning Measurements of ORRUBA Detectors

    NASA Astrophysics Data System (ADS)

    Matthews, C. T.; Cizewski, J. A.; O'Malley, P. D.; Pain, S. D.

    2008-10-01

    The Oak Ridge Rutgers University Barrel Array (ORRUBA) is a silicon detector array being developed by the Center of Excellence for Stewardship Science at Oak Ridge National Laboratory. The array is comprised of two rings of position-sensitive detectors in a cylindrical setup designed to maximize solid angle coverage for (d,p) measurements in inverse kinematics. Each detector has 4 resistive strips, with readout from each strip-end. At forward angles, detector telescopes are used, comprised of a thin non-resistive detector (65μm) for transmission backed by the thicker resistive detector (1000μm) for stopping, allowing particle identification in addition to measurement of the angle and energy of the detected particles. For commissioning, the profile of each detector must be tested to insure that it is functioning properly, and to understand its optimal bias voltage and energy resolution. Measurements of leakage current profiles, full-depletion voltages and energy resolution measurements have been completed. The details of the array, its motivation and these commissioning measurements will be reported.

  18. Analysis/design of strip reinforced random composites (strip hybrids)

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Advanced analysis methods and composite mechanics were applied to a strip-reinforced random composite square panel with fixed ends to illustrate the use of these methods for the a priori assessment of the composite panel when subjected to complex loading conditions. The panel was assumed to be of E-glass random composite. The strips were assumed to be of three advanced unidirectional composites to cover a range of low, intermediate, and high modulus stiffness. The panels were assumed to be subjected to complex loadings to assess their adequacy as load-carrying members in auto body, aircraft engine nacelle and windmill blade applications. The results show that strip hybrid panels can be several times more structurally efficient than the random composite base materials. Some of the results are presented in graphical form and procedures are described for use of these graphs as guides for preliminary design of strip hybrids.

  19. Analysis/design of strip reinforced random composites /strip hybrids/

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Results are described which were obtained by applying advanced analysis methods and composite mechanics to a strip-reinforced random composite square panel with fixed ends. This was done in order to illustrate the use of these methods for the apriori assessment of the composite panel when subjected to complex loading conditions. The panel was assumed to be of E-Glass/Random Composite. The strips were assumed to be of three advanced unidirectional composites to cover a range of low, intermediate, and high modulus stiffness. The panels were assumed to be subjected to complex loadings to assess their adequacy as load-carrying members in auto body, aircraft engine nacelle, and windmill blade applications. The results show that strip hybrid panels can be several times more structurally efficient than the random composite base materials. Some of the results are presented in graphical form and procedures are described for use of these graphs as guides for preliminary design of strip hybrids.

  20. The lateral tarsal strip revisited. The enhanced tarsal strip.

    PubMed

    Jordan, D R; Anderson, R L

    1989-04-01

    The lateral tarsal strip procedure was originally designed for the treatment of upper and lower eyelid laxity, or lateral canthal tendon laxity or malposition. Despite the excellent results with a standard tarsal strip procedure for those eyelids with laxity and excess skin, we have encountered a number of patients with lower eyelid or canthal malpositions or both who would benefit from a tarsal strip, but who do not have lax tissues (especially skin), and may in fact have a shortage of skin. These include cases of lower lid retraction or canthal malposition following trauma, blepharoplasty, or other operations, and patients with tendency toward or having cicatricial ectropion. Any anterior lamella removal in such patients would aggravate the lid malposition and weaken the lateral canthal tissues to be sutured. We suggest a modification of the tarsal strip (developed by one of us [R.L.A.]) to treat many such patients without requiring additional anterior lamella (skin graft) or more formidable procedures. We refer to this technique as the "enhanced tarsal strip" technique, and we use this technique more frequently than the original tarsal strip procedure.

  1. Mobius Strip underlying Nonlinear Oscillators

    NASA Astrophysics Data System (ADS)

    Lopaz, Edaurdo; Satija, Indubala

    2004-03-01

    Geometrical and topolgocial aspects of phase space orbits of driven nonlinear oscillators are shown to share many features with the circuits on the mobius strips. Most important characteristic shared by nonlinear oscillators and the mobius strip is the first order geometrical phase transition characterized in terms of local variable torsion and the global variable the geometrical phase . These geometrical transitions are geometrical resonances and lead to geometrical localization that underlie not only limit cycles but also the strange attractors.

  2. The Dark Side of the Moebius Strip.

    ERIC Educational Resources Information Center

    Schwarz, Gideon E.

    1990-01-01

    Discussed are various models proposed for the Moebius strip. Included are a discussion of a smooth flat model and two smooth flat algebraic models, some results concerning the shortest Moebius strip, the Moebius strip of least elastic energy, and some observations on real-world Moebius strips. (KR)

  3. Overview of Silicon Detectors in STAR: Present and Future

    SciTech Connect

    Kabana, Sonia; Collaboration: The SVT, SSD and HFT detector groups of the STAR experiment at RHIC

    2011-12-13

    The STAR experiment at RHIC aims to study the QCD phase transition and the origin of the spin of the proton. Its main detector for charged particle track reconstruction is a Time Projection Chamber, which has been supplemented with a silicon detector involving two different technologies, in particular double-sided silicon strip and silicon drift technology. STAR is preparing now for a new Silicon Vertex Detector, using double-sided silicon strip, single-sided silicon strip-pads, and CMOS monolithic active pixel sensors technology, planned to take data in 2014. We give an overview of the design, calibration and performances of the silicon detectors used by the STAR experiment in the past and the expected performances of the future silicon detector upgrade.

  4. SPICE analysis of signal propagation in Si microstrip detectors

    SciTech Connect

    Bacchetta, N.; Bisello, D. |; Candelori, A.; Paccagnella, A. |; Spada, M.; Vanzi, M.

    1995-08-01

    The main DC and AC characteristics of AC-coupled polysilicon-biased silicon microstrip detectors have been measured in order to determine the set of SPICE parameters of these devices based on a RC network. For this purpose each strip has been divided in 200 unit cells and simulations with 5 and 9 strips have been performed. The model is capable of calculating the interstrip and coupling impedance and phase angle in good agreement with experimental results up to a frequency of 1 MHz. The electrical propagation of a current signal simulating the charge pulse of an ionizing particle along the strips has been studied. The role of the input characteristics of the read-out electronics on the detector output signals has been addressed. The signal propagation has been studied also for anomalous working conditions of the detector, such as a strip with a break in the Al film, or disconnected from the read-out electronics.

  5. Characteristics of laminates with delamination control strips

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Goering, J. C.; Alper, J. M.; Gause, L. W.

    1992-01-01

    Tough resin is needed to resist delamination crack propagation. However, modulus often has to be compromised because it is difficult to retain both high modulus and toughness in a matrix material. A potential solution is to use a hybrid system in which tough resin strips are included within a conventional matrix composite. By adjusting the spacing of the tough resin strips, maximum delamination size can be controlled. Experimental results for impact damage and subsequent damage propagation in laminates containing tough resin strips are reported. Plain adhesive strips and fiber-reinforced tough resin composite strips were used in constructing the hybrid laminates. Test results indicated that size of delamination inflicted by impact was confined between the tough resin strips. As a result, significantly increased residual compressive strength was obtained. Impacted laminates containing tough resin strips were also fatigue tested. It was found that these strips reduced the growth of the impact damage area relative to the growth seen in coupons with no tough resin strips. Damage growth from an open hole under tension fatigue was evaluated using both tough resin strips and glass fiber reinforced tough resin strips. Unreinforced tough resin strips retarded delamination growth from the open hole, but did not stop matrix cracks growing in the fiber direction. Fiber reinforced tough resin strips did not contain axial delamination growth from the open hole. However, they did act as crack arresters, stopping the through-the-thickness tension crack originating from the hole.

  6. CdZnTe technology for gamma ray detectors

    SciTech Connect

    Stahle, Carl; Shi, Jack; Shu, Peter; Barthelmy, Scott; Parsons, Ann; Snodgrass, Steve

    1998-01-15

    CdZnTe detector technology has been developed at NASA Goddard for imaging and spectroscopy applications in hard x-ray and gamma ray astronomy. A CdZnTe strip detector array with capabilities for arc second imaging and spectroscopy has been built as a prototype for a space flight gamma ray burst instrument. CdZnTe detectors also have applications for medical imaging, environmental protection, transportation safety, nuclear safeguards and safety, nuclear non-proliferation, and national security. This can be accomplished from space and also from portable detectors on earth. One of the great advantages of CdZnTe is that the detectors can be operated at room temperature which eliminates the need for cryogenic cooling. CdZnTe detectors have good energy resolution (3.6 keV at 60 keV) and excellent spatial resolution (<100 microns). NASA Goddard has developed the fabrication technology to make a variery of planar, strip, and pixel detectors and integrated these detectors to high density electronics. We have built a 2x2 and a large area (60 cm{sup 2}, 36 detectors) 6x6 strip detector array. This paper will summarize the CdZnTe detector fabrication and packaging technology developed at Goddard.

  7. Status of the CDF silicon detector

    SciTech Connect

    Grinstein, Sebastian; /Harvard U.

    2006-05-01

    The CDF Run II silicon micro-strip detector is an essential part of the heavy flavor tagging and forward tracking capabilities of the experiment. Since the commissioning period ended in 2002, about 85% of the 730 k readout channels have been consistently provided good data. A summary of the recent improvements in the DAQ system as well as experience of maintaining and operating such a large, complex detector are presented.

  8. CMS muon detector and trigger performance

    NASA Astrophysics Data System (ADS)

    Park, Sung Keun; CMS Collaboration

    2011-06-01

    The CMS muon system has been in full operation since its commissioning with several million events of cosmic ray data. The muon system of the CMS experiment consists of three independent detectors: Resistive Plate Chambers (RPCs) both in the barrel and the endcap, Drift Tubes (DTs) in the barrel, and Cathode Strip Chambers (CSCs) in the endcap region. In this report, the performance of each of these muon detectors and their trigger response are presented.

  9. A 3D CZT high resolution detector for x- and gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Kuvvetli, I.; Budtz-Jørgensen, C.; Zappettini, A.; Zambelli, N.; Benassi, G.; Kalemci, E.; Caroli, E.; Stephen, J. B.; Auricchio, N.

    2014-07-01

    At DTU Space we have developed a high resolution three dimensional (3D) position sensitive CZT detector for high energy astronomy. The design of the 3D CZT detector is based on the CZT Drift Strip detector principle. The position determination perpendicular to the anode strips is performed using a novel interpolating technique based on the drift strip signals. The position determination in the detector depth direction, is made using the DOI technique based the detector cathode and anode signals. The position determination along the anode strips is made with the help of 10 cathode strips orthogonal to the anode strips. The position resolutions are at low energies dominated by the electronic noise and improve therefore with increased signal to noise ratio as the energy increases. The achievable position resolution at higher energies will however be dominated by the extended spatial distribution of the photon produced ionization charge. The main sources of noise contribution of the drift signals are the leakage current between the strips and the strip capacitance. For the leakage current, we used a metallization process that reduces the leakage current by means of a high resistive thin layer between the drift strip electrodes and CZT detector material. This method was applied to all the proto type detectors and was a very effective method to reduce the surface leakage current between the strips. The proto type detector was recently investigated at the European Synchrotron Radiation Facility, Grenoble which provided a fine 50 × 50 μm2 collimated X-ray beam covering an energy band up to 600 keV. The Beam positions are resolved very well with a ~ 0.2 mm position resolution (FWHM ) at 400 keV in all directions.

  10. The Perils of Strip Searches.

    ERIC Educational Resources Information Center

    Trotter, Andrew

    1995-01-01

    Every year, a few administrators mishandle school searches and create spectacles similar to the New Castle, Pennsylvania, incident involving six illegally strip-searched students. Principals using "cops-and-robber" techniques to unearth contraband may not realize the potential for infringing on students' constitutional privacy rights. Strip…

  11. Bimaterial Thermal Strip With Increased Flexing

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D.

    1994-01-01

    In proposed bimaterial thermal strip, one layer has negative coefficient of thermal expansion, thereby increasing difference between coefficients of thermal expansion of two outer layers and consequently increasing flexing caused by change in temperature. Proposed bimaterial strips used in thermostats.

  12. Small area detectors at the European XFEL

    NASA Astrophysics Data System (ADS)

    Turcato, M.; Gessler, P.; Hauf, S.; Kuster, M.; Meyer, M.; Nordgren, J.; Sztuk-Dambietz, J.; Youngman, C.

    2014-05-01

    The detectors to be used at the European XFEL have to deal with the unique time structure of the machine, delivering up to 2700 pulses, with a repetition rate of 4.5 MHz, ten times per second, the very high photon flux and the need to combine single-photon sensitivity and a large dynamic range. This represents a challenge not only for the large-area 2D imaging detectors but also for the smaller-area detectors and makes the use of standard commercial devices impossible. Dedicated solutions are therefore envisaged for small imaging- or strip-detectors. In this contribution the focus is put on two particular small-area detector solutions which are planned to be used at the European XFEL, a strip detector for hard X-rays (with energy 3 < E < 25 keV) and an imaging detector for soft X-rays (0.25 < E < 3 keV). Hard X-rays photon-beam diagnostics as well as hard X-ray absorption and emission spectroscopy at the European XFEL make use of strip detectors as detectors for beam spectrometers or as energy-dispersive detectors in combination with an energy-dispersive element. The European XFEL is establishing cooperation with the Paul Scherrer Institute in Villigen to develop a new version of the Gotthard detector best suited to the European XFEL needs. The use case and the required detector specifications are illustrated. Starting from the present detector version, the modifications planned to adapt it to the European XFEL running conditions are described. These include the capability of running at an increased rate and to provide a veto signal to the large 2D imaging detectors, in order to be able to remove non-interesting images already at early stages of the DAQ system. In another particular application, resonant inelastic X-ray scattering, a Micro-Channel Plate detector matched to a delay-line readout is foreseen to be used. In this case the European XFEL is aiming for a highly customized solution provided by the German company Surface Concept. The use case is described

  13. Air stripping for treatment of produced water

    SciTech Connect

    Fang, C.S.; Lin, J.H.

    1988-05-01

    In a laboratory study, air stripping shows a promising potential for treatment of produced water to meet new government regulations on total organic carbon (TOC). Reservoir hydrocarbons dissolved in water, such as volatile paraffins and aromatics, can be removed by air stripping through interphase mass transfer. However, air stripping cannot remove many chemicals added to crude oil by the operator.

  14. 33 CFR 157.128 - Stripping system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Stripping system. 157.128 Section... of the following devices for stripping oil from each cargo tank: (1) A positive displacement pump. (2... positive displacement pump or a self-priming centrifugal pump, the stripping system must have the...

  15. 33 CFR 157.128 - Stripping system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Stripping system. 157.128 Section... of the following devices for stripping oil from each cargo tank: (1) A positive displacement pump. (2... positive displacement pump or a self-priming centrifugal pump, the stripping system must have the...

  16. Using Comic Strips in Language Classes

    ERIC Educational Resources Information Center

    Csabay, Noémi

    2006-01-01

    The author believes that using comic strips in language-learning classes has three main benefits. First, comic strips motivate younger learners. Second, they provide a context and logically connected sentences to help language learning. Third, their visual information is helpful for comprehension. The author argues that comic strips can be used in…

  17. Construction of two large-size four-plane micromegas detectors

    NASA Astrophysics Data System (ADS)

    Bianco, Michele; Danielsson, Hans; Degrange, Jordan; Düdder, Andreas; De Oliveira, Rui; Farina, Edoardo; Kuger, Fabian; Iengo, Paolo; Perez Gomez, Francisco; Lin, Tai-Hua; Schott, Matthias; Sekhniaidze, Givi; Sforza, Federico; Sidiropoulou, Ourania; Valderanis, Chrysostomos; Vergain, Maurice; Wotschack, Jörg

    2016-04-01

    We report on the construction and initial performance studies of two micromegas detector quadruplets with an area of 0.3 m2. They serve as prototypes for the planned upgrade project of the ATLAS muon system. Their design is based on the resistive-strip technology and thus renders the detectors spark tolerant. Each quadruplet comprises four detection layers with 1024 readout strips and a strip pitch of 415 μm. In two out of the four layers the strips are inclined by±1.5° to allow for the measurement of a second coordinate. We present the detector concept and report on the experience gained during the detector construction. In addition an evaluation of the detector performance with cosmic rays and test-beam data is given.

  18. Transmutation detectors

    NASA Astrophysics Data System (ADS)

    Viererbl, L.; Lahodová, Z.; Klupák, V.; Sus, F.; Kučera, J.; Kůs, P.; Marek, M.

    2011-03-01

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  19. Fast variation method for elastic strip calculation.

    PubMed

    Biryukov, Sergey V

    2002-05-01

    A new, fast, variation method (FVM) for determining an elastic strip response to stresses arbitrarily distributed on the flat side of the strip is proposed. The remaining surface of the strip may have an arbitrary form, and it is free of stresses. The FVM, as well as the well-known finite element method (FEM), starts with the variational principle. However, it does not use the meshing of the strip. A comparison of FVM results with the exact analytical solution in the special case of shear stresses and a rectangular strip demonstrates an excellent agreement.

  20. Antenna structure with distributed strip

    DOEpatents

    Rodenbeck, Christopher T.

    2008-10-21

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  1. Antenna structure with distributed strip

    DOEpatents

    Rodenbeck, Christopher T.

    2008-03-18

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  2. The vertex detector for the Lepton/Photon collaboration

    SciTech Connect

    Sullivan, J.P.; Boissevain, J.G.; Fox, D.; Hecke, H. van; Jacak, B.V.; Kapustinsky, J.S.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Sondheim, W.E.

    1991-12-31

    The conceptual design of the vertex detector for the Lepton/Photon Collaboration at RHIC is described, including simulations of its expected performance. The design consists of two con- centric layers of single-sided Si strips. The expected performance as a multiplicity detector and in measuring the pseudo-rapidity ({nu}) distribution is discussed as well as the expected vertex finding efficiency and accuracy. Various options which could be used to reduce the cost of the detector are also discussed.

  3. The vertex detector for the Lepton/Photon Collaboration

    SciTech Connect

    Sullivan, J.P.; Boissevain, J.G.; Fox, D.; van Hecke, H.; Jacak, B.V.; Kapustinsky, J.S.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Sondheim, W.E.

    1991-12-31

    The conceptual design of the vertex detector for the Lepton/Photon Collaboration at RHIC is described, including simulations of its expected performance. The design consists of two concentric layers of single-sided Si strips. The expected performance as a multiplicity detector and in measuring the pseudo-rapidity {eta} distribution is discussed as well as the expected vertex finding efficiency and accuracy. Various options which could be used to reduce the cost of the detector are also discussed.

  4. Optimization of Strip Isolation for Silicon Sensors

    NASA Astrophysics Data System (ADS)

    Valentan, M.; Bergauer, T.; Dragicevic, M.; Friedl, M.; Irmler, C.; Huemer, E.; Treberspurg, W.

    Precision machines like electron-positron-colliders and b-factories demand for low material budget and high position resolution when it comes to particle tracking. A low material budget can be achieved by using thin double-sided silicon detectors (DSSDs) and lightweight construction. Since thin sensors give low signals, one has to be very careful to achieve high charge collection efficiency, which requires an appropriate sensor design. In this paper we present a detailed investigation of different p-stop patterns used for strip isolation on the n-side of double-sided microstrip sensors with n-type bulk. We designed test sensors featuring the common p-stop, the atoll p-stop and a combined p-stop pattern, and for every pattern four different geometric layouts were considered. These sensors were tested at the Super Proton Synchrotron (SPS) at CERN (Geneva, Switzerland) in a 120 GeV/c hadron beam. Then they were irradiated to 700 kGy with a 60Co source and subsequently tested in the same beam as before. One geometric layout of the atoll p-stop pattern turned out to perform best, both before and after irradiation. The conclusions of these tests will be applied to the design of DSSDs for the Belle II experiment at KEK (Tsukuba, Japan).

  5. MCP detector development for WSO-UV

    NASA Astrophysics Data System (ADS)

    Diebold, Sebastian; Barnstedt, Jürgen; Elsener, Hans-Rudolf; Ganz, Philipp; Hermanutz, Stephan; Kalkuhl, Christoph; Kappelmann, Norbert; Pfeifer, Marc; Schaadt, Daniel; Schanz, Thomas; Tanirah, Omar; Werner, Klaus

    2012-09-01

    The spectrographs of WSO-UV cover the wavelength range of 102 - 310 nm. The essential requirements for the associated detectors are high quantum effciency, solar blindness, and single photon detection. To achieve this, we develop a microchannel plate detector in a sealed tube. We plan to use cesium activated gallium nitride as semitransparent photocathode, a stack of two microchannel plates and a cross strip anode with advanced readout electronics. Challenges are the degradation of the photocathode under atmospheric conditions and the sealing process. We present the detector concept, details of the transfer and sealing processes under UHV, and the current status.

  6. The ZEUS micro-vertex detector

    NASA Astrophysics Data System (ADS)

    Chiochia, V.; ZEUS MVD Group

    2003-03-01

    During the HERA luminosity shutdown period 2000/2001 the tracking system of the ZEUS experiment has been upgraded with a silicon micro-vertex detector. The barrel part of the detector consists of three layers of single-sided silicon strip detectors, while the forward section is composed of four wheels. In this report we shortly present the assembly procedure and in more details the test beam results on the spatial resolution of half modules. The first results of a cosmic ray test are presented and the radiation monitor system is described.

  7. Spectral response of multi-element silicon detectors

    SciTech Connect

    Ludewigt, B.A.; Rossington, C.S.; Chapman, K.

    1997-04-01

    Multi-element silicon strip detectors, in conjunction with integrated circuit pulse-processing electronics, offer an attractive alternative to conventional lithium-drifted silicon Si(Li) and high purity germanium detectors (HPGe) for high count rate, low noise synchrotron x-ray fluorescence applications. One of the major differences between the segmented Si detectors and the commercially available single-element Si(Li) or HPGe detectors is that hundreds of elements can be fabricated on a single Si substrate using standard silicon processing technologies. The segmentation of the detector substrate into many small elements results in very low noise performance at or near, room temperature, and the count rate of the detector is increased many-fold due to the multiplication in the total number of detectors. Traditionally, a single channel of detector with electronics can handle {approximately}100 kHz count rates while maintaining good energy resolution; the segmented detectors can operate at greater than MHz count rates merely due to the multiplication in the number of channels. One of the most critical aspects in the development of the segmented detectors is characterizing the charge sharing and charge loss that occur between the individual detector strips, and determining how these affect the spectral response of the detectors.

  8. Compton imager using room temperature silicon detectors

    NASA Astrophysics Data System (ADS)

    Kurfess, James D.; Novikova, Elena I.; Phlips, Bernard F.; Wulf, Eric A.

    2007-08-01

    We have been developing a multi-layer Compton Gamma Ray Imager using position-sensitive, intrinsic silicon detectors. Advantages of this approach include room temperature operation, reduced Doppler broadening, and use of conventional silicon fabrication technologies. We have obtained results on the imaging performance of a multi-layer instrument where each layer consists of a 2×2 array of double-sided strip detectors. Each detector is 63 mm×63 mm×2 mm thick and has 64 strips providing a strip pitch of approximately 0.9 mm. The detectors were fabricated by SINTEF ICT (Oslo Norway) from 100 mm diameter wafers. The use of large arrays of silicon detectors appears especially advantageous for applications that require excellent sensitivity, spectral resolution and imaging such as gamma ray astrophysics, detection of special nuclear materials, and medical imaging. The multiple Compton interactions (three or more) in the low-Z silicon enable the energy and direction of the incident gamma ray to be determined without full deposition of the incident gamma-ray energy in the detector. The performance of large volume instruments for various applications are presented, including an instrument under consideration for NASA's Advanced Compton Telescope (ACT) mission and applications to Homeland Security. Technology developments that could further extend the sensitivity and performance of silicon Compton Imagers are presented, including the use of low-energy (few hundred keV) electron tracking within novel silicon detectors and the potential for a wafer-bonding approach to produce thicker, position-sensitive silicon detectors with an associated reduction of required electronics and instrument cost.

  9. Rapid immunochromatographic test strip to detect swimming crab Portunus trituberculatus reovirus.

    PubMed

    Zhang, LiPing; Li, DengFeng; Liu, LianGuo; Zhang, Ge

    2015-11-17

    Swimming crab reovirus (SCRV) is the causative agent of a serious disease with high mortality in cultured Portunus trituberculatus. A rapid immunochromatographic assay (ICA) was developed in a competitive assay format and optimized for the detection of SCRV. The gold probe-based ICA test comprised SCRV antigen and goat anti-chicken egg yolk antibody (IgY) sprayed onto a nitrocellulose membrane as the test line and control line, respectively. IgY-gold complexes were deposited onto the conjugate pad as detector reagents. The method showed high specificity with no cross-reactivity with other related aquatic pathogens. The detection limit of the ICA strip was 50 µg ml⁻¹. To evaluate the performance of the ICA test, the strip and an enzyme-linked immunosorbent assay (ELISA) were applied to the same samples (n = 90 crabs). The strip successfully detected SCRV in all of the artificially infected samples. Furthermore, the ICA strip and ELISA tests had high consistency (98.28%). The strip assay requires no instruments and has a detection time of less than 10 min. It is portable and easy to perform in the field. These results indicated that the developed strip could be a promising on-site tool for screening pooled crabs to confirm SCRV infection or disease outbreaks. PMID:26575153

  10. Strip Velocity Measurements for Gated X-Ray Imagers Using Short Pulse Lasers

    SciTech Connect

    Ross, P. W.; Cardenas, M.; Griffin, M.; Mead, A.; Silbernagel, C. T.; Bell, P.; Haque, S. H.

    2013-09-01

    Strip velocity measurements of gated X-ray imagers are presented using an ultra-short pulse laser. Obtaining time-resolved X-ray images of inertial confinement fusion shots presents a difficult challenge. One diagnostic developed to address this challenge is the gated X-ray imagers. The gated X-ray detectors (GXDs) developed by Lawrence Livermore National Laboratory and Los Alamos National Laboratory use a microchannel plate (MCP) coated with a gold strip line, which serves as a photocathode. GXDs are used with an array of pinholes, which image onto various parts of the GXD image plane. As the pulse sweeps over the strip lines, it creates a time history of the event with consecutive images. In order to accurately interpret the timing of the images obtained using the GXDs, it is necessary to measure the propagation of the pulse over the strip line. The strip velocity was measured using a short pulse laser with a pulse duration of approximately 1-2 ps. The 200nm light from the laser is used to illuminate the GXD MCP. The laser pulse is split and a retroreflective mirror is used to delay one of the legs. By adjusting the distance to the mirror, one leg is temporally delayed compared to the reference leg. The retroreflective setup is calibrated using a streak camera with a 1 ns full sweep. Resolution of 0.5 mm is accomplished to achieve a temporal resolution of ~5 ps on the GXD strip line.

  11. Robotic sensors for aircraft paint stripping

    NASA Astrophysics Data System (ADS)

    Weniger, Richard J.

    1990-10-01

    Aircraft of all types need to have paint routinely removed from their outer surfaces. Any method needs to be controlled to remove all the paint and not damage the surface of the aircraft. Human operators get bored with the monotonous task of stripping paint from an aircraft and thus do not control the process very well. This type of tedious operation tends itself to robotics. A robot that strips paint from aircraft needs to have feedback as to the state of the stripping process, its location in respect to the aircraft, and the availability of stripping material. This paper describes the sensors used on the paint stripping robot being developed for the United States Air Force's Manufacturing Technology Program. Particular attention is given to the paint sensor which is the feedback element for determining the state of the stripping process.

  12. Buffer strips in composites at elevated temperature

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1983-01-01

    The composite material 'buffer strip' concept is presently investigated at elevated temperatures for the case of graphite/polyimide buffer strip panels using a (45/0/45/90)2S layup, where the buffer strip material was 0-deg S-glass/polyimide. Each panel was loaded in tension until it failed, and radiographs and crack opening displacements were recorded during the tests to determine fracture onset, fracture arrest, and the extent of damage in the buffer strip after crack arrest. At 177 + or - 3 C, the buffer strips increased the panel strength by at least 40 percent in comparison with panels without buffer strips. Compared to similar panels tested at room temperature, those tested at elevated temperature had lower residual strengths, but higher failure strains.

  13. Quantifiable Lateral Flow Assay Test Strips

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As easy to read as a home pregnancy test, three Quantifiable Lateral Flow Assay (QLFA) strips used to test water for E. coli show different results. The brightly glowing control line on the far right of each strip indicates that all three tests ran successfully. But the glowing test line on the middle left and bottom strips reveal their samples were contaminated with E. coli bacteria at two different concentrations. The color intensity correlates with concentration of contamination.

  14. Method of stripping metals from organic solvents

    DOEpatents

    Todd, Terry A.; Law, Jack D.; Herbst, R. Scott; Romanovskiy, Valeriy N.; Smirnov, Igor V.; Babain, Vasily A.; Esimantovski, Vyatcheslav M.

    2009-02-24

    A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.

  15. Strip of heat-recoverable articles

    SciTech Connect

    McLoughlin, R.H.; Kirkham, S.W.

    1985-01-29

    A strip of hollow heat-recoverable articles formed side-by-side by tear welding two lengths of polymeric material together at intervals so that individual articles may be torn off. A preferred method of making the strip involves cross-linking after the tear welding, heating the strip, and inflating the hollow articles to render them heat-recoverable by introducing pressure via an interconnecting passage formed for that purpose during the tear welding.

  16. Ammonia stripping of biologically treated liquid manure.

    PubMed

    Alitalo, Anni; Kyrö, Aleksis; Aura, Erkki

    2012-01-01

    A prerequisite for efficient ammonia removal in air stripping is that the pH of the liquid to be stripped is sufficiently high. Swine manure pH is usually around 7. At pH 7 (at 20°C), only 0.4% of ammonium is in ammonia form, and it is necessary to raise the pH of swine slurry to achieve efficient ammonia removal. Because manure has a very high buffering capacity, large amounts of chemicals are needed to change the slurry pH. The present study showed that efficient air stripping of manure can be achieved with a small amount of chemicals and without strong bases like NaOH. Slurry was subjected to aerobic biological treatment to raise pH before stripping. This facilitated 8 to 32% ammonia removal without chemical treatment. The slurry was further subjected to repeated cycles of stripping with MgO and Ca(OH)(2) additions after the first and second strippings, respectively, to raise slurry pH in between the stripping cycles. After three consecutive stripping cycles, 59 to 86% of the original ammonium had been removed. It was shown that the reduction in buffer capacity of the slurry was due to ammonia and carbonate removal during the stripping cycles.

  17. Smoke Detector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo, Fire Chief Jay Stout of Safety Harbor, Florida, is explaining to young Richard Davis the workings of the Honeywell smoke and fire detector which probably saved Richard's life and that of his teen-age brother. Alerted by the detector's warning, the pair were able to escape their burning home. The detector in the Davis home was one of 1,500 installed in Safety Harbor residences in a cooperative program conducted by the city and Honeywell Inc.

  18. Development and testing of novel stripixel detectors for the silicon vertex tracker at PHENIX

    NASA Astrophysics Data System (ADS)

    Haegemann, C.; Hoeferkamp, M.; Fields, D. E.; Zimmerman, A.; Turner, J.; Malik, M.; Edans, L.

    2005-12-01

    As a part of the upgrades for the PHENIX detector at RHIC,a silicon vertex tracking detector is planned. This detector will consist of two pixel layers followed by two strip-pixel layers in the barrel region,an d four mini-strip layers in the endcap region. As a part of the development phase of the vertex detector, we have set up three sensor testing facilities at Brookhaven National Laboratory, at State University of New York, Stonybrook, and at University of New Mexico to characterize the preproduction sensors, and develop our testing and quality assurance plans. Preliminary results from these test are presented here.

  19. Bonded orthotropic strips with cracks

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1979-01-01

    The elastostatic problem for a nonhomogeneous plane which consists of two sets of periodically arranged dissimilar orthotropic strips is considered. It is assumed that the plane contains a series of collinear cracks perpendicular to the interfaces and is loaded in tension away from and perpendicular to the cracks. The problem of cracks fully imbedded into the homogeneous strips is considered. The singular behavior of the stresses for two special crack geometries is studied. The first is the case of a broken laminate in which the crack tips touch the interfaces. The second is the case of cracks crossing the interfaces. An interesting result found from the analysis of the latter is that for certain orthotropic material combinations the stress state at the point of intersection of a crack and an interface may be bounded whereas in isotropic materials at this point stresses are always singular. A number of numerical examples are worked out to separate the primary material parameters influencing the stress intensity factors and the powers of stress singularity, and to determine the trends regarding the influence of the secondary parameters. Some numerical results are given for the stress intensity factors in certain basic crack geometries and for typical material combinations.

  20. The Whipple Strip Sky Survey

    NASA Astrophysics Data System (ADS)

    Kertzman, M. P.

    As part of the normal operation of the Whipple 10m Gamma Ray telescope, ten minute drift scan “zenith” runs are made each night of observation for use as calibration. Most of the events recorded during a zenith run are due to the background of cosmic ray showers. However, it would be possible for a hitherto unknown source of gamma rays to drift through the field. This paper reports the results of a search for serendipitous high energy gamma ray sources in the Whipple 10m nightly calibration zenith data. From 2000-2004 nightly calibration runs were taken at an elevation of 89 º. A 2- D analysis of these drift scan runs produces a strip of width ~ 3.5º in declination and spanning the full range of right ascension. In the 2004-05 observing season the calibration runs were taken at elevations of 86° and 83°. Beginning in the 2005-06 season, the nightly calibration runs were taken at an elevation of 80º. Collectively, these drift scans cover a strip approximately 12.5º wide in declination, centered at declination 37.18º, and spanning the full range of RA. The analysis procedures developed for drift scan data, the sensitivity of the method, and the results will be presented.

  1. The CMS Tracker Detector Control System

    NASA Astrophysics Data System (ADS)

    Yousaf Shah, S.; Tsirou, Andromachi; Verdini, Piero Giorgio; Hartmann, Frank; Masetti, Lorenzo; Dirkes, Guido H.; Stringer, Robert; Fahrer, Manuel

    2009-06-01

    The Compact Muon Solenoid DCS (CMS) Silicon Strip Tracker is by far the largest detector ever built in micro-strip technology. It has an active surface area of 198 m 2 consisting of 15,148 silicon modules with 9,316,352 readout channels read via 75,376 Analog Pipeline Voltage (APV) front-end chips and a total of 24,244 sensors. The Detector Control System (DCS) for the Tracker is a distributed control system that operates ˜2000 power supplies for the silicon modules and also monitors its environmental sensors. The DCS receives information from about 10 3 environmental probes (temperature and humidity sensors) located inside the detector's volume and values from these probes are driven through the Programmable Logic Controllers (PLC) of the Detector Safety System (DSS). A total of 10 5 parameters are read out from the dedicated chips in the front-end electronics of the detector via the data acquisition system, and a total of 10 5 parameters are read from the power supply modules. All these parameters are monitored, evaluated and correlated with the detector layout; actions are taken under specific conditions. The hardware for DCS consists of 10 PCs and 10 PLC systems that are continuously running the necessary control and safety routines. The DCS is a fundamental tool for the Tracker operation and its safety.

  2. Optical Detectors

    NASA Astrophysics Data System (ADS)

    Goushcha, Alexander; Tabbert, Bernd

    Optical detectors are applied in all fields of human activities - from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  3. Optical Detectors

    NASA Astrophysics Data System (ADS)

    Tabbert, Bernd; Goushcha, Alexander

    Optical detectors are applied in all fields of human activities from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  4. Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter

    DOE PAGES

    Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; et al

    2014-11-01

    A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45 × 10 × 3 mm³ plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. A number of possible design improvements were identified, which should be implemented in a future detector of thismore » type. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques.« less

  5. Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter

    SciTech Connect

    Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Eigen, G.; Mikami, Y.; Watson, N. K.; Thomson, M. A.; Ward, D. R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dotti, A.; Folger, G.; Ivantchenko, V.; Ribon, A.; Uzhinskiy, V.; Cârloganu, C.; Gay, P.; Manen, S.; Royer, L.; Tytgat, M.; Zaganidis, N.; Blazey, G. C.; Dyshkant, A.; Lima, J. G.R.; Zutshi, V.; Hostachy, J. -Y.; Morin, L.; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Garutti, E.; Laurien, S.; Lu, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Schultz-Coulon, H. -Ch.; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Sudo, Y.; Yoshioka, T.; Dauncey, P. D.; Wing, M.; Salvatore, F.; Cortina Gil, E.; Mannai, S.; Baulieu, G.; Calabria, P.; Caponetto, L.; Combaret, C.; Della Negra, R.; Grenier, G.; Han, R.; Ianigro, J. -C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Vander Donckt, M.; Zoccarato, Y.; Calvo Alamillo, E.; Fouz, M. -C.; Puerta-Pelayo, J.; Corriveau, F.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Besson, D.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Tikhomirov, V.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Weuste, L.; Amjad, M. S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Fleury, J.; Frisson, T.; van der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch.; Pöschl, R.; Raux, L.; Rouëné, J.; Seguin-Moreau, N.; Anduze, M.; Balagura, V.; Boudry, V.; Brient, J. -C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Magniette, F.; Musat, G.; Ruan, M.; Tran, T. H.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Kotera, K.; Ono, H.; Takeshita, T.; Uozumi, S.; Jeans, D.; Chang, S.; Khan, A.; Kim, D. H.; Kong, D. J.; Oh, Y. D.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2014-11-01

    A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45 × 10 × 3 mm³ plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. A number of possible design improvements were identified, which should be implemented in a future detector of this type. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques.

  6. Smooth Muscle Strips for Intestinal Tissue Engineering

    PubMed Central

    Walthers, Christopher M.; Lee, Min; Wu, Benjamin M.; Dunn, James C. Y.

