Sample records for md computer simulation

  1. Symplectic molecular dynamics simulations on specially designed parallel computers.

    PubMed

    Borstnik, Urban; Janezic, Dusanka

    2005-01-01

    We have developed a computer program for molecular dynamics (MD) simulation that implements the Split Integration Symplectic Method (SISM) and is designed to run on specialized parallel computers. The MD integration is performed by the SISM, which analytically treats high-frequency vibrational motion and thus enables the use of longer simulation time steps. The low-frequency motion is treated numerically on specially designed parallel computers, which decreases the computational time of each simulation time step. The combination of these approaches means that less time is required and fewer steps are needed and so enables fast MD simulations. We study the computational performance of MD simulation of molecular systems on specialized computers and provide a comparison to standard personal computers. The combination of the SISM with two specialized parallel computers is an effective way to increase the speed of MD simulations up to 16-fold over a single PC processor.

  2. Molecular dynamics simulations and applications in computational toxicology and nanotoxicology.

    PubMed

    Selvaraj, Chandrabose; Sakkiah, Sugunadevi; Tong, Weida; Hong, Huixiao

    2018-02-01

    Nanotoxicology studies toxicity of nanomaterials and has been widely applied in biomedical researches to explore toxicity of various biological systems. Investigating biological systems through in vivo and in vitro methods is expensive and time taking. Therefore, computational toxicology, a multi-discipline field that utilizes computational power and algorithms to examine toxicology of biological systems, has gained attractions to scientists. Molecular dynamics (MD) simulations of biomolecules such as proteins and DNA are popular for understanding of interactions between biological systems and chemicals in computational toxicology. In this paper, we review MD simulation methods, protocol for running MD simulations and their applications in studies of toxicity and nanotechnology. We also briefly summarize some popular software tools for execution of MD simulations. Published by Elsevier Ltd.

  3. A Highly Parallelized Special-Purpose Computer for Many-Body Simulations with an Arbitrary Central Force: MD-GRAPE

    NASA Astrophysics Data System (ADS)

    Fukushige, Toshiyuki; Taiji, Makoto; Makino, Junichiro; Ebisuzaki, Toshikazu; Sugimoto, Daiichiro

    1996-09-01

    We have developed a parallel, pipelined special-purpose computer for N-body simulations, MD-GRAPE (for "GRAvity PipE"). In gravitational N- body simulations, almost all computing time is spent on the calculation of interactions between particles. GRAPE is specialized hardware to calculate these interactions. It is used with a general-purpose front-end computer that performs all calculations other than the force calculation. MD-GRAPE is the first parallel GRAPE that can calculate an arbitrary central force. A force different from a pure 1/r potential is necessary for N-body simulations with periodic boundary conditions using the Ewald or particle-particle/particle-mesh (P^3^M) method. MD-GRAPE accelerates the calculation of particle-particle force for these algorithms. An MD- GRAPE board has four MD chips and its peak performance is 4.2 GFLOPS. On an MD-GRAPE board, a cosmological N-body simulation takes 6O0(N/10^6^)^3/2^ s per step for the Ewald method, where N is the number of particles, and would take 24O(N/10^6^) s per step for the P^3^M method, in a uniform distribution of particles.

  4. Enhanced conformational sampling of nucleic acids by a new Hamiltonian replica exchange molecular dynamics approach.

    PubMed

    Curuksu, Jeremy; Zacharias, Martin

    2009-03-14

    Although molecular dynamics (MD) simulations have been applied frequently to study flexible molecules, the sampling of conformational states separated by barriers is limited due to currently possible simulation time scales. Replica-exchange (Rex)MD simulations that allow for exchanges between simulations performed at different temperatures (T-RexMD) can achieve improved conformational sampling. However, in the case of T-RexMD the computational demand grows rapidly with system size. A Hamiltonian RexMD method that specifically enhances coupled dihedral angle transitions has been developed. The method employs added biasing potentials as replica parameters that destabilize available dihedral substates and was applied to study coupled dihedral transitions in nucleic acid molecules. The biasing potentials can be either fixed at the beginning of the simulation or optimized during an equilibration phase. The method was extensively tested and compared to conventional MD simulations and T-RexMD simulations on an adenine dinucleotide system and on a DNA abasic site. The biasing potential RexMD method showed improved sampling of conformational substates compared to conventional MD simulations similar to T-RexMD simulations but at a fraction of the computational demand. It is well suited to study systematically the fine structure and dynamics of large nucleic acids under realistic conditions including explicit solvent and ions and can be easily extended to other types of molecules.

  5. Algorithms of GPU-enabled reactive force field (ReaxFF) molecular dynamics.

    PubMed

    Zheng, Mo; Li, Xiaoxia; Guo, Li

    2013-04-01

    Reactive force field (ReaxFF), a recent and novel bond order potential, allows for reactive molecular dynamics (ReaxFF MD) simulations for modeling larger and more complex molecular systems involving chemical reactions when compared with computation intensive quantum mechanical methods. However, ReaxFF MD can be approximately 10-50 times slower than classical MD due to its explicit modeling of bond forming and breaking, the dynamic charge equilibration at each time-step, and its one order smaller time-step than the classical MD, all of which pose significant computational challenges in simulation capability to reach spatio-temporal scales of nanometers and nanoseconds. The very recent advances of graphics processing unit (GPU) provide not only highly favorable performance for GPU enabled MD programs compared with CPU implementations but also an opportunity to manage with the computing power and memory demanding nature imposed on computer hardware by ReaxFF MD. In this paper, we present the algorithms of GMD-Reax, the first GPU enabled ReaxFF MD program with significantly improved performance surpassing CPU implementations on desktop workstations. The performance of GMD-Reax has been benchmarked on a PC equipped with a NVIDIA C2050 GPU for coal pyrolysis simulation systems with atoms ranging from 1378 to 27,283. GMD-Reax achieved speedups as high as 12 times faster than Duin et al.'s FORTRAN codes in Lammps on 8 CPU cores and 6 times faster than the Lammps' C codes based on PuReMD in terms of the simulation time per time-step averaged over 100 steps. GMD-Reax could be used as a new and efficient computational tool for exploiting very complex molecular reactions via ReaxFF MD simulation on desktop workstations. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Toward ab initio molecular dynamics modeling for sum-frequency generation spectra; an efficient algorithm based on surface-specific velocity-velocity correlation function.

    PubMed

    Ohto, Tatsuhiko; Usui, Kota; Hasegawa, Taisuke; Bonn, Mischa; Nagata, Yuki

    2015-09-28

    Interfacial water structures have been studied intensively by probing the O-H stretch mode of water molecules using sum-frequency generation (SFG) spectroscopy. This surface-specific technique is finding increasingly widespread use, and accordingly, computational approaches to calculate SFG spectra using molecular dynamics (MD) trajectories of interfacial water molecules have been developed and employed to correlate specific spectral signatures with distinct interfacial water structures. Such simulations typically require relatively long (several nanoseconds) MD trajectories to allow reliable calculation of the SFG response functions through the dipole moment-polarizability time correlation function. These long trajectories limit the use of computationally expensive MD techniques such as ab initio MD and centroid MD simulations. Here, we present an efficient algorithm determining the SFG response from the surface-specific velocity-velocity correlation function (ssVVCF). This ssVVCF formalism allows us to calculate SFG spectra using a MD trajectory of only ∼100 ps, resulting in the substantial reduction of the computational costs, by almost an order of magnitude. We demonstrate that the O-H stretch SFG spectra at the water-air interface calculated by using the ssVVCF formalism well reproduce those calculated by using the dipole moment-polarizability time correlation function. Furthermore, we applied this ssVVCF technique for computing the SFG spectra from the ab initio MD trajectories with various density functionals. We report that the SFG responses computed from both ab initio MD simulations and MD simulations with an ab initio based force field model do not show a positive feature in its imaginary component at 3100 cm(-1).

  7. Molecular dynamics simulations through GPU video games technologies

    PubMed Central

    Loukatou, Styliani; Papageorgiou, Louis; Fakourelis, Paraskevas; Filntisi, Arianna; Polychronidou, Eleftheria; Bassis, Ioannis; Megalooikonomou, Vasileios; Makałowski, Wojciech; Vlachakis, Dimitrios; Kossida, Sophia

    2016-01-01

    Bioinformatics is the scientific field that focuses on the application of computer technology to the management of biological information. Over the years, bioinformatics applications have been used to store, process and integrate biological and genetic information, using a wide range of methodologies. One of the most de novo techniques used to understand the physical movements of atoms and molecules is molecular dynamics (MD). MD is an in silico method to simulate the physical motions of atoms and molecules under certain conditions. This has become a state strategic technique and now plays a key role in many areas of exact sciences, such as chemistry, biology, physics and medicine. Due to their complexity, MD calculations could require enormous amounts of computer memory and time and therefore their execution has been a big problem. Despite the huge computational cost, molecular dynamics have been implemented using traditional computers with a central memory unit (CPU). A graphics processing unit (GPU) computing technology was first designed with the goal to improve video games, by rapidly creating and displaying images in a frame buffer such as screens. The hybrid GPU-CPU implementation, combined with parallel computing is a novel technology to perform a wide range of calculations. GPUs have been proposed and used to accelerate many scientific computations including MD simulations. Herein, we describe the new methodologies developed initially as video games and how they are now applied in MD simulations. PMID:27525251

  8. A high performance system for molecular dynamics simulation of biomolecules using a special-purpose computer.

    PubMed

    Komeiji, Y; Yokoyama, H; Uebayasi, M; Taiji, M; Fukushige, T; Sugimoto, D; Takata, R; Shimizu, A; Itsukashi, K

    1996-01-01

    GRAPE (GRavity PipE) processors are special purpose computers for simulation of classical particles. The performance of MD-GRAPE, one of the GRAPEs developed for molecular dynamics, was investigated. The effective speed of MD-GRAPE was equivalent to approximately 6 Gflops. The precision of MD-GRAPE was good judging from the acceptable fluctuation of the total energy. Then a software named PEACH (Program for Energetic Analysis of bioCHemical molecules) was developed for molecular dynamics of biomolecules in combination with MD-GRAPE. Molecular dynamics simulation was performed for several protein-solvent systems with different sizes. Simulation of the largest system investigated (27,000 atoms) took only 5 sec/step. Thus, the PEACH-GRAPE system is expected to be useful in accurate and reliable simulation of large biomolecules.

  9. Workflow Management Systems for Molecular Dynamics on Leadership Computers

    NASA Astrophysics Data System (ADS)

    Wells, Jack; Panitkin, Sergey; Oleynik, Danila; Jha, Shantenu

    Molecular Dynamics (MD) simulations play an important role in a range of disciplines from Material Science to Biophysical systems and account for a large fraction of cycles consumed on computing resources. Increasingly science problems require the successful execution of ''many'' MD simulations as opposed to a single MD simulation. There is a need to provide scalable and flexible approaches to the execution of the workload. We present preliminary results on the Titan computer at the Oak Ridge Leadership Computing Facility that demonstrate a general capability to manage workload execution agnostic of a specific MD simulation kernel or execution pattern, and in a manner that integrates disparate grid-based and supercomputing resources. Our results build upon our extensive experience of distributed workload management in the high-energy physics ATLAS project using PanDA (Production and Distributed Analysis System), coupled with recent conceptual advances in our understanding of workload management on heterogeneous resources. We will discuss how we will generalize these initial capabilities towards a more production level service on DOE leadership resources. This research is sponsored by US DOE/ASCR and used resources of the OLCF computing facility.

  10. Constant-pH Molecular Dynamics Simulations for Large Biomolecular Systems

    DOE PAGES

    Radak, Brian K.; Chipot, Christophe; Suh, Donghyuk; ...

    2017-11-07

    We report that an increasingly important endeavor is to develop computational strategies that enable molecular dynamics (MD) simulations of biomolecular systems with spontaneous changes in protonation states under conditions of constant pH. The present work describes our efforts to implement the powerful constant-pH MD simulation method, based on a hybrid nonequilibrium MD/Monte Carlo (neMD/MC) technique within the highly scalable program NAMD. The constant-pH hybrid neMD/MC method has several appealing features; it samples the correct semigrand canonical ensemble rigorously, the computational cost increases linearly with the number of titratable sites, and it is applicable to explicit solvent simulations. The present implementationmore » of the constant-pH hybrid neMD/MC in NAMD is designed to handle a wide range of biomolecular systems with no constraints on the choice of force field. Furthermore, the sampling efficiency can be adaptively improved on-the-fly by adjusting algorithmic parameters during the simulation. Finally, illustrative examples emphasizing medium- and large-scale applications on next-generation supercomputing architectures are provided.« less

  11. Constant-pH Molecular Dynamics Simulations for Large Biomolecular Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radak, Brian K.; Chipot, Christophe; Suh, Donghyuk

    We report that an increasingly important endeavor is to develop computational strategies that enable molecular dynamics (MD) simulations of biomolecular systems with spontaneous changes in protonation states under conditions of constant pH. The present work describes our efforts to implement the powerful constant-pH MD simulation method, based on a hybrid nonequilibrium MD/Monte Carlo (neMD/MC) technique within the highly scalable program NAMD. The constant-pH hybrid neMD/MC method has several appealing features; it samples the correct semigrand canonical ensemble rigorously, the computational cost increases linearly with the number of titratable sites, and it is applicable to explicit solvent simulations. The present implementationmore » of the constant-pH hybrid neMD/MC in NAMD is designed to handle a wide range of biomolecular systems with no constraints on the choice of force field. Furthermore, the sampling efficiency can be adaptively improved on-the-fly by adjusting algorithmic parameters during the simulation. Finally, illustrative examples emphasizing medium- and large-scale applications on next-generation supercomputing architectures are provided.« less

  12. Novel 3D/VR interactive environment for MD simulations, visualization and analysis.

    PubMed

    Doblack, Benjamin N; Allis, Tim; Dávila, Lilian P

    2014-12-18

    The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced.

  13. Novel 3D/VR Interactive Environment for MD Simulations, Visualization and Analysis

    PubMed Central

    Doblack, Benjamin N.; Allis, Tim; Dávila, Lilian P.

    2014-01-01

    The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced. PMID:25549300

  14. QwikMD — Integrative Molecular Dynamics Toolkit for Novices and Experts

    PubMed Central

    Ribeiro, João V.; Bernardi, Rafael C.; Rudack, Till; Stone, John E.; Phillips, James C.; Freddolino, Peter L.; Schulten, Klaus

    2016-01-01

    The proper functioning of biomolecules in living cells requires them to assume particular structures and to undergo conformational changes. Both biomolecular structure and motion can be studied using a wide variety of techniques, but none offers the level of detail as do molecular dynamics (MD) simulations. Integrating two widely used modeling programs, namely NAMD and VMD, we have created a robust, user-friendly software, QwikMD, which enables novices and experts alike to address biomedically relevant questions, where often only molecular dynamics simulations can provide answers. Performing both simple and advanced MD simulations interactively, QwikMD automates as many steps as necessary for preparing, carrying out, and analyzing simulations while checking for common errors and enabling reproducibility. QwikMD meets also the needs of experts in the field, increasing the efficiency and quality of their work by carrying out tedious or repetitive tasks while enabling easy control of every step. Whether carrying out simulations within the live view mode on a small laptop or performing complex and large simulations on supercomputers or Cloud computers, QwikMD uses the same steps and user interface. QwikMD is freely available by download on group and personal computers. It is also available on the cloud at Amazon Web Services. PMID:27216779

  15. QwikMD — Integrative Molecular Dynamics Toolkit for Novices and Experts

    NASA Astrophysics Data System (ADS)

    Ribeiro, João V.; Bernardi, Rafael C.; Rudack, Till; Stone, John E.; Phillips, James C.; Freddolino, Peter L.; Schulten, Klaus

    2016-05-01

    The proper functioning of biomolecules in living cells requires them to assume particular structures and to undergo conformational changes. Both biomolecular structure and motion can be studied using a wide variety of techniques, but none offers the level of detail as do molecular dynamics (MD) simulations. Integrating two widely used modeling programs, namely NAMD and VMD, we have created a robust, user-friendly software, QwikMD, which enables novices and experts alike to address biomedically relevant questions, where often only molecular dynamics simulations can provide answers. Performing both simple and advanced MD simulations interactively, QwikMD automates as many steps as necessary for preparing, carrying out, and analyzing simulations while checking for common errors and enabling reproducibility. QwikMD meets also the needs of experts in the field, increasing the efficiency and quality of their work by carrying out tedious or repetitive tasks while enabling easy control of every step. Whether carrying out simulations within the live view mode on a small laptop or performing complex and large simulations on supercomputers or Cloud computers, QwikMD uses the same steps and user interface. QwikMD is freely available by download on group and personal computers. It is also available on the cloud at Amazon Web Services.

  16. Using Molecular Dynamics Simulations as an Aid in the Prediction of Domain Swapping of Computationally Designed Protein Variants.

    PubMed

    Mou, Yun; Huang, Po-Ssu; Thomas, Leonard M; Mayo, Stephen L

    2015-08-14

    In standard implementations of computational protein design, a positive-design approach is used to predict sequences that will be stable on a given backbone structure. Possible competing states are typically not considered, primarily because appropriate structural models are not available. One potential competing state, the domain-swapped dimer, is especially compelling because it is often nearly identical with its monomeric counterpart, differing by just a few mutations in a hinge region. Molecular dynamics (MD) simulations provide a computational method to sample different conformational states of a structure. Here, we tested whether MD simulations could be used as a post-design screening tool to identify sequence mutations leading to domain-swapped dimers. We hypothesized that a successful computationally designed sequence would have backbone structure and dynamics characteristics similar to that of the input structure and that, in contrast, domain-swapped dimers would exhibit increased backbone flexibility and/or altered structure in the hinge-loop region to accommodate the large conformational change required for domain swapping. While attempting to engineer a homodimer from a 51-amino-acid fragment of the monomeric protein engrailed homeodomain (ENH), we had instead generated a domain-swapped dimer (ENH_DsD). MD simulations on these proteins showed increased B-factors derived from MD simulation in the hinge loop of the ENH_DsD domain-swapped dimer relative to monomeric ENH. Two point mutants of ENH_DsD designed to recover the monomeric fold were then tested with an MD simulation protocol. The MD simulations suggested that one of these mutants would adopt the target monomeric structure, which was subsequently confirmed by X-ray crystallography. Copyright © 2015. Published by Elsevier Ltd.

  17. Application of classical simulations for the computation of vibrational properties of free molecules.

    PubMed

    Tikhonov, Denis S; Sharapa, Dmitry I; Schwabedissen, Jan; Rybkin, Vladimir V

    2016-10-12

    In this study, we investigate the ability of classical molecular dynamics (MD) and Monte-Carlo (MC) simulations for modeling the intramolecular vibrational motion. These simulations were used to compute thermally-averaged geometrical structures and infrared vibrational intensities for a benchmark set previously studied by gas electron diffraction (GED): CS 2 , benzene, chloromethylthiocyanate, pyrazinamide and 9,12-I 2 -1,2-closo-C 2 B 10 H 10 . The MD sampling of NVT ensembles was performed using chains of Nose-Hoover thermostats (NH) as well as the generalized Langevin equation thermostat (GLE). The performance of the theoretical models based on the classical MD and MC simulations was compared with the experimental data and also with the alternative computational techniques: a conventional approach based on the Taylor expansion of potential energy surface, path-integral MD and MD with quantum-thermal bath (QTB) based on the generalized Langevin equation (GLE). A straightforward application of the classical simulations resulted, as expected, in poor accuracy of the calculated observables due to the complete neglect of quantum effects. However, the introduction of a posteriori quantum corrections significantly improved the situation. The application of these corrections for MD simulations of the systems with large-amplitude motions was demonstrated for chloromethylthiocyanate. The comparison of the theoretical vibrational spectra has revealed that the GLE thermostat used in this work is not applicable for this purpose. On the other hand, the NH chains yielded reasonably good results.

  18. Protein free energy landscapes from long equilibrium simulations

    NASA Astrophysics Data System (ADS)

    Piana-Agostinetti, Stefano

    Many computational techniques based on molecular dynamics (MD) simulation can be used to generate data to aid in the construction of protein free energy landscapes with atomistic detail. Unbiased, long, equilibrium MD simulations--although computationally very expensive--are particularly appealing, as they can provide direct kinetic and thermodynamic information on the transitions between the states that populate a protein free energy surface. It can be challenging to know how to analyze and interpret even results generated by this direct technique, however. I will discuss approaches we have employed, using equilibrium MD simulation data, to obtain descriptions of the free energy landscapes of proteins ranging in size from tens to thousands of amino acids.

  19. Fast recovery of free energy landscapes via diffusion-map-directed molecular dynamics.

    PubMed

    Preto, Jordane; Clementi, Cecilia

    2014-09-28

    The reaction pathways characterizing macromolecular systems of biological interest are associated with high free energy barriers. Resorting to the standard all-atom molecular dynamics (MD) to explore such critical regions may be inappropriate as the time needed to observe the relevant transitions can be remarkably long. In this paper, we present a new method called Extended Diffusion-Map-directed Molecular Dynamics (extended DM-d-MD) used to enhance the sampling of MD trajectories in such a way as to rapidly cover all important regions of the free energy landscape including deep metastable states and critical transition paths. Moreover, extended DM-d-MD was combined with a reweighting scheme enabling to save on-the-fly information about the Boltzmann distribution. Our algorithm was successfully applied to two systems, alanine dipeptide and alanine-12. Due to the enhanced sampling, the Boltzmann distribution is recovered much faster than in plain MD simulations. For alanine dipeptide, we report a speedup of one order of magnitude with respect to plain MD simulations. For alanine-12, our algorithm allows us to highlight all important unfolded basins in several days of computation when one single misfolded event is barely observable within the same amount of computational time by plain MD simulations. Our method is reaction coordinate free, shows little dependence on the a priori knowledge of the system, and can be implemented in such a way that the biased steps are not computationally expensive with respect to MD simulations thus making our approach well adapted for larger complex systems from which little information is known.

  20. Coupling all-atom molecular dynamics simulations of ions in water with Brownian dynamics.

    PubMed

    Erban, Radek

    2016-02-01

    Molecular dynamics (MD) simulations of ions (K + , Na + , Ca 2+ and Cl - ) in aqueous solutions are investigated. Water is described using the SPC/E model. A stochastic coarse-grained description for ion behaviour is presented and parametrized using MD simulations. It is given as a system of coupled stochastic and ordinary differential equations, describing the ion position, velocity and acceleration. The stochastic coarse-grained model provides an intermediate description between all-atom MD simulations and Brownian dynamics (BD) models. It is used to develop a multiscale method which uses all-atom MD simulations in parts of the computational domain and (less detailed) BD simulations in the remainder of the domain.

  1. Implementation of the force decomposition machine for molecular dynamics simulations.

    PubMed

    Borštnik, Urban; Miller, Benjamin T; Brooks, Bernard R; Janežič, Dušanka

    2012-09-01

    We present the design and implementation of the force decomposition machine (FDM), a cluster of personal computers (PCs) that is tailored to running molecular dynamics (MD) simulations using the distributed diagonal force decomposition (DDFD) parallelization method. The cluster interconnect architecture is optimized for the communication pattern of the DDFD method. Our implementation of the FDM relies on standard commodity components even for networking. Although the cluster is meant for DDFD MD simulations, it remains general enough for other parallel computations. An analysis of several MD simulation runs on both the FDM and a standard PC cluster demonstrates that the FDM's interconnect architecture provides a greater performance compared to a more general cluster interconnect. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Analysis of MD5 authentication in various routing protocols using simulation tools

    NASA Astrophysics Data System (ADS)

    Dinakaran, M.; Darshan, K. N.; Patel, Harsh

    2017-11-01

    Authentication being an important paradigm of security and Computer Networks require secure paths to make the flow of the data even more secure through some security protocols. So MD-5(Message Digest 5) helps in providing data integrity to the data being sent through it and authentication to the network devices. This paper gives a brief introduction to the MD-5, simulation of the networks by including MD-5 authentication using various routing protocols like OSPF, EIGRP and RIPv2. GNS3 is being used to simulate the scenarios. Analysis of the MD-5 authentication is done in the later sections of the paper.

  3. Development of hardware accelerator for molecular dynamics simulations: a computation board that calculates nonbonded interactions in cooperation with fast multipole method.

    PubMed

    Amisaki, Takashi; Toyoda, Shinjiro; Miyagawa, Hiroh; Kitamura, Kunihiro

    2003-04-15

    Evaluation of long-range Coulombic interactions still represents a bottleneck in the molecular dynamics (MD) simulations of biological macromolecules. Despite the advent of sophisticated fast algorithms, such as the fast multipole method (FMM), accurate simulations still demand a great amount of computation time due to the accuracy/speed trade-off inherently involved in these algorithms. Unless higher order multipole expansions, which are extremely expensive to evaluate, are employed, a large amount of the execution time is still spent in directly calculating particle-particle interactions within the nearby region of each particle. To reduce this execution time for pair interactions, we developed a computation unit (board), called MD-Engine II, that calculates nonbonded pairwise interactions using a specially designed hardware. Four custom arithmetic-processors and a processor for memory manipulation ("particle processor") are mounted on the computation board. The arithmetic processors are responsible for calculation of the pair interactions. The particle processor plays a central role in realizing efficient cooperation with the FMM. The results of a series of 50-ps MD simulations of a protein-water system (50,764 atoms) indicated that a more stringent setting of accuracy in FMM computation, compared with those previously reported, was required for accurate simulations over long time periods. Such a level of accuracy was efficiently achieved using the cooperative calculations of the FMM and MD-Engine II. On an Alpha 21264 PC, the FMM computation at a moderate but tolerable level of accuracy was accelerated by a factor of 16.0 using three boards. At a high level of accuracy, the cooperative calculation achieved a 22.7-fold acceleration over the corresponding conventional FMM calculation. In the cooperative calculations of the FMM and MD-Engine II, it was possible to achieve more accurate computation at a comparable execution time by incorporating larger nearby regions. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 582-592, 2003

  4. Hybrid classical/quantum simulation for infrared spectroscopy of water

    NASA Astrophysics Data System (ADS)

    Maekawa, Yuki; Sasaoka, Kenji; Ube, Takuji; Ishiguro, Takashi; Yamamoto, Takahiro

    2018-05-01

    We have developed a hybrid classical/quantum simulation method to calculate the infrared (IR) spectrum of water. The proposed method achieves much higher accuracy than conventional classical molecular dynamics (MD) simulations at a much lower computational cost than ab initio MD simulations. The IR spectrum of water is obtained as an ensemble average of the eigenvalues of the dynamical matrix constructed by ab initio calculations, using the positions of oxygen atoms that constitute water molecules obtained from the classical MD simulation. The calculated IR spectrum is in excellent agreement with the experimental IR spectrum.

  5. Collaborative Simulation Grid: Multiscale Quantum-Mechanical/Classical Atomistic Simulations on Distributed PC Clusters in the US and Japan

    NASA Technical Reports Server (NTRS)

    Kikuchi, Hideaki; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya; Iyetomi, Hiroshi; Ogata, Shuji; Kouno, Takahisa; Shimojo, Fuyuki; Tsuruta, Kanji; Saini, Subhash; hide

    2002-01-01

    A multidisciplinary, collaborative simulation has been performed on a Grid of geographically distributed PC clusters. The multiscale simulation approach seamlessly combines i) atomistic simulation backed on the molecular dynamics (MD) method and ii) quantum mechanical (QM) calculation based on the density functional theory (DFT), so that accurate but less scalable computations are performed only where they are needed. The multiscale MD/QM simulation code has been Grid-enabled using i) a modular, additive hybridization scheme, ii) multiple QM clustering, and iii) computation/communication overlapping. The Gridified MD/QM simulation code has been used to study environmental effects of water molecules on fracture in silicon. A preliminary run of the code has achieved a parallel efficiency of 94% on 25 PCs distributed over 3 PC clusters in the US and Japan, and a larger test involving 154 processors on 5 distributed PC clusters is in progress.

  6. Ab Initio Simulations and Electronic Structure of Lithium-Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability.

    PubMed

    Haskins, Justin B; Bauschlicher, Charles W; Lawson, John W

    2015-11-19

    Density functional theory (DFT), density functional theory molecular dynamics (DFT-MD), and classical molecular dynamics using polarizable force fields (PFF-MD) are employed to evaluate the influence of Li(+) on the structure, transport, and electrochemical stability of three potential ionic liquid electrolytes: N-methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([pyr14][TFSI]), N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide ([pyr13][FSI]), and 1-ethyl-3-methylimidazolium boron tetrafluoride ([EMIM][BF4]). We characterize the Li(+) solvation shell through DFT computations of [Li(Anion)n]((n-1)-) clusters, DFT-MD simulations of isolated Li(+) in small ionic liquid systems, and PFF-MD simulations with high Li-doping levels in large ionic liquid systems. At low levels of Li-salt doping, highly stable solvation shells having two to three anions are seen in both [pyr14][TFSI] and [pyr13][FSI], whereas solvation shells with four anions dominate in [EMIM][BF4]. At higher levels of doping, we find the formation of complex Li-network structures that increase the frequency of four anion-coordinated solvation shells. A comparison of computational and experimental Raman spectra for a wide range of [Li(Anion)n]((n-1)-) clusters shows that our proposed structures are consistent with experiment. We then compute the ion diffusion coefficients and find measures from small-cell DFT-MD simulations to be the correct order of magnitude, but influenced by small system size and short simulation length. Correcting for these errors with complementary PFF-MD simulations, we find DFT-MD measures to be in close agreement with experiment. Finally, we compute electrochemical windows from DFT computations on isolated ions, interacting cation/anion pairs, and liquid-phase systems with Li-doping. For the molecular-level computations, we generally find the difference between ionization energy and electron affinity from isolated ions and interacting cation/anion pairs to provide upper and lower bounds, respectively, to experiment. In the liquid phase, we find the difference between the lowest unoccupied and highest occupied electronic levels in pure and hybrid functionals to provide lower and upper bounds, respectively, to experiment. Li-doping in the liquid-phase systems results in electrochemical windows little changed from the neat systems.

  7. A Review of Computational Methods in Materials Science: Examples from Shock-Wave and Polymer Physics

    PubMed Central

    Steinhauser, Martin O.; Hiermaier, Stefan

    2009-01-01

    This review discusses several computational methods used on different length and time scales for the simulation of material behavior. First, the importance of physical modeling and its relation to computer simulation on multiscales is discussed. Then, computational methods used on different scales are shortly reviewed, before we focus on the molecular dynamics (MD) method. Here we survey in a tutorial-like fashion some key issues including several MD optimization techniques. Thereafter, computational examples for the capabilities of numerical simulations in materials research are discussed. We focus on recent results of shock wave simulations of a solid which are based on two different modeling approaches and we discuss their respective assets and drawbacks with a view to their application on multiscales. Then, the prospects of computer simulations on the molecular length scale using coarse-grained MD methods are covered by means of examples pertaining to complex topological polymer structures including star-polymers, biomacromolecules such as polyelectrolytes and polymers with intrinsic stiffness. This review ends by highlighting new emerging interdisciplinary applications of computational methods in the field of medical engineering where the application of concepts of polymer physics and of shock waves to biological systems holds a lot of promise for improving medical applications such as extracorporeal shock wave lithotripsy or tumor treatment. PMID:20054467

  8. Combining cell-based hydrodynamics with hybrid particle-field simulations: efficient and realistic simulation of structuring dynamics.

    PubMed

    Sevink, G J A; Schmid, F; Kawakatsu, T; Milano, G

    2017-02-22

    We have extended an existing hybrid MD-SCF simulation technique that employs a coarsening step to enhance the computational efficiency of evaluating non-bonded particle interactions. This technique is conceptually equivalent to the single chain in mean-field (SCMF) method in polymer physics, in the sense that non-bonded interactions are derived from the non-ideal chemical potential in self-consistent field (SCF) theory, after a particle-to-field projection. In contrast to SCMF, however, MD-SCF evolves particle coordinates by the usual Newton's equation of motion. Since collisions are seriously affected by the softening of non-bonded interactions that originates from their evaluation at the coarser continuum level, we have devised a way to reinsert the effect of collisions on the structural evolution. Merging MD-SCF with multi-particle collision dynamics (MPCD), we mimic particle collisions at the level of computational cells and at the same time properly account for the momentum transfer that is important for a realistic system evolution. The resulting hybrid MD-SCF/MPCD method was validated for a particular coarse-grained model of phospholipids in aqueous solution, against reference full-particle simulations and the original MD-SCF model. We additionally implemented and tested an alternative and more isotropic finite difference gradient. Our results show that efficiency is improved by merging MD-SCF with MPCD, as properly accounting for hydrodynamic interactions considerably speeds up the phase separation dynamics, with negligible additional computational costs compared to efficient MD-SCF. This new method enables realistic simulations of large-scale systems that are needed to investigate the applications of self-assembled structures of lipids in nanotechnologies.

  9. An atomic finite element model for biodegradable polymers. Part 1. Formulation of the finite elements.

    PubMed

    Gleadall, Andrew; Pan, Jingzhe; Ding, Lifeng; Kruft, Marc-Anton; Curcó, David

    2015-11-01

    Molecular dynamics (MD) simulations are widely used to analyse materials at the atomic scale. However, MD has high computational demands, which may inhibit its use for simulations of structures involving large numbers of atoms such as amorphous polymer structures. An atomic-scale finite element method (AFEM) is presented in this study with significantly lower computational demands than MD. Due to the reduced computational demands, AFEM is suitable for the analysis of Young's modulus of amorphous polymer structures. This is of particular interest when studying the degradation of bioresorbable polymers, which is the topic of an accompanying paper. AFEM is derived from the inter-atomic potential energy functions of an MD force field. The nonlinear MD functions were adapted to enable static linear analysis. Finite element formulations were derived to represent interatomic potential energy functions between two, three and four atoms. Validation of the AFEM was conducted through its application to atomic structures for crystalline and amorphous poly(lactide). Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. MD Simulations of P-Type ATPases in a Lipid Bilayer System.

    PubMed

    Autzen, Henriette Elisabeth; Musgaard, Maria

    2016-01-01

    Molecular dynamics (MD) simulation is a computational method which provides insight on protein dynamics with high resolution in both space and time, in contrast to many experimental techniques. MD simulations can be used as a stand-alone method to study P-type ATPases as well as a complementary method aiding experimental studies. In particular, MD simulations have proved valuable in generating and confirming hypotheses relating to the structure and function of P-type ATPases. In the following, we describe a detailed practical procedure on how to set up and run a MD simulation of a P-type ATPase embedded in a lipid bilayer using software free of use for academics. We emphasize general considerations and problems typically encountered when setting up simulations. While full coverage of all possible procedures is beyond the scope of this chapter, we have chosen to illustrate the MD procedure with the Nanoscale Molecular Dynamics (NAMD) and the Visual Molecular Dynamics (VMD) software suites.

  11. A Review of Enhanced Sampling Approaches for Accelerated Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Tiwary, Pratyush; van de Walle, Axel

    Molecular dynamics (MD) simulations have become a tool of immense use and popularity for simulating a variety of systems. With the advent of massively parallel computer resources, one now routinely sees applications of MD to systems as large as hundreds of thousands to even several million atoms, which is almost the size of most nanomaterials. However, it is not yet possible to reach laboratory timescales of milliseconds and beyond with MD simulations. Due to the essentially sequential nature of time, parallel computers have been of limited use in solving this so-called timescale problem. Instead, over the years a large range of statistical mechanics based enhanced sampling approaches have been proposed for accelerating molecular dynamics, and accessing timescales that are well beyond the reach of the fastest computers. In this review we provide an overview of these approaches, including the underlying theory, typical applications, and publicly available software resources to implement them.

  12. Reproducing Quantum Probability Distributions at the Speed of Classical Dynamics: A New Approach for Developing Force-Field Functors.

    PubMed

    Sundar, Vikram; Gelbwaser-Klimovsky, David; Aspuru-Guzik, Alán

    2018-04-05

    Modeling nuclear quantum effects is required for accurate molecular dynamics (MD) simulations of molecules. The community has paid special attention to water and other biomolecules that show hydrogen bonding. Standard methods of modeling nuclear quantum effects like Ring Polymer Molecular Dynamics (RPMD) are computationally costlier than running classical trajectories. A force-field functor (FFF) is an alternative method that computes an effective force field that replicates quantum properties of the original force field. In this work, we propose an efficient method of computing FFF using the Wigner-Kirkwood expansion. As a test case, we calculate a range of thermodynamic properties of Neon, obtaining the same level of accuracy as RPMD, but with the shorter runtime of classical simulations. By modifying existing MD programs, the proposed method could be used in the future to increase the efficiency and accuracy of MD simulations involving water and proteins.

  13. A molecular dynamics approach for predicting the glass transition temperature and plasticization effect in amorphous pharmaceuticals.

    PubMed

    Gupta, Jasmine; Nunes, Cletus; Jonnalagadda, Sriramakamal

    2013-11-04

    The objectives of this study were as follows: (i) To develop an in silico technique, based on molecular dynamics (MD) simulations, to predict glass transition temperatures (Tg) of amorphous pharmaceuticals. (ii) To computationally study the effect of plasticizer on Tg. (iii) To investigate the intermolecular interactions using radial distribution function (RDF). Amorphous sucrose and water were selected as the model compound and plasticizer, respectively. MD simulations were performed using COMPASS force field and isothermal-isobaric ensembles. The specific volumes of amorphous cells were computed in the temperature range of 440-265 K. The characteristic "kink" observed in volume-temperature curves, in conjunction with regression analysis, defined the Tg. The MD computed Tg values were 367 K, 352 K and 343 K for amorphous sucrose containing 0%, 3% and 5% w/w water, respectively. The MD technique thus effectively simulated the plasticization effect of water; and the corresponding Tg values were in reasonable agreement with theoretical models and literature reports. The RDF measurements revealed strong hydrogen bond interactions between sucrose hydroxyl oxygens and water oxygen. Steric effects led to weak interactions between sucrose acetal oxygens and water oxygen. MD is thus a powerful predictive tool for probing temperature and water effects on the stability of amorphous systems during drug development.

  14. Molecular Dynamics Simulations with Quantum Mechanics/Molecular Mechanics and Adaptive Neural Networks.

    PubMed

    Shen, Lin; Yang, Weitao

    2018-03-13

    Direct molecular dynamics (MD) simulation with ab initio quantum mechanical and molecular mechanical (QM/MM) methods is very powerful for studying the mechanism of chemical reactions in a complex environment but also very time-consuming. The computational cost of QM/MM calculations during MD simulations can be reduced significantly using semiempirical QM/MM methods with lower accuracy. To achieve higher accuracy at the ab initio QM/MM level, a correction on the existing semiempirical QM/MM model is an attractive idea. Recently, we reported a neural network (NN) method as QM/MM-NN to predict the potential energy difference between semiempirical and ab initio QM/MM approaches. The high-level results can be obtained using neural network based on semiempirical QM/MM MD simulations, but the lack of direct MD samplings at the ab initio QM/MM level is still a deficiency that limits the applications of QM/MM-NN. In the present paper, we developed a dynamic scheme of QM/MM-NN for direct MD simulations on the NN-predicted potential energy surface to approximate ab initio QM/MM MD. Since some configurations excluded from the database for NN training were encountered during simulations, which may cause some difficulties on MD samplings, an adaptive procedure inspired by the selection scheme reported by Behler [ Behler Int. J. Quantum Chem. 2015 , 115 , 1032 ; Behler Angew. Chem., Int. Ed. 2017 , 56 , 12828 ] was employed with some adaptions to update NN and carry out MD iteratively. We further applied the adaptive QM/MM-NN MD method to the free energy calculation and transition path optimization on chemical reactions in water. The results at the ab initio QM/MM level can be well reproduced using this method after 2-4 iteration cycles. The saving in computational cost is about 2 orders of magnitude. It demonstrates that the QM/MM-NN with direct MD simulations has great potentials not only for the calculation of thermodynamic properties but also for the characterization of reaction dynamics, which provides a useful tool to study chemical or biochemical systems in solution or enzymes.

  15. Enhanced sampling simulations to construct free-energy landscape of protein-partner substrate interaction.

    PubMed

    Ikebe, Jinzen; Umezawa, Koji; Higo, Junichi

    2016-03-01

    Molecular dynamics (MD) simulations using all-atom and explicit solvent models provide valuable information on the detailed behavior of protein-partner substrate binding at the atomic level. As the power of computational resources increase, MD simulations are being used more widely and easily. However, it is still difficult to investigate the thermodynamic properties of protein-partner substrate binding and protein folding with conventional MD simulations. Enhanced sampling methods have been developed to sample conformations that reflect equilibrium conditions in a more efficient manner than conventional MD simulations, thereby allowing the construction of accurate free-energy landscapes. In this review, we discuss these enhanced sampling methods using a series of case-by-case examples. In particular, we review enhanced sampling methods conforming to trivial trajectory parallelization, virtual-system coupled multicanonical MD, and adaptive lambda square dynamics. These methods have been recently developed based on the existing method of multicanonical MD simulation. Their applications are reviewed with an emphasis on describing their practical implementation. In our concluding remarks we explore extensions of the enhanced sampling methods that may allow for even more efficient sampling.

  16. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application.

    PubMed

    Boldon, Lauren; Laliberte, Fallon; Liu, Li

    2015-01-01

    In this paper, the fundamental concepts and equations necessary for performing small angle X-ray scattering (SAXS) experiments, molecular dynamics (MD) simulations, and MD-SAXS analyses were reviewed. Furthermore, several key biological and non-biological applications for SAXS, MD, and MD-SAXS are presented in this review; however, this article does not cover all possible applications. SAXS is an experimental technique used for the analysis of a wide variety of biological and non-biological structures. SAXS utilizes spherical averaging to produce one- or two-dimensional intensity profiles, from which structural data may be extracted. MD simulation is a computer simulation technique that is used to model complex biological and non-biological systems at the atomic level. MD simulations apply classical Newtonian mechanics' equations of motion to perform force calculations and to predict the theoretical physical properties of the system. This review presents several applications that highlight the ability of both SAXS and MD to study protein folding and function in addition to non-biological applications, such as the study of mechanical, electrical, and structural properties of non-biological nanoparticles. Lastly, the potential benefits of combining SAXS and MD simulations for the study of both biological and non-biological systems are demonstrated through the presentation of several examples that combine the two techniques.

  17. Identification of Rare Lewis Oligosaccharide Conformers in Aqueous Solution Using Enhanced Sampling Molecular Dynamics.

    PubMed

    Alibay, Irfan; Burusco, Kepa K; Bruce, Neil J; Bryce, Richard A

    2018-03-08

    Determining the conformations accessible to carbohydrate ligands in aqueous solution is important for understanding their biological action. In this work, we evaluate the conformational free-energy surfaces of Lewis oligosaccharides in explicit aqueous solvent using a multidimensional variant of the swarm-enhanced sampling molecular dynamics (msesMD) method; we compare with multi-microsecond unbiased MD simulations, umbrella sampling, and accelerated MD approaches. For the sialyl Lewis A tetrasaccharide, msesMD simulations in aqueous solution predict conformer landscapes in general agreement with the other biased methods and with triplicate unbiased 10 μs trajectories; these simulations find a predominance of closed conformer and a range of low-occupancy open forms. The msesMD simulations also suggest closed-to-open transitions in the tetrasaccharide are facilitated by changes in ring puckering of its GlcNAc residue away from the 4 C 1 form, in line with previous work. For sialyl Lewis X tetrasaccharide, msesMD simulations predict a minor population of an open form in solution corresponding to a rare lectin-bound pose observed crystallographically. Overall, from comparison with biased MD calculations, we find that triplicate 10 μs unbiased MD simulations may not be enough to fully sample glycan conformations in aqueous solution. However, the computational efficiency and intuitive approach of the msesMD method suggest potential for its application in glycomics as a tool for analysis of oligosaccharide conformation.

  18. Molecular Dynamics Simulations and Kinetic Measurements to Estimate and Predict Protein-Ligand Residence Times.

    PubMed

    Mollica, Luca; Theret, Isabelle; Antoine, Mathias; Perron-Sierra, Françoise; Charton, Yves; Fourquez, Jean-Marie; Wierzbicki, Michel; Boutin, Jean A; Ferry, Gilles; Decherchi, Sergio; Bottegoni, Giovanni; Ducrot, Pierre; Cavalli, Andrea

    2016-08-11

    Ligand-target residence time is emerging as a key drug discovery parameter because it can reliably predict drug efficacy in vivo. Experimental approaches to binding and unbinding kinetics are nowadays available, but we still lack reliable computational tools for predicting kinetics and residence time. Most attempts have been based on brute-force molecular dynamics (MD) simulations, which are CPU-demanding and not yet particularly accurate. We recently reported a new scaled-MD-based protocol, which showed potential for residence time prediction in drug discovery. Here, we further challenged our procedure's predictive ability by applying our methodology to a series of glucokinase activators that could be useful for treating type 2 diabetes mellitus. We combined scaled MD with experimental kinetics measurements and X-ray crystallography, promptly checking the protocol's reliability by directly comparing computational predictions and experimental measures. The good agreement highlights the potential of our scaled-MD-based approach as an innovative method for computationally estimating and predicting drug residence times.

  19. Efficiency in nonequilibrium molecular dynamics Monte Carlo simulations

    DOE PAGES

    Radak, Brian K.; Roux, Benoît

    2016-10-07

    Hybrid algorithms combining nonequilibrium molecular dynamics and Monte Carlo (neMD/MC) offer a powerful avenue for improving the sampling efficiency of computer simulations of complex systems. These neMD/MC algorithms are also increasingly finding use in applications where conventional approaches are impractical, such as constant-pH simulations with explicit solvent. However, selecting an optimal nonequilibrium protocol for maximum efficiency often represents a non-trivial challenge. This work evaluates the efficiency of a broad class of neMD/MC algorithms and protocols within the theoretical framework of linear response theory. The approximations are validated against constant pH-MD simulations and shown to provide accurate predictions of neMD/MC performance.more » An assessment of a large set of protocols confirms (both theoretically and empirically) that a linear work protocol gives the best neMD/MC performance. Lastly, a well-defined criterion for optimizing the time parameters of the protocol is proposed and demonstrated with an adaptive algorithm that improves the performance on-the-fly with minimal cost.« less

  20. How far in-silico computing meets real experiments. A study on the structure and dynamics of spin labeled vinculin tail protein by molecular dynamics simulations and EPR spectroscopy

    PubMed Central

    2013-01-01

    Background Investigation of conformational changes in a protein is a prerequisite to understand its biological function. To explore these conformational changes in proteins we developed a strategy with the combination of molecular dynamics (MD) simulations and electron paramagnetic resonance (EPR) spectroscopy. The major goal of this work is to investigate how far computer simulations can meet the experiments. Methods Vinculin tail protein is chosen as a model system as conformational changes within the vinculin protein are believed to be important for its biological function at the sites of cell adhesion. MD simulations were performed on vinculin tail protein both in water and in vacuo environments. EPR experimental data is compared with those of the simulated data for corresponding spin label positions. Results The calculated EPR spectra from MD simulations trajectories of selected spin labelled positions are comparable to experimental EPR spectra. The results show that the information contained in the spin label mobility provides a powerful means of mapping protein folds and their conformational changes. Conclusions The results suggest the localization of dynamic and flexible regions of the vinculin tail protein. This study shows MD simulations can be used as a complementary tool to interpret experimental EPR data. PMID:23445506

  1. Applicability of effective fragment potential version 2 - Molecular dynamics (EFP2-MD) simulations for predicting excess properties of mixed solvents

    NASA Astrophysics Data System (ADS)

    Kuroki, Nahoko; Mori, Hirotoshi

    2018-02-01

    Effective fragment potential version 2 - molecular dynamics (EFP2-MD) simulations, where the EFP2 is a polarizable force field based on ab initio electronic structure calculations were applied to water-methanol binary mixture. Comparing EFP2s defined with (aug-)cc-pVXZ (X = D,T) basis sets, it was found that large sets are necessary to generate sufficiently accurate EFP2 for predicting mixture properties. It was shown that EFP2-MD could predict the excess molar volume. Since the computational cost of EFP2-MD are far less than ab initio MD, the results presented herein demonstrate that EFP2-MD is promising for predicting physicochemical properties of novel mixed solvents.

  2. Constant-pH molecular dynamics using stochastic titration

    NASA Astrophysics Data System (ADS)

    Baptista, António M.; Teixeira, Vitor H.; Soares, Cláudio M.

    2002-09-01

    A new method is proposed for performing constant-pH molecular dynamics (MD) simulations, that is, MD simulations where pH is one of the external thermodynamic parameters, like the temperature or the pressure. The protonation state of each titrable site in the solute is allowed to change during a molecular mechanics (MM) MD simulation, the new states being obtained from a combination of continuum electrostatics (CE) calculations and Monte Carlo (MC) simulation of protonation equilibrium. The coupling between the MM/MD and CE/MC algorithms is done in a way that ensures a proper Markov chain, sampling from the intended semigrand canonical distribution. This stochastic titration method is applied to succinic acid, aimed at illustrating the method and examining the choice of its adjustable parameters. The complete titration of succinic acid, using constant-pH MD simulations at different pH values, gives a clear picture of the coupling between the trans/gauche isomerization and the protonation process, making it possible to reconcile some apparently contradictory results of previous studies. The present constant-pH MD method is shown to require a moderate increase of computational cost when compared to the usual MD method.

  3. Insights from molecular dynamics simulations for computational protein design.

    PubMed

    Childers, Matthew Carter; Daggett, Valerie

    2017-02-01

    A grand challenge in the field of structural biology is to design and engineer proteins that exhibit targeted functions. Although much success on this front has been achieved, design success rates remain low, an ever-present reminder of our limited understanding of the relationship between amino acid sequences and the structures they adopt. In addition to experimental techniques and rational design strategies, computational methods have been employed to aid in the design and engineering of proteins. Molecular dynamics (MD) is one such method that simulates the motions of proteins according to classical dynamics. Here, we review how insights into protein dynamics derived from MD simulations have influenced the design of proteins. One of the greatest strengths of MD is its capacity to reveal information beyond what is available in the static structures deposited in the Protein Data Bank. In this regard simulations can be used to directly guide protein design by providing atomistic details of the dynamic molecular interactions contributing to protein stability and function. MD simulations can also be used as a virtual screening tool to rank, select, identify, and assess potential designs. MD is uniquely poised to inform protein design efforts where the application requires realistic models of protein dynamics and atomic level descriptions of the relationship between dynamics and function. Here, we review cases where MD simulations was used to modulate protein stability and protein function by providing information regarding the conformation(s), conformational transitions, interactions, and dynamics that govern stability and function. In addition, we discuss cases where conformations from protein folding/unfolding simulations have been exploited for protein design, yielding novel outcomes that could not be obtained from static structures.

  4. Insights from molecular dynamics simulations for computational protein design

    PubMed Central

    Childers, Matthew Carter; Daggett, Valerie

    2017-01-01

    A grand challenge in the field of structural biology is to design and engineer proteins that exhibit targeted functions. Although much success on this front has been achieved, design success rates remain low, an ever-present reminder of our limited understanding of the relationship between amino acid sequences and the structures they adopt. In addition to experimental techniques and rational design strategies, computational methods have been employed to aid in the design and engineering of proteins. Molecular dynamics (MD) is one such method that simulates the motions of proteins according to classical dynamics. Here, we review how insights into protein dynamics derived from MD simulations have influenced the design of proteins. One of the greatest strengths of MD is its capacity to reveal information beyond what is available in the static structures deposited in the Protein Data Bank. In this regard simulations can be used to directly guide protein design by providing atomistic details of the dynamic molecular interactions contributing to protein stability and function. MD simulations can also be used as a virtual screening tool to rank, select, identify, and assess potential designs. MD is uniquely poised to inform protein design efforts where the application requires realistic models of protein dynamics and atomic level descriptions of the relationship between dynamics and function. Here, we review cases where MD simulations was used to modulate protein stability and protein function by providing information regarding the conformation(s), conformational transitions, interactions, and dynamics that govern stability and function. In addition, we discuss cases where conformations from protein folding/unfolding simulations have been exploited for protein design, yielding novel outcomes that could not be obtained from static structures. PMID:28239489

  5. Optimization of the molecular dynamics method for simulations of DNA and ion transport through biological nanopores.

    PubMed

    Wells, David B; Bhattacharya, Swati; Carr, Rogan; Maffeo, Christopher; Ho, Anthony; Comer, Jeffrey; Aksimentiev, Aleksei

    2012-01-01

    Molecular dynamics (MD) simulations have become a standard method for the rational design and interpretation of experimental studies of DNA translocation through nanopores. The MD method, however, offers a multitude of algorithms, parameters, and other protocol choices that can affect the accuracy of the resulting data as well as computational efficiency. In this chapter, we examine the most popular choices offered by the MD method, seeking an optimal set of parameters that enable the most computationally efficient and accurate simulations of DNA and ion transport through biological nanopores. In particular, we examine the influence of short-range cutoff, integration timestep and force field parameters on the temperature and concentration dependence of bulk ion conductivity, ion pairing, ion solvation energy, DNA structure, DNA-ion interactions, and the ionic current through a nanopore.

  6. Development of massive multilevel molecular dynamics simulation program, Platypus (PLATform for dYnamic Protein Unified Simulation), for the elucidation of protein functions.

    PubMed

    Takano, Yu; Nakata, Kazuto; Yonezawa, Yasushige; Nakamura, Haruki

    2016-05-05

    A massively parallel program for quantum mechanical-molecular mechanical (QM/MM) molecular dynamics simulation, called Platypus (PLATform for dYnamic Protein Unified Simulation), was developed to elucidate protein functions. The speedup and the parallelization ratio of Platypus in the QM and QM/MM calculations were assessed for a bacteriochlorophyll dimer in the photosynthetic reaction center (DIMER) on the K computer, a massively parallel computer achieving 10 PetaFLOPs with 705,024 cores. Platypus exhibited the increase in speedup up to 20,000 core processors at the HF/cc-pVDZ and B3LYP/cc-pVDZ, and up to 10,000 core processors by the CASCI(16,16)/6-31G** calculations. We also performed excited QM/MM-MD simulations on the chromophore of Sirius (SIRIUS) in water. Sirius is a pH-insensitive and photo-stable ultramarine fluorescent protein. Platypus accelerated on-the-fly excited-state QM/MM-MD simulations for SIRIUS in water, using over 4000 core processors. In addition, it also succeeded in 50-ps (200,000-step) on-the-fly excited-state QM/MM-MD simulations for the SIRIUS in water. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  7. How to Run FAST Simulations.

    PubMed

    Zimmerman, M I; Bowman, G R

    2016-01-01

    Molecular dynamics (MD) simulations are a powerful tool for understanding enzymes' structures and functions with full atomistic detail. These physics-based simulations model the dynamics of a protein in solution and store snapshots of its atomic coordinates at discrete time intervals. Analysis of the snapshots from these trajectories provides thermodynamic and kinetic properties such as conformational free energies, binding free energies, and transition times. Unfortunately, simulating biologically relevant timescales with brute force MD simulations requires enormous computing resources. In this chapter we detail a goal-oriented sampling algorithm, called fluctuation amplification of specific traits, that quickly generates pertinent thermodynamic and kinetic information by using an iterative series of short MD simulations to explore the vast depths of conformational space. © 2016 Elsevier Inc. All rights reserved.

  8. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application

    PubMed Central

    Boldon, Lauren; Laliberte, Fallon; Liu, Li

    2015-01-01

    In this paper, the fundamental concepts and equations necessary for performing small angle X-ray scattering (SAXS) experiments, molecular dynamics (MD) simulations, and MD-SAXS analyses were reviewed. Furthermore, several key biological and non-biological applications for SAXS, MD, and MD-SAXS are presented in this review; however, this article does not cover all possible applications. SAXS is an experimental technique used for the analysis of a wide variety of biological and non-biological structures. SAXS utilizes spherical averaging to produce one- or two-dimensional intensity profiles, from which structural data may be extracted. MD simulation is a computer simulation technique that is used to model complex biological and non-biological systems at the atomic level. MD simulations apply classical Newtonian mechanics’ equations of motion to perform force calculations and to predict the theoretical physical properties of the system. This review presents several applications that highlight the ability of both SAXS and MD to study protein folding and function in addition to non-biological applications, such as the study of mechanical, electrical, and structural properties of non-biological nanoparticles. Lastly, the potential benefits of combining SAXS and MD simulations for the study of both biological and non-biological systems are demonstrated through the presentation of several examples that combine the two techniques. PMID:25721341

  9. myPresto/omegagene: a GPU-accelerated molecular dynamics simulator tailored for enhanced conformational sampling methods with a non-Ewald electrostatic scheme.

    PubMed

    Kasahara, Kota; Ma, Benson; Goto, Kota; Dasgupta, Bhaskar; Higo, Junichi; Fukuda, Ikuo; Mashimo, Tadaaki; Akiyama, Yutaka; Nakamura, Haruki

    2016-01-01

    Molecular dynamics (MD) is a promising computational approach to investigate dynamical behavior of molecular systems at the atomic level. Here, we present a new MD simulation engine named "myPresto/omegagene" that is tailored for enhanced conformational sampling methods with a non-Ewald electrostatic potential scheme. Our enhanced conformational sampling methods, e.g. , the virtual-system-coupled multi-canonical MD (V-McMD) method, replace a multi-process parallelized run with multiple independent runs to avoid inter-node communication overhead. In addition, adopting the non-Ewald-based zero-multipole summation method (ZMM) makes it possible to eliminate the Fourier space calculations altogether. The combination of these state-of-the-art techniques realizes efficient and accurate calculations of the conformational ensemble at an equilibrium state. By taking these advantages, myPresto/omegagene is specialized for the single process execution with Graphics Processing Unit (GPU). We performed benchmark simulations for the 20-mer peptide, Trp-cage, with explicit solvent. One of the most thermodynamically stable conformations generated by the V-McMD simulation is very similar to an experimentally solved native conformation. Furthermore, the computation speed is four-times faster than that of our previous simulation engine, myPresto/psygene-G. The new simulator, myPresto/omegagene, is freely available at the following URLs: http://www.protein.osaka-u.ac.jp/rcsfp/pi/omegagene/ and http://presto.protein.osaka-u.ac.jp/myPresto4/.

  10. Molecular dynamics simulations and novel drug discovery.

    PubMed

    Liu, Xuewei; Shi, Danfeng; Zhou, Shuangyan; Liu, Hongli; Liu, Huanxiang; Yao, Xiaojun

    2018-01-01

    Molecular dynamics (MD) simulations can provide not only plentiful dynamical structural information on biomacromolecules but also a wealth of energetic information about protein and ligand interactions. Such information is very important to understanding the structure-function relationship of the target and the essence of protein-ligand interactions and to guiding the drug discovery and design process. Thus, MD simulations have been applied widely and successfully in each step of modern drug discovery. Areas covered: In this review, the authors review the applications of MD simulations in novel drug discovery, including the pathogenic mechanisms of amyloidosis diseases, virtual screening and the interaction mechanisms between drugs and targets. Expert opinion: MD simulations have been used widely in investigating the pathogenic mechanisms of diseases caused by protein misfolding, in virtual screening, and in investigating drug resistance mechanisms caused by mutations of the target. These issues are very difficult to solve by experimental methods alone. Thus, in the future, MD simulations will have wider application with the further improvement of computational capacity and the development of better sampling methods and more accurate force fields together with more efficient analysis methods.

  11. Protecting High Energy Barriers: A New Equation to Regulate Boost Energy in Accelerated Molecular Dynamics Simulations.

    PubMed

    Sinko, William; de Oliveira, César Augusto F; Pierce, Levi C T; McCammon, J Andrew

    2012-01-10

    Molecular dynamics (MD) is one of the most common tools in computational chemistry. Recently, our group has employed accelerated molecular dynamics (aMD) to improve the conformational sampling over conventional molecular dynamics techniques. In the original aMD implementation, sampling is greatly improved by raising energy wells below a predefined energy level. Recently, our group presented an alternative aMD implementation where simulations are accelerated by lowering energy barriers of the potential energy surface. When coupled with thermodynamic integration simulations, this implementation showed very promising results. However, when applied to large systems, such as proteins, the simulation tends to be biased to high energy regions of the potential landscape. The reason for this behavior lies in the boost equation used since the highest energy barriers are dramatically more affected than the lower ones. To address this issue, in this work, we present a new boost equation that prevents oversampling of unfavorable high energy conformational states. The new boost potential provides not only better recovery of statistics throughout the simulation but also enhanced sampling of statistically relevant regions in explicit solvent MD simulations.

  12. A Statistical Approach for the Concurrent Coupling of Molecular Dynamics and Finite Element Methods

    NASA Technical Reports Server (NTRS)

    Saether, E.; Yamakov, V.; Glaessgen, E.

    2007-01-01

    Molecular dynamics (MD) methods are opening new opportunities for simulating the fundamental processes of material behavior at the atomistic level. However, increasing the size of the MD domain quickly presents intractable computational demands. A robust approach to surmount this computational limitation has been to unite continuum modeling procedures such as the finite element method (FEM) with MD analyses thereby reducing the region of atomic scale refinement. The challenging problem is to seamlessly connect the two inherently different simulation techniques at their interface. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the typical boundary value problem used to define a coupled domain. The method uses statistical averaging of the atomistic MD domain to provide displacement interface boundary conditions to the surrounding continuum FEM region, which, in return, generates interface reaction forces applied as piecewise constant traction boundary conditions to the MD domain. The two systems are computationally disconnected and communicate only through a continuous update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM) as opposed to a direct coupling method where interface atoms and FEM nodes are individually related. The methodology is inherently applicable to three-dimensional domains, avoids discretization of the continuum model down to atomic scales, and permits arbitrary temperatures to be applied.

  13. A polarizable QM/MM approach to the molecular dynamics of amide groups solvated in water

    NASA Astrophysics Data System (ADS)

    Schwörer, Magnus; Wichmann, Christoph; Tavan, Paul

    2016-03-01

    The infrared (IR) spectra of polypeptides are dominated by the so-called amide bands. Because they originate from the strongly polar and polarizable amide groups (AGs) making up the backbone, their spectral positions sensitively depend on the local electric fields. Aiming at accurate computations of these IR spectra by molecular dynamics (MD) simulations, which derive atomic forces from a hybrid quantum and molecular mechanics (QM/MM) Hamiltonian, here we consider the effects of solvation in bulk liquid water on the amide bands of the AG model compound N-methyl-acetamide (NMA). As QM approach to NMA we choose grid-based density functional theory (DFT). For the surrounding MM water, we develop, largely based on computations, a polarizable molecular mechanics (PMM) model potential called GP6P, which features six Gaussian electrostatic sources (one induced dipole, five static partial charge distributions) and, therefore, avoids spurious distortions of the DFT electron density in hybrid DFT/PMM simulations. Bulk liquid GP6P is shown to have favorable properties at the thermodynamic conditions of the parameterization and beyond. Lennard-Jones (LJ) parameters of the DFT fragment NMA are optimized by comparing radial distribution functions in the surrounding GP6P liquid with reference data obtained from a "first-principles" DFT-MD simulation. Finally, IR spectra of NMA in GP6P water are calculated from extended DFT/PMM-MD trajectories, in which the NMA is treated by three different DFT functionals (BP, BLYP, B3LYP). Method-specific frequency scaling factors are derived from DFT-MD simulations of isolated NMA. The DFT/PMM-MD simulations with GP6P and with the optimized LJ parameters then excellently predict the effects of aqueous solvation and deuteration observed in the IR spectra of NMA. As a result, the methods required to accurately compute such spectra by DFT/PMM-MD also for larger peptides in aqueous solution are now at hand.

  14. A polarizable QM/MM approach to the molecular dynamics of amide groups solvated in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwörer, Magnus; Wichmann, Christoph; Tavan, Paul, E-mail: tavan@physik.uni-muenchen.de

    2016-03-21

    The infrared (IR) spectra of polypeptides are dominated by the so-called amide bands. Because they originate from the strongly polar and polarizable amide groups (AGs) making up the backbone, their spectral positions sensitively depend on the local electric fields. Aiming at accurate computations of these IR spectra by molecular dynamics (MD) simulations, which derive atomic forces from a hybrid quantum and molecular mechanics (QM/MM) Hamiltonian, here we consider the effects of solvation in bulk liquid water on the amide bands of the AG model compound N-methyl-acetamide (NMA). As QM approach to NMA we choose grid-based density functional theory (DFT). Formore » the surrounding MM water, we develop, largely based on computations, a polarizable molecular mechanics (PMM) model potential called GP6P, which features six Gaussian electrostatic sources (one induced dipole, five static partial charge distributions) and, therefore, avoids spurious distortions of the DFT electron density in hybrid DFT/PMM simulations. Bulk liquid GP6P is shown to have favorable properties at the thermodynamic conditions of the parameterization and beyond. Lennard-Jones (LJ) parameters of the DFT fragment NMA are optimized by comparing radial distribution functions in the surrounding GP6P liquid with reference data obtained from a “first-principles” DFT-MD simulation. Finally, IR spectra of NMA in GP6P water are calculated from extended DFT/PMM-MD trajectories, in which the NMA is treated by three different DFT functionals (BP, BLYP, B3LYP). Method-specific frequency scaling factors are derived from DFT-MD simulations of isolated NMA. The DFT/PMM-MD simulations with GP6P and with the optimized LJ parameters then excellently predict the effects of aqueous solvation and deuteration observed in the IR spectra of NMA. As a result, the methods required to accurately compute such spectra by DFT/PMM-MD also for larger peptides in aqueous solution are now at hand.« less

  15. Modeling of molecular nitrogen collisions and dissociation processes for direct simulation Monte Carlo.

    PubMed

    Parsons, Neal; Levin, Deborah A; van Duin, Adri C T; Zhu, Tong

    2014-12-21

    The Direct Simulation Monte Carlo (DSMC) method typically used for simulating hypersonic Earth re-entry flows requires accurate total collision cross sections and reaction probabilities. However, total cross sections are often determined from extrapolations of relatively low-temperature viscosity data, so their reliability is unknown for the high temperatures observed in hypersonic flows. Existing DSMC reaction models accurately reproduce experimental equilibrium reaction rates, but the applicability of these rates to the strong thermal nonequilibrium observed in hypersonic shocks is unknown. For hypersonic flows, these modeling issues are particularly relevant for nitrogen, the dominant species of air. To rectify this deficiency, the Molecular Dynamics/Quasi-Classical Trajectories (MD/QCT) method is used to accurately compute collision and reaction cross sections for the N2(Σg+1)-N2(Σg+1) collision pair for conditions expected in hypersonic shocks using a new potential energy surface developed using a ReaxFF fit to recent advanced ab initio calculations. The MD/QCT-computed reaction probabilities were found to exhibit better physical behavior and predict less dissociation than the baseline total collision energy reaction model for strong nonequilibrium conditions expected in a shock. The MD/QCT reaction model compared well with computed equilibrium reaction rates and shock-tube data. In addition, the MD/QCT-computed total cross sections were found to agree well with established variable hard sphere total cross sections.

  16. Modeling the Hydration Layer around Proteins: Applications to Small- and Wide-Angle X-Ray Scattering

    PubMed Central

    Virtanen, Jouko Juhani; Makowski, Lee; Sosnick, Tobin R.; Freed, Karl F.

    2011-01-01

    Small-/wide-angle x-ray scattering (SWAXS) experiments can aid in determining the structures of proteins and protein complexes, but success requires accurate computational treatment of solvation. We compare two methods by which to calculate SWAXS patterns. The first approach uses all-atom explicit-solvent molecular dynamics (MD) simulations. The second, far less computationally expensive method involves prediction of the hydration density around a protein using our new HyPred solvation model, which is applied without the need for additional MD simulations. The SWAXS patterns obtained from the HyPred model compare well to both experimental data and the patterns predicted by the MD simulations. Both approaches exhibit advantages over existing methods for analyzing SWAXS data. The close correspondence between calculated and observed SWAXS patterns provides strong experimental support for the description of hydration implicit in the HyPred model. PMID:22004761

  17. Accelerated molecular dynamics simulations of ligand binding to a muscarinic G-protein-coupled receptor.

    PubMed

    Kappel, Kalli; Miao, Yinglong; McCammon, J Andrew

    2015-11-01

    Elucidating the detailed process of ligand binding to a receptor is pharmaceutically important for identifying druggable binding sites. With the ability to provide atomistic detail, computational methods are well poised to study these processes. Here, accelerated molecular dynamics (aMD) is proposed to simulate processes of ligand binding to a G-protein-coupled receptor (GPCR), in this case the M3 muscarinic receptor, which is a target for treating many human diseases, including cancer, diabetes and obesity. Long-timescale aMD simulations were performed to observe the binding of three chemically diverse ligand molecules: antagonist tiotropium (TTP), partial agonist arecoline (ARc) and full agonist acetylcholine (ACh). In comparison with earlier microsecond-timescale conventional MD simulations, aMD greatly accelerated the binding of ACh to the receptor orthosteric ligand-binding site and the binding of TTP to an extracellular vestibule. Further aMD simulations also captured binding of ARc to the receptor orthosteric site. Additionally, all three ligands were observed to bind in the extracellular vestibule during their binding pathways, suggesting that it is a metastable binding site. This study demonstrates the applicability of aMD to protein-ligand binding, especially the drug recognition of GPCRs.

  18. Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Schwörer, Magnus; Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-03-01

    Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 103-105 molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.

  19. Molecular dynamics studies of transport properties and equation of state of supercritical fluids

    NASA Astrophysics Data System (ADS)

    Nwobi, Obika C.

    Many chemical propulsion systems operate with one or more of the reactants above the critical point in order to enhance their performance. Most of the computational fluid dynamics (CFD) methods used to predict these flows require accurate information on the transport properties and equation of state at these supercritical conditions. This work involves the determination of transport coefficients and equation of state of supercritical fluids by equilibrium molecular dynamics (MD) simulations on parallel computers using the Green-Kubo formulae and the virial equation of state, respectively. MD involves the solution of equations of motion of a system of molecules that interact with each other through an intermolecular potential. Provided that an accurate potential can be found for the system of interest, MD can be used regardless of the phase and thermodynamic conditions of the substances involved. The MD program uses the effective Lennard-Jones potential, with system sizes of 1000-1200 molecules and, simulations of 2,000,000 time-steps for computing transport coefficients and 200,000 time-steps for pressures. The computer code also uses linked cell lists for efficient sorting of molecules, periodic boundary conditions, and a modified velocity Verlet algorithm for particle displacement. Particle decomposition is used for distributing the molecules to different processors of a parallel computer. Simulations have been carried out on pure argon, nitrogen, oxygen and ethylene at various supercritical conditions, with self-diffusion coefficients, shear viscosity coefficients, thermal conductivity coefficients and pressures computed for most of the conditions. Results compare well with experimental and the National Institute of Standards and Technology (NIST) values. The results show that the number of molecules and the potential cut-off radius have no significant effect on the computed coefficients, while long-time integration is necessary for accurate determination of the coefficients.

  20. MD Simulations of tRNA and Aminoacyl-tRNA Synthetases: Dynamics, Folding, Binding, and Allostery

    PubMed Central

    Li, Rongzhong; Macnamara, Lindsay M.; Leuchter, Jessica D.; Alexander, Rebecca W.; Cho, Samuel S.

    2015-01-01

    While tRNA and aminoacyl-tRNA synthetases are classes of biomolecules that have been extensively studied for decades, the finer details of how they carry out their fundamental biological functions in protein synthesis remain a challenge. Recent molecular dynamics (MD) simulations are verifying experimental observations and providing new insight that cannot be addressed from experiments alone. Throughout the review, we briefly discuss important historical events to provide a context for how far the field has progressed over the past few decades. We then review the background of tRNA molecules, aminoacyl-tRNA synthetases, and current state of the art MD simulation techniques for those who may be unfamiliar with any of those fields. Recent MD simulations of tRNA dynamics and folding and of aminoacyl-tRNA synthetase dynamics and mechanistic characterizations are discussed. We highlight the recent successes and discuss how important questions can be addressed using current MD simulations techniques. We also outline several natural next steps for computational studies of AARS:tRNA complexes. PMID:26184179

  1. Using molecular simulation to explore the nanoscale dynamics of the plant kinome.

    PubMed

    Moffett, Alexander S; Shukla, Diwakar

    2018-03-09

    Eukaryotic protein kinases (PKs) are a large family of proteins critical for cellular response to external signals, acting as molecular switches. PKs propagate biochemical signals by catalyzing phosphorylation of other proteins, including other PKs, which can undergo conformational changes upon phosphorylation and catalyze further phosphorylations. Although PKs have been studied thoroughly across the domains of life, the structures of these proteins are sparsely understood in numerous groups of organisms, including plants. In addition to efforts towards determining crystal structures of PKs, research on human PKs has incorporated molecular dynamics (MD) simulations to study the conformational dynamics underlying the switching of PK function. This approach of experimental structural biology coupled with computational biophysics has led to improved understanding of how PKs become catalytically active and why mutations cause pathological PK behavior, at spatial and temporal resolutions inaccessible to current experimental methods alone. In this review, we argue for the value of applying MD simulation to plant PKs. We review the basics of MD simulation methodology, the successes achieved through MD simulation in animal PKs, and current work on plant PKs using MD simulation. We conclude with a discussion of the future of MD simulations and plant PKs, arguing for the importance of molecular simulation in the future of plant PK research. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  2. An Investigation of Molecular Docking and Molecular Dynamic Simulation on Imidazopyridines as B-Raf Kinase Inhibitors.

    PubMed

    Xie, Huiding; Li, Yupeng; Yu, Fang; Xie, Xiaoguang; Qiu, Kaixiong; Fu, Jijun

    2015-11-16

    In the recent cancer treatment, B-Raf kinase is one of key targets. Nowadays, a group of imidazopyridines as B-Raf kinase inhibitors have been reported. In order to investigate the interaction between this group of inhibitors and B-Raf kinase, molecular docking, molecular dynamic (MD) simulation and binding free energy (ΔGbind) calculation were performed in this work. Molecular docking was carried out to identify the key residues in the binding site, and MD simulations were performed to determine the detail binding mode. The results obtained from MD simulation reveal that the binding site is stable during the MD simulations, and some hydrogen bonds (H-bonds) in MD simulations are different from H-bonds in the docking mode. Based on the obtained MD trajectories, ΔGbind was computed by using Molecular Mechanics Generalized Born Surface Area (MM-GBSA), and the obtained energies are consistent with the activities. An energetic analysis reveals that both electrostatic and van der Waals contributions are important to ΔGbind, and the unfavorable polar solvation contribution results in the instability of the inhibitor with the lowest activity. These results are expected to understand the binding between B-Raf and imidazopyridines and provide some useful information to design potential B-Raf inhibitors.

  3. The new program OPAL for molecular dynamics simulations and energy refinements of biological macromolecules.

    PubMed

    Luginbühl, P; Güntert, P; Billeter, M; Wüthrich, K

    1996-09-01

    A new program for molecular dynamics (MD) simulation and energy refinement of biological macromolecules, OPAL, is introduced. Combined with the supporting program TRAJEC for the analysis of MD trajectories, OPAL affords high efficiency and flexibility for work with different force fields, and offers a user-friendly interface and extensive trajectory analysis capabilities. Salient features are computational speeds of up to 1.5 GFlops on vector supercomputers such as the NEC SX-3, ellipsoidal boundaries to reduce the system size for studies in explicit solvents, and natural treatment of the hydrostatic pressure. Practical applications of OPAL are illustrated with MD simulations of pure water, energy minimization of the NMR structure of the mixed disulfide of a mutant E. coli glutaredoxin with glutathione in different solvent models, and MD simulations of a small protein, pheromone Er-2, using either instantaneous or time-averaged NMR restraints, or no restraints.

  4. Crystal MD: The massively parallel molecular dynamics software for metal with BCC structure

    NASA Astrophysics Data System (ADS)

    Hu, Changjun; Bai, He; He, Xinfu; Zhang, Boyao; Nie, Ningming; Wang, Xianmeng; Ren, Yingwen

    2017-02-01

    Material irradiation effect is one of the most important keys to use nuclear power. However, the lack of high-throughput irradiation facility and knowledge of evolution process, lead to little understanding of the addressed issues. With the help of high-performance computing, we could make a further understanding of micro-level-material. In this paper, a new data structure is proposed for the massively parallel simulation of the evolution of metal materials under irradiation environment. Based on the proposed data structure, we developed the new molecular dynamics software named Crystal MD. The simulation with Crystal MD achieved over 90% parallel efficiency in test cases, and it takes more than 25% less memory on multi-core clusters than LAMMPS and IMD, which are two popular molecular dynamics simulation software. Using Crystal MD, a two trillion particles simulation has been performed on Tianhe-2 cluster.

  5. Multiscale Modeling of Damage Processes in fcc Aluminum: From Atoms to Grains

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Saether, E.; Yamakov, V.

    2008-01-01

    Molecular dynamics (MD) methods are opening new opportunities for simulating the fundamental processes of material behavior at the atomistic level. However, current analysis is limited to small domains and increasing the size of the MD domain quickly presents intractable computational demands. A preferred approach to surmount this computational limitation has been to combine continuum mechanics-based modeling procedures, such as the finite element method (FEM), with MD analyses thereby reducing the region of atomic scale refinement. Such multiscale modeling strategies can be divided into two broad classifications: concurrent multiscale methods that directly incorporate an atomistic domain within a continuum domain and sequential multiscale methods that extract an averaged response from the atomistic simulation for later use as a constitutive model in a continuum analysis.

  6. Ligand Binding Pathways and Conformational Transitions of the HIV Protease.

    PubMed

    Miao, Yinglong; Huang, Yu-Ming M; Walker, Ross C; McCammon, J Andrew; Chang, Chia-En A

    2018-03-06

    It is important to determine the binding pathways and mechanisms of ligand molecules to target proteins to effectively design therapeutic drugs. Molecular dynamics (MD) is a promising computational tool that allows us to simulate protein-drug binding at an atomistic level. However, the gap between the time scales of current simulations and those of many drug binding processes has limited the usage of conventional MD, which has been reflected in studies of the HIV protease. Here, we have applied a robust enhanced simulation method, Gaussian accelerated molecular dynamics (GaMD), to sample binding pathways of the XK263 ligand and associated protein conformational changes in the HIV protease. During two of 10 independent GaMD simulations performed over 500-2500 ns, the ligand was observed to successfully bind to the protein active site. Although GaMD-derived free energy profiles were not fully converged because of insufficient sampling of the complex system, the simulations still allowed us to identify relatively low-energy intermediate conformational states during binding of the ligand to the HIV protease. Relative to the X-ray crystal structure, the XK263 ligand reached a minimum root-mean-square deviation (RMSD) of 2.26 Å during 2.5 μs of GaMD simulation. In comparison, the ligand RMSD reached a minimum of only ∼5.73 Å during an earlier 14 μs conventional MD simulation. This work highlights the enhanced sampling power of the GaMD approach and demonstrates its wide applicability to studies of drug-receptor interactions for the HIV protease and by extension many other target proteins.

  7. An Embedded Statistical Method for Coupling Molecular Dynamics and Finite Element Analyses

    NASA Technical Reports Server (NTRS)

    Saether, E.; Glaessgen, E.H.; Yamakov, V.

    2008-01-01

    The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.

  8. A New Concurrent Multiscale Methodology for Coupling Molecular Dynamics and Finite Element Analyses

    NASA Technical Reports Server (NTRS)

    Yamakov, Vesselin; Saether, Erik; Glaessgen, Edward H/.

    2008-01-01

    The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.

  9. Direct simulation of high-vorticity gas flows

    NASA Technical Reports Server (NTRS)

    Bird, G. A.

    1987-01-01

    The computational limitations associated with the molecular dynamics (MD) method and the direct simulation Monte Carlo (DSMC) method are reviewed in the context of the computation of dilute gas flows with high vorticity. It is concluded that the MD method is generally limited to the dense gas case in which the molecular diameter is one-tenth or more of the mean free path. It is shown that the cell size in DSMC calculations should be small in comparison with the mean free path, and that this may be facilitated by a new subcell procedure for the selection of collision partners.

  10. Multipole Algorithms for Molecular Dynamics Simulation on High Performance Computers.

    NASA Astrophysics Data System (ADS)

    Elliott, William Dewey

    1995-01-01

    A fundamental problem in modeling large molecular systems with molecular dynamics (MD) simulations is the underlying N-body problem of computing the interactions between all pairs of N atoms. The simplest algorithm to compute pair-wise atomic interactions scales in runtime {cal O}(N^2), making it impractical for interesting biomolecular systems, which can contain millions of atoms. Recently, several algorithms have become available that solve the N-body problem by computing the effects of all pair-wise interactions while scaling in runtime less than {cal O}(N^2). One algorithm, which scales {cal O}(N) for a uniform distribution of particles, is called the Greengard-Rokhlin Fast Multipole Algorithm (FMA). This work describes an FMA-like algorithm called the Molecular Dynamics Multipole Algorithm (MDMA). The algorithm contains several features that are new to N-body algorithms. MDMA uses new, efficient series expansion equations to compute general 1/r^{n } potentials to arbitrary accuracy. In particular, the 1/r Coulomb potential and the 1/r^6 portion of the Lennard-Jones potential are implemented. The new equations are based on multivariate Taylor series expansions. In addition, MDMA uses a cell-to-cell interaction region of cells that is closely tied to worst case error bounds. The worst case error bounds for MDMA are derived in this work also. These bounds apply to other multipole algorithms as well. Several implementation enhancements are described which apply to MDMA as well as other N-body algorithms such as FMA and tree codes. The mathematics of the cell -to-cell interactions are converted to the Fourier domain for reduced operation count and faster computation. A relative indexing scheme was devised to locate cells in the interaction region which allows efficient pre-computation of redundant information and prestorage of much of the cell-to-cell interaction. Also, MDMA was integrated into the MD program SIgMA to demonstrate the performance of the program over several simulation timesteps. One MD application described here highlights the utility of including long range contributions to Lennard-Jones potential in constant pressure simulations. Another application shows the time dependence of long range forces in a multiple time step MD simulation.

  11. Intrinsic map dynamics exploration for uncharted effective free-energy landscapes

    PubMed Central

    Covino, Roberto; Coifman, Ronald R.; Gear, C. William; Georgiou, Anastasia S.; Kevrekidis, Ioannis G.

