Sample records for mdcnev model formulation

  1. Towards a Neurodevelopmental Model of Clinical Case Formulation

    PubMed Central

    Solomon, Marjorie; Hessl, David; Chiu, Sufen; Olsen, Emily; Hendren, Robert

    2009-01-01

    Rapid advances in molecular genetics and neuroimaging over the last 10-20 years have been a catalyst for research in neurobiology, developmental psychopathology, and translational neuroscience. Methods of study in psychiatry, previously described as “slow maturing,” now are becoming sufficiently sophisticated to more effectively investigate the biology of higher mental processes. Despite these technological advances, the recognition that psychiatric disorders are disorders of neurodevelopment, and the importance of case formulation to clinical practice, a neurodevelopmental model of case formulation has not yet been articulated. The goals of this manuscript, which is organized as a clinical case conference, are to begin to articulate a neurodevelopmental model of case formulation, to illustrate its value, and finally to explore how clinical psychiatric practice might evolve in the future if this model were employed. PMID:19248925

  2. Computerized Instructional Adaptive Testing Model: Formulation and Validation.

    DTIC Science & Technology

    1980-02-01

    AD-AO1 855 CONTROL DATA EDUCATION CO MINNEAPOLIS MN F/6 5/9MPUTERIZED INSTRUCTIONAL ADAPTIVE TESTING MODELS FORMULATION --EC(U) FEB 80 S J KALISCH...final report wus submitted by Control Data Education Company, 8100 34th Avenue, South, Minneapolis, Minnesota 55440, under contract F33615-17-C.0071... DATA EDUCATION CO MINNEAPOLIS MN p/e 5/9 I COMPULTERIZED :LSTUCTIONAL ADAPTIVE TESTING MODELS FORMULATION --EIC(U) FEB 80 S J KALISCH F33615-77-C-0O71

  3. Formulation of Efficient Finite Element Prediction Models.

    DTIC Science & Technology

    1980-01-01

    vorticity-divergence FEM formulation. This paper will compare these FEM formulations by considering the Vgeostrophic adjustment process with the linearized...by Fourier transforming the terms that are independent of t in (2.12)-(2.14) or (2.19)-(2.21). However, in this paper the final state will be...filtering in a baroclinic primitive equation model. 17 L . , 5. Conclusions The objective of this paper is to determine the response of various finite

  4. Modeling of autocatalytic hydrolysis of adefovir dipivoxil in solid formulations.

    PubMed

    Dong, Ying; Zhang, Yan; Xiang, Bingren; Deng, Haishan; Wu, Jingfang

    2011-04-01

    The stability and hydrolysis kinetics of a phosphate prodrug, adefovir dipivoxil, in solid formulations were studied. The stability relationship between five solid formulations was explored. An autocatalytic mechanism for hydrolysis could be proposed according to the kinetic behavior which fits the Prout-Tompkins model well. For the classical kinetic models could hardly describe and predict the hydrolysis kinetics of adefovir dipivoxil in solid formulations accurately when the temperature is high, a feedforward multilayer perceptron (MLP) neural network was constructed to model the hydrolysis kinetics. The build-in approaches in Weka, such as lazy classifiers and rule-based learners (IBk, KStar, DecisionTable and M5Rules), were used to verify the performance of MLP. The predictability of the models was evaluated by 10-fold cross-validation and an external test set. It reveals that MLP should be of general applicability proposing an alternative efficient way to model and predict autocatalytic hydrolysis kinetics for phosphate prodrugs.

  5. Formulation of human-structure interaction system models for vertical vibration

    NASA Astrophysics Data System (ADS)

    Caprani, Colin C.; Ahmadi, Ehsan

    2016-09-01

    In this paper, human-structure interaction system models for vibration in the vertical direction are considered. This work assembles various moving load models from the literature and proposes extension of the single pedestrian to a crowd of pedestrians for the FE formulation for crowd-structure interaction systems. The walking pedestrian vertical force is represented as a general time-dependent force, and the pedestrian is in turn modelled as moving force, moving mass, and moving spring-mass-damper. The arbitrary beam structure is modelled using either a formulation in modal coordinates or finite elements. In each case, the human-structure interaction (HSI) system is first formulated for a single walking pedestrian and then extended to consider a crowd of pedestrians. Finally, example applications for single pedestrian and crowd loading scenarios are examined. It is shown how the models can be used to quantify the interaction between the crowd and bridge structure. This work should find use for the evaluation of existing and new footbridges.

  6. Model-based optimal design of experiments - semidefinite and nonlinear programming formulations

    PubMed Central

    Duarte, Belmiro P.M.; Wong, Weng Kee; Oliveira, Nuno M.C.

    2015-01-01

    We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D–, A– and E–optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D–optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice. PMID:26949279

  7. Model-based optimal design of experiments - semidefinite and nonlinear programming formulations.

    PubMed

    Duarte, Belmiro P M; Wong, Weng Kee; Oliveira, Nuno M C

    2016-02-15

    We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D -, A - and E -optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D -optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice.

  8. Variable thickness transient ground-water flow model. Volume 1. Formulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisenauer, A.E.

    1979-12-01

    Mathematical formulation for the variable thickness transient (VTT) model of an aquifer system is presented. The basic assumptions are described. Specific data requirements for the physical parameters are discussed. The boundary definitions and solution techniques of the numerical formulation of the system of equations are presented.

  9. Formulation and Application of the Generalized Multilevel Facets Model

    ERIC Educational Resources Information Center

    Wang, Wen-Chung; Liu, Chih-Yu

    2007-01-01

    In this study, the authors develop a generalized multilevel facets model, which is not only a multilevel and two-parameter generalization of the facets model, but also a multilevel and facet generalization of the generalized partial credit model. Because the new model is formulated within a framework of nonlinear mixed models, no efforts are…

  10. Modeling individual effects in the Cormack-Jolly-Seber Model: A state-space formulation

    USGS Publications Warehouse

    Royle, J. Andrew

    2008-01-01

    In population and evolutionary biology, there exists considerable interest in individual heterogeneity in parameters of demographic models for open populations. However, flexible and practical solutions to the development of such models have proven to be elusive. In this article, I provide a state-space formulation of open population capture-recapture models with individual effects. The state-space formulation provides a generic and flexible framework for modeling and inference in models with individual effects, and it yields a practical means of estimation in these complex problems via contemporary methods of Markov chain Monte Carlo. A straightforward implementation can be achieved in the software package WinBUGS. I provide an analysis of a simple model with constant parameter detection and survival probability parameters. A second example is based on data from a 7-year study of European dippers, in which a model with year and individual effects is fitted.

  11. AERMOD: A DISPERSION MODEL FOR INDUSTRIAL SOURCE APPLICATIONS PART I: GENERAL MODEL FORMULATION AND BOUNDARY LAYER CHARACTERIZATION

    EPA Science Inventory

    The formulations of the AMS/EPA Regulatory Model Improvement Committee's applied air dispersion model (AERMOD) as related to the characterization of the planetary boundary layer are described. This is the first in a series of three articles. Part II describes the formulation of...

  12. Formulating a New Model of College Choice and Persistence

    ERIC Educational Resources Information Center

    Southerland, J. Nathaniel

    2006-01-01

    The study of college choice and persistence enjoys a lengthy history. However, many of the prominent models upon which the majority of research in these fields is based arise from studies involving traditional 18- to 22-year-old residential students. This paper investigates the rapidly-evolving student population and formulates a new model for…

  13. Compositional Models of Glass/Melt Properties and their Use for Glass Formulation

    DOE PAGES

    Vienna, John D.; USA, Richland Washington

    2014-12-18

    Nuclear waste glasses must simultaneously meet a number of criteria related to their processability, product quality, and cost factors. The properties that must be controlled in glass formulation and waste vitrification plant operation tend to vary smoothly with composition allowing for glass property-composition models to be developed and used. Models have been fit to the key glass properties. The properties are transformed so that simple functions of composition (e.g., linear, polynomial, or component ratios) can be used as model forms. The model forms are fit to experimental data designed statistically to efficiently cover the composition space of interest. Examples ofmore » these models are found in literature. The glass property-composition models, their uncertainty definitions, property constraints, and optimality criteria are combined to formulate optimal glass compositions, control composition in vitrification plants, and to qualify waste glasses for disposal. An overview of current glass property-composition modeling techniques is summarized in this paper along with an example of how those models are applied to glass formulation and product qualification at the planned Hanford high-level waste vitrification plant.« less

  14. A priori testing of subgrid-scale models for the velocity-pressure and vorticity-velocity formulations

    NASA Technical Reports Server (NTRS)

    Winckelmans, G. S.; Lund, T. S.; Carati, D.; Wray, A. A.

    1996-01-01

    Subgrid-scale models for Large Eddy Simulation (LES) in both the velocity-pressure and the vorticity-velocity formulations were evaluated and compared in a priori tests using spectral Direct Numerical Simulation (DNS) databases of isotropic turbulence: 128(exp 3) DNS of forced turbulence (Re(sub(lambda))=95.8) filtered, using the sharp cutoff filter, to both 32(exp 3) and 16(exp 3) synthetic LES fields; 512(exp 3) DNS of decaying turbulence (Re(sub(Lambda))=63.5) filtered to both 64(exp 3) and 32(exp 3) LES fields. Gaussian and top-hat filters were also used with the 128(exp 3) database. Different LES models were evaluated for each formulation: eddy-viscosity models, hyper eddy-viscosity models, mixed models, and scale-similarity models. Correlations between exact versus modeled subgrid-scale quantities were measured at three levels: tensor (traceless), vector (solenoidal 'force'), and scalar (dissipation) levels, and for both cases of uniform and variable coefficient(s). Different choices for the 1/T scaling appearing in the eddy-viscosity were also evaluated. It was found that the models for the vorticity-velocity formulation produce higher correlations with the filtered DNS data than their counterpart in the velocity-pressure formulation. It was also found that the hyper eddy-viscosity model performs better than the eddy viscosity model, in both formulations.

  15. Modelling formulations using gene expression programming--a comparative analysis with artificial neural networks.

    PubMed

    Colbourn, E A; Roskilly, S J; Rowe, R C; York, P

    2011-10-09

    This study has investigated the utility and potential advantages of gene expression programming (GEP)--a new development in evolutionary computing for modelling data and automatically generating equations that describe the cause-and-effect relationships in a system--to four types of pharmaceutical formulation and compared the models with those generated by neural networks, a technique now widely used in the formulation development. Both methods were capable of discovering subtle and non-linear relationships within the data, with no requirement from the user to specify the functional forms that should be used. Although the neural networks rapidly developed models with higher values for the ANOVA R(2) these were black box and provided little insight into the key relationships. However, GEP, although significantly slower at developing models, generated relatively simple equations describing the relationships that could be interpreted directly. The results indicate that GEP can be considered an effective and efficient modelling technique for formulation data. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Investigation of an artificial intelligence technology--Model trees. Novel applications for an immediate release tablet formulation database.

    PubMed

    Shao, Q; Rowe, R C; York, P

    2007-06-01

    This study has investigated an artificial intelligence technology - model trees - as a modelling tool applied to an immediate release tablet formulation database. The modelling performance was compared with artificial neural networks that have been well established and widely applied in the pharmaceutical product formulation fields. The predictability of generated models was validated on unseen data and judged by correlation coefficient R(2). Output from the model tree analyses produced multivariate linear equations which predicted tablet tensile strength, disintegration time, and drug dissolution profiles of similar quality to neural network models. However, additional and valuable knowledge hidden in the formulation database was extracted from these equations. It is concluded that, as a transparent technology, model trees are useful tools to formulators.

  17. Finite element model for MOI applications using A-V formulation

    NASA Astrophysics Data System (ADS)

    Xuan, L.; Shanker, B.; Udpa, L.; Shih, W.; Fitzpatrick, G.

    2001-04-01

    Magneto-optic imaging (MOI) is a relatively new sensor application of an extension of bubble memory technology to NDT and produce easy-to-interpret, real time analog images. MOI systems use a magneto-optic (MO) sensor to produce analog images of magnetic flux leakage from surface and subsurface defects. The instrument's capability in detecting the relatively weak magnetic fields associated with subsurface defects depends on the sensitivity of the magneto-optic sensor. The availability of a theoretical model that can simulate the MOI system performance is extremely important for optimization of the MOI sensor and hardware system. A nodal finite element model based on magnetic vector potential formulation has been developed for simulating MOI phenomenon. This model has been used for predicting the magnetic fields in simple test geometry with corrosion dome defects. In the case of test samples with multiple discontinuities, a more robust model using the magnetic vector potential Ā and electrical scalar potential V is required. In this paper, a finite element model based on A-V formulation is developed to model complex circumferential crack under aluminum rivets in dimpled countersink.

  18. A Population Pharmacokinetic Model for a Solid Oral Tablet Formulation of Posaconazole.

    PubMed

    van Iersel, Marlou L P S; Rossenu, Stefaan; de Greef, Rik; Waskin, Hetty

    2018-04-30

    A delayed-release solid tablet formulation that releases posaconazole in the small intestine was developed to maximize systemic absorption. This study aimed to characterize the pharmacokinetics of the posaconazole solid tablet formulation in adult subjects and to investigate the potential impact of demographic and clinical factors on posaconazole exposure through a population pharmacokinetic approach. Nonlinear mixed-effects modeling was performed using data from several studies conducted in healthy volunteers and patients. The influence of demographic and clinical factors on pharmacokinetic parameters was evaluated using a stepwise forward inclusion/backward exclusion procedure. The final pharmacokinetic model was used to simulate posaconazole exposure in patients at high risk for invasive fungal diseases treated with the proposed posaconazole dose of 300 mg twice daily on day 1, followed by 300 mg daily for 27 days. A one-compartment pharmacokinetic model with sequential zero-order and first-order absorption and a first-order disposition from the central compartment adequately described the pharmacokinetic profile of the posaconazole solid tablet formulation. Significant covariates included disease state (acute myeloid leukemia/myelodysplasia vs allogeneic hematopoietic stem cell transplantation), body weight, and formulation on bioavailability; food status on first-order absorption rate; and dosing regimen (single dose vs multiple doses) on clearance. Except for body weight, the impact of these covariates on posaconazole exposure was considered clinically irrelevant. This population pharmacokinetic analysis confirmed that the proposed dose of the posaconazole solid tablet formulation provides adequate target therapeutic exposure (>0.5 mg/l) to a broad range of patients at high risk for invasive fungal disease. Copyright © 2018 American Society for Microbiology.

  19. Evaluation of soy-based surface active copolymers as surfactant ingredients in model shampoo formulations.

    PubMed

    Popadyuk, A; Kalita, H; Chisholm, B J; Voronov, A

    2014-12-01

    A new non-toxic soybean oil-based polymeric surfactant (SBPS) for personal-care products was developed and extensively characterized, including an evaluation of the polymeric surfactant performance in model shampoo formulations. To experimentally assure applicability of the soy-based macromolecules in shampoos, either in combination with common anionic surfactants (in this study, sodium lauryl sulfate, SLS) or as a single surface-active ingredient, the testing of SBPS physicochemical properties, performance and visual assessment of SBPS-based model shampoos was carried out. The results obtained, including foaming and cleaning ability of model formulations, were compared to those with only SLS as a surfactant as well as to SLS-free shampoos. Overall, the results show that the presence of SBPS improves cleaning, foaming, and conditioning of model formulations. SBPS-based formulations meet major requirements of multifunctional shampoos - mild detergency, foaming, good conditioning, and aesthetic appeal, which are comparable to commercially available shampoos. In addition, examination of SBPS/SLS mixtures in model shampoos showed that the presence of the SBPS enables the concentration of SLS to be significantly reduced without sacrificing shampoo performance. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  20. Lumped mass formulations for modeling flexible body systems

    NASA Technical Reports Server (NTRS)

    Rampalli, Rajiv

    1989-01-01

    The efforts of Mechanical Dynamics, Inc. in obtaining a general formulation for flexible bodies in a multibody setting are discussed. The efforts being supported by MDI, both in house and externally are summarized. The feasibility of using lumped mass approaches to modeling flexibility in a multibody dynamics context is examined. The kinematics and kinetics for a simple system consisting of two rigid bodies connected together by an elastic beam are developed in detail. Accuracy, efficiency and ease of use using this approach are some of the issues that are then looked at. The formulation is then generalized to a superelement containing several nodes and connecting several bodies. Superelement kinematics and kinetics equations are developed. The feasibility and effectiveness of the method is illustrated by the use of some examples illustrating phenomena common in the context of spacecraft motions.

  1. Precision diet formulation to improve performance and profitability across various climates: Modeling the implications of increasing the formulation frequency of dairy cattle diets.

    PubMed

    White, Robin R; Capper, Judith L

    2014-03-01

    The objective of this study was to use a precision nutrition model to simulate the relationship between diet formulation frequency and dairy cattle performance across various climates. Agricultural Modeling and Training Systems (AMTS) CattlePro diet-balancing software (Cornell Research Foundation, Ithaca, NY) was used to compare 3 diet formulation frequencies (weekly, monthly, or seasonal) and 3 levels of climate variability (hot, cold, or variable). Predicted daily milk yield (MY), metabolizable energy (ME) balance, and dry matter intake (DMI) were recorded for each frequency-variability combination. Economic analysis was conducted to calculate the predicted revenue over feed and labor costs. Diet formulation frequency affected ME balance and MY but did not affect DMI. Climate variability affected ME balance and DMI but not MY. The interaction between climate variability and formulation frequency did not affect ME balance, MY, or DMI. Formulating diets more frequently increased MY, DMI, and ME balance. Economic analysis showed that formulating diets weekly rather than seasonally could improve returns over variable costs by $25,000 per year for a moderate-sized (300-cow) operation. To achieve this increase in returns, an entire feeding system margin of error of <1% was required. Formulating monthly, rather than seasonally, may be a more feasible alternative as this requires a margin of error of only 2.5% for the entire feeding system. Feeding systems with a low margin of error must be developed to better take advantage of the benefits of precision nutrition. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Physiologically Based Absorption Modeling to Impact Biopharmaceutics and Formulation Strategies in Drug Development-Industry Case Studies.

    PubMed

    Kesisoglou, Filippos; Chung, John; van Asperen, Judith; Heimbach, Tycho

    2016-09-01

    In recent years, there has been a significant increase in use of physiologically based pharmacokinetic models in drug development and regulatory applications. Although most of the published examples have focused on aspects such as first-in-human (FIH) dose predictions or drug-drug interactions, several publications have highlighted the application of these models in the biopharmaceutics field and their use to inform formulation development. In this report, we present 5 case studies of use of such models in this biopharmaceutics/formulation space across different pharmaceutical companies. The case studies cover different aspects of biopharmaceutics or formulation questions including (1) prediction of absorption prior to FIH studies; (2) optimization of formulation and dissolution method post-FIH data; (3) early exploration of a modified-release formulation; (4) addressing bridging questions for late-stage formulation changes; and (5) prediction of pharmacokinetics in the fed state for a Biopharmaceutics Classification System class I drug with fasted state data. The discussion of the case studies focuses on how such models can facilitate decisions and biopharmaceutic understanding of drug candidates and the opportunities for increased use and acceptance of such models in drug development and regulatory interactions. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. The Bean model in suprconductivity: Variational formulation and numerical solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prigozhin, L.

    The Bean critical-state model describes the penetration of magnetic field into type-II superconductors. Mathematically, this is a free boundary problem and its solution is of interest in applied superconductivity. We derive a variational formulation for the Bean model and use it to solve two-dimensional and axially symmetric critical-state problems numerically. 25 refs., 9 figs., 1 tab.

  4. Aphrodisiac activity of polyherbal formulation in experimental models on male rats

    PubMed Central

    Sahoo, Himanshu Bhusan; Nandy, Subhangkar; Senapati, Aswini Kumar; Sarangi, Sarada Prasad; Sahoo, Saroj Kumar

    2014-01-01

    Objective: To investigate the aphrodisiac potential of polyherbal formulations prepared from different parts of Tribulus terrestris, Curculigo orchioides, Allium tuberosum, Cucurbita pepo, Elephant creeper, Mucuna pruriens, and Terminalia catappa in Albino rats in specified ratio as suspension. Materials and Methods: The different concentrations of prepared polyherbal formulations i.e. 150, 300, and 600 mg/kg and sildenafil citrate as standard (5 mg/kg) and vehicle (control) were administered orally to rats (n = 6 animals per group) for 3 weeks. Mating behavior parameters in male rats was monitored in first week and third week week of treatment pairing with receptive females. After termination of drug treatment, the mating performance, hormonal analysis, sperm count, and testes-body weight ratio were also evaluated. Results: The polyherbal formulation showed a significant increase in mating behavior as well as mating performance, serum hormonal levels, sperm count, and testes-body weight ratio with dose-dependent relationship as compared to vehicle control. But the dose of 600 mg/kg of polyherbal formulation assumes closer resemblance of above parameters with the standard used. Conclusion: The results of the study strongly suggest that the polyherbal formulations have a good aphrodisiac activity on rats in the above experimental models, which may be an alternative weapon for various sexual dysfunctions in future. PMID:24761115

  5. A two-field modified Lagrangian formulation for robust simulations of extrinsic cohesive zone models

    NASA Astrophysics Data System (ADS)

    Cazes, F.; Coret, M.; Combescure, A.

    2013-06-01

    This paper presents the robust implementation of a cohesive zone model based on extrinsic cohesive laws (i.e. laws involving an infinite initial stiffness). To this end, a two-field Lagrangian weak formulation in which cohesive tractions are chosen as the field variables along the crack's path is presented. Unfortunately, this formulation cannot model the infinite compliance of the broken elements accurately, and no simple criterion can be defined to determine the loading-unloading change of state at the integration points of the cohesive elements. Therefore, a modified Lagrangian formulation using a fictitious cohesive traction instead of the classical cohesive traction as the field variable is proposed. Thanks to this change of variable, the cohesive law becomes an increasing function of the equivalent displacement jump, which eliminates the problems mentioned previously. The ability of the proposed formulations to simulate fracture accurately and without field oscillations is investigated through three numerical test examples.

  6. Individual-based model formulation for cutthroat trout, Little Jones Creek, California

    Treesearch

    Steven F. Railsback; Bret C. Harvey

    2001-01-01

    This report contains the detailed formulation of an individual-based model (IBM) of cutthroat trout developed for three study sites on Little Jones Creek, Del Norte County, in northwestern California. The model was designed to support research on relations between habitat and fish population dynamics, the importance of small tributaries to trout populations, and the...

  7. Novel Pharmacokinetic-Pharmacodynamic Model for Prediction of Outcomes with an Extended-Release Formulation of Ciprofloxacin

    PubMed Central

    Meagher, Alison K.; Forrest, Alan; Dalhoff, Axel; Stass, Heino; Schentag, Jerome J.

    2004-01-01

    The pharmacokinetics of an extended-release (XR) formulation of ciprofloxacin has been compared to that of the immediate-release (IR) product in healthy volunteers. The only significant difference in pharmacokinetic parameters between the two formulations was seen in the rate constant of absorption, which was approximately 50% greater with the IR formulation. The geometric mean plasma ciprofloxacin concentrations were applied to an in vitro pharmacokinetic-pharmacodynamic model exposing three different clinical strains of Escherichia coli (MICs, 0.03, 0.5, and 2.0 mg/liter) to 24 h of simulated concentrations in plasma. A novel mathematical model was derived to describe the time course of bacterial CFU, including capacity-limited replication and first-order rate of bacterial clearance, and to model the effects of ciprofloxacin concentrations on these processes. A “mixture model” was employed which allowed as many as three bacterial subpopulations to describe the total bacterial load at any moment. Comparing the two formulations at equivalent daily doses, the rates and extents of bacterial killing were similar with the IR and XR formulations at MICs of 0.03 and 2.0 mg/liter. At an MIC of 0.5 mg/liter, however, the 1,000-mg/day XR formulation showed a moderate advantage in antibacterial effect: the area under the CFU-time curve was 45% higher for the IR regimen; the nadir log CFU and 24-h log CFU values for the IR regimen were 3.75 and 2.49, respectively; and those for XR were 4.54 and 3.13, respectively. The mathematical model explained the differences in bacterial killing rate for two regimens with identical AUC/MIC ratios. PMID:15155200

  8. Case formulation and management using pattern-based formulation (PBF) methodology: clinical case 1.

    PubMed

    Fernando, Irosh; Cohen, Martin

    2014-02-01

    A tool for psychiatric case formulation known as pattern-based formulation (PBF) has been recently introduced. This paper presents an application of this methodology in formulating and managing complex clinical cases. The symptomatology of the clinical presentation has been parsed into individual clinical phenomena and interpreted by selecting explanatory models. The clinical presentation demonstrates how PBF has been used as a clinical tool to guide clinicians' thinking, that takes a structured approach to manage multiple issues using a broad range of management strategies. In doing so, the paper also introduces a number of patterns related to the observed clinical phenomena that can be re-used as explanatory models when formulating other clinical cases. It is expected that this paper will assist clinicians, and particularly trainees, to better understand PBF methodology and apply it to improve their formulation skills.

  9. Effects of Model Formulation on Estimates of Health in Individual Right Whales (Eubalaena glacialis).

    PubMed

    Schick, Robert S; Kraus, Scott D; Rolland, Rosalind M; Knowlton, Amy R; Hamilton, Philip K; Pettis, Heather M; Thomas, Len; Harwood, John; Clark, James S

    2016-01-01

    Right whales are vulnerable to many sources of anthropogenic disturbance including ship strikes, entanglement with fishing gear, and anthropogenic noise. The effect of these factors on individual health is unclear. A statistical model using photographic evidence of health was recently built to infer the true or hidden health of individual right whales. However, two important prior assumptions about the role of missing data and unexplained variance on the estimates were not previously assessed. Here we tested these factors by varying prior assumptions and model formulation. We found sensitivity to each assumption and used the output to make guidelines on future model formulation.

  10. Variational formulation for Black-Scholes equations in stochastic volatility models

    NASA Astrophysics Data System (ADS)

    Gyulov, Tihomir B.; Valkov, Radoslav L.

    2012-11-01

    In this note we prove existence and uniqueness of weak solutions to a boundary value problem arising from stochastic volatility models in financial mathematics. Our settings are variational in weighted Sobolev spaces. Nevertheless, as it will become apparent our variational formulation agrees well with the stochastic part of the problem.

  11. Modeling Ignition of HMX with the Gibbs Formulation

    NASA Astrophysics Data System (ADS)

    Lee, Kibaek; Stewart, D. Scott

    2017-06-01

    We present a HMX model with the Gibbs formulation in which stress tensor and temperature are assumed to be in local equilibrium, but phase/chemical changes are not assumed to be in equilibrium. We assume multi-components for HMX including beta- and delta-phase, liquid, and gas phase of HMX and its gas products. Isotropic small strain solid model, modified Fried Howard liquid EOS, and ideal gas EOS are used for its relevant component. Phase/chemical changes are characterized as reactions and are in individual reaction rate. Maxwell-Stefan model is used for diffusion. Excited gas products in the local domain lead unreacted HMX solid to the ignition event. Density of the mixture, stress, strain, displacement, mass fractions, and temperature are considered in 1D domain with time histories. Office of Naval Research and Air Force Office of Scientific Research.

  12. Assessing the Problem Formulation in an Integrated Assessment Model: Implications for Climate Policy Decision-Support

    NASA Astrophysics Data System (ADS)

    Garner, G. G.; Reed, P. M.; Keller, K.

    2014-12-01

    Integrated assessment models (IAMs) are often used with the intent to aid in climate change decisionmaking. Numerous studies have analyzed the effects of parametric and/or structural uncertainties in IAMs, but uncertainties regarding the problem formulation are often overlooked. Here we use the Dynamic Integrated model of Climate and the Economy (DICE) to analyze the effects of uncertainty surrounding the problem formulation. The standard DICE model adopts a single objective to maximize a weighted sum of utilities of per-capita consumption. Decisionmakers, however, may be concerned with a broader range of values and preferences that are not captured by this a priori definition of utility. We reformulate the problem by introducing three additional objectives that represent values such as (i) reliably limiting global average warming to two degrees Celsius and minimizing both (ii) the costs of abatement and (iii) the damages due to climate change. We derive a set of Pareto-optimal solutions over which decisionmakers can trade-off and assess performance criteria a posteriori. We illustrate the potential for myopia in the traditional problem formulation and discuss the capability of this multiobjective formulation to provide decision support.

  13. Development of a Novel Simplified PBPK Absorption Model to Explain the Higher Relative Bioavailability of the OROS® Formulation of Oxybutynin.

    PubMed

    Olivares-Morales, Andrés; Ghosh, Avijit; Aarons, Leon; Rostami-Hodjegan, Amin

    2016-11-01

    A new minimal Segmented Transit and Absorption model (mSAT) model has been recently proposed and combined with intrinsic intestinal effective permeability (P eff,int ) to predict the regional gastrointestinal (GI) absorption (f abs ) of several drugs. Herein, this model was extended and applied for the prediction of oral bioavailability and pharmacokinetics of oxybutynin and its enantiomers to provide a mechanistic explanation of the higher relative bioavailability observed for oxybutynin's modified-release OROS® formulation compared to its immediate-release (IR) counterpart. The expansion of the model involved the incorporation of mechanistic equations for the prediction of release, transit, dissolution, permeation and first-pass metabolism. The predicted pharmacokinetics of oxybutynin enantiomers after oral administration for both the IR and OROS® formulations were in close agreement with the observed data. The predicted absolute bioavailability for the IR formulation was within 5% of the observed value, and the model adequately predicted the higher relative bioavailability observed for the OROS® formulation vs. the IR counterpart. From the model predictions, it can be noticed that the higher bioavailability observed for the OROS® formulation was mainly attributable to differences in the intestinal availability (F G ) rather than due to a higher colonic f abs , thus confirming previous hypotheses. The predicted f abs was almost 70% lower for the OROS® formulation compared to the IR formulation, whereas the F G was almost eightfold higher than in the IR formulation. These results provide further support to the hypothesis of an increased F G as the main factor responsible for the higher bioavailability of oxybutynin's OROS® formulation vs. the IR.

  14. Formulating a stand-growth model for mathematical programming problems in Appalachian forests

    Treesearch

    Gary W. Miller; Jay Sullivan

    1993-01-01

    Some growth and yield simulators applicable to central hardwood forests can be formulated for use in mathematical programming models that are designed to optimize multi-stand, multi-resource management problems. Once in the required format, growth equations serve as model constraints, defining the dynamics of stand development brought about by harvesting decisions. In...

  15. Differential geometry based solvation model I: Eulerian formulation

    NASA Astrophysics Data System (ADS)

    Chen, Zhan; Baker, Nathan A.; Wei, G. W.

    2010-11-01

    This paper presents a differential geometry based model for the analysis and computation of the equilibrium property of solvation. Differential geometry theory of surfaces is utilized to define and construct smooth interfaces with good stability and differentiability for use in characterizing the solvent-solute boundaries and in generating continuous dielectric functions across the computational domain. A total free energy functional is constructed to couple polar and nonpolar contributions to the solvation process. Geometric measure theory is employed to rigorously convert a Lagrangian formulation of the surface energy into an Eulerian formulation so as to bring all energy terms into an equal footing. By optimizing the total free energy functional, we derive coupled generalized Poisson-Boltzmann equation (GPBE) and generalized geometric flow equation (GGFE) for the electrostatic potential and the construction of realistic solvent-solute boundaries, respectively. By solving the coupled GPBE and GGFE, we obtain the electrostatic potential, the solvent-solute boundary profile, and the smooth dielectric function, and thereby improve the accuracy and stability of implicit solvation calculations. We also design efficient second-order numerical schemes for the solution of the GPBE and GGFE. Matrix resulted from the discretization of the GPBE is accelerated with appropriate preconditioners. An alternative direct implicit (ADI) scheme is designed to improve the stability of solving the GGFE. Two iterative approaches are designed to solve the coupled system of nonlinear partial differential equations. Extensive numerical experiments are designed to validate the present theoretical model, test computational methods, and optimize numerical algorithms. Example solvation analysis of both small compounds and proteins are carried out to further demonstrate the accuracy, stability, efficiency and robustness of the present new model and numerical approaches. Comparison is given to

  16. Differential geometry based solvation model I: Eulerian formulation

    PubMed Central

    Chen, Zhan; Baker, Nathan A.; Wei, G. W.

    2010-01-01

    This paper presents a differential geometry based model for the analysis and computation of the equilibrium property of solvation. Differential geometry theory of surfaces is utilized to define and construct smooth interfaces with good stability and differentiability for use in characterizing the solvent-solute boundaries and in generating continuous dielectric functions across the computational domain. A total free energy functional is constructed to couple polar and nonpolar contributions to the salvation process. Geometric measure theory is employed to rigorously convert a Lagrangian formulation of the surface energy into an Eulerian formulation so as to bring all energy terms into an equal footing. By minimizing the total free energy functional, we derive coupled generalized Poisson-Boltzmann equation (GPBE) and generalized geometric flow equation (GGFE) for the electrostatic potential and the construction of realistic solvent-solute boundaries, respectively. By solving the coupled GPBE and GGFE, we obtain the electrostatic potential, the solvent-solute boundary profile, and the smooth dielectric function, and thereby improve the accuracy and stability of implicit solvation calculations. We also design efficient second order numerical schemes for the solution of the GPBE and GGFE. Matrix resulted from the discretization of the GPBE is accelerated with appropriate preconditioners. An alternative direct implicit (ADI) scheme is designed to improve the stability of solving the GGFE. Two iterative approaches are designed to solve the coupled system of nonlinear partial differential equations. Extensive numerical experiments are designed to validate the present theoretical model, test computational methods, and optimize numerical algorithms. Example solvation analysis of both small compounds and proteins are carried out to further demonstrate the accuracy, stability, efficiency and robustness of the present new model and numerical approaches. Comparison is given to

  17. Lagrangian formulation for penny-shaped and Perkins-Kern geometry models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W.S.

    1989-09-01

    This paper discusses basic theories for vertical penny-shaped and Perkins-Kern (PK) geometry models developed with a Lagrangian formulation combined with a virtual-work analysis. The Lagrangian formulation yields a pair of nonlinear equations in R/sub f/ or L/sub f/ and b/sub f/, the fracture radius or length and half-width. By introduction of a virtual-work analysis, a simple equation is obtained that can be solved numerically. This equation is written in a form that can be used to determine fracture geometry when the fluid-loss coefficient of the fracturing fluid is known. Also, this equation, coupled with a material-balance equation after shut-in, canmore » be used to analyze pressure-decline data after shut-in to determine the effective fluid-loss coefficient and fracture geometry.« less

  18. Formulation of consumables management models: Mission planning processor payload interface definition

    NASA Technical Reports Server (NTRS)

    Torian, J. G.

    1977-01-01

    Consumables models required for the mission planning and scheduling function are formulated. The relation of the models to prelaunch, onboard, ground support, and postmission functions for the space transportation systems is established. Analytical models consisting of an orbiter planning processor with consumables data base is developed. A method of recognizing potential constraint violations in both the planning and flight operations functions, and a flight data file storage/retrieval of information over an extended period which interfaces with a flight operations processor for monitoring of the actual flights is presented.

  19. The Schwinger Model on S 1: Hamiltonian Formulation, Vacuum and Anomaly

    NASA Astrophysics Data System (ADS)

    Stuart, David

    2014-12-01

    We present a Hamiltonian formulation of the Schwinger model with spatial domain taken to be the circle. It is shown that, in Coulomb gauge, the Hamiltonian is a semi-bounded, self-adjoint operator which is invariant under the group of large gauge transformations. There is a nontrivial action of on fermionic Fock space and its vacuum. This action plays a role analogous to that played by the spectral flow in the infinite Dirac sea formalism. The formulation allows (1) a description of the anomaly and its relation to the group action, and (2) an explicit identification of the vacuum. The anomaly in the chiral conservation law appears as a consequence of insisting upon semi-boundedness and gauge invariance of the quantized Hamiltonian.

  20. Analytical formulation of cellular automata rules using data models

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger M.; Handley, James W.

    2009-05-01

    We present a unique method for converting traditional cellular automata (CA) rules into analytical function form. CA rules have been successfully used for morphological image processing and volumetric shape recognition and classification. Further, the use of CA rules as analog models to the physical and biological sciences can be significantly extended if analytical (as opposed to discrete) models could be formulated. We show that such transformations are possible. We use as our example John Horton Conway's famous "Game of Life" rule set. We show that using Data Modeling, we are able to derive both polynomial and bi-spectrum models of the IF-THEN rules that yield equivalent results. Further, we demonstrate that the "Game of Life" rule set can be modeled using the multi-fluxion, yielding a closed form nth order derivative and integral. All of the demonstrated analytical forms of the CA rule are general and applicable to real-time use.

  1. Drug disposition and modelling before and after gastric bypass: immediate and controlled-release metoprolol formulations.

    PubMed

    Gesquiere, Ina; Darwich, Adam S; Van der Schueren, Bart; de Hoon, Jan; Lannoo, Matthias; Matthys, Christophe; Rostami, Amin; Foulon, Veerle; Augustijns, Patrick

    2015-11-01

    The aim of the present study was to evaluate the disposition of metoprolol after oral administration of an immediate and controlled-release formulation before and after Roux-en-Y gastric bypass (RYGB) surgery in the same individuals and to validate a physiologically based pharmacokinetic (PBPK) model for predicting oral bioavailability following RYGB. A single-dose pharmacokinetic study of metoprolol tartrate 200 mg immediate release and controlled release was performed in 14 volunteers before and 6-8 months after RYGB. The observed data were compared with predicted results from the PBPK modelling and simulation of metoprolol tartrate immediate and controlled-release formulation before and after RYGB. After administration of metoprolol immediate and controlled release, no statistically significant difference in the observed area under the curve (AUC(0-24 h)) was shown, although a tendency towards an increased oral exposure could be observed as the AUC(0-24 h) was 32.4% [95% confidence interval (CI) 1.36, 63.5] and 55.9% (95% CI 5.73, 106) higher following RYGB for the immediate and controlled-release formulation, respectively. This could be explained by surgery-related weight loss and a reduced presystemic biotransformation in the proximal gastrointestinal tract. The PBPK values predicted by modelling and simulation were similar to the observed data, confirming its validity. The disposition of metoprolol from an immediate-release and a controlled-release formulation was not significantly altered after RYGB; there was a tendency to an increase, which was also predicted by PBPK modelling and simulation. © 2015 The British Pharmacological Society.

  2. Drug disposition and modelling before and after gastric bypass: immediate and controlled-release metoprolol formulations

    PubMed Central

    Gesquiere, Ina; Darwich, Adam S; Van der Schueren, Bart; de Hoon, Jan; Lannoo, Matthias; Matthys, Christophe; Rostami, Amin; Foulon, Veerle; Augustijns, Patrick

    2015-01-01

    Aims The aim of the present study was to evaluate the disposition of metoprolol after oral administration of an immediate and controlled-release formulation before and after Roux-en-Y gastric bypass (RYGB) surgery in the same individuals and to validate a physiologically based pharmacokinetic (PBPK) model for predicting oral bioavailability following RYGB. Methods A single-dose pharmacokinetic study of metoprolol tartrate 200 mg immediate release and controlled release was performed in 14 volunteers before and 6–8 months after RYGB. The observed data were compared with predicted results from the PBPK modelling and simulation of metoprolol tartrate immediate and controlled-release formulation before and after RYGB. Results After administration of metoprolol immediate and controlled release, no statistically significant difference in the observed area under the curve (AUC0–24 h) was shown, although a tendency towards an increased oral exposure could be observed as the AUC0–24 h was 32.4% [95% confidence interval (CI) 1.36, 63.5] and 55.9% (95% CI 5.73, 106) higher following RYGB for the immediate and controlled-release formulation, respectively. This could be explained by surgery-related weight loss and a reduced presystemic biotransformation in the proximal gastrointestinal tract. The PBPK values predicted by modelling and simulation were similar to the observed data, confirming its validity. Conclusions The disposition of metoprolol from an immediate-release and a controlled-release formulation was not significantly altered after RYGB; there was a tendency to an increase, which was also predicted by PBPK modelling and simulation. PMID:25917170

  3. Early Formulation Model-centric Engineering on NASA's Europa Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Bayer, Todd; Chung, Seung; Cole, Bjorn; Cooke, Brian; Dekens, Frank; Delp, Chris; Gontijo, Ivair; Lewis, Kari; Moshir, Mehrdad; Rasmussen, Robert; hide

    2012-01-01

    The proposed Jupiter Europa Orbiter and Jupiter Ganymede Orbiter missions were formulated using current state-of-the-art MBSE facilities: - JPL's TeamX, Rapid Mission Architecting - ESA's Concurrent Design Facility - APL's ACE Concurrent Engineering Facility. When JEO became an official "pre-project" in Sep 2010, we had already developed a strong partnership with JPL's Integrated Model Centric Engineering (IMCE) initiative; decided to apply Architecting and SysML-based MBSE from the beginning, begun laying these foundations to support work in Phase A. Release of Planetary Science Decadal Survey and FY12 President's Budget in March 2011 changed the landscape. JEO reverted to being a pre-phase A study. A conscious choice was made to continue application of MBSE on the Europa Study, refocused for early formulation. This presentation describes the approach, results, and lessons.

  4. Simple, distance-dependent formulation of the Watts-Strogatz model for directed and undirected small-world networks.

    PubMed

    Song, H Francis; Wang, Xiao-Jing

    2014-12-01

    Small-world networks-complex networks characterized by a combination of high clustering and short path lengths-are widely studied using the paradigmatic model of Watts and Strogatz (WS). Although the WS model is already quite minimal and intuitive, we describe an alternative formulation of the WS model in terms of a distance-dependent probability of connection that further simplifies, both practically and theoretically, the generation of directed and undirected WS-type small-world networks. In addition to highlighting an essential feature of the WS model that has previously been overlooked, namely the equivalence to a simple distance-dependent model, this alternative formulation makes it possible to derive exact expressions for quantities such as the degree and motif distributions and global clustering coefficient for both directed and undirected networks in terms of model parameters.

  5. Simple, distance-dependent formulation of the Watts-Strogatz model for directed and undirected small-world networks

    NASA Astrophysics Data System (ADS)

    Song, H. Francis; Wang, Xiao-Jing

    2014-12-01

    Small-world networks—complex networks characterized by a combination of high clustering and short path lengths—are widely studied using the paradigmatic model of Watts and Strogatz (WS). Although the WS model is already quite minimal and intuitive, we describe an alternative formulation of the WS model in terms of a distance-dependent probability of connection that further simplifies, both practically and theoretically, the generation of directed and undirected WS-type small-world networks. In addition to highlighting an essential feature of the WS model that has previously been overlooked, namely the equivalence to a simple distance-dependent model, this alternative formulation makes it possible to derive exact expressions for quantities such as the degree and motif distributions and global clustering coefficient for both directed and undirected networks in terms of model parameters.

  6. Population pharmacokinetic modelling of tramadol using inverse Gaussian function for the assessment of drug absorption from prolonged and immediate release formulations.

    PubMed

    Brvar, Nina; Mateović-Rojnik, Tatjana; Grabnar, Iztok

    2014-10-01

    This study aimed to develop a population pharmacokinetic model for tramadol that combines different input rates with disposition characteristics. Data used for the analysis were pooled from two phase I bioavailability studies with immediate (IR) and prolonged release (PR) formulations in healthy volunteers. Tramadol plasma concentration-time data were described by an inverse Gaussian function to model the complete input process linked to a two-compartment disposition model with first-order elimination. Although polymorphic CYP2D6 appears to be a major enzyme involved in the metabolism of tramadol, application of a mixture model to test the assumption of two and three subpopulations did not reveal any improvement of the model. The final model estimated parameters with reasonable precision and was able to estimate the interindividual variability of all parameters except for the relative bioavailability of PR vs. IR formulation. Validity of the model was further tested using the nonparametric bootstrap approach. Finally, the model was applied to assess absorption kinetics of tramadol and predict steady-state pharmacokinetics following administration of both types of formulations. For both formulations, the final model yielded a stable estimate of the absorption time profiles. Steady-state simulation supports switching of patients from IR to PR formulation. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Transport of fluid and solutes in the body I. Formulation of a mathematical model.

    PubMed

    Gyenge, C C; Bowen, B D; Reed, R K; Bert, J L

    1999-09-01

    A compartmental model of short-term whole body fluid, protein, and ion distribution and transport is formulated. The model comprises four compartments: a vascular and an interstitial compartment, each with an embedded cellular compartment. The present paper discusses the assumptions on which the model is based and describes the equations that make up the model. Fluid and protein transport parameters from a previously validated model as well as ionic exchange parameters from the literature or from statistical estimation [see companion paper: C. C. Gyenge, B. D. Bowen, R. K. Reed, and J. L. Bert. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H1228-H1240, 1999] are used in formulating the model. The dynamic model has the ability to simulate 1) transport across the capillary membrane of fluid, proteins, and small ions and their distribution between the vascular and interstitial compartments; 2) the changes in extracellular osmolarity; 3) the distribution and transport of water and ions associated with each of the cellular compartments; 4) the cellular transmembrane potential; and 5) the changes of volume in the four fluid compartments. The validation and testing of the proposed model against available experimental data are presented in the companion paper.

  8. Early Formulation Model-centric Engineering on Nasa's Europa Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Bayer, Todd; Chung, Seung; Cole, Bjorn; Cooke, Brian; Dekens, Frank; Delp, Chris; Gontijo, I.; Lewis, Kari; Moshir, Mehrdad; Rasmussen, Robert; hide

    2012-01-01

    By leveraging the existing Model-Based Systems Engineering (MBSE) infrastructure at JPL and adding a modest investment, the Europa Mission Concept Study made striking advances in mission concept capture and analysis. This effort has reaffirmed the importance of architecting and successfully harnessed the synergistic relationship of system modeling to mission architecting. It clearly demonstrated that MBSE can provide greater agility than traditional systems engineering methods. This paper will describe the successful application of MBSE in the dynamic environment of early mission formulation, the significant results produced and lessons learned in the process.

  9. The Interplay Between Transpiration and Runoff Formulations in Land Surface Schemes Used with Atmospheric Models

    NASA Technical Reports Server (NTRS)

    Koster, Rindal D.; Milly, P. C. D.

    1997-01-01

    The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) has shown that different land surface models (LSMS) driven by the same meteorological forcing can produce markedly different surface energy and water budgets, even when certain critical aspects of the LSMs (vegetation cover, albedo, turbulent drag coefficient, and snow cover) are carefully controlled. To help explain these differences, the authors devised a monthly water balance model that successfully reproduces the annual and seasonal water balances of the different PILPS schemes. Analysis of this model leads to the identification of two quantities that characterize an LSM's formulation of soil water balance dynamics: (1) the efficiency of the soil's evaporation sink integrated over the active soil moisture range, and (2) the fraction of this range over which runoff is generated. Regardless of the LSM's complexity, the combination of these two derived parameters with rates of interception loss, potential evaporation, and precipitation provides a reasonable estimate for the LSM's simulated annual water balance. The two derived parameters shed light on how evaporation and runoff formulations interact in an LSM, and the analysis as a whole underscores the need for compatibility in these formulations.

  10. The interplay between transpiration and Runoff formulations in land surface schemes used with atmospheric models

    USGS Publications Warehouse

    Koster, R.D.; Milly, P.C.D.

    1997-01-01

    The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) has shown that different land surface models (LSMs) driven by the same meteorological forcing can produce markedly different surface energy and water budgets, even when certain critical aspects of the LSMs (vegetation cover, albedo, turbulent drag coefficient, and snowcover) are carefully controlled. To help explain these differences, the authors devised a monthly water balance model that successfully reproduces the annual and seasonal water balances of the different PILPS schemes. Analysis of this model leads to the identification of two quantities that characterize an LSM's formulation of soil water balance dynamics: 1) the efficiency of the soil's evaporation sink integrated over the active soil moisture range, and 2) the fraction of this range over which runoff is generated. Regardless of the LSM's complexity, the combination of these two derived parameters with rates of interception loss, potential evaporation, and precipitation provides a reasonable estimate for the LSM's simulated annual water balance. The two derived parameters shed light on how evaporation and runoff formulations interact in an LSM, and the analysis as a whole underscores the need for compatibility in these formulations.

  11. A corrected formulation for marginal inference derived from two-part mixed models for longitudinal semi-continuous data.

    PubMed

    Tom, Brian Dm; Su, Li; Farewell, Vernon T

    2016-10-01

    For semi-continuous data which are a mixture of true zeros and continuously distributed positive values, the use of two-part mixed models provides a convenient modelling framework. However, deriving population-averaged (marginal) effects from such models is not always straightforward. Su et al. presented a model that provided convenient estimation of marginal effects for the logistic component of the two-part model but the specification of marginal effects for the continuous part of the model presented in that paper was based on an incorrect formulation. We present a corrected formulation and additionally explore the use of the two-part model for inferences on the overall marginal mean, which may be of more practical relevance in our application and more generally. © The Author(s) 2013.

  12. A corrected formulation for marginal inference derived from two-part mixed models for longitudinal semi-continuous data

    PubMed Central

    Su, Li; Farewell, Vernon T

    2013-01-01

    For semi-continuous data which are a mixture of true zeros and continuously distributed positive values, the use of two-part mixed models provides a convenient modelling framework. However, deriving population-averaged (marginal) effects from such models is not always straightforward. Su et al. presented a model that provided convenient estimation of marginal effects for the logistic component of the two-part model but the specification of marginal effects for the continuous part of the model presented in that paper was based on an incorrect formulation. We present a corrected formulation and additionally explore the use of the two-part model for inferences on the overall marginal mean, which may be of more practical relevance in our application and more generally. PMID:24201470

  13. Models for evaluation of relative immunogenic potential of protein particles in biopharmaceutical protein formulations.

    PubMed

    Johnson, Richard; Jiskoot, Wim

    2012-10-01

    An immune response to a therapeutic protein that compromises the biopharmaceutical activity or cross-reacts with an endogenous protein is a serious clinical event. The role of protein aggregates and particles in biopharmaceutical formulations in mediating this immune response has gained considerable attention over the recent past. Model systems that could consistently and reliably predict the relative immunogenicity of biopharmaceutical protein formulations would be extremely valuable. Several approaches have been developed in an attempt to provide this insight, including in silico algorithms, in vitro tests utilizing human leukocytes and in vivo animal models. This commentary provides an update of these various approaches as well as the author's perspectives on the pros and cons of these different methods. Copyright © 2012 Wiley Periodicals, Inc.

  14. Hamiltonian formulation of systems with balanced loss-gain and exactly solvable models

    NASA Astrophysics Data System (ADS)

    Ghosh, Pijush K.; Sinha, Debdeep

    2018-01-01

    A Hamiltonian formulation of generic many-body systems with balanced loss and gain is presented. It is shown that a Hamiltonian formulation is possible only if the balancing of loss and gain terms occurs in a pairwise fashion. It is also shown that with the choice of a suitable co-ordinate, the Hamiltonian can always be reformulated in the background of a pseudo-Euclidean metric. If the equations of motion of some of the well-known many-body systems like Calogero models are generalized to include balanced loss and gain, it appears that the same may not be amenable to a Hamiltonian formulation. A few exactly solvable systems with balanced loss and gain, along with a set of integrals of motion are constructed. The examples include a coupled chain of nonlinear oscillators and a many-particle Calogero-type model with four-body inverse square plus two-body pair-wise harmonic interactions. For the case of nonlinear oscillators, stable solution exists even if the loss and gain parameter has unbounded upper range. Further, the range of the parameter for which the stable solutions are obtained is independent of the total number of the oscillators. The set of coupled nonlinear equations are solved exactly for the case when the values of all the constants of motions except the Hamiltonian are equal to zero. Exact, analytical classical solutions are presented for all the examples considered.

  15. [Evaluation of Gastric Mucosal Injury Model Animals of Rebamipide Formulation--Study of Therapeutic Equivalence].

    PubMed

    Abe, Noriaki; Funato, Hiroki; Hirata, Ayumu; Nakai, Megumi; Iizuka, Michiro; Shiraishi, Hisashi; Jobu, Kohei; Yagi, Yusuke; Kadota, Aki; Ogi, Kyoko; Yokota, Junko; Miyamura, Mitsuhiko

    2016-01-01

    The introduction of generic drugs is promoted from the perspective of medical economics. In this context, we need to understand not only the bioequivalence of generic drugs specified in "the Guidelines for Bioequivalence Studies of Generic Products", but also formulation properties to consider their effect on pharmacological therapy. We evaluated the pharmaceutical characteristics of rebamipide formulations, a brand-name drug and two generic drugs, and their clinical functionality by using rat models of gastric mucosal injury induced by non-steroidal anti-inflammatory drugs (NSAIDs). Pharmaceutical evaluation showed significant differences in hardness. The inter-lot variation was small in all rebamipide formulations. In the clinical functionality study, biochemistry test values 7 d after the administration of rebamipide showed no differences among formulations. Higher levels of mucosal fluid secretion and antioxidative enzymes were observed in the groups administered rebamipide than in the control group. The levels of lipid peroxide were lower in the groups administered rebamipide than the control group. Multivariate analysis showed slight divergence between the brand-name and generic drugs. In future, it will be necessary to select generic drugs after careful consideration of bioequivalence, clinical functionality, and therapeutic equivalence by reviewing scientific evidence such as indication and formulation design, not to mention stable provision.

  16. Heat transfer model and finite element formulation for simulation of selective laser melting

    NASA Astrophysics Data System (ADS)

    Roy, Souvik; Juha, Mario; Shephard, Mark S.; Maniatty, Antoinette M.

    2017-10-01

    A novel approach and finite element formulation for modeling the melting, consolidation, and re-solidification process that occurs in selective laser melting additive manufacturing is presented. Two state variables are introduced to track the phase (melt/solid) and the degree of consolidation (powder/fully dense). The effect of the consolidation on the absorption of the laser energy into the material as it transforms from a porous powder to a dense melt is considered. A Lagrangian finite element formulation, which solves the governing equations on the unconsolidated reference configuration is derived, which naturally considers the effect of the changing geometry as the powder melts without needing to update the simulation domain. The finite element model is implemented into a general-purpose parallel finite element solver. Results are presented comparing to experimental results in the literature for a single laser track with good agreement. Predictions for a spiral laser pattern are also shown.

  17. High drug loading self-microemulsifying/micelle formulation: design by high-throughput formulation screening system and in vivo evaluation.

    PubMed

    Sakai, Kenichi; Obata, Kouki; Yoshikawa, Mayumi; Takano, Ryusuke; Shibata, Masaki; Maeda, Hiroyuki; Mizutani, Akihiko; Terada, Katsuhide

    2012-10-01

    To design a high drug loading formulation of self-microemulsifying/micelle system. A poorly-soluble model drug (CH5137291), 8 hydrophilic surfactants (HS), 10 lipophilic surfactants (LS), 5 oils, and PEG400 were used. A high loading formulation was designed by a following stepwise approach using a high-throughput formulation screening (HTFS) system: (1) an oil/solvent was selected by solubility of the drug; (2) a suitable HS for highly loading was selected by the screenings of emulsion/micelle size and phase stability in binary systems (HS, oil/solvent) with increasing loading levels; (3) a LS that formed a broad SMEDDS/micelle area on a phase diagram containing the HS and oil/solvent was selected by the same screenings; (4) an optimized formulation was selected by evaluating the loading capacity of the crystalline drug. Aqueous solubility behavior and oral absorption (Beagle dog) of the optimized formulation were compared with conventional formulations (jet-milled, PEG400). As an optimized formulation, d-α-tocopheryl polyoxyethylene 1000 succinic ester: PEG400 = 8:2 was selected, and achieved the target loading level (200 mg/mL). The formulation formed fine emulsion/micelle (49.1 nm), and generated and maintained a supersaturated state at a higher level compared with the conventional formulations. In the oral absorption test, the area under the plasma concentration-time curve of the optimized formulation was 16.5-fold higher than that of the jet-milled formulation. The high loading formulation designed by the stepwise approach using the HTFS system improved the oral absorption of the poorly-soluble model drug.

  18. Glass Property Models, Constraints, and Formulation Approaches for Vitrification of High-Level Nuclear Wastes at the US Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong-Sang

    2015-03-02

    The legacy nuclear wastes stored in underground tanks at the US Department of Energy’s Hanford site is planned to be separated into high-level waste and low-activity waste fractions and vitrified separately. Formulating optimized glass compositions that maximize the waste loading in glass is critical for successful and economical treatment and immobilization of nuclear wastes. Glass property-composition models have been developed and applied to formulate glass compositions for various objectives for the past several decades. The property models with associated uncertainties and combined with composition and property constraints have been used to develop preliminary glass formulation algorithms designed for vitrification processmore » control and waste form qualification at the planned waste vitrification plant. This paper provides an overview of current status of glass property-composition models, constraints applicable to Hanford waste vitrification, and glass formulation approaches that have been developed for vitrification of hazardous and highly radioactive wastes stored at the Hanford site.« less

  19. Solution formulation development and efficacy of MJC13 in a preclinical model of castration-resistant prostate cancer.

    PubMed

    Liang, Su; Bian, Xiaomei; Liang, Dong; Sivils, Jeffrey C; Neckers, Leonard M; Cox, Marc B; Xie, Huan

    2016-01-01

    MJC13, a novel FKBP52 targeting agent, has potential use for the treatment of castration-resistant prostate cancer. The purpose of this work was to develop a solution formulation of MJC13, and obtain its efficacy profile in a human prostate cancer xenograft mouse model. Preformulation studies were conducted to evaluate the physicochemical properties. Co-solvent systems were evaluated for aqueous solubility and tolerance. A human prostate cancer xenograft mouse model was established by growing 22Rv1 prostate cancer cells in C.B-17 SCID mice. The optimal formulation was used to study the efficacy of MJC13 in this preclinical model of castrate-resistant prostate cancer. We found that MJC13 was stable (at least for 1 month), highly lipophilic (logP = 6.49), poorly soluble in water (0.28 µg/mL), and highly plasma protein bound (>98%). The optimal formulation consisting of PEG 400 and Tween 80 (1:1, v/v) allowed us to achieve a MJC13 concentration of 7.5 mg/mL, and tolerated an aqueous environment. After twice weekly intratumoral injection with 10 mg/kg MJC13 in this formulation for four consecutive weeks, tumor volumes were significantly reduced compared to vehicle-treated controls.

  20. Solution Formulation Development and Efficacy of MJC13 in a Preclinical Model of Castrate-Resistant Prostate Cancer

    PubMed Central

    Liang, Su; Bian, Xiaomei; Liang, Dong; Sivils, Jeffrey C.; Neckers, Leonard M.; Cox, Marc B.; Xie, Huan

    2015-01-01

    MJC13, a novel FKBP52 targeting agent, has potential use for the treatment of castrate-resistant prostate cancer. The purpose of this work was to develop a solution formulation of MJC13, and obtain its efficacy profile in a human prostate cancer xenograft mouse model. Preformulation studies were conducted to evaluate the physicochemical properties. Co-solvent systems were evaluated for aqueous solubility and tolerance. A human prostate cancer xenograft mouse model was established by growing 22Rv1 prostate cancer cells in C.B-17 SCID mice. The optimal formulation was used to study the efficacy of MJC13 in this preclinical model of castrate-resistant prostate cancer. We found that MJC13 was stable (at least for 1 month), very lipophilic (logP = 6.49), poorly soluble in water (0.28 μg/mL), and highly plasma protein bound (> 98%). The optimal formulation consisting of PEG 400 and Tween 80 (1:1, v/v) allowed us to achieve a MJC13 concentration of 7.5 mg/mL, and tolerated an aqueous environment. After twice weekly intratumoral injection with 10 mg/kg MJC13 in this formulation for 4 consecutive weeks, tumor volumes were significantly reduced compared to vehicle-treated controls. PMID:25380396

  1. A new in vitro lipid digestion - in vivo absorption model to evaluate the mechanisms of drug absorption from lipid-based formulations.

    PubMed

    Crum, Matthew F; Trevaskis, Natalie L; Williams, Hywel D; Pouton, Colin W; Porter, Christopher J H

    2016-04-01

    In vitro lipid digestion models are commonly used to screen lipid-based formulations (LBF), but in vitro-in vivo correlations are in some cases unsuccessful. Here we enhance the scope of the lipid digestion test by incorporating an absorption 'sink' into the experimental model. An in vitro model of lipid digestion was coupled directly to a single pass in situ intestinal perfusion experiment in an anaesthetised rat. The model allowed simultaneous real-time analysis of the digestion and absorption of LBFs of fenofibrate and was employed to evaluate the influence of formulation digestion, supersaturation and precipitation on drug absorption. Formulations containing higher quantities of co-solvent and surfactant resulted in higher supersaturation and more rapid drug precipitation in vitro when compared to those containing higher quantities of lipid. In contrast, when the same formulations were examined using the coupled in vitro lipid digestion - in vivo absorption model, drug flux into the mesenteric vein was similar regardless of in vitro formulation performance. For some drugs, simple in vitro lipid digestion models may underestimate the potential for absorption from LBFs. Consistent with recent in vivo studies, drug absorption for rapidly absorbed drugs such as fenofibrate may occur even when drug precipitation is apparent during in vitro digestion.

  2. Extensive preclinical investigation of polymersomal formulation of doxorubicin versus Doxil-mimic formulation.

    PubMed

    Alibolandi, Mona; Abnous, Khalil; Mohammadi, Marzieh; Hadizadeh, Farzin; Sadeghi, Fatemeh; Taghavi, Sahar; Jaafari, Mahmoud Reza; Ramezani, Mohammad

    2017-10-28

    Due to the severe cardiotoxicity of doxorubicin, its usage is limited. This shortcoming could be overcome by modifying pharmacokinetics of the drugs via preparation of various nanoplatforms. Doxil, a well-known FDA-approved nanoplatform of doxorubicin as antineoplastic agent, is frequently used in clinics in order to reduce cardiotoxicity of doxorubicin. Since Doxil shows some shortcomings in clinics including hand and food syndrome and very slow release pattern thus, there is a demand for the development and preparation of new doxorubicin nanoformulation with fewer side effects. The new formulation of the doxorubicin, synthesized previously by our group was extensively examined in the current study. This new formulation is doxorubicin encapsulated in PEG-PLGA polymersomes (PolyDOX). The main aim of the study was to compare the distribution and treatment efficacy of a new doxorubicin-polymersomal formulation (PolyDOX) with regular liposomal formulation (Doxil-mimic) in murine colon adenocarcinoma model. Additionally, the pathological, hematological changes, pharmacodynamics, biodistribution, tolerated dose and survival rate in vivo were evaluated and compared. Murine colon cancer model was induced by subcutaneous inoculation of BALB/c mice with C26 cells. Afterwards, either Doxil-mimic or PolyDOX was administered intravenously. The obtained results from biodistribution study showed a remarkable difference in the distribution of drugs in murine organs. In this regard, Doxil-mimic exhibited prolonged (48h) presence within liver tissues while PolyDOX preferentially accumulate in tumor and the presence in liver 48h post-treatment was significantly lower than that of Doxil-mimic. Obtained results demonstrated comparable final length of life for mice receiving either Doxil-mimic or PolyDOX formulations whereas tolerated dose of mice receiving Doxil-mimic was remarkably higher than those receiving PolyDOX. Therapeutic efficacy of formulation in term of tumor growth rate

  3. Evaluation of intratympanic formulations for inner ear delivery: methodology and sustained release formulation testing

    PubMed Central

    Liu, Hongzhuo; Feng, Liang; Tolia, Gaurav; Liddell, Mark R.; Hao, Jinsong; Li, S. Kevin

    2013-01-01

    A convenient and efficient in vitro diffusion cell method to evaluate formulations for inner ear delivery via the intratympanic route is currently not available. The existing in vitro diffusion cell systems commonly used to evaluate drug formulations do not resemble the physical dimensions of the middle ear and round window membrane. The objectives of this study were to examine a modified in vitro diffusion cell system of a small diffusion area for studying sustained release formulations in inner ear drug delivery and to identify a formulation for sustained drug delivery to the inner ear. Four formulations and a control were examined in this study using cidofovir as the model drug. Drug release from the formulations in the modified diffusion cell system was slower than that in the conventional diffusion cell system due to the decrease in the diffusion surface area of the modified diffusion cell system. The modified diffusion cell system was able to show different drug release behaviors among the formulations and allowed formulation evaluation better than the conventional diffusion cell system. Among the formulations investigated, poly(lactic-co-glycolic acid)–poly(ethylene glycol)–poly(lactic-co-glycolic acid) triblock copolymer systems provided the longest sustained drug delivery, probably due to their rigid gel structures and/or polymer-to-cidofovir interactions. PMID:23631539

  4. An evaluation of models of bare soil evaporation formulated with different land surface boundary conditions and assumptions

    NASA Astrophysics Data System (ADS)

    Smits, Kathleen M.; Ngo, Viet V.; Cihan, Abdullah; Sakaki, Toshihiro; Illangasekare, Tissa H.

    2012-12-01

    Bare soil evaporation is a key process for water exchange between the land and the atmosphere and an important component of the water balance. However, there is no agreement on the best modeling methodology to determine evaporation under different atmospheric boundary conditions. Also, there is a lack of directly measured soil evaporation data for model validation to compare these methods to establish the validity of their mathematical formulations. Thus, a need exists to systematically compare evaporation estimates using existing methods to experimental observations. The goal of this work is to test different conceptual and mathematical formulations that are used to estimate evaporation from bare soils to critically investigate various formulations and surface boundary conditions. Such a comparison required the development of a numerical model that has the ability to incorporate these boundary conditions. For this model, we modified a previously developed theory that allows nonequilibrium liquid/gas phase change with gas phase vapor diffusion to better account for dry soil conditions. Precision data under well-controlled transient heat and wind boundary conditions were generated, and results from numerical simulations were compared with experimental data. Results demonstrate that the approaches based on different boundary conditions varied in their ability to capture different stages of evaporation. All approaches have benefits and limitations, and no one approach can be deemed most appropriate for every scenario. Comparisons of different formulations of the surface boundary condition validate the need for further research on heat and vapor transport processes in soil for better modeling accuracy.

  5. A three-dimensional multiphase flow model for assesing NAPL contamination in porous and fractured media, 1. Formulation

    NASA Astrophysics Data System (ADS)

    Huyakorn, P. S.; Panday, S.; Wu, Y. S.

    1994-06-01

    A three-dimensional, three-phase numerical model is presented for stimulating the movement on non-aqueous-phase liquids (NAPL's) through porous and fractured media. The model is designed for practical application to a wide variety of contamination and remediation scenarios involving light or dense NAPL's in heterogeneous subsurface systems. The model formulation is first derived for three-phase flow of water, NAPL and air (or vapor) in porous media. The formulation is then extended to handle fractured systems using the dual-porosity and discrete-fracture modeling approaches The model accommodates a wide variety of boundary conditions, including withdrawal and injection well conditions which are treated rigorously using fully implicit schemes. The three-phase of formulation collapses to its simpler forms when air-phase dynamics are neglected, capillary effects are neglected, or two-phase-air-liquid, liquid-liquid systems with one or two active phases are considered. A Galerkin procedure with upstream weighting of fluid mobilities, storage matrix lumping, and fully implicit treatment of nonlinear coefficients and well conditions is used. A variety of nodal connectivity schemes leading to finite-difference, finite-element and hybrid spatial approximations in three dimensions are incorporated in the formulation. Selection of primary variables and evaluation of the terms of the Jacobian matrix for the Newton-Raphson linearized equations is discussed. The various nodal lattice options, and their significance to the computational time and memory requirements with regards to the block-Orthomin solution scheme are noted. Aggressive time-stepping schemes and under-relaxation formulas implemented in the code further alleviate the computational burden.

  6. A Corrected Formulation of the Multilayer Model (MLM) for Inferring Gaseous Dry Deposition to Vegetated Surfaces

    NASA Technical Reports Server (NTRS)

    Saylor, Rick D.; Wolfe, Glenn M.; Meyers, Tilden P.; Hicks, Bruce B.

    2014-01-01

    The Multilayer Model (MLM) has been used for many years to infer dry deposition fluxes from measured trace species concentrations and standard meteorological measurements for national networks in the U.S., including the U.S. Environmental Protection Agency's Clean Air Status and Trends Network (CASTNet). MLM utilizes a resistance analogy to calculate deposition velocities appropriate for whole vegetative canopies, while employing a multilayer integration to account for vertically varying meteorology, canopy morphology and radiative transfer within the canopy. However, the MLM formulation, as it was originally presented and as it has been subsequently employed, contains a non-physical representation related to the leaf-level quasi-laminar boundary layer resistance that affects the calculation of the total canopy resistance. In this note, the non-physical representation of the canopy resistance as originally formulated in MLM is discussed and a revised, physically consistent, formulation is suggested as a replacement. The revised canopy resistance formulation reduces estimates of HNO3 deposition velocities by as much as 38% during mid-day as compared to values generated by the original formulation. Inferred deposition velocities for SO2 and O3 are not significantly altered by the change in formulation (less than 3%). Inferred deposition loadings of oxidized and total nitrogen from CASTNet data may be reduced by 10-20% and 5-10%, respectively, for the Eastern U. S. when employing the revised formulation of MLM as compared to the original formulation.

  7. Comparison and Tensorial Formulation of Inelastic Constitutive Models of Salt Rock Behaviour and Efficient Numerical Implementatio

    NASA Astrophysics Data System (ADS)

    Nagel, T.; Böttcher, N.; Görke, U. J.; Kolditz, O.