    2014-01-01

    Functionally contracting smooth muscle is an essential part of the engineered intestine that has not been replicated in vitro. The purpose of this study is to produce contracting smooth muscle in culture by maintaining the native smooth muscle organization. We employed intact smooth muscle strips and compared them to dissociated smooth muscle cells in culture for 14 days. Cells isolated by enzymatic digestion quickly lost maturity markers for smooth muscle cells and contained few enteric neural and glial cells. Cultured smooth muscle strips exhibited periodic contraction and maintained neural and glial markers. Smooth muscle strips cultured for 14 days also exhibited regular fluctuation of intracellular calcium, whereas cultured smooth muscle cells did not. After implantation in omentum for 14 days on polycaprolactone scaffolds, smooth muscle strip constructs expressed high levels of smooth muscle maturity markers as well as enteric neural and glial cells. Intact smooth muscle strips may be a useful component for engineered intestinal smooth muscle. PMID:25486279

  7. Ultrasonic examination of JBK-75 strip material

    SciTech Connect

    Cook, K.V.; Cunningham, R.A. Jr.; Lewis, J.C.; McClung, R.W.

    1982-12-01

    An ultrasonic inspection system was assembled to inspect the JBK-75 stainless steel sheath material (for the Large Coil Project) for the Westinghouse-Airco superconducting magnet program. The mechanical system provided for handling the 180-kg (400-lb) coils of strip material (1.6 mm thick by 78 mm wide by 90 to 120 m long (0.064 by 3.07 in. by 300 to 400 ft)), feeding the strip through the ultrasonic inspection and cleaning stations, and respooling the coils. We inspected 54 coils of strip for both longitudinal and laminar flaws. Simulated flaws were used to calibrate both inspections. Saw-cut notches (0.28 mm deep (0.011 in., about 17% of the strip thickness)) were used to calibrate the longitudinal flaw inspections; 1.59-mm-diam (0.063-in.) flat-bottom holes drilled halfway through a calibration strip were used to calibrate the laminar flaw tests.

  8. Topological detector: measuring continuous dosimetric quantities with few-element detector array

    NASA Astrophysics Data System (ADS)

    Han, Zhaohui; Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2016-08-01

    A prototype topological detector was fabricated and investigated for quality assurance of radiation producing medical devices. Unlike a typical array or flat panel detector, a topological detector, while capable of achieving a very high spatial resolution, consists of only a few elements and therefore is much simpler in construction and more cost effective. The key feature allowing this advancement is a geometry-driven design that is customized for a specific dosimetric application. In the current work, a topological detector of two elements was examined for the positioning verification of the radiation collimating devices (jaws, MLCs, and blades etc). The detector was diagonally segmented from a rectangular thin film strip (2.5 cm  ×  15 cm), giving two contiguous but independent detector elements. The segmented area was the central portion of the strip measuring 5 cm in length. Under irradiation, signals from each detector element were separately digitized using a commercial multichannel data acquisition system. The center and size of an x-ray field, which were uniquely determined by the collimator positions, were shown mathematically to relate to the difference and sum of the two signals. As a proof of concept, experiments were carried out using slit x-ray fields ranging from 2 mm to 20 mm in size. It was demonstrated that, the collimator positions can be accurately measured with sub-millimeter precisions.

  9. Position resolution of a double junction superconductive detector based on a single material

    NASA Astrophysics Data System (ADS)

    Samedov, V. V.

    2008-02-01

    The Naples group from Istituto Nazionale di Fisica Nucleare presented the results of theoretical investigations of a new class of superconductive radiation detectors - double junction superconductive detector based on a single material [1]. In such detectors, the absorption of energy occurs in a long superconductive strip while two superconductive tunnel junctions positioned at the ends of the strip provide the readout of the signals. The main peculiarity of this type of detectors is that they are based on a single superconducting material, i.e., without trapping layers at the ends of the strip. In this paper, general approach to the position resolution of this type of detectors has been attempted. The formula for the position resolution is derived. It is shown that the application of the aluminium for the absorber may be the best possible way not only due to the small gap energy, but also mainly for STJ fabrication technology based on the aluminium oxide tunnel barrier.

  10. Prototype Performance of Novel Muon Telescope Detector at STAR.

    SciTech Connect

    Ruan,L.

    2008-04-05

    Research on a large-area, cost-effective Muon Telescope Detector (MTD) has been carried out for RHIC and for next generation detectors at future QCD Lab. We utilize state-of-the-art multi-gap resistive plate chambers with large modules and long readout strips in detector design. The results from cosmic ray and beam test will be presented to address intrinsic timing and spatial resolution for a Long-MRPC. The prototype performance of a novel muon telescope detector at STAR will be reported, including muon identification capability, timing and spatial resolution.

  11. Prototype performance of novel muon telescope detector at STAR

    SciTech Connect

    Ruan,L.; Ames, V.

    2008-02-04

    Research on a large-area, cost-effective Muon Telescope Detector has been carried out for RHIC and for next generation detectors at future QCD Lab. We utilize state-of-the-art multi-gap resistive plate chambers with large modules and long readout strips in detector design [l]. The results from cosmic ray and beam test will be presented to address intrinsic timing and spatial resolution for a Long-MRF'C. The prototype performance of a novel muon telescope detector at STAR will be reported, including muon identification capability, timing and spatial resolution.

  12. Gaseous Detectors

    NASA Astrophysics Data System (ADS)

    Titov, Maxim

    Since long time, the compelling scientific goals of future high-energy physics experiments were a driving factor in the development of advanced detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the development of a fully parallel readout for a large array of sensing elements - the Multi-Wire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel prize in physics in 1992. Since that time radiation detection and imaging with fast gaseous detectors, capable of economically covering large detection volumes with low mass budget, have been playing an important role in many fields of physics. Advances in photolithography and microprocessing techniques in the chip industry during the past decade triggered a major transition in the field of gas detectors from wire structures to Micro-Pattern Gas Detector (MPGD) concepts, revolutionizing cell-size limitations for many gas detector applications. The high radiation resistance and excellent spatial and time resolution make them an invaluable tool to confront future detector challenges at the next generation of colliders. The design of the new micro-pattern devices appears suitable for industrial production. Novel structures where MPGDs are directly coupled to the CMOS pixel readout represent an exciting field allowing timing and charge measurements as well as precise spatial information in 3D. Originally developed for the high-energy physics, MPGD applications have expanded to nuclear physics, photon detection, astroparticle and neutrino physics, neutron detection, and medical imaging.

  13. Design and characterization of the BVX: An 8-channel CMOS preamplifier-shaper for silicon strips

    SciTech Connect

    Britton, C.L. Jr.; Alley, G.T.; Simpson, M.L.; Wintenberg, A.L.; Yarema, R.J.; Zimmerman, T.; Boissevain, J.; Collier, W.; Jacak, B.V.; Simon-Gillo, J.; Sondheim, W.; Sullivan, J.P.; Lockyer, N.

    1992-12-31

    This paper presents the design and characterization of an 8channel preamplifier-shaper intended for use with silicon strip detectors ranging in capacitance from 1 to 20pF. The nominal peaking time of the circuit is 200ns with an adjustment range of {plus_minus}50ns. The circuit has a pitch (width) of 84{mu}channel with a power dissipation of 1.2mW/channel and has been fabricated in 2{mu}m p-well CMOS. The 0pF noise is 330e with a noise slope of 64e/pF. The design approach is presented as well as both test bench and strip detector measurements.

  14. Thin silicon strip devices for direct electron detection in transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Moldovan, Grigore; Li, Xiaobing; Wilshaw, Peter; Kirkland, Angus

    2008-06-01

    Indirect imaging detection systems used in transmission electron microscopy (TEM) impose a range of restrictions limiting performance that can be easily surpassed with direct sensing devices. A set of generic requirements is presented here first, illustrating the present detection needs and setting the context for further development in electron detection at TEM energy range. The use of directly exposed Si strip detectors in TEM is then investigated by means of Monte Carlo simulation of the electron-sensor interaction, showing that a sensitive layer with a thickness in the range of 50 μm is needed to achieve satisfactory efficiency. The results obtained here strongly indicate that improved performance would be achieved by replacing current indirect imaging systems with directly exposed thin Si strip detectors.

  15. A new multi-strip ionization chamber used as online beam monitor for heavy ion therapy

    NASA Astrophysics Data System (ADS)

    Xu, Zhiguo; Mao, Ruishi; Duan, Limin; She, Qianshun; Hu, Zhengguo; Li, He; Lu, Ziwei; Zhao, Qiecheng; Yang, Herun; Su, Hong; Lu, Chengui; Hu, Rongjiang; Zhang, Junwei

    2013-11-01

    A multi-strip ionization chamber has been built for precise and fast monitoring of the carbon beam spatial distribution at Heavy Ion Researched Facility of Lanzhou Cooling Storing Ring (HIRFL-CSR). All the detector's anode, cathode and sealed windows are made by 2 μm aluminized Mylar film in order to minimize the beam lateral deflection. The sensitive area of the detector is (100×100) mm2, with the anode segmented in 100 strips, and specialized front-end electronics has been developed for simplifying the data acquisition and quick feedback of the relevant parameters to beam control system. It can complete one single beam profile in 200 μs.

  16. Investigation of HV/HR-CMOS technology for the ATLAS Phase-II Strip Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Fadeyev, V.; Galloway, Z.; Grabas, H.; Grillo, A. A.; Liang, Z.; Martinez-Mckinney, F.; Seiden, A.; Volk, J.; Affolder, A.; Buckland, M.; Meng, L.; Arndt, K.; Bortoletto, D.; Huffman, T.; John, J.; McMahon, S.; Nickerson, R.; Phillips, P.; Plackett, R.; Shipsey, I.; Vigani, L.; Bates, R.; Blue, A.; Buttar, C.; Kanisauskas, K.; Maneuski, D.; Benoit, M.; Di Bello, F.; Caragiulo, P.; Dragone, A.; Grenier, P.; Kenney, C.; Rubbo, F.; Segal, J.; Su, D.; Tamma, C.; Das, D.; Dopke, J.; Turchetta, R.; Wilson, F.; Worm, S.; Ehrler, F.; Peric, I.; Gregor, I. M.; Stanitzki, M.; Hoeferkamp, M.; Seidel, S.; Hommels, L. B. A.; Kramberger, G.; Mandić, I.; Mikuž, M.; Muenstermann, D.; Wang, R.; Zhang, J.; Warren, M.; Song, W.; Xiu, Q.; Zhu, H.

    2016-09-01

    ATLAS has formed strip CMOS project to study the use of CMOS MAPS devices as silicon strip sensors for the Phase-II Strip Tracker Upgrade. This choice of sensors promises several advantages over the conventional baseline design, such as better resolution, less material in the tracking volume, and faster construction speed. At the same time, many design features of the sensors are driven by the requirement of minimizing the impact on the rest of the detector. Hence the target devices feature long pixels which are grouped to form a virtual strip with binary-encoded z position. The key performance aspects are radiation hardness compatibility with HL-LHC environment, as well as extraction of the full hit position with full-reticle readout architecture. To date, several test chips have been submitted using two different CMOS technologies. The AMS 350 nm is a high voltage CMOS process (HV-CMOS), that features the sensor bias of up to 120 V. The TowerJazz 180 nm high resistivity CMOS process (HR-CMOS) uses a high resistivity epitaxial layer to provide the depletion region on top of the substrate. We have evaluated passive pixel performance, and charge collection projections. The results strongly support the radiation tolerance of these devices to radiation dose of the HL-LHC in the strip tracker region. We also describe design features for the next chip submission that are motivated by our technology evaluation.

  17. VLSI Superconducting Particle Detectors (With 7 Figures)

    NASA Astrophysics Data System (ADS)

    Liengme, O.

    The purpose of this paper is to present the hotspot model and define its validity range. This concept leads to a class of superconducting detectors. Predictions on particle-induced switching of Josephson junctions and superconducting strips or wires are obtained from this hotspot model. These results agree well with experimental data from the literature. Finally, the propagating hotspot is suggested as a method for very high resolution particle position detection and imaging.

  18. The Effect of dead-timeless silicon strip readout at CDF II

    SciTech Connect

    A. Affolder et al.

    2002-03-12

    The Run IIa CDF Silicon Upgrade has recently finished installation. The detector uses revision D of the SVX3 readout IC. This final revision incorporated new features in order to improve the potential of dead-timeless operation. This paper describes measurements of dead-timeless effects on silicon strip readout on the test bench. This paper also describes tests of the dynamic pedestal subtraction circuitry, which is shown to improve greatly the dead-timeless performance of the silicon systems.

  19. Transfusion and blood donation in comic strips.

    PubMed

    Lefrère, Jean-Jacques; Danic, Bruno

    2013-07-01

    The representation of blood transfusion and donation of blood in the comic strip has never been studied. The comic strip, which is a relatively recent art, emerged in the 19th century before becoming a mass medium during the 20th century. We have sought, by calling on collectors and using the resources of Internet, comic strips devoted, wholly or in part, to the themes of transfusion and blood donation. We present some of them here in chronologic order, indicating the title, country of origin, year of publication, and names of authors. The theme of the superhero using transfusion to transmit his virtues or his powers is repeated throughout the 20th century in North American comic strips. More recently, comic strips have been conceived from the outset with a promotional aim. They perpetuate positive images and are directed toward a young readership, wielding humor to reduce the fear of venipuncture. Few comic strips denounce the abuse of the commercialization of products derived from the human body. The image of transfusion and blood donation given by the comic strips is not to be underestimated because their readership is primarily children, some of whom will become blood donors. Furthermore, if some readers are transfused during their lives, the impact of a memory more or less conscious of these childhood readings may resurface, both in hopes and in fears.

  20. A Strip Cell in Pyroelectric Devices.

    PubMed

    Siao, An-Shen; Chao, Ching-Kong; Hsiao, Chun-Ching

    2016-01-01

    The pyroelectric effect affords the opportunity to convert temporal temperature fluctuations into usable electrical energy in order to develop abundantly available waste heat. A strip pyroelectric cell, used to enhance temperature variation rates by lateral temperature gradients and to reduce cell capacitance to further promote the induced voltage, is described as a means of improving pyroelectric energy transformation. A precision dicing saw was successfully applied in fabricating the pyroelectric cell with a strip form. The strip pyroelectric cell with a high-narrow cross section is able to greatly absorb thermal energy via the side walls of the strips, thereby inducing lateral temperature gradients and increasing temperature variation rates in a thicker pyroelectric cell. Both simulation and experimentation show that the strip pyroelectric cell improves the electrical outputs of pyroelectric cells and enhances the efficiency of pyroelectric harvesters. The strip-type pyroelectric cell has a larger temperature variation when compared to the trenched electrode and the original type, by about 1.9 and 2.4 times, respectively. The measured electrical output of the strip type demonstrates a conspicuous increase in stored energy as compared to the trenched electrode and the original type, by of about 15.6 and 19.8 times, respectively. PMID:26999134

  1. A Strip Cell in Pyroelectric Devices

    PubMed Central

    Siao, An-Shen; Chao, Ching-Kong; Hsiao, Chun-Ching

    2016-01-01

    The pyroelectric effect affords the opportunity to convert temporal temperature fluctuations into usable electrical energy in order to develop abundantly available waste heat. A strip pyroelectric cell, used to enhance temperature variation rates by lateral temperature gradients and to reduce cell capacitance to further promote the induced voltage, is described as a means of improving pyroelectric energy transformation. A precision dicing saw was successfully applied in fabricating the pyroelectric cell with a strip form. The strip pyroelectric cell with a high-narrow cross section is able to greatly absorb thermal energy via the side walls of the strips, thereby inducing lateral temperature gradients and increasing temperature variation rates in a thicker pyroelectric cell. Both simulation and experimentation show that the strip pyroelectric cell improves the electrical outputs of pyroelectric cells and enhances the efficiency of pyroelectric harvesters. The strip-type pyroelectric cell has a larger temperature variation when compared to the trenched electrode and the original type, by about 1.9 and 2.4 times, respectively. The measured electrical output of the strip type demonstrates a conspicuous increase in stored energy as compared to the trenched electrode and the original type, by of about 15.6 and 19.8 times, respectively. PMID:26999134

  2. Infrared receiver having a cooled radiation detector

    SciTech Connect

    Van Antwerpen, H. C.

    1985-04-09

    An infrared receiver having an infrared radiation detector cooled by means of a cold-gas engine, the thermal contact between a cooling surface of the cold-gas engine and the radiation detector being obtained by an elastic thermally conducting bridge. The cylindrical bridge is comprised of a plurality of turns of a metal strip. Due to the presence of the bridge, a good thermal conduction and further a compensation for differences in thermal expansion coefficients of the materials used are obtained. The infrared receiver is particularly suitable for night vision apparatus.

  3. MS Detectors

    SciTech Connect

    Koppenaal, David W.; Barinaga, Charles J.; Denton, M Bonner B.; Sperline, Roger P.; Hieftje, Gary M.; Schilling, G. D.; Andrade, Francisco J.; Barnes IV., James H.

    2005-11-01

    Good eyesight is often taken for granted, a situation that everyone appreciates once vision begins to fade with age. New eyeglasses or contact lenses are traditional ways to improve vision, but recent new technology, i.e. LASIK laser eye surgery, provides a new and exciting means for marked vision restoration and improvement. In mass spectrometry, detectors are the 'eyes' of the MS instrument. These 'eyes' have also been taken for granted. New detectors and new technologies are likewise needed to correct, improve, and extend ion detection and hence, our 'chemical vision'. The purpose of this report is to review and assess current MS detector technology and to provide a glimpse towards future detector technologies. It is hoped that the report will also serve to motivate interest, prompt ideas, and inspire new visions for ion detection research.

  4. Canonically Transformed Detectors Applied to the Classical Inverse Scattering Problem

    NASA Astrophysics Data System (ADS)

    Jung, C.; Seligman, T. H.; Torres, J. M.

    The concept of measurement in classical scattering is interpreted as an overlap of a particle packet with some area in phase space that describes the detector. Considering that usually we record the passage of particles at some point in space, a common detector is described e.g. for one-dimensional systems as a narrow strip in phase space. We generalize this concept allowing this strip to be transformed by some, possibly non-linear, canonical transformation, introducing thus a canonically transformed detector. We show such detectors to be useful in the context of the inverse scattering problem in situations where recently discovered scattering echoes could not be seen without their help. More relevant applications in quantum systems are suggested.

  5. A position sensitive detector for EUV remote sensing

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Chakrabarti, S.; Cotton, D. M.; Lampton, M.

    1989-01-01

    The authors describe a photon-counting extreme ultraviolet (EUV) detector system used in a rocket-borne spectroscopic instrument for remote sensing of upper atmospheric composition and temperature. The detector uses a KBr coated microchannel plate (MCP) Z stack in combination with a wedge-and-strip image readout system. Three separate detector fields of view are used to sense the Earth dayglow spectrum (980 A to 1040 A, and 1300 A to 1360 A) and the solar EUV spectrum (250 A to 1400 A). The authors demonstrate high gain (2 x 107), tight pulse-height distribution (35 percent FWHM), and a spatial resolution of about 35 microns FWHM (full width at half maximum), which is the highest resolution for a wedge-and-strip anode MCP detector flown to date. The background, image linearity, and flat-field performance are discussed. Raw spectra from the rocket flight are also presented.

  6. Operation and performance of the ATLAS silicon micro-strip tracker

    SciTech Connect

    Pylypchenko, Y.

    2011-07-01

    The Semiconductor Tracker (SCT) is the key precision tracking device in ATLAS, made from silicon micro-strip detectors processed in the planar p-in-n technology. The completed SCT has been installed inside the ATLAS experimental hall since 2007 and has been operational since then. In this paper the current status of the Semiconductor Tracker is reviewed, including results from the data-taking periods in 2009 and 2010, and from the detector alignment. The emphasis is given to the performance of the Semiconductor Tracker with the LHC in collision mode and to the performance of individual electronic components. (authors)

  7. Retractable spiked barrier strip for law enforcement

    SciTech Connect

    Marts, D.J.; Barker, S.G.

    1995-03-01

    The Idaho National Engineering Laboratory has designed an laboratory tested a prototype retractable spiked barrier strip for law enforcement. The proposed system, which is ready for controlled field testing, expands the functionality of existing spiked barrier strips. A retractable barrier strip, one that can place the spikes in either the active (vertical) or passive (horizontal) position, would allow law enforcement personnel to lay the unobtrusive strip across a road far in advance of a fleeing vehicle. No damage occurs to passing vehicles until the spikes are activated, and that can be done from a safe distance and at a strategic location when the offending vehicle is close to the strip. The concept also allows the strips to be place safely across several roadways that are potential paths of a fleeing vehicle. Since they are not activated until needed, they are harmless to nonoffending vehicles. The laboratory tests conducted on the system indicate that it will puncture tires only when the spikes are rotated to the active position and is safe to travel over when the spikes are in the down position. The strip itself will not cause instability to a vehicle driving over it, nor is the strip disturbed or adversely affected by vehicles driving over it. The spikes can be quickly rotated between the active (vertical) and passive (horizontal) position. However, the laboratory tests have only demonstrated that the retractable spiked barrier strip can perform its intended function in a laboratory environment. Field tests are needed to finalize the design and develop the system into a functional law enforcement tool.

  8. Saving Energy Through Advanced Power Strips (Poster)

    SciTech Connect

    Christensen, D.

    2013-10-01

    Advanced Power Strips (APS) look just like ordinary power strips, except that they have built-in features that are designed to reduce the amount of energy used by many consumer electronics. There are several different types of APSs on the market, but they all operate on the same basic principle of shutting off the supply power to devices that are not in use. By replacing your standard power strip with an APS, you can signifcantly cut the amount of electricity used by your home office and entertainment center devices, and save money on your electric bill. This illustration summarizes the different options.

  9. Tin electroplating/stripping evaluation. Topical report

    SciTech Connect

    McHenry, M.R.

    1995-08-01

    An evaluation was conducted to determine possible replacement chemistries for electroplating and stripping of tin-lead. The driver for this project was two-fold. Our first goal dealt with hazardous waste reduction. It was desired to eliminate lead (a heavy metal) from the electroplating process and thiourea (a known carcinogen) from the stripping process. We also sought to reduce the cost of nonconformance (CONC) realized by this process in the form of rough plating, broken paths, poor solderability, and overetching. Three suppliers` tin chemistries were evaluated as replacements for electroplating and stripping of tin-lead. Based on preliminary testing, one chemistry was chosen, evaluated, and approved for production use.

  10. Instabilities and Solitons in Minimal Strips

    NASA Astrophysics Data System (ADS)

    Machon, Thomas; Alexander, Gareth P.; Goldstein, Raymond E.; Pesci, Adriana I.

    2016-07-01

    We show that highly twisted minimal strips can undergo a nonsingular transition, unlike the singular transitions seen in the Möbius strip and the catenoid. If the strip is nonorientable, this transition is topologically frustrated, and the resulting surface contains a helicoidal defect. Through a controlled analytic approximation, the system can be mapped onto a scalar ϕ4 theory on a nonorientable line bundle over the circle, where the defect becomes a topologically protected kink soliton or domain wall, thus establishing their existence in minimal surfaces. Demonstrations with soap films confirm these results and show how the position of the defect can be controlled through boundary deformation.

  11. High energy H- ion transport and stripping

    SciTech Connect

    Chou, W.; /Fermilab

    2005-05-01

    During the Proton Driver design study based on an 8 GeV superconducting RF H{sup -} linac, a major concern is the feasibility of transport and injection of high energy H{sup -} ions because the energy of H{sup -} beam would be an order of magnitude higher than the existing ones. This paper will focus on two key technical issues: (1) stripping losses during transport (including stripping by blackbody radiation, magnetic field and residual gases); (2) stripping efficiency of carbon foil during injection.

  12. Instabilities and Solitons in Minimal Strips.

    PubMed

    Machon, Thomas; Alexander, Gareth P; Goldstein, Raymond E; Pesci, Adriana I

    2016-07-01

    We show that highly twisted minimal strips can undergo a nonsingular transition, unlike the singular transitions seen in the Möbius strip and the catenoid. If the strip is nonorientable, this transition is topologically frustrated, and the resulting surface contains a helicoidal defect. Through a controlled analytic approximation, the system can be mapped onto a scalar ϕ^{4} theory on a nonorientable line bundle over the circle, where the defect becomes a topologically protected kink soliton or domain wall, thus establishing their existence in minimal surfaces. Demonstrations with soap films confirm these results and show how the position of the defect can be controlled through boundary deformation. PMID:27419593

  13. How a Curved Elastic Strip Opens

    NASA Astrophysics Data System (ADS)

    Barois, Thomas; Tadrist, Loïc; Quilliet, Catherine; Forterre, Yoël

    2014-11-01

    An elastic strip is transversely clamped in a curved frame. The induced curvature decreases as the strip opens and connects to its flat natural shape. Various ribbon profiles are measured and the scaling law for the opening length validates a description where the in-plane stretching gradually relaxes the bending stress. An analytical model of the strip profile is proposed and a quantitative agreement is found with both experiments and simulations of the plates equations. This result provides a unique illustration of smooth nondevelopable solutions in thin sheets.

  14. Determining the dynamic range of MCPs based on pore size and strip current

    NASA Astrophysics Data System (ADS)

    Hunt, C.; Adrian, M. L.; Herrero, F.; James, P.; Jones, H. H.; Rodriguez, M.; Roman, P.; Shappirio, M.

    2010-12-01

    Micro-Channel Plates (MCPs) are used as detectors for almost all detectors measuring particles (both ions, electrons and neutrals) below 30 keV. Recent advances in the manufacturing technology of the MCPs have increased the number of options one has when selecting plates for an instrument. But it is not clear how many of these options affect the performance of the MCPs. In particular the dynamic range is not a clear cut calculation to make from the strip current. There is also some evidence that pore size and coating play a role. We measured the dynamic range and pulse height distribution of MCPs detector chevron stacks with a wide variety of strip currents from the low “normal” range in the EDR range. We also looked at the effects of varying the pore size from 25 microns to 10 microns, partial plating of the MCP surface and coating one surface on each MCP with gold rather than the standard zinc chromium. We will show how the dynamic range and pulse height distributions vary vs. strip current, pore size, and surface plating configurations.

  15. A SPICE model of double-sided Si microstrip detectors

    SciTech Connect

    Candelori, A.; Paccagnella, A. |; Bonin, F.

    1996-12-31

    We have developed a SPICE model for the ohmic side of AC-coupled Si microstrip detectors with interstrip isolation via field plates. The interstrip isolation has been measured in various conditions by varying the field plate voltage. Simulations have been compared with experimental data in order to determine the values of the model parameters for different voltages applied to the field plates. The model is able to predict correctly the frequency dependence of the coupling between adjacent strips. Furthermore, we have used such model for the study of the signal propagation along the detector when a current signal is injected in a strip. Only electrical coupling is considered here, without any contribution due to charge sharing derived from carrier diffusion. For this purpose, the AC pads of the strips have been connected to a read-out electronics and the current signal has been injected into a DC pad. Good agreement between measurements and simulations has been reached for the central strip and the first neighbors. Experimental tests and computer simulations have been performed for four different strip and field plate layouts, in order to investigate how the detector geometry affects the parameters of the SPICE model and the signal propagation.

  16. A transparent anode array detector for 3D atom probes

    SciTech Connect

    Miller, M.K.

    1998-02-01

    In a three dimensional atom probe, the identity and spatial coordinates of the atoms field evaporated from the specimen are determined. Their identity is calculated from the flight time from the specimen to the single atom detector. The x and y coordinates of the atom in the specimen are determined from the coordinates of its impact position on the position-sensitive detector and the z coordinate is determined from its position in the evaporation sequence. These data may then be reconstructed to visualize and quantify the distribution of all the elements in the specimen. Several types of position-sensitive detectors have been used including a wedge-and-strip detector (position- sensitive atom probe), a 10 by 10 array of anodes (tomographic atom probe), and a gateable CCD camera (optical atom probe). The wedge-and strip and the CCD camera detectors both suffer from the limitation that if more than one atom strikes the detector on a field evaporation pulse then the impact positions cannot be determined in many cases. In order to minimize this limitation, Cerezo et al. have developed a dual detector system (optical position-sensitive atom probe) that uses both an 8 by 10 multianode array and an intensified CCD camera. This dual detector configuration requires a beam splitter which reduces the signal intensity reaching the detectors and two independent detection systems both with image intensifiers. In this paper, an improved version of this detection system that combines these two systems into one is presented.

  17. Semiconductor detectors with proximity signal readout

    SciTech Connect

    Asztalos, Stephen J.

    2014-01-30

    Semiconductor-based radiation detectors are routinely used for the detection, imaging, and spectroscopy of x-rays, gamma rays, and charged particles for applications in the areas of nuclear and medical physics, astrophysics, environmental remediation, nuclear nonproliferation, and homeland security. Detectors used for imaging and particle tracking are more complex in that they typically must also measure the location of the radiation interaction in addition to the deposited energy. In such detectors, the position measurement is often achieved by dividing or segmenting the electrodes into many strips or pixels and then reading out the signals from all of the electrode segments. Fine electrode segmentation is problematic for many of the standard semiconductor detector technologies. Clearly there is a need for a semiconductor-based radiation detector technology that can achieve fine position resolution while maintaining the excellent energy resolution intrinsic to semiconductor detectors, can be fabricated through simple processes, does not require complex electrical interconnections to the detector, and can reduce the number of required channels of readout electronics. Proximity electrode signal readout (PESR), in which the electrodes are not in physical contact with the detector surface, satisfies this need.

  18. Nonlocality in deuteron stripping reactions.

    PubMed

    Timofeyuk, N K; Johnson, R C

    2013-03-15

    We propose a new method for the analysis of deuteron stripping reactions, A(d,p)B, in which the nonlocality of nucleon-nucleus interactions and three-body degrees of freedom are accounted for in a consistent way. The model deals with equivalent local nucleon potentials taken at an energy shifted by ∼40  MeV from the "E(d)/2" value frequently used in the analysis of experimental data, where E(d) is the incident deuteron energy. The "E(d)/2" rule lies at the heart of all three-body analyses of (d, p) reactions performed so far with the aim of obtaining nuclear structure properties such as spectroscopic factors and asymptotic normalization coefficients that are crucial for our understanding of nuclear shell evolution in neutron- and proton-rich regions of the nuclear periodic table and for predicting the cross sections of stellar reactions. The large predicted shift arises from the large relative kinetic energy of the neutron and proton in the incident deuteron in those components of the n+p+A wave function that dominate the (d, p) reaction amplitude. The large shift reduces the effective d-A potentials and leads to a change in predicted (d, p) cross sections, thus affecting the interpretation of these reactions in terms of nuclear structure. PMID:25166525

  19. A video strip chart program

    SciTech Connect

    Jones, N.L.

    1994-12-31

    A strip chart recorder has been utilized for trend analysis of the Oak Ridge National Laboratory EN tandem since 1987. At the EN, the author could not afford the nice eight channel thermal pen recorder that was used at the 25 URC. He had to suffice with two channel fiber tip or capillary pen type recorders retrieved from salvage and maintained with parts from other salvaged recorders. After cycling through several machines that eventually became completely unserviceable, a search for a new thermal recorder was begun. As much as he hates to write computer code, he decided to try his hand at getting an old data acquisition unit, that had been retrieved several years ago from salvage, to meet his needs. A BASIC language compiler was used because time was not available to learn a more advanced language. While attempting to increase acquisition and scroll speed on the 6 MHz 80286 that the code was first developed on, it became apparent that scrolling only the first small portion of the screen at high speed and then averaging that region and histogramming the average provided both the speed necessary for capturing fairly short duration events, and a trend record without use of back scrolling and disk storage routines. This turned out to be quite sufficient.

  20. Photon detectors

    SciTech Connect

    Va`vra, J.

    1995-10-01

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF{sub 2} windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission.

  1. Air stripping of aqueous solutions. Engineering bulletin

    SciTech Connect

    Not Available

    1991-10-01

    Air stripping is a means to transfer contaminants from aqueous solutions to air. Contaminants are not destroyed by air stripping but are physically separated from the aqueous solutions. Contaminant vapors are transferred into the air stream and, if necessary, can be treated by incineration, adsorption, or oxidation. Most frequently, contaminants are collected in carbon adsorption systems and then treated or destroyed in this concentrated form. The concentrated contaminants may be recovered, incinerated for waste heat recovery, or destroyed by other treatment technologies. Generally, air stripping is used as one in a series of unit operations and can reduce the overall cost for managing a particular site. Air stripping is applicable to volatile and semivolatile organic compounds. It is not applicable for treating metals and inorganic compounds. The bulletin provides information on the technology applicability, the technology limitations, a description of the technology, the types of residuals produced, site requirements, the latest performance data, the status of the technology, and sources of further information.

  2. Ram Pressure Stripping: The Long Goodbye

    NASA Astrophysics Data System (ADS)

    Tonnesen, Stephanie; Lu, Yu; Benson, Andrew; Peter, Annika; Boylan-Kolchin, Michael; Wetzel, Andrew R.; Weisz, Daniel R.

    2016-01-01

    What turns off star formation in satellite galaxies? Ram pressure stripping, the removal of a galaxy's gas through direct interaction with the gas halo in which it orbits, is an attractive quenching mechanism, particularly in the Milky Way halo where the radial distribution of quenching is dramatic. However, many implementations of this process in semi-analytic models result in overly-rapid gas removal when compared with observations. We use high resolution hydrodynamical simulations run with Enzo to parameterize the stripping of disk and halo gas from an orbiting satellite galaxy for use in the semi-analytic modeling code Galacticus. We find that using the instantaneous ram pressure overestimates the amount of gas that is stripped, and present a physically-motivated module for including ram pressure stripping in semi-analytic models that uses the integral of the ram pressure experienced by a satellite galaxy. We will compare our results to observations of the Milky Way satellites.

  3. Fabrication of MMC Strip by CRB Process

    NASA Astrophysics Data System (ADS)

    Jamaati, Roohollah; Toroghinejad, Mohammad Reza

    2012-06-01

    In this study, Al/Al2O3 composite strips were produced by the cold roll bonding (CRB) process. Microhardness, tensile strength, and elongation of composite strips were investigated as a result of changes in thickness reduction, quantity of alumina particles, and the production method used. It was found that higher values of reduction and quantities of alumina improved microhardness and tensile strength but decreased elongation. Furthermore, as-received strips exhibited the highest values for microhardness and tensile strength but the lowest for elongation. In contrast, post-rolling annealed strips recorded the lowest values for microhardness and tensile strength but the highest for elongation. Finally, it was found that pre-rolling annealing was the best method for producing this composite via the CRB process.

  4. Technique for stripping Teflon insulated wire

    NASA Technical Reports Server (NTRS)

    Babb, B. D.

    1967-01-01

    Cryogenic stripping of Teflon insulated wire leaves no residue and produces no physical damage. After the wire is immersed in liquid nitrogen, bent slightly, and returned to room temperature, the Teflon is removed by fingernails or flat-nosed pliers.

  5. Energy dispersive photon counting detectors for breast imaging

    NASA Astrophysics Data System (ADS)

    Barber, William C.; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasidharan; Nygard, Einar; Iwanczyk, Jan S.

    2013-09-01

    We report on our efforts toward the development of silicon (Si) strip detectors for energy-resolved clinical breast imaging. Typically, x-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a- Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting silicon Si strip detectors. Mammography requires high flux from the x-ray generator, therefore, in order to achieve energy resolved single photon counting, a high output count rate (OCR) for the detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions. We present our methods and results from the optimization of prototype detectors based on Si strip structures. We describe the detector optimization and the development of ASIC readout electronics that provide the required spatial resolution, low noise, high count rate capabilities and minimal power consumption.

  6. Topological insulators on a Mobius strip

    NASA Astrophysics Data System (ADS)

    Huang, Lang-Tao; Lee, Dung-Hai

    2011-11-01

    We study the two-dimensional Chern insulator and spin Hall insulator on a nonorientable Riemann surface, the Mobius strip, where the usual band-structure topological invariant is not defined. We show that while the flow pattern of edge currents can detect the twist of the Mobius strip in the case of Chern insulator, it can not do so for the spin Hall insulator.

  7. Topological insulators on a Mobius Strip

    NASA Astrophysics Data System (ADS)

    Huang, Lang-Tao; Lee, Dung-Hai

    2012-02-01

    We study the two dimensional Chern insulator and spin Hall insulator on a non-orientable Riemann surface, the Mobius strip, where the usual bandstructure topological invariant is not defined. We show that while the flow pattern of edge currents can detect the twist of the Mobius strip in the case of Chern insulator, it can not do so in spin Hall insulator [1]. [4pt] [1] Lang-Tao Huang and Dung-Hai Lee, Phys. Rev. B 84, 193106 (2011)

  8. Pyroelectric detectors

    NASA Technical Reports Server (NTRS)

    Haller, Eugene E.; Beeman, Jeffrey; Hansen, William L.; Hubbard, G. Scott; Mcmurray, Robert E., Jr.

    1990-01-01

    The multi-agency, long-term Global Change programs, and specifically NASA's Earth Observing system, will require some new and advanced photon detector technology which must be specifically tailored for long-term stability, broad spectral range, cooling constraints, and other parameters. Whereas MCT and GaAs alloy based photovoltaic detectors and detector arrays reach most impressive results to wavelengths as long as 12 microns when cooled to below 70 K, other materials, such as ferroelectrics and pyroelectrics, appear to offer special opportunities beyond 12 microns and above 70 K. These materials have found very broad use in a wide variety of room temperature applications. Little is known about these classes of materials at sub-room temperatures and no photon detector results have been reported. From the limited information available, researchers conclude that the room temperature values of D asterisk greater than or equal to 10(exp 9) cm Hz(exp 1/2)/W may be improved by one to two orders of magnitude upon cooling to temperatures around 70 K. Improvements of up to one order of magnitude appear feasible for temperatures achievable by passive cooling. The flat detector response over a wavelength range reaching from the visible to beyond 50 microns, which is an intrinsic advantage of bolometric devices, makes for easy calibration. The fact that these materials have been developed for reduced temperature applications makes ferro- and pyroelectric materials most attractive candidates for serious exploration.

  9. Process development of thin strip steel casting

    SciTech Connect

    Sussman, R.C.; Williams, R.S.