    2017-01-01

    We describe and implement a computer-assisted approach for accelerating the exploration of uncharted effective free-energy surfaces (FESs). More generally, the aim is the extraction of coarse-grained, macroscopic information from stochastic or atomistic simulations, such as molecular dynamics (MD). The approach functionally links the MD simulator with nonlinear manifold learning techniques. The added value comes from biasing the simulator toward unexplored phase-space regions by exploiting the smoothness of the gradually revealed intrinsic low-dimensional geometry of the FES. PMID:28634293

  12. Selectivity trend of gas separation through nanoporous graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hongjun; Chen, Zhongfang; Dai, Sheng

    2014-01-29

    We demonstrate that porous graphene can efficiently separate gases according to their molecular sizes using molecular dynamic (MD) simulations,. The flux sequence from the classical MD simulation is H 2>CO 2>>N 2>Ar>CH 4, which generally follows the trend in the kinetic diameters. Moreover, this trend is also confirmed from the fluxes based on the computed free energy barriers for gas permeation using the umbrella sampling method and kinetic theory of gases. Both brute-force MD simulations and free-energy calcualtions lead to the flux trend consistent with experiments. Case studies of two compositions of CO 2/N 2 mixtures further demonstrate the separationmore » capability of nanoporous graphene.« less

  13. Investigation of the bindings of a class of inhibitors with GSK3β kinase using thermodynamic integration MD simulation and kinase assay.

    PubMed

    Hsu, Chia-Jen; Hsu, Wen-Chi; Lee, Der-Jay; Liu, An-Lun; Chang, Chia-Ming; Shih, Huei-Jhen; Huang, Wun-Han; Lee-Chen, Guey-Jen; Hsieh-Li, Hsiu Mei; Lee, Guan-Chiun; Sun, Ying-Chieh

    2017-08-01

    GSK3β kinase is a noteworthy target for discovery of the drugs that will be used to treat several diseases. In the effort to identify a new inhibitor lead compound, we utilized thermodynamic integration (TI)-molecular dynamics (MD) simulation and kinase assay to investigate the bindings between GSK3β kinase and five compounds that were analogous to a known inhibitor with an available crystal structure. TI-MD simulations of the first two compounds (analogs 1 and 2) were used for calibration. The computed binding affinities of analogs 1 and 2 agreed well with the experimental results. The rest three compounds (analogs 3-5) were newly obtained from a database search, and their affinity data were newly measured in our labs. TI-MD simulations predicted the binding modes and the computed ΔΔG values have a reasonably good correlation with the experimental affinity data. These newly identified inhibitors appear to be new leads according to our survey of GSK3β inhibitors listed in recent review articles. The predicted binding modes of these compounds should aid in designing new derivatives of these compounds in the future. © 2017 John Wiley & Sons A/S.

  14. Molecular Dynamics of Hot Dense Plasmas: New Horizons

    NASA Astrophysics Data System (ADS)

    Graziani, Frank

    2011-10-01

    We describe the status of a new time-dependent simulation capability for hot dense plasmas. The backbone of this multi-institutional computational and experimental effort--the Cimarron Project--is the massively parallel molecular dynamics (MD) code ``ddcMD''. The project's focus is material conditions such as exist in inertial confinement fusion experiments, and in many stellar interiors: high temperatures, high densities, significant electromagnetic fields, mixtures of high- and low- Zelements, and non-Maxwellian particle distributions. Of particular importance is our ability to incorporate into this classical MD code key atomic, radiative, and nuclear processes, so that their interacting effects under non-ideal plasma conditions can be investigated. This talk summarizes progress in computational methodology, discusses strengths and weaknesses of quantum statistical potentials as effective interactions for MD, explains the model used for quantum events possibly occurring in a collision and highlights some significant results obtained to date. We describe the status of a new time-dependent simulation capability for hot dense plasmas. The backbone of this multi-institutional computational and experimental effort--the Cimarron Project--is the massively parallel molecular dynamics (MD) code ``ddcMD''. The project's focus is material conditions such as exist in inertial confinement fusion experiments, and in many stellar interiors: high temperatures, high densities, significant electromagnetic fields, mixtures of high- and low- Zelements, and non-Maxwellian particle distributions. Of particular importance is our ability to incorporate into this classical MD code key atomic, radiative, and nuclear processes, so that their interacting effects under non-ideal plasma conditions can be investigated. This talk summarizes progress in computational methodology, discusses strengths and weaknesses of quantum statistical potentials as effective interactions for MD, explains the model used for quantum events possibly occurring in a collision and highlights some significant results obtained to date. This work is performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Protocols for Molecular Dynamics Simulations of RNA Nanostructures.

    PubMed

    Kim, Taejin; Kasprzak, Wojciech K; Shapiro, Bruce A

    2017-01-01

    Molecular dynamics (MD) simulations have been used as one of the main research tools to study a wide range of biological systems and bridge the gap between X-ray crystallography or NMR structures and biological mechanism. In the field of RNA nanostructures, MD simulations have been used to fix steric clashes in computationally designed RNA nanostructures, characterize the dynamics, and investigate the interaction between RNA and other biomolecules such as delivery agents and membranes.In this chapter we present examples of computational protocols for molecular dynamics simulations in explicit and implicit solvent using the Amber Molecular Dynamics Package. We also show examples of post-simulation analysis steps and briefly mention selected tools beyond the Amber package. Limitations of the methods, tools, and protocols are also discussed. Most of the examples are illustrated for a small RNA duplex (helix), but the protocols are applicable to any nucleic acid structure, subject only to the computational speed and memory limitations of the hardware available to the user.

  16. Improving Protocols for Protein Mapping through Proper Comparison to Crystallography Data

    PubMed Central

    Lexa, Katrina W.; Carlson, Heather A.

    2013-01-01

    Computational approaches to fragment-based drug design (FBDD) can complement experiments and facilitate the identification of potential hot spots along the protein surface. However, the evaluation of computational methods for mapping binding sites frequently focuses upon the ability to reproduce crystallographic coordinates to within a low RMSD threshold. This dependency on the deposited coordinate data overlooks the original electron density from the experiment, thus techniques may be developed based upon subjective - or even erroneous - atomic coordinates. This can become a significant drawback in applications to systems where the location of hot spots is unknown. Based on comparison to crystallographic density, we previously showed that mixed-solvent molecular dynamics (MixMD) accurately identifies the active site for HEWL, with acetonitrile as an organic solvent. Here, we concentrated on the influence of protic solvent on simulation and refined the optimal MixMD approach for extrapolation of the method to systems without established sites. Our results establish an accurate approach for comparing simulations to experiment. We have outlined the most efficient strategy for MixMD, based on simulation length and number of runs. The development outlined here makes MixMD a robust method which should prove useful across a broad range of target structures. Lastly, our results with MixMD match experimental data so well that consistency between simulations and density may be a useful way to aid the identification of probes vs waters during the refinement of future MSCS crystallographic structures. PMID:23327200

  17. Cross-scale MD simulations of dynamic strength of tantalum

    NASA Astrophysics Data System (ADS)

    Bulatov, Vasily

    2017-06-01

    Dislocations are ubiquitous in metals where their motion presents the dominant and often the only mode of plastic response to straining. Over the last 25 years computational prediction of plastic response in metals has relied on Discrete Dislocation Dynamics (DDD) as the most fundamental method to account for collective dynamics of moving dislocations. Here we present first direct atomistic MD simulations of dislocation-mediated plasticity that are sufficiently large and long to compute plasticity response of single crystal tantalum while tracing the underlying dynamics of dislocations in all atomistic details. Where feasible, direct MD simulations sidestep DDD altogether thus reducing uncertainties of strength predictions to those of the interatomic potential. In the specific context of shock-induced material dynamics, the same MD models predict when, under what conditions and how dislocations interact and compete with other fundamental mechanisms of dynamic response, e.g. twinning, phase-transformations, fracture. In collaboration with: Luis Zepeda-Ruiz, Lawrence Livermore National Laboratory; Alexander Stukowski, Technische Universitat Darmstadt; Tomas Oppelstrup, Lawrence Livermore National Laboratory. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. The feasibility of an efficient drug design method with high-performance computers.

    PubMed

    Yamashita, Takefumi; Ueda, Akihiko; Mitsui, Takashi; Tomonaga, Atsushi; Matsumoto, Shunji; Kodama, Tatsuhiko; Fujitani, Hideaki

    2015-01-01

    In this study, we propose a supercomputer-assisted drug design approach involving all-atom molecular dynamics (MD)-based binding free energy prediction after the traditional design/selection step. Because this prediction is more accurate than the empirical binding affinity scoring of the traditional approach, the compounds selected by the MD-based prediction should be better drug candidates. In this study, we discuss the applicability of the new approach using two examples. Although the MD-based binding free energy prediction has a huge computational cost, it is feasible with the latest 10 petaflop-scale computer. The supercomputer-assisted drug design approach also involves two important feedback procedures: The first feedback is generated from the MD-based binding free energy prediction step to the drug design step. While the experimental feedback usually provides binding affinities of tens of compounds at one time, the supercomputer allows us to simultaneously obtain the binding free energies of hundreds of compounds. Because the number of calculated binding free energies is sufficiently large, the compounds can be classified into different categories whose properties will aid in the design of the next generation of drug candidates. The second feedback, which occurs from the experiments to the MD simulations, is important to validate the simulation parameters. To demonstrate this, we compare the binding free energies calculated with various force fields to the experimental ones. The results indicate that the prediction will not be very successful, if we use an inaccurate force field. By improving/validating such simulation parameters, the next prediction can be made more accurate.

  19. Structured water in polyelectrolyte dendrimers: Understanding small angle neutron scattering results through atomistic simulation

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Kerkeni, Boutheïna; Egami, Takeshi; Do, Changwoo; Liu, Yun; Wang, Yongmei; Porcar, Lionel; Hong, Kunlun; Smith, Sean C.; Liu, Emily L.; Smith, Gregory S.; Chen, Wei-Ren

    2012-04-01

    Based on atomistic molecular dynamics (MD) simulations, the small angle neutron scattering (SANS) intensity behavior of a single generation-4 polyelectrolyte polyamidoamine starburst dendrimer is investigated at different levels of molecular protonation. The SANS form factor, P(Q), and Debye autocorrelation function, γ(r), are calculated from the equilibrium MD trajectory based on a mathematical approach proposed in this work. The consistency found in comparison against previously published experimental findings (W.-R. Chen, L. Porcar, Y. Liu, P. D. Butler, and L. J. Magid, Macromolecules 40, 5887 (2007)) leads to a link between the neutron scattering experiment and MD computation, and fresh perspectives. The simulations enable scattering calculations of not only the hydrocarbons but also the contribution from the scattering length density fluctuations caused by structured, confined water within the dendrimer. Based on our computational results, we explore the validity of using radius of gyration RG for microstructure characterization of a polyelectrolyte dendrimer from the scattering perspective.

  20. Homogeneous nucleation and microstructure evolution in million-atom molecular dynamics simulation

    PubMed Central

    Shibuta, Yasushi; Oguchi, Kanae; Takaki, Tomohiro; Ohno, Munekazu

    2015-01-01

    Homogeneous nucleation from an undercooled iron melt is investigated by the statistical sampling of million-atom molecular dynamics (MD) simulations performed on a graphics processing unit (GPU). Fifty independent instances of isothermal MD calculations with one million atoms in a quasi-two-dimensional cell over a nanosecond reveal that the nucleation rate and the incubation time of nucleation as functions of temperature have characteristic shapes with a nose at the critical temperature. This indicates that thermally activated homogeneous nucleation occurs spontaneously in MD simulations without any inducing factor, whereas most previous studies have employed factors such as pressure, surface effect, and continuous cooling to induce nucleation. Moreover, further calculations over ten nanoseconds capture the microstructure evolution on the order of tens of nanometers from the atomistic viewpoint and the grain growth exponent is directly estimated. Our novel approach based on the concept of “melting pots in a supercomputer” is opening a new phase in computational metallurgy with the aid of rapid advances in computational environments. PMID:26311304

  1. Charge Structure and Counterion Distribution in Hexagonal DNA Liquid Crystal

    PubMed Central

    Dai, Liang; Mu, Yuguang; Nordenskiöld, Lars; Lapp, Alain; van der Maarel, Johan R. C.

    2007-01-01

    A hexagonal liquid crystal of DNA fragments (double-stranded, 150 basepairs) with tetramethylammonium (TMA) counterions was investigated with small angle neutron scattering (SANS). We obtained the structure factors pertaining to the DNA and counterion density correlations with contrast matching in the water. Molecular dynamics (MD) computer simulation of a hexagonal assembly of nine DNA molecules showed that the inter-DNA distance fluctuates with a correlation time around 2 ns and a standard deviation of 8.5% of the interaxial spacing. The MD simulation also showed a minimal effect of the fluctuations in inter-DNA distance on the radial counterion density profile and significant penetration of the grooves by TMA. The radial density profile of the counterions was also obtained from a Monte Carlo (MC) computer simulation of a hexagonal array of charged rods with fixed interaxial spacing. Strong ordering of the counterions between the DNA molecules and the absence of charge fluctuations at longer wavelengths was shown by the SANS number and charge structure factors. The DNA-counterion and counterion structure factors are interpreted with the correlation functions derived from the Poisson-Boltzmann equation, MD, and MC simulation. Best agreement is observed between the experimental structure factors and the prediction based on the Poisson-Boltzmann equation and/or MC simulation. The SANS results show that TMA is too large to penetrate the grooves to a significant extent, in contrast to what is shown by MD simulation. PMID:17098791

  2. COFFDROP: A Coarse-Grained Nonbonded Force Field for Proteins Derived from All-Atom Explicit-Solvent Molecular Dynamics Simulations of Amino Acids.

    PubMed

    Andrews, Casey T; Elcock, Adrian H

    2014-11-11

    We describe the derivation of a set of bonded and nonbonded coarse-grained (CG) potential functions for use in implicit-solvent Brownian dynamics (BD) simulations of proteins derived from all-atom explicit-solvent molecular dynamics (MD) simulations of amino acids. Bonded potential functions were derived from 1 μs MD simulations of each of the 20 canonical amino acids, with histidine modeled in both its protonated and neutral forms; nonbonded potential functions were derived from 1 μs MD simulations of every possible pairing of the amino acids (231 different systems). The angle and dihedral probability distributions and radial distribution functions sampled during MD were used to optimize a set of CG potential functions through use of the iterative Boltzmann inversion (IBI) method. The optimized set of potential functions-which we term COFFDROP (COarse-grained Force Field for Dynamic Representation Of Proteins)-quantitatively reproduced all of the "target" MD distributions. In a first test of the force field, it was used to predict the clustering behavior of concentrated amino acid solutions; the predictions were directly compared with the results of corresponding all-atom explicit-solvent MD simulations and found to be in excellent agreement. In a second test, BD simulations of the small protein villin headpiece were carried out at concentrations that have recently been studied in all-atom explicit-solvent MD simulations by Petrov and Zagrovic ( PLoS Comput. Biol. 2014 , 5 , e1003638). The anomalously strong intermolecular interactions seen in the MD study were reproduced in the COFFDROP simulations; a simple scaling of COFFDROP's nonbonded parameters, however, produced results in better accordance with experiment. Overall, our results suggest that potential functions derived from simulations of pairwise amino acid interactions might be of quite broad applicability, with COFFDROP likely to be especially useful for modeling unfolded or intrinsically disordered proteins.

  3. COFFDROP: A Coarse-Grained Nonbonded Force Field for Proteins Derived from All-Atom Explicit-Solvent Molecular Dynamics Simulations of Amino Acids

    PubMed Central

    2015-01-01

    We describe the derivation of a set of bonded and nonbonded coarse-grained (CG) potential functions for use in implicit-solvent Brownian dynamics (BD) simulations of proteins derived from all-atom explicit-solvent molecular dynamics (MD) simulations of amino acids. Bonded potential functions were derived from 1 μs MD simulations of each of the 20 canonical amino acids, with histidine modeled in both its protonated and neutral forms; nonbonded potential functions were derived from 1 μs MD simulations of every possible pairing of the amino acids (231 different systems). The angle and dihedral probability distributions and radial distribution functions sampled during MD were used to optimize a set of CG potential functions through use of the iterative Boltzmann inversion (IBI) method. The optimized set of potential functions—which we term COFFDROP (COarse-grained Force Field for Dynamic Representation Of Proteins)—quantitatively reproduced all of the “target” MD distributions. In a first test of the force field, it was used to predict the clustering behavior of concentrated amino acid solutions; the predictions were directly compared with the results of corresponding all-atom explicit-solvent MD simulations and found to be in excellent agreement. In a second test, BD simulations of the small protein villin headpiece were carried out at concentrations that have recently been studied in all-atom explicit-solvent MD simulations by Petrov and Zagrovic (PLoS Comput. Biol.2014, 5, e1003638). The anomalously strong intermolecular interactions seen in the MD study were reproduced in the COFFDROP simulations; a simple scaling of COFFDROP’s nonbonded parameters, however, produced results in better accordance with experiment. Overall, our results suggest that potential functions derived from simulations of pairwise amino acid interactions might be of quite broad applicability, with COFFDROP likely to be especially useful for modeling unfolded or intrinsically disordered proteins. PMID:25400526

  4. Molecular simulations of diffusion in electrolytes

    NASA Astrophysics Data System (ADS)

    Wheeler, Dean Richard

    This work demonstrates new methodologies for simulating multicomponent diffusion in concentrated solutions using molecular dynamics (MD). Experimental diffusion data for concentrated multicomponent solutions are often lacking, as are accurate methods of predicting diffusion for nonideal solutions. MD can be a viable means of understanding and predicting multicomponent diffusion. While there have been several prior reports of MD simulations of mutual diffusion, no satisfactory expressions for simulating Stefan-Maxwell diffusivities for an arbitrary number of species exist. The approaches developed here allow for the computation of a full diffusion matrix for any number of species in both nonequilibrium and equilibrium MD ensembles. Our nonequilibrium approach is based on the application of constant external fields to drive species diffusion. Our equilibrium approach uses a newly developed Green-Kubo formula for Stefan-Maxwell diffusivities. In addition, as part of this work, we demonstrate a widely applicable means of increasing the computational efficiency of the Ewald sum, a technique for handling long-range Coulombic interactions in simulations. The theoretical development is applicable to any solution which can be simulated using MD; nevertheless, our primary interest is in electrochemical applications. To this end, the methods are tested by simulations of aqueous salt solutions and lithium-battery electrolytes. KCl and NaCl aqueous solutions were simulated over the concentration range 1 to 4 molal. Intermolecular-potential models were parameterized for these transport-based simulations. This work is the first to simulate all three independent diffusion coefficients for aqueous NaCl and KCl solutions. The results show that the nonequilibrium and equilibrium methods are consistent with each other, and in moderate agreement with experiment. We simulate lithium-battery electrolytes containing LiPF6 in propylene carbonate and mixed ethylene carbonate-dimethyl carbonate solvents. As with the aqueous-solution work, potential parameters were generated for these molecules. These nonaqueous electrolytes demonstrate rich transport behavior, which the simulations are able to reproduce qualitatively. In a mixed-solvent simulation we regress all six independent transport coefficients. The simulations show that strong ion pairing is responsible for the increase in viscosity and maximum in conductivity as ion concentrations are increased.

  5. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations.

    PubMed

    Liu, Kai; Watanabe, Etsurou; Kokubo, Hironori

    2017-02-01

    The binding mode prediction is of great importance to structure-based drug design. The discrimination of various binding poses of ligand generated by docking is a great challenge not only to docking score functions but also to the relatively expensive free energy calculation methods. Here we systematically analyzed the stability of various ligand poses under molecular dynamics (MD) simulation. First, a data set of 120 complexes was built based on the typical physicochemical properties of drug-like ligands. Three potential binding poses (one correct pose and two decoys) were selected for each ligand from self-docking in addition to the experimental pose. Then, five independent MD simulations for each pose were performed with different initial velocities for the statistical analysis. Finally, the stabilities of ligand poses under MD were evaluated and compared with the native one from crystal structure. We found that about 94% of the native poses were maintained stable during the simulations, which suggests that MD simulations are accurate enough to judge most experimental binding poses as stable properly. Interestingly, incorrect decoy poses were maintained much less and 38-44% of decoys could be excluded just by performing equilibrium MD simulations, though 56-62% of decoys were stable. The computationally-heavy binding free energy calculation can be performed only for these survived poses.

  6. Use of advanced particle methods in modeling space propulsion and its supersonic expansions

    NASA Astrophysics Data System (ADS)

    Borner, Arnaud

    This research discusses the use of advanced kinetic particle methods such as Molecular Dynamics (MD) and direct simulation Monte Carlo (DSMC) to model space propulsion systems such as electrospray thrusters and their supersonic expansions. MD simulations are performed to model an electrospray thruster for the ionic liquid (IL) EMIM--BF4 using coarse-grained (CG) potentials. The model is initially featuring a constant electric field applied in the longitudinal direction. Two coarse-grained potentials are compared, and the effective-force CG (EFCG) potential is found to predict the formation of the Taylor cone, the cone-jet, and other extrusion modes for similar electric fields and mass flow rates observed in experiments of a IL fed capillary-tip-extractor system better than the simple CG potential. Later, one-dimensional and fully transient three-dimensional electric fields, the latter solving Poisson's equation to take into account the electric field due to space charge at each timestep, are computed by coupling the MD model to a Poisson solver. It is found that the inhomogeneous electric field as well as that of the IL space-charge improve agreement between modeling and experiment. The boundary conditions (BCs) are found to have a substantial impact on the potential and electric field, and the tip BC is introduced and compared to the two previous BCs, named plate and needle, showing good improvement by reducing unrealistically high radial electric fields generated in the vicinity of the capillary tip. The influence of the different boundary condition models on charged species currents as a function of the mass flow rate is studied, and it is found that a constant electric field model gives similar agreement to the more rigorous and computationally expensive tip boundary condition at lower flow rates. However, at higher mass flow rates the MD simulations with the constant electric field produces extruded particles with higher Coulomb energy per ion, consistent with droplet formation. Supersonic expansions to vacuum produce clusters of sufficiently small size that properties such as heat capacities and latent heat of evaporation cannot be described by bulk vapor thermodynamic values. Therefore, MD simulations are performed to compute the evaporation rate of small water clusters as a function of temperature and size and the rates are found to agree with Unimolecular Dissociation Theory (UDT) and Classical Nucleation Theory (CNT). The heat capacities and latent heat of vaporization obtained from Monte-Carlo Canonical-Ensemble (MCCE) simulations are used in DSMC simulations of two experiments that measured Rayleigh scattering and terminal dimer mole fraction of supersonic water-jet expansions. Water-cluster temperature and size are found to be influenced by the use of kinetic rather than thermodynamic heat-capacity and latent-heat values as well as the nucleation model. Additionally, MD simulations of water condensation in a one-dimensional free expansion are performed to simulate the conditions in the core of a plume. We find that the internal structure of the clusters formed depends on the stagnation temperature conditions. Clusters of sizes 21 and 324 are studied in detail, and their radial distribution functions (RDF) are computed and compared to reported RDFs for solid amorphous ice clusters. Dielectric properties of liquid water and water clusters are investigated, and the static dielectric constant, dipole moment autocorrelation function and relative permittivity are computed by means of MD simulations.

  7. Substructured multibody molecular dynamics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James

    2006-11-01

    We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

  8. Conformational landscapes of membrane proteins delineated by enhanced sampling molecular dynamics simulations.

    PubMed

    Harpole, Tyler J; Delemotte, Lucie

    2018-04-01

    The expansion of computational power, better parameterization of force fields, and the development of novel algorithms to enhance the sampling of the free energy landscapes of proteins have allowed molecular dynamics (MD) simulations to become an indispensable tool to understand the function of biomolecules. The temporal and spatial resolution of MD simulations allows for the study of a vast number of processes of interest. Here, we review the computational efforts to uncover the conformational free energy landscapes of a subset of membrane proteins: ion channels, transporters and G-protein coupled receptors. We focus on the various enhanced sampling techniques used to study these questions, how the conclusions come together to build a coherent picture, and the relationship between simulation outcomes and experimental observables. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. DROIDS 1.20: A GUI-Based Pipeline for GPU-Accelerated Comparative Protein Dynamics.

    PubMed

    Babbitt, Gregory A; Mortensen, Jamie S; Coppola, Erin E; Adams, Lily E; Liao, Justin K

    2018-03-13

    Traditional informatics in comparative genomics work only with static representations of biomolecules (i.e., sequence and structure), thereby ignoring the molecular dynamics (MD) of proteins that define function in the cell. A comparative approach applied to MD would connect this very short timescale process, defined in femtoseconds, to one of the longest in the universe: molecular evolution measured in millions of years. Here, we leverage advances in graphics-processing-unit-accelerated MD simulation software to develop a comparative method of MD analysis and visualization that can be applied to any two homologous Protein Data Bank structures. Our open-source pipeline, DROIDS (Detecting Relative Outlier Impacts in Dynamic Simulations), works in conjunction with existing molecular modeling software to convert any Linux gaming personal computer into a "comparative computational microscope" for observing the biophysical effects of mutations and other chemical changes in proteins. DROIDS implements structural alignment and Benjamini-Hochberg-corrected Kolmogorov-Smirnov statistics to compare nanosecond-scale atom bond fluctuations on the protein backbone, color mapping the significant differences identified in protein MD with single-amino-acid resolution. DROIDS is simple to use, incorporating graphical user interface control for Amber16 MD simulations, cpptraj analysis, and the final statistical and visual representations in R graphics and UCSF Chimera. We demonstrate that DROIDS can be utilized to visually investigate molecular evolution and disease-related functional changes in MD due to genetic mutation and epigenetic modification. DROIDS can also be used to potentially investigate binding interactions of pharmaceuticals, toxins, or other biomolecules in a functional evolutionary context as well. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Computation of shear viscosity of colloidal suspensions by SRD-MD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laganapan, A. M. K.; Videcoq, A., E-mail: arnaud.videcoq@unilim.fr; Bienia, M.

    2015-04-14

    The behaviour of sheared colloidal suspensions with full hydrodynamic interactions (HIs) is numerically studied. To this end, we use the hybrid stochastic rotation dynamics-molecular dynamics (SRD-MD) method. The shear viscosity of colloidal suspensions is computed for different volume fractions, both for dilute and concentrated cases. We verify that HIs help in the collisions and the streaming of colloidal particles, thereby increasing the overall shear viscosity of the suspension. Our results show a good agreement with known experimental, theoretical, and numerical studies. This work demonstrates the ability of SRD-MD to successfully simulate transport coefficients that require correct modelling of HIs.

  11. Molecular Dynamics Simulations of Nucleic Acids. From Tetranucleotides to the Ribosome.

    PubMed

    Šponer, Jiří; Banáš, Pavel; Jurečka, Petr; Zgarbová, Marie; Kührová, Petra; Havrila, Marek; Krepl, Miroslav; Stadlbauer, Petr; Otyepka, Michal

    2014-05-15

    We present a brief overview of explicit solvent molecular dynamics (MD) simulations of nucleic acids. We explain physical chemistry limitations of the simulations, namely, the molecular mechanics (MM) force field (FF) approximation and limited time scale. Further, we discuss relations and differences between simulations and experiments, compare standard and enhanced sampling simulations, discuss the role of starting structures, comment on different versions of nucleic acid FFs, and relate MM computations with contemporary quantum chemistry. Despite its limitations, we show that MD is a powerful technique for studying the structural dynamics of nucleic acids with a fast growing potential that substantially complements experimental results and aids their interpretation.

  12. MaMiCo: Software design for parallel molecular-continuum flow simulations

    NASA Astrophysics Data System (ADS)

    Neumann, Philipp; Flohr, Hanno; Arora, Rahul; Jarmatz, Piet; Tchipev, Nikola; Bungartz, Hans-Joachim

    2016-03-01

    The macro-micro-coupling tool (MaMiCo) was developed to ease the development of and modularize molecular-continuum simulations, retaining sequential and parallel performance. We demonstrate the functionality and performance of MaMiCo by coupling the spatially adaptive Lattice Boltzmann framework waLBerla with four molecular dynamics (MD) codes: the light-weight Lennard-Jones-based implementation SimpleMD, the node-level optimized software ls1 mardyn, and the community codes ESPResSo and LAMMPS. We detail interface implementations to connect each solver with MaMiCo. The coupling for each waLBerla-MD setup is validated in three-dimensional channel flow simulations which are solved by means of a state-based coupling method. We provide sequential and strong scaling measurements for the four molecular-continuum simulations. The overhead of MaMiCo is found to come at 10%-20% of the total (MD) runtime. The measurements further show that scalability of the hybrid simulations is reached on up to 500 Intel SandyBridge, and more than 1000 AMD Bulldozer compute cores.

  13. Efficient hybrid non-equilibrium molecular dynamics--Monte Carlo simulations with symmetric momentum reversal.

    PubMed

    Chen, Yunjie; Roux, Benoît

    2014-09-21

    Hybrid schemes combining the strength of molecular dynamics (MD) and Metropolis Monte Carlo (MC) offer a promising avenue to improve the sampling efficiency of computer simulations of complex systems. A number of recently proposed hybrid methods consider new configurations generated by driving the system via a non-equilibrium MD (neMD) trajectory, which are subsequently treated as putative candidates for Metropolis MC acceptance or rejection. To obey microscopic detailed balance, it is necessary to alter the momentum of the system at the beginning and/or the end of the neMD trajectory. This strict rule then guarantees that the random walk in configurational space generated by such hybrid neMD-MC algorithm will yield the proper equilibrium Boltzmann distribution. While a number of different constructs are possible, the most commonly used prescription has been to simply reverse the momenta of all the particles at the end of the neMD trajectory ("one-end momentum reversal"). Surprisingly, it is shown here that the choice of momentum reversal prescription can have a considerable effect on the rate of convergence of the hybrid neMD-MC algorithm, with the simple one-end momentum reversal encountering particularly acute problems. In these neMD-MC simulations, different regions of configurational space end up being essentially isolated from one another due to a very small transition rate between regions. In the worst-case scenario, it is almost as if the configurational space does not constitute a single communicating class that can be sampled efficiently by the algorithm, and extremely long neMD-MC simulations are needed to obtain proper equilibrium probability distributions. To address this issue, a novel momentum reversal prescription, symmetrized with respect to both the beginning and the end of the neMD trajectory ("symmetric two-ends momentum reversal"), is introduced. Illustrative simulations demonstrate that the hybrid neMD-MC algorithm robustly yields a correct equilibrium probability distribution with this prescription.

  14. Efficient hybrid non-equilibrium molecular dynamics - Monte Carlo simulations with symmetric momentum reversal

    NASA Astrophysics Data System (ADS)

    Chen, Yunjie; Roux, Benoît

    2014-09-01

    Hybrid schemes combining the strength of molecular dynamics (MD) and Metropolis Monte Carlo (MC) offer a promising avenue to improve the sampling efficiency of computer simulations of complex systems. A number of recently proposed hybrid methods consider new configurations generated by driving the system via a non-equilibrium MD (neMD) trajectory, which are subsequently treated as putative candidates for Metropolis MC acceptance or rejection. To obey microscopic detailed balance, it is necessary to alter the momentum of the system at the beginning and/or the end of the neMD trajectory. This strict rule then guarantees that the random walk in configurational space generated by such hybrid neMD-MC algorithm will yield the proper equilibrium Boltzmann distribution. While a number of different constructs are possible, the most commonly used prescription has been to simply reverse the momenta of all the particles at the end of the neMD trajectory ("one-end momentum reversal"). Surprisingly, it is shown here that the choice of momentum reversal prescription can have a considerable effect on the rate of convergence of the hybrid neMD-MC algorithm, with the simple one-end momentum reversal encountering particularly acute problems. In these neMD-MC simulations, different regions of configurational space end up being essentially isolated from one another due to a very small transition rate between regions. In the worst-case scenario, it is almost as if the configurational space does not constitute a single communicating class that can be sampled efficiently by the algorithm, and extremely long neMD-MC simulations are needed to obtain proper equilibrium probability distributions. To address this issue, a novel momentum reversal prescription, symmetrized with respect to both the beginning and the end of the neMD trajectory ("symmetric two-ends momentum reversal"), is introduced. Illustrative simulations demonstrate that the hybrid neMD-MC algorithm robustly yields a correct equilibrium probability distribution with this prescription.

  15. Accelerated Molecular Dynamics Simulations with the AMOEBA Polarizable Force Field on Graphics Processing Units

    PubMed Central

    2013-01-01

    The accelerated molecular dynamics (aMD) method has recently been shown to enhance the sampling of biomolecules in molecular dynamics (MD) simulations, often by several orders of magnitude. Here, we describe an implementation of the aMD method for the OpenMM application layer that takes full advantage of graphics processing units (GPUs) computing. The aMD method is shown to work in combination with the AMOEBA polarizable force field (AMOEBA-aMD), allowing the simulation of long time-scale events with a polarizable force field. Benchmarks are provided to show that the AMOEBA-aMD method is efficiently implemented and produces accurate results in its standard parametrization. For the BPTI protein, we demonstrate that the protein structure described with AMOEBA remains stable even on the extended time scales accessed at high levels of accelerations. For the DNA repair metalloenzyme endonuclease IV, we show that the use of the AMOEBA force field is a significant improvement over fixed charged models for describing the enzyme active-site. The new AMOEBA-aMD method is publicly available (http://wiki.simtk.org/openmm/VirtualRepository) and promises to be interesting for studying complex systems that can benefit from both the use of a polarizable force field and enhanced sampling. PMID:24634618

  16. Recursive Factorization of the Inverse Overlap Matrix in Linear-Scaling Quantum Molecular Dynamics Simulations.

    PubMed

    Negre, Christian F A; Mniszewski, Susan M; Cawkwell, Marc J; Bock, Nicolas; Wall, Michael E; Niklasson, Anders M N

    2016-07-12

    We present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive, iterative refinement of an initial guess of Z (inverse square root of the overlap matrix S). The initial guess of Z is obtained beforehand by using either an approximate divide-and-conquer technique or dynamical methods, propagated within an extended Lagrangian dynamics from previous MD time steps. With this formulation, we achieve long-term stability and energy conservation even under the incomplete, approximate, iterative refinement of Z. Linear-scaling performance is obtained using numerically thresholded sparse matrix algebra based on the ELLPACK-R sparse matrix data format, which also enables efficient shared-memory parallelization. As we show in this article using self-consistent density-functional-based tight-binding MD, our approach is faster than conventional methods based on the diagonalization of overlap matrix S for systems as small as a few hundred atoms, substantially accelerating quantum-based simulations even for molecular structures of intermediate size. For a 4158-atom water-solvated polyalanine system, we find an average speedup factor of 122 for the computation of Z in each MD step.

  17. Recursive Factorization of the Inverse Overlap Matrix in Linear Scaling Quantum Molecular Dynamics Simulations

    DOE PAGES

    Negre, Christian F. A; Mniszewski, Susan M.; Cawkwell, Marc Jon; ...

    2016-06-06

    We present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive iterative re nement of an initial guess Z of the inverse overlap matrix S. The initial guess of Z is obtained beforehand either by using an approximate divide and conquer technique or dynamically, propagated within an extended Lagrangian dynamics from previous MD time steps. With this formulation, we achieve long-term stability and energy conservation even under incomplete approximate iterative re nement of Z. Linear scaling performance ismore » obtained using numerically thresholded sparse matrix algebra based on the ELLPACK-R sparse matrix data format, which also enables e cient shared memory parallelization. As we show in this article using selfconsistent density functional based tight-binding MD, our approach is faster than conventional methods based on the direct diagonalization of the overlap matrix S for systems as small as a few hundred atoms, substantially accelerating quantum-based simulations even for molecular structures of intermediate size. For a 4,158 atom water-solvated polyalanine system we nd an average speedup factor of 122 for the computation of Z in each MD step.« less

  18. Thermal Conductivities in Solids from First Principles: Accurate Computations and Rapid Estimates

    NASA Astrophysics Data System (ADS)

    Carbogno, Christian; Scheffler, Matthias

    In spite of significant research efforts, a first-principles determination of the thermal conductivity κ at high temperatures has remained elusive. Boltzmann transport techniques that account for anharmonicity perturbatively become inaccurate under such conditions. Ab initio molecular dynamics (MD) techniques using the Green-Kubo (GK) formalism capture the full anharmonicity, but can become prohibitively costly to converge in time and size. We developed a formalism that accelerates such GK simulations by several orders of magnitude and that thus enables its application within the limited time and length scales accessible in ab initio MD. For this purpose, we determine the effective harmonic potential occurring during the MD, the associated temperature-dependent phonon properties and lifetimes. Interpolation in reciprocal and frequency space then allows to extrapolate to the macroscopic scale. For both force-field and ab initio MD, we validate this approach by computing κ for Si and ZrO2, two materials known for their particularly harmonic and anharmonic character. Eventually, we demonstrate how these techniques facilitate reasonable estimates of κ from existing MD calculations at virtually no additional computational cost.

  19. A coupling of homology modeling with multiple molecular dynamics simulation for identifying representative conformation of GPCR structures: a case study on human bombesin receptor subtype-3.

    PubMed

    Nowroozi, Amin; Shahlaei, Mohsen

    2017-02-01

    In this study, a computational pipeline was therefore devised to overcome homology modeling (HM) bottlenecks. The coupling of HM with molecular dynamics (MD) simulation is useful in that it tackles the sampling deficiency of dynamics simulations by providing good-quality initial guesses for the native structure. Indeed, HM also relaxes the severe requirement of force fields to explore the huge conformational space of protein structures. In this study, the interaction between the human bombesin receptor subtype-3 and MK-5046 was investigated integrating HM, molecular docking, and MD simulations. To improve conformational sampling in typical MD simulations of GPCRs, as in other biomolecules, multiple trajectories with different initial conditions can be employed rather than a single long trajectory. Multiple MD simulations of human bombesin receptor subtype-3 with different initial atomic velocities are applied to sample conformations in the vicinity of the structure generated by HM. The backbone atom conformational space distribution of replicates is analyzed employing principal components analysis. As a result, the averages of structural and dynamic properties over the twenty-one trajectories differ significantly from those obtained from individual trajectories.

  20. Theoretical study of sum-frequency vibrational spectroscopy on limonene surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Ren-Hui, E-mail: zrh@iccas.ac.cn; Liu, Hao; Jing, Yuan-Yuan

    2014-03-14

    By combining molecule dynamics (MD) simulation and quantum chemistry computation, we calculate the surface sum-frequency vibrational spectroscopy (SFVS) of R-limonene molecules at the gas-liquid interface for SSP, PPP, and SPS polarization combinations. The distributions of the Euler angles are obtained using MD simulation, the ψ-distribution is between isotropic and Gaussian. Instead of the MD distributions, different analytical distributions such as the δ-function, Gaussian and isotropic distributions are applied to simulate surface SFVS. We find that different distributions significantly affect the absolute SFVS intensity and also influence on relative SFVS intensity, and the δ-function distribution should be used with caution whenmore » the orientation distribution is broad. Furthermore, the reason that the SPS signal is weak in reflected arrangement is discussed.« less

  1. Free-energy landscape of intrinsically disordered proteins investigated by all-atom multicanonical molecular dynamics.

    PubMed

    Higo, Junichi; Umezawa, Koji

    2014-01-01

    We introduce computational studies on intrinsically disordered proteins (IDPs). Especially, we present our multicanonical molecular dynamics (McMD) simulations of two IDP-partner systems: NRSF-mSin3 and pKID-KIX. McMD is one of enhanced conformational sampling methods useful for conformational sampling of biomolecular systems. IDP adopts a specific tertiary structure upon binding to its partner molecule, although it is unstructured in the unbound state (i.e. the free state). This IDP-specific property is called "coupled folding and binding". The McMD simulation treats the biomolecules with an all-atom model immersed in an explicit solvent. In the initial configuration of simulation, IDP and its partner molecules are set to be distant from each other, and the IDP conformation is disordered. The computationally obtained free-energy landscape for coupled folding and binding has shown that native- and non-native-complex clusters distribute complicatedly in the conformational space. The all-atom simulation suggests that both of induced-folding and population-selection are coupled complicatedly in the coupled folding and binding. Further analyses have exemplified that the conformational fluctuations (dynamical flexibility) in the bound and unbound states are essentially important to characterize IDP functioning.

  2. Computational modeling of carbohydrate recognition in protein complex

    NASA Astrophysics Data System (ADS)

    Ishida, Toyokazu

    2017-11-01

    To understand the mechanistic principle of carbohydrate recognition in proteins, we propose a systematic computational modeling strategy to identify complex carbohydrate chain onto the reduced 2D free energy surface (2D-FES), determined by MD sampling combined with QM/MM energy corrections. In this article, we first report a detailed atomistic simulation study of the norovirus capsid proteins with carbohydrate antigens based on ab initio QM/MM combined with MD-FEP simulations. The present result clearly shows that the binding geometries of complex carbohydrate antigen are determined not by one single, rigid carbohydrate structure, but rather by the sum of averaged conformations mapped onto the minimum free energy region of QM/MM 2D-FES.

  3. The vibrational spectrum of the hydrated alanine-leucine peptide in the amide region from IR experiments and first principles calculations

    NASA Astrophysics Data System (ADS)

    Hassan, Irtaza; Donati, Luca; Stensitzki, Till; Keller, Bettina G.; Heyne, Karsten; Imhof, Petra

    2018-04-01

    We have combined infrared (IR) experiments with molecular dynamics (MD) simulations in solution at finite temperature to analyse the vibrational signature of the small floppy peptide Alanine-Leucine. IR spectra computed from first-principles MD simulations exhibit no distinct differences between conformational clusters of α -helix or β -sheet-like folds with different orientations of the bulky leucine side chain. All computed spectra show two prominent bands, in good agreement with the experiment, that are assigned to the stretch vibrations of the carbonyl and carboxyl group, respectively. Variations in band widths and exact maxima are likely due to small fluctuations in the backbone torsion angles.

  4. Cutoff size need not strongly influence molecular dynamics results for solvated polypeptides.

    PubMed

    Beck, David A C; Armen, Roger S; Daggett, Valerie

    2005-01-18

    The correct treatment of van der Waals and electrostatic nonbonded interactions in molecular force fields is essential for performing realistic molecular dynamics (MD) simulations of solvated polypeptides. The most computationally tractable treatment of nonbonded interactions in MD utilizes a spherical distance cutoff (typically, 8-12 A) to reduce the number of pairwise interactions. In this work, we assess three spherical atom-based cutoff approaches for use with all-atom explicit solvent MD: abrupt truncation, a CHARMM-style electrostatic shift truncation, and our own force-shifted truncation. The chosen system for this study is an end-capped 17-residue alanine-based alpha-helical peptide, selected because of its use in previous computational and experimental studies. We compare the time-averaged helical content calculated from these MD trajectories with experiment. We also examine the effect of varying the cutoff treatment and distance on energy conservation. We find that the abrupt truncation approach is pathological in its inability to conserve energy. The CHARMM-style shift truncation performs quite well but suffers from energetic instability. On the other hand, the force-shifted spherical cutoff method conserves energy, correctly predicts the experimental helical content, and shows convergence in simulation statistics as the cutoff is increased. This work demonstrates that by using proper and rigorous techniques, it is possible to correctly model polypeptide dynamics in solution with a spherical cutoff. The inherent computational advantage of spherical cutoffs over Ewald summation (and related) techniques is essential in accessing longer MD time scales.

  5. Computational Study of the Bulk Properties of a Novel Molecule: alpha-Tocopherol-Ascorbic Acid Surfactant

    NASA Astrophysics Data System (ADS)

    Stirling, Shannon; Kim, Hye-Young

    Alpha-tocopherol-ascorbic acid surfactant (EC) is a novel amphiphilic molecule of antioxidant properties, which has a hydrophobic vitamin E and a hydrophilic vitamin C chemically linked. We have developed atomistic force fields (g54a7) for a protonated (neutral) EC molecule. Our goal is to carry out molecular dynamics (MD) simulations of protonated EC molecules using the newly developed force fields and study the molecular properties. First we ran energy minimization (EM) with one molecule in a vacuum to obtain the low energy molecular configuration with emtol =10. We then used Packmol to insert 125 EC molecules in a 3nm cube. We then performed MD simulations of the bulk system composed of 125 EC molecules, from which we measured the bulk density and the evaporation energy of the molecular system. Gromacs2016 is used for the EM and MD simulation studies. We will present the results of the ongoing research. National Institute Of General Medical Sciences of the National Institutes of Health under Award Number P20GM103424 (Kim). Computational resources were provided by the Louisiana Optical Network Initiative.

  6. Equivalence of the equilibrium and the nonequilibrium molecular dynamics methods for thermal conductivity calculations: From bulk to nanowire silicon

    NASA Astrophysics Data System (ADS)

    Dong, Haikuan; Fan, Zheyong; Shi, Libin; Harju, Ari; Ala-Nissila, Tapio

    2018-03-01

    Molecular dynamics (MD) simulations play an important role in studying heat transport in complex materials. The lattice thermal conductivity can be computed either using the Green-Kubo formula in equilibrium MD (EMD) simulations or using Fourier's law in nonequilibrium MD (NEMD) simulations. These two methods have not been systematically compared for materials with different dimensions and inconsistencies between them have been occasionally reported in the literature. Here we give an in-depth comparison of them in terms of heat transport in three allotropes of Si: three-dimensional bulk silicon, two-dimensional silicene, and quasi-one-dimensional silicon nanowire. By multiplying the correlation time in the Green-Kubo formula with an appropriate effective group velocity, we can express the running thermal conductivity in the EMD method as a function of an effective length and directly compare it to the length-dependent thermal conductivity in the NEMD method. We find that the two methods quantitatively agree with each other for all the systems studied, firmly establishing their equivalence in computing thermal conductivity.

  7. Computational Design of a Thermostable Mutant of Cocaine Esterase via Molecular Dynamics Simulations

    PubMed Central

    Huang, Xiaoqin; Gao, Daquan; Zhan, Chang-Guo

    2015-01-01

    Cocaine esterase (CocE) has been known as the most efficient native enzyme for metabolizing the naturally occurring cocaine. A major obstacle to the clinical application of CocE is the thermoinstability of native CocE with a half-life of only ~11 min at physiological temperature (37°C). It is highly desirable to develop a thermostable mutant of CocE for therapeutic treatment of cocaine overdose and addiction. To establish a structure-thermostability relationship, we carried out molecular dynamics (MD) simulations at 400 K on wild-type CocE and previously known thermostable mutants, demonstrating that the thermostability of the active form of the enzyme correlates with the fluctuation (characterized as the RMSD and RMSF of atomic positions) of the catalytic residues (Y44, S117, Y118, H287, and D259) in the simulated enzyme. In light of the structure-thermostability correlation, further computational modeling including MD simulations at 400 K predicted that the active site structure of the L169K mutant should be more thermostable. The prediction has been confirmed by wet experimental tests showing that the active form of the L169K mutant had a half-life of 570 min at 37°C, which is significantly longer than those of the wild-type and previously known thermostable mutants. The encouraging outcome suggests that the high-temperature MD simulations and the structure-thermostability may be considered as a valuable tool for computational design of thermostable mutants of an enzyme. PMID:21373712

  8. Overcoming the Time Limitation in Molecular Dynamics Simulation of Crystal Nucleation: A Persistent-Embryo Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yang; Song, Huajing; Zhang, Feng

    The crystal nucleation from liquid in most cases is too rare to be accessed within the limited time scales of the conventional molecular dynamics (MD) simulation. Here, we developed a “persistent embryo” method to facilitate crystal nucleation in MD simulations by preventing small crystal embryos from melting using external spring forces. We applied this method to the pure Ni case for a moderate undercooling where no nucleation can be observed in the conventional MD simulation, and obtained nucleation rate in good agreement with the experimental data. Moreover, the method is applied to simulate an even more sluggish event: the nucleationmore » of the B2 phase in a strong glass-forming Cu-Zr alloy. The nucleation rate was found to be 8 orders of magnitude smaller than Ni at the same undercooling, which well explains the good glass formability of the alloy. In conclusion, our work opens a new avenue to study solidification under realistic experimental conditions via atomistic computer simulation.« less

  9. Overcoming the Time Limitation in Molecular Dynamics Simulation of Crystal Nucleation: A Persistent-Embryo Approach

    DOE PAGES

    Sun, Yang; Song, Huajing; Zhang, Feng; ...

    2018-02-23

    The crystal nucleation from liquid in most cases is too rare to be accessed within the limited time scales of the conventional molecular dynamics (MD) simulation. Here, we developed a “persistent embryo” method to facilitate crystal nucleation in MD simulations by preventing small crystal embryos from melting using external spring forces. We applied this method to the pure Ni case for a moderate undercooling where no nucleation can be observed in the conventional MD simulation, and obtained nucleation rate in good agreement with the experimental data. Moreover, the method is applied to simulate an even more sluggish event: the nucleationmore » of the B2 phase in a strong glass-forming Cu-Zr alloy. The nucleation rate was found to be 8 orders of magnitude smaller than Ni at the same undercooling, which well explains the good glass formability of the alloy. In conclusion, our work opens a new avenue to study solidification under realistic experimental conditions via atomistic computer simulation.« less

  10. Overcoming the Time Limitation in Molecular Dynamics Simulation of Crystal Nucleation: A Persistent-Embryo Approach

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Song, Huajing; Zhang, Feng; Yang, Lin; Ye, Zhuo; Mendelev, Mikhail I.; Wang, Cai-Zhuang; Ho, Kai-Ming

    2018-02-01

    The crystal nucleation from liquid in most cases is too rare to be accessed within the limited time scales of the conventional molecular dynamics (MD) simulation. Here, we developed a "persistent embryo" method to facilitate crystal nucleation in MD simulations by preventing small crystal embryos from melting using external spring forces. We applied this method to the pure Ni case for a moderate undercooling where no nucleation can be observed in the conventional MD simulation, and obtained nucleation rate in good agreement with the experimental data. Moreover, the method is applied to simulate an even more sluggish event: the nucleation of the B 2 phase in a strong glass-forming Cu-Zr alloy. The nucleation rate was found to be 8 orders of magnitude smaller than Ni at the same undercooling, which well explains the good glass formability of the alloy. Thus, our work opens a new avenue to study solidification under realistic experimental conditions via atomistic computer simulation.

  11. Overcoming the Time Limitation in Molecular Dynamics Simulation of Crystal Nucleation: A Persistent-Embryo Approach.

    PubMed

    Sun, Yang; Song, Huajing; Zhang, Feng; Yang, Lin; Ye, Zhuo; Mendelev, Mikhail I; Wang, Cai-Zhuang; Ho, Kai-Ming

    2018-02-23

    The crystal nucleation from liquid in most cases is too rare to be accessed within the limited time scales of the conventional molecular dynamics (MD) simulation. Here, we developed a "persistent embryo" method to facilitate crystal nucleation in MD simulations by preventing small crystal embryos from melting using external spring forces. We applied this method to the pure Ni case for a moderate undercooling where no nucleation can be observed in the conventional MD simulation, and obtained nucleation rate in good agreement with the experimental data. Moreover, the method is applied to simulate an even more sluggish event: the nucleation of the B2 phase in a strong glass-forming Cu-Zr alloy. The nucleation rate was found to be 8 orders of magnitude smaller than Ni at the same undercooling, which well explains the good glass formability of the alloy. Thus, our work opens a new avenue to study solidification under realistic experimental conditions via atomistic computer simulation.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Hatten, Xavier; Cournia, Zoe; Huc, Ivan

    The increasing importance of hydrogenase enzymes in the new energy research field has led us to examine the structure and dynamics of potential hydrogenase mimics, based on a ferrocene-peptide scaffold, using molecular dynamics (MD) simulations. To enable this MD study, a molecular mechanics force field for ferrocene-bearing peptides was developed and implemented in the CHARMM simulation package, thus extending the usefulness of the package into peptide-bioorganometallic chemistry. Using the automated frequency-matching method (AFMM), optimized intramolecular force-field parameters were generated through quantum chemical reference normal modes. The partial charges for ferrocene were derived by fitting point charges to quantum-chemically computed electrostaticmore » potentials. The force field was tested against experimental X-ray crystal structures of dipeptide derivatives of ferrocene-1,1'-dicarboxylic acid. The calculations reproduce accurately the molecular geometries, including the characteristic C{sub 2}-symmetrical intramolecular hydrogen-bonding pattern, that were stable over 0.1 {micro}s MD simulations. The crystal packing properties of ferrocene-1-(D)alanine-(D)proline-1'-(D)alanine-(D)proline were also accurately reproduced. The lattice parameters of this crystal were conserved during a 0.1 {micro}s MD simulation and match the experimental values almost exactly. Simulations of the peptides in dichloromethane are also in good agreement with experimental NMR and circular dichroism (CD) data in solution. The developed force field was used to perform MD simulations on novel, as yet unsynthesized peptide fragments that surround the active site of [Ni-Fe] hydrogenase. The results of this simulation lead us to propose an improved design for synthetic peptide-based hydrogenase models. The presented MD simulation results of metallocenes thereby provide a convincing validation of our proposal to use ferrocene-peptides as minimal enzyme mimics.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Hatten, Xavier; Cournia, Zoe; Smith, Jeremy C

    The increasing importance of hydrogenase enzymes in the new energy research field has led us to examine the structure and dynamics of potential hydrogenase mimics, based on a ferrocene-peptide scaffold, using molecular dynamics (MD) simulations. To enable this MD study, a molecular mechanics force field for ferrocene-bearing peptides was developed and implemented in the CHARMM simulation package, thus extending the usefulness of the package into peptide-bioorganometallic chemistry. Using the automated frequency-matching method (AFMM), optimized intramolecular force-field parameters were generated through quantum chemical reference normal modes. The partial charges for ferrocene were derived by fitting point charges to quantum-chemically computed electrostaticmore » potentials. The force field was tested against experimental X-ray crystal structures of dipeptide derivatives of ferrocene-1,1{prime}-dicarboxylic acid. The calculations reproduce accurately the molecular geometries, including the characteristic C2-symmetrical intramolecular hydrogen-bonding pattern, that were stable over 0.1{micro}s MD simulations. The crystal packing properties of ferrocene-1-(D)alanine-(D)proline{prime}-1-(D)alanine-(D)proline were also accurately reproduced. The lattice parameters of this crystal were conserved during a 0.1 s MD simulation and match the experimental values almost exactly. Simulations of the peptides in dichloromethane are also in good agreement with experimental NMR and circular dichroism (CD) data in solution. The developed force field was used to perform MD simulations on novel, as yet unsynthesized peptide fragments that surround the active site of [Ni-Fe] hydrogenase. The results of this simulation lead us to propose an improved design for synthetic peptide-based hydrogenase models. The presented MD simulation results of metallocenes thereby provide a convincing validation of our proposal to use ferrocene-peptides as minimal enzyme mimics.« less

  14. Computationally Guided Design of Polymer Electrolytes for Battery Applications

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Gang; Webb, Michael; Savoie, Brett; Miller, Thomas

    We develop an efficient computational framework for guiding the design of polymer electrolytes for Li battery applications. Short-times molecular dynamics (MD) simulations are employed to identify key structural and dynamic features in the solvation and motion of Li ions, such as the structure of the solvation shells, the spatial distribution of solvation sites, and the polymer segmental mobility. Comparative studies on six polyester-based polymers and polyethylene oxide (PEO) yield good agreement with experimental data on the ion conductivities, and reveal significant differences in the ion diffusion mechanism between PEO and the polyesters. The molecular insights from the MD simulations are used to build a chemically specific coarse-grained model in the spirit of the dynamic bond percolation model of Druger, Ratner and Nitzan. We apply this coarse-grained model to characterize Li ion diffusion in several existing and yet-to-be synthesized polyethers that differ by oxygen content and backbone stiffness. Good agreement is obtained between the predictions of the coarse-grained model and long-timescale atomistic MD simulations, thus providing validation of the model. Our study predicts higher Li ion diffusivity in poly(trimethylene oxide-alt-ethylene oxide) than in PEO. These results demonstrate the potential of this computational framework for rapid screening of new polymer electrolytes based on ion diffusivity.

  15. Towards validated chemistry at extreme conditions: reactive MD simulations of shocked Polyvinyl Nitrate and Nitromethane

    NASA Astrophysics Data System (ADS)

    Islam, Md Mahbubul; Strachan, Alejandro

    A detailed atomistic-level understanding of the ultrafast chemistry of detonation processes of high energy materials is crucial to understand their performance and safety. Recent advances in laser shocks and ultra-fast spectroscopy is yielding the first direct experimental evidence of chemistry at extreme conditions. At the same time, reactive molecular dynamics (MD) in current high-performance computing platforms enable an atomic description of shock-induced chemistry with length and timescales approaching those of experiments. We use MD simulations with the reactive force field ReaxFF to investigate the shock-induced chemical decomposition mechanisms of polyvinyl nitrate (PVN) and nitromethane (NM). The effect of shock pressure on chemical reaction mechanisms and kinetics of both the materials are investigated. For direct comparison of our simulation results with experimentally derived IR absorption data, we performed spectral analysis using atomistic velocity at various shock conditions. The combination of reactive MD simulations and ultrafast spectroscopy enables both the validation of ReaxFF at extreme conditions and contributes to the interpretation of the experimental data relating changes in spectral features to atomic processes. Office of Naval Research MURI program.

  16. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories.

    PubMed

    McGibbon, Robert T; Beauchamp, Kyle A; Harrigan, Matthew P; Klein, Christoph; Swails, Jason M; Hernández, Carlos X; Schwantes, Christian R; Wang, Lee-Ping; Lane, Thomas J; Pande, Vijay S

    2015-10-20

    As molecular dynamics (MD) simulations continue to evolve into powerful computational tools for studying complex biomolecular systems, the necessity of flexible and easy-to-use software tools for the analysis of these simulations is growing. We have developed MDTraj, a modern, lightweight, and fast software package for analyzing MD simulations. MDTraj reads and writes trajectory data in a wide variety of commonly used formats. It provides a large number of trajectory analysis capabilities including minimal root-mean-square-deviation calculations, secondary structure assignment, and the extraction of common order parameters. The package has a strong focus on interoperability with the wider scientific Python ecosystem, bridging the gap between MD data and the rapidly growing collection of industry-standard statistical analysis and visualization tools in Python. MDTraj is a powerful and user-friendly software package that simplifies the analysis of MD data and connects these datasets with the modern interactive data science software ecosystem in Python. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories

    PubMed Central

    McGibbon, Robert T.; Beauchamp, Kyle A.; Harrigan, Matthew P.; Klein, Christoph; Swails, Jason M.; Hernández, Carlos X.; Schwantes, Christian R.; Wang, Lee-Ping; Lane, Thomas J.; Pande, Vijay S.

    2015-01-01

    As molecular dynamics (MD) simulations continue to evolve into powerful computational tools for studying complex biomolecular systems, the necessity of flexible and easy-to-use software tools for the analysis of these simulations is growing. We have developed MDTraj, a modern, lightweight, and fast software package for analyzing MD simulations. MDTraj reads and writes trajectory data in a wide variety of commonly used formats. It provides a large number of trajectory analysis capabilities including minimal root-mean-square-deviation calculations, secondary structure assignment, and the extraction of common order parameters. The package has a strong focus on interoperability with the wider scientific Python ecosystem, bridging the gap between MD data and the rapidly growing collection of industry-standard statistical analysis and visualization tools in Python. MDTraj is a powerful and user-friendly software package that simplifies the analysis of MD data and connects these datasets with the modern interactive data science software ecosystem in Python. PMID:26488642

  18. Exploring protein kinase conformation using swarm-enhanced sampling molecular dynamics.

    PubMed

    Atzori, Alessio; Bruce, Neil J; Burusco, Kepa K; Wroblowski, Berthold; Bonnet, Pascal; Bryce, Richard A

    2014-10-27

    Protein plasticity, while often linked to biological function, also provides opportunities for rational design of selective and potent inhibitors of their function. The application of computational methods to the prediction of concealed protein concavities is challenging, as the motions involved can be significant and occur over long time scales. Here we introduce the swarm-enhanced sampling molecular dynamics (sesMD) method as a tool to improve sampling of conformational landscapes. In this approach, a swarm of replica simulations interact cooperatively via a set of pairwise potentials incorporating attractive and repulsive components. We apply the sesMD approach to explore the conformations of the DFG motif in the protein p38α mitogen-activated protein kinase. In contrast to multiple MD simulations, sesMD trajectories sample a range of DFG conformations, some of which map onto existing crystal structures. Simulated structures intermediate between the DFG-in and DFG-out conformations are predicted to have druggable pockets of interest for structure-based ligand design.

  19. A Computer Simulation Analysis of Conventional and Trunked Land Mobile Radio Systems at Wright Patterson Air Force Base

    DTIC Science & Technology

    1988-11-01

    ATRIB(1) .EQ.21,CD20; ACTIVITY,ND,ATRIB(1) .EQ.22, CD22 ; ACTIVITY,MD,ATRIB(l) .EQ.23,CD23; ACTIVITY,MD,ATRIB(1).EQ.24,CD24; ACTIVITY,MD,ATRIB(1) .EQ.25...TCD; CD20 COLCT,INT(5),FLT 20 CH DELAY; ACT,, ,TCD; CD21 COLCT,INT(5),FLT 21 CH DELAY; ACT,, ,TCD; CD22 COLCT,INT(5),FLT 22 CH DELAY; ACT,, ,TCD

  20. Microsecond Simulations of DNA and Ion Transport in Nanopores with Novel Ion-Ion and Ion-Nucleotides Effective Potentials

    PubMed Central

    De Biase, Pablo M.; Markosyan, Suren; Noskov, Sergei

    2014-01-01

    We developed a novel scheme based on the Grand-Canonical Monte-Carlo/Brownian Dynamics (GCMC/BD) simulations and have extended it to studies of ion currents across three nanopores with the potential for ssDNA sequencing: solid-state nanopore Si3N4, α-hemolysin, and E111N/M113Y/K147N mutant. To describe nucleotide-specific ion dynamics compatible with ssDNA coarse-grained model, we used the Inverse Monte-Carlo protocol, which maps the relevant ion-nucleotide distribution functions from an all-atom MD simulations. Combined with the previously developed simulation platform for Brownian Dynamic (BD) simulations of ion transport, it allows for microsecond- and millisecond-long simulations of ssDNA dynamics in nanopore with a conductance computation accuracy that equals or exceeds that of all-atom MD simulations. In spite of the simplifications, the protocol produces results that agree with the results of previous studies on ion conductance across open channels and provide direct correlations with experimentally measured blockade currents and ion conductances that have been estimated from all-atom MD simulations. PMID:24738152

  1. pKa values in proteins determined by electrostatics applied to molecular dynamics trajectories.

    PubMed

    Meyer, Tim; Knapp, Ernst-Walter

    2015-06-09

    For a benchmark set of 194 measured pKa values in 13 proteins, electrostatic energy computations are performed in which pKa values are computed by solving the Poisson-Boltzmann equation. In contrast to the previous approach of Karlsberg(+) (KB(+)) that essentially used protein crystal structures with variations in their side chain conformations, the present approach (KB2(+)MD) uses protein conformations from four molecular dynamics (MD) simulations of 10 ns each. These MD simulations are performed with different specific but fixed protonation patterns, selected to sample the conformational space for the different protonation patterns faithfully. The root-mean-square deviation between computed and measured pKa values (pKa RMSD) is shown to be reduced from 1.17 pH units using KB(+) to 0.96 pH units using KB2(+)MD. The pKa RMSD can be further reduced to 0.79 pH units, if each conformation is energy-minimized with a dielectric constant of εmin = 4 prior to calculating the electrostatic energy. The electrostatic energy expressions upon which the computations are based have been reformulated such that they do not involve terms that mix protein and solvent environment contributions and no thermodynamic cycle is needed. As a consequence, conformations of the titratable residues can be treated independently in the protein and solvent environments. In addition, the energy terms used here avoid the so-called intrinsic pKa and can therefore be interpreted without reference to arbitrary protonation states and conformations.

  2. Molecular dynamics simulation of diffusion of gases in a carbon-nanotube-polymer composite

    NASA Astrophysics Data System (ADS)

    Lim, Seong Y.; Sahimi, Muhammad; Tsotsis, Theodore T.; Kim, Nayong

    2007-07-01

    Extensive molecular dynamics (MD) simulations were carried out to compute the solubilities and self-diffusivities of CO2 and CH4 in amorphous polyetherimide (PEI) and mixed-matrix PEI generated by inserting single-walled carbon nanotubes into the polymer. Atomistic models of PEI and its composites were generated using energy minimizations, MD simulations, and the polymer-consistent force field. Two types of polymer composite were generated by inserting (7,0) and (12,0) zigzag carbon nanotubes into the PEI structure. The morphologies of PEI and its composites were characterized by their densities, radial distribution functions, and the accessible free volumes, which were computed with probe molecules of different sizes. The distributions of the cavity volumes were computed using the Voronoi tessellation method. The computed self-diffusivities of the gases in the polymer composites are much larger than those in pure PEI. We find, however, that the increase is not due to diffusion of the gases through the nanotubes which have smooth energy surfaces and, therefore, provide fast transport paths. Instead, the MD simulations indicate a squeezing effect of the nanotubes on the polymer matrix that changes the composite polymers’ free-volume distributions and makes them more sharply peaked. The presence of nanotubes also creates several cavities with large volumes that give rise to larger diffusivities in the polymer composites. This effect is due to the repulsive interactions between the polymer and the nanotubes. The solubilities of the gases in the polymer composites are also larger than those in pure PEI, hence indicating larger gas permeabilities for mixed-matrix PEI than PEI itself.

  3. Generalized image charge solvation model for electrostatic interactions in molecular dynamics simulations of aqueous solutions

    PubMed Central

    Deng, Shaozhong; Xue, Changfeng; Baumketner, Andriy; Jacobs, Donald; Cai, Wei

    2013-01-01

    This paper extends the image charge solvation model (ICSM) [J. Chem. Phys. 131, 154103 (2009)], a hybrid explicit/implicit method to treat electrostatic interactions in computer simulations of biomolecules formulated for spherical cavities, to prolate spheroidal and triaxial ellipsoidal cavities, designed to better accommodate non-spherical solutes in molecular dynamics (MD) simulations. In addition to the utilization of a general truncated octahedron as the MD simulation box, central to the proposed extension is an image approximation method to compute the reaction field for a point charge placed inside such a non-spherical cavity by using a single image charge located outside the cavity. The resulting generalized image charge solvation model (GICSM) is tested in simulations of liquid water, and the results are analyzed in comparison with those obtained from the ICSM simulations as a reference. We find that, for improved computational efficiency due to smaller simulation cells and consequently a less number of explicit solvent molecules, the generalized model can still faithfully reproduce known static and dynamic properties of liquid water at least for systems considered in the present paper, indicating its great potential to become an accurate but more efficient alternative to the ICSM when bio-macromolecules of irregular shapes are to be simulated. PMID:23913979

  4. GENESIS 1.1: A hybrid-parallel molecular dynamics simulator with enhanced sampling algorithms on multiple computational platforms.

    PubMed

    Kobayashi, Chigusa; Jung, Jaewoon; Matsunaga, Yasuhiro; Mori, Takaharu; Ando, Tadashi; Tamura, Koichi; Kamiya, Motoshi; Sugita, Yuji

    2017-09-30

    GENeralized-Ensemble SImulation System (GENESIS) is a software package for molecular dynamics (MD) simulation of biological systems. It is designed to extend limitations in system size and accessible time scale by adopting highly parallelized schemes and enhanced conformational sampling algorithms. In this new version, GENESIS 1.1, new functions and advanced algorithms have been added. The all-atom and coarse-grained potential energy functions used in AMBER and GROMACS packages now become available in addition to CHARMM energy functions. The performance of MD simulations has been greatly improved by further optimization, multiple time-step integration, and hybrid (CPU + GPU) computing. The string method and replica-exchange umbrella sampling with flexible collective variable choice are used for finding the minimum free-energy pathway and obtaining free-energy profiles for conformational changes of a macromolecule. These new features increase the usefulness and power of GENESIS for modeling and simulation in biological research. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Application of molecular dynamics simulation to predict the compatability between water-insoluble drugs and self-associating poly(ethylene oxide)-b-poly(epsilon-caprolactone) block copolymers.

    PubMed

    Patel, Sarthak; Lavasanifar, Afsaneh; Choi, Phillip

    2008-11-01

    In the present work, molecular dynamics (MD) simulation was applied to study the solubility of two water-insoluble drugs, fenofibrate and nimodipine, in a series of micelle-forming PEO-b-PCL block copolymers with combinations of blocks having different molecular weights. The solubility predictions based on the MD results were then compared with those obtained from solubility experiments and by the commonly used group contribution method (GCM). The results showed that Flory-Huggins interaction parameters computed by the MD simulations are consistent with the solubility data of the drug/PEO-b-PCL systems, whereas those calculated by the GCM significantly deviate from the experimental observation. We have also accounted for the possibility of drug solubilization in the PEO block of PEO-b-PCL.

  6. Long-time atomistic simulations with the Parallel Replica Dynamics method

    NASA Astrophysics Data System (ADS)

    Perez, Danny

    Molecular Dynamics (MD) -- the numerical integration of atomistic equations of motion -- is a workhorse of computational materials science. Indeed, MD can in principle be used to obtain any thermodynamic or kinetic quantity, without introducing any approximation or assumptions beyond the adequacy of the interaction potential. It is therefore an extremely powerful and flexible tool to study materials with atomistic spatio-temporal resolution. These enviable qualities however come at a steep computational price, hence limiting the system sizes and simulation times that can be achieved in practice. While the size limitation can be efficiently addressed with massively parallel implementations of MD based on spatial decomposition strategies, allowing for the simulation of trillions of atoms, the same approach usually cannot extend the timescales much beyond microseconds. In this article, we discuss an alternative parallel-in-time approach, the Parallel Replica Dynamics (ParRep) method, that aims at addressing the timescale limitation of MD for systems that evolve through rare state-to-state transitions. We review the formal underpinnings of the method and demonstrate that it can provide arbitrarily accurate results for any definition of the states. When an adequate definition of the states is available, ParRep can simulate trajectories with a parallel speedup approaching the number of replicas used. We demonstrate the usefulness of ParRep by presenting different examples of materials simulations where access to long timescales was essential to access the physical regime of interest and discuss practical considerations that must be addressed to carry out these simulations. Work supported by the United States Department of Energy (U.S. DOE), Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.

  7. Multinuclear NMR of CaSiO(3) glass: simulation from first-principles.

    PubMed

    Pedone, Alfonso; Charpentier, Thibault; Menziani, Maria Cristina

    2010-06-21

    An integrated computational method which couples classical molecular dynamics simulations with density functional theory calculations is used to simulate the solid-state NMR spectra of amorphous CaSiO(3). Two CaSiO(3) glass models are obtained by shell-model molecular dynamics simulations, successively relaxed at the GGA-PBE level of theory. The calculation of the NMR parameters (chemical shielding and quadrupolar parameters), which are then used to simulate solid-state 1D and 2D-NMR spectra of silicon-29, oxygen-17 and calcium-43, is achieved by the gauge including projector augmented-wave (GIPAW) and the projector augmented-wave (PAW) methods. It is shown that the limitations due to the finite size of the MD models can be overcome using a Kernel Estimation Density (KDE) approach to simulate the spectra since it better accounts for the disorder effects on the NMR parameter distribution. KDE allows reconstructing a smoothed NMR parameter distribution from the MD/GIPAW data. Simulated NMR spectra calculated with the present approach are found to be in excellent agreement with the experimental data. This further validates the CaSiO(3) structural model obtained by MD simulations allowing the inference of relationships between structural data and NMR response. The methods used to simulate 1D and 2D-NMR spectra from MD GIPAW data have been integrated in a package (called fpNMR) freely available on request.

  8. Molecular dynamics simulations of a DMSO/water mixture using the AMBER force field.

    PubMed

    Stachura, Slawomir S; Malajczuk, Chris J; Mancera, Ricardo L

    2018-06-25

    Due to its protective properties of biological samples at low temperatures and under desiccation, dimethyl sulfoxide (DMSO) in aqueous solutions has been studied widely by many experimental approaches and molecular dynamics (MD) simulations. In the case of the latter, AMBER is among the most commonly used force fields for simulations of biomolecular systems; however, the parameters for DMSO published by Fox and Kollman in 1998 have only been tested for pure liquid DMSO. We have conducted an MD simulation study of DMSO in a water mixture and computed several structural and dynamical properties such as of the mean density, self-diffusion coefficient, hydrogen bonding and DMSO and water ordering. The AMBER force field of DMSO is seen to reproduce well most of the experimental properties of DMSO in water, with the mixture displaying strong and specific water ordering, as observed in experiments and multiple other MD simulations with other non-polarizable force fields. Graphical abstract Hydration structure within hydrogen-bonding distance around a DMSOmolecule.

  9. Combining Rosetta with molecular dynamics (MD): A benchmark of the MD-based ensemble protein design.

    PubMed

    Ludwiczak, Jan; Jarmula, Adam; Dunin-Horkawicz, Stanislaw

    2018-07-01

    Computational protein design is a set of procedures for computing amino acid sequences that will fold into a specified structure. Rosetta Design, a commonly used software for protein design, allows for the effective identification of sequences compatible with a given backbone structure, while molecular dynamics (MD) simulations can thoroughly sample near-native conformations. We benchmarked a procedure in which Rosetta design is started on MD-derived structural ensembles and showed that such a combined approach generates 20-30% more diverse sequences than currently available methods with only a slight increase in computation time. Importantly, the increase in diversity is achieved without a loss in the quality of the designed sequences assessed by their resemblance to natural sequences. We demonstrate that the MD-based procedure is also applicable to de novo design tasks started from backbone structures without any sequence information. In addition, we implemented a protocol that can be used to assess the stability of designed models and to select the best candidates for experimental validation. In sum our results demonstrate that the MD ensemble-based flexible backbone design can be a viable method for protein design, especially for tasks that require a large pool of diverse sequences. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Consistent View of Protein Fluctuations from All-Atom Molecular Dynamics and Coarse-Grained Dynamics with Knowledge-Based Force-Field.

    PubMed

    Jamroz, Michal; Orozco, Modesto; Kolinski, Andrzej; Kmiecik, Sebastian

    2013-01-08

    It is widely recognized that atomistic Molecular Dynamics (MD), a classical simulation method, captures the essential physics of protein dynamics. That idea is supported by a theoretical study showing that various MD force-fields provide a consensus picture of protein fluctuations in aqueous solution [Rueda, M. et al. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 796-801]. However, atomistic MD cannot be applied to most biologically relevant processes due to its limitation to relatively short time scales. Much longer time scales can be accessed by properly designed coarse-grained models. We demonstrate that the aforementioned consensus view of protein dynamics from short (nanosecond) time scale MD simulations is fairly consistent with the dynamics of the coarse-grained protein model - the CABS model. The CABS model employs stochastic dynamics (a Monte Carlo method) and a knowledge-based force-field, which is not biased toward the native structure of a simulated protein. Since CABS-based dynamics allows for the simulation of entire folding (or multiple folding events) in a single run, integration of the CABS approach with all-atom MD promises a convenient (and computationally feasible) means for the long-time multiscale molecular modeling of protein systems with atomistic resolution.

  11. Atomistic Simulation and Electronic Structure of Lithium Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Bauschlicher, Charles W.; Lawson, John W.

    2015-01-01

    Zero-temperature density functional theory (DFT), density functional theory molecular dynamics (DFT-MD), and classical molecular dynamics using polarizable force fields (PFF-MD) are employed to evaluate the influence of Lithium ion on the structure, transport, and electrochemical stability of three potential ionic liquid electrolytes: N--methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([pyr14][TFSI]), N--methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide ([pyr13][FSI]), and 1-ethyl-3--methylimidazolium boron tetrafluoride ([EMIM][BF4]). We characterize the Lithium ion solvation shell through zero-temperature DFT simulations of [Li(Anion)sub n](exp n-1) -clusters, DFT-MD simulations of isolated lithium ions in small ionic liquid systems, and PFF-MD simulations with high Li-doping levels in large ionic liquid systems. At low levels of Li-salt doping, highly stable solvation shells having 2-3 anions are seen in both [pyr14][TFSI] and [pyr13][FSI], while solvation shells with 4 anions dominate in [EMIM][BF sub 4]. At higher levels of doping, we find the formation of complex Li-network structures that increase the frequency of 4 anion-coordinated solvation shells. A comparison of computational and experimental Raman spectra for a wide range of [Li(Anion) sub n](exp n -1) - clusters shows that our proposed structures are consistent with experiment. We estimate the ion diffusion coefficients and quantify both size and simulation time effects. We find estimates of lithium ion diffusion are a reasonable order of magnitude and can be corrected for simulation time effects. Simulation size, on the other hand, is also important, with diffusion coefficients from long PFF-MD simulations of small cells having 20-40% error compared to large-cell values. Finally, we compute the electrochemical window using differences in electronic energy levels of both isolated cation/anion pairs and small ionic liquid systems with Li-salt doping. The single pair and liquid-phase systems provide similar estimates of electrochemical window, while Li-doping in the liquid-phase systems results in electrochemical windows little changed from the neat systems. Pure and hybrid functionals systematically provide an upper and lower bound, respectively, to the experimental electrochemical window for the systems studied here.

  12. Efficient preconditioning of the electronic structure problem in large scale ab initio molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiffmann, Florian; VandeVondele, Joost, E-mail: Joost.VandeVondele@mat.ethz.ch

    2015-06-28

    We present an improved preconditioning scheme for electronic structure calculations based on the orbital transformation method. First, a preconditioner is developed which includes information from the full Kohn-Sham matrix but avoids computationally demanding diagonalisation steps in its construction. This reduces the computational cost of its construction, eliminating a bottleneck in large scale simulations, while maintaining rapid convergence. In addition, a modified form of Hotelling’s iterative inversion is introduced to replace the exact inversion of the preconditioner matrix. This method is highly effective during molecular dynamics (MD), as the solution obtained in earlier MD steps is a suitable initial guess. Filteringmore » small elements during sparse matrix multiplication leads to linear scaling inversion, while retaining robustness, already for relatively small systems. For system sizes ranging from a few hundred to a few thousand atoms, which are typical for many practical applications, the improvements to the algorithm lead to a 2-5 fold speedup per MD step.« less

  13. Molecular dynamics coupled with a virtual system for effective conformational sampling.

    PubMed

    Hayami, Tomonori; Kasahara, Kota; Nakamura, Haruki; Higo, Junichi

    2018-07-15

    An enhanced conformational sampling method is proposed: virtual-system coupled canonical molecular dynamics (VcMD). Although VcMD enhances sampling along a reaction coordinate, this method is free from estimation of a canonical distribution function along the reaction coordinate. This method introduces a virtual system that does not necessarily obey a physical law. To enhance sampling the virtual system couples with a molecular system to be studied. Resultant snapshots produce a canonical ensemble. This method was applied to a system consisting of two short peptides in an explicit solvent. Conventional molecular dynamics simulation, which is ten times longer than VcMD, was performed along with adaptive umbrella sampling. Free-energy landscapes computed from the three simulations mutually converged well. The VcMD provided quicker association/dissociation motions of peptides than the conventional molecular dynamics did. The VcMD method is applicable to various complicated systems because of its methodological simplicity. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  14. Construction, MD simulation, and hydrodynamic validation of an all-atom model of a monoclonal IgG antibody.

    PubMed

    Brandt, J Paul; Patapoff, Thomas W; Aragon, Sergio R

    2010-08-04

    At 150 kDa, antibodies of the IgG class are too large for their structure to be determined with current NMR methodologies. Because of hinge-region flexibility, it is difficult to obtain atomic-level structural information from the crystal, and questions regarding antibody structure and dynamics in solution remain unaddressed. Here we describe the construction of a model of a human IgG1 monoclonal antibody (trastuzumab) from the crystal structures of fragments. We use a combination of molecular-dynamics (MD) simulation, continuum hydrodynamics modeling, and experimental diffusion measurements to explore antibody behavior in aqueous solution. Hydrodynamic modeling provides a link between the atomic-level details of MD simulation and the size- and shape-dependent data provided by hydrodynamic measurements. Eight independent 40 ns MD trajectories were obtained with the AMBER program suite. The ensemble average of the computed transport properties over all of the MD trajectories agrees remarkably well with the value of the translational diffusion coefficient obtained with dynamic light scattering at 20 degrees C and 27 degrees C, and the intrinsic viscosity measured at 20 degrees C. Therefore, our MD results likely represent a realistic sampling of the conformational space that an antibody explores in aqueous solution. 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Hardware accelerator for molecular dynamics: MDGRAPE-2

    NASA Astrophysics Data System (ADS)

    Susukita, Ryutaro; Ebisuzaki, Toshikazu; Elmegreen, Bruce G.; Furusawa, Hideaki; Kato, Kenya; Kawai, Atsushi; Kobayashi, Yoshinao; Koishi, Takahiro; McNiven, Geoffrey D.; Narumi, Tetsu; Yasuoka, Kenji

    2003-10-01

    We developed MDGRAPE-2, a hardware accelerator that calculates forces at high speed in molecular dynamics (MD) simulations. MDGRAPE-2 is connected to a PC or a workstation as an extension board. The sustained performance of one MDGRAPE-2 board is 15 Gflops, roughly equivalent to the peak performance of the fastest supercomputer processing element. One board is able to calculate all forces between 10 000 particles in 0.28 s (i.e. 310000 time steps per day). If 16 boards are connected to one computer and operated in parallel, this calculation speed becomes ˜10 times faster. In addition to MD, MDGRAPE-2 can be applied to gravitational N-body simulations, the vortex method and smoothed particle hydrodynamics in computational fluid dynamics.

  16. Improving the Efficiency of Free Energy Calculations in the Amber Molecular Dynamics Package.

    PubMed

    Kaus, Joseph W; Pierce, Levi T; Walker, Ross C; McCammont, J Andrew

    2013-09-10

    Alchemical transformations are widely used methods to calculate free energies. Amber has traditionally included support for alchemical transformations as part of the sander molecular dynamics (MD) engine. Here we describe the implementation of a more efficient approach to alchemical transformations in the Amber MD package. Specifically we have implemented this new approach within the more computational efficient and scalable pmemd MD engine that is included with the Amber MD package. The majority of the gain in efficiency comes from the improved design of the calculation, which includes better parallel scaling and reduction in the calculation of redundant terms. This new implementation is able to reproduce results from equivalent simulations run with the existing functionality, but at 2.5 times greater computational efficiency. This new implementation is also able to run softcore simulations at the λ end states making direct calculation of free energies more accurate, compared to the extrapolation required in the existing implementation. The updated alchemical transformation functionality will be included in the next major release of Amber (scheduled for release in Q1 2014) and will be available at http://ambermd.org, under the Amber license.