    2014-12-01

    The design process of geotechnical installations includes the application of numerical simulation tools for safety assessment, dimensioning and long term effectiveness estimations. Underground salt caverns can be used for the storage of natural gas, hydrogen, oil, waste or compressed air. For their design one has to take into account fluctuating internal pressures due to different levels of filling, the stresses imposed by the surrounding rock mass, irregular geometries and possibly heterogeneous material properties [3] in order to estimate long term cavern convergence as well as locally critical wall stresses. Constitutive models applied to rock salt are usually viscoplastic in nature and most often based on a Burgers-type rheological model extended by non-linear viscosity functions and/or plastic friction elements. Besides plastic dilatation, healing and damage are sometimes accounted for as well [2]. The scales of the geotechnical system to be simulated and the laboratory tests from which material parameters are determined are vastly different. The most common material testing modalities to determine material parameters in geoengineering are the uniaxial and the triaxial compression tests. Some constitutive formulations in widespread use are formulated based on equivalent rather than tensorial quantities valid under these specific test conditions and are subsequently applied to heterogeneous underground systems and complex 3D load cases. We show here that this procedure is inappropriate and can lead to erroneous results. We further propose alternative formulations of the constitutive models in question that restore their validity under arbitrary loading conditions. For an efficient numerical simulation, the discussed constitutive models are integrated locally with a Newton-Raphson algorithm that directly provides the algorithmically consistent tangent matrix for the global Newton iteration of the displacement based finite element formulation. Finally, the finite

  8. Anti Inflammatory and Anti Arthritic Activity of Different Milk Based Formulation of Curcumin in Rat Model.

    PubMed

    Sumeet, Gupta; Rachna, Kumria; Samrat, Chauhan; Ipshita, Chattopadhyaya; Vikas, Jhawat; Manu, Sharma

    2018-02-14

    Inflammation is the key mediator for arthritis. Plant based products are most useful for treating various disorders, but at the same time drug absorption is utmost important for effective therapy. The present aim of our study was to find out the therapeutic concern in pharmacokinetic and pharmacodynamic parameters in an arthritis induced rat model. Carregenan and complete Freud's adjuvant, both were used for an arthritis induction as an animal model. Formulation of curcumin was prepared in different quality of milk brand, high fat milk with ghee and in an aqueous suspension. They were administered orally to the rats for 21 days continuously. Different pharmacodyanmic parameters were analyzed which include percentage inhibition of inflammation, cytokines (IL-6 and TNF-α), hematological levels, X-Rays and histology condition. Pharmacokinetics was also determined like Cmax, Tmax and Kel using HPLC method. The result concludes that, curcumin in full fat milk with ghee and full fat curcumin formulation treated group showed a higher statistical significant effect in the prevention of inflammation in both the models. The presence of curcumin in plasma was higher only in full fat with ghee formulation and full fat milk formulation treated group when compared to the other groups. Hence, it concludes that the presence of adjuvant act as an enhancer can increase the bioavailability of curcumin for achieving maximum effectiveness. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Aeroelastic modeling of rotor blades with spanwise variable elastic axis offset: Classic issues revisited and new formulations

    NASA Technical Reports Server (NTRS)

    Bielawa, Richard L.

    1988-01-01

    In response to a systematic methodology assessment program directed to the aeroelastic stability of hingeless helicopter rotor blades, improved basic aeroelastic reformulations and new formulations relating to structural sweep were achieved. Correlational results are presented showing the substantially improved performance of the G400 aeroelastic analysis incorporating these new formulations. The formulations pertain partly to sundry solutions to classic problem areas, relating to dynamic inflow with vortex-ring state operation and basic blade kinematics, but mostly to improved physical modeling of elastic axis offset (structural sweep) in the presence of nonlinear structural twist. Specific issues addressed are an alternate modeling of the delta EI torsional excitation due to compound bending using a force integration approach, and the detailed kinematic representation of an elastically deflected point mass of a beam with both structural sweep and nonlinear twist.

  10. Modeling of intragranular misorientation and grain fragmentation in polycrystalline materials using the viscoplastic self-consistent formulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zecevic, Miroslav; Lebensohn, Ricardo A.; McCabe, Rodney J.

    In this paper, the recently established methodology to use known algorithmic expressions of the second moments of the stress field in the grains of a polycrystalline aggregate for calculating average fluctuations of lattice rotation rates and the associated average intragranular misorientation distributions using the mean-field viscoplastic self-consistent (VPSC) formulation is extended to solve the coupled problem of considering the effect of intragranular misorientations on stress and rotation rate fluctuations. In turn, these coupled expressions are used to formulate and implement a grain fragmentation (GF) model in VPSC. Case studies, including tension and plane-strain compression of face-centered cubic polycrystals are usedmore » to illustrate the capabilities of the new model. GF-VPSC predictions of intragranular misorientation distributions and texture evolution are compared with experiments and full-field numerical simulations, showing good agreement. In particular, the inclusion of misorientation spreads reduced the intensity of the deformed texture and thus improved the texture predictions. Finally and moreover, considering that intragranular misorientations act as driving forces for recrystallization, the new GF-VPSC formulation is shown to enable modeling of microstructure evolution during deformation and recrystallization, in a computationally efficient manner.« less

  11. Modeling of intragranular misorientation and grain fragmentation in polycrystalline materials using the viscoplastic self-consistent formulation

    DOE PAGES

    Zecevic, Miroslav; Lebensohn, Ricardo A.; McCabe, Rodney J.; ...

    2018-06-15

    In this paper, the recently established methodology to use known algorithmic expressions of the second moments of the stress field in the grains of a polycrystalline aggregate for calculating average fluctuations of lattice rotation rates and the associated average intragranular misorientation distributions using the mean-field viscoplastic self-consistent (VPSC) formulation is extended to solve the coupled problem of considering the effect of intragranular misorientations on stress and rotation rate fluctuations. In turn, these coupled expressions are used to formulate and implement a grain fragmentation (GF) model in VPSC. Case studies, including tension and plane-strain compression of face-centered cubic polycrystals are usedmore » to illustrate the capabilities of the new model. GF-VPSC predictions of intragranular misorientation distributions and texture evolution are compared with experiments and full-field numerical simulations, showing good agreement. In particular, the inclusion of misorientation spreads reduced the intensity of the deformed texture and thus improved the texture predictions. Finally and moreover, considering that intragranular misorientations act as driving forces for recrystallization, the new GF-VPSC formulation is shown to enable modeling of microstructure evolution during deformation and recrystallization, in a computationally efficient manner.« less

  12. Biorelevant Dissolution Models for a Weak Base To Facilitate Formulation Development and Overcome Reduced Bioavailability Caused by Hypochlordyria or Achlorhydria.

    PubMed

    Kou, Dawen; Dwaraknath, Sudharsan; Fischer, Yannick; Nguyen, Daniel; Kim, Myeonghui; Yiu, Hiuwing; Patel, Preeti; Ng, Tania; Mao, Chen; Durk, Matthew; Chinn, Leslie; Winter, Helen; Wigman, Larry; Yehl, Peter

    2017-10-02

    In this study, two dissolution models were developed to achieve in vitro-in vivo relationship for immediate release formulations of Compound-A, a poorly soluble weak base with pH-dependent solubility and low bioavailability in hypochlorhydric and achlorhydric patients. The dissolution models were designed to approximate the hypo-/achlorhydric and normal fasted stomach conditions after a glass of water was ingested with the drug. The dissolution data from the two models were predictive of the relative in vivo bioavailability of various formulations under the same gastric condition, hypo-/achlorhydric or normal. Furthermore, the dissolution data were able to estimate the relative performance under hypo-/achlorhydric and normal fasted conditions for the same formulation. Together, these biorelevant dissolution models facilitated formulation development for Compound-A by identifying the right type and amount of key excipient to enhance bioavailability and mitigate the negative effect of hypo-/achlorhydria due to drug-drug interaction with acid-reducing agents. The dissolution models use readily available USP apparatus 2, and their broader utility can be evaluated on other BCS 2B compounds with reduced bioavailability caused by hypo-/achlorhydria.

  13. An indirect latent informational conformity social influence choice model: Formulation and case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maness, Michael; Cirillo, Cinzia

    The current state-of-the-art in social influence models of travel behavior is conformity models with direct benefit social influence effects. Indirect effects have seen limited development, but this paper presents a latent class discrete choice model of an indirect informational conformity hypothesis. Moreover, class membership depends on the proportion of group members who adopt a behavior. Membership into the more informed class causes changes in the preferences of those individuals thus making adoption more attractive. Equilibrium properties are derived for this model showing the possibility of multiple equilibria but under different conditions than the direct-benefit formulations. Social influence elasticity is derivedmore » for both models types. The informational conformity model can represent non-linear elasticity behavior unlike the direct-benefit formulation. Additionally, a two-stage control function is developed to obtain consistent parameter estimates in the presence of an endogenous class membership model covariate that is correlated with choice model unobservables. A case study to study social influence in bicycle ownership in the United States is presented. Our results showed that more informed households had a greater chance of owning a bike due to preference changes with less sensitivity to smaller home footprints and limited incomes. The behavioral hypothesis of positive preference change due to information transfer was confirmed. Observed ownership share closely matched predicted local-level equilibrium in some metropolitan areas but was unable to achieve expected prediction rate within confidence intervals. Finally, the elasticity of social influence was found to range locally from about 0.5% to 1.0%.« less

  14. An indirect latent informational conformity social influence choice model: Formulation and case study

    DOE PAGES

    Maness, Michael; Cirillo, Cinzia

    2016-11-01

    The current state-of-the-art in social influence models of travel behavior is conformity models with direct benefit social influence effects. Indirect effects have seen limited development, but this paper presents a latent class discrete choice model of an indirect informational conformity hypothesis. Moreover, class membership depends on the proportion of group members who adopt a behavior. Membership into the more informed class causes changes in the preferences of those individuals thus making adoption more attractive. Equilibrium properties are derived for this model showing the possibility of multiple equilibria but under different conditions than the direct-benefit formulations. Social influence elasticity is derivedmore » for both models types. The informational conformity model can represent non-linear elasticity behavior unlike the direct-benefit formulation. Additionally, a two-stage control function is developed to obtain consistent parameter estimates in the presence of an endogenous class membership model covariate that is correlated with choice model unobservables. A case study to study social influence in bicycle ownership in the United States is presented. Our results showed that more informed households had a greater chance of owning a bike due to preference changes with less sensitivity to smaller home footprints and limited incomes. The behavioral hypothesis of positive preference change due to information transfer was confirmed. Observed ownership share closely matched predicted local-level equilibrium in some metropolitan areas but was unable to achieve expected prediction rate within confidence intervals. Finally, the elasticity of social influence was found to range locally from about 0.5% to 1.0%.« less

  15. Sensitivity of secondary production and export flux to choice of trophic transfer formulation in marine ecosystem models

    NASA Astrophysics Data System (ADS)

    Anderson, Thomas R.; Hessen, Dag O.; Mitra, Aditee; Mayor, Daniel J.; Yool, Andrew

    2013-09-01

    The performance of four contemporary formulations describing trophic transfer, which have strongly contrasting assumptions as regards the way that consumer growth is calculated as a function of food C:N ratio and in the fate of non-limiting substrates, was compared in two settings: a simple steady-state ecosystem model and a 3D biogeochemical general circulation model. Considerable variation was seen in predictions for primary production, transfer to higher trophic levels and export to the ocean interior. The physiological basis of the various assumptions underpinning the chosen formulations is open to question. Assumptions include Liebig-style limitation of growth, strict homeostasis in zooplankton biomass, and whether excess C and N are released by voiding in faecal pellets or via respiration/excretion post-absorption by the gut. Deciding upon the most appropriate means of formulating trophic transfer is not straightforward because, despite advances in ecological stoichiometry, the physiological mechanisms underlying these phenomena remain incompletely understood. Nevertheless, worrying inconsistencies are evident in the way in which fundamental transfer processes are justified and parameterised in the current generation of marine ecosystem models, manifested in the resulting simulations of ocean biogeochemistry. Our work highlights the need for modellers to revisit and appraise the equations and parameter values used to describe trophic transfer in marine ecosystem models.

  16. Tactile friction of topical formulations.

    PubMed

    Skedung, L; Buraczewska-Norin, I; Dawood, N; Rutland, M W; Ringstad, L

    2016-02-01

    The tactile perception is essential for all types of topical formulations (cosmetic, pharmaceutical, medical device) and the possibility to predict the sensorial response by using instrumental methods instead of sensory testing would save time and cost at an early stage product development. Here, we report on an instrumental evaluation method using tactile friction measurements to estimate perceptual attributes of topical formulations. Friction was measured between an index finger and an artificial skin substrate after application of formulations using a force sensor. Both model formulations of liquid crystalline phase structures with significantly different tactile properties, as well as commercial pharmaceutical moisturizing creams being more tactile-similar, were investigated. Friction coefficients were calculated as the ratio of the friction force to the applied load. The structures of the model formulations and phase transitions as a result of water evaporation were identified using optical microscopy. The friction device could distinguish friction coefficients between the phase structures, as well as the commercial creams after spreading and absorption into the substrate. In addition, phase transitions resulting in alterations in the feel of the formulations could be detected. A correlation was established between skin hydration and friction coefficient, where hydrated skin gave rise to higher friction. Also a link between skin smoothening and finger friction was established for the commercial moisturizing creams, although further investigations are needed to analyse this and correlations with other sensorial attributes in more detail. The present investigation shows that tactile friction measurements have potential as an alternative or complement in the evaluation of perception of topical formulations. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Improved Stability of a Model IgG3 by DoE-Based Evaluation of Buffer Formulations

    DOE PAGES

    Chavez, Brittany K.; Agarabi, Cyrus D.; Read, Erik K.; ...

    2016-01-01

    Formulating appropriate storage conditions for biopharmaceutical proteins is essential for ensuring their stability and thereby their purity, potency, and safety over their shelf-life. Using a model murine IgG3 produced in a bioreactor system, multiple formulation compositions were systematically explored in a DoE design to optimize the stability of a challenging antibody formulation worst case. The stability of the antibody in each buffer formulation was assessed by UV/VIS absorbance at 280 nm and 410 nm and size exclusion high performance liquid chromatography (SEC) to determine overall solubility, opalescence, and aggregate formation, respectively. Upon preliminary testing, acetate was eliminated as a potentialmore » storage buffer due to significant visible precipitate formation. An additional 2 4full factorial DoE was performed that combined the stabilizing effect of arginine with the buffering capacity of histidine. From this final DoE, an optimized formulation of 200 mM arginine, 50 mM histidine, and 100 mM NaCl at a pH of 6.5 was identified to substantially improve stability under long-term storage conditions and after multiple freeze/thaw cycles. Therefore, our data highlights the power of DoE based formulation screening approaches even for challenging monoclonal antibody molecules.« less

  18. Eulerian formulation of the interacting particle representation model of homogeneous turbulence

    DOE PAGES

    Campos, Alejandro; Duraisamy, Karthik; Iaccarino, Gianluca

    2016-10-21

    The Interacting Particle Representation Model (IPRM) of homogeneous turbulence incorporates information about the morphology of turbulent structures within the con nes of a one-point model. In the original formulation [Kassinos & Reynolds, Center for Turbulence Research: Annual Research Briefs, 31{51, (1996)], the IPRM was developed in a Lagrangian setting by evolving second moments of velocity conditional on a given gradient vector. In the present work, the IPRM is re-formulated in an Eulerian framework and evolution equations are developed for the marginal PDFs. Eulerian methods avoid the issues associated with statistical estimators used by Lagrangian approaches, such as slow convergence. Amore » specific emphasis of this work is to use the IPRM to examine the long time evolution of homogeneous turbulence. We first describe the derivation of the marginal PDF in spherical coordinates, which reduces the number of independent variables and the cost associated with Eulerian simulations of PDF models. Next, a numerical method based on radial basis functions over a spherical domain is adapted to the IPRM. Finally, results obtained with the new Eulerian solution method are thoroughly analyzed. The sensitivity of the Eulerian simulations to parameters of the numerical scheme, such as the size of the time step and the shape parameter of the radial basis functions, is examined. A comparison between Eulerian and Lagrangian simulations is performed to discern the capabilities of each of the methods. Finally, a linear stability analysis based on the eigenvalues of the discrete differential operators is carried out for both the new Eulerian solution method and the original Lagrangian approach.« less

  19. Linear complementarity formulation for 3D frictional sliding problems

    USGS Publications Warehouse

    Kaven, Joern; Hickman, Stephen H.; Davatzes, Nicholas C.; Mutlu, Ovunc

    2012-01-01

    Frictional sliding on quasi-statically deforming faults and fractures can be modeled efficiently using a linear complementarity formulation. We review the formulation in two dimensions and expand the formulation to three-dimensional problems including problems of orthotropic friction. This formulation accurately reproduces analytical solutions to static Coulomb friction sliding problems. The formulation accounts for opening displacements that can occur near regions of non-planarity even under large confining pressures. Such problems are difficult to solve owing to the coupling of relative displacements and tractions; thus, many geomechanical problems tend to neglect these effects. Simple test cases highlight the importance of including friction and allowing for opening when solving quasi-static fault mechanics models. These results also underscore the importance of considering the effects of non-planarity in modeling processes associated with crustal faulting.

  20. Formulation of detailed consumables management models for the development (preoperational) period of advanced space transportation system: Executive summary

    NASA Technical Reports Server (NTRS)

    Torian, J. G.

    1976-01-01

    Formulation of models required for the mission planning and scheduling function and establishment of the relation of those models to prelaunch, onboard, ground support, and postmission functions for the development phase of space transportation systems (STS) was conducted. The preoperational space shuttle is used as the design baseline for the subject model formulations. Analytical models were developed which consist of a mission planning processor with appropriate consumables data base and a method of recognizing potential constraint violations in both the planning and flight operations functions. A flight data file for storage/retrieval of information over an extended period which interfaces with a flight operations processor for monitoring of the actual flights was examined.

  1. Mechanism for enhanced absorption of a solid dispersion formulation of LY2300559 using the artificial stomach duodenum model.

    PubMed

    Polster, Christopher S; Wu, Sy-Juen; Gueorguieva, Ivelina; Sperry, David C

    2015-04-06

    An artificial stomach duodenum (ASD) model has been used to demonstrate the performance difference between two formulations of LY2300559, a low-solubility acidic developmental drug. The two formulations investigated were a conventional high-shear wet granulation (HSWG) formulation and a solid dispersion formulation. A pharmacokinetic study in humans demonstrated the enhanced performance of the solid dispersion formulation relative to the HSWG formulation. The Cmax and AUC of the solid dispersion was 2.6 and 1.9 times greater, respectively, compared to the HSWG formulation. In the ASD, the solid dispersion formulation performance was characterized by three main phases: (1) rapid release in the stomach, creating a supersaturated concentration of drug, (2) precipitation in the stomach, and (3) rapid redissolution of the precipitate in the duodenum to concentration levels that are supersaturated relative to crystalline drug. A series of complementary experiments were employed to describe this performance behavior mechanistically. Imaging experiments with a pH indicating dye showed that local pH gradients from meglumine in the solid dispersion formulation were responsible for creating a high initial supersaturation concentration in the stomach. Upon dissipation of meglumine, the drug precipitated in the stomach as an amorphous solid. Because the precipitated drug is in an amorphous form, it can then rapidly redissolve as it transits to the more neutral environment of the duodenum. This unexpected sequence of physical state changes gives a mechanistic explanation for the enhanced in vivo performance of the solid dispersion formulation relative to the HSWG formulation.

  2. Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element implementation

    NASA Astrophysics Data System (ADS)

    Reinoso, J.; Paggi, M.; Linder, C.

    2017-06-01

    Fracture of technological thin-walled components can notably limit the performance of their corresponding engineering systems. With the aim of achieving reliable fracture predictions of thin structures, this work presents a new phase field model of brittle fracture for large deformation analysis of shells relying on a mixed enhanced assumed strain (EAS) formulation. The kinematic description of the shell body is constructed according to the solid shell concept. This enables the use of fully three-dimensional constitutive models for the material. The proposed phase field formulation integrates the use of the (EAS) method to alleviate locking pathologies, especially Poisson thickness and volumetric locking. This technique is further combined with the assumed natural strain method to efficiently derive a locking-free solid shell element. On the computational side, a fully coupled monolithic framework is consistently formulated. Specific details regarding the corresponding finite element formulation and the main aspects associated with its implementation in the general purpose packages FEAP and ABAQUS are addressed. Finally, the applicability of the current strategy is demonstrated through several numerical examples involving different loading conditions, and including linear and nonlinear hyperelastic constitutive models.

  3. Differential geometry based solvation model. III. Quantum formulation

    PubMed Central

    Chen, Zhan; Wei, Guo-Wei

    2011-01-01

    to many other classic and quantum models. By using experimental data, we show that the present quantum formulation of our differential geometry based multiscale solvation model improves the prediction of our earlier models, and outperforms some explicit solvation model. PMID:22112067

  4. 3D Higher Order Modeling in the BEM/FEM Hybrid Formulation

    NASA Technical Reports Server (NTRS)

    Fink, P. W.; Wilton, D. R.

    2000-01-01

    Higher order divergence- and curl-conforming bases have been shown to provide significant benefits, in both convergence rate and accuracy, in the 2D hybrid finite element/boundary element formulation (P. Fink and D. Wilton, National Radio Science Meeting, Boulder, CO, Jan. 2000). A critical issue in achieving the potential for accuracy of the approach is the accurate evaluation of all matrix elements. These involve products of high order polynomials and, in some instances, singular Green's functions. In the 2D formulation, the use of a generalized Gaussian quadrature method was found to greatly facilitate the computation and to improve the accuracy of the boundary integral equation self-terms. In this paper, a 3D, hybrid electric field formulation employing higher order bases and higher order elements is presented. The improvements in convergence rate and accuracy, compared to those resulting from lower order modeling, are established. Techniques developed to facilitate the computation of the boundary integral self-terms are also shown to improve the accuracy of these terms. Finally, simple preconditioning techniques are used in conjunction with iterative solution procedures to solve the resulting linear system efficiently. In order to handle the boundary integral singularities in the 3D formulation, the parent element- either a triangle or rectangle-is subdivided into a set of sub-triangles with a common vertex at the singularity. The contribution to the integral from each of the sub-triangles is computed using the Duffy transformation to remove the singularity. This method is shown to greatly facilitate t'pe self-term computation when the bases are of higher order. In addition, the sub-triangles can be further divided to achieve near arbitrary accuracy in the self-term computation. An efficient method for subdividing the parent element is presented. The accuracy obtained using higher order bases is compared to that obtained using lower order bases when the number

  5. Carbon deposition model for oxygen-hydrocarbon combustion. Task 6: Data analysis and formulation of an empirical model

    NASA Technical Reports Server (NTRS)

    Makel, Darby B.; Rosenberg, Sanders D.

    1990-01-01

    The formation and deposition of carbon (soot) was studied in the Carbon Deposition Model for Oxygen-Hydrocarbon Combustion Program. An empirical, 1-D model for predicting soot formation and deposition in LO2/hydrocarbon gas generators/preburners was derived. The experimental data required to anchor the model were identified and a test program to obtain the data was defined. In support of the model development, cold flow mixing experiments using a high injection density injector were performed. The purpose of this investigation was to advance the state-of-the-art in LO2/hydrocarbon gas generator design by developing a reliable engineering model of gas generator operation. The model was formulated to account for the influences of fluid dynamics, chemical kinetics, and gas generator hardware design on soot formation and deposition.

  6. Hyper-resolution hydrological modeling: Completeness of Formulation, Appropriateness of Descritization, and Physical LImits of Predictability

    NASA Astrophysics Data System (ADS)

    Ogden, F. L.

    2017-12-01

    HIgh performance computing and the widespread availabilities of geospatial physiographic and forcing datasets have enabled consideration of flood impact predictions with longer lead times and more detailed spatial descriptions. We are now considering multi-hour flash flood forecast lead times at the subdivision level in so-called hydroblind regions away from the National Hydrography network. However, the computational demands of such models are high, necessitating a nested simulation approach. Research on hyper-resolution hydrologic modeling over the past three decades have illustrated some fundamental limits on predictability that are simultaneously related to runoff generation mechanism(s), antecedent conditions, rates and total amounts of precipitation, discretization of the model domain, and complexity or completeness of the model formulation. This latter point is an acknowledgement that in some ways hydrologic understanding in key areas related to land use, land cover, tillage practices, seasonality, and biological effects has some glaring deficiencies. This presentation represents a review of what is known related to the interacting effects of precipitation amount, model spatial discretization, antecedent conditions, physiographic characteristics and model formulation completeness for runoff predictions. These interactions define a region in multidimensional forcing, parameter and process space where there are in some cases clear limits on predictability, and in other cases diminished uncertainty.

  7. Comparison of different models for the testing of pilocarpine eyedrops using conventional eyedrops and a novel depot formulation (nanoparticles).

    PubMed

    Diepold, R; Kreuter, J; Himber, J; Gurny, R; Lee, V H; Robinson, J R; Saettone, M F; Schnaudigel, O E

    1989-01-01

    An objective in the development of ophthalmic formulations is the use of in vitro or animal models that closely resemble the clinical situation. For this reason, experiments with conventional pilocarpine nitrate eyedrops and a depot formulation of pilocarpine nitrate sorbed to poly (butylcyanoacrylate) nanoparticles were carried out. In vitro, the diffusion of pilocarpine through bovine cornea was measured using Edelhauser cells. In vivo, the rabbit aqueous humor concentration of pilocarpine and miosis were determined after application of the above formulations. In addition, intraocular pressure was measured. Since pilocarpine has little influence on intraocular pressure in healthy rabbits, the pressure had to be increased artificially. Three models were employed that are described in the literature, namely, the betamethasone model, the alpha-chymotrypsin model, and the water-loading model. Pilocarpine could be loaded onto nanoparticles by 15% but was rapidly released from the nanoparticles based on the bovine corneal experiment. Nanoparticles only enhanced the aqueous humor concentration at 30 min; this increase, however, led to a considerably extended period of miosis as well as a reduction in intraocular pressure. The duration of the action and the intensity of the response were different among the three models tested. According to the present results, the betamethasone model seems to represent the best correlation to the clinical situation.

  8. Super-Group Field Cosmology in Batalin-Vilkovisky Formulation

    NASA Astrophysics Data System (ADS)

    Upadhyay, Sudhaker

    2016-09-01

    In this paper we study the third quantized super-group field cosmology, a model in multiverse scenario, in Batalin-Vilkovisky (BV) formulation. Further, we propose the superfield/super-antifield dependent BRST symmetry transformations. Within this formulation we establish connection between the two different solutions of the quantum master equation within the BV formulation.

  9. LES models for incompressible magnetohydrodynamics derived from the variational multiscale formulation

    NASA Astrophysics Data System (ADS)

    Sondak, David; Oberai, Assad

    2012-10-01

    Novel large eddy simulation (LES) models are developed for incompressible magnetohydrodynamics (MHD). These models include the application of the variational multiscale formulation (VMS) of LES to the equations of incompressible MHD, a new residual-based eddy viscosity model (RBEVM,) and a mixed LES model that combines the strengths of both of these models. The new models result in a consistent numerical method that is relatively simple to implement. A dynamic procedure for determining model coefficients is no longer required. The new LES models are tested on a decaying Taylor-Green vortex generalized to MHD and benchmarked against classical and state-of-the art LES turbulence models as well as direct numerical simulations (DNS). These new models are able to account for the essential MHD physics which is demonstrated via comparisons of energy spectra. We also compare the performance of our models to a DNS simulation by A. Pouquet et al., for which the ratio of DNS modes to LES modes is 262,144. Additionally, we extend these models to a finite element setting in which boundary conditions play a role. A classic problem on which we test these models is turbulent channel flow, which in the case of MHD, is called Hartmann flow.

  10. Angle-adjustable density field formulation for the modeling of crystalline microstructure

    NASA Astrophysics Data System (ADS)

    Wang, Zi-Le; Liu, Zhirong; Huang, Zhi-Feng

    2018-05-01

    A continuum density field formulation with particle-scale resolution is constructed to simultaneously incorporate the orientation dependence of interparticle interactions and the rotational invariance of the system, a fundamental but challenging issue in modeling the structure and dynamics of a broad range of material systems across variable scales. This generalized phase field crystal-type approach is based upon the complete expansion of particle direct correlation functions and the concept of isotropic tensors. Through applications to the modeling of various two- and three-dimensional crystalline structures, our study demonstrates the capability of bond-angle control in this continuum field theory and its effects on the emergence of ordered phases, and provides a systematic way of performing tunable angle analyses for crystalline microstructures.

  11. Updated Lagrangian finite element formulations of various biological soft tissue non-linear material models: a comprehensive procedure and review.

    PubMed

    Townsend, Molly T; Sarigul-Klijn, Nesrin

    2016-01-01

    Simplified material models are commonly used in computational simulation of biological soft tissue as an approximation of the complicated material response and to minimize computational resources. However, the simulation of complex loadings, such as long-duration tissue swelling, necessitates complex models that are not easy to formulate. This paper strives to offer the updated Lagrangian formulation comprehensive procedure of various non-linear material models for the application of finite element analysis of biological soft tissues including a definition of the Cauchy stress and the spatial tangential stiffness. The relationships between water content, osmotic pressure, ionic concentration and the pore pressure stress of the tissue are discussed with the merits of these models and their applications.

  12. A constrained multinomial Probit route choice model in the metro network: Formulation, estimation and application

    PubMed Central

    Zhang, Yongsheng; Wei, Heng; Zheng, Kangning

    2017-01-01

    Considering that metro network expansion brings us with more alternative routes, it is attractive to integrate the impacts of routes set and the interdependency among alternative routes on route choice probability into route choice modeling. Therefore, the formulation, estimation and application of a constrained multinomial probit (CMNP) route choice model in the metro network are carried out in this paper. The utility function is formulated as three components: the compensatory component is a function of influencing factors; the non-compensatory component measures the impacts of routes set on utility; following a multivariate normal distribution, the covariance of error component is structured into three parts, representing the correlation among routes, the transfer variance of route, and the unobserved variance respectively. Considering multidimensional integrals of the multivariate normal probability density function, the CMNP model is rewritten as Hierarchical Bayes formula and M-H sampling algorithm based Monte Carlo Markov Chain approach is constructed to estimate all parameters. Based on Guangzhou Metro data, reliable estimation results are gained. Furthermore, the proposed CMNP model also shows a good forecasting performance for the route choice probabilities calculation and a good application performance for transfer flow volume prediction. PMID:28591188

  13. Formulation and transport properties of tenofovir loaded liposomes through Caco-2 cell model.

    PubMed

    Zidan, Ahmed S; Spinks, Crystal B; Habib, Muhammad J; Khan, Mansoor A

    2013-12-01

    The aim was to investigate the potential of proliposomes to improve the permeability of tenofovir, anti-HIV, for oral delivery. Tenofovir was incorporated into phosphatidylcholine proliposomes and their absorption was determined in Caco-2 cell cultures grown on Transwell inserts using aqueous drug solutions as reference. Five batches of proliposomes were prepared with different stearylamine levels and characterized in terms of vesicular morphology, drug encapsulation efficiency (EEF), drug leakage, vesicular sizing and surface charges. Cytotoxicity of the reconstituted liposomes was evaluated by the MTT assay. The obtained results showed that increasing the incorporated percentage of stearylamine led to an increase in drug encapsulation, a slower drug leakage and larger liposomes formed. Compared to the drug solutions at corresponding concentrations, the proposed formulations showed a positive relationship (R²= 0.9756) for the influence of increasing the stearylamine percentage on reduction of mitochondrial activity. Regarding the drug permeability, enhancements of apparent permeability by 16.5- and 5.2-folds were observed for proliposomes formulations with 5% and 15% stearylamine, respectively. A good correlation was observed between the Caco-2 and dialysis models that might indicate passive diffusion as well as paracellular transport as suggested mechanisms for drug absorption. Cationic proliposomes offered a potential formulation to improve the permeation of tenofovir.

  14. A nonlinear model predictive control formulation for obstacle avoidance in high-speed autonomous ground vehicles in unstructured environments

    NASA Astrophysics Data System (ADS)

    Liu, Jiechao; Jayakumar, Paramsothy; Stein, Jeffrey L.; Ersal, Tulga

    2018-06-01

    This paper presents a nonlinear model predictive control (MPC) formulation for obstacle avoidance in high-speed, large-size autono-mous ground vehicles (AGVs) with high centre of gravity (CoG) that operate in unstructured environments, such as military vehicles. The term 'unstructured' in this context denotes that there are no lanes or traffic rules to follow. Existing MPC formulations for passenger vehicles in structured environments do not readily apply to this context. Thus, a new nonlinear MPC formulation is developed to navigate an AGV from its initial position to a target position at high-speed safely. First, a new cost function formulation is used that aims to find the shortest path to the target position, since no reference trajectory exists in unstructured environments. Second, a region partitioning approach is used in conjunction with a multi-phase optimal control formulation to accommodate the complicated forms the obstacle-free region can assume due to the presence of multiple obstacles in the prediction horizon in an unstructured environment. Third, the no-wheel-lift-off condition, which is the major dynamical safety concern for high-speed, high-CoG AGVs, is ensured by limiting the steering angle within a range obtained offline using a 14 degrees-of-freedom vehicle dynamics model. Thus, a safe, high-speed navigation is enabled in an unstructured environment. Simulations of an AGV approaching multiple obstacles are provided to demonstrate the effectiveness of the algorithm.

  15. A Generalized Simple Formulation of Convective Adjustment ...

    EPA Pesticide Factsheets

    Convective adjustment timescale (τ) for cumulus clouds is one of the most influential parameters controlling parameterized convective precipitation in climate and weather simulation models at global and regional scales. Due to the complex nature of deep convection, a prescribed value or ad hoc representation of τ is used in most global and regional climate/weather models making it a tunable parameter and yet still resulting in uncertainties in convective precipitation simulations. In this work, a generalized simple formulation of τ for use in any convection parameterization for shallow and deep clouds is developed to reduce convective precipitation biases at different grid spacing. Unlike existing other methods, our new formulation can be used with field campaign measurements to estimate τ as demonstrated by using data from two different special field campaigns. Then, we implemented our formulation into a regional model (WRF) for testing and evaluation. Results indicate that our simple τ formulation can give realistic temporal and spatial variations of τ across continental U.S. as well as grid-scale and subgrid scale precipitation. We also found that as the grid spacing decreases (e.g., from 36 to 4-km grid spacing), grid-scale precipitation dominants over subgrid-scale precipitation. The generalized τ formulation works for various types of atmospheric conditions (e.g., continental clouds due to heating and large-scale forcing over la

  16. European perspectives on pediatric formulations.

    PubMed

    Breitkreutz, Jörg

    2008-11-01

    The 2007 European Union (EU) regulation on medicinal products for pediatric use may change the present unsatisfying situation in the EU by stimulating research and development of medicines for use in children through rewards and incentives. This commentary reflects on the new EU regulations and guidelines, with special attention paid to the impact on pediatric formulation science. The focus of this article is on the EU perspective for pediatric formulations and highlights the differences compared with the pediatric drug formulation situation in the United States. Materials for this article were gathered during a literature search of MEDLINE and Chemical Abstracts (1970-October 2008) using the following terms: paediatric/pediatric drug formulations, age-appropriate dosage forms, child-appropriate medicines, and paediatric/pediatric regulation. Since the EU legislation on medicines for children came into force in 2007, a great emphasis has been placed on creating new organizations, scientific networks, and programs dealing with pediatric medicines and child-appropriate drug formulations. Although the US legislation was an appropriate model, the EU introduced some novel measures to improve the current situation, such as the Paediatric Investigation Plan and the Paediatric Use Marketing Authorisation. For globally operating pharmaceutical companies, the peculiarities of the European market have a strong impact on their product development strategies. Because the European approach demands early investigations into drug formulations for children, various issues must be resolved, including the following: choosing formulations for each age group, determining which excipients may be used in the formulation and which delivery device is appropriate, and predicting the taste sensation of an oral formulation. Numerous initiatives and networks are evolving in Europe. An important future task will be the coordination of these activities and the linking to other groups working on

  17. Open-ended formulation of self-consistent field response theory with the polarizable continuum model for solvation.

    PubMed

    Di Remigio, Roberto; Beerepoot, Maarten T P; Cornaton, Yann; Ringholm, Magnus; Steindal, Arnfinn Hykkerud; Ruud, Kenneth; Frediani, Luca

    2016-12-21

    The study of high-order absorption properties of molecules is a field of growing importance. Quantum-chemical studies can help design chromophores with desirable characteristics. Given that most experiments are performed in solution, it is important to devise a cost-effective strategy to include solvation effects in quantum-chemical studies of these properties. We here present an open-ended formulation of self-consistent field (SCF) response theory for a molecular solute coupled to a polarizable continuum model (PCM) description of the solvent. Our formulation relies on the open-ended, density matrix-based quasienergy formulation of SCF response theory of Thorvaldsen, et al., [J. Chem. Phys., 2008, 129, 214108] and the variational formulation of the PCM, as presented by Lipparini et al., [J. Chem. Phys., 2010, 133, 014106]. Within the PCM approach to solvation, the mutual solute-solvent polarization is represented by means of an apparent surface charge (ASC) spread over the molecular cavity defining the solute-solvent boundary. In the variational formulation, the ASC is an independent, variational degree of freedom. This allows us to formulate response theory for molecular solutes in the fixed-cavity approximation up to arbitrary order and with arbitrary perturbation operators. For electric dipole perturbations, pole and residue analyses of the response functions naturally lead to the identification of excitation energies and transition moments. We document the implementation of this approach in the Dalton program package using a recently developed open-ended response code and the PCMSolver libraries and present results for one-, two-, three-, four- and five-photon absorption processes of three small molecules in solution.

  18. Affine group formulation of the Standard Model coupled to gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Ching-Yi, E-mail: l2897107@mail.ncku.edu.tw; Ita, Eyo, E-mail: ita@usna.edu; Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw

    In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of themore » Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.« less

  19. Development and Evaluation of Topical Gabapentin Formulations

    PubMed Central

    Alcock, Natalie; Hiom, Sarah; Birchall, James C.

    2017-01-01

    Topical delivery of gabapentin is desirable to treat peripheral neuropathic pain conditions whilst avoiding systemic side effects. To date, reports of topical gabapentin delivery in vitro have been variable and dependent on the skin model employed, primarily involving rodent and porcine models. In this study a variety of topical gabapentin formulations were investigated, including Carbopol® hydrogels containing various permeation enhancers, and a range of proprietary bases including a compounded Lipoderm® formulation; furthermore microneedle facilitated delivery was used as a positive control. Critically, permeation of gabapentin across a human epidermal membrane in vitro was assessed using Franz-type diffusion cells. Subsequently this data was contextualised within the wider scope of the literature. Although reports of topical gabapentin delivery have been shown to vary, largely dependent upon the skin model used, this study demonstrated that 6% (w/w) gabapentin 0.75% (w/w) Carbopol® hydrogels containing 5% (w/w) DMSO or 70% (w/w) ethanol and a compounded 10% (w/w) gabapentin Lipoderm® formulation were able to facilitate permeation of the molecule across human skin. Further pre-clinical and clinical studies are required to investigate the topical delivery performance and pharmacodynamic actions of prospective formulations. PMID:28867811

  20. Artificial neural networks to model formulation-property correlations in the process of inline-compounding on an injection moulding machine

    NASA Astrophysics Data System (ADS)

    Moritzer, Elmar; Müller, Ellen; Martin, Yannick; Kleeschulte, Rainer

    2015-05-01

    Today the global market poses great challenges for industrial product development. Complexity, diversity of variants, flexibility and individuality are just some of the features that products have to offer today. In addition, the product series have shorter lifetimes. Because of their high capacity for adaption, polymers are increasingly able to displace traditional materials such as wood, glass and metals from various fields of application. Polymers can only be used to substitute other materials, however, if they are optimally suited to the applications in question. Hence, product-specific material development is becoming increasingly important. Integrating the compounding step in the injection moulding process permits a more efficient and faster development process for a new polymer formulation, making it possible to create new product-specific materials. This process is called inline-compounding on an injection moulding machine. The entire process sequence is supported by software from Bayer Technology called Product Design Workbench (PDWB), which provides assistance in all the individual steps from data management, via analysis and model compilation, right through to the optimization of the formulation and the design of experiments. The software is based on artificial neural networks and can model the formulation-property correlations and thus enable different formulations to be optimized. In the study presented, the workflow and the modelling with the software are presented.

  1. Tracking trade transactions in water resource systems: A node-arc optimization formulation

    NASA Astrophysics Data System (ADS)

    Erfani, Tohid; Huskova, Ivana; Harou, Julien J.

    2013-05-01

    We formulate and apply a multicommodity network flow node-arc optimization model capable of tracking trade transactions in complex water resource systems. The model uses a simple node to node network connectivity matrix and does not require preprocessing of all possible flow paths in the network. We compare the proposed node-arc formulation with an existing arc-path (flow path) formulation and explain the advantages and difficulties of both approaches. We verify the proposed formulation model on a hypothetical water distribution network. Results indicate the arc-path model solves the problem with fewer constraints, but the proposed formulation allows using a simple network connectivity matrix which simplifies modeling large or complex networks. The proposed algorithm allows converting existing node-arc hydroeconomic models that broadly represent water trading to ones that also track individual supplier-receiver relationships (trade transactions).

  2. Active behavior of abdominal wall muscles: Experimental results and numerical model formulation.

    PubMed

    Grasa, J; Sierra, M; Lauzeral, N; Muñoz, M J; Miana-Mena, F J; Calvo, B

    2016-08-01

    In the present study a computational finite element technique is proposed to simulate the mechanical response of muscles in the abdominal wall. This technique considers the active behavior of the tissue taking into account both collagen and muscle fiber directions. In an attempt to obtain the computational response as close as possible to real muscles, the parameters needed to adjust the mathematical formulation were determined from in vitro experimental tests. Experiments were conducted on male New Zealand White rabbits (2047±34g) and the active properties of three different muscles: Rectus Abdominis, External Oblique and multi-layered samples formed by three muscles (External Oblique, Internal Oblique, and Transversus Abdominis) were characterized. The parameters obtained for each muscle were incorporated into a finite strain formulation to simulate active behavior of muscles incorporating the anisotropy of the tissue. The results show the potential of the model to predict the anisotropic behavior of the tissue associated to fibers and how this influences on the strain, stress and generated force during an isometric contraction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Differential pharmacodynamic effects of paclitaxel formulations in an intracranial rat brain tumor model.

    PubMed

    Zhou, Rong; Mazurchuk, Richard V; Tamburlin, Judith H; Harrold, John M; Mager, Donald E; Straubinger, Robert M

    2010-02-01

    Nano- and microparticulate carriers can exert a beneficial impact on the pharmacodynamics of anticancer agents. To investigate the relationships between carrier and antitumor pharmacodynamics, paclitaxel incorporated in liposomes (L-pac) was compared with the clinical standard formulated in Cremophor-EL/ethanol (Cre-pac) in a rat model of advanced primary brain cancer. Three maximum-tolerated-dose regimens given by intravenous administration were investigated: 50 mg/kg on day 8 (d8) after implantation of 9L gliosarcoma tumors; 40 mg/kg on d8 and d15; 20 mg/kg on d8, d11, and d15. Body weight change and neutropenia were assessed as pharmacodynamic markers of toxicity. The pharmacodynamic markers of antitumor efficacy were increase in lifespan (ILS) and tumor volume progression, measured noninvasively by magnetic resonance imaging. At equivalent doses, neutropenia was similar for both formulations, but weight loss was more severe for Cre-pac. No regimen of Cre-pac extended survival, whereas L-pac at 40 mg/kg x2 doses was well tolerated and mediated 26% ILS (p < 0.0002) compared with controls. L-pac at a lower cumulative dose (20 mg/kg x3) was even more effective (40% ILS; p < 0.0001). In striking contrast, the identical regimen of Cre-pac was lethal. Development of a novel semimechanistic pharmacodynamic model permitted quantitative hypothesis testing with the tumor volume progression data, and suggested the existence of a transient treatment effect that was consistent with sensitization or "priming" of tumors by more frequent L-pac dosing schedules. Therefore, improved antitumor responses of carrier-based paclitaxel formulations can arise both from dose escalation, because of reduced toxicity, and from novel carrier-mediated alterations of antitumor pharmacodynamic effects.

  4. Recursive Newton-Euler formulation of manipulator dynamics

    NASA Technical Reports Server (NTRS)

    Nasser, M. G.

    1989-01-01

    A recursive Newton-Euler procedure is presented for the formulation and solution of manipulator dynamical equations. The procedure includes rotational and translational joints and a topological tree. This model was verified analytically using a planar two-link manipulator. Also, the model was tested numerically against the Walker-Orin model using the Shuttle Remote Manipulator System data. The hinge accelerations obtained from both models were identical. The computational requirements of the model vary linearly with the number of joints. The computational efficiency of this method exceeds that of Walker-Orin methods. This procedure may be viewed as a considerable generalization of Armstrong's method. A six-by-six formulation is adopted which enhances both the computational efficiency and simplicity of the model.

  5. Potts-model formulation of the random resistor network

    NASA Astrophysics Data System (ADS)

    Harris, A. B.; Lubensky, T. C.

    1987-05-01

    The randomly diluted resistor network is formulated in terms of an n-replicated s-state Potts model with a spin-spin coupling constant J in the limit when first n, then s, and finally 1/J go to zero. This limit is discussed and to leading order in 1/J the generalized susceptibility is shown to reproduce the results of the accompanying paper where the resistor network is treated using the xy model. This Potts Hamiltonian is converted into a field theory by the usual Hubbard-Stratonovich transformation and thereby a renormalization-group treatment is developed to obtain the corrections to the critical exponents to first order in ɛ=6-d, where d is the spatial dimensionality. The recursion relations are shown to be the same as for the xy model. Their detailed analysis (given in the accompanying paper) gives the resistance crossover exponent as φ1=1+ɛ/42, and determines the critical exponent, t for the conductivity of the randomly diluted resistor network at concentrations, p, just above the percolation threshold: t=(d-2)ν+φ1, where ν is the critical exponent for the correlation length at the percolation threshold. These results correct previously accepted results giving φ=1 to all orders in ɛ. The new result for φ1 removes the paradox associated with the numerical result that t>1 for d=2, and also shows that the Alexander-Orbach conjecture, while numerically quite accurate, is not exact, since it disagrees with the ɛ expansion.

  6. Value of the dorsal cutaneous guinea pig model in selecting topical antiviral formulations for the treatment of recurrent herpes simplex type 1 disease.

    PubMed

    Poli, G; Dall'Ara, P; Binda, S; Santus, G; Poli, A; Cocilovo, A; Ponti, W

    2001-01-01

    Recurrent herpes simplex labialis represents a disease still difficult to treat, despite the availability of many established antiviral drugs used in clinical research since 30 years ago. Although differences between the human disease and that obtained in experimental animal suggest caution in predicting an effective clinical response from the experimental results, some of the animal models seem to be useful in optimising the topical formulation of single antiviral drugs. In the present work the dorsal cutaneous guinea pig model was used to compare 5 different topical antiviral formulations with clinical promise (active molecule: 5% w/w micronized aciclovir, CAS 59277-89-3), using both roll-on and lipstick application systems. The aim being to evaluate which vehicle (water, oil, low melting and high melting fatty base) and application system (roll-on, lipstick) enhances the skin penetration and the antiviral activity of the drug, after an experimental intradermal infection with Herpes simplex virus type 1 (HSV-1). As reference, a commercial formulation (5% aciclovir ointment) was used. The cumulative results of this study showed that the formulation A, containing 5% aciclovir in an aqueous base in a roll-on application system, has the better antiviral efficacy in reducing the severity of cutaneous lesions and the viral titer; among the lipsticks preparations, the formulation D, containing 5% aciclovir in a low melting fatty base, demonstrates a very strong antiviral activity, though slightly less than formulation A. This experimental work confirms the validity of the dorsal cutaneous guinea pig model as a rapid and efficient method to compare the antiviral efficacy of new formulations, with clinical promise, to optimise the topical formulation of the active antiviral drugs.

  7. Random-effects linear modeling and sample size tables for two special crossover designs of average bioequivalence studies: the four-period, two-sequence, two-formulation and six-period, three-sequence, three-formulation designs.

    PubMed

    Diaz, Francisco J; Berg, Michel J; Krebill, Ron; Welty, Timothy; Gidal, Barry E; Alloway, Rita; Privitera, Michael

    2013-12-01

    Due to concern and debate in the epilepsy medical community and to the current interest of the US Food and Drug Administration (FDA) in revising approaches to the approval of generic drugs, the FDA is currently supporting ongoing bioequivalence studies of antiepileptic drugs, the EQUIGEN studies. During the design of these crossover studies, the researchers could not find commercial or non-commercial statistical software that quickly allowed computation of sample sizes for their designs, particularly software implementing the FDA requirement of using random-effects linear models for the analyses of bioequivalence studies. This article presents tables for sample-size evaluations of average bioequivalence studies based on the two crossover designs used in the EQUIGEN studies: the four-period, two-sequence, two-formulation design, and the six-period, three-sequence, three-formulation design. Sample-size computations assume that random-effects linear models are used in bioequivalence analyses with crossover designs. Random-effects linear models have been traditionally viewed by many pharmacologists and clinical researchers as just mathematical devices to analyze repeated-measures data. In contrast, a modern view of these models attributes an important mathematical role in theoretical formulations in personalized medicine to them, because these models not only have parameters that represent average patients, but also have parameters that represent individual patients. Moreover, the notation and language of random-effects linear models have evolved over the years. Thus, another goal of this article is to provide a presentation of the statistical modeling of data from bioequivalence studies that highlights the modern view of these models, with special emphasis on power analyses and sample-size computations.

  8. Screening Vaccine Formulations in Fresh Human Whole Blood.

    PubMed

    Hakimi, Jalil; Aboutorabian, Sepideh; To, Frederick; Ausar, Salvador F; Rahman, Nausheen; Brookes, Roger H

    2017-01-01

    Monitoring the immunological functionality of vaccine formulations is critical for vaccine development. While the traditional approach using established animal models has been relatively effective, the use of animals is costly and cumbersome, and animal models are not always reflective of a human response. The development of a human-based approach would be a major step forward in understanding how vaccine formulations might behave in humans. Here, we describe a platform methodology using fresh human whole blood (hWB) to monitor adjuvant-modulated, antigen-specific responses to vaccine formulations, which is amenable to analysis by standard immunoassays as well as a variety of other analytical techniques.

  9. An efficient formulation of robot arm dynamics for control and computer simulation

    NASA Astrophysics Data System (ADS)

    Lee, C. S. G.; Nigam, R.

    This paper describes an efficient formulation of the dynamic equations of motion of industrial robots based on the Lagrange formulation of d'Alembert's principle. This formulation, as applied to a PUMA robot arm, results in a set of closed form second order differential equations with cross product terms. They are not as efficient in computation as those formulated by the Newton-Euler method, but provide a better analytical model for control analysis and computer simulation. Computational complexities of this dynamic model together with other models are tabulated for discussion.

  10. An Improved Formulation of Hybrid Model Predictive Control With Application to Production-Inventory Systems

    PubMed Central

    Nandola, Naresh N.; Rivera, Daniel E.

    2013-01-01

    We consider an improved model predictive control (MPC) formulation for linear hybrid systems described by mixed logical dynamical (MLD) models. The algorithm relies on a multiple-degree-of-freedom parametrization that enables the user to adjust the speed of setpoint tracking, measured disturbance rejection and unmeasured disturbance rejection independently in the closed-loop system. Consequently, controller tuning is more flexible and intuitive than relying on objective function weights (such as move suppression) traditionally used in MPC schemes. The controller formulation is motivated by the needs of non-traditional control applications that are suitably described by hybrid production-inventory systems. Two applications are considered in this paper: adaptive, time-varying interventions in behavioral health, and inventory management in supply chains under conditions of limited capacity. In the adaptive intervention application, a hypothetical intervention inspired by the Fast Track program, a real-life preventive intervention for reducing conduct disorder in at-risk children, is examined. In the inventory management application, the ability of the algorithm to judiciously alter production capacity under conditions of varying demand is presented. These case studies demonstrate that MPC for hybrid systems can be tuned for desired performance under demanding conditions involving noise and uncertainty. PMID:24348004

  11. An Improved Formulation of Hybrid Model Predictive Control With Application to Production-Inventory Systems.

    PubMed

    Nandola, Naresh N; Rivera, Daniel E

    2013-01-01

    We consider an improved model predictive control (MPC) formulation for linear hybrid systems described by mixed logical dynamical (MLD) models. The algorithm relies on a multiple-degree-of-freedom parametrization that enables the user to adjust the speed of setpoint tracking, measured disturbance rejection and unmeasured disturbance rejection independently in the closed-loop system. Consequently, controller tuning is more flexible and intuitive than relying on objective function weights (such as move suppression) traditionally used in MPC schemes. The controller formulation is motivated by the needs of non-traditional control applications that are suitably described by hybrid production-inventory systems. Two applications are considered in this paper: adaptive, time-varying interventions in behavioral health, and inventory management in supply chains under conditions of limited capacity. In the adaptive intervention application, a hypothetical intervention inspired by the Fast Track program, a real-life preventive intervention for reducing conduct disorder in at-risk children, is examined. In the inventory management application, the ability of the algorithm to judiciously alter production capacity under conditions of varying demand is presented. These case studies demonstrate that MPC for hybrid systems can be tuned for desired performance under demanding conditions involving noise and uncertainty.

  12. In Vivo Effects Of Traditional Ayurvedic Formulations in Drosophila melanogaster Model Relate with Therapeutic Applications

    PubMed Central

    Dwivedi, Vibha; Anandan, E. M.; Mony, Rajesh S.; Muraleedharan, T. S.; Valiathan, M. S.; Mutsuddi, Mousumi; Lakhotia, Subhash C.

    2012-01-01

    Background Ayurveda represents the traditional medicine system of India. Since mechanistic details of therapy in terms of current biology are not available in Ayurvedic literature, modern scientific studies are necessary to understand its major concepts and procedures. It is necessary to examine effects of the whole Ayurvedic formulations rather than their “active” components as is done in most current studies. Methods We tested two different categories of formulations, a Rasayana (Amalaki Rasayana or AR, an herbal derivative) and a Bhasma (Rasa-Sindoor or RS, an organo-metallic derivative of mercury), for effects on longevity, development, fecundity, stress-tolerance, and heterogeneous nuclear ribonucleoprotein (hnRNP) levels of Drosophila melanogaster using at least 200 larvae or flies for each assay. Results A 0.5% (weight/volume) supplement of AR or RS affected life-history and other physiological traits in distinct ways. While the size of salivary glands, hnRNP levels in larval tissues, and thermotolerance of larvae/adult flies improved significantly following feeding either of the two formulations, the median life span and starvation resistance improved only with AR. Feeding on AR or RS supplemented food improved fecundity differently. Feeding of larvae and adults with AR increased the fecundity while the same with RS had opposite effect. On the contrary, feeding larvae on normal food and adults on AR supplement had no effect on fecundity but a comparable regime of feeding on RS-supplemented food improved fecundity. RS feeding did not cause heavy metal toxicity. Conclusions The present study with two Ayurvedic formulations reveals formulation-specific effects on several parameters of the fly's life, which seem to generally agree with their recommended human usages in Ayurvedic practices. Thus, Drosophila, with its very rich genetic tools and well-worked-out developmental pathways promises to be a very good model for examining the cellular and molecular

  13. Computational prediction of formulation strategies for beyond-rule-of-5 compounds.

    PubMed

    Bergström, Christel A S; Charman, William N; Porter, Christopher J H

    2016-06-01

    The physicochemical properties of some contemporary drug candidates are moving towards higher molecular weight, and coincidentally also higher lipophilicity in the quest for biological selectivity and specificity. These physicochemical properties move the compounds towards beyond rule-of-5 (B-r-o-5) chemical space and often result in lower water solubility. For such B-r-o-5 compounds non-traditional delivery strategies (i.e. those other than conventional tablet and capsule formulations) typically are required to achieve adequate exposure after oral administration. In this review, we present the current status of computational tools for prediction of intestinal drug absorption, models for prediction of the most suitable formulation strategies for B-r-o-5 compounds and models to obtain an enhanced understanding of the interplay between drug, formulation and physiological environment. In silico models are able to identify the likely molecular basis for low solubility in physiologically relevant fluids such as gastric and intestinal fluids. With this baseline information, a formulation scientist can, at an early stage, evaluate different orally administered, enabling formulation strategies. Recent computational models have emerged that predict glass-forming ability and crystallisation tendency and therefore the potential utility of amorphous solid dispersion formulations. Further, computational models of loading capacity in lipids, and therefore the potential for formulation as a lipid-based formulation, are now available. Whilst such tools are useful for rapid identification of suitable formulation strategies, they do not reveal drug localisation and molecular interaction patterns between drug and excipients. For the latter, Molecular Dynamics simulations provide an insight into the interplay between drug, formulation and intestinal fluid. These different computational approaches are reviewed. Additionally, we analyse the molecular requirements of different targets

  14. Impact of an irregular friction formulation on dynamics of a minimal model for brake squeal

    NASA Astrophysics Data System (ADS)

    Stender, Merten; Tiedemann, Merten; Hoffmann, Norbert; Oberst, Sebastian

    2018-07-01

    Friction-induced vibrations are of major concern in the design of reliable, efficient and comfortable technical systems. Well-known examples for systems susceptible to self-excitation can be found in fluid structure interaction, disk brake squeal, rotor dynamics, hip implants noise and many more. While damping elements and amplitude reduction are well-understood in linear systems, nonlinear systems and especially self-excited dynamics still constitute a challenge for damping element design. Additionally, complex dynamical systems exhibit deterministic chaotic cores which add severe sensitivity to initial conditions to the system response. Especially the complex friction interface dynamics remain a challenging task for measurements and modeling. Today, mostly simple and regular friction models are investigated in the field of self-excited brake system vibrations. This work aims at investigating the effect of high-frequency irregular interface dynamics on the nonlinear dynamical response of a self-excited structure. Special focus is put on the characterization of the system response time series. A low-dimensional minimal model is studied which features self-excitation, gyroscopic effects and friction-induced damping. Additionally, the employed friction formulation exhibits temperature as inner variable and superposed chaotic fluctuations governed by a Lorenz attractor. The time scale of the irregular fluctuations is chosen one order smaller than the overall system dynamics. The influence of those fluctuations on the structural response is studied in various ways, i.e. in time domain and by means of recurrence analysis. The separate time scales are studied in detail and regimes of dynamic interactions are identified. The results of the irregular friction formulation indicate dynamic interactions on multiple time scales, which trigger larger vibration amplitudes as compared to regular friction formulations conventionally studied in the field of friction

  15. Original electric-vertex formulation of the symmetric eight-vertex model on the square lattice is fully nonuniversal

    NASA Astrophysics Data System (ADS)

    Krčmár, Roman; Šamaj, Ladislav

    2018-01-01

    The partition function of the symmetric (zero electric field) eight-vertex model on a square lattice can be formulated either in the original "electric" vertex format or in an equivalent "magnetic" Ising-spin format. In this paper, both electric and magnetic versions of the model are studied numerically by using the corner transfer matrix renormalization-group method which provides reliable data. The emphasis is put on the calculation of four specific critical exponents, related by two scaling relations, and of the central charge. The numerical method is first tested in the magnetic format, the obtained dependencies of critical exponents on the model's parameters agree with Baxter's exact solution, and weak universality is confirmed within the accuracy of the method due to the finite size of the system. In particular, the critical exponents η and δ are constant as required by weak universality. On the other hand, in the electric format, analytic formulas based on the scaling relations are derived for the critical exponents ηe and δe which agree with our numerical data. These exponents depend on the model's parameters which is evidence for the full nonuniversality of the symmetric eight-vertex model in the original electric formulation.

  16. Analysis and calculation of macrosegregation in a casting ingot. MPS solidification model. Volume 1: Formulation and analysis

    NASA Technical Reports Server (NTRS)

    Maples, A. L.; Poirier, D. R.

    1980-01-01

    The physical and numerical formulation of a model for the horizontal solidification of a binary alloy is described. It can be applied in an ingot. The major purpose of the model is to calculate macrosegregation in a casting ingot which results from flow of interdendritic liquid during solidification. The flow, driven by solidification contractions and by gravity acting on density gradients in the interdendritic liquid, was modeled as flow through a porous medium. The symbols used are defined. The physical formulation of the problem leading to a set of equations which can be used to obtain: (1) the pressure field; (2) the velocity field: (3) mass flow and (4) solute flow in the solid plus liquid zone during solidification is presented. With these established, the model calculates macrosegregation after solidification is complete. The numerical techniques used to obtain solution on a computational grid are presented. Results, evaluation of the results, and recommendations for future development of the model are given. The macrosegregation and flow field predictions for tin-lead, aluminum-copper, and tin-bismuth alloys are included as well as comparisons of some of the predictions with published predictions or with empirical data.

  17. Theoretical modeling of PEB procedure on EUV resist using FDM formulation

    NASA Astrophysics Data System (ADS)

    Kim, Muyoung; Moon, Junghwan; Choi, Joonmyung; Lee, Byunghoon; Jeong, Changyoung; Kim, Heebom; Cho, Maenghyo

    2018-03-01

    Semiconductor manufacturing industry has reduced the size of wafer for enhanced productivity and performance, and Extreme Ultraviolet (EUV) light source is considered as a promising solution for downsizing. A series of EUV lithography procedures contain complex photo-chemical reaction on photoresist, and it causes technical difficulties on constructing theoretical framework which facilitates rigorous investigation of underlying mechanism. Thus, we formulated finite difference method (FDM) model of post exposure bake (PEB) process on positive chemically amplified resist (CAR), and it involved acid diffusion coupled-deprotection reaction. The model is based on Fick's second law and first-order chemical reaction rate law for diffusion and deprotection, respectively. Two kinetic parameters, diffusion coefficient of acid and rate constant of deprotection, which were obtained by experiment and atomic scale simulation were applied to the model. As a result, we obtained time evolutional protecting ratio of each functional group in resist monomer which can be used to predict resulting polymer morphology after overall chemical reactions. This achievement will be the cornerstone of multiscale modeling which provides fundamental understanding on important factors for EUV performance and rational design of the next-generation photoresist.

  18. Functional testing of topical skin formulations using an optimised ex vivo skin organ culture model.

    PubMed

    Sidgwick, G P; McGeorge, D; Bayat, A

    2016-07-01

    A number of equivalent-skin models are available for investigation of the ex vivo effect of topical application of drugs and cosmaceuticals onto skin, however many have their drawbacks. With the March 2013 ban on animal models for cosmetic testing of products or ingredients for sale in the EU, their utility for testing toxicity and effect on skin becomes more relevant. The aim of this study was to demonstrate proof of principle that altered expression of key gene and protein markers could be quantified in an optimised whole tissue biopsy culture model. Topical formulations containing green tea catechins (GTC) were investigated in a skin biopsy culture model (n = 11). Punch biopsies were harvested at 3, 7 and 10 days, and analysed using qRT-PCR, histology and HPLC to determine gene and protein expression, and transdermal delivery of compounds of interest. Reduced gene expression of α-SMA, fibronectin, mast cell tryptase, mast cell chymase, TGF-β1, CTGF and PAI-1 was observed after 7 and 10 days compared with treated controls (p < 0.05). Histological analysis indicated a reduction in mast cell tryptase and chymase positive cell numbers in treated biopsies compared with untreated controls at day 7 and day 10 (p < 0.05). Determination of transdermal uptake indicated that GTCs were detected in the biopsies. This model could be adapted to study a range of different topical formulations in both normal and diseased skin, negating the requirement for animal models in this context, prior to study in a clinical trial environment.

  19. Development of Oral Flexible Tablet (OFT) Formulation for Pediatric and Geriatric Patients: a Novel Age-Appropriate Formulation Platform.

    PubMed

    Chandrasekaran, Prabagaran; Kandasamy, Ruckmani

    2017-08-01

    Development of palatable formulations for pediatric and geriatric patients involves various challenges. However, an innovative development with beneficial characteristics of marketed formulations in a single formulation platform was attempted. The goal of this research was to develop solid oral flexible tablets (OFTs) as a platform for pediatrics and geriatrics as oral delivery is the most convenient and widely used mode of drug administration. For this purpose, a flexible tablet formulation using cetirizine hydrochloride as model stability labile class 1 and 3 drug as per the Biopharmaceutical Classification System was developed. Betadex, Eudragit E100, and polacrilex resin were evaluated as taste masking agents. Development work focused on excipient selection, formulation processing, characterization methods, stability, and palatability testing. Formulation with a cetirizine-to-polacrilex ratio of 1:2 to 1:3 showed robust physical strength with friability of 0.1% (w/w), rapid in vitro dispersion within 30 s in 2-6 ml of water, and 0.2% of total organic and elemental impurities. Polacrilex resin formulation shows immediate drug release within 30 min in gastric media, better taste masking, and acceptable stability. Hence, it is concluded that ion exchange resins can be appropriately used to develop taste-masked, rapidly dispersible, and stable tablet formulations with tailored drug release suitable for pediatrics and geriatrics. Flexible formulations can be consumed as swallowable, orally disintegrating, chewable, and as dispersible tablets. Flexibility in dose administration would improve compliance in pediatrics and geriatrics. This drug development approach using ion exchange resins can be a platform for formulating solid oral flexible drug products with low to medium doses.

  20. Isotretinoin Oil-Based Capsule Formulation Optimization

    PubMed Central

    Tsai, Pi-Ju; Huang, Chi-Te; Lee, Chen-Chou; Li, Chi-Lin; Huang, Yaw-Bin; Tsai, Yi-Hung; Wu, Pao-Chu

    2013-01-01

    The purpose of this study was to develop and optimize an isotretinoin oil-based capsule with specific dissolution pattern. A three-factor-constrained mixture design was used to prepare the systemic model formulations. The independent factors were the components of oil-based capsule including beeswax (X 1), hydrogenated coconut oil (X 2), and soybean oil (X 3). The drug release percentages at 10, 30, 60, and 90 min were selected as responses. The effect of formulation factors including that on responses was inspected by using response surface methodology (RSM). Multiple-response optimization was performed to search for the appropriate formulation with specific release pattern. It was found that the interaction effect of these formulation factors (X 1 X 2, X 1 X 3, and X 2 X 3) showed more potential influence than that of the main factors (X 1, X 2, and X 3). An optimal predicted formulation with Y 10 min, Y 30 min, Y 60 min, and Y 90 min release values of 12.3%, 36.7%, 73.6%, and 92.7% at X 1, X 2, and X 3 of 5.75, 15.37, and 78.88, respectively, was developed. The new formulation was prepared and performed by the dissolution test. The similarity factor f 2 was 54.8, indicating that the dissolution pattern of the new optimized formulation showed equivalence to the predicted profile. PMID:24068886

  1. Glass Property Models and Constraints for Estimating the Glass to be Produced at Hanford by Implementing Current Advanced Glass Formulation Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, John D.; Kim, Dong-Sang; Skorski, Daniel C.

    2013-07-01

    Recent glass formulation and melter testing data have suggested that significant increases in waste loading in HLW and LAW glasses are possible over current system planning estimates. The data (although limited in some cases) were evaluated to determine a set of constraints and models that could be used to estimate the maximum loading of specific waste compositions in glass. It is recommended that these models and constraints be used to estimate the likely HLW and LAW glass volumes that would result if the current glass formulation studies are successfully completed. It is recognized that some of the models are preliminarymore » in nature and will change in the coming years. Plus the models do not currently address the prediction uncertainties that would be needed before they could be used in plant operations. The models and constraints are only meant to give an indication of rough glass volumes and are not intended to be used in plant operation or waste form qualification activities. A current research program is in place to develop the data, models, and uncertainty descriptions for that purpose. A fundamental tenet underlying the research reported in this document is to try to be less conservative than previous studies when developing constraints for estimating the glass to be produced by implementing current advanced glass formulation efforts. The less conservative approach documented herein should allow for the estimate of glass masses that may be realized if the current efforts in advanced glass formulations are completed over the coming years and are as successful as early indications suggest they may be. Because of this approach there is an unquantifiable uncertainty in the ultimate glass volume projections due to model prediction uncertainties that has to be considered along with other system uncertainties such as waste compositions and amounts to be immobilized, split factors between LAW and HLW, etc.« less

  2. The integrated Earth system model version 1: formulation and functionality

    DOE PAGES

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.; ...

    2015-07-23

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  3. Linear programming: an alternative approach for developing formulations for emergency food products.

    PubMed

    Sheibani, Ershad; Dabbagh Moghaddam, Arasb; Sharifan, Anousheh; Afshari, Zahra

    2018-03-01

    To minimize the mortality rates of individuals affected by disasters, providing high-quality food relief during the initial stages of an emergency is crucial. The goal of this study was to develop a formulation for a high-energy, nutrient-dense prototype using linear programming (LP) model as a novel method for developing formulations for food products. The model consisted of the objective function and the decision variables, which were the formulation costs and weights of the selected commodities, respectively. The LP constraints were the Institute of Medicine and the World Health Organization specifications of the content of nutrients in the product. Other constraints related to the product's sensory properties were also introduced to the model. Nonlinear constraints for energy ratios of nutrients were linearized to allow their use in the LP. Three focus group studies were conducted to evaluate the palatability and other aspects of the optimized formulation. New constraints were introduced to the LP model based on the focus group evaluations to improve the formulation. LP is an appropriate tool for designing formulations of food products to meet a set of nutritional requirements. This method is an excellent alternative to the traditional 'trial and error' method in designing formulations. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. New formulation feed method in tariff model of solar PV in Indonesia

    NASA Astrophysics Data System (ADS)

    Djamal, Muchlishah Hadi; Setiawan, Eko Adhi; Setiawan, Aiman

    2017-03-01

    Geographically, Indonesia has 18 latitudes that correlated strongly with the potential of solar radiation for the implementation of solar photovoltaic (PV) technologies. This is becoming the basis assumption to develop a proportional model of Feed In Tariff (FIT), consequently the FIT will be vary, according to the various of latitudes in Indonesia. This paper proposed a new formulation of solar PV FIT based on the potential of solar radiation and some independent variables such as latitude, longitude, Levelized Cost of Electricity (LCOE), and also socio-economic. The Principal Component Regression (PCR) method is used to analyzed the correlation of six independent variables C1-C6 then three models of FIT are presented. Model FIT-2 is chosen because it has a small residual value and has higher financial benefit compared to the other models. This study reveals the value of variable FIT associated with solar energy potential in each region, can reduce the total FIT to be paid by the state around 80 billion rupiahs in 10 years of 1 MW photovoltaic operation at each 34 provinces in Indonesia.