    1990-12-01

    An important new frontier is being opened in steel processing with the emergence of thin strip casting. Casting steel directly to thin strip has enormous benefits in energy savings by potentially eliminating the need for hot reduction in a hot strip mill. This has been the driving force for numerous current research efforts into the direct strip casting of steel. The US Department of Energy initiated a program to evaluate the development of thin strip casting in the steel industry. In earlier phases of this program, planar flow casting on an experimental caster was studied by a team of engineers from Westinghouse Electric corporation and Armco Inc. A subsequent research program was designed as a fundamental and developmental study of both planar and melt overflow casting processes. This study was arranged as several separate and distinct tasks which were often completed by different teams of researchers. An early task was to design and build a water model to study fluid flow through different designs of planar flow casting nozzles. Another important task was mathematically modeling of melt overflow casting process. A mathematical solidification model for the formation of the strip in the melt overflow process was written. A study of the material and conditioning of casting substrates was made on the small wheel caster using the melt overflow casting process. This report discusses work on the development of thin steel casting.

  10. Automated Laser Paint Stripping (ALPS) update

    NASA Astrophysics Data System (ADS)

    Lovoi, Paul

    1993-03-01

    To date, the DoD has played a major role in funding a number of paint stripping programs. Some technologies have proven less effective than contemplated. Others are still in the validation phase. Paint stripping is one of the hottest issues being addressed by the finishing industry since the Environmental Protection Agency (EPA) has mandated that chemical stripping using methylene chloride/phenolic type strippers be stopped. The DoD and commercial aircraft companies are hard-pressed to find an alternative. Automated laser paint stripping has been identified as a technique for removing coatings from aircraft surfaces. International Technical Associates (InTA) was awarded a Navy contract for an automated laser paint stripping system (ALPS) that will remove paint from metallic and composite substrates. For the program, which will validate laser paint stripping, InTA will design, build, test, and install a system for fighter-sized aircraft at both the Norfolk and North Island (San Diego) Aviation Depots.

  11. PHASE DETECTOR

    DOEpatents

    Kippenhan, D.O.

    1959-09-01

    A phase detector circuit is described for use at very high frequencies of the order of 50 megacycles. The detector circuit includes a pair of rectifiers inverted relative to each other. One voltage to be compared is applied to the two rectifiers in phase opposition and the other voltage to be compared is commonly applied to the two rectifiers. The two result:ng d-c voltages derived from the rectifiers are combined in phase opposition to produce a single d-c voltage having amplitude and polarity characteristics dependent upon the phase relation between the signals to be compared. Principal novelty resides in the employment of a half-wave transmission line to derive the phase opposing signals from the first voltage to be compared for application to the two rectifiers in place of the transformer commonly utilized for such purpose in phase detector circuits for operation at lower frequency.

  12. Hydrogen detector

    DOEpatents

    Kanegae, Naomichi; Ikemoto, Ichiro

    1980-01-01

    A hydrogen detector of the type in which the interior of the detector is partitioned by a metal membrane into a fluid section and a vacuum section. Two units of the metal membrane are provided and vacuum pipes are provided independently in connection to the respective units of the metal membrane. One of the vacuum pipes is connected to a vacuum gauge for static equilibrium operation while the other vacuum pipe is connected to an ion pump or a set of an ion pump and a vacuum gauge both designed for dynamic equilibrium operation.

  13. Microwave detector

    DOEpatents

    Meldner, Heiner W.; Cusson, Ronald Y.; Johnson, Ray M.

    1986-01-01

    A microwave detector (10) is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite (26, 28) produces a magnetization field flux that links a B-dot loop (16, 20). The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means (18, 22) are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  14. Microwave detector

    DOEpatents

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  15. Silicon Detectors

    NASA Astrophysics Data System (ADS)

    Sadrozinski, Hartmut

    2014-03-01

    The use of silicon detectors has experienced an exponential growth in accelerator and space based experiments, similar to trends in the semiconductor industry as a whole, usually paraphrased as ``Moore's Law.'' Some of the essentials for this phenomenon will be presented, together with examples of the exciting science results which it enabled. With the establishment of a ``semiconductor culture'' in universities and laboratories around the world, an increased understanding of the sensors results in thinner, faster, more radiation-resistant detectors, spawning an amazing wealth of new technologies and applications, which will be the main subject of the presentation.

  16. Microwave detector

    SciTech Connect

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1986-12-02

    A detector is described for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations, the detector comprising: a B-dot loop linking the magnetic field of the microwave pulse; a biased ferrite, that produces a magnetization field flux that links the B-dot loop. The ferrite is positioned within the B-dot loop so that the magnetic field of the microwave pulse interacts with the ferrite and thereby participates in the formation of the magnetization field flux; and high-frequency insensitive means for measuring electric voltage or current induced in the B-dot loop.

  17. A silicon photo-multiplier signal readout using strip-line and waveform sampling for Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Kim, H.; Chen, C.-T.; Eclov, N.; Ronzhin, A.; Murat, P.; Ramberg, E.; Los, S.; Kao, C.-M.

    2016-09-01

    A strip-line and waveform sampling based readout is a signal multiplexing method that can efficiently reduce the readout channels while fully exploiting the fast time characteristics of photo-detectors such as the SiPM. We have applied this readout method for SiPM-based time-of-flight (TOF) positron emission tomography (PET) detectors. We have prototyped strip-line boards in which 8 SiPMs (pitch 5.2 mm) are connected by using a single strip-line, and the signals appearing at the ends of the strip-line are acquired by using the DRS4 waveform sampler at a nominal sampling frequency of 1-5 GS/s. Experimental tests using laser and LYSO scintillator are carried out to assess the performance of the strip-line board. Each SiPM position, which is inferred from the arrival time difference of the two signals at the ends of the strip-line, is well identified with 2.6 mm FWHM resolution when the SiPMs are coupled to LYSO crystals and irradiated by a 22Na source. The average energy and coincidence time resolution corresponding to 511 keV photons are measured to be ∼32% and ∼510 ps FWHM, respectively, at a 5.0 GS/s DRS4 sampling rate. The results show that the sampling rate can be lowered to 1.5 GS/s without performance degradation. These encouraging initial test results indicate that the strip-line and waveform sampling readout method is applicable for SiPM-based TOF PET development.

  18. Study of electrode pattern design for a CZT-based PET detector

    PubMed Central

    Gu, Y; Levin, C S

    2014-01-01

    We are developing a 1 mm resolution small animal positron emission tomography (PET) system using 3-D positioning Cadmium Zinc Telluride (CZT) photon detectors comprising 40 mm × 40 mm × 5 mm crystals metalized with a cross-strip electrode pattern with a 1 mm anode strip pitch. We optimized the electrode pattern design for intrinsic sensitivity and spatial, energy and time resolution performance using a test detector comprising cathode and steering electrode strips of varying dimensions. The study found 3 mm and 5 mm width cathode strips locate charge-shared photon interactions near cathode strip boundaries with equal precision. 3 mm width cathode strips exhibited large time resolution variability as a function of photon interaction location between the anode and cathode planes (~26 ns to ~127.5 ns FWHM for 0.5 mm and 4.2 mm depths, respectively). 5 mm width cathode strips by contrast exhibited more stable time resolution for the same interaction locations (~34 ns to ~83 ns FWHM), provided more linear spatial positioning in the direction orthogonal to the electrode planes, and as much as 68.4% improvement in photon sensitivity over the 3 mm wide cathode strips. The results were understood by analyzing the cathode strips’ weighting functions, which indicated a stronger “small pixel” effect in the 3 mm wide cathode strips. Photon sensitivity and anode energy resolution were seen to improve with decreasing steering electrode bias from 0 V to −80 V w.r.t the anode potential. A slight improvement in energy resolution was seen for wider steering electrode strips (400 μm vs. 100 μm) for charge-shared photon interactions. Although this study successfully focused on electrode pattern features for PET performance, the results are generally applicable to semiconductor photon detectors employing cross-trip electrode patterns. PMID:24786208

  19. DETECTORS AND EXPERIMENTAL METHODS Design and simulations for the detector based on DSSSD

    NASA Astrophysics Data System (ADS)

    Xu, Yan-Bing; Wang, Huan-Yu; Meng, Xiang-Cheng; Wang, Hui; Lu, Hong; Ma, Yu-Qian; Li, Xin-Qiao; Shi, Feng; Wang, Ping; Zhao, Xiao-Yun; Wu, Feng

    2010-12-01

    The present paper describes the design and simulation results of a position-sensitive charged particle detector based on the Double Sided Silicon Strip Detector (DSSSD). Also, the characteristics of the DSSSD and its testing result were are discussed. With the application of the DSSSD, the position-sensitive charged particle detector can not only give particle flux and energy spectra information and identify different types of charged particles, but also measure the location and angle of incident particles. As the detector can make multiparameter measurements of charged particles, it is widely used in space detection and exploration missions, such as charged particle detection related to earthquakes, space environment monitoring and solar activity inspection.

  20. Anodic Stripping Voltammetry of Silver Nanoparticles: Aggregation Leads to Incomplete Stripping

    PubMed Central

    Cloake, Samantha J; Toh, Her Shuang; Lee, Patricia T; Salter, Chris; Johnston, Colin; Compton, Richard G

    2015-01-01

    The influence of nanoparticle aggregation on anodic stripping voltammetry is reported. Dopamine-capped silver nanoparticles were chosen as a model system, and melamine was used to induce aggregation in the nanoparticles. Through the anodic stripping of the silver nanoparticles that were aggregated to different extents, it was found that the peak area of the oxidative signal corresponding to the stripping of silver to silver(I) ions decreases with increasing aggregation. Aggregation causes incomplete stripping of the silver nanoparticles. Two possible mechanisms of ‘partial oxidation’ and ‘inactivation’ of the nanoparticles are proposed to account for this finding. Aggregation effects must be considered when anodic stripping voltammetry is used for nanoparticle detection and quantification. Hence, drop casting, which is known to lead to aggregation, is not encouraged for preparing electrodes for analytical purposes. PMID:25861566

  1. Effects of high energy protons on the E771 silicon microstrip detector

    NASA Astrophysics Data System (ADS)

    Alexopoulos, T.; Antoniazzi, L.; Arenton, M.; Ballagh, C.; Bingham, H.; Blankman, A.; Block, M.; Boden, A.; Borodin, S.; Budagov, J.; Cao, Z. L.; Cataldi, G.; Chen, T. Y.; Clark, K.; Cline, D.; Conetti, S.; Cooper, M.; Corti, G.; Cox, B.; Creti, P.; Dukes, E.; Durandet, C.; Elia, V.; Erwin, A.; Fortney, L.; Golovatyuk, S.; Gorini, E.; Grancagnolo, F.; Haire, M.; Hanlet, P.; He, M.; Introzzi, G.; Jenkins, M.; Jennings, J.; Judd, D.; Kaeding, T.; Kononenko, W.; Kowald, W.; lanza, A.; Lau, K.; Liguori, G.; Lys, J.; Mazur, P.; McManus, A.; Misawa, S.; Mo, G.; Murphy, T.; Nelson, K.; Newcomer, M.; Panareo, M.; Ramachandran, S.; Recagni, M.; Rhoades, J.; Segal, J.; Selove, W.; Smith, R.; Spiegel, L.; Sun, J.; Tokar, S.; Torre, P.; Trischuk, J.; Trojak, T.; Tsyganov, E.; Turnbull, L.; VanBerg, R.; Wagoner, D.; Wang, C.; Wang, H. C.; Wei, C.; Yang, W.; Yao, N.; Zhang, N.; Zhang, S. N.; Zou, B.

    1993-01-01

    A silicon strip detector (SSD) system for use in very high rate experiments has been operated in Experiment E771 (Cox, 1989) at the Fermi National Accelerator laboratory. The detector electronics were designed (Swoboda, 1990; Bowden, 1990; Zimmerman, 1989; Christian, 1991) to meet the specific needs of Fermilab experiment E771 using ASIC chip sets where commercial circuits were not suitable. The electronics for the SSD were designed to operate at rates up to 60 Mhz and were operated at interaction rates up to 10 7 interaction/sec (beam rates of 2 × 10 8 proton/sec). In addition to being very fast, the detector for the 1991 run was very compact with 10000 channels of active detector in a volume fo 5cm × 5cm × 10cm. An expansion of the system to 16000 channels is planned for the next Fermilab fixed target run. The strip pitch ranged from 25 μ m in the center of the detector near the target to 100 μ m pitch at the most downstream, outer edges of the detector. The readout is a latch design with pipelined readout and appears to have single strip efficiencies of ≈ 75% even in the presence of a high radiation dose (∽ 10 14 protons/cm 2) and high leakage currents(≈ 1 nA/strip). The detector and associated amplifier electronics has presently been operated at 17° C and is designed to operate as low as 8° C.

  2. Mastering Interproximal Stripping: With Innovations in Slenderization

    PubMed Central

    Shrivastav, Sunita S; Hazarey, Pushpa V

    2012-01-01

    ABSTRACT Crowding and irregularity remain a consistent problem for children. Management of space problems continues to play an important role in a dental practice. It also represents an area of major interaction between the primary provider and the specialists. Proximal stripping is routinely carried out to avoid extraction in borderline cases where space discrepancy is less and in cases where there is a discrepancy between the mesio- distal width of maxillary and mandibular teeth to satisfy Bolton ratio. Proximal stripping is carried out using of metallic abrasive strip, safe sided carborundum disk, or with long thin tapered fissure burs with air rotor. The use of rotary cutting instrument can harm the pulp by exposure of mechanical vibration and heat generation (in some cases). Whereas, the large diameter of the disk obstructs vision of the working area. Also fracturing away a portion is a common problem with disk. Tapered fissure burs cut the tooth structure as the width of bur or overcutting may occur of the tooth structure due to high speed. The use of metallic abrasive strip is the safest procedure amongst the above. The strip can be placed in the anterior region without any difficulty but using it in the posterior region is difficult as, it is difficult to hold it with fingers while stripping the posterior teeth. To avoid this inconvenience here with a simple and economical way of fabricating strip holder from routine lab material is presented. Clinical implications: Proper management of space in the primary and mixed dentitions can prevent unnecessary loss in arch length. Diagnosing and treating space problems requires an understanding of the etiology of crowding and the development of the dentition to render treatment for the mild, moderate and severe crowding cases. Most crowding problems with less than 4.5 mm can be resolved through preservation of the leeway space, regaining space or limited expansion in the late mixed dentition. In cases with 5 to 9 mm

  3. Bimetallic strip for low temperature use

    DOEpatents

    Bussiere, Jean F.; Welch, David O.; Suenaga, Masaki

    1981-01-01

    There is provided a class of mechanically pre-stressed structures, suitably bi-layer strips comprising a layer of group 5 transition metals in intimate contact with a layer of an intermetallic compound of said transition metals with certain group 3A, 4A or 5A metals or metalloids suitably gallium, indium, silicon, germanium, tin, arsenic or antimony. The changes of Young's modulus of these bi-layered combinations at temperatures in the region of but somewhat above absolute zero provides a useful means of sensing temperature changes. Such bi-metallic strips may be used as control strips in thermostats, in direct dial reading instruments, or the like. The structures are made by preparing a sandwich of a group 5B transition metal strip between the substantially thicker strips of an alloy between copper and a predetermined group 3A, 4A or 5A metal or metalloid, holding the three layers of the sandwich in intimate contact heating the same, cooling the same and removing the copper alloy and then removing one of the two thus formed interlayer alloys between said transition metal and the metal previously alloyed with copper.

  4. Domain Wall structures in wide permalloy strips

    NASA Astrophysics Data System (ADS)

    Estevez, Virginia; Laurson, Lasse

    2015-03-01

    We analyze numerically the equilibrium micromagnetic domain wall structures encountered in Permalloy strips of a wide range of thicknesses and widths, with strip widths up to several micrometers. By performing an extensive set of micromagnetic simulations, we show that the equilibrium phase diagram of the domain wall structures exhibits in addition to the previously found structures (symmetric and asymmetric transverse wall and vortex wall) also a double-vortex domain wall for large enough strip widths and thicknesses. In general, shape anisotropy is less important for wider strips, and thus energy minima with more complex spin structures closing the flux more efficiently than those found before for narrow strips may appear. Also several metastable domain wall structures are found, such as structures with three or four vortices or two vortices and an antivortex. We discuss the details of the relaxation process, including the effect of varying the magnitude of the Gilbert damping constant, and the role of using different initial conditions. Finally, we also consider the field-driven dynamics of the double-vortex domain wall.

  5. ERTS-1 data applied to strip mining

    NASA Technical Reports Server (NTRS)

    Anderson, A. T.; Schubert, J.

    1976-01-01

    Two coal basins within the western region of the Potomac River Basin contain the largest strip-mining operations in western Maryland and West Virginia. The disturbed strip-mine areas were delineated along with the surrounding geological and vegetation features by using ERTS-1 data in both analog and digital form. The two digital systems employed were (1) the ERTS analysis system, a point-by-point digital analysis of spectral signatures based on known spectral values and (2) the LARS automatic data processing system. These two systems aided in efforts to determine the extent and state of strip mining in this region. Aircraft data, ground-verification information, and geological field studies also aided in the application of ERTS-1 imagery to perform an integrated analysis that assessed the adverse effects of strip mining. The results indicated that ERTS can both monitor and map the extent of strip mining to determine immediately the acreage affected and to indicate where future reclamation and revegetation may be necessary.

  6. The Particle-Gamma Detector GODDESS

    NASA Astrophysics Data System (ADS)

    Ratkiewicz, A.; Cizewski, J. A.; Baugher, T.; Burcher, S.; Hardy, S.; Lonsdale, S.; Shand, C.; Pain, S. D.; Marsh, I.; Jones, K. L.; Peters, W. A.; Carpenter, M. P.; Seweryniak, D.; Zhu, S.; Kozub, R. L.; Afanasieva, L.; Blackmon, J. C.

    2014-09-01

    Transfer reactions in inverse kinematics provide a powerful probe of the single-particle structure of nuclei far from stability. The Californium Rare Isotope Breeder (CARIBU) at ATLAS produces exotic nuclei near possible r-process paths and makes them available for study. Gammasphere ORRUBA: Dual Detectors for Experimental Structure Studies (GODDESS) employs the large internal geometry of the high-resolution γ-ray detector Gammasphere to instrument the large-area position-sensitive particle detector ORRUBA. This coupling of Gammasphere and ORRUBA allows high-efficiency, high-resolution measurements of surrogate reactions for neutron capture, collective excitations via inelastic scattering, pickup reactions (such as (d,t)), and stripping reactions (e.g. (d,p)). Results from commissioning measurements and plans for future experiments will be presented. This work is supported in part by the U.S. Department of Energy and the National Science Foundation.

  7. Problems Found Using a Radon Stripping Algorithm for Retrospective Assessment of Air Filter Samples

    SciTech Connect

    Robert Hayes

    2008-04-01

    An evaluation of a large number of air sample filters was undertaken using a commercial alpha and beta spectroscopy system employing a passive implanted planar silicon (PIPS) detector. Samples were only measured after air flow through the filters had ceased. Use of a commercial radon stripping algorithm was implemented to discriminate anthropogenic alpha activity on the filters from the radon progeny. When uncontaminated air filters were evaluated, the results showed that there was a time-dependent bias in both average estimates and measurement dispersion of anthropogenic activity estimates with the relative bias being small compared to the dispersion, indicating that the system would not give false positive indications for an appropriately set decision level. By also measuring environmental air sample filters simultaneously with electroplated alpha filters, use of the radon stripping algorithm demonstrated a number of substantial unexpected deviations from calibrated values indicating that the system would give false negative indications. Use of the current algorithm is, therefore, not recommended for general assay applications. Use of the PIPS detector should only be utilized for gross counting without appropriate modifications to the curve-fitting algorithm. As a screening method, the radon stripping algorithm might be expected to see elevated alpha activities on air sample filters (not due to radon progeny) around the 200 disintegrations per minute level.

  8. Use of a Radon Stripping Algorithm for Retrospective Assessment of Air Filter Samples

    SciTech Connect

    Robert Hayes

    2009-01-23

    An evaluation of a large number of air sample filters was undertaken using a commercial alpha and beta spectroscopy system employing a passive implanted planar silicon (PIPS) detector. Samples were only measured after air flow through the filters had ceased. Use of a commercial radon stripping algorithm was implemented to discriminate anthropogenic alpha and beta activity on the filters from the radon progeny. When uncontaminated air filters were evaluated, the results showed that there was a time-dependent bias in both average estimates and measurement dispersion with the relative bias being small compared to the dispersion. By also measuring environmental air sample filters simultaneously with electroplated alpha and beta sources, use of the radon stripping algorithm demonstrated a number of substantial unexpected deviations. Use of the current algorithm is therefore not recommended for assay applications and so use of the PIPS detector should only be utilized for gross counting without appropriate modifications to the curve fitting algorithm. As a screening method, the radon stripping algorithm might be expected to see elevated alpha and beta activities on air sample filters (not due to radon progeny) around the 200 dpm level.

  9. Neutron detector

    DOEpatents

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  10. Neutron detector

    SciTech Connect

    Stephan, Andrew C; Jardret, Vincent D

    2009-04-07

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  11. Angle detector

    NASA Technical Reports Server (NTRS)

    Parra, G. T. (Inventor)

    1978-01-01

    An angle detector for determining a transducer's angular disposition to a capacitive pickup element is described. The transducer comprises a pendulum mounted inductive element moving past the capacitive pickup element. The capacitive pickup element divides the inductive element into two parts L sub 1 and L sub 2 which form the arms of one side of an a-c bridge. Two networks R sub 1 and R sub 2 having a plurality of binary weighted resistors and an equal number of digitally controlled switches for removing resistors from the networks form the arms of the other side of the a-c bridge. A binary counter, controlled by a phase detector, balances the bridge by adjusting the resistance of R sub 1 and R sub 2. The binary output of the counter is representative of the angle.

  12. Flame Detector

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Scientific Instruments, Inc. has now developed a second generation, commercially available instrument to detect flames in hazardous environments, typically refineries, chemical plants and offshore drilling platforms. The Model 74000 detector incorporates a sensing circuit that detects UV radiation in a 100 degree conical field of view extending as far as 250 feet from the instrument. It operates in a bandwidth that makes it virtually 'blind' to solar radiation while affording extremely high sensitivity to ultraviolet flame detection. A 'windowing' technique accurately discriminates between background UV radiation and ultraviolet emitted from an actual flame, hence the user is assured of no false alarms. Model 7410CP is a combination controller and annunciator panel designed to monitor and control as many as 24 flame detectors. *Model 74000 is no longer being manufactured.

  13. Development of novel designs of spark-protected micropattern gaseous detectors with resistive electrodes

    NASA Astrophysics Data System (ADS)

    Peskov, V.; Martinengo, P.; Nappi, E.; Oliveira, R.; Pietropaolo, P.; Picchi, P.

    2012-01-01

    In the last few years many efforts have been made by various groups to develop spark-protected micropattern gaseous detectors equipped with resistive electrodes instead of metallic ones. Great success has recently been achieved with resistive gas electron multipliers (GEMs), resistive micromesh gaseous structures and resistive Well/compteur a trou detectors. In this paper, we will focus on the development of a new family of spark-protected micropattern detectors: the 2D sensitive resistive microstrip counter and the resistive microhole and strip plate, which combines in one design a resistive GEM with a microstrip detector. These innovative detectors are manufactured on standard printed circuit boards by using a simple technology thus reducing the production cost. These novel detectors have several important advantages over other micropattern detectors and are unique for applications like the readout detectors for dual phase noble liquid time projection chambers and ring imaging Cherenkov detectors.

  14. CCI1 and CCI2 Detector Simulations and Figure-of-Merit Study

    SciTech Connect

    Lange, D; Manini, H; Wright, D

    2005-08-31

    We simulate the CCI1 and CCI2 detectors, using GEANT4, to study the figure of merit (FOM) for each detector. For both CCI1 and CCI2, we study how the FOM depends on strip pitch, z resolution, and lever-cut distance. For CCI2, we study how the FOM depends on the separation distance between the two silicon detectors, and the separation distance between the two germanium detectors. We also simulate future large-scale detector systems and calculate their FOM.

  15. Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

    The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water Čerenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

  16. Spray Rolling Aluminum Strip for Transportation Applications

    SciTech Connect

    Kevin M. McHugh; Y. Lin; Y. Zhou; E. J. Lavernia; J.-P. Delplanque; S. B. Johnson

    2005-02-01

    Spray rolling is a novel strip casting technology in which molten aluminum alloy is atomized and deposited into the roll gap of mill rolls to produce aluminum strip. A combined experimental/modeling approach has been followed in developing this technology with active participation from industry. The feasibility of this technology has been demonstrated at the laboratory scale and it is currently being scaled-up. This paper provides an overview of the process and compares the microstructure and properties of spray-rolled 2124 aluminum alloy with commercial ingot-processed material

  17. Validation of the Hot Strip Mill Model

    SciTech Connect

    Richard Shulkosky; David Rosberg; Jerrud Chapman

    2005-03-30

    The Hot Strip Mill Model (HSMM) is an off-line, PC based software originally developed by the University of British Columbia (UBC) and the National Institute of Standards and Technology (NIST) under the AISI/DOE Advanced Process Control Program. The HSMM was developed to predict the temperatures, deformations, microstructure evolution and mechanical properties of steel strip or plate rolled in a hot mill. INTEG process group inc. undertook the current task of enhancing and validating the technology. With the support of 5 North American steel producers, INTEG process group tested and validated the model using actual operating data from the steel plants and enhanced the model to improve prediction results.

  18. Grain size control of rhenium strip

    NASA Technical Reports Server (NTRS)

    Schuster, Gary B.

    1991-01-01

    Ensuring the desired grain size in the pure Re strip employed by the SP-100 space nuclear reactor design entails the establishment of an initial grain size in the as-received strip and the avoidance of excessive grain growth during subsequent fabrication. Pure Re tapered tensile specimens have been fabricated and tested in order to quantify the effects of grain-boundary migration. Grain size could be rendered fine and uniform by means of a rolling procedure that uses rather large reductions between short intermediate anneals. The critical strain regime varies inversely with annealing temperature.

  19. Electrostatics of crossed arrays of strips.

    PubMed

    Danicki, Eugene

    2010-07-01

    The BIS-expansion method is widely applied in analysis of SAW devices. Its generalization is presented for two planar periodic systems of perfectly conducting strips arranged perpendicularly on both sides of a dielectric layer. The generalized method can be applied in the evaluation of capacitances of strips on printed circuits boards and certain microwave devices, but primarily it may help in evaluation of 2-D piezoelectric sensors and actuators, with row and column addressing their elements, and also piezoelectric bulk wave resonators. PMID:20639164

  20. BHZ model edge states on Mobius strip

    NASA Astrophysics Data System (ADS)

    Mogni, Christopher; Vakaryuk, Victor; Tchernyshyov, Oleg

    2014-03-01

    We present analytical edge state solutions to the Bernevig-Hughes-Zhang (BHZ) model of a quantum spin hall topological insulator with Mobius geometry. The edge state solutions are obtained by solving the differential equations governing the BHZ model. The edge states satisfy both inverted periodic boundary conditions and single-valuedness boundary conditions. Furthermore, we develop a classification of boundary conditions compatible with the BHZ model insulator with Mobius geometry. We demonstrate that in the limit of large strip length that there exists a finite energy gap between the edge states. This energy gap does not exist for strips with periodic boundary conditions.

  1. Evaluating a new segmented germanium detector contact technology

    NASA Astrophysics Data System (ADS)

    Jackson, E. G.; Lister, C. J.; Chowdhury, P.; Hull, E.; Pehl, R.

    2012-10-01

    New technologies for making gamma ray detectors position sensitive have many applications in space science, medical imaging, homeland security, and in nuclear structure research. One promising approach uses high-purity germanium wafers with the planar surfaces segmented into orthogonal strip patterns forming a Double-Sided Strip Detector (DSSD). The combination of data from adjoining strips, or pixels, is physics-rich for Compton image formation and polarization studies. However, sensitivity to charge loss and various kinds of cross-talk [1] have limited the usefulness of first generation devices. We are investigating new contact technologies, developed by PhDs Co [2], based on amorphous-germanium and yttrium contacts RF sputter deposited to a thickness of ˜ 1000 å. New techniques allow both physical and photolithographic segmentation of the contacts with inter-strip gap widths of 0.25 mm. These modifications should improve all aspects of charge collection. The new detector technology employs the same material and fabrication technique for both the n- and p- contacts, thus removing artificial asymmetry in the data. Results from tests of cross-talk, charge collection, and scattering asymmetry will be presented and compared with older technologies. This mechanically cooled counter, NP-7, seems to represent a breakthrough.[4pt] [1] S. Gros et al., Nucl. Inst. Meth. A 602, 467 (2009).[0pt] [2] E. Hull et al Nucl Inst Meth A 626, 39 (2011)

  2. The cathode strip chamber data acquisition electronics for CMS

    NASA Astrophysics Data System (ADS)

    Bylsma, B. G.; Durkin, L. S.; Gilmore, J.; Gu, J.; Ling, T. Y.; Rush, C.

    2009-03-01

    Data Acquisition (DAQ) electronics for Cathode Strip Chambers (CSC) [CMS Collaboration, The Muon Project Technical Design Report, CERN/LHCC 97-32, CMS TDR3, 1997] in the Compact Muon Solenoid (CMS) [CMS Collaboration, The Compact Muon Solenoid Technical Proposal, CERN/LHCC 94-38, 1994] experiment at the Large Hadron Collider (LHC) [The LHC study group, The Large Hadron Collider: Conceptual Design, CERN/AC 1995-05, 1995] is described. The CSC DAQ system [B. Bylsma, et al., in: Proceedings of the Topical Workshop on Electronics for Particle Physics, Prague, Czech Republic, CERN-2007-007, 2007, pp. 195-198] includes on-detector and off-detector electronics, encompassing five different types of custom circuit boards designed to handle the high event rate at the LHC. The on-detector electronics includes Cathode Front End Boards (CFEB) [R. Breedon, et al., Nucl. Instr. and Meth. A 471 (2001) 340], which amplify, shape, store, and digitize chamber cathode signals; Anode Front End Boards (AFEB) [T. Ferguson, et al., Nucl. Instr. and Meth. A 539 (2005) 386], which amplify, shape and discriminate chamber anode signals; and Data Acquisition Motherboards (DAQMB), which controls the on-chamber electronics and the readout of the chamber. The off-detector electronics, located in the underground service cavern, includes Detector Dependent Unit (DDU) boards, which perform real time data error checking, electronics reset requests and data concentration; and Data Concentrator Card (DCC) boards, which further compact the data and send it to the CMS DAQ System [CMS Collaboration, The TriDAS Project Technical Design Report, Volume 2: Data Acquisition and High-level Trigger, CERN/LHCC 2002-26, 2002], and serve as an interface to the CMS Trigger Timing Control (TTC) [TTC system ] system. Application Specific Integrated Circuits (ASIC) are utilized for analogous signal processing on front end boards. Field Programmable Gate Arrays (FPGA) are utilized

  3. An Inexpensive Detector for Gas Chromatography

    NASA Astrophysics Data System (ADS)

    Smith, Allan L.; Thorne, Edward J.; Nadler, Wolfgang

    1998-09-01

    We have developed a low-cost (parts cost approximately $70) detector that can be used in a freshman level class to demonstrate the fundamental principles of gas chromatography (GC). The detector box can be used in a modification of experiments available in the literature which do not enable a quantitative method of analysis. We have used it with success in a freshman class of approximately 450 students in an experiment to separate chlorinated hydrocarbons via GC. Natural gas is used as the carrier gas, a commercial GC column packing is the separating medium, and a Beilstein detector generates a green flame when the halocarbon is burned as it exits the column. The detector box is equipped with a CdS detector selective for the green light emitted and gives a signal that is quantitatively measured by an appropriate means such as a strip chart recorder or computer interfaced terminal panel. The detector box has a limit of detection on the order of 0.5 to 5 mg and shows a linear response over a sixfold change in concentration. Very small volumes (only about 0.1 ml) of most halocarbon vapors are necessary to achieve a measurable signal.

  4. A new micro-strip tracker for the new generation of experiments at hadron colliders

    SciTech Connect

    Dinardo, Mauro E.

    2005-12-01

    This thesis concerns the development and characterization of a prototype Silicon micro-strip detector that can be used in the forward (high rapidity) region of a hadron collider. These detectors must operate in a high radiation environment without any important degradation of their performance. The innovative feature of these detectors is the readout electronics, which, being completely data-driven, allows for the direct use of the detector information at the lowest level of the trigger. All the particle hits on the detector can be readout in real-time without any external trigger and any particular limitation due to dead-time. In this way, all the detector information is available to elaborate a very selective trigger decision based on a fast reconstruction of tracks and vertex topology. These detectors, together with the new approach to the trigger, have been developed in the context of the BTeV R&D program; our aim was to define the features and the design parameters of an optimal experiment for heavy flavour physics at hadron colliders. Application of these detectors goes well beyond the BTeV project and, in particular, involves the future upgrades of experiments at hadron colliders, such as Atlas, CMS and LHCb. These experiments, indeed, are already considering for their future high-intensity runs a new trigger strategy a la BTeV. Their aim is to select directly at trigger level events containing Bhadrons, which, on several cases, come from the decay of Higgs bosons, Zo's or W±'s; the track information can also help on improving the performance of the electron and muon selection at the trigger level. For this reason, they are going to develop new detectors with practically the same characteristics as those of BTeV. To this extent, the work accomplished in this thesis could serve as guide-line for those upgrades.

  5. Dust Detector

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.

    2001-01-01

    We discuss a recent sounding rocket experiment which found charged dust in the Earth's tropical mesosphere. The dust detector was designed to measure small (5000 - 10000 amu.) charged dust particles, most likely of meteoric origin. A 5 km thick layer of positively charged dust was found at an altitude of 90 km, in the vicinity of an observed sporadic sodium layer and sporadic E layer. The observed dust was positively charged in the bulk of the dust layer, but was negatively charged near the bottom.

  6. Ion detector

    DOEpatents

    Tullis, Andrew M.

    1987-01-01

    An improved ion detector device of the ionization detection device chamber ype comprises an ionization chamber having a central electrode therein surrounded by a cylindrical electrode member within the chamber with a collar frictionally fitted around at least one of the electrodes. The collar has electrical contact means carried in an annular groove in an inner bore of the collar to contact the outer surface of the electrode to provide electrical contact between an external terminal and the electrode without the need to solder leads to the electrode.

  7. ENGINEERING BULLETIN: AIR STRIPPING OF AQUEOUS SOLUTIONS

    EPA Science Inventory

    Air striding is a means to transfer contaminants from aqueous solutions to air. ontaminants are not destroyed by air stripping but are physically separated from the aqueous solutions. ontaminant vapors are transferred into the air stream and, if necessary, can be treated by incin...

  8. Air stripping of organics from groundwater

    SciTech Connect

    Harrison, D.P.; Valsaraj, K.T.; Wetzel, D.M. . Dept. of Chemical Engineering)

    1993-01-01

    As awareness of the problem of contaminated ground water increases, the demand for reliable and cost-effective treatment processes will also increase. Although a number of treatment options exist or are under development, air stripping using counter current flow in packed columns is the current technology of choice in many situations. This paper reviews the basic principles of packed-column design and defines the limits of counter current contacting when applied to situations in which the resistance to mass transfer in the gas phase is important. The cascade crossflow configuration allows water and air flow to be varied independently, providing added design flexibility. Reductions in pressure drop by as much as two orders of magnitude result in stable column operation at air and water flow rates which would cause flooding in a counter current column. Mass transfer efficiencies comparable to, and in some cases greater than, counter current operation have been measured. Experimental results for cascade crossflow air stripping of 1,2-dichloroethane and methyl ethyl ketone are presented. The gas-phase, mass-transfer resistance is important for both compounds due to their small Henry's constants, 1,2-dichloroethane is considered to be difficult to strip using counter current contacting, while high efficiency air stripping of methyl ethyl ketone is impractical at ambient temperature.

  9. Hexahedron Projection by Triangle Fans and Strips

    2007-05-10

    The program divides the projection of a hexahedron with not-necessarily-planar quadrilateral faces, such as would arise in a curvilinear grid, by the projections of its edges, into polygons overlapped by a single front-facing and a single back-facing face. These polygons are further organized into triangle strips and fans, for rapid volume rendering in graphics hardware.

  10. Strip edge cracking simulation in cold rolling

    SciTech Connect

    Hubert, C.; Dubar, L.; Dubar, M.; Dubois, A.

    2011-01-17

    This research work focuses on a specific defect which occurs during cold rolling of steel strips: edge-serration. Investigations on the industrial processes have led to the conclusion that this defect is the result of the edge-trimming and cold rolling sequences. The aim of this research work is to analyze the effect of the cutting process and the cold rolling on cracks occurrence, especially on strip edges.This study is performed using an experimental testing stand called Upsetting Rolling Test (URT). It allows to reproduce cold rolling contact parameters such as forward slip, reduction ratio and friction coefficients. Specimens sampled near trimmed industrial strip edges are deformed using the URT stand. Two sets of specimens with different stress states, obtained by annealing, are submitted to two reduction passes with extreme forward slips.Scanning electron microscopy observations added to 3D optical surface profiler topographies show that on one hand, forward slip has a major effect on cracks opening. On the other hand, cracks opening decreases according to high roll strip speed gradient. Concerning the heat-treated specimens, no crack appeared after all reduction passes, showing a large influence of the cutting process and consequently of the local stress state in the vicinity of the burnish and fracture regions.

  11. Cardiac Muscle Studies with Rat Ventricular Strips

    ERIC Educational Resources Information Center

    Whitten, Bert K.; Faleschini, Richard J.

    1977-01-01

    Details undergraduate physiology laboratory experiments that demonstrate mechanical properties of cardiac muscle, using strips from the ventricle of a rat heart. Includes procedures for obtaining length-tension curves, demonstrating the role of calcium in excitation-contraction coupling, and showing effects of several cardiovascular drugs…

  12. Nanoscale Test Strips for Multiplexed Blood Analysis

    NASA Technical Reports Server (NTRS)

    Chan, Eugene

    2015-01-01

    A critical component of the DNA Medicine Institute's Reusable Handheld Electrolyte and Lab Technology for Humans (rHEALTH) sensor are nanoscale test strips, or nanostrips, that enable multiplexed blood analysis. Nanostrips are conceptually similar to the standard urinalysis test strip, but the strips are shrunk down a billionfold to the microscale. Each nanostrip can have several sensor pads that fluoresce in response to different targets in a sample. The strips carry identification tags that permit differentiation of a specific panel from hundreds of other nanostrip panels during a single measurement session. In Phase I of the project, the company fabricated, tested, and demonstrated functional parathyroid hormone and vitamin D nanostrips for bone metabolism, and thrombin aptamer and immunoglobulin G antibody nanostrips. In Phase II, numerous nanostrips were developed to address key space flight-based medical needs: assessment of bone metabolism, immune response, cardiac status, liver metabolism, and lipid profiles. This unique approach holds genuine promise for space-based portable biodiagnostics and for point-of-care (POC) health monitoring and diagnostics here on Earth.