  17. Improving the Efficiency of Free Energy Calculations in the Amber Molecular Dynamics Package

    PubMed Central

    Pierce, Levi T.; Walker, Ross C.; McCammont, J. Andrew

    2013-01-01

    Alchemical transformations are widely used methods to calculate free energies. Amber has traditionally included support for alchemical transformations as part of the sander molecular dynamics (MD) engine. Here we describe the implementation of a more efficient approach to alchemical transformations in the Amber MD package. Specifically we have implemented this new approach within the more computational efficient and scalable pmemd MD engine that is included with the Amber MD package. The majority of the gain in efficiency comes from the improved design of the calculation, which includes better parallel scaling and reduction in the calculation of redundant terms. This new implementation is able to reproduce results from equivalent simulations run with the existing functionality, but at 2.5 times greater computational efficiency. This new implementation is also able to run softcore simulations at the λ end states making direct calculation of free energies more accurate, compared to the extrapolation required in the existing implementation. The updated alchemical transformation functionality will be included in the next major release of Amber (scheduled for release in Q1 2014) and will be available at http://ambermd.org, under the Amber license. PMID:24185531

  18. Electronic Circular Dichroism of [16]Helicene With Simplified TD-DFT: Beyond the Single Structure Approach.

    PubMed

    Bannwarth, Christoph; Seibert, Jakob; Grimme, Stefan

    2016-05-01

    The electronic circular dichroism (ECD) spectrum of the recently synthesized [16]helicene and a derivative comprising two triisopropylsilyloxy protection groups was computed by means of the very efficient simplified time-dependent density functional theory (sTD-DFT) approach. Different from many previous ECD studies of helicenes, nonequilibrium structure effects were accounted for by computing ECD spectra on "snapshots" obtained from a molecular dynamics (MD) simulation including solvent molecules. The trajectories are based on a molecule specific classical potential as obtained from the recently developed quantum chemically derived force field (QMDFF) scheme. The reduced computational cost in the MD simulation due to the use of the QMDFF (compared to ab-initio MD) as well as the sTD-DFT approach make realistic spectral simulations feasible for these compounds that comprise more than 100 atoms. While the ECD spectra of [16]helicene and its derivative computed vertically on the respective gas phase, equilibrium geometries show noticeable differences, these are "washed" out when nonequilibrium structures are taken into account. The computed spectra with two recommended density functionals (ωB97X and BHLYP) and extended basis sets compare very well with the experimental one. In addition we provide an estimate for the missing absolute intensities of the latter. The approach presented here could also be used in future studies to capture nonequilibrium effects, but also to systematically average ECD spectra over different conformations in more flexible molecules. Chirality 28:365-369, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Interactions of Organics within Hydrated Selective Layer of Reverse Osmosis Desalination Membrane: A Combined Experimental and Computational Study.

    PubMed

    Ghoufi, Aziz; Dražević, Emil; Szymczyk, Anthony

    2017-03-07

    In this work we have examined a computational approach in predicting the interactions between uncharged organic solutes and polyamide membranes. We used three model organic molecules with identical molecular weights (100.1 g/mol), 4-aminopiperidine, 3,3-dimethyl-2-butanone (pinacolone) and methylisobutyl ketone for which we obtained experimental data on partitioning, diffusion and separation on a typical seawater reverse osmosis (RO) membrane. The interaction energy between the solutes and the membrane phase (fully aromatic polyamide) was computed from molecular dynamics (MD) simulations and the resulting sequence was found to correlate well with the experimental rejections and sorption data. Sorption of the different organic solutes within the membrane skin layer determined from attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) nicely agreed with interaction energies computed from molecular simulations. Qualitative information about solute diffusivity inside the membrane was also extracted from MD simulations while ATR-FTIR experiments indicated strongly hindered diffusion with diffusion coefficients in the membrane about 10 -15 m 2 /s. The computational approach presented here could be a first step toward predicting rejections trends of, for example, hormones and pharmaceuticals by RO dense membranes.

  20. The binding domain of the HMGB1 inhibitor carbenoxolone: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Mollica, Luca; Curioni, Alessandro; Andreoni, Wanda; Bianchi, Marco E.; Musco, Giovanna

    2008-05-01

    We present a combined computational and experimental study of the interaction of the Box A of the HMGB1 protein and carbenoxolone, an inhibitor of its pro-inflammatory activity. The computational approach consists of classical molecular dynamics (MD) simulations based on the GROMOS force field with quantum-refined (QRFF) atomic charges for the ligand. Experimental data consist of fluorescence intensities, chemical shift displacements, saturation transfer differences and intermolecular Nuclear Overhauser Enhancement signals. Good agreement is found between observations and the conformation of the ligand-protein complex resulting from QRFF-MD. In contrast, simple docking procedures and MD based on the unrefined force field provide models inconsistent with experiment. The ligand-protein binding is dominated by non-directional interactions.

  1. Computational design of a thermostable mutant of cocaine esterase via molecular dynamics simulations.

    PubMed

    Huang, Xiaoqin; Gao, Daquan; Zhan, Chang-Guo

    2011-06-07

    Cocaine esterase (CocE) has been known as the most efficient native enzyme for metabolizing naturally occurring cocaine. A major obstacle to the clinical application of CocE is the thermoinstability of native CocE with a half-life of only ∼11 min at physiological temperature (37 °C). It is highly desirable to develop a thermostable mutant of CocE for therapeutic treatment of cocaine overdose and addiction. To establish a structure-thermostability relationship, we carried out molecular dynamics (MD) simulations at 400 K on wild-type CocE and previously known thermostable mutants, demonstrating that the thermostability of the active form of the enzyme correlates with the fluctuation (characterized as the root-mean square deviation and root-mean square fluctuation of atomic positions) of the catalytic residues (Y44, S117, Y118, H287, and D259) in the simulated enzyme. In light of the structure-thermostability correlation, further computational modelling including MD simulations at 400 K predicted that the active site structure of the L169K mutant should be more thermostable. The prediction has been confirmed by wet experimental tests showing that the active form of the L169K mutant had a half-life of 570 min at 37 °C, which is significantly longer than those of the wild-type and previously known thermostable mutants. The encouraging outcome suggests that the high-temperature MD simulations and the structure-thermostability relationship may be considered as a valuable tool for the computational design of thermostable mutants of an enzyme.

  2. MDGRAPE-4: a special-purpose computer system for molecular dynamics simulations.

    PubMed

    Ohmura, Itta; Morimoto, Gentaro; Ohno, Yousuke; Hasegawa, Aki; Taiji, Makoto

    2014-08-06

    We are developing the MDGRAPE-4, a special-purpose computer system for molecular dynamics (MD) simulations. MDGRAPE-4 is designed to achieve strong scalability for protein MD simulations through the integration of general-purpose cores, dedicated pipelines, memory banks and network interfaces (NIFs) to create a system on chip (SoC). Each SoC has 64 dedicated pipelines that are used for non-bonded force calculations and run at 0.8 GHz. Additionally, it has 65 Tensilica Xtensa LX cores with single-precision floating-point units that are used for other calculations and run at 0.6 GHz. At peak performance levels, each SoC can evaluate 51.2 G interactions per second. It also has 1.8 MB of embedded shared memory banks and six network units with a peak bandwidth of 7.2 GB s(-1) for the three-dimensional torus network. The system consists of 512 (8×8×8) SoCs in total, which are mounted on 64 node modules with eight SoCs. The optical transmitters/receivers are used for internode communication. The expected maximum power consumption is 50 kW. While MDGRAPE-4 software has still been improved, we plan to run MD simulations on MDGRAPE-4 in 2014. The MDGRAPE-4 system will enable long-time molecular dynamics simulations of small systems. It is also useful for multiscale molecular simulations where the particle simulation parts often become bottlenecks.

  3. MDGRAPE-4: a special-purpose computer system for molecular dynamics simulations

    PubMed Central

    Ohmura, Itta; Morimoto, Gentaro; Ohno, Yousuke; Hasegawa, Aki; Taiji, Makoto

    2014-01-01

    We are developing the MDGRAPE-4, a special-purpose computer system for molecular dynamics (MD) simulations. MDGRAPE-4 is designed to achieve strong scalability for protein MD simulations through the integration of general-purpose cores, dedicated pipelines, memory banks and network interfaces (NIFs) to create a system on chip (SoC). Each SoC has 64 dedicated pipelines that are used for non-bonded force calculations and run at 0.8 GHz. Additionally, it has 65 Tensilica Xtensa LX cores with single-precision floating-point units that are used for other calculations and run at 0.6 GHz. At peak performance levels, each SoC can evaluate 51.2 G interactions per second. It also has 1.8 MB of embedded shared memory banks and six network units with a peak bandwidth of 7.2 GB s−1 for the three-dimensional torus network. The system consists of 512 (8×8×8) SoCs in total, which are mounted on 64 node modules with eight SoCs. The optical transmitters/receivers are used for internode communication. The expected maximum power consumption is 50 kW. While MDGRAPE-4 software has still been improved, we plan to run MD simulations on MDGRAPE-4 in 2014. The MDGRAPE-4 system will enable long-time molecular dynamics simulations of small systems. It is also useful for multiscale molecular simulations where the particle simulation parts often become bottlenecks. PMID:24982255

  4. A Molecular Dynamics Simulation of the Turbulent Couette Minimal Flow Unit

    NASA Astrophysics Data System (ADS)

    Smith, Edward

    2016-11-01

    What happens to turbulent motions below the Kolmogorov length scale? In order to explore this question, a 300 million molecule Molecular Dynamics (MD) simulation is presented for the minimal Couette channel in which turbulence can be sustained. The regeneration cycle and turbulent statistics show excellent agreement to continuum based computational fluid dynamics (CFD) at Re=400. As MD requires only Newton's laws and a form of inter-molecular potential, it captures a much greater range of phenomena without requiring the assumptions of Newton's law of viscosity, thermodynamic equilibrium, fluid isotropy or the limitation of grid resolution. The fundamental nature of MD means it is uniquely placed to explore the nature of turbulent transport. A number of unique insights from MD are presented, including energy budgets, sub-grid turbulent energy spectra, probability density functions, Lagrangian statistics and fluid wall interactions. EPSRC Post Doctoral Prize Fellowship.

  5. Simulation Studies of Mechanical Properties of Novel Silica Nano-structures

    NASA Astrophysics Data System (ADS)

    Muralidharan, Krishna; Torras Costa, Joan; Trickey, Samuel B.

    2006-03-01

    Advances in nanotechnology and the importance of silica as a technological material continue to stimulate computational study of the properties of possible novel silica nanostructures. Thus we have done classical molecular dynamics (MD) and multi-scale quantum mechanical (QM/MD) simulation studies of the mechanical properties of single-wall and multi-wall silica nano-rods of varying dimensions. Such nano-rods have been predicted by Mallik et al. to be unusually strong in tensile failure. Here we compare failure mechanisms of such nano-rods under tension, compression, and bending. The concurrent multi-scale QM/MD studies use the general PUPIL system (Torras et al.). In this case, PUPIL provides automated interoperation of the MNDO Transfer Hamiltonian QM code (Taylor et al.) and a locally written MD code. Embedding of the QM-forces domain is via the scheme of Mallik et al. Work supported by NSF ITR award DMR-0325553.

  6. Delivery of nitric oxide to the interior of mammalian cell by carbon nanotube: MD simulation.

    PubMed

    Raczyński, Przemysław; Górny, Krzysztof; Dawid, Aleksander; Gburski, Zygmunt

    2014-07-15

    Computer simulations have been performed to study the nanoindentation of phospholipid bilayer by the single-walled armchair carbon nanotube, filled with the nitric oxide molecules. The process has been simulated by means of molecular dynamics (MD) technique at physiological temperature T = 310 K with a constant pulling velocity of the nanotube. The force acting on the nanotube during membrane penetration has been calculated. We show that the indentation by carbon nanotube does not permanently destroy the membrane structure (self-sealing of the membrane occurs). The mobility of nitric oxide molecules during the membrane nanoindentation is discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. GENESIS: a hybrid-parallel and multi-scale molecular dynamics simulator with enhanced sampling algorithms for biomolecular and cellular simulations.

    PubMed

    Jung, Jaewoon; Mori, Takaharu; Kobayashi, Chigusa; Matsunaga, Yasuhiro; Yoda, Takao; Feig, Michael; Sugita, Yuji

    2015-07-01

    GENESIS (Generalized-Ensemble Simulation System) is a new software package for molecular dynamics (MD) simulations of macromolecules. It has two MD simulators, called ATDYN and SPDYN. ATDYN is parallelized based on an atomic decomposition algorithm for the simulations of all-atom force-field models as well as coarse-grained Go-like models. SPDYN is highly parallelized based on a domain decomposition scheme, allowing large-scale MD simulations on supercomputers. Hybrid schemes combining OpenMP and MPI are used in both simulators to target modern multicore computer architectures. Key advantages of GENESIS are (1) the highly parallel performance of SPDYN for very large biological systems consisting of more than one million atoms and (2) the availability of various REMD algorithms (T-REMD, REUS, multi-dimensional REMD for both all-atom and Go-like models under the NVT, NPT, NPAT, and NPγT ensembles). The former is achieved by a combination of the midpoint cell method and the efficient three-dimensional Fast Fourier Transform algorithm, where the domain decomposition space is shared in real-space and reciprocal-space calculations. Other features in SPDYN, such as avoiding concurrent memory access, reducing communication times, and usage of parallel input/output files, also contribute to the performance. We show the REMD simulation results of a mixed (POPC/DMPC) lipid bilayer as a real application using GENESIS. GENESIS is released as free software under the GPLv2 licence and can be easily modified for the development of new algorithms and molecular models. WIREs Comput Mol Sci 2015, 5:310-323. doi: 10.1002/wcms.1220.

  8. Multi-scale calculation based on dual domain material point method combined with molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhakal, Tilak Raj

    This dissertation combines the dual domain material point method (DDMP) with molecular dynamics (MD) in an attempt to create a multi-scale numerical method to simulate materials undergoing large deformations with high strain rates. In these types of problems, the material is often in a thermodynamically non-equilibrium state, and conventional constitutive relations are often not available. In this method, the closure quantities, such as stress, at each material point are calculated from a MD simulation of a group of atoms surrounding the material point. Rather than restricting the multi-scale simulation in a small spatial region, such as phase interfaces, or crackmore » tips, this multi-scale method can be used to consider non-equilibrium thermodynamic e ects in a macroscopic domain. This method takes advantage that the material points only communicate with mesh nodes, not among themselves; therefore MD simulations for material points can be performed independently in parallel. First, using a one-dimensional shock problem as an example, the numerical properties of the original material point method (MPM), the generalized interpolation material point (GIMP) method, the convected particle domain interpolation (CPDI) method, and the DDMP method are investigated. Among these methods, only the DDMP method converges as the number of particles increases, but the large number of particles needed for convergence makes the method very expensive especially in our multi-scale method where we calculate stress in each material point using MD simulation. To improve DDMP, the sub-point method is introduced in this dissertation, which provides high quality numerical solutions with a very small number of particles. The multi-scale method based on DDMP with sub-points is successfully implemented for a one dimensional problem of shock wave propagation in a cerium crystal. The MD simulation to calculate stress in each material point is performed in GPU using CUDA to accelerate the computation. The numerical properties of the multiscale method are investigated as well as the results from this multi-scale calculation are compared of particles needed for convergence makes the method very expensive especially in our multi-scale method where we calculate stress in each material point using MD simulation. To improve DDMP, the sub-point method is introduced in this dissertation, which provides high quality numerical solutions with a very small number of particles. The multi-scale method based on DDMP with sub-points is successfully implemented for a one dimensional problem of shock wave propagation in a cerium crystal. The MD simulation to calculate stress in each material point is performed in GPU using CUDA to accelerate the computation. The numerical properties of the multiscale method are investigated as well as the results from this multi-scale calculation are compared with direct MD simulation results to demonstrate the feasibility of the method. Also, the multi-scale method is applied for a two dimensional problem of jet formation around copper notch under a strong impact.« less

  9. Distribution and Dynamic Properties of Xenon Dissolved in the Ionic Smectic Phase of [C16mim][NO3]: MD Simulation and Theoretical Model.

    PubMed

    Frezzato, Diego; Saielli, Giacomo

    2016-03-10

    We have investigated the structural and dynamic properties of Xe dissolved in the ionic liquid crystal (ILC) phase of 1-hexadecyl-3-methylimidazolium nitrate using classical molecular dynamics (MD) simulations. Xe is found to be preferentially dissolved within the hydrophobic environment of the alkyl chains rather than in the ionic layers of the smectic phase. The structural parameters and the estimated local diffusion coefficients concerning the short-time motion of Xe are used to parametrize a theoretical model based on the Smoluchowski equation for the macroscopic dynamics across the smectic layers, a feature which cannot be directly obtained from the relatively short MD simulations. This protocol represents an efficient combination of computational and theoretical tools to obtain information on slow processes concerning the permeability and diffusivity of the xenon in smectic ILCs.

  10. Conformational analysis of a condensed macrocyclic β-lactam by NMR and molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    Keserű, György M.; Vásárhelyi, Helga; Makara, Gergely

    1994-09-01

    The conformation of the new macrocyclic β-lactam ( 1) was investigated by NMR and molecular dynamics (MD) calculations. Restraints obtained from NOESY and ROESY experiments were introduced into MD simulations which led to well-defined conformations. The preference for the calculated minimum energy conformation was confirmed by the analysis of vicinal coupling constants. Experimental coupling constants agreed with computed values.

  11. Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields.

    PubMed

    Lagardère, Louis; Jolly, Luc-Henri; Lipparini, Filippo; Aviat, Félix; Stamm, Benjamin; Jing, Zhifeng F; Harger, Matthew; Torabifard, Hedieh; Cisneros, G Andrés; Schnieders, Michael J; Gresh, Nohad; Maday, Yvon; Ren, Pengyu Y; Ponder, Jay W; Piquemal, Jean-Philip

    2018-01-28

    We present Tinker-HP, a massively MPI parallel package dedicated to classical molecular dynamics (MD) and to multiscale simulations, using advanced polarizable force fields (PFF) encompassing distributed multipoles electrostatics. Tinker-HP is an evolution of the popular Tinker package code that conserves its simplicity of use and its reference double precision implementation for CPUs. Grounded on interdisciplinary efforts with applied mathematics, Tinker-HP allows for long polarizable MD simulations on large systems up to millions of atoms. We detail in the paper the newly developed extension of massively parallel 3D spatial decomposition to point dipole polarizable models as well as their coupling to efficient Krylov iterative and non-iterative polarization solvers. The design of the code allows the use of various computer systems ranging from laboratory workstations to modern petascale supercomputers with thousands of cores. Tinker-HP proposes therefore the first high-performance scalable CPU computing environment for the development of next generation point dipole PFFs and for production simulations. Strategies linking Tinker-HP to Quantum Mechanics (QM) in the framework of multiscale polarizable self-consistent QM/MD simulations are also provided. The possibilities, performances and scalability of the software are demonstrated via benchmarks calculations using the polarizable AMOEBA force field on systems ranging from large water boxes of increasing size and ionic liquids to (very) large biosystems encompassing several proteins as well as the complete satellite tobacco mosaic virus and ribosome structures. For small systems, Tinker-HP appears to be competitive with the Tinker-OpenMM GPU implementation of Tinker. As the system size grows, Tinker-HP remains operational thanks to its access to distributed memory and takes advantage of its new algorithmic enabling for stable long timescale polarizable simulations. Overall, a several thousand-fold acceleration over a single-core computation is observed for the largest systems. The extension of the present CPU implementation of Tinker-HP to other computational platforms is discussed.

  12. Exploring the Stability of Ligand Binding Modes to Proteins by Molecular Dynamics Simulations: A Cross-docking Study.

    PubMed

    Liu, Kai; Kokubo, Hironori

    2017-10-23

    Docking has become an indispensable approach in drug discovery research to predict the binding mode of a ligand. One great challenge in docking is to efficiently refine the correct pose from various putative docking poses through scoring functions. We recently examined the stability of self-docking poses under molecular dynamics (MD) simulations and showed that equilibrium MD simulations have some capability to discriminate between correct and decoy poses. Here, we have extended our previous work to cross-docking studies for practical applications. Three target proteins (thrombin, heat shock protein 90-alpha, and cyclin-dependent kinase 2) of pharmaceutical interest were selected. Three comparable poses (one correct pose and two decoys) for each ligand were then selected from the docking poses. To obtain the docking poses for the three target proteins, we used three different protocols, namely: normal docking, induced fit docking (IFD), and IFD against the homology model. Finally, five parallel MD equilibrium runs were performed on each pose for the statistical analysis. The results showed that the correct poses were generally more stable than the decoy poses under MD. The discrimination capability of MD depends on the strategy. The safest way was to judge a pose as being stable if any one run among five parallel runs was stable under MD. In this case, 95% of the correct poses were retained under MD, and about 25-44% of the decoys could be excluded by the simulations for all cases. On the other hand, if we judge a pose as being stable when any two or three runs were stable, with the risk of incorrectly excluding some correct poses, approximately 31-53% or 39-56% of the two decoys could be excluded by MD, respectively. Our results suggest that simple equilibrium simulations can serve as an effective filter to exclude decoy poses that cannot be distinguished by docking scores from the computationally expensive free-energy calculations.

  13. Simulating adsorptive expansion of zeolites: application to biomass-derived solutions in contact with silicalite.

    PubMed

    Santander, Julian E; Tsapatsis, Michael; Auerbach, Scott M

    2013-04-16

    We have constructed and applied an algorithm to simulate the behavior of zeolite frameworks during liquid adsorption. We applied this approach to compute the adsorption isotherms of furfural-water and hydroxymethyl furfural (HMF)-water mixtures adsorbing in silicalite zeolite at 300 K for comparison with experimental data. We modeled these adsorption processes under two different statistical mechanical ensembles: the grand canonical (V-Nz-μg-T or GC) ensemble keeping volume fixed, and the P-Nz-μg-T (osmotic) ensemble allowing volume to fluctuate. To optimize accuracy and efficiency, we compared pure Monte Carlo (MC) sampling to hybrid MC-molecular dynamics (MD) simulations. For the external furfural-water and HMF-water phases, we assumed the ideal solution approximation and employed a combination of tabulated data and extended ensemble simulations for computing solvation free energies. We found that MC sampling in the V-Nz-μg-T ensemble (i.e., standard GCMC) does a poor job of reproducing both the Henry's law regime and the saturation loadings of these systems. Hybrid MC-MD sampling of the V-Nz-μg-T ensemble, which includes framework vibrations at fixed total volume, provides better results in the Henry's law region, but this approach still does not reproduce experimental saturation loadings. Pure MC sampling of the osmotic ensemble was found to approach experimental saturation loadings more closely, whereas hybrid MC-MD sampling of the osmotic ensemble quantitatively reproduces such loadings because the MC-MD approach naturally allows for locally anisotropic volume changes wherein some pores expand whereas others contract.

  14. Quasi-coarse-grained dynamics: modelling of metallic materials at mesoscales

    NASA Astrophysics Data System (ADS)

    Dongare, Avinash M.

    2014-12-01

    A computationally efficient modelling method called quasi-coarse-grained dynamics (QCGD) is developed to expand the capabilities of molecular dynamics (MD) simulations to model behaviour of metallic materials at the mesoscales. This mesoscale method is based on solving the equations of motion for a chosen set of representative atoms from an atomistic microstructure and using scaling relationships for the atomic-scale interatomic potentials in MD simulations to define the interactions between representative atoms. The scaling relationships retain the atomic-scale degrees of freedom and therefore energetics of the representative atoms as would be predicted in MD simulations. The total energetics of the system is retained by scaling the energetics and the atomic-scale degrees of freedom of these representative atoms to account for the missing atoms in the microstructure. This scaling of the energetics renders improved time steps for the QCGD simulations. The success of the QCGD method is demonstrated by the prediction of the structural energetics, high-temperature thermodynamics, deformation behaviour of interfaces, phase transformation behaviour, plastic deformation behaviour, heat generation during plastic deformation, as well as the wave propagation behaviour, as would be predicted using MD simulations for a reduced number of representative atoms. The reduced number of atoms and the improved time steps enables the modelling of metallic materials at the mesoscale in extreme environments.

  15. Stability of nanocrystalline Ni-based alloys: coupling Monte Carlo and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Waseda, O.; Goldenstein, H.; Silva, G. F. B. Lenz e.; Neiva, A.; Chantrenne, P.; Morthomas, J.; Perez, M.; Becquart, C. S.; Veiga, R. G. A.

    2017-10-01

    The thermal stability of nanocrystalline Ni due to small additions of Mo or W (up to 1 at%) was investigated in computer simulations by means of a combined Monte Carlo (MC)/molecular dynamics (MD) two-steps approach. In the first step, energy-biased on-lattice MC revealed segregation of the alloying elements to grain boundaries. However, the condition for the thermodynamic stability of these nanocrystalline Ni alloys (zero grain boundary energy) was not fulfilled. Subsequently, MD simulations were carried out for up to 0.5 μs at 1000 K. At this temperature, grain growth was hindered for minimum global concentrations of 0.5 at% W and 0.7 at% Mo, thus preserving most of the nanocrystalline structure. This is in clear contrast to a pure Ni model system, for which the transformation into a monocrystal was observed in MD simulations within 0.2 μs at the same temperature. These results suggest that grain boundary segregation of low-soluble alloying elements in low-alloyed systems can produce high-temperature metastable nanocrystalline materials. MD simulations carried out at 1200 K for 1 at% Mo/W showed significant grain boundary migration accompanied by some degree of solute diffusion, thus providing additional evidence that solute drag mostly contributed to the nanostructure stability observed at lower temperature.

  16. Parsing partial molar volumes of small molecules: a molecular dynamics study.

    PubMed

    Patel, Nisha; Dubins, David N; Pomès, Régis; Chalikian, Tigran V

    2011-04-28

    We used molecular dynamics (MD) simulations in conjunction with the Kirkwood-Buff theory to compute the partial molar volumes for a number of small solutes of various chemical natures. We repeated our computations using modified pair potentials, first, in the absence of the Coulombic term and, second, in the absence of the Coulombic and the attractive Lennard-Jones terms. Comparison of our results with experimental data and the volumetric results of Monte Carlo simulation with hard sphere potentials and scaled particle theory-based computations led us to conclude that, for small solutes, the partial molar volume computed with the Lennard-Jones potential in the absence of the Coulombic term nearly coincides with the cavity volume. On the other hand, MD simulations carried out with the pair interaction potentials containing only the repulsive Lennard-Jones term produce unrealistically large partial molar volumes of solutes that are close to their excluded volumes. Our simulation results are in good agreement with the reported schemes for parsing partial molar volume data on small solutes. In particular, our determined interaction volumes() and the thickness of the thermal volume for individual compounds are in good agreement with empirical estimates. This work is the first computational study that supports and lends credence to the practical algorithms of parsing partial molar volume data that are currently in use for molecular interpretations of volumetric data.

  17. Coupling MD Simulations and X-ray Absorption Spectroscopy to Study Ions in Solution

    NASA Astrophysics Data System (ADS)

    Marcos, E. Sánchez; Beret, E. C.; Martínez, J. M.; Pappalardo, R. R.; Ayala, R.; Muñoz-Páez, A.

    2007-12-01

    The structure of ionic solutions is a key-point in understanding physicochemical properties of electrolyte solutions. Among the reduced number of experimental techniques which can supply direct information on the ion environment, X-ray Absorption techniques (XAS) have gained importance during the last decades although they are not free of difficulties associated to the data analysis leading to provide reliable structures. Computer simulations of ions in solution is a theoretical alternative to provide information on the solvation structure. Thus, the use of computational chemistry can increase the understanding of these systems although an accurate description of ionic solvation phenomena represents nowadays a significant challenge to theoretical chemistry. We present: (a) the assignment of features in the XANES spectrum to well defined structural motif in the ion environment, (b) MD-based evaluation of EXAFS parameters used in the fitting procedure to make easier the structural resolution, and (c) the use of the agreement between experimental and simulated XANES spectra to help in the choice of a given intermolecular potential for Computer Simulations. Chemical problems examined are: (a) the identification of the second hydration shell in dilute aqueous solutions of highly-charged cations, such as Cr3+, Rh3+, Ir3+, (b) the invisibility by XAS of certain structures characterized by Computer Simulations but exhibiting high dynamical behavior and (c) the solvation of Br- in acetonitrile.

  18. Coupling MD Simulations and X-ray Absorption Spectroscopy to Study Ions in Solution

    NASA Astrophysics Data System (ADS)

    Marcos, E. Sánchez; Beret, E. C.; Martínez, J. M.; Pappalardo, R. R.; Ayala, R.; Muñoz-Páez, A.

    2007-11-01

    The structure of ionic solutions is a key-point in understanding physicochemical properties of electrolyte solutions. Among the reduced number of experimental techniques which can supply direct information on the ion environment, X-ray Absorption techniques (XAS) have gained importance during the last decades although they are not free of difficulties associated to the data analysis leading to provide reliable structures. Computer simulations of ions in solution is a theoretical alternative to provide information on the solvation structure. Thus, the use of computational chemistry can increase the understanding of these systems although an accurate description of ionic solvation phenomena represents nowadays a significant challenge to theoretical chemistry. We present: (a) the assignment of features in the XANES spectrum to well defined structural motif in the ion environment, (b) MD-based evaluation of EXAFS parameters used in the fitting procedure to make easier the structural resolution, and (c) the use of the agreement between experimental and simulated XANES spectra to help in the choice of a given intermolecular potential for Computer Simulations. Chemical problems examined are: (a) the identification of the second hydration shell in dilute aqueous solutions of highly-charged cations, such as Cr3+, Rh3+, Ir3+, (b) the invisibility by XAS of certain structures characterized by Computer Simulations but exhibiting high dynamical behavior and (c) the solvation of Br- in acetonitrile.

  19. How to identify dislocations in molecular dynamics simulations?

    NASA Astrophysics Data System (ADS)

    Li, Duo; Wang, FengChao; Yang, ZhenYu; Zhao, YaPu

    2014-12-01

    Dislocations are of great importance in revealing the underlying mechanisms of deformed solid crystals. With the development of computational facilities and technologies, the observations of dislocations at atomic level through numerical simulations are permitted. Molecular dynamics (MD) simulation suggests itself as a powerful tool for understanding and visualizing the creation of dislocations as well as the evolution of crystal defects. However, the numerical results from the large-scale MD simulations are not very illuminating by themselves and there exist various techniques for analyzing dislocations and the deformed crystal structures. Thus, it is a big challenge for the beginners in this community to choose a proper method to start their investigations. In this review, we summarized and discussed up to twelve existing structure characterization methods in MD simulations of deformed crystal solids. A comprehensive comparison was made between the advantages and disadvantages of these typical techniques. We also examined some of the recent advances in the dynamics of dislocations related to the hydraulic fracturing. It was found that the dislocation emission has a significant effect on the propagation and bifurcation of the crack tip in the hydraulic fracturing.

  20. Using Wavelet Analysis To Assist in Identification of Significant Events in Molecular Dynamics Simulations.

    PubMed

    Heidari, Zahra; Roe, Daniel R; Galindo-Murillo, Rodrigo; Ghasemi, Jahan B; Cheatham, Thomas E

    2016-07-25

    Long time scale molecular dynamics (MD) simulations of biological systems are becoming increasingly commonplace due to the availability of both large-scale computational resources and significant advances in the underlying simulation methodologies. Therefore, it is useful to investigate and develop data mining and analysis techniques to quickly and efficiently extract the biologically relevant information from the incredible amount of generated data. Wavelet analysis (WA) is a technique that can quickly reveal significant motions during an MD simulation. Here, the application of WA on well-converged long time scale (tens of μs) simulations of a DNA helix is described. We show how WA combined with a simple clustering method can be used to identify both the physical and temporal locations of events with significant motion in MD trajectories. We also show that WA can not only distinguish and quantify the locations and time scales of significant motions, but by changing the maximum time scale of WA a more complete characterization of these motions can be obtained. This allows motions of different time scales to be identified or ignored as desired.

  1. A reduced basis method for molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Vincent-Finley, Rachel Elisabeth

    In this dissertation, we develop a method for molecular simulation based on principal component analysis (PCA) of a molecular dynamics trajectory and least squares approximation of a potential energy function. Molecular dynamics (MD) simulation is a computational tool used to study molecular systems as they evolve through time. With respect to protein dynamics, local motions, such as bond stretching, occur within femtoseconds, while rigid body and large-scale motions, occur within a range of nanoseconds to seconds. To capture motion at all levels, time steps on the order of a femtosecond are employed when solving the equations of motion and simulations must continue long enough to capture the desired large-scale motion. To date, simulations of solvated proteins on the order of nanoseconds have been reported. It is typically the case that simulations of a few nanoseconds do not provide adequate information for the study of large-scale motions. Thus, the development of techniques that allow longer simulation times can advance the study of protein function and dynamics. In this dissertation we use principal component analysis (PCA) to identify the dominant characteristics of an MD trajectory and to represent the coordinates with respect to these characteristics. We augment PCA with an updating scheme based on a reduced representation of a molecule and consider equations of motion with respect to the reduced representation. We apply our method to butane and BPTI and compare the results to standard MD simulations of these molecules. Our results indicate that the molecular activity with respect to our simulation method is analogous to that observed in the standard MD simulation with simulations on the order of picoseconds.

  2. Event Detection and Sub-state Discovery from Bio-molecular Simulations Using Higher-Order Statistics: Application To Enzyme Adenylate Kinase

    PubMed Central

    Ramanathan, Arvind; Savol, Andrej J.; Agarwal, Pratul K.; Chennubhotla, Chakra S.

    2012-01-01

    Biomolecular simulations at milli-second and longer timescales can provide vital insights into functional mechanisms. Since post-simulation analyses of such large trajectory data-sets can be a limiting factor in obtaining biological insights, there is an emerging need to identify key dynamical events and relating these events to the biological function online, that is, as simulations are progressing. Recently, we have introduced a novel computational technique, quasi-anharmonic analysis (QAA) (PLoS One 6(1): e15827), for partitioning the conformational landscape into a hierarchy of functionally relevant sub-states. The unique capabilities of QAA are enabled by exploiting anharmonicity in the form of fourth-order statistics for characterizing atomic fluctuations. In this paper, we extend QAA for analyzing long time-scale simulations online. In particular, we present HOST4MD - a higher-order statistical toolbox for molecular dynamics simulations, which (1) identifies key dynamical events as simulations are in progress, (2) explores potential sub-states and (3) identifies conformational transitions that enable the protein to access those sub-states. We demonstrate HOST4MD on micro-second time-scale simulations of the enzyme adenylate kinase in its apo state. HOST4MD identifies several conformational events in these simulations, revealing how the intrinsic coupling between the three sub-domains (LID, CORE and NMP) changes during the simulations. Further, it also identifies an inherent asymmetry in the opening/closing of the two binding sites. We anticipate HOST4MD will provide a powerful and extensible framework for detecting biophysically relevant conformational coordinates from long time-scale simulations. PMID:22733562

  3. An Object Oriented Extensible Architecture for Affordable Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Follen, Gregory J.; Lytle, John K. (Technical Monitor)

    2002-01-01

    Driven by a need to explore and develop propulsion systems that exceeded current computing capabilities, NASA Glenn embarked on a novel strategy leading to the development of an architecture that enables propulsion simulations never thought possible before. Full engine 3 Dimensional Computational Fluid Dynamic propulsion system simulations were deemed impossible due to the impracticality of the hardware and software computing systems required. However, with a software paradigm shift and an embracing of parallel and distributed processing, an architecture was designed to meet the needs of future propulsion system modeling. The author suggests that the architecture designed at the NASA Glenn Research Center for propulsion system modeling has potential for impacting the direction of development of affordable weapons systems currently under consideration by the Applied Vehicle Technology Panel (AVT). This paper discusses the salient features of the NPSS Architecture including its interface layer, object layer, implementation for accessing legacy codes, numerical zooming infrastructure and its computing layer. The computing layer focuses on the use and deployment of these propulsion simulations on parallel and distributed computing platforms which has been the focus of NASA Ames. Additional features of the object oriented architecture that support MultiDisciplinary (MD) Coupling, computer aided design (CAD) access and MD coupling objects will be discussed. Included will be a discussion of the successes, challenges and benefits of implementing this architecture.

  4. Microscopic modeling of gas-surface scattering. I. A combined molecular dynamics-rate equation approach

    NASA Astrophysics Data System (ADS)

    Filinov, A.; Bonitz, M.; Loffhagen, D.

    2018-06-01

    A combination of first principle molecular dynamics (MD) simulations with a rate equation model (MD-RE approach) is presented to study the trapping and the scattering of rare gas atoms from metal surfaces. The temporal evolution of the atom fractions that are either adsorbed or scattered into the continuum is investigated in detail. We demonstrate that for this description one has to consider trapped, quasi-trapped and scattering states, and present an energetic definition of these states. The rate equations contain the transition probabilities between the states. We demonstrate how these rate equations can be derived from kinetic theory. Moreover, we present a rigorous way to determine the transition probabilities from a microscopic analysis of the particle trajectories generated by MD simulations. Once the system reaches quasi-equilibrium, the rates converge to stationary values, and the subsequent thermal adsorption/desorption dynamics is completely described by the rate equations without the need to perform further time-consuming MD simulations. As a proof of concept of our approach, MD simulations for argon atoms interacting with a platinum (111) surface are presented. A detailed deterministic trajectory analysis is performed, and the transition rates are constructed. The dependence of the rates on the incidence conditions and the lattice temperature is analyzed. Based on this example, we analyze the time scale of the gas-surface system to approach the quasi-stationary state. The MD-RE model has great relevance for the plasma-surface modeling as it makes an extension of accurate simulations to long, experimentally relevant time scales possible. Its application to the computation of atomic sticking probabilities is given in the second part (paper II).

  5. GENESIS: a hybrid-parallel and multi-scale molecular dynamics simulator with enhanced sampling algorithms for biomolecular and cellular simulations

    PubMed Central

    Jung, Jaewoon; Mori, Takaharu; Kobayashi, Chigusa; Matsunaga, Yasuhiro; Yoda, Takao; Feig, Michael; Sugita, Yuji

    2015-01-01

    GENESIS (Generalized-Ensemble Simulation System) is a new software package for molecular dynamics (MD) simulations of macromolecules. It has two MD simulators, called ATDYN and SPDYN. ATDYN is parallelized based on an atomic decomposition algorithm for the simulations of all-atom force-field models as well as coarse-grained Go-like models. SPDYN is highly parallelized based on a domain decomposition scheme, allowing large-scale MD simulations on supercomputers. Hybrid schemes combining OpenMP and MPI are used in both simulators to target modern multicore computer architectures. Key advantages of GENESIS are (1) the highly parallel performance of SPDYN for very large biological systems consisting of more than one million atoms and (2) the availability of various REMD algorithms (T-REMD, REUS, multi-dimensional REMD for both all-atom and Go-like models under the NVT, NPT, NPAT, and NPγT ensembles). The former is achieved by a combination of the midpoint cell method and the efficient three-dimensional Fast Fourier Transform algorithm, where the domain decomposition space is shared in real-space and reciprocal-space calculations. Other features in SPDYN, such as avoiding concurrent memory access, reducing communication times, and usage of parallel input/output files, also contribute to the performance. We show the REMD simulation results of a mixed (POPC/DMPC) lipid bilayer as a real application using GENESIS. GENESIS is released as free software under the GPLv2 licence and can be easily modified for the development of new algorithms and molecular models. WIREs Comput Mol Sci 2015, 5:310–323. doi: 10.1002/wcms.1220 PMID:26753008

  6. Exploring transmembrane transport through alpha-hemolysin with grid-steered molecular dynamics.

    PubMed

    Wells, David B; Abramkina, Volha; Aksimentiev, Aleksei

    2007-09-28

    The transport of biomolecules across cell boundaries is central to cellular function. While structures of many membrane channels are known, the permeation mechanism is known only for a select few. Molecular dynamics (MD) is a computational method that can provide an accurate description of permeation events at the atomic level, which is required for understanding the transport mechanism. However, due to the relatively short time scales accessible to this method, it is of limited utility. Here, we present a method for all-atom simulation of electric field-driven transport of large solutes through membrane channels, which in tens of nanoseconds can provide a realistic account of a permeation event that would require a millisecond simulation using conventional MD. In this method, the average distribution of the electrostatic potential in a membrane channel under a transmembrane bias of interest is determined first from an all-atom MD simulation. This electrostatic potential, defined on a grid, is subsequently applied to a charged solute to steer its permeation through the membrane channel. We apply this method to investigate permeation of DNA strands, DNA hairpins, and alpha-helical peptides through alpha-hemolysin. To test the accuracy of the method, we computed the relative permeation rates of DNA strands having different sequences and global orientations. The results of the G-SMD simulations were found to be in good agreement in experiment.

  7. Reconstructing Solvent Density of Myoglobin Unit Cell from Proximal Radial Distribution Functions of Amino Acids

    NASA Astrophysics Data System (ADS)

    Galbraith, Madeline; Lynch, Gc; Pettitt, Bm

    Understanding the solvent density around a protein crystal structure is an important step for refining accurate crystal structures for use in dynamics simulations or in free energy calculations. The free energy of solvation has typically been approximated using an implicit continuum solvent model or an all atom MD simulation, with a trade-off between accuracy and computation time. For proteins, using precomputed proximal radial distribution functions (pRDFs) of the solvent to reconstruct solvent density on a grid is much faster than all atom MD simulations and more accurate than using implicit solvent models. MD simulations were run for the 20 common amino acids and pRDFs were calculated for several atom type data sets with and without hydrogens, using atom types representative of amino acid side chain atoms. Preliminary results from reconstructions suggest using a data set with 15 heavy atoms and 3 hydrogen yields results with the lowest error without a tradeoff on time. The results of using precomputed pRDFs to reconstruct the solvent density of water for the myoglobin (pdb ID 2mgk) unit cell quantifies the accuracy of the method in comparison with the crystallographic data. Funding Acknowledgement: This research was funded by the CPRIT Summer Undergraduate Program in Computational Cancer Biology, training Grant award RP 140113 from the Cancer Prevention & Research Institute of Texas (CPRIT).

  8. Anisotropic Effects on Constitutive Model Parameters of Aluminum Alloys

    DTIC Science & Technology

    2012-01-01

    constants are required input to computer codes (LS-DYNA, DYNA3D or SPH ) to accurately simulate fragment impact on structural components made of high...different temperatures. These model constants are required input to computer codes (LS-DYNA, DYNA3D or SPH ) to accurately simulate fragment impact on...ADDRESS(ES) Naval Surface Warfare Center,4104Evans Way Suite 102,Indian Head,MD,20640 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING

  9. Current status and future challenges in T-cell receptor/peptide/MHC molecular dynamics simulations.

    PubMed

    Knapp, Bernhard; Demharter, Samuel; Esmaielbeiki, Reyhaneh; Deane, Charlotte M

    2015-11-01

    The interaction between T-cell receptors (TCRs) and major histocompatibility complex (MHC)-bound epitopes is one of the most important processes in the adaptive human immune response. Several hypotheses on TCR triggering have been proposed. Many of them involve structural and dynamical adjustments in the TCR/peptide/MHC interface. Molecular Dynamics (MD) simulations are a computational technique that is used to investigate structural dynamics at atomic resolution. Such simulations are used to improve understanding of signalling on a structural level. Here we review how MD simulations of the TCR/peptide/MHC complex have given insight into immune system reactions not achievable with current experimental methods. Firstly, we summarize methods of TCR/peptide/MHC complex modelling and TCR/peptide/MHC MD trajectory analysis methods. Then we classify recently published simulations into categories and give an overview of approaches and results. We show that current studies do not come to the same conclusions about TCR/peptide/MHC interactions. This discrepancy might be caused by too small sample sizes or intrinsic differences between each interaction process. As computational power increases future studies will be able to and should have larger sample sizes, longer runtimes and additional parts of the immunological synapse included. © The Author 2015. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Jared W.; Yazaydin, A. O.; Kirkpatrick, Robert J.

    Amorphous calcium carbonate (ACC) is a metastable precursor to crystalline CaCO{sub 3} phases that precipitates by aggregation of ion pairs and prenucleation clusters. We use {sup 43}Ca solid-state NMR spectroscopy to probe the local structure and transformation of ACC synthesized from seawater-like solutions with and without Mg{sup 2+} and computational molecular dynamics (MD) simulations to provide more detailed molecular-scale understanding of the ACC structure. The {sup 43}Ca NMR spectra of ACC collected immediately after synthesis consist of broad, featureless resonances with Gaussian line shapes (FWHH = 27.6 {+-} 1 ppm) that do not depend on Mg{sup 2+} or H{sub 2}Omore » content. A correlation between {sup 43}Ca isotropic chemical shifts and mean Ca-O bond distances for crystalline hydrous and anhydrous calcium carbonate phases indicates indistinguishable maximum mean Ca-O bond lengths of {approx}2.45 {angstrom} for all our samples. This value is near the upper end of the published Ca-O bond distance range for biogenic and synthetic ACCs obtained by Ca-X-ray absorption spectroscopy. It is slightly smaller than the values from the structural model of Mgfree ACC by Goodwin et al. obtained from reverse Monte Carlo (RMC) modeling of X-ray scattering data and our own computational molecular dynamics (MD) simulation based on this model. An MD simulation starting with the atomic positions of the Goodwin et al. RMC model using the force field of Raiteri and Gale shows significant structural reorganization during the simulation and that the interconnected carbonate/water-rich channels in the Goodwin et al. model shrink in size over the 2 ns simulation time. The distribution of polyhedrally averaged Ca-O bond distances from the MD simulation is in good agreement with the {sup 43}Ca NMR peak shape, suggesting that local structural disorder dominates the experimental line width of ACC.« less

  11. Coupling CP-MD simulations and X-ray absorption spectroscopy: exploring the structure of oxaliplatin in aqueous solution.

    PubMed

    Beret, Elizabeth C; Provost, Karine; Müller, Diane; Marcos, Enrique Sánchez

    2009-09-10

    A combined experimental-theoretical approach applying X-ray absorption spectroscopy and ab initio molecular dynamics (CP-MD) simulations is used to get insight into the structural determination of oxaliplatin, a third-generation anticancer drug of the cisplatin family, in aqueous solution. Experimental Pt L(III)-edge EXAFS and XANES spectra of oxaliplatin in water are compared with theoretical XAS spectra. The latter are obtained as statistically averaged spectra computed for a set of selected snapshots extracted from the MD trajectory of ethyldiamineoxalatoplatinum(II) (EDO-Pt) in liquid water. This compound is a simplified structure of oxaliplatin, where the outer part of the cyclohexane ring contained in the cyclohexanediamine ligand of oxaliplatin has been removed. We show that EDO-Pt is an appropriate model to simulate the spectroscopical properties of oxaliplatin given that the cyclohexane ring does not generate particular features in neither the EXAFS nor the XANES spectra. The computation of average EXAFS spectra using structures from the MD simulation in which atoms are selected according to different cutoff radii around the Pt center allows the assignment of spectral features to particular structural motifs, both in k and R-spaces. The outer oxygen atoms of the oxalate ligand (R(Pt-O(II)) = 3.97 +/- 0.03 A) are responsible for a well-defined hump at around 6.5 A(-1) in the k(2)-weighted EXAFS spectrum. The conventional EXAFS analysis data procedure is reexamined by its application to the simulated average EXAFS spectra. The structural parameters resulting from the fit may then be compared with those obtained from the simulation, providing an estimation of the methodological error associated with the global fitting procedure. A thorough discussion on the synergy between the experimental and theoretical XAS approaches is presented, and evidence for the detection of a slight hydration structure around the Pt complex is shown, leading to the suggestion of a new challenge to experimental XAS measurements.

  12. Dielectric properties of organic solvents from non-polarizable molecular dynamics simulation with electronic continuum model and density functional theory.

    PubMed

    Lee, Sanghun; Park, Sung Soo

    2011-11-03

    Dielectric constants of electrolytic organic solvents are calculated employing nonpolarizable Molecular Dynamics simulation with Electronic Continuum (MDEC) model and Density Functional Theory. The molecular polarizabilities are obtained by the B3LYP/6-311++G(d,p) level of theory to estimate high-frequency refractive indices while the densities and dipole moment fluctuations are computed using nonpolarizable MD simulations. The dielectric constants reproduced from these procedures are evaluated to provide a reliable approach for estimating the experimental data. An additional feature, two representative solvents which have similar molecular weights but are different dielectric properties, i.e., ethyl methyl carbonate and propylene carbonate, are compared using MD simulations and the distinctly different dielectric behaviors are observed at short times as well as at long times.

  13. PyRETIS: A well-done, medium-sized python library for rare events.

    PubMed

    Lervik, Anders; Riccardi, Enrico; van Erp, Titus S

    2017-10-30

    Transition path sampling techniques are becoming common approaches in the study of rare events at the molecular scale. More efficient methods, such as transition interface sampling (TIS) and replica exchange transition interface sampling (RETIS), allow the investigation of rare events, for example, chemical reactions and structural/morphological transitions, in a reasonable computational time. Here, we present PyRETIS, a Python library for performing TIS and RETIS simulations. PyRETIS directs molecular dynamics (MD) simulations in order to sample rare events with unbiased dynamics. PyRETIS is designed to be easily interfaced with any molecular simulation package and in the present release, it has been interfaced with GROMACS and CP2K, for classical and ab initio MD simulations, respectively. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Development of a Charge-Implicit ReaxFF Potential for Hydrocarbon Systems.

    PubMed

    Kański, Michał; Maciążek, Dawid; Postawa, Zbigniew; Ashraf, Chowdhury M; van Duin, Adri C T; Garrison, Barbara J

    2018-01-18

    Molecular dynamics (MD) simulations continue to make important contributions to understanding chemical and physical processes. Concomitant with the growth of MD simulations is the need to have interaction potentials that both represent the chemistry of the system and are computationally efficient. We propose a modification to the ReaxFF potential for carbon and hydrogen that eliminates the time-consuming charge equilibration, eliminates the acknowledged flaws of the electronegativity equalization method, includes an expanded training set for condensed phases, has a repulsive wall for simulations of energetic particle bombardment, and is compatible with the LAMMPS code. This charge-implicit ReaxFF potential is five times faster than the conventional ReaxFF potential for a simulation of keV particle bombardment with a sample size of over 800 000 atoms.

  15. A Computational Approach for Modeling Neutron Scattering Data from Lipid Bilayers

    DOE PAGES

    Carrillo, Jan-Michael Y.; Katsaras, John; Sumpter, Bobby G.; ...

    2017-01-12

    Biological cell membranes are responsible for a range of structural and dynamical phenomena crucial to a cell's well-being and its associated functions. Due to the complexity of cell membranes, lipid bilayer systems are often used as biomimetic models. These systems have led to signficant insights into vital membrane phenomena such as domain formation, passive permeation and protein insertion. Experimental observations of membrane structure and dynamics are, however, limited in resolution, both spatially and temporally. Importantly, computer simulations are starting to play a more prominent role in interpreting experimental results, enabling a molecular under- standing of lipid membranes. Particularly, the synergymore » between scattering experiments and simulations offers opportunities for new discoveries in membrane physics, as the length and time scales probed by molecular dynamics (MD) simulations parallel those of experiments. We also describe a coarse-grained MD simulation approach that mimics neutron scattering data from large unilamellar lipid vesicles over a range of bilayer rigidity. Specfically, we simulate vesicle form factors and membrane thickness fluctuations determined from small angle neutron scattering (SANS) and neutron spin echo (NSE) experiments, respectively. Our simulations accurately reproduce trends from experiments and lay the groundwork for investigations of more complex membrane systems.« less

  16. Wettability of graphitic-carbon and silicon surfaces: MD modeling and theoretical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2015-07-28

    The wettability of graphitic carbon and silicon surfaces was numerically and theoretically investigated. A multi-response method has been developed for the analysis of conventional molecular dynamics (MD) simulations of droplets wettability. The contact angle and indicators of the quality of the computations are tracked as a function of the data sets analyzed over time. This method of analysis allows accurate calculations of the contact angle obtained from the MD simulations. Analytical models were also developed for the calculation of the work of adhesion using the mean-field theory, accounting for the interfacial entropy changes. A calibration method is proposed to providemore » better predictions of the respective contact angles under different solid-liquid interaction potentials. Estimations of the binding energy between a water monomer and graphite match those previously reported. In addition, a breakdown in the relationship between the binding energy and the contact angle was observed. The macroscopic contact angles obtained from the MD simulations were found to match those predicted by the mean-field model for graphite under different wettability conditions, as well as the contact angles of Si(100) and Si(111) surfaces. Finally, an assessment of the effect of the Lennard-Jones cutoff radius was conducted to provide guidelines for future comparisons between numerical simulations and analytical models of wettability.« less

  17. Computer Science Techniques Applied to Parallel Atomistic Simulation

    NASA Astrophysics Data System (ADS)

    Nakano, Aiichiro

    1998-03-01

    Recent developments in parallel processing technology and multiresolution numerical algorithms have established large-scale molecular dynamics (MD) simulations as a new research mode for studying materials phenomena such as fracture. However, this requires large system sizes and long simulated times. We have developed: i) Space-time multiresolution schemes; ii) fuzzy-clustering approach to hierarchical dynamics; iii) wavelet-based adaptive curvilinear-coordinate load balancing; iv) multilevel preconditioned conjugate gradient method; and v) spacefilling-curve-based data compression for parallel I/O. Using these techniques, million-atom parallel MD simulations are performed for the oxidation dynamics of nanocrystalline Al. The simulations take into account the effect of dynamic charge transfer between Al and O using the electronegativity equalization scheme. The resulting long-range Coulomb interaction is calculated efficiently with the fast multipole method. Results for temperature and charge distributions, residual stresses, bond lengths and bond angles, and diffusivities of Al and O will be presented. The oxidation of nanocrystalline Al is elucidated through immersive visualization in virtual environments. A unique dual-degree education program at Louisiana State University will also be discussed in which students can obtain a Ph.D. in Physics & Astronomy and a M.S. from the Department of Computer Science in five years. This program fosters interdisciplinary research activities for interfacing High Performance Computing and Communications with large-scale atomistic simulations of advanced materials. This work was supported by NSF (CAREER Program), ARO, PRF, and Louisiana LEQSF.

  18. ST-analyzer: a web-based user interface for simulation trajectory analysis.

    PubMed

    Jeong, Jong Cheol; Jo, Sunhwan; Wu, Emilia L; Qi, Yifei; Monje-Galvan, Viviana; Yeom, Min Sun; Gorenstein, Lev; Chen, Feng; Klauda, Jeffery B; Im, Wonpil

    2014-05-05

    Molecular dynamics (MD) simulation has become one of the key tools to obtain deeper insights into biological systems using various levels of descriptions such as all-atom, united-atom, and coarse-grained models. Recent advances in computing resources and MD programs have significantly accelerated the simulation time and thus increased the amount of trajectory data. Although many laboratories routinely perform MD simulations, analyzing MD trajectories is still time consuming and often a difficult task. ST-analyzer, http://im.bioinformatics.ku.edu/st-analyzer, is a standalone graphical user interface (GUI) toolset to perform various trajectory analyses. ST-analyzer has several outstanding features compared to other existing analysis tools: (i) handling various formats of trajectory files from MD programs, such as CHARMM, NAMD, GROMACS, and Amber, (ii) intuitive web-based GUI environment--minimizing administrative load and reducing burdens on the user from adapting new software environments, (iii) platform independent design--working with any existing operating system, (iv) easy integration into job queuing systems--providing options of batch processing either on the cluster or in an interactive mode, and (v) providing independence between foreground GUI and background modules--making it easier to add personal modules or to recycle/integrate pre-existing scripts utilizing other analysis tools. The current ST-analyzer contains nine main analysis modules that together contain 18 options, including density profile, lipid deuterium order parameters, surface area per lipid, and membrane hydrophobic thickness. This article introduces ST-analyzer with its design, implementation, and features, and also illustrates practical analysis of lipid bilayer simulations. Copyright © 2014 Wiley Periodicals, Inc.

  19. FATSLiM: a fast and robust software to analyze MD simulations of membranes.

    PubMed

    Buchoux, Sébastien

    2017-01-01

    When studying biological membranes, Molecular Dynamics (MD) simulations reveal to be quite complementary to experimental techniques. Because the simulated systems keep increasing both in size and complexity, the analysis of MD trajectories need to be computationally efficient while being robust enough to perform analysis on membranes that may be curved or deformed due to their size and/or protein-lipid interactions. This work presents a new software named FATSLiM ('Fast Analysis Toolbox for Simulations of Lipid Membranes') that can extract physical properties from MD simulations of membranes (with or without interacting proteins). Because it relies on the calculation of local normals, FATSLiM does not depend of the bilayer morphology and thus can handle with the same accuracy vesicles for instance. Thanks to an efficiency-driven development, it is also fast and consumes a rather low amount of memory. FATSLiM (http://fatslim.github.io) is a stand-alone software written in Python. Source code is released under the GNU GPLv3 and is freely available at https://github.com/FATSLiM/fatslim A complete online documentation including instructions for platform-independent installation is available at http://pythonhosted.org/fatslim CONTACT: sebastien.buchoux@u-picardie.frSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Selectivity trend of gas separation through nanoporous graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hongjun; Chen, Zhongfang; Dai, Sheng

    2015-04-15

    By means of molecular dynamics (MD) simulations, we demonstrate that porous graphene can efficiently separate gases according to their molecular sizes. The flux sequence from the classical MD simulation is H{sub 2}>CO{sub 2}≫N{sub 2}>Ar>CH{sub 4}, which generally follows the trend in the kinetic diameters. This trend is also confirmed from the fluxes based on the computed free energy barriers for gas permeation using the umbrella sampling method and kinetic theory of gases. Both brute-force MD simulations and free-energy calcualtions lead to the flux trend consistent with experiments. Case studies of two compositions of CO{sub 2}/N{sub 2} mixtures further demonstrate themore » separation capability of nanoporous graphene. - Graphical abstract: Classical molecular dynamics simulations show the flux trend of H{sub 2}>CO{sub 2}≫N{sub 2}>Ar>CH{sub 4} for their permeation through a porous graphene, in excellent agreement with a recent experiment. - Highlights: • Classical MD simulations show the flux trend of H{sub 2}>CO{sub 2}≫N{sub 2}>Ar>CH{sub 4} for their permeation through a porous graphene. • Free energy calculations yield permeation barriers for those gases. • Selectivities for several gas pairs are estimated from the free-energy barriers and the kinetic theory of gases. • The selectivity trend is in excellent agreement with a recent experiment.« less

  1. Achieving Rigorous Accelerated Conformational Sampling in Explicit Solvent.

    PubMed

    Doshi, Urmi; Hamelberg, Donald

    2014-04-03

    Molecular dynamics simulations can provide valuable atomistic insights into biomolecular function. However, the accuracy of molecular simulations on general-purpose computers depends on the time scale of the events of interest. Advanced simulation methods, such as accelerated molecular dynamics, have shown tremendous promise in sampling the conformational dynamics of biomolecules, where standard molecular dynamics simulations are nonergodic. Here we present a sampling method based on accelerated molecular dynamics in which rotatable dihedral angles and nonbonded interactions are boosted separately. This method (RaMD-db) is a different implementation of the dual-boost accelerated molecular dynamics, introduced earlier. The advantage is that this method speeds up sampling of the conformational space of biomolecules in explicit solvent, as the degrees of freedom most relevant for conformational transitions are accelerated. We tested RaMD-db on one of the most difficult sampling problems - protein folding. Starting from fully extended polypeptide chains, two fast folding α-helical proteins (Trpcage and the double mutant of C-terminal fragment of Villin headpiece) and a designed β-hairpin (Chignolin) were completely folded to their native structures in very short simulation time. Multiple folding/unfolding transitions could be observed in a single trajectory. Our results show that RaMD-db is a promisingly fast and efficient sampling method for conformational transitions in explicit solvent. RaMD-db thus opens new avenues for understanding biomolecular self-assembly and functional dynamics occurring on long time and length scales.

  2. Overcoming free energy barriers using unconstrained molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Hénin, Jérôme; Chipot, Christophe

    2004-08-01

    Association of unconstrained molecular dynamics (MD) and the formalisms of thermodynamic integration and average force [Darve and Pohorille, J. Chem. Phys. 115, 9169 (2001)] have been employed to determine potentials of mean force. When implemented in a general MD code, the additional computational effort, compared to other standard, unconstrained simulations, is marginal. The force acting along a chosen reaction coordinate ξ is estimated from the individual forces exerted on the chemical system and accumulated as the simulation progresses. The estimated free energy derivative computed for small intervals of ξ is canceled by an adaptive bias to overcome the barriers of the free energy landscape. Evolution of the system along the reaction coordinate is, thus, limited by its sole self-diffusion properties. The illustrative examples of the reversible unfolding of deca-L-alanine, the association of acetate and guanidinium ions in water, the dimerization of methane in water, and its transfer across the water liquid-vapor interface are examined to probe the efficiency of the method.

  3. Overcoming free energy barriers using unconstrained molecular dynamics simulations.

    PubMed

    Hénin, Jérôme; Chipot, Christophe

    2004-08-15

    Association of unconstrained molecular dynamics (MD) and the formalisms of thermodynamic integration and average force [Darve and Pohorille, J. Chem. Phys. 115, 9169 (2001)] have been employed to determine potentials of mean force. When implemented in a general MD code, the additional computational effort, compared to other standard, unconstrained simulations, is marginal. The force acting along a chosen reaction coordinate xi is estimated from the individual forces exerted on the chemical system and accumulated as the simulation progresses. The estimated free energy derivative computed for small intervals of xi is canceled by an adaptive bias to overcome the barriers of the free energy landscape. Evolution of the system along the reaction coordinate is, thus, limited by its sole self-diffusion properties. The illustrative examples of the reversible unfolding of deca-L-alanine, the association of acetate and guanidinium ions in water, the dimerization of methane in water, and its transfer across the water liquid-vapor interface are examined to probe the efficiency of the method. (c) 2004 American Institute of Physics.

  4. Ab initio MD simulations of Mg2SiO4 liquid at high pressures and temperatures relevant to the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Martin, G. B.; Kirtman, B.; Spera, F. J.

    2010-12-01

    Computational studies implementing Density Functional Theory (DFT) methods have become very popular in the Materials Sciences in recent years. DFT codes are now used routinely to simulate properties of geomaterials—mainly silicates and geochemically important metals such as Fe. These materials are ubiquitous in the Earth’s mantle and core and in terrestrial exoplanets. Because of computational limitations, most First Principles Molecular Dynamics (FPMD) calculations are done on systems of only 100 atoms for a few picoseconds. While this approach can be useful for calculating physical quantities related to crystal structure, vibrational frequency, and other lattice-scale properties (especially in crystals), it would be useful to be able to compute larger systems especially for extracting transport properties and coordination statistics. Previous studies have used codes such as VASP where CPU time increases as N2, making calculations on systems of more than 100 atoms computationally very taxing. SIESTA (Soler, et al. 2002) is a an order-N (linear-scaling) DFT code that enables electronic structure and MD computations on larger systems (N 1000) by making approximations such as localized numerical orbitals. Here we test the applicability of SIESTA to simulate geosilicates in the liquid and glass state. We have used SIESTA for MD simulations of liquid Mg2SiO4 at various state points pertinent to the Earth’s mantle and congruous with those calculated in a previous DFT study using the VASP code (DeKoker, et al. 2008). The core electronic wave functions of Mg, Si, and O were approximated using pseudopotentials with a core cutoff radius of 1.38, 1.0, and 0.61 Angstroms respectively. The Ceperly-Alder parameterization of the Local Density Approximation (LDA) was used as the exchange-correlation functional. Known systematic overbinding of LDA was corrected with the addition of a pressure term, P 1.6 GPa, which is the pressure calculated by SIESTA at the experimental zero-pressure volume of forsterite under static conditions (Stixrude and Lithgow-Bertollini 2005). Results are reported here that show SIESTA calculations of T and P on densities in the range of 2.7 - 5.0 g/cc of liquid Mg2SiO4 are similar to the VASP calculations of DeKoker et al. (2008), which used the same functional. This opens the possibility of conducting fast /emph{ab initio} MD simulations of geomaterials with a hundreds of atoms.

  5. Event detection and sub-state discovery from biomolecular simulations using higher-order statistics: application to enzyme adenylate kinase.

    PubMed

    Ramanathan, Arvind; Savol, Andrej J; Agarwal, Pratul K; Chennubhotla, Chakra S

    2012-11-01

    Biomolecular simulations at millisecond and longer time-scales can provide vital insights into functional mechanisms. Because post-simulation analyses of such large trajectory datasets can be a limiting factor in obtaining biological insights, there is an emerging need to identify key dynamical events and relating these events to the biological function online, that is, as simulations are progressing. Recently, we have introduced a novel computational technique, quasi-anharmonic analysis (QAA) (Ramanathan et al., PLoS One 2011;6:e15827), for partitioning the conformational landscape into a hierarchy of functionally relevant sub-states. The unique capabilities of QAA are enabled by exploiting anharmonicity in the form of fourth-order statistics for characterizing atomic fluctuations. In this article, we extend QAA for analyzing long time-scale simulations online. In particular, we present HOST4MD--a higher-order statistical toolbox for molecular dynamics simulations, which (1) identifies key dynamical events as simulations are in progress, (2) explores potential sub-states, and (3) identifies conformational transitions that enable the protein to access those sub-states. We demonstrate HOST4MD on microsecond timescale simulations of the enzyme adenylate kinase in its apo state. HOST4MD identifies several conformational events in these simulations, revealing how the intrinsic coupling between the three subdomains (LID, CORE, and NMP) changes during the simulations. Further, it also identifies an inherent asymmetry in the opening/closing of the two binding sites. We anticipate that HOST4MD will provide a powerful and extensible framework for detecting biophysically relevant conformational coordinates from long time-scale simulations. Copyright © 2012 Wiley Periodicals, Inc.

  6. Thermodynamic Insights into Effects of Water Displacement and Rearrangement upon Ligand Modification using Molecular Dynamics Simulations.

    PubMed

    Wahl, Joel; Smiesko, Martin

    2018-05-04

    Computational methods, namely Molecular Dynamics Simulations (MD simulations) in combination with Inhomogeneous Fluid Solvation Theory (IFST) were used to retrospectively investigate various cases of ligand structure modifications that led to the displacement of binding site water molecules. Our findings are that the water displacement per se is energetically unfavorable in the discussed examples, and that it is merely the fine balance between change in protein-ligand interaction energy, ligand solvation free energies and binding site solvation free energies that determine if water displacement is favorable or not. We furthermore evaluated if we can reproduce experimental binding affinities by a computational approach combining changes in solvation free energies with changes in protein-ligand interaction energies and entropies. In two of the seven cases, this estimation led to large errors, implying that accurate predictions of relative binding free energies based on solvent thermodynamics is challenging. Still, MD simulations can provide insights into which water molecules can be targeted for displacement. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Enhanced conformational sampling of carbohydrates by Hamiltonian replica-exchange simulation.

    PubMed

    Mishra, Sushil Kumar; Kara, Mahmut; Zacharias, Martin; Koca, Jaroslav

    2014-01-01

    Knowledge of the structure and conformational flexibility of carbohydrates in an aqueous solvent is important to improving our understanding of how carbohydrates function in biological systems. In this study, we extend a variant of the Hamiltonian replica-exchange molecular dynamics (MD) simulation to improve the conformational sampling of saccharides in an explicit solvent. During the simulations, a biasing potential along the glycosidic-dihedral linkage between the saccharide monomer units in an oligomer is applied at various levels along the replica runs to enable effective transitions between various conformations. One reference replica runs under the control of the original force field. The method was tested on disaccharide structures and further validated on biologically relevant blood group B, Lewis X and Lewis A trisaccharides. The biasing potential-based replica-exchange molecular dynamics (BP-REMD) method provided a significantly improved sampling of relevant conformational states compared with standard continuous MD simulations, with modest computational costs. Thus, the proposed BP-REMD approach adds a new dimension to existing carbohydrate conformational sampling approaches by enhancing conformational sampling in the presence of solvent molecules explicitly at relatively low computational cost.

  8. Efficient Conformational Sampling in Explicit Solvent Using a Hybrid Replica Exchange Molecular Dynamics Method

    DTIC Science & Technology

    2011-12-01

    REMD while reproducing the energy landscape of explicit solvent simulations . ’ INTRODUCTION Molecular dynamics (MD) simulations of proteins can pro...Mongan, J.; McCammon, J. A. Accelerated molecular dynamics : a promising and efficient simulation method for biomolecules. J. Chem. Phys. 2004, 120 (24...Chemical Theory and Computation ARTICLE (8) Abraham,M. J.; Gready, J. E. Ensuringmixing efficiency of replica- exchange molecular dynamics simulations . J

  9. Quantum Fragment Based ab Initio Molecular Dynamics for Proteins.

    PubMed

    Liu, Jinfeng; Zhu, Tong; Wang, Xianwei; He, Xiao; Zhang, John Z H

    2015-12-08

    Developing ab initio molecular dynamics (AIMD) methods for practical application in protein dynamics is of significant interest. Due to the large size of biomolecules, applying standard quantum chemical methods to compute energies for dynamic simulation is computationally prohibitive. In this work, a fragment based ab initio molecular dynamics approach is presented for practical application in protein dynamics study. In this approach, the energy and forces of the protein are calculated by a recently developed electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method. For simulation in explicit solvent, mechanical embedding is introduced to treat protein interaction with explicit water molecules. This AIMD approach has been applied to MD simulations of a small benchmark protein Trpcage (with 20 residues and 304 atoms) in both the gas phase and in solution. Comparison to the simulation result using the AMBER force field shows that the AIMD gives a more stable protein structure in the simulation, indicating that quantum chemical energy is more reliable. Importantly, the present fragment-based AIMD simulation captures quantum effects including electrostatic polarization and charge transfer that are missing in standard classical MD simulations. The current approach is linear-scaling, trivially parallel, and applicable to performing the AIMD simulation of proteins with a large size.

  10. Li-Doped Ionic Liquid Electrolytes: From Bulk Phase to Interfacial Behavior

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Lawson, John W.

    2016-01-01

    Ionic liquids have been proposed as candidate electrolytes for high-energy density, rechargeable batteries. We present an extensive computational analysis supported by experimental comparisons of the bulk and interfacial properties of a representative set of these electrolytes as a function of Li-salt doping. We begin by investigating the bulk electrolyte using quantum chemistry and ab initio molecular dynamics to elucidate the solvation structure of Li(+). MD simulations using the polarizable force field of Borodin and coworkers were then performed, from which we obtain an array of thermodynamic and transport properties. Excellent agreement is found with experiments for diffusion, ionic conductivity, and viscosity. Combining MD simulations with electronic structure computations, we computed the electrochemical window of the electrolytes across a range of Li(+)-doping levels and comment on the role of the liquid environment. Finally, we performed a suite of simulations of these Li-doped electrolytes at ideal electrified interfaces to evaluate the differential capacitance and the equilibrium Li(+) distribution in the double layer. The magnitude of differential capacitance is in good agreement with our experiments and exhibits the characteristic camel-shaped profile. In addition, the simulations reveal Li(+) to be highly localized to the second molecular layer of the double layer, which is supported by additional computations that find this layer to be a free energy minimum with respect to Li(+) translation.

  11. Shock-induced poration, cholesterol flip-flop and small interfering RNA transfection in a phospholipid membrane: Multimillion atom, microsecond molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Choubey, Amit

    Biological cell membranes provide mechanical stability to cells and understanding their structure, dynamics and mechanics are important biophysics problems. Experiments coupled with computational methods such as molecular dynamics (MD) have provided insight into the physics of membranes. We use long-time and large-scale MD simulations to study the structure, dynamics and mechanical behavior of membranes. We investigate shock-induced collapse of nanobubbles in water using MD simulations based on a reactive force field. We observe a focused jet at the onset of bubble shrinkage and a secondary shock wave upon bubble collapse. The jet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. Shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. We also investigate molecular mechanisms of poration in lipid bilayers due to shock-induced collapse of nanobubbles. Our multimillion-atom MD simulations reveal that the jet impact generates shear flow of water on bilayer leaflets and pressure gradients across them. This transiently enhances the bilayer permeability by creating nanopores through which water molecules translocate rapidly across the bilayer. Effects of nanobubble size and temperature on the porosity of lipid bilayers are examined. The second research project focuses on cholesterol (CHOL) dynamics in phospholipid bilayers. Several experimental and computational studies have been performed on lipid bilayers consisting of dipalmitoylphosphatidylcholine (DPPC) and CHOL molecules. CHOL interleaflet transport (flip-flop) plays an important role in interleaflet coupling and determining CHOL flip-flop rate has been elusive. Various studies report that the rate ranges between milliseconds to seconds. We calculate CHOL flip-flop rates by performing a 15 mus all-atom MD simulation of a DPPC-CHOL bilayer. We find that the CHOL flip-flop rates are on the sub microsecond timescale. These results are verified by performing various independent parallel replica (PR) simulations. Our PR simulations provide significant boost in sampling of the flip-flop events. We observe that the CHOL flip-flop can induce membrane order, regulate membrane-bending energy, and facilitate membrane relaxation. The rapid flip-flop rates reported here have important implications for the role of CHOL in mechanical properties of cell membranes, formation of domains, and maintaining CHOL concentration asymmetry in plasma membrane. Our PR approach can reach submillisecond time scales and bridge the gap between MD simulations and Nuclear Magnetic Resonance (NMR) experiments on CHOL flip-flop dynamics in membranes. The last project deals with transfection barriers encountered by a bare small interfering RNA (siRNA) in a phospholipid bilayer. SiRNA molecules play a pivotal role in therapeutic applications. A key limitation to the widespread implementation of siRNA-based therapeutics is the difficulty of delivering siRNA-based drugs to cells. We have examined structural and mechanical barriers to siRNA passage across a phospholipid bilayer using all-atom MD simulations. We find that the electrostatic interaction between the anionic siRNA and head groups of phospholipid molecules induces a phase transformation from the liquid crystalline to ripple phase. Steered MD simulations reveal that the siRNA transfection through the ripple phase requires a force of ˜ 1.5 nN.

  12. Accelerating molecular dynamic simulation on the cell processor and Playstation 3.

    PubMed

    Luttmann, Edgar; Ensign, Daniel L; Vaidyanathan, Vishal; Houston, Mike; Rimon, Noam; Øland, Jeppe; Jayachandran, Guha; Friedrichs, Mark; Pande, Vijay S

    2009-01-30

    Implementation of molecular dynamics (MD) calculations on novel architectures will vastly increase its power to calculate the physical properties of complex systems. Herein, we detail algorithmic advances developed to accelerate MD simulations on the Cell processor, a commodity processor found in PlayStation 3 (PS3). In particular, we discuss issues regarding memory access versus computation and the types of calculations which are best suited for streaming processors such as the Cell, focusing on implicit solvation models. We conclude with a comparison of improved performance on the PS3's Cell processor over more traditional processors. (c) 2008 Wiley Periodicals, Inc.

  13. Search for β2 Adrenergic Receptor Ligands by Virtual Screening via Grid Computing and Investigation of Binding Modes by Docking and Molecular Dynamics Simulations

    PubMed Central

    Bai, Qifeng; Shao, Yonghua; Pan, Dabo; Zhang, Yang; Liu, Huanxiang; Yao, Xiaojun

    2014-01-01

    We designed a program called MolGridCal that can be used to screen small molecule database in grid computing on basis of JPPF grid environment. Based on MolGridCal program, we proposed an integrated strategy for virtual screening and binding mode investigation by combining molecular docking, molecular dynamics (MD) simulations and free energy calculations. To test the effectiveness of MolGridCal, we screened potential ligands for β2 adrenergic receptor (β2AR) from a database containing 50,000 small molecules. MolGridCal can not only send tasks to the grid server automatically, but also can distribute tasks using the screensaver function. As for the results of virtual screening, the known agonist BI-167107 of β2AR is ranked among the top 2% of the screened candidates, indicating MolGridCal program can give reasonable results. To further study the binding mode and refine the results of MolGridCal, more accurate docking and scoring methods are used to estimate the binding affinity for the top three molecules (agonist BI-167107, neutral antagonist alprenolol and inverse agonist ICI 118,551). The results indicate agonist BI-167107 has the best binding affinity. MD simulation and free energy calculation are employed to investigate the dynamic interaction mechanism between the ligands and β2AR. The results show that the agonist BI-167107 also has the lowest binding free energy. This study can provide a new way to perform virtual screening effectively through integrating molecular docking based on grid computing, MD simulations and free energy calculations. The source codes of MolGridCal are freely available at http://molgridcal.codeplex.com. PMID:25229694

  14. Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc04531j

    PubMed Central

    Lagardère, Louis; Jolly, Luc-Henri; Lipparini, Filippo; Aviat, Félix; Stamm, Benjamin; Jing, Zhifeng F.; Harger, Matthew; Torabifard, Hedieh; Cisneros, G. Andrés; Schnieders, Michael J.; Gresh, Nohad; Maday, Yvon; Ren, Pengyu Y.; Ponder, Jay W.

    2017-01-01

    We present Tinker-HP, a massively MPI parallel package dedicated to classical molecular dynamics (MD) and to multiscale simulations, using advanced polarizable force fields (PFF) encompassing distributed multipoles electrostatics. Tinker-HP is an evolution of the popular Tinker package code that conserves its simplicity of use and its reference double precision implementation for CPUs. Grounded on interdisciplinary efforts with applied mathematics, Tinker-HP allows for long polarizable MD simulations on large systems up to millions of atoms. We detail in the paper the newly developed extension of massively parallel 3D spatial decomposition to point dipole polarizable models as well as their coupling to efficient Krylov iterative and non-iterative polarization solvers. The design of the code allows the use of various computer systems ranging from laboratory workstations to modern petascale supercomputers with thousands of cores. Tinker-HP proposes therefore the first high-performance scalable CPU computing environment for the development of next generation point dipole PFFs and for production simulations. Strategies linking Tinker-HP to Quantum Mechanics (QM) in the framework of multiscale polarizable self-consistent QM/MD simulations are also provided. The possibilities, performances and scalability of the software are demonstrated via benchmarks calculations using the polarizable AMOEBA force field on systems ranging from large water boxes of increasing size and ionic liquids to (very) large biosystems encompassing several proteins as well as the complete satellite tobacco mosaic virus and ribosome structures. For small systems, Tinker-HP appears to be competitive with the Tinker-OpenMM GPU implementation of Tinker. As the system size grows, Tinker-HP remains operational thanks to its access to distributed memory and takes advantage of its new algorithmic enabling for stable long timescale polarizable simulations. Overall, a several thousand-fold acceleration over a single-core computation is observed for the largest systems. The extension of the present CPU implementation of Tinker-HP to other computational platforms is discussed. PMID:29732110

  15. Towards data warehousing and mining of protein unfolding simulation data.

    PubMed

    Berrar, Daniel; Stahl, Frederic; Silva, Candida; Rodrigues, J Rui; Brito, Rui M M; Dubitzky, Werner

    2005-10-01

    The prediction of protein structure and the precise understanding of protein folding and unfolding processes remains one of the greatest challenges in structural biology and bioinformatics. Computer simulations based on molecular dynamics (MD) are at the forefront of the effort to gain a deeper understanding of these complex processes. Currently, these MD simulations are usually on the order of tens of nanoseconds, generate a large amount of conformational data and are computationally expensive. More and more groups run such simulations and generate a myriad of data, which raises new challenges in managing and analyzing these data. Because the vast range of proteins researchers want to study and simulate, the computational effort needed to generate data, the large data volumes involved, and the different types of analyses scientists need to perform, it is desirable to provide a public repository allowing researchers to pool and share protein unfolding data. To adequately organize, manage, and analyze the data generated by unfolding simulation studies, we designed a data warehouse system that is embedded in a grid environment to facilitate the seamless sharing of available computer resources and thus enable many groups to share complex molecular dynamics simulations on a more regular basis. To gain insight into the conformational fluctuations and stability of the monomeric forms of the amyloidogenic protein transthyretin (TTR), molecular dynamics unfolding simulations of the monomer of human TTR have been conducted. Trajectory data and meta-data of the wild-type (WT) protein and the highly amyloidogenic variant L55P-TTR represent the test case for the data warehouse. Web and grid services, especially pre-defined data mining services that can run on or 'near' the data repository of the data warehouse, are likely to play a pivotal role in the analysis of molecular dynamics unfolding data.

  16. Kinetic Monte Carlo Simulation of Cation Diffusion in Low-K Ceramics

    NASA Technical Reports Server (NTRS)

    Good, Brian

    2013-01-01

    Low thermal conductivity (low-K) ceramic materials are of interest to the aerospace community for use as the thermal barrier component of coating systems for turbine engine components. In particular, zirconia-based materials exhibit both low thermal conductivity and structural stability at high temperature, making them suitable for such applications. Because creep is one of the potential failure modes, and because diffusion is a mechanism by which creep takes place, we have performed computer simulations of cation diffusion in a variety of zirconia-based low-K materials. The kinetic Monte Carlo simulation method is an alternative to the more widely known molecular dynamics (MD) method. It is designed to study "infrequent-event" processes, such as diffusion, for which MD simulation can be highly inefficient. We describe the results of kinetic Monte Carlo computer simulations of cation diffusion in several zirconia-based materials, specifically, zirconia doped with Y, Gd, Nb and Yb. Diffusion paths are identified, and migration energy barriers are obtained from density functional calculations and from the literature. We present results on the temperature dependence of the diffusivity, and on the effects of the presence of oxygen vacancies in cation diffusion barrier complexes as well.

  17. Enhanced Sampling of an Atomic Model with Hybrid Nonequilibrium Molecular Dynamics-Monte Carlo Simulations Guided by a Coarse-Grained Model.