  5. Development and testing of a simple inertial formulation of the shallow water equations for flood inundation modelling

    NASA Astrophysics Data System (ADS)

    Fewtrell, Timothy; Bates, Paul; Horritt, Matthew

    2010-05-01

    This abstract describes the development of a new set of equations derived from 1D shallow water theory for use in 2D storage cell inundation models. The new equation set is designed to be solved explicitly at very low computational cost, and is here tested against a suite of four analytical and numerical test cases of increasing complexity. In each case the predicted water depths compare favourably to analytical solutions or to benchmark results from the optimally stable diffusive storage cell code of Hunter et al. (2005). For the most complex test involving the fine spatial resolution simulation of flow in a topographically complex urban area the Root Mean Squared Difference between the new formulation and the model of Hunter et al. is ~1 cm. However, unlike diffusive storage cell codes where the stable time step scales with (1-?x)2 the new equation set developed here represents shallow water wave propagation and so the stability is controlled by the Courant-Freidrichs-Lewy condition such that the stable time step instead scales with 1-?x. This allows use of a stable time step that is 1-3 orders of magnitude greater for typical cell sizes than that possible with diffusive storage cell models and results in commensurate reductions in model run times. The maximum speed up achieved over a diffusive storage cell model was 1120x in these tests, although the actual value seen will depend on model resolution and water depth and surface gradient. Solutions using the new equation set are shown to be relatively grid-independent for the conditions considered given the numerical diffusion likely at coarse model resolution. In addition, the inertial formulation appears to have an intuitively correct sensitivity to friction, however small instabilities and increased errors on predicted depth were noted when Manning's n = 0.01. These small instabilities are likely to be a result of the numerical scheme employed, whereby friction is acting to stabilise the solution although this

  6. A Bayesian state-space formulation of dynamic occupancy models

    USGS Publications Warehouse

    Royle, J. Andrew; Kery, M.

    2007-01-01

    Species occurrence and its dynamic components, extinction and colonization probabilities, are focal quantities in biogeography and metapopulation biology, and for species conservation assessments. It has been increasingly appreciated that these parameters must be estimated separately from detection probability to avoid the biases induced by nondetection error. Hence, there is now considerable theoretical and practical interest in dynamic occupancy models that contain explicit representations of metapopulation dynamics such as extinction, colonization, and turnover as well as growth rates. We describe a hierarchical parameterization of these models that is analogous to the state-space formulation of models in time series, where the model is represented by two components, one for the partially observable occupancy process and another for the observations conditional on that process. This parameterization naturally allows estimation of all parameters of the conventional approach to occupancy models, but in addition, yields great flexibility and extensibility, e.g., to modeling heterogeneity or latent structure in model parameters. We also highlight the important distinction between population and finite sample inference; the latter yields much more precise estimates for the particular sample at hand. Finite sample estimates can easily be obtained using the state-space representation of the model but are difficult to obtain under the conventional approach of likelihood-based estimation. We use R and Win BUGS to apply the model to two examples. In a standard analysis for the European Crossbill in a large Swiss monitoring program, we fit a model with year-specific parameters. Estimates of the dynamic parameters varied greatly among years, highlighting the irruptive population dynamics of that species. In the second example, we analyze route occupancy of Cerulean Warblers in the North American Breeding Bird Survey (BBS) using a model allowing for site

  7. Integrated Formulation of Beacon-Based Exception Analysis for Multimissions

    NASA Technical Reports Server (NTRS)

    Mackey, Ryan; James, Mark; Park, Han; Zak, Mickail

    2003-01-01

    Further work on beacon-based exception analysis for multimissions (BEAM), a method of real-time, automated diagnosis of a complex electromechanical systems, has greatly expanded its capability and suitability of application. This expanded formulation, which fully integrates physical models and symbolic analysis, is described. The new formulation of BEAM expands upon previous advanced techniques for analysis of signal data, utilizing mathematical modeling of the system physics, and expert-system reasoning,

  8. Availability of pediatric-evaluated formulations in Serbia

    PubMed Central

    Božić, Bojana; Stupar, Sanja; Stupar, Duško; Babić, Uroš; Bajčetić, Milica

    2017-01-01

    OBJECTIVES: The aim of this study is to analyze the availability and coverage by health insurance reimbursement of pediatric formulations labeled for children up to the age of 12 in Serbia. To provide good insight in general availability of pediatric medicines, results were compared with the World Health Organization's (WHO) “Model List of Essential Medicines for Children” and with published evidence. MATERIALS AND METHODS: Sources of information about medicines are the Summary of Product Characteristics, National Health Insurance Fund (NHIF) Drug Lists, WHO Model Lists of Essential Medicines for Children, and Serbia's official drug registry (2013). RESULTS: Out of total number of medicines in Serbia, only 49% (496) were available for children. Of all available drugs for children, 66% were with license and majority were parenteral formulation (57%), followed by drugs for local use (28%) and formulations for oral use (23%). The lowest availability of medicines was for children 0–27 days. From the total number of licensed medicines for children up to 12 years old, NHIF covers 64% of drugs. The availability of the WHO essential medicines for children in Serbia was 51%, from which 92% were licensed for pediatric use. CONCLUSIONS: Our results demonstrated the alarming lack of pediatric suitable formulations in Serbia. Significant differences in the availability of drugs suitable for children exist worldwide. From global health point of view, the differences in the access to children formulations should, therefore, be of the highest priority. PMID:28706333

  9. Availability of pediatric-evaluated formulations in Serbia.

    PubMed

    Božić, Bojana; Stupar, Sanja; Stupar, Duško; Babić, Uroš; Bajčetić, Milica

    2017-01-01

    The aim of this study is to analyze the availability and coverage by health insurance reimbursement of pediatric formulations labeled for children up to the age of 12 in Serbia. To provide good insight in general availability of pediatric medicines, results were compared with the World Health Organization's (WHO) "Model List of Essential Medicines for Children" and with published evidence. Sources of information about medicines are the Summary of Product Characteristics, National Health Insurance Fund (NHIF) Drug Lists, WHO Model Lists of Essential Medicines for Children, and Serbia's official drug registry (2013). Out of total number of medicines in Serbia, only 49% (496) were available for children. Of all available drugs for children, 66% were with license and majority were parenteral formulation (57%), followed by drugs for local use (28%) and formulations for oral use (23%). The lowest availability of medicines was for children 0-27 days. From the total number of licensed medicines for children up to 12 years old, NHIF covers 64% of drugs. The availability of the WHO essential medicines for children in Serbia was 51%, from which 92% were licensed for pediatric use. Our results demonstrated the alarming lack of pediatric suitable formulations in Serbia. Significant differences in the availability of drugs suitable for children exist worldwide. From global health point of view, the differences in the access to children formulations should, therefore, be of the highest priority.

  10. RAMI4PILPS: An intercomparison of formulations for the partitioning of solar radiation in land surface models

    NASA Astrophysics Data System (ADS)

    Widlowski, J.-L.; Pinty, B.; Clerici, M.; Dai, Y.; de Kauwe, M.; De Ridder, K.; Kallel, A.; Kobayashi, H.; Lavergne, T.; Ni-Meister, W.; Olchev, A.; Quaife, T.; Wang, S.; Yang, W.; Yang, Y.; Yuan, H.

    2011-06-01

    Remotely sensed, multiannual data sets of shortwave radiative surface fluxes are now available for assimilation into land surface schemes (LSSs) of climate and/or numerical weather prediction models. The RAMI4PILPS suite of virtual experiments assesses the accuracy and consistency of the radiative transfer formulations that provide the magnitudes of absorbed, reflected, and transmitted shortwave radiative fluxes in LSSs. RAMI4PILPS evaluates models under perfectly controlled experimental conditions in order to eliminate uncertainties arising from an incomplete or erroneous knowledge of the structural, spectral and illumination related canopy characteristics typical for model comparison with in situ observations. More specifically, the shortwave radiation is separated into a visible and near-infrared spectral region, and the quality of the simulated radiative fluxes is evaluated by direct comparison with a 3-D Monte Carlo reference model identified during the third phase of the Radiation transfer Model Intercomparison (RAMI) exercise. The RAMI4PILPS setup thus allows to focus in particular on the numerical accuracy of shortwave radiative transfer formulations and to pinpoint to areas where future model improvements should concentrate. The impact of increasing degrees of structural and spectral subgrid variability on the simulated fluxes is documented and the relevance of any thus emerging biases with respect to gross primary production estimates and shortwave radiative forcings due to snow and fire events are investigated.

  11. Modeling and analysis of power processing systems: Feasibility investigation and formulation of a methodology

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Yu, Y.; Middlebrook, R. D.; Schoenfeld, A. D.

    1974-01-01

    A review is given of future power processing systems planned for the next 20 years, and the state-of-the-art of power processing design modeling and analysis techniques used to optimize power processing systems. A methodology of modeling and analysis of power processing equipment and systems has been formulated to fulfill future tradeoff studies and optimization requirements. Computer techniques were applied to simulate power processor performance and to optimize the design of power processing equipment. A program plan to systematically develop and apply the tools for power processing systems modeling and analysis is presented so that meaningful results can be obtained each year to aid the power processing system engineer and power processing equipment circuit designers in their conceptual and detail design and analysis tasks.

  12. Effects of atmospheric composition on apparent activation energy of silicate weathering: I. Model formulation

    NASA Astrophysics Data System (ADS)

    Kanzaki, Yoshiki; Murakami, Takashi

    2018-07-01

    We have developed a weathering model to comprehensively understand the determining factors of the apparent activation energy of silicate weathering in order to better estimate the silicate-weathering flux in the Precambrian. The model formulates the reaction rate of a mineral as a basis, then the elemental loss by summing the reaction rates of whole minerals, and finally the weathering flux from a given weathering profile by integrating the elemental losses along the depth of the profile. The rate expressions are formulated with physicochemical parameters relevant to weathering, including solution and atmospheric compositions. The apparent activation energies of silicate weathering are then represented by the temperature dependences of the physicochemical parameters based on the rate expressions. It was found that the interactions between individual mineral-reactions and the compositions of solution and atmosphere are necessarily accompanied by those of temperature-dependence counterparts. Indeed, the model calculates the apparent activation energy of silicate weathering as a function of the temperature dependence of atmospheric CO2 (Δ HCO2‧) . The dependence of the apparent activation energy of silicate weathering on Δ HCO2‧ may explain the empirical dependence of silicate weathering on the atmospheric composition. We further introduce a compensation law between the apparent activation energy and the pre-exponential factor to obtain the relationship between the silicate-weathering flux (FCO2), temperature and the apparent activation energy. The model calculation and the compensation law enable us to predict FCO2 as a function of temperature, once Δ HCO2‧ is given. The validity of the model is supported by agreements between the model prediction and observations of the apparent activation energy and FCO2 in the modern weathering systems. The present weathering model will be useful for the estimation of FCO2 in the Precambrian, for which Δ HCO2‧ can be

  13. Role of vertex corrections in the matrix formulation of the random phase approximation for the multiorbital Hubbard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altmeyer, Michaela; Guterding, Daniel; Hirschfeld, P. J.

    2016-12-21

    In the framework of a multiorbital Hubbard model description of superconductivity, a matrix formulation of the superconducting pairing interaction that has been widely used is designed to treat spin, charge, and orbital fluctuations within a random phase approximation (RPA). In terms of Feynman diagrams, this takes into account particle-hole ladder and bubble contributions as expected. It turns out, however, that this matrix formulation also generates additional terms which have the diagrammatic structure of vertex corrections. Furthermore we examine these terms and discuss the relationship between the matrix-RPA superconducting pairing interaction and the Feynman diagrams that it sums.

  14. Non-Parabolic Hydrodynamic Formulations for the Simulation of Inhomogeneous Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Smith, A. W.; Brennan, K. F.

    1996-01-01

    Hydrodynamic models are becoming prevalent design tools for small scale devices and other devices in which high energy effects can dominate transport. Most current hydrodynamic models use a parabolic band approximation to obtain fairly simple conservation equations. Interest in accounting for band structure effects in hydrodynamic device simulation has begun to grow since parabolic models cannot fully describe the transport in state of the art devices due to the distribution populating non-parabolic states within the band. This paper presents two different non-parabolic formulations or the hydrodynamic model suitable for the simulation of inhomogeneous semiconductor devices. The first formulation uses the Kane dispersion relationship ((hk)(exp 2)/2m = W(1 + alphaW). The second formulation makes use of a power law ((hk)(exp 2)/2m = xW(exp y)) for the dispersion relation. Hydrodynamic models which use the first formulation rely on the binomial expansion to obtain moment equations with closed form coefficients. This limits the energy range over which the model is valid. The power law formulation readily produces closed form coefficients similar to those obtained using the parabolic band approximation. However, the fitting parameters (x,y) are only valid over a limited energy range. The physical significance of the band non-parabolicity is discussed as well as the advantages/disadvantages and approximations of the two non-parabolic models. A companion paper describes device simulations based on the three dispersion relationships; parabolic, Kane dispersion and power law dispersion.

  15. Non-parabolic hydrodynamic formulations for the simulation of inhomogeneous semiconductor devices

    NASA Technical Reports Server (NTRS)

    Smith, Arlynn W.; Brennan, Kevin F.

    1995-01-01

    Hydrodynamic models are becoming prevalent design tools for small scale devices and other devices in which high energy effects can dominate transport. Most current hydrodynamic models use a parabolic band approximation to obtain fairly simple conservation equations. Interest in accounting for band structure effects in hydrodynamic device simulation has begun to grow since parabolic models can not fully describe the transport in state of the art devices due to the distribution populating non-parabolic states within the band. This paper presents two different non-parabolic formulations of the hydrodynamic model suitable for the simulation of inhomogeneous semiconductor devices. The first formulation uses the Kane dispersion relationship (hk)(exp 2)/2m = W(1 + alpha(W)). The second formulation makes use of a power law ((hk)(exp 2)/2m = xW(sup y)) for the dispersion relation. Hydrodynamic models which use the first formulation rely on the binomial expansion to obtain moment equations with closed form coefficients. This limits the energy range over which the model is valid. The power law formulation readily produces closed form coefficients similar to those obtained using the parabolic band approximation. However, the fitting parameters (x,y) are only valid over a limited energy range. The physical significance of the band non-parabolicity is discussed as well as the advantages/disadvantages and approximations of the two non-parabolic models. A companion paper describes device simulations based on the three dispersion relationships: parabolic, Kane dispersion, and power low dispersion.

  16. Influence of cellulose derivative and ethylene glycol on optimization of lornoxicam transdermal formulation.

    PubMed

    Shahzad, Yasser; Khan, Qalandar; Hussain, Talib; Shah, Syed Nisar Hussain

    2013-10-01

    Lornoxicam containing topically applied lotions were formulated and optimized with the aim to deliver it transdermally. The formulated lotions were evaluated for pH, viscosity and in vitro permeation studies through silicone membrane using Franz diffusion cells. Data were fitted to linear, quadratic and cubic models and best fit model was selected to investigate the influence of variables, namely hydroxypropyl methylcellulose (HPMC) and ethylene glycol (EG) on permeation of lornoxicam from topically applied lotion formulations. The best fit quadratic model revealed that low level of HPMC and intermediate level of EG in the formulation was optimum for enhancing the drug flux across silicone membrane. FT-IR analysis confirmed absence of drug-polymer interactions. Selected optimized lotion formulation was then subjected to accelerated stability testing, sensatory perception testing and in vitro permeation across rabbit skin. The drug flux from the optimized lotion across rabbit skin was significantly better that that from the control formulation. Furthermore, sensatory perception test rated a higher acceptability while lotion was stable over stability testing period. Therefore, use of Box-Wilson statistical design successfully elaborated the influence of formulation variables on permeation of lornoxicam form topical formulations, thus, helped in optimization of the lotion formulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Formulation of strongly non-local, non-isothermal dynamics for heterogeneous solids based on the GENERIC with application to phase-field modeling

    NASA Astrophysics Data System (ADS)

    Hütter, Markus; Svendsen, Bob

    2017-12-01

    The purpose of the current work is the formulation of models for conservative and non-conservative dynamics in solid systems with the help of the General Equation for the Non-Equilibrium Reversible-Irreversible Coupling (GENERIC: e.g., Grmela and Öttinger, Phys. Rev. E 56(6), 6620 (1997); Öttinger and Grmela, Phys. Rev. E 56(6), 6633 (1997)). In this context, the resulting models are inherently spatially strongly non-local (i.e., functional) and non-isothermal in character. They are applicable in particular to the modeling of phase transitions as well as mass and heat transport in multiphase, multicomponent solids. In the last part of the work, the strongly non-local model formulation is reduced to weakly non-local form with the help of generalized gradient approximation of the energy and entropy functionals. On this basis, the current model formulation is shown to be consistent with and reduce to a recent non-isothermal generalization (Gladkov et al., J. Non-Equilib. Thermodyn. 41(2), 131 (2016)) of the well-known phase-field models of Cahn and Hilliard (J. Chem. Phys. 28(2), 258 (1958)) for conservative dynamics and of Allen and Cahn (Acta Metall. 27(6), 1085 (1979)) for non-conservative dynamics. Finally, the current approach is applied to derive a non-isothermal generalization of a phase-field crystal model for binary alloys (see, e.g., Elder et al., Phys. Rev. B 75(6), 064107 (2007)).

  18. Ignition and Growth Modeling of Shock Initiation of Different Particle Size Formulations of PBXC03 Explosive

    NASA Astrophysics Data System (ADS)

    Hussain, Tariq; Liu, Yan; Huang, Fenglei; Duan, Zhuoping

    2016-01-01

    The change in shock sensitivity of explosives having various explosive grain sizes is discussed. Along with other parameters, explosive grain size is one of the key parameters controlling the macroscopic behavior of shocked pressed explosives. Ignition and growth reactive flow modeling is performed for the shock initiation experiments carried out by using the in situ manganin piezoresistive pressure gauge technique to investigate the influences of the octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) particle size on the shock initiation and the subsequent detonation growth process for the three explosive formulations of pressed PBXC03 (87% HMX, 7% 1,3,5-trichloro-2,4,6-trinitrobenzene (TATB), 6% Viton by weight). All of the formulation studied had the same density but different explosive grain sizes. A set of ignition and growth parameters was obtained for all three formulations. Only the coefficient G1 of the first growth term in the reaction rate equation was varied with the grain size; all other parameters were kept the same for all formulations. It was found that G1 decreases almost linearly with HMX particle size for PBXC03. However, the equation of state (EOS) for solid explosive had to be adjusted to fit the experimental data. Both experimental and numerical simulation results show that the shock sensitivity of PBXC03 decreases with increasing HMX particle size for the sustained pressure pulses (around 4 GPa) as obtained in the experiment. This result is in accordance with the results reported elsewhere in literature. For future work, a better approach may be to find standard solid Grüneisen EOS and product Jones-Wilkins-Lee (JWL) EOS for each formulation for the best fit to the experimental data.

  19. The parameterization of the planetary boundary layer in the UCLA general circulation model - Formulation and results

    NASA Technical Reports Server (NTRS)

    Suarez, M. J.; Arakawa, A.; Randall, D. A.

    1983-01-01

    A planetary boundary layer (PBL) parameterization for general circulation models (GCMs) is presented. It uses a mixed-layer approach in which the PBL is assumed to be capped by discontinuities in the mean vertical profiles. Both clear and cloud-topped boundary layers are parameterized. Particular emphasis is placed on the formulation of the coupling between the PBL and both the free atmosphere and cumulus convection. For this purpose a modified sigma-coordinate is introduced in which the PBL top and the lower boundary are both coordinate surfaces. The use of a bulk PBL formulation with this coordinate is extensively discussed. Results are presented from a July simulation produced by the UCLA GCM. PBL-related variables are shown, to illustrate the various regimes the parameterization is capable of simulating.

  20. Computational cost of two alternative formulations of Cahn-Hilliard equations

    NASA Astrophysics Data System (ADS)

    Paszyński, Maciej; Gurgul, Grzegorz; Łoś, Marcin; Szeliga, Danuta

    2018-05-01

    In this paper we propose two formulations of Cahn-Hilliard equations, which have several applications in cancer growth modeling and material science phase-field simulations. The first formulation uses one C4 partial differential equations (PDEs) the second one uses two C2 PDEs. Finally, we compare the computational costs of direct solvers for both formulations, using the refined isogeometric analysis (rIGA) approach.

  1. Pharmacokinetic analysis of modified-release metoprolol formulations: An interspecies comparison.

    PubMed

    De Thaye, Elien; Vervaeck, Anouk; Marostica, Eleonora; Remon, Jean Paul; Van Bocxlaer, Jan; Vervaet, Chris; Vermeulen, An

    2017-01-15

    In the current study, we investigated the metoprolol absorption kinetics of an in-house produced oral sustained-release formulation, matrices manufactured via prilling, and two commercially available formulations, ZOK-ZID ® (reservoir) and Slow-Lopresor ® (matrix) in both New Zealand White rabbits and Beagle dogs, using a population pharmacokinetic analysis approach. The aim of this study was to compare the in vivo pharmacokinetic (PK) profiles of different formulations based on metoprolol, a selective adrenergic β 1 -receptor antagonist, in dogs and rabbits and to contrast the observed differences. To that end, metoprolol (50 to 200mg) was administered to 6 Beagle dogs and 6 New Zealand White rabbits as a single intravenous (IV) bolus injection and to 8 dogs and 6 rabbits as an oral modified release formulation. To derive pharmacokinetic parameters from the data, a non-linear mixed-effects model was developed using NONMEM ® where the contribution of observations below the limit of detection (BDL, below detection limit) to the parameter estimates was taken into account in the parameter estimation procedure. In both species and for the three modified release formulations, different absorption models were tested to describe the PK of metoprolol following oral dosing. In Beagle dogs, plasma concentration-time profiles were best described using a sequential zero- and first-order absorption model. In rabbits though, the absorption phase was best described using a first-order process only. In both species, the reservoir formulation ZOK-ZID ® was behaving quite similarly. In contrast, the absorption properties of both matrix formulations were rather different between species. This study indicates that the PK of the reservoir formulation is similar in both species, even after accounting for the almost completely missed absorption phase in rabbits. The insights gained further illustrate that rabbits are not very well suited to study the PK of the current matrix

  2. Subchronic (26- and 52-week) toxicity and irritation studies of a novel microbicidal gel formulation containing sodium lauryl sulfate in animal models.

    PubMed

    Piret, Jocelyne; Laforest, Geneviève; Bussières, Martin; Bergeron, Michel G

    2008-03-01

    The safety of an ethylene oxide/propylene oxide gel formulation containing sodium lauryl sulfate (2%, w/w), that could be a potent candidate as a topical microbicide, has been evaluated. More specifically, the subchronic (26- and 52-week) toxicity of the formulation when applied intravaginally as well as its irritating potential for the rectal, penile, eye, skin and buccal mucosa have been examined in animal models. The results showed that the vaginal administration of the gel formulation containing sodium lauryl sulfate once and twice daily (with doses 12 +/- 2 h apart) for 26 weeks to rats and for 52 weeks to rabbits induced slight to moderate histopathological alterations. When the formulation was applied intrarectally to male and female rabbits once and twice daily (with doses 12 +/- 2 h apart) for 14 days, no macroscopic or microscopic changes were reported. For both vaginal and rectal dosing, no effect was seen on the haematology, coagulation and serum chemistry parameters as well as on the body weight of animals and the relative organ weights. Other sporadic macroscopic and histopathological findings were incidental in origin and of no toxicological significance. The gel formulation containing sodium lauryl sulfate was considered as mildly irritating for the penile mucosa of rabbits, non-irritating for the eye of rabbits, mildly irritating for the skin in a rabbit model and non-irritating for the hamster cheek pouch. It is suggested that the gel formulation containing sodium lauryl sulfate is safe for most tissues that could be exposed to the product under normal use.

  3. Comparison of the antifungal efficacy of terbinafine hydrochloride and ciclopirox olamine containing formulations against the dermatophyte Trichophyton rubrum in an infected nail plate model.

    PubMed

    Täuber, Anja; Müller-Goymann, Christel C

    2014-07-07

    Onychomycosis is a fungal infection mostly induced by dermatophytes such as Trichophyton rubrum. Due to slow nail growth, the treatment takes 3-9 months depending on the nail size and infected area. Hence, high efficacy of the active ingredient without systemic side effects is of major interest. To test the efficacy of an antifungal formulation, an appropriate in vitro model reflecting the in vivo situation as close as possible is required. In this study, a variety of antifungal formulations, i.e., commercial ones (Ciclopoli and Lamisil cream), those used in compounding pharmacies (Pentravan) as well as poloxamer 407-based systems, have been evaluated in an infected nail plate model. The active pharmaceutical ingredients (APIs) were ciclopirox olamine and terbinafine hydrochloride. The poloxamer 407-based formulations consisted of poloxamer 407, double distilled water, propylene glycol, isopropyl alcohol, medium chain triglycerides and either 1% ciclopirox olamine or 1% terbinafine hydrochloride as API, respectively. Former studies have shown high permeation rates of terbinafine hydrochloride from similar poloxamer 407-based formulations with dimethyl isosorbide instead of propylene glycol. The present contribution shows superior inhibition of T. rubrum growth from poloxamer 407-based formulations in comparison to the commercial Lamisil cream. Moreover, poloxamer 407-based formulations were equally effective as the nail lacquer Ciclopoli even though the poloxamer formulations contained only 1% of the drug instead of 8% in the marketed lacquer. Poloxamer 407-based systems containing ciclopirox olamine proved to be about as effective as similar terbinafine hydrochloride systems.

  4. An upscaled two-equation model of transport in porous media through unsteady-state closure of volume averaged formulations

    NASA Astrophysics Data System (ADS)

    Chaynikov, S.; Porta, G.; Riva, M.; Guadagnini, A.

    2012-04-01

    We focus on a theoretical analysis of nonreactive solute transport in porous media through the volume averaging technique. Darcy-scale transport models based on continuum formulations typically include large scale dispersive processes which are embedded in a pore-scale advection diffusion equation through a Fickian analogy. This formulation has been extensively questioned in the literature due to its inability to depict observed solute breakthrough curves in diverse settings, ranging from the laboratory to the field scales. The heterogeneity of the pore-scale velocity field is one of the key sources of uncertainties giving rise to anomalous (non-Fickian) dispersion in macro-scale porous systems. Some of the models which are employed to interpret observed non-Fickian solute behavior make use of a continuum formulation of the porous system which assumes a two-region description and includes a bimodal velocity distribution. A first class of these models comprises the so-called ''mobile-immobile'' conceptualization, where convective and dispersive transport mechanisms are considered to dominate within a high velocity region (mobile zone), while convective effects are neglected in a low velocity region (immobile zone). The mass exchange between these two regions is assumed to be controlled by a diffusive process and is macroscopically described by a first-order kinetic. An extension of these ideas is the two equation ''mobile-mobile'' model, where both transport mechanisms are taken into account in each region and a first-order mass exchange between regions is employed. Here, we provide an analytical derivation of two region "mobile-mobile" meso-scale models through a rigorous upscaling of the pore-scale advection diffusion equation. Among the available upscaling methodologies, we employ the Volume Averaging technique. In this approach, the heterogeneous porous medium is supposed to be pseudo-periodic, and can be represented through a (spatially) periodic unit cell

  5. A Method for Formulizing Disaster Evacuation Demand Curves Based on SI Model

    PubMed Central

    Song, Yulei; Yan, Xuedong

    2016-01-01

    The prediction of evacuation demand curves is a crucial step in the disaster evacuation plan making, which directly affects the performance of the disaster evacuation. In this paper, we discuss the factors influencing individual evacuation decision making (whether and when to leave) and summarize them into four kinds: individual characteristics, social influence, geographic location, and warning degree. In the view of social contagion of decision making, a method based on Susceptible-Infective (SI) model is proposed to formulize the disaster evacuation demand curves to address both social influence and other factors’ effects. The disaster event of the “Tianjin Explosions” is used as a case study to illustrate the modeling results influenced by the four factors and perform the sensitivity analyses of the key parameters of the model. Some interesting phenomena are found and discussed, which is meaningful for authorities to make specific evacuation plans. For example, due to the lower social influence in isolated communities, extra actions might be taken to accelerate evacuation process in those communities. PMID:27735875

  6. Influence of humidity on the phase behavior of API/polymer formulations.

    PubMed

    Prudic, Anke; Ji, Yuanhui; Luebbert, Christian; Sadowski, Gabriele

    2015-08-01

    Amorphous formulations of APIs in polymers tend to absorb water from the atmosphere. This absorption of water can induce API recrystallization, leading to reduced long-term stability during storage. In this work, the phase behavior of different formulations was investigated as a function of relative humidity. Indomethacin and naproxen were chosen as model APIs and poly(vinyl pyrrolidone) (PVP) and poly(vinyl pyrrolidone-co-vinyl acetate) (PVPVA64) as excipients. The formulations were prepared by spray drying. The water sorption in pure polymers and in formulations was measured at 25°C and at different values of relative humidity (RH=25%, 50% and 75%). Most water was absorbed in PVP-containing systems, and water sorption was decreasing with increasing API content. These trends could also be predicted in good agreement with the experimental data using the thermodynamic model PC-SAFT. Furthermore, the effect of absorbed water on API solubility in the polymer and on the glass-transition temperature of the formulations was predicted with PC-SAFT and the Gordon-Taylor equation, respectively. The absorbed water was found to significantly decrease the API solubility in the polymer as well as the glass-transition temperature of the formulation. Based on a quantitative modeling of the API/polymer phase diagrams as a function of relative humidity, appropriate API/polymer compositions can now be selected to ensure long-term stable amorphous formulations at given storage conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. A formulation of multidimensional growth models for the assessment and forecast of technology attributes

    NASA Astrophysics Data System (ADS)

    Danner, Travis W.

    Developing technology systems requires all manner of investment---engineering talent, prototypes, test facilities, and more. Even for simple design problems the investment can be substantial; for complex technology systems, the development costs can be staggering. The profitability of a corporation in a technology-driven industry is crucially dependent on maximizing the effectiveness of research and development investment. Decision-makers charged with allocation of this investment are forced to choose between the further evolution of existing technologies and the pursuit of revolutionary technologies. At risk on the one hand is excessive investment in an evolutionary technology which has only limited availability for further improvement. On the other hand, the pursuit of a revolutionary technology may mean abandoning momentum and the potential for substantial evolutionary improvement resulting from the years of accumulated knowledge. The informed answer to this question, evolutionary or revolutionary, requires knowledge of the expected rate of improvement and the potential a technology offers for further improvement. This research is dedicated to formulating the assessment and forecasting tools necessary to acquire this knowledge. The same physical laws and principles that enable the development and improvement of specific technologies also limit the ultimate capability of those technologies. Researchers have long used this concept as the foundation for modeling technological advancement through extrapolation by analogy to biological growth models. These models are employed to depict technology development as it asymptotically approaches limits established by the fundamental principles on which the technological approach is based. This has proven an effective and accurate approach to modeling and forecasting simple single-attribute technologies. With increased system complexity and the introduction of multiple system objectives, however, the usefulness of this

  8. Intravesical Toll-like receptor 7 agonist R-837: Optimization of its formulation in an orthotopic mouse model of bladder cancer

    PubMed Central

    Hayashi, Tomoko; Crain, Brian; Corr, Maripat; Chan, Michael; Cottam, Howard B; Maj, Roberto; Barberis, Alcide; Leoni, Lorenzo; Carson, Dennis A

    2013-01-01

    Objective To study the immune response caused by the intravesical administration of the immunomodulator R-837 in various formulations and to estimate its therapeutic potential for bladder cancer. Methods Female C57BL/6 mice were intravesically treated with different formulations of R-837, a Toll-like receptor 7 agonist used for treating genital warts and skin malignancy. The tested formulation mixtures contained different ratios of lactic acid, a thermosensitive poloxamer polymer (Lutrol F127) and 2-(hydroxypropyl)-β-cyclodextrin (HPβCD). Induction of tumor necrosis factor α (TNFα) and keratinocyte-derived chemokine (KC) was analyzed by Luminex microbeads assay. The therapeutic potential of intravesical administration of R-837 was assessed in an orthotopic, syngeneic mouse model of bladder cancer using MB49 cells. Results Intravesical administration of R-837 in lactic acid alone induced systemic and bladder TNFα and KC in a dose-dependent manner. Formulations including poloxamer decreased systemic absorption of R-837 and significantly reduced systemic and local induction of KC. Addition of HPβCD in the poloxamer formulation particularly reversed levels of systemic and local levels of TNFα and KC. Histological examination showed that poloxamer-HPβCD formulation allowed infiltration of mononuclear cells into urothelium and lamina propria. In studies using orthotopic mouse bladder cancer, the tumor loads in R-837-treated mice were significantly lower than those in vehicle-treated or non-treated mice. Conclusion The optimized poloxamer-HPβCD formulation of R-837 shows therapeutic potential for bladder cancer while avoiding adverse side-effects. PMID:20337728

  9. Anthrax vaccine powder formulations for nasal mucosal delivery.

    PubMed

    Jiang, Ge; Joshi, Sangeeta B; Peek, Laura J; Brandau, Duane T; Huang, Juan; Ferriter, Matthew S; Woodley, Wendy D; Ford, Brandi M; Mar, Kevin D; Mikszta, John A; Hwang, C Robin; Ulrich, Robert; Harvey, Noel G; Middaugh, C Russell; Sullivan, Vincent J

    2006-01-01

    Anthrax remains a serious threat worldwide as a bioterror agent. A second-generation anthrax vaccine currently under clinical evaluation consists of a recombinant Protective Antigen (rPA) of Bacillus anthracis. We have previously demonstrated that complete protection against inhalational anthrax can be achieved in a rabbit model, by intranasal delivery of a powder rPA formulation. Here we describe the preformulation and formulation development of such powder formulations. The physical stability of rPA was studied in solution as a function of pH and temperature using circular dichroism (CD), and UV-visible absorption and fluorescence spectroscopies. Extensive aggregation of rPA was observed at physiological temperatures. An empirical phase diagram, constructed using a combination of CD and fluorescence data, suggests that rPA is most thermally stable within the pH range of 6-8. To identify potential stabilizers, a library of GRAS excipients was screened using an aggregation sensitive turbidity assay, CD, and fluorescence. Based on these stability profiles, spray freeze-dried (SFD) formulations were prepared at pH 7-8 using trehalose as stabilizer and a CpG-containing oligonucleotide adjuvant. SFD formulations displayed substantial improvement in storage stability over liquid formulations. In combination with noninvasive intranasal delivery, such powder formulations may offer an attractive approach for mass biodefense immunization.

  10. Novel Formulation of Adaptive MPC as EKF Using ANN Model: Multiproduct Semibatch Polymerization Reactor Case Study.

    PubMed

    Kamesh, Reddi; Rani, Kalipatnapu Yamuna

    2017-12-01

    In this paper, a novel formulation for nonlinear model predictive control (MPC) has been proposed incorporating the extended Kalman filter (EKF) control concept using a purely data-driven artificial neural network (ANN) model based on measurements for supervisory control. The proposed scheme consists of two modules focusing on online parameter estimation based on past measurements and control estimation over control horizon based on minimizing the deviation of model output predictions from set points along the prediction horizon. An industrial case study for temperature control of a multiproduct semibatch polymerization reactor posed as a challenge problem has been considered as a test bed to apply the proposed ANN-EKFMPC strategy at supervisory level as a cascade control configuration along with proportional integral controller [ANN-EKFMPC with PI (ANN-EKFMPC-PI)]. The proposed approach is formulated incorporating all aspects of MPC including move suppression factor for control effort minimization and constraint-handling capability including terminal constraints. The nominal stability analysis and offset-free tracking capabilities of the proposed controller are proved. Its performance is evaluated by comparison with a standard MPC-based cascade control approach using the same adaptive ANN model. The ANN-EKFMPC-PI control configuration has shown better controller performance in terms of temperature tracking, smoother input profiles, as well as constraint-handling ability compared with the ANN-MPC with PI approach for two products in summer and winter. The proposed scheme is found to be versatile although it is based on a purely data-driven model with online parameter estimation.

  11. Effect of new polyherbal formulations DF1911, DF2112 and DF2813 on CFA induced inflammation in rat model.

    PubMed

    Nagarkar, Bhagyashri; Jagtap, Suresh

    2017-04-04

    Aim of the present study was to evaluate anti-inflammatory activity of newly developed polyherbal formulations DF1911, DF2112 and DF2813. These newly developed formulations are modifications of Dashamoola, a well known Ayurvedic formulation, along with addition of new plants. Complete Freund's adjuvant (CFA) induced inflammation in rat was used as an experimental model. Effects of the treatment in rats were monitored by physiological and biochemical parameters, histopathology and through gene expression studies. Diclofenac sodium showed maximum percentage inhibition (56.8 ± 3.5%) of paw edema followed by Dashamoola Kwatha (19.9 ± 1.8%). Among test formulations treated groups, DF1911 at 250 mg/kg bw (48.2 ± 5.4%, p < 0.001) and DF2112 at 250 mg/kg bw (49.9 ± 3.5%, p < 0.001) showed significant and maximum increase in percentage inhibition of paw edema as compared to Dashamoola Kwatha. Hematological alterations in CFA rats were normalized after treatment with test formulations. Results of serum markers and histopathological observations also supported the activity of formulations. Increased MDA levels in liver tissue of CFA injected animals significantly (p < 0.05) decreased by Diclofenac sodium and test formulation treated groups. DF1911, DF2112 and DF2813 showed down-regulation of IL1-β (~6.4-fold, ~5.2-fold and ~7.6-fold), IL-6 (~1.1-fold, ~1.6-fold and ~1.9-fold), TNF-α (~2.0-fold, ~4.6-fold and ~3.5-fold), and iNOS (~1.2-fold, ~1.8-fold and ~1.1-fold) in inflamed paw tissue compared to negative control group, respectively. The anti-inflammatory effects of DF1911 and DF2112 in rats were significantly higher than the Dashamoola Kwatha and are comparable to Diclofenac sodium.

  12. Evaluating the predictability of the in vitro transfer model and in vivo rat studies as a surrogate to investigate the supersaturation and precipitation behaviour of different Albendazole formulations for humans.

    PubMed

    Ruff, Aaron; Holm, René; Kostewicz, Edmund S

    2017-07-15

    The present study investigated the ability of the in vitro transfer model and an in vivo pharmacokinetic study in rats to investigate the supersaturation and precipitation behaviour of albendazole (ABZ) relative to data from a human intestinal aspiration study reported in the literature. Two lipid based formulation systems, a hydroxypropyl-β-cyclodextrin (HPβCD) solution and the addition of a crystallization inhibitor (HPMC-E5) on the behaviour of ABZ was investigated. These formulations were investigated to represent differences in their ability to facilitate supersaturation within the small intestine. Overall, both the in vitro transfer model and the in vivo rat study were able to rank order the formulations (as aqueous suspension±HPMCformulationsmodel and the in vitro transfer model could reflect the performance of the ABZ formulations in the human study. Whilst the rat was able to provide information on the overall plasma exposure, through the use of the in vitro transfer model, a more mechanistic understanding of the supersaturation and precipitation behaviour of ABZ using the different formulation strategies, could be attained. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Shock initiation of an ɛ-CL-20-estane formulation

    NASA Astrophysics Data System (ADS)

    Tarver, C. M.; Simpson, R. L.; Urtiew, P. A.

    1996-05-01

    The shock sensitivity of a pressed solid explosive formulation, LX-19, containing 95.2% by weight epsilon phase 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (HNIW) and 4.8% Estane binder, was determined using the wedge test and embedded manganin pressure gauge techniques. This formulation was shown to be slightly more sensitive than LX-14, which contains 95.5% HMX and 4.5% Estane binder. The measured pressure histories for LX-19 were very similar to those obtained using several HMX-inert binder formulations. An Ignition and Growth reactive flow model for LX-19 was developed which differed from those for HMX-inert binder formulations only by a 25% higher hot spot growth rate.

  14. Differential geometry based solvation model II: Lagrangian formulation.

    PubMed

    Chen, Zhan; Baker, Nathan A; Wei, G W

    2011-12-01

    Solvation is an elementary process in nature and is of paramount importance to more sophisticated chemical, biological and biomolecular processes. The understanding of solvation is an essential prerequisite for the quantitative description and analysis of biomolecular systems. This work presents a Lagrangian formulation of our differential geometry based solvation models. The Lagrangian representation of biomolecular surfaces has a few utilities/advantages. First, it provides an essential basis for biomolecular visualization, surface electrostatic potential map and visual perception of biomolecules. Additionally, it is consistent with the conventional setting of implicit solvent theories and thus, many existing theoretical algorithms and computational software packages can be directly employed. Finally, the Lagrangian representation does not need to resort to artificially enlarged van der Waals radii as often required by the Eulerian representation in solvation analysis. The main goal of the present work is to analyze the connection, similarity and difference between the Eulerian and Lagrangian formalisms of the solvation model. Such analysis is important to the understanding of the differential geometry based solvation model. The present model extends the scaled particle theory of nonpolar solvation model with a solvent-solute interaction potential. The nonpolar solvation model is completed with a Poisson-Boltzmann (PB) theory based polar solvation model. The differential geometry theory of surfaces is employed to provide a natural description of solvent-solute interfaces. The optimization of the total free energy functional, which encompasses the polar and nonpolar contributions, leads to coupled potential driven geometric flow and PB equations. Due to the development of singularities and nonsmooth manifolds in the Lagrangian representation, the resulting potential-driven geometric flow equation is embedded into the Eulerian representation for the purpose of

  15. Differential geometry based solvation model II: Lagrangian formulation

    PubMed Central

    Chen, Zhan; Baker, Nathan A.; Wei, G. W.

    2010-01-01

    Solvation is an elementary process in nature and is of paramount importance to more sophisticated chemical, biological and biomolecular processes. The understanding of solvation is an essential prerequisite for the quantitative description and analysis of biomolecular systems. This work presents a Lagrangian formulation of our differential geometry based solvation model. The Lagrangian representation of biomolecular surfaces has a few utilities/advantages. First, it provides an essential basis for biomolecular visualization, surface electrostatic potential map and visual perception of biomolecules. Additionally, it is consistent with the conventional setting of implicit solvent theories and thus, many existing theoretical algorithms and computational software packages can be directly employed. Finally, the Lagrangian representation does not need to resort to artificially enlarged van der Waals radii as often required by the Eulerian representation in solvation analysis. The main goal of the present work is to analyze the connection, similarity and difference between the Eulerian and Lagrangian formalisms of the solvation model. Such analysis is important to the understanding of the differential geometry based solvation model. The present model extends the scaled particle theory (SPT) of nonpolar solvation model with a solvent-solute interaction potential. The nonpolar solvation model is completed with a Poisson-Boltzmann (PB) theory based polar solvation model. The differential geometry theory of surfaces is employed to provide a natural description of solvent-solute interfaces. The minimization of the total free energy functional, which encompasses the polar and nonpolar contributions, leads to coupled potential driven geometric flow and Poisson-Boltzmann equations. Due to the development of singularities and nonsmooth manifolds in the Lagrangian representation, the resulting potential-driven geometric flow equation is embedded into the Eulerian representation for

  16. Formulation of additional observables for ENTREE

    NASA Technical Reports Server (NTRS)

    Findlay, J. T.; Heck, M. L.

    1980-01-01

    The S-band X and Y angles, SAMS, and TACAN range and bearing were incorporated into the ENTREE software for use by experimenters at LaRC for entry trajectory reconstruction purposes. Background discussions present the need for this added capability. Formulations for the various observables are presented. Both north-south and east-west antenna mounts were provided for in the S-band angle computations. Sub-vehicle terrain height variations are included in the SAMS model. Local magnetic variations were incorporated for the TACAN bearing computations. Observable formulations are discussed in detail along with the partial computations.

  17. Parent formulation at the Lagrangian level

    NASA Astrophysics Data System (ADS)

    Grigoriev, Maxim

    2011-07-01

    The recently proposed first-order parent formalism at the level of equations of motion is specialized to the case of Lagrangian systems. It is shown that for diffeomorphism-invariant theories the parent formulation takes the form of an AKSZ-type sigma model. The proposed formulation can be also seen as a Lagrangian version of the BV-BRST extension of the Vasiliev unfolded approach. We also discuss its possible interpretation as a multidimensional generalization of the Hamiltonian BFV-BRST formalism. The general construction is illustrated by examples of (parametrized) mechanics, relativistic particle, Yang-Mills theory, and gravity.

  18. Pharmacokinetic/pharmacodynamic model of the testosterone effects of triptorelin administered in sustained release formulations in patients with prostate cancer.

    PubMed

    Romero, Elba; Vélez de Mendizabal, Nieves; Cendrós, Josep-María; Peraire, Concepción; Bascompta, Emma; Obach, Rosendo; Trocóniz, Iñaki F

    2012-09-01

    The objectives of the current work were to develop a predictive population pharmacokinetic (PK)/pharmacodynamic (PD) model for the testosterone (TST) effects of triptorelin (TRP) administered in sustained-release (SR) formulations to patients with prostate cancer and determine the minimal required triptorelin serum concentration (C(TRP_min)) to keep the testosterone levels of the patients below or equal to the level of castration (TST ≤ 0.5 ng/ml). A total of eight healthy male volunteers and 74 patients with prostate cancer received one or two doses of triptorelin injected subcutaneously or intramuscularly. Five different triptorelin formulations were tested. Pharmacokinetic (serum concentration of triptorelin) and pharmacodynamic (TST levels in serum) data were analyzed by using the population approach with NONMEM software (http://www.iconplc.com/technology/products/nonmem/). The PK/PD model was constructed by assembling the agonist nature of triptorelin with the competitive reversible receptor binding interaction with the endogenous agonist, a process responsible for the initial and transient TST flare-up, and triggering down-regulation mechanisms described as a decrease in receptor synthesis. The typical population values of K(D), the receptor equilibrium dissociation constant of triptorelin, and C(TRP_min) to keep 95% of the patients castrated were 0.931 and 0.0609 ng/ml, respectively. The semimechanistic nature of the model renders the predictions of the effect of triptorelin on TST possible regardless the type of SR formulation administered, while exploring different designs during the development of new delivery systems.

  19. Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows

    NASA Astrophysics Data System (ADS)

    Minier, Jean-Pierre; Chibbaro, Sergio; Pope, Stephen B.

    2014-11-01

    In this paper, we establish a set of criteria which are applied to discuss various formulations under which Lagrangian stochastic models can be found. These models are used for the simulation of fluid particles in single-phase turbulence as well as for the fluid seen by discrete particles in dispersed turbulent two-phase flows. The purpose of the present work is to provide guidelines, useful for experts and non-experts alike, which are shown to be helpful to clarify issues related to the form of Lagrangian stochastic models. A central issue is to put forward reliable requirements which must be met by Lagrangian stochastic models and a new element brought by the present analysis is to address the single- and two-phase flow situations from a unified point of view. For that purpose, we consider first the single-phase flow case and check whether models are fully consistent with the structure of the Reynolds-stress models. In the two-phase flow situation, coming up with clear-cut criteria is more difficult and the present choice is to require that the single-phase situation be well-retrieved in the fluid-limit case, elementary predictive abilities be respected and that some simple statistical features of homogeneous fluid turbulence be correctly reproduced. This analysis does not address the question of the relative predictive capacities of different models but concentrates on their formulation since advantages and disadvantages of different formulations are not always clear. Indeed, hidden in the changes from one structure to another are some possible pitfalls which can lead to flaws in the construction of practical models and to physically unsound numerical calculations. A first interest of the present approach is illustrated by considering some models proposed in the literature and by showing that these criteria help to assess whether these Lagrangian stochastic models can be regarded as acceptable descriptions. A second interest is to indicate how future

  20. An anisotropic elastoplastic constitutive formulation generalised for orthotropic materials

    NASA Astrophysics Data System (ADS)

    Mohd Nor, M. K.; Ma'at, N.; Ho, C. S.

    2018-03-01

    This paper presents a finite strain constitutive model to predict a complex elastoplastic deformation behaviour that involves very high pressures and shockwaves in orthotropic materials using an anisotropic Hill's yield criterion by means of the evolving structural tensors. The yield surface of this hyperelastic-plastic constitutive model is aligned uniquely within the principal stress space due to the combination of Mandel stress tensor and a new generalised orthotropic pressure. The formulation is developed in the isoclinic configuration and allows for a unique treatment for elastic and plastic orthotropy. An isotropic hardening is adopted to define the evolution of plastic orthotropy. The important feature of the proposed hyperelastic-plastic constitutive model is the introduction of anisotropic effect in the Mie-Gruneisen equation of state (EOS). The formulation is further combined with Grady spall failure model to predict spall failure in the materials. The proposed constitutive model is implemented as a new material model in the Lawrence Livermore National Laboratory (LLNL)-DYNA3D code of UTHM's version, named Material Type 92 (Mat92). The combination of the proposed stress tensor decomposition and the Mie-Gruneisen EOS requires some modifications in the code to reflect the formulation of the generalised orthotropic pressure. The validation approach is also presented in this paper for guidance purpose. The \\varvec{ψ} tensor used to define the alignment of the adopted yield surface is first validated. This is continued with an internal validation related to elastic isotropic, elastic orthotropic and elastic-plastic orthotropic of the proposed formulation before a comparison against range of plate impact test data at 234, 450 and {895 ms}^{-1} impact velocities is performed. A good agreement is obtained in each test.

  1. Effects of Food and Pharmaceutical Formulation on Desmopressin Pharmacokinetics in Children.

    PubMed

    Michelet, Robin; Dossche, Lien; De Bruyne, Pauline; Colin, Pieter; Boussery, Koen; Vande Walle, Johan; Van Bocxlaer, Jan; Vermeulen, An

    2016-09-01

    Desmopressin is used for treatment of nocturnal enuresis in children. In this study, we investigated the pharmacokinetics of two formulations-a tablet and a lyophilisate-in both fasted and fed children. Previously published data from two studies (one in 22 children aged 6-16 years, and the other in 25 children aged 6-13 years) were analyzed using population pharmacokinetic modeling. A one-compartment model with first-order absorption was fitted to the data. Covariates were selected using a forward selection procedure. The final model was evaluated, and sensitivity analysis was performed to improve future sampling designs. Simulations were subsequently performed to further explore the relative bioavailability of both formulations and the food effect. The final model described the plasma desmopressin concentrations adequately. The formulation and the fed state were included as covariates on the relative bioavailability. The lyophilisate was, on average, 32.1 % more available than the tablet, and fasted children exhibited an average increase in the relative bioavailability of 101 % in comparison with fed children. Body weight was included as a covariate on distribution volume, using a power function with an exponent of 0.402. Simulations suggested that both the formulation and the food effect were clinically relevant. Bioequivalence data on two formulations of the same drug in adults cannot be readily extrapolated to children. This was the first study in children suggesting that the two desmopressin formulations are not bioequivalent in children at the currently approved dose levels. Furthermore, the effect of food intake was found to be clinically relevant. Sampling times for a future study were suggested. This sampling design should result in more informative data and consequently generate a more robust model.

  2. A moving medium formulation for prediction of propeller noise at incidence

    NASA Astrophysics Data System (ADS)

    Ghorbaniasl, Ghader; Lacor, Chris

    2012-01-01

    This paper presents a time domain formulation for the sound field radiated by moving bodies in a uniform steady flow with arbitrary orientation. The aim is to provide a formulation for prediction of noise from body so that effects of crossflow on a propeller can be modeled in the time domain. An established theory of noise generation by a moving source is combined with the moving medium Green's function for derivation of the formulation. A formula with Doppler factor is developed because it is more easily interpreted and is more helpful in examining the physic of systems. Based on the technique presented, the source of asymmetry of the sound field can be explained in terms of physics of a moving source. It is shown that the derived formulation can be interpreted as an extension of formulation 1 and 1A of Farassat based on the Ffowcs Williams and Hawkings (FW-H) equation for moving medium problems. Computational results for a stationary monopole and dipole point source in moving medium, a rotating point force in crossflow, a model of helicopter blade at incidence and a propeller case with subsonic tips at incidence verify the formulation.

  3. Extemporaneous drug formulations.

    PubMed

    Nahata, Milap C; Allen, Loyd V

    2008-11-01

    Access to a special dosage form of a medication is essential when administration to infants and children and selected other populations is required. Some drugs necessary for pediatric patients are not commercially available in dosage forms appropriate for use in this population. These drugs may be prepared extemporaneously for use in individual patients. Physical and chemical properties of drugs and excipients should be considered when preparing extemporaneous formulations. These formulations, however, may lack studies to document stability, bioavailability, pharmacokinetics, pharmacodynamics, efficacy, and tolerability. The goal of this article was to discuss factors involved in extemporaneous compounding of pediatric dosage forms. The proceedings from a Pediatric Formulation Initiative workshop sponsored by the Eunice Kennedy Shriver National Institute of Child Health and Human Development, held December 6 and 7, 2005, in Bethesda, Maryland, were used as a source of information for this article. A literature search of PubMed/ MEDLINE (1966-October 2008) was also conducted, using the search terms extemporaneous, drug formulations, and pediatric. Access to age-appropriate drug formulations is critical to provide effective and well-tolerated medications to patients. There continues to be a need for extemporaneous formulations of brand and generic drugs for neonates, infants, and children. Potential solutions to current limitations include the need to develop a prioritized list of essential formulations, increased funding of research, dissemination of data, and monitoring of clinical effectiveness and tolerability during use in various age groups of pediatric patients and the sharing of these clinical experiences. To achieve desired therapeutic outcomes in pediatric patients, access to age-appropriate, stable, effective, and well-tolerated drug formulations is essential.

  4. Revival of the Deser-Woodard nonlocal gravity model: Comparison of the original nonlocal form and a localized formulation

    NASA Astrophysics Data System (ADS)

    Park, Sohyun

    2018-02-01

    We examine the origin of two opposite results for the growth of perturbations in the Deser-Woodard (DW) nonlocal gravity model. One group previously analyzed the model in its original nonlocal form and showed that the growth of structure in the DW model is enhanced compared to general relativity (GR) and thus concluded that the model was ruled out. Recently, however, another group has reanalyzed it by localizing the model and found that the growth in their localized version is suppressed even compared to the one in GR. The question was whether the discrepancy originates from an intrinsic difference between the nonlocal and localized formulations or is due to their different implementations of the subhorizon limit. We show that the nonlocal and local formulations give the same solutions for the linear perturbations as long as the initial conditions are set the same. The different implementations of the subhorizon limit lead to different transient behaviors of some perturbation variables; however, they do not affect the growth of matter perturbations at the sub-horizon scale much. In the meantime, we also report an error in the numerical calculation code of the former group and verify that after fixing the error the nonlocal version also gives the suppressed growth. Finally, we discuss two alternative definitions of the effective gravitational constant taken by the two groups and some open problems.

  5. Improved solar models constructed with a formulation of convection for stellar structure and evolution calculations without the mixing-length theory approximations

    NASA Technical Reports Server (NTRS)

    Lydon, Thomas J.; Fox, Peter A.; Sofia, Sabatino

    1993-01-01

    We have updated a previous attempt to incorporate within a solar model a treatment of convection based upon numerical simulations of convection rather than mixing-length theory (MLT). We have modified our formulation of convection for a better treatment of the kinetic energy flux. Our solar model has been updated to include a complete range of OPAL opacities, the Debye-Hueckel correction to the equation of state, helium diffusion due to gravitational settling, and atmospheres by Kurucz. We construct a series of models using both MLT and our revised formulation of convection and the compared results to measurements of the solar radius, the solar luminosity, and the depth of the solar convection zone as inferred from helioseismology. We find X(solar) = 0.702 +/- 0.005, Y(solar) = 0.278 +/- 0.005, and Z(solar) = 0.0193 +/- 0.0005.

  6. Thermodynamic Model Formulations for Inhomogeneous Solids with Application to Non-isothermal Phase Field Modelling

    NASA Astrophysics Data System (ADS)

    Gladkov, Svyatoslav; Kochmann, Julian; Reese, Stefanie; Hütter, Markus; Svendsen, Bob

    2016-04-01

    The purpose of the current work is the comparison of thermodynamic model formulations for chemically and structurally inhomogeneous solids at finite deformation based on "standard" non-equilibrium thermodynamics [SNET: e. g. S. de Groot and P. Mazur, Non-equilibrium Thermodynamics, North Holland, 1962] and the general equation for non-equilibrium reversible-irreversible coupling (GENERIC) [H. C. Öttinger, Beyond Equilibrium Thermodynamics, Wiley Interscience, 2005]. In the process, non-isothermal generalizations of standard isothermal conservative [e. g. J. W. Cahn and J. E. Hilliard, Free energy of a non-uniform system. I. Interfacial energy. J. Chem. Phys. 28 (1958), 258-267] and non-conservative [e. g. S. M. Allen and J. W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979), 1085-1095; A. G. Khachaturyan, Theory of Structural Transformations in Solids, Wiley, New York, 1983] diffuse interface or "phase-field" models [e. g. P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Modern Phys. 49 (1977), 435-479; N. Provatas and K. Elder, Phase Field Methods in Material Science and Engineering, Wiley-VCH, 2010.] for solids are obtained. The current treatment is consistent with, and includes, previous works [e. g. O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Phys. D 43 (1990), 44-62; O. Penrose and P. C. Fife, On the relation between the standard phase-field model and a "thermodynamically consistent" phase-field model. Phys. D 69 (1993), 107-113] on non-isothermal systems as a special case. In the context of no-flux boundary conditions, the SNET- and GENERIC-based approaches are shown to be completely consistent with each other and result in equivalent temperature evolution relations.

  7. Towards a methodology to formulate sustainable diets for livestock: accounting for environmental impact in diet formulation.

    PubMed

    Mackenzie, S G; Leinonen, I; Ferguson, N; Kyriazakis, I

    2016-05-28

    The objective of this study was to develop a novel methodology that enables pig diets to be formulated explicitly for environmental impact objectives using a Life Cycle Assessment (LCA) approach. To achieve this, the following methodological issues had to be addressed: (1) account for environmental impacts caused by both ingredient choice and nutrient excretion, (2) formulate diets for multiple environmental impact objectives and (3) allow flexibility to identify the optimal nutritional composition for each environmental impact objective. An LCA model based on Canadian pig farms was integrated into a diet formulation tool to compare the use of different ingredients in Eastern and Western Canada. By allowing the feed energy content to vary, it was possible to identify the optimum energy density for different environmental impact objectives, while accounting for the expected effect of energy density on feed intake. A least-cost diet was compared with diets formulated to minimise the following objectives: non-renewable resource use, acidification potential, eutrophication potential, global warming potential and a combined environmental impact score (using these four categories). The resulting environmental impacts were compared using parallel Monte Carlo simulations to account for shared uncertainty. When optimising diets to minimise a single environmental impact category, reductions in the said category were observed in all cases. However, this was at the expense of increasing the impact in other categories and higher dietary costs. The methodology can identify nutritional strategies to minimise environmental impacts, such as increasing the nutritional density of the diets, compared with the least-cost formulation.

  8. Anthrax Vaccine Powder Formulations for Nasal Mucosal Delivery

    DTIC Science & Technology

    2005-08-04

    inhalational anthrax can be achieved in a rabbit model, by intranasal delivery of a powder rPA formulation. Here we describe the preformulation and...fluorescence. Based on these stability profiles, spray freeze-dried (SFD) formulations were prepared at pH 7–8 using trehalose as stabilizer and a CpG...gas- trointestinal, and pulmonary routes. The inhaled form is of particular concern considering its de- monstrated use as a bioweapon.1–4 Inhalational

  9. Laminated Composite Shell Element Using Absolute Nodal Coordinate Formulation and Its Application to ANCF Tire Model

    DTIC Science & Technology

    2015-04-24

    Paramsothy Jayakumar US Army TARDEC 6501 E. 11 Mile Road Warren, MI 48397-5000 Hiroyuki Sugiyama Department of Mechanical and Industrial...Part 2: Development of a Physical Tyre Model", Vehicle System Dynamics, vol. 50, pp. 339-356. [4] Sugiyama, H., Yamashita, H. and Jayakumar , P., 2014... Jayakumar , P. and Sugiyama, H., "Continuum Mechanics Based Bi-Linear Shear Deformable Shell Element using Absolute Nodal Coordinate Formulation", ASME

  10. Analytic Formulation and Numerical Implementation of an Acoustic Pressure Gradient Prediction

    NASA Technical Reports Server (NTRS)

    Lee, Seongkyu; Brentner, Kenneth S.; Farassat, F.; Morris, Philip J.

    2008-01-01

    Two new analytical formulations of the acoustic pressure gradient have been developed and implemented in the PSU-WOPWOP rotor noise prediction code. The pressure gradient can be used to solve the boundary condition for scattering problems and it is a key aspect to solve acoustic scattering problems. The first formulation is derived from the gradient of the Ffowcs Williams-Hawkings (FW-H) equation. This formulation has a form involving the observer time differentiation outside the integrals. In the second formulation, the time differentiation is taken inside the integrals analytically. This formulation avoids the numerical time differentiation with respect to the observer time, which is computationally more efficient. The acoustic pressure gradient predicted by these new formulations is validated through comparison with available exact solutions for a stationary and moving monopole sources. The agreement between the predictions and exact solutions is excellent. The formulations are applied to the rotor noise problems for two model rotors. A purely numerical approach is compared with the analytical formulations. The agreement between the analytical formulations and the numerical method is excellent for both stationary and moving observer cases.

  11. Characterization of Rocket Propellant Combustion Products. Chemical Characterization and Computer Modeling of the Exhaust Products from Four Propellant Formulations

    DTIC Science & Technology

    1990-12-31

    health hazards from weapons combustion products, to include rockets and missiles, became evident, Research to elucidate significant health effects of...CO/CO2 ratios was low for all but one of dhe formulations, In general, if the model were to be used in its present state for health risk assessments...35 Part 2: Modeling for Health Hazard Prediction Introduction ................................................. 37 Results and D iscussion

  12. Estrogen receptor β-selective phytoestrogenic formulation prevents physical and neurological changes in a preclinical model of human menopause.

    PubMed

    Zhao, Liqin; Mao, Zisu; Schneider, Lon S; Brinton, Roberta D

    2011-10-01

    As an alternative to estrogen therapy, the efficacy of an estrogen receptor β-selective phytoestrogenic (phyto-β-SERM) formulation to regulate climacteric symptoms and decline in brain responses associated with ovarian hormone loss in menopause was assessed. A phyto-β-SERM formulation-containing diet was compared with a commercial soy extract diet and a phytoestrogen-free base/control diet in an ovariectomized (OVX) mouse model of human menopause. Two treatment studies were conducted: (1) a 2-month study assessed the effects of experimental diets on tail skin temperature as a model of menopausal hot flashes, and (2) a 9-month study assessed the long-term impact of the diets on overall health, hair thinning/loss, spatial working memory, and associated protein expression in the hippocampus. The phyto-β-SERM diet prevented OVX-induced menopause-like changes including the rise in skin temperature, hair thinning/loss, deficit in spatial memory function, and reversed OVX-induced decline in the expression of hippocampal proteins involved in neural plasticity and β-amyloid degradation/clearance. The soy extract diet had no effect or exacerbated OVX-induced changes. Overall, the phyto-β-SERM diet induced physical and neurological responses comparable with ovary-intact mice, suggesting the therapeutic potential of the phyto-β-SERM formulation for the prevention/alleviation of climacteric symptoms and decline in brain responses induced by ovarian hormone loss, which provides the basis for further work in postmenopausal women.

  13. Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation: Report of an FDA Public Workshop

    PubMed Central

    Duan, J; Kesisoglou, F; Novakovic, J; Amidon, GL; Jamei, M; Lukacova, V; Eissing, T; Tsakalozou, E; Zhao, L; Lionberger, R

    2017-01-01

    On May 19, 2016, the US Food and Drug Administration (FDA) hosted a public workshop, entitled “Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation.”1 The topic of mechanistic oral absorption modeling, which is one of the major applications of physiologically based pharmacokinetic (PBPK) modeling and simulation, focuses on predicting oral absorption by mechanistically integrating gastrointestinal transit, dissolution, and permeation processes, incorporating systems, active pharmaceutical ingredient (API), and the drug product information, into a systemic mathematical whole‐body framework.2 PMID:28571121

  14. Developing Emotion-Based Case Formulations: A Research-Informed Method.

    PubMed

    Pascual-Leone, Antonio; Kramer, Ueli

    2017-01-01

    New research-informed methods for case conceptualization that cut across traditional therapy approaches are increasingly popular. This paper presents a trans-theoretical approach to case formulation based on the research observations of emotion. The sequential model of emotional processing (Pascual-Leone & Greenberg, 2007) is a process research model that provides concrete markers for therapists to observe the emerging emotional development of their clients. We illustrate how this model can be used by clinicians to track change and provides a 'clinical map,' by which therapist may orient themselves in-session and plan treatment interventions. Emotional processing offers as a trans-theoretical framework for therapists who wish to conduct emotion-based case formulations. First, we present criteria for why this research model translates well into practice. Second, two contrasting case studies are presented to demonstrate the method. The model bridges research with practice by using client emotion as an axis of integration. Key Practitioner Message Process research on emotion can offer a template for therapists to make case formulations while using a range of treatment approaches. The sequential model of emotional processing provides a 'process map' of concrete markers for therapists to (1) observe the emerging emotional development of their clients, and (2) help therapists develop a treatment plan. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Efficacy and toxicological studies of cremophor EL free alternative paclitaxel formulation.

    PubMed

    Utreja, Puneet; Jain, Subheet; Yadav, Subodh; Khandhuja, K L; Tiwary, A K

    2011-11-01

    In the present study, Cremophor EL free paclitaxel elastic liposomal formulation consisting of soya phosphatidylcholine and biosurfactant sodium deoxycholate was developed and optimized. The toxicological profile, antitumor efficacy and hemolytic toxicity of paclitaxel elastic liposomal formulation in comparison to Cremophor EL based marketed formulation were evaluated. Paclitaxel elastic liposomal formulations were prepared and characterized in vitro, ex-vivo and in vivo. Single dose toxicity study of paclitaxel elastic liposomal and marketed formulation was carried out in dose range of 10, 20, 40, 80, 120, 160 and 200 mg/kg. Cytotoxicity of developed formulation was evaluated using small cell lung cancer cell line (A549). Antitumor activity of developed formulation was compared with the marketed formulation using Cytoselect™ 96-well cell transformation assay. In vivo administration of paclitaxel elastic liposomal formulation into mice showed 6 fold increase in Maximum Tolerated Dose (MTD) in comparison to the marketed formulation. Similarly, LD50 (141.6 mg/kg) was also found to increase significantly than the marketed formulation (16.7 mg/kg). Result of antitumor assay revealed a high reduction of tumor density with paclitaxel elastic liposomal formulation. Reduction in hemolytic toxicity was also observed with paclitaxel elastic liposomal formulation in comparison to the marketed formulation. The carrier based approach for paclitaxel delivery demonstrated significant reduction in toxicity as compared to the Cremophor EL based marketed formulation following intra-peritoneal administration in mice model. The reduced toxicity and enhanced anti-cancer activity of elastic liposomal formulation strongly indicate its potential for safe and effective delivery of paclitaxel.

  16. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling

    NASA Astrophysics Data System (ADS)

    Bates, Paul D.; Horritt, Matthew S.; Fewtrell, Timothy J.

    2010-06-01

    SummaryThis paper describes the development of a new set of equations derived from 1D shallow water theory for use in 2D storage cell inundation models where flows in the x and y Cartesian directions are decoupled. The new equation set is designed to be solved explicitly at very low computational cost, and is here tested against a suite of four test cases of increasing complexity. In each case the predicted water depths compare favourably to analytical solutions or to simulation results from the diffusive storage cell code of Hunter et al. (2005). For the most complex test involving the fine spatial resolution simulation of flow in a topographically complex urban area the Root Mean Squared Difference between the new formulation and the model of Hunter et al. is ˜1 cm. However, unlike diffusive storage cell codes where the stable time step scales with (1/Δ x) 2, the new equation set developed here represents shallow water wave propagation and so the stability is controlled by the Courant-Freidrichs-Lewy condition such that the stable time step instead scales with 1/Δ x. This allows use of a stable time step that is 1-3 orders of magnitude greater for typical cell sizes than that possible with diffusive storage cell models and results in commensurate reductions in model run times. For the tests reported in this paper the maximum speed up achieved over a diffusive storage cell model was 1120×, although the actual value seen will depend on model resolution and water surface gradient. Solutions using the new equation set are shown to be grid-independent for the conditions considered and to have an intuitively correct sensitivity to friction, however small instabilities and increased errors on predicted depth were noted when Manning's n = 0.01. The new equations are likely to find widespread application in many types of flood inundation modelling and should provide a useful additional tool, alongside more established model formulations, for a variety of flood risk

  17. Development of a liposome microbicide formulation for vaginal delivery of octylglycerol for HIV prevention

    PubMed Central

    Wang, Lin; Sassi, Alexandra Beumer; Patton, Dorothy; Isaacs, Charles; Moncla, B. J.; Gupta, Phalguni; Rohan, Lisa Cencia

    2015-01-01

    The feasibility of using a liposome drug delivery system to formulate octylglycerol (OG) as a vaginal microbicide product was explored. A liposome formulation was developed containing 1% OG and phosphatidyl choline in a ratio that demonstrated in vitro activity against Neisseria gonorrhoeae, HSV-1, HSV-2 and HIV-1 while sparing the innate vaginal flora, Lactobacillus. Two conventional gel formulations were prepared for comparison. The OG liposome formulation with the appropriate OG/lipid ratio and dosing level had greater efficacy than either conventional gel formulation and maintained this efficacy for at least 2 months. No toxicity was observed for the liposome formulation in ex vivo testing in a human ectocervical tissue model or in vivo testing in the macaque safety model. Furthermore, minimal toxicity was observed to lactobacilli in vitro or in vivo safety testing. The OG liposome formulation offers a promising microbicide product with efficacy against HSV, HIV and N. gonorrhoeae. PMID:22149387

  18. Improvement in bone properties by using risedronate adsorbed hydroxyapatite novel nanoparticle based formulation in a rat model of osteoporosis.

    PubMed

    Sahana, H; Khajuria, Deepak Kumar; Razdan, Rema; Mahapatra, D Roy; Bhat, M R; Suresh, Sarasija; Rao, R Ramachandra; Mariappan, L

    2013-02-01

    A superior drug formulation capable of achieving efficient osteogenesis is in imperative demand for the treatment of osteoporosis. In the present study we investigated the potential of using novel risedronate-hydroxyapatite (HA) nanoparticle based formulation in an animal model of established osteoporosis. Nanoparticles of HA loaded with risedronate (NHLR) of various sizes (80-130 nm) were generated for bone targeted drug delivery. Three months after ovariectomy, 36 ovariectomized (OVX) rats were divided into 6 equal groups and treated with various doses of NHLR (500, 350 and 250 microg/kg intravenous single dose) and sodium risedronate (500 microg/kg, intravenous single dose). Untreated OVX and sham OVX served as controls. One month after drug administration, the left tibia and femur were tested for bone mechanical properties and histology, respectively. In the right femur, bone density was measured by method based on Archimedes principle and bone porosity analyses were performed using X-ray imaging. NHLR (250 microg/kg) showed a significant increase in bone density and reduced bone porosity when compared with OVX control. Moreover, NHLR (250 microg/kg) significantly increased bone mechanical properties and bone quality when compared with OVX control. The results strongly suggest that the NHLR, which is a novel nanoparticle based formulation, has a therapeutic advantage over risedronate sodium monotherapy for the treatment of osteoporosis in a rat model of postmenopausal osteoporosis.