  13. 33 CFR 157.128 - Stripping system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; or (2) Any other means accepted by the Commandant. (c) Each stripping system must have at least one...) A pressure gauge at the discharge connection to the pump. (2) At least one of the following... pressure gauge at each driving fluid intake and at each discharge; and (2) A pressure/vacuum gauge at...

  14. 33 CFR 157.128 - Stripping system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: (1) In the stripping system piping: (i) A pressure gauge at the inlet connection to the pump; and (ii) A pressure gauge at the discharge connection to the pump. (2) At least one of the following... pressure gauge at each driving fluid intake and at each discharge; and (2) A pressure/vacuum gauge at...

  15. Topics in Chemical Instrumentation: CII. Automated Anodic Stripping Voltammetry.

    ERIC Educational Resources Information Center

    Stock, John T.; Ewing, Galen W., Ed.

    1980-01-01

    Presents details of anodic stripping analysis (ASV) in college chemistry laboratory experiments. Provides block diagrams of the analyzer system, circuitry and power supplies of the automated stripping analyzer, and instructions for implementing microcomputer control of the ASV. (CS)

  16. Dry stripping as a surface treatment method

    NASA Astrophysics Data System (ADS)

    Nieminen, Ilkka

    1992-03-01

    High environmental and safety standards as well as use of new paint and substrate materials have created the need for developing stripping methods to substitute chemical and mechanical methods and on the other hand for expanding the applicability of blasting as a surface treatment. Plastic Media Blasting (PMB) (alternatively Dry Stripping System (DSS)) is an emerging technology first used in aircraft maintenance for paint stripping. Traditionally this task is performed by brushing and grinding or by using chemical solvents. With plastic media it is possible to remove thick paints with high adhesion without damaging the substrate and even layer by layer. If suitable type of plastic media, blasting pressure low enough, media concentration high enough and on the other right blasting time, blasting distance and blasting angle are chosen, the effectiveness of PMB can be varied to a large extent. In regard to the hardness of media plastic particles are situated between some organic materials and shots used in sand blasting. Therefore composite materials can be treated without damaging the substrate or thin metal plates without causing any deformations. The principle of plastic media blasting equipment is similar to traditional blasting equipment. Nevertheless the properties of plastic media are different to harder particles used in shot peening resulting in higher demands for filtration, ventilation and recycling systems. In addition the facilities have to contain proper recovery equipment, because plastic media can be reused, even 20 times. In recycling systems plastic media is cleaned, too large and too small particles are removed, hard and magnetic particles are removed from reusable media and dust is separated from media. In addition to paint stripping PMB can successfully be used for cleaning of surfaces from contamination and to some extent for polishing, grinding and roughening. Paint stripping has been the main application so far, but there may be many other

  17. Refuges, flower strips, biodiversity and agronomic interest.

    PubMed

    Roy, Grégory; Wateau, Karine; Legrand, Mickaël; Oste, Sandrine

    2008-01-01

    Several arthropods are natural predators of pests, and they are able to reduce and control their population development. FREDON Nord Pas-de-Calais (Federation Regionate de Defense contre les Organismes Nuisibles = Regional Federation for Pest Control) has begun for a long time to form farmers to the recognition of beneficial arthropods and to show them their usefulness. These beneficial insects or arachnids are present everywhere, in orchards and even in fields which are areas relatively poor in biodiversity. Adults feed in the flower strips instead larvae and some adults feed on preys such as aphids or caterpillars. Most of the time, beneficial insects can regulate pest but sometimes, in agricultural area, they can't make it early enough and efficiently. Their action begin too late and there biodiversity and number are too low. It's possible to enhance their action by manipulating the ecological infrastructures, like sewing flower strips or installing refuges. Flower strips increase the density of natural enemies and make them be present earlier in the field in order to control pests. Refuges permit beneficial's to spend winter on the spot. So they're able to be active and to grow in number earlier. From 2004 to 2007, on the one hand, FREDON Nord Pas-de-Calais has developed a research program. Its purpose was to inventory practices and also tools and means available and to judge the advisability of using such or such beneficial refuge in orchards. On the second hand, it studied the impact in orchard of refuges on population of beneficial's and the difference there were between manufactured refuges and homemade refuges. Interesting prospects were obtained with some of them. Otherwise, since 2003, FREDON has studied flower strips influence on beneficial population and their impact on pest control. In cabbage fields, results of trials have shown that flower strips lead to a reduction of aphid number under acceptable economic level, up to 50 meters from flower strips

  18. Design and prototype studies of the TOTEM Roman pot detectors

    NASA Astrophysics Data System (ADS)

    Oriunno, Marco; Battistin, Michele; David, Eric; Guglielmini, Paolo; Joram, Christian; Radermacher, Ernst; Ruggiero, Gennaro; Wu, Jihao; Vacek, Vaclav; Vins, Vaclav

    2007-10-01

    The Roman pots of the TOTEM experiment at LHC will be equipped with edgeless silicon micro-strip detectors. A detector package consists of 10 detector planes cooled at -15C in vacuum. The detector resolution is 20 μm, the overall alignment precision has to be better than 30 μm. The detector planes are composed of a kapton hybrid glued on a substrate made of low expansion alloy, CE07 with 70% Si and 30% Al. An evaporative cooling system based on the fluorocarbon C3F8 with oil-free compressors has been adopted. The throttling of the fluid is done locally through capillaries. A thermo-mechanical prototype has been assembled. The results fully match the requirements and the expectations of calculations. They show a low thermal gradient on the cards and a uniform temperature distribution over the 10 planes.

  19. Air stripping. (Latest citations from the NTIS database). Published Search

    SciTech Connect

    Not Available

    1993-04-01

    The bibliography contains citations concerning the application of air stripping techniques to water treatment, including groundwater decontamination and wastewater purification. The advantages and disadvantages of air stripping over other water treatment processes are discussed. Cleanup of the organic emissions generated by air stripping is also considered. The primary applications of air stripping are in groundwater and soil cleanup. (Contains a minimum of 71 citations and includes a subject term index and title list.)

  20. Fracture of composite plates containing periodic buffer strips

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Bakioglu, M.

    1974-01-01

    Fracture of a composite plate which consists of perfectly bonded parallel load carrying laminates and buffer strips is considered. Fatigue cracks appear and spread in main laminates or in buffer strips or in both perpendicular to the interfaces. The external load is applied to the plate parallel to the strips and away from the crack region. The problem is solved for fully imbedded cracks and for broken laminates or strips. Corresponding stress intensity factors are calculated.

  1. Evaluation of strips of centipede grass for sediment load reduction.

    PubMed

    Shiono, Takahiro; Haraguchi, Noburo; Miyamoto, Kuniaki; Shinogi, Yoshiyuki; Miyamoto, Teruhito; Kameyama, Koji

    2008-01-01

    Reddish sediment runoff from agricultural fields results in coastal environmental problems in Okinawa, Japan. Recent studies have demonstrated the effectiveness of strips of centipede grass (Eremochloa ophiuroides (Munro) Hack.), a perennial turf grass, in reducing the sediment loads from farmlands. However, sufficient information has not been provided to determine the appropriate strip specifications in the grass strip design. This study evaluated centipede grass strips for reduction of reddish sediment runoff from farmlands in Okinawa, Japan. A numerical model simulating the reddish sediment transport in the grass strip was constructed to determine the sediment removal efficiency of the strip. The model was verified using data obtained from field plot experiments with the grass strips under natural conditions. The sensitivity analysis of the model showed that the length of the grass strip (i.e. the dimension of the strip in the direction of flow) and unit inflow discharge have a great effect on sediment removal efficiency. The sediment removal efficiency obtained from the model simulation increased with the length of the strip and the increment of the efficiency decreased with the length of the strip. Therefore, these results indicate that the effective and efficient length of a centipede grass strip is 3 m for the reduction of reddish sediment loads under typical farmland conditions in Okinawa.

  2. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Liquid crystal forehead temperature strip. 880... Personal Use Monitoring Devices § 880.2200 Liquid crystal forehead temperature strip. (a) Identification. A liquid crystal forehead temperature strip is a device applied to the forehead that is used to...

  3. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Liquid crystal forehead temperature strip. 880... Personal Use Monitoring Devices § 880.2200 Liquid crystal forehead temperature strip. (a) Identification. A liquid crystal forehead temperature strip is a device applied to the forehead that is used to...

  4. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Liquid crystal forehead temperature strip. 880... Personal Use Monitoring Devices § 880.2200 Liquid crystal forehead temperature strip. (a) Identification. A liquid crystal forehead temperature strip is a device applied to the forehead that is used to...

  5. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Liquid crystal forehead temperature strip. 880... Personal Use Monitoring Devices § 880.2200 Liquid crystal forehead temperature strip. (a) Identification. A liquid crystal forehead temperature strip is a device applied to the forehead that is used to...

  6. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Liquid crystal forehead temperature strip. 880... Personal Use Monitoring Devices § 880.2200 Liquid crystal forehead temperature strip. (a) Identification. A liquid crystal forehead temperature strip is a device applied to the forehead that is used to...

  7. Conveyorized Photoresist Stripping Replacement for Flex Circuit Fabrication

    SciTech Connect

    Megan Donahue

    2009-02-24

    A replacement conveyorized photoresist stripping system was characterized to replace the ASI photoresist stripping system. This system uses the qualified ADF-25c chemistry for the fabrication of flex circuits, while the ASI uses the qualified potassium hydroxide chemistry. The stripping process removes photoresist, which is used to protect the copper traces being formed during the etch process.

  8. Imaging characteristics of the Extreme Ultraviolet Explorer microchannel plate detectors

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Kaplan, G. C.; Siegmund, O. H. W.; Lampton, M.; Malina, R. F.

    1989-01-01

    The Extreme Ultraviolet Explorer (EUVE) satellite will conduct an all-sky survey over the wavelength range from 70 A to 760 A using four grazing-incidence telescopes and seven microchannel-plate (MCP) detectors. The imaging photon-counting MCP detectors have active areas of 19.6 cm2. Photon arrival position is determined using a wedge-and-strip anode and associated pulse-encoding electronics. The imaging characteristics of the EUVE flight detectors are presented including image distortion, flat-field response, and spatial differential nonlinearity. Also included is a detailed discussion of image distortions due to the detector mechanical assembly, the wedge-and-strip anode, and the electronics. Model predictions of these distortions are compared to preflight calibration images which show distortions less than 1.3 percent rms of the detector diameter of 50 mm before correction. The plans for correcting these residual detector image distortions to less than 0.1 percent rms are also presented.

  9. Bird community response to filter strips in Maryland

    USGS Publications Warehouse

    Blank, P.J.; Dively, G.P.; Gill, D.E.; Rewa, C.A.

    2011-01-01

    Filter strips are strips of herbaceous vegetation planted along agricultural field margins adjacent to streams or wetlands and are designed to intercept sediment, nutrients, and agrichemicals. Roughly 16,000 ha of filter strips have been established in Maryland through the United States Department of Agriculture's Conservation Reserve Enhancement Program. Filter strips often represent the only uncultivated herbaceous areas on farmland in Maryland and therefore may be important habitat for early-successional bird species. Most filter strips in Maryland are planted to either native warm-season grasses or cool-season grasses and range in width from 10.7 m to 91.4 m. From 2004 to 2007 we studied the breeding and wintering bird communities in filter strips adjacent to wooded edges and non-buffered field edges and the effect that grass type and width of filter strips had on bird community composition. We used 5 bird community metrics (total bird density, species richness, scrub-shrub bird density, grassland bird density, and total avian conservation value), species-specific densities, nest densities, and nest survival estimates to assess the habitat value of filter strips for birds. Breeding and wintering bird community metrics were greater in filter strips than in non-buffered field edges but did not differ between cool-season and warm-season grass filter strips. Most breeding bird community metrics were negatively related to the percent cover of orchardgrass (Dactylis glomerata) in ???1 yr. Breeding bird density was greater in narrow (60 m) filter strips. Our results suggest that narrow filter strips adjacent to wooded edges can provide habitat for many bird species but that wide filter strips provide better habitat for grassland birds, particularly obligate grassland species. If bird conservation is an objective, avoid planting orchardgrass in filter strips and reduce or eliminate orchardgrass from filter strips through management practices. Copyright ?? 2011 The

  10. Window for radiation detectors and the like

    DOEpatents

    Sparks, C.J. Jr.; Ogle, J.C.

    1975-10-28

    An improved x- and gamma-radiation and particle transparent window for the environment-controlling enclosure of various types of radiation and particle detectors is provided by a special graphite foil of a thickness of from about 0.1 to 1 mil. The graphite must have very parallel hexagonal planes with a mosaic spread no greater than 5$sup 0$ to have the necessary strength in thin sections to support one atmosphere or more of pressure. Such graphite is formed by hot- pressing and annealing pyrolytically deposited graphite and thereafter stripping off layers of sufficient thickness to form the window.

  11. Oscillator detector

    SciTech Connect

    Potter, B.M.

    1980-05-13

    An alien liquid detector employs a monitoring element and an oscillatory electronic circuit for maintaining the temperature of the monitoring element substantially above ambient temperature. The output wave form, eg., frequency of oscillation or wave shape, of the oscillatory circuit depends upon the temperaturedependent electrical characteristic of the monitoring element. A predetermined change in the output waveform allows water to be discriminated from another liquid, eg., oil. Features of the invention employing two thermistors in two oscillatory circuits include positioning one thermistor for contact with water and the other thermistor above the oil-water interface to detect a layer of oil if present. Unique oscillatory circuit arrangements are shown that achieve effective thermistor action with an economy of parts and energizing power. These include an operational amplifier employed in an astable multivibrator circuit, a discrete transistor-powered tank circuit, and use of an integrated circuit chip.

  12. Ultra-stripped supernovae: progenitors and fate

    NASA Astrophysics Data System (ADS)

    Tauris, Thomas M.; Langer, Norbert; Podsiadlowski, Philipp

    2015-08-01

    The explosion of ultra-stripped stars in close binaries can lead to ejecta masses <0.1 M⊙ and may explain some of the recent discoveries of weak and fast optical transients. In Tauris et al., it was demonstrated that helium star companions to neutron stars (NSs) may experience mass transfer and evolve into naked ˜1.5 M⊙ metal cores, barely above the Chandrasekhar mass limit. Here, we elaborate on this work and present a systematic investigation of the progenitor evolution leading to ultra-stripped supernovae (SNe). In particular, we examine the binary parameter space leading to electron-capture (EC SNe) and iron core-collapse SNe (Fe CCSNe), respectively, and determine the amount of helium ejected with applications to their observational classification as Type Ib or Type Ic. We mainly evolve systems where the SN progenitors are helium star donors of initial mass MHe = 2.5-3.5 M⊙ in tight binaries with orbital periods of Porb = 0.06-2.0 d, and hosting an accreting NS, but we also discuss the evolution of wider systems and of both more massive and lighter - as well as single - helium stars. In some cases, we are able to follow the evolution until the onset of silicon burning, just a few days prior to the SN explosion. We find that ultra-stripped SNe are possible for both EC SNe and Fe CCSNe. EC SNe only occur for MHe = 2.60-2.95 M⊙ depending on Porb. The general outcome, however, is an Fe CCSN above this mass interval and an ONeMg or CO white dwarf for smaller masses. For the exploding stars, the amount of helium ejected is correlated with Porb - the tightest systems even having donors being stripped down to envelopes of less than 0.01 M⊙. We estimate the rise time of ultra-stripped SNe to be in the range 12 h-8 d, and light-curve decay times between 1 and 50 d. A number of fitting formulae for our models are provided with applications to population synthesis. Ultra-stripped SNe may produce NSs in the mass range 1.10-1.80 M⊙ and are highly relevant for

  13. Test and simulation of plastic scintillator strips readout by silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Balbi, G.; Boldini, M.; Cafaro, V.; Fabbri, F.; Giordano, V.; Montanari, A.; Rovelli, T.; Torromeo, G.; Tosi, N.

    2014-04-01

    We studied the light collection in plastic scintillator strips, optimized for the detection of Minimum Ionizing Particles (MIPs). The light is collected by Wave Length Shifter (WLS) fibers and detected by Silicon Photo Multipliers (SiPMs). The study is based on prototypes developed for the muon detector of SuperB experiment. In parallel to measurement made on various type of geometries, a complete simulation suite, based on FLUKA, was developed. The simulation parameters were tuned by comparison with real data. In this way, we were able to study the effects of geometries and assembling procedures on light collection and provide a useful simulation tool for the design of future prototypes.

  14. Analysis of a hybrid, unidirectional buffer strip laminate

    NASA Technical Reports Server (NTRS)

    Dharani, L. R.; Goree, J. G.

    1983-01-01

    A method of analysis capable of predicting accurately the fracture behavior of a unidirectional composite laminate containing symmetrically placed buffer strips is presented. As an example, for a damaged graphite/epoxy laminate, the results demonstrate the manner in which to select the most efficient combination of buffer strip properties necessary to inhibit crack growth. Ultimate failure of the laminate after crack arrest can occur under increasing load either by continued crack extension through the buffer strips or the crack can jump the buffer strips. For some typical hybrid materials it is found that a buffer strip spacing-to-width ratio of about four to one is the most efficient.

  15. Analysis of a hybrid-undirectional buffer strip laminate

    NASA Technical Reports Server (NTRS)

    Dharani, L. R.; Goree, J. G.

    1983-01-01

    A method of analysis capable of predicting accurately the fracture behavior of a unidirectional composite laminate containing symmetrically placed buffer strips is presented. As an example, for a damaged graphite/epoxy laminate, the results demonstrate the manner in which to select the most efficient combination of buffer strip properties necessary to inhibit crack growth. Ultimate failure of the laminate after the arrest can occur under increasing load either by continued crack extension through the buffer strips or the crack can jump the buffer strips. For some typical hybrid materials it is found that a buffer strip spacing to width ratio of about four to one is the most efficient.

  16. Antenna with distributed strip and integrated electronic components

    DOEpatents

    Rodenbeck, Christopher T.; Payne, Jason A.; Ottesen, Cory W.

    2008-08-05

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element can be in proximity to a ground conductor and/or arranged as a dipole. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. An antenna can comprise a distributed strip patterned on a printed wiring board, integrated with electronic components mounted on top of or below the distributed strip, and substantially within the extents of the distributed strip. Mounting of electronic components on top of or below the distributed strip has little effect on the performance of the antenna, and allows for realizing the combination of the antenna and integrated components in a compact form. An embodiment of the invention comprises an antenna including a distributed strip, integrated with a battery mounted on the distributed strip.

  17. Mechanics of Thin Strip Steering in Hot Rolling

    NASA Astrophysics Data System (ADS)

    Jiang, Zhengyi; Tieu, Kiet A.

    2004-06-01

    The hot rolling of thin strip can result in several problems in hot rolling, for instance, the control of strip steering, strip shape and flatness and surface roughness etc. Therefore, the hot rolling of thin strip brings out a requirement of innovative technologies such as the extended control of shape and flatness, steering control and reduction of load by roll gap lubrication. In this paper, the authors focus on the analysis of thin strip snaking movement, as well as solve the related problems such as the shape and flatness due to a larger reduction applied when the strip is thinner. A finite element method was used to simulate this nonsymmetricity rolling considering the non-uniform reduction along the strip width. The calculated spread is compared with the measured values obtained from the rolling mill in laboratory and the friction effect is also discussed.

  18. Micromegas detectors for CLAS12

    SciTech Connect

    Charles, Gabriel

    2013-08-01

    The electron accelerator of the Thomas Jefferson Laboratory (VI, USA) will soon be upgraded to deliver 12 GeV high intensity beams. This increase in the performance will give the opportunity to study the nucleon structure with an unprecedented accuracy. To meet this end, new equipments will be installed in the experimental areas, particularly in the Hall B/CLAS spectrometer. One of the most challenging aspects is the installation of a Central Tracker surrounding the target, dedicated to the detection of particles emitted at large angles. Micromegas detectors have been chosen to be a major element of this new equipment, due to their high rate capability as well as their robustness and light material. Using the recent bulk technology, part of these gaseous detectors are planned to be assembled in thin cylinders to maximize the acceptance. On the other hand, the presence of a strong magnetic field either perpendicular or parallel to the readout strips has important consequences which need to be carefully investigated. Finally, resistive Micromegas have been studied to further improve the rate capability.

  19. Membrane air-stripping: Effects of pretreatment

    SciTech Connect

    Castro, K. ); Zander, A.K. . Dept. of Civil and Environmental Engineering)

    1995-03-01

    As a result of the Safe Drinking Water Act and its 1986 amendments, the number of regulated volatile organic chemicals (VOCs) has increased substantially. The discovery of drinking water supply sources contaminated by VOCs is also increasing. These factors have led to the development of alternative treatment methods for control of VOCs. Microporous polypropylene hollow-fiber membranes offer significant advantages over packed-tower aeration for removing volatile organic chemicals. A laboratory study assessed the performance of membrane air-stripping in continuous operation, while exposed to various pretreatments. Results indicate that membrane air-stripping is compatible with low-pH or low-chlorine waters but not with waters of high pH or high-chlorine concentration or those that are ozonated.

  20. Catalytic treatment of air-stripping effluents

    SciTech Connect

    Kosusko, M.; Mullins, M.E.; Rogers, T.N.; Ramanathan, K.

    1987-12-01

    The paper reviews the applicability of catalytic oxidation to control ground-water air-stripping gaseous effluents with emphasis on system designs and case histories. The contaminants and catalyst poisons encountered in stripping operations are also reviewed. Vapor-phase carbon adsorption and thermal incineration, the treatment methods that have been applied most often, have some disadvantages: adsorption merely transfers the contaminant to a solid phase, which in turn requires disposal or regeneration; and thermal incineration may be expensive, since it requires a substantial energy input to destroy dilute gas-phase contaminants. A new alternative is appearing in the form of catalytic oxidation. Like thermal incineration, it is an ultimate disposal method, but the energy costs are lower.

  1. ITCS Test Strip Development and Certification

    NASA Technical Reports Server (NTRS)

    Carrigan, Caitlin; Adam, Niklas; Pickering, Karen; Gazda, Daniel; Piowaty, Hailey

    2011-01-01

    Internal coolant loops used for International Space Station thermal control must be periodically monitored for system health, including pH, biocide levels and any indication of ammonia. The presence of ammonia, possible via a microleak in the interface between the internal and external thermal control systems, could be a danger to the crew. The Internal Thermal Control System (ITCS) Sampling Kit uses test strips as a colorimetric indicator of pH and concentrations of biocide and free ammonia. This paper describes the challenges in designing an ammonia colorimetric indicator in a variable pH environment, as well as lessons learned, ultimately resulting in a robust test strip to indicate a hazardous ammonia leak.

  2. Coiling Temperature Control in Hot Strip Mill

    NASA Astrophysics Data System (ADS)

    Imanari, Hiroyuki; Fujiyama, Hiroaki

    Coiling temperature is one of the most significant factors in products of hot strip mill to determine material properties such as strength, toughness of steel, so it is very important to achieve accurate coiling temperature control (CTC). Usually there are a few pyrometers on the run out table in hot strip mill, therefore temperature model and its adapting system have large influences on the accuracy of CTC. Also unscheduled change of rolling speed has a bad effect to keep coiling temperature as its target. Newly developed CTC system is able to get very accurate coiling temperature against uncertain factors and disturbances by adopting easily identified temperature model, learning method and dynamic set up function. The features of the CTC system are discussed with actual data, and the effectiveness of the system is shown by actual control results.

  3. Pf/Zeolite Catalyst for Tritium Stripping

    SciTech Connect

    Hsu, R.H.

    2001-03-26

    This report described promising hydrogen (protium and tritium) stripping results obtained with a Pd/zeolite catalyst at ambient temperature. Preliminary results show 90-99+ percent tritium stripping efficiency may be obtained, with even better performance expected as bed configuration and operating conditions are optimized. These results suggest that portable units with single beds of the Pd/zeolite catalyst may be utilized as ''catalytic absorbers'' to clean up both tritium gas and tritiated water. A cart-mounted prototype stripper utilizing this catalyst has been constructed for testing. This portable stripper has potential applications in maintenance-type jobs such as tritium line breaks. This catalyst can also potentially be utilized in an emergency stripper for the Replacement Tritium Facility.

  4. Multitwist optical Möbius strips.

    PubMed

    Freund, Isaac

    2010-01-15

    Circularly polarized Gauss-Laguerre GL00 and GL01 laser beams that cross at their waists at a small angle are shown to generate a quasi-paraxial field that contains a line of circular polarization, a C line, surrounded by polarization ellipses whose major and minor axes generate multitwist Möbius strips with twist numbers that increase with the distance from the C point.

  5. Technology of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE)

    NASA Astrophysics Data System (ADS)

    Wegrzecka, Iwona; Panas, Andrzej; Bar, Jan; Budzyński, Tadeusz; Grabiec, Piotr; Kozłowski, Roman; Sarnecki, Jerzy; Słysz, Wojciech; Szmigiel, Dariusz; Wegrzecki, Maciej; Zaborowski, Michał

    2013-07-01

    The paper discusses the technology of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE). The developed technology enables the fabrication of both planar and epiplanar p+-ν-n+ detector structures with an active area of up to 50 cm2. The starting material for epiplanar structures are silicon wafers with a high-resistivity n-type epitaxial layer ( ν layer - ρ < 3 kΩcm) deposited on a highly doped n+-type substrate (ρ< 0,02Ωcm) developed and fabricated at the Institute of Electronic Materials Technology. Active layer thickness of the epiplanar detectors (νlayer) may range from 10 μm to 150 μm. Imported silicon with min. 5 kΩcm resistivity is used to fabricate planar detectors. Active layer thickness of the planar detectors (ν) layer) may range from 200 μm to 1 mm. This technology enables the fabrication of both discrete and multi-junction detectors (monolithic detector arrays), such as single-sided strip detectors (epiplanar and planar) and double-sided strip detectors (planar). Examples of process diagrams for fabrication of the epiplanar and planar detectors are presented in the paper, and selected technological processes are discussed.

  6. Software design of the ATLAS Muon Cathode Strip Chamber ROD

    NASA Astrophysics Data System (ADS)

    Murillo, R.; Huffer, M.; Claus, R.; Herbst, R.; Lankford, A.; Schernau, M.; Panetta, J.; Sapozhnikov, L.; Eschrich, I.; Deng, J.

    2012-12-01

    The ATLAS Cathode Strip Chamber system consists of two end-caps with 16 chambers each. The CSC Readout Drivers (RODs) are purpose-built boards encapsulating 13 DSPs and around 40 FPGAs. The principal responsibility of each ROD is for the extraction of data from two chambers at a maximum trigger rate of 75 KHz. In addition, each ROD is in charge of the setup, control and monitoring of the on-detector electronics. This paper introduces the design of the CSC ROD software. The main features of this design include an event flow schema that decentralizes the different dataflow streams, which can thus operate asynchronously at its own natural rate; an event building mechanism that associates data transferred by the asynchronous streams belonging to the same event; and a sparcification algorithm that discards uninteresting events and thus reduces the data occupancy volume. The time constraints imposed by the trigger rate have made paramount the use of optimization techniques such as the curiously recurrent template pattern and the programming of critical code in assembly language. The behaviour of the CSC RODs has been characterized in order to validate its performance.

  7. Compton imaging with thick Si and CZT detectors

    NASA Astrophysics Data System (ADS)

    Subramanian, Mythili; Wulf, Eric A.; Phlips, Bernard; Krawczynski, Henric; Martin, Jerrad; Dowknott, Paul

    2012-08-01

    A Compton imaging telescope has been constructed using a 0.2 cm thick Silicon (Si) detector of active area 9.0×9.0 cm2 and a pixelated Cadmium Zinc Telluride (CZT) detector of dimensions 2.0×2.0×0.5 cm3. The Si detector is double sided with 64 strips per side in two orthogonal directions. The CZT detector has 64 pixels of pitch 0.25 cm. We used several ASICs (32 channel) to read out both detectors. A 137Cs source was used in the study. The energy deposited in the Si and CZT detectors and the points of interaction of the γ-ray in both detectors were read out. We varied the position of the source as well as the vertical separation between the Si and CZT detectors and measured the angular resolution of the source image for the different configurations. The best angular resolution (1σ) was 2.4°. Monte Carlo simulations were run for similar detector configurations and agree with the experimental results.

  8. Silicon subsystem mechanical engineering work for the solenoidal detector collaboration

    SciTech Connect

    Miller, W.O.; Barney, M.; Byrd, D.; Christensen, R.W.; Dransfield, G.; Elder, M.; Gamble, M.; Crastataro, C.; Hanlon, J.; Jones, D.C.

    1995-02-01

    The silicon tracking system (STS) for the Solenoidal Detector Collaboration (SDC) represented an order of magnitude increase in size over any silicon system that had been previously built or even planned. In order to meet its performance requirements, it could not simply be a linear scaling of earlier systems, but instead required completely new concepts. The small size of the early systems made it possible to simply move the support hardware and services largely outside the active volume of the system. For a system five meters long, that simply is not an option. The design of the STS for the SDC experiment was the result of numerous compromises between the capabilities required to do the physics and the limitations imposed by cost, material properties, and silicon strip detector characteristics. From the point of view of the physics, the silicon system should start as close to the interaction point as possible. In addition, the detectors should measure the position of particles passing through them with no errors, and should not deflect or interact with the particles in any way. However, cost, radiation damage, and other factors limiting detector performance dictated, other, more realistic values. Radiation damage limited the inner radius of the silicon detectors to about 9 cm, whereas cost limited the outer radius of the detectors to about 50 cm. Cost also limits the half length of the system to about 250 cm. To control the effects of radiation damage on the detectors required operating the system at a temperature of 0{degrees}C or below, and maintaining that temperature throughout life of the system. To summarize, the physics and properties of the silicon strip detectors requires that the detectors be operated at or below 0{degrees}C, be positioned very accurately during assembly and remain positionally stable throughout their operation, and that all materials used be radiation hard and have a large thickness for one radiation length.

  9. Stripping organics from groundwater and wastewater

    SciTech Connect

    Lamarre, B.; Shearouse, D.

    1996-03-01

    At thousands of installations worldwide, air stripping has been used as an efficient method for removing volatile and semi-volatile contaminants from water -- both groundwater and industrial wastewater streams. In addition to numerous field installations, extensive laboratory analysis has confirmed the performance of various types and sizes of air strippers, and has made the practice highly predictable for a wide range of contaminants. The general principles of air stripping are quite simple. Within an air stripper, an air stream is directed across a thin film of contaminated water. Contaminants at the air-water interface volatilize and are discharged to the atmosphere, or to an off-gas treatment system. The two main types of air strippers are packed towers and try-type strippers. In many cases, air stripping can be a fast, efficient and economical approach to treating organics-laden water streams. However, since different wastewater streams can vary significantly, each must be evaluated to characterize its constitutents, determine each constituent`s potential affinity or resistance to being volatilized, and identify any pre-treatment steps that need to be taken to produce the desired results.

  10. Automating and controlling dry paint stripping

    NASA Astrophysics Data System (ADS)

    Cunliffe, F. R., III

    1989-03-01

    The key parameters which affect the efficiency and success of the dry paint-stripping process are discussed, including pressure at the nozzle, the size of the nozzle, the angle of blasting, the distance from the work-piece, the hardness and the size of the media, and the media flow. It is pointed out that, by automating the dry paint stripping process, many of these parameters can be controlled, making it possible to reproduce the same result, time and again. Attention is given to a recently developed automated aircraft wheel stripping machine, whose units are operated by joy stick controls from outside the cabinet. The wheel can be rotated and moved forward and backward in order to gain access to all of the surfaces; the operator also controls the nozzle manipulator which is a five-axis unit. At present, robotic systems are being developed for small aircraft and for the jumbo jets in use throughout the commercial airline fleets of the world.

  11. Navajo mine; Multiple seam dragline stripping

    SciTech Connect

    Schenk, D.L.

    1990-10-01

    The Navajo mine is exclusively a multiple-seam surface coal mine located in the northwest corner of New Mexico. The property is situated entirely on the Navajo Indian Reservation. It is owned and operated by the Broken Hill Propriety Co. Ltd., of Melbourne, Australia. The mine began production in January 1963 with a long-term fuel supply agreement with the Four Corners power plant. The 2175 MW nominal generating capacity of the Four Corners power plant consumes 7.2 Mt to 7.7 Mt/a (8 million to 8.5 million stpy) of coal. The Navajo Mine has estimated reserves totaling 1 Gt (1.1 billion st) of strip minable coal. Only about one-third of that total is presently committed to the generating station. As development continued over the years, mining operations advanced into more complex geologic areas to satisfy the utility's demand for coal. This case study of the fourth production cut highlights a variety of dragline stripping techniques including highwall bench (overburden) side cast, intermediate highwall bench (parting-interburden) side cast and spoilside bench (partings-interburden) stripping methods. The Dixon Pit offers considerable challenges in the surface recovery of up to seven seams of coal within the 1432 m (4700 ft) of total pit length.

  12. Ram pressure stripping in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Verdugo, C.; Combes, F.; Dasyra, K.; Salomé, P.; Braine, J.

    2015-10-01

    Gas can be violently stripped from their galaxy disks in rich clusters, and be dispersed over 100 kpc-scale tails or plumes. Young stars have been observed in these tails, suggesting they are formed in situ. This will contribute to the intracluster light, in addition to tidal stripping of old stars. We want to quantify the efficiency of intracluster star formation. We present CO(1-0) and CO(2-1) observations, made with the IRAM-30 m telescope, towards the ram-pressure stripped tail northeast of NGC 4388 in Virgo. We selected HII regions found all along the tails, together with dust patches, as observing targets. We detect molecular gas in 4 positions along the tail, with masses between 7 × 105 to 2 × 106M⊙. Given the large distance from the NGC 4388 galaxy, the molecular clouds must have formed in situ, from the HI gas plume. We compute the relation between surface densities of star formation and molecular gas in these regions, and find that the star formation has very low efficiency. The corresponding depletion time of the molecular gas can be up to 500 Gyr and more. Since this value exceeds a by far Hubble time, this gas will not be converted into stars, and will stay in a gaseous phase to join the intracluster medium.

  13. Sustainable Water and Energy in Gaza Strip

    NASA Astrophysics Data System (ADS)

    Hamdan, L.; Zarei, M.; Chianelli, R.; Gardner, E.

    2007-12-01

    Shortage of fresh water is a common problem in different areas of the world including the Middle East. Desalination of seawater and brackish water is the cheapest way to obtain fresh water in many regions. This research focuses on the situation in Gaza Strip where there is a severe shortage in the energy and water supply. The depletion of fresh water supplies and lack of wastewater treatments result in environmental problems. A solar powered cogeneration plant producing water and energy is proposed to be a suitable solution for Gaza Strip. Solar energy, using Concentrating Solar thermal Power (CSP) technologies, is used to produce electricity by a steam cycle power plant. Then the steam is directed to a desalination plant where it is used to heat the seawater to obtain freshwater. The main objective of this research is to outline a solution for the water problems in Gaza Strip, which includes a cogeneration (power and water) solar powered plant. The research includes four specific objectives: 1- an environmental and economic comparison between solar and fossil fuel energies; 2- technical details for the cogeneration plant; 3- cost and funding, 4- the benefits.

  14. Multiple Electron Stripping of Heavy Ion Beams

    SciTech Connect

    D. Mueller; L. Grisham; I. Kaganovich; R. L. Watson; V. Horvat; K. E. Zaharakis; Y. Peng

    2002-06-25

    One approach being explored as a route to practical fusion energy uses heavy ion beams focused on an indirect drive target. Such beams will lose electrons while passing through background gas in the target chamber, and therefore it is necessary to assess the rate at which the charge state of the incident beam evolves on the way to the target. Accelerators designed primarily for nuclear physics or high energy physics experiments utilize ion sources that generate highly stripped ions in order to achieve high energies economically. As a result, accelerators capable of producing heavy ion beams of 10 to 40 Mev/amu with charge state 1 currently do not exist. Hence, the stripping cross-sections used to model the performance of heavy ion fusion driver beams have, up to now, been based upon theoretical calculations. We have investigated experimentally the stripping of 3.4 Mev/amu Kr 7+ and Xe +11 in N2; 10.2 MeV/amu Ar +6 in He, N2, Ar and Xe; 19 MeV/amu Ar +8 in He, N2, Ar and Xe; 30 MeV He 1 + in He, N2, Ar and Xe; and 38 MeV/amu N +6 in He, N2, Ar and Xe. The results of these measurements are compared with the theoretical calculations to assess their applicability over a wide range of parameters.

  15. Characterization of Silicon Detector Readout Electronics

    SciTech Connect

    Jones, M.

    2015-07-22

    Configuration and calibration of the front-end electronics typical of many silicon detector configurations were investigated in a lab activity based on a pair of strip sensors interfaced with FSSR2 read-out chips and an FPGA. This simple hardware configuration, originally developed for a telescope at the Fermilab Test Beam Facility, was used to measure thresholds and noise on individual readout channels and to study the influence that different configurations of the front-end electronics had on the observed levels of noise in the system. An understanding of the calibration and operation of this small detector system provided an opportunity to explore the architecture of larger systems such as those currently in use at LHC experiments.