    PubMed

    Chen, Yunjie; Roux, Benoît

    2015-08-11

    Molecular dynamics (MD) trajectories based on a classical equation of motion provide a straightforward, albeit somewhat inefficient approach, to explore and sample the configurational space of a complex molecular system. While a broad range of techniques can be used to accelerate and enhance the sampling efficiency of classical simulations, only algorithms that are consistent with the Boltzmann equilibrium distribution yield a proper statistical mechanical computational framework. Here, a multiscale hybrid algorithm relying simultaneously on all-atom fine-grained (FG) and coarse-grained (CG) representations of a system is designed to improve sampling efficiency by combining the strength of nonequilibrium molecular dynamics (neMD) and Metropolis Monte Carlo (MC). This CG-guided hybrid neMD-MC algorithm comprises six steps: (1) a FG configuration of an atomic system is dynamically propagated for some period of time using equilibrium MD; (2) the resulting FG configuration is mapped onto a simplified CG model; (3) the CG model is propagated for a brief time interval to yield a new CG configuration; (4) the resulting CG configuration is used as a target to guide the evolution of the FG system; (5) the FG configuration (from step 1) is driven via a nonequilibrium MD (neMD) simulation toward the CG target; (6) the resulting FG configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-ends momentum reversal prescription is used for the neMD trajectories of the FG system to guarantee that the CG-guided hybrid neMD-MC algorithm obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The enhanced sampling achieved with the method is illustrated with a model system with hindered diffusion and explicit-solvent peptide simulations. Illustrative tests indicate that the method can yield a speedup of about 80 times for the model system and up to 21 times for polyalanine and (AAQAA)3 in water.

  18. Enhanced Sampling of an Atomic Model with Hybrid Nonequilibrium Molecular Dynamics—Monte Carlo Simulations Guided by a Coarse-Grained Model

    PubMed Central

    2015-01-01

    Molecular dynamics (MD) trajectories based on a classical equation of motion provide a straightforward, albeit somewhat inefficient approach, to explore and sample the configurational space of a complex molecular system. While a broad range of techniques can be used to accelerate and enhance the sampling efficiency of classical simulations, only algorithms that are consistent with the Boltzmann equilibrium distribution yield a proper statistical mechanical computational framework. Here, a multiscale hybrid algorithm relying simultaneously on all-atom fine-grained (FG) and coarse-grained (CG) representations of a system is designed to improve sampling efficiency by combining the strength of nonequilibrium molecular dynamics (neMD) and Metropolis Monte Carlo (MC). This CG-guided hybrid neMD-MC algorithm comprises six steps: (1) a FG configuration of an atomic system is dynamically propagated for some period of time using equilibrium MD; (2) the resulting FG configuration is mapped onto a simplified CG model; (3) the CG model is propagated for a brief time interval to yield a new CG configuration; (4) the resulting CG configuration is used as a target to guide the evolution of the FG system; (5) the FG configuration (from step 1) is driven via a nonequilibrium MD (neMD) simulation toward the CG target; (6) the resulting FG configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-ends momentum reversal prescription is used for the neMD trajectories of the FG system to guarantee that the CG-guided hybrid neMD-MC algorithm obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The enhanced sampling achieved with the method is illustrated with a model system with hindered diffusion and explicit-solvent peptide simulations. Illustrative tests indicate that the method can yield a speedup of about 80 times for the model system and up to 21 times for polyalanine and (AAQAA)3 in water. PMID:26574442

  19. Sub-Terrahertz Spectroscopy of E.COLI Dna: Experiment, Statistical Model, and MD Simulations

    NASA Astrophysics Data System (ADS)

    Sizov, I.; Dorofeeva, T.; Khromova, T.; Gelmont, B.; Globus, T.

    2012-06-01

    We will present result of combined experimental and computational study of sub-THz absorption spectra from Escherichia coli (E.coli) DNA. Measurements were conducted using a Bruker FTIR spectrometer with a liquid helium cooled bolometer and a recently developed frequency domain sensor operating at room temperature, with spectral resolution of 0.25 cm-1 and 0.03 cm-1, correspondingly. We have earlier demonstrated that molecular dynamics (MD) simulation can be effectively applied for characterizing relatively small biological molecules, such as transfer RNA or small protein thioredoxin from E. coli , and help to understand and predict their absorption spectra. Large size of DNA macromolecules ( 5 million base pairs for E. coli DNA) prevents, however, direct application of MD simulation at the current level of computational capabilities. Therefore, by applying a second order Markov chain approach and Monte-Carlo technique, we have developed a new statistical model to construct DNA sequences from biological cells. These short representative sequences (20-60 base pairs) are built upon the most frequently repeated fragments (2-10 base pairs) in the original DNA. Using this new approach, we constructed DNA sequences for several non-pathogenic strains of E.coli, including a well-known strain BL21, uro-pathogenic strain, CFT073, and deadly EDL933 strain (O157:H7), and used MD simulations to calculate vibrational absorption spectra of these strains. Significant differences are clearly present in spectra of strains in averaged spectra and in all components for particular orientations. The mechanism of interaction of THz radiation with a biological molecule is studied by analyzing dynamics of atoms and correlation of local vibrations in the modeled molecule. Simulated THz vibrational spectra of DNA are compared with experimental results. With the spectral resolution of 0.1 cm-1 or better, which is now available in experiments, the very easy discrimination between different strains of the same bacteria becomes possible.

  20. Modifying Poisson equation for near-solute dielectric polarization and solvation free energy

    NASA Astrophysics Data System (ADS)

    Yang, Pei-Kun

    2016-06-01

    The dielectric polarization P is important for calculating the stability of protein conformation and the binding affinity of protein-protein/ligand interactions and for exploring the nonthermal effect of an external electric field on biomolecules. P was decomposed into the product of the electric dipole moment per molecule p; bulk solvent density Nbulk; and relative solvent molecular density g. For a molecular solute, 4πr2p(r) oscillates with the distance r to the solute, and g(r) has a large peak in the near-solute region, as observed in molecular dynamics (MD) simulations. Herein, the Poisson equation was modified for computing p based on the modified Gauss's law of Maxwell's equations, and the potential of the mean force was used for computing g. For one or two charged atoms in a water cluster, the solvation free energies of the solutes obtained by these equations were similar to those obtained from MD simulations.

  1. Virtual substitution scan via single-step free energy perturbation.

    PubMed

    Chiang, Ying-Chih; Wang, Yi

    2016-02-05

    With the rapid expansion of our computing power, molecular dynamics (MD) simulations ranging from hundreds of nanoseconds to microseconds or even milliseconds have become increasingly common. The majority of these long trajectories are obtained from plain (vanilla) MD simulations, where no enhanced sampling or free energy calculation method is employed. To promote the 'recycling' of these trajectories, we developed the Virtual Substitution Scan (VSS) toolkit as a plugin of the open-source visualization and analysis software VMD. Based on the single-step free energy perturbation (sFEP) method, VSS enables the user to post-process a vanilla MD trajectory for a fast free energy scan of substituting aryl hydrogens by small functional groups. Dihedrals of the functional groups are sampled explicitly in VSS, which improves the performance of the calculation and is found particularly important for certain groups. As a proof-of-concept demonstration, we employ VSS to compute the solvation free energy change upon substituting the hydrogen of a benzene molecule by 12 small functional groups frequently considered in lead optimization. Additionally, VSS is used to compute the relative binding free energy of four selected ligands of the T4 lysozyme. Overall, the computational cost of VSS is only a fraction of the corresponding multi-step FEP (mFEP) calculation, while its results agree reasonably well with those of mFEP, indicating that VSS offers a promising tool for rapid free energy scan of small functional group substitutions. This article is protected by copyright. All rights reserved. © 2016 Wiley Periodicals, Inc.

  2. CHARMM additive and polarizable force fields for biophysics and computer-aided drug design

    PubMed Central

    Vanommeslaeghe, K.

    2014-01-01

    Background Molecular Mechanics (MM) is the method of choice for computational studies of biomolecular systems owing to its modest computational cost, which makes it possible to routinely perform molecular dynamics (MD) simulations on chemical systems of biophysical and biomedical relevance. Scope of Review As one of the main factors limiting the accuracy of MD results is the empirical force field used, the present paper offers a review of recent developments in the CHARMM additive force field, one of the most popular bimolecular force fields. Additionally, we present a detailed discussion of the CHARMM Drude polarizable force field, anticipating a growth in the importance and utilization of polarizable force fields in the near future. Throughout the discussion emphasis is placed on the force fields’ parametrization philosophy and methodology. Major Conclusions Recent improvements in the CHARMM additive force field are mostly related to newly found weaknesses in the previous generation of additive force fields. Beyond the additive approximation is the newly available CHARMM Drude polarizable force field, which allows for MD simulations of up to 1 microsecond on proteins, DNA, lipids and carbohydrates. General Significance Addressing the limitations ensures the reliability of the new CHARMM36 additive force field for the types of calculations that are presently coming into routine computational reach while the availability of the Drude polarizable force fields offers a model that is an inherently more accurate model of the underlying physical forces driving macromolecular structures and dynamics. PMID:25149274

  3. Identification of a Novel Class of BRD4 Inhibitors by Computational Screening and Binding Simulations

    PubMed Central

    2017-01-01

    Computational screening is a method to prioritize small-molecule compounds based on the structural and biochemical attributes built from ligand and target information. Previously, we have developed a scalable virtual screening workflow to identify novel multitarget kinase/bromodomain inhibitors. In the current study, we identified several novel N-[3-(2-oxo-pyrrolidinyl)phenyl]-benzenesulfonamide derivatives that scored highly in our ensemble docking protocol. We quantified the binding affinity of these compounds for BRD4(BD1) biochemically and generated cocrystal structures, which were deposited in the Protein Data Bank. As the docking poses obtained in the virtual screening pipeline did not align with the experimental cocrystal structures, we evaluated the predictions of their precise binding modes by performing molecular dynamics (MD) simulations. The MD simulations closely reproduced the experimentally observed protein–ligand cocrystal binding conformations and interactions for all compounds. These results suggest a computational workflow to generate experimental-quality protein–ligand binding models, overcoming limitations of docking results due to receptor flexibility and incomplete sampling, as a useful starting point for the structure-based lead optimization of novel BRD4(BD1) inhibitors. PMID:28884163

  4. Liquid li structure and dynamics: A comparison between OFDFT and second nearest-neighbor embedded-atom method

    DOE PAGES

    Chen, Mohan; Vella, Joseph R.; Panagiotopoulos, Athanassios Z.; ...

    2015-04-08

    The structure and dynamics of liquid lithium are studied using two simulation methods: orbital-free (OF) first-principles molecular dynamics (MD), which employs OF density functional theory (DFT), and classical MD utilizing a second nearest-neighbor embedded-atom method potential. The properties we studied include the dynamic structure factor, the self-diffusion coefficient, the dispersion relation, the viscosity, and the bond angle distribution function. Our simulation results were compared to available experimental data when possible. Each method has distinct advantages and disadvantages. For example, OFDFT gives better agreement with experimental dynamic structure factors, yet is more computationally demanding than classical simulations. Classical simulations can accessmore » a broader temperature range and longer time scales. The combination of first-principles and classical simulations is a powerful tool for studying properties of liquid lithium.« less

  5. Modeling Carbon Dioxide Vibrational Frequencies in Ionic Liquids: II. Spectroscopic Map.

    PubMed

    Daly, Clyde A; Berquist, Eric J; Brinzer, Thomas; Garrett-Roe, Sean; Lambrecht, Daniel S; Corcelli, Steven A

    2016-12-15

    The primary challenge for connecting molecular dynamics (MD) simulations to linear and two-dimensional infrared measurements is the calculation of the vibrational frequency for the chromophore of interest. Computing the vibrational frequency at each time step of the simulation with a quantum mechanical method like density functional theory (DFT) is generally prohibitively expensive. One approach to circumnavigate this problem is the use of spectroscopic maps. Spectroscopic maps are empirical relationships that correlate the frequency of interest to properties of the surrounding solvent that are readily accessible in the MD simulation. Here, we develop a spectroscopic map for the asymmetric stretch of CO 2 in the 1-butyl-3-methylimidazolium hexafluorophosphate ([C 4 C 1 im][PF 6 ]) ionic liquid (IL). DFT is used to compute the vibrational frequency of 500 statistically independent CO 2 -[C 4 C 1 im][PF 6 ] clusters extracted from an MD simulation. When the map was tested on 500 different CO 2 -[C 4 C 1 im][PF 6 ] clusters, the correlation coefficient between the benchmark frequencies and the predicted frequencies was R = 0.94, and the root-mean-square error was 2.7 cm -1 . The calculated distribution of frequencies also agrees well with experiment. The spectroscopic map required information about the CO 2 angle, the electrostatics of the surrounding solvent, and the Lennard-Jones interaction between the CO 2 and the IL. The contribution of each term in the map was investigated using symmetry-adapted perturbation theory calculations.

  6. Molecular Dynamics Analysis of Lysozyme Protein in Ethanol-Water Mixed Solvent Environment

    NASA Astrophysics Data System (ADS)

    Ochije, Henry Ikechukwu

    Effect of protein-solvent interaction on the protein structure is widely studied using both experimental and computational techniques. Despite such extensive studies molecular level understanding of proteins and some simple solvents is still not fully understood. This work focuses on detailed molecular dynamics simulations to study of solvent effect on lysozyme protein, using water, alcohol and different concentrations of water-alcohol mixtures as solvents. The lysozyme protein structure in water, alcohol and alcohol-water mixture (0-12% alcohol) was studied using GROMACS molecular dynamics simulation code. Compared to water environment, the lysozome structure showed remarkable changes in solvents with increasing alcohol concentration. In particular, significant changes were observed in the protein secondary structure involving alpha helices. The influence of alcohol on the lysozyme protein was investigated by studying thermodynamic and structural properties. With increasing ethanol concentration we observed a systematic increase in total energy, enthalpy, root mean square deviation (RMSD), and radius of gyration. a polynomial interpolation approach. Using the resulting polynomial equation, we could determine above quantities for any intermediate alcohol percentage. In order to validate this approach, we selected an intermediate ethanol percentage and carried out full MD simulation. The results from MD simulation were in reasonably good agreement with that obtained using polynomial approach. Hence, the polynomial approach based method proposed here eliminates the need for computationally intensive full MD analysis for the concentrations within the range (0-12%) studied in this work.

  7. A 3-D Approach for Teaching and Learning about Surface Water Systems through Computational Thinking, Data Visualization and Physical Models

    NASA Astrophysics Data System (ADS)

    Caplan, B.; Morrison, A.; Moore, J. C.; Berkowitz, A. R.

    2017-12-01

    Understanding water is central to understanding environmental challenges. Scientists use `big data' and computational models to develop knowledge about the structure and function of complex systems, and to make predictions about changes in climate, weather, hydrology, and ecology. Large environmental systems-related data sets and simulation models are difficult for high school teachers and students to access and make sense of. Comp Hydro, a collaboration across four states and multiple school districts, integrates computational thinking and data-related science practices into water systems instruction to enhance development of scientific model-based reasoning, through curriculum, assessment and teacher professional development. Comp Hydro addresses the need for 1) teaching materials for using data and physical models of hydrological phenomena, 2) building teachers' and students' comfort or familiarity with data analysis and modeling, and 3) infusing the computational knowledge and practices necessary to model and visualize hydrologic processes into instruction. Comp Hydro teams in Baltimore, MD and Fort Collins, CO are integrating teaching about surface water systems into high school courses focusing on flooding (MD) and surface water reservoirs (CO). This interactive session will highlight the successes and challenges of our physical and simulation models in helping teachers and students develop proficiency with computational thinking about surface water. We also will share insights from comparing teacher-led vs. project-led development of curriculum and our simulations.

  8. Structures in solutions from joint experimental-computational analysis: applications to cyclic molecules and studies of noncovalent interactions.

    PubMed

    Aliev, Abil E; Mia, Zakirin A; Khaneja, Harmeet S; King, Frank D

    2012-01-26

    The potential of an approach combining nuclear magnetic resonance (NMR) spectroscopy, molecular dynamics (MD) simulations, and quantum mechanical (QM) calculations for full structural characterizations in solution is assessed using cyclic organic compounds, namely, benzazocinone derivatives 1-3 with fused five- and eight-membered aliphatic rings, camphoric anhydride 4, and bullvalene 5. Various MD simulations were considered, using force field and semiempirical QM treatments, implicit and explicit solvation, and high-temperature MD calculations for selecting plausible molecular geometries for subsequent QM geometry optimizations using mainly B3LYP, M062X, and MP2 methods. The QM-predicted values of NMR parameters were compared to their experimental values for verification of the final structures derived from the MD/QM analysis. From these comparisons, initial estimates of quality thresholds (calculated as rms deviations) were 0.7-0.9 Hz for (3)J(HH) couplings, 0.07-0.11 Å for interproton distances, 0.05-0.08 ppm for (1)H chemical shifts, and 1.0-2.1 ppm for (13)C chemical shifts. The obtained results suggest that the accuracy of the MD analysis in predicting geometries and relative conformational energies is not critical and that the final geometry refinements of the structures selected from the MD simulations using QM methods are sufficient for correcting for the expected inaccuracy of the MD analysis. A unique example of C(sp(3))-H···N(sp(3)) intramolecular noncovalent interaction is also identified using the NMR/MD/QM and the natural bond orbital analyses. As the NMR/MD/QM approach relies on the final QM geometry optimization, comparisons of geometric characteristics predicted by different QM methods and those from X-ray and neutron diffraction measurements were undertaken using rigid and flexible cyclic systems. The joint analysis shows that intermolecular noncovalent interactions present in the solid state alter molecular geometries significantly compared to the geometries of isolated molecules from QM calculations.

  9. Microsecond MD Simulations of Nano-patterned Polymer Brushes on Self-Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    Buie, Creighton; Qiu, Liming; Cheng, Kwan; Park, Soyeun

    2010-03-01

    Nano-patterned polymer brushes end-grafted onto self-assembled monolayers have gained increasing research interests due to their unique thermodynamic properties and their chemical and biomedical applications in colloids, biosensing and tissue engineering. So far, the interactions between the polymer brushes with the surrounding environments such as the floor and solvent at the nanometer length scale and microsecond time scale are still difficult to obtained experimentally and computationally. Using a Coarse-Grained MD approach, polymer brushes of different monomeric lengths, grafting density and hydrophobicity of the monomers grafted on self-assembled monolayers and in explicit solvent were studied. Molecular level information, such as lateral diffusion, transverse height and volume contour of the brushes, were calculated from our microsecond-MD simulations. Our results demonstrated the significance of the hydration of the polymer in controlling the conformational arrangement of the polymer brushes.

  10. In situ data analytics and indexing of protein trajectories.

    PubMed

    Johnston, Travis; Zhang, Boyu; Liwo, Adam; Crivelli, Silvia; Taufer, Michela

    2017-06-15

    The transition toward exascale computing will be accompanied by a performance dichotomy. Computational peak performance will rapidly increase; I/O performance will either grow slowly or be completely stagnant. Essentially, the rate at which data are generated will grow much faster than the rate at which data can be read from and written to the disk. MD simulations will soon face the I/O problem of efficiently writing to and reading from disk on the next generation of supercomputers. This article targets MD simulations at the exascale and proposes a novel technique for in situ data analysis and indexing of MD trajectories. Our technique maps individual trajectories' substructures (i.e., α-helices, β-strands) to metadata frame by frame. The metadata captures the conformational properties of the substructures. The ensemble of metadata can be used for automatic, strategic analysis within a trajectory or across trajectories, without manually identify those portions of trajectories in which critical changes take place. We demonstrate our technique's effectiveness by applying it to 26.3k helices and 31.2k strands from 9917 PDB proteins and by providing three empirical case studies. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. A Python tool to set up relative free energy calculations in GROMACS.

    PubMed

    Klimovich, Pavel V; Mobley, David L

    2015-11-01

    Free energy calculations based on molecular dynamics (MD) simulations have seen a tremendous growth in the last decade. However, it is still difficult and tedious to set them up in an automated manner, as the majority of the present-day MD simulation packages lack that functionality. Relative free energy calculations are a particular challenge for several reasons, including the problem of finding a common substructure and mapping the transformation to be applied. Here we present a tool, alchemical-setup.py, that automatically generates all the input files needed to perform relative solvation and binding free energy calculations with the MD package GROMACS. When combined with Lead Optimization Mapper (LOMAP; Liu et al. in J Comput Aided Mol Des 27(9):755-770, 2013), recently developed in our group, alchemical-setup.py allows fully automated setup of relative free energy calculations in GROMACS. Taking a graph of the planned calculations and a mapping, both computed by LOMAP, our tool generates the topology and coordinate files needed to perform relative free energy calculations for a given set of molecules, and provides a set of simulation input parameters. The tool was validated by performing relative hydration free energy calculations for a handful of molecules from the SAMPL4 challenge (Mobley et al. in J Comput Aided Mol Des 28(4):135-150, 2014). Good agreement with previously published results and the straightforward way in which free energy calculations can be conducted make alchemical-setup.py a promising tool for automated setup of relative solvation and binding free energy calculations.

  12. Molecular dynamics-driven drug discovery: leaping forward with confidence.

    PubMed

    Ganesan, Aravindhan; Coote, Michelle L; Barakat, Khaled

    2017-02-01

    Given the significant time and financial costs of developing a commercial drug, it remains important to constantly reform the drug discovery pipeline with novel technologies that can narrow the candidates down to the most promising lead compounds for clinical testing. The past decade has witnessed tremendous growth in computational capabilities that enable in silico approaches to expedite drug discovery processes. Molecular dynamics (MD) has become a particularly important tool in drug design and discovery. From classical MD methods to more sophisticated hybrid classical/quantum mechanical (QM) approaches, MD simulations are now able to offer extraordinary insights into ligand-receptor interactions. In this review, we discuss how the applications of MD approaches are significantly transforming current drug discovery and development efforts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Principal component and normal mode analysis of proteins; a quantitative comparison using the GroEL subunit.

    PubMed

    Skjaerven, Lars; Martinez, Aurora; Reuter, Nathalie

    2011-01-01

    Principal component analysis (PCA) and normal mode analysis (NMA) have emerged as two invaluable tools for studying conformational changes in proteins. To compare these approaches for studying protein dynamics, we have used a subunit of the GroEL chaperone, whose dynamics is well characterized. We first show that both PCA on trajectories from molecular dynamics (MD) simulations and NMA reveal a general dynamical behavior in agreement with what has previously been described for GroEL. We thus compare the reproducibility of PCA on independent MD runs and subsequently investigate the influence of the length of the MD simulations. We show that there is a relatively poor one-to-one correspondence between eigenvectors obtained from two independent runs and conclude that caution should be taken when analyzing principal components individually. We also observe that increasing the simulation length does not improve the agreement with the experimental structural difference. In fact, relatively short MD simulations are sufficient for this purpose. We observe a rapid convergence of the eigenvectors (after ca. 6 ns). Although there is not always a clear one-to-one correspondence, there is a qualitatively good agreement between the movements described by the first five modes obtained with the three different approaches; PCA, all-atoms NMA, and coarse-grained NMA. It is particularly interesting to relate this to the computational cost of the three methods. The results we obtain on the GroEL subunit contribute to the generalization of robust and reproducible strategies for the study of protein dynamics, using either NMA or PCA of trajectories from MD simulations. © 2010 Wiley-Liss, Inc.

  14. PyContact: Rapid, Customizable, and Visual Analysis of Noncovalent Interactions in MD Simulations.

    PubMed

    Scheurer, Maximilian; Rodenkirch, Peter; Siggel, Marc; Bernardi, Rafael C; Schulten, Klaus; Tajkhorshid, Emad; Rudack, Till

    2018-02-06

    Molecular dynamics (MD) simulations have become ubiquitous in all areas of life sciences. The size and model complexity of MD simulations are rapidly growing along with increasing computing power and improved algorithms. This growth has led to the production of a large amount of simulation data that need to be filtered for relevant information to address specific biomedical and biochemical questions. One of the most relevant molecular properties that can be investigated by all-atom MD simulations is the time-dependent evolution of the complex noncovalent interaction networks governing such fundamental aspects as molecular recognition, binding strength, and mechanical and structural stability. Extracting, evaluating, and visualizing noncovalent interactions is a key task in the daily work of structural biologists. We have developed PyContact, an easy-to-use, highly flexible, and intuitive graphical user interface-based application, designed to provide a toolkit to investigate biomolecular interactions in MD trajectories. PyContact is designed to facilitate this task by enabling identification of relevant noncovalent interactions in a comprehensible manner. The implementation of PyContact as a standalone application enables rapid analysis and data visualization without any additional programming requirements, and also preserves full in-program customization and extension capabilities for advanced users. The statistical analysis representation is interactively combined with full mapping of the results on the molecular system through the synergistic connection between PyContact and VMD. We showcase the capabilities and scientific significance of PyContact by analyzing and visualizing in great detail the noncovalent interactions underlying the ion permeation pathway of the human P2X 3 receptor. As a second application, we examine the protein-protein interaction network of the mechanically ultrastable cohesin-dockering complex. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Ensemble-Biased Metadynamics: A Molecular Simulation Method to Sample Experimental Distributions

    PubMed Central

    Marinelli, Fabrizio; Faraldo-Gómez, José D.

    2015-01-01

    We introduce an enhanced-sampling method for molecular dynamics (MD) simulations referred to as ensemble-biased metadynamics (EBMetaD). The method biases a conventional MD simulation to sample a molecular ensemble that is consistent with one or more probability distributions known a priori, e.g., experimental intramolecular distance distributions obtained by double electron-electron resonance or other spectroscopic techniques. To this end, EBMetaD adds an adaptive biasing potential throughout the simulation that discourages sampling of configurations inconsistent with the target probability distributions. The bias introduced is the minimum necessary to fulfill the target distributions, i.e., EBMetaD satisfies the maximum-entropy principle. Unlike other methods, EBMetaD does not require multiple simulation replicas or the introduction of Lagrange multipliers, and is therefore computationally efficient and straightforward in practice. We demonstrate the performance and accuracy of the method for a model system as well as for spin-labeled T4 lysozyme in explicit water, and show how EBMetaD reproduces three double electron-electron resonance distance distributions concurrently within a few tens of nanoseconds of simulation time. EBMetaD is integrated in the open-source PLUMED plug-in (www.plumed-code.org), and can be therefore readily used with multiple MD engines. PMID:26083917

  16. E9-Im9 Colicin DNase−Immunity Protein Biomolecular Association in Water: A Multiple-Copy and Accelerated Molecular Dynamics Simulation Study

    PubMed Central

    2008-01-01

    Protein−protein transient and dynamic interactions underlie all biological processes. The molecular dynamics (MD) of the E9 colicin DNase protein, its Im9 inhibitor protein, and their E9-Im9 recognition complex are investigated by combining multiple-copy (MC) MD and accelerated MD (aMD) explicit-solvent simulation approaches, after validation with crystalline-phase and solution experiments. Im9 shows higher flexibility than its E9 counterpart. Im9 displays a significant reduction of backbone flexibility and a remarkable increase in motional correlation upon E9 association. Im9 loops 23−31 and 54−64 open with respect to the E9-Im9 X-ray structure and show high conformational diversity. Upon association a large fraction (∼20 nm2) of E9 and Im9 protein surfaces become inaccessible to water. Numerous salt bridges transiently occurring throughout our six 50 ns long MC-MD simulations are not present in the X-ray model. Among these Im9 Glu31−E9 Arg96 and Im9 Glu41−Lys89 involve interface interactions. Through the use of 10 ns of Im9 aMD simulation, we reconcile the largest thermodynamic impact measured for Asp51Ala mutation with Im9 structure and dynamics. Lys57 acts as an essential molecular switch to shift Im9 surface loop towards an ideal configuration for E9 inhibition. This is achieved by switching Asp60−Lys57 and Asp62−Lys57 hydrogen bonds to Asp51−Lys57 salt bridge. E9-Im9 recognition involves shifts of conformational distributions, reorganization of intramolecular hydrogen bond patterns, and formation of new inter- and intramolecular interactions. The description of key transient biological interactions can be significantly enriched by the dynamic and atomic-level information provided by computer simulations. PMID:19053689

  17. Ligand Selectivity Mechanism and Conformational Changes in Guanine Riboswitch by Molecular Dynamics Simulations and Free Energy Calculations.

    PubMed

    Hu, Guodong; Ma, Aijing; Wang, Jihua

    2017-04-24

    Riboswitches regulate gene expression through direct and specific interactions with small metabolite molecules. Binding of a ligand to its RNA target is high selectivity and affinity and induces conformational changes of the RNA's secondary and tertiary structure. The structural difference of two purine riboswitches aptamers is caused by only one single mutation, where cytosine 74 in the guanine riboswitch is corresponding to a uracil 74 in adenine riboswitch. Here we employed molecular dynamics (MD) simulation, molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and thermodynamic integration computational methodologies to evaluate the energetic and conformational changes of ligands binding to purine riboswitches. The snapshots used in MM-PBSA calculation were extracted from ten 50 ns MD simulation trajectories for each complex. These free energy results are in consistent with the experimental data and rationalize the selectivity of the riboswitches for different ligands. In particular, it is found that the loss in binding free energy upon mutation is mainly electrostatic in guanine (GUA) and riboswitch complex. Furthermore, new hydrogen bonds are found in mutated complexes. To reveal the conformational properties of guanine riboswitch, we performed a total of 6 μs MD simulations in both the presence and the absence of the ligand GUA. The MD simulations suggest that the conformation of guanine riboswitch depends on the distance of two groups in the binding pocket of ligand. The conformation is in a close conformation when U51-A52 is close to C74-U75.

  18. Improved Reweighting of Accelerated Molecular Dynamics Simulations for Free Energy Calculation.

    PubMed

    Miao, Yinglong; Sinko, William; Pierce, Levi; Bucher, Denis; Walker, Ross C; McCammon, J Andrew

    2014-07-08

    Accelerated molecular dynamics (aMD) simulations greatly improve the efficiency of conventional molecular dynamics (cMD) for sampling biomolecular conformations, but they require proper reweighting for free energy calculation. In this work, we systematically compare the accuracy of different reweighting algorithms including the exponential average, Maclaurin series, and cumulant expansion on three model systems: alanine dipeptide, chignolin, and Trp-cage. Exponential average reweighting can recover the original free energy profiles easily only when the distribution of the boost potential is narrow (e.g., the range ≤20 k B T) as found in dihedral-boost aMD simulation of alanine dipeptide. In dual-boost aMD simulations of the studied systems, exponential average generally leads to high energetic fluctuations, largely due to the fact that the Boltzmann reweighting factors are dominated by a very few high boost potential frames. In comparison, reweighting based on Maclaurin series expansion (equivalent to cumulant expansion on the first order) greatly suppresses the energetic noise but often gives incorrect energy minimum positions and significant errors at the energy barriers (∼2-3 k B T). Finally, reweighting using cumulant expansion to the second order is able to recover the most accurate free energy profiles within statistical errors of ∼ k B T, particularly when the distribution of the boost potential exhibits low anharmonicity (i.e., near-Gaussian distribution), and should be of wide applicability. A toolkit of Python scripts for aMD reweighting "PyReweighting" is distributed free of charge at http://mccammon.ucsd.edu/computing/amdReweighting/.

  19. Improved Reweighting of Accelerated Molecular Dynamics Simulations for Free Energy Calculation

    PubMed Central

    2015-01-01

    Accelerated molecular dynamics (aMD) simulations greatly improve the efficiency of conventional molecular dynamics (cMD) for sampling biomolecular conformations, but they require proper reweighting for free energy calculation. In this work, we systematically compare the accuracy of different reweighting algorithms including the exponential average, Maclaurin series, and cumulant expansion on three model systems: alanine dipeptide, chignolin, and Trp-cage. Exponential average reweighting can recover the original free energy profiles easily only when the distribution of the boost potential is narrow (e.g., the range ≤20kBT) as found in dihedral-boost aMD simulation of alanine dipeptide. In dual-boost aMD simulations of the studied systems, exponential average generally leads to high energetic fluctuations, largely due to the fact that the Boltzmann reweighting factors are dominated by a very few high boost potential frames. In comparison, reweighting based on Maclaurin series expansion (equivalent to cumulant expansion on the first order) greatly suppresses the energetic noise but often gives incorrect energy minimum positions and significant errors at the energy barriers (∼2–3kBT). Finally, reweighting using cumulant expansion to the second order is able to recover the most accurate free energy profiles within statistical errors of ∼kBT, particularly when the distribution of the boost potential exhibits low anharmonicity (i.e., near-Gaussian distribution), and should be of wide applicability. A toolkit of Python scripts for aMD reweighting “PyReweighting” is distributed free of charge at http://mccammon.ucsd.edu/computing/amdReweighting/. PMID:25061441

  20. Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations

    PubMed Central

    Pastor, Nina; Amero, Carlos

    2015-01-01

    Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells. PMID:25999971

  1. Integrated experimental and theoretical approach for the structural characterization of Hg2+ aqueous solutions

    NASA Astrophysics Data System (ADS)

    D'Angelo, Paola; Migliorati, Valentina; Mancini, Giordano; Barone, Vincenzo; Chillemi, Giovanni

    2008-02-01

    The structural and dynamic properties of the solvated Hg2+ ion in aqueous solution have been investigated by a combined experimental-theoretical approach employing x-ray absorption spectroscopy and molecular dynamics (MD) simulations. This method allows one to perform a quantitative analysis of the x-ray absorption near-edge structure (XANES) spectra of ionic solutions using a proper description of the thermal and structural fluctuations. XANES spectra have been computed starting from the MD trajectory, without carrying out any minimization in the structural parameter space. The XANES experimental data are accurately reproduced by a first-shell heptacoordinated cluster only if the second hydration shell is included in the calculations. These results confirm at the same time the existence of a sevenfold first hydration shell for the Hg2+ ion in aqueous solution and the reliability of the potentials used in the MD simulations. The combination of MD and XANES is found to be very helpful to get important new insights into the quantitative estimation of structural properties of disordered systems.

  2. Development of a Computational Assay for the Estrogen Receptor

    DTIC Science & Technology

    2006-07-01

    University Ashley Deline, Senior Thesis in chemistry, " Molecular Dynamic Simulations of a Glycoform and its Constituent Parts Related to Rheumatoid Arthritis...involves running a long molecular dynamics (MD) simulation of the uncoupled receptor in order to sample the protein’s unique conformations. The second...Receptor binding domain. * Performed several long molecular dynamics simulations (800 ps - 3 ns) on the ligand-ER system using ligands with known

  3. Ab initio determination of effective electron-phonon coupling factor in copper

    NASA Astrophysics Data System (ADS)

    Ji, Pengfei; Zhang, Yuwen

    2016-04-01

    The electron temperature Te dependent electron density of states g (ε), Fermi-Dirac distribution f (ε), and electron-phonon spectral function α2 F (Ω) are computed as prerequisites before achieving effective electron-phonon coupling factor Ge-ph. The obtained Ge-ph is implemented into a molecular dynamics (MD) and two-temperature model (TTM) coupled simulation of femtosecond laser heating. By monitoring temperature evolutions of electron and lattice subsystems, the result utilizing Ge-ph from ab initio calculation shows a faster decrease of Te and increase of Tl than those using Ge-ph from phenomenological treatment. The approach of calculating Ge-ph and its implementation into MD-TTM simulation is applicable to other metals.

  4. A Divide-and-Conquer/Cellular-Decomposition Framework for Million-to-Billion Atom Simulations of Chemical Reactions

    DTIC Science & Technology

    2007-01-01

    as a function of the particle velocity that drives the shock [7]. The MD and experimen- tal data agree very well. Furthermore, the simulation shows...topological anomalies in multimillion - node chemical bond networks in materials [48]. At the Col- laboratory for Advanced Computing and Simulations ...to-billion atom simulations of chemical reactions Aiichiro Nakano a,*, Rajiv K. Kalia a, Ken-ichi Nomura a, Ashish Sharma a, Priya Vashishta a, Fuyuki

  5. Molecular Dynamics Study of Poly And Monocrystalline CdS/CdTe Junctions and Cu Doped Znte Back Contacts for Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Aguirre, Rodolfo, II

    Cadmium telluride (CdTe) is a material used to make solar cells because it absorbs the sunlight very efficiently and converts it into electricity. However, CdTe modules suffer from degradation of 1% over a period of 1 year. Improvements on the efficiency and stability can be achieved by designing better materials at the atomic scale. Experimental techniques to study materials at the atomic scale, such as Atomic Probe Tomography (APT) and Transmission Electron Microscope (TEM) are expensive and time consuming. On the other hand, Molecular Dynamics (MD) offers an inexpensive and fast computer simulation technique to study the growth evolution of materials with atomic scale resolution. In combination with advance characterization software, MD simulations provide atomistic visualization, defect analysis, structure maps, 3-D atomistic view, and composition profiles. MD simulations help to design better quality materials by predicting material behavior at the atomic scale. In this work, a new MD method to study several phenomena such as polycrystalline growth of CdTe-based materials, interdiffusion of atoms at interfaces, and deposition of a copper doped ZnTe back contact is established. Results are compared with experimental data found in the literature and experiments performed and shown to be in remarkably good agreement.

  6. Fluctuating hydrodynamics for multiscale modeling and simulation: energy and heat transfer in molecular fluids.

    PubMed

    Shang, Barry Z; Voulgarakis, Nikolaos K; Chu, Jhih-Wei

    2012-07-28

    This work illustrates that fluctuating hydrodynamics (FHD) simulations can be used to capture the thermodynamic and hydrodynamic responses of molecular fluids at the nanoscale, including those associated with energy and heat transfer. Using all-atom molecular dynamics (MD) trajectories as the reference data, the atomistic coordinates of each snapshot are mapped onto mass, momentum, and energy density fields on Eulerian grids to generate a corresponding field trajectory. The molecular length-scale associated with finite molecule size is explicitly imposed during this coarse-graining by requiring that the variances of density fields scale inversely with the grid volume. From the fluctuations of field variables, the response functions and transport coefficients encoded in the all-atom MD trajectory are computed. By using the extracted fluid properties in FHD simulations, we show that the fluctuations and relaxation of hydrodynamic fields quantitatively match with those observed in the reference all-atom MD trajectory, hence establishing compatibility between the atomistic and field representations. We also show that inclusion of energy transfer in the FHD equations can more accurately capture the thermodynamic and hydrodynamic responses of molecular fluids. The results indicate that the proposed MD-to-FHD mapping with explicit consideration of finite molecule size provides a robust framework for coarse-graining the solution phase of complex molecular systems.

  7. IBiSA_Tools: A Computational Toolkit for Ion-Binding State Analysis in Molecular Dynamics Trajectories of Ion Channels.

    PubMed

    Kasahara, Kota; Kinoshita, Kengo

    2016-01-01

    Ion conduction mechanisms of ion channels are a long-standing conundrum. Although the molecular dynamics (MD) method has been extensively used to simulate ion conduction dynamics at the atomic level, analysis and interpretation of MD results are not straightforward due to complexity of the dynamics. In our previous reports, we proposed an analytical method called ion-binding state analysis to scrutinize and summarize ion conduction mechanisms by taking advantage of a variety of analytical protocols, e.g., the complex network analysis, sequence alignment, and hierarchical clustering. This approach effectively revealed the ion conduction mechanisms and their dependence on the conditions, i.e., ion concentration and membrane voltage. Here, we present an easy-to-use computational toolkit for ion-binding state analysis, called IBiSA_tools. This toolkit consists of a C++ program and a series of Python and R scripts. From the trajectory file of MD simulations and a structure file, users can generate several images and statistics of ion conduction processes. A complex network named ion-binding state graph is generated in a standard graph format (graph modeling language; GML), which can be visualized by standard network analyzers such as Cytoscape. As a tutorial, a trajectory of a 50 ns MD simulation of the Kv1.2 channel is also distributed with the toolkit. Users can trace the entire process of ion-binding state analysis step by step. The novel method for analysis of ion conduction mechanisms of ion channels can be easily used by means of IBiSA_tools. This software is distributed under an open source license at the following URL: http://www.ritsumei.ac.jp/~ktkshr/ibisa_tools/.

  8. A Fast Algorithm for Massively Parallel, Long-Term, Simulation of Complex Molecular Dynamics Systems

    NASA Technical Reports Server (NTRS)

    Jaramillo-Botero, Andres; Goddard, William A, III; Fijany, Amir

    1997-01-01

    The advances in theory and computing technology over the last decade have led to enormous progress in applying atomistic molecular dynamics (MD) methods to the characterization, prediction, and design of chemical, biological, and material systems,.

  9. Prediction of solubility parameters and miscibility of pharmaceutical compounds by molecular dynamics simulations.

    PubMed

    Gupta, Jasmine; Nunes, Cletus; Vyas, Shyam; Jonnalagadda, Sriramakamal

    2011-03-10

    The objectives of this study were (i) to develop a computational model based on molecular dynamics technique to predict the miscibility of indomethacin in carriers (polyethylene oxide, glucose, and sucrose) and (ii) to experimentally verify the in silico predictions by characterizing the drug-carrier mixtures using thermoanalytical techniques. Molecular dynamics (MD) simulations were performed using the COMPASS force field, and the cohesive energy density and the solubility parameters were determined for the model compounds. The magnitude of difference in the solubility parameters of drug and carrier is indicative of their miscibility. The MD simulations predicted indomethacin to be miscible with polyethylene oxide and to be borderline miscible with sucrose and immiscible with glucose. The solubility parameter values obtained using the MD simulations values were in reasonable agreement with those calculated using group contribution methods. Differential scanning calorimetry showed melting point depression of polyethylene oxide with increasing levels of indomethacin accompanied by peak broadening, confirming miscibility. In contrast, thermal analysis of blends of indomethacin with sucrose and glucose verified general immiscibility. The findings demonstrate that molecular modeling is a powerful technique for determining the solubility parameters and predicting miscibility of pharmaceutical compounds. © 2011 American Chemical Society

  10. Characterization of Protein Flexibility Using Small-Angle X-Ray Scattering and Amplified Collective Motion Simulations

    PubMed Central

    Wen, Bin; Peng, Junhui; Zuo, Xiaobing; Gong, Qingguo; Zhang, Zhiyong

    2014-01-01

    Large-scale flexibility within a multidomain protein often plays an important role in its biological function. Despite its inherent low resolution, small-angle x-ray scattering (SAXS) is well suited to investigate protein flexibility and determine, with the help of computational modeling, what kinds of protein conformations would coexist in solution. In this article, we develop a tool that combines SAXS data with a previously developed sampling technique called amplified collective motions (ACM) to elucidate structures of highly dynamic multidomain proteins in solution. We demonstrate the use of this tool in two proteins, bacteriophage T4 lysozyme and tandem WW domains of the formin-binding protein 21. The ACM simulations can sample the conformational space of proteins much more extensively than standard molecular dynamics (MD) simulations. Therefore, conformations generated by ACM are significantly better at reproducing the SAXS data than are those from MD simulations. PMID:25140431

  11. Molecular Dynamics Simulations of Voltage-Gated Cation Channels: Insights on Voltage-Sensor Domain Function and Modulation

    PubMed Central

    Delemotte, Lucie; Klein, Michael L.; Tarek, Mounir

    2012-01-01

    Since their discovery in the 1950s, the structure and function of voltage-gated cation channels (VGCC) has been largely understood thanks to results stemming from electrophysiology, pharmacology, spectroscopy, and structural biology. Over the past decade, computational methods such as molecular dynamics (MD) simulations have also contributed, providing molecular level information that can be tested against experimental results, thereby allowing the validation of the models and protocols. Importantly, MD can shed light on elements of VGCC function that cannot be easily accessed through “classical” experiments. Here, we review the results of recent MD simulations addressing key questions that pertain to the function and modulation of the VGCC’s voltage-sensor domain (VSD) highlighting: (1) the movement of the S4-helix basic residues during channel activation, articulating how the electrical driving force acts upon them; (2) the nature of the VSD intermediate states on transitioning between open and closed states of the VGCC; and (3) the molecular level effects on the VSD arising from mutations of specific S4 positively charged residues involved in certain genetic diseases. PMID:22654756

  12. Hierarchical Model for the Analysis of Scattering Data of Complex Materials

    DOE PAGES

    Oyedele, Akinola; Mcnutt, Nicholas W.; Rios, Orlando; ...

    2016-05-16

    Interpreting the results of scattering data for complex materials with a hierarchical structure in which at least one phase is amorphous presents a significant challenge. Often the interpretation relies on the use of large-scale molecular dynamics (MD) simulations, in which a structure is hypothesized and from which a radial distribution function (RDF) can be extracted and directly compared against an experimental RDF. This computationally intensive approach presents a bottleneck in the efficient characterization of the atomic structure of new materials. Here, we propose and demonstrate an approach for a hierarchical decomposition of the RDF in which MD simulations are replacedmore » by a combination of tractable models and theory at the atomic scale and the mesoscale, which when combined yield the RDF. We apply the procedure to a carbon composite, in which graphitic nanocrystallites are distributed in an amorphous domain. We compare the model with the RDF from both MD simulation and neutron scattering data. Ultimately, this procedure is applicable for understanding the fundamental processing-structure-property relationships in complex magnetic materials.« less

  13. Applying Pose Clustering and MD Simulations To Eliminate False Positives in Molecular Docking.

    PubMed

    Makeneni, Spandana; Thieker, David F; Woods, Robert J

    2018-03-26

    In this work, we developed a computational protocol that employs multiple molecular docking experiments, followed by pose clustering, molecular dynamic simulations (10 ns), and energy rescoring to produce reliable 3D models of antibody-carbohydrate complexes. The protocol was applied to 10 antibody-carbohydrate co-complexes and three unliganded (apo) antibodies. Pose clustering significantly reduced the number of potential poses. For each system, 15 or fewer clusters out of 100 initial poses were generated and chosen for further analysis. Molecular dynamics (MD) simulations allowed the docked poses to either converge or disperse, and rescoring increased the likelihood that the best-ranked pose was an acceptable pose. This approach is amenable to automation and can be a valuable aid in determining the structure of antibody-carbohydrate complexes provided there is no major side chain rearrangement or backbone conformational change in the H3 loop of the CDR regions. Further, the basic protocol of docking a small ligand to a known binding site, clustering the results, and performing MD with a suitable force field is applicable to any protein ligand system.

  14. Visualization of Electrostatic Dipoles in Molecular Dynamics of Metal Oxides.

    PubMed

    Grottel, S; Beck, P; Muller, C; Reina, G; Roth, J; Trebin, H-R; Ertl, T

    2012-12-01

    Metal oxides are important for many technical applications. For example alumina (aluminum oxide) is the most commonly-used ceramic in microelectronic devices thanks to its excellent properties. Experimental studies of these materials are increasingly supplemented with computer simulations. Molecular dynamics (MD) simulations can reproduce the material behavior very well and are now reaching time scales relevant for interesting processes like crack propagation. In this work we focus on the visualization of induced electric dipole moments on oxygen atoms in crack propagation simulations. The straightforward visualization using glyphs for the individual atoms, simple shapes like spheres or arrows, is insufficient for providing information about the data set as a whole. As our contribution we show for the first time that fractional anisotropy values computed from the local neighborhood of individual atoms of MD simulation data depict important information about relevant properties of the field of induced electric dipole moments. Iso surfaces in the field of fractional anisotropy as well as adjustments of the glyph representation allow the user to identify regions of correlated orientation. We present novel and relevant findings for the application domain resulting from these visualizations, like the influence of mechanical forces on the electrostatic properties.

  15. Improved model of hydrated calcium ion for molecular dynamics simulations using classical biomolecular force fields.

    PubMed

    Yoo, Jejoong; Wilson, James; Aksimentiev, Aleksei

    2016-10-01

    Calcium ions (Ca(2+) ) play key roles in various fundamental biological processes such as cell signaling and brain function. Molecular dynamics (MD) simulations have been used to study such interactions, however, the accuracy of the Ca(2+) models provided by the standard MD force fields has not been rigorously tested. Here, we assess the performance of the Ca(2+) models from the most popular classical force fields AMBER and CHARMM by computing the osmotic pressure of model compounds and the free energy of DNA-DNA interactions. In the simulations performed using the two standard models, Ca(2+) ions are seen to form artificial clusters with chloride, acetate, and phosphate species; the osmotic pressure of CaAc2 and CaCl2 solutions is a small fraction of the experimental values for both force fields. Using the standard parameterization of Ca(2+) ions in the simulations of Ca(2+) -mediated DNA-DNA interactions leads to qualitatively wrong outcomes: both AMBER and CHARMM simulations suggest strong inter-DNA attraction whereas, in experiment, DNA molecules repel one another. The artificial attraction of Ca(2+) to DNA phosphate is strong enough to affect the direction of the electric field-driven translocation of DNA through a solid-state nanopore. To address these shortcomings of the standard Ca(2+) model, we introduce a custom model of a hydrated Ca(2+) ion and show that using our model brings the results of the above MD simulations in quantitative agreement with experiment. Our improved model of Ca(2+) can be readily applied to MD simulations of various biomolecular systems, including nucleic acids, proteins and lipid bilayer membranes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 752-763, 2016. © 2016 Wiley Periodicals, Inc.

  16. Modeling the nanoscale viscoelasticity of fluids by bridging non-Markovian fluctuating hydrodynamics and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Voulgarakis, Nikolaos K.; Satish, Siddarth; Chu, Jhih-Wei

    2009-12-01

    A multiscale computational method is developed to model the nanoscale viscoelasticity of fluids by bridging non-Markovian fluctuating hydrodynamics (FHD) and molecular dynamics (MD) simulations. To capture the elastic responses that emerge at small length scales, we attach an additional rheological model parallel to the macroscopic constitutive equation of a fluid. The widely used linear Maxwell model is employed as a working choice; other models can be used as well. For a fluid that is Newtonian in the macroscopic limit, this approach results in a parallel Newtonian-Maxwell model. For water, argon, and an ionic liquid, the power spectrum of momentum field autocorrelation functions of the parallel Newtonian-Maxwell model agrees very well with those calculated from all-atom MD simulations. To incorporate thermal fluctuations, we generalize the equations of FHD to work with non-Markovian rheological models and colored noise. The fluctuating stress tensor (white noise) is integrated in time in the same manner as its dissipative counterpart and numerical simulations indicate that this approach accurately preserves the set temperature in a FHD simulation. By mapping position and velocity vectors in the molecular representation onto field variables, we bridge the non-Markovian FHD with atomistic MD simulations. Through this mapping, we quantitatively determine the transport coefficients of the parallel Newtonian-Maxwell model for water and argon from all-atom MD simulations. For both fluids, a significant enhancement in elastic responses is observed as the wave number of hydrodynamic modes is reduced to a few nanometers. The mapping from particle to field representations and the perturbative strategy of developing constitutive equations provide a useful framework for modeling the nanoscale viscoelasticity of fluids.

  17. Validating clustering of molecular dynamics simulations using polymer models.

    PubMed

    Phillips, Joshua L; Colvin, Michael E; Newsam, Shawn

    2011-11-14

    Molecular dynamics (MD) simulation is a powerful technique for sampling the meta-stable and transitional conformations of proteins and other biomolecules. Computational data clustering has emerged as a useful, automated technique for extracting conformational states from MD simulation data. Despite extensive application, relatively little work has been done to determine if the clustering algorithms are actually extracting useful information. A primary goal of this paper therefore is to provide such an understanding through a detailed analysis of data clustering applied to a series of increasingly complex biopolymer models. We develop a novel series of models using basic polymer theory that have intuitive, clearly-defined dynamics and exhibit the essential properties that we are seeking to identify in MD simulations of real biomolecules. We then apply spectral clustering, an algorithm particularly well-suited for clustering polymer structures, to our models and MD simulations of several intrinsically disordered proteins. Clustering results for the polymer models provide clear evidence that the meta-stable and transitional conformations are detected by the algorithm. The results for the polymer models also help guide the analysis of the disordered protein simulations by comparing and contrasting the statistical properties of the extracted clusters. We have developed a framework for validating the performance and utility of clustering algorithms for studying molecular biopolymer simulations that utilizes several analytic and dynamic polymer models which exhibit well-behaved dynamics including: meta-stable states, transition states, helical structures, and stochastic dynamics. We show that spectral clustering is robust to anomalies introduced by structural alignment and that different structural classes of intrinsically disordered proteins can be reliably discriminated from the clustering results. To our knowledge, our framework is the first to utilize model polymers to rigorously test the utility of clustering algorithms for studying biopolymers.

  18. Validating clustering of molecular dynamics simulations using polymer models

    PubMed Central

    2011-01-01

    Background Molecular dynamics (MD) simulation is a powerful technique for sampling the meta-stable and transitional conformations of proteins and other biomolecules. Computational data clustering has emerged as a useful, automated technique for extracting conformational states from MD simulation data. Despite extensive application, relatively little work has been done to determine if the clustering algorithms are actually extracting useful information. A primary goal of this paper therefore is to provide such an understanding through a detailed analysis of data clustering applied to a series of increasingly complex biopolymer models. Results We develop a novel series of models using basic polymer theory that have intuitive, clearly-defined dynamics and exhibit the essential properties that we are seeking to identify in MD simulations of real biomolecules. We then apply spectral clustering, an algorithm particularly well-suited for clustering polymer structures, to our models and MD simulations of several intrinsically disordered proteins. Clustering results for the polymer models provide clear evidence that the meta-stable and transitional conformations are detected by the algorithm. The results for the polymer models also help guide the analysis of the disordered protein simulations by comparing and contrasting the statistical properties of the extracted clusters. Conclusions We have developed a framework for validating the performance and utility of clustering algorithms for studying molecular biopolymer simulations that utilizes several analytic and dynamic polymer models which exhibit well-behaved dynamics including: meta-stable states, transition states, helical structures, and stochastic dynamics. We show that spectral clustering is robust to anomalies introduced by structural alignment and that different structural classes of intrinsically disordered proteins can be reliably discriminated from the clustering results. To our knowledge, our framework is the first to utilize model polymers to rigorously test the utility of clustering algorithms for studying biopolymers. PMID:22082218

  19. Human-Centered Design of Human-Computer-Human Dialogs in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1998-01-01

    A series of ongoing research programs at Georgia Tech established a need for a simulation support tool for aircraft computer-based aids. This led to the design and development of the Georgia Tech Electronic Flight Instrument Research Tool (GT-EFIRT). GT-EFIRT is a part-task flight simulator specifically designed to study aircraft display design and single pilot interaction. ne simulator, using commercially available graphics and Unix workstations, replicates to a high level of fidelity the Electronic Flight Instrument Systems (EFIS), Flight Management Computer (FMC) and Auto Flight Director System (AFDS) of the Boeing 757/767 aircraft. The simulator can be configured to present information using conventional looking B757n67 displays or next generation Primary Flight Displays (PFD) such as found on the Beech Starship and MD-11.

  20. Multiscale molecular dynamics simulations of rotary motor proteins.

    PubMed

    Ekimoto, Toru; Ikeguchi, Mitsunori

    2018-04-01

    Protein functions require specific structures frequently coupled with conformational changes. The scale of the structural dynamics of proteins spans from the atomic to the molecular level. Theoretically, all-atom molecular dynamics (MD) simulation is a powerful tool to investigate protein dynamics because the MD simulation is capable of capturing conformational changes obeying the intrinsically structural features. However, to study long-timescale dynamics, efficient sampling techniques and coarse-grained (CG) approaches coupled with all-atom MD simulations, termed multiscale MD simulations, are required to overcome the timescale limitation in all-atom MD simulations. Here, we review two examples of rotary motor proteins examined using free energy landscape (FEL) analysis and CG-MD simulations. In the FEL analysis, FEL is calculated as a function of reaction coordinates, and the long-timescale dynamics corresponding to conformational changes is described as transitions on the FEL surface. Another approach is the utilization of the CG model, in which the CG parameters are tuned using the fluctuation matching methodology with all-atom MD simulations. The long-timespan dynamics is then elucidated straightforwardly by using CG-MD simulations.

  1. Development of Simulation Methods in the Gibbs Ensemble to Predict Polymer-Solvent Phase Equilibria

    NASA Astrophysics Data System (ADS)

    Gartner, Thomas; Epps, Thomas; Jayaraman, Arthi

    Solvent vapor annealing (SVA) of polymer thin films is a promising method for post-deposition polymer film morphology control. The large number of important parameters relevant to SVA (polymer, solvent, and substrate chemistries, incoming film condition, annealing and solvent evaporation conditions) makes systematic experimental study of SVA a time-consuming endeavor, motivating the application of simulation and theory to the SVA system to provide both mechanistic insight and scans of this wide parameter space. However, to rigorously treat the phase equilibrium between polymer film and solvent vapor while still probing the dynamics of SVA, new simulation methods must be developed. In this presentation, we compare two methods to study polymer-solvent phase equilibrium-Gibbs Ensemble Molecular Dynamics (GEMD) and Hybrid Monte Carlo/Molecular Dynamics (Hybrid MC/MD). Liquid-vapor equilibrium results are presented for the Lennard Jones fluid and for coarse-grained polymer-solvent systems relevant to SVA. We found that the Hybrid MC/MD method is more stable and consistent than GEMD, but GEMD has significant advantages in computational efficiency. We propose that Hybrid MC/MD simulations be used for unfamiliar systems in certain choice conditions, followed by much faster GEMD simulations to map out the remainder of the phase window.

  2. CHARMM additive and polarizable force fields for biophysics and computer-aided drug design.

    PubMed

    Vanommeslaeghe, K; MacKerell, A D

    2015-05-01

    Molecular Mechanics (MM) is the method of choice for computational studies of biomolecular systems owing to its modest computational cost, which makes it possible to routinely perform molecular dynamics (MD) simulations on chemical systems of biophysical and biomedical relevance. As one of the main factors limiting the accuracy of MD results is the empirical force field used, the present paper offers a review of recent developments in the CHARMM additive force field, one of the most popular biomolecular force fields. Additionally, we present a detailed discussion of the CHARMM Drude polarizable force field, anticipating a growth in the importance and utilization of polarizable force fields in the near future. Throughout the discussion emphasis is placed on the force fields' parametrization philosophy and methodology. Recent improvements in the CHARMM additive force field are mostly related to newly found weaknesses in the previous generation of additive force fields. Beyond the additive approximation is the newly available CHARMM Drude polarizable force field, which allows for MD simulations of up to 1μs on proteins, DNA, lipids and carbohydrates. Addressing the limitations ensures the reliability of the new CHARMM36 additive force field for the types of calculations that are presently coming into routine computational reach while the availability of the Drude polarizable force fields offers an inherently more accurate model of the underlying physical forces driving macromolecular structures and dynamics. This article is part of a Special Issue entitled "Recent developments of molecular dynamics". Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Computational and experimental analysis of short peptide motifs for enzyme inhibition.

    PubMed

    Fu, Jinglin; Larini, Luca; Cooper, Anthony J; Whittaker, John W; Ahmed, Azka; Dong, Junhao; Lee, Minyoung; Zhang, Ting

    2017-01-01

    The metabolism of living systems involves many enzymes that play key roles as catalysts and are essential to biological function. Searching ligands with the ability to modulate enzyme activities is central to diagnosis and therapeutics. Peptides represent a promising class of potential enzyme modulators due to the large chemical diversity, and well-established methods for library synthesis. Peptides and their derivatives are found to play critical roles in modulating enzymes and mediating cellular uptakes, which are increasingly valuable in therapeutics. We present a methodology that uses molecular dynamics (MD) and point-variant screening to identify short peptide motifs that are critical for inhibiting β-galactosidase (β-Gal). MD was used to simulate the conformations of peptides and to suggest short motifs that were most populated in simulated conformations. The function of the simulated motifs was further validated by the experimental point-variant screening as critical segments for inhibiting the enzyme. Based on the validated motifs, we eventually identified a 7-mer short peptide for inhibiting an enzyme with low μM IC50. The advantage of our methodology is the relatively simplified simulation that is informative enough to identify the critical sequence of a peptide inhibitor, with a precision comparable to truncation and alanine scanning experiments. Our combined experimental and computational approach does not rely on a detailed understanding of mechanistic and structural details. The MD simulation suggests the populated motifs that are consistent with the results of the experimental alanine and truncation scanning. This approach appears to be applicable to both natural and artificial peptides. With more discovered short motifs in the future, they could be exploited for modulating biocatalysis, and developing new medicine.

  4. Applications of a general random-walk theory for confined diffusion.

    PubMed

    Calvo-Muñoz, Elisa M; Selvan, Myvizhi Esai; Xiong, Ruichang; Ojha, Madhusudan; Keffer, David J; Nicholson, Donald M; Egami, Takeshi

    2011-01-01

    A general random walk theory for diffusion in the presence of nanoscale confinement is developed and applied. The random-walk theory contains two parameters describing confinement: a cage size and a cage-to-cage hopping probability. The theory captures the correct nonlinear dependence of the mean square displacement (MSD) on observation time for intermediate times. Because of its simplicity, the theory also requires modest computational requirements and is thus able to simulate systems with very low diffusivities for sufficiently long time to reach the infinite-time-limit regime where the Einstein relation can be used to extract the self-diffusivity. The theory is applied to three practical cases in which the degree of order in confinement varies. The three systems include diffusion of (i) polyatomic molecules in metal organic frameworks, (ii) water in proton exchange membranes, and (iii) liquid and glassy iron. For all three cases, the comparison between theory and the results of molecular dynamics (MD) simulations indicates that the theory can describe the observed diffusion behavior with a small fraction of the computational expense. The confined-random-walk theory fit to the MSDs of very short MD simulations is capable of accurately reproducing the MSDs of much longer MD simulations. Furthermore, the values of the parameter for cage size correspond to the physical dimensions of the systems and the cage-to-cage hopping probability corresponds to the activation barrier for diffusion, indicating that the two parameters in the theory are not simply fitted values but correspond to real properties of the physical system.

  5. Molecular Simulation Study of Gas Solubility and Diffusion in a Polymer-Boron Nitride Nanotube Composite.

    PubMed

    Wang, Congyue; Jagirdar, Preeti; Naserifar, Saber; Sahimi, Muhammad

    2016-02-25

    We study the possibility of using polymer composites made of a polymer and boron nitride nanotubes (BNNTs) as a new type of membranes for gas separation. The polymer used is amorphous poly(ether imide) (PEI), and zigzag BNNTs are used to generate the composites with the PEI. The solubilities and self-diffusivities of CO2 and CH4 in the PEI and its composites with the BNNTs are calculated by molecular dynamics (MD) simulations. The molecular models of the PEI and its composites with the BNNTs are generated using energy minimization and MD simulation, and the Universal Force Field is used to represent the interactions between all the atoms. The morhology of the composites are characterized and are compared with that of PEI. The accuracy of the computations is tested by calculating the gases' solubilities and self-diffsivities in the pure PEI and comparing them with the experimental data. Good agreement is obtained with the data. The computed diffusivities and solubilities in the polymer-BNNTs composites are much larger than those in the pure polymer, which are attributed to the changes that the BNNTs induce in the polymer composite's free-volume distribution. As the mechanical properties of the polymer-BNNTs composites are superior over those of the pure PEI, their use as a membrane for gas separation offers distinct advantages over the pure polymer. We also demonstrate that, calculating the diffusion coefficients with MD simulations in the NPT ensemble, as opposed to the common practice of utilizing the NVT ensemble, leads to much more accurate results.

  6. Molecular dynamics simulation studies of ionic liquid electrolytes for electric double layer capacitors

    NASA Astrophysics Data System (ADS)

    Hu, Zongzhi

    Molecular Dynamics (MD) simulation has been performed on various Electric Double Layer Capacitors (EDLCs) systems with different Room Temperature Ionic Liquids (RTILs) as well as different structures and materials of electrodes using a computationally efficient, low cost, united atom (UA)/explicit atom (EA) force filed. MD simulation studies on two 1-butyl-3-methylimidazolium (BMIM) based RTILs, i.e., [BMIM][BF4] and [BMIM][PF6], have been conducted on both atomic flat and corrugated graphite as well as (001) and (011) gold electrode surfaces to understand the correlations between the Electric Double Layer (EDL) structure and their corresponding differential capacitance (DC). Our MD simulations have strong agreement with some experimental data. The structures of electrodes also have a strong effect on the capacitance of EDLCs. MD simulations have been conducted on RTILs of N-methyl-N- propylpyrrolidinium [pyr13] and bis(fluorosulfonyl)imide (FSI) as well as [BMIM][PF6] on both curvature electrodes (fullerenes, nanotube, nanowire) and atomic flat electrode surfaces. It turns out that the nanowire electrode systems have the largest capacitance, following by fullerene systems. Nanotube electrode systems have the smallest capacitance, but they are still larger than that of atomically flat electrode system. Also, RTILs with slightly different chemical structure such as [Cnmim], n = 2, 4, 6, and 8, FSI and bis(trifluoromethylsulfonyl)imide (TFSI), have been examined by MD simulation on both flat and nonflat graphite electrode surfaces to study the effect of cation and anion's chemical structures on EDL structure and DC. With prismatic (nonflat) graphite electrodes, a transition from a bell-shape to a camel-shape DC dependence on electrode potential was observed with increase of the cation alkyl tail length for FSI systems. In contrast, the [Cnmim][TFSI] ionic liquids generated only a camel-shape DC on the rough surface regardless of the length of alkyl tail.

  7. Computer simulation of the matrix-inclusion interphase in bulk metallic glass based nanocomposites

    NASA Astrophysics Data System (ADS)

    Kokotin, V.; Hermann, H.; Eckert, J.

    2011-10-01

    Atomistic models for matrix-inclusion systems are generated. Analyses of the systems show that interphase layers of finite thickness appear interlinking the surface of the nanocrystalline inclusion and the embedding amorphous matrix. In a first approximation, the interphase is characterized as an amorphous structure with a density slightly reduced compared to that of the matrix. This result holds for both monatomic hard sphere systems and a Cu47.5Zr47.5Al5 alloy simulated by molecular dynamics (MD). The elastic shear and bulk modulus of the interphase are calculated by simulated deformation of the MD systems. Both moduli diminish with decreasing density but the shear modulus is more sensitive against density reduction by one order of magnitude. This result explains recent observations of shear band initiation at the amorphous-crystalline interface during plastic deformation.

  8. Communication: Quantum molecular dynamics simulation of liquid para-hydrogen by nuclear and electron wave packet approach.

    PubMed

    Hyeon-Deuk, Kim; Ando, Koji

    2014-05-07

    Liquid para-hydrogen (p-H2) is a typical quantum liquid which exhibits strong nuclear quantum effects (NQEs) and thus anomalous static and dynamic properties. We propose a real-time simulation method of wave packet (WP) molecular dynamics (MD) based on non-empirical intra- and inter-molecular interactions of non-spherical hydrogen molecules, and apply it to condensed-phase p-H2. The NQEs, such as WP delocalization and zero-point energy, are taken into account without perturbative expansion of prepared model potential functions but with explicit interactions between nuclear and electron WPs. The developed MD simulation for 100 ps with 1200 hydrogen molecules is realized at feasible computational cost, by which basic experimental properties of p-H2 liquid such as radial distribution functions, self-diffusion coefficients, and shear viscosities are all well reproduced.

  9. Advances in free-energy-based simulations of protein folding and ligand binding.

    PubMed

    Perez, Alberto; Morrone, Joseph A; Simmerling, Carlos; Dill, Ken A

    2016-02-01

    Free-energy-based simulations are increasingly providing the narratives about the structures, dynamics and biological mechanisms that constitute the fabric of protein science. Here, we review two recent successes. It is becoming practical: first, to fold small proteins with free-energy methods without knowing substructures and second, to compute ligand-protein binding affinities, not just their binding poses. Over the past 40 years, the timescales that can be simulated by atomistic MD are doubling every 1.3 years--which is faster than Moore's law. Thus, these advances are not simply due to the availability of faster computers. Force fields, solvation models and simulation methodology have kept pace with computing advancements, and are now quite good. At the tip of the spear recently are GPU-based computing, improved fast-solvation methods, continued advances in force fields, and conformational sampling methods that harness external information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Scrutinizing Molecular Mechanics Force Fields on the Submicrosecond Timescale with NMR Data

    PubMed Central

    Lange, Oliver F.; van der Spoel, David; de Groot, Bert L.

    2010-01-01

    Abstract Protein dynamics on the atomic level and on the microsecond timescale has recently become accessible from both computation and experiment. To validate molecular dynamics (MD) at the submicrosecond timescale against experiment we present microsecond MD simulations in 10 different force-field configurations for two globular proteins, ubiquitin and the gb3 domain of protein G, for which extensive NMR data is available. We find that the reproduction of the measured NMR data strongly depends on the chosen force field and electrostatics treatment. Generally, particle-mesh Ewald outperforms cut-off and reaction-field approaches. A comparison to measured J-couplings across hydrogen bonds suggests that there is room for improvement in the force-field description of hydrogen bonds in most modern force fields. Our results show that with current force fields, simulations beyond hundreds of nanoseconds run an increased risk of undergoing transitions to nonnative conformational states or will persist within states of high free energy for too long, thus skewing the obtained population frequencies. Only for the AMBER99sb force field have such transitions not been observed. Thus, our results have significance for the interpretation of data obtained with long MD simulations, for the selection of force fields for MD studies and for force-field development. We hope that this comprehensive benchmark based on NMR data applied to many popular MD force fields will serve as a useful resource to the MD community. Finally, we find that for gb3, the force-field AMBER99sb reaches comparable accuracy in back-calculated residual dipolar couplings and J-couplings across hydrogen bonds to ensembles obtained by refinement against NMR data. PMID:20643085

  11. Dynamics of biomolecules, ligand binding & biological functions

    NASA Astrophysics Data System (ADS)

    Yi, Myunggi

    Proteins are flexible and dynamic. One static structure alone does not often completely explain biological functions of the protein, and some proteins do not even have high resolution structures. In order to provide better understanding to the biological functions of nicotinic acetylcholine receptor, Diphtheria toxin repressor and M2 proton channel, the dynamics of these proteins are investigated using molecular modeling and molecular dynamics (MD) simulations. With absence of high resolution structure of alpha7 receptor, the homology models of apo and cobra toxin bound forms have been built. From the MD simulations of these model structures, we observed one subunit of apo simulation moved away from other four subunits. With local movement of flexible loop regions, the whole subunit tilted clockwise. These conformational changes occurred spontaneously, and were strongly correlated with the conformational change when the channel is activated by agonists. Unlike other computational studies, we directly compared our model of open conformation with the experimental data. However, the subunits of toxin bound form were stable, and conformational change is restricted by the bound cobra toxin. These results provide activation and inhibition mechanisms of alpha7 receptors and a possible explanation for intermediate conductance of the channel. Intramolecular complex of SH3-like domain with a proline-rich (Pr) peptide segment in Diphtheria toxin repressor (DtxR) is stabilized in inactive state. Upon activation of DtxR by transition metal binding, this intramolecular complex should be dissociated. The dynamics of this intramolecular complex is investigated using MD simulations and NMR spectroscopy. We observed spontaneous opening and closing motions of the Pr segment binding pockets in both Pr-SH3 and SH3 simulations. The MD simulation results and NMR relaxation data suggest that the Pr segment exhibits a binding ↔ unbinding equilibrium. Despite a wealth of experimental validation of Gouy-Chapman (GC) theory to charged lipid membranes, a test of GC theory by MD simulations has been elusive. Here we demonstrate that the ion distributions at different salt concentrations in anionic lipid bilayer systems agree well with GC predictions using MD simulations. Na+ ions are adsorbed to the bilayer through favorable interactions with carbonyls and hydroxyls, reducing the surface charge density by 72.5%. The interactions of amantadine, an antiinfluenza A drug, with DMPC bilayers are investigated by an MD simulation and by solid-state NMR. The MD simulation results and NMR data demonstrate that amantadine is located within the interfacial region with upward orientation and interacts with the lipid headgroup and glycerol backbone, while the adamantane group of amantadine interacts with the glycerol backbone and much of fatty acyl chain, as it wraps underneath of the drug. The lipid headgroup orientation is influenced by the drug as well. The recent prevalence of amantadine-resistant mutants makes a development of new drug urgent. The mechanism of inhibition of M2 proton channel in influenza virus A by amantadine is investigated. In the absence of high resolution structure, we model the apo and drug bound forms based on NMR structures. MD simulations demonstrate that channel pore is blocked by a primary gate formed by Trp41 helped by His37 and a secondary gate formed by Val27. The blockage by the secondary gate is extended by the drug bound just below the gate, resulting in a broken water wire throughout the simulation, suggesting a novel role of Val27 in the inhibition by amantadine. Recent X-ray structure validates the simulation results.

  12. Direct construction of mesoscopic models from microscopic simulations

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Caswell, Bruce; Karniadakis, George Em

    2010-02-01

    Starting from microscopic molecular-dynamics (MD) simulations of constrained Lennard-Jones (LJ) clusters (with constant radius of gyration Rg ), we construct two mesoscopic models [Langevin dynamics and dissipative particle dynamics (DPD)] by coarse graining the LJ clusters into single particles. Both static and dynamic properties of the coarse-grained models are investigated and compared with the MD results. The effective mean force field is computed as a function of the intercluster distance, and the corresponding potential scales linearly with the number of particles per cluster and the temperature. We verify that the mean force field can reproduce the equation of state of the atomistic systems within a wide density range but the radial distribution function only within the dilute and the semidilute regime. The friction force coefficients for both models are computed directly from the time-correlation function of the random force field of the microscopic system. For high density or a large cluster size the friction force is overestimated and the diffusivity underestimated due to the omission of many-body effects as a result of the assumed pairwise form of the coarse-grained force field. When the many-body effect is not as pronounced (e.g., smaller Rg or semidilute system), the DPD model can reproduce the dynamic properties of the MD system.

  13. Homology Modeling of Dopamine D2 and D3 Receptors: Molecular Dynamics Refinement and Docking Evaluation

    PubMed Central

    Platania, Chiara Bianca Maria; Salomone, Salvatore; Leggio, Gian Marco; Drago, Filippo; Bucolo, Claudio

    2012-01-01

    Dopamine (DA) receptors, a class of G-protein coupled receptors (GPCRs), have been targeted for drug development for the treatment of neurological, psychiatric and ocular disorders. The lack of structural information about GPCRs and their ligand complexes has prompted the development of homology models of these proteins aimed at structure-based drug design. Crystal structure of human dopamine D3 (hD3) receptor has been recently solved. Based on the hD3 receptor crystal structure we generated dopamine D2 and D3 receptor models and refined them with molecular dynamics (MD) protocol. Refined structures, obtained from the MD simulations in membrane environment, were subsequently used in molecular docking studies in order to investigate potential sites of interaction. The structure of hD3 and hD2L receptors was differentiated by means of MD simulations and D3 selective ligands were discriminated, in terms of binding energy, by docking calculation. Robust correlation of computed and experimental Ki was obtained for hD3 and hD2L receptor ligands. In conclusion, the present computational approach seems suitable to build and refine structure models of homologous dopamine receptors that may be of value for structure-based drug discovery of selective dopaminergic ligands. PMID:22970199

  14. Accelerated molecular dynamics simulations of the octopamine receptor using GPUs: discovery of an alternate agonist-binding position.

    PubMed

    Kastner, Kevin W; Izaguirre, Jesús A

    2016-10-01

    Octopamine receptors (OARs) perform key biological functions in invertebrates, making this class of G-protein coupled receptors (GPCRs) worth considering for insecticide development. However, no crystal structures and very little research exists for OARs. Furthermore, GPCRs are large proteins, are suspended in a lipid bilayer, and are activated on the millisecond timescale, all of which make conventional molecular dynamics (MD) simulations infeasible, even if run on large supercomputers. However, accelerated Molecular Dynamics (aMD) simulations can reduce this timescale to even hundreds of nanoseconds, while running the simulations on graphics processing units (GPUs) would enable even small clusters of GPUs to have processing power equivalent to hundreds of CPUs. Our results show that aMD simulations run on GPUs can successfully obtain the active and inactive state conformations of a GPCR on this reduced timescale. Furthermore, we discovered a potential alternate active-state agonist-binding position in the octopamine receptor which has yet to be observed and may be a novel GPCR agonist-binding position. These results demonstrate that a complex biological system with an activation process on the millisecond timescale can be successfully simulated on the nanosecond timescale using a simple computing system consisting of a small number of GPUs. Proteins 2016; 84:1480-1489. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Mutual diffusion coefficients of heptane isomers in nitrogen: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Chae, Kyungchan; Violi, Angela

    2011-01-01

    The accurate knowledge of transport properties of pure and mixture fluids is essential for the design of various chemical and mechanical systems that include fluxes of mass, momentum, and energy. In this study we determine the mutual diffusion coefficients of mixtures composed of heptane isomers and nitrogen using molecular dynamics (MD) simulations with fully atomistic intermolecular potential parameters, in conjunction with the Green-Kubo formula. The computed results were compared with the values obtained using the Chapman-Enskog (C-E) equation with Lennard-Jones (LJ) potential parameters derived from the correlations of state values: MD simulations predict a maximum difference of 6% among isomers while the C-E equation presents that of 3% in the mutual diffusion coefficients in the temperature range 500-1000 K. The comparison of two approaches implies that the corresponding state principle can be applied to the models, which are only weakly affected by the anisotropy of the interaction potentials and the large uncertainty will be included in its application for complex polyatomic molecules. The MD simulations successfully address the pure effects of molecular structure among isomers on mutual diffusion coefficients by revealing that the differences of the total mutual diffusion coefficients for the six mixtures are caused mainly by heptane isomers. The cross interaction potential parameters, collision diameter σ _{12}, and potential energy well depth \\varepsilon _{12} of heptane isomers and nitrogen mixtures were also computed from the mutual diffusion coefficients.

  16. Divide-and-conquer density functional theory on hierarchical real-space grids: Parallel implementation and applications

    NASA Astrophysics Data System (ADS)

    Shimojo, Fuyuki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2008-02-01

    A linear-scaling algorithm based on a divide-and-conquer (DC) scheme has been designed to perform large-scale molecular-dynamics (MD) simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory (DFT). Electronic wave functions are represented on a real-space grid, which is augmented with a coarse multigrid to accelerate the convergence of iterative solutions and with adaptive fine grids around atoms to accurately calculate ionic pseudopotentials. Spatial decomposition is employed to implement the hierarchical-grid DC-DFT algorithm on massively parallel computers. The largest benchmark tests include 11.8×106 -atom ( 1.04×1012 electronic degrees of freedom) calculation on 131 072 IBM BlueGene/L processors. The DC-DFT algorithm has well-defined parameters to control the data locality, with which the solutions converge rapidly. Also, the total energy is well conserved during the MD simulation. We perform first-principles MD simulations based on the DC-DFT algorithm, in which large system sizes bring in excellent agreement with x-ray scattering measurements for the pair-distribution function of liquid Rb and allow the description of low-frequency vibrational modes of graphene. The band gap of a CdSe nanorod calculated by the DC-DFT algorithm agrees well with the available conventional DFT results. With the DC-DFT algorithm, the band gap is calculated for larger system sizes until the result reaches the asymptotic value.

  17. Dynamic transition in the structure of an energetic crystal during chemical reactions at shock front prior to detonation.

    PubMed

    Nomura, Ken-Ichi; Kalia, Rajiv K; Nakano, Aiichiro; Vashishta, Priya; van Duin, Adri C T; Goddard, William A

    2007-10-05

    Mechanical stimuli in energetic materials initiate chemical reactions at shock fronts prior to detonation. Shock sensitivity measurements provide widely varying results, and quantum-mechanical calculations are unable to handle systems large enough to describe shock structure. Recent developments in reactive force-field molecular dynamics (ReaxFF-MD) combined with advances in parallel computing have paved the way to accurately simulate reaction pathways along with the structure of shock fronts. Our multimillion-atom ReaxFF-MD simulations of l,3,5-trinitro-l,3,5-triazine (RDX) reveal that detonation is preceded by a transition from a diffuse shock front with well-ordered molecular dipoles behind it to a disordered dipole distribution behind a sharp front.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bischoff, A. J., E-mail: alina.bischoff@iom-leipzig.de; Arabi-Hashemi, A.; Ehrhardt, M.

    Combining experimental methods and classical molecular dynamics (MD) computer simulations, we explore the martensitic transformation in Fe{sub 70}Pd{sub 30} ferromagnetic shape memory alloy thin films induced by laser shock peening. X-ray diffraction and scanning electron microscope measurements at shock wave pressures of up to 2.5 GPa reveal formation of martensitic variants with preferred orientation of the shorter c-axis of the tetragonal unit cell perpendicular to the surface plane. Moreover, consequential merging of growth islands on the film surface is observed. MD simulations unveil the underlying physics that are characterized by an austenite-martensite transformation with a preferential alignment of the c-axis alongmore » the propagation direction of the shock wave, resulting in flattening and in-plane expansion of surface features.« less

  19. Predicting Real-Valued Protein Residue Fluctuation Using FlexPred.

    PubMed

    Peterson, Lenna; Jamroz, Michal; Kolinski, Andrzej; Kihara, Daisuke

    2017-01-01

    The conventional view of a protein structure as static provides only a limited picture. There is increasing evidence that protein dynamics are often vital to protein function including interaction with partners such as other proteins, nucleic acids, and small molecules. Considering flexibility is also important in applications such as computational protein docking and protein design. While residue flexibility is partially indicated by experimental measures such as the B-factor from X-ray crystallography and ensemble fluctuation from nuclear magnetic resonance (NMR) spectroscopy as well as computational molecular dynamics (MD) simulation, these techniques are resource-intensive. In this chapter, we describe the web server and stand-alone version of FlexPred, which rapidly predicts absolute per-residue fluctuation from a three-dimensional protein structure. On a set of 592 nonredundant structures, comparing the fluctuations predicted by FlexPred to the observed fluctuations in MD simulations showed an average correlation coefficient of 0.669 and an average root mean square error of 1.07 Å. FlexPred is available at http://kiharalab.org/flexPred/ .