  19. Ising formulation of associative memory models and quantum annealing recall

    NASA Astrophysics Data System (ADS)

    Santra, Siddhartha; Shehab, Omar; Balu, Radhakrishnan

    2017-12-01

    Associative memory models, in theoretical neuro- and computer sciences, can generally store at most a linear number of memories. Recalling memories in these models can be understood as retrieval of the energy minimizing configuration of classical Ising spins, closest in Hamming distance to an imperfect input memory, where the energy landscape is determined by the set of stored memories. We present an Ising formulation for associative memory models and consider the problem of memory recall using quantum annealing. We show that allowing for input-dependent energy landscapes allows storage of up to an exponential number of memories (in terms of the number of neurons). Further, we show how quantum annealing may naturally be used for recall tasks in such input-dependent energy landscapes, although the recall time may increase with the number of stored memories. Theoretically, we obtain the radius of attractor basins R (N ) and the capacity C (N ) of such a scheme and their tradeoffs. Our calculations establish that for randomly chosen memories the capacity of our model using the Hebbian learning rule as a function of problem size can be expressed as C (N ) =O (eC1N) , C1≥0 , and succeeds on randomly chosen memory sets with a probability of (1 -e-C2N) , C2≥0 with C1+C2=(0.5-f ) 2/(1 -f ) , where f =R (N )/N , 0 ≤f ≤0.5 , is the radius of attraction in terms of the Hamming distance of an input probe from a stored memory as a fraction of the problem size. We demonstrate the application of this scheme on a programmable quantum annealing device, the D-wave processor.

  20. Application of an Artificial Stomach-Duodenum Reduced Gastric pH Dog Model for Formulation Principle Assessment and Mechanistic Performance Understanding.

    PubMed

    Lee, Chen-Ming; Luner, Paul E; Locke, Karen; Briggs, Katherine

    2017-08-01

    The objective of this study was to develop an artificial stomach-duodenum (ASD) dissolution model as an in vitro evaluation tool that would simulate the gastrointestinal physiology of gastric pH-reduced dogs as a method to assess formulations for a poorly soluble free acid compound with ng/mL solubility. After establishing the ASD model with well-controlled duodenum pH, 5 formulations each applying different solubilization principles were developed and their performance in the ASD model and in vivo in dogs was evaluated. Excellent correlations were obtained between dog area under the curve (AUC) and ASD AUC of 5 formulations evaluated with simulated intestinal fluid (r 2  = 0.987) and fasted-state simulated intestinal fluid (r 2  = 0.989) as the duodenum dissolution medium, indicating that the approach of infusing NaOH into duodenum compartment to maintain duodenum pH of an ASD worked properly in simulating gastric pH-reduced dog. Raman spectroscopy was used to study drug dissolution kinetics associated with different solubilization principles and the results suggested that the solubilization principles performed as designed. Spectroscopic results also identified that the compound formed a gel during dissolution and hypromellose maintained the drug-gelled state to avoid further solid form conversion. The implication of the compound physical gelation to drug dissolution kinetics and in vivo exposure are discussed. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. Quantum kinetic expansion in the spin-boson model: Matrix formulation and system-bath factorized initial state.

    PubMed

    Gong, Zhihao; Tang, Zhoufei; Wang, Haobin; Wu, Jianlan

    2017-12-28

    Within the framework of the hierarchy equation of motion (HEOM), the quantum kinetic expansion (QKE) method of the spin-boson model is reformulated in the matrix representation. The equivalence between the two formulations (HEOM matrices and quantum operators) is numerically verified from the calculation of the time-integrated QKE rates. The matrix formulation of the QKE is extended to the system-bath factorized initial state. Following a one-to-one mapping between HEOM matrices and quantum operators, a quantum kinetic equation is rederived. The rate kernel is modified by an extra term following a systematic expansion over the site-site coupling. This modified QKE is numerically tested for its reliability by calculating the time-integrated rate and non-Markovian population kinetics. For an intermediate-to-strong dissipation strength and a large site-site coupling, the population transfer is found to be significantly different when the initial condition is changed from the local equilibrium to system-bath factorized state.

  2. Predicting Cortisol Exposure from Paediatric Hydrocortisone Formulation Using a Semi-Mechanistic Pharmacokinetic Model Established in Healthy Adults.

    PubMed

    Melin, Johanna; Parra-Guillen, Zinnia P; Hartung, Niklas; Huisinga, Wilhelm; Ross, Richard J; Whitaker, Martin J; Kloft, Charlotte

    2018-04-01

    Optimisation of hydrocortisone replacement therapy in children is challenging as there is currently no licensed formulation and dose in Europe for children under 6 years of age. In addition, hydrocortisone has non-linear pharmacokinetics caused by saturable plasma protein binding. A paediatric hydrocortisone formulation, Infacort ® oral hydrocortisone granules with taste masking, has therefore been developed. The objective of this study was to establish a population pharmacokinetic model based on studies in healthy adult volunteers to predict hydrocortisone exposure in paediatric patients with adrenal insufficiency. Cortisol and binding protein concentrations were evaluated in the absence and presence of dexamethasone in healthy volunteers (n = 30). Dexamethasone was used to suppress endogenous cortisol concentrations prior to and after single doses of 0.5, 2, 5 and 10 mg of Infacort ® or 20 mg of Infacort ® /hydrocortisone tablet/hydrocortisone intravenously. A plasma protein binding model was established using unbound and total cortisol concentrations, and sequentially integrated into the pharmacokinetic model. Both specific (non-linear) and non-specific (linear) protein binding were included in the cortisol binding model. A two-compartment disposition model with saturable absorption and constant endogenous cortisol baseline (Baseline cort ,15.5 nmol/L) described the data accurately. The predicted cortisol exposure for a given dose varied considerably within a small body weight range in individuals weighing <20 kg. Our semi-mechanistic population pharmacokinetic model for hydrocortisone captures the complex pharmacokinetics of hydrocortisone in a simplified but comprehensive framework. The predicted cortisol exposure indicated the importance of defining an accurate hydrocortisone dose to mimic physiological concentrations for neonates and infants weighing <20 kg. EudraCT number: 2013-000260-28, 2013-000259-42.

  3. Non Linear Programming (NLP) Formulation for Quantitative Modeling of Protein Signal Transduction Pathways

    PubMed Central

    Morris, Melody K.; Saez-Rodriguez, Julio; Lauffenburger, Douglas A.; Alexopoulos, Leonidas G.

    2012-01-01

    Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms. PMID:23226239

  4. Non Linear Programming (NLP) formulation for quantitative modeling of protein signal transduction pathways.

    PubMed

    Mitsos, Alexander; Melas, Ioannis N; Morris, Melody K; Saez-Rodriguez, Julio; Lauffenburger, Douglas A; Alexopoulos, Leonidas G

    2012-01-01

    Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms.

  5. Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minier, Jean-Pierre, E-mail: Jean-Pierre.Minier@edf.fr; Chibbaro, Sergio; Pope, Stephen B.

    In this paper, we establish a set of criteria which are applied to discuss various formulations under which Lagrangian stochastic models can be found. These models are used for the simulation of fluid particles in single-phase turbulence as well as for the fluid seen by discrete particles in dispersed turbulent two-phase flows. The purpose of the present work is to provide guidelines, useful for experts and non-experts alike, which are shown to be helpful to clarify issues related to the form of Lagrangian stochastic models. A central issue is to put forward reliable requirements which must be met by Lagrangianmore » stochastic models and a new element brought by the present analysis is to address the single- and two-phase flow situations from a unified point of view. For that purpose, we consider first the single-phase flow case and check whether models are fully consistent with the structure of the Reynolds-stress models. In the two-phase flow situation, coming up with clear-cut criteria is more difficult and the present choice is to require that the single-phase situation be well-retrieved in the fluid-limit case, elementary predictive abilities be respected and that some simple statistical features of homogeneous fluid turbulence be correctly reproduced. This analysis does not address the question of the relative predictive capacities of different models but concentrates on their formulation since advantages and disadvantages of different formulations are not always clear. Indeed, hidden in the changes from one structure to another are some possible pitfalls which can lead to flaws in the construction of practical models and to physically unsound numerical calculations. A first interest of the present approach is illustrated by considering some models proposed in the literature and by showing that these criteria help to assess whether these Lagrangian stochastic models can be regarded as acceptable descriptions. A second interest is to indicate how future

  6. Formulation of Higher Education Institutional Strategy Using Operational Research Approaches

    ERIC Educational Resources Information Center

    Labib, Ashraf; Read, Martin; Gladstone-Millar, Charlotte; Tonge, Richard; Smith, David

    2014-01-01

    In this paper a framework is proposed for the formulation of a higher education institutional (HEI) strategy. This work provides a practical example, through a case study, to demonstrate how the proposed framework can be applied to the issue of formulation of HEI strategy. The proposed hybrid model is based on two operational research…

  7. Audits of radiopharmaceutical formulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castronovo, F.P. Jr.

    A procedure for auditing radiopharmaceutical formulations is described. To meet FDA guidelines regarding the quality of radiopharmaceuticals, institutional radioactive drug research committees perform audits when such drugs are formulated away from an institutional pharmacy. All principal investigators who formulate drugs outside institutional pharmacies must pass these audits before they can obtain a radiopharmaceutical investigation permit. The audit team meets with the individual who performs the formulation at the site of drug preparation to verify that drug formulations meet identity, strength, quality, and purity standards; are uniform and reproducible; and are sterile and pyrogen free. This team must contain an expertmore » knowledgeable in the preparation of radioactive drugs; a radiopharmacist is the most qualified person for this role. Problems that have been identified by audits include lack of sterility and apyrogenicity testing, formulations that are open to the laboratory environment, failure to use pharmaceutical-grade chemicals, inadequate quality control methods or records, inadequate training of the person preparing the drug, and improper unit dose preparation. Investigational radiopharmaceutical formulations, including nonradiolabeled drugs, must be audited before they are administered to humans. A properly trained pharmacist should be a member of the audit team.« less

  8. Screening vaccine formulations for biological activity using fresh human whole blood

    PubMed Central

    Brookes, Roger H; Hakimi, Jalil; Ha, Yukyung; Aboutorabian, Sepideh; Ausar, Salvador F; Hasija, Manvi; Smith, Steven G; Todryk, Stephen M; Dockrell, Hazel M; Rahman, Nausheen

    2014-01-01

    Understanding the relevant biological activity of any pharmaceutical formulation destined for human use is crucial. For vaccine-based formulations, activity must reflect the expected immune response, while for non-vaccine therapeutic agents, such as monoclonal antibodies, a lack of immune response to the formulation is desired. During early formulation development, various biochemical and biophysical characteristics can be monitored in a high-throughput screening (HTS) format. However, it remains impractical and arguably unethical to screen samples in this way for immunological functionality in animal models. Furthermore, data for immunological functionality lag formulation design by months, making it cumbersome to relate back to formulations in real-time. It is also likely that animal testing may not accurately reflect the response in humans. For a more effective formulation screen, a human whole blood (hWB) approach can be used to assess immunological functionality. The functional activity relates directly to the human immune response to a complete formulation (adjuvant/antigen) and includes adjuvant response, antigen response, adjuvant-modulated antigen response, stability, and potentially safety. The following commentary discusses the hWB approach as a valuable new tool to de-risk manufacture, formulation design, and clinical progression. PMID:24401565

  9. Screening vaccine formulations for biological activity using fresh human whole blood.

    PubMed

    Brookes, Roger H; Hakimi, Jalil; Ha, Yukyung; Aboutorabian, Sepideh; Ausar, Salvador F; Hasija, Manvi; Smith, Steven G; Todryk, Stephen M; Dockrell, Hazel M; Rahman, Nausheen

    2014-01-01

    Understanding the relevant biological activity of any pharmaceutical formulation destined for human use is crucial. For vaccine-based formulations, activity must reflect the expected immune response, while for non-vaccine therapeutic agents, such as monoclonal antibodies, a lack of immune response to the formulation is desired. During early formulation development, various biochemical and biophysical characteristics can be monitored in a high-throughput screening (HTS) format. However, it remains impractical and arguably unethical to screen samples in this way for immunological functionality in animal models. Furthermore, data for immunological functionality lag formulation design by months, making it cumbersome to relate back to formulations in real-time. It is also likely that animal testing may not accurately reflect the response in humans. For a more effective formulation screen, a human whole blood (hWB) approach can be used to assess immunological functionality. The functional activity relates directly to the human immune response to a complete formulation (adjuvant/antigen) and includes adjuvant response, antigen response, adjuvant-modulated antigen response, stability, and potentially safety. The following commentary discusses the hWB approach as a valuable new tool to de-risk manufacture, formulation design, and clinical progression.

  10. Adrenaline (epinephrine) microcrystal sublingual tablet formulation: enhanced absorption in a preclinical model.

    PubMed

    Rawas-Qalaji, Mutasem; Rachid, Ousama; Mendez, Belacryst A; Losada, Annette; Simons, F Estelle R; Simons, Keith J

    2015-01-01

    For anaphylaxis treatment in community settings, adrenaline (epinephrine) administration using an auto-injector in the thigh is universally recommended. Despite this, many people at risk of anaphylaxis in community settings do not carry their prescribed auto-injectors consistently and hesitate to use them when anaphylaxis occurs.The objective of this research was to study the effect of a substantial reduction in adrenaline (Epi) particle size to a few micrometres (Epi microcrystals (Epi-MC)) on enhancing adrenaline dissolution and increasing the rate and extent of sublingual absorption from a previously developed rapidly disintegrating sublingual tablet (RDST) formulation in a validated preclinical model. The in-vivo absorption of Epi-MC 20 mg RDSTs and Epi 40 mg RDSTs was evaluated in rabbits. Epi 0.3 mg intramuscular (IM) injection in the thigh and placebo RDSTs were used as positive and negative controls, respectively. Epimean (standard deviation) area under the plasma concentration vs time curves up to 60 min and Cmax from Epi-MC 20 mg and Epi 40 mg RDSTs did not differ significantly (P > 0.05) from Epi 0.3 mg IM injection. After adrenaline, regardless of route of administration, pharmacokinetic parameters were significantly higher (P < 0.05) than after placebo RDSTs administration (reflecting endogenous adrenaline levels). Epi-MC RDSTs facilitated a twofold increase in Epi absorption and a 50% reduction in the sublingual dose. This novel sublingual tablet formulation is potentially useful for the first-aid treatment of anaphylaxis in community settings. © 2014 Royal Pharmaceutical Society.

  11. Evaluation of the stomatal conductance formulation in the EMEP ozone deposition model for Picea abies

    NASA Astrophysics Data System (ADS)

    Wieser, G.; Emberson, L. D.

    It is widely acknowledged that the possible impacts of ozone on forest trees are more closely related to ozone flux through the stomata than to external ozone exposure. However, the application of the flux approach on a European scale requires the availability of appropriate models, such as the European Monitoring and Evaluation Programme (EMEP) ozone deposition model, for estimating ozone flux and cumulative ozone uptake. Within this model stomatal conductance is the key variable, since it determines the amount of ozone absorbed by the leaves. This paper describes the suitability of the existing EMEP ozone deposition model parameterisation and formulation to represent stomatal behaviour determined from field measurements on adult Norway spruce ( Picea abies (L.) Karst.) trees in the Central European Alps. Parameters affecting maximum stomatal conductance (e.g. seasonal phenology, needle position, needle age, nutrient deficiency and ozone itself) and stomatal response functions to temperature, irradiance, vapour pressure deficit, and soil water content are investigated. Finally, current limitations and possible alterations of the EMEP model will be discussed with respect to spatial scales of available input data for future flux modelling.

  12. Convex Formulations of Learning from Crowds

    NASA Astrophysics Data System (ADS)

    Kajino, Hiroshi; Kashima, Hisashi

    It has attracted considerable attention to use crowdsourcing services to collect a large amount of labeled data for machine learning, since crowdsourcing services allow one to ask the general public to label data at very low cost through the Internet. The use of crowdsourcing has introduced a new challenge in machine learning, that is, coping with low quality of crowd-generated data. There have been many recent attempts to address the quality problem of multiple labelers, however, there are two serious drawbacks in the existing approaches, that are, (i) non-convexity and (ii) task homogeneity. Most of the existing methods consider true labels as latent variables, which results in non-convex optimization problems. Also, the existing models assume only single homogeneous tasks, while in realistic situations, clients can offer multiple tasks to crowds and crowd workers can work on different tasks in parallel. In this paper, we propose a convex optimization formulation of learning from crowds by introducing personal models of individual crowds without estimating true labels. We further extend the proposed model to multi-task learning based on the resemblance between the proposed formulation and that for an existing multi-task learning model. We also devise efficient iterative methods for solving the convex optimization problems by exploiting conditional independence structures in multiple classifiers.

  13. Significance of Strain in Formulation in Theory of Solid Mechanics

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

    2003-01-01

    The basic theory of solid mechanics was deemed complete circa 1860 when St. Venant provided the strain formulation or the field compatibility condition. The strain formulation was incomplete. The missing portion has been formulated and identified as the boundary compatibility condition (BCC). The BCC, derived through a variational formulation, has been verified through integral theorem and solution of problems. The BCC, unlike the field counterpart, do not trivialize when expressed in displacements. Navier s method and the stiffness formulation have to account for the extra conditions especially at the inter-element boundaries in a finite element model. Completion of the strain formulation has led to the revival of the direct force calculation methods: the Integrated Force Method (IFM) and its dual (IFMD) for finite element analysis, and the completed Beltrami-Michell formulation (CBMF) in elasticity. The benefits from the new methods in elasticity, in finite element analysis, and in design optimization are discussed. Existing solutions and computer codes may have to be adjusted for the compliance of the new conditions. Complacency because the discipline is over a century old and computer codes have been developed for half a century can lead to stagnation of the discipline.

  14. Anti-inflammatory and Antihistaminic Study of a Unani Eye Drop Formulation.

    PubMed

    Abdul, Latif; Abdul, Razique; Sukul, R R; Nazish, Siddiqui

    2010-01-01

    The Unani eye drop is an ophthalmic formulation prepared for its beneficial effects in the inflammatory and allergic conditions of the eyes. In the present study, the Unani eye drop formulation was prepared and investigated for its anti-inflammatory and antihistaminic activity, using in vivo and in vitro experimental models respectively. The Unani eye drop formulation exhibited significant anti-inflammatory activity in turpentine liniment-induced ocular inflammation in rabbits. The preparation also showed antihistaminic activity in isolated guinea-pig ileum. The anti-inflammatory and antihistaminic activity of eye drop may be due to presence of active ingredients in the formulation. Although there are many drugs in Unani repository which are mentioned in classical books or used in Unani clinical practice effectively in treatment of eye diseases by various Unani physicians. Inspite of the availability of vast literature, there is a dearth of commercial Unani ocular preparations. So, keeping this in mind, the eye drop formulation was prepared and its anti-inflammatory and antihistaminic activity was carried out in animal models. Thus, in view of the importance of alternative anti-inflammatory and antiallergic drugs, it becomes imperative to bring these indigenous drugs to the front foot and evaluate their activities.

  15. CELFE: Coupled Eulerian-Lagrangian Finite Element program for high velocity impact. Part 1: Theory and formulation. [hydroelasto-viscoplastic model

    NASA Technical Reports Server (NTRS)

    Lee, C. H.

    1978-01-01

    A 3-D finite element program capable of simulating the dynamic behavior in the vicinity of the impact point, together with predicting the dynamic response in the remaining part of the structural component subjected to high velocity impact is discussed. The finite algorithm is formulated in a general moving coordinate system. In the vicinity of the impact point contained by a moving failure front, the relative velocity of the coordinate system will approach the material particle velocity. The dynamic behavior inside the region is described by Eulerian formulation based on a hydroelasto-viscoplastic model. The failure front which can be regarded as the boundary of the impact zone is described by a transition layer. The layer changes the representation from the Eulerian mode to the Lagrangian mode outside the failure front by varying the relative velocity of the coordinate system to zero. The dynamic response in the remaining part of the structure described by the Lagrangian formulation is treated using advanced structural analysis. An interfacing algorithm for coupling CELFE with NASTRAN is constructed to provide computational capabilities for large structures.

  16. Trigger chemistries for better industrial formulations.

    PubMed

    Wang, Hsuan-Chin; Zhang, Yanfeng; Possanza, Catherine M; Zimmerman, Steven C; Cheng, Jianjun; Moore, Jeffrey S; Harris, Keith; Katz, Joshua S

    2015-04-01

    In recent years, innovations and consumer demands have led to increasingly complex liquid formulations. These growing complexities have provided industrial players and their customers access to new markets through product differentiation, improved performance, and compatibility/stability with other products. One strategy for enabling more complex formulations is the use of active encapsulation. When encapsulation is employed, strategies are required to effect the release of the active at the desired location and time of action. One particular route that has received significant academic research effort is the employment of triggers to induce active release upon a specific stimulus, though little has translated for industrial use to date. To address emerging industrial formulation needs, in this review, we discuss areas of trigger release chemistries and their applications specifically as relevant to industrial use. We focus the discussion on the use of heat, light, shear, and pH triggers as applied in several model polymeric systems for inducing active release. The goal is that through this review trends will emerge for how technologies can be better developed to maximize their value through industrial adaptation.

  17. One-dimensional turbulence modeling for cylindrical and spherical flows: model formulation and application

    NASA Astrophysics Data System (ADS)

    Lignell, David O.; Lansinger, Victoria B.; Medina, Juan; Klein, Marten; Kerstein, Alan R.; Schmidt, Heiko; Fistler, Marco; Oevermann, Michael

    2018-06-01

    The one-dimensional turbulence (ODT) model resolves a full range of time and length scales and is computationally efficient. ODT has been applied to a wide range of complex multi-scale flows, such as turbulent combustion. Previous ODT comparisons to experimental data have focused mainly on planar flows. Applications to cylindrical flows, such as round jets, have been based on rough analogies, e.g., by exploiting the fortuitous consistency of the similarity scalings of temporally developing planar jets and spatially developing round jets. To obtain a more systematic treatment, a new formulation of the ODT model in cylindrical and spherical coordinates is presented here. The model is written in terms of a geometric factor so that planar, cylindrical, and spherical configurations are represented in the same way. Temporal and spatial versions of the model are presented. A Lagrangian finite-volume implementation is used with a dynamically adaptive mesh. The adaptive mesh facilitates the implementation of cylindrical and spherical versions of the triplet map, which is used to model turbulent advection (eddy events) in the one-dimensional flow coordinate. In cylindrical and spherical coordinates, geometric stretching of the three triplet map images occurs due to the radial dependence of volume, with the stretching being strongest near the centerline. Two triplet map variants, TMA and TMB, are presented. In TMA, the three map images have the same volume, but different radial segment lengths. In TMB, the three map images have the same radial segment lengths, but different segment volumes. Cylindrical results are presented for temporal pipe flow, a spatial nonreacting jet, and a spatial nonreacting jet flame. These results compare very well to direct numerical simulation for the pipe flow, and to experimental data for the jets. The nonreacting jet treatment overpredicts velocity fluctuations near the centerline, due to the geometric stretching of the triplet maps and its

  18. The Vocational Significance of Black Identity: Cultural Formulation Approach to Career Assessment and Career Counseling

    PubMed Central

    Byars-Winston, Angela M.

    2010-01-01

    Scholarship is emerging on intervention models that purposefully attend to cultural variables throughout the career assessment and career counseling process (Swanson & Fouad, in press). One heuristic model that offers promise to advance culturally-relevant vocational practice with African Americans is the Outline for Cultural Formulation (American Psychiatric Association, 1994). This article explicates the Outline for Cultural Formulation in career assessment and career counseling with African Americans integrating the concept of cultural identity into the entire model. The article concludes with an illustration of the Outline for Cultural Formulation model with an African American career client. PMID:20495668

  19. Analytic Formulation and Numerical Implementation of an Acoustic Pressure Gradient Prediction

    NASA Technical Reports Server (NTRS)

    Lee, Seongkyu; Brentner, Kenneth S.; Farassat, Fereidoun

    2007-01-01

    The scattering of rotor noise is an area that has received little attention over the years, yet the limited work that has been done has shown that both the directivity and intensity of the acoustic field may be significantly modified by the presence of scattering bodies. One of the inputs needed to compute the scattered acoustic field is the acoustic pressure gradient on a scattering surface. Two new analytical formulations of the acoustic pressure gradient have been developed and implemented in the PSU-WOPWOP rotor noise prediction code. These formulations are presented in this paper. The first formulation is derived by taking the gradient of Farassat's retarded-time Formulation 1A. Although this formulation is relatively simple, it requires numerical time differentiation of the acoustic integrals. In the second formulation, the time differentiation is taken inside the integrals analytically. The acoustic pressure gradient predicted by these new formulations is validated through comparison with the acoustic pressure gradient determined by a purely numerical approach for two model rotors. The agreement between analytic formulations and numerical method is excellent for both stationary and moving observers case.

  20. Formulating physical processes in a full-range model of soil water retention

    NASA Astrophysics Data System (ADS)

    Nimmo, J. R.

    2016-12-01

    Currently-used water retention models vary in how much their formulas correspond to controlling physical processes such as capillarity, adsorption, and air-trapping. In model development, realistic correspondence to physical processes has often been a lower priority than ease of use and compatibility with other models. For example, the wettest range is normally represented simplistically, as by a straight line of zero slope, or by default using the same formulation as for the middle range. The new model presented here recognizes dominant processes within three segments of the range from oven-dryness to saturation. The adsorption-dominated dry range is represented by a logarithmic relation used in earlier models. The middle range of capillary advance/retreat and Haines jumps is represented by a new adaptation of the lognormal distribution function. In the wet range, the expansion of trapped air in response to matric pressure change is important because (1) it displaces water, and (2) it triggers additional volume-adjusting processes such as the collapse of liquid bridges between air pockets. For this range, the model incorporates the Boyles' law inverse-proportionality of trapped air volume and pressure, amplified by an empirical factor to account for the additional processes. With their basis in processes, the model's parameters have a strong physical interpretation, and in many cases can be assigned values from knowledge of fundamental relationships or individual measurements. An advantage of the physically-plausible treatment of the wet range is that it avoids such problems as the blowing-up of derivatives on approach to saturation, enhancing the model's utility for important but challenging wet-range phenomena such as domain exchange between preferential flow paths and soil matrix. Further development might be able to accommodate hysteresis by a systematic adjustment of the relation between the wet and middle ranges.

  1. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 1: method parameterization and comparison of in vitro digestion profiles across a range of representative formulations.

    PubMed

    Williams, Hywel D; Sassene, Philip; Kleberg, Karen; Bakala-N'Goma, Jean-Claude; Calderone, Marilyn; Jannin, Vincent; Igonin, Annabel; Partheil, Anette; Marchaud, Delphine; Jule, Eduardo; Vertommen, Jan; Maio, Mario; Blundell, Ross; Benameur, Hassan; Carrière, Frédéric; Müllertz, Anette; Porter, Christopher J H; Pouton, Colin W

    2012-09-01

    The Lipid Formulation Classification System Consortium is an industry-academia collaboration, established to develop standardized in vitro methods for the assessment of lipid-based formulations (LBFs). In this first publication, baseline conditions for the conduct of digestion tests are suggested and a series of eight model LBFs are described to probe test performance across different formulation types. Digestion experiments were performed in vitro using a pH-stat apparatus and danazol employed as a model poorly water-soluble drug. LBF digestion (rate and extent) and drug solubilization patterns on digestion were examined. To evaluate cross-site reproducibility, experiments were conducted at two sites and highly consistent results were obtained. In a further refinement, bench-top centrifugation was explored as a higher throughput approach to separation of the products of digestion (and compared with ultracentrifugation), and conditions under which this method was acceptable were defined. Drug solubilization was highly dependent on LBF composition, but poorly correlated with simple performance indicators such as dispersion efficiency, confirming the utility of the digestion model as a means of formulation differentiation. Copyright © 2012 Wiley Periodicals, Inc.

  2. Formulation of multiparticulate systems as lyophilised orally disintegrating tablets.

    PubMed

    Alhusban, Farhan; Perrie, Yvonne; Mohammed, Afzal R

    2011-11-01

    The current study aimed to exploit the electrostatic associative interaction between carrageenan and gelatin to optimise a formulation of lyophilised orally disintegrating tablets (ODTs) suitable for multiparticulate delivery. A central composite face centred (CCF) design was applied to study the influence of formulation variables (gelatin, carrageenan and alanine concentrations) on the crucial responses of the formulation (disintegration time, hardness, viscosity and pH). The disintegration time and viscosity were controlled by the associative interaction between gelatin and carrageenan upon hydration which forms a strong complex that increases the viscosity of the stock solution and forms tablet with higher resistant to disintegration in aqueous medium. Therefore, the levels of carrageenan, gelatin and their interaction in the formulation were the significant factors. In terms of hardness, increasing gelatin and alanine concentration was the most effective way to improve tablet hardness. Accordingly, optimum concentrations of these excipients were needed to find the best balance that fulfilled all formulation requirements. The revised model showed high degree of predictability and optimisation reliability and therefore was successful in developing an ODT formulation with optimised properties that were able deliver enteric coated multiparticulates of omeprazole without compromising their functionality. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. A systematic description of shocks in gamma-ray bursts - I. Formulation

    NASA Astrophysics Data System (ADS)

    Ziaeepour, Houri

    2009-07-01

    Since the suggestion of relativistic shocks as the origin of gamma-ray bursts (GRBs) in the early 1990s, the mathematical formulation of this process has stayed at a phenomenological level. One of the reasons for the slow development of theoretical works has been the simple power-law behaviour of the afterglows hours or days after the prompt gamma-ray emission. It was believed that they could be explained with these formulations. Nowadays, with the launch of the Swift satellite and implementation of robotic ground follow-ups, GRBs and their afterglow can be observed at multi-wavelengths from a few tens of seconds after trigger onwards. These observations have led to the discovery of features unexplainable by the simple formulation of the shocks and emission processes used up to now. Some of these features can be inherent in the nature and activities of the GRBs' central engines which are not yet well understood. On the other hand, the devil is in the detail and others may be explained with a more detailed formulation of these phenomena and without ad hoc addition of new processes. Such a formulation is the goal of this work. We present a consistent formulation of the kinematics and dynamics of the collision between two spherical relativistic shells, their energy dissipation and their coalescence. It can be applied to both internal and external shocks. Notably, we propose two phenomenological models for the evolution of the emitting region during the collision. One of these models is more suitable for the prompt/internal shocks and late external shocks, and the other for the afterglow/external collisions as well as the onset of internal shocks. We calculate a number of observables such as flux, lag between energy bands and hardness ratios. One of our aims has been a formulation complex enough to include the essential processes, but simple enough such that the data can be directly compared with the theory to extract the value and evolution of physical quantities. To

  4. Contemporary formulation and distribution practices for cold-filled acid products: Australian industry survey and modeling of published pathogen inactivation data.

    PubMed

    Chapman, B; Scurrah, K J; Ross, T

    2010-05-01

    A survey of 12 Australian manufacturers indicated that mild-tasting acids and preservatives are used to partially replace acetic acid in cold-filled acid dressings and sauces. In contrast to traditional ambient temperature distribution practices, some manufacturers indicated that they supply the food service sector with cold-filled acid products prechilled for incorporation into ready-to-eat foods. The Comité des Industries des Mayonnaises et Sauces Condimentaires de la Communauté Economique Européenne (CIMSCEE) Code, a formulation guideline used by the industry to predict the safety of cold-filled acid formulations with respect to Salmonella enterica and Escherichia coli, does not extend to the use of acids and preservatives other than acetic acid nor does it consider the effects of chill distribution. We found insufficient data in the published literature to comprehensively model the response of S. enterica and E. coli to all of the predictor variables (i.e., pH, acetic acid, NaCl, sugars, other acids, preservatives, and storage temperature) of relevance for contemporary cold-filled acid products in Australia. In particular, we noted a lack of inactivation data for S. enterica at aqueous-phase NaCl concentrations of >3% (wt/wt). However, our simple models clearly identified pH and 1/absolute temperature of storage as the most important variables generally determining inactivation. To develop robust models to predict the effect of contemporary formulation and storage variables on product safety, additional empirical data are required. Until such models are available, our results support challenge testing of cold-filled acid products to ascertain their safety, as suggested by the CIMSCEE, but suggest consideration of challenging with both E. coli and S. enterica at incubation temperatures relevant to intended product distribution temperatures.

  5. In vivo assessment of parenteral formulations of oligo(3-hydroxybutyric Acid) conjugates with the model compound Ibuprofen.

    PubMed

    Stasiak, Pawel; Sznitowska, Malgorzata; Ehrhardt, Carsten; Luczyk-Juzwa, Maria; Grieb, Pawel

    2010-12-01

    Polymer-drug conjugates have gained significant attention as pro-drugs releasing an active substance as a result of enzymatic hydrolysis in physiological environment. In this study, a conjugate of 3-hydroxybutyric acid oligomers with a carboxylic acid group-bearing model drug (ibuprofen) was evaluated in vivo as a potential pro-drug for parenteral administration. Two different formulations, an oily solution and an o/w emulsion were prepared and administered intramuscularly (IM) to rabbits in a dose corresponding to 40 mg of ibuprofen/kilogramme. The concentration of ibuprofen in blood plasma was analysed by HPLC, following solid-phase extraction and using indometacin as internal standard (detection limit, 0.05 microg/ml). No significant differences in the pharmacokinetic parameters (C (max), T (max), AUC) were observed between the two tested formulations of the 3-hydroxybutyric acid conjugate. In comparison to the non-conjugated drug in oily solution, the relative bioavailability of ibuprofen conjugates from oily solution, and o/w emulsion was reduced to 17% and 10%, respectively. The 3-hydroxybutyric acid formulations released the active substance over a significantly extended period of time with ibuprofen still being detectable 24 h post-injection, whereas the free compound was almost completely eliminated as early as 6 h after administration. The conjugates remained in a muscle tissue for a prolonged time and can hence be considered as sustained release systems for carboxylic acid derivatives.

  6. Written case formulations in the treatment of anorexia nervosa: Evidence for therapeutic benefits.

    PubMed

    Allen, Karina L; O'Hara, Caitlin B; Bartholdy, Savani; Renwick, Beth; Keyes, Alexandra; Lose, Anna; Kenyon, Martha; DeJong, Hannah; Broadbent, Hannah; Loomes, Rachel; McClelland, Jessica; Serpell, Lucy; Richards, Lorna; Johnson-Sabine, Eric; Boughton, Nicky; Whitehead, Linette; Treasure, Janet; Wade, Tracey; Schmidt, Ulrike

    2016-09-01

    Case formulation is a core component of many psychotherapies and formulation letters may provide an opportunity to enhance the therapeutic alliance and improve treatment outcomes. This study aimed to determine if formulation letters predict treatment satisfaction, session attendance, and symptom reductions in anorexia nervosa (AN). It was hypothesized that higher quality formulation letters would predict greater treatment satisfaction, a greater number of attended sessions, and greater improvement in eating disorder symptoms. Patients were adult outpatients with AN (n = 46) who received Maudsley Anorexia Nervosa Treatment for Adults (MANTRA) in the context of a clinical trial. A Case Formulation Rating Scheme was used to rate letters for adherence to the MANTRA model and use of a collaborative, reflective, affirming stance. Analyses included linear regression and mixed models. Formulation letters that paid attention to the development of the AN predicted greater treatment acceptability ratings (p = 0.002). More reflective and respectful letters predicted greater reductions in Eating Disorder Examination scores (p = 0.003). Results highlight the potential significance of a particular style of written formulation as part of treatment for AN. Future research should examine applicability to other psychiatric disorders. © 2016 Wiley Periodicals, Inc.(Int J Eat Disord 2016; 49:874-882). © 2016 Wiley Periodicals, Inc.

  7. Antipyretic potential of herbal coded formulation (Pyrexol).

    PubMed

    Khan, Muhammad Sajid; Hamid, Abdul; Akram, Muhammad; Mustafa, Sodah Bint; Sami, Abdul; Shah, Syed Muhammad Ali; Usmanghani, Khan

    2017-01-01

    The antipyretic effect of the aqueous extract of herbal coded formulation containing equal amount of Salix alba, Emblica officinalis, Glycyrrhiza glabra, Adhatoda vasica, Viola odorata, Thea sinensis, Veleriana officinalis, Foeniculum vulgare, Sisymbrium irrio and Achillea millefolium was investigated using the yeast induced pyrexia model in rabbits. Paracetamol was used as a control group. Rectal temperatures of all rabbits were recorded immediately before the administration of the extract or paracetamol and again at 1 hour, after this, temperature was noted at 1 hrs interval for 5 hrs using digital thermometer. At 240mg/kg dose the extract showed significant reduction in yeast-induced elevated temperature as compared with that of standard drug paracetamol (150mg/kg). It is concluded that herbal coded medicine at a dose of 240mg/kg has marked antipyretic activity in animal models and this strongly supports the ethno pharmacological uses of medicinal plants of this formulation.

  8. Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation: Report of an FDA Public Workshop.

    PubMed

    Zhang, X; Duan, J; Kesisoglou, F; Novakovic, J; Amidon, G L; Jamei, M; Lukacova, V; Eissing, T; Tsakalozou, E; Zhao, L; Lionberger, R

    2017-08-01

    On May 19, 2016, the US Food and Drug Administration (FDA) hosted a public workshop, entitled "Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation." The topic of mechanistic oral absorption modeling, which is one of the major applications of physiologically based pharmacokinetic (PBPK) modeling and simulation, focuses on predicting oral absorption by mechanistically integrating gastrointestinal transit, dissolution, and permeation processes, incorporating systems, active pharmaceutical ingredient (API), and the drug product information, into a systemic mathematical whole-body framework. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  9. Reactive decontamination formulation

    DOEpatents

    Giletto, Anthony [College Station, TX; White, William [College Station, TX; Cisar, Alan J [Cypress, TX; Hitchens, G Duncan [Bryan, TX; Fyffe, James [Bryan, TX

    2003-05-27

    The present invention provides a universal decontamination formulation and method for detoxifying chemical warfare agents (CWA's) and biological warfare agents (BWA's) without producing any toxic by-products, as well as, decontaminating surfaces that have come into contact with these agents. The formulation includes a sorbent material or gel, a peroxide source, a peroxide activator, and a compound containing a mixture of KHSO.sub.5, KHSO.sub.4 and K.sub.2 SO.sub.4. The formulation is self-decontaminating and once dried can easily be wiped from the surface being decontaminated. A method for decontaminating a surface exposed to chemical or biological agents is also disclosed.

  10. A New Formulation for Fresh Snow Density over Antarctica for the regional climate model Modèle Atmosphérique Régionale (MAR).

    NASA Astrophysics Data System (ADS)

    Tedesco, M.; Datta, R.; Fettweis, X.; Agosta, C.

    2015-12-01

    Surface-layer snow density is important to processes contributing to surface mass balance, but is highly variable over Antarctica due to a wide range of near-surface climate conditions over the continent. Formulations for fresh snow density have typically either used fixed values or been modeled empirically using field data that is limited to specific seasons or regions. There is also currently limited work exploring how the sensitivity to fresh snow density in regional climate models varies with resolution. Here, we present a new formulation compiled from (a) over 1600 distinct density profiles from multiple sources across Antarctica and (b) near-surface variables from the regional climate model Modèle Atmosphérique Régionale (MAR). Observed values represent coastal areas as well as the plateau, in both West and East Antarctica (although East Antarctica is dominant). However, no measurements are included from the Antarctic Peninsula, which is both highly topographically variable and extends to lower latitudes than the remainder of the continent. In order to assess the applicability of this fresh snow density formulation to the Antarctic Peninsula at high resolutions, a version of MAR is run for several years both at low-resolution at the continental scale and at a high resolution for the Antarctic Peninsula alone. This setup is run both with and without the new fresh density formulation to quantify the sensitivity of the energy balance and SMB components to fresh snow density. Outputs are compared with near-surface atmospheric variables available from AWS stations (provided by the University of Wisconsin Madison) as well as net accumulation values from the SAMBA database (provided from the Laboratoire de Glaciologie et Géophysique de l'Environnement).

  11. Formulation and optimization of solid lipid nanoparticle formulation for pulmonary delivery of budesonide using Taguchi and Box-Behnken design.

    PubMed

    Emami, J; Mohiti, H; Hamishehkar, H; Varshosaz, J

    2015-01-01

    Budesonide is a potent non-halogenated corticosteroid with high anti-inflammatory effects. The lungs are an attractive route for non-invasive drug delivery with advantages for both systemic and local applications. The aim of the present study was to develop, characterize and optimize a solid lipid nanoparticle system to deliver budesonide to the lungs. Budesonide-loaded solid lipid nanoparticles were prepared by the emulsification-solvent diffusion method. The impact of various processing variables including surfactant type and concentration, lipid content organic and aqueous volume, and sonication time were assessed on the particle size, zeta potential, entrapment efficiency, loading percent and mean dissolution time. Taguchi design with 12 formulations along with Box-Behnken design with 17 formulations was developed. The impact of each factor upon the eventual responses was evaluated, and the optimized formulation was finally selected. The size and morphology of the prepared nanoparticles were studied using scanning electron microscope. Based on the optimization made by Design Expert 7(®) software, a formulation made of glycerol monostearate, 1.2 % polyvinyl alcohol (PVA), weight ratio of lipid/drug of 10 and sonication time of 90 s was selected. Particle size, zeta potential, entrapment efficiency, loading percent, and mean dissolution time of adopted formulation were predicted and confirmed to be 218.2 ± 6.6 nm, -26.7 ± 1.9 mV, 92.5 ± 0.52 %, 5.8 ± 0.3 %, and 10.4 ± 0.29 h, respectively. Since the preparation and evaluation of the selected formulation within the laboratory yielded acceptable results with low error percent, the modeling and optimization was justified. The optimized formulation co-spray dried with lactose (hybrid microparticles) displayed desirable fine particle fraction, mass median aerodynamic diameter (MMAD), and geometric standard deviation of 49.5%, 2.06 μm, and 2.98 μm; respectively. Our results provide fundamental data for the

  12. Formulation and optimization of solid lipid nanoparticle formulation for pulmonary delivery of budesonide using Taguchi and Box-Behnken design

    PubMed Central

    Emami, J.; Mohiti, H.; Hamishehkar, H.; Varshosaz, J.

    2015-01-01

    Budesonide is a potent non-halogenated corticosteroid with high anti-inflammatory effects. The lungs are an attractive route for non-invasive drug delivery with advantages for both systemic and local applications. The aim of the present study was to develop, characterize and optimize a solid lipid nanoparticle system to deliver budesonide to the lungs. Budesonide-loaded solid lipid nanoparticles were prepared by the emulsification-solvent diffusion method. The impact of various processing variables including surfactant type and concentration, lipid content organic and aqueous volume, and sonication time were assessed on the particle size, zeta potential, entrapment efficiency, loading percent and mean dissolution time. Taguchi design with 12 formulations along with Box-Behnken design with 17 formulations was developed. The impact of each factor upon the eventual responses was evaluated, and the optimized formulation was finally selected. The size and morphology of the prepared nanoparticles were studied using scanning electron microscope. Based on the optimization made by Design Expert 7® software, a formulation made of glycerol monostearate, 1.2 % polyvinyl alcohol (PVA), weight ratio of lipid/drug of 10 and sonication time of 90 s was selected. Particle size, zeta potential, entrapment efficiency, loading percent, and mean dissolution time of adopted formulation were predicted and confirmed to be 218.2 ± 6.6 nm, -26.7 ± 1.9 mV, 92.5 ± 0.52 %, 5.8 ± 0.3 %, and 10.4 ± 0.29 h, respectively. Since the preparation and evaluation of the selected formulation within the laboratory yielded acceptable results with low error percent, the modeling and optimization was justified. The optimized formulation co-spray dried with lactose (hybrid microparticles) displayed desirable fine particle fraction, mass median aerodynamic diameter (MMAD), and geometric standard deviation of 49.5%, 2.06 μm, and 2.98 μm; respectively. Our results provide fundamental data for the

  13. Numerical Modeling of Crystal of ZnSe by Physical Vapor Transport - Towards a more Comprehensive Formulations

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.

    1999-01-01

    Crystal growth from the vapor phase has various advantages over melt growth. The main advantage is from a lower processing temperature which makes the process more amenable in instances where the melting temperature of the crystal is high. Other benefits stem from the inherent purification mechanism in the process due to differences in the vapor pressures of the native elements and impurities, and the enhanced interfacial morphological stability during the growth process. Further, the implementation of PVT growth in closed ampoules affords experimental simplicity with minimal needs for complex process control which makes it an ideal candidate for space investigations in systems where gravity tends to have undesirable effects on the growth process. Bulk growth of wide band gap II-VI semiconductors by physical vapor transport has been developed and refined over the past several years at NASA MSFC. Results from a modeling study of PVT crystal growth of ZnSe are reported in this paper. The PVT process is numerically investigated using both two-dimensional and fully three-dimensional formulation of the governing equations and associated boundary conditions. Both the incompressible Boussinesq approximation and the compressible model are tested to determine the influence of gravity on the process and to discern the differences between the two approaches. The influence of a residual gas is included in the models. The results show that both the incompressible and compressible approximations provide comparable results and the presence of a residual gas tends to measurably reduce the mass flux in the system. Detailed flow, thermal and concentration profiles will be provided in the final manuscript along with computed heat and mass transfer rates. Comparisons with the 1-D model will also be provided. The effect of gravity on the process from numerical computations shows subtle effects although experimental evidence from vertically and horizontally grown samples show dramatic

  14. Formulation and In-vitro Characterization of Sustained Release Matrix Type Ocular Timolol Maleate Mini-Tablet

    PubMed Central

    Mortazavi, Seyed Alireza; Jafariazar, Zahra; Ghadjahani, Yasaman; Mahmoodi, Hoda; Mehtarpour, Farzaneh

    2014-01-01

    The purpose of this study was preparation and evaluation of sustained release matrix type ocular mini-tablets of timolol maleate, as a potential formulation for the treatment of glaucoma. Following the initial studies on timolol maleate powder, it was formulated into ocular mini-tablets. The polymers investigated in this study included cellulose derivatives (HEC, CMC, EC) and Carbopol 971P. Mannitol was used as the solubilizing agent and magnesium stearate as the lubricant. Mini-tablets were prepared by through mixing of the ingredients, followed by direct compression. All the prepared formulations were evaluated in terms of physicochemical tests, including uniformity of weight, thickness, crushing strength, friability and in-vitro drug release. Four groups of formulations were prepared. The presence of different amounts of cellulose derivatives or Carbopol 971P, alone, was studied in group A formulations. In group B formulations, the effect of adding Carbopol 971P alongside different cellulose derivatives was investigated. Group C formulations were made by including mannitol as the solubilizing agent, alongside Carbopol 971P and a cellulose derivative. In group D formulations, mini-tablets were made using Carbopol 971P, alongside two different cellulose derivative. The selected formulation (C1) contained ethyl cellulose, Carbopol 971P, mannitol and magnesium stearate, which showed almost 100% drug release over 5 h. Based on kinetic studies, this formulation was found to best fit the zero-order model of drug release. However, the Higuchi and Hixson -Crowell models also showed a good fit. Hence, overall, formulation C1 was chosen as the best formulation. PMID:24734053

  15. A Decentralized Approach to the Formulation of Hypotheses: A Hierarchical Structural Model for a Prion Self-Assembled System

    NASA Astrophysics Data System (ADS)

    Wang, Mingyang; Zhang, Feifei; Song, Chao; Shi, Pengfei; Zhu, Jin

    2016-07-01

    Innovation in hypotheses is a key transformative driver for scientific development. The conventional centralized hypothesis formulation approach, where a dominant hypothesis is typically derived from a primary phenomenon, can, inevitably, impose restriction on the range of conceivable experiments and legitimate hypotheses, and ultimately impede understanding of the system of interest. We report herein the proposal of a decentralized approach for the formulation of hypotheses, through initial preconception-free phenomenon accumulation and subsequent reticular logical reasoning processes. The two-step approach can provide an unbiased, panoramic view of the system and as such should enable the generation of a set of more coherent and therefore plausible hypotheses. As a proof-of-concept demonstration of the utility of this open-ended approach, a hierarchical model has been developed for a prion self-assembled system, allowing insight into hitherto elusive static and dynamic features associated with this intriguing structure.

  16. Benzathine penicillin G: a model for long-term pharmacokinetic comparison of parenteral long-acting formulations.

    PubMed

    Shahbazi, M A; Azimi, K; Hamidi, M

    2013-04-01

      Long-acting intramuscular penicillin G injection is an important product for the management of some severe infections. However, testing the bioequivalence of such long-acting formulations is difficult. Our aim was to undertake such a test using a generic formulation containing 1 200 000 IU of benzathine penicillin G powder and an innovator's product (Retarpen(®) 1·2 million units; Sandoz, Switzerland).   In an open, double-blind, randomized, two-periods, two-group crossover study, 12 healthy male volunteers received both formulations of benzathine penicillin G on two different days with a 5-month washout period between the doses and a sampling period of over 500 h. A simple, sensitive and rapid high-performance liquid chromatography (HPLC)-UV method was developed and validated for determination of penicillin G plasma concentrations and other pharmacokinetic (PK) parameters.   The analytical method used produced linear responses within a wide analyte concentration range with average within-run and between-run variations of below 15% with acceptable recovery, accuracy and sensitivity. The primary PK parameters we used were maximum plasma concentration (Cmax ), time to reach the maximal concentration (Tmax ) and the area under the plasma concentration vs. time curve from time zero to the last sampling time (AUC0→t ) using a standard non-compartmental approach. Based on these parameters, the two formulations were bioequivalent.   We illustrate the bioequivalence testing of a very long-acting product. The data indicate that the generic test formulation and the branded reference formulation were bioequivalent in fasting healthy Iranian male volunteers. © 2013 Blackwell Publishing Ltd.

  17. Thermoreversible gel formulation containing sodium lauryl sulfate as a potential contraceptive device.

    PubMed

    Haineault, Caroline; Gourde, Pierrette; Perron, Sylvie; Désormeaux, André; Piret, Jocelyne; Omar, Rabeea F; Tremblay, Roland R; Bergeron, Michel G

    2003-08-01

    The contraceptive properties of a gel formulation containing sodium lauryl sulfate were investigated in both in vitro and in vivo models. Results showed that sodium lauryl sulfate inhibited, in a concentration-dependent manner, the activity of sheep testicular hyaluronidase. Sodium lauryl sulfate also completely inhibited human sperm motility as evaluated by the 30-sec Sander-Cramer test. The acid-buffering capacity of gel formulations containing sodium lauryl sulfate increased with the molarity of the citrate buffers used for their preparations. Furthermore, experiments in which semen was mixed with undiluted gel formulations in different proportions confirmed their physiologically relevant buffering capacity. Intravaginal application of the gel formulation containing sodium lauryl sulfate to rabbits before their artificial insemination with freshly ejaculated semen completely prevented egg fertilization. The gel formulation containing sodium lauryl sulfate was fully compatible with nonlubricated latex condoms. Taken together, these results suggest that the gel formulation containing sodium lauryl sulfate could represent a potential candidate for use as a topical vaginal spermicidal formulation to provide fertility control in women.

  18. Modern Vaccines/Adjuvants Formulation Session 6: Vaccine &Adjuvant Formulation & Production 15-17 May 2013, Lausanne, Switzerland.

    PubMed

    Fox, Christopher B

    2013-09-01

    The Modern Vaccines/Adjuvants Formulation meeting aims to fill a critical gap in current vaccine development efforts by bringing together formulation scientists and immunologists to emphasize the importance of rational formulation design in order to optimize vaccine and adjuvant bioactivity, safety, and manufacturability. Session 6 on Vaccine and Adjuvant Formulation and Production provided three examples of this theme, with speakers emphasizing the need for extensive physicochemical characterization of adjuvant-antigen interactions, the rational formulation design of a CD8+ T cell-inducing adjuvant based on immunological principles, and the development and production of a rabies vaccine by a developing country manufacturer. Throughout the session, the practical importance of sound formulation and manufacturing design accompanied by analytical characterization was highlighted.

  19. An efficient formulation of Krylov's prediction model for train induced vibrations based on the dynamic reciprocity theorem.

    PubMed

    Degrande, G; Lombaert, G

    2001-09-01

    In Krylov's analytical prediction model, the free field vibration response during the passage of a train is written as the superposition of the effect of all sleeper forces, using Lamb's approximate solution for the Green's function of a halfspace. When this formulation is extended with the Green's functions of a layered soil, considerable computational effort is required if these Green's functions are needed in a wide range of source-receiver distances and frequencies. It is demonstrated in this paper how the free field response can alternatively be computed, using the dynamic reciprocity theorem, applied to moving loads. The formulation is based on the response of the soil due to the moving load distribution for a single axle load. The equations are written in the wave-number-frequency domain, accounting for the invariance of the geometry in the direction of the track. The approach allows for a very efficient calculation of the free field vibration response, distinguishing the quasistatic contribution from the effect of the sleeper passage frequency and its higher harmonics. The methodology is validated by means of in situ vibration measurements during the passage of a Thalys high-speed train on the track between Brussels and Paris. It is shown that the model has good predictive capabilities in the near field at low and high frequencies, but underestimates the response in the midfrequency band.

  20. Moisturizing and Antiinflammatory Properties of Cosmetic Formulations Containing Centella asiatica Extract

    PubMed Central

    Ratz-Łyko, A.; Arct, J.; Pytkowska, K.

    2016-01-01

    Centella asiatica extract is a rich source of natural bioactive substances, triterpenoid saponins, flavonoids, phenolic acids, triterpenic steroids, amino acids and sugars. Thus, many scavenging free radicals, exhibit antiinflammatory activity and affect on the stratum corneum hydration and epidermal barrier function. The aim of the present study was to evaluate the in vivo moisturizing and antiinflammatory properties of cosmetic formulations (oil-in-water emulsion cream and hydrogel) containing different concentrations of Centella asiatica extract. The study was conducted over four weeks on a group of 25 volunteers after twice a day application of cosmetic formulations with Centella asiatica extract (2.5 and 5%, w/w) on their forearms. The measurement of basic skin parameters (stratum corneum hydration and epidermal barrier function) was performed once a week. The in vivo antiinflammatory activity based on the methyl nicotinate model of microinflammation in human skin was evaluated after four weeks application of tested formulations. In vivo tests formulations containing 5% of Centella asiatica extract showed the best efficacy in improving skin moisture by increase of skin surface hydration state and decrease in transepidermal water loss as well as exhibited antiinflammatory properties based on the methyl nicotinate model of microinflammation in human skin. Comparative tests conducted by corneometer, tewameter and chromameter showed that cosmetic formulations containing Centella asiatica extract have the moisturizing and antiinflammatory properties. PMID:27168678

  1. Current status of amorphous formulation and other special dosage forms as formulations for early clinical phases.

    PubMed

    Kawakami, Kohsaku

    2009-09-01

    Although most chemists in the pharmaceutical industry have a good understanding on favorable physicochemical properties for drug candidates, formulators must still deal with many challenging candidates. On the other hand, formulators are not allowed to spend much time on formulation development for early phases of the clinical studies. Thus, it is basically difficult to apply special dosage form technologies to the candidates for the first-in-human formulations. Despite the availability of numerous reviews on oral special dosage forms, information on their applicability as the early phase formulation has been limited. This article describes quick review on the oral special dosage forms that may be applied to the early clinical formulations, followed by discussion focused on the amorphous formulations, which still has relatively many issues to be proved for the general use. The major problems that inhibit the use of the amorphous formulation are difficulty in the manufacturing and the poor chemical/physical stability. Notably, the poor physical stability can be critical, because of not the poor stability itself but the difficulty in the timely evaluation in the preclinical developmental timeframes. Research directions of the amorphous formulations are suggested to utilize this promising technology without disturbing the preclinical developmental timelines.

  2. A General Pressure Gradient Formulation for Ocean Models, Part 1: Scheme Design and Diagnostic Analysis, Part II: Energy, Momentum, and Bottom Torque Consistency

    NASA Technical Reports Server (NTRS)

    Song, Y. T.

    1998-01-01

    A Jacobian formulation of the pressure gradient force for use in models with topography following coordinates is proposed. It can be used in conjunction with any vertical coordinate system and is easily implemented.

  3. Three dimensional thermal pollution models. Volume 1: Review of mathematical formulations. [waste heat discharge from power plants and effects on ecosystems

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.

    1978-01-01

    A mathematical model package for thermal pollution analyses and prediction is presented. These models, intended as user's manuals, are three dimensional and time dependent using the primitive equation approach. Although they have sufficient generality for application at sites with diverse topographical features; they also present specific instructions regarding data preparation for program execution and sample problems. The mathematical formulation of these models is presented including assumptions, approximations, governing equations, boundary and initial conditions, numerical method of solution, and same results.

  4. Treatment of a multiple sclerosis animal model by a novel nanodrop formulation of a natural antioxidant

    PubMed Central

    Binyamin, Orli; Larush, Liraz; Frid, Kati; Keller, Guy; Friedman-Levi, Yael; Ovadia, Haim; Abramsky, Oded; Magdassi, Shlomo; Gabizon, Ruth

    2015-01-01

    Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system and is associated with demyelination, neurodegeneration, and sensitivity to oxidative stress. In this work, we administered a nanodroplet formulation of pomegranate seed oil (PSO), denominated Nano-PSO, to mice induced for experimental autoimmune encephalomyelitis (EAE), an established model of MS. PSO comprises high levels of punicic acid, a unique polyunsaturated fatty acid considered as one of the strongest natural antioxidants. We show here that while EAE-induced mice treated with natural PSO presented some reduction in disease burden, this beneficial effect increased significantly when EAE mice were treated with Nano-PSO of specific size nanodroplets at much lower concentrations of the oil. Pathological examinations revealed that Nano-PSO administration dramatically reduced demyelination and oxidation of lipids in the brains of the affected animals, which are hallmarks of this severe neurological disease. We propose that novel formulations of natural antioxidants such as Nano-PSO may be considered for the treatment of patients suffering from demyelinating diseases. On the mechanistic side, our results demonstrate that lipid oxidation may be a seminal feature in both demyelination and neurodegeneration. PMID:26648720

  5. Mixed formulation for seismic analysis of composite steel-concrete frame structures

    NASA Astrophysics Data System (ADS)

    Ayoub, Ashraf Salah Eldin

    This study presents a new finite element model for the nonlinear analysis of structures made up of steel and concrete under monotonic and cyclic loads. The new formulation is based on a two-field mixed formulation. In the formulation, both forces and deformations are simultaneously approximated within the element through independent interpolation functions. The main advantages of the model is the accuracy in global and local response with very few elements while maintaining rapid numerical convergence and robustness even under severe cyclic loading. Overall four elements were developed based on the new formulation: an element that describes the behavior of anchored reinforcing bars, an element that describes the behavior of composite steel-concrete beams with deformable shear connectors, an element that describes the behavior of reinforced concrete beam-columns with bond-slip, and an element that describes the behavior of pretensioned or posttensioned, bonded or unbonded prestressed concrete structures. The models use fiber discretization of beam sections to describe nonlinear material response. The transfer of forces between steel and concrete is described with bond elements. Bond elements are modeled with distributed spring elements. The non-linear behavior of the composite element derives entirely from the constitutive laws of the steel, concrete and bond elements. Two additional elements are used for the prestressed concrete models, a friction element that models the effect of friction between the tendon and the duct during the posttensioning operation, and an anchorage element that describes the behavior of the prestressing tendon anchorage in posttensioned structures. Two algorithms for the numerical implementation of the new proposed model are presented; an algorithm that enforces stress continuity at element boundaries, and an algorithm in which stress continuity is relaxed locally inside the element. Stability of both algorithms is discussed. Comparison

  6. [Design of a risk matrix to assess sterile formulations at health care facilities].

    PubMed

    Martín de Rosales Cabrera, A M; López Cabezas, C; García Salom, P

    2014-05-01

    To design a matrix allowing classifying sterile formulations prepared at the hospital with different risk levels. i) Literature search and critical appraisal of the model proposed by the European Resolution CM/Res Ap(2011)1, ii) Identification of the risk associated to the elaboration process by means of the AMFE methodology (Modal Analysis of Failures and Effects), iii) estimation of the severity associated to the risks detected. After initially trying a model of numeric scoring, the classification matrix was changed to an alphabetical classification, grading each criterion from A to D.Each preparation assessed is given a 6-letter combination with three possible risk levels: low, intermediate, and high. This model was easier for risk assignment, and more reproducible. The final model designed analyzes 6 criteria: formulation process, administration route, the drug's safety profile, amount prepared, distribution, and susceptibility for microbiological contamination.The risk level obtained will condition the requirements of the formulation area, validity time, and storing conditions. The matrix model proposed may help health care institutions to better assess the risk of sterile formulations prepared,and provides information about the acceptable validity time according to the storing conditions and the manufacturing area. Its use will increase the safety level of this procedure as well as help in resources planning and distribution. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  7. Mixed formulation for frictionless contact problems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Kim, Kyun O.

    1989-01-01

    Simple mixed finite element models and a computational precedure are presented for the solution of frictionless contact problems. The analytical formulation is based on a form of Reissner's large rotation theory of the structure with the effects of transverse shear deformation included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the internal forces (stress resultants), the generalized displacements, and the Lagrange multipliers associated with the contact conditions. The element characteristic array are obtained by using a modified form of the two-field Hellinger-Reissner mixed variational principle. The internal forces and the Lagrange multipliers are allowed to be discontinuous at interelement boundaries. The Newton-Raphson iterative scheme is used for the solution of the nonlinear algebraic equations, and the determination of the contact area and the contact pressures.

  8. Analytical formulation of orbiter-payload models coupled by trunnion joints with Coulomb friction

    NASA Technical Reports Server (NTRS)

    Liu, Frank C.

    1987-01-01

    An orbiter and its payload substructure are linked together by five trunnion joints which have thirty degrees-of-freedom. Geometric compatibility conditions require fourteen of the interface physical coordinates of the orbiter and payload to be equal to each other and the remaining sixteen are free to have relative motions under Coulomb friction. The component modes synthesis method using fourteen inertia relief attachment modes for the formulation of the coupled system is presented. The exact nonlinear friction function is derived based on the characteristics of the joints. Formulation is applicable to an orbiter that carries any number of payload substructures.

  9. Eulerian Formulation of Spatially Constrained Elastic Rods

    NASA Astrophysics Data System (ADS)

    Huynen, Alexandre

    Slender elastic rods are ubiquitous in nature and technology. For a vast majority of applications, the rod deflection is restricted by an external constraint and a significant part of the elastic body is in contact with a stiff constraining surface. The research work presented in this doctoral dissertation formulates a computational model for the solution of elastic rods constrained inside or around frictionless tube-like surfaces. The segmentation strategy adopted to cope with this complex class of problems consists in sequencing the global problem into, comparatively simpler, elementary problems either in continuous contact with the constraint or contact-free between their extremities. Within the conventional Lagrangian formulation of elastic rods, this approach is however associated with two major drawbacks. First, the boundary conditions specifying the locations of the rod centerline at both extremities of each elementary problem lead to the establishment of isoperimetric constraints, i.e., integral constraints on the unknown length of the rod. Second, the assessment of the unilateral contact condition requires, in principle, the comparison of two curves parametrized by distinct curvilinear coordinates, viz. the rod centerline and the constraint axis. Both conspire to burden the computations associated with the method. To streamline the solution along the elementary problems and rationalize the assessment of the unilateral contact condition, the rod governing equations are reformulated within the Eulerian framework of the constraint. The methodical exploration of both types of elementary problems leads to specific formulations of the rod governing equations that stress the profound connection between the mechanics of the rod and the geometry of the constraint surface. The proposed Eulerian reformulation, which restates the rod local equilibrium in terms of the curvilinear coordinate associated with the constraint axis, describes the rod deformed configuration

  10. Sterile Filtration of Highly Concentrated Protein Formulations: Impact of Protein Concentration, Formulation Composition, and Filter Material.

    PubMed

    Allmendinger, Andrea; Mueller, Robert; Huwyler, Joerg; Mahler, Hanns-Christian; Fischer, Stefan

    2015-10-01

    Differences in filtration behavior of concentrated protein formulations were observed during aseptic drug product manufacturing of biologics dependent on formulation composition. The present study investigates filtration forces of monoclonal antibody formulations in a small-scale set-up using polyvinylidene difluoride (PVDF) or polyethersulfone (PES) filters. Different factors like formulation composition and protein concentration related to differences in viscosity, as well as different filtration rates were evaluated. The present study showed that filtration behavior was influenced by the presence or absence of a surfactant in the formulation, which defines the interaction between filter membrane and surface active formulation components. This can lead to a change in filter resistance (PES filter) independent on the buffer system used. Filtration behavior was additionally defined by rheological non-Newtonian flow behavior. The data showed that high shear rates resulting from small pore sizes and filtration pressure up to 1.0 bar led to shear-thinning behavior for highly concentrated protein formulations. Differences in non-Newtonian behavior were attributed to ionic strength related to differences in repulsive and attractive interactions. The present study showed that the interplay of formulation composition, filter material, and filtration rate can explain differences in filtration behavior/filtration flux observed for highly concentrated protein formulations thus guiding filter selection. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Formulation, Characterization, and Antitumor Properties of Trans- and Cis-Citral in the 4T1 Breast Cancer Xenograft Mouse Model

    PubMed Central

    Zeng, San; Kapur, Arvinder; Patankar, Manish S.; Xiong, May P.

    2015-01-01

    Purpose Citral is composed of a random mixture of two geometric stereoisomers geranial (trans-citral) and neral (cis-citral) yet few studies have directly compared their in vivo antitumor properties. A micelle formulation was therefore developed. Methods Geranial and neral were synthesized. Commercially-purchased citral, geranial, and neral were formulated in PEG-b-PCL (block sizes of 5000:10000, Mw/Mn 1.26) micelles. In vitro degradation, drug release, cytotoxicity, flow cytometry, and western blot studies were conducted. The antitumor properties of drug formulations (40 mg/kg and 80 mg/kg based on MTD studies) were evaluated on the 4T1 xenograft mouse model and tumor tissues were analyzed by western blot. Results Micelles encapsulated drugs with >50% LE at 5-40% drug to polymer (w/w), displayed sustained release (t1/2 of 8-9 hours), and improved drug stability at pH 5.0. The IC50 of drug formulations against 4T1 cells ranged from 1.4-9.9 μM. Western blot revealed that autophagy was the main cause of cytotoxicity. Geranial at 80 mg/kg was most effective at inhibiting tumor growth. Conclusions Geranial is significantly more potent than neral and citral at 80 mg/kg (p<0.001) and western blot of tumor tissues confirms that autophagy and not apoptosis is the major mechanism of tumor growth inhibition in p53-null 4T1 cells. PMID:25673043

  12. Formulation, Characterization, and Antitumor Properties of Trans- and Cis-Citral in the 4T1 Breast Cancer Xenograft Mouse Model.

    PubMed

    Zeng, San; Kapur, Arvinder; Patankar, Manish S; Xiong, May P

    2015-08-01

    Citral is composed of a random mixture of two geometric stereoisomers geranial (trans-citral) and neral (cis-citral) yet few studies have directly compared their in vivo antitumor properties. A micelle formulation was therefore developed. Geranial and neral were synthesized. Commercially-purchased citral, geranial, and neral were formulated in PEG-b-PCL (block sizes of 5000:10,000, Mw/Mn 1.26) micelles. In vitro degradation, drug release, cytotoxicity, flow cytometry, and western blot studies were conducted. The antitumor properties of drug formulations (40 and 80 mg/kg based on MTD studies) were evaluated on the 4T1 xenograft mouse model and tumor tissues were analyzed by western blot. Micelles encapsulated drugs with >50% LE at 5-40% drug to polymer (w/w), displayed sustained release (t1/2 of 8-9 h), and improved drug stability at pH 5.0. The IC50 of drug formulations against 4T1 cells ranged from 1.4 to 9.9 μM. Western blot revealed that autophagy was the main cause of cytotoxicity. Geranial at 80 mg/kg was most effective at inhibiting tumor growth. Geranial is significantly more potent than neral and citral at 80 mg/kg (p < 0.001) and western blot of tumor tissues confirms that autophagy and not apoptosis is the major mechanism of tumor growth inhibition in p53-null 4T1 cells.

  13. A ’Multiple Pivoting’ Algorithm for Goal-Interval Programming Formulations.

    DTIC Science & Technology

    1980-03-01

    jotso _P- ,- Research Report CCS 355 A "MULTIPLE PIVOTING" ALGORITHM FOR GOAL-INTERVAL PROGRAMMING FORMULATIONS by R. Armstrong* A. Charnes*W. Cook...J. Godfrey*** March 1980 *The University of Texas at Austin **York University, Downsview, Ontario, Canada ***Washington, DC This research was partly...areas. However, the main direction of goal programing research has been in formulating models instead of seeking procedures that would provide

  14. Development of an abiraterone acetate formulation with improved oral bioavailability guided by absorption modeling based on in vitro dissolution and permeability measurements.

    PubMed

    Solymosi, Tamás; Ötvös, Zsolt; Angi, Réka; Ordasi, Betti; Jordán, Tamás; Semsey, Sándor; Molnár, László; Ránky, Soma; Filipcsei, Genovéva; Heltovics, Gábor; Glavinas, Hristos

    2017-10-30

    Particle size reduction of drug crystals in the presence of surfactants (often called "top-down" production methods) is a standard approach used in the pharmaceutical industry to improve bioavailability of poorly soluble drugs. Based on the mathematical model used to predict the fraction dose absorbed this formulation approach is successful when dissolution rate is the main rate limiting factor of oral absorption. In case compound solubility is also a major factor this approach might not result in an adequate improvement in bioavailability. Abiraterone acetate is poorly water soluble which is believed to be responsible for its very low bioavailability in the fasted state and its significant positive food effect. In this work, we have successfully used in vitro dissolution, solubility and permeability measurements in biorelevant media to describe the dissolution characteristics of different abiraterone acetate formulations. Mathematical modeling of fraction dose absorbed indicated that reducing the particle size of the drug cannot be expected to result in significant improvement in bioavailability in the fasted state. In the fed state, the same formulation approach can result in a nearly complete absorption of the dose; thereby, further increasing the food effect. Using a "bottom-up" formulation method we improved both the dissolution rate and the apparent solubility of the compound. In beagle dog studies, this resulted in a ≫>10-fold increase in bioavailability in the fasted state when compared to the marketed drug and the elimination of the food effect. Calculated values of fraction dose absorbed were in agreement with the observed relative bioavailability values in beagle dogs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The choice of a constitutive formulation for modeling limb flexion-induced deformations and stresses in the human femoropopliteal arteries of different ages.