  16. Silicon microstrip detectors in 3D technology for the sLHC

    NASA Astrophysics Data System (ADS)

    Parzefall, Ulrich; Dalla Betta, Gian-Franco; Eckert, Simon; Eklund, Lars; Fleta, Celeste; Jakobs, Karl; Kühn, Susanne; Pahn, Gregor; Parkes, Chris; Pennicard, David; Ronchin, Sabina; Zoboli, Andrea; Zorzi, Nicola

    2009-08-01

    The projected luminosity upgrade of the large hadron collider (LHC), the sLHC, will constitute a challenging radiation environment for tracking detectors. Massive improvements in radiation hardness are required with respect to the LHC. In the layout for the new ATLAS tracker, silicon strip detectors (SSDs) with short strips cover the region from 28 to 60 cm distance to the beam. These SSDs will be exposed to fluences up to 1015 Neq/cm2, hence radiation resistance is the major concern. It is advantageous to fuse the superior radiation hardness of the 3D design originally conceived for pixel-style applications with the benefits of the well-known planar technology for strip detectors. This is achieved by ganging rows of 3D columns together to form strips. Several prototype sLHC detector modules using 3D SSD with short strips, processed on p-type silicon, and LHC-speed front-end electronics from the present ATLAS semi-conductor tracker (SCT) were built. The modules were tested before and after irradiation to fluences of 1015 Neq/cm2. The tests were performed with three systems: a highly focused IR-laser with 5 μm spot size to make position-resolved scans of the charge collection efficiency (CCE), a Sr90β-source set-up to measure the signal levels for a minimum ionizing particles (MIPs), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of the performance of these 3D modules, and draws conclusions about options for using 3D strip sensors as tracking detectors at the sLHC.

  17. Damage tolerance of woven graphite-epoxy buffer strip panels

    NASA Technical Reports Server (NTRS)

    Kennedy, John M.

    1990-01-01

    Graphite-epoxy panels with S glass buffer strips were tested in tension and shear to measure their residual strengths with crack-like damage. The buffer strips were regularly spaced narrow strips of continuous S glass. Panels were made with a uniweave graphite cloth where the S glass buffer material was woven directly into the cloth. Panels were made with different width and thickness buffer strips. The panels were loaded to failure while remote strain, strain at the end of the slit, and crack opening displacement were monitoring. The notched region and nearby buffer strips were radiographed periodically to reveal crack growth and damage. Except for panels with short slits, the buffer strips arrested the propagating crack. The strength (or failing strain) of the panels was significantly higher than the strength of all-graphite panels with the same length slit. Panels with wide, thick buffer strips were stronger than panels with thin, narrow buffer strips. A shear-lag model predicted the failing strength of tension panels with wide buffer strips accurately, but over-estimated the strength of the shear panels and the tension panels with narrow buffer strips.

  18. Detector production for the R3B Si-tracker

    NASA Astrophysics Data System (ADS)

    Borri, M.; Lemmon, R.; Thornhill, J.; Bate, R.; Chartier, M.; Clague, N.; Herzberg, R.-D.; Labiche, M.; Lindsay, S.; Nolan, P.; Pearce, F.; Powell, W.; Wells, D.

    2016-11-01

    R3B is a fixed target experiment which will study reactions with relativistic radioactive beams at FAIR. Its Si-tracker will surround the target volume and it will detect light charged-particles like protons. The detector technology in use consists of double-sided silicon strip sensors wire bonded to the custom made R3B-ASIC. The tracker allows for a maximum of two outer layers and one inner layer. This paper reports on the production of detectors necessary to build the minimum tracking configuration: one inner layer and one outer layer.

  19. Detector simulation needs for detector designers

    SciTech Connect

    Hanson, G.G.

    1987-11-01

    Computer simulation of the components of SSC detectors and of the complete detectors will be very important for the designs of the detectors. The ratio of events from interesting physics to events from background processes is very low, so detailed understanding of detector response to the backgrounds is needed. Any large detector for the SSC will be very complex and expensive and every effort must be made to design detectors which will have excellent performance and will not have to undergo major rebuilding. Some areas in which computer simulation is particularly needed are pattern recognition in tracking detectors and development of shower simulation code which can be trusted as an aid in the design and optimization of calorimeters, including their electron identification performance. Existing codes require too much computer time to be practical and need to be compared with test beam data at energies of several hundred GeV. Computer simulation of the processing of the data, including electronics response to the signals from the detector components, processing of the data by microprocessors on the detector, the trigger, and data acquisition will be required. In this report we discuss the detector simulation needs for detector designers.

  20. First test of cold edgeless silicon microstrip detectors

    NASA Astrophysics Data System (ADS)

    Avati, V.; Boccone, V.; Borer, K.; Bozzo, M.; Capra, R.; Casagrande, L.; Eggert, K.; Heijne, E.; Klauke, S.; Li, Z.; Mäki, T.; Morelli, A.; Oljemark, F.; Palmieri, V. G.; Perea-Solano, B.; Tapprogge, S.

    2004-02-01

    Silicon microstrip detectors will provide the forward tracking in the TOTEM experiment at the LHC. To allow efficient tracking closest to the beam (≈1 mm) these detectors should be sensitive up to their physical edge (i.e. edgeless). Edgeless (without guard rings) microstrip planar detectors can be operated at cryogenic temperatures (about 130° K) where leakage currents due to the active edge are drastically reduced. A silicon microstrip prototype, cut perpendicular to the strips, has been tested with a pion beam at CERN to study its efficiency close to the edge by using reference tracks from a simple silicon telescope. Results indicate that the detector measures tracks with good efficiency up to the physical edge of the silicon.

  1. Monitoring of absolute mirror alignment at COMPASS RICH-1 detector

    NASA Astrophysics Data System (ADS)

    Alexeev, M.; Birsa, R.; Bradamante, F.; Bressan, A.; Chiosso, M.; Ciliberti, P.; Dalla Torre, S.; Denisov, O.; Duic, V.; Ferrero, A.; Finger, M.; Finger, M.; Gayde, J. Ch.; Giorgi, M.; Gobbo, B.; Levorato, S.; Maggiora, A.; Martin, A.; Menon, G.; Panzieri, D.; Pesaro, G.; Polak, J.; Rocco, E.; Sbrizzai, G.; Schiavon, P.; Slunecka, M.; Sozzi, F.; Steiger, L.; Sulc, M.; Takekawa, S.; Tessarotto, F.

    2014-12-01

    The gaseous COMPASS RICH-1 detector uses two spherical mirror surfaces, segmented into 116 individual mirrors, to focus the Cherenkov photons onto the detector plane. Any mirror misalignment directly affects the detector resolution. The on-line Continuous Line Alignment and Monitoring (CLAM) photogrammetry-based method has been implemented to measure the alignment of individual mirrors which can be characterized by the center of curvature. The mirror wall reflects a regular grid of retroreflective strips placed inside the detector vessel. Then, the position of each mirror is determined from the image of the grid reflection. The images are collected by four cameras. Any small mirror misalignment results in changes of the grid lines' positions in the image. The accuracy limits of the CLAM method were checked by laser interferometry and are below 0.1 mrad.

  2. Real time tracker based upon local hit correlation circuit for silicon strip sensors

    NASA Astrophysics Data System (ADS)

    Lehmann, Niklaus; Pirrami, Lorenzo; Blue, Andrew; Diez, Sergio; Dressnandt, Nandor; Duner, Silvan; Garcia-Sciveres, Maurice; Haber, Carl; Halgeri, Amogh; Keener, Paul; Keller, John; Newcomer, Mitchell; Pasner, Jacob; Peschke, Richard; Risbud, Amar; Ropraz, Eric; Stalder, Jonas; Wang, Haichen

    2016-01-01

    For the planned high luminosity upgrade of the Large Hadron Collider (LHC), a significant performance improvement of the detectors is required, including new tracker and trigger systems that makes use of charged track information early on. In this note we explore the principle of real time track reconstruction integrated in the readout electronics. A prototype was built using the silicon strip sensor for the ATLAS phase-II upgrade. The real time tracker is not the baseline for ATLAS but is nevertheless of interest, as the upgraded trigger design has not yet been finalized. For this, a new readout scheme in parallel with conventional readout, called the Fast Cluster Finder (FCF), was included in the latest prototype of the ATLAS strip detector readout chip (ABC130). The FCF is capable of finding hits within 6 ns and transmitting the found hit information synchronously every 25 ns. Using the FCF together with external correlation logic makes it possible to look for pairs of hits consistent with tracks from the interaction point above a transverse momentum threshold. A correlator logic finds correlations between two closely spaced parallel sensors, a "doublet", and can generate information used as input to a lowest level trigger decision. Such a correlator logic was developed as part of a demonstrator and was successfully tested in an electron beam. The results of this test beam experiment proved the concept of the real time track vector processor with FCF.

  3. Thermal imaging QC for silicon strip staves of the ATLAS phase II upgrade

    NASA Astrophysics Data System (ADS)

    Vergel Infante, Carlos

    2016-03-01

    A new silicon strip detector is part of the phase II upgrade of the ATLAS inner tracker. Light-material carbon fiber honeycomb sandwich staves serve as mechanical support for the strip sensors and readout modules and to move the dissipated heat out of the detector. A cooling pipe inside the stave is embedded in heat-conducting foam that thermally connects the pipe with the readout modules. The staves are required to pass a set of quality control (QC) tests before they are populated with readout modules. One test uses a non-invasive inspection method of infrared (IR) thermal imaging of the heat path while the stave is cooled to around -40°C at ambient room temperature. Imperfections in the manufacturing, such as the delamination of the stave facing from the foam, will exhibit a different temperature profile compared to a flawless stave. We report on the current status of the thermal imaging QC measurements including a characterization of various contributions to the uncertainties in the temperature reading of the IR camera such as pedestal variations, common-mode noise, vignetting, and statistical fluctuations across the field of view.

  4. Spiral silicon drift detectors

    SciTech Connect

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs.

  5. Uranium stripping from tributyl phosphate by urea solutions

    NASA Astrophysics Data System (ADS)

    Skripchenko, S. Yu.; Titova, S. M.; Smirnov, A. L.; Rychkov, V. N.

    2016-09-01

    The process of uranium stripping from tri-n-butyl phosphate in kerosene by urea solutions was investigated at the volume ratio of the organic and aqueous phases of (1-10) : 1 in the temperature range of 20-60 °C. The stripping of uranium from a loaded organic phase increased with increasing urea content in the solution and with increasing temperature. Maximum recovery of uranium from tributyl phosphate was obtained using a solution that contained 8-12 mol/l of urea. The application of a urea solution for uranium stripping resulted in the strip product solution containing 200-240 g/L of uranium. The process of uranium stripping by dilute nitric acid was also investigated. Results of uranium stripping by the two methods are compared and discussed.

  6. Textures of strip cast Fe16%Cr

    SciTech Connect

    Raabe, D.; Reher, F.; Luecke, K. ); Hoelscher, M. )

    1993-07-01

    Ferritic stainless steels with a Cr content of 16% are mainly manufactured by continuous casting, hot rolling, cold rolling and final recrystallization. The recent development of the strip casting method, which provides sheets with an equivalent geometry, i.e. thickness and width as the hot rolled band, yields significant improvements in comparison to the conventional processing. The weak initial strip texture and the homogeneous microstructure through the sample thickness have shown evidence of avoiding the well known ridging phenomenon of the finally rolled and annealed product. The occurrence of ridging in conventionally processed FeCr steel has been attributed to the collective shear of grains with (hkl)<110>, i.e. [alpha]-fibre orientations, which become oriented and topologically arranged during hot rolling. In the present paper the textures of a stainless ferritic steel with 16% Cr and 0.02% C, strip casted (SC) as well as hot rolled (HR), were thus investigated. The textures were examined by measuring the four incomplete pole figures (110), (200), (112) and (103) in the back reflection mode. The orientation distribution function (ODF) was calculated by the series expansion method (1[sup max]=22). In the case of cubic crystal symmetry and orthorhombic sample symmetry an orientation can then be presented by the three Euler angles [var phi][sub 1], [var phi], [var phi][sub 2] in the reducted Euler space. Since bcc steels tend to develop characteristic fibre textures, it is favorable to present the ODFs as isointensity diagrams in [var phi][sub 1]-sections through the Eulerspace. In this work the [alpha]-fibre and the [gamma]-fibre are of major interest.

  7. High pressure water jet cutting and stripping

    NASA Technical Reports Server (NTRS)

    Hoppe, David T.; Babai, Majid K.

    1991-01-01

    High pressure water cutting techniques have a wide range of applications to the American space effort. Hydroblasting techniques are commonly used during the refurbishment of the reusable solid rocket motors. The process can be controlled to strip a thermal protective ablator without incurring any damage to the painted surface underneath by using a variation of possible parameters. Hydroblasting is a technique which is easily automated. Automation removes personnel from the hostile environment of the high pressure water. Computer controlled robots can perform the same task in a fraction of the time that would be required by manual operation.

  8. Energy Fuels Nuclear, Inc. Arizona Strip Operations

    SciTech Connect

    Pool, T.C.

    1993-05-01

    Founded in 1975 by uranium pioneer, Robert W. Adams, Energy Fuels Nuclear, Inc. (EFNI) emerged as the largest US uranium mining company by the mid-1980s. Confronting the challenges of declining uranium market prices and the development of high-grade ore bodies in Australia and Canada, EFNI aggressively pursued exploration and development of breccia-pipe ore bodies in Northwestern Arizona. As a result, EFNI's production for the Arizona Strip of 18.9 million pounds U[sub 3]O[sub 8] over the period 1980 through 1991, maintained the company's status as a leading US uranium producer.

  9. Recent developments in metastable β strip alloys

    NASA Astrophysics Data System (ADS)

    Fanning, J. C.; Fox, S. P.

    2005-12-01

    The strip producibility, good fabricability, and excellent mechanical properties of β alloys make them useful for a variety of fabricated sheet metal structures on aircraft. TIMETAL 15-3 is currently used for environmental control system ducting on the Boeing 777 and, more recently, has been used on the Airbus A380. For applications that require exposure to higher temperatures, such as the exhaust assemblies, TIMETAL 21S is now used on the Boeing 777, Airbus A340, and various other civil and military aircraft.

  10. Power and control in gay strip clubs.

    PubMed

    DeMarco, Joseph R G

    2007-01-01

    The gay strip club is a place in which more than displays of male beauty take place. The mix of customers, performers, liquor, and nudity results in fascinating dynamics. Of interest in this article are the power relationships and issues of control played out both among and between strippers and customers. Based on extensive participant observation conducted in eight cities and numerous bars/clubs and including more than 150 in-depth interviews, this article concerns just one aspect of the world of male strippers who perform for men. PMID:18019071

  11. Method for forming a solar array strip

    NASA Technical Reports Server (NTRS)

    Mueller, R. I.; Yasui, R. K. (Inventor)

    1979-01-01

    A flexible solar array strip is formed by a method which lends itself to automatic production techniques. Solder pads are deposited on printed circuitry deposited on a flexible structure. The resultant substrate is stored on a drum from which it is withdrawn and incrementally advanced along a linear path. Solderless solar cells are serially transported into engagement with the pads which are then heated in order to attach the cells to the circuitry. Excess flux is cleaned from the cells which are encapsulated in a protective coating. The resultant array is then spirally wound on a drum.

  12. Spray-formed tooling and aluminum strip

    SciTech Connect

    McHugh, K.M.

    1995-11-01

    Spray forming is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. By combining rapid solidification processing with product shape control, spray forming can reduce manufacturing costs while improving product quality. De Laval nozzles offer an alternative method to the more conventional spray nozzle designs. Two applications are described: high-volume production of aluminum alloy strip, and the production of specialized tooling, such as injection molds and dies, for rapid prototyping.

  13. Space Vehicle Heat Shield Having Edgewise Strips of Ablative Material

    NASA Technical Reports Server (NTRS)

    Blosser, Max L. (Inventor); Poteet, Carl C. (Inventor); Bouslog, Stan A. (Inventor)

    2015-01-01

    A heat shield for a space vehicle comprises a plurality of phenolic impregnated carbon ablator (PICA) blocks secured to a surface of the space vehicle and arranged in a pattern with gaps therebetween. The heat shield further comprises a plurality of PICA strips disposed in the gaps between the PICA blocks. The PICA strips are mounted edgewise, such that the structural orientation of the PICA strips is substantially perpendicular to the structural orientation of the PICA blocks.

  14. Hard X-ray Detector Calibrations for the FOXSI Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Lopez, A.; Glesener, L.; Buitrago Casas, J. C.; Han, R.; Ishikawa, S. N.; Christe, S.; Krucker, S.

    2015-12-01

    In the study of high-energy solar flares, detailed X-ray images and spectra of the Sun are required. The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket experiment is used to test direct-focusing X-ray telescopes and Double-sided Silicon Strip Detectors (DSSD) for solar flare study and to further understand coronal heating. The measurement of active region differential emission measures, flare temperatures, and possible quiet-Sun emission requires a precisely calibrated spectral response. This poster describes recent updates in the calibration of FOXSI's DSSDs based on new calibration tests that were performed after the second flight. The gain for each strip was recalculated using additional radioactive sources. Additionally, the varying strip sensitivity across the detectors was investigated and based on these measurements, the flight images were flatfielded. These improvements lead to more precise X-ray data for future FOXSI flights and show promise for these new technologies in imaging the Sun.

  15. The problem of an inclined crack in an orthotropic strip

    NASA Technical Reports Server (NTRS)

    Delale, F.; Bakirtas, I.; Erdogan, F.

    1978-01-01

    The elastostatic problem for an infinite orthotropic strip containing crack was considered. It was assumed that the orthogonal axes of material orthotropy may have an arbitrary angular orientation with respect to the orthogonal axes of geometric symmetry of the uncracked strip. The crack was located along an axis of orthotropy, hence, at an arbitrary angle with respect to the sides of the strip. The general problem was formulated in terms of a system of singular integral equations for arbitrary crack surface tractions. As examples Modes 1 and 2 stress intensity factors were calculated for the strip having an internal or an edge crack with various lengths and angular orientations.

  16. An assessment of buffer strips for improving damage tolerance

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.; Kennedy, J. M.

    1981-01-01

    Graphite/epoxy panels with buffer strips were tested in tension to measure their residual strength with crack-like damage. Panels were made with 45/0/-45/90(2S) and 45/0/450(2S) layups. The buffer strips were parallel to the loading directions. They were made by replacing narrow strips of the 0 deg graphite plies with strips of either 0 deg S-Glass/epoxy or Kevlar-49/epoxy on either a one for one or a two for one basis. In a third case, O deg graphite/epoxy was used as the buffer material and thin, perforated Mylar strips were placed between the 0 deg piles and the cross-plies to weaken the interfaces and thus to isolate the 0 deg plies. Some panels were made with buffer strips of different widths and spacings. The buffer strips arrested the cracks and increased the residual strengths significantly over those plain laminates without buffer strips. A shear-lag type stress analysis correctly predicted the effects of layups, buffer material, buffer strip width and spacing, and the number of plies of buffer material.

  17. New detector for use in fast neutron radiography

    SciTech Connect

    Popov, V.; Degtiarenko, P.; Musatov, I.

    2011-01-01

    We have developed and tested a new type detector for use in the fast neutron (FN) imaging radiography applications. FN radiography is generally used for nondestructive material testing, medical and biology applications, border patrol, transportation and cargo screening tasks. It is complementary to other types of radiography, providing additional information on light element content of the material samples. Distinct from other FN imagers presently known, our device implements a neutron-sensitive scintillator attached to a position-sensitive photomultiplier tube (PSPMT), and operates in an event-by-event readout mode, acquiring energy, timing, and pulse shape information for all detected radiation events. The information is used to help separate events of FN interactions in the scintillator from the background events caused by the electronics noise and by the other types of background radiation. Selection of pure fast neutron events in the final image allows us to achieve ultimate image contrast and resolution, as compared with other types of FN imaging devices operating most commonly in an integration mode, in which the detector's dark noise and radiation background dilute the images. The detector performance for FN imaging application was tested using D-D neutron generator, designed and manufactured by Adelphi Technology, Inc. This essentially point-like neutron source operates in continuous mode producing up to 109 of 2.5 MeV neutrons per second. Samples made of metals plastic and other material were used to measure the detector resolution, efficiency and uniformity. Results of these tests are presented and discussed. Fig. 1 shows one of the test FN radiographic images obtained using the sample made of 11 styrene plastic strips. All strips are squares 4.8 x 4.8 mm2 with six different lengths 10 to 60 mm with 10 mm increment. [A] [B] [C] Fig. 1. [A]-layout of the test sample; [B]-raw FN shadow image of the sample; [C]-map of the plastic strips as they appear on

  18. Liquid crystal elastomer strips as soft crawlers

    NASA Astrophysics Data System (ADS)

    DeSimone, Antonio; Gidoni, Paolo; Noselli, Giovanni

    2015-11-01

    In this paper, we speculate on a possible application of Liquid Crystal Elastomers to the field of soft robotics. In particular, we study a concept for limbless locomotion that is amenable to miniaturisation. For this purpose, we formulate and solve the evolution equations for a strip of nematic elastomer, subject to directional frictional interactions with a flat solid substrate, and cyclically actuated by a spatially uniform, time-periodic stimulus (e.g., temperature change). The presence of frictional forces that are sensitive to the direction of sliding transforms reciprocal, 'breathing-like' deformations into directed forward motion. We derive formulas quantifying this motion in the case of distributed friction, by solving a differential inclusion for the displacement field. The simpler case of concentrated frictional interactions at the two ends of the strip is also solved, in order to provide a benchmark to compare the continuously distributed case with a finite-dimensional benchmark. We also provide explicit formulas for the axial force along the crawler body.

  19. Transparent Helium in Stripped Envelope Supernovae

    NASA Astrophysics Data System (ADS)

    Piro, Anthony L.; Morozova, Viktoriya S.

    2014-09-01

    Using simple arguments based on photometric light curves and velocity evolution, we propose that some stripped envelope supernovae (SNe) show signs that a significant fraction of their helium is effectively transparent. The main pieces of evidence are the relatively low velocities with little velocity evolution, as are expected deep inside an exploding star, along with temperatures that are too low to ionize helium. This means that the helium should not contribute to the shaping of the main SN light curve, and thus the total helium mass may be difficult to measure from simple light curve modeling. Conversely, such modeling may be more useful for constraining the mass of the carbon/oxygen core of the SN progenitor. Other stripped envelope SNe show higher velocities and larger velocity gradients, which require an additional opacity source (perhaps the mixing of heavier elements or radioactive nickel) to prevent the helium from being transparent. We discuss ways in which similar analysis can provide insights into the differences and similarities between SNe Ib and Ic, which will lead to a better understanding of their respective formation mechanisms.

  20. Therapeutic surfactant-stripped frozen micelles

    PubMed Central

    Zhang, Yumiao; Song, Wentao; Geng, Jumin; Chitgupi, Upendra; Unsal, Hande; Federizon, Jasmin; Rzayev, Javid; Sukumaran, Dinesh K.; Alexandridis, Paschalis; Lovell, Jonathan F.

    2016-01-01

    Injectable hydrophobic drugs are typically dissolved in surfactants and non-aqueous solvents which can induce negative side-effects. Alternatives like ‘top-down' fine milling of excipient-free injectable drug suspensions are not yet clinically viable and ‘bottom-up' self-assembled delivery systems usually substitute one solubilizing excipient for another, bringing new issues to consider. Here, we show that Pluronic (Poloxamer) block copolymers are amenable to low-temperature processing to strip away all free and loosely bound surfactant, leaving behind concentrated, kinetically frozen drug micelles containing minimal solubilizing excipient. This approach was validated for phylloquinone, cyclosporine, testosterone undecanoate, cabazitaxel and seven other bioactive molecules, achieving sizes between 45 and 160 nm and drug to solubilizer molar ratios 2–3 orders of magnitude higher than current formulations. Hypertonic saline or co-loaded cargo was found to prevent aggregation in some cases. Use of surfactant-stripped micelles avoided potential risks associated with other injectable formulations. Mechanistic insights are elucidated and therapeutic dose responses are demonstrated. PMID:27193558

  1. TRANSPARENT HELIUM IN STRIPPED ENVELOPE SUPERNOVAE

    SciTech Connect

    Piro, Anthony L.; Morozova, Viktoriya S.

    2014-09-01

    Using simple arguments based on photometric light curves and velocity evolution, we propose that some stripped envelope supernovae (SNe) show signs that a significant fraction of their helium is effectively transparent. The main pieces of evidence are the relatively low velocities with little velocity evolution, as are expected deep inside an exploding star, along with temperatures that are too low to ionize helium. This means that the helium should not contribute to the shaping of the main SN light curve, and thus the total helium mass may be difficult to measure from simple light curve modeling. Conversely, such modeling may be more useful for constraining the mass of the carbon/oxygen core of the SN progenitor. Other stripped envelope SNe show higher velocities and larger velocity gradients, which require an additional opacity source (perhaps the mixing of heavier elements or radioactive nickel) to prevent the helium from being transparent. We discuss ways in which similar analysis can provide insights into the differences and similarities between SNe Ib and Ic, which will lead to a better understanding of their respective formation mechanisms.

  2. Solder flow on narrow copper strips

    SciTech Connect

    Hosking, F.M.; Yost, F.G.; Holm, E.A.; Michael, J.R.

    1996-07-01

    Various solderability tests have been developed over the years to quantify the wetting behavior of solder on metallic surfaces. None offer an exact measure of capillary flow normally associated with conventional plated-through-hole and surface mount soldering. With shrinking package designs, increasing reliability requirements, and the emergence of new soldering technologies, there is a growing need to better understand and predict the flow of solder on printed wiring board (PWB) surfaces. Sandia National Laboratories has developed a capillary flow solderability test, through a joint effort with the National Center for Manufacturing Sciences, that considers this fundamental wetting issue for surface mount technology. The test geometry consists of a metal strip (width, {delta}) connected to a circular metal pad (radius, r{sub c}). Solder flow from the pad onto the strip depends on the geometric relationship between {delta} and r{sub c}. Test methodology, experimental results, and validation of a flow model are presented in this paper. 17 refs., 11 figs., 4 tabs.

  3. Therapeutic surfactant-stripped frozen micelles

    NASA Astrophysics Data System (ADS)

    Zhang, Yumiao; Song, Wentao; Geng, Jumin; Chitgupi, Upendra; Unsal, Hande; Federizon, Jasmin; Rzayev, Javid; Sukumaran, Dinesh K.; Alexandridis, Paschalis; Lovell, Jonathan F.

    2016-05-01

    Injectable hydrophobic drugs are typically dissolved in surfactants and non-aqueous solvents which can induce negative side-effects. Alternatives like `top-down' fine milling of excipient-free injectable drug suspensions are not yet clinically viable and `bottom-up' self-assembled delivery systems usually substitute one solubilizing excipient for another, bringing new issues to consider. Here, we show that Pluronic (Poloxamer) block copolymers are amenable to low-temperature processing to strip away all free and loosely bound surfactant, leaving behind concentrated, kinetically frozen drug micelles containing minimal solubilizing excipient. This approach was validated for phylloquinone, cyclosporine, testosterone undecanoate, cabazitaxel and seven other bioactive molecules, achieving sizes between 45 and 160 nm and drug to solubilizer molar ratios 2-3 orders of magnitude higher than current formulations. Hypertonic saline or co-loaded cargo was found to prevent aggregation in some cases. Use of surfactant-stripped micelles avoided potential risks associated with other injectable formulations. Mechanistic insights are elucidated and therapeutic dose responses are demonstrated.

  4. SNS Laser Stripping for H- Injection

    SciTech Connect

    V.V. Danilov, Y. Liu, K.B. Beard, V.G. Dudnikov, R.P. Johnson, Michelle D. Shinn

    2009-05-01

    The ORNL spallation neutron source (SNS) user facility requires a reliable, intense beams of protons. The technique of H- charge exchange injection into a storage ring or synchrotron has the potential to provide the needed beam currents, but it will be limited by intrinsic limitations of carbon and diamond stripping foils. A laser in combination with magnetic stripping has been used to demonstrate a new technique for high intensity proton injection, but several problems need to be solved before a practical system can be realized. Technology developed for use in Free Electron Lasers is being used to address the remaining challenges to practical implementation of laser controlled H- charge exchange injection for the SNS. These technical challenges include (1) operation in vacuum, (2) the control of the UV laser beam to synchronize with the H- beam and to shape the proton beam, (3) the control and stabilization of the Fabry-Perot resonator, and (4) protection of the mirrors from radiation.

  5. Stripping of phenols in model cooling towers

    SciTech Connect

    Turner, C.D.; Moe, T.A.; Wentz, C.A.

    1987-01-01

    Cooling towers are used to remove waste heat from unit operations in chemical processing plants. Using cooling towers for wastewater treatment and disposal through internal recycling has become an important alternative because of stricter wastewater discharge standards, the expense of specialized wastewater treatment systems and the limited availability and cost of water in arid regions. Designs for synfuels plants must address the problem of wastewater disposal. Alternative systems under consideration usually include zero discharge designs that incorporate evaporative cooling towers in the system. The mechanisms for contaminant removal in cooling towers are biological oxidation, stripping and chemical precipitation. Chemical precipitation is generally considered undesirable because of losses in heat transfer efficiency. Predicting whether stripping or biological oxidation will be the primary removal mechanism for phenolic compounds from coal conversion wastewaters used as makeup in cooling towers does not appear to be possible based on the results of these tests. The tests do indicate that the biological oxidation of phenol is possible in forced draft cooling towers.

  6. Advanced UV Detectors and Detector Arrays

    NASA Technical Reports Server (NTRS)

    Pankove, Jacques I.; Torvik, John

    1998-01-01

    Gallium Nitride (GaN) with its wide energy bandgap of 3.4 eV holds excellent promise for solar blind UV detectors. We have successfully designed, fabricated and tested GaN p-i-n detectors and detector arrays. The detectors have a peak responsivity of 0.14A/W at 363 nm (3.42 eV) at room temperature. This corresponds to an internal quantum efficiency of 56%. The responsivity decreases by several orders of magnitude to 0.008 A/W at 400 nm (3.10 eV) giving the excellent visible rejection ratio needed for solar-blind applications.

  7. Occultation Predictions Using CCD Strip-Scanning Astrometry

    NASA Technical Reports Server (NTRS)

    Dunham, Edward W.; Ford, C. H.; Stone, R. P. S.; McDonald, S. W.; Olkin, C. B.; Elliot, J. L.; Witteborn, Fred C. (Technical Monitor)

    1994-01-01

    We are developing the method of CCD strip-scanning astrometry for the purpose of deriving reliable advance predictions for occultations involving small objects in the outer solar system. We are using a camera system based on a Ford/Loral 2Kx2K CCD with the Crossley telescope at Lick Observatory for this work. The columns of die CCD are aligned East-West, the telescope drive is stopped, and the CCD is clocked at the same rate that the stars drift across it. In this way we obtain arbitrary length strip images 20 arcmin wide with 0.58" pixels. Since planets move mainly in RA, it is possible to obtain images of the planet and star to be occulted on the same strip well before the occultation occurs. The strip-to-strip precision (i.e. reproducibility) of positions is limited by atmospheric image motion to about 0.1" rms per strip. However, for objects that are nearby in R.A., the image motion is highly correlated and their relative positions are good to 0.02" rms per strip. We will show that the effects of atmospheric image motion on a given strip can be removed if a sufficient number of strips of a given area have been obtained. Thus, it is possible to reach an rms precision of 0.02" per strip, corresponding to about 0.3 of Pluto or Triton's angular radius. The ultimate accuracy of a prediction based on strip-scanning astrometry is currently limited by the accuracy of the positions of the stars in the astrometric network used and by systematic errors most likely due to the optical system. We will show the results of . the prediction of some recent occultations as examples of the current capabilities and limitations of this technique.

  8. The TALE Tower Detector

    NASA Astrophysics Data System (ADS)

    Bergman, D. R.

    The TA Low Energy Extension will include a Tower FluorescenceDetector. Extensive air showers at the lowest usful energies for fluorescence detectors will in general be close to the detector. This requires viewing all elevation angles to be able to reconstruct showers. The TALE Tower Detector, operating in conjunction with other TALE detectors will view elevation angles up to above 70 degrees, with an azimuthal coverage of about 90 degrees. Results from a prototype mirror operated in conjunction with the HiRes detector will also be presented.

  9. GADRAS Detector Response Function.

    SciTech Connect

    Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G; Horne, Steven M.

    2014-11-01

    The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.