  20. Elucidating Mechanisms of Molecular Recognition Between Human Argonaute and miRNA Using Computational Approaches.

    PubMed

    Jiang, Hanlun; Zhu, Lizhe; Héliou, Amélie; Gao, Xin; Bernauer, Julie; Huang, Xuhui

    2017-01-01

    MicroRNA (miRNA) and Argonaute (AGO) protein together form the RNA-induced silencing complex (RISC) that plays an essential role in the regulation of gene expression. Elucidating the underlying mechanism of AGO-miRNA recognition is thus of great importance not only for the in-depth understanding of miRNA function but also for inspiring new drugs targeting miRNAs. In this chapter we introduce a combined computational approach of molecular dynamics (MD) simulations, Markov state models (MSMs), and protein-RNA docking to investigate AGO-miRNA recognition. Constructed from MD simulations, MSMs can elucidate the conformational dynamics of AGO at biologically relevant timescales. Protein-RNA docking can then efficiently identify the AGO conformations that are geometrically accessible to miRNA. Using our recent work on human AGO2 as an example, we explain the rationale and the workflow of our method in details. This combined approach holds great promise to complement experiments in unraveling the mechanisms of molecular recognition between large, flexible, and complex biomolecules.

  1. Fast, metadynamics-based method for prediction of the stereochemistry-dependent relative free energies of ligand-receptor interactions.

    PubMed

    Plazinska, Anita; Plazinski, Wojciech; Jozwiak, Krzysztof

    2014-04-30

    The computational approach applicable for the molecular dynamics (MD)-based techniques is proposed to predict the ligand-protein binding affinities dependent on the ligand stereochemistry. All possible stereoconfigurations are expressed in terms of one set of force-field parameters [stereoconfiguration-independent potential (SIP)], which allows for calculating all relative free energies by only single simulation. SIP can be used for studying diverse, stereoconfiguration-dependent phenomena by means of various computational techniques of enhanced sampling. The method has been successfully tested on the β2-adrenergic receptor (β2-AR) binding the four fenoterol stereoisomers by both metadynamics simulations and replica-exchange MD. Both the methods gave very similar results, fully confirming the presence of stereoselective effects in the fenoterol-β2-AR interactions. However, the metadynamics-based approach offered much better efficiency of sampling which allows for significant reduction of the unphysical region in SIP. Copyright © 2014 Wiley Periodicals, Inc.

  2. Molecular dynamics simulation: a tool for exploration and discovery using simple models

    NASA Astrophysics Data System (ADS)

    Rapaport, D. C.

    2014-12-01

    Emergent phenomena share the fascinating property of not being obvious consequences of the design of the system in which they appear. This characteristic is no less relevant when attempting to simulate such phenomena, given that the outcome is not always a foregone conclusion. The present survey focuses on several simple model systems that exhibit surprisingly rich emergent behavior, all studied by molecular dynamics (MD) simulation. The examples are taken from the disparate fields of fluid dynamics, granular matter and supramolecular self-assembly. In studies of fluids modeled at the detailed microscopic level using discrete particles, the simulations demonstrate that complex hydrodynamic phenomena in rotating and convecting fluids—the Taylor-Couette and Rayleigh-Bénard instabilities—can not only be observed within the limited length and time scales accessible to MD, but even allow quantitative agreement to be achieved. Simulation of highly counter-intuitive segregation phenomena in granular mixtures, again using MD methods, but now augmented by forces producing damping and friction, leads to results that resemble experimentally observed axial and radial segregation in the case of a rotating cylinder and to a novel form of horizontal segregation in a vertically vibrated layer. Finally, when modeling self-assembly processes analogous to the formation of the polyhedral shells that package spherical viruses, simulation of suitably shaped particles reveals the ability to produce complete, error-free assembly and leads to the important general observation that reversible growth steps contribute to the high yield. While there are limitations to the MD approach, both computational and conceptual, the results offer a tantalizing hint of the kinds of phenomena that can be explored and what might be discovered when sufficient resources are brought to bear on a problem.

  3. Advanced Computational Methods for High-accuracy Refinement of Protein Low-quality Models

    NASA Astrophysics Data System (ADS)

    Zang, Tianwu

    Predicting the 3-dimentional structure of protein has been a major interest in the modern computational biology. While lots of successful methods can generate models with 3˜5A root-mean-square deviation (RMSD) from the solution, the progress of refining these models is quite slow. It is therefore urgently needed to develop effective methods to bring low-quality models to higher-accuracy ranges (e.g., less than 2 A RMSD). In this thesis, I present several novel computational methods to address the high-accuracy refinement problem. First, an enhanced sampling method, named parallel continuous simulated tempering (PCST), is developed to accelerate the molecular dynamics (MD) simulation. Second, two energy biasing methods, Structure-Based Model (SBM) and Ensemble-Based Model (EBM), are introduced to perform targeted sampling around important conformations. Third, a three-step method is developed to blindly select high-quality models along the MD simulation. These methods work together to make significant refinement of low-quality models without any knowledge of the solution. The effectiveness of these methods is examined in different applications. Using the PCST-SBM method, models with higher global distance test scores (GDT_TS) are generated and selected in the MD simulation of 18 targets from the refinement category of the 10th Critical Assessment of Structure Prediction (CASP10). In addition, in the refinement test of two CASP10 targets using the PCST-EBM method, it is indicated that EBM may bring the initial model to even higher-quality levels. Furthermore, a multi-round refinement protocol of PCST-SBM improves the model quality of a protein to the level that is sufficient high for the molecular replacement in X-ray crystallography. Our results justify the crucial position of enhanced sampling in the protein structure prediction and demonstrate that a considerable improvement of low-accuracy structures is still achievable with current force fields.

  4. Role of Molecular Dynamics and Related Methods in Drug Discovery.

    PubMed

    De Vivo, Marco; Masetti, Matteo; Bottegoni, Giovanni; Cavalli, Andrea

    2016-05-12

    Molecular dynamics (MD) and related methods are close to becoming routine computational tools for drug discovery. Their main advantage is in explicitly treating structural flexibility and entropic effects. This allows a more accurate estimate of the thermodynamics and kinetics associated with drug-target recognition and binding, as better algorithms and hardware architectures increase their use. Here, we review the theoretical background of MD and enhanced sampling methods, focusing on free-energy perturbation, metadynamics, steered MD, and other methods most consistently used to study drug-target binding. We discuss unbiased MD simulations that nowadays allow the observation of unsupervised ligand-target binding, assessing how these approaches help optimizing target affinity and drug residence time toward improved drug efficacy. Further issues discussed include allosteric modulation and the role of water molecules in ligand binding and optimization. We conclude by calling for more prospective studies to attest to these methods' utility in discovering novel drug candidates.

  5. MaMiCo: Transient multi-instance molecular-continuum flow simulation on supercomputers

    NASA Astrophysics Data System (ADS)

    Neumann, Philipp; Bian, Xin

    2017-11-01

    We present extensions of the macro-micro-coupling tool MaMiCo, which was designed to couple continuum fluid dynamics solvers with discrete particle dynamics. To enable local extraction of smooth flow field quantities especially on rather short time scales, sampling over an ensemble of molecular dynamics simulations is introduced. We provide details on these extensions including the transient coupling algorithm, open boundary forcing, and multi-instance sampling. Furthermore, we validate the coupling in Couette flow using different particle simulation software packages and particle models, i.e. molecular dynamics and dissipative particle dynamics. Finally, we demonstrate the parallel scalability of the molecular-continuum simulations by using up to 65 536 compute cores of the supercomputer Shaheen II located at KAUST. Program Files doi:http://dx.doi.org/10.17632/w7rgdrhb85.1 Licensing provisions: BSD 3-clause Programming language: C, C++ External routines/libraries: For compiling: SCons, MPI (optional) Subprograms used: ESPResSo, LAMMPS, ls1 mardyn, waLBerla For installation procedures of the MaMiCo interfaces, see the README files in the respective code directories located in coupling/interface/impl. Journal reference of previous version: P. Neumann, H. Flohr, R. Arora, P. Jarmatz, N. Tchipev, H.-J. Bungartz. MaMiCo: Software design for parallel molecular-continuum flow simulations, Computer Physics Communications 200: 324-335, 2016 Does the new version supersede the previous version?: Yes. The functionality of the previous version is completely retained in the new version. Nature of problem: Coupled molecular-continuum simulation for multi-resolution fluid dynamics: parts of the domain are resolved by molecular dynamics or another particle-based solver whereas large parts are covered by a mesh-based CFD solver, e.g. a lattice Boltzmann automaton. Solution method: We couple existing MD and CFD solvers via MaMiCo (macro-micro coupling tool). Data exchange and coupling algorithmics are abstracted and incorporated in MaMiCo. Once an algorithm is set up in MaMiCo, it can be used and extended, even if other solvers are used (as soon as the respective interfaces are implemented/available). Reasons for the new version: We have incorporated a new algorithm to simulate transient molecular-continuum systems and to automatically sample data over multiple MD runs that can be executed simultaneously (on, e.g., a compute cluster). MaMiCo has further been extended by an interface to incorporate boundary forcing to account for open molecular dynamics boundaries. Besides support for coupling with various MD and CFD frameworks, the new version contains a test case that allows to run molecular-continuum Couette flow simulations out-of-the-box. No external tools or simulation codes are required anymore. However, the user is free to switch from the included MD simulation package to LAMMPS. For details on how to run the transient Couette problem, see the file README in the folder coupling/tests, Remark on MaMiCo V1.1. Summary of revisions: Open boundary forcing; Multi-instance MD sampling; support for transient molecular-continuum systems Restrictions: Currently, only single-centered systems are supported. For access to the LAMMPS-based implementation of DPD boundary forcing, please contact Xin Bian, xin.bian@tum.de. Additional comments: Please see file license_mamico.txt for further details regarding distribution and advertising of this software.

  6. Probing the hydrogen equilibrium and kinetics in zeolite imidazolate frameworks via molecular dynamics and quasi-elastic neutron scattering experiments.

    PubMed

    Pantatosaki, Evangelia; Jobic, Hervé; Kolokolov, Daniil I; Karmakar, Shilpi; Biniwale, Rajesh; Papadopoulos, George K

    2013-01-21

    The problem of simulating processes involving equilibria and dynamics of guest sorbates within zeolitic imidazolate frameworks (ZIF) by means of molecular dynamics (MD) computer experiments is of growing importance because of the promising role of ZIFs as molecular "traps" for clean energy applications. A key issue for validating such an atomistic modeling attempt is the possibility of comparing the MD results, with real experiments being able to capture analogous space and time scales to the ones pertained to the computer experiments. In the present study, this prerequisite is fulfilled through the quasi-elastic neutron scattering technique (QENS) for measuring self-diffusivity, by elaborating the incoherent scattering signal of hydrogen nuclei. QENS and MD experiments were performed in parallel to probe the hydrogen motion, for the first time in ZIF members. The predicted and measured dynamics behaviors show considerable concentration variation of the hydrogen self-diffusion coefficient in the two topologically different ZIF pore networks of this study, the ZIF-3 and ZIF-8. Modeling options such as the flexibility of the entire matrix versus a rigid framework version, the mobility of the imidazolate ligand, and the inclusion of quantum mechanical effects in the potential functions were examined in detail for the sorption thermodynamics and kinetics of hydrogen and also of deuterium, by employing MD combined with Widom averaging towards studying phase equilibria. The latter methodology ensures a rigorous and efficient way for post-processing the dynamics trajectory, thereby avoiding stochastic moves via Monte Carlo simulation, over the large number of configurational degrees of freedom a nonrigid framework encompasses.

  7. GPU-enabled molecular dynamics simulations of ankyrin kinase complex

    NASA Astrophysics Data System (ADS)

    Gautam, Vertika; Chong, Wei Lim; Wisitponchai, Tanchanok; Nimmanpipug, Piyarat; Zain, Sharifuddin M.; Rahman, Noorsaadah Abd.; Tayapiwatana, Chatchai; Lee, Vannajan Sanghiran

    2014-10-01

    The ankyrin repeat (AR) protein can be used as a versatile scaffold for protein-protein interactions. It has been found that the heterotrimeric complex between integrin-linked kinase (ILK), PINCH, and parvin is an essential signaling platform, serving as a convergence point for integrin and growth-factor signaling and regulating cell adhesion, spreading, and migration. Using ILK-AR with high affinity for the PINCH1 as our model system, we explored a structure-based computational protocol to probe and characterize binding affinity hot spots at protein-protein interfaces. In this study, the long time scale dynamics simulations with GPU accelerated molecular dynamics (MD) simulations in AMBER12 have been performed to locate the hot spots of protein-protein interaction by the analysis of the Molecular Mechanics-Poisson-Boltzmann Surface Area/Generalized Born Solvent Area (MM-PBSA/GBSA) of the MD trajectories. Our calculations suggest good binding affinity of the complex and also the residues critical in the binding.

  8. Multi-scale Modeling of Radiation Damage: Large Scale Data Analysis

    NASA Astrophysics Data System (ADS)

    Warrier, M.; Bhardwaj, U.; Bukkuru, S.

    2016-10-01

    Modification of materials in nuclear reactors due to neutron irradiation is a multiscale problem. These neutrons pass through materials creating several energetic primary knock-on atoms (PKA) which cause localized collision cascades creating damage tracks, defects (interstitials and vacancies) and defect clusters depending on the energy of the PKA. These defects diffuse and recombine throughout the whole duration of operation of the reactor, thereby changing the micro-structure of the material and its properties. It is therefore desirable to develop predictive computational tools to simulate the micro-structural changes of irradiated materials. In this paper we describe how statistical averages of the collision cascades from thousands of MD simulations are used to provide inputs to Kinetic Monte Carlo (KMC) simulations which can handle larger sizes, more defects and longer time durations. Use of unsupervised learning and graph optimization in handling and analyzing large scale MD data will be highlighted.

  9. Molecular dynamics simulation of premelting and melting phase transitions in stoichiometric uranium dioxide

    NASA Astrophysics Data System (ADS)

    Yakub, Eugene; Ronchi, Claudio; Staicu, Dragos

    2007-09-01

    Results of molecular dynamics (MD) simulation of UO2 in a wide temperature range are presented and discussed. A new approach to the calibration of a partly ionic Busing-Ida-type model is proposed. A potential parameter set is obtained reproducing the experimental density of solid UO2 in a wide range of temperatures. A conventional simulation of the high-temperature stoichiometric UO2 on large MD cells, based on a novel fast method of computation of Coulomb forces, reveals characteristic features of a premelting λ transition at a temperature near to that experimentally observed (Tλ=2670K ). A strong deviation from the Arrhenius behavior of the oxygen self-diffusion coefficient was found in the vicinity of the transition point. Predictions for liquid UO2, based on the same potential parameter set, are in good agreement with existing experimental data and theoretical calculations.

  10. Ion specific correlations in bulk and at biointerfaces.

    PubMed

    Kalcher, I; Horinek, D; Netz, R R; Dzubiella, J

    2009-10-21

    Ion specific effects are ubiquitous in any complex colloidal or biological fluid in bulk or at interfaces. The molecular origins of these 'Hofmeister effects' are not well understood and their theoretical description poses a formidable challenge to the modeling and simulation community. On the basis of the combination of atomistically resolved molecular dynamics (MD) computer simulations and statistical mechanics approaches, we present a few selected examples of specific electrolyte effects in bulk, at simple neutral and charged interfaces, and on a short α-helical peptide. The structural complexity in these strongly Coulomb-correlated systems is highlighted and analyzed in the light of available experimental data. While in general the comparison of MD simulations to experiments often lacks quantitative agreement, mostly because molecular force fields and coarse-graining procedures remain to be optimized, the consensus as regards trends provides important insights into microscopic hydration and binding mechanisms.

  11. Computational prediction of ionic liquid 1-octanol/water partition coefficients.

    PubMed

    Kamath, Ganesh; Bhatnagar, Navendu; Baker, Gary A; Baker, Sheila N; Potoff, Jeffrey J

    2012-04-07

    Wet 1-octanol/water partition coefficients (log K(ow)) predicted for imidazolium-based ionic liquids using adaptive bias force-molecular dynamics (ABF-MD) simulations lie in excellent agreement with experimental values. These encouraging results suggest prospects for this computational tool in the a priori prediction of log K(ow) values of ionic liquids broadly with possible screening implications as well (e.g., prediction of CO(2)-philic ionic liquids).

  12. Molecular Dynamics of Hot Dense Plasmas: New Horizons

    NASA Astrophysics Data System (ADS)

    Graziani, Frank

    2011-06-01

    We describe the status of a new time-dependent simulation capability for hot dense plasmas. The backbone of this multi-institutional computational and experimental effort--the Cimarron Project--is the massively parallel molecular dynamics (MD) code ``ddcMD''. The project's focus is material conditions such as exist in inertial confinement fusion experiments, and in many stellar interiors: high temperatures, high densities, significant electromagnetic fields, mixtures of high- and low- Z elements, and non-Maxwellian particle distributions. Of particular importance is our ability to incorporate into this classical MD code key atomic, radiative, and nuclear processes, so that their interacting effects under non-ideal plasma conditions can be investigated. This talk summarizes progress in computational methodology, discusses strengths and weaknesses of quantum statistical potentials as effective interactions for MD, explains the model used for quantum events possibly occurring in a collision and highlights some significant results obtained to date. We will also discuss a new idea called kinetic theory MD which now being explored to deal more efficiently with the very disparate dynamical timescales that arise in fusion plasmas. We discuss how this approach can be derived rigorously from the n-body quantum Wigner equation and illustrate the approach with an example. This work is performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Structure of overheated metal clusters: MD simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorontsov, Alexander

    2015-08-17

    The structure of overheated metal clusters appeared in condensation process was studied by computer simulation techniques. It was found that clusters with size larger than several tens of atoms have three layers: core part, intermediate dense packing layer and a gas- like shell with low density. The change of the size and structure of these layers with the variation of internal energy and the size of cluster is discussed.

  14. Cosolvent-Based Molecular Dynamics for Ensemble Docking: Practical Method for Generating Druggable Protein Conformations.

    PubMed

    Uehara, Shota; Tanaka, Shigenori

    2017-04-24

    Protein flexibility is a major hurdle in current structure-based virtual screening (VS). In spite of the recent advances in high-performance computing, protein-ligand docking methods still demand tremendous computational cost to take into account the full degree of protein flexibility. In this context, ensemble docking has proven its utility and efficiency for VS studies, but it still needs a rational and efficient method to select and/or generate multiple protein conformations. Molecular dynamics (MD) simulations are useful to produce distinct protein conformations without abundant experimental structures. In this study, we present a novel strategy that makes use of cosolvent-based molecular dynamics (CMD) simulations for ensemble docking. By mixing small organic molecules into a solvent, CMD can stimulate dynamic protein motions and induce partial conformational changes of binding pocket residues appropriate for the binding of diverse ligands. The present method has been applied to six diverse target proteins and assessed by VS experiments using many actives and decoys of DEKOIS 2.0. The simulation results have revealed that the CMD is beneficial for ensemble docking. Utilizing cosolvent simulation allows the generation of druggable protein conformations, improving the VS performance compared with the use of a single experimental structure or ensemble docking by standard MD with pure water as the solvent.

  15. Understanding G Protein-Coupled Receptor Allostery via Molecular Dynamics Simulations: Implications for Drug Discovery.

    PubMed

    Basith, Shaherin; Lee, Yoonji; Choi, Sun

    2018-01-01

    Unraveling the mystery of protein allostery has been one of the greatest challenges in both structural and computational biology. However, recent advances in computational methods, particularly molecular dynamics (MD) simulations, have led to its utility as a powerful and popular tool for the study of protein allostery. By capturing the motions of a protein's constituent atoms, simulations can enable the discovery of allosteric hot spots and the determination of the mechanistic basis for allostery. These structural and dynamic studies can provide a foundation for a wide range of applications, including rational drug design and protein engineering. In our laboratory, the use of MD simulations and network analysis assisted in the elucidation of the allosteric hotspots and intracellular signal transduction of G protein-coupled receptors (GPCRs), primarily on one of the adenosine receptor subtypes, A 2A adenosine receptor (A 2A AR). In this chapter, we describe a method for calculating the map of allosteric signal flow in different GPCR conformational states and illustrate how these concepts have been utilized in understanding the mechanism of GPCR allostery. These structural studies will provide valuable insights into the allosteric and orthosteric modulations that would be of great help to design novel drugs targeting GPCRs in pathological states.

  16. Molecular dynamics simulations on the inhibition of cyclin-dependent kinases 2 and 5 in the presence of activators.

    PubMed

    Zhang, Bing; Tan, Vincent B C; Lim, Kian Meng; Tay, Tong Earn

    2006-06-01

    Interests in CDK2 and CDK5 have stemmed mainly from their association with cancer and neuronal migration or differentiation related diseases and the need to design selective inhibitors for these kinases. Molecular dynamics (MD) simulations have not only become a viable approach to drug design because of advances in computer technology but are increasingly an integral part of drug discovery processes. It is common in MD simulations of inhibitor/CDK complexes to exclude the activator of the CDKs in the structural models to keep computational time tractable. In this paper, we present simulation results of CDK2 and CDK5 with roscovitine using models with and without their activators (cyclinA and p25). While p25 was found to induce slight changes in CDK5, the calculations support that cyclinA leads to significant conformational changes near the active site of CDK2. This suggests that detailed and structure-based inhibitor design targeted at these CDKs should employ activator-included models of the kinases. Comparisons between P/CDK2/cyclinA/roscovitine and CDK5/p25/roscovitine complexes reveal differences in the conformations of the glutamine around the active sites, which may be exploited to find highly selective inhibitors with respect to CDK2 and CDK5.

  17. A multilevel-skin neighbor list algorithm for molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Chenglong; Zhao, Mingcan; Hou, Chaofeng; Ge, Wei

    2018-01-01

    Searching of the interaction pairs and organization of the interaction processes are important steps in molecular dynamics (MD) algorithms and are critical to the overall efficiency of the simulation. Neighbor lists are widely used for these steps, where thicker skin can reduce the frequency of list updating but is discounted by more computation in distance check for the particle pairs. In this paper, we propose a new neighbor-list-based algorithm with a precisely designed multilevel skin which can reduce unnecessary computation on inter-particle distances. The performance advantages over traditional methods are then analyzed against the main simulation parameters on Intel CPUs and MICs (many integrated cores), and are clearly demonstrated. The algorithm can be generalized for various discrete simulations using neighbor lists.

  18. Visualizing functional motions of membrane transporters with molecular dynamics simulations.

    PubMed

    Shaikh, Saher A; Li, Jing; Enkavi, Giray; Wen, Po-Chao; Huang, Zhijian; Tajkhorshid, Emad

    2013-01-29

    Computational modeling and molecular simulation techniques have become an integral part of modern molecular research. Various areas of molecular sciences continue to benefit from, indeed rely on, the unparalleled spatial and temporal resolutions offered by these technologies, to provide a more complete picture of the molecular problems at hand. Because of the continuous development of more efficient algorithms harvesting ever-expanding computational resources, and the emergence of more advanced and novel theories and methodologies, the scope of computational studies has expanded significantly over the past decade, now including much larger molecular systems and far more complex molecular phenomena. Among the various computer modeling techniques, the application of molecular dynamics (MD) simulation and related techniques has particularly drawn attention in biomolecular research, because of the ability of the method to describe the dynamical nature of the molecular systems and thereby to provide a more realistic representation, which is often needed for understanding fundamental molecular properties. The method has proven to be remarkably successful in capturing molecular events and structural transitions highly relevant to the function and/or physicochemical properties of biomolecular systems. Herein, after a brief introduction to the method of MD, we use a number of membrane transport proteins studied in our laboratory as examples to showcase the scope and applicability of the method and its power in characterizing molecular motions of various magnitudes and time scales that are involved in the function of this important class of membrane proteins.

  19. Visualizing Functional Motions of Membrane Transporters with Molecular Dynamics Simulations

    PubMed Central

    2013-01-01

    Computational modeling and molecular simulation techniques have become an integral part of modern molecular research. Various areas of molecular sciences continue to benefit from, indeed rely on, the unparalleled spatial and temporal resolutions offered by these technologies, to provide a more complete picture of the molecular problems at hand. Because of the continuous development of more efficient algorithms harvesting ever-expanding computational resources, and the emergence of more advanced and novel theories and methodologies, the scope of computational studies has expanded significantly over the past decade, now including much larger molecular systems and far more complex molecular phenomena. Among the various computer modeling techniques, the application of molecular dynamics (MD) simulation and related techniques has particularly drawn attention in biomolecular research, because of the ability of the method to describe the dynamical nature of the molecular systems and thereby to provide a more realistic representation, which is often needed for understanding fundamental molecular properties. The method has proven to be remarkably successful in capturing molecular events and structural transitions highly relevant to the function and/or physicochemical properties of biomolecular systems. Herein, after a brief introduction to the method of MD, we use a number of membrane transport proteins studied in our laboratory as examples to showcase the scope and applicability of the method and its power in characterizing molecular motions of various magnitudes and time scales that are involved in the function of this important class of membrane proteins. PMID:23298176

  20. How Kinetics within the Unfolded State Affects Protein Folding: an Analysis Based on Markov State Models and an Ultra-Long MD Trajectory

    PubMed Central

    Deng, Nan-jie; Dai, Wei

    2013-01-01

    Understanding how kinetics in the unfolded state affects protein folding is a fundamentally important yet less well-understood issue. Here we employ three different models to analyze the unfolded landscape and folding kinetics of the miniprotein Trp-cage. The first is a 208 μs explicit solvent molecular dynamics (MD) simulation from D. E. Shaw Research containing tens of folding events. The second is a Markov state model (MSM-MD) constructed from the same ultra-long MD simulation; MSM-MD can be used to generate thousands of folding events. The third is a Markov state model built from temperature replica exchange MD simulations in implicit solvent (MSM-REMD). All the models exhibit multiple folding pathways, and there is a good correspondence between the folding pathways from direct MD and those computed from the MSMs. The unfolded populations interconvert rapidly between extended and collapsed conformations on time scales ≤ 40 ns, compared with the folding time of ≈ 5 μs. The folding rates are independent of where the folding is initiated from within the unfolded ensemble. About 90 % of the unfolded states are sampled within the first 40 μs of the ultra-long MD trajectory, which on average explores ~27 % of the unfolded state ensemble between consecutive folding events. We clustered the folding pathways according to structural similarity into “tubes”, and kinetically partitioned the unfolded state into populations that fold along different tubes. From our analysis of the simulations and a simple kinetic model, we find that when the mixing within the unfolded state is comparable to or faster than folding, the folding waiting times for all the folding tubes are similar and the folding kinetics is essentially single exponential despite the presence of heterogeneous folding paths with non-uniform barriers. When the mixing is much slower than folding, different unfolded populations fold independently leading to non-exponential kinetics. A kinetic partition of the Trp-cage unfolded state is constructed which reveals that different unfolded populations have almost the same probability to fold along any of the multiple folding paths. We are investigating whether the results for the kinetics in the unfolded state of the twenty-residue Trp-cage is representative of larger single domain proteins. PMID:23705683

  1. Molecular Dynamics Simulations of the 136 Unique Tetranucleotide Sequences of DNA Oligonucleotides. I. Research Design and Results on d(CpG) Steps

    PubMed Central

    Beveridge, David L.; Barreiro, Gabriela; Byun, K. Suzie; Case, David A.; Cheatham, Thomas E.; Dixit, Surjit B.; Giudice, Emmanuel; Lankas, Filip; Lavery, Richard; Maddocks, John H.; Osman, Roman; Seibert, Eleanore; Sklenar, Heinz; Stoll, Gautier; Thayer, Kelly M.; Varnai, Péter; Young, Matthew A.

    2004-01-01

    We describe herein a computationally intensive project aimed at carrying out molecular dynamics (MD) simulations including water and counterions on B-DNA oligomers containing all 136 unique tetranucleotide base sequences. This initiative was undertaken by an international collaborative effort involving nine research groups, the “Ascona B-DNA Consortium” (ABC). Calculations were carried out on the 136 cases imbedded in 39 DNA oligomers with repeating tetranucleotide sequences, capped on both ends by GC pairs and each having a total length of 15 nucleotide pairs. All MD simulations were carried out using a well-defined protocol, the AMBER suite of programs, and the parm94 force field. Phase I of the ABC project involves a total of ∼0.6 μs of simulation for systems containing ∼24,000 atoms. The resulting trajectories involve 600,000 coordinate sets and represent ∼400 gigabytes of data. In this article, the research design, details of the simulation protocol, informatics issues, and the organization of the results into a web-accessible database are described. Preliminary results from 15-ns MD trajectories are presented for the d(CpG) step in its 10 unique sequence contexts, and issues of stability and convergence, the extent of quasiergodic problems, and the possibility of long-lived conformational substates are discussed. PMID:15326025

  2. Vibrational spectra from atomic fluctuations in dynamics simulations. I. Theory, limitations, and a sample application

    NASA Astrophysics Data System (ADS)

    Schmitz, Matthias; Tavan, Paul

    2004-12-01

    Hybrid molecular dynamics (MD) simulations, which combine density functional theory (DFT) descriptions of a molecule with a molecular mechanics (MM) modeling of its solvent environment, have opened the way towards accurate computations of solvation effects in the vibrational spectra of molecules. Recently, Wheeler et al. [ChemPhysChem 4, 382 (2002)] have suggested to compute these spectra from DFT/MM-MD trajectories by diagonalizing the covariance matrix of atomic fluctuations. This so-called principal mode analysis (PMA) allegedly can replace the well-established approaches, which are based on Fourier transform methods or on conventional normal mode analyses. By scrutinizing and revising the PMA approach we identify five conditions, which must be guaranteed if PMA is supposed to render exact vibrational frequencies. Besides specific choices of (a) coordinates and (b) coordinate systems, these conditions cover (c) a harmonic intramolecular potential, (d) a complete thermal equilibrium within the molecule, and (e) a molecular Hamiltonian independent of time. However, the PMA conditions [(c)-(d)] and [(c)-(e)] are generally violated in gas phase DFT-MD and liquid phase DFT/MM-MD trajectories, respectively. Based on a series of simple analytical model calculations and on the analysis of MD trajectories calculated for the formaldehyde molecule in the gas phase (DFT) and in liquid water (DFT/MM) we show that in both phases the violation of condition (d) can cause huge errors in PMA frequency computations, whereas the inevitable violations of conditions (c) and (e), the latter being generic to the liquid phase, imply systematic and sizable underestimates of the vibrational frequencies by PMA. We demonstrate that the huge errors, which are caused by an incomplete thermal equilibrium violating (d), can be avoided if one introduces mode-specific temperatures Tj and calculates the frequencies from a "generalized virial" (GV) expression instead from PMA. Concerning ways to additionally remove the remaining errors, which GV still shares with PMA, we refer to Paper II of this work [M. Schmitz and P. Tavan, J. Chem. Phys. 121, 12247 (2004)].

  3. A dynamic structural model of expanded RNA CAG repeats: A refined X-ray structure and computational investigations using molecular dynamics and umbrella sampling simulations

    PubMed Central

    Yildirim, Ilyas; Park, Hajeung; Disney, Matthew D.; Schatz, George C.

    2013-01-01

    One class of functionally important RNA is repeating transcripts that cause disease through various mechanisms. For example, expanded r(CAG) repeats can cause Huntington’s and other disease through translation of toxic proteins. Herein, crystal structure of r[5ʹUUGGGC(CAG)3GUCC]2, a model of CAG expanded transcripts, refined to 1.65 Å resolution is disclosed that show both anti-anti and syn-anti orientations for 1×1 nucleotide AA internal loops. Molecular dynamics (MD) simulations using Amber force field in explicit solvent were run for over 500 ns on model systems r(5ʹGCGCAGCGC)2 (MS1) and r(5ʹCCGCAGCGG)2 (MS2). In these MD simulations, both anti-anti and syn-anti AA base pairs appear to be stable. While anti-anti AA base pairs were dynamic and sampled multiple anti-anti conformations, no syn-anti↔anti-anti transformations were observed. Umbrella sampling simulations were run on MS2, and a 2D free energy surface was created to extract transformation pathways. In addition, over 800 ns explicit solvent MD simulation was run on r[5ʹGGGC(CAG)3GUCC]2, which closely represents the refined crystal structure. One of the terminal AA base pairs (syn-anti conformation), transformed to anti-anti conformation. The pathway followed in this transformation was the one predicted by umbrella sampling simulations. Further analysis showed a binding pocket near AA base pairs in syn-anti conformations. Computational results combined with the refined crystal structure show that global minimum conformation of 1×1 nucleotide AA internal loops in r(CAG) repeats is anti-anti but can adopt syn-anti depending on the environment. These results are important to understand RNA dynamic-function relationships and develop small molecules that target RNA dynamic ensembles. PMID:23441937

  4. Modeling complex and multi-component food systems in molecular dynamics simulations on the example of chocolate conching.

    PubMed

    Greiner, Maximilian; Sonnleitner, Bettina; Mailänder, Markus; Briesen, Heiko

    2014-02-01

    Additional benefits of foods are an increasing factor in the consumer's purchase. To produce foods with the properties the consumer demands, understanding the micro- and nanostructure is becoming more important in food research today. We present molecular dynamics (MD) simulations as a tool to study complex and multi-component food systems on the example of chocolate conching. The process of conching is chosen because of the interesting challenges it provides: the components (fats, emulsifiers and carbohydrates) contain diverse functional groups, are naturally fluctuating in their chemical composition, and have a high number of internal degrees of freedom. Further, slow diffusion in the non-aqueous medium is expected. All of these challenges are typical to food systems in general. Simulation results show the suitability of present force fields to correctly model the liquid and crystal density of cocoa butter and sucrose, respectively. Amphiphilic properties of emulsifiers are observed by micelle formation in water. For non-aqueous media, pulling simulations reveal high energy barriers for motion in the viscous cocoa butter. The work for detachment of an emulsifier from the sucrose crystal is calculated and matched with detachment of the head and tail groups separately. Hydrogen bonding is shown to be the dominant interaction between the emulsifier and the crystal surface. Thus, MD simulations are suited to model the interaction between the emulsifier and sugar crystal interface in non-aqueous media, revealing detailed information about the structuring and interactions on a molecular level. With interaction parameters being available for a wide variety of chemical groups, MD simulations are a valuable tool to understand complex and multi-component food systems in general. MD simulations provide a substantial benefit to researchers to verify their hypothesis in dynamic simulations with an atomistic resolution. Rapid rise of computational resources successively increases the complexity and the size of the systems that can be studied.

  5. Accelerated molecular dynamics simulations of protein folding.

    PubMed

    Miao, Yinglong; Feixas, Ferran; Eun, Changsun; McCammon, J Andrew

    2015-07-30

    Folding of four fast-folding proteins, including chignolin, Trp-cage, villin headpiece and WW domain, was simulated via accelerated molecular dynamics (aMD). In comparison with hundred-of-microsecond timescale conventional molecular dynamics (cMD) simulations performed on the Anton supercomputer, aMD captured complete folding of the four proteins in significantly shorter simulation time. The folded protein conformations were found within 0.2-2.1 Å of the native NMR or X-ray crystal structures. Free energy profiles calculated through improved reweighting of the aMD simulations using cumulant expansion to the second-order are in good agreement with those obtained from cMD simulations. This allows us to identify distinct conformational states (e.g., unfolded and intermediate) other than the native structure and the protein folding energy barriers. Detailed analysis of protein secondary structures and local key residue interactions provided important insights into the protein folding pathways. Furthermore, the selections of force fields and aMD simulation parameters are discussed in detail. Our work shows usefulness and accuracy of aMD in studying protein folding, providing basic references in using aMD in future protein-folding studies. © 2015 Wiley Periodicals, Inc.

  6. Computational membrane biophysics: From ion channel interactions with drugs to cellular function.

    PubMed

    Miranda, Williams E; Ngo, Van A; Perissinotti, Laura L; Noskov, Sergei Yu

    2017-11-01

    The rapid development of experimental and computational techniques has changed fundamentally our understanding of cellular-membrane transport. The advent of powerful computers and refined force-fields for proteins, ions, and lipids has expanded the applicability of Molecular Dynamics (MD) simulations. A myriad of cellular responses is modulated through the binding of endogenous and exogenous ligands (e.g. neurotransmitters and drugs, respectively) to ion channels. Deciphering the thermodynamics and kinetics of the ligand binding processes to these membrane proteins is at the heart of modern drug development. The ever-increasing computational power has already provided insightful data on the thermodynamics and kinetics of drug-target interactions, free energies of solvation, and partitioning into lipid bilayers for drugs. This review aims to provide a brief summary about modeling approaches to map out crucial binding pathways with intermediate conformations and free-energy surfaces for drug-ion channel binding mechanisms that are responsible for multiple effects on cellular functions. We will discuss post-processing analysis of simulation-generated data, which are then transformed to kinetic models to better understand the molecular underpinning of the experimental observables under the influence of drugs or mutations in ion channels. This review highlights crucial mathematical frameworks and perspectives on bridging different well-established computational techniques to connect the dynamics and timescales from all-atom MD and free energy simulations of ion channels to the physiology of action potentials in cellular models. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. ClustENM: ENM-Based Sampling of Essential Conformational Space at Full Atomic Resolution

    PubMed Central

    Kurkcuoglu, Zeynep; Bahar, Ivet; Doruker, Pemra

    2016-01-01

    Accurate sampling of conformational space and, in particular, the transitions between functional substates has been a challenge in molecular dynamic (MD) simulations of large biomolecular systems. We developed an Elastic Network Model (ENM)-based computational method, ClustENM, for sampling large conformational changes of biomolecules with various sizes and oligomerization states. ClustENM is an iterative method that combines ENM with energy minimization and clustering steps. It is an unbiased technique, which requires only an initial structure as input, and no information about the target conformation. To test the performance of ClustENM, we applied it to six biomolecular systems: adenylate kinase (AK), calmodulin, p38 MAP kinase, HIV-1 reverse transcriptase (RT), triosephosphate isomerase (TIM), and the 70S ribosomal complex. The generated ensembles of conformers determined at atomic resolution show good agreement with experimental data (979 structures resolved by X-ray and/or NMR) and encompass the subspaces covered in independent MD simulations for TIM, p38, and RT. ClustENM emerges as a computationally efficient tool for characterizing the conformational space of large systems at atomic detail, in addition to generating a representative ensemble of conformers that can be advantageously used in simulating substrate/ligand-binding events. PMID:27494296

  8. Sensitivity of electrospray molecular dynamics simulations to long-range Coulomb interaction models

    NASA Astrophysics Data System (ADS)

    Mehta, Neil A.; Levin, Deborah A.

    2018-03-01

    Molecular dynamics (MD) electrospray simulations of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4) ion liquid were performed with the goal of evaluating the influence of long-range Coulomb models on ion emission characteristics. The direct Coulomb (DC), shifted force Coulomb sum (SFCS), and particle-particle particle-mesh (PPPM) long-range Coulomb models were considered in this work. The DC method with a sufficiently large cutoff radius was found to be the most accurate approach for modeling electrosprays, but, it is computationally expensive. The Coulomb potential energy modeled by the DC method in combination with the radial electric fields were found to be necessary to generate the Taylor cone. The differences observed between the SFCS and the DC in terms of predicting the total ion emission suggest that the former should not be used in MD electrospray simulations. Furthermore, the common assumption of domain periodicity was observed to be detrimental to the accuracy of the capillary-based electrospray simulations.

  9. Interstitial and Interlayer Ion Diffusion Geometry Extraction in Graphitic Nanosphere Battery Materials.

    PubMed

    Gyulassy, Attila; Knoll, Aaron; Lau, Kah Chun; Wang, Bei; Bremer, Peer-Timo; Papka, Michael E; Curtiss, Larry A; Pascucci, Valerio

    2016-01-01

    Large-scale molecular dynamics (MD) simulations are commonly used for simulating the synthesis and ion diffusion of battery materials. A good battery anode material is determined by its capacity to store ion or other diffusers. However, modeling of ion diffusion dynamics and transport properties at large length and long time scales would be impossible with current MD codes. To analyze the fundamental properties of these materials, therefore, we turn to geometric and topological analysis of their structure. In this paper, we apply a novel technique inspired by discrete Morse theory to the Delaunay triangulation of the simulated geometry of a thermally annealed carbon nanosphere. We utilize our computed structures to drive further geometric analysis to extract the interstitial diffusion structure as a single mesh. Our results provide a new approach to analyze the geometry of the simulated carbon nanosphere, and new insights into the role of carbon defect size and distribution in determining the charge capacity and charge dynamics of these carbon based battery materials.

  10. Sensitivity of electrospray molecular dynamics simulations to long-range Coulomb interaction models.

    PubMed

    Mehta, Neil A; Levin, Deborah A

    2018-03-01

    Molecular dynamics (MD) electrospray simulations of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF_{4}) ion liquid were performed with the goal of evaluating the influence of long-range Coulomb models on ion emission characteristics. The direct Coulomb (DC), shifted force Coulomb sum (SFCS), and particle-particle particle-mesh (PPPM) long-range Coulomb models were considered in this work. The DC method with a sufficiently large cutoff radius was found to be the most accurate approach for modeling electrosprays, but, it is computationally expensive. The Coulomb potential energy modeled by the DC method in combination with the radial electric fields were found to be necessary to generate the Taylor cone. The differences observed between the SFCS and the DC in terms of predicting the total ion emission suggest that the former should not be used in MD electrospray simulations. Furthermore, the common assumption of domain periodicity was observed to be detrimental to the accuracy of the capillary-based electrospray simulations.

  11. Molecular Dynamics Studies of Self-Assembling Biomolecules and DNA-functionalized Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Cho, Vince Y.

    This thesis is organized as following. In Chapter 2, we use fully atomistic MD simulations to study the conformation of DNA molecules that link gold nanoparticles to form nanoparticle superlattice crystals. In Chapter 3, we study the self-assembly of peptide amphiphiles (PAs) into a cylindrical micelle fiber by using CGMD simulations. Compared to fully atomistic MD simulations, CGMD simulations prove to be computationally cost-efficient and reasonably accurate for exploring self-assembly, and are used in all subsequent chapters. In Chapter 4, we apply CGMD methods to study the self-assembly of small molecule-DNA hybrid (SMDH) building blocks into well-defined cage-like dimers, and reveal the role of kinetics and thermodynamics in this process. In Chapter 5, we extend the CGMD model for this system and find that the assembly of SMDHs can be fine-tuned by changing parameters. In Chapter 6, we explore superlattice crystal structures of DNA-functionalized gold nanoparticles (DNA-AuNP) with the CGMD model and compare the hybridization.

  12. Interstitial and Interlayer Ion Diffusion Geometry Extraction in Graphitic Nanosphere Battery Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyulassy, Attila; Knoll, Aaron; Lau, Kah Chun

    2016-01-01

    Large-scale molecular dynamics (MD) simulations are commonly used for simulating the synthesis and ion diffusion of battery materials. A good battery anode material is determined by its capacity to store ion or other diffusers. However, modeling of ion diffusion dynamics and transport properties at large length and long time scales would be impossible with current MD codes. To analyze the fundamental properties of these materials, therefore, we turn to geometric and topological analysis of their structure. In this paper, we apply a novel technique inspired by discrete Morse theory to the Delaunay triangulation of the simulated geometry of a thermallymore » annealed carbon nanosphere. We utilize our computed structures to drive further geometric analysis to extract the interstitial diffusion structure as a single mesh. Our results provide a new approach to analyze the geometry of the simulated carbon nanosphere, and new insights into the role of carbon defect size and distribution in determining the charge capacity and charge dynamics of these carbon based battery materials.« less

  13. Interstitial and interlayer ion diffusion geometry extraction in graphitic nanosphere battery materials

    DOE PAGES

    Gyulassy, Attila; Knoll, Aaron; Lau, Kah Chun; ...

    2016-01-31

    Large-scale molecular dynamics (MD) simulations are commonly used for simulating the synthesis and ion diffusion of battery materials. A good battery anode material is determined by its capacity to store ion or other diffusers. However, modeling of ion diffusion dynamics and transport properties at large length and long time scales would be impossible with current MD codes. To analyze the fundamental properties of these materials, therefore, we turn to geometric and topological analysis of their structure. In this paper, we apply a novel technique inspired by discrete Morse theory to the Delaunay triangulation of the simulated geometry of a thermallymore » annealed carbon nanosphere. We utilize our computed structures to drive further geometric analysis to extract the interstitial diffusion structure as a single mesh. Lastly, our results provide a new approach to analyze the geometry of the simulated carbon nanosphere, and new insights into the role of carbon defect size and distribution in determining the charge capacity and charge dynamics of these carbon based battery materials.« less

  14. Gas-Expanded Liquids: Synergism of Experimental and Computational Determinations of Local Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles A. Eckert; Charles L. Liotta; Rigoberto Hernandez

    2007-06-26

    This project focuses on the characterization of a new class of solvent systems called gas-expanded liquids (GXLs), targeted for green-chemistry processing. The collaboration has adopted a synergistic approach combining elements of molecular dynamics (MD) simulation and spectroscopic experiments to explore the local solvent behavior that could not be studied by simulation or experiment alone. The major accomplishments from this project are: • Applied MD simulations to explore the non-uniform structure of CO2/methanol and CO2/acetone GXLs and studied their dynamic behavior with self-diffusion coefficients and correlation functions • Studied local solvent structure and solvation behavior with a combination of spectroscopy andmore » MD simulations • Measured transport properties of heterocyclic solutes in GXLs through Taylor-Aris diffusion techniques and compared these findings to those of MD simulations • Probed local polarity and specific solute-solvent interactions with Diels-Alder and SN2 reaction studies The broader scientific impact resulting from the research activities of this contract have been recognized by two recent awards: the Presidential Green Chemistry Award (Eckert & Liotta) and a fellowship in the American Association for the Advancement of Science (Hernandez). In addition to the technical aspects of this contract, the investigators have been engaged in a number of programs extending the broader impacts of this project. The project has directly supported the development of two postdoctoral researcher, four graduate students, and five undergraduate students. Several of the undergraduate students were co-funded by a Georgia Tech program, the Presidential Undergraduate Research Award. The other student, an African-American female graduated from Georgia Tech in December 2005, and was co-funded through an NSF Research and Education for Undergraduates (REU) award.« less

  15. Binding free energies for nicotine analogs inhibiting cytochrome P450 2A6 by a combined use of molecular dynamics simulations and QM/MM-PBSA calculations.

    PubMed

    Lu, Haiting; Huang, Xiaoqin; AbdulHameed, Mohamed Diwan M; Zhan, Chang-Guo

    2014-04-01

    Molecular dynamics (MD) simulations and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations have been performed to explore the dynamic behaviors of cytochrome P450 2A6 (CYP2A6) binding with nicotine analogs (that are typical inhibitors) and to calculate their binding free energies in combination with Poisson-Boltzmann surface area (PBSA) calculations. The combined MD simulations and QM/MM-PBSA calculations reveal that the most important structural parameters affecting the CYP2A6-inhibitor binding affinity are two crucial internuclear distances, that is, the distance between the heme iron atom of CYP2A6 and the coordinating atom of the inhibitor, and the hydrogen-bonding distance between the N297 side chain of CYP2A6 and the pyridine nitrogen of the inhibitor. The combined MD simulations and QM/MM-PBSA calculations have led to dynamic CYP2A6-inhibitor binding structures that are consistent with the observed dynamic behaviors and structural features of CYP2A6-inhibitor binding, and led to the binding free energies that are in good agreement with the experimentally-derived binding free energies. The agreement between the calculated binding free energies and the experimentally-derived binding free energies suggests that the combined MD and QM/MM-PBSA approach may be used as a valuable tool to accurately predict the CYP2A6-inhibitor binding affinities in future computational design of new, potent and selective CYP2A6 inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Atomistic Computer Simulations of Water Interactions and Dissolution of Inorganic Glasses

    DOE PAGES

    Du, Jincheng; Rimsza, Jessica

    2017-09-01

    Computational simulations at the atomistic level play an increasing important role in understanding the structures, behaviors, and the structure-property relationships of glass and amorphous materials. In this paper, we reviewed atomistic simulation methods ranging from first principles calculations and ab initio molecular dynamics (AIMD), to classical molecular dynamics (MD) and meso-scale kinetic Monte Carlo (KMC) simulations and their applications to glass-water interactions and glass dissolutions. Particularly, the use of these simulation methods in understanding the reaction mechanisms of water with oxide glasses, water-glass interfaces, hydrated porous silica gels formation, the structure and properties of multicomponent glasses, and microstructure evolution aremore » reviewed. Here, the advantages and disadvantageous of these methods are discussed and the current challenges and future direction of atomistic simulations in glass dissolution are presented.« less

  17. Molecular Modeling of Water Interfaces: From Molecular Spectroscopy to Thermodynamics.

    PubMed

    Nagata, Yuki; Ohto, Tatsuhiko; Backus, Ellen H G; Bonn, Mischa

    2016-04-28

    Understanding aqueous interfaces at the molecular level is not only fundamentally important, but also highly relevant for a variety of disciplines. For instance, electrode-water interfaces are relevant for electrochemistry, as are mineral-water interfaces for geochemistry and air-water interfaces for environmental chemistry; water-lipid interfaces constitute the boundaries of the cell membrane, and are thus relevant for biochemistry. One of the major challenges in these fields is to link macroscopic properties such as interfacial reactivity, solubility, and permeability as well as macroscopic thermodynamic and spectroscopic observables to the structure, structural changes, and dynamics of molecules at these interfaces. Simulations, by themselves, or in conjunction with appropriate experiments, can provide such molecular-level insights into aqueous interfaces. In this contribution, we review the current state-of-the-art of three levels of molecular dynamics (MD) simulation: ab initio, force field, and coarse-grained. We discuss the advantages, the potential, and the limitations of each approach for studying aqueous interfaces, by assessing computations of the sum-frequency generation spectra and surface tension. The comparison of experimental and simulation data provides information on the challenges of future MD simulations, such as improving the force field models and the van der Waals corrections in ab initio MD simulations. Once good agreement between experimental observables and simulation can be established, the simulation can be used to provide insights into the processes at a level of detail that is generally inaccessible to experiments. As an example we discuss the mechanism of the evaporation of water. We finish by presenting an outlook outlining four future challenges for molecular dynamics simulations of aqueous interfacial systems.

  18. Strain Distribution Across an Individual Shear Band in Real and Simulated Metallic Glasses.

    PubMed

    Scudino, Sergio; Şopu, Daniel

    2018-02-14

    Because of the fast dynamics of shear band formation and propagation along with the small size and transient character of the shear transformation zones (STZs), the elementary units of plasticity in metallic glasses, the description of the nanoscale mechanism of shear banding often relies on molecular dynamics (MD) simulations. However, the unrealistic parameters used in the simulations related to time constraints may raise questions about whether quantitative comparison between results from experimental and computational analyses is possible. Here, we have experimentally analyzed the strain field arising across an individual shear band by nanobeam X-ray diffraction and compared the results with the strain characterizing a shear band generated by MD simulations. Despite their largely different spatiotemporal scales, the characteristic features of real and simulated shear bands are strikingly similar: the magnitude of the strain across the shear band is discontinuous in both cases and the direction of the principal strain axes exhibits the same antisymmetric profile. This behavior can be explained by considering the mechanism of STZ activation and percolation at the nanoscale, indicating that the nanoscale effects of shear banding are not limited to the area within the band but they extend well into the surrounding elastic matrix. These findings not only demonstrate the reliability of MD simulations for explaining (also quantitatively) experimental observations of shear banding but also suggest that designed experiments can be used the other way around to verify numerical predictions of the atomic rearrangements occurring within a band.

  19. Simple Ion Channels: From Structure to Electrophysiology and Back

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrzej

    2018-01-01

    A reliable way to establish whether our understanding of a channel is satisfactory is to reproduce its measured ionic conductance over a broad range of applied voltages in computer simulations. In molecular dynamics (MD), this can be done by way of applying an external electric field to the system and counting the number of ions that traverse the channel per unit time. Since this approach is computationally very expensive, we have developed a markedly more efficient alternative in which MD is combined with the electrodiffusion (ED) equation. In this approach, the assumptions of the ED equation can be rigorously tested, and the precision and consistency of the calculated conductance can be determined. We have demonstrated that the full current/voltage dependence and the underlying free energy profile for a simple channel can be reliably calculated from equilibrium or non-equilibrium MD simulations at a single voltage. To carry out MD simulations, a structural model of a channel has to be assumed, which is an important constraint, considering that high-resolution structures are available for only very few simple channels. If the comparison of calculated ionic conductance with electrophysiological data is satisfactory, it greatly increases our confidence that the structure and the function are described sufficiently accurately. We examined the validity of the ED for several channels embedded in phospholipid membranes - four naturally occurring channels: trichotoxin, alamethicin, p7 from hepatitis C virus (HCV) and Vpu from the HIV-1 virus, and a synthetic, hexameric channel, formed by a 21-residue peptide that contains only leucine and serine. All these channels mediate transport of potassium and chloride ions. It was found that the ED equation is satisfactory for these systems. In some of them experimental and calculated electrophysiological properties are in good agreement, whereas in others there are strong indications that the structural models are incorrect.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pang, Yuan-Ping, E-mail: pang@mayo.edu

    Highlights: • Reducing atomic masses by 10-fold vastly improves sampling in MD simulations. • CLN025 folded in 4 of 10 × 0.5-μs MD simulations when masses were reduced by 10-fold. • CLN025 folded as early as 96.2 ns in 1 of the 4 simulations that captured folding. • CLN025 did not fold in 10 × 0.5-μs MD simulations when standard masses were used. • Low-mass MD simulation is a simple and generic sampling enhancement technique. - Abstract: CLN025 is one of the smallest fast-folding proteins. Until now it has not been reported that CLN025 can autonomously fold to its nativemore » conformation in a classical, all-atom, and isothermal–isobaric molecular dynamics (MD) simulation. This article reports the autonomous and repeated folding of CLN025 from a fully extended backbone conformation to its native conformation in explicit solvent in multiple 500-ns MD simulations at 277 K and 1 atm with the first folding event occurring as early as 66.1 ns. These simulations were accomplished by using AMBER forcefield derivatives with atomic masses reduced by 10-fold on Apple Mac Pros. By contrast, no folding event was observed when the simulations were repeated using the original AMBER forcefields of FF12SB and FF14SB. The results demonstrate that low-mass MD simulation is a simple and generic technique to enhance configurational sampling. This technique may propel autonomous folding of a wide range of miniature proteins in classical, all-atom, and isothermal–isobaric MD simulations performed on commodity computers—an important step forward in quantitative biology.« less

  1. Molecular dynamics simulation of highly charged proteins: Comparison of the particle-particle particle-mesh and reaction field methods for the calculation of electrostatic interactions

    PubMed Central

    Gargallo, Raimundo; Hünenberger, Philippe H.; Avilés, Francesc X.; Oliva, Baldomero

    2003-01-01

    Molecular dynamics (MD) simulations of the activation domain of porcine procarboxypeptidase B (ADBp) were performed to examine the effect of using the particle-particle particle-mesh (P3M) or the reaction field (RF) method for calculating electrostatic interactions in simulations of highly charged proteins. Several structural, thermodynamic, and dynamic observables were derived from the MD trajectories, including estimated entropies and solvation free energies and essential dynamics (ED). The P3M method leads to slightly higher atomic positional fluctuations and deviations from the crystallographic structure, along with somewhat lower values of the total energy and solvation free energy. However, the ED analysis of the system leads to nearly identical results for both simulations. Because of the strong similarity between the results, both methods appear well suited for the simulation of highly charged globular proteins in explicit solvent. However, the lower computational demand of the RF method in the present implementation represents a clear advantage over the P3M method. PMID:14500874

  2. Communication: Self-assembly of a model supramolecular polymer studied by replica exchange with solute tempering

    NASA Astrophysics Data System (ADS)

    Arefi, Hadi H.; Yamamoto, Takeshi

    2017-12-01

    Conventional molecular-dynamics (cMD) simulation has a well-known limitation in accessible time and length scales, and thus various enhanced sampling techniques have been proposed to alleviate the problem. In this paper, we explore the utility of replica exchange with solute tempering (REST) (i.e., a variant of Hamiltonian replica exchange methods) to simulate the self-assembly of a supramolecular polymer in explicit solvent and compare the performance with temperature-based replica exchange MD (T-REMD) as well as cMD. As a test system, we consider a relatively simple all-atom model of supramolecular polymerization (namely, benzene-1,3,5-tricarboxamides in methylcyclohexane solvent). Our results show that both REST and T-REMD are able to predict highly ordered polymer structures with helical H-bonding patterns, in contrast to cMD which completely fails to obtain such a structure for the present model. At the same time, we have also experienced some technical challenge (i.e., aggregation-dispersion transition and the resulting bottleneck for replica traversal), which is illustrated numerically. Since the computational cost of REST scales more moderately than T-REMD, we expect that REST will be useful for studying the self-assembly of larger systems in solution with enhanced rearrangement of monomers.

  3. Prediction of NOx emissions from a simplified biodiesel surrogate by applying stochastic simulation algorithms (SSA)

    NASA Astrophysics Data System (ADS)

    Omidvarborna, Hamid; Kumar, Ashok; Kim, Dong-Shik

    2017-03-01

    A stochastic simulation algorithm (SSA) approach is implemented with the components of a simplified biodiesel surrogate to predict NOx (NO and NO2) emission concentrations from the combustion of biodiesel. The main reaction pathways were obtained by simplifying the previously derived skeletal mechanisms, including saturated methyl decenoate (MD), unsaturated methyl 5-decanoate (MD5D), and n-decane (ND). ND was added to match the energy content and the C/H/O ratio of actual biodiesel fuel. The MD/MD5D/ND surrogate model was also equipped with H2/CO/C1 formation mechanisms and a simplified NOx formation mechanism. The predicted model results are in good agreement with a limited number of experimental data at low-temperature combustion (LTC) conditions for three different biodiesel fuels consisting of various ratios of unsaturated and saturated methyl esters. The root mean square errors (RMSEs) of predicted values are 0.0020, 0.0018, and 0.0025 for soybean methyl ester (SME), waste cooking oil (WCO), and tallow oil (TO), respectively. The SSA model showed the potential to predict NOx emission concentrations, when the peak combustion temperature increased through the addition of ultra-low sulphur diesel (ULSD) to biodiesel. The SSA method used in this study demonstrates the possibility of reducing the computational complexity in biodiesel emissions modelling.

  4. The structure and stability of Si60 and Ge60 cages: a computational study.

    PubMed

    Chen, Zhongfang; Jiao, Haijun; Seifert, Gotthard; Horn, Anselm H C; Yu, Dengke; Clark, Tim; Thiel, Walter; von Ragué Schleyer, Paul

    2003-06-01

    Structural studies of fullerene-like Si(60) and Ge(60) cages using ab initio methods were augmented by density functional tight-binding molecular dynamics (DFTB-MD) simulations of finite temperature effects. Neither the perfect I(h) symmetry nor the distorted T(h) structures are true minima. The energies of both are high relative to distorted, lower symmetry minima, C(i) and T, respectively, which still preserve C(60)-type connectivity. Both Si(60) and Ge(60) favor C(i) symmetry cages in which Si and Ge vertexes exhibit either near-trigonal or pyramidal geometries. These structural variations imply significant reactivity differences between different positions. The small magnetic shielding effects (NICS) indicate that aromaticity is not important in these systems. The inorganic fullerene cages have lower stabilities compared with their carbon analogs. Si(60) is stable towards spontaneous disintegration up to 700 K according to DFTB-MD simulations, and thus has potential for experimental observation. In contrast, Ge(60) preserves its cage structure only up to 200 K. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 948-953, 2003

  5. Modern drug design: the implication of using artificial neuronal networks and multiple molecular dynamic simulations

    NASA Astrophysics Data System (ADS)

    Yakovenko, Oleksandr; Jones, Steven J. M.

    2018-01-01

    We report the implementation of molecular modeling approaches developed as a part of the 2016 Grand Challenge 2, the blinded competition of computer aided drug design technologies held by the D3R Drug Design Data Resource (https://drugdesigndata.org/). The challenge was focused on the ligands of the farnesoid X receptor (FXR), a highly flexible nuclear receptor of the cholesterol derivative chenodeoxycholic acid. FXR is considered an important therapeutic target for metabolic, inflammatory, bowel and obesity related diseases (Expert Opin Drug Metab Toxicol 4:523-532, 2015), but in the context of this competition it is also interesting due to the significant ligand-induced conformational changes displayed by the protein. To deal with these conformational changes we employed multiple simulations of molecular dynamics (MD). Our MD-based protocols were top-ranked in estimating the free energy of binding of the ligands and FXR protein. Our approach was ranked second in the prediction of the binding poses where we also combined MD with molecular docking and artificial neural networks. Our approach showed mediocre results for high-throughput scoring of interactions.

  6. Generation of Well-Relaxed All-Atom Models of Large Molecular Weight Polymer Melts: A Hybrid Particle-Continuum Approach Based on Particle-Field Molecular Dynamics Simulations.

    PubMed

    De Nicola, Antonio; Kawakatsu, Toshihiro; Milano, Giuseppe

    2014-12-09

    A procedure based on Molecular Dynamics (MD) simulations employing soft potentials derived from self-consistent field (SCF) theory (named MD-SCF) able to generate well-relaxed all-atom structures of polymer melts is proposed. All-atom structures having structural correlations indistinguishable from ones obtained by long MD relaxations have been obtained for poly(methyl methacrylate) (PMMA) and poly(ethylene oxide) (PEO) melts. The proposed procedure leads to computational costs mainly related on system size rather than to the chain length. Several advantages of the proposed procedure over current coarse-graining/reverse mapping strategies are apparent. No parametrization is needed to generate relaxed structures of different polymers at different scales or resolutions. There is no need for special algorithms or back-mapping schemes to change the resolution of the models. This characteristic makes the procedure general and its extension to other polymer architectures straightforward. A similar procedure can be easily extended to the generation of all-atom structures of block copolymer melts and polymer nanocomposites.

  7. In silico FRET from simulated dye dynamics

    NASA Astrophysics Data System (ADS)

    Hoefling, Martin; Grubmüller, Helmut

    2013-03-01

    Single molecule fluorescence resonance energy transfer (smFRET) experiments probe molecular distances on the nanometer scale. In such experiments, distances are recorded from FRET transfer efficiencies via the Förster formula, E=1/(1+(). The energy transfer however also depends on the mutual orientation of the two dyes used as distance reporter. Since this information is typically inaccessible in FRET experiments, one has to rely on approximations, which reduce the accuracy of these distance measurements. A common approximation is an isotropic and uncorrelated dye orientation distribution. To assess the impact of such approximations, we present the algorithms and implementation of a computational toolkit for the simulation of smFRET on the basis of molecular dynamics (MD) trajectory ensembles. In this study, the dye orientation dynamics, which are used to determine dynamic FRET efficiencies, are extracted from MD simulations. In a subsequent step, photons and bursts are generated using a Monte Carlo algorithm. The application of the developed toolkit on a poly-proline system demonstrated good agreement between smFRET simulations and experimental results and therefore confirms our computational method. Furthermore, it enabled the identification of the structural basis of measured heterogeneity. The presented computational toolkit is written in Python, available as open-source, applicable to arbitrary systems and can easily be extended and adapted to further problems. Catalogue identifier: AENV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPLv3, the bundled SIMD friendly Mersenne twister implementation [1] is provided under the SFMT-License. No. of lines in distributed program, including test data, etc.: 317880 No. of bytes in distributed program, including test data, etc.: 54774217 Distribution format: tar.gz Programming language: Python, Cython, C (ANSI C99). Computer: Any (see memory requirements). Operating system: Any OS with CPython distribution (e.g. Linux, MacOSX, Windows). Has the code been vectorised or parallelized?: Yes, in Ref. [2], 4 CPU cores were used. RAM: About 700MB per process for the simulation setup in Ref. [2]. Classification: 16.1, 16.7, 23. External routines: Calculation of Rκ2-trajectories from GROMACS [3] MD trajectories requires the GromPy Python module described in Ref. [4] or a GROMACS 4.6 installation. The md2fret program uses a standard Python interpreter (CPython) v2.6+ and < v3.0 as well as the NumPy module. The analysis examples require the Matplotlib Python module. Nature of problem: Simulation and interpretation of single molecule FRET experiments. Solution method: Combination of force-field based molecular dynamics (MD) simulating the dye dynamics and Monte Carlo sampling to obtain photon statistics of FRET kinetics. Additional comments: !!!!! The distribution file for this program is over 50 Mbytes and therefore is not delivered directly when download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. !!!!! Running time: A single run in Ref. [2] takes about 10 min on a Quad Core Intel Xeon CPU W3520 2.67GHz with 6GB physical RAM References: [1] M. Saito, M. Matsumoto, SIMD-oriented fast Mersenne twister: a 128-bit pseudorandom number generator, in: A. Keller, S. Heinrich, H. Niederreiter (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2006, Springer; Berlin, Heidelberg, 2008, pp. 607-622. [2] M. Hoefling, N. Lima, D. Hänni, B. Schuler, C. A. M. Seidel, H. Grubmüller, Structural heterogeneity and quantitative FRET efficiency distributions of polyprolines through a hybrid atomistic simulation and Monte Carlo approach, PLoS ONE 6 (5) (2011) e19791. [3] D. V. D. Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, H. J. C. Berendsen, GROMACS: fast, flexible, and free., J Comput Chem 26 (16) (2005) 1701-1718. [4] R. Pool, A. Feenstra, M. Hoefling, R. Schulz, J. C. Smith, J. Heringa, Enabling grand-canonical Monte Carlo: Extending the flexibility of gromacs through the GromPy Python interface module, Journal of Chemical Theory and Computation 33 (12) (2012) 1207-1214.

  8. Tutorial: Determination of thermal boundary resistance by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Liang, Zhi; Hu, Ming

    2018-05-01

    Due to the high surface-to-volume ratio of nanostructured components in microelectronics and other advanced devices, the thermal resistance at material interfaces can strongly affect the overall thermal behavior in these devices. Therefore, the thermal boundary resistance, R, must be taken into account in the thermal analysis of nanoscale structures and devices. This article is a tutorial on the determination of R and the analysis of interfacial thermal transport via molecular dynamics (MD) simulations. In addition to reviewing the commonly used equilibrium and non-equilibrium MD models for the determination of R, we also discuss several MD simulation methods which can be used to understand interfacial thermal transport behavior. To illustrate how these MD models work for various interfaces, we will show several examples of MD simulation results on thermal transport across solid-solid, solid-liquid, and solid-gas interfaces. The advantages and drawbacks of a few other MD models such as approach-to-equilibrium MD and first-principles MD are also discussed.

  9. Multiple Simulated Annealing-Molecular Dynamics (MSA-MD) for Conformational Space Search of Peptide and Miniprotein

    PubMed Central

    Hao, Ge-Fei; Xu, Wei-Fang; Yang, Sheng-Gang; Yang, Guang-Fu

    2015-01-01

    Protein and peptide structure predictions are of paramount importance for understanding their functions, as well as the interactions with other molecules. However, the use of molecular simulation techniques to directly predict the peptide structure from the primary amino acid sequence is always hindered by the rough topology of the conformational space and the limited simulation time scale. We developed here a new strategy, named Multiple Simulated Annealing-Molecular Dynamics (MSA-MD) to identify the native states of a peptide and miniprotein. A cluster of near native structures could be obtained by using the MSA-MD method, which turned out to be significantly more efficient in reaching the native structure compared to continuous MD and conventional SA-MD simulation. PMID:26492886

  10. Computational Design of Apolipoprotein E4 Inhibitors for Alzheimer's Disease Therapy from Traditional Chinese Medicine

    PubMed Central

    Huang, Hung-Jin; Chen, Hsin-Yi; Lee, Cheng-Chun

    2014-01-01

    Apolipoprotein E4 (Apo E4) is the major genetic risk factor in the causation of Alzheimer's disease (AD). In this study we utilize virtual screening of the world's largest traditional Chinese medicine (TCM) database and investigate potential compounds for the inhibition of ApoE4. We present the top three TCM candidates: Solapalmitine, Isodesacetyluvaricin, and Budmunchiamine L5 for further investigation. Dynamics analysis and molecular dynamics (MD) simulation were used to simulate protein-ligand complexes for observing the interactions and protein variations. Budmunchiamine L5 did not have the highest score from virtual screening; however, the dynamics pose is similar to the initial docking pose after MD simulation. Trajectory analysis reveals that Budmunchiamine L5 was stable over all simulation times. The migration distance of Budmunchiamine L5 illustrates that docked ligands are not variable from the initial docked site. Interestingly, Arg158 was observed to form H-bonds with Budmunchiamine L5 in the docking pose and MD snapshot, which indicates that the TCM compounds could stably bind to ApoE4. Our results show that Budmunchiamine L5 has good absorption, blood brain barrier (BBB) penetration, and less toxicity according to absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction and could, therefore, be safely used for developing novel ApoE4 inhibitors. PMID:24967370

  11. Going beyond Clustering in MD Trajectory Analysis: An Application to Villin Headpiece Folding

    PubMed Central

    Rajan, Aruna; Freddolino, Peter L.; Schulten, Klaus

    2010-01-01

    Recent advances in computing technology have enabled microsecond long all-atom molecular dynamics (MD) simulations of biological systems. Methods that can distill the salient features of such large trajectories are now urgently needed. Conventional clustering methods used to analyze MD trajectories suffer from various setbacks, namely (i) they are not data driven, (ii) they are unstable to noise and changes in cut-off parameters such as cluster radius and cluster number, and (iii) they do not reduce the dimensionality of the trajectories, and hence are unsuitable for finding collective coordinates. We advocate the application of principal component analysis (PCA) and a non-metric multidimensional scaling (nMDS) method to reduce MD trajectories and overcome the drawbacks of clustering. To illustrate the superiority of nMDS over other methods in reducing data and reproducing salient features, we analyze three complete villin headpiece folding trajectories. Our analysis suggests that the folding process of the villin headpiece is structurally heterogeneous. PMID:20419160

  12. Going beyond clustering in MD trajectory analysis: an application to villin headpiece folding.

    PubMed

    Rajan, Aruna; Freddolino, Peter L; Schulten, Klaus

    2010-04-15

    Recent advances in computing technology have enabled microsecond long all-atom molecular dynamics (MD) simulations of biological systems. Methods that can distill the salient features of such large trajectories are now urgently needed. Conventional clustering methods used to analyze MD trajectories suffer from various setbacks, namely (i) they are not data driven, (ii) they are unstable to noise and changes in cut-off parameters such as cluster radius and cluster number, and (iii) they do not reduce the dimensionality of the trajectories, and hence are unsuitable for finding collective coordinates. We advocate the application of principal component analysis (PCA) and a non-metric multidimensional scaling (nMDS) method to reduce MD trajectories and overcome the drawbacks of clustering. To illustrate the superiority of nMDS over other methods in reducing data and reproducing salient features, we analyze three complete villin headpiece folding trajectories. Our analysis suggests that the folding process of the villin headpiece is structurally heterogeneous.

  13. Electrostatics of proteins in dielectric solvent continua. I. Newton's third law marries qE forces

    NASA Astrophysics Data System (ADS)

    Stork, Martina; Tavan, Paul

    2007-04-01

    The authors reformulate and revise an electrostatic theory treating proteins surrounded by dielectric solvent continua [B. Egwolf and P. Tavan, J. Chem. Phys. 118, 2039 (2003)] to make the resulting reaction field (RF) forces compatible with Newton's third law. Such a compatibility is required for their use in molecular dynamics (MD) simulations, in which the proteins are modeled by all-atom molecular mechanics force fields. According to the original theory the RF forces, which are due to the electric field generated by the solvent polarization and act on the partial charges of a protein, i.e., the so-called qE forces, can be quite accurately computed from Gaussian RF dipoles localized at the protein atoms. Using a slightly different approximation scheme also the RF energies of given protein configurations are obtained. However, because the qE forces do not account for the dielectric boundary pressure exerted by the solvent continuum on the protein, they do not obey the principle that actio equals reactio as required by Newton's third law. Therefore, their use in MD simulations is severely hampered. An analysis of the original theory has led the authors now to a reformulation removing the main difficulties. By considering the RF energy, which represents the dominant electrostatic contribution to the free energy of solvation for a given protein configuration, they show that its negative configurational gradient yields mean RF forces obeying the reactio principle. Because the evaluation of these mean forces is computationally much more demanding than that of the qE forces, they derive a suggestion how the qE forces can be modified to obey Newton's third law. Various properties of the thus established theory, particularly issues of accuracy and of computational efficiency, are discussed. A sample application to a MD simulation of a peptide in solution is described in the following paper [M. Stork and P. Tavan, J. Chem. Phys., 126, 165106 (2007).

  14. Surface segregation in a binary mixture of ionic liquids: Comparison between high-resolution RBS measurements and moleculardynamics simulations.

    PubMed

    Nakajima, Kaoru; Nakanishi, Shunto; Chval, Zdeněk; Lísal, Martin; Kimura, Kenji

    2016-11-14

    Surface structure of equimolar mixture of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C 2 C 1 Im][Tf 2 N]) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([C 2 C 1 Im][BF 4 ]) is studied using high-resolution Rutherford backscattering spectroscopy (HRBS) and molecular dynamics (MD) simulations. Both HRBS and MD simulations show enrichment of [Tf 2 N] in the first molecular layer although the degree of enrichment observed by HRBS is more pronounced than that predicted by the MD simulation. In the subsurface region, MD simulation shows a small depletion of [Tf 2 N] while HRBS shows a small enrichment here. This discrepancy is partially attributed to the artifact of the MD simulations. Since the number of each ion is fixed in a finite-size simulation box, surface enrichment of particular ion results in its artificial depletion in the subsurface region.

  15. Surface segregation in a binary mixture of ionic liquids: Comparison between high-resolution RBS measurements and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Nakajima, Kaoru; Nakanishi, Shunto; Chval, Zdeněk; Lísal, Martin; Kimura, Kenji

    2016-11-01

    Surface structure of equimolar mixture of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C2C1Im][Tf2N]) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2C1Im][BF4]) is studied using high-resolution Rutherford backscattering spectroscopy (HRBS) and molecular dynamics (MD) simulations. Both HRBS and MD simulations show enrichment of [Tf2N] in the first molecular layer although the degree of enrichment observed by HRBS is more pronounced than that predicted by the MD simulation. In the subsurface region, MD simulation shows a small depletion of [Tf2N] while HRBS shows a small enrichment here. This discrepancy is partially attributed to the artifact of the MD simulations. Since the number of each ion is fixed in a finite-size simulation box, surface enrichment of particular ion results in its artificial depletion in the subsurface region.

  16. Implementing Molecular Dynamics on Hybrid High Performance Computers - Three-Body Potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, W Michael; Yamada, Masako

    The use of coprocessors or accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power re- quirements. Hybrid high-performance computers, defined as machines with nodes containing more than one type of floating-point processor (e.g. CPU and GPU), are now becoming more prevalent due to these advantages. Although there has been extensive research into methods to efficiently use accelerators to improve the performance of molecular dynamics (MD) employing pairwise potential energy models, little is reported in the literature for models that includemore » many-body effects. 3-body terms are required for many popular potentials such as MEAM, Tersoff, REBO, AIREBO, Stillinger-Weber, Bond-Order Potentials, and others. Because the per-atom simulation times are much higher for models incorporating 3-body terms, there is a clear need for efficient algo- rithms usable on hybrid high performance computers. Here, we report a shared-memory force-decomposition for 3-body potentials that avoids memory conflicts to allow for a deterministic code with substantial performance improvements on hybrid machines. We describe modifications necessary for use in distributed memory MD codes and show results for the simulation of water with Stillinger-Weber on the hybrid Titan supercomputer. We compare performance of the 3-body model to the SPC/E water model when using accelerators. Finally, we demonstrate that our approach can attain a speedup of 5.1 with acceleration on Titan for production simulations to study water droplet freezing on a surface.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biyikli, Emre; To, Albert C., E-mail: albertto@pitt.edu

    Atomistic/continuum coupling methods combine accurate atomistic methods and efficient continuum methods to simulate the behavior of highly ordered crystalline systems. Coupled methods utilize the advantages of both approaches to simulate systems at a lower computational cost, while retaining the accuracy associated with atomistic methods. Many concurrent atomistic/continuum coupling methods have been proposed in the past; however, their true computational efficiency has not been demonstrated. The present work presents an efficient implementation of a concurrent coupling method called the Multiresolution Molecular Mechanics (MMM) for serial, parallel, and adaptive analysis. First, we present the features of the software implemented along with themore » associated technologies. The scalability of the software implementation is demonstrated, and the competing effects of multiscale modeling and parallelization are discussed. Then, the algorithms contributing to the efficiency of the software are presented. These include algorithms for eliminating latent ghost atoms from calculations and measurement-based dynamic balancing of parallel workload. The efficiency improvements made by these algorithms are demonstrated by benchmark tests. The efficiency of the software is found to be on par with LAMMPS, a state-of-the-art Molecular Dynamics (MD) simulation code, when performing full atomistic simulations. Speed-up of the MMM method is shown to be directly proportional to the reduction of the number of the atoms visited in force computation. Finally, an adaptive MMM analysis on a nanoindentation problem, containing over a million atoms, is performed, yielding an improvement of 6.3–8.5 times in efficiency, over the full atomistic MD method. For the first time, the efficiency of a concurrent atomistic/continuum coupling method is comprehensively investigated and demonstrated.« less

  18. Multiresolution molecular mechanics: Implementation and efficiency

    NASA Astrophysics Data System (ADS)

    Biyikli, Emre; To, Albert C.

    2017-01-01

    Atomistic/continuum coupling methods combine accurate atomistic methods and efficient continuum methods to simulate the behavior of highly ordered crystalline systems. Coupled methods utilize the advantages of both approaches to simulate systems at a lower computational cost, while retaining the accuracy associated with atomistic methods. Many concurrent atomistic/continuum coupling methods have been proposed in the past; however, their true computational efficiency has not been demonstrated. The present work presents an efficient implementation of a concurrent coupling method called the Multiresolution Molecular Mechanics (MMM) for serial, parallel, and adaptive analysis. First, we present the features of the software implemented along with the associated technologies. The scalability of the software implementation is demonstrated, and the competing effects of multiscale modeling and parallelization are discussed. Then, the algorithms contributing to the efficiency of the software are presented. These include algorithms for eliminating latent ghost atoms from calculations and measurement-based dynamic balancing of parallel workload. The efficiency improvements made by these algorithms are demonstrated by benchmark tests. The efficiency of the software is found to be on par with LAMMPS, a state-of-the-art Molecular Dynamics (MD) simulation code, when performing full atomistic simulations. Speed-up of the MMM method is shown to be directly proportional to the reduction of the number of the atoms visited in force computation. Finally, an adaptive MMM analysis on a nanoindentation problem, containing over a million atoms, is performed, yielding an improvement of 6.3-8.5 times in efficiency, over the full atomistic MD method. For the first time, the efficiency of a concurrent atomistic/continuum coupling method is comprehensively investigated and demonstrated.

  19. Linearly scaling and almost Hamiltonian dielectric continuum molecular dynamics simulations through fast multipole expansions

    NASA Astrophysics Data System (ADS)

    Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-11-01

    Hamiltonian Dielectric Solvent (HADES) is a recent method [S. Bauer et al., J. Chem. Phys. 140, 104103 (2014)] which enables atomistic Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric solvent continua. Such simulations become rapidly impractical for large proteins, because the computational effort of HADES scales quadratically with the number N of atoms. If one tries to achieve linear scaling by applying a fast multipole method (FMM) to the computation of the HADES electrostatics, the Hamiltonian character (conservation of total energy, linear, and angular momenta) may get lost. Here, we show that the Hamiltonian character of HADES can be almost completely preserved, if the structure-adapted fast multipole method (SAMM) as recently redesigned by Lorenzen et al. [J. Chem. Theory Comput. 10, 3244-3259 (2014)] is suitably extended and is chosen as the FMM module. By this extension, the HADES/SAMM forces become exact gradients of the HADES/SAMM energy. Their translational and rotational invariance then guarantees (within the limits of numerical accuracy) the exact conservation of the linear and angular momenta. Also, the total energy is essentially conserved—up to residual algorithmic noise, which is caused by the periodically repeated SAMM interaction list updates. These updates entail very small temporal discontinuities of the force description, because the employed SAMM approximations represent deliberately balanced compromises between accuracy and efficiency. The energy-gradient corrected version of SAMM can also be applied, of course, to MD simulations of all-atom solvent-solute systems enclosed by periodic boundary conditions. However, as we demonstrate in passing, this choice does not offer any serious advantages.

  20. Evaporation kinetics of Mg2SiO4 crystals and melts from molecular dynamics simulations

    NASA Technical Reports Server (NTRS)

    Kubicki, J. D.; Stolper, E. M.

    1993-01-01

    Computer simulations based on the molecular dynamics (MD) technique were used to study the mechanisms and kinetics of free evaporation from crystalline and molten forsterite (i.e., Mg2SiO4) on an atomic level. The interatomic potential employed for these simulations reproduces the energetics of bonding in forsterite and in gas-phase MgO and SiO2 reasonably accurately. Results of the simulation include predicted evaporation rates, diffusion rates, and reaction mechanisms for Mg2SiO4(s or l) yields 2Mg(g) + 20(g) + SiO2(g).

  1. A collaborative visual analytics suite for protein folding research.

    PubMed

    Harvey, William; Park, In-Hee; Rübel, Oliver; Pascucci, Valerio; Bremer, Peer-Timo; Li, Chenglong; Wang, Yusu

    2014-09-01

    Molecular dynamics (MD) simulation is a crucial tool for understanding principles behind important biochemical processes such as protein folding and molecular interaction. With the rapidly increasing power of modern computers, large-scale MD simulation experiments can be performed regularly, generating huge amounts of MD data. An important question is how to analyze and interpret such massive and complex data. One of the (many) challenges involved in analyzing MD simulation data computationally is the high-dimensionality of such data. Given a massive collection of molecular conformations, researchers typically need to rely on their expertise and prior domain knowledge in order to retrieve certain conformations of interest. It is not easy to make and test hypotheses as the data set as a whole is somewhat "invisible" due to its high dimensionality. In other words, it is hard to directly access and examine individual conformations from a sea of molecular structures, and to further explore the entire data set. There is also no easy and convenient way to obtain a global view of the data or its various modalities of biochemical information. To this end, we present an interactive, collaborative visual analytics tool for exploring massive, high-dimensional molecular dynamics simulation data sets. The most important utility of our tool is to provide a platform where researchers can easily and effectively navigate through the otherwise "invisible" simulation data sets, exploring and examining molecular conformations both as a whole and at individual levels. The visualization is based on the concept of a topological landscape, which is a 2D terrain metaphor preserving certain topological and geometric properties of the high dimensional protein energy landscape. In addition to facilitating easy exploration of conformations, this 2D terrain metaphor also provides a platform where researchers can visualize and analyze various properties (such as contact density) overlayed on the top of the 2D terrain. Finally, the software provides a collaborative environment where multiple researchers can assemble observations and biochemical events into storyboards and share them in real time over the Internet via a client-server architecture. The software is written in Scala and runs on the cross-platform Java Virtual Machine. Binaries and source code are available at http://www.aylasoftware.org and have been released under the GNU General Public License. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. ProtoMD: A prototyping toolkit for multiscale molecular dynamics

    NASA Astrophysics Data System (ADS)

    Somogyi, Endre; Mansour, Andrew Abi; Ortoleva, Peter J.