    PubMed

    Desyatova, Anastasia; MacTaggart, Jason; Poulson, William; Deegan, Paul; Lomneth, Carol; Sandip, Anjali; Kamenskiy, Alexey

    2017-06-01

    Open and endovascular treatments for peripheral arterial disease are notorious for high failure rates. Severe mechanical deformations experienced by the femoropopliteal artery (FPA) during limb flexion and interactions between the artery and repair materials play important roles and may contribute to poor clinical outcomes. Computational modeling can help optimize FPA repair, but these simulations heavily depend on the choice of constitutive model describing the arterial behavior. In this study finite element model of the FPA in the standing (straight) and gardening (acutely bent) postures was built using computed tomography data, longitudinal pre-stretch and biaxially determined mechanical properties. Springs and dashpots were used to represent surrounding tissue forces associated with limb flexion-induced deformations. These forces were then used with age-specific longitudinal pre-stretch and mechanical properties to obtain deformed FPA configurations for seven age groups. Four commonly used invariant-based constitutive models were compared to determine the accuracy of capturing deformations and stresses in each age group. The four-fiber FPA model most accurately portrayed arterial behavior in all ages, but in subjects younger than 40 years, the performance of all constitutive formulations was similar. In older subjects, Demiray (Delfino) and classic two-fiber Holzapfel-Gasser-Ogden formulations were better than the Neo-Hookean model for predicting deformations due to limb flexion, but both significantly overestimated principal stresses compared to the FPA or Neo-Hookean models.

  16. A Poisson equation formulation for pressure calculations in penalty finite element models for viscous incompressible flows

    NASA Technical Reports Server (NTRS)

    Sohn, J. L.; Heinrich, J. C.

    1990-01-01

    The calculation of pressures when the penalty-function approximation is used in finite-element solutions of laminar incompressible flows is addressed. A Poisson equation for the pressure is formulated that involves third derivatives of the velocity field. The second derivatives appearing in the weak formulation of the Poisson equation are calculated from the C0 velocity approximation using a least-squares method. The present scheme is shown to be efficient, free of spurious oscillations, and accurate. Examples of applications are given and compared with results obtained using mixed formulations.

  17. Granulated decontamination formulations

    DOEpatents

    Tucker, Mark D.

    2007-10-02

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a sorbent additive, and water. A highly adsorbent sorbent additive (e.g., amorphous silica, sorbitol, mannitol, etc.) is used to "dry out" one or more liquid ingredients into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  18. Integration of fuzzy analytic hierarchy process and probabilistic dynamic programming in formulating an optimal fleet management model

    NASA Astrophysics Data System (ADS)

    Teoh, Lay Eng; Khoo, Hooi Ling

    2013-09-01

    This study deals with two major aspects of airlines, i.e. supply and demand management. The aspect of supply focuses on the mathematical formulation of an optimal fleet management model to maximize operational profit of the airlines while the aspect of demand focuses on the incorporation of mode choice modeling as parts of the developed model. The proposed methodology is outlined in two-stage, i.e. Fuzzy Analytic Hierarchy Process is first adopted to capture mode choice modeling in order to quantify the probability of probable phenomena (for aircraft acquisition/leasing decision). Then, an optimization model is developed as a probabilistic dynamic programming model to determine the optimal number and types of aircraft to be acquired and/or leased in order to meet stochastic demand during the planning horizon. The findings of an illustrative case study show that the proposed methodology is viable. The results demonstrate that the incorporation of mode choice modeling could affect the operational profit and fleet management decision of the airlines at varying degrees.

  19. Neonates need tailored drug formulations.

    PubMed

    Allegaert, Karel

    2013-02-08

    Drugs are very strong tools used to improve outcome in neonates. Despite this fact and in contrast to tailored perfusion equipment, incubators or ventilators for neonates, we still commonly use drug formulations initially developed for adults. We would like to make the point that drug formulations given to neonates need to be tailored for this age group. Besides the obvious need to search for active compounds that take the pathophysiology of the newborn into account, this includes the dosage and formulation. The dosage or concentration should facilitate the administration of low amounts and be flexible since clearance is lower in neonates with additional extensive between-individual variability. Formulations need to be tailored for dosage variability in the low ranges and also to the clinical characteristics of neonates. A specific focus of interest during neonatal drug development therefore is a need to quantify and limit excipient exposure based on the available knowledge of their safety or toxicity. Until such tailored vials and formulations become available, compounding practices for drug formulations in neonates should be evaluated to guarantee the correct dosing, product stability and safety.

  20. Designing herbicide formulation characteristics to maximize efficacy and minimize rice injury in paddy environments.

    PubMed

    Cryer, S A; Mann, R K; Erhardt-Zabik, S; Keeney, F N; Handy, P R

    2001-06-01

    Mathematical descriptors, coupled with experimental observations, are used to quantify differential uptake of an experimental herbicide in Japonica and Indica rice (Oryza sativa, non-target) and barnyardgrass (Echinochloa crus-galli, target). Partitioning, degradation, plant uptake and metabolism are described using mass-balance conservation equations in the form of kinetic approximations. Estimated environmental concentrations, governed by the pesticide formulation, are described using superimposed analytical solutions for the one-dimensional diffusion equation in spherical coordinates and by a finite difference representation of the two-dimensional diffusion equation in Cartesian coordinates. Formulation attributes from granules include active ingredient release rates, particle sizes, pesticide loading, and granule spacing. The diffusion model for pesticide transport is coupled with the compartment model to follow the fate and transport of a pesticide from its initial application location to various environmental matrices of interest. Formulation effects, partitioning and degradation in the various environmental matrices, differential plant uptake and metabolism, and dose-response information for plants are accounted for. This novel model provides a mechanism for selecting formulation delivery systems that optimize specific attributes (such as weed control or the therapeutic index) for risk-assessment procedures. In this report we describe how this methodology was used to explore the factors affecting herbicide efficacy and to define an optimal release rate for a granule formulation.

  1. Novel microemulsion-based gel formulation of tazarotene for therapy of acne.

    PubMed

    Patel, Mrunali Rashmin; Patel, Rashmin Bharatbhai; Parikh, Jolly R; Patel, Bharat G

    2016-12-01

    The objective of this study was to develop and evaluate a novel microemulsion based gel formulation containing tazarotene for targeted topical therapy of acne. Psudoternary phase diagrams were constructed to obtain the concentration range of oil, surfactant, and co-surfactant for microemulsion formation. The optimized microemulsion formulation containing 0.05% tazarotene was formulated by spontaneous microemulsification method consisting of 10% Labrafac CC, mixed emulsifiers 15% Labrasol-Cremophor-RH 40 (1:1), 15% Capmul MCM, and 60% distilled water (w/w) as an external phase. All plain and tazarotene-loaded microemulsions were clear and showed physicochemical parameters for desired topical delivery and stability. The permeation profiles of tazarotene through rat skin from optimized microemulsion formulation followed the Higuchi model for controlled permeation. Microemulsion-based gel was prepared by incorporating Carbopol®971P NF in optimized microemulsion formulation having suitable skin permeation rate and skin uptake. Microemulsion-based gel showed desired physicochemical parameters and demonstrated advantage over marketed formulation in improving the skin tolerability of tazarotene indicating its potential in improving its topical delivery. The developed microemulsion-based gel may be a potential drug delivery vehicle for targeted topical delivery of tazarotene in the treatment of acne.

  2. Topical formulations with superoxide dismutase: influence of formulation composition on physical stability and enzymatic activity.

    PubMed

    Di Mambro, Valéria M; Borin, Maria F; Fonseca, Maria J V

    2003-04-24

    Three different topical formulations were supplemented with superoxide dismutase (SOD) and evaluated concerning physical and chemical stabilities in order to determine the most stable formulation that would maintain SOD activity. Physical stability was evaluated by storing the formulation at room temperature, and at 37 and 45 degrees C for 28 days. Samples were collected at 7-day intervals for assessment of rheological behavior. Chemical stability was evaluated by the measurement of enzymatic activity in formulations stored at room temperature and at 45 degrees C for 75 days. The formulations showed a pseudoplastic behavior, with a flow index of less than 1. There was no significant difference in the initial values of flow index, hysteresis loop or minimum apparent viscosity. The simple emulsion and the one stabilized with hydroxyethylcellulose showed decreased viscosity by the 21st day and with higher temperature, but no significant changes concerning the presence of SOD. Although there were no significant changes concerning storage time or temperature, the formulation stabilized with hydroxyethylcellulose showed a marked loss of SOD activity. The addition of SOD to the formulations studied did not affect their physical stability. Simple emulsions or emulsions stabilized with carboxypolymethylene seem to be better bases for enzyme addition than emulsion stabilized with hydroxyethylcellulose.

  3. Nine formulations of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Styer, Daniel F.; Balkin, Miranda S.; Becker, Kathryn M.; Burns, Matthew R.; Dudley, Christopher E.; Forth, Scott T.; Gaumer, Jeremy S.; Kramer, Mark A.; Oertel, David C.; Park, Leonard H.; Rinkoski, Marie T.; Smith, Clait T.; Wotherspoon, Timothy D.

    2002-03-01

    Nine formulations of nonrelativistic quantum mechanics are reviewed. These are the wavefunction, matrix, path integral, phase space, density matrix, second quantization, variational, pilot wave, and Hamilton-Jacobi formulations. Also mentioned are the many-worlds and transactional interpretations. The various formulations differ dramatically in mathematical and conceptual overview, yet each one makes identical predictions for all experimental results.

  4. Baseline LAW Glass Formulation Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Mooers, Cavin; Bazemore, Gina

    2013-06-13

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  5. Single-dose oral pharmacokinetics of three formulations of thalidomide in healthy male volunteers.

    PubMed

    Teo, S K; Colburn, W A; Thomas, S D

    1999-11-01

    Thalidomide was recently approved in the United States for the treatment of erythema nodosum leprosum, a complication of leprosy. The present study determined the bioequivalence and pharmacokinetics of Celgene's commercial and clinical trial thalidomide formulations and the Brazilian Tortuga formulation in an open-label, single-dose, three-way crossover design. Seventeen healthy subjects were given 200 mg of thalidomide on three occasions, and blood samples were collected over 48 hours. Pharmacokinetic parameters were determined using compartmental methods for the two Celgene formulations and using noncompartmental methods for all three formulations. All subjects reported adverse events, none of which was serious or unexpected. Celgene formulations were bioequivalent when comparing Cmax, tmax, and AUC. There was significant variability in plasma levels from the Tortuga formulation, giving a mean profile that was distinctly different from the two Celgene formulations with a lower Cmax value and a longer terminal phase. The lower Cmax was probably due to slower absorption. The terminal rate constant for the Tortuga formulation was significantly less, giving rise to a terminal half-life of 15 hours compared to about 5 to 6 hours for the Celgene formulations. Confidence intervals for Cmax between the Tortuga and the Celgene formulations were outside the 80% to 125% range, indicating a lack of bioequivalence. Extent of absorption, as measured by AUC0-infinity, was approximately equal for all three formulations. Terminal half-life for Tortuga was two to three times longer compared to the Celgene formulations and is clear evidence for absorption rate limitations. The two Celgene formulations showed similar pharmacokinetic parameters with profiles that were best described by a one-compartment model with first-order absorption and elimination. The authors conclude that Celgene's clinical trial and commercial thalidomide formulations are similar to each other and distinctly

  6. Impact of formulation and process variables on solid-state stability of theophylline in controlled release formulations.

    PubMed

    Korang-Yeboah, Maxwell; Rahman, Ziyaur; Shah, Dhaval; Mohammad, Adil; Wu, Suyang; Siddiqui, Akhtar; Khan, Mansoor A

    2016-02-29

    Understanding the impact of pharmaceutical processing, formulation excipients and their interactions on the solid-state transitions of pharmaceutical solids during use and in storage is critical in ensuring consistent product performance. This study reports the effect of polymer viscosity, diluent type, granulation and granulating fluid (water and isopropanol) on the pseudopolymorphic transition of theophylline anhydrous (THA) in controlled release formulations as well as the implications of this transition on critical quality attributes of the tablets. Accordingly, 12 formulations were prepared using a full factorial screening design and monitored over a 3 month period at 40 °C and 75%. Physicochemical characterization revealed a drastic drop in tablet hardness accompanied by a very significant increase in moisture content and swelling of all formulations. Spectroscopic analysis (ssNMR, Raman, NIR and PXRD) indicated conversion of THA to theophylline monohydrate (TMO) in all formulations prepared by aqueous wet granulation in as early as two weeks. Although all freshly prepared formulations contained THA, the hydration-dehydration process induced during aqueous wet granulation hastened the pseudopolymorphic conversion of theophylline during storage through a cascade of events. On the other hand, no solid state transformation was observed in directly compressed formulations and formulations in which isopropanol was employed as a granulating fluid even after the twelve weeks study period. The transition of THA to TMO resulted in a decrease in dissolution while an increase in dissolution was observed in directly compressed and IPA granulated formulation. Consequently, the impact of pseudopolymorphic transition of theophylline on dissolution in controlled release formulations may be the net result of two opposing factors: swelling and softening of the tablets which tend to favor an increase in drug dissolution and hydration of theophylline which decreases the drug

  7. Development of a controlled release formulation by continuous twin screw granulation: Influence of process and formulation parameters.

    PubMed

    Vanhoorne, V; Vanbillemont, B; Vercruysse, J; De Leersnyder, F; Gomes, P; Beer, T De; Remon, J P; Vervaet, C

    2016-05-30

    The aim of this study was to evaluate the potential of twin screw granulation for the continuous production of controlled release formulations with hydroxypropylmethylcellulose as hydrophilic matrix former. Metoprolol tartrate was included in the formulation as very water soluble model drug. A premix of metoprolol tartrate, hydroxypropylmethylcellulose and filler (ratio 20/20/60, w/w) was granulated with demineralized water via twin screw granulation. After oven drying and milling, tablets were produced on a rotary Modul™ P tablet press. A D-optimal design (29 experiments) was used to assess the influence of process (screw speed, throughput, barrel temperature and screw design) and formulation parameters (starch content of the filler) on the process (torque), granule (size distribution, shape, friability, density) and tablet (hardness, friability and dissolution) critical quality attributes. The torque was dominated by the number of kneading elements and throughput, whereas screw speed and filling degree only showed a minor influence on torque. Addition of screw mixing elements after a block of kneading elements improved the yield of the process before milling as it resulted in less oversized granules and also after milling as less fines were present. Temperature was also an important parameter to optimize as a higher temperature yielded less fines and positively influenced the aspect ratio. The shape of hydroxypropylmethylcellulose granules was comparable to that of immediate release formulations. Tensile strength and friability of tablets were not dependent on the process parameters. The use of starch as filler was not beneficial with regard to granule and tablet properties. Complete drug release was obtained after 16-20h and was independent of the design's parameters. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A formulation and analysis of combat games

    NASA Technical Reports Server (NTRS)

    Heymann, M.; Ardema, M. D.; Rajan, N.

    1985-01-01

    Combat is formulated as a dynamical encounter between two opponents, each of whom has offensive capabilities and objectives. With each opponent is associated a target in the event space in which he endeavors to terminate the combat, thereby winning. If the combat terminates in both target sets simultaneously or in neither, a joint capture or a draw, respectively, is said to occur. Resolution of the encounter is formulated as a combat game; namely, as a pair of competing event-constrained differential games. If exactly one of the players can win, the optimal strategies are determined from a resulting constrained zero-sum differential game. Otherwise the optimal strategies are computed from a resulting non-zero-sum game. Since optimal combat strategies frequencies may not exist, approximate of delta-combat games are also formulated leading to approximate or delta-optimal strategies. To illustrate combat games, an example, called the turret game, is considered. This game may be thought of as a highly simplified model of air combat, yet it is sufficiently complex to exhibit a rich variety of combat behavior, much of which is not found in pursuit-evasion games.

  9. An Alternative Lattice Field Theory Formulation Inspired by Lattice Supersymmetry-Summary of the Formulation-

    NASA Astrophysics Data System (ADS)

    D'Adda, Alessandro; Kawamoto, Noboru; Saito, Jun

    2018-03-01

    We propose a lattice field theory formulation which overcomes some fundamental diffculties in realizing exact supersymmetry on the lattice. The Leibniz rule for the difference operator can be recovered by defining a new product on the lattice, the star product, and the chiral fermion species doublers degrees of freedom can be avoided consistently. This framework is general enough to formulate non-supersymmetric lattice field theory without chiral fermion problem. This lattice formulation has a nonlocal nature and is essentially equivalent to the corresponding continuum theory. We can show that the locality of the star product is recovered exponentially in the continuum limit. Possible regularization procedures are proposed.The associativity of the product and the lattice translational invariance of the formulation will be discussed.

  10. Latent structure modeling underlying theophylline tablet formulations using a Bayesian network based on a self-organizing map clustering.

    PubMed

    Yasuda, Akihito; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo

    2015-01-01

    The "quality by design" concept in pharmaceutical formulation development requires the establishment of a science-based rationale and design space. In this article, we integrate thin-plate spline (TPS) interpolation, Kohonen's self-organizing map (SOM) and a Bayesian network (BN) to visualize the latent structure underlying causal factors and pharmaceutical responses. As a model pharmaceutical product, theophylline tablets were prepared using a standard formulation. We measured the tensile strength and disintegration time as response variables and the compressibility, cohesion and dispersibility of the pretableting blend as latent variables. We predicted these variables quantitatively using nonlinear TPS, generated a large amount of data on pretableting blends and tablets and clustered these data into several clusters using a SOM. Our results show that we are able to predict the experimental values of the latent and response variables with a high degree of accuracy and are able to classify the tablet data into several distinct clusters. In addition, to visualize the latent structure between the causal and latent factors and the response variables, we applied a BN method to the SOM clustering results. We found that despite having inserted latent variables between the causal factors and response variables, their relation is equivalent to the results for the SOM clustering, and thus we are able to explain the underlying latent structure. Consequently, this technique provides a better understanding of the relationships between causal factors and pharmaceutical responses in theophylline tablet formulation.

  11. Application of hot-melt extrusion technology in immediate-release abuse-deterrent formulations.

    PubMed

    Wening, Klaus; Schwier, Sebastian; Stahlberg, Hans-J; Galia, Eric

    Hot-melt extrusion (HME) technology has been used for manufacturing extended-release abuse-deterrent formulations (ADFs) of opioid-type analgesics with improved tamper-resistant properties. Our objective was to describe application of this technology to immediate-release (IR) ADFs. For development of a sample IR ADF (hydrocodone 10 mg/acetaminophen 325 mg) based on HME, feasibility studies were performed using different excipients. The formulation selected for further development was evaluated via in vitro test battery. Moreover, in vivo performance of IR ADF technologies was investigated in an open-label, randomized, cross-over, phase 1, relative oral bioavailability study with another opioid (model compound). Single-center bioavailability trial. Twenty-four healthy white male subjects. ADF IR formulation of an opioid and marketed IR formulation. For feasibility and in vitro studies, dissolution profiles, syringeability, particle size distribution after physical manipulation, and extractability were evaluated. For the phase 1 study, pharmacokinetic parameters were evaluated and compared for ADF IR and a marketed IR formulation. After manipulation, the majority of particles from the ADF IR formulation were >500µm and, thus, not considered suitable for intranasal abuse, while the majority of particles for the reference marketed IR formulation were <500µm. The ADF IR formulation was resistant to syringing and preparation for potential intravenous injection. In healthy subjects, pharmacokinetics of an ADF and marketed IR formulation of an opioid were nearly identical. Application of HME to IR formulations led to development of products with improved mechanical resistance to manipulation for intranasal or intravenous preparation, but similar bioavailability.

  12. Extreme Environments Development of Decision Processes and Training Programs for Medical Policy Formulation

    NASA Technical Reports Server (NTRS)

    Stough, Roger

    2004-01-01

    The purpose of this workshop was to survey existing health and safety policies as well as processes and practices for various extreme environments; to identify strengths and shortcomings of these processes; and to recommend parameters for inclusion in a generic approach to policy formulation, applicable to the broadest categories of extreme environments. It was anticipated that two additional workshops would follow. The November 7, 2003 workshop would be devoted to the evaluation of different model(s) and a concluding expert evaluation of the usefulness of the model using a policy formulation example. The final workshop was planned for March 2004.

  13. Heterogeneous nucleation on convex spherical substrate surfaces: A rigorous thermodynamic formulation of Fletcher's classical model and the new perspectives derived.

    PubMed

    Qian, Ma; Ma, Jie

    2009-06-07

    Fletcher's spherical substrate model [J. Chem. Phys. 29, 572 (1958)] is a basic model for understanding the heterogeneous nucleation phenomena in nature. However, a rigorous thermodynamic formulation of the model has been missing due to the significant complexities involved. This has not only left the classical model deficient but also likely obscured its other important features, which would otherwise have helped to better understand and control heterogeneous nucleation on spherical substrates. This work presents a rigorous thermodynamic formulation of Fletcher's model using a novel analytical approach and discusses the new perspectives derived. In particular, it is shown that the use of an intermediate variable, a selected geometrical angle or pseudocontact angle between the embryo and spherical substrate, revealed extraordinary similarities between the first derivatives of the free energy change with respect to embryo radius for nucleation on spherical and flat substrates. Enlightened by the discovery, it was found that there exists a local maximum in the difference between the equivalent contact angles for nucleation on spherical and flat substrates due to the existence of a local maximum in the difference between the shape factors for nucleation on spherical and flat substrate surfaces. This helps to understand the complexity of the heterogeneous nucleation phenomena in a practical system. Also, it was found that the unfavorable size effect occurs primarily when R<5r( *) (R: radius of substrate and r( *): critical embryo radius) and diminishes rapidly with increasing value of R/r( *) beyond R/r( *)=5. This finding provides a baseline for controlling the size effects in heterogeneous nucleation.

  14. Optimization and characterization of liposome formulation by mixture design.

    PubMed

    Maherani, Behnoush; Arab-tehrany, Elmira; Kheirolomoom, Azadeh; Reshetov, Vadzim; Stebe, Marie José; Linder, Michel

    2012-02-07

    This study presents the application of the mixture design technique to develop an optimal liposome formulation by using the different lipids in type and percentage (DOPC, POPC and DPPC) in liposome composition. Ten lipid mixtures were generated by the simplex-centroid design technique and liposomes were prepared by the extrusion method. Liposomes were characterized with respect to size, phase transition temperature, ζ-potential, lamellarity, fluidity and efficiency in loading calcein. The results were then applied to estimate the coefficients of mixture design model and to find the optimal lipid composition with improved entrapment efficiency, size, transition temperature, fluidity and ζ-potential of liposomes. The response optimization of experiments was the liposome formulation with DOPC: 46%, POPC: 12% and DPPC: 42%. The optimal liposome formulation had an average diameter of 127.5 nm, a phase-transition temperature of 11.43 °C, a ζ-potential of -7.24 mV, fluidity (1/P)(TMA-DPH)((¬)) value of 2.87 and an encapsulation efficiency of 20.24%. The experimental results of characterization of optimal liposome formulation were in good agreement with those predicted by the mixture design technique.

  15. Thermoelastic Formulation of Stiffened, Unsymmetric Composite Panels for Finite Element Analysis of High Speed Aircraft

    NASA Technical Reports Server (NTRS)

    Collier, Craig S.

    2004-01-01

    An emerging technology need for capturing 3-D panel thermoelastic response with 2-D planar finite element models (FEMs) is aided with an equivalent plate stiffness and thermal coefficient formulation. The formulation is general and applies to all panel concepts. Included with the formulation is the ability to provide membrane-bending coupling of unsymmetric sections and calculation of all thermal expansion and bending responses from in-plane and through-the-thickness temperature gradients. Thermal residual strains for both the laminates and plies are included. The general formulation is defined and then applied to a hat-shaped, corrugated stiffened panel. Additional formulations are presented where required to include all of the hat's unique characteristics. Each formulation is validated independently with 3-D FEA.

  16. Modeling flow in wetlands and underlying aquifers using a discharge potential formulation

    NASA Astrophysics Data System (ADS)

    Gusyev, M. A.; Haitjema, H. M.

    2011-09-01

    SummaryAn accurate assessment of water and nutrient balances in large scale wetland systems such as the Florida Everglades requires conjunctive modeling of surface water flow in wetlands and groundwater flow in underlying aquifers. Earlier work was based on the finite difference code MODFLOW with a special "wetlands package." This model treats the wetland flow as laminar with a very high transmissivity that is proportional to the wetland water depth cubed. However, these MODFLOW solutions appear sensitive to this highly non-linear wetland transmissivity, particularly under conditions of low vegetation density when the model may fail to converge. We propose to formulate the governing differential equation in terms of a discharge potential instead of potentiometric heads as done in MODFLOW, but otherwise using the same assumptions as in its wetlands package. We tested our approach on a few cases of one- and two-dimensional flow, both with a constant and a varying wetland bottom elevation. For the latter the discharge potential represents an irrotational part of the flow field which is combined with a component of the flow field that contains the curl. We found that both the robustness and the accuracy of the solution in terms of potentials was superior to the solution in terms of heads. In some cases the latter solution failed altogether, even for simple one-dimensional flow. We applied our method to model the effects of wetland hydrology on the nutrient redistribution in and near tree islands. We found that the subtle velocity distributions near these tree islands, as resulted from our conjunctive wetlands and groundwater flow solution, could help explain the increased nutrient depositions at these islands, particularly at the head of the islands, where, consequently, most of the vegetation occurs.

  17. Parallel computing using a Lagrangian formulation

    NASA Technical Reports Server (NTRS)

    Liou, May-Fun; Loh, Ching Yuen

    1991-01-01

    A new Lagrangian formulation of the Euler equation is adopted for the calculation of 2-D supersonic steady flow. The Lagrangian formulation represents the inherent parallelism of the flow field better than the common Eulerian formulation and offers a competitive alternative on parallel computers. The implementation of the Lagrangian formulation on the Thinking Machines Corporation CM-2 Computer is described. The program uses a finite volume, first-order Godunov scheme and exhibits high accuracy in dealing with multidimensional discontinuities (slip-line and shock). By using this formulation, a better than six times speed-up was achieved on a 8192-processor CM-2 over a single processor of a CRAY-2.

  18. Parallel computing using a Lagrangian formulation

    NASA Technical Reports Server (NTRS)

    Liou, May-Fun; Loh, Ching-Yuen

    1992-01-01

    This paper adopts a new Lagrangian formulation of the Euler equation for the calculation of two dimensional supersonic steady flow. The Lagrangian formulation represents the inherent parallelism of the flow field better than the common Eulerian formulation and offers a competitive alternative on parallel computers. The implementation of the Lagrangian formulation on the Thinking Machines Corporation CM-2 Computer is described. The program uses a finite volume, first-order Godunov scheme and exhibits high accuracy in dealing with multidimensional discontinuities (slip-line and shock). By using this formulation, we have achieved better than six times speed-up on a 8192-processor CM-2 over a single processor of a CRAY-2.

  19. Development and optimization of an injectable formulation of copper diethyldithiocarbamate, an active anticancer agent.

    PubMed

    Wehbe, Mohamed; Anantha, Malathi; Shi, Minghan; Leung, Ada Wai-Yin; Dragowska, Wieslawa H; Sanche, Léon; Bally, Marcel B

    2017-01-01

    Copper diethyldithiocarbamate (Cu(DDC) 2 ) is the active anticancer agent generated when disulfiram (DSF) is provided in the presence of copper. To date, research directed toward repurposing DSF as an anticancer drug has focused on administration of DSF and copper in combination, efforts that have proven unsuccessful in clinical trials. This is likely due to the inability to form Cu(DDC) 2 at relevant concentrations in regions of tumor growth. Little effort has been directed toward the development of Cu(DDC) 2 because of the inherent aqueous insolubility of the complex. Here, we describe an injectable Cu(DDC) 2 formulation prepared through a method that involves synthesis of Cu(DDC) 2 inside the aqueous core of liposomes. Convection-enhanced delivery of a Cu(DDC) 2 formulation prepared using 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/cholesterol liposomes into a rat model of F98 glioma engendered a 25% increase in median survival time relative to vehicle-treated animals. In a murine subcutaneous MV-4-11 model, treatment resulted in a 45% reduction in tumor burden when compared to controls. Pharmacokinetic studies indicated that the Cu(DDC) 2 was rapidly eliminated after intravenous administration while the liposomes remained in circulation. To test whether liposomal lipid composition could increase Cu(DDC) 2 circulation lifetime, a number of different formulations were evaluated. Studies demonstrated that liposomes composed of DSPC and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-n-(carboxy[polyethylene glycol]-2000) (95:5) enhanced Cu(DDC) 2 concentrations in the circulation as reflected by a 4.2-fold increase in plasma AUC (0-∞) relative to the DSPC/cholesterol formulation. The anticancer activity of this Cu(DDC) 2 formulation was subsequently evaluated in the MV-4-11 model. At its maximum tolerated dose, this formulation exhibited comparable activity to the DSPC/cholesterol formulation. This is the first report demonstrating the therapeutic effects

  20. Development and optimization of an injectable formulation of copper diethyldithiocarbamate, an active anticancer agent

    PubMed Central

    Wehbe, Mohamed; Anantha, Malathi; Shi, Minghan; Leung, Ada Wai-yin; Dragowska, Wieslawa H; Sanche, Léon; Bally, Marcel B

    2017-01-01

    Copper diethyldithiocarbamate (Cu(DDC)2) is the active anticancer agent generated when disulfiram (DSF) is provided in the presence of copper. To date, research directed toward repurposing DSF as an anticancer drug has focused on administration of DSF and copper in combination, efforts that have proven unsuccessful in clinical trials. This is likely due to the inability to form Cu(DDC)2 at relevant concentrations in regions of tumor growth. Little effort has been directed toward the development of Cu(DDC)2 because of the inherent aqueous insolubility of the complex. Here, we describe an injectable Cu(DDC)2 formulation prepared through a method that involves synthesis of Cu(DDC)2 inside the aqueous core of liposomes. Convection-enhanced delivery of a Cu(DDC)2 formulation prepared using 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/cholesterol liposomes into a rat model of F98 glioma engendered a 25% increase in median survival time relative to vehicle-treated animals. In a murine subcutaneous MV-4–11 model, treatment resulted in a 45% reduction in tumor burden when compared to controls. Pharmacokinetic studies indicated that the Cu(DDC)2 was rapidly eliminated after intravenous administration while the liposomes remained in circulation. To test whether liposomal lipid composition could increase Cu(DDC)2 circulation lifetime, a number of different formulations were evaluated. Studies demonstrated that liposomes composed of DSPC and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-n-(carboxy[polyethylene glycol]-2000) (95:5) enhanced Cu(DDC)2 concentrations in the circulation as reflected by a 4.2-fold increase in plasma AUC(0−∞) relative to the DSPC/cholesterol formulation. The anticancer activity of this Cu(DDC)2 formulation was subsequently evaluated in the MV-4–11 model. At its maximum tolerated dose, this formulation exhibited comparable activity to the DSPC/cholesterol formulation. This is the first report demonstrating the therapeutic effects of an

  1. Physiologically based pharmacokinetic model of amphotericin B disposition in rats following administration of deoxycholate formulation (Fungizone®): pooled analysis of published data.

    PubMed

    Kagan, Leonid; Gershkovich, Pavel; Wasan, Kishor M; Mager, Donald E

    2011-06-01

    The time course of tissue distribution of amphotericin B (AmB) has not been sufficiently characterized despite its therapeutic importance and an apparent disconnect between plasma pharmacokinetics and clinical outcomes. The goals of this work were to develop and evaluate a physiologically based pharmacokinetic (PBPK) model to characterize the disposition properties of AmB administered as deoxycholate formulation in healthy rats and to examine the utility of the PBPK model for interspecies scaling of AmB pharmacokinetics. AmB plasma and tissue concentration-time data, following single and multiple intravenous administration of Fungizone® to rats, from several publications were combined for construction of the model. Physiological parameters were fixed to literature values. Various structural models for single organs were evaluated, and the whole-body PBPK model included liver, spleen, kidney, lung, heart, gastrointestinal tract, plasma, and remainder compartments. The final model resulted in a good simultaneous description of both single and multiple dose data sets. Incorporation of three subcompartments for spleen and kidney tissues was required for capturing a prolonged half-life in these organs. The predictive performance of the final PBPK model was assessed by evaluating its utility in predicting pharmacokinetics of AmB in mice and humans. Clearance and permeability-surface area terms were scaled with body weight. The model demonstrated good predictions of plasma AmB concentration-time profiles for both species. This modeling framework represents an important basis that may be further utilized for characterization of formulation- and disease-related factors in AmB pharmacokinetics and pharmacodynamics.

  2. Stability of an alternative extemporaneous captopril fast-dispersing tablet formulation versus an extemporaneous oral liquid formulation.

    PubMed

    Pabari, Ritesh M; McDermott, Claire; Barlow, James; Ramtoola, Zebunnissa

    2012-11-01

    Administration of medications to pediatric patients is challenging because many drugs are not commercially available in appropriate dosage formulations and/or strengths. Consequently, these drugs are prepared extemporaneously as oral liquid (OL) formulations using marketed tablets or capsules. In many cases, the stability of these extemporaneous preparations, which may affect their tolerability, has not been documented. An alternative extemporaneous solid formulation, such as a fast-dispersing tablet (FDT), may offer enhanced stability as well as dosing flexibility because it may be administered as an orodispersible tablet or as a reconstituted suspension/solution. Although FDTs are available increasingly as patient-friendly oral dosage formulations, and their simple method of manufacture can be applied to extemporaneous formulations, such applications have not been explored to date. The use of extemporaneous captopril OL formulations in hospitals in Ireland was surveyed, and the stability of the most commonly used captopril formulation (reference) was investigated and compared with that of a newly available extemporaneous FDT formulation. The survey was carried out in 120 hospitals in the Republic of Ireland. The 56-day stability of the most commonly used formulation was compared with that of a newly available extemporaneous captopril FDT preparation. The captopril content of the formulations was measured by high-performance liquid chromatography analysis. Formulations were also monitored for changes in appearance, including color; odor; and pH (OLs only). The survey showed that extemporaneously prepared captopril OLs were extensively used, particularly in specialist children's hospitals. The most commonly used preparation was a xanthan gum-based oral suspension. Analysis of these OL preparations showed the OLs to have been stable up to day 7, but that the captopril concentration decreased to 72% to 84% at day 14 and to 59% to 68% at day 56; this decrease was

  3. A thermodynamically consistent discontinuous Galerkin formulation for interface separation

    DOE PAGES

    Versino, Daniele; Mourad, Hashem M.; Dávila, Carlos G.; ...

    2015-07-31

    Our paper describes the formulation of an interface damage model, based on the discontinuous Galerkin (DG) method, for the simulation of failure and crack propagation in laminated structures. The DG formulation avoids common difficulties associated with cohesive elements. Specifically, it does not introduce any artificial interfacial compliance and, in explicit dynamic analysis, it leads to a stable time increment size which is unaffected by the presence of stiff massless interfaces. This proposed method is implemented in a finite element setting. Convergence and accuracy are demonstrated in Mode I and mixed-mode delamination in both static and dynamic analyses. Significantly, numerical resultsmore » obtained using the proposed interface model are found to be independent of the value of the penalty factor that characterizes the DG formulation. By contrast, numerical results obtained using a classical cohesive method are found to be dependent on the cohesive penalty stiffnesses. The proposed approach is shown to yield more accurate predictions pertaining to crack propagation under mixed-mode fracture because of the advantage. Furthermore, in explicit dynamic analysis, the stable time increment size calculated with the proposed method is found to be an order of magnitude larger than the maximum allowable value for classical cohesive elements.« less

  4. Evaluation of antitumor activity and cardiac toxicity of a bone-targeted ph-sensitive liposomal formulation in a bone metastasis tumor model in mice.

    PubMed

    Dos Santos Ferreira, Diego; Jesus de Oliveira Pinto, Bruno Luís; Kumar, Vidhya; Cardoso, Valbert Nascimento; Fernandes, Simone Odília; Souza, Cristina Maria; Cassali, Geovanni Dantas; Moore, Anna; Sosnovik, David E; Farrar, Christian T; Leite, Elaine Amaral; Alves, Ricardo José; de Oliveira, Mônica Cristina; Guimarães, Alexander Ramos; Caravan, Peter

    2017-07-01

    Chemotherapy for bone tumors is a major challenge because of the inability of therapeutics to penetrate dense bone mineral. We hypothesize that a nanostructured formulation with high affinity for bone could deliver drug to the tumor while minimizing off-target toxicity. Here, we evaluated the efficacy and toxicity of a novel bone-targeted, pH-sensitive liposomal formulation containing doxorubicin in an animal model of bone metastasis. Biodistribution studies with the liposome showed good uptake in tumor, but low accumulation of doxorubicin in the heart. Mice treated with the bone-targeted liposome formulation showed a 70% reduction in tumor volume, compared to 35% reduction for free doxorubicin at the same dose. Both cardiac toxicity and overall mortality were significantly lower for animals treated with the bone-targeted liposomes compared to free drug. Bone-targeted, pH-sensitive, doxorubicin containing liposomes represent a promising approach to selectively delivering doxorubicin to bone tumors while minimizing cardiac toxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. An Etiological Approach to Sexual Offender Assessment: CAse Formulation Incorporating Risk Assessment (CAFIRA).

    PubMed

    Craig, Leam A; Rettenberger, Martin

    2018-05-19

    Case formulations (CF) have been the cornerstone of effective practice in clinical psychology since the 1950s and now form one of the core competencies in clinical and forensic assessment. The use of CFs within forensic settings is becoming more relevant when working with offenders who have experienced significant trauma, suffered from personality disorder, and have displayed sexually abusive behavior. Furthermore, most North American and European jurisdictions insist that expert witnesses adopt an idiosyncratic approach to risk assessment and consider the characteristics of the individual as part of a wider formulation of the problem behavior. This article focuses specifically on CF incorporating risk assessment procedures of sexual offenders. While empirical support for the use of risk analysis and formulation in managing offending behavior generally, and sexual offending behavior in particular, is limited, there is mounting evidence to suggest that CF can improve understanding of an individual's problem sexual behaviors. We argue that by integrating risk formulations into the CF provides a conceptually robust link between the etiologically development of the problem sexual behavior and effective assessment and risk management of sexual offenders. As forensic treatment programs increasingly moved toward strength-based approaches, in keeping with the Risk-Need-Responsivity principles Andrews and Bonta (2004), and the Good Lives Model Ward and Stewart (Prof Psychol Res Pract 34:353-60, 2003) of offender rehabilitation, the use of CFs in the assessment, treatment, and management of sexual offenders is indispensable. We present an etiological framework for understanding risk in an individual sexual offender by integrating a case formulation model to include the use of (static, stable, and acute) actuarial and clinical risk assessment measures as well as protective risk factors, referred to as the CAse Formulation Incorporating Risk Assessment (CAFIRA) model.

  6. ADE-FDTD Scattered-Field Formulation for Dispersive Materials

    PubMed Central

    Kong, Soon-Cheol; Simpson, Jamesina J.; Backman, Vadim

    2009-01-01

    This Letter presents a scattered-field formulation for modeling dispersive media using the finite-difference time-domain (FDTD) method. Specifically, the auxiliary differential equation method is applied to Drude and Lorentz media for a scattered field FDTD model. The present technique can also be applied in a straightforward manner to Debye media. Excellent agreement is achieved between the FDTD-calculated and exact theoretical results for the reflection coefficient in half-space problems. PMID:19844602

  7. ADE-FDTD Scattered-Field Formulation for Dispersive Materials.

    PubMed

    Kong, Soon-Cheol; Simpson, Jamesina J; Backman, Vadim

    2008-01-01

    This Letter presents a scattered-field formulation for modeling dispersive media using the finite-difference time-domain (FDTD) method. Specifically, the auxiliary differential equation method is applied to Drude and Lorentz media for a scattered field FDTD model. The present technique can also be applied in a straightforward manner to Debye media. Excellent agreement is achieved between the FDTD-calculated and exact theoretical results for the reflection coefficient in half-space problems.

  8. Advanced protein formulations

    PubMed Central

    Wang, Wei

    2015-01-01

    It is well recognized that protein product development is far more challenging than that for small-molecule drugs. The major challenges include inherent sensitivity to different types of stresses during the drug product manufacturing process, high rate of physical and chemical degradation during long-term storage, and enhanced aggregation and/or viscosity at high protein concentrations. In the past decade, many novel formulation concepts and technologies have been or are being developed to address these product development challenges for proteins. These concepts and technologies include use of uncommon/combination of formulation stabilizers, conjugation or fusion with potential stabilizers, site-specific mutagenesis, and preparation of nontraditional types of dosage forms—semiaqueous solutions, nonfreeze-dried solid formulations, suspensions, and other emerging concepts. No one technology appears to be mature, ideal, and/or adequate to address all the challenges. These gaps will likely remain in the foreseeable future and need significant efforts for ultimate resolution. PMID:25858529

  9. Development of a Highly Stable, Nonaqueous Glucagon Formulation for Delivery via Infusion Pump Systems

    PubMed Central

    Newswanger, Brett; Ammons, Steve; Phadnis, Neelima; Ward, W. Kenneth; Castle, Jessica; Campbell, Robert W.

    2015-01-01

    Background: Despite a vigorous research effort, to date, the development of systems that achieve glucagon stability in aqueous formulations (without reconstitution) has failed to produce any clinical candidates. We have developed a novel, nonaqueous glucagon formulation based on a biocompatible pharmaceutical solvent, dimethyl sulfoxide, which demonstrates excellent physical and chemical stability at relatively high concentrations and at high temperatures. Methods: This article reports the development of a novel, biocompatible, nonaqueous native human glucagon formulation for potential use in subcutaneous infusion pump systems. Results: Data are presented that demonstrate physical and chemical stability under presumed storage conditions (>2 years at room temperature) as well as “in use” stability and compatibility in an Insulet’s OmniPod® infusion pump. Also presented are results of a skin irritation study in a rabbit model and pharmacokinetics/pharmacodynamics data following pump administration of glucagon in a diabetic swine model. Conclusions: This nonaqueous glucagon formulation is suitable for further clinical development in pump systems. PMID:25550410

  10. Development of a highly stable, nonaqueous glucagon formulation for delivery via infusion pump systems.

    PubMed

    Newswanger, Brett; Ammons, Steve; Phadnis, Neelima; Ward, W Kenneth; Castle, Jessica; Campbell, Robert W; Prestrelski, Steven J

    2015-01-01

    Despite a vigorous research effort, to date, the development of systems that achieve glucagon stability in aqueous formulations (without reconstitution) has failed to produce any clinical candidates. We have developed a novel, nonaqueous glucagon formulation based on a biocompatible pharmaceutical solvent, dimethyl sulfoxide, which demonstrates excellent physical and chemical stability at relatively high concentrations and at high temperatures. This article reports the development of a novel, biocompatible, nonaqueous native human glucagon formulation for potential use in subcutaneous infusion pump systems. Data are presented that demonstrate physical and chemical stability under presumed storage conditions (>2 years at room temperature) as well as "in use" stability and compatibility in an Insulet's OmniPod(®) infusion pump. Also presented are results of a skin irritation study in a rabbit model and pharmacokinetics/pharmacodynamics data following pump administration of glucagon in a diabetic swine model. This nonaqueous glucagon formulation is suitable for further clinical development in pump systems. © 2015 Diabetes Technology Society.

  11. Formulation of the Multi-Hit Model With a Non-Poisson Distribution of Hits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vassiliev, Oleg N., E-mail: Oleg.Vassiliev@albertahealthservices.ca

    2012-07-15

    Purpose: We proposed a formulation of the multi-hit single-target model in which the Poisson distribution of hits was replaced by a combination of two distributions: one for the number of particles entering the target and one for the number of hits a particle entering the target produces. Such an approach reflects the fact that radiation damage is a result of two different random processes: particle emission by a radiation source and interaction of particles with matter inside the target. Methods and Materials: Poisson distribution is well justified for the first of the two processes. The second distribution depends on howmore » a hit is defined. To test our approach, we assumed that the second distribution was also a Poisson distribution. The two distributions combined resulted in a non-Poisson distribution. We tested the proposed model by comparing it with previously reported data for DNA single- and double-strand breaks induced by protons and electrons, for survival of a range of cell lines, and variation of the initial slopes of survival curves with radiation quality for heavy-ion beams. Results: Analysis of cell survival equations for this new model showed that they had realistic properties overall, such as the initial and high-dose slopes of survival curves, the shoulder, and relative biological effectiveness (RBE) In most cases tested, a better fit of survival curves was achieved with the new model than with the linear-quadratic model. The results also suggested that the proposed approach may extend the multi-hit model beyond its traditional role in analysis of survival curves to predicting effects of radiation quality and analysis of DNA strand breaks. Conclusions: Our model, although conceptually simple, performed well in all tests. The model was able to consistently fit data for both cell survival and DNA single- and double-strand breaks. It correctly predicted the dependence of radiation effects on parameters of radiation quality.« less

  12. Evaluation of polyherbal formulation (SJT-HT-03) for antihypertensive activity in albino rats.

    PubMed

    Ghelani, Hardik S; Patel, Bipin M; Gokani, Rina H; Rachchh, Manish A

    2014-01-01

    Hypertension is an incurable pathological condition and lifelong therapy is required. Long term use of conventional synthetic anti-hypertensive drugs is associated with a spectrum of toxic effects. However, therapeutic interventions using herbal drugs for hypertension have gained considerable attention worldwide. To evaluate the anti-hypertensive activity of polyherbal formulation (SJT-HT-03). The polyherbal formulation (SJT-HT-03) comprises of leaves of Aegle marmelos L., fruits of Benincasa hispida Thunb., Garcinia indica Thouars, and flowers of Musa paradiasica L., Rosa indica L., Hibiscus rosa sinensis L. Selected plants as mentioned above were collected, dried and extracted with different solvents. Formulation SJT-HT-03 (250 mg/kg, p.o.), was evaluated using two kidney one clip (2K1C) model and deoxycorticosterone acetate (DOCA)-salt-induced hypertension model using the enalapril (10 mg/kg, p.o.) and hydrochlorothiazide (5 mg/kg, p.o.) as a reference standard drug in respective models. SJT-HT-03 significantly reduced (P < 0.001, one-way analysis of variance followed by Turkey's multiple comparison tests) systolic as well as diastolic blood pressure (BP) in 2K1C and DOCA-salt model. Further, SJT-HT-03 has shown a significant reduction (P < 0.01) in angiotensin converting enzyme (ACE) activity in serum, clipped kidney as well as in lungs in 2K1C model, whereas significant reduction (P < 0.05) in serum Na(+) and increase in serum K(+) level in DOCA model. Polyherbal formulation SJT-HT-03 possess significant anti-hypertensive activity by producing direct depressant effect on heart, inhibition of ACE, aldosterone antagonistic as well as diuretic effect and thereby act on multiple targets to achieve optimal effect.

  13. Development of In Vitro-In Vivo Correlation for Potassium Chloride Extended Release Tablet Formulation Using Urinary Pharmacokinetic Data.

    PubMed

    Mittapalli, Rajendar K; Marroum, Patrick; Qiu, Yihong; Apfelbaum, Kathleen; Xiong, Hao

    2017-07-01

    To develop and validate a Level A in vitro-in vivo correlation (IVIVC) for potassium chloride extended-release (ER) formulations. Three prototype ER formulations of potassium chloride with different in vitro release rates were developed and their urinary pharmacokinetic profiles were evaluated in healthy subjects. A mathematical model between in vitro dissolution and in vivo urinary excretion, a surrogate for measuring in vivo absorption, was developed using time-scale and time-shift parameters. The IVIVC model was then validated based on internal and external predictability. With the established IVIVC model, there was a good correlation between the observed fraction of dose excreted in urine and the time-scaled and time-shifted fraction of the drug dissolved, and between the in vitro dissolution time and the in vivo urinary excretion time for the ER formulations. The percent prediction error (%PE) on cumulative urinary excretion over the 24 h interval (A e0-24h ) and maximum urinary excretion rate (R max ) was less than 15% for the individual formulations and less than 10% for the average of the two formulations used to develop the model. Further, the %PE values using external predictability were below 10%. A novel Level A IVIVC was successfully developed and validated for the new potassium chloride ER formulations using urinary pharmacokinetic data. This successful IVIVC may facilitate future development or manufacturing changes to the potassium chloride ER formulation.

  14. In vitro biorelevant models for evaluating modified release mesalamine products to forecast the effect of formulation and meal intake on drug release.

    PubMed

    Andreas, Cord J; Chen, Ying-Chen; Markopoulos, Constantinos; Reppas, Christos; Dressman, Jennifer

    2015-11-01

    Postprandial administration of solid oral dosage forms greatly changes the dissolution environment compared to fasted state administration. The aims of this study were to investigate and forecast the effect of co-administration of a meal on drug release for delayed and/or extended release mesalamine formulations as well as design of in vitro tests to distinguish among formulations in a biorelevant way. Five different mesalamine formulations (Asacol® 400 mg, Mezavant® 1200 mg, Pentasa® 500 mg and Salofalk® in the 250 mg and 500 mg strengths) were investigated with biorelevant dissolution methods using the USP apparatus III and USP apparatus IV (open loop mode) under both fasted and fed state conditions, as well as with the dissolution methods described in pharmacopeia for delayed and extended release mesalamine products. Using the biorelevant experimental conditions proposed in this study, changes in release in the proximal gut due to meal intake are forecast to be minimal for Asacol®, Mezavant®, Pentasa® and Salofalk® 500 mg, while for Salofalk® 250 mg release was predicted to occur much earlier under fed state conditions. The USP apparatus III generally tended to result in faster dissolution rates and forecast more pronounced food effects for Salofalk® 250 mg than the USP apparatus IV. The biorelevant dissolution gradients were also able to reflect the in vivo behavior of the formulations. In vitro biorelevant models can be useful in the comparison of the release behavior from different delayed and extended release mesalamine formulations as well as forecasting effects of concomitant meal intake on drug release. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Potential formulation of sleep dynamics

    NASA Astrophysics Data System (ADS)

    Phillips, A. J. K.; Robinson, P. A.

    2009-02-01

    A physiologically based model of the mechanisms that control the human sleep-wake cycle is formulated in terms of an equivalent nonconservative mechanical potential. The potential is analytically simplified and reduced to a quartic two-well potential, matching the bifurcation structure of the original model. This yields a dynamics-based model that is analytically simpler and has fewer parameters than the original model, allowing easier fitting to experimental data. This model is first demonstrated to semiquantitatively match the dynamics of the physiologically based model from which it is derived, and is then fitted directly to a set of experimentally derived criteria. These criteria place rigorous constraints on the parameter values, and within these constraints the model is shown to reproduce normal sleep-wake dynamics and recovery from sleep deprivation. Furthermore, this approach enables insights into the dynamics by direct analogies to phenomena in well studied mechanical systems. These include the relation between friction in the mechanical system and the timecourse of neurotransmitter action, and the possible relation between stochastic resonance and napping behavior. The model derived here also serves as a platform for future investigations of sleep-wake phenomena from a dynamical perspective.

  16. A Generalized Formulation of Demand Response under Market Environments

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh Y.; Nguyen, Duc M.

    2015-06-01

    This paper presents a generalized formulation of Demand Response (DR) under deregulated electricity markets. The problem is scheduling and controls the consumption of electrical loads according to the market price to minimize the energy cost over a day. Taking into account the modeling of customers' comfort (i.e., preference), the formulation can be applied to various types of loads including what was traditionally classified as critical loads (e.g., air conditioning, lights). The proposed DR scheme is based on Dynamic Programming (DP) framework and solved by DP backward algorithm in which the stochastic optimization is used to treat the uncertainty, if any occurred in the problem. The proposed formulation is examined with the DR problem of different loads, including Heat Ventilation and Air Conditioning (HVAC), Electric Vehicles (EVs) and a newly DR on the water supply systems of commercial buildings. The result of simulation shows significant saving can be achieved in comparison with their traditional (On/Off) scheme.

  17. Self-microemulsifiyng suppository formulation of β-artemether.

    PubMed

    Gugulothu, Dalapathi; Pathak, Sulabha; Suryavanshi, Shital; Sharma, Shobhona; Patravale, Vandana

    2010-09-01

    Parasitic diseases are of immense global significance as around 30% of world's population experiences parasitic infections. Among these, malaria is the most life-threatening disease. Various routes of administration have been explored for delivering antimalarial actives. The present investigation aims at formulating self-microemulsifying suppositories of β-artemether with faster onset of action and prolonged effect to be administered by rectal route. These were compared with conventional polyethylene glycol suppositories with respect to melting range, rheology, texture analysis, disintegration time, self microemulsification time, particle size, and drug content. In vitro drug release was studied by using USP apparatus II. Further, the suppositories were evaluated in murine model against virulent rodent malaria parasite Plasmodium berghei wherein the developed self-microemulsifying suppositories could sustain the activity (94%) for 20 days post infection. The survival of animals was also better as compared to the conventional formulation.

  18. Displaced path integral formulation for the momentum distribution of quantum particles.

    PubMed

    Lin, Lin; Morrone, Joseph A; Car, Roberto; Parrinello, Michele

    2010-09-10

    The proton momentum distribution, accessible by deep inelastic neutron scattering, is a very sensitive probe of the potential of mean force experienced by the protons in hydrogen-bonded systems. In this work we introduce a novel estimator for the end-to-end distribution of the Feynman paths, i.e., the Fourier transform of the momentum distribution. In this formulation, free particle and environmental contributions factorize. Moreover, the environmental contribution has a natural analogy to a free energy surface in statistical mechanics, facilitating the interpretation of experiments. The new formulation is not only conceptually but also computationally advantageous. We illustrate the method with applications to an empirical water model, ab initio ice, and one dimensional model systems.

  19. Imbedded-Fracture Formulation of THMC Processes in Fractured Media

    NASA Astrophysics Data System (ADS)

    Yeh, G. T.; Tsai, C. H.; Sung, R.

    2016-12-01

    Fractured media consist of porous materials and fracture networks. There exist four approaches to mathematically formulating THMC (Thermal-Hydrology-Mechanics-Chemistry) processes models in the system: (1) Equivalent Porous Media, (2) Dual Porosity or Dual Continuum, (3) Heterogeneous Media, and (4) Discrete Fracture Network. The first approach cannot explicitly explore the interactions between porous materials and fracture networks. The second approach introduces too many extra parameters (namely, exchange coefficients) between two media. The third approach may make the problems too stiff because the order of material heterogeneity may be too much. The fourth approach ignore the interaction between porous materials and fracture networks. This talk presents an alternative approach in which fracture networks are modeled with a lower dimension than the surrounding porous materials. Theoretical derivation of mathematical formulations will be given. An example will be illustrated to show the feasibility of this approach.

  20. Amazon collapse in the next century: exploring the sensitivity to climate and model formulation uncertainties

    NASA Astrophysics Data System (ADS)

    Booth, B.; Collins, M.; Harris, G.; Chris, H.; Jones, C.

    2007-12-01

    A number of recent studies have highlighted the risk of abrupt dieback of the Amazon Rain Forest as the result of climate changes over the next century. The recent 2005 Amazon drought brought wider acceptance of the idea that that climate drivers will play a significant role in future rain forest stability, yet that stability is still subject to considerable degree of uncertainty. We present a study which seeks to explore some of the underlying uncertainties both in the climate drivers of dieback and in the terrestrial land surface formulation used in GCMs. We adopt a perturbed physics approach which forms part of a wider project which is covered in an accompanying abstract submitted to the multi-model ensembles session. We first couple the same interactive land surface model to a number of different versions of the Hadley Centre atmosphere-ocean model that exhibit a wide range of different physical climate responses in the future. The rainforest extent is shown to collapse in all model cases but the timing of the collapse is dependent on the magnitude of the climate drivers. In the second part, we explore uncertainties in the terrestrial land surface model using the perturbed physics ensemble approach, perturbing uncertain parameters which have an important role in the vegetation and soil response. Contrasting the two approaches enables a greater understanding of the relative importance of climatic and land surface model uncertainties in Amazon dieback.

  1. Novel diindolylmethane derivatives based NLC formulations to improve the oral bioavailability and anticancer effects in triple negative breast cancer

    PubMed Central

    Godugu, Chandraiah; Doddapaneni, Ravi; Safe, Stephen H.; Singh, Mandip

    2017-01-01

    The present study demonstrates the promising anticancer effects of novel C-substituted diindolylmethane (DIM) derivatives DIM-10 and DIM-14 in aggressive TNBC models. In vitro studies demonstrated that these compounds possess strong anticancer effects. Caco-2 permeability studies resulted in poor permeability and poor oral bioavailability was demonstrated by pharmacokinetic studies. Nano structured lipid carrier (NLC) formulations were prepared to increase the clinical acceptance of these compounds. Significant increase in oral bioavailability was observed with NLC formulations. Compared to DIM-10, DIM-10 NLC formulation showed increase in Cmax and AUC values by 4.73 and 11.19-folds, respectively. Similar pattern of increase was observed with DIM-14 NLC formulations. In dogs DIM-10 NLC formulations showed an increase of 2.65 and 2.94-fold in Cmax and AUC, respectively. The anticancer studies in MDA-MB-231 orthotopic TNBC models demonstrated significant reduction in tumor volumes in DIM-10 and DIM-14 NLC treated animals. Our studies suggest that NLC formulation of both DIM-10 and 14 is effective in TNBC models. PMID:27586082

  2. Torsional vibration of a cracked rod by variational formulation and numerical analysis

    NASA Astrophysics Data System (ADS)

    Chondros, T. G.; Labeas, G. N.

    2007-04-01

    The torsional vibration of a circumferentially cracked cylindrical shaft is studied through an "exact" analytical solution and a numerical finite element (FE) analysis. The Hu-Washizu-Barr variational formulation is used to develop the differential equation and the boundary conditions of the cracked rod. The equations of motion for a uniform cracked rod in torsional vibration are derived and solved, and the Rayleigh quotient is used to further approximate the natural frequencies of the cracked rod. Results for the problem of the torsional vibration of a cylindrical shaft with a peripheral crack are provided through an analytical solution based on variational formulation to derive the equation of motion and a numerical analysis utilizing a parametric three-dimensional (3D) solid FE model of the cracked rod. The crack is modelled as a continuous flexibility based on fracture mechanics principles. The variational formulation results are compared with the FE alternative. The sensitivity of the FE discretization with respect to the analytical results is assessed.

  3. An efficient algorithm for the generalized Foldy-Lax formulation

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Li, Peijun; Zhao, Hongkai

    2013-02-01

    Consider the scattering of a time-harmonic plane wave incident on a two-scale heterogeneous medium, which consists of scatterers that are much smaller than the wavelength and extended scatterers that are comparable to the wavelength. In this work we treat those small scatterers as isotropic point scatterers and use a generalized Foldy-Lax formulation to model wave propagation and capture multiple scattering among point scatterers and extended scatterers. Our formulation is given as a coupled system, which combines the original Foldy-Lax formulation for the point scatterers and the regular boundary integral equation for the extended obstacle scatterers. The existence and uniqueness of the solution for the formulation is established in terms of physical parameters such as the scattering coefficient and the separation distances. Computationally, an efficient physically motivated Gauss-Seidel iterative method is proposed to solve the coupled system, where only a linear system of algebraic equations for point scatterers or a boundary integral equation for a single extended obstacle scatterer is required to solve at each step of iteration. The convergence of the iterative method is also characterized in terms of physical parameters. Numerical tests for the far-field patterns of scattered fields arising from uniformly or randomly distributed point scatterers and single or multiple extended obstacle scatterers are presented.

  4. Assessing the fate and effects of an insecticidal formulation.

    PubMed

    de Perre, Chloé; Williard, Karl W J; Schoonover, Jon E; Young, Bryan G; Murphy, Tracye M; Lydy, Michael J

    2015-01-01

    A 3-yr study was conducted on a corn field in central Illinois, USA, to understand the fate and effects of an insecticidal formulation containing the active ingredients phostebupirim and cyfluthrin. The objectives were to determine the best tillage practice (conventional vs conservation tillage) in terms of grain yields and potential environmental risk, to assess insecticidal exposure using concentrations measured in soil and runoff water and sediments, to compare measured insecticidal concentrations with predicted concentrations from selected risk assessment exposure models, and to calculate toxicity benchmarks from laboratory bioassays performed on reference aquatic and terrestrial nontarget organisms, using individual active ingredients and the formulation. Corn grain yields were not significantly different based on tillage treatment. Similarly, field concentrations of insecticides were not significantly (p > 0.05) different in strip tillage versus conventional tillage, suggesting that neither of the tillage systems would enable greater environmental risk from the insecticidal formulation. Risk quotients were calculated from field concentrations and toxicity data to determine potential risk to nontarget species. The insecticidal formulation used at the recommended rate resulted in soil, sediment, and water concentrations that were potentially harmful to aquatic and terrestrial invertebrates, if exposure occurred, with risk quotients up to 34. © 2014 SETAC.

  5. The artificial membrane insert system as predictive tool for formulation performance evaluation.

    PubMed

    Berben, Philippe; Brouwers, Joachim; Augustijns, Patrick

    2018-02-15

    In view of the increasing interest of pharmaceutical companies for cell- and tissue-free models to implement permeation into formulation testing, this study explored the capability of an artificial membrane insert system (AMI-system) as predictive tool to evaluate the performance of absorption-enabling formulations. Firstly, to explore the usefulness of the AMI-system in supersaturation assessment, permeation was monitored after induction of different degrees of loviride supersaturation. Secondly, to explore the usefulness of the AMI-system in formulation evaluation, a two-stage dissolution test was performed prior to permeation assessment. Different case examples were selected based on the availability of in vivo (intraluminal and systemic) data: (i) a suspension of posaconazole (Noxafil ® ), (ii) a cyclodextrin-based formulation of itraconazole (Sporanox ® ), and (iii) a micronized (Lipanthyl ® ) and nanosized (Lipanthylnano ® ) formulation of fenofibrate. The obtained results demonstrate that the AMI-system is able to capture the impact of loviride supersaturation on permeation. Furthermore, the AMI-system correctly predicted the effects of (i) formulation pH on posaconazole absorption, (ii) dilution on cyclodextrin-based itraconazole absorption, and (iii) food intake on fenofibrate absorption. Based on the applied in vivo/in vitro approach, the AMI-system combined with simple dissolution testing appears to be a time- and cost-effective tool for the early-stage evaluation of absorption-enabling formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Application of instrumental evaluation of color for the pre-formulation and formulation of rabeprazole.

    PubMed

    Rhee, Yun-Seok; Park, Chun-Woong; Shin, Yoon-Sub; Kam, Sung-Hoon; Lee, Kyu-Hyun; Park, Eun-Seok

    2008-02-28

    The aims of this study were to fast screen the compatibility of rabeprazole and excipients using a spectrocolorimeter and to examine the relationship between the color change value and drug contents/drug degradation products in solid dosage forms. The color change values of rabeprazole-excipient mixtures were measured using a spectrocolorimeter, with six tablet formulations compressed using a single-punch instrumental tablet press. The rabeprazole and degradation products contents in the tablets were analyzed using an HPLC method, with the color change values of the tablets measured using spectrocolorimetery for 4 weeks. These experiments indicated that the instrumental evaluation of color was a speedy, simple and useful tool in the determination of the interaction between the drug and excipients, as well as in the formulation of solid dosage forms. The relationships of the % reduced drug contents versus the color change value, and those of the % drug degradation products versus the color change value were exponentially increased in formulations containing zinc stearate. On stress testing, the color change value of rabeprazole was inconsistent with previous reports, as the degradation of rabeprazole can be greatly influenced by humidity as well as temperature. Consequently, these results highlight the potential of color formation in the application of pre-formulation and formulation of drugs.

  7. Controlled release hydrophilic matrix tablet formulations of isoniazid: design and in vitro studies.

    PubMed

    Hiremath, Praveen S; Saha, Ranendra N

    2008-01-01

    The aim of the present investigation was to develop oral controlled release matrix tablet formulations of isoniazid using hydroxypropyl methylcellulose (HPMC) as a hydrophilic release retardant polymer and to study the influence of various formulation factors like proportion of the polymer, polymer viscosity grade, compression force, and release media on the in vitro release characteristics of the drug. The formulations were developed using wet granulation technology. The in vitro release studies were performed using US Pharmacopoeia type 1 apparatus (basket method) in 900 ml of pH 7.4 phosphate buffer at 100 rpm. The release kinetics was analyzed using Korsmeyer-Peppas model. The release profiles were also analyzed using statistical method (one-way analysis of variance) and f (2) metric values. The release profiles found to follow Higuchi's square root kinetics model irrespective of the polymer ratio and the viscosity grade used. The results in the present investigation confirm that the release rate of the drug from the HPMC matrices is highly influenced by the drug/HPMC ratio and viscosity grade of the HPMC. Also, the effect of compression force and release media was found to be significant on the release profiles of isoniazid from HPMC matrix tablets. The release mechanism was found to be anomalous non-Fickian diffusion in all the cases. In the present investigation, a series of controlled release formulations of isoniazid were developed with different release rates and duration so that these formulations could further be assessed from the in vivo bioavailability studies. The formulations were found to be stable and reproducible.

  8. An integral equation formulation for the diffraction from convex plates and polyhedra.

    PubMed

    Asheim, Andreas; Svensson, U Peter

    2013-06-01

    A formulation of the problem of scattering from obstacles with edges is presented. The formulation is based on decomposing the field into geometrical acoustics, first-order, and multiple-order edge diffraction components. An existing secondary-source model for edge diffraction from finite edges is extended to handle multiple diffraction of all orders. It is shown that the multiple-order diffraction component can be found via the solution to an integral equation formulated on pairs of edge points. This gives what can be called an edge source signal. In a subsequent step, this edge source signal is propagated to yield a multiple-order diffracted field, taking all diffraction orders into account. Numerical experiments demonstrate accurate response for frequencies down to 0 for thin plates and a cube. No problems with irregular frequencies, as happen with the Kirchhoff-Helmholtz integral equation, are observed for this formulation. For the axisymmetric scattering from a circular disc, a highly effective symmetric formulation results, and results agree with reference solutions across the entire frequency range.

  9. Controlled release formulations of risperidone antipsychotic drug in novel aliphatic polyester carriers: Data analysis and modelling.

    PubMed

    Siafaka, Panoraia I; Barmpalexis, Panagiotis; Lazaridou, Maria; Papageorgiou, George Z; Koutris, Efthimios; Karavas, Evangelos; Kostoglou, Margaritis; Bikiaris, Dimitrios N

    2015-08-01

    In the present study a series of biodegradable and biocompatible poly(ε-caprolactone)/poly(propylene glutarate) (PCL/PPGlu) polymer blends were investigated as controlled release carriers of Risperidone drug (RISP), appropriate for transdermal drug delivery. The PCL/PPGlu carriers were prepared in different weight ratios. Miscibility studies of blends were evaluated through differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). Hydrolysis studies were performed at 37°C using a phosphate buffered saline solution. The prepared blends have been used for the preparation of RISP patches via solvent evaporation method, containing 5, 10 and 15wt% RISP. These formulations were characterized using FT-IR spectroscopy, DSC and WAXD in order to evaluate interactions taking place between polymer matrix and drug, as well as the dispersion and the physical state of the drug inside the polymer matrix. In vitro drug release studies were performed using as dissolution medium phosphate buffered saline simulating body fluids. It was found that in all cases controlled release formulations were obtained, while the RISP release varies due to the properties of the used polymer blend and the different levels of drug loading. Artificial Neural Networks (ANNs) were used for dissolution behaviour modelling showing increased correlation efficacy compared to Multi-Linear-Regression (MLR). Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Use of nonlinear programming to optimize performance response to energy density in broiler feed formulation.

    PubMed

    Guevara, V R

    2004-02-01

    A nonlinear programming optimization model was developed to maximize margin over feed cost in broiler feed formulation and is described in this paper. The model identifies the optimal feed mix that maximizes profit margin. Optimum metabolizable energy level and performance were found by using Excel Solver nonlinear programming. Data from an energy density study with broilers were fitted to quadratic equations to express weight gain, feed consumption, and the objective function income over feed cost in terms of energy density. Nutrient:energy ratio constraints were transformed into equivalent linear constraints. National Research Council nutrient requirements and feeding program were used for examining changes in variables. The nonlinear programming feed formulation method was used to illustrate the effects of changes in different variables on the optimum energy density, performance, and profitability and was compared with conventional linear programming. To demonstrate the capabilities of the model, I determined the impact of variation in prices. Prices for broiler, corn, fish meal, and soybean meal were increased and decreased by 25%. Formulations were identical in all other respects. Energy density, margin, and diet cost changed compared with conventional linear programming formulation. This study suggests that nonlinear programming can be more useful than conventional linear programming to optimize performance response to energy density in broiler feed formulation because an energy level does not need to be set.

  11. Multi‐criteria manufacturability indices for ranking high‐concentration monoclonal antibody formulations

    PubMed Central

    Velayudhan, Ajoy; Thornhill, Nina F.