  10. The upgraded DØ detector

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, D. L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S. N.; Ahn, S. H.; Ahsan, M.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Anastasoaie, M.; Andeen, T.; Anderson, J. T.; Anderson, S.; Andrieu, B.; Angstadt, R.; Anosov, V.; Arnoud, Y.; Arov, M.; Askew, A.; Åsman, B.; Assis Jesus, A. C. S.; Atramentov, O.; Autermann, C.; Avila, C.; Babukhadia, L.; Bacon, T. C.; Badaud, F.; Baden, A.; Baffioni, S.; Bagby, L.; Baldin, B.; Balm, P. W.; Banerjee, P.; Banerjee, S.; Barberis, E.; Bardon, O.; Barg, W.; Bargassa, P.; Baringer, P.; Barnes, C.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bhattacharjee, M.; Baturitsky, M. A.; Bauer, D.; Bean, A.; Baumbaugh, B.; Beauceron, S.; Begalli, M.; Beaudette, F.; Begel, M.; Bellavance, A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Besson, A.; Beuselinck, R.; Beutel, D.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Binder, M.; Biscarat, C.; Bishoff, A.; Black, K. M.; Blackler, I.; Blazey, G.; Blekman, F.; Blessing, S.; Bloch, D.; Blumenschein, U.; Bockenthien, E.; Bodyagin, V.; Boehnlein, A.; Boeriu, O.; Bolton, T. A.; Bonamy, P.; Bonifas, D.; Borcherding, F.; Borissov, G.; Bos, K.; Bose, T.; Boswell, C.; Bowden, M.; Brandt, A.; Briskin, G.; Brock, R.; Brooijmans, G.; Bross, A.; Buchanan, N. J.; Buchholz, D.; Buehler, M.; Buescher, V.; Burdin, S.; Burke, S.; Burnett, T. H.; Busato, E.; Buszello, C. P.; Butler, D.; Butler, J. M.; Cammin, J.; Caron, S.; Bystricky, J.; Canal, L.; Canelli, F.; Carvalho, W.; Casey, B. C. K.; Casey, D.; Cason, N. M.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapin, D.; Charles, F.; Cheu, E.; Chevalier, L.; Chi, E.; Chiche, R.; Cho, D. K.; Choate, R.; Choi, S.; Choudhary, B.; Chopra, S.; Christenson, J. H.; Christiansen, T.; Christofek, L.; Churin, I.; Cisko, G.; Claes, D.; Clark, A. R.; Clément, B.; Clément, C.; Coadou, Y.; Colling, D. J.; Coney, L.; Connolly, B.; Cooke, M.; Cooper, W. E.; Coppage, D.; Corcoran, M.; Coss, J.; Cothenet, A.; Cousinou, M.-C.; Cox, B.; Crépé-Renaudin, S.; Cristetiu, M.; Cummings, M. A. C.; Cutts, D.; da Motta, H.; Das, M.; Davies, B.; Davies, G.; Davis, G. A.; Davis, W.; De, K.; de Jong, P.; de Jong, S. J.; De La Cruz-Burelo, E.; De La Taille, C.; De Oliveira Martins, C.; Dean, S.; Degenhardt, J. D.; Déliot, F.; Delsart, P. A.; Del Signore, K.; DeMaat, R.; Demarteau, M.; Demina, R.; Demine, P.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; Doets, M.; Doidge, M.; Dong, H.; Doulas, S.; Dudko, L. V.; Duflot, L.; Dugad, S. R.; Duperrin, A.; Dvornikov, O.; Dyer, J.; Dyshkant, A.; Eads, M.; Edmunds, D.; Edwards, T.; Ellison, J.; Elmsheuser, J.; Eltzroth, J. T.; Elvira, V. D.; Eno, S.; Ermolov, P.; Eroshin, O. V.; Estrada, J.; Evans, D.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fagan, J.; Fast, J.; Fatakia, S. N.; Fein, D.; Feligioni, L.; Ferapontov, A. V.; Ferbel, T.; Ferreira, M. J.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fleck, I.; Fitzpatrick, T.; Flattum, E.; Fleuret, F.; Flores, R.; Foglesong, J.; Fortner, M.; Fox, H.; Franklin, C.; Freeman, W.; Fu, S.; Fuess, S.; Gadfort, T.; Galea, C. F.; Gallas, E.; Galyaev, E.; Gao, M.; Garcia, C.; Garcia-Bellido, A.; Gardner, J.; Gavrilov, V.; Gay, A.; Gay, P.; Gelé, D.; Gelhaus, R.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gillberg, D.; Geurkov, G.; Ginther, G.; Gobbi, B.; Goldmann, K.; Golling, T.; Gollub, N.; Golovtsov, V.; Gómez, B.; Gomez, G.; Gomez, R.; Goodwin, R.; Gornushkin, Y.; Gounder, K.; Goussiou, A.; Graham, D.; Graham, G.; Grannis, P. D.; Gray, K.; Greder, S.; Green, D. R.; Green, J.; Green, J. A.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groer, L.; Grünendahl, S.; Grünewald, M. W.; Gu, W.; Guglielmo, J.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hadley, N. J.; Haggard, E.; Haggerty, H.; Hagopian, S.; Hall, I.; Hall, R. E.; Han, C.; Han, L.; Hance, R.; Hanagaki, K.; Hanlet, P.; Hansen, S.; Harder, K.; Harel, A.; Harrington, R.; Hauptman, J. M.; Hauser, R.; Hays, C.; Hays, J.; Hazen, E.; Hebbeker, T.; Hebert, C.; Hedin, D.; Heinmiller, J. M.; Heinson, A. P.; Heintz, U.; Hensel, C.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hong, S. J.; Hooper, R.; Hou, S.; Houben, P.; Hu, Y.; Huang, J.; Huang, Y.; Hynek, V.; Huffman, D.; Iashvili, I.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jacquier, Y.; Jaffré, M.; Jain, S.; Jain, V.; Jakobs, K.; Jayanti, R.; Jenkins, A.; Jesik, R.; Jiang, Y.; Johns, K.; Johnson, M.; Johnson, P.; Jonckheere, A.; Jonsson, P.; Jöstlein, H.; Jouravlev, N.; Juarez, M.; Juste, A.; Kaan, A. P.; Kado, M. M.; Käfer, D.; Kahl, W.; Kahn, S.; Kajfasz, E.; Kalinin, A. M.; Kalk, J.; Kalmani, S. D.; Karmanov, D.; Kasper, J.; Katsanos, I.; Kau, D.; Kaur, R.; Ke, Z.; Kehoe, R.; Kermiche, S.; Kesisoglou, S.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. M.; Kim, H.; Kim, K. H.; Kim, T. J.; Kirsch, N.; Klima, B.; Klute, M.; Kohli, J. M.; Konrath, J.-P.; Komissarov, E. V.; Kopal, M.; Korablev, V. M.; Kostritski, A.; Kotcher, J.; Kothari, B.; Kotwal, A. V.; Koubarovsky, A.; Kozelov, A. V.; Kozminski, J.; Kryemadhi, A.; Kouznetsov, O.; Krane, J.; Kravchuk, N.; Krempetz, K.; Krider, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kubantsev, M.; Kubinski, R.; Kuchinsky, N.; Kuleshov, S.; Kulik, Y.; Kumar, A.; Kunori, S.; Kupco, A.; Kurča, T.; Kvita, J.; Kuznetsov, V. E.; Kwarciany, R.; Lager, S.; Lahrichi, N.; Landsberg, G.; Larwill, M.; Laurens, P.; Lavigne, B.; Lazoflores, J.; Le Bihan, A.-C.; Le Meur, G.; Lebrun, P.; Lee, S. W.; Lee, W. M.; Leflat, A.; Leggett, C.; Lehner, F.; Leitner, R.; Leonidopoulos, C.; Leveque, J.; Lewis, P.; Li, J.; Li, Q. Z.; Li, X.; Lima, J. G. R.; Lincoln, D.; Lindenmeyer, C.; Linn, S. L.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Litmaath, M.; Lizarazo, J.; Lobo, L.; Lobodenko, A.; Lokajicek, M.; Lounis, A.; Love, P.; Lu, J.; Lubatti, H. J.; Lucotte, A.; Lueking, L.; Luo, C.; Lynker, M.; Lyon, A. L.; Machado, E.; Maciel, A. K. A.; Madaras, R. J.; Mättig, P.; Magass, C.; Magerkurth, A.; Magnan, A.-M.; Maity, M.; Makovec, N.; Mal, P. K.; Malbouisson, H. B.; Malik, S.; Malyshev, V. L.; Manakov, V.; Mao, H. S.; Maravin, Y.; Markley, D.; Markus, M.; Marshall, T.; Martens, M.; Martin, M.; Martin-Chassard, G.; Mattingly, S. E. K.; Matulik, M.; Mayorov, A. A.; McCarthy, R.; McCroskey, R.; McKenna, M.; McMahon, T.; Meder, D.; Melanson, H. L.; Melnitchouk, A.; Mendes, A.; Mendoza, D.; Mendoza, L.; Meng, X.; Merekov, Y. P.; Merkin, M.; Merritt, K. W.; Meyer, A.; Meyer, J.; Michaut, M.; Miao, C.; Miettinen, H.; Mihalcea, D.; Mikhailov, V.; Miller, D.; Mitrevski, J.; Mokhov, N.; Molina, J.; Mondal, N. K.; Montgomery, H. E.; Moore, R. W.; Moulik, T.; Muanza, G. S.; Mostafa, M.; Moua, S.; Mulders, M.; Mundim, L.; Mutaf, Y. D.; Nagaraj, P.; Nagy, E.; Naimuddin, M.; Nang, F.; Narain, M.; Narasimhan, V. S.; Narayanan, A.; Naumann, N. A.; Neal, H. A.; Negret, J. P.; Nelson, S.; Neuenschwander, R. T.; Neustroev, P.; Noeding, C.; Nomerotski, A.; Novaes, S. F.; Nozdrin, A.; Nunnemann, T.; Nurczyk, A.; Nurse, E.; O'Dell, V.; O'Neil, D. C.; Oguri, V.; Olis, D.; Oliveira, N.; Olivier, B.; Olsen, J.; Oshima, N.; Oshinowo, B. O.; Otero y Garzón, G. J.; Padley, P.; Papageorgiou, K.; Parashar, N.; Park, J.; Park, S. K.; Parsons, J.; Partridge, R.; Parua, N.; Patwa, A.; Pawloski, G.; Perea, P. M.; Perez, E.; Peters, O.; Pétroff, P.; Petteni, M.; Phaf, L.; Piegaia, R.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Pogorelov, Y.; Pol, M.-E.; Pompoš, A.; Polosov, P.; Pope, B. G.; Popkov, E.; Porokhovoy, S.; Prado da Silva, W. L.; Pritchard, W.; Prokhorov, I.; Prosper, H. B.; Protopopescu, S.; Przybycien, M. B.; Qian, J.; Quadt, A.; Quinn, B.; Ramberg, E.; Ramirez-Gomez, R.; Rani, K. J.; Ranjan, K.; Rao, M. V. S.; Rapidis, P. A.; Rapisarda, S.; Raskowski, J.; Ratoff, P. N.; Ray, R. E.; Reay, N. W.; Rechenmacher, R.; Reddy, L. V.; Regan, T.; Renardy, J.-F.; Reucroft, S.; Rha, J.; Ridel, M.; Rijssenbeek, M.; Ripp-Baudot, I.; Rizatdinova, F.; Robinson, S.; Rodrigues, R. F.; Roco, M.; Rotolo, C.; Royon, C.; Rubinov, P.; Ruchti, R.; Rucinski, R.; Rud, V. I.; Russakovich, N.; Russo, P.; Sabirov, B.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santoro, A.; Satyanarayana, B.; Savage, G.; Sawyer, L.; Scanlon, T.; Schaile, D.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schieferdecker, P.; Schmitt, C.; Schwanenberger, C.; Schukin, A. A.; Schwartzman, A.; Schwienhorst, R.; Sengupta, S.; Severini, H.; Shabalina, E.; Shamim, M.; Shankar, H. C.; Shary, V.; Shchukin, A. A.; Sheahan, P.; Shephard, W. D.; Shivpuri, R. K.; Shishkin, A. A.; Shpakov, D.; Shupe, M.; Sidwell, R. A.; Simak, V.; Sirotenko, V.; Skow, D.; Skubic, P.; Slattery, P.; Smith, D. E.; Smith, R. P.; Smolek, K.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Song, X.; Song, Y.; Sonnenschein, L.; Sopczak, A.; Sorín, V.; Sosebee, M.; Soustruznik, K.; Souza, M.; Spartana, N.; Spurlock, B.; Stanton, N. R.; Stark, J.; Steele, J.; Stefanik, A.; Steinberg, J.; Steinbrück, G.; Stevenson, K.; Stolin, V.; Stone, A.; Stoyanova, D. A.; Strandberg, J.; Strang, M. A.; Strauss, M.; Ströhmer, R.; Strom, D.; Strovink, M.; Stutte, L.; Sumowidagdo, S.; Sznajder, A.; Talby, M.; Tentindo-Repond, S.; Tamburello, P.; Taylor, W.; Telford, P.; Temple, J.; Terentyev, N.; Teterin, V.; Thomas, E.; Thompson, J.; Thooris, B.; Titov, M.; Toback, D.; Tokmenin, V. V.; Tolian, C.; Tomoto, M.; Tompkins, D.; Toole, T.; Torborg, J.; Touze, F.; Towers, S.; Trefzger, T.; Trincaz-Duvoid, S.; Trippe, T. G.; Tsybychev, D.; Tuchming, B.; Tully, C.; Turcot, A. S.; Tuts, P. M.; Utes, M.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Vachon, B.; van den Berg, P. J.; van Gemmeren, P.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vartapetian, A.; Vasilyev, I. A.; Vaupel, M.; Vaz, M.; Verdier, P.; Vertogradov, L. S.; Verzocchi, M.; Vigneault, M.; Villeneuve-Seguier, F.; Vishwanath, P. R.; Vlimant, J.-R.; Von Toerne, E.; Vorobyov, A.; Vreeswijk, M.; Vu Anh, T.; Vysotsky, V.; Wahl, H. D.; Walker, R.; Wallace, N.; Wang, L.; Wang, Z.-M.; Warchol, J.; Warsinsky, M.; Watts, G.; Wayne, M.; Weber, M.; Weerts, H.; Wegner, M.; Wermes, N.; Wetstein, M.; White, A.; White, V.; Whiteson, D.; Wicke, D.; Wijnen, T.; Wijngaarden, D. A.; Wilcer, N.; Willutzki, H.; Wilson, G. W.; Wimpenny, S. J.; Wittlin, J.; Wlodek, T.; Wobisch, M.; Womersley, J.; Wood, D. R.; Wyatt, T. R.; Wu, Z.; Xie, Y.; Xu, Q.; Xuan, N.; Yacoob, S.; Yamada, R.; Yan, M.; Yarema, R.; Yasuda, T.; Yatsunenko, Y. A.; Yen, Y.; Yip, K.; Yoo, H. D.; Yoffe, F.; Youn, S. W.; Yu, J.; Yurkewicz, A.; Zabi, A.; Zanabria, M.; Zatserklyaniy, A.; Zdrazil, M.; Zeitnitz, C.; Zhang, B.; Zhang, D.; Zhang, X.; Zhao, T.; Zhao, Z.; Zheng, H.; Zhou, B.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zieminski, A.; Zitoun, R.; Zmuda, T.; Zutshi, V.; Zviagintsev, S.; Zverev, E. G.; Zylberstejn, A.

    2006-09-01

    The DØ experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to DØ.

  11. The MINOS detectors

    SciTech Connect

    Habig, A.; Grashorn, E.W.; /Minnesota U., Duluth

    2005-07-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment's primary goal is the precision measurement of the neutrino oscillation parameters in the atmospheric neutrino sector. This long-baseline experiment uses Fermilab's NuMI beam, measured with a Near Detector at Fermilab, and again 735 km later using a Far Detector in the Soudan Mine Underground Lab in northern Minnesota. The detectors are magnetized iron/scintillator calorimeters. The Far Detector has been operational for cosmic ray and atmospheric neutrino data from July of 2003, the Near Detector from September 2004, and the NuMI beam started in early 2005. This poster presents details of the two detectors.

  12. 7 CFR 29.6128 - Straight Stripped (X Group).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Straight Stripped (X Group). 29.6128 Section 29.6128 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.6128 Straight Stripped (X Group). This group consists...

  13. 7 CFR 29.6128 - Straight Stripped (X Group).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Straight Stripped (X Group). 29.6128 Section 29.6128 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.6128 Straight Stripped (X Group). This group consists...

  14. 7 CFR 29.6128 - Straight Stripped (X Group).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Straight Stripped (X Group). 29.6128 Section 29.6128 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.6128 Straight Stripped (X Group). This group consists...

  15. 7 CFR 29.6128 - Straight Stripped (X Group).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Straight Stripped (X Group). 29.6128 Section 29.6128 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.6128 Straight Stripped (X Group). This group consists...

  16. Emission reduction by multipurpose buffer strips on arable fields.

    PubMed

    Sloots, K; van der Vlies, A W

    2007-01-01

    In the area managed by Hollandse Delta, agriculture is under great pressure and the social awareness of the agricultural sector is increasing steadily. In recent years, a stand-still has been observed in water quality, in terms of agrochemicals, and concentrations even exceed the standard. To improve the waterquality a multi-purpose Field Margin Regulation was drafted for the Hoeksche Waard island in 2005. The regulation prescribes a crop-free strip, 3.5 m wide, alongside wet drainage ditches. The strip must be sown with mixtures of grasses, flowers or herbs. No crop protection chemicals or fertilizer may be used on the strips. A total length of approximately 200 km of buffer strip has now been laid. Besides reducing emissions, the buffer strips also stimulate natural pest control methods and encourage local tourism. Finally, the strips should lead to an improvement in the farmers' image. The regulation has proved to be successful. The buffer strips boosted both local tourism and the image of the agricultural sector. Above all, the strips provided a natural shield for emission to surface water, which will lead to an improvement of the water quality and raise the farmers' awareness of water quality and the environment.

  17. Design and Use of the Stratigraphic Strip Log.

    ERIC Educational Resources Information Center

    Fichter, Lynn Stanton

    1987-01-01

    Discusses the use of a strip log as a diagrammatic representation of the information available in a sequence of sedimentary rocks. Describes the design of the strip log (both symbolically and by visual/spatial patterns) and some of the possible interpretations that can be made using them. (TW)

  18. 7 CFR 29.6128 - Straight Stripped (X Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Straight Stripped (X Group). 29.6128 Section 29.6128 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.6128 Straight Stripped (X Group). This group consists...

  19. Fabrication of chitosan-magnetite nanocomposite strip for chromium removal

    NASA Astrophysics Data System (ADS)

    Sureshkumar, Vaishnavi; Kiruba Daniel, S. C. G.; Ruckmani, K.; Sivakumar, M.

    2016-02-01

    Environmental pollution caused by heavy metals is a serious threat. In the present work, removal of chromium was carried out using chitosan-magnetite nanocomposite strip. Magnetite nanoparticles (Fe3O4) were synthesized using chemical co-precipitation method at 80 °C. The nanoparticles were characterized using UV-visible spectroscopy, fourier transform infrared spectroscopy, X-ray diffraction spectrometer, atomic force microscope, dynamic light scattering and vibrating sample magnetometer, which confirm the size, shape, crystalline nature and magnetic behaviour of nanoparticles. Atomic force microscope revealed that the particle size was 15-30 nm and spherical in shape. The magnetite nanoparticles were mixed with chitosan solution to form hybrid nanocomposite. Chitosan strip was casted with and without nanoparticle. The affinity of hybrid nanocomposite for chromium was studied using K2Cr2O7 (potassium dichromate) solution as the heavy metal solution containing Cr(VI) ions. Adsorption tests were carried out using chitosan strip and hybrid nanocomposite strip at different time intervals. Amount of chromium adsorbed by chitosan strip and chitosan-magnetite nanocomposite strip from aqueous solution was evaluated using UV-visible spectroscopy. The results confirm that the heavy metal removal efficiency of chitosan-magnetite nanocomposite strip is 92.33 %, which is higher when compared to chitosan strip, which is 29.39 %.

  20. Electrode/Dielectric Strip For High-Energy-Density Capacitor

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S.

    1994-01-01

    Improved unitary electrode/dielectric strip serves as winding in high-energy-density capacitor in pulsed power supply. Offers combination of qualities essential for high energy density: high permittivity of dielectric layers, thinness, and high resistance to breakdown of dielectric at high electric fields. Capacitors with strip material not impregnated with liquid.

  1. Magnetic domain-wall dynamics in wide permalloy strips

    NASA Astrophysics Data System (ADS)

    Estévez, Virginia; Laurson, Lasse

    2016-02-01

    Domain walls in soft permalloy strips may exhibit various equilibrium micromagnetic structures depending on the width and thickness of the strip, ranging from the well-known transverse and vortex walls in narrow and thin strips to double and triple vortex walls recently reported in wider strips [V. Estévez and L. Laurson, Phys. Rev. B 91, 054407 (2015), 10.1103/PhysRevB.91.054407]. Here, we analyze the field driven dynamics of such domain walls in permalloy strips of widths from 240 nm up to 6 μ m , using the known equilibrium domain wall structures as initial configurations. Our micromagnetic simulations show that the domain wall dynamics in wide strips is very complex, and depends strongly on the geometry of the system, as well as on the magnitude of the driving field. We discuss in detail the rich variety of the dynamical behaviors found, including dynamic transitions between different domain wall structures, periodic dynamics of a vortex core close to the strip edge, transitions towards simpler domain wall structures of the multi-vortex domain walls controlled by vortex polarity, and the fact that for some combinations of the strip geometry and the driving field the system cannot support a compact domain wall.

  2. Using Comic Strips as a Book Report Alternative

    ERIC Educational Resources Information Center

    Reading Teacher, 2012

    2012-01-01

    Comic strips are great to share with parents, younger students, and peers. This article presents an activity where students use a six-paneled comic strip to summarize a story. This activity allows for multiple interpretations and enhances comprehension by drawing attention to story elements.

  3. Creating Comic Strips. ArtsEdge Curricula, Lessons and Activities.

    ERIC Educational Resources Information Center

    State, Chico

    In society, information/ideas are communicated through various media (words, symbols, illustrations, etc.). When analyzing comic strips, it is noticeable that each has a different style, point of view, setting, plot, and summary, communicated not only through words, but through illustrations and style--creating comic strips can summarize various…

  4. Performance studies of a Micromegas detector with a pad readout geometry

    NASA Astrophysics Data System (ADS)

    Düdder, A.; Lin, T.-H.; Neuhaus, F.; Schott, M.; Valderanis, C.

    2016-07-01

    The results of several performance studies of two prototype Micromegas pad detectors with two different coupling implementations between the resistive and the readout layer are presented. Both prototype detectors have an active area of 10 × 10cm2 and comprise 500 pads with a size of 5 × 4mm2. The first detector has a capacitive coupling between the resistive and the readout layer, as it is well known from Micromegas detectors with a strip readout. The second detector implements a resistive coupling between each readout pad and the resistive layer on top of it with a resistivity of 5 MΩ. In particular, the size of reconstructed charge clusters in both detector types is discussed and compared here for different drift- and amplification voltages.

  5. Characterization Studies and Performance of Half-strip High-speed X-ray Microchannel Plate Imager

    SciTech Connect

    Kenneth Moy; Ming Wu

    2008-03-01

    High-speed microchannel plate (MCP)–based imagers are critical detectors for x-ray diagnostics employed on Z-experiments at Sandia National Laboratories (SNL) to measure time-resolved x-ray spectra and to image dynamic hohlraums. A design using eight half-strip x-ray photocathodes in one imager permits recordings of radiation events in discrete temporal snapshots to yield a time-evolved movie. We present data using various facilities to characterize the performance of this design. These characterization studies include DC and pulsed-voltage biased measurements in both saturated and linear operational regimes using an intense, short-pulsed UV laser and Manson source. Surface voltage profile measurements using a picoprobe help to determine the gain variation across the strips. Test data from a recent SNL ZR-experiment demonstrates the flexibility and high-quality images obtained by this MCP imager.

  6. Dynamic Characterizations of an 8-frame Half-Strip High-speed X-ray Microchannel Plate Imager

    SciTech Connect

    Ken Moy, Ming Wu, Craig Kruschwitz, Aric Tibbits, Matt Griffin, Greg Rochau

    2008-09-05

    High-speed microchannel plate (MCP)–based imagers are critical detectors for x-ray diagnostics employed on Z-experiments at Sandia National Laboratories (SNL) to measure time-resolved x-ray spectra and to image dynamic hohlraums. A multiframe design using eight half strips in one imager permits recordings of radiation events in discrete temporal snapshots to yield a time-evolved movie. We present data using various facilities to characterize the performance of this design. These characterization studies include DC and pulsed-voltage biased measurements in both saturated and linear operational regimes using an intense, short-pulsed UV laser. Electrical probe measurements taken to characterize the shape of the HV pulse propagating across the strips help to corroborate the spatial gain dependence.

  7. Characterisation of the SmartPET planar Germanium detectors

    NASA Astrophysics Data System (ADS)

    Boston, H. C.; Boston, A. J.; Cooper, R. J.; Cresswell, J.; Grint, A. N.; Mather, A. R.; Nolan, P. J.; Scraggs, D. P.; Turk, G.; Hall, C. J.; Lazarus, I.; Berry, A.; Beveridge, T.; Gillam, J.; Lewis, R.

    2007-08-01

    Small Animal Reconstruction PET (SmartPET) is a project funded by the UK medical research council (MRC) to demonstrate proof of principle that Germanium can be utilised in Positron Emission Tomography (PET). The SmartPET demonstrator consists of two orthogonal strip High Purity Germanium (HPGe) planar detectors manufactured by ORTEC. The aim of the project is to produce images of an internal source with sub mm 3 spatial resolution. Before this image can be achieved the detectors have to be fully characterised to understand the response at any given location to a γ-ray interaction. This has been achieved by probing the two detectors at a number of specified points with collimated sources of various energies and strengths. A 1 mm diameter collimated beam of photons was raster scanned in 1 mm steps across the detector. Digital pulse shape data were recorded from all the detector channels and the performance of the detector for energy and position determination has been assessed. Data will be presented for the first SmartPET detector.

  8. Air-stripping effects on cell growth with volatile substrates.

    PubMed

    Singh, N; Hill, G A

    1987-09-01

    The removal of substate molecules from aerobic microbial cultures is due to both consumption by microorganisms and stripping by the air stream. The air stripping component can be described by a constant parameter for low concentrations of volatile substrates. This air stripping parameter was found to have a value of 0.0033 h(-1) for phenol molecules in a typical fermentation situation. The determination and inclusion of this constant is important for modeling microbial growth. For Pseudomonas putida growing on phenol, it is shown that air stripping is responsible for all of the original decline in phenol concentration. Further, the kinetic inhibition constant is sensitive to both the value of the air stripping parameter and the value of the initial concentration of bacteria. The experimental data for Pseudomonas putida growing on phenol was fit by a non-linear, least squares technique to isolate the inhibition constant between 100 and 600 ppm.

  9. Evaluation of anatomy comic strips for further production and applications.

    PubMed

    Shin, Dong Sun; Kim, Dae Hyun; Park, Jin Seo; Jang, Hae Gwon; Chung, Min Suk

    2013-09-01

    The corresponding author of the study has been sketching comic strips to explain anatomy in a humorous manner. All the anatomy comic strips, including those in Korean (650 episodes) and English (451 episodes), can be viewed on the homepage (http://anatomy.co.kr). Such comic strips were created with the aim of assisting medical students. However, their impact was unknown, and therefore, we surveyed the students' responses. We noted that anatomy grades were better in the students who read the comic strips. The comics helped the trainees chat with individuals with and without a medical background. The authors also considered comments on the problems with the comic strips and attempted to find solutions. The episodes are being currently used and further produced for educational purposes. To support this effort, the readers' valuable opinions will be continuously collected and assessed.

  10. [Descemet's stripping automated endothelial keratoplasty (DSAEK)].

    PubMed

    Cursiefen, C; Kruse, F E

    2009-10-01

    Penetrating keratoplasty has been the gold standard for the surgical treatment of corneal endothelial pathologies, but tremendous progress has been made in recent years in improving the technology of posterior lamellar keratoplasty techniques such as Descemet's stripping automated endothelial keratoplasty (DSAEK). This progress is shown by a literature review using PubMed sources and our own clinical and experimental data. Posterior lamellar keratoplasty using a microkeratome is a reliable surgical technique for Fuchs' endothelial dystrophy and pseudophakic bullous keratopathy. Visual rehabilitation is faster with lamellar compared with penetrating keratoplasty, but final visual acuity seems to be a bit reduced. Posterior lamellar keratoplasty techniques such as DSAEK may replace penetrating keratoplasty as the gold standard for treating a large proportion of corneal endothelial pathologies. PMID:19798505

  11. Groundwater air stripping: Effect on water toxicity

    SciTech Connect

    Eldridge, R.B.; Simpson, C.W.; Elliott, D.J.

    1995-02-01

    An air stripping unit was designed to reduce groundwater hydrocarbon content and biotoxicity to acceptable levels. A pilot plant study was conducted to determine the water treatability and to optimize the commercial unit design conditions. A measurement of the pilot plant effluent toxicity was obtained from {open_quotes}Microtox{close_quotes} analysis and rigorous bio-assays. These results indicated that reduction of the water hydrocarbon content to permitted discharge limits was accompanied by the elimination of water toxicity. The Onda mass transfer model was used to prepare the commercial unit design. A post-installation evaluation indicated that the model gave a good representation of the commercial unit performance. Toxicity reductions observed in the pilot plant were also observed in the commercial unit. 3 refs., 5 figs., 3 tabs.

  12. Robotic dry stripping of airframes - Phase II

    NASA Astrophysics Data System (ADS)

    Pauli, Robert A.; Wittenberg, Art M.

    1989-03-01

    This paper describes a program for the development of a dust-free closed-cycle robotic system for dry stripping of airframes, designed to insure dust-free work environment and reduce plastic-media loss, the contamination risk, and the media inventory requirement. Phase I of the program involved building a prototype of the proposed robotic arm and its dust enclosure to prove basic automation concepts, showing reasonable paint removal rate from a curved surface, and establishing that the process is dust-free and recovers plastic media in a closed-cycle fashion. This paper contains calculations on the effect of different blasting parameters in order to determine optimum values required for the completion of Phase I. Also presented is the progress achieved by the Phase II of the program, which is to prove the total concept by building the complete system and demonstrating its capability.

  13. Method and apparatus for corrugating strips

    DOEpatents

    Day, Jack R.; Curtis, Charles H.

    1983-01-01

    The invention relates to a method and a machine for transversely corrugating a continuous strip of metallic foil. The product foil comprises a succession of alternately disposed corrugations, each defining in cross section, a major segment of a circle. The foil to be corrugated is positioned to extend within a vertical passage in the machine. The walls of the passage are heated to promote the desired deformation of the foil. Foil-deforming rollers are alternately passed obliquely across the passage to respectively engage transverse sections of the foil. The rollers and their respective section of deformed foil comprise a stacked assembly which is moved incrementally through the heated passageway. As the assembly emerges from the passageway, the rollers spill from the corrugated foil and are recovered for re-use.

  14. Method and apparatus for corrugating strips

    DOEpatents

    Day, J.R.; Curtis, C.H.

    1981-10-27

    The invention relates to a method and a machine for transversely corrugating a continuous strip of metallic foil. The product foil comprises a succession of alternately disposed corrugations, each defining in a cross section, a major segment of a circle. The foil to be corrugated is positioned to extend within a vertical passage in the machine. The walls of the passage are heated to promote the desired deformation of the foil. Foil-deforming rollers are alternately passed obliquely across the passage to respectively engage transverse sections of the foil. The rollers and their respective section of deformed foil comprise a stacked assembly which is moved incrementally through the heated passageway. As the assembly emerges from the passageway, the rollers spill from the corrugated foil and are recovered for re-use.

  15. [Obstetrical handbook in comic strip form].

    PubMed

    1998-04-01

    An obstetric handbook was created in comic strip form in cooperation with the Ministry of Health in the region of Segou, Mali, for training of traditional midwives living far from community health centers. The drawings illustrate pregnancies at risk that the midwife should be able to identify in order to advise women to stay near the health facility before onset of labor. Drawings indicate pregnancies that are at risk because of the following: small stature, limping as a result of polio or sciatic paralysis, high parity, prior cesarean delivery, heart disease, overly large uterus, or prior stillbirth. Serious complications requiring referral to a health service are also illustrated and include severe anemia, genital bleeding, and signs of toxemia and edema. The midwife should accompany the woman during transport.

  16. Multistability of spontaneously curved anisotropic strips

    NASA Astrophysics Data System (ADS)

    Giomi, Luca; Mahadevan, L.

    2010-03-01

    Multistable structures are elastic objects, typically composite plates or shells, with more than one stable conformation. The common tape measure or the steel band enclosed inside the bright fabric cover of a ``slap bracelet'', are classic examples of plates that exhibit two stable configurations: folded and unfolded. Multistable structures have many potential applications, from the simple construction of objects of adjustable size to the design of mechanical devices that switch between a discrete number of states. In this talk I will discuss multistability in a quasi-one-dimensional anisotropic strip. The reduced dimensionality allows an exact analytical treatment in terms of the classic F"oppl - von K'arm'an theory of plates. In the conclusions I will comment on the possible occurrence of multistability in biological materials.

  17. Dynamic underground stripping. Innovative technology summary report

    SciTech Connect

    1995-04-01

    Dynamic Underground Stripping (DUS) is a combination of technologies targeted to remediate soil and ground water contaminated with organic compounds. DUS is effective both above and below the water table and is especially well suited for sites with interbedded sand and clay layers. The main technologies comprising DUS are steam injection at the periphery of a contaminated area to heat permeable subsurface areas, vaporize volatile compounds bound to the soil, and drive contaminants to centrally located vacuum extraction wells; electrical heating of less permeable sediments to vaporize contaminants and drive them into the steam zone; and underground imaging such as Electrical Resistance Tomography to delineate heated areas to ensure total cleanup and process control. A full-scale demonstration was conducted on a gasoline spill site at Lawrence Livermore National Laboratory in Livermore, California from November 1992 through December 1993.

  18. Tin Can Radiation Detector.

    ERIC Educational Resources Information Center

    Crull, John L.

    1986-01-01

    Provides instructions for making tin can radiation detectors from empty aluminum cans, aluminum foil, clear plastic, copper wire, silica gel, and fine, unwaxed dental floss put together with tape or glue. Also provides suggestions for activities using the detectors. (JN)

  19. A simple and rapid colloidal gold-based immunochromatogarpic strip test for detection of FMDV serotype A.

    PubMed

    Jiang, Tao; Liang, Zhong; Ren, Wei-wei; Chen, Juan; Zhi, Xiao-ying; Qi, Guang-yu; Liu, Xiang-tao; Cai, Xue-peng

    2011-02-01

    A sandwich format immunochromatographic assay for detecting foot-and-mouth disease virus (FMDV) serotypes was developed. In this rapid test, affinity purified polyclonal antibodies from Guinea pigs which were immunized with sucking-mouse adapted FMD virus (A/AV88(L) strain) were conjugated to colloidal gold beads and used as the capture antibody, and affinity purified polyclonal antibodies from rabbits which were immunized with cell-culture adapted FMD virus (A/CHA/09 strain) were used as detector antibody. On the nitrocellulose membrane of the immunochromatographic strip, the capture antibody was laid on a sample pad, the detector antibody was printed at the test line(T) and goat anti-guinea pigs IgG antibodies were immobilized to the control line(C). The lower detection limit of the test for a FMDV 146S antigen is 11.7 ng/ml as determined in serial tests after the strip device was assembled and the assay condition optimization. No cross reactions were found with FMDV serotype C, Swine vesicular disease (SVD), Vesicular stomatitis virus (VSV) and vesicular exanthema of swine virus (VES) viral antigens with this rapid test. Clinically, the diagnostic sensitivity of this test for FMDV serotypes A was 88.7% which is as same as an indirect-sandwich ELISA. The specificity of this strip test was 98.2% and is comparable to the 98.7% obtained with indirect-sandwich ELISA. This rapid strip test is simple, easy and fast for clinical testing on field sites; no special instruments and skills are required, and the result can be obtained within 15 min. To our knowledge, this is the first rapid immunochromatogarpic assay for serotype A of FMDV. PMID:21331888

  20. Segmented pyroelector detector

    DOEpatents

    Stotlar, S.C.; McLellan, E.J.

    1981-01-21

    A pyroelectric detector is described which has increased voltage output and improved responsivity over equivalent size detectors. The device comprises a plurality of edge-type pyroelectric detectors which have a length which is much greater than the width of the segments between the edge-type electrodes. External circuitry connects the pyroelectric detector segments in parallel to provide a single output which maintains 50 ohm impedance characteristics.

  1. Alternative fabrication process for edgeless detectors on 6 in. wafers

    NASA Astrophysics Data System (ADS)

    Kalliopuska, Juha; Eränen, Simo; Virolainen, Tuula

    2011-05-01

    VTT has developed a straightforward and fast process to fabricate edgeless (active edge) microstrip and pixel detectors on 6 in. (150 mm) wafers. The process avoids all slow process steps, such as polysilicon growth, planarization and additional ICP-etching. We have successfully fabricated 150 μm thick p-on-n and n-on-n prototypes of edgeless detectors having dead layers at the edge with a thickness below a micron. Fabrication was done on high resistivity n-type FZ-silicon wafers. The prototypes include 5×5 and 1×1 cm2 edgeless microstrip detectors with DC-, FOXFET- and PT-couplings. In addition 1.4×1.4 cm2 Medipix2 edgeless pixel detectors were also fabricated.This paper presents leakage current, capacitance and breakdown voltage measurements of different DC-coupled microstrip designs and compares them with respect to the active edge distance and polarity of the detector. The active edge distances were 20, 50 and 100 μm from the strips. Electrical characterization of these detectors on the wafer level gave promising results. A good uniformity in the measured parameters was observed for the inner strips. The parameters of the adjacent strip to the edge showed a dramatic dependence on the active edge distance. Leakage current and capacitance of the inner microstrips were 50-70 nA/cm2 and 580-660 pF/cm2 at, respectively, 40 V reverse bias for the p-on-n. For the n-on-n design these parameters were 116-118 nA/cm2 and 930-960 pF/cm2. The breakdown voltages were above 150 V for p-on-n prototypes and increased as a function of active edge distance. To fully deplete the p-on-n detectors required twice as much reverse bias as was needed for the n-on-n detectors, i.e. 13-28 V.

  2. Performances of miniature microstrip detectors made on oxygen enriched p-type substrates after very high proton irradiation

    NASA Astrophysics Data System (ADS)

    Casse, G.; Allport, P. P.; Martí i Garcia, S.; Lozano, M.; Turner, P. R.

    2004-12-01

    Silicon microstrip detectors with n-type implant read-out strips on FZ p-type bulk (n-in-p) show superior charge collection properties, after heavy irradiation, to the more standard p-strips in n-type silicon (p-in-n). It is also well established that oxygen-enriched n-type silicon substrates show better performance, in terms of degradation of the full depletion voltage after charged hadron irradiation, than the standard FZ silicon used for high energy physics detectors. Silicon microstrip detectors combining both the advantages of oxygenation and of n-strip read-out (n-in-n) have achieved high radiation tolerance to charged hadrons. The manufacturing of n-in-n detectors though requires double-sided processing, resulting in more complicated and expensive devices than standard p-in-n. A cheaper single-sided option, that still combines these advantages, is to use n-in-p devices. P-type FZ wafers have been oxygen-enriched by high temperature diffusion from an oxide layer and succesfully used to process miniature (1×1 cm 2) microstrip detectors. These detectors have been irradiated with 24 GeV/c protons in the CERN/PS T7 irradiation area up to ˜7.5×10 15 cm -2. We report results with these irradiated detectors in terms of the charge collection efficiency as a function of the applied bias voltage.

  3. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  4. LGB neutron detector

    NASA Astrophysics Data System (ADS)

    Quist, Nicole

    2012-10-01

    The double pulse signature of the Gadolinium Lithium Borate Cerium doped plastic detector suggests its effectiveness for analyzing neutrons while providing gamma ray insensitivity. To better understand this detector, a californium gamma/neutron time of flight facility was constructed in our lab. Reported here are efforts to understand the properties and applications of the LGB detector with regards to neutron spectroscopy.

  5. Tevatron Detector Upgrades

    SciTech Connect

    Lipton, Ronald

    2005-03-22

    The D0 and CDF experiments are in the process of upgrading their detectors to cope with the high luminosities projected for the remainder of Tevatron Run II. We discuss the expected Tevatron environment through 2009, the detector challenges due to increasing luminosity in this period, and the solutions undertaken by the two experiments to mitigate detector problems and maximize physics results.

  6. Tevatron detector upgrades

    SciTech Connect

    Lipton, R.; /Fermilab

    2005-01-01

    The D0 and CDF experiments are in the process of upgrading their detectors to cope with the high luminosities projected for the remainder of Tevatron Run II. They discuss the expected Tevatron environment through 2009, the detector challenges due to increasing luminosity in this period, and the solutions undertaken by the two experiments to mitigate detector problems and maximize physics results.

  7. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Zheng, Wei

    2010-09-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  8. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Ely, Justin

    2013-10-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  9. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Ely, Justin

    2012-10-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  10. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Cox, Colin

    2011-10-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  11. SPICE evaluation of the S/N ratio for Si microstrip detectors

    SciTech Connect

    Candelori, A.; Paccagnella, A.; Nardi, F.; Bacchetta, N.; Bisello, D.

    1999-10-01

    SPICE simulations of ac-coupled single-sided Si microstrip detectors connected to the PreShape 32 read-out chip have been performed in order to determine the geometrical characteristics (i.e., the strip pitch p and width w) which maximize the signal-to-noise ratio. All of the resistive and capacitive elements of the detector have been determined as a function of the w/p ratio by considering experimental and simulated data available in literature. The SPICE model the authors propose in this work takes into account all the main noise sources in the detector and read-out electronics. The minimum ionizing particle current signal shape has been introduced in the simulations. Two read-out configurations (every strip or every second strip) have been investigated for 6.4- and 12.8-cm-long detectors. The equivalent noise charge as determined by the simulations has been compared with analytical calculations, in order to determine the limits and the corrections to a simplified analytical noise model. Finally, general guidelines for the detector design have been proposed, based on the simulation results.

  12. Study and optimization of the spatial resolution for detectors with binary readout

    NASA Astrophysics Data System (ADS)

    Yonamine, R.; Maerschalk, T.; Lentdecker, G. De

    2016-09-01

    Using simulations and analytical approaches, we have studied single hit resolutions obtained with a binary readout, which is often proposed for high granularity detectors to reduce the generated data volume. Our simulations considering several parameters (e.g. strip pitch) show that the detector geometry and an electronics parameter of the binary readout chips could be optimized for binary readout to offer an equivalent spatial resolution to the one with an analog readout. To understand the behavior as a function of simulation parameters, we developed analytical models that reproduce simulation results with a few parameters. The models can be used to optimize detector designs and operation conditions with regard to the spatial resolution.

  13. Internal Electric Field Investigations of a Cadmium Zinc Telluride Detector Using Synchrotron X-ray Mapping and Pockels Effect Measurements

    SciTech Connect

    Yang, G.; Bolotnikov, A; Camarda, G; Cui, Y; Hossain, A; Yao, H; James, R

    2009-01-01

    Cadmium zinc telluride (CZT) has remained a major focus of research due to its promising application as a room-temperature nuclear radiation detector material. Among the several parameters that substantially affect the detectors' performance, an important one is the distribution of the internal electric field. Brookhaven National Laboratory (BNL) employed synchrotron x-ray microscale mapping and measurements of the Pockels effect to investigate the distribution of the internal electric field in a CZT strip detector. Direct evidence that dislocations can distort the internal electric field of the detector was obtained. Furthermore, it was found that 'star' defects in the CZT crystal, possibly ascribed to dislocation loop punching, cause charge trapping.