    2016-05-01

    ProtoMD is a toolkit that facilitates the development of algorithms for multiscale molecular dynamics (MD) simulations. It is designed for multiscale methods which capture the dynamic transfer of information across multiple spatial scales, such as the atomic to the mesoscopic scale, via coevolving microscopic and coarse-grained (CG) variables. ProtoMD can be also be used to calibrate parameters needed in traditional CG-MD methods. The toolkit integrates 'GROMACS wrapper' to initiate MD simulations, and 'MDAnalysis' to analyze and manipulate trajectory files. It facilitates experimentation with a spectrum of coarse-grained variables, prototyping rare events (such as chemical reactions), or simulating nanocharacterization experiments such as terahertz spectroscopy, AFM, nanopore, and time-of-flight mass spectroscopy. ProtoMD is written in python and is freely available under the GNU General Public License from github.com/CTCNano/proto_md.

  3. Coarse-Grained Models Reveal Functional Dynamics – II. Molecular Dynamics Simulation at the Coarse-Grained Level – Theories and Biological Applications

    PubMed Central

    Chng, Choon-Peng; Yang, Lee-Wei

    2008-01-01

    Molecular dynamics (MD) simulation has remained the most indispensable tool in studying equilibrium/non-equilibrium conformational dynamics since its advent 30 years ago. With advances in spectroscopy accompanying solved biocomplexes in growing sizes, sampling their dynamics that occur at biologically interesting spatial/temporal scales becomes computationally intractable; this motivated the use of coarse-grained (CG) approaches. CG-MD models are used to study folding and conformational transitions in reduced resolution and can employ enlarged time steps due to the absence of some of the fastest motions in the system. The Boltzmann-Inversion technique, heavily used in parameterizing these models, provides a smoothed-out effective potential on which molecular conformation evolves at a faster pace thus stretching simulations into tens of microseconds. As a result, a complete catalytic cycle of HIV-1 protease or the assembly of lipid-protein mixtures could be investigated by CG-MD to gain biological insights. In this review, we survey the theories developed in recent years, which are categorized into Folding-based and Molecular-Mechanics-based. In addition, physical bases in the selection of CG beads/time-step, the choice of effective potentials, representation of solvent, and restoration of molecular representations back to their atomic details are systematically discussed. PMID:19812774

  4. A computational analysis of SARS cysteine proteinase-octapeptide substrate interaction: implication for structure and active site binding mechanism

    PubMed Central

    Phakthanakanok, Krongsakda; Ratanakhanokchai, Khanok; Kyu, Khin Lay; Sompornpisut, Pornthep; Watts, Aaron; Pinitglang, Surapong

    2009-01-01

    Background SARS coronavirus main proteinase (SARS CoVMpro) is an important enzyme for the replication of Severe Acute Respiratory Syndrome virus. The active site region of SARS CoVMpro is divided into 8 subsites. Understanding the binding mode of SARS CoVMpro with a specific substrate is useful and contributes to structural-based drug design. The purpose of this research is to investigate the binding mode between the SARS CoVMpro and two octapeptides, especially in the region of the S3 subsite, through a molecular docking and molecular dynamics (MD) simulation approach. Results The one turn α-helix chain (residues 47–54) of the SARS CoVMpro was directly involved in the induced-fit model of the enzyme-substrate complex. The S3 subsite of the enzyme had a negatively charged region due to the presence of Glu47. During MD simulations, Glu47 of the enzyme was shown to play a key role in electrostatic bonding with the P3Lys of the octapeptide. Conclusion MD simulations were carried out on the SARS CoVMpro-octapeptide complex. The hypothesis proposed that Glu47 of SARS CoVMpro is an important residue in the S3 subsite and is involved in binding with P3Lys of the octapeptide. PMID:19208150

  5. Understanding the colloidal dispersion stability of 1D and 2D materials: Perspectives from molecular simulations and theoretical modeling.

    PubMed

    Lin, Shangchao; Shih, Chih-Jen; Sresht, Vishnu; Govind Rajan, Ananth; Strano, Michael S; Blankschtein, Daniel

    2017-06-01

    The colloidal dispersion stability of 1D and 2D materials in the liquid phase is critical for scalable nano-manufacturing, chemical modification, composites production, and deployment as conductive inks or nanofluids. Here, we review recent computational and theoretical studies carried out by our group to model the dispersion stability of 1D and 2D materials, including single-walled carbon nanotubes, graphene, and graphene oxide in aqueous surfactant solutions or organic solvents. All-atomistic (AA) molecular dynamics (MD) simulations can probe the molecular level details of the adsorption morphology of surfactants and solvents around these materials, as well as quantify the interaction energy between the nanomaterials mediated by surfactants or solvents. Utilizing concepts from reaction kinetics and diffusion, one can directly predict the rate constants for the aggregation kinetics and dispersion life times using MD outputs. Furthermore, the use of coarse-grained (CG) MD simulations allows quantitative prediction of surfactant adsorption isotherms. Combined with the Poisson-Boltzmann equation, the Langmuir isotherm, and the DLVO theory, one can directly use CGMD outputs to: (i) predict electrostatic potentials around the nanomaterial, (ii) correlate surfactant surface coverages with surfactant concentrations in the bulk dispersion medium, and (iii) determine energy barriers against coagulation. Finally, we discuss challenges associated with studying emerging 2D materials, such as, hexagonal boron nitride (h-BN), phosphorene, and transition metal dichalcogenides (TMDCs), including molybdenum disulfide (MoS 2 ). An outlook is provided to address these challenges with plans to develop force-field parameters for MD simulations to enable predictive modeling of emerging 2D materials in the liquid phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Nucleation Rate Analysis of Methane Hydrate from Molecular Dynamics Simulations

    DOE PAGES

    Yuhara, Daisuke; Barnes, Brian C.; Suh, Donguk; ...

    2015-01-06

    Clathrate hydrates are solid crystalline structures most commonly formed from solutions that have nucleated to form a mixed solid composed of water and gas. Understanding the mechanism of clathrate hydrate nucleation is essential to grasp the fundamental chemistry of these complex structures and their applications. Molecular dynamics (MD) simulation is an ideal method to study nucleation at the molecular level because the size of the critical nucleus and formation rate occur on the nano scale. Moreover, various analysis methods for nucleation have been developed through MD to analyze nucleation. In particular, the mean first-passage time (MFPT) and survival probability (SP)more » methods have proven to be effective in procuring the nucleation rate and critical nucleus size for monatomic systems. This study assesses the MFPT and SP methods, previously used for monatomic systems, when applied to analyzing clathrate hydrate nucleation. Because clathrate hydrate nucleation is relatively difficult to observe in MD simulations (due to its high free energy barrier), these methods have yet to be applied to clathrate hydrate systems. In this study, we have analyzed the nucleation rate and critical nucleus size of methane hydrate using MFPT and SP methods from data generated by MD simulations at 255 K and 50 MPa. MFPT was modified for clathrate hydrate from the original version by adding the maximum likelihood estimate and growth effect term. The nucleation rates were calculated by MFPT and SP methods and are within 5%; the critical nucleus size estimated by the MFPT method was 50% higher, than values obtained through other more rigorous but computationally expensive estimates. These methods can also be extended to the analysis of other clathrate hydrates.« less

  7. Nucleation Rate Analysis of Methane Hydrate from Molecular Dynamics Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuhara, Daisuke; Barnes, Brian C.; Suh, Donguk

    Clathrate hydrates are solid crystalline structures most commonly formed from solutions that have nucleated to form a mixed solid composed of water and gas. Understanding the mechanism of clathrate hydrate nucleation is essential to grasp the fundamental chemistry of these complex structures and their applications. Molecular dynamics (MD) simulation is an ideal method to study nucleation at the molecular level because the size of the critical nucleus and formation rate occur on the nano scale. Moreover, various analysis methods for nucleation have been developed through MD to analyze nucleation. In particular, the mean first-passage time (MFPT) and survival probability (SP)more » methods have proven to be effective in procuring the nucleation rate and critical nucleus size for monatomic systems. This study assesses the MFPT and SP methods, previously used for monatomic systems, when applied to analyzing clathrate hydrate nucleation. Because clathrate hydrate nucleation is relatively difficult to observe in MD simulations (due to its high free energy barrier), these methods have yet to be applied to clathrate hydrate systems. In this study, we have analyzed the nucleation rate and critical nucleus size of methane hydrate using MFPT and SP methods from data generated by MD simulations at 255 K and 50 MPa. MFPT was modified for clathrate hydrate from the original version by adding the maximum likelihood estimate and growth effect term. The nucleation rates were calculated by MFPT and SP methods and are within 5%; the critical nucleus size estimated by the MFPT method was 50% higher, than values obtained through other more rigorous but computationally expensive estimates. These methods can also be extended to the analysis of other clathrate hydrates.« less

  8. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations.

    PubMed

    Hou, Tingjun; Wang, Junmei; Li, Youyong; Wang, Wei

    2011-01-24

    The Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) and the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) methods calculate binding free energies for macromolecules by combining molecular mechanics calculations and continuum solvation models. To systematically evaluate the performance of these methods, we report here an extensive study of 59 ligands interacting with six different proteins. First, we explored the effects of the length of the molecular dynamics (MD) simulation, ranging from 400 to 4800 ps, and the solute dielectric constant (1, 2, or 4) on the binding free energies predicted by MM/PBSA. The following three important conclusions could be observed: (1) MD simulation length has an obvious impact on the predictions, and longer MD simulation is not always necessary to achieve better predictions. (2) The predictions are quite sensitive to the solute dielectric constant, and this parameter should be carefully determined according to the characteristics of the protein/ligand binding interface. (3) Conformational entropy often show large fluctuations in MD trajectories, and a large number of snapshots are necessary to achieve stable predictions. Next, we evaluated the accuracy of the binding free energies calculated by three Generalized Born (GB) models. We found that the GB model developed by Onufriev and Case was the most successful model in ranking the binding affinities of the studied inhibitors. Finally, we evaluated the performance of MM/GBSA and MM/PBSA in predicting binding free energies. Our results showed that MM/PBSA performed better in calculating absolute, but not necessarily relative, binding free energies than MM/GBSA. Considering its computational efficiency, MM/GBSA can serve as a powerful tool in drug design, where correct ranking of inhibitors is often emphasized.

  9. Hybrid molecular dynamics simulation for plasma induced damage analysis

    NASA Astrophysics Data System (ADS)

    Matsukuma, Masaaki

    2016-09-01

    In order to enable further device size reduction (also known as Moore's law) and improved power performance, the semiconductor industry is introducing new materials and device structures into the semiconductor fabrication process. Materials now include III-V compounds, germanium, cobalt, ruthenium, hafnium, and others. The device structure in both memory and logic has been evolving from planar to three dimensional (3D). One such device is the FinFET, where the transistor gate is a vertical fin made either of silicon, silicon-germanium or germanium. These changes have brought renewed interests in the structural damages caused by energetic ion bombardment of the fin sidewalls which are exposed to the ion flux from the plasma during the fin-strip off step. Better control of the physical damage of the 3D devices requires a better understanding of the damage formation mechanisms on such new materials and structures. In this study, the damage formation processes by ion bombardment have been simulated for Si and Ge substrate by Quantum Mechanics/Molecular Mechanics (QM/MM) hybrid simulations and compared to the results from the classical molecular dynamics (MD) simulations. In our QM/MM simulations, the highly reactive region in which the structural damage is created is simulated with the Density Functional based Tight Binding (DFTB) method and the region remote from the primary region is simulated using classical MD with the Stillinger-Weber and Moliere potentials. The learn on the fly method is also used to reduce the computational load. Hence our QM/MM simulation is much faster than the full QC-MD simulations and the original QM/MM simulations. The amorphous layers profile simulated with QM/MM have obvious differences in their thickness for silicon and germanium substrate. The profile of damaged structure in the germanium substrate is characterized by a deeper tail then in silicon. These traits are also observed in the results from the mass selected ion beam experiments. This observed damage profile dependence on species and substrate cannot be reproduced using classical MD simulations. While the Moliere potential is convenient to describe the interactions between halogens and other atoms, more accurate interatomic modeling such as DFTB method which takes the molecular orbitals into account should be utilized to make the simulations more realistic. Based on the simulations results, the damage formation scenario will be discussed.

  10. Error correction in multi-fidelity molecular dynamics simulations using functional uncertainty quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeve, Samuel Temple; Strachan, Alejandro, E-mail: strachan@purdue.edu

    We use functional, Fréchet, derivatives to quantify how thermodynamic outputs of a molecular dynamics (MD) simulation depend on the potential used to compute atomic interactions. Our approach quantifies the sensitivity of the quantities of interest with respect to the input functions as opposed to its parameters as is done in typical uncertainty quantification methods. We show that the functional sensitivity of the average potential energy and pressure in isothermal, isochoric MD simulations using Lennard–Jones two-body interactions can be used to accurately predict those properties for other interatomic potentials (with different functional forms) without re-running the simulations. This is demonstrated undermore » three different thermodynamic conditions, namely a crystal at room temperature, a liquid at ambient pressure, and a high pressure liquid. The method provides accurate predictions as long as the change in potential can be reasonably described to first order and does not significantly affect the region in phase space explored by the simulation. The functional uncertainty quantification approach can be used to estimate the uncertainties associated with constitutive models used in the simulation and to correct predictions if a more accurate representation becomes available.« less

  11. AWE-WQ: fast-forwarding molecular dynamics using the accelerated weighted ensemble.

    PubMed

    Abdul-Wahid, Badi'; Feng, Haoyun; Rajan, Dinesh; Costaouec, Ronan; Darve, Eric; Thain, Douglas; Izaguirre, Jesús A

    2014-10-27

    A limitation of traditional molecular dynamics (MD) is that reaction rates are difficult to compute. This is due to the rarity of observing transitions between metastable states since high energy barriers trap the system in these states. Recently the weighted ensemble (WE) family of methods have emerged which can flexibly and efficiently sample conformational space without being trapped and allow calculation of unbiased rates. However, while WE can sample correctly and efficiently, a scalable implementation applicable to interesting biomolecular systems is not available. We provide here a GPLv2 implementation called AWE-WQ of a WE algorithm using the master/worker distributed computing WorkQueue (WQ) framework. AWE-WQ is scalable to thousands of nodes and supports dynamic allocation of computer resources, heterogeneous resource usage (such as central processing units (CPU) and graphical processing units (GPUs) concurrently), seamless heterogeneous cluster usage (i.e., campus grids and cloud providers), and support for arbitrary MD codes such as GROMACS, while ensuring that all statistics are unbiased. We applied AWE-WQ to a 34 residue protein which simulated 1.5 ms over 8 months with peak aggregate performance of 1000 ns/h. Comparison was done with a 200 μs simulation collected on a GPU over a similar timespan. The folding and unfolded rates were of comparable accuracy.

  12. AWE-WQ: Fast-Forwarding Molecular Dynamics Using the Accelerated Weighted Ensemble

    PubMed Central

    2015-01-01

    A limitation of traditional molecular dynamics (MD) is that reaction rates are difficult to compute. This is due to the rarity of observing transitions between metastable states since high energy barriers trap the system in these states. Recently the weighted ensemble (WE) family of methods have emerged which can flexibly and efficiently sample conformational space without being trapped and allow calculation of unbiased rates. However, while WE can sample correctly and efficiently, a scalable implementation applicable to interesting biomolecular systems is not available. We provide here a GPLv2 implementation called AWE-WQ of a WE algorithm using the master/worker distributed computing WorkQueue (WQ) framework. AWE-WQ is scalable to thousands of nodes and supports dynamic allocation of computer resources, heterogeneous resource usage (such as central processing units (CPU) and graphical processing units (GPUs) concurrently), seamless heterogeneous cluster usage (i.e., campus grids and cloud providers), and support for arbitrary MD codes such as GROMACS, while ensuring that all statistics are unbiased. We applied AWE-WQ to a 34 residue protein which simulated 1.5 ms over 8 months with peak aggregate performance of 1000 ns/h. Comparison was done with a 200 μs simulation collected on a GPU over a similar timespan. The folding and unfolded rates were of comparable accuracy. PMID:25207854

  13. Computational Study of Symmetric Methylation on Histone Arginine Catalyzed by Protein Arginine Methyltransferase PRMT5 through QM/MM MD and Free Energy Simulations

    DOE PAGES

    Yue, Yufei; CHu, Yuzhuo; Guo, Hong

    2015-01-01

    Protein arginine methyltransferases (PRMTs) catalyze the transfer of the methyl group from S-adenosyl-l-methionine (AdoMet) to arginine residues. There are three types of PRMTs (I, II and III) that produce different methylation products, including asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA) and monomethylarginine (MMA). Since these different methylations can lead to different biological consequences, understanding the origin of product specificity of PRMTs is of considerable interest. In this article, the quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) and free energy simulations are performed to study SDMA catalyzed by the Type II PRMT5 on the basis of experimental observation that the dimethylated productmore » is generated through a distributive fashion. The simulations have identified some important interactions and proton transfers during the catalysis. Similar to the cases involving Type I PRMTs, a conserved Glu residue (Glu435) in PRMT5 is suggested to function as general base catalyst based on the result of the simulations. Moreover, our results show that PRMT5 has an energetic preference for the first methylation on N-1 followed by the second methylation on a different -guanidino nitrogen of arginine (N-2).The first and second methyl transfers are estimated to have free energy barriers of 19-20 and 18-19 kcal/mol respectively. The computer simulations suggest a distinctive catalytic mechanism of symmetric dimethylation that seems to be different from asymmetric dimethylation.« less

  14. Identification of a new binding site in E. coli FabH using Molecular dynamics simulations: validation by computational alanine mutagenesis and docking studies.

    PubMed

    Ramamoorthy, Divya; Turos, Edward; Guida, Wayne C

    2013-05-24

    FabH (Fatty acid biosynthesis, enzyme H, also referred to as β-ketoacyl-ACP-synthase III) is a key condensing enzyme in the type II fatty acid synthesis (FAS) system. The FAS pathway in bacteria is essential for growth and survival and vastly differs from the human FAS pathway. Enzymes involved in this pathway have arisen as promising biomolecular targets for discovery of new antibacterial drugs. However, currently there are no clinical drugs that selectively target FabH, and known inhibitors of FabH all act within the active site. FabH exerts its catalytic function as a dimer, which could potentially be exploited in developing new strategies for inhibitor design. The aim of this study was to elucidate structural details of the dimer interface region by means of computational modeling, including molecular dynamics (MD) simulations, in order to derive information for the structure-based design of new FabH inhibitors. The dimer interface region was analyzed by MD simulations, trajectory snapshots were collected for further analyses, and docking studies were performed with potential small molecule disruptors. Alanine mutation and docking studies strongly suggest that the dimer interface could be a potential target for anti-infection drug discovery.

  15. Structural Dynamics of Carbon Dots in Water and N, N-Dimethylformamide Probed by All-Atom Molecular Dynamics Simulations.

    PubMed

    Paloncýová, Markéta; Langer, Michal; Otyepka, Michal

    2018-04-10

    Carbon dots (CDs), one of the youngest members of the carbon nanostructure family, are now widely experimentally studied for their tunable fluorescence properties, bleaching resistance, and biocompatibility. Their interaction with biomolecular systems has also been explored experimentally. However, many atomistic details still remain unresolved. Molecular dynamics (MD) simulations enabling atomistic and femtosecond resolutions simultaneously are a well-established tool of computational chemistry which can provide useful insights into investigated systems. Here we present a full procedure for performing MD simulations of CDs. We developed a builder for generating CDs of a desired size and with various oxygen-containing surface functional groups. Further, we analyzed the behavior of various CDs differing in size, surface functional groups, and degrees of functionalization by MD simulations. These simulations showed that surface functionalized CDs are stable in a water environment through the formation of an extensive hydrogen bonding network. We also analyzed the internal dynamics of individual layers of CDs and evaluated the role of surface functional groups on CD stability. We observed that carboxyl groups interconnected the neighboring layers and decreased the rate of internal rotations. Further, we monitored changes in the CD shape caused by an excess of charged carboxyl groups or carbonyl groups. In addition to simulations in water, we analyzed the behavior of CDs in the organic solvent DMF, which decreased the stability of pure CDs but increased the level of interlayer hydrogen bonding. We believe that the developed protocol, builder, and parameters will facilitate future studies addressing various aspects of structural features of CDs and nanocomposites containing CDs.

  16. Beyond Standard Molecular Dynamics: Investigating the Molecular Mechanisms of G Protein-Coupled Receptors with Enhanced Molecular Dynamics Methods

    PubMed Central

    Johnston, Jennifer M.

    2014-01-01

    The majority of biological processes mediated by G Protein-Coupled Receptors (GPCRs) take place on timescales that are not conveniently accessible to standard molecular dynamics (MD) approaches, notwithstanding the current availability of specialized parallel computer architectures, and efficient simulation algorithms. Enhanced MD-based methods have started to assume an important role in the study of the rugged energy landscape of GPCRs by providing mechanistic details of complex receptor processes such as ligand recognition, activation, and oligomerization. We provide here an overview of these methods in their most recent application to the field. PMID:24158803

  17. Analysis of Helium Segregation on Surfaces of Plasma-Exposed Tungsten

    NASA Astrophysics Data System (ADS)

    Maroudas, Dimitrios; Hu, Lin; Hammond, Karl; Wirth, Brian

    2015-11-01

    We report a systematic theoretical and atomic-scale computational study of implanted helium segregation on surfaces of tungsten, which is considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations, including molecular statics to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile helium clusters (of 1-7 He atoms) in the near-surface region are attracted to the surface due to an elastic interaction force. This thermodynamic driving force induces drift fluxes of these mobile clusters toward the surface, facilitating helium segregation. Moreover, the clusters' drift toward the surface enables cluster reactions, most importantly trap mutation, at rates much higher than in the bulk material. This cluster dynamics has significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure.

  18. Hydrocode and Molecular Dynamics modelling of uniaxial shock wave experiments on Silicon

    NASA Astrophysics Data System (ADS)

    Stubley, Paul; McGonegle, David; Patel, Shamim; Suggit, Matthew; Wark, Justin; Higginbotham, Andrew; Comley, Andrew; Foster, John; Rothman, Steve; Eggert, Jon; Kalantar, Dan; Smith, Ray

    2015-06-01

    Recent experiments have provided further evidence that the response of silicon to shock compression has anomalous properties, not described by the usual two-wave elastic-plastic response. A recent experimental campaign on the Orion laser in particular has indicated a complex multi-wave response. While Molecular Dynamics (MD) simulations can offer a detailed insight into the response of crystals to uniaxial compression, they are extremely computationally expensive. For this reason, we are adapting a simple quasi-2D hydrodynamics code to capture phase change under uniaxial compression, and the intervening mixed phase region, keeping track of the stresses and strains in each of the phases. This strain information is of such importance because a large number of shock experiments use diffraction as a key diagnostic, and these diffraction patterns depend solely on the elastic strains in the sample. We present here a comparison of the new hydrodynamics code with MD simulations, and show that the simulated diffraction taken from the code agrees qualitatively with measured diffraction from our recent Orion campaign.

  19. Validation of Molecular Dynamics Simulations for Prediction of Three-Dimensional Structures of Small Proteins.

    PubMed

    Kato, Koichi; Nakayoshi, Tomoki; Fukuyoshi, Shuichi; Kurimoto, Eiji; Oda, Akifumi

    2017-10-12

    Although various higher-order protein structure prediction methods have been developed, almost all of them were developed based on the three-dimensional (3D) structure information of known proteins. Here we predicted the short protein structures by molecular dynamics (MD) simulations in which only Newton's equations of motion were used and 3D structural information of known proteins was not required. To evaluate the ability of MD simulationto predict protein structures, we calculated seven short test protein (10-46 residues) in the denatured state and compared their predicted and experimental structures. The predicted structure for Trp-cage (20 residues) was close to the experimental structure by 200-ns MD simulation. For proteins shorter or longer than Trp-cage, root-mean square deviation values were larger than those for Trp-cage. However, secondary structures could be reproduced by MD simulations for proteins with 10-34 residues. Simulations by replica exchange MD were performed, but the results were similar to those from normal MD simulations. These results suggest that normal MD simulations can roughly predict short protein structures and 200-ns simulations are frequently sufficient for estimating the secondary structures of protein (approximately 20 residues). Structural prediction method using only fundamental physical laws are useful for investigating non-natural proteins, such as primitive proteins and artificial proteins for peptide-based drug delivery systems.

  20. Effect of the computational domain size and shape on the self-diffusion coefficient in a Lennard-Jones liquid.

    PubMed

    Kikugawa, Gota; Ando, Shotaro; Suzuki, Jo; Naruke, Yoichi; Nakano, Takeo; Ohara, Taku

    2015-01-14

    In the present study, molecular dynamics (MD) simulations on the monatomic Lennard-Jones liquid in a periodic boundary system were performed in order to elucidate the effect of the computational domain size and shape on the self-diffusion coefficient measured by the system. So far, the system size dependence in cubic computational domains has been intensively investigated and these studies showed that the diffusion coefficient depends linearly on the inverse of the system size, which is theoretically predicted based on the hydrodynamic interaction. We examined the system size effect not only in the cubic cell systems but also in rectangular cell systems which were created by changing one side length of the cubic cell with the system density kept constant. As a result, the diffusion coefficient in the direction perpendicular to the long side of the rectangular cell significantly increases more or less linearly with the side length. On the other hand, the diffusion coefficient in the direction along the long side is almost constant or slightly decreases. Consequently, anisotropy of the diffusion coefficient emerges in a rectangular cell with periodic boundary conditions even in a bulk liquid simulation. This unexpected result is of critical importance because rectangular fluid systems confined in nanospace, which are present in realistic nanoscale technologies, have been widely studied in recent MD simulations. In order to elucidate the underlying mechanism for this serious system shape effect on the diffusion property, the correlation structures of particle velocities were examined.

  1. GMXPBSA 2.0: A GROMACS tool to perform MM/PBSA and computational alanine scanning

    NASA Astrophysics Data System (ADS)

    Paissoni, C.; Spiliotopoulos, D.; Musco, G.; Spitaleri, A.

    2014-11-01

    GMXPBSA 2.0 is a user-friendly suite of Bash/Perl scripts for streamlining MM/PBSA calculations on structural ensembles derived from GROMACS trajectories, to automatically calculate binding free energies for protein-protein or ligand-protein complexes. GMXPBSA 2.0 is flexible and can easily be customized to specific needs. Additionally, it performs computational alanine scanning (CAS) to study the effects of ligand and/or receptor alanine mutations on the free energy of binding. Calculations require only for protein-protein or protein-ligand MD simulations. GMXPBSA 2.0 performs different comparative analysis, including a posteriori generation of alanine mutants of the wild-type complex, calculation of the binding free energy values of the mutant complexes and comparison of the results with the wild-type system. Moreover, it compares the binding free energy of different complexes trajectories, allowing the study the effects of non-alanine mutations, post-translational modifications or unnatural amino acids on the binding free energy of the system under investigation. Finally, it can calculate and rank relative affinity to the same receptor utilizing MD simulations of proteins in complex with different ligands. In order to dissect the different MM/PBSA energy contributions, including molecular mechanic (MM), electrostatic contribution to solvation (PB) and nonpolar contribution to solvation (SA), the tool combines two freely available programs: the MD simulations software GROMACS and the Poisson-Boltzmann equation solver APBS. All the calculations can be performed in single or distributed automatic fashion on a cluster facility in order to increase the calculation by dividing frames across the available processors. The program is freely available under the GPL license.

  2. Using collective variables to drive molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Fiorin, Giacomo; Klein, Michael L.; Hénin, Jérôme

    2013-12-01

    A software framework is introduced that facilitates the application of biasing algorithms to collective variables of the type commonly employed to drive massively parallel molecular dynamics (MD) simulations. The modular framework that is presented enables one to combine existing collective variables into new ones, and combine any chosen collective variable with available biasing methods. The latter include the classic time-dependent biases referred to as steered MD and targeted MD, the temperature-accelerated MD algorithm, as well as the adaptive free-energy biases called metadynamics and adaptive biasing force. The present modular software is extensible, and portable between commonly used MD simulation engines.

  3. Computer Simulations and Theoretical Studies of Complex Systems: from complex fluids to frustrated magnets

    NASA Astrophysics Data System (ADS)

    Choi, Eunsong

    Computer simulations are an integral part of research in modern condensed matter physics; they serve as a direct bridge between theory and experiment by systemactically applying a microscopic model to a collection of particles that effectively imitate a macroscopic system. In this thesis, we study two very differnt condensed systems, namely complex fluids and frustrated magnets, primarily by simulating classical dynamics of each system. In the first part of the thesis, we focus on ionic liquids (ILs) and polymers--the two complementary classes of materials that can be combined to provide various unique properties. The properties of polymers/ILs systems, such as conductivity, viscosity, and miscibility, can be fine tuned by choosing an appropriate combination of cations, anions, and polymers. However, designing a system that meets a specific need requires a concrete understanding of physics and chemistry that dictates a complex interplay between polymers and ionic liquids. In this regard, molecular dynamics (MD) simulation is an efficient tool that provides a molecular level picture of such complex systems. We study the behavior of Poly (ethylene oxide) (PEO) and the imidazolium based ionic liquids, using MD simulations and statistical mechanics. We also discuss our efforts to develop reliable and efficient classical force-fields for PEO and the ionic liquids. The second part is devoted to studies on geometrically frustrated magnets. In particular, a microscopic model, which gives rise to an incommensurate spiral magnetic ordering observed in a pyrochlore antiferromagnet is investigated. The validation of the model is made via a comparison of the spin-wave spectra with the neutron scattering data. Since the standard Holstein-Primakoff method is difficult to employ in such a complex ground state structure with a large unit cell, we carry out classical spin dynamics simulations to compute spin-wave spectra directly from the Fourier transform of spin trajectories. We conclude the study by showing an excellent agreement between the simulation and the experiment.

  4. Parallel cascade selection molecular dynamics for efficient conformational sampling and free energy calculation of proteins

    NASA Astrophysics Data System (ADS)

    Kitao, Akio; Harada, Ryuhei; Nishihara, Yasutaka; Tran, Duy Phuoc

    2016-12-01

    Parallel Cascade Selection Molecular Dynamics (PaCS-MD) was proposed as an efficient conformational sampling method to investigate conformational transition pathway of proteins. In PaCS-MD, cycles of (i) selection of initial structures for multiple independent MD simulations and (ii) conformational sampling by independent MD simulations are repeated until the convergence of the sampling. The selection is conducted so that protein conformation gradually approaches a target. The selection of snapshots is a key to enhance conformational changes by increasing the probability of rare event occurrence. Since the procedure of PaCS-MD is simple, no modification of MD programs is required; the selections of initial structures and the restart of the next cycle in the MD simulations can be handled with relatively simple scripts with straightforward implementation. Trajectories generated by PaCS-MD were further analyzed by the Markov state model (MSM), which enables calculation of free energy landscape. The combination of PaCS-MD and MSM is reported in this work.

  5. Drug search for leishmaniasis: a virtual screening approach by grid computing

    NASA Astrophysics Data System (ADS)

    Ochoa, Rodrigo; Watowich, Stanley J.; Flórez, Andrés; Mesa, Carol V.; Robledo, Sara M.; Muskus, Carlos

    2016-07-01

    The trypanosomatid protozoa Leishmania is endemic in 100 countries, with infections causing 2 million new cases of leishmaniasis annually. Disease symptoms can include severe skin and mucosal ulcers, fever, anemia, splenomegaly, and death. Unfortunately, therapeutics approved to treat leishmaniasis are associated with potentially severe side effects, including death. Furthermore, drug-resistant Leishmania parasites have developed in most endemic countries. To address an urgent need for new, safe and inexpensive anti-leishmanial drugs, we utilized the IBM World Community Grid to complete computer-based drug discovery screens (Drug Search for Leishmaniasis) using unique leishmanial proteins and a database of 600,000 drug-like small molecules. Protein structures from different Leishmania species were selected for molecular dynamics (MD) simulations, and a series of conformational "snapshots" were chosen from each MD trajectory to simulate the protein's flexibility. A Relaxed Complex Scheme methodology was used to screen 2000 MD conformations against the small molecule database, producing >1 billion protein-ligand structures. For each protein target, a binding spectrum was calculated to identify compounds predicted to bind with highest average affinity to all protein conformations. Significantly, four different Leishmania protein targets were predicted to strongly bind small molecules, with the strongest binding interactions predicted to occur for dihydroorotate dehydrogenase (LmDHODH; PDB:3MJY). A number of predicted tight-binding LmDHODH inhibitors were tested in vitro and potent selective inhibitors of Leishmania panamensis were identified. These promising small molecules are suitable for further development using iterative structure-based optimization and in vitro/in vivo validation assays.

  6. Drug search for leishmaniasis: a virtual screening approach by grid computing.

    PubMed

    Ochoa, Rodrigo; Watowich, Stanley J; Flórez, Andrés; Mesa, Carol V; Robledo, Sara M; Muskus, Carlos

    2016-07-01

    The trypanosomatid protozoa Leishmania is endemic in ~100 countries, with infections causing ~2 million new cases of leishmaniasis annually. Disease symptoms can include severe skin and mucosal ulcers, fever, anemia, splenomegaly, and death. Unfortunately, therapeutics approved to treat leishmaniasis are associated with potentially severe side effects, including death. Furthermore, drug-resistant Leishmania parasites have developed in most endemic countries. To address an urgent need for new, safe and inexpensive anti-leishmanial drugs, we utilized the IBM World Community Grid to complete computer-based drug discovery screens (Drug Search for Leishmaniasis) using unique leishmanial proteins and a database of 600,000 drug-like small molecules. Protein structures from different Leishmania species were selected for molecular dynamics (MD) simulations, and a series of conformational "snapshots" were chosen from each MD trajectory to simulate the protein's flexibility. A Relaxed Complex Scheme methodology was used to screen ~2000 MD conformations against the small molecule database, producing >1 billion protein-ligand structures. For each protein target, a binding spectrum was calculated to identify compounds predicted to bind with highest average affinity to all protein conformations. Significantly, four different Leishmania protein targets were predicted to strongly bind small molecules, with the strongest binding interactions predicted to occur for dihydroorotate dehydrogenase (LmDHODH; PDB:3MJY). A number of predicted tight-binding LmDHODH inhibitors were tested in vitro and potent selective inhibitors of Leishmania panamensis were identified. These promising small molecules are suitable for further development using iterative structure-based optimization and in vitro/in vivo validation assays.

  7. Lightweight computational steering of very large scale molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beazley, D.M.; Lomdahl, P.S.

    1996-09-01

    We present a computational steering approach for controlling, analyzing, and visualizing very large scale molecular dynamics simulations involving tens to hundreds of millions of atoms. Our approach relies on extensible scripting languages and an easy to use tool for building extensions and modules. The system is extremely easy to modify, works with existing C code, is memory efficient, and can be used from inexpensive workstations and networks. We demonstrate how we have used this system to manipulate data from production MD simulations involving as many as 104 million atoms running on the CM-5 and Cray T3D. We also show howmore » this approach can be used to build systems that integrate common scripting languages (including Tcl/Tk, Perl, and Python), simulation code, user extensions, and commercial data analysis packages.« less

  8. Enhanced conformational sampling using enveloping distribution sampling.

    PubMed

    Lin, Zhixiong; van Gunsteren, Wilfred F

    2013-10-14

    To lessen the problem of insufficient conformational sampling in biomolecular simulations is still a major challenge in computational biochemistry. In this article, an application of the method of enveloping distribution sampling (EDS) is proposed that addresses this challenge and its sampling efficiency is demonstrated in simulations of a hexa-β-peptide whose conformational equilibrium encompasses two different helical folds, i.e., a right-handed 2.7(10∕12)-helix and a left-handed 3(14)-helix, separated by a high energy barrier. Standard MD simulations of this peptide using the GROMOS 53A6 force field did not reach convergence of the free enthalpy difference between the two helices even after 500 ns of simulation time. The use of soft-core non-bonded interactions in the centre of the peptide did enhance the number of transitions between the helices, but at the same time led to neglect of relevant helical configurations. In the simulations of a two-state EDS reference Hamiltonian that envelops both the physical peptide and the soft-core peptide, sampling of the conformational space of the physical peptide ensures that physically relevant conformations can be visited, and sampling of the conformational space of the soft-core peptide helps to enhance the transitions between the two helices. The EDS simulations sampled many more transitions between the two helices and showed much faster convergence of the relative free enthalpy of the two helices compared with the standard MD simulations with only a slightly larger computational effort to determine optimized EDS parameters. Combined with various methods to smoothen the potential energy surface, the proposed EDS application will be a powerful technique to enhance the sampling efficiency in biomolecular simulations.

  9. The Hugoniot adiabat of crystalline copper based on molecular dynamics simulation and semiempirical equation of state

    NASA Astrophysics Data System (ADS)

    Gubin, S. A.; Maklashova, I. V.; Mel'nikov, I. N.

    2018-01-01

    The molecular dynamics (MD) method was used for prediction of properties of copper under shock-wave compression and clarification of the melting region of crystal copper. The embedded atom potential was used for the interatomic interaction. Parameters of Hugonoit adiabats of solid and liquid phases of copper calculated by the semiempirical Grüneisen equation of state are consistent with the results of MD simulations and experimental data. MD simulation allows to visualize the structure of cooper on the atomistic level. The analysis of the radial distribution function and the standard deviation by MD modeling allows to predict the melting area behind the shock wave front. These MD simulation data are required to verify the wide-range equation of state of metals. The melting parameters of copper based on MD simulations and semiempirical equations of state are consistent with experimental and theoretical data, including the region of the melting point of copper.

  10. Simulation vs. Reality: A Comparison of In Silico Distance Predictions with DEER and FRET Measurements

    PubMed Central

    Klose, Daniel; Klare, Johann P.; Grohmann, Dina; Kay, Christopher W. M.; Werner, Finn; Steinhoff, Heinz-Jürgen

    2012-01-01

    Site specific incorporation of molecular probes such as fluorescent- and nitroxide spin-labels into biomolecules, and subsequent analysis by Förster resonance energy transfer (FRET) and double electron-electron resonance (DEER) can elucidate the distance and distance-changes between the probes. However, the probes have an intrinsic conformational flexibility due to the linker by which they are conjugated to the biomolecule. This property minimizes the influence of the label side chain on the structure of the target molecule, but complicates the direct correlation of the experimental inter-label distances with the macromolecular structure or changes thereof. Simulation methods that account for the conformational flexibility and orientation of the probe(s) can be helpful in overcoming this problem. We performed distance measurements using FRET and DEER and explored different simulation techniques to predict inter-label distances using the Rpo4/7 stalk module of the M. jannaschii RNA polymerase. This is a suitable model system because it is rigid and a high-resolution X-ray structure is available. The conformations of the fluorescent labels and nitroxide spin labels on Rpo4/7 were modeled using in vacuo molecular dynamics simulations (MD) and a stochastic Monte Carlo sampling approach. For the nitroxide probes we also performed MD simulations with explicit water and carried out a rotamer library analysis. Our results show that the Monte Carlo simulations are in better agreement with experiments than the MD simulations and the rotamer library approach results in plausible distance predictions. Because the latter is the least computationally demanding of the methods we have explored, and is readily available to many researchers, it prevails as the method of choice for the interpretation of DEER distance distributions. PMID:22761805

  11. Error assessment in molecular dynamics trajectories using computed NMR chemical shifts.

    PubMed

    Koes, David R; Vries, John K

    2017-01-01

    Accurate chemical shifts for the atoms in molecular mechanics (MD) trajectories can be obtained from quantum mechanical (QM) calculations that depend solely on the coordinates of the atoms in the localized regions surrounding atoms of interest. If these coordinates are correct and the sample size is adequate, the ensemble average of these chemical shifts should be equal to the chemical shifts obtained from NMR spectroscopy. If this is not the case, the coordinates must be incorrect. We have utilized this fact to quantify the errors associated with the backbone atoms in MD simulations of proteins. A library of regional conformers containing 169,499 members was constructed from 6 model proteins. The chemical shifts associated with the backbone atoms in each of these conformers was obtained from QM calculations using density functional theory at the B3LYP level with a 6-311+G(2d,p) basis set. Chemical shifts were assigned to each backbone atom in each MD simulation frame using a template matching approach. The ensemble average of these chemical shifts was compared to chemical shifts from NMR spectroscopy. A large systematic error was identified that affected the 1 H atoms of the peptide bonds involved in hydrogen bonding with water molecules or peptide backbone atoms. This error was highly sensitive to changes in electrostatic parameters. Smaller errors affecting the 13 C a and 15 N atoms were also detected. We believe these errors could be useful as metrics for comparing the force-fields and parameter sets used in MD simulation because they are directly tied to errors in atomic coordinates.

  12. Computational investigation of the conformational profile of the four stereomers of Ac-L-Pro-c3Phe-NHMe (c3Phe= 2,3-methanophenylalanine).

    PubMed

    Rodriguez, Alejandro; Canto, Josep; Corcho, Francesc J; Perez, Juan J

    2009-01-01

    The present report regards a computational study aimed at assessing the conformational profile of the four stereoisomers of the peptide Ace-Pro-c3Phe-NMe, previously reported to exhibit beta-turn structures in dichloromethane with different type I/type II beta-turn profiles. Molecular systems were represented at the molecular mechanics level using the parm96 parameterization of the AMBER force field. Calculations were carried out in dichloromethane using an implicit solvent approach. Characterization of the conformational features of the peptide analogs was carried out using simulated annealing (SA), molecular dynamics (MD) and replica exchange molecular dynamics (REMD). Present results show that MD calculations do not provide a reasonable sampling after 300 ns. In contrast, both SA and REMD provide similar results and agree well with experimental observations. Copyright 2009 Wiley Periodicals, Inc.

  13. Development of Xe and Kr empirical potentials for CeO 2, ThO 2, UO 2 and PuO 2, combining DFT with high temperature MD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, M. W. D.; Kuganathan, N.; Burr, P. A.

    In this study, the development of embedded atom method (EAM) many-body potentials for actinide oxides and associated mixed oxide (MOX) systems has motivated the development of a complementary parameter set for gas-actinide and gas-oxygen interactions. A comprehensive set of density functional theory (DFT) calculations were used to study Xe and Kr incorporation at a number of sites in CeO 2, ThO 2, UO 2 and PuO 2. These structures were used to fit a potential, which was used to generate molecular dynamics (MD) configurations incorporating Xe and Kr at 300 K, 1500 K, 3000 K and 5000 K. Subsequent matchingmore » to the forces predicted by DFT for these MD configurations was used to refine the potential set. This fitting approach ensured weighted fitting to configurations that are thermodynamically significant over a broad temperature range, while avoiding computationally expensive DFT-MD calculations. The resultant gas potentials were validated against DFT trapping energies and are suitable for simulating combinations of Xe and Kr in solid solutions of CeO 2, ThO 2, UO 2 and PuO 2, providing a powerful tool for the atomistic simulation of conventional nuclear reactor fuel UO 2 as well as advanced MOX fuels.« less

  14. Development of Xe and Kr empirical potentials for CeO 2, ThO 2, UO 2 and PuO 2, combining DFT with high temperature MD

    DOE PAGES

    Cooper, M. W. D.; Kuganathan, N.; Burr, P. A.; ...

    2016-08-23

    In this study, the development of embedded atom method (EAM) many-body potentials for actinide oxides and associated mixed oxide (MOX) systems has motivated the development of a complementary parameter set for gas-actinide and gas-oxygen interactions. A comprehensive set of density functional theory (DFT) calculations were used to study Xe and Kr incorporation at a number of sites in CeO 2, ThO 2, UO 2 and PuO 2. These structures were used to fit a potential, which was used to generate molecular dynamics (MD) configurations incorporating Xe and Kr at 300 K, 1500 K, 3000 K and 5000 K. Subsequent matchingmore » to the forces predicted by DFT for these MD configurations was used to refine the potential set. This fitting approach ensured weighted fitting to configurations that are thermodynamically significant over a broad temperature range, while avoiding computationally expensive DFT-MD calculations. The resultant gas potentials were validated against DFT trapping energies and are suitable for simulating combinations of Xe and Kr in solid solutions of CeO 2, ThO 2, UO 2 and PuO 2, providing a powerful tool for the atomistic simulation of conventional nuclear reactor fuel UO 2 as well as advanced MOX fuels.« less

  15. A structural, functional, and computational analysis suggests pore flexibility as the base for the poor selectivity of CNG channels

    PubMed Central

    Napolitano, Luisa Maria Rosaria; Bisha, Ina; De March, Matteo; Marchesi, Arin; Arcangeletti, Manuel; Demitri, Nicola; Mazzolini, Monica; Rodriguez, Alex; Magistrato, Alessandra; Onesti, Silvia; Laio, Alessandro; Torre, Vincent

    2015-01-01

    Cyclic nucleotide-gated (CNG) ion channels, despite a significant homology with the highly selective K+ channels, do not discriminate among monovalent alkali cations and are permeable also to several organic cations. We combined electrophysiology, molecular dynamics (MD) simulations, and X-ray crystallography to demonstrate that the pore of CNG channels is highly flexible. When a CNG mimic is crystallized in the presence of a variety of monovalent cations, including Na+, Cs+, and dimethylammonium (DMA+), the side chain of Glu66 in the selectivity filter shows multiple conformations and the diameter of the pore changes significantly. MD simulations indicate that Glu66 and the prolines in the outer vestibule undergo large fluctuations, which are modulated by the ionic species and the voltage. This flexibility underlies the coupling between gating and permeation and the poor ionic selectivity of CNG channels. PMID:26100907

  16. A structural, functional, and computational analysis suggests pore flexibility as the base for the poor selectivity of CNG channels.

    PubMed

    Napolitano, Luisa Maria Rosaria; Bisha, Ina; De March, Matteo; Marchesi, Arin; Arcangeletti, Manuel; Demitri, Nicola; Mazzolini, Monica; Rodriguez, Alex; Magistrato, Alessandra; Onesti, Silvia; Laio, Alessandro; Torre, Vincent

    2015-07-07

    Cyclic nucleotide-gated (CNG) ion channels, despite a significant homology with the highly selective K(+) channels, do not discriminate among monovalent alkali cations and are permeable also to several organic cations. We combined electrophysiology, molecular dynamics (MD) simulations, and X-ray crystallography to demonstrate that the pore of CNG channels is highly flexible. When a CNG mimic is crystallized in the presence of a variety of monovalent cations, including Na(+), Cs(+), and dimethylammonium (DMA(+)), the side chain of Glu66 in the selectivity filter shows multiple conformations and the diameter of the pore changes significantly. MD simulations indicate that Glu66 and the prolines in the outer vestibule undergo large fluctuations, which are modulated by the ionic species and the voltage. This flexibility underlies the coupling between gating and permeation and the poor ionic selectivity of CNG channels.

  17. Pair potentials for warm dense matter and their application to x-ray Thomson scattering in aluminum and beryllium.

    PubMed

    Harbour, L; Dharma-Wardana, M W C; Klug, D D; Lewis, L J

    2016-11-01

    Ultrafast laser experiments yield increasingly reliable data on warm dense matter, but their interpretation requires theoretical models. We employ an efficient density functional neutral-pseudoatom hypernetted-chain (NPA-HNC) model with accuracy comparable to ab initio simulations and which provides first-principles pseudopotentials and pair potentials for warm-dense matter. It avoids the use of (i) ad hoc core-repulsion models and (ii) "Yukawa screening" and (iii) need not assume ion-electron thermal equilibrium. Computations of the x-ray Thomson scattering (XRTS) spectra of aluminum and beryllium are compared with recent experiments and with density-functional-theory molecular-dynamics (DFT-MD) simulations. The NPA-HNC structure factors, compressibilities, phonons, and conductivities agree closely with DFT-MD results, while Yukawa screening gives misleading results. The analysis of the XRTS data for two of the experiments, using two-temperature quasi-equilibrium models, is supported by calculations of their temperature relaxation times.

  18. Rotational and translational dynamics and their relation to hydrogen bond lifetimes in an ionic liquid by means of NMR relaxation time experiments and molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Strate, Anne; Neumann, Jan; Overbeck, Viviane; Bonsa, Anne-Marie; Michalik, Dirk; Paschek, Dietmar; Ludwig, Ralf

    2018-05-01

    We report a concerted theoretical and experimental effort to determine the reorientational dynamics as well as hydrogen bond lifetimes for the doubly ionic hydrogen bond +OH⋯O- in the ionic liquid (2-hydroxyethyl)trimethylammonium bis(trifluoromethylsulfonyl)imide [Ch][NTf2] by using a combination of NMR relaxation time experiments, density functional theory (DFT) calculations, and molecular dynamics (MD) simulations. Due to fast proton exchange, the determination of rotational correlation times is challenging. For molecular liquids, 17O-enhanced proton relaxation time experiments have been used to determine the rotational correlation times for the OH vectors in water or alcohols. As an alternative to those expensive isotopic substitution experiments, we employed a recently introduced approach which is providing access to the rotational dynamics from a single NMR deuteron quadrupolar relaxation time experiment. Here, the deuteron quadrupole coupling constants (DQCCs) are obtained from a relation between the DQCC and the δ1H proton chemical shifts determined from a set of DFT calculated clusters in combination with experimentally determined proton chemical shifts. The NMR-obtained rotational correlation times were compared to those obtained from MD simulations and then related to viscosities for testing the applicability of popular hydrodynamic models. In addition, hydrogen bond lifetimes were derived, using hydrogen bond population correlation functions computed from MD simulations. Here, two different time domains were observed: The short-time contributions to the hydrogen lifetimes and the reorientational correlation times have roughly the same size and are located in the picosecond range, whereas the long-time contributions decay with relaxation times in the nanosecond regime and are related to rather slow diffusion processes. The computed average hydrogen bond lifetime is dominated by the long-time process, highlighting the importance and longevity of hydrogen-bonded ion pairs in these ionic liquids.

  19. Protein Folding Simulations Combining Self-Guided Langevin Dynamics and Temperature-Based Replica Exchange

    DTIC Science & Technology

    2010-01-01

    formulations of molecular dynamics (MD) and Langevin dynamics (LD) simulations for the prediction of thermodynamic folding observables of the Trp-cage...ad hoc force term in the SGLD model. Introduction Molecular dynamics (MD) simulations of small proteins provide insight into the mechanisms and... molecular dynamics (MD) and Langevin dynamics (LD) simulations for the prediction of thermodynamic folding observables of the Trp-cage mini-protein. All

  20. In silico characterization and analysis of RTBP1 and NgTRF1 protein through MD simulation and molecular docking - A comparative study.

    PubMed

    Mukherjee, Koel; Pandey, Dev Mani; Vidyarthi, Ambarish Saran

    2015-02-06

    Gaining access to sequence and structure information of telomere binding proteins helps in understanding the essential biological processes involve in conserved sequence specific interaction between DNA and the proteins. Rice telomere binding protein (RTBP1) and Nicotiana glutinosa telomere repeat binding factor (NgTRF1) are helix turn helix motif type of proteins that plays role in telomeric DNA protection and length regulation. Both the proteins share same type of domain but till now there is very less communication on the in silico studies of these complete proteins.Here we intend to do a comparative study between two proteins through modeling of the complete proteins, physiochemical characterization, MD simulation and DNA-protein docking. I-TASSER and CLC protein work bench was performed to find out the protein 3D structure as well as the different parameters to characterize the proteins. MD simulation was completed by GROMOS forcefield of GROMACS for 10 ns of time stretch. The simulated 3D structures were docked with template DNA (3D DNA modeled through 3D-DART) of TTTAGGG conserved sequence motif using HADDOCK web server.Digging up all the facts about the proteins it was reveled that around 120 amino acids in the tail part was showing a good sequence similarity between the proteins. Molecular modeling, sequence characterization and secondary structure prediction also indicates the similarity between the protein's structure and sequence. The result of MD simulation highlights on the RMSD, RMSF, Rg, PCA and Energy plots which also conveys the similar type of motional behavior between them. The best complex formation for both the proteins in docking result also indicates for the first interaction site which is mainly the helix3 region of the DNA binding domain. The overall computational analysis reveals that RTBP1 and NgTRF1 proteins display good amount of similarity in their physicochemical properties, structure, dynamics and binding mode.

  1. In Silico Characterization and Analysis of RTBP1 and NgTRF1 Protein Through MD Simulation and Molecular Docking: A Comparative Study.

    PubMed

    Mukherjee, Koel; Pandey, Dev Mani; Vidyarthi, Ambarish Saran

    2015-09-01

    Gaining access to sequence and structure information of telomere-binding proteins helps in understanding the essential biological processes involve in conserved sequence-specific interaction between DNA and the proteins. Rice telomere-binding protein (RTBP1) and Nicotiana glutinosa telomere repeat binding factor (NgTRF1) are helix-turn-helix motif type of proteins that plays role in telomeric DNA protection and length regulation. Both the proteins share same type of domain, but till now there is very less communication on the in silico studies of these complete proteins. Here we intend to do a comparative study between two proteins through modeling of the complete proteins, physiochemical characterization, MD simulation and DNA-protein docking. I-TASSER and CLC protein work bench was performed to find out the protein 3D structure as well as the different parameters to characterize the proteins. MD simulation was completed by GROMOS forcefield of GROMACS for 10 ns of time stretch. The simulated 3D structures were docked with template DNA (3D DNA modeled through 3D-DART) of TTTAGGG conserved sequence motif using HADDOCK Web server. By digging up all the facts about the proteins, it was revealed that around 120 amino acids in the tail part were showing a good sequence similarity between the proteins. Molecular modeling, sequence characterization and secondary structure prediction also indicate the similarity between the protein's structure and sequence. The result of MD simulation highlights on the RMSD, RMSF, Rg, PCA and energy plots which also conveys the similar type of motional behavior between them. The best complex formation for both the proteins in docking result also indicates for the first interaction site which is mainly the helix3 region of the DNA-binding domain. The overall computational analysis reveals that RTBP1 and NgTRF1 proteins display good amount of similarity in their physicochemical properties, structure, dynamics and binding mode.

  2. MSM/RD: Coupling Markov state models of molecular kinetics with reaction-diffusion simulations

    NASA Astrophysics Data System (ADS)

    Dibak, Manuel; del Razo, Mauricio J.; De Sancho, David; Schütte, Christof; Noé, Frank

    2018-06-01

    Molecular dynamics (MD) simulations can model the interactions between macromolecules with high spatiotemporal resolution but at a high computational cost. By combining high-throughput MD with Markov state models (MSMs), it is now possible to obtain long time-scale behavior of small to intermediate biomolecules and complexes. To model the interactions of many molecules at large length scales, particle-based reaction-diffusion (RD) simulations are more suitable but lack molecular detail. Thus, coupling MSMs and RD simulations (MSM/RD) would be highly desirable, as they could efficiently produce simulations at large time and length scales, while still conserving the characteristic features of the interactions observed at atomic detail. While such a coupling seems straightforward, fundamental questions are still open: Which definition of MSM states is suitable? Which protocol to merge and split RD particles in an association/dissociation reaction will conserve the correct bimolecular kinetics and thermodynamics? In this paper, we make the first step toward MSM/RD by laying out a general theory of coupling and proposing a first implementation for association/dissociation of a protein with a small ligand (A + B ⇌ C). Applications on a toy model and CO diffusion into the heme cavity of myoglobin are reported.

  3. Reaching extended length-scales with temperature-accelerated dynamics

    NASA Astrophysics Data System (ADS)

    Amar, Jacques G.; Shim, Yunsic

    2013-03-01

    In temperature-accelerated dynamics (TAD) a high-temperature molecular dynamics (MD) simulation is used to accelerate the search for the next low-temperature activated event. While TAD has been quite successful in extending the time-scales of simulations of non-equilibrium processes, due to the fact that the computational work scales approximately as the cube of the number of atoms, until recently only simulations of relatively small systems have been carried out. Recently, we have shown that by combining spatial decomposition with our synchronous sublattice algorithm, significantly improved scaling is possible. However, in this approach the size of activated events is limited by the processor size while the dynamics is not exact. Here we discuss progress in developing an alternate approach in which high-temperature parallel MD along with localized saddle-point (LSAD) calculations, are used to carry out TAD simulations without restricting the size of activated events while keeping the dynamics ``exact'' within the context of harmonic transition-state theory. In tests of our LSAD method applied to Ag/Ag(100) annealing and Cu/Cu(100) growth simulations we find significantly improved scaling of TAD, while maintaining a negligibly small error in the energy barriers. Supported by NSF DMR-0907399.

  4. Computational Methods for Configurational Entropy Using Internal and Cartesian Coordinates.

    PubMed

    Hikiri, Simon; Yoshidome, Takashi; Ikeguchi, Mitsunori

    2016-12-13

    The configurational entropy of solute molecules is a crucially important quantity to study various biophysical processes. Consequently, it is necessary to establish an efficient quantitative computational method to calculate configurational entropy as accurately as possible. In the present paper, we investigate the quantitative performance of the quasi-harmonic and related computational methods, including widely used methods implemented in popular molecular dynamics (MD) software packages, compared with the Clausius method, which is capable of accurately computing the change of the configurational entropy upon temperature change. Notably, we focused on the choice of the coordinate systems (i.e., internal or Cartesian coordinates). The Boltzmann-quasi-harmonic (BQH) method using internal coordinates outperformed all the six methods examined here. The introduction of improper torsions in the BQH method improves its performance, and anharmonicity of proper torsions in proteins is identified to be the origin of the superior performance of the BQH method. In contrast, widely used methods implemented in MD packages show rather poor performance. In addition, the enhanced sampling of replica-exchange MD simulations was found to be efficient for the convergent behavior of entropy calculations. Also in folding/unfolding transitions of a small protein, Chignolin, the BQH method was reasonably accurate. However, the independent term without the correlation term in the BQH method was most accurate for the folding entropy among the methods considered in this study, because the QH approximation of the correlation term in the BQH method was no longer valid for the divergent unfolded structures.

  5. A QM/MM-MD study on protein electronic properties: Circular dichroism spectra of oxytocin and insulin

    NASA Astrophysics Data System (ADS)

    Kitagawa, Yuya; Akinaga, Yoshinobu; Kawashima, Yukio; Jung, Jaewoon; Ten-no, Seiichiro

    2012-06-01

    A QM/MM (quantum-mechanical/molecular-mechanical) molecular-dynamics approach based on the generalized hybrid-orbital (GHO) method, in conjunction with the second-order perturbation (MP2) theory and the second-order approximate coupled-cluster (CC2) model, is employed to calculate electronic property accounting for a protein environment. Circular dichroism (CD) spectra originating from chiral disulfide bridges of oxytocin and insulin at room temperature are computed. It is shown that the sampling of thermal fluctuation of molecular geometries facilitated by the GHO-MD method plays an important role in the obtained spectra. It is demonstrated that, while the protein environments in an oxytocin molecule have significant electrostatic influence on its chiral center, it is compensated by solvent induced charges. This gives a reasonable explanation to experimental observations. GHO-MD simulations starting from different experimental structures of insulin indicate that existence of the disulfide bridges with negative dihedral angles is crucial.

  6. Continuum-atomistic simulation of picosecond laser heating of copper with electron heat capacity from ab initio calculation

    NASA Astrophysics Data System (ADS)

    Ji, Pengfei; Zhang, Yuwen

    2016-03-01

    On the basis of ab initio quantum mechanics (QM) calculation, the obtained electron heat capacity is implemented into energy equation of electron subsystem in two temperature model (TTM). Upon laser irradiation on the copper film, energy transfer from the electron subsystem to the lattice subsystem is modeled by including the electron-phonon coupling factor in molecular dynamics (MD) and TTM coupled simulation. The results show temperature and thermal melting difference between the QM-MD-TTM integrated simulation and pure MD-TTM coupled simulation. The successful construction of the QM-MD-TTM integrated simulation provides a general way that is accessible to other metals in laser heating.

  7. Precise determination of water exchanges on a mineral surface

    DOE PAGES

    Stack, Andrew G.; Borreguero, Jose M.; Prisk, Timothy R.; ...

    2016-10-03

    Solvent exchanges on solid surfaces and dissolved ions are a fundamental property important for understanding chemical reactions, but the rates of fast exchanges are poorly constrained. In this paper, we probed the diffusional motions of water adsorbed onto nanoparticles of the mineral barite (BaSO 4) using quasi-elastic neutron scattering (QENS) and classical molecular dynamics (MD) to reveal the complex dynamics of water exchange along mineral surfaces. QENS data as a function of temperature and momentum transfer (Q) were fit using scattering functions derived from MD trajectories. The simulations reproduce the dynamics measured in the experiments at ambient temperatures, but asmore » temperature is lowered the simulations overestimate slower motions. Decomposition of the MD-computed QENS intensity into contributions from adsorbed and unbound water shows that the majority of the signal arises from adsorbed species, although the dynamics of unbound water cannot be dismissed. The mean residence times of water on each of the four surface sites present on the barite {001} were calculated using MD: at room temperature the low barium site is 194 ps, whereas the high barium site contains two distributions of motions at 84 and 2.5 ps. These contrast to 13 ps residence time on both sulfate sites, with an additional surface diffusion exchange of 66 ps. Surface exchanges are similar to those of the aqueous ions calculated using the same force field: Ba aq 2+ is 208 ps and SO 4aq 2- is 5.8 ps. Finally, this work demonstrates how MD can be a reliable method to deconvolute solvent exchange reactions when quantitatively validated by QENS measurements.« less

  8. Molecular Dynamics Simulations, Challenges and Opportunities: A Biologist's Prospective.

    PubMed

    Kumari, Indu; Sandhu, Padmani; Ahmed, Mushtaq; Akhter, Yusuf

    2017-08-30

    Molecular dynamics (MD) is a computational technique which is used to study biomolecules in virtual environment. Each of the constituent atoms represents a particle and hence the biomolecule embodies a multi-particle mechanical system analyzed within a simulation box during MD analysis. The potential energies of the atoms are explained by a mathematical expression consisting of different forces and space parameters. There are various software and force fields that have been developed for MD studies of the biomolecules. MD analysis has unravelled the various biological mechanisms (protein folding/unfolding, protein-small molecule interactions, protein-protein interactions, DNA/RNA-protein interactions, proteins embedded in membrane, lipid-lipid interactions, drug transport etc.) operating at the atomic and molecular levels. However, there are still some parameters including torsions in amino acids, carbohydrates (whose structure is extended and not well defined like that of proteins) and single stranded nucleic acids for which the force fields need further improvement, although there are several workers putting in constant efforts in these directions. The existing force fields are not efficient for studying the crowded environment inside the cells, since these interactions involve multiple factors in real time. Therefore, the improved force fields may provide the opportunities for their wider applications on the complex biosystems in diverse cellular conditions. In conclusion, the intervention of MD in the basic sciences involving interdisciplinary approaches will be helpful for understanding many fundamental biological and physiological processes at the molecular levels that may be further applied in various fields including biotechnology, fisheries, sustainable agriculture and biomedical research. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Insights into the transmembrane helix associations of kit ligand by molecular dynamics simulation and TOXCAT.

    PubMed

    Chai, Mengya; Liu, Bo; Sun, Fude; Wei, Peng; Chen, Peng; Xu, Lida; Luo, Shi-Zhong

    2017-07-01

    Kit ligand (KITL) plays important roles in cell proliferation, differentiation, and survival via interaction with its receptor Kit. The previous studies demonstrated that KITL formed a noncovalent homodimer through transmembrane (TM) domain; however, the undergoing mechanism of transmembrane association that determines KITL TM dimerization is still not clear. Herein, molecular dynamics (MD) simulation strategy and TOXCAT assay were combined to characterize the dimerization interface and structure of KITL TM in details. KITL TM formed a more energetically favorable noncovalent dimer through a conserved SxxxGxxxG motif in the MD simulation. Furthermore, the TOXCAT results demonstrated that KITL TM self-associated strongly in the bilayer membrane environment. Mutating any one of the small residues Ser11, Gly15 or Gly19 to Ile disrupted KITL TM dimerization dramatically, which further validated our MD simulation results. In addition, our results showed that Tyr22 could help to stabilize the TM interactions via interacting with the phosphoric group in the bilayer membrane. Pro7 did not induce helix kinks or swivel angles in KITL TM, but it was related with the pitch of the turn around this residue so as to affect the dimer formation. Combining the results of computer modeling and experimental mutagenesis studies on the KITL TM provide new insights for the transmembrane helix association of KITL dimerization. Proteins 2017; 85:1362-1370. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. SQUEEZE-E: The Optimal Solution for Molecular Simulations with Periodic Boundary Conditions.

    PubMed

    Wassenaar, Tsjerk A; de Vries, Sjoerd; Bonvin, Alexandre M J J; Bekker, Henk

    2012-10-09

    In molecular simulations of macromolecules, it is desirable to limit the amount of solvent in the system to avoid spending computational resources on uninteresting solvent-solvent interactions. As a consequence, periodic boundary conditions are commonly used, with a simulation box chosen as small as possible, for a given minimal distance between images. Here, we describe how such a simulation cell can be set up for ensembles, taking into account a priori available or estimable information regarding conformational flexibility. Doing so ensures that any conformation present in the input ensemble will satisfy the distance criterion during the simulation. This helps avoid periodicity artifacts due to conformational changes. The method introduces three new approaches in computational geometry: (1) The first is the derivation of an optimal packing of ensembles, for which the mathematical framework is described. (2) A new method for approximating the α-hull and the contact body for single bodies and ensembles is presented, which is orders of magnitude faster than existing routines, allowing the calculation of packings of large ensembles and/or large bodies. 3. A routine is described for searching a combination of three vectors on a discretized contact body forming a reduced base for a lattice with minimal cell volume. The new algorithms reduce the time required to calculate packings of single bodies from minutes or hours to seconds. The use and efficacy of the method is demonstrated for ensembles obtained from NMR, MD simulations, and elastic network modeling. An implementation of the method has been made available online at http://haddock.chem.uu.nl/services/SQUEEZE/ and has been made available as an option for running simulations through the weNMR GRID MD server at http://haddock.science.uu.nl/enmr/services/GROMACS/main.php .

  11. GPU-Accelerated Molecular Dynamics Simulation to Study Liquid Crystal Phase Transition Using Coarse-Grained Gay-Berne Anisotropic Potential.

    PubMed

    Chen, Wenduo; Zhu, Youliang; Cui, Fengchao; Liu, Lunyang; Sun, Zhaoyan; Chen, Jizhong; Li, Yunqi

    2016-01-01

    Gay-Berne (GB) potential is regarded as an accurate model in the simulation of anisotropic particles, especially for liquid crystal (LC) mesogens. However, its computational complexity leads to an extremely time-consuming process for large systems. Here, we developed a GPU-accelerated molecular dynamics (MD) simulation with coarse-grained GB potential implemented in GALAMOST package to investigate the LC phase transitions for mesogens in small molecules, main-chain or side-chain polymers. For identical mesogens in three different molecules, on cooling from fully isotropic melts, the small molecules form a single-domain smectic-B phase, while the main-chain LC polymers prefer a single-domain nematic phase as a result of connective restraints in neighboring mesogens. The phase transition of side-chain LC polymers undergoes a two-step process: nucleation of nematic islands and formation of multi-domain nematic texture. The particular behavior originates in the fact that the rotational orientation of the mesogenes is hindered by the polymer backbones. Both the global distribution and the local orientation of mesogens are critical for the phase transition of anisotropic particles. Furthermore, compared with the MD simulation in LAMMPS, our GPU-accelerated code is about 4 times faster than the GPU version of LAMMPS and at least 200 times faster than the CPU version of LAMMPS. This study clearly shows that GPU-accelerated MD simulation with GB potential in GALAMOST can efficiently handle systems with anisotropic particles and interactions, and accurately explore phase differences originated from molecular structures.

  12. GPU-Accelerated Molecular Dynamics Simulation to Study Liquid Crystal Phase Transition Using Coarse-Grained Gay-Berne Anisotropic Potential

    PubMed Central

    Cui, Fengchao; Liu, Lunyang; Sun, Zhaoyan; Chen, Jizhong; Li, Yunqi

    2016-01-01

    Gay-Berne (GB) potential is regarded as an accurate model in the simulation of anisotropic particles, especially for liquid crystal (LC) mesogens. However, its computational complexity leads to an extremely time-consuming process for large systems. Here, we developed a GPU-accelerated molecular dynamics (MD) simulation with coarse-grained GB potential implemented in GALAMOST package to investigate the LC phase transitions for mesogens in small molecules, main-chain or side-chain polymers. For identical mesogens in three different molecules, on cooling from fully isotropic melts, the small molecules form a single-domain smectic-B phase, while the main-chain LC polymers prefer a single-domain nematic phase as a result of connective restraints in neighboring mesogens. The phase transition of side-chain LC polymers undergoes a two-step process: nucleation of nematic islands and formation of multi-domain nematic texture. The particular behavior originates in the fact that the rotational orientation of the mesogenes is hindered by the polymer backbones. Both the global distribution and the local orientation of mesogens are critical for the phase transition of anisotropic particles. Furthermore, compared with the MD simulation in LAMMPS, our GPU-accelerated code is about 4 times faster than the GPU version of LAMMPS and at least 200 times faster than the CPU version of LAMMPS. This study clearly shows that GPU-accelerated MD simulation with GB potential in GALAMOST can efficiently handle systems with anisotropic particles and interactions, and accurately explore phase differences originated from molecular structures. PMID:26986851

  13. Molecular modeling of methyl-α-Neu5Ac analogues docked against cholera toxin--a molecular dynamics study.

    PubMed

    Blessy, J Jino; Sharmila, D Jeya Sundara

    2015-02-01

    Molecular modeling of synthetic methyl-α-Neu5Ac analogues modified in C-9 position was investigated by molecular docking and molecular dynamics (MD) simulation methods. Methyl-α-Neu5Ac analogues were docked against cholera toxin (CT) B subunit protein and MD simulations were carried out for three Methyl-α-Neu5Ac analogue-CT complexes (30, 10 and 10 ns) to estimate the binding activity of cholera toxin-Methyl-α-Neu5Ac analogues using OPLS_2005 force field. In this study, direct and water mediated hydrogen bonds play a vital role that exist between the methyl-α-9-N-benzoyl-amino-9-deoxy-Neu5Ac (BENZ)-cholera toxin active site residues. The Energy plot, RMSD and RMSF explain that the simulation was stable throughout the simulation run. Transition of phi, psi and omega angle for the complex was calculated. Molecular docking studies could be able to identify the binding mode of methyl-α-Neu5Ac analogues in the binding site of cholera toxin B subunit protein. MD simulation for Methyl-α-9-N-benzoyl-amino-9-deoxy-Neu5Ac (BENZ), Methyl-α-9-N-acetyl-9-deoxy-9-amino-Neu5Ac and Methyl-α-9-N-biphenyl-4-acetyl-deoxy-amino-Neu5Ac complex with CT B subunit protein was carried out, which explains the stable nature of interaction. These methyl-α-Neu5Ac analogues that have computationally acceptable pharmacological properties may be used as novel candidates for drug design for cholera disease.

  14. Linearly scaling and almost Hamiltonian dielectric continuum molecular dynamics simulations through fast multipole expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul, E-mail: tavan@physik.uni-muenchen.de

    2015-11-14

    Hamiltonian Dielectric Solvent (HADES) is a recent method [S. Bauer et al., J. Chem. Phys. 140, 104103 (2014)] which enables atomistic Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric solvent continua. Such simulations become rapidly impractical for large proteins, because the computational effort of HADES scales quadratically with the number N of atoms. If one tries to achieve linear scaling by applying a fast multipole method (FMM) to the computation of the HADES electrostatics, the Hamiltonian character (conservation of total energy, linear, and angular momenta) may get lost. Here, we show that the Hamiltonian character of HADESmore » can be almost completely preserved, if the structure-adapted fast multipole method (SAMM) as recently redesigned by Lorenzen et al. [J. Chem. Theory Comput. 10, 3244-3259 (2014)] is suitably extended and is chosen as the FMM module. By this extension, the HADES/SAMM forces become exact gradients of the HADES/SAMM energy. Their translational and rotational invariance then guarantees (within the limits of numerical accuracy) the exact conservation of the linear and angular momenta. Also, the total energy is essentially conserved—up to residual algorithmic noise, which is caused by the periodically repeated SAMM interaction list updates. These updates entail very small temporal discontinuities of the force description, because the employed SAMM approximations represent deliberately balanced compromises between accuracy and efficiency. The energy-gradient corrected version of SAMM can also be applied, of course, to MD simulations of all-atom solvent-solute systems enclosed by periodic boundary conditions. However, as we demonstrate in passing, this choice does not offer any serious advantages.« less

  15. Free Energy Perturbation Hamiltonian Replica-Exchange Molecular Dynamics (FEP/H-REMD) for Absolute Ligand Binding Free Energy Calculations.

    PubMed

    Jiang, Wei; Roux, Benoît

    2010-07-01

    Free Energy Perturbation with Replica Exchange Molecular Dynamics (FEP/REMD) offers a powerful strategy to improve the convergence of free energy computations. In particular, it has been shown previously that a FEP/REMD scheme allowing random moves within an extended replica ensemble of thermodynamic coupling parameters "lambda" can improve the statistical convergence in calculations of absolute binding free energy of ligands to proteins [J. Chem. Theory Comput. 2009, 5, 2583]. In the present study, FEP/REMD is extended and combined with an accelerated MD simulations method based on Hamiltonian replica-exchange MD (H-REMD) to overcome the additional problems arising from the existence of kinetically trapped conformations within the protein receptor. In the combined strategy, each system with a given thermodynamic coupling factor lambda in the extended ensemble is further coupled with a set of replicas evolving on a biased energy surface with boosting potentials used to accelerate the inter-conversion among different rotameric states of the side chains in the neighborhood of the binding site. Exchanges are allowed to occur alternatively along the axes corresponding to the thermodynamic coupling parameter lambda and the boosting potential, in an extended dual array of coupled lambda- and H-REMD simulations. The method is implemented on the basis of new extensions to the REPDSTR module of the biomolecular simulation program CHARMM. As an illustrative example, the absolute binding free energy of p-xylene to the nonpolar cavity of the L99A mutant of T4 lysozyme was calculated. The tests demonstrate that the dual lambda-REMD and H-REMD simulation scheme greatly accelerates the configurational sampling of the rotameric states of the side chains around the binding pocket, thereby improving the convergence of the FEP computations.

  16. Discrete event performance prediction of speculatively parallel temperature-accelerated dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamora, Richard James; Voter, Arthur F.; Perez, Danny

    Due to its unrivaled ability to predict the dynamical evolution of interacting atoms, molecular dynamics (MD) is a widely used computational method in theoretical chemistry, physics, biology, and engineering. Despite its success, MD is only capable of modeling time scales within several orders of magnitude of thermal vibrations, leaving out many important phenomena that occur at slower rates. The Temperature Accelerated Dynamics (TAD) method overcomes this limitation by thermally accelerating the state-to-state evolution captured by MD. Due to the algorithmically complex nature of the serial TAD procedure, implementations have yet to improve performance by parallelizing the concurrent exploration of multiplemore » states. Here we utilize a discrete event-based application simulator to introduce and explore a new Speculatively Parallel TAD (SpecTAD) method. We investigate the SpecTAD algorithm, without a full-scale implementation, by constructing an application simulator proxy (SpecTADSim). Finally, following this method, we discover that a nontrivial relationship exists between the optimal SpecTAD parameter set and the number of CPU cores available at run-time. Furthermore, we find that a majority of the available SpecTAD boost can be achieved within an existing TAD application using relatively simple algorithm modifications.« less

  17. Discrete event performance prediction of speculatively parallel temperature-accelerated dynamics

    DOE PAGES

    Zamora, Richard James; Voter, Arthur F.; Perez, Danny; ...

    2016-12-01

    Due to its unrivaled ability to predict the dynamical evolution of interacting atoms, molecular dynamics (MD) is a widely used computational method in theoretical chemistry, physics, biology, and engineering. Despite its success, MD is only capable of modeling time scales within several orders of magnitude of thermal vibrations, leaving out many important phenomena that occur at slower rates. The Temperature Accelerated Dynamics (TAD) method overcomes this limitation by thermally accelerating the state-to-state evolution captured by MD. Due to the algorithmically complex nature of the serial TAD procedure, implementations have yet to improve performance by parallelizing the concurrent exploration of multiplemore » states. Here we utilize a discrete event-based application simulator to introduce and explore a new Speculatively Parallel TAD (SpecTAD) method. We investigate the SpecTAD algorithm, without a full-scale implementation, by constructing an application simulator proxy (SpecTADSim). Finally, following this method, we discover that a nontrivial relationship exists between the optimal SpecTAD parameter set and the number of CPU cores available at run-time. Furthermore, we find that a majority of the available SpecTAD boost can be achieved within an existing TAD application using relatively simple algorithm modifications.« less

  18. Computational modeling of intrinsic dissipation in nano-structure

    NASA Astrophysics Data System (ADS)

    Kunal, Kumar

    In this work, using computational modeling, we study the different mechanisms of intrinsic dissipation in nano-electro mechanical systems (NEMS). We, first, use molecular dynamics (MD) simulation and gain an understanding of the underlying loss mechanisms. Using insights from the MD simulation, a multi-scale method to model intrinsic damping is developed. The high frequency vibration in NEMS have important applications. A few examples include the sensing of atomic mass, detection of biological molecules and observation of quantum effects in macroscopic objects. For all these potential applications, dissipation plays a limiting role. While a number of experimental and theoretical studies have been performed, the individual role of different mechanisms remains unclear. In this work, we attempt to isolate and understand the surface and size effect on some of the intrinsic mechanisms. We, first, consider the case of the Akhiezer damping. The Akhiezer dynamics is expected to play an important role in nano-resonators with frequencies in the GHz range. Using a judiciously devised MD set-up, we isolate Akhiezer dynamics. We show that the surfaces aid in reducing the dissipation rate through increasing the rate of thermalization of the phonons. We, next, study damping under the flexure mode of operation. A comparative analysis with the stretching mode shows that the flexure mode is less dissipative. A reduced order model is considered to understand this novel behavior. We, also, investigate the role of tension on the Q factor, a measure of the inverse of dissipation rate. From these studies, we conclude that Akhiezer dynamics plays a dominant role in nano-resonators. We, then, develop a quasi-harmonic based multi-scale method to model Akhiezer damping. A stress component, that characterizes the non-equilibrium phonon population, is derived. We obtain constitutive relation that governs the time evolution of the non-equilibrium stress. Different methods to parametrize the constitutive relation are discussed. Using the proposed formulation, we compute the dissipation rate for different cases. The results are compared with those obtained using MD. Next, we use the Boltzmann transport equation and investigate the Q factor due to the thermo-elastic dissipation (TED). The Q factor obtained shows deviations from the classical theory of TED. Correction to the classical formula, for the case of longitudinal modes, is provided. We, then, study damping is low dimensional structure. We first consider the case of two dimensional graphene sheet and under in-plane stretching. We show that the coupling between the in-plane and the out-of-plane motions plays an important role in the loss of mechanical energy. Further, a hysteresis behavior in the out-of-plane dynamics is observed. Next, we investigate the stretching motion of graphene nano-ribbon. A normal mode Langevin dynamics is devised to understand the results from the MD simulation.

  19. Coarse-Grained MD Simulations and Protein-Protein Interactions: The Cohesin-Dockerin System.

    PubMed

    Hall, Benjamin A; Sansom, Mark S P

    2009-09-08

    Coarse-grained molecular dynamics (CG-MD) may be applied as part of a multiscale modeling approach to protein-protein interactions. The cohesin-dockerin interaction provides a valuable test system for evaluation of the use of CG-MD, as structural (X-ray) data indicate a dual binding mode for the cohesin-dockerin pair. CG-MD simulations (of 5 μs duration) of the association of cohesin and dockerin identify two distinct binding modes, which resemble those observed in X-ray structures. For each binding mode, ca. 80% of interfacial residues are predicted correctly. Furthermore, each of the binding modes identified by CG-MD is conformationally stable when converted to an atomistic model and used as the basis of a conventional atomistic MD simulation of duration 20 ns.