    2017-01-01

    ABSTRACT The need for high‐concentration formulations for subcutaneous delivery of therapeutic monoclonal antibodies (mAbs) can present manufacturability challenges for the final ultrafiltration/diafiltration (UF/DF) step. Viscosity levels and the propensity to aggregate are key considerations for high‐concentration formulations. This work presents novel frameworks for deriving a set of manufacturability indices related to viscosity and thermostability to rank high‐concentration mAb formulation conditions in terms of their ease of manufacture. This is illustrated by analyzing published high‐throughput biophysical screening data that explores the influence of different formulation conditions (pH, ions, and excipients) on the solution viscosity and product thermostability. A decision tree classification method, CART (Classification and Regression Tree) is used to identify the critical formulation conditions that influence the viscosity and thermostability. In this work, three different multi‐criteria data analysis frameworks were investigated to derive manufacturability indices from analysis of the stress maps and the process conditions experienced in the final UF/DF step. Polynomial regression techniques were used to transform the experimental data into a set of stress maps that show viscosity and thermostability as functions of the formulation conditions. A mathematical filtrate flux model was used to capture the time profiles of protein concentration and flux decay behavior during UF/DF. Multi‐criteria decision‐making analysis was used to identify the optimal formulation conditions that minimize the potential for both viscosity and aggregation issues during UF/DF. Biotechnol. Bioeng. 2017;114: 2043–2056. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Perodicals, Inc. PMID:28464235

  12. Isogeometric Kirchhoff-Love shell formulations for biological membranes

    PubMed Central

    Tepole, Adrián Buganza; Kabaria, Hardik; Bletzinger, Kai-Uwe; Kuhl, Ellen

    2015-01-01

    Computational modeling of thin biological membranes can aid the design of better medical devices. Remarkable biological membranes include skin, alveoli, blood vessels, and heart valves. Isogeometric analysis is ideally suited for biological membranes since it inherently satisfies the C1-requirement for Kirchhoff-Love kinematics. Yet, current isogeometric shell formulations are mainly focused on linear isotropic materials, while biological tissues are characterized by a nonlinear anisotropic stress-strain response. Here we present a thin shell formulation for thin biological membranes. We derive the equilibrium equations using curvilinear convective coordinates on NURBS tensor product surface patches. We linearize the weak form of the generic linear momentum balance without a particular choice of a constitutive law. We then incorporate the constitutive equations that have been designed specifically for collagenous tissues. We explore three common anisotropic material models: Mooney-Rivlin, May Newmann-Yin, and Gasser-Ogden-Holzapfel. Our work will allow scientists in biomechanics and mechanobiology to adopt the constitutive equations that have been developed for solid three-dimensional soft tissues within the framework of isogeometric thin shell analysis. PMID:26251556

  13. Using the Landlab toolkit to evaluate and compare alternative geomorphic and hydrologic model formulations

    NASA Astrophysics Data System (ADS)

    Tucker, G. E.; Adams, J. M.; Doty, S. G.; Gasparini, N. M.; Hill, M. C.; Hobley, D. E. J.; Hutton, E.; Istanbulluoglu, E.; Nudurupati, S. S.

    2016-12-01

    Developing a better understanding of catchment hydrology and geomorphology ideally involves quantitative hypothesis testing. Often one seeks to identify the simplest mathematical and/or computational model that accounts for the essential dynamics in the system of interest. Development of alternative hypotheses involves testing and comparing alternative formulations, but the process of comparison and evaluation is made challenging by the rigid nature of many computational models, which are often built around a single assumed set of equations. Here we review a software framework for two-dimensional computational modeling that facilitates the creation, testing, and comparison of surface-dynamics models. Landlab is essentially a Python-language software library. Its gridding module allows for easy generation of a structured (raster, hex) or unstructured (Voronoi-Delaunay) mesh, with the capability to attach data arrays to particular types of element. Landlab includes functions that implement common numerical operations, such as gradient calculation and summation of fluxes within grid cells. Landlab also includes a collection of process components, which are encapsulated pieces of software that implement a numerical calculation of a particular process. Examples include downslope flow routing over topography, shallow-water hydrodynamics, stream erosion, and sediment transport on hillslopes. Individual components share a common grid and data arrays, and they can be coupled through the use of a simple Python script. We illustrate Landlab's capabilities with a case study of Holocene landscape development in the northeastern US, in which we seek to identify a collection of model components that can account for the formation of a series of incised canyons that have that developed since the Laurentide ice sheet last retreated. We compare sets of model ingredients related to (1) catchment hydrologic response, (2) hillslope evolution, and (3) stream channel and gully incision

  14. Development and Performance of a Highly Sensitive Model Formulation Based on Torasemide to Enhance Hot-Melt Extrusion Process Understanding and Process Development.

    PubMed

    Evans, Rachel C; Kyeremateng, Samuel O; Asmus, Lutz; Degenhardt, Matthias; Rosenberg, Joerg; Wagner, Karl G

    2018-05-01

    The aim of this work was to investigate the use of torasemide as a highly sensitive indicator substance and to develop a formulation thereof for establishing quantitative relationships between hot-melt extrusion process conditions and critical quality attributes (CQAs). Using solid-state characterization techniques and a 10 mm lab-scale co-rotating twin-screw extruder, we studied torasemide in a Soluplus® (SOL)-polyethylene glycol 1500 (PEG 1500) matrix, and developed and characterized a formulation which was used as a process indicator to study thermal- and hydrolysis-induced degradation, as well as residual crystallinity. We found that torasemide first dissolved into the matrix and then degraded. Based on this mechanism, extrudates with measurable levels of degradation and residual crystallinity were produced, depending strongly on the main barrel and die temperature and residence time applied. In addition, we found that 10% w/w PEG 1500 as plasticizer resulted in the widest operating space with the widest range of measurable residual crystallinity and degradant levels. Torasemide as an indicator substance behaves like a challenging-to-process API, only with higher sensitivity and more pronounced effects, e.g., degradation and residual crystallinity. Application of a model formulation containing torasemide will enhance the understanding of the dynamic environment inside an extruder and elucidate the cumulative thermal and hydrolysis effects of the extrusion process. The use of such a formulation will also facilitate rational process development and scaling by establishing clear links between process conditions and CQAs.

  15. Novel formulations for antimicrobial peptides.

    PubMed

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2014-10-09

    Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy.

  16. Novel Formulations for Antimicrobial Peptides

    PubMed Central

    Carmona-Ribeiro, Ana Maria; Carrasco, Letícia Dias de Melo

    2014-01-01

    Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy. PMID:25302615

  17. Negotiating treatment preferences: Physicians' formulations of patients' stance.

    PubMed

    Landmark, Anne Marie Dalby; Svennevig, Jan; Gulbrandsen, Pål

    2016-01-01

    Eliciting patients' values and treatment preferences is an essential element in models of shared decision making, yet few studies have investigated the interactional realizations of how physicians do this in authentic encounters. Drawing on video-recorded encounters from Norwegian secondary care, the present study uses the fine-grained empirical methodology of conversation analysis (CA) to identify one conversational practice physicians use, namely, formulations of patients' stance, in which physicians summarize or paraphrase their understanding of the patient's stance towards treatment. The purpose of this study is twofold: (1) to explore what objectives formulations of patients' stance achieve while negotiating treatment and (2) to discuss these objectives in relation to core requirements in shared decision making. Our analysis demonstrates that formulating the patient's stance is a practice physicians use in order to elicit, check, and establish patients' attitudes towards treatment. This practice is in line with general recommendations for making shared decisions, such as exploring and checking patients' preferences and values. However, the formulations may function as a device for doing more than merely checking and establishing common ground and bringing up patients' preferences and views: Accompanied by subtle deprecating expressions, they work to delegitimize the patients' stances and indirectly convey the physicians' opposing stance. Once established, these positions can be used as a basis for challenging and potentially altering the patient's attitude towards the decision, thereby making it more congruent with the physician's view. Therefore, in addition to bringing up patients' views towards treatment, we argue that physicians may use formulations of patients' stance as a resource for directing the patient towards decisions that are congruent with the physician's stance in situations with potential disagreement, whilst (ostensibly) avoiding a more

  18. Prolonged release matrix tablet of pyridostigmine bromide: formulation and optimization using statistical methods.

    PubMed

    Bolourchian, Noushin; Rangchian, Maryam; Foroutan, Seyed Mohsen

    2012-07-01

    The aim of this study was to design and optimize a prolonged release matrix formulation of pyridostigmine bromide, an effective drug in myasthenia gravis and poisoning with nerve gas, using hydrophilic - hydrophobic polymers via D-optimal experimental design. HPMC and carnauba wax as retarding agents as well as tricalcium phosphate were used in matrix formulation and considered as independent variables. Tablets were prepared by wet granulation technique and the percentage of drug released at 1 (Y(1)), 4 (Y(2)) and 8 (Y(3)) hours were considered as dependent variables (responses) in this investigation. These experimental responses were best fitted for the cubic, cubic and linear models, respectively. The optimal formulation obtained in this study, consisted of 12.8 % HPMC, 24.4 % carnauba wax and 26.7 % tricalcium phosphate, had a suitable prolonged release behavior followed by Higuchi model in which observed and predicted values were very close. The study revealed that D-optimal design could facilitate the optimization of prolonged release matrix tablet containing pyridostigmine bromide. Accelerated stability studies confirmed that the optimized formulation remains unchanged after exposing in stability conditions for six months.

  19. On the hyperbolicity and stability of 3+1 formulations of metric f( R) gravity

    NASA Astrophysics Data System (ADS)

    Mongwane, Bishop

    2016-11-01

    3+1 formulations of the Einstein field equations have become an invaluable tool in Numerical relativity, having been used successfully in modeling spacetimes of black hole collisions, stellar collapse and other complex systems. It is plausible that similar considerations could prove fruitful for modified gravity theories. In this article, we pursue from a numerical relativistic viewpoint the 3+1 formulation of metric f( R) gravity as it arises from the fourth order equations of motion, without invoking the dynamical equivalence with Brans-Dicke theories. We present the resulting system of evolution and constraint equations for a generic function f( R), subject to the usual viability conditions. We confirm that the time propagation of the f( R) Hamiltonian and Momentum constraints take the same Mathematical form as in general relativity, irrespective of the f( R) model. We further recast the 3+1 system in a form akin to the BSSNOK formulation of numerical relativity. Without assuming any specific model, we show that the ADM version of f( R) is weakly hyperbolic and is plagued by similar zero speed modes as in the general relativity case. On the other hand the BSSNOK version is strongly hyperbolic and hence a promising formulation for numerical simulations in metric f( R) theories.

  20. Coherent states formulation of polymer field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Man, Xingkun; Villet, Michael C.; Materials Research Laboratory, University of California, Santa Barbara, California 93106

    2014-01-14

    We introduce a stable and efficient complex Langevin (CL) scheme to enable the first direct numerical simulations of the coherent-states (CS) formulation of polymer field theory. In contrast with Edwards’ well-known auxiliary-field (AF) framework, the CS formulation does not contain an embedded nonlinear, non-local, implicit functional of the auxiliary fields, and the action of the field theory has a fully explicit, semi-local, and finite-order polynomial character. In the context of a polymer solution model, we demonstrate that the new CS-CL dynamical scheme for sampling fluctuations in the space of coherent states yields results in good agreement with now-standard AF-CL simulations.more » The formalism is potentially applicable to a broad range of polymer architectures and may facilitate systematic generation of trial actions for use in coarse-graining and numerical renormalization-group studies.« less

  1. Operator Formulation of Classical Mechanics.

    ERIC Educational Resources Information Center

    Cohn, Jack

    1980-01-01

    Discusses the construction of an operator formulation of classical mechanics which is directly concerned with wave packets in configuration space and is more similar to that of convential quantum theory than other extant operator formulations of classical mechanics. (Author/HM)

  2. Anti-inflammatory activity of Shirishavaleha: An Ayurvedic compound formulation.

    PubMed

    Yadav, Shyamlal Singh; Galib; Ravishankar, B; Prajapati, P K; Ashok, B K; Varun, B

    2010-10-01

    The purpose of the present study was to evaluate the anti-inflammatory activity of Shirishavaleha prepared from two different parts of Shirisha (Albizia lebbeck Benth.), viz. the bark (Twak) and the heartwood (Sara). The activity was screened in the carrageenan-induced rat paw edema model in albino rats. The raw materials were collected and authenticated in the university and the trial formulations were prepared by following standard classical guidelines. Randomly selected animals were divided into four groups of six animals each. The test drugs were administered orally at a dose of 1.8 g/kg for 5 days. Phenylbutazone was used as the standard anti-inflammatory drug for comparison. Between the two different test samples studied, the formulation made from heartwood showed a weak anti-inflammatory activity in this model while that made from the bark produced a considerable suppression of edema after 6 h. It appears that the bark sample would be preferable for clinical use.

  3. Anti-inflammatory activity of Shirishavaleha: An Ayurvedic compound formulation

    PubMed Central

    Yadav, Shyamlal Singh; Galib; Ravishankar, B.; Prajapati, P.K.; Ashok, B.K.; Varun, B.

    2010-01-01

    The purpose of the present study was to evaluate the anti-inflammatory activity of Shirishavaleha prepared from two different parts of Shirisha (Albizia lebbeck Benth.), viz. the bark (Twak) and the heartwood (Sara). The activity was screened in the carrageenan-induced rat paw edema model in albino rats. The raw materials were collected and authenticated in the university and the trial formulations were prepared by following standard classical guidelines. Randomly selected animals were divided into four groups of six animals each. The test drugs were administered orally at a dose of 1.8 g/kg for 5 days. Phenylbutazone was used as the standard anti-inflammatory drug for comparison. Between the two different test samples studied, the formulation made from heartwood showed a weak anti-inflammatory activity in this model while that made from the bark produced a considerable suppression of edema after 6 h. It appears that the bark sample would be preferable for clinical use. PMID:21455445

  4. Application of Pharmacokinetic and Pharmacodynamic Analysis to the Development of Liposomal Formulations for Oncology

    PubMed Central

    Ait-Oudhia, Sihem; Mager, Donald E.; Straubinger, Robert M.

    2014-01-01

    Liposomal formulations of anticancer agents have been developed to prolong drug circulating lifetime, enhance anti-tumor efficacy by increasing tumor drug deposition, and reduce drug toxicity by avoiding critical normal tissues. Despite the clinical approval of numerous liposome-based chemotherapeutics, challenges remain in the development and clinical deployment of micro- and nano-particulate formulations, as well as combining these novel agents with conventional drugs and standard-of-care therapies. Factors requiring optimization include control of drug biodistribution, release rates of the encapsulated drug, and uptake by target cells. Quantitative mathematical modeling of formulation performance can provide an important tool for understanding drug transport, uptake, and disposition processes, as well as their role in therapeutic outcomes. This review identifies several relevant pharmacokinetic/pharmacodynamic models that incorporate key physical, biochemical, and physiological processes involved in delivery of oncology drugs by liposomal formulations. They capture observed data, lend insight into factors determining overall antitumor response, and in some cases, predict conditions for optimizing chemotherapy combinations that include nanoparticulate drug carriers. PMID:24647104

  5. Early intervention with an estrogen receptor β-selective phytoestrogenic formulation prolongs survival, improves spatial recognition memory, and slows progression of amyloid pathology in a female mouse model of Alzheimer's disease.

    PubMed

    Zhao, Liqin; Mao, Zisu; Chen, Shuhua; Schneider, Lon S; Brinton, Roberta D

    2013-01-01

    Our recent developments have yielded a novel phytoestrogenic formulation, referred to as the phyto-β-SERM formulation, which exhibits an 83-fold binding selectivity for the estrogen receptor subtype β (ERβ) over ERα. Earlier studies indicate that the phyto-β-SERM formulation is neuroprotective and promotes estrogenic mechanisms in the brain while devoid of feminizing activity in the periphery. Further investigation in a mouse model of human menopause indicates that chronic exposure to the phyto-β-SERM formulation at a clinically relevant dosage prevents/alleviates menopause-related climacteric symptoms. This study assessed the efficacy, in an early intervention paradigm, of the phyto-β-SERM formulation in the regulation of early stages of physical and neurological changes associated with Alzheimer's disease (AD) in a female triple transgenic mouse model of AD. Results demonstrated that, when initiated prior to the appearance of AD pathology, a 9-month dietary supplementation with the phyto-β-SERM formulation promoted physical health, prolonged survival, improved spatial recognition memory, and attenuated amyloid-β deposition and plaque formation in the brains of treated AD mice. In comparison, dietary supplementation of a commercial soy extract preparation showed no effect on cognitive measures, although it appeared to have a positive impact on amyloid pathology. In overall agreement with the behavioral and histological outcomes, results from a gene expression profiling analysis offered insights on the underlying molecular mechanisms associated with the two dietary treatments. In particular, the data suggests that there may be a crosstalk between ERβ and glycogen synthase kinase 3 signaling pathways that could play a role in conferring ERβ-mediated neuroprotection against AD. Taken together, these results support the therapeutic potential of the phyto-β-SERM formulation for prevention and/or early intervention of AD, and warrants further investigations

  6. Finite-element three-dimensional ground-water (FE3DGW) flow model - formulation, program listings and users' manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, S.K.; Cole, C.R.; Bond, F.W.

    1979-12-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologicmore » systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. Hydrologic and transport models are available at several levels of complexity or sophistication. Model selection and use are determined by the quantity and quality of input data. Model development under AEGIS and related programs provides three levels of hydrologic models, two levels of transport models, and one level of dose models (with several separate models). This document consists of the description of the FE3DGW (Finite Element, Three-Dimensional Groundwater) Hydrologic model third level (high complexity) three-dimensional, finite element approach (Galerkin formulation) for saturated groundwater flow.« less

  7. [New developments in extemporaneous formulations].

    PubMed

    Staubach, P; Melhorn, S; Hünerbein, A; Peveling-Oberhag, A

    2016-10-01

    Dermatology is in a state of flux, and systemic therapies have changed the prescription practice in the past few years. Nevertheless, topical therapy for dermatological illnesses is still the mainstay of dermatologists. Pharmaceutically manufactured drugs have a wide spectrum and allow for variability. Additionally, there are therapeutic niches that can be bridged by prescribing extemporaneous formulations. This is also true for the newly established basic therapies for many chronic dermatological illnesses which have become essential and are needed in large amounts. Unfortunately, neither during medical school, nor during residency training, not even the basic knowledge or the complexity of these extemporaneous formulations for topical therapy in dermatology is taught. This emphasizes why standardized, proven extemporaneous formulations are vital for physicians to achieve optimal and goal-oriented therapy for their patients. Sensible and effective prescriptions enhance the quality of formulations and the maintenance and well-being of our patients.

  8. A Sensitivity Analysis of the Nocturnal Boundary-Layer Properties to Atmospheric Emissivity Formulations

    NASA Astrophysics Data System (ADS)

    Siqueira, Mario B.; Katul, Gabriel G.

    2010-02-01

    A one-dimensional model for the mean potential temperature within the nocturnal boundary layer (NBL) was used to assess the sensitivity of three NBL properties (height, thermal stratification strength, and near-surface cooling) to three widely used atmospheric emissivity formulations. The calculations revealed that the NBL height is robust to the choice of the emissivity function, though this is not the case for NBL Richardson number and near-surface cooling rate. Rather than endorse one formulation, our analysis highlights the importance of atmospheric emissivity in modelling the radiative properties of the NBL especially for clear-sky conditions.

  9. Mathematical programming formulations for satellite synthesis

    NASA Technical Reports Server (NTRS)

    Bhasin, Puneet; Reilly, Charles H.

    1987-01-01

    The problem of satellite synthesis can be described as optimally allotting locations and sometimes frequencies and polarizations, to communication satellites so that interference from unwanted satellite signals does not exceed a specified threshold. In this report, mathematical programming models and optimization methods are used to solve satellite synthesis problems. A nonlinear programming formulation which is solved using Zoutendijk's method and a gradient search method is described. Nine mixed integer programming models are considered. Results of computer runs with these nine models and five geographically compatible scenarios are presented and evaluated. A heuristic solution procedure is also used to solve two of the models studied. Heuristic solutions to three large synthesis problems are presented. The results of our analysis show that the heuristic performs very well, both in terms of solution quality and solution time, on the two models to which it was applied. It is concluded that the heuristic procedure is the best of the methods considered for solving satellite synthesis problems.

  10. An axisymmetric PFEM formulation for bottle forming simulation

    NASA Astrophysics Data System (ADS)

    Ryzhakov, Pavel B.

    2017-01-01

    A numerical model for bottle forming simulation is proposed. It is based upon the Particle Finite Element Method (PFEM) and is developed for the simulation of bottles characterized by rotational symmetry. The PFEM strategy is adapted to suit the problem of interest. Axisymmetric version of the formulation is developed and a modified contact algorithm is applied. This results in a method characterized by excellent computational efficiency and volume conservation characteristics. The model is validated. An example modelling the final blow process is solved. Bottle wall thickness is estimated and the mass conservation of the method is analysed.

  11. Formulation design space for stable, pH sensitive crystalline nifedipine nanoparticles.

    PubMed

    Jog, Rajan; Unachukwu, Kenechi; Burgess, Diane J

    2016-11-30

    Enteric coated formulations protect drugs from degrading in the harsh environment of the stomach (acidic pH and enzymes), and promotes drug delivery to and absorption into the duodenum and/or later parts of the intestine. Four DoE models were applied to optimize formulation parameters for the preparation of pH sensitive nifedipine nanoparticles. Stability studies were performed on the optimized formulations to monitor any possible variation in particle size distribution, homogeneity index, surface charge and drug release (pH 1.2 and pH 6.8). Stability studies were performed for 3 months at 4°C, 25°C and 40°C. A combination of Eudragit ® L 100-55 and polyvinyl alcohol was determined to be the most effective in stabilizing the nanoparticle suspension. The average particle size distribution, polydispersity index and surface charge of the optimized pH sensitive nifedipine nanoparticles were determined to be 131.86±8.21nm, 0.135±0.008 and -7.631±0.146mV, respectively. Following three months storage, it was observed that the formulations stored at 4°C were stable in terms of particle size distribution, polydispersity index, surface charge, drug loading and drug release, whereas those stored at 25°C and 40°C were relatively unstable. A predictive model to prepare stable pH sensitive nifedipine nanoparticles, was successfully developed using multiple linear regression analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Effects of a sphingolipid-enriched dairy formulation on postprandial lipid concentrations.

    PubMed

    Ohlsson, L; Burling, H; Duan, R-D; Nilsson, A

    2010-11-01

    The digestion of sphingolipids (SL) is slow and is catalyzed by mucosal enzymes. Dietary SL was shown to inhibit cholesterol absorption and to lower plasma cholesterol, triglycerides (TG) and hepatic fat accumulation in animal models. A dairy formulation based on fractionation of buttermilk, which is enriched in milk polar lipids of which SL account for a large part is now available. In this study, we examined whether this formulation, when ingested with a standard breakfast, exerted a different influence on postprandial lipids than an equivalent control formulation lacking the polar milk lipids. A total of 18 healthy male volunteers aged 22-65 years ingested a high-fat (40 g) standard breakfast together with a milk-like formulation containing 975 mg of milk SL (A) or the control formulation (B). Postprandial levels of TG, total, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol, apolipoprotein AI (ApoAI), ApoB, glucose and insulin were measured 1 to 7 h after the meal. No difference was seen between experimental and control groups in postprandial levels of TG, insulin, ApoA1 or ApoB. After 1 hour there was a trend of lower cholesterol concentrations in large TG-rich lipoproteins after formulation A. The SL-rich buttermilk drink may affect cholesterol concentrations in TG-rich lipoproteins, but has no effect on postprandial TG after a breakfast with butter fat as the major lipid.

  13. A methodology for formulating a minimal uncertainty model for robust control system design and analysis

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.; Chang, B.-C.; Fischl, Robert

    1989-01-01

    In the design and analysis of robust control systems for uncertain plants, the technique of formulating what is termed an M-delta model has become widely accepted and applied in the robust control literature. The M represents the transfer function matrix M(s) of the nominal system, and delta represents an uncertainty matrix acting on M(s). The uncertainty can arise from various sources, such as structured uncertainty from parameter variations or multiple unstructured uncertainties from unmodeled dynamics and other neglected phenomena. In general, delta is a block diagonal matrix, and for real parameter variations the diagonal elements are real. As stated in the literature, this structure can always be formed for any linear interconnection of inputs, outputs, transfer functions, parameter variations, and perturbations. However, very little of the literature addresses methods for obtaining this structure, and none of this literature addresses a general methodology for obtaining a minimal M-delta model for a wide class of uncertainty. Since have a delta matrix of minimum order would improve the efficiency of structured singular value (or multivariable stability margin) computations, a method of obtaining a minimal M-delta model would be useful. A generalized method of obtaining a minimal M-delta structure for systems with real parameter variations is given.

  14. Applying SDDP to very large hydro-economic models with a simplified formulation for irrigation: the case of the Tigris-Euphrates river basin.

    NASA Astrophysics Data System (ADS)

    Rougé, Charles; Tilmant, Amaury

    2015-04-01

    Stochastic dual dynamic programming (SDDP) is an optimization algorithm well-suited for the study of large-scale water resources systems comprising reservoirs - and hydropower plants - as well as irrigation nodes. It generates intertemporal allocation policies that balance the present and future marginal value of water while taking into account hydrological uncertainty. It is scalable, in the sense that the time and memory required for computation do not grow exponentially with the number of state variables. Still, this scalability relies on the sampling of a few relevant trajectories for the system, and the approximation of the future value of water through cuts -i.e., hyperplanes - at points along these trajectories. Therefore, the accuracy of this approximation arguably decreases as the number of state variables increases, and it is important not to have more than necessary. In previous formulations, SDDP had three types of state variables, namely storage in each reservoir, inflow at each node and water accumulated during the irrigation season for each crop at each node. We present a simplified formulation for irrigation that does not require using the latter type of state variable. It also requires only two decision variables for each irrigation site, where the previous formulation had four per crop - and there may be several crops at the same site. This reduction in decision variables effectively reduces computation time, since SDDP decomposes the stochastic, multiperiodic, non-linear maximization problem into a series of linear ones. The proposed formulation, while computationally simpler, is mathematically equivalent to the previous one, and therefore the model gives the same results. A corollary of this formulation is that marginal utility of water at an irrigation site is effectively related to consumption at that site, through a piecewise linear function representing the net benefits from irrigation. Last but not least, the proposed formulation can be

  15. Self-Setting Calcium Orthophosphate Formulations

    PubMed Central

    Dorozhkin, Sergey V.

    2013-01-01

    In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are bioactive and biodegradable grafting bioceramics in the form of a powder and a liquid. After mixing, both phases form pastes, which set and harden forming either a non-stoichiometric calcium deficient hydroxyapatite or brushite. Since both of them are remarkably biocompartible, bioresorbable and osteoconductive, self-setting calcium orthophosphate formulations appear to be promising bioceramics for bone grafting. Furthermore, such formulations possess excellent molding capabilities, easy manipulation and nearly perfect adaptation to the complex shapes of bone defects, followed by gradual bioresorption and new bone formation. In addition, reinforced formulations have been introduced, which might be described as calcium orthophosphate concretes. The discovery of self-setting properties opened up a new era in the medical application of calcium orthophosphates and many commercial trademarks have been introduced as a result. Currently such formulations are widely used as synthetic bone grafts, with several advantages, such as pourability and injectability. Moreover, their low-temperature setting reactions and intrinsic porosity allow loading by drugs, biomolecules and even cells for tissue engineering purposes. In this review, an insight into the self-setting calcium orthophosphate formulations, as excellent bioceramics suitable for both dental and bone grafting applications, has been provided. PMID:24956191

  16. Electrolyte formulations

    DOEpatents

    Zhu, Ye; Strand, Deidre; Cheng, Gang

    2018-05-29

    An electrochemical cell including a silicon-based anode and an electrolyte, where the electrolyte is formulated to contain solvents having cyclic sulfone or cyclic sulfite chemical structure. Specific additional solvent and salt combinations yield superior performance in these electrochemical cells.

  17. Lagrangian formulation of the general relativistic Poynting-Robertson effect

    NASA Astrophysics Data System (ADS)

    De Falco, Vittorio; Battista, Emmanuele; Falanga, Maurizio

    2018-04-01

    We propose the Lagrangian formulation for describing the motion of a test particle in a general relativistic, stationary, and axially symmetric spacetime. The test particle is also affected by a radiation field, modeled as a coherent flux of photons traveling along the null geodesics of the background spacetime, including the general relativistic Poynting-Robertson effect. The innovative part of this work is to prove the existence of the potential linked to the dissipative action caused by the Poynting-Robertson effect in general relativity through the help of an integrating factor, depending on the energy of the system. Generally, such kinds of inverse problems involving dissipative effects might not admit a Lagrangian formulation; especially, in general relativity, there are no examples of such attempts in the literature so far. We reduce this general relativistic Lagrangian formulation to the classic case in the weak-field limit. This approach facilitates further studies in improving the treatment of the radiation field, and it contains, for example, some implications for a deeper comprehension of the gravitational waves.

  18. Multi-criteria manufacturability indices for ranking high-concentration monoclonal antibody formulations.

    PubMed

    Yang, Yang; Velayudhan, Ajoy; Thornhill, Nina F; Farid, Suzanne S

    2017-09-01

    The need for high-concentration formulations for subcutaneous delivery of therapeutic monoclonal antibodies (mAbs) can present manufacturability challenges for the final ultrafiltration/diafiltration (UF/DF) step. Viscosity levels and the propensity to aggregate are key considerations for high-concentration formulations. This work presents novel frameworks for deriving a set of manufacturability indices related to viscosity and thermostability to rank high-concentration mAb formulation conditions in terms of their ease of manufacture. This is illustrated by analyzing published high-throughput biophysical screening data that explores the influence of different formulation conditions (pH, ions, and excipients) on the solution viscosity and product thermostability. A decision tree classification method, CART (Classification and Regression Tree) is used to identify the critical formulation conditions that influence the viscosity and thermostability. In this work, three different multi-criteria data analysis frameworks were investigated to derive manufacturability indices from analysis of the stress maps and the process conditions experienced in the final UF/DF step. Polynomial regression techniques were used to transform the experimental data into a set of stress maps that show viscosity and thermostability as functions of the formulation conditions. A mathematical filtrate flux model was used to capture the time profiles of protein concentration and flux decay behavior during UF/DF. Multi-criteria decision-making analysis was used to identify the optimal formulation conditions that minimize the potential for both viscosity and aggregation issues during UF/DF. Biotechnol. Bioeng. 2017;114: 2043-2056. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Perodicals, Inc. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Perodicals, Inc.

  19. In silico modelling of drug–polymer interactions for pharmaceutical formulations

    PubMed Central

    Ahmad, Samina; Johnston, Blair F.; Mackay, Simon P.; Schatzlein, Andreas G.; Gellert, Paul; Sengupta, Durba; Uchegbu, Ijeoma F.

    2010-01-01

    Selecting polymers for drug encapsulation in pharmaceutical formulations is usually made after extensive trial and error experiments. To speed up excipient choice procedures, we have explored coarse-grained computer simulations (dissipative particle dynamics (DPD) and coarse-grained molecular dynamics using the MARTINI force field) of polymer–drug interactions to study the encapsulation of prednisolone (log p = 1.6), paracetamol (log p = 0.3) and isoniazid (log p = −1.1) in poly(l-lactic acid) (PLA) controlled release microspheres, as well as the encapsulation of propofol (log p = 4.1) in bioavailability enhancing quaternary ammonium palmitoyl glycol chitosan (GCPQ) micelles. Simulations have been compared with experimental data. DPD simulations, in good correlation with experimental data, correctly revealed that hydrophobic drugs (prednisolone and paracetamol) could be encapsulated within PLA microspheres and predicted the experimentally observed paracetamol encapsulation levels (5–8% of the initial drug level) in 50 mg ml−1 PLA microspheres, but only when initial paracetamol levels exceeded 5 mg ml−1. However, the mesoscale technique was unable to model the hydrophilic drug (isoniazid) encapsulation (4–9% of the initial drug level) which was observed in experiments. Molecular dynamics simulations using the MARTINI force field indicated that the self-assembly of GCPQ is rapid, with propofol residing at the interface between micellar hydrophobic and hydrophilic groups, and that there is a heterogeneous distribution of propofol within the GCPQ micelle population. GCPQ–propofol experiments also revealed a population of relatively empty and drug-filled GCPQ particles. PMID:20519214

  20. A comparison of Fick and Maxwell-Stefan diffusion formulations in PEMFC gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Lindstrom, Michael; Wetton, Brian

    2017-01-01

    This paper explores the mathematical formulations of Fick and Maxwell-Stefan diffusion in the context of polymer electrolyte membrane fuel cell cathode gas diffusion layers. The simple Fick law with a diagonal diffusion matrix is an approximation of Maxwell-Stefan. Formulations of diffusion combined with mass-averaged Darcy flow are considered for three component gases. For this application, the formulations can be compared computationally in a simple, one dimensional setting. Despite the models' seemingly different structure, it is observed that the predictions of the formulations are very similar on the cathode when air is used as oxidant. The two formulations give quite different results when the Nitrogen in the air oxidant is replaced by helium (this is often done as a diagnostic for fuel cells designs). The two formulations also give quite different results for the anode with a dilute Hydrogen stream. These results give direction to when Maxwell-Stefan diffusion, which is more complicated to implement computationally in many codes, should be used in fuel cell simulations.

  1. Undefined cellulase formulations hinder scientific reproducibility

    DOE PAGES

    Himmel, Michael E.; Abbas, Charles A.; Baker, John O.; ...

    2017-11-28

    In the shadow of a burgeoning biomass-to-fuels industry, biological conversion of lignocellulose to fermentable sugars in a cost-effective manner is key to the success of second-generation and advanced biofuel production. For the effective comparison of one cellulase preparation to another, cellulase assays are typically carried out with one or more engineered cellulase formulations or natural exoproteomes of known performance serving as positive controls. When these formulations have unknown composition, as is the case with several widely used commercial products, it becomes impossible to compare or reproduce work done today to work done in the future, where, for example, such preparationsmore » may not be available. Therefore, being a critical tenet of science publishing, experimental reproducibility is endangered by the continued use of these undisclosed products. We propose the introduction of standard procedures and materials to produce specific and reproducible cellulase formulations. These formulations are to serve as yardsticks to measure improvements and performance of new cellulase formulations.« less

  2. Undefined cellulase formulations hinder scientific reproducibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himmel, Michael E.; Abbas, Charles A.; Baker, John O.

    In the shadow of a burgeoning biomass-to-fuels industry, biological conversion of lignocellulose to fermentable sugars in a cost-effective manner is key to the success of second-generation and advanced biofuel production. For the effective comparison of one cellulase preparation to another, cellulase assays are typically carried out with one or more engineered cellulase formulations or natural exoproteomes of known performance serving as positive controls. When these formulations have unknown composition, as is the case with several widely used commercial products, it becomes impossible to compare or reproduce work done today to work done in the future, where, for example, such preparationsmore » may not be available. Therefore, being a critical tenet of science publishing, experimental reproducibility is endangered by the continued use of these undisclosed products. We propose the introduction of standard procedures and materials to produce specific and reproducible cellulase formulations. These formulations are to serve as yardsticks to measure improvements and performance of new cellulase formulations.« less

  3. A gauged finite-element potential formulation for accurate inductive and galvanic modelling of 3-D electromagnetic problems

    NASA Astrophysics Data System (ADS)

    Ansari, S. M.; Farquharson, C. G.; MacLachlan, S. P.

    2017-07-01

    In this paper, a new finite-element solution to the potential formulation of the geophysical electromagnetic (EM) problem that explicitly implements the Coulomb gauge, and that accurately computes the potentials and hence inductive and galvanic components, is proposed. The modelling scheme is based on using unstructured tetrahedral meshes for domain subdivision, which enables both realistic Earth models of complex geometries to be considered and efficient spatially variable refinement of the mesh to be done. For the finite-element discretization edge and nodal elements are used for approximating the vector and scalar potentials respectively. The issue of non-unique, incorrect potentials from the numerical solution of the usual incomplete-gauged potential system is demonstrated for a benchmark model from the literature that uses an electric-type EM source, through investigating the interface continuity conditions for both the normal and tangential components of the potential vectors, and by showing inconsistent results obtained from iterative and direct linear equation solvers. By explicitly introducing the Coulomb gauge condition as an extra equation, and by augmenting the Helmholtz equation with the gradient of a Lagrange multiplier, an explicitly gauged system for the potential formulation is formed. The solution to the discretized form of this system is validated for the above-mentioned example and for another classic example that uses a magnetic EM source. In order to stabilize the iterative solution of the gauged system, a block diagonal pre-conditioning scheme that is based upon the Schur complement of the potential system is used. For all examples, both the iterative and direct solvers produce the same responses for the potentials, demonstrating the uniqueness of the numerical solution for the potentials and fixing the problems with the interface conditions between cells observed for the incomplete-gauged system. These solutions of the gauged system also

  4. Formulation development and comparative in vitro study of metoprolol tartrate (IR) tablets.

    PubMed

    Husain, Tazeen; Shoaib, Muhammad Harris; Yousuf, Rabia Ismail; Maboos, Madiha; Khan, Madeeha; Bashir, Lubna; Naz, Shazia

    2016-05-01

    The objective of the present work was to develop Immediate Release (IR) tablets of Metoprolol Tartrate (MT) and to compare trial formulations to a reference product. Six formulations (F1-F6) were designed using central composite method and compared to a reference brand (A). Two marketed products (brands B and C) were also evaluated. F1-F6 were prepared with Avicel PH101 (filler), Crospovidone (disintegrant) and Magnesium Stearate (lubricant) by direct compression. Pharmacopoeial and non-pharmacopoeial methods were used to assess their quality. Furthermore, drug profiles were characterized using model dependent and independent (f(2)) approaches. Brands B and C and F5 and F6 did not qualify the tests for content uniformity. Moreover, brand B did not meet weight variation criteria and brand C did not satisfy requirements for single point dissolution test. Of the trial formulations, F2 failed the test for uniformity in thickness while F4 did not disintegrate within time limit. Only F1 and F3 met all quality parameters and were subjected to accelerated stability testing without significant alterations in their physicochemical characteristics. Based on AIC and r(2)(adjusted) values obtained by applying various kinetic models, drug release was determined to most closely follow Hixson-Crowell cube root law. F1 was determined to be the optimized formulation.

  5. A Mathematical Formulation of the SCOLE Control Problem. Part 2: Optimal Compensator Design

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1988-01-01

    The study initiated in Part 1 of this report is concluded and optimal feedback control (compensator) design for stability augmentation is considered, following the mathematical formulation developed in Part 1. Co-located (rate) sensors and (force and moment) actuators are assumed, and allowing for both sensor and actuator noise, stabilization is formulated as a stochastic regulator problem. Specializing the general theory developed by the author, a complete, closed form solution (believed to be new with this report) is obtained, taking advantage of the fact that the inherent structural damping is light. In particular, it is possible to solve in closed form the associated infinite-dimensional steady-state Riccati equations. The SCOLE model involves associated partial differential equations in a single space variable, but the compensator design theory developed is far more general since it is given in the abstract wave equation formulation. The results thus hold for any multibody system so long as the basic model is linear.

  6. Development of poloxamer gel formulations via hot-melt extrusion technology.

    PubMed

    Mendonsa, Nicole S; Murthy, S Narasimha; Hashemnejad, Seyed Meysam; Kundu, Santanu; Zhang, Feng; Repka, Michael A

    2018-02-15

    Poloxamer gels are conventionally prepared by the "hot" or the "cold" process. But these techniques have some disadvantages such as high energy consumption, requires expensive equipment and often have scale up issues. Therefore, the objective of this work was to develop poloxamer gels by hot-melt extrusion technology. The model drug selected was ketoprofen. The formulations developed were 30% and 40% poloxamer gels. Of these formulations, the 30% poloxamer gels were selected as ideal gels. DSC and XRD studies showed an amorphous nature of the drug after extrusion. It was observed from the permeation studies that with increasing poloxamer concentration, a decrease in drug permeation was obtained. Other studies conducted for the formulations included in-vitro release studies, texture analysis, rheological studies and pH measurements. In conclusion, the hot-melt extrusion technology could be successfully employed to develop poloxamer gels by overcoming the drawbacks associated with the conventional techniques. Published by Elsevier B.V.

  7. New formulation of the laws of reflection of light

    NASA Astrophysics Data System (ADS)

    Pérez, Ángel Luis; Martínez, Guadalupe; Suero, María. Isabel

    2013-11-01

    A new formulation of the laws of reflection of light based on the particle model is presented, and it is shown the equivalence between the new and the classic formulations. The proposed formulation has a significant educational value, as it allows drawing analogies between the phenomena of light reflection and elastic collisions, which are very well known by students. The proposed formulation is: "If at one point on a surface whose orientation in space is defined by a unit vector k, strikes an incident ray corresponding to a plane wave (propagating through a homogeneous and isotropic medium) whose direction of propagation coincides with that from a unit vector ui [expressed in terms of its components with respect to an orthonormal coordinate system, with one of its axis coinciding with the direction of k (ui = uix i + uiy j + uiz k)], it will be reflected so that the unit vector whose direction coincides with that from the reflected ray, ur, will only differ from the unit vector whose direction coincides with that from the incident ray, in the change of the sign of the component in the direction of k (ur = uix i + uiy j - uiz k)". Stated in everyday language, is equivalent of saying that the reflection of light occurs as if the photons underwent perfectly elastic collisions with the surface in question. As an example, this formulation is applied for the resolution of the classic reflection problem of the three plane mirrors forming a trirectangular trihedron.

  8. Stress Formulation in Three-Dimensional Elasticity

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.

    2001-01-01

    The theory of elasticity evolved over centuries through the contributions of eminent scientists like Cauchy, Navier, Hooke Saint Venant, and others. It was deemed complete when Saint Venant provided the strain formulation in 1860. However, unlike Cauchy, who addressed equilibrium in the field and on the boundary, the strain formulation was confined only to the field. Saint Venant overlooked the compatibility on the boundary. Because of this deficiency, a direct stress formulation could not be developed. Stress with traditional methods must be recovered by backcalculation: differentiating either the displacement or the stress function. We have addressed the compatibility on the boundary. Augmentation of these conditions has completed the stress formulation in elasticity, opening up a way for a direct determination of stress without the intermediate step of calculating the displacement or the stress function. This Completed Beltrami-Michell Formulation (CBMF) can be specialized to derive the traditional methods, but the reverse is not possible. Elasticity solutions must be verified for the compliance of the new equation because the boundary compatibility conditions expressed in terms of displacement are not trivially satisfied. This paper presents the variational derivation of the stress formulation, illustrates the method, examines attributes and benefits, and outlines the future course of research.

  9. Formulation and Characterization of Benzoyl Peroxide Gellified Emulsions

    PubMed Central

    Thakur, Naresh Kumar; Bharti, Pratibha; Mahant, Sheefali; Rao, Rekha

    2012-01-01

    The present investigation was carried out with the objective of formulating a gellified emulsion of benzoyl peroxide, an anti-acne agent. The formulations were prepared using four different vegetable oils, viz. almond oil, jojoba oil, sesame oil, and wheat germ oil, owing to their emollient properties. The idea was to overcome the skin irritation and dryness caused by benzoyl peroxide, making the formulation more tolerable. The gellified emulsions were characterized for their homogeneity, rheology, spreadability, drug content, and stability. In vitro permeation studies were performed to check the drug permeation through rat skin. The formulations were evaluated for their antimicrobial activity, as well as their acute skin irritation potential. The results were compared with those obtained for the marketed formulation. Later, the histopathological examination of the skin treated with various formulations was carried out. Formulation F3 was found to have caused a very mild dysplastic change to the epidermis. On the other hand, the marketed formulation led to the greatest dysplastic change. Hence, it was concluded that formulation F3, containing sesame oil (6%w/w), was the optimized formulation. It exhibited the maximum drug release and anti-microbial activity, in addition to the least skin irritation potential. PMID:23264949

  10. Enhanced photodynamic activity of hypericin by penetration enhancer N-methyl pyrrolidone formulations in the chick chorioallantoic membrane model.

    PubMed

    Saw, Constance Lay Lay; Heng, Paul Wan Sia; Chin, William Wei Lim; Soo, Khee Chee; Olivo, Malini

    2006-07-08

    Hypericin (HY) was examined for photodynamic therapy (PDT)-induced vascular damage using the chick chorioallantoic membrane (CAM) model. Clinically, plasma protein was used to solubilize HY. Upon binding to albumin, free HY available to be transported through the membrane may be limited. Hence, formulations containing a biocompatible solvent, N-Methyl pyrrolidone (NMP), have the potential to enhance HY delivery into solid tumors. At suitable concentrations, NMP and/or light irradiation did not produce antivascular damage. Hypericin-PDT effects showed to be HY and NMP concentrations-dependent. These findings indicate that NMP is a promising solvent and penetration enhancer for HY-PDT clinical applications.

  11. A hybrid formulation for the numerical simulation of condensed phase explosives

    NASA Astrophysics Data System (ADS)

    Michael, L.; Nikiforakis, N.

    2016-07-01

    In this article we present a new formulation and an associated numerical algorithm, for the simulation of combustion and transition to detonation of condensed-phase commercial- and military-grade explosives, which are confined by (or in general interacting with one or more) compliant inert materials. Examples include confined rate-stick problems and interaction of shock waves with gas cavities or solid particles in explosives. This formulation is based on an augmented Euler approach to account for the mixture of the explosive and its products, and a multi-phase diffuse interface approach to solve for the immiscible interaction between the mixture and the inert materials, so it is in essence a hybrid (augmented Euler and multi-phase) model. As such, it has many of the desirable features of the two approaches and, critically for our applications of interest, it provides the accurate recovery of temperature fields across all components. Moreover, it conveys a lot more physical information than augmented Euler, without the complexity of full multi-phase Baer-Nunziato-type models or the lack of robustness of augmented Euler models in the presence of more than two components. The model can sustain large density differences across material interfaces without the presence of spurious oscillations in velocity and pressure, and it can accommodate realistic equations of state and arbitrary (pressure- or temperature-based) reaction-rate laws. Under certain conditions, we show that the formulation reduces to well-known augmented Euler or multi-phase models, which have been extensively validated and used in practice. The full hybrid model and its reduced forms are validated against problems with exact (or independently-verified numerical) solutions and evaluated for robustness for rate-stick and shock-induced cavity collapse case-studies.

  12. Formulation of D-brane Dynamics

    NASA Astrophysics Data System (ADS)

    Evans, Thomas

    2012-03-01

    It is the purpose of this paper (within the context of STS rules & guidelines ``research report'') to formulate a statistical-mechanical form of D-brane dynamics. We consider first the path integral formulation of quantum mechanics, and extend this to a path-integral formulation of D-brane mechanics, summing over all the possible path integral sectors of R-R, NS charged states. We then investigate this generalization utilizing a path-integral formulation summing over all the possible path integral sectors of R-R charged states, calculated from the mean probability tree-level amplitude of type I, IIA, and IIB strings, serving as a generalization of all strings described by D-branes. We utilize this generalization to study black holes in regimes where the initial D-brane system is legitimate, and further this generalization to look at information loss near regions of nonlocality on a non-ordinary event horizon. We see here that in these specific regimes, we can calculate a path integral formulation, as describing D0-brane mechanics, tracing the dissipation of entropy throughout the event horizon. This is used to study the information paradox, and to propose a resolution between the phenomena and the correct and expected quantum mechanical description. This is done as our path integral throughout entropy entering the event horizon effectively and correctly encodes the initial state in subtle correlations in the Hawking radiation.

  13. A displacement-based finite element formulation for incompressible and nearly-incompressible cardiac mechanics

    PubMed Central

    Hadjicharalambous, Myrianthi; Lee, Jack; Smith, Nicolas P.; Nordsletten, David A.

    2014-01-01

    The Lagrange Multiplier (LM) and penalty methods are commonly used to enforce incompressibility and compressibility in models of cardiac mechanics. In this paper we show how both formulations may be equivalently thought of as a weakly penalized system derived from the statically condensed Perturbed Lagrangian formulation, which may be directly discretized maintaining the simplicity of penalty formulations with the convergence characteristics of LM techniques. A modified Shamanskii–Newton–Raphson scheme is introduced to enhance the nonlinear convergence of the weakly penalized system and, exploiting its equivalence, modifications are developed for the penalty form. Focusing on accuracy, we proceed to study the convergence behavior of these approaches using different interpolation schemes for both a simple test problem and more complex models of cardiac mechanics. Our results illustrate the well-known influence of locking phenomena on the penalty approach (particularly for lower order schemes) and its effect on accuracy for whole-cycle mechanics. Additionally, we verify that direct discretization of the weakly penalized form produces similar convergence behavior to mixed formulations while avoiding the use of an additional variable. Combining a simple structure which allows the solution of computationally challenging problems with good convergence characteristics, the weakly penalized form provides an accurate and efficient alternative to incompressibility and compressibility in cardiac mechanics. PMID:25187672

  14. A displacement-based finite element formulation for incompressible and nearly-incompressible cardiac mechanics.

    PubMed

    Hadjicharalambous, Myrianthi; Lee, Jack; Smith, Nicolas P; Nordsletten, David A

    2014-06-01

    The Lagrange Multiplier (LM) and penalty methods are commonly used to enforce incompressibility and compressibility in models of cardiac mechanics. In this paper we show how both formulations may be equivalently thought of as a weakly penalized system derived from the statically condensed Perturbed Lagrangian formulation, which may be directly discretized maintaining the simplicity of penalty formulations with the convergence characteristics of LM techniques. A modified Shamanskii-Newton-Raphson scheme is introduced to enhance the nonlinear convergence of the weakly penalized system and, exploiting its equivalence, modifications are developed for the penalty form. Focusing on accuracy, we proceed to study the convergence behavior of these approaches using different interpolation schemes for both a simple test problem and more complex models of cardiac mechanics. Our results illustrate the well-known influence of locking phenomena on the penalty approach (particularly for lower order schemes) and its effect on accuracy for whole-cycle mechanics. Additionally, we verify that direct discretization of the weakly penalized form produces similar convergence behavior to mixed formulations while avoiding the use of an additional variable. Combining a simple structure which allows the solution of computationally challenging problems with good convergence characteristics, the weakly penalized form provides an accurate and efficient alternative to incompressibility and compressibility in cardiac mechanics.

  15. Filling of High-Concentration Monoclonal Antibody Formulations into Pre-filled Syringes: Investigating Formulation-Nozzle Interactions To Minimize Nozzle Clogging.

    PubMed

    Shieu, Wendy; Stauch, Oliver B; Maa, Yuh-Fun

    2015-01-01

    Syringe filling of high-concentration/viscosity monoclonal antibody formulations is a complex process that is not fully understood. This study, which builds on a previous investigation that used a bench-top syringe filling unit to examine formulation drying at the filling nozzle tip and subsequent nozzle clogging, further explores the impact of formulation-nozzle material interactions on formulation drying and nozzle clogging. Syringe-filling nozzles made of glass, stainless steel, or plastic (polypropylene, silicone, and Teflon®), which represent a full range of materials with hydrophilic and hydrophobic properties as quantified by contact angle measurements, were used to fill liquids of different viscosity, including a high-concentration monoclonal antibody formulation. Compared with hydrophilic nozzles, hydrophobic nozzles offered two unique features that discouraged formulation drying and nozzle clogging: (1) the liquid formulation is more likely to be withdrawn into the hydrophobic nozzle under the same suck-back conditions, and (2) the residual liquid film left on the nozzle wall when using high suck-back settings settles to form a liquid plug away from the hydrophobic nozzle tip. Making the tip of the nozzle hydrophobic (silicone-coating on glass and Teflon-coating stainless steel) could achieve the same suck-back performance as plastic nozzles. This study demonstrated that using hydrophobic nozzles are most effective in reducing the risk of nozzle clogging by drying of high-concentration monoclonal antibody formulation during extended nozzle idle time in a large-scale filling facility and environment. Syringe filling is a well-established manufacturing process and has been implemented by numerous contract manufacturing organizations and biopharmaceutical companies. However, its technical details and associated critical process parameters are rarely published. Information on high-concentration/viscosity formulation filling is particularly lacking. This

  16. Characterization of Protein-Excipient Microheterogeneity in Biopharmaceutical Solid-State Formulations by Confocal Fluorescence Microscopy.

    PubMed

    Koshari, Stijn H S; Ross, Jean L; Nayak, Purnendu K; Zarraga, Isidro E; Rajagopal, Karthikan; Wagner, Norman J; Lenhoff, Abraham M

    2017-02-06

    Protein-stabilizer microheterogeneity is believed to influence long-term protein stability in solid-state biopharmaceutical formulations and its characterization is therefore essential for the rational design of stable formulations. However, the spatial distribution of the protein and the stabilizer in a solid-state formulation is, in general, difficult to characterize because of the lack of a functional, simple, and reliable characterization technique. We demonstrate the use of confocal fluorescence microscopy with fluorescently labeled monoclonal antibodies (mAbs) and antibody fragments (Fabs) to directly visualize three-dimensional particle morphologies and protein distributions in dried biopharmaceutical formulations, without restrictions on processing conditions or the need for extensive data analysis. While industrially relevant lyophilization procedures of a model IgG1 mAb generally lead to uniform protein-excipient distribution, the method shows that specific spray-drying conditions lead to distinct protein-excipient segregation. Therefore, this method can enable more definitive optimization of formulation conditions than has previously been possible.

  17. Formulating the Rasch Differential Item Functioning Model under the Marginal Maximum Likelihood Estimation Context and Its Comparison with Mantel-Haenszel Procedure in Short Test and Small Sample Conditions

    ERIC Educational Resources Information Center

    Paek, Insu; Wilson, Mark

    2011-01-01

    This study elaborates the Rasch differential item functioning (DIF) model formulation under the marginal maximum likelihood estimation context. Also, the Rasch DIF model performance was examined and compared with the Mantel-Haenszel (MH) procedure in small sample and short test length conditions through simulations. The theoretically known…

  18. Curcumin and its topical formulations for wound healing applications.

    PubMed

    Mohanty, Chandana; Sahoo, Sanjeeb K

    2017-10-01

    Oxidative damage and inflammation have been identified, through clinical and preclinical studies, as the main causes of nonhealing chronic wounds. Reduction of persistent chronic inflammation by application of antioxidant and anti-inflammatory agents such as curcumin has been well studied. However, low aqueous solubility, poor tissue absorption, rapid metabolism and short plasma half-life have made curcumin unsuitable for systemic administration for better wound healing. Recently, various topical formulations of curcumin such as films, fibers, emulsion, hydrogels and different nanoformulations have been developed for targeted delivery of curcumin at wounded sites. In this review, we summarize and discuss different topical formulations of curcumin with emphasis on their wound-healing properties in animal models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Physico-chemical separation process of nanoparticles in cosmetic formulations

    NASA Astrophysics Data System (ADS)

    Retamal Marín, R. R.; Babick, F.; Stintz, M.

    2017-06-01

    Understanding the world of nanoparticles, especially their interactions with the environment, begins with their correct detection and successive quantification. To achieve this purpose, one needs to perform correctly developed standard operating procedures (SOPs). Furthermore, the study of nanoparticles frequently requires their characterisation in complex media (e.g. in cosmetic formulations). In this study, a set of sample preparation procedures for the detection and extraction of NMs in emulsion-based formulations is proposed and their performance for model and real-life products is discussed. A separation or extraction of lipid phases is achieved by means of organic solvents. The polarity of the lipid phases is decisive for selecting an optimum solvent. The use of the Hansen Solubility Parameters (HSP) may clearly support this decision.

  20. Formulation, Preparation, and Characterization of Polyurethane Foams

    ERIC Educational Resources Information Center

    Pinto, Moises L.

    2010-01-01

    Preparation of laboratory-scale polyurethane foams is described with formulations that are easy to implement in experiments for undergraduate students. Particular attention is given to formulation aspects that are based on the main chemical reactions occurring in polyurethane production. This allows students to develop alternative formulations to…

  1. Current advances on polynomial resultant formulations

    NASA Astrophysics Data System (ADS)

    Sulaiman, Surajo; Aris, Nor'aini; Ahmad, Shamsatun Nahar

    2017-08-01

    Availability of computer algebra systems (CAS) lead to the resurrection of the resultant method for eliminating one or more variables from the polynomials system. The resultant matrix method has advantages over the Groebner basis and Ritt-Wu method due to their high complexity and storage requirement. This paper focuses on the current resultant matrix formulations and investigates their ability or otherwise towards producing optimal resultant matrices. A determinantal formula that gives exact resultant or a formulation that can minimize the presence of extraneous factors in the resultant formulation is often sought for when certain conditions that it exists can be determined. We present some applications of elimination theory via resultant formulations and examples are given to explain each of the presented settings.

  2. Formulation and in vitro evaluation of sustained release matrix tablets using cross-linked natural gum.

    PubMed

    Jamil, Qurratul Ain; Masood, Muhammad Irfan; Jamil, Muhammad Nauman; Masood, Imran; Iqbal, Shahid Muhammad

    2017-03-01

    Polysaccharide gums because of their biocompatibility, biodegradability and non-immunogenic properties are considered as the best choice for preparing sustained release tablets as compared to their synthetic counterpart. The cross linking of natural gums in matrix tablets increase the sustained release property of matrix tablets. Isoniazid is a first line therapy of tuberculosis, belongs to BCS I with half-life of 3-4 hours. These characteristics make isoniazid a good candidate for sustained release dosage form. Karaya gum crossed linked with trisodium tri metaphosphate was used as release rate retardant for preparing isoniazid cross-linked matrix tablet. Total 8 sustained release formulations were prepared. Both granules and tablets were evaluated under in vitro condition against different parameters. Dissolution studies were performed with all eight formulations for 12 hours using USP apparatus I. Four formulations designated as F1, F2, F3, F4 have drug and karaya gum while other four formulations F5, F6, F7, F8 have drug and crossed linked polymer in ratios of 1:1, 1:2, 1:3 and 1:4 respectively. Dissolution data was analyzed by using different kinetic models. Best fit model for most efficient formulation was zero order while release mechanism was super case I. Formulation 8 showed sufficiently slow release kinetics and about 83% of drug was released in 10 hours, indicating that cross-linked karaya gum proved efficient in preparing sustained release tablets.

  3. Automatic query formulations in information retrieval.

    PubMed

    Salton, G; Buckley, C; Fox, E A

    1983-07-01

    Modern information retrieval systems are designed to supply relevant information in response to requests received from the user population. In most retrieval environments the search requests consist of keywords, or index terms, interrelated by appropriate Boolean operators. Since it is difficult for untrained users to generate effective Boolean search requests, trained search intermediaries are normally used to translate original statements of user need into useful Boolean search formulations. Methods are introduced in this study which reduce the role of the search intermediaries by making it possible to generate Boolean search formulations completely automatically from natural language statements provided by the system patrons. Frequency considerations are used automatically to generate appropriate term combinations as well as Boolean connectives relating the terms. Methods are covered to produce automatic query formulations both in a standard Boolean logic system, as well as in an extended Boolean system in which the strict interpretation of the connectives is relaxed. Experimental results are supplied to evaluate the effectiveness of the automatic query formulation process, and methods are described for applying the automatic query formulation process in practice.

  4. High-order accurate finite-volume formulations for the pressure gradient force in layered ocean models

    NASA Astrophysics Data System (ADS)

    Engwirda, Darren; Kelley, Maxwell; Marshall, John

    2017-08-01

    Discretisation of the horizontal pressure gradient force in layered ocean models is a challenging task, with non-trivial interactions between the thermodynamics of the fluid and the geometry of the layers often leading to numerical difficulties. We present two new finite-volume schemes for the pressure gradient operator designed to address these issues. In each case, the horizontal acceleration is computed as an integration of the contact pressure force that acts along the perimeter of an associated momentum control-volume. A pair of new schemes are developed by exploring different control-volume geometries. Non-linearities in the underlying equation-of-state definitions and thermodynamic profiles are treated using a high-order accurate numerical integration framework, designed to preserve hydrostatic balance in a non-linear manner. Numerical experiments show that the new methods achieve high levels of consistency, maintaining hydrostatic and thermobaric equilibrium in the presence of strongly-sloping layer geometries, non-linear equations-of-state and non-uniform vertical stratification profiles. These results suggest that the new pressure gradient formulations may be appropriate for general circulation models that employ hybrid vertical coordinates and/or terrain-following representations.

  5. Important aspects in the formulation of solid-fluid debris-flow models. Part I. Thermodynamic implications

    NASA Astrophysics Data System (ADS)

    Hutter, Kolumban; Schneider, Lukas

    2010-06-01

    This article points at some critical issues which are connected with the theoretical formulation of the thermodynamics of solid-fluid mixtures of frictional materials. It is our view that a complete thermodynamic exploitation of the second law of thermodynamics is necessary to obtain the proper parameterizations of the constitutive quantities in such theories. These issues are explained in detail in a recently published book by Schneider and Hutter (Solid-Fluid Mixtures of Frictional Materials in Geophysical and Geotechnical Context, 2009), which we wish to advertize with these notes. The model is a saturated mixture of an arbitrary number of solid and fluid constituents which may be compressible or density preserving, which exhibit visco-frictional (visco-hypoplastic) behavior, but are all subject to the same temperature. Mass exchange between the constituents may account for particle size separation and phase changes due to fragmentation and abrasion. Destabilization of a saturated soil mass from the pre- and the post-critical phases of a catastrophic motion from initiation to deposition is modeled by symmetric tensorial variables which are related to the rate independent parts of the constituent stress tensors.

  6. Development and experimental design of a novel controlled-release matrix tablet formulation for indapamide hemihydrate.

    PubMed

    Antovska, Packa; Ugarkovic, Sonja; Petruševski, Gjorgji; Stefanova, Bosilka; Manchevska, Blagica; Petkovska, Rumenka; Makreski, Petre

    2017-11-01

    Development, experimental design and in vitro in vivo correlation (IVIVC) of controlled-release matrix formulation. Development of novel oral controlled delivery system for indapamide hemihydrate, optimization of the formulation by experimental design and evaluation regarding IVIVC on a pilot scale batch as a confirmation of a well-established formulation. In vitro dissolution profiles of controlled-release tablets of indapamide hemihydrate from four different matrices had been evaluated in comparison to the originator's product Natrilix (Servier) as a direction for further development and optimization of a hydroxyethylcellulose-based matrix controlled-release formulation. A central composite factorial design had been applied for the optimization of a chosen controlled-release tablet formulation. The controlled-release tablets with appropriate physical and technological properties had been obtained with a matrix: binder concentration variations in the range: 20-40w/w% for the matrix and 1-3w/w% for the binder. The experimental design had defined the design space for the formulation and was prerequisite for extraction of a particular formulation that would be a subject for transfer on pilot scale and IVIV correlation. The release model of the optimized formulation has shown best fit to the zero order kinetics depicted with the Hixson-Crowell erosion-dependent mechanism of release. Level A correlation was obtained.

  7. Anthrax vaccine antigen-adjuvant formulations completely protect New Zealand white rabbits against challenge with Bacillus anthracis Ames strain spores.

    PubMed

    Peachman, Kristina K; Li, Qin; Matyas, Gary R; Shivachandra, Sathish B; Lovchik, Julie; Lyons, Rick C; Alving, Carl R; Rao, Venigalla B; Rao, Mangala

    2012-01-01

    In an effort to develop an improved anthrax vaccine that shows high potency, five different anthrax protective antigen (PA)-adjuvant vaccine formulations that were previously found to be efficacious in a nonhuman primate model were evaluated for their efficacy in a rabbit pulmonary challenge model using Bacillus anthracis Ames strain spores. The vaccine formulations include PA adsorbed to Alhydrogel, PA encapsulated in liposomes containing monophosphoryl lipid A, stable liposomal PA oil-in-water emulsion, PA displayed on bacteriophage T4 by the intramuscular route, and PA mixed with Escherichia coli heat-labile enterotoxin administered by the needle-free transcutaneous route. Three of the vaccine formulations administered by the intramuscular or the transcutaneous route as a three-dose regimen induced 100% protection in the rabbit model. One of the formulations, liposomal PA, also induced significantly higher lethal toxin neutralizing antibodies than PA-Alhydrogel. Even 5 months after the second immunization of a two-dose regimen, rabbits vaccinated with liposomal PA were 100% protected from lethal challenge with Ames strain spores. In summary, the needle-free skin delivery and liposomal formulation that were found to be effective in two different animal model systems appear to be promising candidates for next-generation anthrax vaccine development.

  8. Evaluation of the existing triple point path models with new experimental data: proposal of an original empirical formulation

    NASA Astrophysics Data System (ADS)

    Boutillier, J.; Ehrhardt, L.; De Mezzo, S.; Deck, C.; Magnan, P.; Naz, P.; Willinger, R.

    2018-03-01

    With the increasing use of improvised explosive devices (IEDs), the need for better mitigation, either for building integrity or for personal security, increases in importance. Before focusing on the interaction of the shock wave with a target and the potential associated damage, knowledge must be acquired regarding the nature of the blast threat, i.e., the pressure-time history. This requirement motivates gaining further insight into the triple point (TP) path, in order to know precisely which regime the target will encounter (simple reflection or Mach reflection). Within this context, the purpose of this study is to evaluate three existing TP path empirical models, which in turn are used in other empirical models for the determination of the pressure profile. These three TP models are the empirical function of Kinney, the Unified Facilities Criteria (UFC) curves, and the model of the Natural Resources Defense Council (NRDC). As discrepancies are observed between these models, new experimental data were obtained to test their reliability and a new promising formulation is proposed for scaled heights of burst ranging from 24.6-172.9 cm/kg^{1/3}.

  9. Electrically atomised formulations of timolol maleate for direct and on-demand ocular lens coatings.

    PubMed

    Mehta, Prina; Al-Kinani, Ali A; Haj-Ahmad, Rita; Arshad, Muhammad Sohail; Chang, Ming-Wei; Alany, Raid G; Ahmad, Zeeshan

    2017-10-01

    Advances in nanotechnology have enabled solutions for challenging drug delivery targets. While the eye presents numerous emerging opportunities for delivery, analysis and sensing; issues persist for conventional applications. This includes liquid phase formulation localisation on the ocular surface once administered as formulated eye-drops; with the vast majority of dosage (>90%) escaping from the administered site due to tear production and various drainage mechanisms. The work presented here demonstrates a single needle electrohydrodynamic (EHD) engineering process to nano-coat (as an on demand and controllable fiber depositing method) the surface of multiple contact lenses rendering formulations to be stationary on the lens and at the bio-interface. The coating process was operational based on ejected droplet charge and glaucoma drug timolol maleate (TM) was used to demonstrate surface coating optimisation, bio-surface permeation properties (flux, using a bovine model) and various kinetic models thereafter. Polymers PVP, PNIPAM and PVP:PNIPAM (50:50%w/w) were used to encapsulate the active. Nano-fibrous and particulate samples were characterised using SEM, FTIR, DSC and TGA to confirm structural and thermal stability of surface coated formulations. More than 52% of nano-structured coatings (for all formulations) were <200nm in diameter. In vitro studies show coatings to exhibit biphasic release profiles; an initial burst release followed by sustained release; with TM-loaded PNIPAM coating releasing most drug after 24h (89.8%). Kinetic modelling (Higuchi, Korsmeyer-Peppas) was indicative of quasi-Fickian diffusion whilst biological evaluation demonstrates adequate ocular tolerability. Results from permeation studies indicate coated lenses are ideal to reduce dosing regimen, which in turn will reduce systemic drug absorption. Florescent microscopy demonstrated probe and probe embedded coating behaviour from lens surface in vitro. The multiple lens surface coating

  10. Decontamination formulations for disinfection and sterilization

    DOEpatents

    Tucker, Mark D.; Engler, Daniel E.

    2007-09-18

    Aqueous decontamination formulations that neutralize biological pathogens for disinfection and sterilization applications. Examples of suitable applications include disinfection of food processing equipment, disinfection of areas containing livestock, mold remediation, sterilization of medical instruments and direct disinfection of food surfaces, such as beef carcasses. The formulations include at least one reactive compound, bleaching activator, inorganic base, and water. The formulations can be packaged as a two-part kit system, and can have a pH value in the range of 7-8.

  11. Head-To-Head Comparison of Different Solubility-Enabling Formulations of Etoposide and Their Consequent Solubility-Permeability Interplay.

    PubMed

    Beig, Avital; Miller, Jonathan M; Lindley, David; Carr, Robert A; Zocharski, Philip; Agbaria, Riad; Dahan, Arik

    2015-09-01

    The purpose of this study was to conduct a head-to-head comparison of different solubility-enabling formulations, and their consequent solubility-permeability interplay. The low-solubility anticancer drug etoposide was formulated in several strengths of four solubility-enabling formulations: hydroxypropyl-β-cyclodextrin, the cosolvent polyethylene glycol 400 (PEG-400), the surfactant sodium lauryl sulfate, and an amorphous solid dispersion formulation. The ability of these formulations to increase the solubility of etoposide was investigated, followed by permeability studies using the parallel artificial membrane permeability assay (PAMPA) and examination of the consequent solubility-permeability interplay. All formulations significantly increased etoposide's apparent solubility. The cyclodextrin-, surfactant-, and cosolvent-based formulations resulted in a concomitant decreased permeability that could be modeled directly from the proportional increase in the apparent solubility. On the contrary, etoposide permeability remained constant when using the ASD formulation, irrespective of the increased apparent solubility provided by the formulation. In conclusion, supersaturation resulting from the amorphous form overcomes the solubility-permeability tradeoff associated with other formulation techniques. Accounting for the solubility-permeability interplay may allow to develop better solubility-enabling formulations, thereby maximizing the overall absorption of lipophilic orally administered drugs. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Drug nanoparticles: formulating poorly water-soluble compounds.

    PubMed

    Merisko-Liversidge, Elaine M; Liversidge, Gary G

    2008-01-01

    More than 40% of compounds identified through combinatorial screening programs are poorly soluble in water. These molecules are difficult to formulate using conventional approaches and are associated with innumerable formulation-related performance issues. Formulating these compounds as pure drug nanoparticles is one of the newer drug-delivery strategies applied to this class of molecules. Nanoparticle dispersions are stable and have a mean diameter of less than 1 micron. The formulations consist of water, drug, and one or more generally regarded as safe excipients. These liquid dispersions exhibit an acceptable shelf-life and can be postprocessed into various types of solid dosage forms. Drug nanoparticles have been shown to improve bioavailability and enhance drug exposure for oral and parenteral dosage forms. Suitable formulations for the most commonly used routes of administration can be identified with milligram quantities of drug substance, providing the discovery scientist with an alternate avenue for screening and identifying superior analogs. For the toxicologist, the approach provides a means for dose escalation using a formulation that is commercially viable. In the past few years, formulating poorly water-soluble compounds using a nanoparticulate approach has evolved from a conception to a realization whose versatility and applicability are just beginning to be realized.

  13. Evidence-informed policy formulation and implementation: a comparative case study of two national policies for improving health and social care in Sweden.