  14. Design and optimization of resistive anode for a two-dimensional imaging GEM detector

    NASA Astrophysics Data System (ADS)

    Ju, Xu-Dong; Dong, Ming-Yi; Zhao, Yi-Chen; Zhou, Chuan-Xing; Qun, Ou-Yang

    2016-08-01

    A resistive anode for two-dimensional imaging detectors, which consists of a series of high resistivity pads surrounded by low resistivity strips, can provide good spatial resolution while reducing the number of electronics channels required. The optimization of this kind of anode has been studied by both numerical simulations and experimental tests. It is found that to obtain good detector performance, the resistance ratio of the pads to the strips should be larger than 5, the nonuniformity of the pad surface resistivity should be less than 20%, a smaller pad width leads to a smaller spatial resolution, and when the pad width is 6 mm, the spatial resolution (σ) can reach about 105 μm. Based on the study results, a 2-D GEM detector prototype with optimized resistive anode is constructed and a good imaging performance is achieved. Supported by National Natural Science Foundation of China (11375219) and CAS Center for Excellence in Particle Physics (CCEPP)

  15. Applications of gaseous particle detectors in physics and medicine

    NASA Astrophysics Data System (ADS)

    Sauli, Fabio

    1995-08-01

    The multi-wire proportional chamber, introduced in 1967 by Georges Charpak (recipient of the 1992 Nobel prize for physics) allows to achieve high-rate, fully electronics detection and localization of ionizing radiation. The myriad of devices inspired by this initial work generated a revolution in the conception of detectors for elementary particle physics experiments; examples are the time projection chamber, the drift chamber, the micro-strip gas chamber. After a brief introduction on the basic operating principles of the device, I will describe several examples of application of advanced gas detectors in medicine and biology and analyze the operating characteristics that make the new devices attractive when confronted with classic detectors.

  16. Miniature detector measures deep space radiation

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-08-01

    The 1972 journey of Apollo 17 marked not only the last time a human walked on the Moon but also the most recent manned venture beyond the outer reaches of the Earth's atmosphere. With preparations being made for humans to once again explore deep space, important steps are under way to quantify the hazards of leaving low-Earth orbit. One significant risk for long-distance missions is the increased exposure to ionizing radiation—energetic particles that can strip electrons off of otherwise neutral materials, affecting human health and the functioning of spacecraft equipment. The deep space probes that are being sent to measure the risks from ionizing radiation and other hazards can be costly, so maximizing the scientific value of each launch is important. With this goal in mind, Mazur et al. designed and developed a miniature dosimeter that was sent into lunar orbit aboard NASA's Lunar Reconnaissance Orbiter (LRO) in 2009. Weighing only 20 grams, the detector is able to measure fluctuations in ionizing radiation as low as 1 microrad (equivalent to 1.0 × 10-8 joules of energy deposited into 1 kilogram) while requiring minimal power and computer processing. The postage stamp-sized detector tracked radiation dosages for the first year of LRO's mission, with the results being confirmed by other onboard and near-Earth detectors. (Space Weather, doi:10.1029/2010SW000641, 2011)

  17. CMS muon detector and trigger performance

    NASA Astrophysics Data System (ADS)

    Piccolo, Davide; CMS Collaboration

    2011-02-01

    In the CMS experiment at the LHC proton-proton collider, a key role will be played by the muon system that is embedded inside the iron yoke used to close the magnetic flux of the CMS solenoid. The muon system of the CMS experiment performs three main tasks: triggering of muons, identifying muons, and assisting the central tracker in order to measure the momentum and charge of high-pt muons in the pseudorapidity region |η|≤2.4. The system is composed by a central barrel and two closing endcaps. Three independent technologies are used to reconstruct and trigger muons: Drift Tubes (DT) in the barrel, Cathode Strips Chambers (CSC) in the endcaps and Resistive Plate Chambers (RPC) in both barrel and endcap regions. All the detectors will contribute to the tracking and triggering of muons. Towards the end of 2008 and in 2009 the CMS experiment was commissioned with many millions of cosmic rays. These data have been fundamental to check the performance of the three sub-detectors and of the trigger response. In this paper the results in terms of the detection and trigger performance at the level of each sub-detector and at the level of the full muon system will be reported.

  18. The control system of the multi-strip ionization chamber for the HIMM

    NASA Astrophysics Data System (ADS)

    Li, Min; Yuan, Y. J.; Mao, R. S.; Xu, Z. G.; Li, Peng; Zhao, T. C.; Zhao, Z. L.; Zhang, Nong

    2015-03-01

    Heavy Ion Medical Machine (HIMM) is a carbon ion cancer treatment facility which is being built by the Institute of Modern Physics (IMP) in China. In this facility, transverse profile and intensity of the beam at the treatment terminals will be measured by the multi-strip ionization chamber. In order to fulfill the requirement of the beam position feedback to accomplish the beam automatic commissioning, less than 1 ms reaction time of the Data Acquisition (DAQ) of this detector must be achieved. Therefore, the control system and software framework for DAQ have been redesigned and developed with National Instruments Compact Reconfigurable Input/Output (CompactRIO) instead of PXI 6133. The software is Labview-based and developed following the producer-consumer pattern with message mechanism and queue technology. The newly designed control system has been tested with carbon beam at the Heavy Ion Research Facility at Lanzhou-Cooler Storage Ring (HIRFL-CSR) and it has provided one single beam profile measurement in less than 1 ms with 1 mm beam position resolution. The fast reaction time and high precision data processing during the beam test have verified the usability and maintainability of the software framework. Furthermore, such software architecture is easy-fitting to applications with different detectors such as wire scanner detector.

  19. Membrane air stripping utilizing a plate and frame configuration

    SciTech Connect

    Boswell, S.T.

    1991-01-01

    Membrane air stripping has recently been proposed as a possible method to remove volatile organic chemicals (VOCs) and radon from drinking water supplies. Current and anticipated regulatory requirements, driven by health consequences, make the removal of these contaminants mandatory. This work examines the use of plate and frame membrane air stripping for the removal of VOCs and radon from a water supply. The theoretical basis of membrane air stripping and a literature review are included. The advantages of membrane air stripping versus other methods of removal, as well as the advantages of a plate and frame configuration versus a hollow fiber configuration for membrane air stripping are discussed. Multiple regression/correlation techniques are used to model mass transfer coefficients and fluid resistances. An economic evaluation is performed using the developed models. The costs of comparable membrane and packed tower air stripping systems are 4.86 cents per thousand gallons versus 4.36 cents per thousand gallons, respectively. This work indicates that plate and frame membrane air stripping may, in fact, prove to be an economical alternative to packed tower aeration and carbon adsorption for the removal of VOCs and radon.

  20. Method and apparatus for improved FCC spent catalyst stripping

    SciTech Connect

    Harandi, M.N.; Owen, H.; Pappal, D.A.; Schipper, P.A.

    1990-11-20

    This patent describes a fluid catalytic cracking process. It comprises: mixing a hydrocarbon feed with a cracking catalyst in the lower section of the reactor riser of a riser-reactor fluid catalytic cracking unit; passing the mixture through the length of the reactor riser under conversion conditions whereby the hydrocarbon is catalytically cracked and the catalyst is deactivated; separating the cracked product and the deactivated catalyst; charging the deactivated catalyst to an annular stripping zone. The stripping zone positioned around the concentric with a lower section of the reactor riser; withdrawing the deactivated catalyst from the stripping zone; oxidatively regenerating the withdrawn deactivated catalyst in a regeneration zone remote from and in valved communication with the reactor riser, at a temperature above that of the stripping zone under oxygen-deficient conditions to generate a flue gas containing carbon monoxide; partially separating catalyst from the flue gas to evolve a hot flue gas stream containing entrained regenerated catalyst; flowing the hot flue gas stream containing entrained regenerated catalyst to a heat exchange conduit positioned within the stripping zone above; and mixing the flue gas stream containing regenerated catalyst above with oxygen-containing gas to exothermically convert carbon monoxide to carbon dioxide within the heat exchange conduit positioned within the stripping zone to indirectly transfer thermal energy from the closed heat exchange conduit to the stripping zone.

  1. High-energy detector

    DOEpatents

    Bolotnikov, Aleksey E.; Camarda, Giuseppe; Cui, Yonggang; James, Ralph B.

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  2. A preference test for sweet taste that uses edible strips.

    PubMed

    Smutzer, Gregory; Patel, Janki Y; Stull, Judith C; Abarintos, Ray A; Khan, Neiladri K; Park, Kevin C

    2014-02-01

    A novel delivery method is described for the rapid determination of taste preferences for sweet taste in humans. This forced-choice paired comparison approach incorporates the non-caloric sweetener sucralose into a set of one-inch square edible strips for the rapid determination of sweet taste preferences. When compared to aqueous sucrose solutions, significantly lower amounts of sucralose were required to identify the preference for sweet taste. The validity of this approach was determined by comparing sweet taste preferences obtained with five different sucralose-containing edible strips to a set of five intensity-matched sucrose solutions. When compared to the solution test, edible strips required approximately the same number of steps to identify the preferred amount of sweet taste stimulus. Both approaches yielded similar distribution patterns for the preferred amount of sweet taste stimulus. In addition, taste intensity values for the preferred amount of sucralose in strips were similar to that of sucrose in solution. The hedonic values for the preferred amount of sucralose were lower than for sucrose, but the taste quality of the preferred sucralose strip was described as sweet. When taste intensity values between sucralose strips and sucralose solutions containing identical amounts of taste stimulus were compared, sucralose strips produced a greater taste intensity and more positive hedonic response. A preference test that uses edible strips for stimulus delivery should be useful for identifying preferences for sweet taste in young children, and in clinical populations. This test should also be useful for identifying sweet taste preferences outside of the lab or clinic. Finally, edible strips should be useful for developing preference tests for other primary taste stimuli and for taste mixtures.

  3. The looped adhesive strip: An example of coplanar delamination interaction

    NASA Technical Reports Server (NTRS)

    Bottega, W. J.

    1990-01-01

    The phenomenon of peeling and debonding of thin layers is a subject of interest to those concerned with adhesives, thin films, and layered materials. In recent years much attention has been focused on such problems as a result of increased interest and application of advanced composites and thin film coatings. A related problem which is of interest for its own sake but also represents a simple example of a tangled adhesive strip and of coplanar delamination interaction, is the problem of a looped adhesive strip. This is the subject of the present study. Researchers consider here the problem of an elastic strip which possesses an adherend on (at least) one of its surfaces. If the strip is deformed so that two portions of such a surface are brought into contact, a position of the strip becomes bonded and a loop is formed. Researchers are interested in determining the equilibrium configuration of such a strip and investigating the behavior of the strip when its edges are pulled apart. The problem is approached as a moving interior boundary problem in the calculus of variations with the strip modeled as an inextensible elastica and the bond strength characterized by its surface energy. A Griffith type energy criterion is employed for debonding, and solutions corresponding to the problem of interest obtained. The solution obtained will be seen to predict the interesting phenomenon of bond point propagation, as well as the more standard peeling type behavior. Numerical results demonstrating the phenomena of interest are presented as well and will be seen to reveal both stable and unstable propagation of the boundaries of the bonded portion of the strip, depending upon the loading conditions.

  4. The water crisis in the gaza strip: prospects for resolution.

    PubMed

    Weinthal, E; Vengosh, A; Marei, A; Kloppmann, W

    2005-01-01

    Israel and the Palestinian Authority share the southern Mediterranean coastal aquifer. Long-term overexploitation in the Gaza Strip has resulted in a decreasing water table, accompanied by the degradation of its water quality. Due to high levels of salinity and nitrate and boron pollution, most of the ground water is inadequate for both domestic and agricultural consumption. The rapid rate of population growth in the Gaza Strip and dependence upon ground water as a single water source present a serious challenge for future political stability and economic development. Here, we integrate the results of geochemical studies and numerical modeling to postulate different management scenarios for joint management between Israel and the Palestinian Authority. The chemical and isotopic data show that most of the salinity phenomena in the Gaza Strip are derived from the natural flow of saline ground water from Israel toward the Gaza Strip. As a result, the southern coastal aquifer does not resemble a classic "upstream-downstream" dispute because Israel's pumping of the saline ground water reduces the salinization rates of ground water in the Gaza Strip. Simulation of different pumping scenarios using a monolayer, hydrodynamic, two-dimensional model (MARTHE) confirms the hypothesis that increasing pumping along the Gaza Strip border combined with a moderate reduction of pumping within the Gaza Strip would improve ground water quality within the Gaza Strip. We find that pumping the saline ground water for a source of reverse-osmosis desalination and then supplying the desalinated water to the Gaza Strip should be an essential component of a future joint management strategy between Israel and the Palestinian Authority.

  5. CsI-Silicon Particle detector for Heavy ions Orbiting in Storage rings (CsISiPHOS)

    NASA Astrophysics Data System (ADS)

    Najafi, M. A.; Dillmann, I.; Bosch, F.; Faestermann, T.; Gao, B.; Gernhäuser, R.; Kozhuharov, C.; Litvinov, S. A.; Litvinov, Yu. A.; Maier, L.; Nolden, F.; Popp, U.; Sanjari, M. S.; Spillmann, U.; Steck, M.; Stöhlker, T.; Weick, H.

    2016-11-01

    A heavy-ion detector was developed for decay studies in the Experimental Storage Ring (ESR) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. This detector serves as a prototype for the in-pocket particle detectors for future experiments with the Collector Ring (CR) at FAIR (Facility for Antiproton and Ion Research). The detector includes a stack of six silicon pad sensors, a double-sided silicon strip detector (DSSD), and a CsI(Tl) scintillation detector. It was used successfully in a recent experiment for the detection of the β+-decay of highly charged 142Pm60+ ions. Based on the ΔE / E technique for particle identification and an energy resolution of 0.9% for ΔE and 0.5% for E (Full Width at Half Maximum (FWHM)), the detector is well-suited to distinguish neighbouring isobars in the region of interest.

  6. Enhancement Of Water-Jet Stripping Of Foam

    NASA Technical Reports Server (NTRS)

    Cosby, Steven A.; Shockney, Charles H.; Bates, Keith E.; Shalala, John P.; Daniels, Larry S.

    1995-01-01

    Improved robotic high-pressure-water-jet system strips foam insulation from parts without removing adjacent coating materials like paints, primers, and sealants. Even injects water into crevices and blind holes to clean out foam, without harming adjacent areas. Eliminates both cost of full stripping and recoating and problem of disposing of toxic solutions used in preparation for coating. Developed for postflight refurbishing of aft skirts of booster rockets. System includes six-axis robot provided with special end effector and specially written control software, called Aftfoam. Adaptable to cleaning and stripping in other industrial settings.

  7. Intelligent control of robotic paint stripping using color vision feedback

    NASA Astrophysics Data System (ADS)

    Harvey, D. N.; Rogers, T. W.

    1993-08-01

    The paper describes a color-based machine vision system which is capable of functioning as a real-time process control system for a robotic work cell currently being developed for stripping paint from both large and small aircraft. The system is based on hue, saturation, and intensity representation of the image data and on rapid analysis techniques and is capable of differentiating between painted, primed, stripped, and roughened aircraft surfaces. These techniques were tested on a large number of aircraft paint schemes under actual stripping conditions, and were found to be fast and robust enough for real-time process control.

  8. Autoionization of He atoms by partially stripped ion impact

    SciTech Connect

    Otranto, S.; Olson, R.E.

    2005-08-15

    A study of the autoionization process induced by partially stripped ion impact is performed. Electron spectra in momentum space are predicted within a classical model for partially stripped ions. The results are compared with those obtained for pure Coulomb-like projectiles. A quantum-mechanical extension of the Barrachina-Macek model is proposed for partially stripped projectiles. Structure on the electron angular distribution arising in quantum and classical treatments is identified and compared. The presence of rainbow scattering interference is observed in the binary ring profile of the outgoing autoionized electrons for positive-ion impact.

  9. Automated strip mine and reclamation mapping from ERTS. [Ohio coal

    NASA Technical Reports Server (NTRS)

    Pettyjohn, W. A.; Rogers, R. H.; Reed, L. E.

    1974-01-01

    In response to the urgent need for a faster and more economical means of generating strip mine and reclamation maps, a study was conducted to evaluate the suitability of using ERTS computer compatible tape for automatic mapping. The procedure uses computer target spectral recognition techniques as a basis for classification. The area encompassed by this investigation includes five counties in eastern Ohio that comprise nearly 7,500 square kilometers (3,000 square miles). The counties have been disrupted by coal mining since the early 1800's, and strip mining has been practiced in all of them. The environmental effects of strip mining are also discussed.

  10. Reductive stripping process for uranium recovery from organic extracts

    DOEpatents

    Hurst, F.J. Jr.

    1983-06-16

    In the reductive stripping of uranium from an organic extractant in a uranium recovery process, the use of phosphoric acid having a molarity in the range of 8 to 10 increases the efficiency of the reductive stripping and allows the strip step to operate with lower aqueous to organic recycle ratios and shorter retention time in the mixer stages. Under these operating conditions, less solvent is required in the process, and smaller, less expensive process equipment can be utilized. The high strength H/sub 3/PO/sub 4/ is available from the evaporator stage of the process.

  11. Reductive stripping process for uranium recovery from organic extracts

    DOEpatents

    Hurst, Jr., Fred J.

    1985-01-01

    In the reductive stripping of uranium from an organic extractant in a uranium recovery process, the use of phosphoric acid having a molarity in the range of 8 to 10 increases the efficiency of the reductive stripping and allows the strip step to operate with lower aqueous to organic recycle ratios and shorter retention time in the mixer stages. Under these operating conditions, less solvent is required in the process, and smaller, less expensive process equipment can be utilized. The high strength H.sub.3 PO.sub.4 is available from the evaporator stage of the process.

  12. Rapid analytical detection of microcystins using gold colloidal immunochromatographic strip.

    PubMed

    Pyo, Dongjin; Choi, Jongchon; Hong, Jonguk; Oo, Hlaing Hlaing

    2006-01-01

    Routine monitoring of microcystin in natural waters is difficult because the concentration of the toxin is low and the detection method is usually complicated. We developed a rapid analytical detection method of microcystins gold colloidal immunochromatogeraphic strip. The sensitivity of the strip is about 1 ng/mL for microcystin LR; it is able to distinguish visually among different concentrations of microcystin solutions. The developed gold colloidal strip can detect microcystins within 15 min and does not require either a complicated extraction system, or trained or qualified experts.

  13. An X-ray imaging device based on a GEM detector with delay-line readout

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Li, Cheng; Sun, Yong-Jie; Shao, Ming

    2010-01-01

    An X-ray imaging device based on a triple-GEM (Gas Electron Multiplier) detector, a fast delay-line circuit with 700 MHz cut-off frequency and two dimensional readout strips with 150 μm width on the top and 250 μm width on the bottom, is designed and tested. The localization information is derived from the propagation time of the induced signals on the readout strips. This device has a good spatial resolution of 150 μm and works stably at an intensity of 105 Hz/mm2 with 8 keV X-rays.

  14. A microfluidic device for open loop stripping of volatile organic compounds.

    PubMed

    Cvetković, Benjamin Z; Dittrich, Petra S

    2013-03-01

    The detection of volatile organic compounds is of great importance for assessing the quality of water. In this contribution, we describe a miniaturized stripping device that allows fast online detection of organic solvents in water. The core component is a glass microfluidic chip that facilitates the creation of an annular-flowing stream of water and nitrogen gas. Volatile compounds are transferred efficiently from the water into the gas phase along the microfluidic pathway at room temperature within less than 5 s. Before exiting the microchip, the liquid phase is separated from the enriched gas phase by incorporating side capillaries through which the hydrophilic water phase is withdrawn. The gas phase is conveniently collected at the outlet reservoir by tubing. Finally, a semiconductor gas sensor analyzes the concentration of (volatile) organic compounds in the nitrogen gas. The operation and use of the stripping device is demonstrated for the organic solvents THF, 1-propanol, toluene, ethylbenzene, benzaldehyde, and methanol. The mobile, inexpensive, and continuously operating system with liquid flow rates in the low range of microliters per minute can be connected to other detectors or implemented in chemical production line for process control.

  15. Small-strip Thin Gap Chambers for the muon spectrometer upgrade of the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Perez Codina, E.

    2016-07-01

    The ATLAS muon system upgrade to be installed during the LHC long shutdown in 2018/19, the so-called New Small Wheel (NSW), is designed to cope with the increased instantaneous luminosity in LHC Run 3. The small-strip Thin Gap Chambers (sTGC) will provide the NSW with a fast trigger and high precision tracking. The construction protocol has been validated by test beam experiments on a full-size prototype sTGC detector, showing the performance requirements are met. The intrinsic spatial resolution for a single layer has been found to be about 45 μm for a perpendicular incident angle, and the transition region between pads has been measured to be about 4 mm.

  16. Status of the silicon strip high-rate FASTBUS readout system

    SciTech Connect

    Gonzalez, H.; Barsotti, E.; Bowden, M.; Christian, D.; Chramowicz, J.; Fachin, M.; Haldeman, M.; Hoff, J.; Holmes, S.; Rotolo, C.; Romero, A.; Slimmer, D.; Swoboda, C.; Trendler, R.; Urish, J.; Yarema, R.; Zimmerman, T.; Zimmermann, S.; Kowald, W.; MacManus, A.; Recagni, M.; Segal, J.; Spentzouris, P.

    1991-11-01

    Our new readout system was developed in collaboration with, and largely to the specification of, the E771 experimenters. E771 is a fixed target experiment designed to study the production of B hadrons by an 800 GeV/c proton beam. The experiment will operate at rates of up to 200 million beam protons per second and 10 million interactions per second. The experimental apparatus will consist of an open geometry magnetic spectrometer featuring good muon and electron identification (much of which was used in E705), and a compact 16000 channel Silicon Strip Detector. In order to satisfy the experimenter`s desire to instrument 16000 SSD elements in a package only 5 cm wide, 5 cm high, and 21 cm deep, and in order to meet the performance specifications, we have made extensive use of ``Application Specific Integrated Circuits`` (ASIC`s).

  17. Status of the silicon strip high-rate FASTBUS readout system

    SciTech Connect

    Gonzalez, H.; Barsotti, E.; Bowden, M.; Christian, D.; Chramowicz, J.; Fachin, M.; Haldeman, M.; Hoff, J.; Holmes, S.; Rotolo, C.; Romero, A.; Slimmer, D.; Swoboda, C.; Trendler, R.; Urish, J.; Yarema, R.; Zimmerman, T.; Zimmermann, S.; Kowald, W.; MacManus, A.; Recagni, M.; Segal, J.; Spentzouris, P.

    1991-11-01

    Our new readout system was developed in collaboration with, and largely to the specification of, the E771 experimenters. E771 is a fixed target experiment designed to study the production of B hadrons by an 800 GeV/c proton beam. The experiment will operate at rates of up to 200 million beam protons per second and 10 million interactions per second. The experimental apparatus will consist of an open geometry magnetic spectrometer featuring good muon and electron identification (much of which was used in E705), and a compact 16000 channel Silicon Strip Detector. In order to satisfy the experimenter's desire to instrument 16000 SSD elements in a package only 5 cm wide, 5 cm high, and 21 cm deep, and in order to meet the performance specifications, we have made extensive use of Application Specific Integrated Circuits'' (ASIC's).

  18. FPHX: A New Silicon Strip Readout Chip for the PHENIX Experiment at RHIC

    SciTech Connect

    Hoff, James R.; Zimmerman, Tom N.; Yarema, Raymond J.; Kapustinsky, Jon S.; Brookes, Melynda L.; /LOS ALAMOS

    2009-01-01

    The FPHX chip is a silicon strip readout chip developed at Fermilab for use in the FVTX Detector of the PHENIX experiment at RHIC. Each front end consists of an integrator which is AC coupled to a shaper, followed by a discriminator and a 3-bit analog-to-digital converter. The backend is a novel architecture in two stages that permits dead-timeless operation and high-speed readout with very low latency. A slow controller provides an interface for all on-chip programmable functions. This chip has been fabricated in the 0.25um TSMC process. All functionality including the analog front-end, the digital back-end, and the slow controller has been verified experimentally.

  19. A novel model for calculating the inter-electrode capacitance of wedge-strip anode.

    PubMed

    Zhao, Airong; Ni, Qiliang

    2016-04-01

    The wedge strip anode (WSA) detector has been widely used in particle detection. In this work, a novel model for calculating the inter-electrode capacitance of WSA was proposed on the basis of conformal transformations and the partial capacitance method. Based on the model, the inter-electrode capacitance within a period was calculated besides the total inter-electrode capacitance. As a result, the effects of the WSA design parameters on the inter-electrode capacitance are systematically analyzed. It is found that the inter-electrode capacitance monotonically increases with insulated gap and substrate permittivity but not with the period. In order to prove the validation of the model, two round WSAs were manufactured by employing the picosecond laser micro-machining technology. It is found that 9%-15% errors between the theoretical and experimental results can be obtained, which is better than that obtained by employing ANSYS software. PMID:27131648

  20. Unstable strip resonators with misaligned circular mirrors.

    PubMed

    Santana, C; Felsen, L B

    1978-08-01

    The waveguide approach developed previously by the authors is here applied to unstable strip resonators with unequal sharp-edged circular mirrors that have been tilted with respect to the resonator axis. An equivalent resonator with nontilted mirrors is defined wherein the mirror edges form asymmetrically placed terminations of the open-ended transverse waveguide. The eigenmode losses are found by calculating the waveguide mode reflection coefficients for each pair of edges and inserting these into the previously derived resonance equation. Numerical calculations for the low-loss detached mode are presented for the special case of symmetrical resonators with equally tilted mirrors since results for this configuration, for moderately large Fresnel numbers, have previously been given by Sanderson and Streifer. Our solutions agree with those of Sanderson and Streifer but accommodate also the range of large Fresnel numbers. It is found that misalignment introduces additional ripples into the power loss vs Fresnel number curves. A ray-optical interpretation in terms of edge diffraction is shown to account for this behavior. PMID:20203787

  1. An improved rolled strip pulse forming line

    NASA Astrophysics Data System (ADS)

    Li, Song; Qian, Bao-Liang; Yang, Han-Wu; Gao, Jing-Ming; Liu, Zhao-Xi

    2013-06-01

    The rolled strip pulse forming line (RSPFL) has advantages of compactness, portability, and long pulse achievability which could well meet the requirements of industrial application of the pulse power technology. In this paper, an improved RSPFL with an additional insulator between the grounded conductors is investigated numerically and experimentally. Results demonstrate that the jitter on the flat-top of the output voltage waveform is reduced to 3.8% due to the improved structure. Theoretical analysis shows that the electromagnetic coupling between the conductors of the RSPFL strongly influences the output voltage waveform. Therefore, the new structure was designed to minimize the detrimental effect of the electromagnetic coupling. Simulation results show that the electromagnetic coupling can be efficiently reduced in the improved RSPFL. Experimental results illustrate that the improved RSPFL, with dimensions and weight of Φ 290 × 250 mm and 16 kg, when used as a simple pulse forming line, could generate a well shaped quasi-square pulse with output power of hundreds of MW and pulse duration of 250 ns. Importantly, the improved RSPFL was successfully used as a Blumlein pulse forming line, and a 10.8 kV, 260 ns quasi-square pulse was obtained on a 2 Ω dummy load. Experiments show reasonable agreement with numerical analysis.

  2. Semiautomatic reconstruction of strip-shredded documents

    NASA Astrophysics Data System (ADS)

    De Smet, Patrick; De Bock, Johan; Philips, Wilfried

    2005-03-01

    Until recently, the forensic or investigative reconstruction of shredded documents has always been dismissed as an important but unsolvable problem. Manual reassembly of the physical remnants can always be considered, but for large amounts of shreds this problem can quickly become an intangible task that requires vast amounts of time and/or personnel. In this paper we propose and discuss several image processing techniques that can be used to enable the reconstruction of strip-shredded documents stored within a database of digital images. The technical content of this paper mainly revolves around the use of feature based matching and grouping methods for classifying the initial database of shreds, and the subsequent procedure for computing more accurate pairing results for the obtained classes of shreds. Additionally, we discuss the actual reassembly of the different shreds on top of a common image canvas. We illustrate our algorithms with example matching and reconstruction results obtained for a real shred database containing various types of shredded document pages. Finally, we briefly discuss the impact of our findings on secure document management strategies and the possibilities for applying the proposed techniques within the context of forensic investigation.

  3. Neutrino Detectors: Challenges and Opportunities

    SciTech Connect

    Soler, F. J. P.

    2011-10-06

    This paper covers possible detector options suitable at future neutrino facilities, such as Neutrino Factories, Super Beams and Beta Beams. The Magnetised Iron Neutrino Detector (MIND), which is the baseline detector at a Neutrino Factory, will be described and a new analysis which improves the efficiency of this detector at low energies will be shown. Other detectors covered include the Totally Active Scintillating Detectors (TASD), particularly relevant for a low energy Neutrino Factory, emulsion detectors for tau detection, liquid argon detectors and megaton scale water Cherenkov detectors. Finally the requirements of near detectors for long-baseline neutrino experiments will be demonstrated.

  4. Weber Blockade Theory of Magnetoresistance Oscillations in Superconducting Strips

    NASA Astrophysics Data System (ADS)

    Pekker, David; Refael, Gil; Goldbart, Paul M.

    2011-07-01

    Recent experiments on the conductance of thin, narrow superconducting strips have found periodic fluctuations, as a function of the perpendicular magnetic field, with a period corresponding to approximately two flux quanta per strip area [A. Johansson , Phys. Rev. Lett. 95, 116805 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.116805]. We argue that the low-energy degrees of freedom responsible for dissipation correspond to vortex motion. Using vortex-charge duality, we show that the superconducting strip behaves as the dual of a quantum dot, with the vortices, magnetic field, and bias current respectively playing the roles of the electrons, gate voltage, and source-drain voltage. In the bias-current versus magnetic-field plane, the strip conductance displays regions of small vortex conductance (i.e., small electrical resistance) that we term “Weber blockade” diamonds, which are dual to Coulomb blockade diamonds in quantum dots.

  5. Analysis of a unidirectional, symmetric buffer strip laminate with damage

    NASA Technical Reports Server (NTRS)

    Dharani, L. R.; Goree, J. G.

    1984-01-01

    A method for predicting the fracture behavior of hybrid buffer strip laminates is presented in which the classical shear-lag model is used to represent the shear stress distribution between adjacent fibers. The method is demonstrated by applying it to a notched graphite/epoxy laminate, and the results show clearly the manner in which the most efficient combination of buffer strip properties can be selected in order to arrest the crack. The ultimate failure stress of the laminate is plotted vs the buffer strip width. It is shown that in the case of graphite-epoxy and S-glass epoxy laminates, the optimum buffer strip spacing to width ratio should be about four to one.

  6. 40. STEEL, INGOTS, ON INGOT BUGGIES, WAIT TO BE STRIPPED. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. STEEL, INGOTS, ON INGOT BUGGIES, WAIT TO BE STRIPPED. STRIPPER CRANE CAN BE SEEN AT THE END OF THE RAILROAD TRACKS, AT CENTER. - Corrigan, McKinney Steel Company, 3100 East Forty-fifth Street, Cleveland, Cuyahoga County, OH

  7. Stability of flow over axisymmetric bodies with porous suction strips

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.; Reed, H. L.

    1982-01-01

    Linear triple deck, closed form solutions for mean-flow quantities are developed for axisymmetric incompressible flow past a body with porous strips. The solutions account for upstream influence and are linear superpositions of the flow past the body without suction plus the perturbations due to the suction strips. Flow past the suctionless body is calculated using the Transition Analysis Program System, and a simple linear optimization scheme to determine number, spacing, and mass flow rate through the strips on an axisymmetric body is developed using the linear, triple-deck, closed-form solutions. The theory is demonstrated by predicting optimal strip distributions, and the effect of various adverse pressure-gradient situations on stability is studied.

  8. Electroplating and stripping copper on molybdenum and niobium

    NASA Technical Reports Server (NTRS)

    Power, J. L.

    1978-01-01

    Molybdenum and niobium are often electroplated and subsequently stripped of copper. Since general standard plating techniques produce poor quality coatings, general procedures have been optimized and specified to give good results.

  9. Results of Laboratory Testing of Advanced Power Strips: Preprint

    SciTech Connect

    Earle, L.; Sparn, B.

    2012-08-01

    This paper describes the results of a laboratory investigation to evaluate the technical performance of advanced power strip (APS) devices when subjected to a range of home entertainment center and home office usage scenarios.

  10. High Pressure Water Stripping Using Multi-Orifice Nozzles

    NASA Technical Reports Server (NTRS)

    Hoppe, David T.

    1998-01-01

    The use of multi-orifice rotary nozzles not only increases the speed and stripping effectiveness of high pressure water blasting systems, but also greatly increases the complexity of selecting and optimizing the operating parameters. The rotational speed of the nozzle must be coupled with the transverse velocity of the nozzle as it passes across the surface of the substrate being stripped. The radial and angular positions of each orifice must be included in the analysis of the nozzle configuration. Since orifices at the outer edge of the nozzle head move at a faster rate than the orifice located near the center, the energy impact force of the water stream from the outer orifice is spread over a larger area than the water streams from the inner orifice. Utilizing a larger diameter orifice in the outer radial positions increases the energy impact to compensate for its wider force distribution. The total flow rate from the combination of orifices must be monitored and kept below the pump capacity while choosing an orifice to insert in each position. The energy distribution from the orifice pattern is further complicated since the rotary path of all orifices in the nozzle head pass through the center section, contributing to the stripping in this area while only the outer most orifice contributes to the stripping in the shell area at the extreme outside edge of the nozzle. From t he outer most shell to the center section, more orifices contribute to the stripping in each progressively reduced diameter shell. With all these parameters to configure and each parameter change affecting the others, a computer model was developed to track and coordinate these parameters. The computer simulation responds by graphically indicating the cumulative affect from each parameter selected. The results from the proper choices in parameters is a well designed, highly efficient stripping system. A poorly chosen set of parameters will cause the nozzle to strip aggressively in some areas

  11. High Pressure Water Stripping Using Multi-Orifice Nozzles

    NASA Technical Reports Server (NTRS)

    Hoppe, David

    1999-01-01

    The use of multi-orifice rotary nozzles greatly increases the speed and stripping effectiveness of high pressure water blasting systems, but also greatly increases the complexity of selecting and optimizing the operating parameters. The rotational speed of the nozzle must be coupled with its transverse velocity as it passes across the surface of the substrate being stripped. The radial and angular positions of each orifice must be included in the analysis of the nozzle configuration. Orifices at the outer edge of the nozzle head move at a faster rate than the orifices located near the center. The energy transmitted to the surface from the impact force of the water stream from an outer orifice is therefore spread over a larger area than energy from an inner orifice. Utilizing a larger diameter orifice in the outer radial positions increases the total energy transmitted from the outer orifice to compensate for the wider distribution of energy. The total flow rate from the combination of all orifices must be monitored and should be kept below the pump capacity while choosing orifice to insert in each position. The energy distribution from the orifice pattern is further complicated since the rotary path of all the orifices in the nozzle head pass through the center section. All orifices contribute to the stripping in the center of the path while only the outer most orifice contributes to the stripping at the edge of the nozzle. Additional orifices contribute to the stripping from the outer edge toward the center section. With all these parameters to configure and each parameter change affecting the others, a computer model was developed to track and coordinate these parameters. The computer simulation graphically indicates the cumulative affect from each parameter selected. The result from the proper choices in parameters is a well designed, highly efficient stripping system. A poorly chosen set of parameters will cause the nozzle to strip aggressively in some areas

  12. The readout electronics for Plastic Scintillator Detector of DAMPE

    NASA Astrophysics Data System (ADS)

    Kong, Jie; Yang, Haibo; Zhao, Hongyun; Su, Hong; Sun, Zhiyu; Yu, Yuhong; JingZhe, Zhang; Wang, XiaoHui; Liu, Jie; Xiao, Guoqing; Ma, Xinwen

    2016-07-01

    The Dark Matter Particle Explorer (DAMPE) satellite, which launched in December 2015, is designed to find the evidence of the existence of dark matter particles in the universe via the detection of the high-energy electrons and gamma-ray particles produced possibly by the annihilation of dark matter particles. Plastic Scintillator Detector (PSD) is one of major part of the satellite payload, which is comprised of a crossed pair of layers with 41 plastic scintillator-strips, each read out from both ends by the same Hamamatsu R4443MOD2 photo-multiplier tubes (PMTs). In order to extend linear dynamic range of detector, PMTs read out each plastic scintillator-strip separately with two dynode pickoffs. Therefore, the readout electronics system comprises of four Front-end boards to receive the pulses from 328 PMTs and implement charge measurement, which is based on the Application Specific Integrated Circuit (ASIC) chip VA160, 16 bits ADC and FPGA. The electronics of the detector has been designed following stringent requirements on mechanical and thermal stability, power consumption, radiation hardness and double redundancy. Various experiments are designed and implemented to check the performance of the electronics, some excellent results has been achieved.According to experimental results analysis, it is proved that the readout electronics works well.

  13. High-resolution detectors for medical applications and synchrotron radiation research

    NASA Astrophysics Data System (ADS)

    Babichev, E. A.; Baru, S. E.; Grigoriev, D. N.; Groshev, V. R.; Leonov, V. V.; Papushev, P. A.; Porosev, V. V.; Savinov, G. A.; Shayakhmetov, V. R.; Shekhtman, L. I.; Tikhonov, Yu. A.; Ukraintsev, Yu. G.; Yurchenko, Yu. B.

    2011-02-01

    In the present report, we summarize our experience in the development of high-resolution position sensitive gas detectors for medicine and synchrotron radiation experiments at Budker Institute of Nuclear Physics for the last years. We have designed several versions of Multistrip Ionisation Chambers with a channel pitch varying from 0.4 down to 0.1 mm. The high quantum efficiency (>65%) of these detectors allow its application in high quality diagnostic imaging. The detector with 0.1 mm strip pitch and 20 atm pressure of Xe demonstrates the best possible DQE and spatial resolution for gaseous detectors in a wide range of X-ray energies. Additionally, the initial results of feasibility study of the detector for beam position monitoring for Heavy Ion Therapy System are presented too.

  14. Intelligent Detector Design

    SciTech Connect

    Graf, N.A.; /SLAC

    2012-06-11

    As the complexity and resolution of imaging detectors increases, the need for detailed simulation of the experimental setup also becomes more important. Designing the detectors requires efficient tools to simulate the detector response and reconstruct the events. We have developed efficient and flexible tools for detailed physics and detector response simulation as well as event reconstruction and analysis. The primary goal has been to develop a software toolkit and computing infrastructure to allow physicists from universities and labs to quickly and easily conduct physics analyses and contribute to detector research and development. The application harnesses the full power of the Geant4 toolkit without requiring the end user to have any experience with either Geant4 or C++, thereby allowing the user to concentrate on the physics of the detector system.