  20. Exact milestoning

    PubMed Central

    Bello-Rivas, Juan M.; Elber, Ron

    2015-01-01

    A new theory and an exact computer algorithm for calculating kinetics and thermodynamic properties of a particle system are described. The algorithm avoids trapping in metastable states, which are typical challenges for Molecular Dynamics (MD) simulations on rough energy landscapes. It is based on the division of the full space into Voronoi cells. Prior knowledge or coarse sampling of space points provides the centers of the Voronoi cells. Short time trajectories are computed between the boundaries of the cells that we call milestones and are used to determine fluxes at the milestones. The flux function, an essential component of the new theory, provides a complete description of the statistical mechanics of the system at the resolution of the milestones. We illustrate the accuracy and efficiency of the exact Milestoning approach by comparing numerical results obtained on a model system using exact Milestoning with the results of long trajectories and with a solution of the corresponding Fokker-Planck equation. The theory uses an equation that resembles the approximate Milestoning method that was introduced in 2004 [A. K. Faradjian and R. Elber, J. Chem. Phys. 120(23), 10880-10889 (2004)]. However, the current formulation is exact and is still significantly more efficient than straightforward MD simulations on the system studied. PMID:25747056

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bello-Rivas, Juan M.; Elber, Ron; Department of Chemistry, University of Texas at Austin, Austin, Texas 78712

    A new theory and an exact computer algorithm for calculating kinetics and thermodynamic properties of a particle system are described. The algorithm avoids trapping in metastable states, which are typical challenges for Molecular Dynamics (MD) simulations on rough energy landscapes. It is based on the division of the full space into Voronoi cells. Prior knowledge or coarse sampling of space points provides the centers of the Voronoi cells. Short time trajectories are computed between the boundaries of the cells that we call milestones and are used to determine fluxes at the milestones. The flux function, an essential component of themore » new theory, provides a complete description of the statistical mechanics of the system at the resolution of the milestones. We illustrate the accuracy and efficiency of the exact Milestoning approach by comparing numerical results obtained on a model system using exact Milestoning with the results of long trajectories and with a solution of the corresponding Fokker-Planck equation. The theory uses an equation that resembles the approximate Milestoning method that was introduced in 2004 [A. K. Faradjian and R. Elber, J. Chem. Phys. 120(23), 10880-10889 (2004)]. However, the current formulation is exact and is still significantly more efficient than straightforward MD simulations on the system studied.« less

  2. Computational and Experimental Study of Neuroglobin and Mutants

    NASA Astrophysics Data System (ADS)

    Nelson, Lauren; Cho, Samuel; Kim-Shaprio, Daniel

    Neuroglobin (Ngb) is a hexacoordinated heme protein that is closely related to hemoglobin and myoglobin and normally found in the brain and nervous systems. It is involved in cellular oxygen homeostasis and reversibly binds to oxygen with a higher binding affinity than hemoglobin. To protect the brain tissue from hypoxic or ischemic conditions, Ngb increases oxygen availability. We have previously shown that a mutant form of Ngb reduces nitrite to nitric oxide 50x faster than myoglobin and 500x faster than hemoglobin. It also tightly binds to carbon monoxide (CO) with an association rate that is 500x faster than hemoglobin. To analyze the structure of neuroglobin and the characteristics causing these phenomena, we performed 3 sets of 1 microsecond molecular dynamic (MD) simulations of wild-type oxidized and reduced human Ngb and their C46A, C55A, H64L, and H64Q mutants. We also directly compare our MD simulations with time-resolved absorption spectroscopy. These studies will help identify treatments for diseases involving low nitric oxide availability and carbon monoxide poisoning. This research was supported by an NIH NSRA predoctoral fellowship in the Structural and Computational Biophysics Program training Grant (T32GM095440-05).

  3. Gaussian Accelerated Molecular Dynamics in NAMD

    PubMed Central

    2016-01-01

    Gaussian accelerated molecular dynamics (GaMD) is a recently developed enhanced sampling technique that provides efficient free energy calculations of biomolecules. Like the previous accelerated molecular dynamics (aMD), GaMD allows for “unconstrained” enhanced sampling without the need to set predefined collective variables and so is useful for studying complex biomolecular conformational changes such as protein folding and ligand binding. Furthermore, because the boost potential is constructed using a harmonic function that follows Gaussian distribution in GaMD, cumulant expansion to the second order can be applied to recover the original free energy profiles of proteins and other large biomolecules, which solves a long-standing energetic reweighting problem of the previous aMD method. Taken together, GaMD offers major advantages for both unconstrained enhanced sampling and free energy calculations of large biomolecules. Here, we have implemented GaMD in the NAMD package on top of the existing aMD feature and validated it on three model systems: alanine dipeptide, the chignolin fast-folding protein, and the M3 muscarinic G protein-coupled receptor (GPCR). For alanine dipeptide, while conventional molecular dynamics (cMD) simulations performed for 30 ns are poorly converged, GaMD simulations of the same length yield free energy profiles that agree quantitatively with those of 1000 ns cMD simulation. Further GaMD simulations have captured folding of the chignolin and binding of the acetylcholine (ACh) endogenous agonist to the M3 muscarinic receptor. The reweighted free energy profiles are used to characterize the protein folding and ligand binding pathways quantitatively. GaMD implemented in the scalable NAMD is widely applicable to enhanced sampling and free energy calculations of large biomolecules. PMID:28034310

  4. Gaussian Accelerated Molecular Dynamics in NAMD.

    PubMed

    Pang, Yui Tik; Miao, Yinglong; Wang, Yi; McCammon, J Andrew

    2017-01-10

    Gaussian accelerated molecular dynamics (GaMD) is a recently developed enhanced sampling technique that provides efficient free energy calculations of biomolecules. Like the previous accelerated molecular dynamics (aMD), GaMD allows for "unconstrained" enhanced sampling without the need to set predefined collective variables and so is useful for studying complex biomolecular conformational changes such as protein folding and ligand binding. Furthermore, because the boost potential is constructed using a harmonic function that follows Gaussian distribution in GaMD, cumulant expansion to the second order can be applied to recover the original free energy profiles of proteins and other large biomolecules, which solves a long-standing energetic reweighting problem of the previous aMD method. Taken together, GaMD offers major advantages for both unconstrained enhanced sampling and free energy calculations of large biomolecules. Here, we have implemented GaMD in the NAMD package on top of the existing aMD feature and validated it on three model systems: alanine dipeptide, the chignolin fast-folding protein, and the M 3 muscarinic G protein-coupled receptor (GPCR). For alanine dipeptide, while conventional molecular dynamics (cMD) simulations performed for 30 ns are poorly converged, GaMD simulations of the same length yield free energy profiles that agree quantitatively with those of 1000 ns cMD simulation. Further GaMD simulations have captured folding of the chignolin and binding of the acetylcholine (ACh) endogenous agonist to the M 3 muscarinic receptor. The reweighted free energy profiles are used to characterize the protein folding and ligand binding pathways quantitatively. GaMD implemented in the scalable NAMD is widely applicable to enhanced sampling and free energy calculations of large biomolecules.

  5. Atomic-scale to Meso-scale Simulation Studies of Thermal Ageing and Irradiation Effects in Fe- Cr Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, Eugene; Liu, Li

    In this project, we target at three primary objectives: (1) Molecular Dynamics (MD) code development for Fe-Cr alloys, which can be utilized to provide thermodynamic and kinetic properties as inputs in mesoscale Phase Field (PF) simulations; (2) validation and implementation of the MD code to explain thermal ageing and radiation damage; and (3) an integrated modeling platform for MD and PF simulations. These two simulation tools, MD and PF, will ultimately be merged to understand and quantify the kinetics and mechanisms of microstructure and property evolution of Fe-Cr alloys under various thermal and irradiation environments

  6. Coupling density functional theory to polarizable force fields for efficient and accurate Hamiltonian molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Schwörer, Magnus; Breitenfeld, Benedikt; Tröster, Philipp; Bauer, Sebastian; Lorenzen, Konstantin; Tavan, Paul; Mathias, Gerald

    2013-06-01

    Hybrid molecular dynamics (MD) simulations, in which the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 103-105 molecules, pose a challenge. A corresponding computational approach should guarantee energy conservation, exclude artificial distortions of the electron density at the interface between the DFT and PMM fragments, and should treat the long-range electrostatic interactions within the hybrid simulation system in a linearly scaling fashion. Here we describe a corresponding Hamiltonian DFT/(P)MM implementation, which accounts for inducible atomic dipoles of a PMM environment in a joint DFT/PMM self-consistency iteration. The long-range parts of the electrostatics are treated by hierarchically nested fast multipole expansions up to a maximum distance dictated by the minimum image convention of toroidal boundary conditions and, beyond that distance, by a reaction field approach such that the computation scales linearly with the number of PMM atoms. Short-range over-polarization artifacts are excluded by using Gaussian inducible dipoles throughout the system and Gaussian partial charges in the PMM region close to the DFT fragment. The Hamiltonian character, the stability, and efficiency of the implementation are investigated by hybrid DFT/PMM-MD simulations treating one molecule of the water dimer and of bulk water by DFT and the respective remainder by PMM.

  7. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview.

    PubMed

    Šponer, Jiří; Bussi, Giovanni; Krepl, Miroslav; Banáš, Pavel; Bottaro, Sandro; Cunha, Richard A; Gil-Ley, Alejandro; Pinamonti, Giovanni; Poblete, Simón; Jurečka, Petr; Walter, Nils G; Otyepka, Michal

    2018-04-25

    With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.

  8. Enhanced Conformational Sampling of N-Glycans in Solution with Replica State Exchange Metadynamics.

    PubMed

    Galvelis, Raimondas; Re, Suyong; Sugita, Yuji

    2017-05-09

    Molecular dynamics (MD) simulation of a N-glycan in solution is challenging because of high-energy barriers of the glycosidic linkages, functional group rotational barriers, and numerous intra- and intermolecular hydrogen bonds. In this study, we apply different enhanced conformational sampling approaches, namely, metadynamics (MTD), the replica-exchange MD (REMD), and the recently proposed replica state exchange MTD (RSE-MTD), to a N-glycan in solution and compare the conformational sampling efficiencies of the approaches. MTD helps to cross the high-energy barrier along the ω angle by utilizing a bias potential, but it cannot enhance sampling of the other degrees of freedom. REMD ensures moderate-energy barrier crossings by exchanging temperatures between replicas, while it hardly crosses the barriers along ω. In contrast, RSE-MTD succeeds to cross the high-energy barrier along ω as well as to enhance sampling of the other degrees of freedom. We tested two RSE-MTD schemes: in one scheme, 64 replicas were simulated with the bias potential along ω at different temperatures, while simulations of four replicas were performed with the bias potentials for different CVs at 300 K. In both schemes, one unbiased replica at 300 K was included to compute conformational properties of the glycan. The conformational sampling of the former is better than the other enhanced sampling methods, while the latter shows reasonable performance without spending large computational resources. The latter scheme is likely to be useful when a N-glycan-attached protein is simulated.

  9. Hydration free energies of cyanide and hydroxide ions from molecular dynamics simulations with accurate force fields

    USGS Publications Warehouse

    Lee, M.W.; Meuwly, M.

    2013-01-01

    The evaluation of hydration free energies is a sensitive test to assess force fields used in atomistic simulations. We showed recently that the vibrational relaxation times, 1D- and 2D-infrared spectroscopies for CN(-) in water can be quantitatively described from molecular dynamics (MD) simulations with multipolar force fields and slightly enlarged van der Waals radii for the C- and N-atoms. To validate such an approach, the present work investigates the solvation free energy of cyanide in water using MD simulations with accurate multipolar electrostatics. It is found that larger van der Waals radii are indeed necessary to obtain results close to the experimental values when a multipolar force field is used. For CN(-), the van der Waals ranges refined in our previous work yield hydration free energy between -72.0 and -77.2 kcal mol(-1), which is in excellent agreement with the experimental data. In addition to the cyanide ion, we also study the hydroxide ion to show that the method used here is readily applicable to similar systems. Hydration free energies are found to sensitively depend on the intermolecular interactions, while bonded interactions are less important, as expected. We also investigate in the present work the possibility of applying the multipolar force field in scoring trajectories generated using computationally inexpensive methods, which should be useful in broader parametrization studies with reduced computational resources, as scoring is much faster than the generation of the trajectories.

  10. Replica Exchange Gaussian Accelerated Molecular Dynamics: Improved Enhanced Sampling and Free Energy Calculation.

    PubMed

    Huang, Yu-Ming M; McCammon, J Andrew; Miao, Yinglong

    2018-04-10

    Through adding a harmonic boost potential to smooth the system potential energy surface, Gaussian accelerated molecular dynamics (GaMD) provides enhanced sampling and free energy calculation of biomolecules without the need of predefined reaction coordinates. This work continues to improve the acceleration power and energy reweighting of the GaMD by combining the GaMD with replica exchange algorithms. Two versions of replica exchange GaMD (rex-GaMD) are presented: force constant rex-GaMD and threshold energy rex-GaMD. During simulations of force constant rex-GaMD, the boost potential can be exchanged between replicas of different harmonic force constants with fixed threshold energy. However, the algorithm of threshold energy rex-GaMD tends to switch the threshold energy between lower and upper bounds for generating different levels of boost potential. Testing simulations on three model systems, including the alanine dipeptide, chignolin, and HIV protease, demonstrate that through continuous exchanges of the boost potential, the rex-GaMD simulations not only enhance the conformational transitions of the systems but also narrow down the distribution width of the applied boost potential for accurate energetic reweighting to recover biomolecular free energy profiles.

  11. Computational study of aggregation mechanism in human lysozyme[D67H

    PubMed Central

    Patel, Dharmeshkumar

    2017-01-01

    Aggregation of proteins is an undesired phenomena that affects both human health and bioengineered products such as therapeutic proteins. Finding preventative measures could be facilitated by a molecular-level understanding of dimer formation, which is the first step in aggregation. Here we present a molecular dynamics (MD) study of dimer formation propensity in human lysozyme and its D67H variant. Because the latter protein aggregates while the former does not, they offer an ideal system for testing the feasibility of the proposed MD approach which comprises three stages: i) partially unfolded conformers involved in dimer formation are generated via high-temperature MD simulations, ii) potential dimer structures are searched using docking and refined with MD, iii) free energy calculations are performed to find the most stable dimer structure. Our results provide a detailed explanation for how a single mutation (D67H) turns human lysozyme from non-aggregating to an aggregating protein. Conversely, the proposed method can be used to identify the residues causing aggregation in a protein, which can be mutated to prevent it. PMID:28467454

  12. Metadynamics Enhanced Markov Modeling of Protein Dynamics.

    PubMed

    Biswas, Mithun; Lickert, Benjamin; Stock, Gerhard

    2018-05-31

    Enhanced sampling techniques represent a versatile approach to account for rare conformational transitions in biomolecules. A particularly promising strategy is to combine massive parallel computing of short molecular dynamics (MD) trajectories (to sample the free energy landscape of the system) with Markov state modeling (to rebuild the kinetics from the sampled data). To obtain well-distributed initial structures for the short trajectories, it is proposed to employ metadynamics MD, which quickly sweeps through the entire free energy landscape of interest. Being only used to generate initial conformations, the implementation of metadynamics can be simple and fast. The conformational dynamics of helical peptide Aib 9 is adopted to discuss various technical issues of the approach, including metadynamics settings, minimal number and length of short MD trajectories, and the validation of the resulting Markov models. Using metadynamics to launch some thousands of nanosecond trajectories, several Markov state models are constructed that reveal that previous unbiased MD simulations of in total 16 μs length cannot provide correct equilibrium populations or qualitative features of the pathway distribution of the short peptide.

  13. A Python tool to set up relative free energy calculations in GROMACS

    PubMed Central

    Klimovich, Pavel V.; Mobley, David L.

    2015-01-01

    Free energy calculations based on molecular dynamics (MD) simulations have seen a tremendous growth in the last decade. However, it is still difficult and tedious to set them up in an automated manner, as the majority of the present-day MD simulation packages lack that functionality. Relative free energy calculations are a particular challenge for several reasons, including the problem of finding a common substructure and mapping the transformation to be applied. Here we present a tool, alchemical-setup.py, that automatically generates all the input files needed to perform relative solvation and binding free energy calculations with the MD package GROMACS. When combined with Lead Optimization Mapper [14], recently developed in our group, alchemical-setup.py allows fully automated setup of relative free energy calculations in GROMACS. Taking a graph of the planned calculations and a mapping, both computed by LOMAP, our tool generates the topology and coordinate files needed to perform relative free energy calculations for a given set of molecules, and provides a set of simulation input parameters. The tool was validated by performing relative hydration free energy calculations for a handful of molecules from the SAMPL4 challenge [16]. Good agreement with previously published results and the straightforward way in which free energy calculations can be conducted make alchemical-setup.py a promising tool for automated setup of relative solvation and binding free energy calculations. PMID:26487189

  14. Molecular dynamics study of salt-solution interface: solubility and surface charge of salt in water.

    PubMed

    Kobayashi, Kazuya; Liang, Yunfeng; Sakka, Tetsuo; Matsuoka, Toshifumi

    2014-04-14

    The NaCl salt-solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt-solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt-solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules.

  15. Molecular dynamics study of salt–solution interface: Solubility and surface charge of salt in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Kazuya; Liang, Yunfeng, E-mail: y-liang@earth.kumst.kyoto-u.ac.jp, E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp; Matsuoka, Toshifumi, E-mail: y-liang@earth.kumst.kyoto-u.ac.jp, E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp

    2014-04-14

    The NaCl salt–solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt–solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt–solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemicalmore » potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules.« less

  16. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born

    PubMed Central

    2012-01-01

    We present an implementation of generalized Born implicit solvent all-atom classical molecular dynamics (MD) within the AMBER program package that runs entirely on CUDA enabled NVIDIA graphics processing units (GPUs). We discuss the algorithms that are used to exploit the processing power of the GPUs and show the performance that can be achieved in comparison to simulations on conventional CPU clusters. The implementation supports three different precision models in which the contributions to the forces are calculated in single precision floating point arithmetic but accumulated in double precision (SPDP), or everything is computed in single precision (SPSP) or double precision (DPDP). In addition to performance, we have focused on understanding the implications of the different precision models on the outcome of implicit solvent MD simulations. We show results for a range of tests including the accuracy of single point force evaluations and energy conservation as well as structural properties pertainining to protein dynamics. The numerical noise due to rounding errors within the SPSP precision model is sufficiently large to lead to an accumulation of errors which can result in unphysical trajectories for long time scale simulations. We recommend the use of the mixed-precision SPDP model since the numerical results obtained are comparable with those of the full double precision DPDP model and the reference double precision CPU implementation but at significantly reduced computational cost. Our implementation provides performance for GB simulations on a single desktop that is on par with, and in some cases exceeds, that of traditional supercomputers. PMID:22582031

  17. How to understand atomistic molecular dynamics simulations of RNA and protein-RNA complexes?

    PubMed

    Šponer, Jiří; Krepl, Miroslav; Banáš, Pavel; Kührová, Petra; Zgarbová, Marie; Jurečka, Petr; Havrila, Marek; Otyepka, Michal

    2017-05-01

    We provide a critical assessment of explicit-solvent atomistic molecular dynamics (MD) simulations of RNA and protein/RNA complexes, written primarily for non-specialists with an emphasis to explain the limitations of MD. MD simulations can be likened to hypothetical single-molecule experiments starting from single atomistic conformations and investigating genuine thermal sampling of the biomolecules. The main advantage of MD is the unlimited temporal and spatial resolution of positions of all atoms in the simulated systems. Fundamental limitations are the short physical time-scale of simulations, which can be partially alleviated by enhanced-sampling techniques, and the highly approximate atomistic force fields describing the simulated molecules. The applicability and present limitations of MD are demonstrated on studies of tetranucleotides, tetraloops, ribozymes, riboswitches and protein/RNA complexes. Wisely applied simulations respecting the approximations of the model can successfully complement structural and biochemical experiments. WIREs RNA 2017, 8:e1405. doi: 10.1002/wrna.1405 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  18. Effects of two-temperature model on cascade evolution in Ni and NiFe

    DOE PAGES

    Samolyuk, German D.; Xue, Haizhou; Bei, Hongbin; ...

    2016-07-05

    We perform molecular dynamics simulations of Ni ion cascades in Ni and equiatomic NiFe under the following conditions: (a) classical molecular dynamics (MD) simulations without consideration of electronic energy loss, (b) classical MD simulations with the electronic stopping included, and (c) using the coupled two-temperature MD (2T-MD) model that incorporates both the electronic stopping and the electron-phonon interactions. Our results indicate that the electronic effects are more profound in the higher-energy cascades, and that the 2T-MD model results in a smaller amount of surviving damage and smaller defect clusters, while less damage is produced in NiFe than in Ni.

  19. Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor.

    PubMed

    Miao, Yinglong; McCammon, J Andrew

    2018-03-20

    Protein-protein binding is key in cellular signaling processes. Molecular dynamics (MD) simulations of protein-protein binding, however, are challenging due to limited timescales. In particular, binding of the medically important G-protein-coupled receptors (GPCRs) with intracellular signaling proteins has not been simulated with MD to date. Here, we report a successful simulation of the binding of a G-protein mimetic nanobody to the M 2 muscarinic GPCR using the robust Gaussian accelerated MD (GaMD) method. Through long-timescale GaMD simulations over 4,500 ns, the nanobody was observed to bind the receptor intracellular G-protein-coupling site, with a minimum rmsd of 2.48 Å in the nanobody core domain compared with the X-ray structure. Binding of the nanobody allosterically closed the orthosteric ligand-binding pocket, being consistent with the recent experimental finding. In the absence of nanobody binding, the receptor orthosteric pocket sampled open and fully open conformations. The GaMD simulations revealed two low-energy intermediate states during nanobody binding to the M 2 receptor. The flexible receptor intracellular loops contribute remarkable electrostatic, polar, and hydrophobic residue interactions in recognition and binding of the nanobody. These simulations provided important insights into the mechanism of GPCR-nanobody binding and demonstrated the applicability of GaMD in modeling dynamic protein-protein interactions.

  20. Atomistic simulations of dislocation pileup: Grain boundaries interaction

    DOE PAGES

    Wang, Jian

    2015-05-27

    Here, using molecular dynamics (MD) simulations, we studied the dislocation pileup–grain boundary (GB) interactions. Two Σ11 asymmetrical tilt grain boundaries in Al are studied to explore the influence of orientation relationship and interface structure on dislocation activities at grain boundaries. To mimic the reality of a dislocation pileup in a coarse-grained polycrystalline, we optimized the dislocation population in MD simulations and developed a predict-correct method to create a dislocation pileup in MD simulations. MD simulations explored several kinetic processes of dislocations–GB reactions: grain boundary sliding, grain boundary migration, slip transmission, dislocation reflection, reconstruction of grain boundary, and the correlation ofmore » these kinetic processes with the available slip systems across the GB and atomic structures of the GB.« less

  1. Convergence of Free Energy Profile of Coumarin in Lipid Bilayer

    PubMed Central

    2012-01-01

    Atomistic molecular dynamics (MD) simulations of druglike molecules embedded in lipid bilayers are of considerable interest as models for drug penetration and positioning in biological membranes. Here we analyze partitioning of coumarin in dioleoylphosphatidylcholine (DOPC) bilayer, based on both multiple, unbiased 3 μs MD simulations (total length) and free energy profiles along the bilayer normal calculated by biased MD simulations (∼7 μs in total). The convergences in time of free energy profiles calculated by both umbrella sampling and z-constraint techniques are thoroughly analyzed. Two sets of starting structures are also considered, one from unbiased MD simulation and the other from “pulling” coumarin along the bilayer normal. The structures obtained by pulling simulation contain water defects on the lipid bilayer surface, while those acquired from unbiased simulation have no membrane defects. The free energy profiles converge more rapidly when starting frames from unbiased simulations are used. In addition, z-constraint simulation leads to more rapid convergence than umbrella sampling, due to quicker relaxation of membrane defects. Furthermore, we show that the choice of RESP, PRODRG, or Mulliken charges considerably affects the resulting free energy profile of our model drug along the bilayer normal. We recommend using z-constraint biased MD simulations based on starting geometries acquired from unbiased MD simulations for efficient calculation of convergent free energy profiles of druglike molecules along bilayer normals. The calculation of free energy profile should start with an unbiased simulation, though the polar molecules might need a slow pulling afterward. Results obtained with the recommended simulation protocol agree well with available experimental data for two coumarin derivatives. PMID:22545027

  2. Convergence of Free Energy Profile of Coumarin in Lipid Bilayer.

    PubMed

    Paloncýová, Markéta; Berka, Karel; Otyepka, Michal

    2012-04-10

    Atomistic molecular dynamics (MD) simulations of druglike molecules embedded in lipid bilayers are of considerable interest as models for drug penetration and positioning in biological membranes. Here we analyze partitioning of coumarin in dioleoylphosphatidylcholine (DOPC) bilayer, based on both multiple, unbiased 3 μs MD simulations (total length) and free energy profiles along the bilayer normal calculated by biased MD simulations (∼7 μs in total). The convergences in time of free energy profiles calculated by both umbrella sampling and z-constraint techniques are thoroughly analyzed. Two sets of starting structures are also considered, one from unbiased MD simulation and the other from "pulling" coumarin along the bilayer normal. The structures obtained by pulling simulation contain water defects on the lipid bilayer surface, while those acquired from unbiased simulation have no membrane defects. The free energy profiles converge more rapidly when starting frames from unbiased simulations are used. In addition, z-constraint simulation leads to more rapid convergence than umbrella sampling, due to quicker relaxation of membrane defects. Furthermore, we show that the choice of RESP, PRODRG, or Mulliken charges considerably affects the resulting free energy profile of our model drug along the bilayer normal. We recommend using z-constraint biased MD simulations based on starting geometries acquired from unbiased MD simulations for efficient calculation of convergent free energy profiles of druglike molecules along bilayer normals. The calculation of free energy profile should start with an unbiased simulation, though the polar molecules might need a slow pulling afterward. Results obtained with the recommended simulation protocol agree well with available experimental data for two coumarin derivatives.

  3. Potential of Mean Force Calculations of Solute Permeation Across UT-B and AQP1: A Comparison between Molecular Dynamics and 3D-RISM.

    PubMed

    Ariz-Extreme, Igor; Hub, Jochen S

    2017-02-23

    Membrane channels facilitate the efficient and selective flux of various solutes across biological membranes. A common approach to investigate the selectivity of a channel has been the calculation of potentials of mean force (PMFs) for solute permeation across the pore. PMFs have been frequently computed from molecular dynamics (MD) simulations, yet the three-dimensional reference interaction site model (3D-RISM) has been suggested as a computationally efficient alternative to MD. Whether the two methods yield comparable PMFs for solute permeation has remained unclear. In this study, we calculated potentials of mean force for water, ammonia, urea, molecular oxygen, and methanol across the urea transporter B (UT-B) and aquaporin-1 (AQP1), using 3D-RISM, as well as using MD simulations and umbrella sampling. To allow direct comparison between the PMFs from 3D-RISM and MD, we ensure that all PMFs refer to a well-defined reference area in the bulk or, equivalently, to a well-defined density of channels in the membrane. For PMFs of water permeation, we found reasonable agreement between the two methods, with differences of ≲3 kJ mol -1 . In contrast, we found stark discrepancies for the PMFs for all other solutes. Additional calculations confirm that discrepancies between MD and 3D-RISM are not explained by the choice for the closure relation, the definition the reaction coordinate (center of mass-based versus atomic site-based), details of the molecule force field, or fluctuations of the protein. Comparison of the PMFs suggests that 3D-RISM may underestimate effects from hydrophobic solute-channel interactions, thereby, for instance, missing the urea binding sites in UT-B. Furthermore, we speculate that the orientational averages inherent to 3D-RISM might lead to discrepancies in the narrow channel lumen. These findings suggest that current 3D-RISM solvers provide reasonable estimates for the PMF for water permeation, but that they are not suitable to study the selectivity of membrane channels with respect to uncharged nonwater solutes.

  4. A multiscale method for modeling high-aspect-ratio micro/nano flows

    NASA Astrophysics Data System (ADS)

    Lockerby, Duncan; Borg, Matthew; Reese, Jason

    2012-11-01

    In this paper we present a new multiscale scheme for simulating micro/nano flows of high aspect ratio in the flow direction, e.g. within long ducts, tubes, or channels, of varying section. The scheme consists of applying a simple hydrodynamic description over the entire domain, and allocating micro sub-domains in very small ``slices'' of the channel. Every micro element is a molecular dynamics simulation (or other appropriate model, e.g., a direct simulation Monte Carlo method for micro-channel gas flows) over the local height of the channel/tube. The number of micro elements as well as their streamwise position is chosen to resolve the geometrical features of the macro channel. While there is no direct communication between individual micro elements, coupling occurs via an iterative imposition of mass and momentum-flux conservation on the macro scale. The greater the streamwise scale of the geometry, the more significant is the computational speed-up when compared to a full MD simulation. We test our new multiscale method on the case of a converging/diverging nanochannel conveying a simple Lennard-Jones liquid. We validate the results from our simulations by comparing them to a full MD simulation of the same test case. Supported by EPSRC Programme Grant, EP/I011927/1.

  5. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qing; Shi, Chaowei; Yu, Lu

    Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and nuclear magnetic resonance (NMR) spin relaxation measurements are valuable tools to gain access to fast (nanosecond) internal motions. However, there exist few reports on correlation analysis between MD and NMR relaxation data. Here, backbone relaxation measurements of {sup 15}N-labeled SH3 (Src homology 3) domain proteins in aqueous buffer were used to generate general order parameters (S{sup 2}) using a model-free approach. Simultaneously, 80 ns MD simulations of SH3 domain proteins in amore » defined hydrated box at neutral pH were conducted and the general order parameters (S{sup 2}) were derived from the MD trajectory. Correlation analysis using the Gromos force field indicated that S{sup 2} values from NMR relaxation measurements and MD simulations were significantly different. MD simulations were performed on models with different charge states for three histidine residues, and with different water models, which were SPC (simple point charge) water model and SPC/E (extended simple point charge) water model. S{sup 2} parameters from MD simulations with charges for all three histidines and with the SPC/E water model correlated well with S{sup 2} calculated from the experimental NMR relaxation measurements, in a site-specific manner. - Highlights: • Correlation analysis between NMR relaxation measurements and MD simulations. • General order parameter (S{sup 2}) as common reference between the two methods. • Different protein dynamics with different Histidine charge states in neutral pH. • Different protein dynamics with different water models.« less

  6. Parallel algorithm for multiscale atomistic/continuum simulations using LAMMPS

    NASA Astrophysics Data System (ADS)

    Pavia, F.; Curtin, W. A.

    2015-07-01

    Deformation and fracture processes in engineering materials often require simultaneous descriptions over a range of length and time scales, with each scale using a different computational technique. Here we present a high-performance parallel 3D computing framework for executing large multiscale studies that couple an atomic domain, modeled using molecular dynamics and a continuum domain, modeled using explicit finite elements. We use the robust Coupled Atomistic/Discrete-Dislocation (CADD) displacement-coupling method, but without the transfer of dislocations between atoms and continuum. The main purpose of the work is to provide a multiscale implementation within an existing large-scale parallel molecular dynamics code (LAMMPS) that enables use of all the tools associated with this popular open-source code, while extending CADD-type coupling to 3D. Validation of the implementation includes the demonstration of (i) stability in finite-temperature dynamics using Langevin dynamics, (ii) elimination of wave reflections due to large dynamic events occurring in the MD region and (iii) the absence of spurious forces acting on dislocations due to the MD/FE coupling, for dislocations further than 10 Å from the coupling boundary. A first non-trivial example application of dislocation glide and bowing around obstacles is shown, for dislocation lengths of ∼50 nm using fewer than 1 000 000 atoms but reproducing results of extremely large atomistic simulations at much lower computational cost.

  7. Convergence and reproducibility in molecular dynamics simulations of the DNA duplex d(GCACGAACGAACGAACGC)

    PubMed Central

    Galindo-Murillo, Rodrigo; Roe, Daniel R.; Cheatham, Thomas E.

    2014-01-01

    Background The structure and dynamics of DNA are critically related to its function. Molecular dynamics (MD) simulations augment experiment by providing detailed information about the atomic motions. However, to date the simulations have not been long enough for convergence of the dynamics and structural properties of DNA. Methods MD simulations performed with AMBER using the ff99SB force field with the parmbsc0 modifications, including ensembles of independent simulations, were compared to long timescale MD performed with the specialized Anton MD engine on the B-DNA structure d(GCACGAACGAACGAACGC). To assess convergence, the decay of the average RMSD values over longer and longer time intervals was evaluated in addition to assessing convergence of the dynamics via the Kullback-Leibler divergence of principal component projection histograms. Results These MD simulations —including one of the longest simulations of DNA published to date at ~44 μs—surprisingly suggest that the structure and dynamics of the DNA helix, neglecting the terminal base pairs, are essentially fully converged on the ~1–5 μs timescale. Conclusions We can now reproducibly converge the structure and dynamics of B-DNA helices, omitting the terminal base pairs, on the μs time scale with both the AMBER and CHARMM C36 nucleic acid force fields. Results from independent ensembles of simulations starting from different initial conditions, when aggregated, match the results from long timescale simulations on the specialized Anton MD engine. General Significance With access to large-scale GPU resources or the specialized MD engine “Anton” it is possibly for a variety of molecular systems to reproducibly and reliably converge the conformational ensemble of sampled structures. PMID:25219455

  8. Ensemble MD simulations restrained via crystallographic data: Accurate structure leads to accurate dynamics

    PubMed Central

    Xue, Yi; Skrynnikov, Nikolai R

    2014-01-01

    Currently, the best existing molecular dynamics (MD) force fields cannot accurately reproduce the global free-energy minimum which realizes the experimental protein structure. As a result, long MD trajectories tend to drift away from the starting coordinates (e.g., crystallographic structures). To address this problem, we have devised a new simulation strategy aimed at protein crystals. An MD simulation of protein crystal is essentially an ensemble simulation involving multiple protein molecules in a crystal unit cell (or a block of unit cells). To ensure that average protein coordinates remain correct during the simulation, we introduced crystallography-based restraints into the MD protocol. Because these restraints are aimed at the ensemble-average structure, they have only minimal impact on conformational dynamics of the individual protein molecules. So long as the average structure remains reasonable, the proteins move in a native-like fashion as dictated by the original force field. To validate this approach, we have used the data from solid-state NMR spectroscopy, which is the orthogonal experimental technique uniquely sensitive to protein local dynamics. The new method has been tested on the well-established model protein, ubiquitin. The ensemble-restrained MD simulations produced lower crystallographic R factors than conventional simulations; they also led to more accurate predictions for crystallographic temperature factors, solid-state chemical shifts, and backbone order parameters. The predictions for 15N R1 relaxation rates are at least as accurate as those obtained from conventional simulations. Taken together, these results suggest that the presented trajectories may be among the most realistic protein MD simulations ever reported. In this context, the ensemble restraints based on high-resolution crystallographic data can be viewed as protein-specific empirical corrections to the standard force fields. PMID:24452989

  9. Simulations of simple linoleic acid-containing lipid membranes and models for the soybean plasma membranes.

    PubMed

    Zhuang, Xiaohong; Ou, Anna; Klauda, Jeffery B

    2017-06-07

    The all-atom CHARMM36 lipid force field (C36FF) has been tested with saturated, monounsaturated, and polyunsaturated lipids; however, it has not been validated against the 18:2 linoleoyl lipids with an unsaturated sn-1 chain. The linoleoyl lipids are common in plants and the main component of the soybean membrane. The lipid composition of soybean plasma membranes has been thoroughly characterized with experimental studies. However, there is comparatively less work done with computational modeling. Our molecular dynamics (MD) simulation results show that the pure linoleoyl lipids, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine (18:0/18:2) and 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (di-18:2), agree very well with the experiments, which demonstrates the accuracy of the C36FF for the computational study of soybean membranes. Based on the experimental composition, the soybean hypocotyl and root plasma membrane models are developed with each containing seven or eight types of linoleoyl phospholipids and two types of sterols (sitosterol and stigmasterol). MD simulations are performed to characterize soybean membranes, and the hydrogen bonds and clustering results demonstrate that the lipids prefer to interact with the lipids of the same/similar tail unsaturation. All the results suggest that these two soybean membrane models can be used as a basis for further research in soybean and higher plant membranes involving membrane-associated proteins.

  10. Simulations of simple linoleic acid-containing lipid membranes and models for the soybean plasma membranes

    NASA Astrophysics Data System (ADS)

    Zhuang, Xiaohong; Ou, Anna; Klauda, Jeffery B.

    2017-06-01

    The all-atom CHARMM36 lipid force field (C36FF) has been tested with saturated, monounsaturated, and polyunsaturated lipids; however, it has not been validated against the 18:2 linoleoyl lipids with an unsaturated sn-1 chain. The linoleoyl lipids are common in plants and the main component of the soybean membrane. The lipid composition of soybean plasma membranes has been thoroughly characterized with experimental studies. However, there is comparatively less work done with computational modeling. Our molecular dynamics (MD) simulation results show that the pure linoleoyl lipids, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine (18:0/18:2) and 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (di-18:2), agree very well with the experiments, which demonstrates the accuracy of the C36FF for the computational study of soybean membranes. Based on the experimental composition, the soybean hypocotyl and root plasma membrane models are developed with each containing seven or eight types of linoleoyl phospholipids and two types of sterols (sitosterol and stigmasterol). MD simulations are performed to characterize soybean membranes, and the hydrogen bonds and clustering results demonstrate that the lipids prefer to interact with the lipids of the same/similar tail unsaturation. All the results suggest that these two soybean membrane models can be used as a basis for further research in soybean and higher plant membranes involving membrane-associated proteins.

  11. Improved Statistical Sampling and Accuracy with Accelerated Molecular Dynamics on Rotatable Torsions.

    PubMed

    Doshi, Urmi; Hamelberg, Donald

    2012-11-13

    In enhanced sampling techniques, the precision of the reweighted ensemble properties is often decreased due to large variation in statistical weights and reduction in the effective sampling size. To abate this reweighting problem, here, we propose a general accelerated molecular dynamics (aMD) approach in which only the rotatable dihedrals are subjected to aMD (RaMD), unlike the typical implementation wherein all dihedrals are boosted (all-aMD). Nonrotatable and improper dihedrals are marginally important to conformational changes or the different rotameric states. Not accelerating them avoids the sharp increases in the potential energies due to small deviations from their minimum energy conformations and leads to improvement in the precision of RaMD. We present benchmark studies on two model dipeptides, Ace-Ala-Nme and Ace-Trp-Nme, simulated with normal MD, all-aMD, and RaMD. We carry out a systematic comparison between the performances of both forms of aMD using a theory that allows quantitative estimation of the effective number of sampled points and the associated uncertainty. Our results indicate that, for the same level of acceleration and simulation length, as used in all-aMD, RaMD results in significantly less loss in the effective sample size and, hence, increased accuracy in the sampling of φ-ψ space. RaMD yields an accuracy comparable to that of all-aMD, from simulation lengths 5 to 1000 times shorter, depending on the peptide and the acceleration level. Such improvement in speed and accuracy over all-aMD is highly remarkable, suggesting RaMD as a promising method for sampling larger biomolecules.

  12. Experimental, computational and chemometrics studies of BSA-vitamin B6 interaction by UV-Vis, FT-IR, fluorescence spectroscopy, molecular dynamics simulation and hard-soft modeling methods.

    PubMed

    Manouchehri, Firouzeh; Izadmanesh, Yahya; Aghaee, Elham; Ghasemi, Jahan B

    2016-10-01

    The interaction of pyridoxine (Vitamin B6) with bovine serum albumin (BSA) is investigated under pseudo-physiological conditions by UV-Vis, fluorescence and FTIR spectroscopy. The intrinsic fluorescence of BSA was quenched by VB6, which was rationalized in terms of the static quenching mechanism. According to fluorescence quenching calculations, the bimolecular quenching constant (kq), dynamic quenching (KSV) and static quenching (KLB) at 310K were obtained. The efficiency of energy transfer and the distance between the donor (BSA) and the acceptor (VB6) were calculated by Foster's non-radiative energy transfer theory and were equal to 41.1% and 2.11nm. The collected UV-Vis and fluorescence spectra were combined into a row-and column-wise augmented matrix and resolved by multivariate curve resolution-alternating least squares (MCR-ALS). MCR-ALS helped to estimate the stoichiometry of interactions, concentration profiles and pure spectra for three species (BSA, VB6 and VB6-BSA complex) existed in the interaction procedure. Based on the MCR-ALS results, using mass balance equations, a model was developed and binding constant of complex was calculated using non-linear least squares curve fitting. FT-IR spectra showed that the conformation of proteins was altered in presence of VB6. Finally, the combined docking and molecular dynamics (MD) simulations were used to estimate the binding affinity of VB6 to BSA. Five-nanosecond MD simulations were performed on bovine serum albumin (BSA) to study the conformational features of its ligand binding site. From MD results, eleven BSA snapshots were extracted, at every 0.5ns, to explore the binding affinity (GOLD score) of VB6 using a docking procedure. MD simulations indicated that there is a considerable flexibility in the structure of protein that affected ligand recognition. Structural analyses and docking simulations indicated that VB6 binds to site I and GOLD score values depend on the conformations of both BSA and ligand. Molecular modeling results showed that VB6-BSA complex formed not only on the basis of electrostatic forces, but also on the basis of π-π staking and hydrogen bond. There was an excellent agreement between the experimental and computational results. The results presented in this paper, will offer a reference for detailed and systematic studies on the biological effects and action mechanism of small molecules with proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Accurate schemes for calculation of thermodynamic properties of liquid mixtures from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Caro, Miguel A.; Laurila, Tomi; Lopez-Acevedo, Olga

    2016-12-01

    We explore different schemes for improved accuracy of entropy calculations in aqueous liquid mixtures from molecular dynamics (MD) simulations. We build upon the two-phase thermodynamic (2PT) model of Lin et al. [J. Chem. Phys. 119, 11792 (2003)] and explore new ways to obtain the partition between the gas-like and solid-like parts of the density of states, as well as the effect of the chosen ideal "combinatorial" entropy of mixing, both of which have a large impact on the results. We also propose a first-order correction to the issue of kinetic energy transfer between degrees of freedom (DoF). This problem arises when the effective temperatures of translational, rotational, and vibrational DoF are not equal, either due to poor equilibration or reduced system size/time sampling, which are typical problems for ab initio MD. The new scheme enables improved convergence of the results with respect to configurational sampling, by up to one order of magnitude, for short MD runs. To ensure a meaningful assessment, we perform MD simulations of liquid mixtures of water with several other molecules of varying sizes: methanol, acetonitrile, N, N-dimethylformamide, and n-butanol. Our analysis shows that results in excellent agreement with experiment can be obtained with little computational effort for some systems. However, the ability of the 2PT method to succeed in these calculations is strongly influenced by the choice of force field, the fluidicity (hard-sphere) formalism employed to obtain the solid/gas partition, and the assumed combinatorial entropy of mixing. We tested two popular force fields, GAFF and OPLS with SPC/E water. For the mixtures studied, the GAFF force field seems to perform as a slightly better "all-around" force field when compared to OPLS+SPC/E.

  14. Measured and simulated electron thermal transport in the Madisom symmetric torus reversed field pinch

    NASA Astrophysics Data System (ADS)

    Rodrigue Mbombo, Brice

    New high time resolution measurements of the evolution of the electron temperature profile through a sawtooth event in high current reversed-field pinch (RFP) discharges in the Madison Symmetric Torus (MST) have been made using the enhanced capabilities of the multipoint, multi-pulse Thomson scattering system. Using this and other data, the electron thermal diffusion chie determined and is found to vary by orders of magnitude over the course of the sawtooth cycle. This experimental data is compared directly to simulations run at experimentally relevant parameters. This includes zero beta, single fluid, nonlinear, resistive magnetohydrodynamic (MHD) simulations run with the aspect ratio, resistivity profile, and Lundquist number (S ˜ 4 x 106) of high current RFP discharges in MST. These simulations display MHD activity and sawtooth like behavior similar to that observed in the MST. This includes both the sawtooth period and the duration of the sawtooth crash. The radial shape of the magnetic mode amplitudes, scaled to match edge measurements made in MST, are then used to compute the expected level of thermal diffusion due to parallel losses along diffusing magnetic field lines, chiMD = upsilon∥Dmag. The evolution of the Dmag profile was determined for over 20 sawteeth so that the ensemble averaged evolution could be compared to the sawtooth ensembled data from MST. The resulting comparison to the measured chi e shows that chiMD is larger than chi e at most times. However, if electrons are trapped in a magnetic well, they cannot carry energy along the diffusing magnetic field lines, reducing the thermal transport. Accounting for trapped particles brings chi MD to within uncertainty of chie in the mid radius at most times throughout the sawtooth cycle. In the core, the measured chie is greater than chi MD leading up to and including the sawtooth crash, suggesting other transport mechanisms are important at these times. Additionally, in a simulation including pressure evolution, a striking agreement is found between the temperature fluctuations seen in the simulation and those previously measured in MST. This work supported by the US DOE and NSF.

  15. Structural insights into pharmacophore-assisted in silico identification of protein-protein interaction inhibitors for inhibition of human toll-like receptor 4 - myeloid differentiation factor-2 (hTLR4-MD-2) complex.

    PubMed

    Mishra, Vinita; Pathak, Chandramani

    2018-05-29

    Toll-like receptor 4 (TLR4) is a member of Toll-Like Receptors (TLRs) family that serves as a receptor for bacterial lipopolysaccharide (LPS). TLR4 alone cannot recognize LPS without aid of co-receptor myeloid differentiation factor-2 (MD-2). Binding of LPS with TLR4 forms a LPS-TLR4-MD-2 complex and directs downstream signaling for activation of immune response, inflammation and NF-κB activation. Activation of TLR4 signaling is associated with various pathophysiological consequences. Therefore, targeting protein-protein interaction (PPI) in TLR4-MD-2 complex formation could be an attractive therapeutic approach for targeting inflammatory disorders. The aim of present study was directed to identify small molecule PPI inhibitors (SMPPIIs) using pharmacophore mapping-based approach of computational drug discovery. Here, we had retrieved the information about the hot spot residues and their pharmacophoric features at both primary (TLR4-MD-2) and dimerization (MD-2-TLR4*) protein-protein interaction interfaces in TLR4-MD-2 homo-dimer complex using in silico methods. Promising candidates were identified after virtual screening, which may restrict TLR4-MD-2 protein-protein interaction. In silico off-target profiling over the virtually screened compounds revealed other possible molecular targets. Two of the virtually screened compounds (C11 and C15) were predicted to have an inhibitory concentration in μM range after HYDE assessment. Molecular dynamics simulation study performed for these two compounds in complex with target protein confirms the stability of the complex. After virtual high throughput screening we found selective hTLR4-MD-2 inhibitors, which may have therapeutic potential to target chronic inflammatory diseases.

  16. Self-consistent molecular dynamics formulation for electric-field-mediated electrolyte transport through nanochannels

    NASA Astrophysics Data System (ADS)

    Raghunathan, A. V.; Aluru, N. R.

    2007-07-01

    A self-consistent molecular dynamics (SCMD) formulation is presented for electric-field-mediated transport of water and ions through a nanochannel connected to reservoirs or baths. The SCMD formulation is compared with a uniform field MD approach, where the applied electric field is assumed to be uniform, for 2nm and 3.5nm wide nanochannels immersed in a 0.5M KCl solution. Reservoir ionic concentrations are maintained using the dual-control-volume grand canonical molecular dynamics technique. Simulation results with varying channel height indicate that the SCMD approach calculates the electrostatic potential in the simulation domain more accurately compared to the uniform field approach, with the deviation in results increasing with the channel height. The translocation times and ionic fluxes predicted by uniform field MD can be substantially different from those predicted by the SCMD approach. Our results also indicate that during a 2ns simulation time K+ ions can permeate through a 1nm channel when the applied electric field is computed self-consistently, while the permeation is not observed when the electric field is assumed to be uniform.

  17. Thermodynamic interpretation of reactive processes in Ni-Al nanolayers from atomistic simulations

    NASA Astrophysics Data System (ADS)

    Sandoval, Luis; Campbell, Geoffrey H.; Marian, Jaime

    2014-03-01

    Metals that can form intermetallic compounds by exothermic reactions constitute a class of reactive materials with multiple applications. Ni-Al laminates of thin alternating layers are being considered as model nanometric metallic multilayers for studying various reaction processes. However, the reaction kinetics at short timescales after mixing are not entirely understood. In this work, we calculate the free energies of Ni-Al alloys as a function of composition and temperature for different solid phases using thermodynamic integration based on state-of-the-art interatomic potentials. We use this information to interpret molecular dynamics (MD) simulations of bilayer systems at 800 K and zero pressure, both in isothermal and isenthalpic conditions. We find that a disordered phase always forms upon mixing as a precursor to a more stable nano crystalline B2 phase. We construe the reactions observed in terms of thermodynamic trajectories governed by the state variables computed. Simulated times of up to 30 ns were achieved, which provides a window to phenomena not previously observed in MD simulations. Our results provide insight into the early experimental reaction timescales and suggest that the path (segregated reactants) → (disordered phase) → (B2 structure) is always realized irrespective of the imposed boundary conditions.

  18. Thermodynamics of coupled protein adsorption and stability using hybrid Monte Carlo simulations.

    PubMed

    Zhong, Ellen D; Shirts, Michael R

    2014-05-06

    A better understanding of changes in protein stability upon adsorption can improve the design of protein separation processes. In this study, we examine the coupling of the folding and the adsorption of a model protein, the B1 domain of streptococcal protein G, as a function of surface attraction using a hybrid Monte Carlo (HMC) approach with temperature replica exchange and umbrella sampling. In our HMC implementation, we are able to use a molecular dynamics (MD) time step that is an order of magnitude larger than in a traditional MD simulation protocol and observe a factor of 2 enhancement in the folding and unfolding rate. To demonstrate the convergence of our systems, we measure the travel of our order parameter the fraction of native contacts between folded and unfolded states throughout the length of our simulations. Thermodynamic quantities are extracted with minimum statistical variance using multistate reweighting between simulations at different temperatures and harmonic distance restraints from the surface. The resultant free energies, enthalpies, and entropies of the coupled unfolding and absorption processes are in qualitative agreement with previous experimental and computational observations, including entropic stabilization of the adsorbed, folded state relative to the bulk on surfaces with low attraction.

  19. A QM-MD simulation approach to the analysis of FRET processes in (bio)molecular systems. A case study: complexes of E. coli purine nucleoside phosphorylase and its mutants with formycin A.

    PubMed

    Sobieraj, M; Krzyśko, K A; Jarmuła, A; Kalinowski, M W; Lesyng, B; Prokopowicz, M; Cieśla, J; Gojdź, A; Kierdaszuk, B

    2015-04-01

    Predicting FRET pathways in proteins using computer simulation techniques is very important for reliable interpretation of experimental data. A novel and relatively simple methodology has been developed and applied to purine nucleoside phosphorylase (PNP) complexed with a fluorescent ligand - formycin A (FA). FRET occurs between an excited Tyr residue (D*) and FA (A). This study aims to interpret experimental data that, among others, suggests the absence of FRET for the PNPF159A mutant in complex with FA, based on novel theoretical methodology. MD simulations for the protein molecule containing D*, and complexed with A, are carried out. Interactions of D* with its molecular environment are accounted by including changes of the ESP charges in S1, compared to S0, and computed at the SCF-CI level. FRET probability W F depends on the inverse six-power of the D*-A distance, R da . The orientational factor 0 < k(2) < 4 between D* and A is computed and included in the analysis. Finally W F is time-averaged over the MD trajectories resulting in its mean value. The red-shift of the tyrosinate anion emission and thus lack of spectral overlap integral and thermal energy dissipation are the reasons for the FRET absence in the studied mutants at pH 7 and above. The presence of the tyrosinate anion results in a competitive energy dissipation channel and red-shifted emission, thus in consequence in the absence of FRET. These studies also indicate an important role of the phenyl ring of Phe159 for FRET in the wild-type PNP, which does not exist in the Ala159 mutant, and for the effective association of PNP with FA. In a more general context, our observations point out very interesting and biologically important properties of the tyrosine residue in its excited state, which may undergo spontaneous deprotonation in the biomolecular systems, resulting further in unexpected physical and/or biological phenomena. Until now, this observation has not been widely discussed in the literature.

  20. Thermal vibration of rectangular single-layered black phosphorus predicted by orthotropic plate model

    NASA Astrophysics Data System (ADS)

    Zhang, Yiqing; Wang, Lifeng; Jiang, Jingnong

    2018-03-01

    Vibrational behavior is very important for nanostructure-based resonators. In this work, an orthotropic plate model together with a molecular dynamics (MD) simulation is used to investigate the thermal vibration of rectangular single-layered black phosphorus (SLBP). Two bending stiffness, two Poisson's ratios, and one shear modulus of SLBP are calculated using the MD simulation. The natural frequency of the SLBP predicted by the orthotropic plate model agrees with the one obtained from the MD simulation very well. The root of mean squared (RMS) amplitude of the SLBP is obtained by MD simulation and the orthotropic plate model considering the law of energy equipartition. The RMS amplitude of the thermal vibration of the SLBP is predicted well by the orthotropic plate model compared to the MD results. Furthermore, the thermal vibration of the SLBP with an initial stress is also well-described by the orthotropic plate model.

  1. Function and dynamics of aptamers: A case study on the malachite green aptamer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Tianjiao

    Aptamers are short single-stranded nucleic acids that can bind to their targets with high specificity and high affinity. To study aptamer function and dynamics, the malachite green aptamer was chosen as a model. Malachite green (MG) bleaching, in which an OH- attacks the central carbon (C1) of MG, was inhibited in the presence of the malachite green aptamer (MGA). The inhibition of MG bleaching by MGA could be reversed by an antisense oligonucleotide (AS) complementary to the MGA binding pocket. Computational cavity analysis of the NMR structure of the MGA-MG complex predicted that the OH - is sterically excluded frommore » the C1 of MG. The prediction was confirmed experimentally using variants of the MGA with changes in the MG binding pocket. This work shows that molecular reactivity can be reversibly regulated by an aptamer-AS pair based on steric hindrance. In addition to demonstrate that aptamers could control molecular reactivity, aptamer dynamics was studied with a strategy combining molecular dynamics (MD) simulation and experimental verification. MD simulation predicted that the MG binding pocket of the MGA is largely pre-organized and that binding of MG involves reorganization of the pocket and a simultaneous twisting of the MGA terminal stems around the pocket. MD simulation also provided a 3D-structure model of unoccupied MGA that has not yet been obtained by biophysical measurements. These predictions were consistent with biochemical and biophysical measurements of the MGA-MG interaction including RNase I footprinting, melting curves, thermodynamic and kinetic constants measurement. This work shows that MD simulation can be used to extend our understanding of the dynamics of aptamer-target interaction which is not evident from static 3D-structures. To conclude, I have developed a novel concept to control molecular reactivity by an aptamer based on steric protection and a strategy to study the dynamics of aptamer-target interaction by combining MD simulation and experimental verification. The former has potential application in controlling metabolic reactions and protein modifications by small reactants and the latter may serve as a general approach to study the dynamics of aptamer-target interaction for new insights into mechanisms of aptamer-target recognition.« less

  2. Dynamics of the GB3 loop regions from MD simulation: how much of it is real?

    PubMed

    Li, Tong; Jing, Qingqing; Yao, Lishan

    2011-04-07

    A total of 1.1 μs of molecular dynamics (MD) simulations were performed to study the structure and dynamics of protein GB3. The simulation motional amplitude of the loop regions is generally overestimated in comparison with the experimental backbone N-H order parameters S(2). Two-state behavior is observed for several residues in these regions, with the minor state population in the range of 3-13%. Further inspection suggests that the (φ, ψ) dihedral angles of the minor states deviate from the GB3 experimental values, implying the existence of nonnative states. After fitting the MD trajectories of these residues to the NMR RDCs, the minor state populations are significantly reduced by at least 80%, suggesting that MD simulations are strongly biased toward the minor states, thus overestimating the dynamics of the loop regions. The optimized trajectories produce intra, sequential H(N)-H(α) RDCs and intra (3)J(HNHα) that are not included in the trajectories fitting for these residues that are closer to the experimental data. Unlike GB3, 0.55 μs MD simulations of protein ubiquitin do not show distinctive minor states, and the derived NMR order parameters are better converged. Our findings indicate that the artifacts of the simulations depend on the specific system studied and that one should be cautious interpreting the enhanced dihedral dynamics from long MD simulations.

  3. PuReMD-GPU: A reactive molecular dynamics simulation package for GPUs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kylasa, S.B., E-mail: skylasa@purdue.edu; Aktulga, H.M., E-mail: hmaktulga@lbl.gov; Grama, A.Y., E-mail: ayg@cs.purdue.edu

    2014-09-01

    We present an efficient and highly accurate GP-GPU implementation of our community code, PuReMD, for reactive molecular dynamics simulations using the ReaxFF force field. PuReMD and its incorporation into LAMMPS (Reax/C) is used by a large number of research groups worldwide for simulating diverse systems ranging from biomembranes to explosives (RDX) at atomistic level of detail. The sub-femtosecond time-steps associated with ReaxFF strongly motivate significant improvements to per-timestep simulation time through effective use of GPUs. This paper presents, in detail, the design and implementation of PuReMD-GPU, which enables ReaxFF simulations on GPUs, as well as various performance optimization techniques wemore » developed to obtain high performance on state-of-the-art hardware. Comprehensive experiments on model systems (bulk water and amorphous silica) are presented to quantify the performance improvements achieved by PuReMD-GPU and to verify its accuracy. In particular, our experiments show up to 16× improvement in runtime compared to our highly optimized CPU-only single-core ReaxFF implementation. PuReMD-GPU is a unique production code, and is currently available on request from the authors.« less

  4. Sampling Enrichment toward Target Structures Using Hybrid Molecular Dynamics-Monte Carlo Simulations

    PubMed Central

    Yang, Kecheng; Różycki, Bartosz; Cui, Fengchao; Shi, Ce; Chen, Wenduo; Li, Yunqi

    2016-01-01

    Sampling enrichment toward a target state, an analogue of the improvement of sampling efficiency (SE), is critical in both the refinement of protein structures and the generation of near-native structure ensembles for the exploration of structure-function relationships. We developed a hybrid molecular dynamics (MD)-Monte Carlo (MC) approach to enrich the sampling toward the target structures. In this approach, the higher SE is achieved by perturbing the conventional MD simulations with a MC structure-acceptance judgment, which is based on the coincidence degree of small angle x-ray scattering (SAXS) intensity profiles between the simulation structures and the target structure. We found that the hybrid simulations could significantly improve SE by making the top-ranked models much closer to the target structures both in the secondary and tertiary structures. Specifically, for the 20 mono-residue peptides, when the initial structures had the root-mean-squared deviation (RMSD) from the target structure smaller than 7 Å, the hybrid MD-MC simulations afforded, on average, 0.83 Å and 1.73 Å in RMSD closer to the target than the parallel MD simulations at 310K and 370K, respectively. Meanwhile, the average SE values are also increased by 13.2% and 15.7%. The enrichment of sampling becomes more significant when the target states are gradually detectable in the MD-MC simulations in comparison with the parallel MD simulations, and provide >200% improvement in SE. We also performed a test of the hybrid MD-MC approach in the real protein system, the results showed that the SE for 3 out of 5 real proteins are improved. Overall, this work presents an efficient way of utilizing solution SAXS to improve protein structure prediction and refinement, as well as the generation of near native structures for function annotation. PMID:27227775

  5. Sampling Enrichment toward Target Structures Using Hybrid Molecular Dynamics-Monte Carlo Simulations.

    PubMed

    Yang, Kecheng; Różycki, Bartosz; Cui, Fengchao; Shi, Ce; Chen, Wenduo; Li, Yunqi

    2016-01-01

    Sampling enrichment toward a target state, an analogue of the improvement of sampling efficiency (SE), is critical in both the refinement of protein structures and the generation of near-native structure ensembles for the exploration of structure-function relationships. We developed a hybrid molecular dynamics (MD)-Monte Carlo (MC) approach to enrich the sampling toward the target structures. In this approach, the higher SE is achieved by perturbing the conventional MD simulations with a MC structure-acceptance judgment, which is based on the coincidence degree of small angle x-ray scattering (SAXS) intensity profiles between the simulation structures and the target structure. We found that the hybrid simulations could significantly improve SE by making the top-ranked models much closer to the target structures both in the secondary and tertiary structures. Specifically, for the 20 mono-residue peptides, when the initial structures had the root-mean-squared deviation (RMSD) from the target structure smaller than 7 Å, the hybrid MD-MC simulations afforded, on average, 0.83 Å and 1.73 Å in RMSD closer to the target than the parallel MD simulations at 310K and 370K, respectively. Meanwhile, the average SE values are also increased by 13.2% and 15.7%. The enrichment of sampling becomes more significant when the target states are gradually detectable in the MD-MC simulations in comparison with the parallel MD simulations, and provide >200% improvement in SE. We also performed a test of the hybrid MD-MC approach in the real protein system, the results showed that the SE for 3 out of 5 real proteins are improved. Overall, this work presents an efficient way of utilizing solution SAXS to improve protein structure prediction and refinement, as well as the generation of near native structures for function annotation.

  6. Computing the non-Markovian coarse-grained interactions derived from the Mori-Zwanzig formalism in molecular systems: Application to polymer melts

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Lee, Hee Sun; Darve, Eric; Karniadakis, George Em

    2017-01-01

    Memory effects are often introduced during coarse-graining of a complex dynamical system. In particular, a generalized Langevin equation (GLE) for the coarse-grained (CG) system arises in the context of Mori-Zwanzig formalism. Upon a pairwise decomposition, GLE can be reformulated into its pairwise version, i.e., non-Markovian dissipative particle dynamics (DPD). GLE models the dynamics of a single coarse particle, while DPD considers the dynamics of many interacting CG particles, with both CG systems governed by non-Markovian interactions. We compare two different methods for the practical implementation of the non-Markovian interactions in GLE and DPD systems. More specifically, a direct evaluation of the non-Markovian (NM) terms is performed in LE-NM and DPD-NM models, which requires the storage of historical information that significantly increases computational complexity. Alternatively, we use a few auxiliary variables in LE-AUX and DPD-AUX models to replace the non-Markovian dynamics with a Markovian dynamics in a higher dimensional space, leading to a much reduced memory footprint and computational cost. In our numerical benchmarks, the GLE and non-Markovian DPD models are constructed from molecular dynamics (MD) simulations of star-polymer melts. Results show that a Markovian dynamics with auxiliary variables successfully generates equivalent non-Markovian dynamics consistent with the reference MD system, while maintaining a tractable computational cost. Also, transient subdiffusion of the star-polymers observed in the MD system can be reproduced by the coarse-grained models. The non-interacting particle models, LE-NM/AUX, are computationally much cheaper than the interacting particle models, DPD-NM/AUX. However, the pairwise models with momentum conservation are more appropriate for correctly reproducing the long-time hydrodynamics characterised by an algebraic decay in the velocity autocorrelation function.

  7. A novel energy conversion based method for velocity correction in molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Hanhui; Collaborative Innovation Center of Advanced Aero-Engine, Hangzhou 310027; Liu, Ningning

    2017-05-01

    Molecular dynamics (MD) simulation has become an important tool for studying micro- or nano-scale dynamics and the statistical properties of fluids and solids. In MD simulations, there are mainly two approaches: equilibrium and non-equilibrium molecular dynamics (EMD and NEMD). In this paper, a new energy conversion based correction (ECBC) method for MD is developed. Unlike the traditional systematic correction based on macroscopic parameters, the ECBC method is developed strictly based on the physical interaction processes between the pair of molecules or atoms. The developed ECBC method can apply to EMD and NEMD directly. While using MD with this method, themore » difference between the EMD and NEMD is eliminated, and no macroscopic parameters such as external imposed potentials or coefficients are needed. With this method, many limits of using MD are lifted. The application scope of MD is greatly extended.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Andres

    Transport and reaction in zeolites and other porous materials, such as mesoporous silica particles, has been a focus of interest in recent years. This is in part due to the possibility of anomalous transport effects (e.g. single-file diffusion) and its impact in the reaction yield in catalytic processes. Computational simulations are often used to study these complex nonequilibrium systems. Computer simulations using Molecular Dynamics (MD) techniques are prohibitive, so instead coarse grained one-dimensional models with the aid of Kinetic Monte Carlo (KMC) simulations are used. Both techniques can be computationally expensive, both time and resource wise. These coarse-grained systems canmore » be exactly described by a set of coupled stochastic master equations, that describe the reaction-diffusion kinetics of the system. The equations can be written exactly, however, coupling between the equations and terms within the equations make it impossible to solve them exactly; approximations must be made. One of the most common methods to obtain approximate solutions is to use Mean Field (MF) theory. MF treatments yield reasonable results at high ratios of reaction rate k to hop rate h of the particles, but fail completely at low k=h due to the over-estimation of fluxes of particles within the pore. We develop a method to estimate fluxes and intrapore diffusivity in simple one- dimensional reaction-diffusion models at high and low k=h, where the pores are coupled to an equilibrated three-dimensional fluid. We thus successfully describe analytically these simple reaction-diffusion one-dimensional systems. Extensions to models considering behavior with long range steric interactions and wider pores require determination of multiple boundary conditions. We give a prescription to estimate the required parameters for these simulations. For one dimensional systems, if single-file diffusion is relaxed, additional parameters to describe particle exchange have to be introduced. We use Langevin Molecular Dynamics (MD) simulations to assess these parameters.« less

  9. Free-Energy Calculations. A Mathematical Perspective

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrzej

    2015-01-01

    Ion channels are pore-forming assemblies of transmembrane proteins that mediate and regulate ion transport through cell walls. They are ubiquitous to all life forms. In humans and other higher organisms they play the central role in conducting nerve impulses. They are also essential to cardiac processes, muscle contraction and epithelial transport. Ion channels from lower organisms can act as toxins or antimicrobial agents, and in a number of cases are involved in infectious diseases. Because of their important and diverse biological functions they are frequent targets of drug action. Also, simple natural or synthetic channels find numerous applications in biotechnology. For these reasons, studies of ion channels are at the forefront of biophysics, structural biology and cellular biology. In the last decade, the increased availability of X-ray structures has greatly advanced our understanding of ion channels. However, their mechanism of action remains elusive. This is because, in order to assist controlled ion transport, ion channels are dynamic by nature, but X-ray crystallography captures the channel in a single, sometimes non-native state. To explain how ion channels work, X-ray structures have to be supplemented with dynamic information. In principle, molecular dynamics (MD) simulations can aid in providing this information, as this is precisely what MD has been designed to do. However, MD simulations suffer from their own problems, such as inability to access sufficiently long time scales or limited accuracy of force fields. To assess the reliability of MD simulations it is only natural to turn to the main function of channels - conducting ions - and compare calculated ionic conductance with electrophysiological data, mainly single channel recordings, obtained under similar conditions. If this comparison is satisfactory it would greatly increase our confidence that both the structures and our computational methodologies are sufficiently accurate. Channel conductance, defined as the ratio of ionic current through the channel to applied voltage, can be calculated in MD simulations by way of applying an external electric field to the system and counting the number of ions that traverse the channel per unit time. If the current is small, a voltage significantly higher than the experimental one needs to be applied to collect sufficient statistics of ion crossing events. Then, the calculated conductance has to be extrapolated to the experimental voltage using procedures of unknown accuracy. Instead, we propose an alternative approach that applies if ion transport through channels can be described with sufficient accuracy by the one-dimensional diffusion equation in the potential given by the free energy profile and applied voltage. Then, it is possible to test the assumptions of the equation, recover the full voltage/current dependence, determine the reliability of the calculated conductance and reconstruct the underlying (equilibrium) free energy profile, all from MD simulations at a single voltage. We will present the underlying theory, model calculations that test this theory and simulations on ion conductance through a channel that has been extensively studied experimentally. To our knowledge this is the first case in which the complete, experimentally measured dependence of the current on applied voltage has been reconstructed from MD simulations.

  10. GeV ion irradiation of NiFe and NiCo: Insights from MD simulations and experiments

    DOE PAGES

    Leino, Aleksi A.; Samolyuk, German D.; Sachan, Ritesh; ...

    2018-03-31

    Concentrated solid solution alloys have attracted rapidly increasing attention due to their potential for designing materials with high tolerance to radiation damage. To tackle the effects of chemical complexity in defect dynamics and radiation response, we present in this paper a computational study on swift heavy ion induced effects in Ni and equiatomic Ni -based alloys (Ni 50Fe 50, Ni 50Co 50) using two-temperature molecular dynamics simulations (2T-MD). The electronic heat conductivity in the two-temperature equations is parameterized from the results of first principles electronic structure calculations. A bismuth ion (1.542 GeV) is selected and single impact simulations performed inmore » each target. We study the heat flow in the electronic subsystem and show that alloying Ni with Co or Fe reduces the heat dissipation from the impact by the electronic subsystem. Simulation results suggest no melting or residual damage in pure Ni while a cylindrical region melts along the ion propagation path in the alloys. In Ni 50Co 50 the damage consists of a dislocation loop structure (d = 2 nm) and isolated point defects, while in Ni 50Fe 50, a defect cluster (d = 4 nm) along the ion path is, in addition, formed. The simulation results are supported by atomic-level structural and defect characterizations in bismuth-irradiated Ni and Ni 50Fe 50. Finally, the significance of the 2T-MD model is demonstrated by comparing the results to those obtained with an instantaneous energy deposition model without consideration of e-ph interactions in pure Ni and by showing that it leads to a different qualitative behavior.« less

  11. GeV ion irradiation of NiFe and NiCo: Insights from MD simulations and experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leino, Aleksi A.; Samolyuk, German D.; Sachan, Ritesh

    Concentrated solid solution alloys have attracted rapidly increasing attention due to their potential for designing materials with high tolerance to radiation damage. To tackle the effects of chemical complexity in defect dynamics and radiation response, we present in this paper a computational study on swift heavy ion induced effects in Ni and equiatomic Ni -based alloys (Ni 50Fe 50, Ni 50Co 50) using two-temperature molecular dynamics simulations (2T-MD). The electronic heat conductivity in the two-temperature equations is parameterized from the results of first principles electronic structure calculations. A bismuth ion (1.542 GeV) is selected and single impact simulations performed inmore » each target. We study the heat flow in the electronic subsystem and show that alloying Ni with Co or Fe reduces the heat dissipation from the impact by the electronic subsystem. Simulation results suggest no melting or residual damage in pure Ni while a cylindrical region melts along the ion propagation path in the alloys. In Ni 50Co 50 the damage consists of a dislocation loop structure (d = 2 nm) and isolated point defects, while in Ni 50Fe 50, a defect cluster (d = 4 nm) along the ion path is, in addition, formed. The simulation results are supported by atomic-level structural and defect characterizations in bismuth-irradiated Ni and Ni 50Fe 50. Finally, the significance of the 2T-MD model is demonstrated by comparing the results to those obtained with an instantaneous energy deposition model without consideration of e-ph interactions in pure Ni and by showing that it leads to a different qualitative behavior.« less

  12. Assigning crystallographic electron densities with free energy calculations—The case of the fluoride channel Fluc

    PubMed Central

    2018-01-01

    Approximately 90% of the structures in the Protein Data Bank (PDB) were obtained by X-ray crystallography or electron microscopy. Whereas the overall quality of structure is considered high, thanks to a wide range of tools for structure validation, uncertainties may arise from density maps of small molecules, such as organic ligands, ions or water, which are non-covalently bound to the biomolecules. Even with some experience and chemical intuition, the assignment of such disconnected electron densities is often far from obvious. In this study, we suggest the use of molecular dynamics (MD) simulations and free energy calculations, which are well-established computational methods, to aid in the assignment of ambiguous disconnected electron densities. Specifically, estimates of (i) relative binding affinities, for instance between an ion and water, (ii) absolute binding free energies, i.e., free energies for transferring a solute from bulk solvent to a binding site, and (iii) stability assessments during equilibrium simulations may reveal the most plausible assignments. We illustrate this strategy using the crystal structure of the fluoride specific channel (Fluc), which contains five disconnected electron densities previously interpreted as four fluoride and one sodium ion. The simulations support the assignment of the sodium ion. In contrast, calculations of relative and absolute binding free energies as well as stability assessments during free MD simulations suggest that four of the densities represent water molecules instead of fluoride. The assignment of water is compatible with the loss of these densities in the non-conductive F82I/F85I mutant of Fluc. We critically discuss the role of the ion force fields for the calculations presented here. Overall, these findings indicate that MD simulations and free energy calculations are helpful tools for modeling water and ions into crystallographic density maps. PMID:29771936

  13. Hybrid particle-field molecular dynamics simulation for polyelectrolyte systems.

    PubMed

    Zhu, You-Liang; Lu, Zhong-Yuan; Milano, Giuseppe; Shi, An-Chang; Sun, Zhao-Yan

    2016-04-14

    To achieve simulations on large spatial and temporal scales with high molecular chemical specificity, a hybrid particle-field method was proposed recently. This method is developed by combining molecular dynamics and self-consistent field theory (MD-SCF). The MD-SCF method has been validated by successfully predicting the experimentally observable properties of several systems. Here we propose an efficient scheme for the inclusion of electrostatic interactions in the MD-SCF framework. In this scheme, charged molecules are interacting with the external fields that are self-consistently determined from the charge densities. This method is validated by comparing the structural properties of polyelectrolytes in solution obtained from the MD-SCF and particle-based simulations. Moreover, taking PMMA-b-PEO and LiCF3SO3 as examples, the enhancement of immiscibility between the ion-dissolving block and the inert block by doping lithium salts into the copolymer is examined by using the MD-SCF method. By employing GPU-acceleration, the high performance of the MD-SCF method with explicit treatment of electrostatics facilitates the simulation study of many problems involving polyelectrolytes.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Jincheng; Rimsza, Jessica

    Computational simulations at the atomistic level play an increasing important role in understanding the structures, behaviors, and the structure-property relationships of glass and amorphous materials. In this paper, we reviewed atomistic simulation methods ranging from first principles calculations and ab initio molecular dynamics (AIMD), to classical molecular dynamics (MD) and meso-scale kinetic Monte Carlo (KMC) simulations and their applications to glass-water interactions and glass dissolutions. Particularly, the use of these simulation methods in understanding the reaction mechanisms of water with oxide glasses, water-glass interfaces, hydrated porous silica gels formation, the structure and properties of multicomponent glasses, and microstructure evolution aremore » reviewed. Here, the advantages and disadvantageous of these methods are discussed and the current challenges and future direction of atomistic simulations in glass dissolution are presented.« less

  15. Key issues in the computational simulation of GPCR function: representation of loop domains

    NASA Astrophysics Data System (ADS)

    Mehler, E. L.; Periole, X.; Hassan, S. A.; Weinstein, H.

    2002-11-01

    Some key concerns raised by molecular modeling and computational simulation of functional mechanisms for membrane proteins are discussed and illustrated for members of the family of G protein coupled receptors (GPCRs). Of particular importance are issues related to the modeling and computational treatment of loop regions. These are demonstrated here with results from different levels of computational simulations applied to the structures of rhodopsin and a model of the 5-HT2A serotonin receptor, 5-HT2AR. First, comparative Molecular Dynamics (MD) simulations are reported for rhodopsin in vacuum and embedded in an explicit representation of the membrane and water environment. It is shown that in spite of a partial accounting of solvent screening effects by neutralization of charged side chains, vacuum MD simulations can lead to severe distortions of the loop structures. The primary source of the distortion appears to be formation of artifactual H-bonds, as has been repeatedly observed in vacuum simulations. To address such shortcomings, a recently proposed approach that has been developed for calculating the structure of segments that connect elements of secondary structure with known coordinates, is applied to 5-HT2AR to obtain an initial representation of the loops connecting the transmembrane (TM) helices. The approach consists of a simulated annealing combined with biased scaled collective variables Monte Carlo technique, and is applied to loops connecting the TM segments on both the extra-cellular and the cytoplasmic sides of the receptor. Although this initial calculation treats the loops as independent structural entities, the final structure exhibits a number of interloop interactions that may have functional significance. Finally, it is shown here that in the case where a given loop from two different GPCRs (here rhodopsin and 5-HT2AR) has approximately the same length and some degree of sequence identity, the fold adopted by the loops can be similar. Thus, in such special cases homology modeling might be used to obtain initial structures of these loops. Notably, however, all other loops in these two receptors appear to be very different in sequence and structure, so that their conformations can be found reliably only by ab initio, energy based methods and not by homology modeling.

  16. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations

    NASA Astrophysics Data System (ADS)

    Bylaska, Eric J.; Weare, Jonathan Q.; Weare, John H.

    2013-08-01

    Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time ti (trajectory positions and velocities xi = (ri, vi)) to time ti + 1 (xi + 1) by xi + 1 = fi(xi), the dynamics problem spanning an interval from t0…tM can be transformed into a root finding problem, F(X) = [xi - f(x(i - 1)]i = 1, M = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H2O AIMD simulation at the MP2 level. The maximum speedup (serial execution time/parallel execution time) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a distributed computing environment using very slow transmission control protocol/Internet protocol networks. Scripts written in Python that make calls to a precompiled quantum chemistry package (NWChem) are demonstrated to provide an actual speedup of 8.2 for a 2.5 ps AIMD simulation of HCl + 4H2O at the MP2/6-31G* level. Implemented in this way these algorithms can be used for long time high-level AIMD simulations at a modest cost using machines connected by very slow networks such as WiFi, or in different time zones connected by the Internet. The algorithms can also be used with programs that are already parallel. Using these algorithms, we are able to reduce the cost of a MP2/6-311++G(2d,2p) simulation that had reached its maximum possible speedup in the parallelization of the electronic structure calculation from 32 s/time step to 6.9 s/time step.

  17. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bylaska, Eric J.; Weare, Jonathan Q.; Weare, John H.

    2013-08-21

    Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f , (e.g. Verlet algorithm) is available to propagate the system from time ti (trajectory positions and velocities xi = (ri; vi)) to time ti+1 (xi+1) by xi+1 = fi(xi), the dynamics problem spanning an interval from t0 : : : tM can be transformed into a root finding problem, F(X) = [xi - f (x(i-1)]i=1;M = 0, for the trajectory variables. The root finding problem is solved using amore » variety of optimization techniques, including quasi-Newton and preconditioned quasi-Newton optimization schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed and the effectiveness of various approaches to solving the root finding problem are tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl+4H2O AIMD simulation at the MP2 level. The maximum speedup obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a distributed computing environment using very slow TCP/IP networks. Scripts written in Python that make calls to a precompiled quantum chemistry package (NWChem) are demonstrated to provide an actual speedup of 8.2 for a 2.5 ps AIMD simulation of HCl+4H2O at the MP2/6-31G* level. Implemented in this way these algorithms can be used for long time high-level AIMD simulations at a modest cost using machines connected by very slow networks such as WiFi, or in different time zones connected by the Internet. The algorithms can also be used with programs that are already parallel. By using these algorithms we are able to reduce the cost of a MP2/6-311++G(2d,2p) simulation that had reached its maximum possible speedup in the parallelization of the electronic structure calculation from 32 seconds per time step to 6.9 seconds per time step.« less

  18. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations.

    PubMed

    Bylaska, Eric J; Weare, Jonathan Q; Weare, John H

    2013-08-21

    Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time ti (trajectory positions and velocities xi = (ri, vi)) to time ti + 1 (xi + 1) by xi + 1 = fi(xi), the dynamics problem spanning an interval from t0[ellipsis (horizontal)]tM can be transformed into a root finding problem, F(X) = [xi - f(x(i - 1)]i = 1, M = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H2O AIMD simulation at the MP2 level. The maximum speedup (serial execution/timeparallel execution time) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a distributed computing environment using very slow transmission control protocol/Internet protocol networks. Scripts written in Python that make calls to a precompiled quantum chemistry package (NWChem) are demonstrated to provide an actual speedup of 8.2 for a 2.5 ps AIMD simulation of HCl + 4H2O at the MP2/6-31G* level. Implemented in this way these algorithms can be used for long time high-level AIMD simulations at a modest cost using machines connected by very slow networks such as WiFi, or in different time zones connected by the Internet. The algorithms can also be used with programs that are already parallel. Using these algorithms, we are able to reduce the cost of a MP2/6-311++G(2d,2p) simulation that had reached its maximum possible speedup in the parallelization of the electronic structure calculation from 32 s/time step to 6.9 s/time step.

  19. Hybrid Quantum Mechanics/Molecular Mechanics Solvation Scheme for Computing Free Energies of Reactions at Metal-Water Interfaces.

    PubMed

    Faheem, Muhammad; Heyden, Andreas

    2014-08-12

    We report the development of a quantum mechanics/molecular mechanics free energy perturbation (QM/MM-FEP) method for modeling chemical reactions at metal-water interfaces. This novel solvation scheme combines planewave density function theory (DFT), periodic electrostatic embedded cluster method (PEECM) calculations using Gaussian-type orbitals, and classical molecular dynamics (MD) simulations to obtain a free energy description of a complex metal-water system. We derive a potential of mean force (PMF) of the reaction system within the QM/MM framework. A fixed-size, finite ensemble of MM conformations is used to permit precise evaluation of the PMF of QM coordinates and its gradient defined within this ensemble. Local conformations of adsorbed reaction moieties are optimized using sequential MD-sampling and QM-optimization steps. An approximate reaction coordinate is constructed using a number of interpolated states and the free energy difference between adjacent states is calculated using the QM/MM-FEP method. By avoiding on-the-fly QM calculations and by circumventing the challenges associated with statistical averaging during MD sampling, a computational speedup of multiple orders of magnitude is realized. The method is systematically validated against the results of ab initio QM calculations and demonstrated for C-C cleavage in double-dehydrogenated ethylene glycol on a Pt (111) model surface.

  20. A preliminary study of molecular dynamics on reconfigurable computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolinski, C.; Trouw, F. R.; Gokhale, M.