    PubMed

    Strehlenert, H; Richter-Sundberg, L; Nyström, M E; Hasson, H

    2015-12-08

    Evidence has come to play a central role in health policymaking. However, policymakers tend to use other types of information besides research evidence. Most prior studies on evidence-informed policy have focused on the policy formulation phase without a systematic analysis of its implementation. It has been suggested that in order to fully understand the policy process, the analysis should include both policy formulation and implementation. The purpose of the study was to explore and compare two policies aiming to improve health and social care in Sweden and to empirically test a new conceptual model for evidence-informed policy formulation and implementation. Two concurrent national policies were studied during the entire policy process using a longitudinal, comparative case study approach. Data was collected through interviews, observations, and documents. A Conceptual Model for Evidence-Informed Policy Formulation and Implementation was developed based on prior frameworks for evidence-informed policymaking and policy dissemination and implementation. The conceptual model was used to organize and analyze the data. The policies differed regarding the use of evidence in the policy formulation and the extent to which the policy formulation and implementation phases overlapped. Similarities between the cases were an emphasis on capacity assessment, modified activities based on the assessment, and a highly active implementation approach relying on networks of stakeholders. The Conceptual Model for Evidence-Informed Policy Formulation and Implementation was empirically useful to organize the data. The policy actors' roles and functions were found to have a great influence on the choices of strategies and collaborators in all policy phases. The Conceptual Model for Evidence-Informed Policy Formulation and Implementation was found to be useful. However, it provided insufficient guidance for analyzing actors involved in the policy process, capacity-building strategies

  14. Assessing the performance of formulations for nonlinear feedback of surface gravity waves on ocean currents over coastal waters

    NASA Astrophysics Data System (ADS)

    Wang, Pengcheng; Sheng, Jinyu; Hannah, Charles

    2017-08-01

    This study presents applications of a two-way coupled wave-circulation modelling system over coastal waters, with a special emphasis of performance assessments of two different methods for nonlinear feedback of ocean surface gravity waves on three-dimensional (3D) ocean currents. These two methods are the vortex force (VF) formulation suggested by Bennis et al. (2011) and the latest version of radiation stress (RS) formulation suggested by Mellor (2015). The coupled modelling system is first applied to two idealized test cases of surf-zone scales to validate implementations of these two methods in the coupled wave-circulation system. Model results show that the latest version of RS has difficulties in producing the undertow over the surf zone. The coupled system is then applied to Lunenburg Bay (LB) of Nova Scotia during Hurricane Juan in 2003. The coupled system using both the VF and RS formulations generates much stronger and more realistic 3D circulation in the Bay during Hurricane Juan than the circulation-only model, demonstrating the importance of surface wave forces to the 3D ocean circulation over coastal waters. However, the RS formulation generates some weak unphysical currents outside the wave breaking zone due to a less reasonable representation for the vertical distribution of the RS gradients over a slopping bottom. These weak unphysical currents are significantly magnified in a two-way coupled system when interacting with large surface waves, degrading the model performance in simulating currents at one observation site. Our results demonstrate that the VF formulation with an appropriate parameterization of wave breaking effects is able to produce reasonable results for applications over coastal waters during extreme weather events. The RS formulation requires a complex wave theory rather than the linear wave theory for the approximation of a vertical RS term to improve its performance under both breaking and non-breaking wave conditions.

  15. Formulation of medicines for children

    PubMed Central

    Nunn, Tony; Williams, Julie

    2005-01-01

    The development of age-adapted dosage forms and taste-masking of bitter-tasting drugs administered orally for children, are formidable challenges for formulation scientists. Childhood is a period of maturation requiring knowledge of developmental pharmacology to establish dose but the ability of the child to manage different dosage forms and devices also changes. Paediatric formulations must allow accurate administration of the dose to children of widely varying age and weight. Whilst the oral route will be preferred for long term use and the intravenous route for the acutely ill, many of the dosage forms designed for adults, such as oro-dispersible tablets, buccal gels and transdermal patches, would also benefit children if they contained an appropriate paediatric dose. The age at which children can swallow conventional tablets is of great importance for their safety. Liquid medicines are usually recommended for infants and younger dhildren so the ability to mask unpleasant taste with sweeteners and flavours is crucial. More sophisticated formulations such as granules and oro-dispersible tablets may be required but there will be limitations on choice and concentration of excipients. There are many gaps in our knowledge about paediatric formulations and many challenges for the industry if suitable preparations are to be available for all ranges. A CHMP points to consider document is soon to be released. More research and clinical feedback are important because a formulation with poor acceptability may affect compliance, prescribing practice and ultimately commercial viability. PMID:15948931

  16. Development of Intra-knee Joint Sustained-Release Gel Formulation and Evaluation of Its Pharmacological Efficiency in Rats.

    PubMed

    Noda, Takehiro; Okuda, Tomoyuki; Ban, Kousuke; Mizuno, Ryota; Tagami, Tatsuaki; Ozeki, Tetsuya; Okamoto, Hirokazu

    2017-06-01

    In the development of a drug for intra-articular administration, a sustained-release formulation is desirable since it is difficult to sustain the effects of conventional injections due to fast drug leakage from the joint cavity. In this study, we prepared sustained release gel formulations for intra-articular administration containing indocyanine green (ICG) as a model drug to follow its fate after intra-articular administration in rats with in-vivo imaging system (IVIS). ICG administered as an aqueous solution leaked from the joint cavity in a short time and was excreted out of the body within a day. On the other hand, ICG in the sustained-release formulations was retained and released in the joint cavity for a week. Next, we prepared a sustained-release formulation with hyaluronic acid (HA) as the gel base containing a pain-relief drug (Drug A). We had administered it and other formulations into the rat knee where we injected bradykinin to evaluate their walking distance after 1 and 3 d. The effect of an aqueous solution of Drug A disappeared on day 3. The HA gel formulation without Drug A was more effective than the aqueous solution. The HA gel formulation with Drug A was the most effective; the walking distance was about 85% of the baseline on day 3. This study showed that the gel formulations were effective to sustain the release of a drug in the knee joint, and that the combination of a pain-relief drug with HA gel was effective to improve the mobility of the acute pain model rats.

  17. Completed Beltrami-Michell Formulation in Polar Coordinates

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.

    2005-01-01

    A set of conditions had not been formulated on the boundary of an elastic continuum since the time of Saint-Venant. This limitation prevented the formulation of a direct stress calculation method in elasticity for a continuum with a displacement boundary condition. The missed condition, referred to as the boundary compatibility condition, is now formulated in polar coordinates. The augmentation of the new condition completes the Beltrami-Michell formulation in polar coordinates. The completed formulation that includes equilibrium equations and a compatibility condition in the field as well as the traction and boundary compatibility condition is derived from the stationary condition of the variational functional of the integrated force method. The new method is illustrated by solving an example of a mixed boundary value problem for mechanical as well as thermal loads.

  18. Formulation with ascorbic acid and sucrose modulates catechin bioavailability from green tea

    PubMed Central

    Peters, Catrina M.; Green, Rodney J.; Janle, Elsa M.; Ferruzzi, Mario G.

    2009-01-01

    In order to investigate the impact of common food ingredients on catechin absorption, green tea (GT) extract (50 mg) was formulated plain, with sucrose (GT+S), with ascorbic acid (GT+AA) and with sucrose and ascorbic acid (GT+S+AA). Bioavailability and bioaccessibility were assessed in Sprague Dawley rats and an in vitro digestion/Caco-2 cell model respectively. Absorption of epigallocatechin (EGC) and epigallocatechin gallate (EGCG) was significantly (P<0.05) enhanced in GT+S+AA formulations (AUC0-6h= 3237.0 and 181.8 pmol*h/L plasma respectively) relative to GT control (AUC0-6h = 1304.1 and 61.0 pmol*h/L plasma respectively). In vitro digestive recovery was higher for EGC and epicatechin (EC) (∼51-53%) relative to EGCG and epicatechin gallate (ECG) (< 20%) and was modestly enhanced in GT+S and GT+S+AA formulations. Accumulation of EGC, EGCG and ECG by Caco-2 cells was significantly (P<0.05) higher from GT+S+AA compared to other formulations while retention of catechins was enhanced in presence of ascorbic acid. These data suggest that formulation with sucrose and ascorbic acid may improve catechin bioavailability by enhancing bioaccessibility and intestinal uptake from tea. PMID:20161530

  19. Anti-cancer, pharmacokinetic and biodistribution studies of cremophor el free alternative paclitaxel formulation.

    PubMed

    Jain, Subheet K; Utreja, Puneet; Tiwary, Ashok K; Mahajan, Mohit; Kumar, Nikhil; Roy, Partha

    2014-01-01

    The aim of the present investigation is to determine the in vivo potential of previously developed and optimized Cremophor EL free paclitaxel (CF-PTX) formulation consisting of soya phosphatidylcholine and biosurfactant sodium deoxycholate. CF-PTX was found to have drug loading of 6 mg/ml similar to Cremophor EL based marketed paclitaxel formulation. In the present study, intracellular uptake, repeated dose 28 days sub-acute toxicity, anti-cancer activity, biodistribution and pharmacokinetic studies were conducted to determine in vivo performance of CF-PTX formulation in comparison to marketed paclitaxel formulation. Intracellular uptake of CF-PTX was studied using A549 cells by fluorescence activated cell sorting assay (FACS) and fluorescence microscopy. In vivo anti-cancer activity of CF-PTX was evaluated using Ehrlich ascites carcinoma (EAC) model in mice followed by biodistribution and pharmacokinetic studies. FACS investigation showed that fluorescence marker acridine orange (AO) solution showed only 19.8±1.1% intracellular uptake where as significantly higher uptake was observed in the case of AO loaded CF-PTX formulation (85.4±2.3%). The percentage reduction in tumor volume for CF-PTX (72.5±2.3%) in EAC bearing mice was found to be significantly (p<0.05) higher than marketed formulation (58.6±2.8%) on 14th day of treatment. Pharmacokinetic and biodistribution studies showed sustained plasma concentration of paclitaxel depicted by higher mean residence time (MRT; 18.2±1.8 h) and elimination half life (12.8±0.6 h) with CF-PTX formulation as compared to marketed formulation which showed 4.4±0.2 h MRT and 3.6±0.4 h half life. The results of the present study demonstrated better in vivo performance of CF-PTX and this formulation appears to be a promising carrier for sustained and targeted delivery of paclitaxel.

  20. Fem Formulation for Heat and Mass Transfer in Porous Medium

    NASA Astrophysics Data System (ADS)

    Azeem; Soudagar, Manzoor Elahi M.; Salman Ahmed, N. J.; Anjum Badruddin, Irfan

    2017-08-01

    Heat and mass transfer in porous medium can be modelled using three partial differential equations namely, momentum equation, energy equation and mass diffusion. These three equations are coupled to each other by some common terms that turn the whole phenomenon into a complex problem with inter-dependable variables. The current article describes the finite element formulation of heat and mass transfer in porous medium with respect to Cartesian coordinates. The problem under study is formulated into algebraic form of equations by using Galerkin's method with the help of two-node linear triangular element having three nodes. The domain is meshed with smaller sized elements near the wall region and bigger size away from walls.

  1. Enhanced vaginal drug delivery through the use of hypotonic formulations that induce fluid uptake

    PubMed Central

    Ensign, Laura M.; Hoen, Timothy; Maisel, Katharina; Cone, Richard; Hanes, Justin

    2013-01-01

    Mucosal epithelia use osmotic gradients for fluid absorption and secretion. We hypothesized that administration of hypotonic solutions would induce fluid uptake that could be advantageous for rapidly delivering drugs through mucus to the vaginal epithelium. We found that hypotonic formulations markedly increased the rate at which small molecule drugs and muco-inert nanoparticles (mucus-penetrating particles, or MPP), but not conventional mucoadhesive nanparticles (CP), reached the vaginal epithelial surface in vivo in mice. Additionally, hypotonic formulations greatly enhanced drug and MPP delivery to the entire epithelial surface, including deep into the vaginal folds (rugae) that drugs or MPP in isotonic formulations failed to reach efficiently. However, hypotonic formulations caused unencapsulated “free” drugs to be drawn through the epithelium, reducing vaginal retention. In contrast, hypotonic formulations caused MPP to accumulate rapidly and uniformly on vaginal surfaces, ideally positioned for localized sustained drug delivery. Using a mouse model of vaginal genital herpes (HSV-2) infection, we found that hypotonic delivery of free drug led to improved immediate protection, but diminished longer-term protection. In contrast, as we previously demonstrated, hypotonic delivery of drug via MPP led to better long-term retention and protection in the vagina. Importantly, we demonstrate that slightly hypotonic formulations provided rapid and uniform delivery of MPP to the entire vaginal surface, thus enabling formulations with minimal risk of epithelial toxicity. Hypotonic formulations for vaginal drug delivery via MPP may significantly improve prevention and treatment of reproductive tract diseases and disorders. PMID:23769419

  2. Volumetric formulation for a class of kinetic models with energy conservation.

    PubMed

    Sbragaglia, M; Sugiyama, K

    2010-10-01

    We analyze a volumetric formulation of lattice Boltzmann for compressible thermal fluid flows. The velocity set is chosen with the desired accuracy, based on the Gauss-Hermite quadrature procedure, and tested against controlled problems in bounded and unbounded fluids. The method allows the simulation of thermohydrodyamical problems without the need to preserve the exact space-filling nature of the velocity set, but still ensuring the exact conservation laws for density, momentum, and energy. Issues related to boundary condition problems and improvements based on grid refinement are also investigated.

  3. Formulation development of smart gel periodontal drug delivery system for local delivery of chemotherapeutic agents with application of experimental design.

    PubMed

    Dabhi, Mahesh R; Nagori, Stavan A; Gohel, Mukesh C; Parikh, Rajesh K; Sheth, Navin R

    2010-01-01

    Smart gel periodontal drug delivery systems (SGPDDS) containing gellan gum (0.1-0.8% w/v), lutrol F127 (14, 16, and 18% w/v), and ornidazole (1% w/v) were designed for the treatment of periodontal diseases. Each formulation was characterized in terms of in vitro gelling capacity, viscosity, rheology, content uniformity, in vitro drug release, and syringeability. In vitro gelation time and the nature of the gel formed in simulated saliva for prepared formulations showed polymeric concentration dependency. Drug release data from all formulations was fitted to different kinetic models and the Korsemeyer-Peppas model was the best fit model. Drug release was significantly decreased as the concentration of each polymer component was increased. Increasing the concentration of each polymeric component significantly increased viscosity, syringeability, and time for 50%, 70%, and 90% drug release. In conclusion, the formulations described offer a wide range of physical and drug release characteristics. The formulation containing 0.8% w/v of gellan gum and 16% w/v of lutrol F127 exhibited superior physical characteristics.

  4. Thermodynamic investigation of the interaction between cyclodextrins and preservatives - Application and verification in a mathematical model to determine the needed preservative surplus in aqueous cyclodextrin formulations.

    PubMed

    Holm, René; Olesen, Niels Erik; Alexandersen, Signe Dalgaard; Dahlgaard, Birgitte N; Westh, Peter; Mu, Huiling

    2016-05-25

    Preservatives are inactivated when added to conserve aqueous cyclodextrin (CD) formulations due to complex formation between CDs and the preservative. To maintain the desired conservation effect the preservative needs to be added in apparent surplus to account for this inactivation. The purpose of the present work was to establish a mathematical model, which defines this surplus based upon knowledge of stability constants and the minimal concentration of preservation to inhibit bacterial growth. The stability constants of benzoic acid, methyl- and propyl-paraben with different frequently used βCDs were determined by isothermal titration calorimetry. Based upon this knowledge mathematical models were constructed to account for the equilibrium systems and to calculate the required concentration of the preservations, which was evaluated experimentally based upon the USP/Ph. Eur./JP monograph. The mathematical calculations were able to predict the needed concentration of preservation in the presence of CDs; it clearly demonstrated the usefulness of including all underlying chemical equilibria in a mathematical model, such that the formulation design can be based on quantitative arguments. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Formulation and in vitro evaluation of Hydrodynamically balanced system for theophylline delivery.

    PubMed

    Nayak, Amit Kumar; Malakar, Jadupati

    2011-06-01

    The objective of the present study was to formulate hydrodynamically balanced systems (HBSs) of theophylline as single unit capsules. They were formulated by physical blending of theophylline with hydroxypropyl methyl cellulose, polyethylene oxide, polyvinyl pyrrolidone, ethyl cellulose, liquid paraffin, and lactose in different ratios. These theophylline HBS capsules were evaluated for weight uniformity, drug content uniformity, in vitro floating behavior and drug release in simulated gastric fluids (pH 1.2). All these formulated HBS capsules containing theophylline were floated well over 6 hours with no floating lag time, and also showed sustained in vitro drug release in simulated gastric fluid over 6 hours. The theophylline release from these capsules was more sustained with the addition of release modifiers (ethyl cellulose and liquid paraffin). The drug release pattern from these capsules was correlated well with first order model (F-1 to F-5) and Korsmeyer-Peppas model (F-6 and F-7) with the non-Fickian (anomalous) diffusion mechanism. These experimental results clearly indicated that these theophylline HBS capsules were able to remain buoyant in the gastric juice for longer period, which may improve oral bioavailability of theophylline.

  6. GFDL's CM2 global coupled climate models. Part I: Formulation and simulation characteristics

    USGS Publications Warehouse

    Delworth, T.L.; Broccoli, A.J.; Rosati, A.; Stouffer, R.J.; Balaji, V.; Beesley, J.A.; Cooke, W.F.; Dixon, K.W.; Dunne, J.; Dunne, K.A.; Durachta, J.W.; Findell, K.L.; Ginoux, P.; Gnanadesikan, A.; Gordon, C.T.; Griffies, S.M.; Gudgel, R.; Harrison, M.J.; Held, I.M.; Hemler, R.S.; Horowitz, L.W.; Klein, S.A.; Knutson, T.R.; Kushner, P.J.; Langenhorst, A.R.; Lee, H.-C.; Lin, S.-J.; Lu, J.; Malyshev, S.L.; Milly, P.C.D.; Ramaswamy, V.; Russell, J.; Schwarzkopf, M.D.; Shevliakova, E.; Sirutis, J.J.; Spelman, M.J.; Stern, W.F.; Winton, M.; Wittenberg, A.T.; Wyman, B.; Zeng, F.; Zhang, R.

    2006-01-01

    The formulation and simulation characteristics of two new global coupled climate models developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) are described. The models were designed to simulate atmospheric and oceanic climate and variability from the diurnal time scale through multicentury climate change, given our computational constraints. In particular, an important goal was to use the same model for both experimental seasonal to interannual forecasting and the study of multicentury global climate change, and this goal has been achieved. Tw o versions of the coupled model are described, called CM2.0 and CM2.1. The versions differ primarily in the dynamical core used in the atmospheric component, along with the cloud tuning and some details of the land and ocean components. For both coupled models, the resolution of the land and atmospheric components is 2?? latitude ?? 2.5?? longitude; the atmospheric model has 24 vertical levels. The ocean resolution is 1?? in latitude and longitude, with meridional resolution equatorward of 30?? becoming progressively finer, such that the meridional resolution is 1/3?? at the equator. There are 50 vertical levels in the ocean, with 22 evenly spaced levels within the top 220 m. The ocean component has poles over North America and Eurasia to avoid polar filtering. Neither coupled model employs flux adjustments. The co ntrol simulations have stable, realistic climates when integrated over multiple centuries. Both models have simulations of ENSO that are substantially improved relative to previous GFDL coupled models. The CM2.0 model has been further evaluated as an ENSO forecast model and has good skill (CM2.1 has not been evaluated as an ENSO forecast model). Generally reduced temperature and salinity biases exist in CM2.1 relative to CM2.0. These reductions are associated with 1) improved simulations of surface wind stress in CM2.1 and associated changes in oceanic gyre circulations; 2) changes in cloud tuning and

  7. Revisiting the two formulations of Bianchi identities and their implications on moduli stabilization

    NASA Astrophysics Data System (ADS)

    Shukla, Pramod

    2016-08-01

    In the context of non-geometric type II orientifold compactifications, there have been two formulations for representing the various NS-NS Bianchi-identities. In the first formulation, the standard three-form flux ( H 3), the geometric flux ( ω) and the non-geometric fluxes ( Q and R) are expressed by using the real six-dimensional indices (e.g. {H}_{ijk}, {ω_{ij}}^k, {Q_i}{_{jk}} and R ijk ), and this formulation has been heavily utilized for simplifying the scalar potentials in toroidal-orientifolds. On the other hand, relevant for the studies beyond toroidal backgrounds, a second formulation is utilized in which all flux components are written in terms of various involutively even/odd (2 , 1)- and (1 , 1)-cohomologies of the complex threefold. In the lights of recent model building interests and some observations made in [1, 2], in this article, we revisit two most commonly studied toroidal examples in detail to illustrate that the present forms of these two formulations are not completely equivalent. To demonstrate the same, we translate all the identities of the first formulation into cohomology ingredients, and after a tedious reshuffling of the subsequent constraints, interestingly we find that all the identities of the second formulation are embedded into the first formulation which has some additional constraints. In addition, we look for the possible solutions of these Bianchi identities in a detailed analysis, and we find that some solutions can reduce the size of scalar potential very significantly, and in some cases are too strong to break the no-scale structure completely. Finally, we also comment on the influence of imposing some of the solutions of Bianchi identities in studying moduli stabilization.

  8. Napping-Ultra Flash Profile as a Tool for Category Identification and Subsequent Model System Formulation of Caramel Corn Products.

    PubMed

    Mayhew, Emily; Schmidt, Shelly; Lee, Soo-Yeun

    2016-07-01

    In a novel approach to formulation, the flash descriptive profiling technique Napping-Ultra Flash Profile (Napping-UFP) was used to characterize a wide range of commercial caramel corn products. The objectives were to identify product categories, develop model systems based on product categories, and correlate analytical parameters with sensory terms generated through the Napping-UFP exercise. In one 2 h session, 12 panelists participated in 4 Napping-UFP exercises, describing and grouping, on a 43×56 cm paper sheet, 12 commercial caramel corn samples by degree of similarity, globally and in terms of aroma-by-mouth, texture, and taste. The coordinates of each sample's placement on the paper sheet and descriptive terms generated by the panelists were used to conduct Multiple Factor Analysis (MFA) and hierarchical clustering of the samples. Strong trends in the clustering of samples across the 4 Napping-UFP exercises resulted in the determination of 3 overarching types of commercial caramel corn: "small-scale dark" (typified by burnt, rich caramel corn), "large-scale light" (typified by light and buttery caramel corn), and "large-scale dark" (typified by sweet and molasses-like caramel corn). Representative samples that best exemplified the properties of each category were used as guides in the formulation of 3 model systems that represent the spread of commercial caramel corn products. Analytical testing of the commercial products, including aw measurement, moisture content determination, and thermal characterization via differential scanning calorimetry, were conducted and results related to sensory descriptors using Spearman's correlation. © 2016 Institute of Food Technologists®

  9. Self-emulsifying drug delivery systems (SEDDS): formulation development, characterization, and applications.

    PubMed

    Singh, Bhupinder; Bandopadhyay, Shantanu; Kapil, Rishi; Singh, Ramandeep; Katare, O

    2009-01-01

    Self-emulsifying drug delivery systems (SEDDS) possess unparalleled potential in improving oral bioavailability of poorly water-soluble drugs. Following their oral administration, these systems rapidly disperse in gastrointestinal fluids, yielding micro- or nanoemulsions containing the solubilized drug. Owing to its miniscule globule size, the micro/nanoemulsifed drug can easily be absorbed through lymphatic pathways, bypassing the hepatic first-pass effect. We present an exhaustive and updated account of numerous literature reports and patents on diverse types of self-emulsifying drug formulations, with emphasis on their formulation, characterization, and systematic optimization strategies. Recent advancements in various methodologies employed to characterize their globule size and shape, ability to encapsulate the drug, gastrointestinal and thermodynamic stability, rheological characteristics, and so forth, are discussed comprehensively to guide the formula-tor in preparing an effective and robust SEDDS formulation. Also, this exhaustive review offers an explicit discussion on vital applications of the SEDDS in bioavailability enhancement of various drugs, outlining an overview on myriad in vitro, in situ, and ex vivo techniques to assess the absorption and/ or permeation potential of drugs incorporated in the SEDDS in animal and cell line models, and the subsequent absorption pathways followed by them. In short, the current article furnishes an updated compilation of wide-ranging information on all the requisite vistas of the self-emulsifying formulations, thus paving the way for accelerated progress into the SEDDS application in pharmaceutical research.

  10. Mixture experiment methods in the development and optimization of microemulsion formulations.

    PubMed

    Furlanetto, S; Cirri, M; Piepel, G; Mennini, N; Mura, P

    2011-06-25

    Microemulsion formulations represent an interesting delivery vehicle for lipophilic drugs, allowing for improving their solubility and dissolution properties. This work developed effective microemulsion formulations using glyburide (a very poorly-water-soluble hypoglycaemic agent) as a model drug. First, the area of stable microemulsion (ME) formations was identified using a new approach based on mixture experiment methods. A 13-run mixture design was carried out in an experimental region defined by constraints on three components: aqueous, oil and surfactant/cosurfactant. The transmittance percentage (at 550 nm) of ME formulations (indicative of their transparency and thus of their stability) was chosen as the response variable. The results obtained using the mixture experiment approach corresponded well with those obtained using the traditional approach based on pseudo-ternary phase diagrams. However, the mixture experiment approach required far less experimental effort than the traditional approach. A subsequent 13-run mixture experiment, in the region of stable MEs, was then performed to identify the optimal formulation (i.e., having the best glyburide dissolution properties). Percent drug dissolved and dissolution efficiency were selected as the responses to be maximized. The ME formulation optimized via the mixture experiment approach consisted of 78% surfactant/cosurfacant (a mixture of Tween 20 and Transcutol, 1:1, v/v), 5% oil (Labrafac Hydro) and 17% aqueous phase (water). The stable region of MEs was identified using mixture experiment methods for the first time. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Mixture experiment methods in the development and optimization of microemulsion formulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furlanetto, Sandra; Cirri, Marzia; Piepel, Gregory F.

    2011-06-25

    Microemulsion formulations represent an interesting delivery vehicle for lipophilic drugs, allowing for improving their solubility and dissolution properties. This work developed effective microemulsion formulations using glyburide (a very poorly-water-soluble hypoglycaemic agent) as a model drug. First, the area of stable microemulsion (ME) formations was identified using a new approach based on mixture experiment methods. A 13-run mixture design was carried out in an experimental region defined by constraints on three components: aqueous, oil, and surfactant/cosurfactant. The transmittance percentage (at 550 nm) of ME formulations (indicative of their transparency and thus of their stability) was chosen as the response variable. Themore » results obtained using the mixture experiment approach corresponded well with those obtained using the traditional approach based on pseudo-ternary phase diagrams. However, the mixture experiment approach required far less experimental effort than the traditional approach. A subsequent 13-run mixture experiment, in the region of stable MEs, was then performed to identify the optimal formulation (i.e., having the best glyburide dissolution properties). Percent drug dissolved and dissolution efficiency were selected as the responses to be maximized. The ME formulation optimized via the mixture experiment approach consisted of 78% surfactant/cosurfacant (a mixture of Tween 20 and Transcutol, 1:1 v/v), 5% oil (Labrafac Hydro) and 17% aqueous (water). The stable region of MEs was identified using mixture experiment methods for the first time.« less

  12. Abuse-deterrent formulations: part 1 - development of a formulation-based classification system.

    PubMed

    Mastropietro, David J; Omidian, Hossein

    2015-02-01

    Strategies have been implemented to decrease the large proportion of individuals misusing abusable prescription medications. Abuse-deterrent formulations (ADFs) have been grown to incorporate many different technologies that still lack a systematic naming and organizational nomenclature. Without a proper classification system, it has been challenging to properly identify ADFs, study and determine common traits or characteristics and simplify communication within the field. This article introduces a classification system for all ADF approaches and examines the physical, chemical and pharmacological characteristics of a formulation by placing them into primary, secondary and tertiary categories. Primary approaches block tampering done directly to the product. Secondary approaches work in vivo after the product is administered. Tertiary approaches use materials that discourage abuse but do not stop tampering. Part 2 of this article discusses proprietary technologies, patents and products utilizing primary approaches. Drug products using opioid antagonists and aversive agents have been seen over the past few decades to discourage primarily overuse and injection. However, innovation in formulation development has introduced products capable of deterring multiple forms of tampering and abuse. Often, this is accomplished using known excipients and manufacturing methods that are repurposed to prevent crushing, extraction and syringeability.

  13. Liquid-Spray Formulation Of Scopolamine

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi; Cintron, Nitza M.

    1992-01-01

    Scopolamine, fast-acting anticholinergic drug, formulated into drops administered intranasally. Formulation very useful for people who need immediate relief from motion sickness, and they can administer it to themselves. Also used in other clinical situations in which fast-acting anticholinergic medication required. Modified into such other forms as gel preparation, aqueous-base ointment, or aerosol spray or mist; also dispensed in metered-dose delivery system.

  14. Stability of collapse lyophilized influenza vaccine formulations.

    PubMed

    Anamur, Cihad; Winter, Gerhard; Engert, Julia

    2015-04-10

    A clear limitation of many liquid vaccines is the obligatory cold-chain distribution system. Therefore, distribution of a dried vaccine formulation may be beneficial in terms of vaccine stability, handling and transport. Collapse freeze-drying is a process which utilizes fairly aggressive but at the same time economic lyophilization cycles where the formulation is dried above its glass transition temperature. In this study, we used collapse freeze-drying for a thermosensitive model influenza vaccine (Pandemrix(®)). The dried lyophilizates were further cryo-milled to engineer powder particles in the size range of approximately 20-80 μm which is applicable for epidermal powder immunization. Vaccine potency and stability were neither affected by high temperature input during collapse lyophilization nor over a storage period of six months. Furthermore, cryo-milled vaccine lyophilizates showed good storage stability of up to three months at high storage temperature (40 °C). This technique can provide a powerful tool for the worldwide distribution of vaccine and for new application technologies such as engineered powder immunization. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Characterization and formulation into solid dosage forms of a novel bacteriophage lytic against Klebsiella oxytoca.

    PubMed

    Brown, Teagan L; Petrovski, Steve; Hoyle, Dannielle; Chan, Hiu Tat; Lock, Peter; Tucci, Joseph

    2017-01-01

    To isolate and characterize bacteriophage lytic for the opportunistic pathogen Klebsiella oxytoca and their formulation into a range of solid dosage forms for in-vitro testing. We report the isolation, genomic and functional characterization of a novel bacteriophage lytic for Klebsiella oxytoca, which does not infect the closely related Klebsiella pneumoniae. This bacteriophage was formulated into suppositories and troches and shown to be released and lyse underlying Klebsiella oxytoca bacteria in an in-vitro model. These bacteriophage formulations were stable for at least 49 days at 4°C. The successful in-vitro assay of these formulations here suggests that they could potentially be tested in-vivo to determine whether such a therapeutic approach could modulate the gut microbiome, and control Klebsiella oxytoca overgrowth, during antibiotic therapy regimes. This study reports a novel bacteriophage specific for Klebsiella oxytoca which can be formulated into solid dosage forms appropriate for potential delivery in testing as a therapy to modulate gut microbiome during antibiotic therapies.

  16. On the validity of effective formulations for transport through heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    de Dreuzy, Jean-Raynald; Carrera, Jesus

    2016-04-01

    Geological heterogeneity enhances spreading of solutes and causes transport to be anomalous (i.e., non-Fickian), with much less mixing than suggested by dispersion. This implies that modeling transport requires adopting either stochastic approaches that model heterogeneity explicitly or effective transport formulations that acknowledge the effects of heterogeneity. A number of such formulations have been developed and tested as upscaled representations of enhanced spreading. However, their ability to represent mixing has not been formally tested, which is required for proper reproduction of chemical reactions and which motivates our work. We propose that, for an effective transport formulation to be considered a valid representation of transport through heterogeneous porous media (HPM), it should honor mean advection, mixing and spreading. It should also be flexible enough to be applicable to real problems. We test the capacity of the multi-rate mass transfer (MRMT) model to reproduce mixing observed in HPM, as represented by the classical multi-Gaussian log-permeability field with a Gaussian correlation pattern. Non-dispersive mixing comes from heterogeneity structures in the concentration fields that are not captured by macrodispersion. These fine structures limit mixing initially, but eventually enhance it. Numerical results show that, relative to HPM, MRMT models display a much stronger memory of initial conditions on mixing than on dispersion because of the sensitivity of the mixing state to the actual values of concentration. Because MRMT does not restitute the local concentration structures, it induces smaller non-dispersive mixing than HPM. However long-lived trapping in the immobile zones may sustain the deviation from dispersive mixing over much longer times. While spreading can be well captured by MRMT models, in general non-dispersive mixing cannot.

  17. Scattering of elastic waves from thin shapes in three dimensions using the composite boundary integral equation formulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Rizzo, F.J.

    1997-08-01

    In this paper, the composite boundary integral equation (BIE) formulation is applied to scattering of elastic waves from thin shapes with small but {ital finite} thickness (open cracks or thin voids, thin inclusions, thin-layer interfaces, etc.), which are modeled with {ital two surfaces}. This composite BIE formulation, which is an extension of the Burton and Miller{close_quote}s formulation for acoustic waves, uses a linear combination of the conventional BIE and the hypersingular BIE. For thin shapes, the conventional BIE, as well as the hypersingular BIE, will degenerate (or nearly degenerate) if they are applied {ital individually} on the two surfaces. Themore » composite BIE formulation, however, will not degenerate for such problems, as demonstrated in this paper. Nearly singular and hypersingular integrals, which arise in problems involving thin shapes modeled with two surfaces, are transformed into sums of weakly singular integrals and nonsingular line integrals. Thus, no finer mesh is needed to compute these nearly singular integrals. Numerical examples of elastic waves scattered from penny-shaped cracks with varying openings are presented to demonstrate the effectiveness of the composite BIE formulation. {copyright} {ital 1997 Acoustical Society of America.}« less

  18. Alternative mathematical programming formulations for FSS synthesis

    NASA Technical Reports Server (NTRS)

    Reilly, C. H.; Mount-Campbell, C. A.; Gonsalvez, D. J. A.; Levis, C. A.

    1986-01-01

    A variety of mathematical programming models and two solution strategies are suggested for the problem of allocating orbital positions to (synthesizing) satellites in the Fixed Satellite Service. Mixed integer programming and almost linear programming formulations are presented in detail for each of two objectives: (1) positioning satellites as closely as possible to specified desired locations, and (2) minimizing the total length of the geostationary arc allocated to the satellites whose positions are to be determined. Computational results for mixed integer and almost linear programming models, with the objective of positioning satellites as closely as possible to their desired locations, are reported for three six-administration test problems and a thirteen-administration test problem.

  19. Microemulsion Transdermal Formulation for Simultaneous Delivery of Valsartan and Nifedipine: Formulation by Design.

    PubMed

    Sood, Jatin; Sapra, Bharti; Tiwary, Ashok K

    2017-08-01

    The objective of the study was to optimize the proportion of different components for formulating oil in water microemulsion formulation meant for simultaneous transdermal delivery of two poorly soluble antihypertensive drugs. Surface response methodology of Box-Behnken design was utilized to evaluate the effect of two oils (Captex 500 - x1 and Capmul MCM - x2) and surfactant (Acrysol EL135 - x3) on response y1 (particle size), y2 (solubility of valsartan), and y3 (solubility of nifedipine). The important factors which significantly affected the responses were identified and validated using ANOVA. The model was diagnosed using normal plot of residuals and Box-Cox plot. The design revealed an inverse correlation between particle size and concentration of Capmul MCM and Acrysol EL 135. However, an increase in concentration of Captex 500 led to an increase in particle size of microemulsion. Solubility of valsartan decreased while that of nifedipine increased with increase in concentration of Captex 500. Capmul MCM played a significant role in increasing the solubility of valsartan. The effect of Acrysol EL 135 on solubility of both drugs, although significant, was only marginal as compared to that of Captex 500 and Capmul MCM. The optimized microemulsion was able to provide an enhancement ratio of 27.21 and 63.57-fold for valsartan and nifedipine, respectively, with respect to drug dispersion in aqueous surfactant system when evaluated for permeation studies. The current studies candidly suggest the scope of microemulsion systems for solubilizing as well as promoting the transport of both drugs across rat skin at an enhanced permeation rate.

  20. A modified Gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling

    NASA Astrophysics Data System (ADS)

    Aldakheel, Fadi; Wriggers, Peter; Miehe, Christian

    2017-12-01

    The modeling of failure in ductile materials must account for complex phenomena at the micro-scale, such as nucleation, growth and coalescence of micro-voids, as well as the final rupture at the macro-scale, as rooted in the work of Gurson (J Eng Mater Technol 99:2-15, 1977). Within a top-down viewpoint, this can be achieved by the combination of a micro-structure-informed elastic-plastic model for a porous medium with a concept for the modeling of macroscopic crack discontinuities. The modeling of macroscopic cracks can be achieved in a convenient way by recently developed continuum phase field approaches to fracture, which are based on the regularization of sharp crack discontinuities, see Miehe et al. (Comput Methods Appl Mech Eng 294:486-522, 2015). This avoids the use of complex discretization methods for crack discontinuities, and can account for complex crack patterns. In this work, we develop a new theoretical and computational framework for the phase field modeling of ductile fracture in conventional elastic-plastic solids under finite strain deformation. It combines modified structures of Gurson-Tvergaard-Needelman GTN-type plasticity model outlined in Tvergaard and Needleman (Acta Metall 32:157-169, 1984) and Nahshon and Hutchinson (Eur J Mech A Solids 27:1-17, 2008) with a new evolution equation for the crack phase field. An important aspect of this work is the development of a robust Explicit-Implicit numerical integration scheme for the highly nonlinear rate equations of the enhanced GTN model, resulting with a low computational cost strategy. The performance of the formulation is underlined by means of some representative examples, including the development of the experimentally observed cup-cone failure mechanism.

  1. Converting from Transdermal to Buccal Formulations of Buprenorphine: A Pharmacokinetic Meta-Model Simulation in Healthy Volunteers.

    PubMed

    Priestley, Tony; Chappa, Arvind K; Mould, Diane R; Upton, Richard N; Shusterman, Neil; Passik, Steven; Tormo, Vicente J; Camper, Stephen

    2017-09-29

     To develop a model to predict buprenorphine plasma concentrations during transition from transdermal to buccal administration.  Population pharmacokinetic model-based meta-analysis of published data.  A model-based meta-analysis of available buprenorphine pharmacokinetic data in healthy adults, extracted as aggregate (mean) data from published literature, was performed to explore potential conversion from transdermal to buccal buprenorphine. The time course of mean buprenorphine plasma concentrations following application of transdermal patch or buccal film was digitized from available literature, and a meta-model was developed using specific pharmacokinetic parameters (e.g., absorption rate, apparent clearance, and volumes of distribution) derived from analysis of pharmacokinetic data for intravenously, transdermally, and buccally administered buprenorphine.  Data from six studies were included in this analysis. The final transdermal absorption model employed a zero-order input rate that was scaled to reflect a nominal patch delivery rate and time after patch application (with decline in rate over time). The transdermal absorption rate constant became zero following patch removal. Buccal absorption was a first-order process with a time lag and bioavailability term. Simulations of conversion from transdermal 20 mcg/h and 10 mcg/h to buccal administration suggest that transition can be made rapidly (beginning 12 hours after patch removal) using the recommended buccal formulation titration increments (75-150 mcg) and schedule (every four days) described in the product labeling.  Computer modeling and simulations using a meta-model built from data extracted from publications suggest that rapid and straightforward conversion from transdermal to buccal buprenorphine is feasible. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. [Sense and nonsense of extemporaneous formulations].

    PubMed

    Staubach, P

    2014-03-01

    The subject of Dermatology has changed significantly in light of the fast development of new therapeutic strategies. Potent systemic agents are no longer confined to the oncological. Nevertheless, topical therapy including extemporaneous formulations remains the domain of dermatologists. Due to the wide range of proprietary medicinal products in this era of evidence-based medicine, the relevance of classic dermatological prescriptions for local therapy is often up for discussion. In 2012, almost 18 million preparations were compounded according to a physician's prescription, which amounts to 2.7 % of all prescribed medications. 10 million of these extemporaneous formulations were used for systemic therapy such as chemotherapy or substitutional therapy, 8 millions were prescribed for topical therapy. This paper addresses the following questions: When is an extemporaneous formulation being called for, which requirements should it meet and which formulations are controversial or even unacceptable?

  3. An analytical formulation of two‐dimensional groundwater dispersion induced by surficial recharge variability

    USGS Publications Warehouse

    Swain, Eric D.; Chin, David A.

    2003-01-01

    A predominant cause of dispersion in groundwater is advective mixing due to variability in seepage rates. Hydraulic conductivity variations have been extensively researched as a cause of this seepage variability. In this paper the effect of variations in surface recharge to a shallow surficial aquifer is investigated as an important additional effect. An analytical formulation has been developed that relates aquifer parameters and the statistics of recharge variability to increases in the dispersivity. This is accomplished by solving Fourier transforms of the small perturbation forms of the groundwater flow equations. Two field studies are presented in this paper to determine the statistics of recharge variability for input to the analytical formulation. A time series of water levels at a continuous groundwater recorder is used to investigate the temporal statistics of hydraulic head caused by recharge, and a series of infiltrometer measurements are used to define the spatial variability in the recharge parameters. With these field statistics representing head fluctuations due to recharge, the analytical formulation can be used to compute the dispersivity without an explicit representation of the recharge boundary. Results from a series of numerical experiments are used to define the limits of this analytical formulation and to provide some comparison. A sophisticated model has been developed using a particle‐tracking algorithm (modified to account for temporal variations) to estimate groundwater dispersion. Dispersivity increases of 9 percent are indicated by the analytical formulation for the aquifer at the field site. A comparison with numerical model results indicates that the analytical results are reasonable for shallow surficial aquifers in which two‐dimensional flow can be assumed.

  4. In vitro assessment of skin irritation potential of surfactant-based formulations by using a 3-D skin reconstructed tissue model and cytokine response.

    PubMed

    Walters, Russel M; Gandolfi, Lisa; Mack, M Catherine; Fevola, Michael; Martin, Katharine; Hamilton, Mathew T; Hilberer, Allison; Barnes, Nicole; Wilt, Nathan; Nash, Jennifer R; Raabe, Hans A; Costin, Gertrude-Emilia

    2016-12-01

    The personal care industry is focused on developing safe, more efficacious, and increasingly milder products, that are routinely undergoing preclinical and clinical testing before becoming available for consumer use on skin. In vitro systems based on skin reconstructed equivalents are now established for the preclinical assessment of product irritation potential and as alternative testing methods to the classic Draize rabbit skin irritation test. We have used the 3-D EpiDerm™ model system to evaluate tissue viability and primary cytokine interleukin-1α release as a way to evaluate the potential dermal irritation of 224 non-ionic, amphoteric and/or anionic surfactant-containing formulations, or individual raw materials. As part of our testing programme, two representative benchmark materials with known clinical skin irritation potential were qualified through repeated testing, for use as references for the skin irritation evaluation of formulations containing new surfactant ingredients. We have established a correlation between the in vitro screening approach and clinical testing, and are continually expanding our database to enhance this correlation. This testing programme integrates the efforts of global manufacturers of personal care products that focus on the development of increasingly milder formulations to be applied to the skin, without the use of animal testing. 2016 FRAME.

  5. [Formulation of combined predictive indicators using logistic regression model in predicting sepsis and prognosis].

    PubMed

    Duan, Liwei; Zhang, Sheng; Lin, Zhaofen

    2017-02-01

    To explore the method and performance of using multiple indices to diagnose sepsis and to predict the prognosis of severe ill patients. Critically ill patients at first admission to intensive care unit (ICU) of Changzheng Hospital, Second Military Medical University, from January 2014 to September 2015 were enrolled if the following conditions were satisfied: (1) patients were 18-75 years old; (2) the length of ICU stay was more than 24 hours; (3) All records of the patients were available. Data of the patients was collected by searching the electronic medical record system. Logistic regression model was formulated to create the new combined predictive indicator and the receiver operating characteristic (ROC) curve for the new predictive indicator was built. The area under the ROC curve (AUC) for both the new indicator and original ones were compared. The optimal cut-off point was obtained where the Youden index reached the maximum value. Diagnostic parameters such as sensitivity, specificity and predictive accuracy were also calculated for comparison. Finally, individual values were substituted into the equation to test the performance in predicting clinical outcomes. A total of 362 patients (218 males and 144 females) were enrolled in our study and 66 patients died. The average age was (48.3±19.3) years old. (1) For the predictive model only containing categorical covariants [including procalcitonin (PCT), lipopolysaccharide (LPS), infection, white blood cells count (WBC) and fever], increased PCT, increased WBC and fever were demonstrated to be independent risk factors for sepsis in the logistic equation. The AUC for the new combined predictive indicator was higher than that of any other indictor, including PCT, LPS, infection, WBC and fever (0.930 vs. 0.661, 0.503, 0.570, 0.837, 0.800). The optimal cut-off value for the new combined predictive indicator was 0.518. Using the new indicator to diagnose sepsis, the sensitivity, specificity and diagnostic accuracy

  6. Derivation of Formulations 1 and 1A of Farassat

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    2007-01-01

    Formulations 1 and 1A are the solutions of the Ffowcs Williams-Hawkings (FW-H) equation with surface sources only when the surface moves at subsonic speed. Both formulations have been successfully used for helicopter rotor and propeller noise prediction for many years although we now recommend using Formulation 1A for this purpose. Formulation 1 has an observer time derivative that is taken numerically, and thus, increasing execution time on a computer and reducing the accuracy of the results. After some discussion of the Green's function of the wave equation, we derive Formulation 1 which is the basis of deriving Formulation 1A. We will then show how to take this observer time derivative analytically to get Formulation 1A. We give here the most detailed derivation of these formulations. Once you see the whole derivation, you will ask yourself why you did not do it yourself!

  7. Numerical simulation using vorticity-vector potential formulation

    NASA Technical Reports Server (NTRS)

    Tokunaga, Hiroshi

    1993-01-01

    An accurate and efficient computational method is needed for three-dimensional incompressible viscous flows in engineering applications. On solving the turbulent shear flows directly or using the subgrid scale model, it is indispensable to resolve the small scale fluid motions as well as the large scale motions. From this point of view, the pseudo-spectral method is used so far as the computational method. However, the finite difference or the finite element methods are widely applied for computing the flow with practical importance since these methods are easily applied to the flows with complex geometric configurations. However, there exist several problems in applying the finite difference method to direct and large eddy simulations. Accuracy is one of most important problems. This point was already addressed by the present author on the direct simulations on the instability of the plane Poiseuille flow and also on the transition to turbulence. In order to obtain high efficiency, the multi-grid Poisson solver is combined with the higher-order, accurate finite difference method. The formulation method is also one of the most important problems in applying the finite difference method to the incompressible turbulent flows. The three-dimensional Navier-Stokes equations have been solved so far in the primitive variables formulation. One of the major difficulties of this method is the rigorous satisfaction of the equation of continuity. In general, the staggered grid is used for the satisfaction of the solenoidal condition for the velocity field at the wall boundary. However, the velocity field satisfies the equation of continuity automatically in the vorticity-vector potential formulation. From this point of view, the vorticity-vector potential method was extended to the generalized coordinate system. In the present article, we adopt the vorticity-vector potential formulation, the generalized coordinate system, and the 4th-order accurate difference method as the

  8. Automatic Query Formulations in Information Retrieval.

    ERIC Educational Resources Information Center

    Salton, G.; And Others

    1983-01-01

    Introduces methods designed to reduce role of search intermediaries by generating Boolean search formulations automatically using term frequency considerations from natural language statements provided by system patrons. Experimental results are supplied and methods are described for applying automatic query formulation process in practice.…

  9. Finite element techniques for the Navier-Stokes equations in the primitive variable formulation and the vorticity stream-function formulation

    NASA Technical Reports Server (NTRS)

    Glaisner, F.; Tezduyar, T. E.

    1987-01-01

    Finite element procedures for the Navier-Stokes equations in the primitive variable formulation and the vorticity stream-function formulation have been implemented. For both formulations, streamline-upwind/Petrov-Galerkin techniques are used for the discretization of the transport equations. The main problem associated with the vorticity stream-function formulation is the lack of boundary conditions for vorticity at solid surfaces. Here an implicit treatment of the vorticity at no-slip boundaries is incorporated in a predictor-multicorrector time integration scheme. For the primitive variable formulation, mixed finite-element approximations are used. A nine-node element and a four-node + bubble element have been implemented. The latter is shown to exhibit a checkerboard pressure mode and a numerical treatment for this spurious pressure mode is proposed. The two methods are compared from the points of view of simulating internal and external flows and the possibilities of extensions to three dimensions.

  10. Formulation and evaluation of flurbiprofen microemulsion.

    PubMed

    Ambade, K W; Jadhav, S L; Gambhire, M N; Kurmi, S D; Kadam, V J; Jadhav, K R

    2008-01-01

    The purpose of the present study was to investigate the microemulsion formulations for topical delivery of Flurbiprofen (FP) in order to by pass its gastrointestinal adverse effects. The pseudoternary phase diagrams were developed and various microemulsion formulations were prepared using Isopropyl Myristate (IPM), Ethyl Oleate (EO) as oils, Aerosol OT as surfactant and Sorbitan Monooleate as cosurfactant. The transdermal permeability of flurbiprofen from microemulsions containing IPM and EO as two different oil phases was analyzed using Keshary-Chien diffusion cell through excised rat skin. Flurbiprofen showed higher in vitro permeation from IPM as compared to that of from EO microemulsion. Thus microemulsion containing IPM as oil phase were selected for optimization. The optimization was carried out using 2(3) factorial design. The optimized formula was then subjected to in vivo anti-inflammatory study and the performance of flurbiprofen from optimized formulation was compared with that of gel cream. Flurbiprofen from optimized microemulsion formulation was found to be more effective as compared to gel cream in inhibiting the carrageenan induced rat paw edema at all time intervals. Histopathological investigation of rat skin revealed the safety of microemulsion formulation for topical use. Thus the present study indicates that, microemulsion can be a promising vehicle for the topical delivery of flurbiprofen.

  11. Subscale testing of prompt agent defeat formulations

    NASA Astrophysics Data System (ADS)

    Knott, A.; Stamatis, D.; Svingala, F.; Lightstone, J.; Miller, K.; Bensman, M.; Bohmke, M.

    2017-01-01

    There is a need to improve the current bioagent defeat systems with formulations that produce lower peak pressure and impulse, sustained high temperatures, and release of biocidal species for prompt defeat applications. In this work, explosive charge configurations similar to fuel-air explosives were detonated in a semi-enclosed chamber configuration. Binder type and fuel-to-oxidizer ratios were varied to observe the effects on combustion performance. Thermocouple measurements and high-speed video were used to monitor the combustion of the dispersed formulation. The down-selected formulations were then tested in a sub-scale vented agent defeat system developed to evaluate performance of formulations against aerosolized Bacillus thuringiensis (Bt) spores. Diagnostics including thermocouples and piezoelectric pressure gauges were utilized to characterize the detonation event. Biological sampling with surface coupons, liquid impingement, and filters of the post detonation environment were utilized to determine spore survivability and to rank the relative effectiveness of each formulation.

  12. Limitations of high dose carrier based formulations.

    PubMed

    Yeung, Stewart; Traini, Daniela; Tweedie, Alan; Lewis, David; Church, Tanya; Young, Paul M

    2018-06-10

    This study was performed to investigate how increasing the active pharmaceutical ingredient (API) content within a formulation affects the dispersion of particles and the aerosol performance efficiency of a carrier based dry powder inhalable (DPI) formulation, using a custom dry powder inhaler (DPI) development rig. Five formulations with varying concentrations of API beclomethasone dipropionate (BDP) between 1% and 30% (w/w) were formulated as a multi-component carrier system containing coarse lactose and fine lactose with magnesium stearate. The morphology of the formulation and each component were investigated using scanning electron micrographs while the particle size was measured by laser diffraction. The aerosol performance, in terms of aerodynamic diameter, was assessed using the British pharmacopeia Apparatus E cascade impactor (Next generation impactor). Chemical analysis of the API was observed by high performance liquid chromatography (HPLC). Increasing the concentration of BDP in the blend resulted in increasing numbers and size of individual agglomerates and densely packed BDP multi-layers on the surface of the lactose carrier. BDP present within the multi-layer did not disperse as individual primary particles but as dense agglomerates, which led to a decrease in aerosol performance and increased percentage of BDP deposition within the Apparatus E induction port and pre-separator. As the BDP concentration in the blends increases, aerosol performance of the formulation decreases, in an inversely proportional manner. Concurrently, the percentage of API deposition in the induction port and pre-separator could also be linked to the amount of micronized particles (BDP and Micronized composite carrier) present in the formulation. The effect of such dose increase on the behaviour of aerosol dispersion was investigated to gain greater insight in the development and optimisation of higher dosed carrier-based formulations. Copyright © 2018 Elsevier B.V. All

  13. Nano-formulations of drugs: Recent developments, impact and challenges.

    PubMed

    Jeevanandam, Jaison; Chan, Yen San; Danquah, Michael K

    2016-01-01

    Nano-formulations of medicinal drugs have attracted the interest of many researchers for drug delivery applications. These nano-formulations enhance the properties of conventional drugs and are specific to the targeted delivery site. Dendrimers, polymeric nanoparticles, liposomes, nano-emulsions and micelles are some of the nano-formulations that are gaining prominence in pharmaceutical industry for enhanced drug formulation. Wide varieties of synthesis methods are available for the preparation of nano-formulations to deliver drugs in biological system. The choice of synthesis methods depend on the size and shape of particulate formulation, biochemical properties of drug, and the targeted site. This article discusses recent developments in nano-formulation and the progressive impact on pharmaceutical research and industries. Additionally, process challenges relating to consistent generation of nano-formulations for drug delivery are discussed. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  14. Polymeric Precipitation Inhibitors Promote Fenofibrate Supersaturation and Enhance Drug Absorption from a Type IV Lipid-Based Formulation.

    PubMed

    Suys, Estelle J A; Chalmers, David K; Pouton, Colin W; Porter, Christopher J H

    2018-06-04

    The ability of lipid-based formulations (LBFs) to increase the solubilization, and prolong the supersaturation, of poorly water-soluble drugs (PWSDs) in the gastrointestinal (GI) fluids has generated significant interest in the past decade. One mechanism to enhance the utility of LBFs is to prolong supersaturation via the addition of polymers that inhibit drug precipitation (polymeric precipitation inhibitors or PPIs) to the formulation. In this work, we have evaluated the performance of a range of PPIs and have identified PPIs that are sufficiently soluble in LBF to allow the construction of single phase formulations. An in vitro model was first employed to assess drug (fenofibrate) solubilization and supersaturation on LBF dispersion and digestion. An in vitro-in situ model was subsequently employed to simultaneously evaluate the impact of PPI enhanced drug supersaturation on drug absorption in rats. The stabilizing effect of the polymers was polymer specific and most pronounced at higher drug loads. Polymers that were soluble in LBF allowed simple processing as single phase formulations, while formulations containing more hydrophilic polymers required polymer suspension in the formulation. The lipid-soluble polymers Eudragit (EU) RL100 and poly(propylene glycol) bis(2-aminopropyl ether) (PPGAE) and the water-soluble polymer hydroxypropylmethyl cellulose (HPMC) E4M were identified as the most effective PPIs in delaying fenofibrate precipitation in vitro. An in vitro model of lipid digestion was subsequently coupled directly to an in situ single pass intestinal perfusion assay to evaluate the influence of PPIs on fenofibrate absorption from LBFs in vivo. This coupled model allowed for real-time evaluation of the impact of supersaturation stabilization on absorptive drug flux and provided better discrimination between the different PPIs and formulations. In the presence of the in situ absorption sink, increased fenofibrate supersaturation resulted in increased drug

  15. In Vitro Dissolution as a Tool for Formulation Selection: Telmisartan Two-Step IVIVC.

    PubMed

    Ruiz Picazo, Alejandro; Martinez-Martinez, Ma Teresa; Colón-Useche, Sarin; Iriarte, Ramon; Sánchez-Dengra, Bárbara; González-Álvarez, Marta; García-Arieta, Alfredo; González-Álvarez, Isabel; Bermejo, Marival

    2018-05-17

    The purpose of this investigation was to develop an exploratory two-step level A IVIVC for three telmisartan oral immediate release formulations, the reference product Micardis, and two generic formulations (X1 and X2). Correlation was validated with a third test formulation, Y1. Experimental solubility and permeability data were obtained to confirm that telmisartan is a class II compound under the Biopharmaceutic Classification System. Bioequivalence (BE) studies plasma profiles were combined using a previously published reference scaling procedure. X2 demonstrated in vivo BE, while X1 and Y1 failed to show BE due to the lower boundary of the 90% confidence interval for C max being outside the acceptance limits. Average plasma profiles were deconvoluted by the Loo-Riegelman method to obtain the oral fractions absorbed ( f a ). Fractions dissolved ( f diss ) were obtained in several conditions in USP II and USP IV apparatus, and later, the results were compared in order to find the most biopredictive model, calculating the f 2 similarity factor. The apparatus and conditions showing the same rank order than in vivo data were selected for further refinement of conditions. A Levy plot was constructed to estimate the time scaling factor and to make both processes, dissolution and absorption, superimposable. The in vitro dissolution experiment that reflected more accurately the in vivo behavior of the different formulations of telmisartan employed the USP IV dissolution apparatus and a dissolution environment with a flow rate of 8 mL/min and a three-step pH change, from 1.2 to 4.5 and 6.8, with a 0.05% of Tween 80. Thus, these conditions gave rise to a biopredictive dissolution test. This new model is able to predict the formulation differences in dissolution that were previously observed in vivo, which could be used as a risk-analysis tool for formulation selection in future bioequivalence trials.

  16. Platelet lysate formulations based on mucoadhesive polymers for the treatment of corneal lesions.

    PubMed

    Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Ferrari, Franca; Mori, Michela; Del Fante, Claudia; Perotti, Cesare; Scudeller, Luigia; Caramella, Carla

    2011-02-01

    Growth factors contained in platelet α-granules initiate and modulate tissue repair and are proposed for the treatment of soft and hard-tissue surgical conditions and in the management of non-healing wounds. Platelet lysate is a hemoderivative obtained from platelet-rich plasma and is capable of releasing a pool of growth factors. Many medical and surgical techniques have been proposed for the treatment of corneal lesions; management of these conditions remains problematic and healing with standard protocols is unattainable. The aim of this study was to develop formulations suitable for prolonging the contact of platelet lysate with the damaged cornea for the time necessary to exert a therapeutic effect. Two vehicles, one based on polyacrylic acid and one based on chitosan, were autoclaved and loaded with platelet lysate and the resultant formulations were characterized for rheology, mucoadhesion, vehicle compatibility and stability. The proliferation effect was tested on two cell culture types (rabbit corneal epithelial cells and fibroblasts). An in-vitro wound-healing test was performed on fibroblasts. In both cases the formulations were compared with platelet lysate diluted with saline at the same concentration. Both formulations maintained the rheological and mucoadhesive properties of the vehicles and the proliferative activity of platelet lysate. The chitosan formulation was able to significantly enhance epithelial cell growth even after storage of up to 2 weeks (in-use conditions), while the polyacrylic acid formulation was less efficient, probably due to the characteristics of the cell model used. The in-vitro wound-healing test performed on fibroblasts confirmed the differences between the two vehicles. The effect induced by the platelet lysate and chitosan formulation was faster than that of the polyacrylic acid formulation and complete in-vitro wound repair was achieved within 48 h. © 2010 The Authors. JPP © 2010 Royal Pharmaceutical Society.

  17. Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides.

    PubMed

    Defarge, N; Spiroux de Vendômois, J; Séralini, G E

    2018-01-01

    The major pesticides of the world are glyphosate-based herbicides (GBH), and their toxicity is highly debated. To understand their mode of action, the comparative herbicidal and toxicological effects of glyphosate (G) alone and 14 of its formulations were studied in this work, as a model for pesticides. GBH are mixtures of water, with commonly 36-48% G claimed as the active principle. As with other pesticides, 10-20% of GBH consist of chemical formulants. We previously identified these by mass spectrometry and found them to be mainly families of petroleum-based oxidized molecules, such as POEA, and other contaminants. We exposed plants and human cells to the components of formulations, both mixed and separately, and measured toxicity and human cellular endocrine disruption below the direct toxicity experimentally measured threshold. G was only slightly toxic on plants at the recommended dilutions in agriculture, in contrast with the general belief. In the short term, the strong herbicidal and toxic properties of its formulations were exerted by the POEA formulant family alone. The toxic effects and endocrine disrupting properties of the formulations were mostly due to the formulants and not to G. In this work, we also identified by mass spectrometry the heavy metals arsenic, chromium, cobalt, lead and nickel, which are known to be toxic and endocrine disruptors, as contaminants in 22 pesticides, including 11 G-based ones. This could also explain some of the adverse effects of the pesticides. In in vivo chronic regulatory experiments that are used to establish the acceptable daily intakes of pesticides, G or other declared active ingredients in pesticides are assessed alone, without the formulants. Considering these new data, this assessment method appears insufficient to ensure safety. These results, taken together, shed a new light on the toxicity of these major herbicides and of pesticides in general.

  18. Comparative steady-state pharmacokinetic study of an extended-release formulation of itopride and its immediate-release reference formulation in healthy volunteers.

    PubMed

    Yoon, Seonghae; Lee, Howard; Kim, Tae-Eun; Lee, SeungHwan; Chee, Dong-Hyun; Cho, Joo-Youn; Yu, Kyung-Sang; Jang, In-Jin

    2014-01-01

    This study was conducted to compare the oral bioavailability of an itopride extended-release (ER) formulation with that of the reference immediate-release (IR) formulation in the fasting state. The effect of food on the bioavailability of itopride ER was also assessed. A single-center, open-label, randomized, multiple-dose, three-treatment, three-sequence, crossover study was performed in 24 healthy male subjects, aged 22-48 years, who randomly received one of the following treatments for 4 days in each period: itopride 150 mg ER once daily under fasting or fed conditions, or itopride 50 mg IR three times daily in the fasting state. Steady-state pharmacokinetic parameters of itopride, including peak plasma concentration (Cmax) and area under the plasma concentration versus time curve over 24 hours after dosing (AUC(0-24h)), were determined by noncompartmental analysis. The geometric mean ratio of the pharmacokinetic parameters was derived using an analysis of variance model. A total of 24 healthy Korean subjects participated, 23 of whom completed the study. The geometric mean ratio and its 90% confidence interval of once-daily ER itopride versus IR itopride three times a day for AUC(0-24h) were contained within the conventional bioequivalence range of 0.80-1.25 (0.94 [0.88-1.01]), although Cmax was reached more slowly and was lower for itopride ER than for the IR formulation. Food delayed the time taken to reach Cmax for itopride ER, but AUC(0-24h) was not affected. There were no serious adverse events and both formulations were generally well tolerated. At steady state, once-daily itopride ER at 150 mg has a bioavailability comparable with that of itopride IR at 50 mg given three times a day under fasting conditions. Food delayed the absorption of itopride ER, with no marked change in its oral bioavailability.

  19. Conference report: formulating better medicines for children: 4th European Paediatric Formulation Initiative conference.

    PubMed

    Walsh, Jennifer; Mills, Simon

    2013-01-01

    The fourth annual European Paediatric Formulation Initiative (EuPFI) conference on Formulating Better Medicines for Children was held on 19-20 September 2012 at the Institute of Molecular Genetics Congress Centre, Prague, Czech Republic. The 2-day conference concentrated on the latest advances, challenges and opportunities for developing medicinal products and administration devices for pediatric use, both from European and US perspectives. It was aimed specifically at providing exposure to emerging practical applications, and for illustrating remedies utilized by pediatric drug-development teams to overcome hurdles faced in developing medicines for pediatric patients. The conference format included plenary talks, focus sessions on each of the EuPFI work streams (extemporaneous preparations, excipients, pediatric administration devices, taste masking and taste assessment, age-appropriate formulations), case studies, soapbox sessions and a parallel poster display. This conference report summarizes the keynote lectures and also gives a flavor of other presentations and posters from the conference.

  20. Inappropriate oral formulations and information in paediatric trials.

    PubMed

    Pandit, Sreenivas; Shah, Utpal; Kirby, Daniel Jon; Nunn, Tony; Tuleu, Catherine

    2010-09-01

    Previously, quality of formulations information provided for oral medications used in paediatric clinical trials published in 10 highly cited journals between 2002 and 2004 raised concerns. This short report explores if there was any subsequent improvement on how the formulations used in trials involving children <12 years reported in the same journals. Studies published between 2004 and 2008 were hand-searched and classified as containing adequate, some or no formulation information. Those involving solid dosage forms were further analysed. Only 31% (44/140) of publications provided adequate information, 5% less compared to 2002-2004 (28/76). There was a significant 12% rise (p<0.05) of no formulation information at all (37/140) and in tablets/capsules use (53/140), of which 3/4 gave no administration details, even for those under 6 years old, but a 12% decline in suitable paediatric formulations use (52/140 compared to 37/76). Contrary to expectations, overall quality of formulation information reported markedly deteriorated, jeopardising validity of clinical outcomes. The situation may reflect continued lack of awareness among investigators and other stakeholders of the importance of using suitable age-appropriate formulations.

  1. Advanced Query Formulation in Deductive Databases.

    ERIC Educational Resources Information Center

    Niemi, Timo; Jarvelin, Kalervo

    1992-01-01

    Discusses deductive databases and database management systems (DBMS) and introduces a framework for advanced query formulation for end users. Recursive processing is described, a sample extensional database is presented, query types are explained, and criteria for advanced query formulation from the end user's viewpoint are examined. (31…

  2. Need for appropriate formulations for children: the national institute of child health and human development-pediatric formulations initiative, part 2.

    PubMed

    Giacoia, George P; Taylor-Zapata, Perdita; Mattison, Donald

    2007-01-01

    The development and compounding of pharmacotherapeutic formulations that are suitable for infants and young children can be a challenging problem. This problem results from the lack of knowledge on the acceptability of different dosage forms and formulations to children in relation to age and developmental status, as well as the lack of reliable documentation of formulations used in pediatric clinical trials. As part of its mandate under the Best Pharmaceuticals for Children Act to improve pediatric therapeutics, the National Institute of Child Health and Human Development has sponsored the Pediatric Formulations Initiative. The goal of this ongoing initiative is to address the issues and concerns associated with pediatric therapeutics by convening groups of researchers and experts in pediatric formulations from academia, pharmaceutical companies, the National Institutes of Health, and the U.S. Food and Drug Administration. In this second part of a two-part article, the activities of the various groups that constitute the Pediatric Formulations Initiative are discussed, in addition the Initiative's future activities and plans are outlined.

  3. Formulation of ionic liquid electrolyte to expand the voltage window of supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Aken, Katherine L.; Beidaghi, Majid; Gogotsi, Yury

    We report an effective method to expand the operating potential window (OPW) of electrochemical capacitors based on formulating the ionic liquid (IL) electrolytes. Moreover, using model electrochemical cells based on two identical onion like carbon (OLC) electrodes and two different IL electrolytes and their mixtures, it was shown that the asymmetric behavior of the electrolyte’s cation and anion toward the two electrodes limits the OPW of the cell and therefore its energy density. Additionally, a general solution to this problem is proposed by formulating the IL electrolyte mixtures to balance the capacitance of electrodes in a symmetric supercapacitor.

  4. Formulation of Ionic-Liquid Electrolyte To Expand the Voltage Window of Supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Aken, Katherine L.; Beidaghi, Majid; Gogotsi, Yury

    An effective method to expand the operating potential window (OPW) of electrochemical capacitors based on formulating the ionic-liquid (IL) electrolytes is reported. Using model electrochemical cells based on two identical onion-like carbon (OLC) electrodes and two different IL electrolytes and their mixtures, it was shown that the asymmetric behavior of the electrolyte cation and anion toward the two electrodes limits the OPW of the cell and therefore its energy density. Also, a general solution to this problem is proposed by formulating the IL electrolyte mixtures to balance the capacitance of electrodes in a symmetric supercapacitor.

  5. Formulation of ionic liquid electrolyte to expand the voltage window of supercapacitors

    DOE PAGES

    Van Aken, Katherine L.; Beidaghi, Majid; Gogotsi, Yury

    2015-03-18

    We report an effective method to expand the operating potential window (OPW) of electrochemical capacitors based on formulating the ionic liquid (IL) electrolytes. Moreover, using model electrochemical cells based on two identical onion like carbon (OLC) electrodes and two different IL electrolytes and their mixtures, it was shown that the asymmetric behavior of the electrolyte’s cation and anion toward the two electrodes limits the OPW of the cell and therefore its energy density. Additionally, a general solution to this problem is proposed by formulating the IL electrolyte mixtures to balance the capacitance of electrodes in a symmetric supercapacitor.

  6. Evaluation of candidate working fluid formulations for the electrothermal - chemical wind tunnel

    NASA Technical Reports Server (NTRS)

    Akyurtlu, Jale F.; Akyurtlu, Ates

    1991-01-01

    Various candidate chemical formulations are evaluated as a precursor for the working fluid to be used in the electrothermal hypersonic test facility which was under study at the NASA LaRC Hypersonic Propulsion Branch, and the formulations which would most closely satisfy the goals set for the test facility are identified. Out of the four tasks specified in the original proposal, the first two, literature survey and collection of kinetic data, are almost completed. The third task, work on a mathematical model of the ET wind tunnel operation, was started and concentrated on the expansion in the nozzle with finite rate kinetics.

  7. A New Formulation of Equivalent Effective Stratospheric Chlorine (EESC)

    NASA Technical Reports Server (NTRS)

    Newman, P. A.; Daniel, J. S.; Waugh, D. W.; Nash, E. R.

    2007-01-01

    Equivalent effective stratospheric chlorine (EESC) is a convenient parameter to quantify the effects of halogens (chlorine and bromine) on ozone depletion in the stratosphere. We show and discuss a new formulation of EESC that now includes the effects of age-of-air dependent fractional release values and an age-of-air spectrum. This new formulation provides quantitative estimates of EESC that can be directly related to inorganic chlorine and bromine throughout the stratosphere. Using this EESC formulation, we estimate that human-produced ozone depleting substances will recover to 1980 levels in 2041 in the midlatitudes, and 2067 over Antarctica. These recovery dates are based upon the assumption that the international agreements for regulating ozone-depleting substances are adhered to. In addition to recovery dates, we also estimate the uncertainties in the estimated time of recovery. The midlatitude recovery of 2041 has a 95% confidence uncertainty from 2028 to 2049, while the 2067 Antarctic recovery has a 95% confidence uncertainty from 2056 to 2078. The principal uncertainties are from the estimated mean age-of-air, and the assumption that the mean age-of-air and fractional release values are time independent. Using other model estimates of age decrease due to climate change, we estimate that midlatitude recovery may be accelerated from 2041 to 2031.