  15. Ultralow Concentration Mercury Treatment Using Chemical Reduction and Air Stripping

    SciTech Connect

    Looney, B.B.

    2001-05-21

    Field, laboratory and engineering data confirmed the efficacy of chemical reduction and air stripping as an ultralow concentration mercury treatment concept for water containing Hg(II). The simple process consists of dosing the water with low levels of stannous chloride (Sn(II)) to cover the mercury to Hg degrees. This mercury species can easily be removed from the water by air stripping or sparging.

  16. Detection of Bacteria Using Inkjet-Printed Enzymatic Test Strips

    PubMed Central

    2015-01-01

    Low-cost diagnostics for drinking water contamination have the potential to save millions of lives. We report a method that uses inkjet printing to copattern an enzyme–nanoparticle sensor and substrate on a paper-based test strip for rapid detection of bacteria. A colorimetric response is generated on the paper substrate that allows visual detection of contamination without the need for expensive instrumentation. These strips demonstrate a viable nanomanufacturing strategy for low-cost bacterial detection. PMID:25318086

  17. Detection of bacteria using inkjet-printed enzymatic test strips.

    PubMed

    Creran, Brian; Li, Xiaoning; Duncan, Bradley; Kim, Chang Soo; Moyano, Daniel F; Rotello, Vincent M

    2014-11-26

    Low-cost diagnostics for drinking water contamination have the potential to save millions of lives. We report a method that uses inkjet printing to copattern an enzyme-nanoparticle sensor and substrate on a paper-based test strip for rapid detection of bacteria. A colorimetric response is generated on the paper substrate that allows visual detection of contamination without the need for expensive instrumentation. These strips demonstrate a viable nanomanufacturing strategy for low-cost bacterial detection.

  18. 26 CFR 1.1286-2 - Stripped inflation-protected debt instruments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 11 2014-04-01 2014-04-01 false Stripped inflation-protected debt instruments... Losses § 1.1286-2 Stripped inflation-protected debt instruments. Stripped inflation-protected debt instruments. If a Treasury Inflation-Protected Security is stripped under the Department of the...

  19. 26 CFR 1.1286-2 - Stripped inflation-protected debt instruments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 11 2013-04-01 2013-04-01 false Stripped inflation-protected debt instruments... Losses § 1.1286-2 Stripped inflation-protected debt instruments. Stripped inflation-protected debt instruments. If a Treasury Inflation-Protected Security is stripped under the Department of the...

  20. 26 CFR 1.1286-2 - Stripped inflation-indexed debt instruments.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 11 2012-04-01 2012-04-01 false Stripped inflation-indexed debt instruments. 1... Losses § 1.1286-2 Stripped inflation-indexed debt instruments. Stripped inflation-indexed debt instruments. If a Treasury Inflation-Indexed Security is stripped under the Department of the...

  1. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  2. Detectors (4/5)

    ScienceCinema

    None

    2016-07-12

    This lecture will serve as an introduction to particle detectors and detection techniques. In the first lecture, a historic overview of particle detector development will be given. In the second lecture, some basic techniques and concepts for particle detection will be discussed. In the third lecture, the interaction of particles with matter, the basis of particle detection, will be presented. The fourth and fifth lectures will discuss different detector types used for particle tracking, energy measurement and particle identification.

  3. Detectors (5/5)

    ScienceCinema

    None

    2016-07-12

    This lecture will serve as an introduction to particle detectors and detection techniques. In the first lecture, a historic overview of particle detector development will be given. In the second lecture, some basic techniques and concepts for particle detection will be discussed. In the third lecture, the interaction of particles with matter, the basis of particle detection, will be presented. The fourth and fifth lectures will discuss different detector types used for particle tracking, energy measurement and particle identification.

  4. History of infrared detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2012-09-01

    This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ˜3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

  5. The Belle II DEPFET pixel detector

    NASA Astrophysics Data System (ADS)

    Moser, Hans-Günther

    2016-09-01

    The Belle II experiment at KEK (Tsukuba, Japan) will explore heavy flavour physics (B, charm and tau) at the starting of 2018 with unprecedented precision. Charged particles are tracked by a two-layer DEPFET pixel device (PXD), a four-layer silicon strip detector (SVD) and the central drift chamber (CDC). The PXD will consist of two layers at radii of 14 mm and 22 mm with 8 and 12 ladders, respectively. The pixel sizes will vary, between 50 μm×(55-60) μm in the first layer and between 50 μm×(70-85) μm in the second layer, to optimize the charge sharing efficiency. These innermost layers have to cope with high background occupancy, high radiation and must have minimal material to reduce multiple scattering. These challenges are met using the DEPFET technology. Each pixel is a FET integrated on a fully depleted silicon bulk. The signal charge collected in the 'internal gate' modulates the FET current resulting in a first stage amplification and therefore very low noise. This allows very thin sensors (75 μm) reducing the overall material budget of the detector (0.21% X0). Four fold multiplexing of the column parallel readout allows read out a full frame of the pixel matrix in only 20 μs while keeping the power consumption low enough for air cooling. Only the active electronics outside the detector acceptance has to be cooled actively with a two phase CO2 system. Furthermore the DEPFET technology offers the unique feature of an electronic shutter which allows the detector to operate efficiently in the continuous injection mode of superKEKB.

  6. Analysis of mass transfer performance in an air stripping tower

    SciTech Connect

    Chung, T.W.; Lai, C.H.; Wu, H.

    1999-10-01

    The carryover of working solution in a traditional stripping tower is of serious concern in real applications. A U-shaped spray tower to prevent carryover has been designed to study the stripping of water vapor from aqueous desiccant solutions of 91.8 to 95.8 wt% triethylene glycol. In this study, water vapor was removed from the diluted desiccant solution by heating the solution and stripping it with the ambient air. Therefore, the solution was concentrated to a desired concentration. This spray tower was capable of handling air flow rates from 3.2 to 5.13 kg/min and liquid flow rates from 1.6 to 2.76 kg/min. Since the literature data on air stripping towers are limited, studies on the mass transfer coefficient and other mass transfer parameters were carried out in this study. Under the operating conditions, the overall mass transfer coefficient calculated from the experimental data varied from 0.053 to 0.169 mol/m{sup 3}{center{underscore}dot}s. These corresponded to heights of a transfer unit of 2.3 to 0.71 m, respectively. The rates of stripping in this spray tower were typically varied from 2.28 to 12.15 kg H{sub 2}O/h. A correlation of the mass transfer coefficient for the air stripping process was also developed in this study.

  7. Ammonia stripping for enhanced biomethanization of piggery wastewater.

    PubMed

    Zhang, Lei; Lee, Yong-Woo; Jahng, Deokjin

    2012-01-15

    In this study, the effects of ammonia removal by air stripping as a pretreatment on the anaerobic digestion of piggery wastewater were investigated. Ammonia stripping results indicated that ammonia removal was strongly dependent on pH and aeration rate, and the ammonia removal rate followed the pseudo-first-order kinetics. A significant enhancement of biomethanization was observed for wastewaters of which ammonia was air-stripped at pH 9.5 and pH 10.0. The methane productivity increased from 0.23 ± 0.08 L CH(4)/Ld of the control (raw piggery wastewater) to 0.75 ± 0.11 L CH(4)/Ld (ammonia-stripped at pH 9.5) and 0.57 ± 0.04 L CH(4)/Ld (ammonia-stripped at pH 10.0). However, the improvement of methane production from the piggery wastewater pretreated at pH 11.0 was negligible compared to the control, which was thought to be due to the high concentration of sodium ions supplied from sodium hydroxide for pH adjustment. From these results, it was concluded that ammonia removal through air stripping at the alkaline pH could be a viable option for preventing the failure of anaerobic digestion of the raw piggery wastewater. Additionally, it was also found that a high concentration of sodium ion originated from sodium hydroxide for pH adjustment inhibited methane production.

  8. Preliminary Design and Evaluation of Portable Electronic Flight Progress Strips

    NASA Technical Reports Server (NTRS)

    Doble, Nathan A.; Hansman, R. John

    2002-01-01

    There has been growing interest in using electronic alternatives to the paper Flight Progress Strip (FPS) for air traffic control. However, most research has been centered on radar-based control environments, and has not considered the unique operational needs of the airport air traffic control tower. Based on an analysis of the human factors issues for control tower Decision Support Tool (DST) interfaces, a requirement has been identified for an interaction mechanism which replicates the advantages of the paper FPS (e.g., head-up operation, portability) but also enables input and output with DSTs. An approach has been developed which uses a Portable Electronic FPS that has attributes of both a paper strip and an electronic strip. The prototype flight strip system uses Personal Digital Assistants (PDAs) to replace individual paper strips in addition to a central management interface which is displayed on a desktop computer. Each PDA is connected to the management interface via a wireless local area network. The Portable Electronic FPSs replicate the core functionality of paper flight strips and have additional features which provide a heads-up interface to a DST. A departure DST is used as a motivating example. The central management interface is used for aircraft scheduling and sequencing and provides an overview of airport departure operations. This paper will present the design of the Portable Electronic FPS system as well as preliminary evaluation results.

  9. Rigorous LiDAR Strip Adjustment with Triangulated Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Y. J.; Xiong, X. D.; Hu, X. Y.

    2013-10-01

    This paper proposes a POS aided LiDAR strip adjustment method. Firstly, aero-triangulation of the simultaneously obtained aerial images is conducted with a few photogrammetry-specific ground control points. Secondly, LiDAR intensity images are generated from the reflectance signals of laser foot points, and conjugate points are automatically matched between the LiDAR intensity image and the aero-triangulated aerial image. Control points used in LiDAR strip adjustment are derived from these conjugate points. Finally, LiDAR strip adjustment of real data is conducted with the POS aided LiDAR strip adjustment method proposed in this paper, and comparison experiment using three-dimensional similarity transformation method is also performed. The results indicate that the POS aided LiDAR strip adjustment method can significantly correct the planimetric and vertical errors of LiDAR strips. The planimetric correction accuracy is higher than average point distance while the vertical correction accuracy is comparable to that of the result of aero-triangulation. Moreover, the proposed method is obliviously superior to the traditional three-dimensional similarity transformation method.

  10. Development of a thin steel strip casting process. Final report

    SciTech Connect

    Williams, R.S.

    1994-04-01

    This is a comprehensive effort to develop direct strip casting to the point where a pilot scale program for casting carbon steel strip could be initiated. All important aspects of the technology were being investigated, however the program was terminated early due to a change in the business strategy of the primary contractor, Armco Inc. (focus to be directed at specialty steels, not low carbon steel). At termination, the project was on target on all milestones and under budget. Major part was casting of strip at the experiment casting facility. A new caster, capable of producing direct cast strip of up to 12 in. wide in heats of 1000 and 3000 lb, was used. A total of 81 1000-1200 lb heats were cast as well as one test heat of 3000 lb. Most produced strip of from 0.016 to 0.085 in. thick. Process reliability was excellent for short casting times; quality was generally poor from modern hot strip mill standards, but the practices necessary for good surface quality were identified.

  11. Interpretation of the human skin biotribological behaviour after tape stripping

    PubMed Central

    Pailler-Mattei, C.; Guerret-Piécourt, C.; Zahouani, H.; Nicoli, S.

    2011-01-01

    The present study deals with the modification of the human skin biotribological behaviour after tape stripping. The tape-stripping procedure consists in the sequential application and removal of adhesive tapes on the skin surface in order to remove stratum corneum (SC) layers, which electrically charges the skin surface. The skin electric charges generated by tape stripping highly change the skin friction behaviour by increasing the adhesion component of the skin friction coefficient. It has been proposed to rewrite the friction adhesion component as the sum of two terms: the first classical adhesion term depending on the intrinsic shear strength, τ0, and the second term depending on the electric shear strength, τelec. The experimental results allowed to estimate a numerical value of the electric shear strength τelec. Moreover, a plan capacitor model with a dielectric material inside was used to modelize the experimental system. This physical model permitted to evaluate the friction electric force and the electric shear strength values to calculate the skin friction coefficient after the tape stripping. The comparison between the experimental and the theoretical value of the skin friction coefficient after the tape stripping has shown the importance of the electric charges on skin biotribological behaviour. The static electric charges produced by tape stripping on the skin surface are probably able to highly modify the interaction of formulations with the skin surface and their spreading properties. This phenomenon, generally overlooked, should be taken into consideration as it could be involved in alteration of drug absorption. PMID:21227961

  12. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2015-07-28

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  13. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2014-04-22

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  14. Sub-100ps single photoelectron time resolution of a strip silicon photomultiplier for time-resolved optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Shenyuan; Liu, Rongdan; Liang, Kun; Yang, Ru; Han, Dejun

    2015-10-01

    SiPM with epitaxial quenching resistors developed at NDL (Novel Device Laboratory, Beijing) could alleviate the conflict between large dynamic range and high photon detection efficiency (PDE). It can be used as low light level detector in various applications with excellent single photoelectron time resolution (SPTR) and photon counting capacity. SPTR is mainly determined by the intrinsic structure parameters of the SiPM. However, it is also limited to measurement setup, electronics readout and the ultra-small signal of single photoelectron level. In this work, we designed and fabricated a 1 mm × 1 mm strip SiPM array for possible applications in time-resolved optical spectroscopy. The SiPM array consists of sixteen 50 μm × 1 mm strip SiPM elements. Each element contains five hundred 6.5 μm × 6.5 μm micro avalanche photodiode (APD) cells with 10μm pitch. The strip SiPM demonstrated SPTR of 68 ps (FWHM), peak PDE of 17% around 450 nm and high photon number resolving and photon counting capability.

  15. Calibrations for Charged Particle Tracking with the GlueX Detector

    NASA Astrophysics Data System (ADS)

    Staib, Michael; GlueX Collaboration

    2015-10-01

    Two gas detectors comprise the tracking system for the GlueX experiment, the Central Drift Chamber (CDC) and the Forward Drift Chamber (FDC). The CDC is a cylindrical straw-tube detector covering polar angles between 6° and 168°, delivering spatial resolution of ~150 μm. The FDC is a Cathode Strip Chamber consisting of four packages, each with six alternating layers of anode wires and cathode strips. The FDC is designed to track forward-going charged particles with polar angles between 1° and 20° with a spatial resolution of ~200 μm. Both tracking detectors record timing information and energy loss measurements useful for particle identification. During Fall 2014 and Spring 2015, the first photon beam was delivered on target for commissioning of the GlueX detector in Hall-D at Jefferson Lab. These data are currently being used in a large effort to calibrate the individual detector subsystems to achieve design performance. Methods and results for calibrations of each of the tracking detectors are presented. Techniques for alignment of the tracking system using a combination of cosmic rays and beam data is discussed. Finally, some early results of physics measurements including charged final-state particles are presented. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract DE-AC05-06OR23177.

  16. A thin superconducting solenoid magnet for the WASA detector

    SciTech Connect

    Yamaoka, H.; Yamamoto, A.; Makida, Y.

    1996-07-01

    A thin superconducting solenoid magnet has been developed for the WASA detector. The magnet consists of a pair of coils and it provides a central magnetic field of 1.3T at 900A in a cylindrical volume of 0.65m in diameter and 0.555m in length. The features of this solenoid magnet are the excellent transparency for particles, conducting cooling, thermo siphon method, applying aluminum strip for conduction cooling and corrugated outer wall. Recently, the performance test was successfully carried out. In this report, magnet design and fabrication of the WASA superconducting solenoid magnet will be presented and the test results will be described.

  17. The Belle II Silicon Vertex Detector readout chain

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Bergauer, T.; Frankenberger, A.; Gfall, I.; Irmler, C.; Valentan, M.

    2013-02-01

    The Silicon Vertex Detector of the future Belle II experiment at KEK (Japan) will consist of 6'' double-sided strip sensors. Those are read out by APV25 chips (originally developed for CMS) which are powered by DC/DC converters with low voltages tied to the sensor bias potentials. The signals are transmitted by cable links of about 12 meters. In the back-end, the data are digitized and processed by FADC modules with powerful FPGAs, which are also capable of precisely measuring the hit time of each particle in order to discard off-time background.

  18. Characterization of a high-purity germanium detector for small-animal SPECT.

    PubMed

    Johnson, Lindsay C; Campbell, Desmond L; Hull, Ethan L; Peterson, Todd E

    2011-09-21

    We present an initial evaluation of a mechanically cooled, high-purity germanium double-sided strip detector as a potential gamma camera for small-animal SPECT. It is 90 mm in diameter and 10 mm thick with two sets of 16 orthogonal strips that have a 4.5 mm width with a 5 mm pitch. We found an energy resolution of 0.96% at 140 keV, an intrinsic efficiency of 43.3% at 122 keV and a FWHM spatial resolution of approximately 1.5 mm. We demonstrated depth-of-interaction estimation capability through comparison of pinhole acquisitions with a point source on and off axes. Finally, a flood-corrected flood image exhibited a strip-level uniformity of less than 1%. This high-purity germanium offers many desirable properties for small-animal SPECT.

  19. Characterization of a high-purity germanium detector for small-animal SPECT

    PubMed Central

    Johnson, Lindsay C; Campbell, Desmond L; Hull, Ethan L; Peterson, Todd E

    2011-01-01

    We present an initial evaluation of a mechanically-cooled, high-purity germanium double-sided strip detector as a potential gamma camera for small-animal SPECT. It is 90 mm in diameter and 10 mm thick with two sets of 16 orthogonal strips that have a 4.5 mm width with a 5 mm pitch. We found an energy resolution of 0.96% at 140 keV, an intrinsic efficiency of 43.3% at 122 keV and a FWHM spatial resolution of approximately 1.5 mm. We demonstrated depth-of-interaction estimation capability through comparison of pinhole acquisitions with a point source on and off axis. Finally, a flood-corrected-flood image exhibited a strip-level uniformity of less than 1%. This high-purity germanium offers many desirable properties for small-animal SPECT. PMID:21852723

  20. SCINTILLATION EXPOSURE RATE DETECTOR

    DOEpatents

    Spears, W.G.

    1960-11-01

    A radiation detector for gamma and x rays is described. The detector comprises a scintillation crystal disposed between a tantalum shield and the input of a photomultiplier tube, the crystal and the shield cooperating so that their combined response to a given quantity of radiation at various energy levels is substantially constant.

  1. Smoke Detectors and Legislation.

    ERIC Educational Resources Information Center

    National Fire Prevention and Control Administration (DOC), Washington, DC.

    This manual, one of a series for use in public education, provides an in-depth review of the current status of state and local smoke detector legislation. First, for the community considering a smoke detector law or ordinance, six decision points are discussed: which residential occupancy sub-classes will be affected; what the time factors are for…

  2. Alkali ionization detector

    DOEpatents

    Hrizo, John; Bauerle, James E.; Witkowski, Robert E.

    1982-01-01

    A calibration filament containing a sodium-bearing compound is included in combination with the sensing filament and ion collector plate of a sodium ionization detector to permit periodic generation of sodium atoms for the in-situ calibration of the detector.

  3. The CLAS Cherenkov detector

    SciTech Connect

    G. Adams; V. Burkert; R. Carl; T. Carstens; V. Frolov; L. Houghtlin; G. Jacobs; M. Kossov; M. Klusman; B. Kross; M. Onuk; J. Napolitano; J. W. Price; C. Riggs; Y. Sharabian; A. Stavinsky; L. C. Smith; W. A. Stephens; P. Stoler; W. Tuzel; K. Ullrich; A. Vlassovc; A. Weisenberger; M. Witkowski; B. Wojtekhowski; P. F. Yergin; C. Zorn

    2001-06-01

    The design, construction, and performance of the CLAS Cerenkov threshold gas detector at Jefferson Lab is described. The detector consists of 216 optical modules. Each module consists of 3 adjustable mirrors, of lightweight composite construction, a Winston light collecting cone, a 5-inch photomultiplier tube, and specially designed magnetic shielding.

  4. Future particle detector systems

    NASA Astrophysics Data System (ADS)

    Clark, Allan G.

    2000-09-01

    Starting with a short summary of the major new experimental physics programs, we attempt to motivate the reasons why existing general-purpose detectors at Hadron Colliders are what they are, why they are being upgraded, and why new facilities are being constructed. The CDF and ATLAS detectors are used to illustrate these motivations. Selected physics results from the CDF experiment provide evidence for limitations on the detector performance, and new physics opportunities motivate both machine and detector upgrades. This is discussed with emphasis on the improved physics reach of the CDF experiment at the Fermilab Tevatron (√s =2 TeV). From 2005, the Large Hadron Collider (LHC) at CERN will become operational at a collision energy of √s =14 TeV, seven times larger than at the Tevatron Collider. To exploit the physics capability of the LHC, several large detectors are being constructed. The detectors are significantly more complex than those at the Tevatron Collider because of physics and operational constraints. The detector design and technology of the aspects of the large general-purpose detector ATLAS is described.

  5. Arsenic activation neutron detector

    DOEpatents

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  6. Arsenic activation neutron detector

    DOEpatents

    Jacobs, Eddy L.

    1981-01-01

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5 Mev neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  7. Scanning Seismic Intrusion Detector

    NASA Technical Reports Server (NTRS)

    Lee, R. D.

    1982-01-01

    Scanning seismic intrusion detector employs array of automatically or manually scanned sensors to determine approximate location of intruder. Automatic-scanning feature enables one operator to tend system of many sensors. Typical sensors used with new system are moving-coil seismic pickups. Detector finds uses in industrial security systems.

  8. Synthesizing 3D Surfaces from Parameterized Strip Charts

    NASA Technical Reports Server (NTRS)

    Robinson, Peter I.; Gomez, Julian; Morehouse, Michael; Gawdiak, Yuri

    2004-01-01

    We believe 3D information visualization has the power to unlock new levels of productivity in the monitoring and control of complex processes. Our goal is to provide visual methods to allow for rapid human insight into systems consisting of thousands to millions of parameters. We explore this hypothesis in two complex domains: NASA program management and NASA International Space Station (ISS) spacecraft computer operations. We seek to extend a common form of visualization called the strip chart from 2D to 3D. A strip chart can display the time series progression of a parameter and allows for trends and events to be identified. Strip charts can be overlayed when multiple parameters need to visualized in order to correlate their events. When many parameters are involved, the direct overlaying of strip charts can become confusing and may not fully utilize the graphing area to convey the relationships between the parameters. We provide a solution to this problem by generating 3D surfaces from parameterized strip charts. The 3D surface utilizes significantly more screen area to illustrate the differences in the parameters and the overlayed strip charts, and it can rapidly be scanned by humans to gain insight. The selection of the third dimension must be a parallel or parameterized homogenous resource in the target domain, defined using a finite, ordered, enumerated type, and not a heterogeneous type. We demonstrate our concepts with examples from the NASA program management domain (assessing the state of many plans) and the computers of the ISS (assessing the state of many computers). We identify 2D strip charts in each domain and show how to construct the corresponding 3D surfaces. The user can navigate the surface, zooming in on regions of interest, setting a mark and drilling down to source documents from which the data points have been derived. We close by discussing design issues, related work, and implementation challenges.

  9. A continuous flow evaluation of the galvanic stripping process

    SciTech Connect

    Barrera-Godinez, J.A.; O`Keefe, T.J.

    1999-09-01

    The concept of galvanically stripping cations such as Fe{sup 3+}, Cu{sup 2+}, Pb{sup 2+}, and Au{sup 3+} from organic solvents using solid metal reductants has been demonstrated on a batch test basis in a number of previous studies. In this research the first evaluation of a continuous flow system for the process was made, with Fe{sup 3+} removal from D2EHPA being the primary objective. The effect of operation type (separate or simultaneous stripping), the iron concentration in the organic feed, the organic flow rate, the aqueous-to-organic volume ratio (A/O), the metal reductant (pure zinc vs lead-zinc alloy), the reductant surface area and acidity of the stripping phase on the iron and zinc removal percentages, and the process rate and stoichiometry were evaluated by using continuous flow mixed reactors. The steady-state condition was reached in all the tests after about 40 minutes. In particular, the rate of iron removal was found to be greater for simultaneous than for separate galvanic stripping. A longer organic residence time produced a slightly lower rate, but increasing the aqueous-to-organic ratio augmented the overall rate. The pH of the aqueous phase controlled the iron and zinc stripping percentages, and increasing the reductant surface area increased the iron removal percent. In general, the results agreed with previous batch-type studies on galvanic stripping, and the data indicated that the galvanic stripping process rate and reactor behavior can be assessed by using mechanically agitated continuous flow mixed reactors.

  10. Cardiovascular, diabetes, and cancer strips: evidences, mechanisms, and classifications

    PubMed Central

    Wu, Qing-Hua; Hu, Da-Yi

    2014-01-01

    Objectives To report and name firstly that there are cardiovascular disease (CVD), diabetes mellitus (DM) and cancers (CDC) strips; and disclose their mechanisms, classifications, and clinical significances. Study design Narrative and systematic review study and interpretive analysis. Methods Data sources and study selection: to collect and present related evidences on CDC strips from evidence-based, open-access, both Chinese- and English-language literatures in recent 10 years on clinical trials from PubMed according to keywords “CVD, DM and cancers” as well as authors’ extensive clinical experience with the treatment of more than fifty thousands of patients with CVD, diabetes and cancers over the past decades, and analyze their related mechanisms and categories which based on authors’ previous works. Data extraction: data were mainly extracted from 48 articles which are listed in the reference section of this review. Qualitative, quantitative and mixed data were included, narratively and systematically reviewed. Results With several conceptual and technical breakthrough, authors present related evidences on CDC strips, these are, CVD and DM, DM and cancers, cancers and CVD linked, respectively; And “Bad SEED” +/– “bad soil” theory or doctrine may explain this phenomenon due to “internal environmental injure, abnormal or unbalance” in human body resulting from the role of risk factors (RFs) related multi-pathways and multi-targets, which including organ & tissue (e.g., vascular-specific), cell and gene-based mechanisms. Their classifications include main strips/type B, and Branches/type A as showed by tables and figures in this article. Conclusions There are CDC strips and related mechanisms and classifications. CDC strips may help us to understand, prevent, and control related common non-communicable diseases (NCDs) as well as these high risk strips. PMID:25276377

  11. Nanomechanical resonance detector

    DOEpatents

    Grossman, Jeffrey C; Zettl, Alexander K

    2013-10-29

    An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.

  12. Advanced far infrared detectors

    SciTech Connect

    Haller, E.E.

    1993-05-01

    Recent advances in photoconductive and bolometric semiconductor detectors for wavelength 1 mm > {lambda} > 50 {mu}m are reviewed. Progress in detector performance in this photon energy range has been stimulated by new and stringent requirements for ground based, high altitude and space-borne telescopes for astronomical and astrophysical observations. The paper consists of chapters dealing with the various types of detectors: Be and Ga doped Ge photoconductors, stressed Ge:Ga devices and neutron transmutation doped Ge thermistors. Advances in the understanding of basic detector physics and the introduction of modern semiconductor device technology have led to predictable and reliable fabrication techniques. Integration of detectors into functional arrays has become feasible and is vigorously pursued by groups worldwide.

  13. Development of a segmented n-type germanium detector, and its application to astronomical gamma-ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cline, T. L.; Teegarden, B. J.; Tueller, J.; Leventhal, M.; Maccallum, C. J.; Ryge, P.

    1983-01-01

    Extensive calculations and simulations have shown that the instrumental background in a coaxial germanium photon detector flown at balloon altitudes or in space, can be substantially reduced by segmenting the outer contact. The contact is divided into horizontal strips around the side of the detector, giving it many characteristics similar to that of a stack of planar detectors. By choosing different segment coincidence requirements in different energy ranges, one can obtain a factor of approx. 2 increase in sensitivity to spectral lines between 40 keV and 1 MeV, compared with an unsegmented detector. The reverse electrode configuration (using n-type germanium), with the p contact outside, is preferred for this application due to its thin dead layer and resistance to radiation damage in space. A small two segment n type detector is being developed to serve as a prototype for larger multisegment devices. Results of this development effort and of detector tests are presented.

  14. [Calorimeter based detectors for high energy hadron colliders]. [Progress report

    SciTech Connect

    Not Available

    1992-08-04

    This document provides a progress report on research that has been conducted under DOE Grant DEFG0292ER40697 for the past year, and describes proposed work for the second year of this 8 year grant starting November 15, 1992. Personnel supported by the contract include 4 faculty, 1 research faculty, 4 postdocs, and 9 graduate students. The work under this grant has in the past been directed in two complementary directions -- DO at Fermilab, and the second SSC detector GEM. A major effort has been towards the construction and commissioning of the new Fermilab Collider detector DO, including design, construction, testing, the commissioning of the central tracking and the central calorimeters. The first DO run is now underway, with data taking and analysis of the first events. Trigger algorithms, data acquisition, calibration of tracking and calorimetry, data scanning and analysis, and planning for future upgrades of the DO detector with the advent of the FNAL Main Injector are all involved. The other effort supported by this grant has been towards the design of GEM, a large and general-purpose SSC detector with special emphasis on accurate muon measurement over a large solid angle. This effort will culminate this year in the presentation to the SSC laboratory of the GEM Technical Design Report. Contributions are being made to the detector design, coordination, and physics simulation studies with special emphasis on muon final states. Collaboration with the RD5 group at CERN to study muon punch through and to test cathode strip chamber prototypes was begun.

  15. An improved design for the SSULI EUV/FUV detectors

    NASA Astrophysics Data System (ADS)

    Chou, Hsiung F.; Lee, Chang Y.; Thonnard, Stefan E.

    1998-11-01

    The Naval Research Laboratory has built five UV spectrographs for the Air Force Defense Meteorological Satellite Program. These sensors, known as the Special Sensor UV Limb Imager, will provide limb observation of airglow emissions from 75 to 750 km over the spectral range of 800 to 1700 angstroms. Each spectrograph employs an imaging detector with a micro-channel plate intensifier and a wedge and strip anode. The detectors are windowless and require a hermetically sealed door mechanisms to prevent water vapor from destroying the Cesium Iodide photocathode. Although the first of these sensors will not be launched until 2001, they are being maintained for flight readiness at NRL. An ongoing effort at NRL is to determine the senor deficiencies and investigate possible improvements. Since the performance of the spectrograph is strongly dependent on the quality of the detector, NRL has identified the refurbishment of the detector as the highest priority to improve the overall capabilities of the sensor. The goals of the refurbishment was to improve the detector imaging quality, counting efficiency, resolution, background uniformity, long term vacuum storage, and serviceability.

  16. Method of making steel strapping and strip

    SciTech Connect

    Robert D. Reilly

    2000-02-16

    The technical progress obtained for this time frame consisted of the awarding of two contracts for determination of metallurgical parameters for heat treatment of strapping and strip which are unavailable from current technology and/or published data in this field. The two contractors were Bricmont, Inc. and the Department of Materials Science and Engineering at the Technological Institute of Northwestern University, Evanston, IL. Phase 1 of the two stage contract with Bricmont, Inc. which provided a computer analysis of the cooling rates of a typical range of thickness' of strapping was completed. This study was developed for the purpose of determining the time parameters for quenching low carbon steels to a martensitic microstructure within the time frame of the design of the proposed process. It also provides design criteria for cooling to ambient for the total process. This data is required for Phase 2 of the Bricmont proposal which completes the design and specifications of the total heat treating and cooling system for the process. This becomes the basis for developing the cost and space requirements for this component of the production line. The authors do not intend to award Phase 2 until the work done at Northwestern University discussed hereafter is completed. On or about May 1, 1999 a contract for a project entitled ``Effects of Steel Composition and Quench Rate on Microstructure and Mechanical Properties of Strapping'' to be performed at the Department of Materials Science and Engineering was awarded. The delay in initiating this project was due to the legal interpretation and final agreement of the intellectual provisions of the award by the author's attorneys, Northwestern's attorneys and the legal representative in the Chicago office of the DOE. The work to date includes rapid quenching of a number of different steel compositions and microstructure on an existing drop quench test apparatus. It was initially assumed that this procedure would simulate

  17. Full 3D simulations of BNL one-sided silicon 3D detectors and comparisons with other types of 3D detectors

    NASA Astrophysics Data System (ADS)

    Grönlund, Tanja; Li, Zheng; Carini, Gabriella; Li, Michael

    2008-02-01

    Full three-dimensional (3D) simulations have been carried out on the BNL one-sided single-type column and dual-type column 3D Si detectors (p-type substrate). Due to the facts that columns are not etched all the way through, all electrodes are on the front side, and the backside is neither supported nor processed at all, the BNL one-sided 3D detectors are true one-sided detectors. Simulations show that the volume under the columns, where it is supposed to be dead space (about 10%), can be depleted at high biases with some modest electric field, leading to the possibility of recovering some sensitivity from this region. This region can also provide some sensitivity to particle tracks directly through the columns. The dual-type column detectors are the best in radiation hardness due to their low depletion voltages and short drift distances. Single-type column detectors are more radiation hard than the planar detectors due to their lower depletion voltages. Single-type column detectors are easier to process than dual-type column detectors, but have a more complicated, non-uniform electric field profile. The BNL one-sided 3D detectors were compared to various 3D detector structures developed by other institutes. The field profiles for all types of dual-type column 3D detectors are similar with just some minor differences on both surfaces (front and back). The BNL single-type column one-sided 3D detectors have some major differences from the Trento ones: (1) the high electric field is on the sensing electrode side (pixel or strip); and (2) it can develop some high electric field along the junction column as the bias voltage increases.

  18. Overview on Measured Properties of VTT's Edgeless Detectors and their use in High Energy Physics

    NASA Astrophysics Data System (ADS)

    Kalliopuska, Juha; Jakubek, Jan; Tlustos, Lukas

    During the past five years VTT has actively developed fabrication processes for the state-of-the-art edgeless strip and pixel detectors with a negligible dead region at the edges. The article summarizes the measured properties of VTT's edgeless detectors and gives references to the relevant journal papers. The measured properties include leakage current, breakdown voltage and capacitance dependences on the detector thickness and polarity. Earlier X-ray tube and radiation source characterization results are revised and new ones are introduced to reveal a pixel response as a function of bias voltage and pixel location in the detector's pixel matrix. Part of the article concentrates on alpha particle characterization of the detectors, especially to the pixel response properties at the edge regions of the detector. The article shows that the edgeless detectors are not losing charge collections efficiency at the edge and the spectroscopic response is comparable to the inner regions of the detector. In addition, the distortion of the electric field at the edge of the detector is almost independent on the applied reverse bias voltage.

  19. Stripped Elliptical Galaxies as Probes of ICM Physics: I. Tails, Wakes, and Flow Patterns in and Around Stripped Ellipticals

    NASA Astrophysics Data System (ADS)

    Roediger, E.; Kraft, R. P.; Nulsen, P. E. J.; Forman, W. R.; Machacek, M.; Randall, S.; Jones, C.; Churazov, E.; Kokotanekova, R.

    2015-06-01

    Elliptical cluster galaxies are progressively stripped of their atmospheres due to their motion through the intracluster medium (ICM). Deep X-ray observations reveal the fine-structure of the galaxy’s remnant atmosphere and its gas tail and wake. This fine-structure depends on dynamic conditions (galaxy potential, initial gas contents, orbit through the host cluster), orbital stage (early infall, pre-/post-pericenter passage), and ICM plasma properties (thermal conductivity, viscosity, magnetic field structure). We aim to disentangle dynamic and plasma effects in order to use stripped ellipticals as probes of ICM plasma properties. This first paper of a series investigates the hydrodynamics of progressive gas stripping by means of inviscid hydrodynamical simulations. We distinguish a long-lasting initial relaxation phase and a quasi-steady stripping phase. During quasi-steady stripping, the ICM flow around the remnant atmosphere resembles the flow around solid bodies, including a “deadwater” region in the near wake. Gas is stripped from the remnant atmosphere predominantly at its sides via Kelvin-Helmholtz instabilities. The downstream atmosphere is largely shielded from the ICM wind and thus shaped into a tail. Observationally, both this “remnant tail” and the stripped gas in the wake can appear as a “tail”, but only in the wake can galactic gas mix with the ambient ICM. While the qualitative results are generic, the simulations presented here are tailored to the Virgo elliptical galaxy M89 (NGC 4552) for the most direct comparison to observations. Papers II and III of this series describe the effect of viscosity and compare to Chandra and XMM-Newton observations, respectively.

  20. STRIPPED ELLIPTICAL GALAXIES AS PROBES OF ICM PHYSICS. I. TAILS, WAKES, AND FLOW PATTERNS IN AND AROUND STRIPPED ELLIPTICALS

    SciTech Connect

    Roediger, E.; Kraft, R. P.; Nulsen, P. E. J.; Forman, W. R.; Machacek, M.; Randall, S.; Jones, C.; Kokotanekova, R.

    2015-06-10

    Elliptical cluster galaxies are progressively stripped of their atmospheres due to their motion through the intracluster medium (ICM). Deep X-ray observations reveal the fine-structure of the galaxy’s remnant atmosphere and its gas tail and wake. This fine-structure depends on dynamic conditions (galaxy potential, initial gas contents, orbit through the host cluster), orbital stage (early infall, pre-/post-pericenter passage), and ICM plasma properties (thermal conductivity, viscosity, magnetic field structure). We aim to disentangle dynamic and plasma effects in order to use stripped ellipticals as probes of ICM plasma properties. This first paper of a series investigates the hydrodynamics of progressive gas stripping by means of inviscid hydrodynamical simulations. We distinguish a long-lasting initial relaxation phase and a quasi-steady stripping phase. During quasi-steady stripping, the ICM flow around the remnant atmosphere resembles the flow around solid bodies, including a “deadwater” region in the near wake. Gas is stripped from the remnant atmosphere predominantly at its sides via Kelvin–Helmholtz instabilities. The downstream atmosphere is largely shielded from the ICM wind and thus shaped into a tail. Observationally, both this “remnant tail” and the stripped gas in the wake can appear as a “tail”, but only in the wake can galactic gas mix with the ambient ICM. While the qualitative results are generic, the simulations presented here are tailored to the Virgo elliptical galaxy M89 (NGC 4552) for the most direct comparison to observations. Papers II and III of this series describe the effect of viscosity and compare to Chandra and XMM-Newton observations, respectively.