    2003-01-01

    In this paper we investigate the performance of platform FPGAs on a compute-intensive, floating-point-intensive supercomputing application, Molecular Dynamics (MD). MD is a popular simulation technique to track interacting particles through time by integrating their equations of motion. One part of the MD algorithm was implemented using the Fabric Generator (FG)[l I ] and mapped onto several reconfigurable logic arrays. FG is a Java-based toolset that greatly accelerates construction of the fabrics from an abstract technology independent representation. Our experiments used technology-independent IEEE 32-bit floating point operators so that the design could be easily re-targeted. Experiments were performed using both non-pipelinedmore » and pipelined floating point modules. We present results for the Altera Excalibur ARM System on a Programmable Chip (SoPC), the Altera Strath EPlS80, and the Xilinx Virtex-N Pro 2VP.50. The best results obtained were 5.69 GFlops at 8OMHz(Altera Strath EPlS80), and 4.47 GFlops at 82 MHz (Xilinx Virtex-II Pro 2VF50). Assuming a lOWpower budget, these results compare very favorably to a 4Gjlop/40Wprocessing/power rate for a modern Pentium, suggesting that reconfigurable logic can achieve high performance at low power on jloating-point-intensivea pplications.« less

  1. Internal Coordinate Molecular Dynamics: A Foundation for Multiscale Dynamics

    PubMed Central

    2015-01-01

    Internal coordinates such as bond lengths, bond angles, and torsion angles (BAT) are natural coordinates for describing a bonded molecular system. However, the molecular dynamics (MD) simulation methods that are widely used for proteins, DNA, and polymers are based on Cartesian coordinates owing to the mathematical simplicity of the equations of motion. However, constraints are often needed with Cartesian MD simulations to enhance the conformational sampling. This makes the equations of motion in the Cartesian coordinates differential-algebraic, which adversely impacts the complexity and the robustness of the simulations. On the other hand, constraints can be easily placed in BAT coordinates by removing the degrees of freedom that need to be constrained. Thus, the internal coordinate MD (ICMD) offers an attractive alternative to Cartesian coordinate MD for developing multiscale MD method. The torsional MD method is a special adaptation of the ICMD method, where all the bond lengths and bond angles are kept rigid. The advantages of ICMD simulation methods are the longer time step size afforded by freezing high frequency degrees of freedom and performing a conformational search in the more important low frequency torsional degrees of freedom. However, the advancements in the ICMD simulations have been slow and stifled by long-standing mathematical bottlenecks. In this review, we summarize the recent mathematical advancements we have made based on spatial operator algebra, in developing a robust long time scale ICMD simulation toolkit useful for various applications. We also present the applications of ICMD simulations to study conformational changes in proteins and protein structure refinement. We review the advantages of the ICMD simulations over the Cartesian simulations when used with enhanced sampling methods and project the future use of ICMD simulations in protein dynamics. PMID:25517406

  2. Atomistic materials modeling of complex systems: Carbynes, carbon nanotube devices and bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Luo, Weiqi

    The key to understanding and predicting the behavior of materials is the knowledge of their structures. Many properties of materials samples are not solely determined by their average chemical compositions which one may easily control. Instead, they are profoundly influenced by structural features of different characteristic length scales. Starting in the last century, metallurgical engineering has mostly been microstructure engineering. With the further evolution of materials science, structural features of smaller length scales down to the atomic structure, have become of interest for the purpose of properties engineering and functionalizing materials and are, therefore, subjected to study. As computer modeling is becoming more powerful due to the dramatic increase of computational resources and software over the recent decades, there is an increasing demand for atomistic simulations with the goal of better understanding materials behavior on the atomic scale. Density functional theory (DFT) is a quantum mechanics based approach to calculate electron distribution, total energy and interatomic forces with high accuracy. From these, atomic structures and thermal effects can be predicted. However, DFT is mostly applied to relatively simple systems because it is computationally very demanding. In this thesis, the current limits of DFT applications are explored by studying relatively complex systems, namely, carbynes, carbon nanotube (CNT) devices and bulk metallic glasses (BMGs). Special care is taken to overcome the limitations set by small system sizes and time scales that often prohibit DFT from being applied to realistic systems under realistic external conditions. In the first study, we examine the possible existence of a third solid phase of carbon with linear bonding called carbyne, which has been suggested in the literature and whose formation has been suggested to be detrimental to high-temperature carbon materials. We have suggested potential structures for solid carbynes based on literature data and our calculations and have calculated their free energies by DFT as a function of temperature (0--4000 K) and pressure (0--180 kbar). We propose and verify a simplified approach to calculate the phonon density of states (DOS) to allow a fast calculation of free energies. We found that all carbyne structures have higher free energies than graphite in the whole temperature and pressure range of this investigation, making pure (carbon-only) carbynes at most meta-stable. The inclusion of impurities was studied as well and may be the key for a stable carbyne phase. For CNT devices which have been suggested to eventually replace current Si technology, there is currently no equivalent for the highly used Si process modeling methods ("Technology Computer Aided Design" (TCAD)). We suggest accelerated DFT molecular dynamics (MD) simulations as a method for process modeling and apply it to study the contact formation between CNTs and metal contacts consisting of Ti, Pd, Al, and Au. The temperature accelerated dynamics (TAD) technique was adopted to overcome the time limitations of MD simulations in general, which are especially severe for the computationally demanding DFT MD simulations. We found that CNTs undergo a structural transformation when brought into contact with certain metal electrodes (here, Ti and Al). This resulted in a dramatic decrease in electrical conductance of the device. We also show that the transformation depends on the size of CNTs due to the size-dependent elastic energy and on the electrode materials due to the electronegativity-dependent charge transfer. In the last study, DFT was used in conjunction with classical MD simulations to predict the electron density of a Cu46Zr54 BMG structure modeled by a 1000-atom cell. Whereas DFT is capable to calculate the electron distribution in the cell, it is too slow to simulate melting and structural relaxation, which we handle by classical MD within the Embedded Atom Method. We propose a new model to analyze the open volume distribution based on the electron density and compare it with the traditional hard sphere model. Results from both models agree well, while the former allows a significantly better physical insight into the open volume distribution. As an additional plus, its results can be connected to experimental results by techniques such as Positron Annihilation Spectroscopy (PAS).

  3. Electrostatics of proteins in dielectric solvent continua. II. Hamiltonian reaction field dynamics

    NASA Astrophysics Data System (ADS)

    Bauer, Sebastian; Tavan, Paul; Mathias, Gerald

    2014-03-01

    In Paper I of this work [S. Bauer, G. Mathias, and P. Tavan, J. Chem. Phys. 140, 104102 (2014)] we have presented a reaction field (RF) method, which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of polarizable molecular mechanics (MM) force fields. Building upon these results, here we suggest a method for linearly scaling Hamiltonian RF/MM molecular dynamics (MD) simulations, which we call "Hamiltonian dielectric solvent" (HADES). First, we derive analytical expressions for the RF forces acting on the solute atoms. These forces properly account for all those conditions, which have to be self-consistently fulfilled by RF quantities introduced in Paper I. Next we provide details on the implementation, i.e., we show how our RF approach is combined with a fast multipole method and how the self-consistency iterations are accelerated by the use of the so-called direct inversion in the iterative subspace. Finally we demonstrate that the method and its implementation enable Hamiltonian, i.e., energy and momentum conserving HADES-MD, and compare in a sample application on Ac-Ala-NHMe the HADES-MD free energy landscape at 300 K with that obtained in Paper I by scanning of configurations and with one obtained from an explicit solvent simulation.

  4. Molecular Dynamics Simulations on Gas-Phase Proteins with Mobile Protons: Inclusion of All-Atom Charge Solvation.

    PubMed

    Konermann, Lars

    2017-08-31

    Molecular dynamics (MD) simulations have become a key tool for examining the properties of electrosprayed protein ions. Traditional force fields employ static charges on titratable sites, whereas in reality, protons are highly mobile in gas-phase proteins. Earlier studies tackled this problem by adjusting charge patterns during MD runs. Within those algorithms, proton redistribution was subject to energy minimization, taking into account electrostatic and proton affinity contributions. However, those earlier approaches described (de)protonated moieties as point charges, neglecting charge solvation, which is highly prevalent in the gas phase. Here, we describe a mobile proton algorithm that considers the electrostatic contributions from all atoms, such that charge solvation is explicitly included. MD runs were broken down into 50 ps fixed-charge segments. After each segment, the electrostatics was reanalyzed and protons were redistributed. Challenges associated with computational cost were overcome by devising a streamlined method for electrostatic calculations. Avidin (a 504-residue protein complex) maintained a nativelike fold over 200 ns. Proton transfer and side chain rearrangements produced extensive salt bridge networks at the protein surface. The mobile proton technique introduced here should pave the way toward future studies on protein folding, unfolding, collapse, and subunit dissociation in the gas phase.

  5. Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method

    NASA Astrophysics Data System (ADS)

    Etesami, S. Alireza; Asadi, Ebrahim

    2018-01-01

    Availability of a reliable interatomic potential is one of the major challenges in utilizing molecular dynamics (MD) for simulations of metals at near the melting temperatures and melting point (MP). Here, we propose a novel approach to address this challenge in the concept of modified-embedded-atom (MEAM) interatomic potential; also, we apply the approach on iron, nickel, copper, and aluminum as case studies. We propose adding experimentally available high temperature elastic constants and MP of the element to the list of typical low temperature properties used for the development of MD interatomic potential parameters. We show that the proposed approach results in a reasonable agreement between the MD calculations of melting properties such as latent heat, expansion in melting, liquid structure factor, and solid-liquid interface stiffness and their experimental/computational counterparts. Then, we present the physical properties of mentioned elements near melting temperatures using the new MEAM parameters. We observe that the behavior of elastic constants, heat capacity and thermal linear expansion coefficient at room temperature compared to MP follows an empirical linear relation (α±β × MP) for transition metals. Furthermore, a linear relation between the tetragonal shear modulus and the enthalpy change from room temperature to MP is observed for face-centered cubic materials.

  6. The Ionic Atmosphere around A-RNA: Poisson-Boltzmann and Molecular Dynamics Simulations

    PubMed Central

    Kirmizialtin, Serdal; Silalahi, Alexander R.J.; Elber, Ron; Fenley, Marcia O.

    2012-01-01

    The distributions of different cations around A-RNA are computed by Poisson-Boltzmann (PB) equation and replica exchange molecular dynamics (MD). Both the nonlinear PB and size-modified PB theories are considered. The number of ions bound to A-RNA, which can be measured experimentally, is well reproduced in all methods. On the other hand, the radial ion distribution profiles show differences between MD and PB. We showed that PB results are sensitive to ion size and functional form of the solvent dielectric region but not the solvent dielectric boundary definition. Size-modified PB agrees with replica exchange molecular dynamics much better than nonlinear PB when the ion sizes are chosen from atomistic simulations. The distribution of ions 14 Å away from the RNA central axis are reasonably well reproduced by size-modified PB for all ion types with a uniform solvent dielectric model and a sharp dielectric boundary between solvent and RNA. However, this model does not agree with MD for shorter distances from the A-RNA. A distance-dependent solvent dielectric function proposed by another research group improves the agreement for sodium and strontium ions, even for shorter distances from the A-RNA. However, Mg2+ distributions are still at significant variances for shorter distances. PMID:22385854

  7. Investigation of polarization effects in the gramicidin A channel from ab initio molecular dynamics simulations.

    PubMed

    Timko, Jeff; Kuyucak, Serdar

    2012-11-28

    Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K(+) ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K(+) ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K(+) ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K(+) ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.

  8. Molecular Docking, Molecular Dynamics Simulations, Computational Screening to Design Quorum Sensing Inhibitors Targeting LuxP of Vibrio harveyi and Its Biological Evaluation.

    PubMed

    Rajamanikandan, Sundaraj; Jeyakanthan, Jeyaraman; Srinivasan, Pappu

    2017-01-01

    Quorum sensing (QS) plays an important role in the biofilm formation, production of virulence factors and stress responses in Vibrio harveyi. Therefore, interrupting QS is a possible approach to modulate bacterial behavior. In the present study, three docking protocols, such as Rigid Receptor Docking (RRD), Induced Fit Docking (IFD), and Quantum Polarized Ligand Docking (QPLD) were used to elucidate the binding mode of boronic acid derivatives into the binding pocket of LuxP protein in V. harveyi. Among the three docking protocols, IFD accurately predicted the correct binding mode of the studied inhibitors. Molecular dynamics (MD) simulations of the protein-ligand complexes indicates that the inter-molecular hydrogen bonds formed between the protein and ligand complex remains stable during the simulation time. Pharmacophore and shape-based virtual screening were performed to find selective and potent compounds from ChemBridge database. Five hit compounds were selected and subjected to IFD and MD simulations to validate the binding mode. In addition, enrichment calculation was performed to discriminate and separate active compounds from the inactive compounds. Based on the computational studies, the potent Bicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid-2,6-dimethylpyridine 1-oxide (ChemBridge_5144368) was selected for in vitro assays. The compound exhibited dose dependent inhibition in bioluminescence and also inhibits biofilm formation in V. harveyi to the level of 64.25 %. The result from the study suggests that ChemBridge_5144368 could serve as an anti-quorum sensing molecule for V. harveyi.

  9. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview

    PubMed Central

    2018-01-01

    With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA–ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field. PMID:29297679

  10. Simulation of macromolecule self-assembly in solution: A multiscale approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavino, Alessio D., E-mail: alessiodomenico.lavino@studenti.polito.it; Barresi, Antonello A., E-mail: antonello.barresi@polito.it; Marchisio, Daniele L., E-mail: daniele.marchisio@polito.it

    2015-12-17

    One of the most common processes to produce polymer nanoparticles is to induce self-assembly by using the solvent-displacement method, in which the polymer is dissolved in a “good” solvent and the solution is then mixed with an “anti-solvent”. The polymer ability to self-assemble in solution is therefore determined by its structural and transport properties in solutions of the pure solvents and at the intermediate compositions. In this work, we focus on poly-ε-caprolactone (PCL) which is a biocompatible polymer that finds widespread application in the pharmaceutical and biomedical fields, performing simulation at three different scales using three different computational tools: fullmore » atomistic molecular dynamics (MD), population balance modeling (PBM) and computational fluid dynamics (CFD). Simulations consider PCL chains of different molecular weight in solution of pure acetone (good solvent), of pure water (anti-solvent) and their mixtures, and mixing at different rates and initial concentrations in a confined impinging jets mixer (CIJM). Our MD simulations reveal that the nano-structuring of one of the solvents in the mixture leads to an unexpected identical polymer structure irrespectively of the concentration of the two solvents. In particular, although in pure solvents the behavior of the polymer is, as expected, very different, at intermediate compositions, the PCL chain shows properties very similar to those found in pure acetone as a result of the clustering of the acetone molecules in the vicinity of the polymer chain. We derive an analytical expression to predict the polymer structural properties in solution at different solvent compositions and use it to formulate an aggregation kernel to describe the self-assembly in the CIJM via PBM and CFD. Simulations are eventually validated against experiments.« less

  11. Atomistic and molecular effects in electric double layers at high surface charges

    DOE PAGES

    Templeton, Jeremy Alan; Lee, Jonathan; Mani, Ali

    2015-06-16

    Here, the Poisson–Boltzmann theory for electrolytes near a charged surface is known to be invalid due to unaccounted physics associated with high ion concentration regimes. In order to investigate this regime, fluids density functional theory (f-DFT) and molecular dynamics (MD) simulations were used to determine electric surface potential as a function of surface charge. Based on these detailed computations, for electrolytes with nonpolar solvent, the surface potential is shown to depend quadratically on the surface charge in the high charge limit. We demonstrate that modified Poisson–Boltzmann theories can model this limit if they are augmented with atomic packing densities providedmore » by MD. However, when the solvent is a highly polar molecule water an intermediate regime is identified in which a constant capacitance is realized. Simulation results demonstrate the mechanism underlying this regime, and for the salt water system studied here, it persists throughout the range of physically realistic surface charge densities so the potential’s quadratic surface charge dependence is not obtained.« less

  12. Fe/starch nanoparticle - Pseudomonas aeruginosa: Bio-physiochemical and MD studies.

    PubMed

    Mofradnia, Soheil Rezazadeh; Tavakoli, Zahra; Yazdian, Fatemeh; Rashedi, Hamid; Rasekh, Behnam

    2018-05-03

    In this research, we attempt to study biosurfactant production by Pseudomonas aeruginosa using Fe/starch nanoparticles. Fe/starch showed no bacterial toxicity at 1 mg/ml and increased the growth rate and biosurfactant production up to 23.21 and 20.73%, respectively. Surface tension, dry weight cell, and emulsification indexes (E24) were measured. Biosurfactant production was considered via computational techniques and molecular dynamic (MD) simulation through flexible and periodic conditions (by material studio software) as well. The results of software predictions demonstrate by radial distribution function (RDF), density, energy and temperature graphs. According to the present experimental results, increased 30% growth of the bacterium has been observed and the subsequent production of biosurfactant. The difference between the experimental results and simulation data were achieved up to 0.17 g/cm 3 , which confirms the prediction of data by the software due to a difference of <14.5% (ideal error value is 20%). Copyright © 2017. Published by Elsevier B.V.

  13. Lubrication mechanisms of hollow-core inorganic fullerene-like nanoparticles: coupling experimental and computational works

    NASA Astrophysics Data System (ADS)

    Lahouij, I.; Bucholz, E. W.; Vacher, B.; Sinnott, S. B.; Martin, J. M.; Dassenoy, F.

    2012-09-01

    Inorganic fullerene-like (IF) nanoparticles made of metal dichalcogenides have previously been recognized to be good friction modifiers and anti-wear additives under boundary lubrication conditions. The tribological performance of these particles appears to be a result of their size, structure and morphology, along with the test conditions. However, the very small scale of the IF nanoparticles makes distinguishing the properties which affect the lubrication mechanism exceedingly difficult. In this work, a high resolution transmission electron microscope equipped with a nanoindentation holder is used to manipulate individual hollow IF-WS2 nanoparticles and to investigate their responses to compression. Additional atomistic molecular dynamics (MD) simulations of similarly structured, individual hollow IF-MoS2 nanoparticles are performed for compression studies between molybdenum surfaces on their major and minor axis diameters. MD simulations of these structures allows for characterization of the influence of structural orientation on the mechanical behavior and nano-sheet exfoliation of hollow-core IF nanoparticles. The experimental and theoretical results for these similar nanoparticles are qualitatively compared.

  14. Lubrication mechanisms of hollow-core inorganic fullerene-like nanoparticles: coupling experimental and computational works.

    PubMed

    Lahouij, I; Bucholz, E W; Vacher, B; Sinnott, S B; Martin, J M; Dassenoy, F

    2012-09-21

    Inorganic fullerene-like (IF) nanoparticles made of metal dichalcogenides have previously been recognized to be good friction modifiers and anti-wear additives under boundary lubrication conditions. The tribological performance of these particles appears to be a result of their size, structure and morphology, along with the test conditions. However, the very small scale of the IF nanoparticles makes distinguishing the properties which affect the lubrication mechanism exceedingly difficult. In this work, a high resolution transmission electron microscope equipped with a nanoindentation holder is used to manipulate individual hollow IF-WS(2) nanoparticles and to investigate their responses to compression. Additional atomistic molecular dynamics (MD) simulations of similarly structured, individual hollow IF-MoS(2) nanoparticles are performed for compression studies between molybdenum surfaces on their major and minor axis diameters. MD simulations of these structures allows for characterization of the influence of structural orientation on the mechanical behavior and nano-sheet exfoliation of hollow-core IF nanoparticles. The experimental and theoretical results for these similar nanoparticles are qualitatively compared.

  15. NBodyLab Simulation Experiments with GRAPE-6a AND MD-GRAPE2 Acceleration

    NASA Astrophysics Data System (ADS)

    Johnson, V.; Ates, A.

    2005-12-01

    NbodyLab is an astrophysical N-body simulation testbed for student research. It is accessible via a web interface and runs as a backend framework under Linux. NbodyLab can generate data models or perform star catalog lookups, transform input data sets, perform direct summation gravitational force calculations using a variety of integration schemes, and produce analysis and visualization output products. NEMO (Teuben 1994), a popular stellar dynamics toolbox, is used for some functions. NbodyLab integrators can optionally utilize two types of low-cost desktop supercomputer accelerators, the newly available GRAPE-6a (125 Gflops peak) and the MD-GRAPE2 (64-128 Gflops peak). The initial version of NBodyLab was presented at ADASS 2002. This paper summarizes software enhancements developed subsequently, focusing on GRAPE-6a related enhancements, and gives examples of computational experiments and astrophysical research, including star cluster and solar system studies, that can be conducted with the new testbed functionality.

  16. Diffusion and viscosity of liquid tin: Green-Kubo relationship-based calculations from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mouas, Mohamed; Gasser, Jean-Georges; Hellal, Slimane; Grosdidier, Benoît; Makradi, Ahmed; Belouettar, Salim

    2012-03-01

    Molecular dynamics (MD) simulations of liquid tin between its melting point and 1600 °C have been performed in order to interpret and discuss the ionic structure. The interactions between ions are described by a new accurate pair potential built within the pseudopotential formalism and the linear response theory. The calculated structure factor that reflects the main information on the local atomic order in liquids is compared to diffraction measurements. Having some confidence in the ability of this pair potential to give a good representation of the atomic structure, we then focused our attention on the investigation of the atomic transport properties through the MD computations of the velocity autocorrelation function and stress autocorrelation function. Using the Green-Kubo formula (for the first time to our knowledge for liquid tin) we determine the macroscopic transport properties from the corresponding microscopic time autocorrelation functions. The selfdiffusion coefficient and the shear viscosity as functions of temperature are found to be in good agreement with the experimental data.

  17. Predicting solute partitioning in lipid bilayers: Free energies and partition coefficients from molecular dynamics simulations and COSMOmic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakobtorweihen, S., E-mail: jakobtorweihen@tuhh.de; Ingram, T.; Gerlach, T.

    2014-07-28

    Quantitative predictions of biomembrane/water partition coefficients are important, as they are a key property in pharmaceutical applications and toxicological studies. Molecular dynamics (MD) simulations are used to calculate free energy profiles for different solutes in lipid bilayers. How to calculate partition coefficients from these profiles is discussed in detail and different definitions of partition coefficients are compared. Importantly, it is shown that the calculated coefficients are in quantitative agreement with experimental results. Furthermore, we compare free energy profiles from MD simulations to profiles obtained by the recent method COSMOmic, which is an extension of the conductor-like screening model for realisticmore » solvation to micelles and biomembranes. The free energy profiles from these molecular methods are in good agreement. Additionally, solute orientations calculated with MD and COSMOmic are compared and again a good agreement is found. Four different solutes are investigated in detail: 4-ethylphenol, propanol, 5-phenylvaleric acid, and dibenz[a,h]anthracene, whereby the latter belongs to the class of polycyclic aromatic hydrocarbons. The convergence of the free energy profiles from biased MD simulations is discussed and the results are shown to be comparable to equilibrium MD simulations. For 5-phenylvaleric acid the influence of the carboxyl group dihedral angle on free energy profiles is analyzed with MD simulations.« less

  18. Computation Error Analysis: Students with Mathematics Difficulty Compared to Typically Achieving Students

    ERIC Educational Resources Information Center

    Nelson, Gena; Powell, Sarah R.

    2018-01-01

    Though proficiency with computation is highly emphasized in national mathematics standards, students with mathematics difficulty (MD) continue to struggle with computation. To learn more about the differences in computation error patterns between typically achieving students and students with MD, we assessed 478 third-grade students on a measure…

  19. Mass and heat transfer between evaporation and condensation surfaces: Atomistic simulation and solution of Boltzmann kinetic equation.

    PubMed

    Zhakhovsky, Vasily V; Kryukov, Alexei P; Levashov, Vladimir Yu; Shishkova, Irina N; Anisimov, Sergey I

    2018-04-16

    Boundary conditions required for numerical solution of the Boltzmann kinetic equation (BKE) for mass/heat transfer between evaporation and condensation surfaces are analyzed by comparison of BKE results with molecular dynamics (MD) simulations. Lennard-Jones potential with parameters corresponding to solid argon is used to simulate evaporation from the hot side, nonequilibrium vapor flow with a Knudsen number of about 0.02, and condensation on the cold side of the condensed phase. The equilibrium density of vapor obtained in MD simulation of phase coexistence is used in BKE calculations for consistency of BKE results with MD data. The collision cross-section is also adjusted to provide a thermal flux in vapor identical to that in MD. Our MD simulations of evaporation toward a nonreflective absorbing boundary show that the velocity distribution function (VDF) of evaporated atoms has the nearly semi-Maxwellian shape because the binding energy of atoms evaporated from the interphase layer between bulk phase and vapor is much smaller than the cohesive energy in the condensed phase. Indeed, the calculated temperature and density profiles within the interphase layer indicate that the averaged kinetic energy of atoms remains near-constant with decreasing density almost until the interphase edge. Using consistent BKE and MD methods, the profiles of gas density, mass velocity, and temperatures together with VDFs in a gap of many mean free paths between the evaporation and condensation surfaces are obtained and compared. We demonstrate that the best fit of BKE results with MD simulations can be achieved with the evaporation and condensation coefficients both close to unity.

  20. Dependence of Interaction Free Energy between Solutes on an External Electrostatic Field

    PubMed Central

    Yang, Pei-Kun

    2013-01-01

    To explore the athermal effect of an external electrostatic field on the stabilities of protein conformations and the binding affinities of protein-protein/ligand interactions, the dependences of the polar and hydrophobic interactions on the external electrostatic field, −Eext, were studied using molecular dynamics (MD) simulations. By decomposing Eext into, along, and perpendicular to the direction formed by the two solutes, the effect of Eext on the interactions between these two solutes can be estimated based on the effects from these two components. Eext was applied along the direction of the electric dipole formed by two solutes with opposite charges. The attractive interaction free energy between these two solutes decreased for solutes treated as point charges. In contrast, the attractive interaction free energy between these two solutes increased, as observed by MD simulations, for Eext = 40 or 60 MV/cm. Eext was applied perpendicular to the direction of the electric dipole formed by these two solutes. The attractive interaction free energy was increased for Eext = 100 MV/cm as a result of dielectric saturation. The force on the solutes along the direction of Eext computed from MD simulations was greater than that estimated from a continuum solvent in which the solutes were treated as point charges. To explore the hydrophobic interactions, Eext was applied to a water cluster containing two neutral solutes. The repulsive force between these solutes was decreased/increased for Eext along/perpendicular to the direction of the electric dipole formed by these two solutes. PMID:23852018

  1. Theoretical approaches for dynamical ordering of biomolecular systems.

    PubMed

    Okumura, Hisashi; Higashi, Masahiro; Yoshida, Yuichiro; Sato, Hirofumi; Akiyama, Ryo

    2018-02-01

    Living systems are characterized by the dynamic assembly and disassembly of biomolecules. The dynamical ordering mechanism of these biomolecules has been investigated both experimentally and theoretically. The main theoretical approaches include quantum mechanical (QM) calculation, all-atom (AA) modeling, and coarse-grained (CG) modeling. The selected approach depends on the size of the target system (which differs among electrons, atoms, molecules, and molecular assemblies). These hierarchal approaches can be combined with molecular dynamics (MD) simulation and/or integral equation theories for liquids, which cover all size hierarchies. We review the framework of quantum mechanical/molecular mechanical (QM/MM) calculations, AA MD simulations, CG modeling, and integral equation theories. Applications of these methods to the dynamical ordering of biomolecular systems are also exemplified. The QM/MM calculation enables the study of chemical reactions. The AA MD simulation, which omits the QM calculation, can follow longer time-scale phenomena. By reducing the number of degrees of freedom and the computational cost, CG modeling can follow much longer time-scale phenomena than AA modeling. Integral equation theories for liquids elucidate the liquid structure, for example, whether the liquid follows a radial distribution function. These theoretical approaches can analyze the dynamic behaviors of biomolecular systems. They also provide useful tools for exploring the dynamic ordering systems of biomolecules, such as self-assembly. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Statistical study of defects caused by primary knock-on atoms in fcc Cu and bcc W using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Warrier, M.; Bhardwaj, U.; Hemani, H.; Schneider, R.; Mutzke, A.; Valsakumar, M. C.

    2015-12-01

    We report on molecular Dynamics (MD) simulations carried out in fcc Cu and bcc W using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code to study (i) the statistical variations in the number of interstitials and vacancies produced by energetic primary knock-on atoms (PKA) (0.1-5 keV) directed in random directions and (ii) the in-cascade cluster size distributions. It is seen that around 60-80 random directions have to be explored for the average number of displaced atoms to become steady in the case of fcc Cu, whereas for bcc W around 50-60 random directions need to be explored. The number of Frenkel pairs produced in the MD simulations are compared with that from the Binary Collision Approximation Monte Carlo (BCA-MC) code SDTRIM-SP and the results from the NRT model. It is seen that a proper choice of the damage energy, i.e. the energy required to create a stable interstitial, is essential for the BCA-MC results to match the MD results. On the computational front it is seen that in-situ processing saves the need to input/output (I/O) atomic position data of several tera-bytes when exploring a large number of random directions and there is no difference in run-time because the extra run-time in processing data is offset by the time saved in I/O.

  3. Parallel cascade selection molecular dynamics (PaCS-MD) to generate conformational transition pathway

    NASA Astrophysics Data System (ADS)

    Harada, Ryuhei; Kitao, Akio

    2013-07-01

    Parallel Cascade Selection Molecular Dynamics (PaCS-MD) is proposed as a molecular simulation method to generate conformational transition pathway under the condition that a set of "reactant" and "product" structures is known a priori. In PaCS-MD, the cycle of short multiple independent molecular dynamics simulations and selection of the structures close to the product structure for the next cycle are repeated until the simulated structures move sufficiently close to the product. Folding of 10-residue mini-protein chignolin from the extended to native structures and open-close conformational transition of T4 lysozyme were investigated by PaCS-MD. In both cases, tens of cycles of 100-ps MD were sufficient to reach the product structures, indicating the efficient generation of conformational transition pathway in PaCS-MD with a series of conventional MD without additional external biases. Using the snapshots along the pathway as the initial coordinates, free energy landscapes were calculated by the combination with multiple independent umbrella samplings to statistically elucidate the conformational transition pathways.

  4. Prediction of the solvent affecting site and the computational design of stable Candida antarctica lipase B in a hydrophilic organic solvent.

    PubMed

    Park, Hyun June; Joo, Jeong Chan; Park, Kyungmoon; Kim, Yong Hwan; Yoo, Young Je

    2013-02-10

    Enzyme reactions in organic solvent such as for organic synthesis have great industrial potential. However, enzymes lose their stability in hydrophilic organic solvents due to the deformation of the enzyme by the solvent. It is thus important to enhance the stability of enzymes in hydrophilic organic solvents. Previous approaches have not considered on the interaction between enzymes and solvents due to the lack of information. In this study, the structural motions of the enzyme in methanol cosolvent and the interaction between the enzyme surface and the solvent molecule were investigated using molecular dynamics simulation (MD). By analyzing the MD simulation results, the surface residues of Candida antarctica lipase B (CalB) with higher root mean square deviation (RMSD) in a methanol solvent were considered as methanol affecting site and selected for site-directed mutagenesis. The methanol affecting site was computationally redesigned by lowering the RMSD. Among the candidate mutants, the A8T, A92E, N97Q and T245S mutants showed higher organic solvent stability at various methanol concentrations. The rational approach developed in this study could be applied to the stabilization of other industrial enzymes used in organic solvents. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Defect chemistry and lithium transport in Li3OCl anti-perovskite superionic conductors.

    PubMed

    Lu, Ziheng; Chen, Chi; Baiyee, Zarah Medina; Chen, Xin; Niu, Chunming; Ciucci, Francesco

    2015-12-28

    Lithium-rich anti-perovskites (LiRAPs) are a promising family of solid electrolytes, which exhibit ionic conductivities above 10(-3) S cm(-1) at room temperature, among the highest reported values to date. In this work, we investigate the defect chemistry and the associated lithium transport in Li3OCl, a prototypical LiRAP, using ab initio density functional theory (DFT) calculations and classical molecular dynamics (MD) simulations. We studied three types of charge neutral defect pairs, namely the LiCl Schottky pair, the Li2O Schottky pair, and the Li interstitial with a substitutional defect of O on the Cl site. Among them the LiCl Schottky pair has the lowest binding energy and is the most energetically favorable for diffusion as computed by DFT. This is confirmed by classical MD simulations, where the computed Li ion diffusion coefficients for LiCl Schottky systems are significantly higher than those for the other two defects considered and the activation energy in LiCl deficient Li3OCl is comparable to experimental values. The high conductivities and low activation energies of LiCl Schottky systems are explained by the low energy pathways of Li between the Cl vacancies. We propose that Li vacancy hopping is the main diffusion mechanism in highly conductive Li3OCl.

  6. Nanoporous carbon supercapacitors in an ionic liquid: a computer simulation study.

    PubMed

    Shim, Youngseon; Kim, Hyung J

    2010-04-27

    Supercapacitors composed of carbon nanotube (CNT) micropores in the room-temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI+BF4(-)) are studied via molecular dynamics (MD)computer simulations. It is found that the distribution of RTIL ions inside the micropore varies significantly with the pore size. Internal solvation of small (6,6) and (7,7) CNTs with an electrified interior wall is effected almost exclusively via counterions. Surprisingly, these counterions, even though they all have the same charge, lead to a charge density characterized by multiple layers with alternating signs. This intriguing feature is attributed to the extended nature of RTIL ion charge distributions, which result in charge separation through preferential orientation inside the electrified nanotubes. In the case of larger (10,10) and (15,15) CNTs, counterions and coions develop multilayer solvation structures. The specific capacitance normalized to the pore surface area is found to increase as the CNT diameter decreases from (15,15) to (7,7). As the pore size further reduces from (6,6) to(5,5), however, the specific capacitance diminishes rapidly. These findings are in excellent agreement with recent experiments with carbon-based materials. A theoretical model based on multiple charge layers is proposed to understand both the MD and experimental results.

  7. Synthesis, characterization and computational study of the newly synthetized sulfonamide molecule

    NASA Astrophysics Data System (ADS)

    Murthy, P. Krishna; Suneetha, V.; Armaković, Stevan; Armaković, Sanja J.; Suchetan, P. A.; Giri, L.; Rao, R. Sreenivasa

    2018-02-01

    A new compound N-(2,5-dimethyl-4-nitrophenyl)-4-methylbenzenesulfonamide (NDMPMBS) has been derived from 2,5-dimethyl-4-nitroaniline and 4-methylbenzene-1-sulfonyl chloride. Structure was characterized by SCXRD studies and spectroscopic tools. Compound crystallized in the monoclinic crystal system with P21/c space group a = 10.0549, b = 18.967, c = 8.3087, β = 103.18 and Z = 4. Type and nature of intermolecular interaction in crystal state investigated by 3D-Hirshfeld surface and 2D-finger print plots revealed that title compound stabilized by several interactions. The structural and electronic properties of title compound have been calculated at DFT/B3LYP/6-311G++(d,p) level of theory. Computationally obtained spectral data was compared with experimental results, showing excellent mutual agreement. Assignment of each vibrational wave number was done on the basis of potential energy distribution (PED). Investigation of local reactivity descriptors encompassed visualization of molecular electrostatic potential (MEP) and average local ionization energy (ALIE) surfaces, visualization of Fukui functions, natural bond order (NBO) analysis, bond dissociation energies for hydrogen abstraction (H-BDE) and radial distribution functions (RDF) after molecular dynamics (MD) simulations. MD simulations were also used in order to investigate interaction of NDMPMBS molecule with 1WKR and 3ETT proteins protein.

  8. Atomistic Simulations of High-intensity XFEL Pulses on Diffractive Imaging of Nano-sized System Dynamics

    NASA Astrophysics Data System (ADS)

    Ho, Phay; Knight, Christopher; Bostedt, Christoph; Young, Linda; Tegze, Miklos; Faigel, Gyula

    2016-05-01

    We have developed a large-scale atomistic computational method based on a combined Monte Carlo and Molecular Dynamics (MC/MD) method to simulate XFEL-induced radiation damage dynamics of complex materials. The MD algorithm is used to propagate the trajectories of electrons, ions and atoms forward in time and the quantum nature of interactions with an XFEL pulse is accounted for by a MC method to calculate probabilities of electronic transitions. Our code has good scalability with MPI/OpenMP parallelization, and it has been run on Mira, a petascale system at the Argonne Leardership Computing Facility, with particle number >50 million. Using this code, we have examined the impact of high-intensity 8-keV XFEL pulses on the x-ray diffraction patterns of argon clusters. The obtained patterns show strong pulse parameter dependence, providing evidence of significant lattice rearrangement and diffuse scattering. Real-space electronic reconstruction was performed using phase retrieval methods. We found that the structure of the argon cluster can be recovered with atomic resolution even in the presence of considerable radiation damage. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division.

  9. Development of interatomic potential of Ge(1- x - y )Si x Sn y ternary alloy semiconductors for classical lattice dynamics simulation

    NASA Astrophysics Data System (ADS)

    Tomita, Motohiro; Ogasawara, Masataka; Terada, Takuya; Watanabe, Takanobu

    2018-04-01

    We provide the parameters of Stillinger-Weber potentials for GeSiSn ternary mixed systems. These parameters can be used in molecular dynamics (MD) simulations to reproduce phonon properties and thermal conductivities. The phonon dispersion relation is derived from the dynamical structure factor, which is calculated by the space-time Fourier transform of atomic trajectories in an MD simulation. The phonon properties and thermal conductivities of GeSiSn ternary crystals calculated using these parameters mostly reproduced both the findings of previous experiments and earlier calculations made using MD simulations. The atomic composition dependence of these properties in GeSiSn ternary crystals obtained by previous studies (both experimental and theoretical) and the calculated data were almost exactly reproduced by our proposed parameters. Moreover, the results of the MD simulation agree with the previous calculations made using a time-independent phonon Boltzmann transport equation with complicated scattering mechanisms. These scattering mechanisms are very important in complicated nanostructures, as they allow the heat-transfer properties to be more accurately calculated by MD simulations. This work enables us to predict the phonon- and heat-related properties of bulk group IV alloys, especially ternary alloys.

  10. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering.

    PubMed

    Wall, Michael E; Van Benschoten, Andrew H; Sauter, Nicholas K; Adams, Paul D; Fraser, James S; Terwilliger, Thomas C

    2014-12-16

    X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculations of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. Decomposition of the MD model into protein and solvent components indicates that protein-solvent interactions contribute substantially to the overall diffuse intensity. We conclude that diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions.

  11. Simultaneous ion and neutral evaporation in aqueous nanodrops: experiment, theory, and molecular dynamics simulations.

    PubMed

    Higashi, Hidenori; Tokumi, Takuya; Hogan, Christopher J; Suda, Hiroshi; Seto, Takafumi; Otani, Yoshio

    2015-06-28

    We use a combination of tandem ion mobility spectrometry (IMS-IMS, with differential mobility analyzers), molecular dynamics (MD) simulations, and analytical models to examine both neutral solvent (H2O) and ion (solvated Na(+)) evaporation from aqueous sodium chloride nanodrops. For experiments, nanodrops were produced via electrospray ionization (ESI) of an aqueous sodium chloride solution. Two nanodrops were examined in MD simulations: a 2500 water molecule nanodrop with 68 Na(+) and 60 Cl(-) ions (an initial net charge of z = +8), and (2) a 1000 water molecule nanodrop with 65 Na(+) and 60 Cl(-) ions (an initial net charge of z = +5). Specifically, we used MD simulations to examine the validity of a model for the neutral evaporation rate incorporating both the Kelvin (surface curvature) and Thomson (electrostatic) influences, while both MD simulations and experimental measurements were compared to predictions of the ion evaporation rate equation of Labowsky et al. [Anal. Chim. Acta, 2000, 406, 105-118]. Within a single fit parameter, we find excellent agreement between simulated and modeled neutral evaporation rates for nanodrops with solute volume fractions below 0.30. Similarly, MD simulation inferred ion evaporation rates are in excellent agreement with predictions based on the Labowsky et al. equation. Measurements of the sizes and charge states of ESI generated NaCl clusters suggest that the charge states of these clusters are governed by ion evaporation, however, ion evaporation appears to have occurred with lower activation energies in experiments than was anticipated based on analytical calculations as well as MD simulations. Several possible reasons for this discrepancy are discussed.

  12. Horizontal density-gradient effects on simulation of flow and transport in the Potomac Estuary

    USGS Publications Warehouse

    Schaffranek, Raymond W.; Baltzer, Robert A.; ,

    1990-01-01

    A two-dimensional, depth-integrated, hydrodynamic/transport model of the Potomac Estuary between Indian Head and Morgantown, Md., has been extended to include treatment of baroclinic forcing due to horizontal density gradients. The finite-difference model numerically integrates equations of mass and momentum conservation in conjunction with a transport equation for heat, salt, and constituent fluxes. Lateral and longitudinal density gradients are determined from salinity distributions computed from the convection-diffusion equation and an equation of state that expresses density as a function of temperature and salinity; thus, the hydrodynamic and transport computations are directly coupled. Horizontal density variations are shown to contribute significantly to momentum fluxes determined in the hydrodynamic computation. These fluxes lead to enchanced tidal pumping, and consequently greater dispersion, as is evidenced by numerical simulations. Density gradient effects on tidal propagation and transport behavior are discussed and demonstrated.

  13. Corrosion protection properties and interfacial adhesion mechanism of an epoxy/polyamide coating applied on the steel surface decorated with cerium oxide nanofilm: Complementary experimental, molecular dynamics (MD) and first principle quantum mechanics (QM) simulation methods

    NASA Astrophysics Data System (ADS)

    Bahlakeh, Ghasem; Ramezanzadeh, Bahram; Saeb, Mohammad Reza; Terryn, Herman; Ghaffari, Mehdi

    2017-10-01

    The effect of cerium oxide treatment on the corrosion protection properties and interfacial interaction of steel/epoxy was studied by electrochemical impedance spectroscopy, (EIS) classical molecular dynamics (MD) and first principle quantum mechanics (QM) simulation methods X-ray photoelectron spectroscopy (XPS) was used to verify the chemical composition of the Ce film deposited on the steel. To probe the role of the curing agent in epoxy adsorption, computations were compared for an epoxy, aminoamide and aminoamide modified epoxy. Moreover, to study the influence of water on interfacial interactions the MD simulations were executed for poly (aminoamide)-cured epoxy resin in contact with the different crystallographic cerium dioxide (ceria, CeO2) surfaces including (100), (110), and (111) in the presence of water molecules. It was found that aminoamide-cured epoxy material was strongly adhered to all types of CeO2 substrates, so that binding to ceria surfaces followed the decreasing order CeO2 (111) > CeO2 (100) > CeO2 (110) in both dry and wet environments. Calculation of interaction energies noticed an enhanced adhesion to metal surface due to aminoamide curing of epoxy resin; where facets (100) and (111) revealed electrostatic and Lewis acid-base interactions, while an additional hydrogen bonding interaction was identified for CeO2 (110). Overall, MD simulations suggested decrement of adhesion to CeO2 in wet environment compared to dry conditions. Additionally, contact angle, pull-off test, cathodic delamination and salt spray analyses were used to confirm the simulation results. The experimental results in line with modeling results revealed that Ce layer deposited on steel enhanced substrate surface free energy, work of adhesion, and interfacial adhesion strength of the epoxy coating. Furthermore, decrement of adhesion of epoxy to CeO2 in presence of water was affirmed by experimental results. EIS results revealed remarkable enhancement of the corrosion resistance of epoxy coating applied on the steel specimens treated by cerium oxide.

  14. Pressure-induced transformations in glassy water: A computer simulation study using the TIP4P/2005 model

    NASA Astrophysics Data System (ADS)

    Wong, Jessina; Jahn, David A.; Giovambattista, Nicolas

    2015-08-01

    We study the pressure-induced transformations between low-density amorphous (LDA) and high-density amorphous (HDA) ice by performing out-of-equilibrium molecular dynamics (MD) simulations. We employ the TIP4P/2005 water model and show that this model reproduces qualitatively the LDA-HDA transformations observed experimentally. Specifically, the TIP4P/2005 model reproduces remarkably well the (i) structure (OO, OH, and HH radial distribution functions) and (ii) densities of LDA and HDA at P = 0.1 MPa and T = 80 K, as well as (iii) the qualitative behavior of ρ(P) during compression-induced LDA-to-HDA and decompression-induced HDA-to-LDA transformations. At the rates explored, the HDA-to-LDA transformation is less pronounced than in experiments. By studying the LDA-HDA transformations for a broad range of compression/decompression temperatures, we construct a "P-T phase diagram" for glassy water that is consistent with experiments and remarkably similar to that reported previously for ST2 water. This phase diagram is not inconsistent with the possibility of TIP4P/2005 water exhibiting a liquid-liquid phase transition at low temperatures. A comparison with previous MD simulation studies of SPC/E and ST2 water as well as experiments indicates that, overall, the TIP4P/2005 model performs better than the SPC/E and ST2 models. The effects of cooling and compression rates as well as aging on our MD simulations results are also discussed. The MD results are qualitatively robust under variations of cooling/compression rates (accessible in simulations) and are not affected by aging the hyperquenched glass for at least 1 μs. A byproduct of this work is the calculation of TIP4P/2005 water's diffusion coefficient D(T) at P = 0.1 MPa. It is found that, for T ≥ 210 K, D(T) ≈ (T - TMCT)-γ as predicted by mode coupling theory and in agreement with experiments. For TIP4P/2005 water, TMCT = 209 K and γ = 2.14, very close to the corresponding experimental values TMCT = 221 K and γ = 2.2.

  15. Pressure-induced transformations in glassy water: A computer simulation study using the TIP4P/2005 model.

    PubMed

    Wong, Jessina; Jahn, David A; Giovambattista, Nicolas

    2015-08-21

    We study the pressure-induced transformations between low-density amorphous (LDA) and high-density amorphous (HDA) ice by performing out-of-equilibrium molecular dynamics (MD) simulations. We employ the TIP4P/2005 water model and show that this model reproduces qualitatively the LDA-HDA transformations observed experimentally. Specifically, the TIP4P/2005 model reproduces remarkably well the (i) structure (OO, OH, and HH radial distribution functions) and (ii) densities of LDA and HDA at P = 0.1 MPa and T = 80 K, as well as (iii) the qualitative behavior of ρ(P) during compression-induced LDA-to-HDA and decompression-induced HDA-to-LDA transformations. At the rates explored, the HDA-to-LDA transformation is less pronounced than in experiments. By studying the LDA-HDA transformations for a broad range of compression/decompression temperatures, we construct a "P-T phase diagram" for glassy water that is consistent with experiments and remarkably similar to that reported previously for ST2 water. This phase diagram is not inconsistent with the possibility of TIP4P/2005 water exhibiting a liquid-liquid phase transition at low temperatures. A comparison with previous MD simulation studies of SPC/E and ST2 water as well as experiments indicates that, overall, the TIP4P/2005 model performs better than the SPC/E and ST2 models. The effects of cooling and compression rates as well as aging on our MD simulations results are also discussed. The MD results are qualitatively robust under variations of cooling/compression rates (accessible in simulations) and are not affected by aging the hyperquenched glass for at least 1 μs. A byproduct of this work is the calculation of TIP4P/2005 water's diffusion coefficient D(T) at P = 0.1 MPa. It is found that, for T ≥ 210 K, D(T) ≈ (T - T(MCT))(-γ) as predicted by mode coupling theory and in agreement with experiments. For TIP4P/2005 water, T(MCT) = 209 K and γ = 2.14, very close to the corresponding experimental values T(MCT) = 221 K and γ = 2.2.

  16. Modeling crystal growth from solution with molecular dynamics simulations: approaches to transition rate constants.

    PubMed

    Reilly, Anthony M; Briesen, Heiko

    2012-01-21

    The feasibility of using the molecular dynamics (MD) simulation technique to study crystal growth from solution quantitatively, as well as to obtain transition rate constants, has been studied. The dynamics of an interface between a solution of Lennard-Jones particles and the (100) face of an fcc lattice comprised of solute particles have been studied using MD simulations, showing that MD is, in principle, capable of following growth behavior over large supersaturation and temperature ranges. Using transition state theory, and a nearest-neighbor approximation growth and dissolution rate constants have been extracted from equilibrium MD simulations at a variety of temperatures. The temperature dependence of the rates agrees well with the expected transition state theory behavior. © 2012 American Institute of Physics

  17. Mesoscale Thermodynamic Analysis of Atomic-Scale Dislocation-Obstacle Interactions Simulated by Molecular Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monet, Giath; Bacon, David J; Osetskiy, Yury N

    2010-01-01

    Given the time and length scales in molecular dynamics (MD) simulations of dislocation-defect interactions, quantitative MD results cannot be used directly in larger scale simulations or compared directly with experiment. A method to extract fundamental quantities from MD simulations is proposed here. The first quantity is a critical stress defined to characterise the obstacle resistance. This mesoscopic parameter, rather than the obstacle 'strength' designed for a point obstacle, is to be used for an obstacle of finite size. At finite temperature, our analyses of MD simulations allow the activation energy to be determined as a function of temperature. The resultsmore » confirm the proportionality between activation energy and temperature that is frequently observed by experiment. By coupling the data for the activation energy and the critical stress as functions of temperature, we show how the activation energy can be deduced at a given value of the critical stress.« less

  18. Pyrite: A blender plugin for visualizing molecular dynamics simulations using industry-standard rendering techniques.

    PubMed

    Rajendiran, Nivedita; Durrant, Jacob D

    2018-05-05

    Molecular dynamics (MD) simulations provide critical insights into many biological mechanisms. Programs such as VMD, Chimera, and PyMOL can produce impressive simulation visualizations, but they lack many advanced rendering algorithms common in the film and video-game industries. In contrast, the modeling program Blender includes such algorithms but cannot import MD-simulation data. MD trajectories often require many gigabytes of memory/disk space, complicating Blender import. We present Pyrite, a Blender plugin that overcomes these limitations. Pyrite allows researchers to visualize MD simulations within Blender, with full access to Blender's cutting-edge rendering techniques. We expect Pyrite-generated images to appeal to students and non-specialists alike. A copy of the plugin is available at http://durrantlab.com/pyrite/, released under the terms of the GNU General Public License Version 3. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Segregation formation, thermal and electronic properties of ternary cubic CdZnTe clusters: MD simulations and DFT calculations

    NASA Astrophysics Data System (ADS)

    Kurban, Mustafa; Erkoç, Şakir

    2017-04-01

    Surface and core formation, thermal and electronic properties of ternary cubic CdZnTe clusters are investigated by using classical molecular dynamics (MD) simulations and density functional theory (DFT) calculations. In this work, MD simulations of the CdZnTe clusters are performed by means of LAMMPS by using bond order potential (BOP). MD simulations are carried out at different temperatures to study the segregation phenomena of Cd, Zn and Te atoms, and deviation of clusters and heat capacity. After that, using optimized geometries obtained, excess charge on atoms, dipole moments, highest occupied molecular orbitals, lowest unoccupied molecular orbitals, HOMO-LUMO gaps (Eg) , total energies, spin density and the density of states (DOS) have been calculated with DFT. Simulation results such as heat capacity and segregation formation are compared with experimental bulk and theoretical results.

  20. NMR spin-rotation relaxation and diffusion of methane

    NASA Astrophysics Data System (ADS)

    Singer, P. M.; Asthagiri, D.; Chapman, W. G.; Hirasaki, G. J.

    2018-05-01

    The translational diffusion-coefficient and the spin-rotation contribution to the 1H NMR relaxation rate for methane (CH4) are investigated using MD (molecular dynamics) simulations, over a wide range of densities and temperatures, spanning the liquid, supercritical, and gas phases. The simulated diffusion-coefficients agree well with measurements, without any adjustable parameters in the interpretation of the simulations. A minimization technique is developed to compute the angular velocity for non-rigid spherical molecules, which is used to simulate the autocorrelation function for spin-rotation interactions. With increasing diffusivity, the autocorrelation function shows increasing deviations from the single-exponential decay predicted by the Langevin theory for rigid spheres, and the deviations are quantified using inverse Laplace transforms. The 1H spin-rotation relaxation rate derived from the autocorrelation function using the "kinetic model" agrees well with measurements in the supercritical/gas phase, while the relaxation rate derived using the "diffusion model" agrees well with measurements in the liquid phase. 1H spin-rotation relaxation is shown to dominate over the MD-simulated 1H-1H dipole-dipole relaxation at high diffusivity, while the opposite is found at low diffusivity. At high diffusivity, the simulated spin-rotation correlation time agrees with the kinetic collision time for gases, which is used to derive a new expression for 1H spin-rotation relaxation, without any adjustable parameters.

  1. Quantitative Assessment of Molecular Dynamics Sampling for Flexible Systems.

    PubMed

    Nemec, Mike; Hoffmann, Daniel

    2017-02-14

    Molecular dynamics (MD) simulation is a natural method for the study of flexible molecules but at the same time is limited by the large size of the conformational space of these molecules. We ask by how much the MD sampling quality for flexible molecules can be improved by two means: the use of diverse sets of trajectories starting from different initial conformations to detect deviations between samples and sampling with enhanced methods such as accelerated MD (aMD) or scaled MD (sMD) that distort the energy landscape in controlled ways. To this end, we test the effects of these approaches on MD simulations of two flexible biomolecules in aqueous solution, Met-Enkephalin (5 amino acids) and HIV-1 gp120 V3 (a cycle of 35 amino acids). We assess the convergence of the sampling quantitatively with known, extensive measures of cluster number N c and cluster distribution entropy S c and with two new quantities, conformational overlap O conf and density overlap O dens , both conveniently ranging from 0 to 1. These new overlap measures quantify self-consistency of sampling in multitrajectory MD experiments, a necessary condition for converged sampling. A comprehensive assessment of sampling quality of MD experiments identifies the combination of diverse trajectory sets and aMD as the most efficient approach among those tested. However, analysis of O dens between conventional and aMD trajectories also reveals that we have not completely corrected aMD sampling for the distorted energy landscape. Moreover, for V3, the courses of N c and O dens indicate that much higher resources than those generally invested today will probably be needed to achieve convergence. The comparative analysis also shows that conventional MD simulations with insufficient sampling can be easily misinterpreted as being converged.

  2. ab initio MD simulations of geomaterials with ~1000 atoms

    NASA Astrophysics Data System (ADS)

    Martin, G. B.; Kirtman, B.; Spera, F. J.

    2009-12-01

    In the last two decades, ab initio studies of materials using Density Functional Theory (DFT) have increased exponentially in popularity. DFT codes are now used routinely to simulate properties of geomaterials--mainly silicates and geochemically important metals such as Fe. These materials are ubiquitous in the Earth’s mantle and core and in terrestrial exoplanets. Because of computational limitations, most First Principles Molecular Dynamics (FPMD) calculations are done on systems of only ~100 atoms for a few picoseconds. While this approach can be useful for calculating physical quantities related to crystal structure, vibrational frequency, and other lattice-scale properties (especially in crystals), it is statistically marginal for duplicating physical properties of the liquid state like transport and structure. In MD simulations in the NEV ensemble, temperature (T), and pressure (P) fluctuations scale as N-1/2; small particle number (N) systems are therefore characterized by greater statistical state point location uncertainty than large N systems. Previous studies have used codes such as VASP where CPU time increases with N2, making calculations with N much greater than 100 impractical. SIESTA (Soler, et al. 2002) is a DFT code that enables electronic structure and MD computations on larger systems (N~103) by making some approximations, such as localized numerical orbitals, that would be useful in modeling some properties of geomaterials. Here we test the applicability of SIESTA to simulate geosilicates, both hydrous and anhydrous, in the solid and liquid state. We have used SIESTA for lattice calculations of brucite, Mg(OH)2, that compare very well to experiment and calculations using CRYSTAL, another DFT code. Good agreement between more classical DFT calculations and SIESTA is needed to justify study of geosilicates using SIESTA across a range of pressures and temperatures relevant to the Earth’s interior. Thus, it is useful to adjust parameters in SIESTA in accordance with calculations from CRYSTAL as a check on feasibility. Results are reported here that suggest SIESTA may indeed be useful to model silicate liquids at very high T and P.

  3. Improving the Efficiency of Non-equilibrium Sampling in the Aqueous Environment via Implicit-Solvent Simulations.

    PubMed

    Liu, Hui; Chen, Fu; Sun, Huiyong; Li, Dan; Hou, Tingjun

    2017-04-11

    By means of estimators based on non-equilibrium work, equilibrium free energy differences or potentials of mean force (PMFs) of a system of interest can be computed from biased molecular dynamics (MD) simulations. The approach, however, is often plagued by slow conformational sampling and poor convergence, especially when the solvent effects are taken into account. Here, as a possible way to alleviate the problem, several widely used implicit-solvent models, which are derived from the analytic generalized Born (GB) equation and implemented in the AMBER suite of programs, were employed in free energy calculations based on non-equilibrium work and evaluated for their abilities to emulate explicit water. As a test case, pulling MD simulations were carried out on an alanine polypeptide with different solvent models and protocols, followed by comparisons of the reconstructed PMF profiles along the unfolding coordinate. The results show that when employing the non-equilibrium work method, sampling with an implicit-solvent model is several times faster and, more importantly, converges more rapidly than that with explicit water due to reduction of dissipation. Among the assessed GB models, the Neck variants outperform the OBC and HCT variants in terms of accuracy, whereas their computational costs are comparable. In addition, for the best-performing models, the impact of the solvent-accessible surface area (SASA) dependent nonpolar solvation term was also examined. The present study highlights the advantages of implicit-solvent models for non-equilibrium sampling.

  4. Replica exchange enveloping distribution sampling (RE-EDS): A robust method to estimate multiple free-energy differences from a single simulation.

    PubMed

    Sidler, Dominik; Schwaninger, Arthur; Riniker, Sereina

    2016-10-21

    In molecular dynamics (MD) simulations, free-energy differences are often calculated using free energy perturbation or thermodynamic integration (TI) methods. However, both techniques are only suited to calculate free-energy differences between two end states. Enveloping distribution sampling (EDS) presents an attractive alternative that allows to calculate multiple free-energy differences in a single simulation. In EDS, a reference state is simulated which "envelopes" the end states. The challenge of this methodology is the determination of optimal reference-state parameters to ensure equal sampling of all end states. Currently, the automatic determination of the reference-state parameters for multiple end states is an unsolved issue that limits the application of the methodology. To resolve this, we have generalised the replica-exchange EDS (RE-EDS) approach, introduced by Lee et al. [J. Chem. Theory Comput. 10, 2738 (2014)] for constant-pH MD simulations. By exchanging configurations between replicas with different reference-state parameters, the complexity of the parameter-choice problem can be substantially reduced. A new robust scheme to estimate the reference-state parameters from a short initial RE-EDS simulation with default parameters was developed, which allowed the calculation of 36 free-energy differences between nine small-molecule inhibitors of phenylethanolamine N-methyltransferase from a single simulation. The resulting free-energy differences were in excellent agreement with values obtained previously by TI and two-state EDS simulations.

  5. Molecular Dynamics: New Frontier in Personalized Medicine.

    PubMed

    Sneha, P; Doss, C George Priya

    2016-01-01

    The field of drug discovery has witnessed infinite development over the last decade with the demand for discovery of novel efficient lead compounds. Although the development of novel compounds in this field has seen large failure, a breakthrough in this area might be the establishment of personalized medicine. The trend of personalized medicine has shown stupendous growth being a hot topic after the successful completion of Human Genome Project and 1000 genomes pilot project. Genomic variant such as SNPs play a vital role with respect to inter individual's disease susceptibility and drug response. Hence, identification of such genetic variants has to be performed before administration of a drug. This process requires high-end techniques to understand the complexity of the molecules which might bring an insight to understand the compounds at their molecular level. To sustenance this, field of bioinformatics plays a crucial role in revealing the molecular mechanism of the mutation and thereby designing a drug for an individual in fast and affordable manner. High-end computational methods, such as molecular dynamics (MD) simulation has proved to be a constitutive approach to detecting the minor changes associated with an SNP for better understanding of the structural and functional relationship. The parameters used in molecular dynamic simulation elucidate different properties of a macromolecule, such as protein stability and flexibility. MD along with docking analysis can reveal the synergetic effect of an SNP in protein-ligand interaction and provides a foundation for designing a particular drug molecule for an individual. This compelling application of computational power and the advent of other technologies have paved a promising way toward personalized medicine. In this in-depth review, we tried to highlight the different wings of MD toward personalized medicine. © 2016 Elsevier Inc. All rights reserved.

  6. Molecular Dynamics Simulations and XAFS (MD-XAFS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schenter, Gregory K.; Fulton, John L.

    2017-01-20

    MD-XAFS (Molecular Dynamics X-ray Adsorption Fine Structure) makes the connection between simulation techniques that generate an ensemble of molecular configurations and the direct signal observed from X-ray measurement.

  7. A comparison between elastic network interpolation and MD simulation of 16S ribosomal RNA.

    PubMed

    Kim, Moon K; Li, Wen; Shapiro, Bruce A; Chirikjian, Gregory S

    2003-12-01

    In this paper a coarse-grained method called elastic network interpolation (ENI) is used to generate feasible transition pathways between two given conformations of the core central domain of 16S Ribosomal RNA (16S rRNA). The two given conformations are the extremes generated by a molecular dynamics (MD) simulation, which differ from each other by 10A in root-mean-square deviation (RMSD). It takes only several hours to build an ENI pathway on a 1.5GHz Pentium with 512 MB memory, while the MD takes several weeks on high-performance multi-processor servers such as the SGI ORIGIN 2000/2100. It is shown that multiple ENI pathways capture the essential anharmonic motions of millions of timesteps in a particular MD simulation. A coarse-grained normal mode analysis (NMA) is performed on each intermediate ENI conformation, and the lowest 1% of the normal modes (representing about 40 degrees of freedom (DOF)) are used to parameterize fluctuations. This combined ENI/NMA method captures all intermediate conformations in the MD run with 1.5A RMSD on average. In addition, if we restrict attention to the time interval of the MD run between the two extreme conformations, the RMSD between the closest ENI/NMA pathway and the MD results is about 1A. These results may serve as a paradigm for reduced-DOF dynamic simulations of large biological macromolecules as well as a method for the reduced-parameter interpretation of massive amounts of MD data.

  8. Why should biochemistry students be introduced to molecular dynamics simulations--and how can we introduce them?

    PubMed

    Elmore, Donald E

    2016-01-01

    Molecular dynamics (MD) simulations play an increasingly important role in many aspects of biochemical research but are often not part of the biochemistry curricula at the undergraduate level. This article discusses the pedagogical value of exposing students to MD simulations and provides information to help instructors consider what software and hardware resources are necessary to successfully introduce these simulations into their courses. In addition, a brief review of the MD-based activities in this issue and other sources are provided. © 2016 The International Union of Biochemistry and Molecular Biology.

  9. Cooling rate effects in sodium silicate glasses: Bridging the gap between molecular dynamics simulations and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xin; Song, Weiying; Yang, Kai; Krishnan, N. M. Anoop; Wang, Bu; Smedskjaer, Morten M.; Mauro, John C.; Sant, Gaurav; Balonis, Magdalena; Bauchy, Mathieu

    2017-08-01

    Although molecular dynamics (MD) simulations are commonly used to predict the structure and properties of glasses, they are intrinsically limited to short time scales, necessitating the use of fast cooling rates. It is therefore challenging to compare results from MD simulations to experimental results for glasses cooled on typical laboratory time scales. Based on MD simulations of a sodium silicate glass with varying cooling rate (from 0.01 to 100 K/ps), here we show that thermal history primarily affects the medium-range order structure, while the short-range order is largely unaffected over the range of cooling rates simulated. This results in a decoupling between the enthalpy and volume relaxation functions, where the enthalpy quickly plateaus as the cooling rate decreases, whereas density exhibits a slower relaxation. Finally, we show that, using the proper extrapolation method, the outcomes of MD simulations can be meaningfully compared to experimental values when extrapolated to slower cooling rates.

  10. Molecular recognition in a diverse set of protein-ligand interactions studied with molecular dynamics simulations and end-point free energy calculations.

    PubMed

    Wang, Bo; Li, Liwei; Hurley, Thomas D; Meroueh, Samy O

    2013-10-28

    End-point free energy calculations using MM-GBSA and MM-PBSA provide a detailed understanding of molecular recognition in protein-ligand interactions. The binding free energy can be used to rank-order protein-ligand structures in virtual screening for compound or target identification. Here, we carry out free energy calculations for a diverse set of 11 proteins bound to 14 small molecules using extensive explicit-solvent MD simulations. The structure of these complexes was previously solved by crystallography and their binding studied with isothermal titration calorimetry (ITC) data enabling direct comparison to the MM-GBSA and MM-PBSA calculations. Four MM-GBSA and three MM-PBSA calculations reproduced the ITC free energy within 1 kcal·mol(-1) highlighting the challenges in reproducing the absolute free energy from end-point free energy calculations. MM-GBSA exhibited better rank-ordering with a Spearman ρ of 0.68 compared to 0.40 for MM-PBSA with dielectric constant (ε = 1). An increase in ε resulted in significantly better rank-ordering for MM-PBSA (ρ = 0.91 for ε = 10), but larger ε significantly reduced the contributions of electrostatics, suggesting that the improvement is due to the nonpolar and entropy components, rather than a better representation of the electrostatics. The SVRKB scoring function applied to MD snapshots resulted in excellent rank-ordering (ρ = 0.81). Calculations of the configurational entropy using normal-mode analysis led to free energies that correlated significantly better to the ITC free energy than the MD-based quasi-harmonic approach, but the computed entropies showed no correlation with the ITC entropy. When the adaptation energy is taken into consideration by running separate simulations for complex, apo, and ligand (MM-PBSAADAPT), there is less agreement with the ITC data for the individual free energies, but remarkably good rank-ordering is observed (ρ = 0.89). Interestingly, filtering MD snapshots by prescoring protein-ligand complexes with a machine learning-based approach (SVMSP) resulted in a significant improvement in the MM-PBSA results (ε = 1) from ρ = 0.40 to ρ = 0.81. Finally, the nonpolar components of MM-GBSA and MM-PBSA, but not the electrostatic components, showed strong correlation to the ITC free energy; the computed entropies did not correlate with the ITC entropy.

  11. Molecular Recognition in a Diverse Set of Protein-Ligand Interactions Studied with Molecular Dynamics Simulations and End-Point Free Energy Calculations

    PubMed Central

    Wang, Bo; Li, Liwei; Hurley, Thomas D.; Meroueh, Samy O.

    2014-01-01

    End-point free energy calculations using MM-GBSA and MM-PBSA provide a detailed understanding of molecular recognition in protein-ligand interactions. The binding free energy can be used to rank-order protein-ligand structures in virtual screening for compound or target identification. Here, we carry out free energy calculations for a diverse set of 11 proteins bound to 14 small molecules using extensive explicit-solvent MD simulations. The structure of these complexes was previously solved by crystallography and their binding studied with isothermal titration calorimetry (ITC) data enabling direct comparison to the MM-GBSA and MM-PBSA calculations. Four MM-GBSA and three MM-PBSA calculations reproduced the ITC free energy within 1 kcal•mol−1 highlighting the challenges in reproducing the absolute free energy from end-point free energy calculations. MM-GBSA exhibited better rank-ordering with a Spearman ρ of 0.68 compared to 0.40 for MM-PBSA with dielectric constant (ε = 1). An increase in ε resulted in significantly better rank-ordering for MM-PBSA (ρ = 0.91 for ε = 10). But larger ε significantly reduced the contributions of electrostatics, suggesting that the improvement is due to the non-polar and entropy components, rather than a better representation of the electrostatics. SVRKB scoring function applied to MD snapshots resulted in excellent rank-ordering (ρ = 0.81). Calculations of the configurational entropy using normal mode analysis led to free energies that correlated significantly better to the ITC free energy than the MD-based quasi-harmonic approach, but the computed entropies showed no correlation with the ITC entropy. When the adaptation energy is taken into consideration by running separate simulations for complex, apo and ligand (MM-PBSAADAPT), there is less agreement with the ITC data for the individual free energies, but remarkably good rank-ordering is observed (ρ = 0.89). Interestingly, filtering MD snapshots by pre-scoring protein-ligand complexes with a machine learning-based approach (SVMSP) resulted in a significant improvement in the MM-PBSA results (ε = 1) from ρ = 0.40 to ρ = 0.81. Finally, the non-polar components of MM-GBSA and MM-PBSA, but not the electrostatic components, showed strong correlation to the ITC free energy; the computed entropies did not correlate with the ITC entropy. PMID:24032517

  12. Modeling of a carbon nanotube ultracapacitor.

    PubMed

    Orphanou, Antonis; Yamada, Toshishige; Yang, Cary Y

    2012-03-09

    The modeling of carbon nanotube ultracapacitor (CNU) performance based on the simulation of electrolyte ion motion between the cathode and the anode is described. Using a molecular dynamics (MD) approach, the equilibrium positions of the electrode charges interacting through the Coulomb potential are determined, which in turn yield the equipotential surface and electric field associated with the capacitor. With an applied ac voltage, the current is computed based on the nanotube and electrolyte particle distribution and interaction, resulting in the frequency-dependent impedance Z(ω). From the current and impedance profiles, the Nyquist and cyclic voltammetry (CV) plots are then extracted. The results of these calculations compare well with existing experimental data. A lumped-element equivalent circuit for the CNU is proposed and the impedance computed from this circuit correlates well with the simulated and measured impedances.

  13. An energy function for dynamics simulations of polypeptides in torsion angle space

    NASA Astrophysics Data System (ADS)

    Sartori, F.; Melchers, B.; Böttcher, H.; Knapp, E. W.

    1998-05-01

    Conventional simulation techniques to model the dynamics of proteins in atomic detail are restricted to short time scales. A simplified molecular description, in which high frequency motions with small amplitudes are ignored, can overcome this problem. In this protein model only the backbone dihedrals φ and ψ and the χi of the side chains serve as degrees of freedom. Bond angles and lengths are fixed at ideal geometry values provided by the standard molecular dynamics (MD) energy function CHARMM. In this work a Monte Carlo (MC) algorithm is used, whose elementary moves employ cooperative rotations in a small window of consecutive amide planes, leaving the polypeptide conformation outside of this window invariant. A single of these window MC moves generates local conformational changes only. But, the application of many such moves at different parts of the polypeptide backbone leads to global conformational changes. To account for the lack of flexibility in the protein model employed, the energy function used to evaluate conformational energies is split into sequentially neighbored and sequentially distant contributions. The sequentially neighbored part is represented by an effective (φ,ψ)-torsion potential. It is derived from MD simulations of a flexible model dipeptide using a conventional MD energy function. To avoid exaggeration of hydrogen bonding strengths, the electrostatic interactions involving hydrogen atoms are scaled down at short distances. With these adjustments of the energy function, the rigid polypeptide model exhibits the same equilibrium distributions as obtained by conventional MD simulation with a fully flexible molecular model. Also, the same temperature dependence of the stability and build-up of α helices of 18-alanine as found in MD simulations is observed using the adapted energy function for MC simulations. Analyses of transition frequencies demonstrate that also dynamical aspects of MD trajectories are faithfully reproduced. Finally, it is demonstrated that even for high temperature unfolded polypeptides the MC simulation is more efficient by a factor of 10 than conventional MD simulations.

  14. RECENT ADVANCES IN MACROMOLECULAR HYDRODYNAMIC MODELING

    PubMed Central

    Aragon, Sergio R.

    2010-01-01

    The modern implementation of the boundary element method (S.R. Aragon, J. Comput. Chem. 25(2004)1191–12055) has ushered unprecedented accuracy and precision for the solution of the Stokes equations of hydrodynamics with stick boundary conditions. This article begins by reviewing computations with the program BEST of smooth surface objects such as ellipsoids, the dumbbell, and cylinders that demonstrate that the numerical solution of the integral equation formulation of hydrodynamics yields very high precision and accuracy. When BEST is used for macromolecular computations, the limiting factor becomes the definition of the molecular hydrodynamic surface and the implied effective solvation of the molecular surface. Studies on 49 different proteins, ranging in molecular weight from 9 to over 400 kDa, have shown that a model using a 1.1 A thick hydration layer describes all protein transport properties very well for the overwhelming majority of them. In addition, this data implies that the crystal structure is an excellent representation of the average solution structure for most of them. In order to investigate the origin of a handful of significant discrepancies in some multimeric proteins (over −20% observed in the intrinsic viscosity), the technique of Molecular Dynamics simulation (MD) has been incorporated into the research program. A preliminary study of dimeric α-chymotrypsin using approximate implicit water MD is presented. In addition I describe the successful validation of modern protein force fields, ff03 and ff99SB, for the accurate computation of solution structure in explicit water simulation by comparison of trajectory ensemble average computed transport properties with experimental measurements. This work includes small proteins such as lysozyme, ribonuclease and ubiquitin using trajectories around 10 ns duration. We have also studied a 150 kDa flexible monoclonal IgG antibody, trastuzumab, with multiple independent trajectories encompassing over 320 ns of simulation. The close agreement within experimental error of the computed and measured properties allows us to conclude that MD does produce structures typical of those in solution, and that flexible molecules can be properly described using the method of ensemble averaging over a trajectory. We review similar work on the study of a transfer RNA molecule and DNA oligomers that demonstrate that within 3% a simple uniform hydration model 1.1 A thick provides agreement with experiment for these nucleic acids. In the case of linear oligomers, the precision can be improved close to 1% by a non-uniform hydration model that hydrates mainly in the DNA grooves, in agreement with high resolution x-ray diffraction. We conclude with a vista on planned improvements for the BEST program to decrease its memory requirements and increase its speed without sacrificing accuracy. PMID:21073955

  15. All-atom molecular dynamics simulations of spin labelled double and single-strand DNA for EPR studies.

    PubMed

    Prior, C; Danilāne, L; Oganesyan, V S

    2018-05-16

    We report the first application of fully atomistic molecular dynamics (MD) simulations to the prediction of electron paramagnetic resonance (EPR) spectra of spin labelled DNA. Models for two structurally different DNA spin probes with either the rigid or flexible position of the nitroxide group in the base pair, employed in experimental studies previously, have been developed. By the application of the combined MD-EPR simulation methodology we aimed at the following. Firstly, to provide a test bed against a sensitive spectroscopic technique for the recently developed improved version of the parmbsc1 force field for MD modelling of DNA. The predicted EPR spectra show good agreement with the experimental ones available from the literature, thus confirming the accuracy of the currently employed DNA force fields. Secondly, to provide a quantitative interpretation of the motional contributions into the dynamics of spin probes in both duplex and single-strand DNA fragments and to analyse their perturbing effects on the local DNA structure. Finally, a combination of MD and EPR allowed us to test the validity of the application of the Model-Free (M-F) approach coupled with the partial averaging of magnetic tensors to the simulation of EPR spectra of DNA systems by comparing the resultant EPR spectra with those simulated directly from MD trajectories. The advantage of the M-F based EPR simulation approach over the direct propagation techniques is that it requires motional and order parameters that can be calculated from shorter MD trajectories. The reported MD-EPR methodology is transferable to the prediction and interpretation of EPR spectra of higher order DNA structures with novel types of spin labels.

  16. Isosteric And Non-Isosteric Base Pairs In RNA Motifs: Molecular Dynamics And Bioinformatics Study Of The Sarcin-Ricin Internal Loop

    PubMed Central

    Havrila, Marek; Réblová, Kamila; Zirbel, Craig L.; Leontis, Neocles B.; Šponer, Jiří

    2013-01-01

    The Sarcin-Ricin RNA motif (SR motif) is one of the most prominent recurrent RNA building blocks that occurs in many different RNA contexts and folds autonomously, i.e., in a context-independent manner. In this study, we combined bioinformatics analysis with explicit-solvent molecular dynamics (MD) simulations to better understand the relation between the RNA sequence and the evolutionary patterns of SR motif. SHAPE probing experiment was also performed to confirm fidelity of MD simulations. We identified 57 instances of the SR motif in a non-redundant subset of the RNA X-ray structure database and analyzed their basepairing, base-phosphate, and backbone-backbone interactions. We extracted sequences aligned to these instances from large ribosomal RNA alignments to determine frequency of occurrence for different sequence variants. We then used a simple scoring scheme based on isostericity to suggest 10 sequence variants with highly variable expected degree of compatibility with the SR motif 3D structure. We carried out MD simulations of SR motifs with these base substitutions. Non isosteric base substitutions led to unstable structures, but so did isosteric substitutions which were unable to make key base-phosphate interactions. MD technique explains why some potentially isosteric SR motifs are not realized during evolution. We also found that inability to form stable cWW geometry is an important factor in case of the first base pair of the flexible region of the SR motif. Comparison of structural, bioinformatics, SHAPE probing and MD simulation data reveals that explicit solvent MD simulations neatly reflect viability of different sequence variants of the SR motif. Thus, MD simulations can efficiently complement bioinformatics tools in studies of conservation patterns of RNA motifs and provide atomistic insight into the role of their different signature interactions. PMID:24144333

  17. Simple electrolyte solutions: Comparison of DRISM and molecular dynamics results for alkali halide solutions

    PubMed Central

    Joung, In Suk; Luchko, Tyler; Case, David A.

    2013-01-01

    Using the dielectrically consistent reference interaction site model (DRISM) of molecular solvation, we have calculated structural and thermodynamic information of alkali-halide salts in aqueous solution, as a function of salt concentration. The impact of varying the closure relation used with DRISM is investigated using the partial series expansion of order-n (PSE-n) family of closures, which includes the commonly used hypernetted-chain equation (HNC) and Kovalenko-Hirata closures. Results are compared to explicit molecular dynamics (MD) simulations, using the same force fields, and to experiment. The mean activity coefficients of ions predicted by DRISM agree well with experimental values at concentrations below 0.5 m, especially when using the HNC closure. As individual ion activities (and the corresponding solvation free energies) are not known from experiment, only DRISM and MD results are directly compared and found to have reasonably good agreement. The activity of water directly estimated from DRISM is nearly consistent with values derived from the DRISM ion activities and the Gibbs-Duhem equation, but the changes in the computed pressure as a function of salt concentration dominate these comparisons. Good agreement with experiment is obtained if these pressure changes are ignored. Radial distribution functions of NaCl solution at three concentrations were compared between DRISM and MD simulations. DRISM shows comparable water distribution around the cation, but water structures around the anion deviate from the MD results; this may also be related to the high pressure of the system. Despite some problems, DRISM-PSE-n is an effective tool for investigating thermodynamic properties of simple electrolytes. PMID:23387564

  18. Molecular dynamics shows that ion pairing and counterion anchoring control the properties of triflate micelles: a comparison with triflate at the air/water interface.

    PubMed

    Lima, Filipe S; Chaimovich, Hernan; Cuccovia, Iolanda M; Horinek, Dominik

    2014-02-11

    Micellar properties of dodecyltrimethylammonium triflate (DTA-triflate, DTATf) are very different from those of DTA-bromide (DTAB). DTATf aggregates show high aggregation numbers (Nagg), low degree of counterion dissociation (α), disk-like shape, high packing, ordering, and low hydration. These micellar properties and the low surface tension of NaTf aqueous solutions point to a high affinity of Tf(-) to the micellar and air/water interfaces. Although the micellar properties of DTATf are well defined, the source of the Tf(-) effect upon the DTA aggregates is unclear. Molecular dynamics (MD) simulations of Tf(-) (and Br(-)) at the air/water interface and as counterion of a DTA aggregate were performed to clarify the nature of Tf(-) preferences for these interfaces. The effect of NaTf or NaBr on surface tension calculated from MD simulations agreed with the reported experimental values. From the MD simulations a high affinity of Tf(-) toward the interface, which occurred in a specific orientation, was calculated. The micellar properties calculated from the MD simulations for DTATf and DTAB were consistent with experimental data: in MD simulations, the DTATf aggregate was more ordered, packed, and dehydrated than the DTAB aggregate. The Tf(-)/alkyltrimethylammonium interaction energies, calculated from the MD simulations, suggested ion pair formation at the micellar interface, stabilized by the preferential orientation of the adsorbed Tf(-) at the micellar interface.

  19. Scalable nanohelices for predictive studies and enhanced 3D visualization.

    PubMed

    Meagher, Kwyn A; Doblack, Benjamin N; Ramirez, Mercedes; Davila, Lilian P

    2014-11-12

    Spring-like materials are ubiquitous in nature and of interest in nanotechnology for energy harvesting, hydrogen storage, and biological sensing applications. For predictive simulations, it has become increasingly important to be able to model the structure of nanohelices accurately. To study the effect of local structure on the properties of these complex geometries one must develop realistic models. To date, software packages are rather limited in creating atomistic helical models. This work focuses on producing atomistic models of silica glass (SiO₂) nanoribbons and nanosprings for molecular dynamics (MD) simulations. Using an MD model of "bulk" silica glass, two computational procedures to precisely create the shape of nanoribbons and nanosprings are presented. The first method employs the AWK programming language and open-source software to effectively carve various shapes of silica nanoribbons from the initial bulk model, using desired dimensions and parametric equations to define a helix. With this method, accurate atomistic silica nanoribbons can be generated for a range of pitch values and dimensions. The second method involves a more robust code which allows flexibility in modeling nanohelical structures. This approach utilizes a C++ code particularly written to implement pre-screening methods as well as the mathematical equations for a helix, resulting in greater precision and efficiency when creating nanospring models. Using these codes, well-defined and scalable nanoribbons and nanosprings suited for atomistic simulations can be effectively created. An added value in both open-source codes is that they can be adapted to reproduce different helical structures, independent of material. In addition, a MATLAB graphical user interface (GUI) is used to enhance learning through visualization and interaction for a general user with the atomistic helical structures. One application of these methods is the recent study of nanohelices via MD simulations for mechanical energy harvesting purposes.

  20. Development of incremental dynamical downscaling and analysis system for regional scale climate change projections

    NASA Astrophysics Data System (ADS)

    Wakazuki, Yasutaka; Hara, Masayuki; Fujita, Mikiko; Ma, Xieyao; Kimura, Fujio

    2013-04-01

    Regional scale climate change projections play an important role in assessments of influences of global warming and include statistical (SD) and dynamical downscaling (DD) approaches. One of DD methods is developed basing on the pseudo-global-warming (PGW) method developed by Kimura and Kitoh (2007) in this study. In general, DD uses regional climate model (RCM) with lateral boundary data. In PGW method, the climatological mean difference estimated by GCMs are added to the objective analysis data (ANAL), and the data are used as the lateral boundary data in the future climate simulations. The ANAL is also used as the lateral boundary conditions of the present climate simulation. One of merits of the PGW method is that influences of biases of GCMs in RCM simulations are reduced. However, the PGW method does not treat climate changes in relative humidity, year-to-year variation, and short-term disturbances. The developing new downscaling method is named as the incremental dynamical downscaling and analysis system (InDDAS). The InDDAS treat climate changes in relative humidity and year-to-year variations. On the other hand, uncertainties of climate change projections estimated by many GCMs are large and are not negligible. Thus, stochastic regional scale climate change projections are expected for assessments of influences of global warming. Many RCM runs must be performed to make stochastic information. However, the computational costs are huge because grid size of RCM runs should be small to resolve heavy rainfall phenomena. Therefore, the number of runs to make stochastic information must be reduced. In InDDAS, climatological differences added to ANAL become statistically pre-analyzed information. The climatological differences of many GCMs are divided into mean climatological difference (MD) and departures from MD. The departures are analyzed by principal component analysis, and positive and negative perturbations (positive and negative standard deviations multiplied by departure patterns (eigenvectors)) with multi modes are added to MD. Consequently, the most likely future states are calculated with climatological difference of MD. For example, future states in cases that temperature increase is large and small are calculated with MD plus positive and negative perturbations of the first mode.

Top