  8. Evaluating tretinoin formulations in the treatment of acne.

    PubMed

    Kircik, Leon H

    2014-04-01

    Topical tretinoin has been a standard treatment for acne vulgaris for more than 4 decades. While tretinoin has demonstrated proven efficacy in the treatment of acne lesions, it also is associated with the potential for skin irritation. Newer formulations have been designed to optimize both the drug concentration and the delivery vehicle with the aim to enable clinicians to provide increasingly effective acne treatment that minimizes irritation. These therapies include formulations with varying concentrations of tretinoin and vehicles that utilize a microsponge delivery system, hydrogels and micronized tretinoin, or propolymers. The purpose of this review is to evaluate different formulations and combinations of tretinoin in the treatment of acne vulgaris. While these advanced formulations were designed for controlled release of active ingredient, and have the potential to reduce cutaneous irritation relative to standard tretinoin cream and gel formulations, there is a need for comparative studies to evaluate the relative benefits of each of these advanced tretinoin formulations in optimizing acne treatment.

  9. A BRST formulation for the conic constrained particle

    NASA Astrophysics Data System (ADS)

    Barbosa, Gabriel D.; Thibes, Ronaldo

    2018-04-01

    We describe the gauge invariant BRST formulation of a particle constrained to move in a general conic. The model considered constitutes an explicit example of an originally second-class system which can be quantized within the BRST framework. We initially impose the conic constraint by means of a Lagrange multiplier leading to a consistent second-class system which generalizes previous models studied in the literature. After calculating the constraint structure and the corresponding Dirac brackets, we introduce a suitable first-order Lagrangian, the resulting modified system is then shown to be gauge invariant. We proceed to the extended phase space introducing fermionic ghost variables, exhibiting the BRST symmetry transformations and writing the Green’s function generating functional for the BRST quantized model.

  10. Proniosomal formulation of curcumin having anti-inflammatory and anti-arthritic activity in different experimental animal models.

    PubMed

    Kumar, K; Rai, A K

    2012-10-01

    Curcumin, the active ingredient of the spice turmeric, has a long history as an herbal remedy for a variety of diseases. Transdermal drug delivery has been recognized as an alternative route to oral delivery. Proniosomes offer a versatile vesicle delivery concept with the potential for drug delivery via the transdermal route. In this study, different proniosomal gel bases were prepared by the ether injection method, using Span 60 and Span 80, Tween 20, cholesterol, and formulation PA2. They were characterized by scanning electron microscopy, revealing vesicular structures, and assessed for stability and effect on in vitro skin permeation using rat skin. Anti-inflammatory and anti-arthritic effects of formulation PA2 and PB1 were compared with a standard market product containing indomethacin. The effect of formulation PA2 and PB1 was evaluated for acute inflammation in carrageenan induced rat paw edema and for chronic inflammation in complete Freud's adjuvant (CFA) induced arthritis in rats. Further histopathological and radiographic evaluation was performed. The investigated curcumin loaded proniosomal formula proved to be non-irritant, non-toxic, but had lower anti-inflammatory and anti-arthritic effects than the marketed indomethacin products.

  11. Need for appropriate formulations for children: the national institute of child health and human development-pediatric formulations initiative, part 1.

    PubMed

    Giacoia, George P; Taylor-Zapata, Perdita; Mattison, Donald

    2007-01-01

    The development and compounding of pharmacotherapeutic formulations that are suitable for infants and young children can be a challenging problem. This problem results from the lack of knowledge on the acceptability of different dosage forms and formulations in children in relation to age and developmental status, as well as the lack of reliable documentation of formulations used in pediatric clinical trials. As part of its mandate under the Best Pharmaceuticals for Children Act to improve pediatric therapeutics, the National Institute of Child Health and Human Development has sponsored the Pediatric Formulation Initiative. The goal of this ongoing initiative is to address the issues and concnerns associated with pediatric therapeutics by convening groups of researchers and experts in pediatric formulations from academia, pharmaceutical companies, the National Institutes of Health, and the U.S. Food and Drug Administration.

  12. Rat Palatability Study for Taste Assessment of Caffeine Citrate Formulation Prepared via Hot-Melt Extrusion Technology

    PubMed Central

    Tiwari, Roshan V.; Polk, Ashley N.; Patil, Hemlata; Ye, Xingyou; Pimparade, Manjeet B.; Repka, Michael A.

    2017-01-01

    Developing a pediatric oral formulation with an age-appropriate dosage form and taste masking of naturally bitter active pharmaceutical ingredients (APIs) are key challenges for formulation scientists. Several techniques are used for taste masking of bitter APIs to improve formulation palatability; however, not all the techniques are applicable to pediatric dosage forms because of the limitations on the kind and concentration of the excipients that can be used. Hot-melt extrusion (HME) technology is used successfully for taste masking of bitter APIs, and overcomes some of the limitations of the existing taste masking techniques. Likewise, analytical taste assessment is an important quality control parameter evaluated by several in vivo and in vitro methods, such as the human taste panel, electrophysiological methods, electronic sensor, and animal preference tests to aid in selecting a taste-masked formulation. However, the most appropriate in-vivo method to assess the taste-masking efficacy of pediatric formulations remains unknown, because it is not known to what extent the human taste panel/electronic tongue can predict the palatability in the pediatric patients. The purpose of this study was to develop taste-masked caffeine citrate extrudates via HME, and to demonstrate the wide applicability of a single bottle-test rat model to record and compare the volume consumed of the taste-masked solutions to that of the pure API. Thus, this rat model can be considered as a low-cost alternative taste-assessment method to the most commonly used expensive human taste panel/electronic tongue method for pediatric formulations. PMID:26573158

  13. A Variational Formulation of Macro-Particle Algorithms for Kinetic Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Shadwick, B. A.

    2013-10-01

    Macro-particle based simulations methods are in widespread use in plasma physics; their computational efficiency and intuitive nature are largely responsible for their longevity. In the main, these algorithms are formulated by approximating the continuous equations of motion. For systems governed by a variational principle (such as collisionless plasmas), approximations of the equations of motion is known to introduce anomalous behavior, especially in system invariants. We present a variational formulation of particle algorithms for plasma simulation based on a reduction of the distribution function onto a finite collection of macro-particles. As in the usual Particle-In-Cell (PIC) formulation, these macro-particles have a definite momentum and are spatially extended. The primary advantage of this approach is the preservation of the link between symmetries and conservation laws. For example, nothing in the reduction introduces explicit time dependence to the system and, therefore, the continuous-time equations of motion exactly conserve energy; thus, these models are free of grid-heating. In addition, the variational formulation allows for constructing models of arbitrary spatial and temporal order. In contrast, the overall accuracy of the usual PIC algorithm is at most second due to the nature of the force interpolation between the gridded field quantities and the (continuous) particle position. Again in contrast to the usual PIC algorithm, here the macro-particle shape is arbitrary; the spatial extent is completely decoupled from both the grid-size and the ``smoothness'' of the shape; smoother particle shapes are not necessarily larger. For simplicity, we restrict our discussion to one-dimensional, non-relativistic, un-magnetized, electrostatic plasmas. We comment on the extension to the electromagnetic case. Supported by the US DoE under contract numbers DE-FG02-08ER55000 and DE-SC0008382.

  14. Diflerent formulations of microbial respiratory losses and microbial efficiency have pronounced short and long term consequences for soil C dynamics and soil respiration

    NASA Astrophysics Data System (ADS)

    Ballantyne, F.; Billings, S. A.

    2016-12-01

    Much of the variability in projections of Earth's future C balance derives from uncertainty in how to formulate and parameterize models of biologically mediated transformations of soil organic C (SOC). Over the past decade, models of belowground decomposition have incorporated more realism, namely microbial biomass and exoenzyme pools, but it remains unclear whether microbially mediated decomposition is accurately formulated. Different models and different assumptions about how microbial efficiency, defined in terms of respiratory losses, varies with temperature exert great influence on SOC and CO2 flux projections for the future. Here, we incorporate a physiologically realistic formulation of CO2 loss from microbes, distinct from extant formulations and logically consistent with microbial C uptake and losses, into belowground dynamics and contrast its projections for SOC pools and CO2 flux from soils to those from the phenomenological formulations of efficiency in current models. We quantitatively describe how short and long term SOC dynamics are influenced by different mathematical formulations of efficiency, and that our lack of knowledge regarding loss rates from SOC and microbial biomass pools, specific respiration rate and maximum substrate uptake rate severely constrains our ability to confidently parameterize microbial SOC modules in Earth System Models. Both steady-state SOC and microbial biomass C pools, as well as transient responses to perturbations, can differ substantially depending on how microbial efficiency is derived. In particular, the discrepancy between SOC stocks for different formulations of efficiency varies from negligible to more than two orders of magnitude, depending on the relative values of respiratory versus non-respiratory losses from microbial biomass. Mass-specific respiration and proportional loss rates from soil microbes emerge as key determinants of the consequences of different formulations of efficiency for C flux in soils.

  15. Technical Note: Adjoint formulation of the TOMCAT atmospheric transport scheme in the Eulerian backtracking framework (RETRO-TOM)

    NASA Astrophysics Data System (ADS)

    Haines, P. E.; Esler, J. G.; Carver, G. D.

    2014-06-01

    A new methodology for the formulation of an adjoint to the transport component of the chemistry transport model TOMCAT is described and implemented in a new model, RETRO-TOM. The Eulerian backtracking method is used, allowing the forward advection scheme (Prather's second-order moments) to be efficiently exploited in the backward adjoint calculations. Prather's scheme is shown to be time symmetric, suggesting the possibility of high accuracy. To attain this accuracy, however, it is necessary to make a careful treatment of the "density inconsistency" problem inherent to offline transport models. The results are verified using a series of test experiments. These demonstrate the high accuracy of RETRO-TOM when compared with direct forward sensitivity calculations, at least for problems in which flux limiters in the advection scheme are not required. RETRO-TOM therefore combines the flexibility and stability of a "finite difference of adjoint" formulation with the accuracy of an "adjoint of finite difference" formulation.

  16. Technical Note: Adjoint formulation of the TOMCAT atmospheric transport scheme in the Eulerian backtracking framework (RETRO-TOM)

    NASA Astrophysics Data System (ADS)

    Haines, P. E.; Esler, J. G.; Carver, G. D.

    2014-01-01

    A new methodology for the formulation of an adjoint to the transport component of the chemistry transport model TOMCAT is described and implemented in a new model RETRO-TOM. The Eulerian backtracking method is used, allowing the forward advection scheme (Prather's second-order moments), to be efficiently exploited in the backward adjoint calculations. Prather's scheme is shown to be time-symmetric suggesting the possibility of high accuracy. To attain this accuracy, however, it is necessary to make a careful treatment of the "density inconsistency" problem inherent to offline transport models. The results are verified using a series of test experiments. These demonstrate the high accuracy of RETRO-TOM when compared with direct forward sensitivity calculations, at least for problems in which flux-limiters in the advection scheme are not required. RETRO-TOM therefore combines the flexibility and stability of a "finite difference of adjoint" formulation with the accuracy of an "adjoint of finite difference" formulation.

  17. PEGylated polylysine dendrimers increase lymphatic exposure to doxorubicin when compared to PEGylated liposomal and solution formulations of doxorubicin.

    PubMed

    Ryan, Gemma M; Kaminskas, Lisa M; Bulitta, Jürgen B; McIntosh, Michelle P; Owen, David J; Porter, Christopher J H

    2013-11-28

    Improved delivery of chemotherapeutic drugs to the lymphatic system has the potential to augment outcomes for cancer therapy by enhancing activity against lymph node metastases. Uptake of small molecule chemotherapeutics into the lymphatic system, however, is limited. Nano-sized drug carriers have the potential to promote access to the lymphatics, but to this point, this has not been examined in detail. The current study therefore evaluated the lymphatic exposure of doxorubicin after subcutaneous and intravenous administration as a simple solution formulation or when formulated as a doxorubicin loaded PEGylated poly-lysine dendrimer (hydrodynamic diameter 12 nm), a PEGylated liposome (100 nm) and various pluronic micellar formulations (~5 nm) to thoracic lymph duct cannulated rats. Plasma and lymph pharmacokinetics were analysed by compartmental pharmacokinetic modelling in S-ADAPT, and Berkeley Madonna software was used to predict the lymphatic exposure of doxorubicin over an extended period of time. The micelle formulations displayed poor in vivo stability, resulting in doxorubicin profiles that were similar to that observed after administration of the doxorubicin solution formulation. In contrast, the dendrimer formulation significantly increased the recovery of doxorubicin in the thoracic lymph after both intravenous and subcutaneous dosing when compared to the solution or micellar formulation. Dendrimer-doxorubicin also resulted in increases in lymphatic doxorubicin concentrations when compared to the liposome formulation, although liposomal doxorubicin did increase lymphatic transport when compared to the solution formulation. Specifically, the dendrimer formulation increased the recovery of doxorubicin in the lymph up to 30 h post dose by up to 685 fold and 3.7 fold when compared to the solution and liposomal formulations respectively. Using the compartmental model to predict lymphatic exposure to longer time periods suggested that doxorubicin exposure to

  18. Design of an expert system for the development and formulation of push-pull osmotic pump tablets containing poorly water-soluble drugs.

    PubMed

    Zhang, Zhi-hong; Dong, Hong-ye; Peng, Bo; Liu, Hong-fei; Li, Chun-lei; Liang, Min; Pan, Wei-san

    2011-05-30

    The purpose of this article was to build an expert system for the development and formulation of push-pull osmotic pump tablets (PPOP). Hundreds of PPOP formulations were studied according to different poorly water-soluble drugs and pharmaceutical acceptable excipients. The knowledge base including database and rule base was built based on the reported results of hundreds of PPOP formulations containing different poorly water-soluble drugs and pharmaceutical excipients and the experiences available from other researchers. The prediction model of release behavior was built using back propagation (BP) neural network, which is good at nonlinear mapping and learning function. Formulation design model was established based on the prediction model of release behavior, which was the nucleus of the inference engine. Finally, the expert system program was constructed by VB.NET associating with SQL Server. Expert system is one of the most popular aspects in artificial intelligence. To date there is no expert system available for the formulation of controlled release dosage forms yet. Moreover, osmotic pump technology (OPT) is gradually getting consummate all over the world. It is meaningful to apply expert system on OPT. Famotidine, a water insoluble drug was chosen as the model drug to validate the applicability of the developed expert system. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. A set-covering formulation for a drayage problem with single and double container loads

    NASA Astrophysics Data System (ADS)

    Ghezelsoflu, A.; Di Francesco, M.; Frangioni, A.; Zuddas, P.

    2018-01-01

    This paper addresses a drayage problem, which is motivated by the case study of a real carrier. Its trucks carry one or two containers from a port to importers and from exporters to the port. Since up to four customers can be served in each route, we propose a set-covering formulation for this problem where all possible routes are enumerated. This model can be efficiently solved to optimality by a commercial solver, significantly outperforming a previously proposed node-arc formulation. Moreover, the model can be effectively used to evaluate a new distribution policy, which results in an enlarged set of feasible routes and can increase savings w.r.t. the policy currently employed by the carrier.

  20. Abuse-Deterrent Opioid Formulations: Pharmacokinetic and Pharmacodynamic Considerations.

    PubMed

    Walter, Carmen; Knothe, Claudia; Lötsch, Jörn

    2016-07-01

    Abuse-deterrent formulations (ADFs) are technologically sophisticated pharmaceutical formulations that impede manipulation and extraction of opioids and/or provoke unpleasant effects when they are taken in excessive quantity. This is implemented by creating physical barriers, inseparably combining the opioid with an opioid antagonist or adding aversive agents to the formulation. These pharmaceutical changes may potentially alter the pharmacokinetics and consequently the pharmacodynamics of the opioid. In this review, comparative evidence on pharmacokinetic differences between abuse-deterrent and classical formulations of the same opioids is summarized; furthermore, pharmacodynamic differences, with a focus on analgesia and abuse-related symptoms, are addressed. Most of the 12 studies comparing opioid pharmacokinetics have judged the physically intact ADF as being bioequivalent to the corresponding classical formulation. Pharmacokinetic differences have, however, been reported with physically manipulated ADFs and have ranged from moderate deviations from bioequivalence to complete changes in the pharmacokinetic profile (e.g. from a sustained-release formulation to a fast-release formulation). Pharmacodynamic effects were assessed in 14 comparative studies, which reported that intact ADFs usually provided clinically equivalent analgesia and clear advantages with respect to their addiction potential. However, withdrawal symptoms could be induced by the ADFs, although rarely and, in particular, when the ADFs had been physically altered. This evidence suggests that opioid ADFs are a working concept resulting in mostly minor pharmacokinetic and pharmacodynamic differences in comparison with classical formulations; however, they may deviate from this equivalence when physically altered.

  1. Formulation of lubricating grease using Beeswax thickener

    NASA Astrophysics Data System (ADS)

    Suhaila, N.; Japar, A.; Aizudin, M.; Aziz, A.; Najib Razali, Mohd

    2018-04-01

    The issues on environmental pollution has brought the industries to seek the alternative green solutions for lubricating grease formulation. The significant challenges in producing modified grease are in which considering the chosen thickener as one of the environmental friendly material. The main purposes of the current research were to formulate lubricant grease using different types of base oils and to study the effect of thickener on the formulated lubricant grease. Used oil and motor oil were used as the base oils for the grease preparation. Beeswax and Damar were used as thickener and additive. The grease is tested based on its consistency, stability and oil bleeding. The prepared greases achieved grease consistency of grade 2 and 3 except for grease with unfiltered used oil. Grease formulated with used oil and synthetic oil tend to harden and loss its lubricating ability under high temperature compared to motor oil’ grease. Grease modification using environmental friendly thickener were successfully formulated but it is considered as a low temperature grease as the beeswax have low melting point of 62°C-65°C.

  2. Formulation development of allopurinol suppositories and injectables.

    PubMed

    Lee, D K; Wang, D P

    1999-11-01

    Allopurinol was formulated into injectable and suppository dosage forms. The injectable formulation was prepared by dissolving allopurinol in a cosolvent system consisting of dimethyl sulfoxide (DMSO) and propylene glycol (v/v = 50/50). The stability of allopurinol in the cosolvent system was studied under accelerated storage conditions, and results indicate first-order degradation kinetics with an activation energy of 24.3 kcal/mol. The development of suppository dosage forms was performed by formulating allopurinol with polyethylene glycol (PEG) mixtures of different molecular weights. In vitro release profiles of suppositories formulated with different polyethylene bases were obtained in the pH 7.4 buffer solution using the USP 23 paddle method at 100 rpm. Results indicate that the release rate of the suppository formulations containing PEG 1500/PEG 4000 at the ratio (w/w) of 2.5/10 to 10/2.5 appeared to be similar. However, the addition of sodium lauryl sulfate in the suppository decreased the release rate of allopurinol significantly. A future study to establish in vitro/in vivo correlation (iv/ivc) is suggested.

  3. Zinc oxide as a new antimicrobial preservative of topical products: interactions with common formulation ingredients.

    PubMed

    Pasquet, Julia; Chevalier, Yves; Couval, Emmanuelle; Bouvier, Dominique; Bolzinger, Marie-Alexandrine

    2015-02-01

    Zinc oxide (ZnO) appears as a promising preservative for pharmaceutical or cosmetic formulations. The other ingredients of the formulations may have specific interactions with ZnO that alter its antimicrobial properties. The influence of common formulation excipients on the antimicrobial efficacy of ZnO has been investigated in simple model systems and in typical topical products containing a complex formulation. A wide variety of formulation excipients have been investigated for their interactions with ZnO: antioxidants, chelating agents, electrolytes, titanium dioxide pigment. The antimicrobial activity of ZnO against Escherichia coli was partially inhibited by NaCl and MgSO4 salts. A synergistic influence of uncoated titanium dioxide has been observed. The interference effects of antioxidants and chelating agents were quite specific. The interactions of these substances with ZnO particles and with the soluble species released by ZnO were discussed so as to reach scientific guidelines for the choice of the ingredients. The preservative efficacy of ZnO was assessed by challenge testing in three different formulations: an oil-in-water emulsion; a water-in-oil emulsion and a dry powder. The addition of ZnO in complex formulations significantly improved the microbiological quality of the products, in spite of the presence of other ingredients that modulate the antimicrobial activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Effect of formulation variables on the physical properties and stability of Dead Sea mud masks.

    PubMed

    Shahin, Sawsan; Hamed, Saja; Alkhatib, Hatim S

    2015-01-01

    The physical stability of Dead Sea mud mask formulations under different conditions and their rheological properties were evaluated as a function of the type and level of thickeners, level of the humectant, incorporation of ethanol, and mode of mud treatment. Formulations were evaluated in terms of visual appearance, pH, moisture content, spreadability, extrudability, separation, rate of drying at 32 degrees C, and rheological properties. Prepared mud formulations and over-the-shelf products showed viscoplastic shear thinning behavior; satisfactory rheological behavior was observed with formulations containing a total concentration of thickeners less than 10% (w/w). Casson and Herschel-Bulkley models were found the most suitable to describe the rheological data of the prepared formulations. Thickener incorporation decreased phase separation and improved formulation stability. Bentonite incorporation in the mud prevented color changes during stability studies while glycerin improved spreadability. Addition of 5% (w/w) ethanol improved mud extrudability, slightly increased percent separation, accelerated drying at 32 degrees C, and decreased viscosity and yield stress values. Different mud treatment techniques did not cause a clear behavioral change in the final mud preparation. B10G and K5B5G were labeled as "best formulas" based on having satisfactory physical and aesthetic criteria investigated in this study, while other formulations failed in one or more of the tests we have performed.

  5. Formulation Optimization of Hot Melt Extruded Abuse Deterrent Pellet Dosage Form Utilizing Design of Experiments (DOE)

    PubMed Central

    Maddineni, Sindhuri; Battu, Sunil Kumar; Morott, Joe; Majumdar, Soumyajit; Repka, Michael A.

    2014-01-01

    The objective of the present study was to develop techniques for an abuse-deterrent (AD) platform utilizing hot melt extrusion (HME) process. Formulation optimization was accomplished by utilizing Box-Behnken design of experiments to determine the effect of the three formulation factors: PolyOx™ WSR301, Benecel™ K15M, and Carbopol 71G; each of which was studied at three levels on TR attributes of the produced melt extruded pellets. A response surface methodology was utilized to identify the optimized formulation. Lidocaine Hydrochloride was used as a model drug, and suitable formulation ingredients were employed as carrier matrices and processing aids. All of the formulations were evaluated for the TR attributes such as particle size post-milling, gelling, percentage of drug extraction in water and alcohol. All of the DOE formulations demonstrated sufficient hardness and elasticity, and could not be reduced into fine particles (<150µm), which is a desirable feature to prevent snorting. In addition, all of the formulations exhibited good gelling tendency in water with minimal extraction of drug in the aqueous medium. Moreover, Benecel™ K15M in combination with PolyOx™ WSR301 could be utilized to produce pellets with TR potential. HME has been demonstrated to be a viable technique with a potential to develop novel abuse-deterrent formulations. PMID:24433429

  6. Characterization and formulation into solid dosage forms of a novel bacteriophage lytic against Klebsiella oxytoca

    PubMed Central

    Petrovski, Steve; Hoyle, Dannielle; Chan, Hiu Tat; Lock, Peter; Tucci, Joseph

    2017-01-01

    Aim To isolate and characterize bacteriophage lytic for the opportunistic pathogen Klebsiella oxytoca and their formulation into a range of solid dosage forms for in-vitro testing. Methods and results We report the isolation, genomic and functional characterization of a novel bacteriophage lytic for Klebsiella oxytoca, which does not infect the closely related Klebsiella pneumoniae. This bacteriophage was formulated into suppositories and troches and shown to be released and lyse underlying Klebsiella oxytoca bacteria in an in-vitro model. These bacteriophage formulations were stable for at least 49 days at 4°C. Conclusions The successful in-vitro assay of these formulations here suggests that they could potentially be tested in-vivo to determine whether such a therapeutic approach could modulate the gut microbiome, and control Klebsiella oxytoca overgrowth, during antibiotic therapy regimes. Significance and impact of the study This study reports a novel bacteriophage specific for Klebsiella oxytoca which can be formulated into solid dosage forms appropriate for potential delivery in testing as a therapy to modulate gut microbiome during antibiotic therapies. PMID:28817689

  7. On the validity of effective formulations for transport through heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    de Dreuzy, J.-R.; Carrera, J.

    2015-11-01

    Geological heterogeneity enhances spreading of solutes, and causes transport to be anomalous (i.e., non-Fickian), with much less mixing than suggested by dispersion. This implies that modeling transport requires adopting either stochastic approaches that model heterogeneity explicitly or effective transport formulations that acknowledge the effects of heterogeneity. A number of such formulations have been developed and tested as upscaled representations of enhanced spreading. However, their ability to represent mixing has not been formally tested, which is required for proper reproduction of chemical reactions and which motivates our work. We propose that, for an effective transport formulation to be considered a valid representation of transport through Heterogeneous Porous Media (HPM), it should honor mean advection, mixing and spreading. It should also be flexible enough to be applicable to real problems. We test the capacity of the Multi-Rate Mass Transfer (MRMT) to reproduce mixing observed in HPM, as represented by the classical multi-Gaussian log-permeability field with a Gaussian correlation pattern. Non-dispersive mixing comes from heterogeneity structures in the concentration fields that are not captured by macrodispersion. These fine structures limit mixing initially, but eventually enhance it. Numerical results show that, relative to HPM, MRMT models display a much stronger memory of initial conditions on mixing than on dispersion because of the sensitivity of the mixing state to the actual values of concentration. Because MRMT does not restitute the local concentration structures, it induces smaller non-dispersive mixing than HPM. However long-lived trapping in the immobile zones may sustain the deviation from dispersive mixing over much longer times. While spreading can be well captured by MRMT models, non-dispersive mixing cannot.

  8. Computer-Assisted Drug Formulation Design: Novel Approach in Drug Delivery.

    PubMed

    Metwally, Abdelkader A; Hathout, Rania M

    2015-08-03

    We hypothesize that, by using several chemo/bio informatics tools and statistical computational methods, we can study and then predict the behavior of several drugs in model nanoparticulate lipid and polymeric systems. Accordingly, two different matrices comprising tripalmitin, a core component of solid lipid nanoparticles (SLN), and PLGA were first modeled using molecular dynamics simulation, and then the interaction of drugs with these systems was studied by means of computing the free energy of binding using the molecular docking technique. These binding energies were hence correlated with the loadings of these drugs in the nanoparticles obtained experimentally from the available literature. The obtained relations were verified experimentally in our laboratory using curcumin as a model drug. Artificial neural networks were then used to establish the effect of the drugs' molecular descriptors on the binding energies and hence on the drug loading. The results showed that the used soft computing methods can provide an accurate method for in silico prediction of drug loading in tripalmitin-based and PLGA nanoparticulate systems. These results have the prospective of being applied to other nano drug-carrier systems, and this integrated statistical and chemo/bio informatics approach offers a new toolbox to the formulation science by proposing what we present as computer-assisted drug formulation design (CADFD).

  9. The formulation makes the honey bee poison.

    PubMed

    Mullin, Christopher A; Chen, Jing; Fine, Julia D; Frazier, Maryann T; Frazier, James L

    2015-05-01

    Dr. Fumio Matsumura's legacy embraced a passion for exploring environmental impacts of agrochemicals on non-target species such as bees. Why most formulations are more toxic to bees than respective active ingredients and how pesticides interact to cause pollinator decline cannot be answered without understanding the prevailing environmental chemical background to which bees are exposed. Modern pesticide formulations and seed treatments, particularly when multiple active ingredients are blended, require proprietary adjuvants and inert ingredients to achieve high efficacy for targeted pests. Although we have found over 130 different pesticides and metabolites in beehive samples, no individual pesticide or amount correlates with recent bee declines. Recently we have shown that honey bees are sensitive to organosilicone surfactants, nonylphenol polyethoxylates and the solvent N-methyl-2-pyrrolidone (NMP), widespread co-formulants used in agrochemicals and frequent pollutants within the beehive. Effects include learning impairment for adult bees and chronic toxicity in larval feeding bioassays. Multi-billion pounds of formulation ingredients like NMP are used and released into US environments. These synthetic organic chemicals are generally recognized as safe, have no mandated tolerances, and residues remain largely unmonitored. In contrast to finding about 70% of the pesticide active ingredients searched for in our pesticide analysis of beehive samples, we have found 100% of the other formulation ingredients targeted for analysis. These 'inerts' overwhelm the chemical burden from active pesticide, drug and personal care ingredients with which they are formulated. Honey bees serve as an optimal terrestrial bioindicator to determine if 'the formulation and not just the dose makes the poison'. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Comparison between self-formulation and compounded-formulation dexamethasone mouth rinse for oral lichen planus: a pilot, randomized, cross-over trial.

    PubMed

    Hambly, Jessica L; Haywood, Alison; Hattingh, Laetitia; Nair, Raj G

    2017-08-01

    There is a lack of appropriate, commercially-available topical corticosteroid formulations for use in oral lichen planus (OLP) and oral lichenoid reaction. Current therapy includes crushing a dexamethasone tablet and mixing it with water for use as a mouth rinse. This formulation is unpleasant esthetically and to use in the mouth, as it is a bitter and gritty suspension, resulting in poor compliance. Thus, the present study was designed to formulate and pilot an effective, esthetically-pleasing formulation. A single-blinded, cross-over trial was designed with two treatment arms. Patients were monitored for 7 weeks. Quantitative and qualitative data was assessed using VAS, numeric pain scales, the Treatment Satisfaction Questionnaire for Medication-9, and thematic analysis to determine primary patient-reported outcomes, including satisfaction, compliance, quality of life, and symptom relief. Nine patients completed the pilot trial. Data analysis revealed the new compounded formulation to be superior to existing therapy due to its convenience, positive contribution to compliance, patient-perceived faster onset of action, and improved symptom relief. Topical dexamethasone is useful in the treatment of OLP. When carefully formulated into a compounded mouth rinse, it improves patient outcomes. © 2016 John Wiley & Sons Australia, Ltd.

  11. Semi-empirical formulation of multiple scattering for the Gaussian beam model of heavy charged particles stopping in tissue-like matter.

    PubMed

    Kanematsu, Nobuyuki

    2009-03-07

    Dose calculation for radiotherapy with protons and heavier ions deals with a large volume of path integrals involving a scattering power of body tissue. This work provides a simple model for such demanding applications. There is an approximate linearity between RMS end-point displacement and range of incident particles in water, empirically found in measurements and detailed calculations. This fact was translated into a simple linear formula, from which the scattering power that is only inversely proportional to the residual range was derived. The simplicity enabled the analytical formulation for ions stopping in water, which was designed to be equivalent with the extended Highland model and agreed with measurements within 2% or 0.02 cm in RMS displacement. The simplicity will also improve the efficiency of numerical path integrals in the presence of heterogeneity.

  12. A theoretical formulation of wave-vortex interactions

    NASA Technical Reports Server (NTRS)

    Wu, J. Z.; Wu, J. M.

    1989-01-01

    A unified theoretical formulation for wave-vortex interaction, designated the '(omega, Pi) framework,' is presented. Based on the orthogonal decomposition of fluid dynamic interactions, the formulation can be used to study a variety of problems, including the interaction of a longitudinal (acoustic) wave and/or transverse (vortical) wave with a main vortex flow. Moreover, the formulation permits a unified treatment of wave-vortex interaction at various approximate levels, where the normal 'piston' process and tangential 'rubbing' process can be approximated dfferently.

  13. Kit systems for granulated decontamination formulations

    DOEpatents

    Tucker, Mark D.

    2010-07-06

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a sorbent additive, and water. A highly adsorbent sorbent additive (e.g., amorphous silica, sorbitol, mannitol, etc.) is used to "dry out" one or more liquid ingredients into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field. The formulation can be pre-mixed and pre-packaged as a multi-part kit system, where one or more of the parts are packaged in a powdered, granulated form for ease of handling and mixing in the field.

  14. Optimisation of the formulation of a bubble bath by a chemometric approach market segmentation and optimisation.

    PubMed

    Marengo, Emilio; Robotti, Elisa; Gennaro, Maria Carla; Bertetto, Mariella

    2003-03-01

    The optimisation of the formulation of a commercial bubble bath was performed by chemometric analysis of Panel Tests results. A first Panel Test was performed to choose the best essence, among four proposed to the consumers; the best essence chosen was used in the revised commercial bubble bath. Afterwards, the effect of changing the amount of four components (the amount of primary surfactant, the essence, the hydratant and the colouring agent) of the bubble bath was studied by a fractional factorial design. The segmentation of the bubble bath market was performed by a second Panel Test, in which the consumers were requested to evaluate the samples coming from the experimental design. The results were then treated by Principal Component Analysis. The market had two segments: people preferring a product with a rich formulation and people preferring a poor product. The final target, i.e. the optimisation of the formulation for each segment, was obtained by the calculation of regression models relating the subjective evaluations given by the Panel and the compositions of the samples. The regression models allowed to identify the best formulations for the two segments ofthe market.

  15. Formulation and evaluation of Bacillus coagulans-loaded hypromellose mucoadhesive microspheres.

    PubMed

    Alli, Sk Md Athar

    2011-01-01

    Development of a novel delivery system has been attempted to deliver viable probiotic cells into the gut for a prolonged period of time while maintaining high numbers of viable cells within the formulation throughout the shelf-life of the product and during the gastrointestinal transit. Core mucoadhesive microspheres of Bacillus coagulans were developed employing several grades of hypromellose, a mucoadhesive polymer, following coacervation and phase separation technique and were subsequently enteric-coated with hypromellose phthalate. Microspheres were evaluated for percent yield; entrapment efficiency; in vitro swelling; surface morphology; particle size, size distribution, and zeta potential; flow property, mucoadhesion property by the ex vivo mucoadhesive strength test and the in vitro wash off test; in vitro release profile and release kinetic; in vivo probiotic activity; and stability. The values for the kinetic constant and regression coefficient of model-dependent approaches and the difference factor (f(1)), the similarity factor (f(2)), and the Rescigno index (ξ(1) and ξ(2)) of model independent approaches were determined for comparing in vitro dissolution profiles. Freeze dried B. coagulans cells were successfully formulated as enteric-coated mucoadhesive microspheres with satisfactory physical structure and yield. The viability of B. coagulans was maintained in the simulated gastric conditions and during processing; in simulated intestinal conditions exhibiting mucoadhesion, and controlling and extending the viable cell release following zero-order; and was satisfactorily stable at room temperature. Test results depict statistically significant effects of the hypromellose grade and their concentration on the performance and release profile of formulations.

  16. Formulation and evaluation of Bacillus coagulans-loaded hypromellose mucoadhesive microspheres

    PubMed Central

    Alli, Sk Md Athar

    2011-01-01

    Development of a novel delivery system has been attempted to deliver viable probiotic cells into the gut for a prolonged period of time while maintaining high numbers of viable cells within the formulation throughout the shelf-life of the product and during the gastrointestinal transit. Core mucoadhesive microspheres of Bacillus coagulans were developed employing several grades of hypromellose, a mucoadhesive polymer, following coacervation and phase separation technique and were subsequently enteric-coated with hypromellose phthalate. Microspheres were evaluated for percent yield; entrapment efficiency; in vitro swelling; surface morphology; particle size, size distribution, and zeta potential; flow property, mucoadhesion property by the ex vivo mucoadhesive strength test and the in vitro wash off test; in vitro release profile and release kinetic; in vivo probiotic activity; and stability. The values for the kinetic constant and regression coefficient of model-dependent approaches and the difference factor (f1), the similarity factor (f2), and the Rescigno index (ξ1 and ξ2) of model independent approaches were determined for comparing in vitro dissolution profiles. Freeze dried B. coagulans cells were successfully formulated as enteric-coated mucoadhesive microspheres with satisfactory physical structure and yield. The viability of B. coagulans was maintained in the simulated gastric conditions and during processing; in simulated intestinal conditions exhibiting mucoadhesion, and controlling and extending the viable cell release following zero-order; and was satisfactorily stable at room temperature. Test results depict statistically significant effects of the hypromellose grade and their concentration on the performance and release profile of formulations. PMID:21674019

  17. IVABRADINE LOADED SOLID LIPID MICROPARTICLES: FORMULATION, CHARACTERIZATION AND OPTIMIZATION BY CENTRAL COMPOSITE ROTATABLE DESIGN.

    PubMed

    Hanif, Muhammad; Khan, Hafeez Ullah; Afzal, Samina; Sher, Muhammad

    2017-01-01

    The current research focused on improvement of oral bioavailability and decrease in dosing frequency of ivabradine (Iva) in order to enhance patient compliance by formulating novel sustained release Iva loaded solid lipid microparticles (SLMs) with the help of melt emulsification technique. SLMs formulations were designed with the help of three level central composite rotatable design (CCRD) to study the impact of independent variables like lipid concentration, surfactant concentration and stirring speed on responses - percentage yield (Y,) and entrapment efficiency (Y2). Compatibility between the drug and bees wax (BW) was checked by conducting Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRD). SLMs were further evaluated for rheological behavior, zeta potential, particle size and for morphology by scanning'electron microscope (SEM). The release of drug from SLMs was conducted by USP type-Il apparatus at pH 1.2, pH 6.8 and data were analyzed by different kinetic models like zero order, first order, Higuchi model, Korsmeyer-Peppas and Hixon-Crowell models. The rheo- logical studies approved the good flow behavior of SLMs and spherical smooth surface of SLMs was observed from SEM. DSC, FTIR and XRD studies concluded the lack of any possible interaction between formulation components. The size-of SLMs ranged from 300 to 500 pm and zeta potential study showed the presence of higher negative charge (-30 to -52 mV). Response Y, varied from 53 to 90% and response Y2 ranged from 29 to 78% indicating the effect of formulation variables. The obtained outcomes were analyzed by second order polynomial equation and suggested quadratic model was also validated. SLMs released Iva from 54 to 90% at pH 6.8 and was significantly (p 0.05) affected by BW concentration. The release mechanism followed the zero order and Korsmeyer-Peppas (n 0.85) kinetic models suggesting slow erosion along with diffusion

  18. Cyclodextrins as excipients in tablet formulations.

    PubMed

    Conceição, Jaime; Adeoye, Oluwatomide; Cabral-Marques, Helena Maria; Lobo, José Manuel Sousa

    2018-04-22

    This paper aims to provide a critical review of cyclodextrins as excipients in tablet formulations, highlighting: (i) the principal pharmaceutical applications of cyclodextrins; (ii) the most relevant technological aspects in pharmaceutical formulation development; and (iii) the actual regulatory status of cyclodextrins. Moreover, several illustrative examples are presented. Cyclodextrins can be used as complexing excipients in tablet formulations for low-dose drugs. By contrast, for medium-dose drugs and/or when the complexation efficiency is low, the methods to enhance the complexation efficiency play a key part in reducing the cyclodextrin quantity. In addition, these compounds are used as fillers, disintegrants, binders and multifunctional direct compression excipients of the tablets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Wave-propagation formulation of seismic response of multistory buildings

    USGS Publications Warehouse

    Safak, E.

    1999-01-01

    This paper presents a discrete-time wave-propagation method to calculate the seismic response of multistory buildings, founded on layered soil media and subjected to vertically propagating shear waves. Buildings are modeled as an extension of the layered soil media by considering each story as another layer in the wave-propagation path. The seismic response is expressed in terms of wave travel times between the layers and wave reflection and transmission coefficients at layer interfaces. The method accounts for the filtering effects of the concentrated foundation and floor masses. Compared with commonly used vibration formulation, the wave-propagation formulation provides several advantages, including simplicity, improved accuracy, better representation of damping, the ability to incorporate the soil layers under the foundation, and providing better tools for identification and damage detection from seismic records. Examples are presented to show the versatility and the superiority of the method.

  20. Formation of oligonucleotide adducts in pharmaceutical formulations.

    PubMed

    Krotz, Achim H; Gaus, Hans; Hardee, Gregory E

    2005-01-01

    During preformulation studies, we observed that oligonucleotide extracted from topical formulations contained considerable amounts of covalently modified oligonucleotide adducts. In this report, we describe the identification and characterization of reaction products that form when PS-oligodeoxyribonucleotide ISIS 2302 (1) is brought into contact with aqueous solutions of glycerol-derived excipients. Compatibility tests showed that the presence of certain glycerides in the formulation lead to adduct formation (1+58x amu, 1+72x amu, 1+58x+72y amu, x, and y are the number of modifications on one oligonucleotide strand). No adduct formation was observed in the presence of triglycerides or propylene glycol-derived excipients used in the study. Using nucleosides as model compounds, two modifications of deoxyguanosine were isolated by preparative reversed phase (RP)-high pressure liquid chromatography (HPLC) and characterized by nuclear magnetic resonance (NMR) and HPLC-mass spectrometry (MS). Modifications were identified as N2-(1-carboxymethyl)- and N2-(1-carboxyethyl) derivatives of 2'-deoxyguanosine. The mechanism of formation of these adducts may involve advanced glycation reactions possibly caused by excipient impurities or degradation products such as glyceraldehyde or glyceraldehyde derivatives.

  1. Triboluminescence from Pharmaceutical Formulations.

    PubMed

    Smith, Casey J; Griffin, Scott R; Eakins, Gregory S; Deng, Fengyuan; White, Julia K; Thirunahari, Satyanarayana; Ramakrishnan, Srividya; Sangupta, Atanu; Zhang, Siwei; Novak, Julie; Liu, Zhen; Rhodes, Timothy; Simpson, Garth J

    2018-06-05

    Triboluminescence (TL) is shown to enable selective detection of trace crystallinity within nominally amorphous solid dispersions (ASDs). ASDs are increasingly used for the preparation of pharmaceutical formulations, the physical stability of which can be negatively impacted by trace crystallinity introduced during manufacturing or storage. In the present study, TL measurements of a model ASD consisting of griseofulvin in polyethylene glycol produced limits of detection of 140 ppm. Separate studies of the particle size dependence of sucrose crystals and the dependence on polymorphism in clopidogrel bisulfate particles are both consistent with a mechanism for TL closely linked to the piezoelectric response of the crystalline fraction. Whereas disordered polymeric materials cannot support piezoelectric activity, molecular crystals produced from homochiral molecules adopt crystal structures that are overwhelmingly symmetry-allowed for piezoelectricity. Consequently, TL may provide a broadly applicable and simple experimental route for sensitive detection of trace crystallinity within nominally amorphous materials.

  2. Stability of nonuniform rotor blades in hover using a mixed formulation

    NASA Technical Reports Server (NTRS)

    Stephens, W. B.; Hodges, D. H.; Avila, J. H.; Kung, R. M.

    1980-01-01

    A mixed formulation for calculating static equilibrium and stability eigenvalues of nonuniform rotor blades in hover is presented. The static equilibrium equations are nonlinear and are solved by an accurate and efficient collocation method. The linearized perturbation equations are solved by a one step, second order integration scheme. The numerical results correlate very well with published results from a nearly identical stability analysis based on a displacement formulation. Slight differences in the results are traced to terms in the equations that relate moments to derivatives of rotations. With the present ordering scheme, in which terms of the order of squares of rotations are neglected with respect to unity, it is not possible to achieve completely equivalent models based on mixed and displacement formulations. The one step methods reveal that a second order Taylor expansion is necessary to achieve good convergence for nonuniform rotating blades. Numerical results for a hypothetical nonuniform blade, including the nonlinear static equilibrium solution, were obtained with no more effort or computer time than that required for a uniform blade.

  3. Completed Beltrami-Michell Formulation for Analyzing Radially Symmetrical Bodies

    NASA Technical Reports Server (NTRS)

    Kaljevic, Igor; Saigal, Sunil; Hopkins, Dale A.; Patnaik, Surya N.

    1994-01-01

    A force method formulation, the completed Beltrami-Michell formulation (CBMF), has been developed for analyzing boundary value problems in elastic continua. The CBMF is obtained by augmenting the classical Beltrami-Michell formulation with novel boundary compatibility conditions. It can analyze general elastic continua with stress, displacement, or mixed boundary conditions. The CBMF alleviates the limitations of the classical formulation, which can solve stress boundary value problems only. In this report, the CBMF is specialized for plates and shells. All equations of the CBMF, including the boundary compatibility conditions, are derived from the variational formulation of the integrated force method (IFM). These equations are defined only in terms of stresses. Their solution for kinematically stable elastic continua provides stress fields without any reference to displacements. In addition, a stress function formulation for plates and shells is developed by augmenting the classical Airy's formulation with boundary compatibility conditions expressed in terms of the stress function. The versatility of the CBMF and the augmented stress function formulation is demonstrated through analytical solutions of several mixed boundary value problems. The example problems include a composite circular plate and a composite circular cylindrical shell under the simultaneous actions of mechanical and thermal loads.

  4. Nonclinical dose formulation analysis method validation and sample analysis.

    PubMed

    Whitmire, Monica Lee; Bryan, Peter; Henry, Teresa R; Holbrook, John; Lehmann, Paul; Mollitor, Thomas; Ohorodnik, Susan; Reed, David; Wietgrefe, Holly D

    2010-12-01

    Nonclinical dose formulation analysis methods are used to confirm test article concentration and homogeneity in formulations and determine formulation stability in support of regulated nonclinical studies. There is currently no regulatory guidance for nonclinical dose formulation analysis method validation or sample analysis. Regulatory guidance for the validation of analytical procedures has been developed for drug product/formulation testing; however, verification of the formulation concentrations falls under the framework of GLP regulations (not GMP). The only current related regulatory guidance is the bioanalytical guidance for method validation. The fundamental parameters for bioanalysis and formulation analysis validations that overlap include: recovery, accuracy, precision, specificity, selectivity, carryover, sensitivity, and stability. Divergence in bioanalytical and drug product validations typically center around the acceptance criteria used. As the dose formulation samples are not true "unknowns", the concept of quality control samples that cover the entire range of the standard curve serving as the indication for the confidence in the data generated from the "unknown" study samples may not always be necessary. Also, the standard bioanalytical acceptance criteria may not be directly applicable, especially when the determined concentration does not match the target concentration. This paper attempts to reconcile the different practices being performed in the community and to provide recommendations of best practices and proposed acceptance criteria for nonclinical dose formulation method validation and sample analysis.

  5. Finite element formulation of viscoelastic sandwich beams using fractional derivative operators

    NASA Astrophysics Data System (ADS)

    Galucio, A. C.; Deü, J.-F.; Ohayon, R.

    This paper presents a finite element formulation for transient dynamic analysis of sandwich beams with embedded viscoelastic material using fractional derivative constitutive equations. The sandwich configuration is composed of a viscoelastic core (based on Timoshenko theory) sandwiched between elastic faces (based on Euler-Bernoulli assumptions). The viscoelastic model used to describe the behavior of the core is a four-parameter fractional derivative model. Concerning the parameter identification, a strategy to estimate the fractional order of the time derivative and the relaxation time is outlined. Curve-fitting aspects are focused, showing a good agreement with experimental data. In order to implement the viscoelastic model into the finite element formulation, the Grünwald definition of the fractional operator is employed. To solve the equation of motion, a direct time integration method based on the implicit Newmark scheme is used. One of the particularities of the proposed algorithm lies in the storage of displacement history only, reducing considerably the numerical efforts related to the non-locality of fractional operators. After validations, numerical applications are presented in order to analyze truncation effects (fading memory phenomena) and solution convergence aspects.

  6. Analytical Formulation of Equatorial Standing Wave Phenomena: Application to QBO and ENSO

    NASA Astrophysics Data System (ADS)

    Pukite, P. R.

    2016-12-01

    Key equatorial climate phenomena such as QBO and ENSO have never been adequately explained as deterministic processes. This in spite of recent research showing growing evidence of predictable behavior. This study applies the fundamental Laplace tidal equations with simplifying assumptions along the equator — i.e. no Coriolis force and a small angle approximation. To connect the analytical Sturm-Liouville results to observations, a first-order forcing consistent with a seasonally aliased Draconic or nodal lunar period (27.21d aliased into 2.36y) is applied. This has a plausible rationale as it ties a latitudinal forcing cycle via a cross-product to the longitudinal terms in the Laplace formulation. The fitted results match the features of QBO both qualitatively and quantitatively; adding second-order terms due to other seasonally aliased lunar periods provides finer detail while remaining consistent with the physical model. Further, running symbolic regression machine learning experiments on the data provided a validation to the approach, as it discovered the same analytical form and fitted values as the first principles Laplace model. These results conflict with Lindzen's QBO model, in that his original formulation fell short of making the lunar connection, even though Lindzen himself asserted "it is unlikely that lunar periods could be produced by anything other than the lunar tidal potential".By applying a similar analytical approach to ENSO, we find that the tidal equations need to be replaced with a Mathieu-equation formulation consistent with describing a sloshing process in the thermocline depth. Adapting the hydrodynamic math of sloshing, we find a biennial modulation coupled with angular momentum forcing variations matching the Chandler wobble gives an impressive match over the measured ENSO range of 1880 until the present. Lunar tidal periods and an additional triaxial nutation of 14 year period provide additional fidelity. The caveat is a phase

  7. Model reductions using a projection formulation

    NASA Technical Reports Server (NTRS)

    De Villemagne, Christian; Skelton, Robert E.

    1987-01-01

    A new methodology for model reduction of MIMO systems exploits the notion of an oblique projection. A reduced model is uniquely defined by a projector whose range space and orthogonal to the null space are chosen among the ranges of generalized controllability and observability matrices. The reduced order models match various combinations (chosen by the designer) of four types of parameters of the full order system associated with (1) low frequency response, (2) high frequency response, (3) low frequency power spectral density, and (4) high frequency power spectral density. Thus, the proposed method is a computationally simple substitute for many existing methods, has an extreme flexibility to embrace combinations of existing methods and offers some new features.

  8. Decontamination formulation with sorbent additive

    DOEpatents

    Tucker; Mark D. , Comstock; Robert H.

    2007-10-16

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator, a sorbent additive, and water. The highly adsorbent, water-soluble sorbent additive (e.g., sorbitol or mannitol) is used to "dry out" one or more liquid ingredients, such as the liquid bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate) and convert the activator into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  9. Formulations of Amlodipine: A Review

    PubMed Central

    Ahsan, Syed Furqan; Khan, Marium Fatima

    2016-01-01

    Amlodipine (AD) is a calcium channel blocker that is mainly used in the treatment of hypertension and angina. However, latest findings have revealed that its efficacy is not only limited to the treatment of cardiovascular diseases as it has shown to possess antioxidant activity and plays an important role in apoptosis. Therefore, it is also employed in the treatment of cerebrovascular stroke, neurodegenerative diseases, leukemia, breast cancer, and so forth either alone or in combination with other drugs. AD is a photosensitive drug and requires protection from light. A number of workers have tried to formulate various conventional and nonconventional dosage forms of AD. This review highlights all the formulations that have been developed to achieve maximum stability with the desired therapeutic action for the delivery of AD such as fast dissolving tablets, floating tablets, layered tablets, single-pill combinations, capsules, oral and transdermal films, suspensions, emulsions, mucoadhesive microspheres, gels, transdermal patches, and liposomal formulations. PMID:27822402

  10. The impact of in-canopy wind profile formulations on heat flux estimation in an open orchard using the remote sensing-based two-source model

    NASA Astrophysics Data System (ADS)

    Cammalleri, C.; Anderson, M. C.; Ciraolo, G.; Durso, G.; Kustas, W. P.; La Loggia, G.; Minacapilli, M.

    2010-12-01

    For open orchard and vineyard canopies containing significant fractions of exposed soil (>50%), typical of Mediterranean agricultural regions, the energy balance of the vegetation elements is strongly influenced by heat exchange with the bare soil/substrate. For these agricultural systems a "two-source" approach, where radiation and turbulent exchange between the soil and canopy elements are explicitly modelled, appears to be the only suitable methodology for reliably assessing energy fluxes. In strongly clumped canopies, the effective wind speed profile inside and below the canopy layer can strongly influence the partitioning of energy fluxes between the soil and vegetation components. To assess the impact of in-canopy wind profile on model flux estimates, an analysis of three different formulations is presented, including algorithms from Goudriaan (1977), Massman (1987) and Lalic et al. (2003). The in-canopy wind profile formulations are applied to the thermal-based two-source energy balance (TSEB) model developed by Norman et al. (1995) and modified by Kustas and Norman (1999). High resolution airborne remote sensing images, collected over an agricultural area located in the western part of Sicily (Italy) comprised primarily of vineyards, olive and citrus orchards, are used to derive all the input parameters needed to apply the TSEB. The images were acquired from June to October 2008 and include a relatively wide range of meteorological and soil moisture conditions. A preliminary sensitivity analysis of the three wind profile algorithms highlights the dependence of wind speed just above the soil/substrate to leaf area index and canopy height over the typical range of canopy properties encountered in these agricultural areas. It is found that differences among the models in wind just above the soil surface are most significant under sparse and medium fractional cover conditions (15-50%). The TSEB model heat flux estimates are compared with micro

  11. Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential.

    PubMed

    Telange, Darshan R; Patil, Arun T; Pethe, Anil M; Fegade, Harshal; Anand, Sridhar; Dave, Vivek S

    2017-10-15

    The apigenin-phospholipid phytosome (APLC) was developed to improve the aqueous solubility, dissolution, in vivo bioavailability, and antioxidant activity of apigenin. The APLC synthesis was guided by a full factorial design strategy, incorporating specific formulation and process variables to deliver an optimized product. The design-optimized formulation was assayed for aqueous solubility, in vitro dissolution, pharmacokinetics, and antioxidant activity. The pharmacological evaluation was carried out by assessing its effects on carbon tetrachloride-induced elevation of liver function marker enzymes in a rat model. The antioxidant activity was assessed by studying its effects on the liver antioxidant marker enzymes. The developed model was validated using the design-optimized levels of formulation and process variables. The physical-chemical characterization confirmed the formation of phytosomes. The optimized formulation demonstrated over 36-fold higher aqueous solubility of apigenin, compared to that of pure apigenin. The formulation also exhibited a significantly higher rate and extent of apigenin release in dissolution studies. The pharmacokinetic analysis revealed a significant enhancement in the oral bioavailability of apigenin from the prepared formulation, compared to pure apigenin. The liver function tests indicated that the prepared phytosome showed a significantly improved restoration of all carbon tetrachloride-elevated rat liver function marker enzymes. The prepared formulation also exhibited antioxidant potential by significantly increasing the levels of glutathione, superoxide dismutase, catalase, and decreasing the levels of lipid peroxidase. The study shows that phospholipid-based phytosome is a promising and viable strategy for improving the delivery of apigenin and similar phytoconstituents with low aqueous solubility. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. [Relationship between water supply, sanitation, public health, and environment: elements for the formulation of a sanitary infrastructure planning model].

    PubMed

    Soares, Sérgio R A; Bernardes, Ricardo S; Netto, Oscar de M Cordeiro

    2002-01-01

    The understanding of sanitation infrastructure, public health, and environmental relations is a fundamental assumption for planning sanitation infrastructure in urban areas. This article thus suggests elements for developing a planning model for sanitation infrastructure. The authors performed a historical survey of environmental and public health issues related to the sector, an analysis of the conceptual frameworks involving public health and sanitation systems, and a systematization of the various effects that water supply and sanitation have on public health and the environment. Evaluation of these effects should guarantee the correct analysis of possible alternatives, deal with environmental and public health objectives (the main purpose of sanitation infrastructure), and provide the most reasonable indication of actions. The suggested systematization of the sanitation systems effects in each step of their implementation is an advance considering the association between the fundamental elements for formulating a planning model for sanitation infrastructure.

  13. Gain-Loss Framing and Choice: Separating Outcome Formulations from Descriptor Formulations.

    PubMed

    Mandel, David R.

    2001-05-01

    This article reexamines the assumptions underlying the disease problem used by Tversky and Kahneman (1981) to illustrate gain-loss formulation effects. It is argued that their reported effect may have been due to asymmetries in the ambiguity of the sure and risky prospects and to the entanglement of two distinct types of formulation manipulations: one having to do with the expected outcomes that are made explicit (positive vs negative) and the other having to do with the descriptors used to convey the relevant expected outcomes (lives saved/not saved vs lives lost/not lost). Two experiments using a formally equivalent problem in which these confounds were eliminated revealed no significant predictive effect of either descriptor or outcomes frames on choice, although a marginally significant framing effect was obtained in Experiment 1 when the signs of the two framing manipulations were congruent. Implications for prospect theory are discussed. Copyright 2001 Academic Press.

  14. Reconceptualizing emetophobia: a cognitive-behavioral formulation and research agenda.

    PubMed

    Boschen, Mark J

    2007-01-01

    Fear of vomiting (emetophobia) is a poorly understood anxiety disorder, with little research published into its conceptualization or treatment. The current article uses established cognitive and behavioral models of other anxiety disorders as a basis from which to propose a detailed model of emetophobia. The model proposes that emetophobia results from a constellation of factors including a general anxiety-vulnerability factor, a tendency to somatize anxiety as gastrointestinal distress, a tendency to catastrophically misappraise nausea and other gastrointestinal symptoms, hypervigilance to gastrointestinal cues, beliefs about the unacceptability of vomiting, negatively reinforced avoidance behavior, and selective confirmation biases. A formulation-based treatment package for emetophobia is outlined, including arousal management skills, distraction/attention training, exposure and cognitive restructuring.

  15. Formulation studies for mirtazapine orally disintegrating tablets.

    PubMed

    Yıldız, Simay; Aytekin, Eren; Yavuz, Burçin; Bozdağ Pehlivan, Sibel; Ünlü, Nurşen

    2016-01-01

    Orally disintegrating tablets (ODTs) recently have gained much attention to fulfill the needs for pediatric, geriatric, and psychiatric patients with dysphagia. Aim of this study was to develop new ODT formulations containing mirtazapine, an antidepressant drug molecule having bitter taste, by using simple and inexpensive preparation methods such as coacervation, direct compression and to compare their characteristics with those of reference product (Remereon SolTab). Coacervation method was chosen for taste masking of mirtazapine. In vitro characterization studies such as diameter and thickness, weight variation, tablet hardness, tablet friability and disintegration time were performed on tablet formulations. Wetting time and in vitro dissolution tests of developed ODTs also studied using 900 mL 0.1 N HCl medium, 900 mL pH 6.8 phosphate buffer or 900 mL pH 4.5 acetate buffer at 37 ± 0.2 °C as dissolution medium. Ratio of Eudragit® E-100 was chosen as 6% (w/w) since the dissolution profile of A1 (6% Eudragit® E-100) was found closer to the reference product than A2 (4% Eudragit® E-100) and A3 (8% Eudragit® E-100). Group D, E and F formulations were presented better results in terms of disintegration time. Dissolution results indicated that Group E and F formulations showed optimum properties in all three dissolution media. Formulations D1, D4, D5, E3, E4, F1 and F5 found suitable as ODT formulations due to their favorable disintegration times and dissolution profiles. Developed mirtazapine ODTs were found promising in terms of showing the similar characteristics to the original formulation.

  16. Idiographic formulations, symbols, narratives, context and meaning.

    PubMed

    Phillips, James

    2005-01-01

    To locate the place of idiographic, narrative formulations in a psychiatric nosology and to address the problems stemming from the absence of such formulations in ICD-10 and DSM-IV, the author begins with a review of the stated goals of DSM-IV: that it should serve clinical, research, educational and information-management purposes. He argues that there is a conflict between the clinical and research goals of both manuals and that, with their emphasis on categorical diagnoses, criteria sets and statistical reliability, they serve the purposes of the biomedically oriented researcher better than those of the clinician. The latter is focused on the individual patient and tends in his diagnostic assessment toward a narrative fleshing out of the particulars of the patient's life and personality. Clinicians do not work with tight criteria sets but rather with a prototypal or ideal-type approach, and they emphasize individual histories, psychodynamic formulations and other kinds of idiographic accounts. If a psychiatric nosology is to serve as a clinically useful instrument, it will have to allow for such formulations. The author then offers a description and definition of idiographic, narrative formulations, along with remarks on the conceptual background to this approach. He concludes by highlighting the work of the workgroup of the World Psychiatric Association in developing a section of their International Guidelines for Diagnostic Assessment entitled 'Idiographic (personalised) Diagnostic Formulation'. Copyright 2005 S. Karger AG, Basel.

  17. Nootropic and antiamnestic effects of tenoten (pediatric formulation) in immature rat pups.

    PubMed

    Voronina, T A; Molodavkin, G M; Borodavkina, M V; Kheyfets, I A; Dugina, Yu L; Sergeeva, S A

    2009-09-01

    The antiamnestic effects of tenoten (pediatric formulation) was demonstrated on the model of scopolamine-induced amnesia of passive avoidance reflex and the nootropic effect of this preparation was demonstrated on the model of incomplete conditioning and in rat pups with experimental attention deficit syndrome. The efficiency of the preparation was comparable to that of piracetam and phenibut and even surpassed it by some parameters.

  18. Enzymatic detergent formulation containing amylase from Aspergillus niger: a comparative study with commercial detergent formulations.

    PubMed

    Mitidieri, Sydnei; Souza Martinelli, Anne Helene; Schrank, Augusto; Vainstein, Marilene Henning

    2006-07-01

    There is a wide range of biotechnological applications for amylases, including the textile, pharmaceutical, food and laundry industries. Hydrolytic enzymes are 100% biodegradable and enzymatic detergents can achieve effective cleaning with lukewarm water. Microorganisms and culture media were tested for amylase production and the best producer was Aspergillus niger L119 (3.9 U ml(-1) +/- 0.2) in submerged culture and its amylase demonstrated excellent activity at 50-55 degrees C and pH 4.0, remaining stable at 53 degrees C for up to 200 h. In order to establish the potential uses of this enzyme in detergents, different formulations were tested using the A. niger amylase extract. Enzyme activity was compared with three commercial formulations. The detergents are used in hospitals to clean surgical and endoscopy equipment. The presence of amylase in the formulation is because of its action within hospital drainage system, whether or not it has any function in cleaning the equipment.

  19. An integral formulation for wave propagation on weakly non-uniform potential flows

    NASA Astrophysics Data System (ADS)

    Mancini, Simone; Astley, R. Jeremy; Sinayoko, Samuel; Gabard, Gwénaël; Tournour, Michel

    2016-12-01

    An integral formulation for acoustic radiation in moving flows is presented. It is based on a potential formulation for acoustic radiation on weakly non-uniform subsonic mean flows. This work is motivated by the absence of suitable kernels for wave propagation on non-uniform flow. The integral solution is formulated using a Green's function obtained by combining the Taylor and Lorentz transformations. Although most conventional approaches based on either transform solve the Helmholtz problem in a transformed domain, the current Green's function and associated integral equation are derived in the physical space. A dimensional error analysis is developed to identify the limitations of the current formulation. Numerical applications are performed to assess the accuracy of the integral solution. It is tested as a means of extrapolating a numerical solution available on the outer boundary of a domain to the far field, and as a means of solving scattering problems by rigid surfaces in non-uniform flows. The results show that the error associated with the physical model deteriorates with increasing frequency and mean flow Mach number. However, the error is generated only in the domain where mean flow non-uniformities are significant and is constant in regions where the flow is uniform.

  20. Bracket formulations and energy- and helicity-preserving numerical methods for incompressible two-phase flows

    NASA Astrophysics Data System (ADS)

    Suzuki, Yukihito

    2018-03-01

    A diffuse interface model for three-dimensional viscous incompressible two-phase flows is formulated within a bracket formalism using a skew-symmetric Poisson bracket together with a symmetric negative semi-definite dissipative bracket. The budgets of kinetic energy, helicity, and enstrophy derived from the bracket formulations are properly inherited by the finite difference equations obtained by invoking the discrete variational derivative method combined with the mimetic finite difference method. The Cahn-Hilliard and Allen-Cahn equations are employed as diffuse interface models, in which the equalities of densities and viscosities of two different phases are assumed. Numerical experiments on the motion of periodic arrays of tubes and those of droplets have been conducted to examine the properties and usefulness of the proposed method.

  1. A MULTILAYER BIOCHEMICAL DRY DEPOSITION MODEL 1. MODEL FORMULATION

    EPA Science Inventory

    A multilayer biochemical dry deposition model has been developed based on the NOAA Multilayer Model (MLM) to study gaseous exchanges between the soil, plants, and the atmosphere. Most of the parameterizations and submodels have been updated or replaced. The numerical integration ...

  2. Elastic-viscoplastic modeling of soft biological tissues using a mixed finite element formulation based on the relative deformation gradient.

    PubMed

    Weickenmeier, J; Jabareen, M

    2014-11-01

    The characteristic highly nonlinear, time-dependent, and often inelastic material response of soft biological tissues can be expressed in a set of elastic-viscoplastic constitutive equations. The specific elastic-viscoplastic model for soft tissues proposed by Rubin and Bodner (2002) is generalized with respect to the constitutive equations for the scalar quantity of the rate of inelasticity and the hardening parameter in order to represent a general framework for elastic-viscoplastic models. A strongly objective integration scheme and a new mixed finite element formulation were developed based on the introduction of the relative deformation gradient-the deformation mapping between the last converged and current configurations. The numerical implementation of both the generalized framework and the specific Rubin and Bodner model is presented. As an example of a challenging application of the new model equations, the mechanical response of facial skin tissue is characterized through an experimental campaign based on the suction method. The measurement data are used for the identification of a suitable set of model parameters that well represents the experimentally observed tissue behavior. Two different measurement protocols were defined to address specific tissue properties with respect to the instantaneous tissue response, inelasticity, and tissue recovery. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Quality evaluation of extemporaneous delayed-release liquid formulations of lansoprazole.

    PubMed

    Melkoumov, Alexandre; Soukrati, Amina; Elkin, Igor; Forest, Jean-Marc; Hildgen, Patrice; Leclair, Grégoire

    2011-11-01

    The quality attributes of extemporaneous delayed-release liquid formulations of lansoprazole for oral administration were evaluated. A novel liquid formulation (3 mg/mL) of Prevacid FasTab in an Ora-Blend vehicle was prepared and compared with the Prevacid FasTab 30 mg and Prevacid-sodium bicarbonate 1 M formulation (3 mg/mL). The latter formulation was combined with hydrochloric acid 0.1 N, and the remaining lansoprazole content was assayed by high-performance liquid chromatography (HPLC). A batch of delayed-release liquid formulation was prepared to evaluate content uniformity. For content assay, three samples were prepared for each evaluated condition and each sample was analyzed in triplicate by HPLC. The lansoprazole in the sodium bicarbonate formulation was extensively degraded by quantities of hydrochloric acid 0.1 N in excess of 100 mL. Storage time and temperature had a significant effect on lansoprazole stability in the Ora-Blend formulation. The drug remained stable for seven days when the formulation was stored at 4.5-5.5 °C, but storage at 21-22 °C or the reduction of pH with citric acid accelerated lansoprazole degradation. The amount of lansoprazole released from the Ora-Blend formulation during the buffer stage of the dissolution test decreased with increases in formulation storage time, in formulation storage temperature, and in the amount of lansoprazole released and degraded during the acid stage of the test. An extemporaneous formulation consisting of lansoprazole microgranules in Ora-Blend maintained acceptable quality attributes when stored for three days at 4.5-5.5 °C.

  4. Implicit Formulation of Muscle Dynamics in OpenSim

    NASA Technical Reports Server (NTRS)

    Humphreys, Brad; Dembia, Chris; Lewandowski, Beth; Van Den Bogert, Antonie

    2017-01-01

    Astronauts lose bone and muscle mass during spaceflight. Exercise countermeasure is the primary method for counteracting bone and muscle mass loss in space. New spacecraft exercise device concepts are currently being developed for the NASAs new crew exploration vehicle. The NASA Digital Astronaut Project (DAP) uses computational modeling to help determine if the new exercise devices will be effective as countermeasures. The NASA Digital Astronaut Project is developing the ability to utilize predictive simulation to provide insight into the change in kinematics and kinetics with a change in device and gravitational environment (1-g versus 0-g). For example, in space exercise the subject's body weight is applied in addition to the loads prescribed for musculoskeletal maintenance. How and where these loads are applied obviously directly impacts bone and tissue loads. Additionally, due to space vehicle structural requirements, exercise devices are often placed on vibration isolation systems. This changes the apparent impedance or stiffness of the device as seen by the user. Data collection under these conditions is often impractical and limited. Predictive modeling provides a means to have a virtual subject to test hypotheses. Predictive simulation provides a virtual subject for which we are able to perform studies such as sensitivity to device loading and vibration isolation without the need for laboratory kinematic or kinetic test data.Direct Collocation optimization provides an efficient means to perform task based optimization and predictive modeling. It is relatively straight forward to structure a physical exercise task in a Direct Collocation mathematical formulation: perform a motion such that you start at an initial pose, achieve a given amount of deflection i.e a squat, return to the initial pose, and minimize muscle activation cost. Direct Collocation is advantageous in that it does not require numerical integration to evaluate the objective function

  5. Constitutive formulations for the mechanical investigation of colonic tissues.

    PubMed

    Carniel, Emanuele Luigi; Gramigna, Vera; Fontanella, Chiara Giulia; Stefanini, Cesare; Natali, Arturo N

    2014-05-01

    A constitutive framework is provided for the characterization of the mechanical behavior of colonic tissues, as a fundamental tool for the development of numerical models of the colonic structures. The constitutive analysis is performed by a multidisciplinary approach that requires the cooperation between experimental and computational competences. The preliminary investigation pertains to the review of the tissues histology. The complex structural configuration of the tissues and the specific distributions of fibrous elements entail the nonlinear mechanical behavior and the anisotropic response. The identification of the mechanical properties requires to perform mechanical tests according to different loading situations, as different loading directions. Because of the typical functionality of colon structures, the tissues mechanics is investigated by tensile tests, which are performed on taenia coli and haustra specimens from fresh pig colons. Accounting for the histological investigation and the results from the mechanical tests, a specific hyperelastic framework is provided within the theory of fiber-reinforced composite materials. Preliminary analytical formulations are defined to identify the constitutive parameters by the inverse analysis of the experimental tests. Finite element models of the specimens are developed accounting for the actual configuration of the colon structures to verify the quality of the results. The good agreement between experimental and numerical model results suggests the reliability of the constitutive formulations and parameters. Finally, the developed constitutive analysis makes it possible to identify the mechanical behavior and properties of the different colonic tissues. Copyright © 2013 Wiley Periodicals, Inc.

  6. Controlled release formulations of Atrazine and Mesotrione: characterization and sorption on soils

    NASA Astrophysics Data System (ADS)

    Pinheiro Dick, D.; Gomes de Ávila, L.; Benvenuti Leite, S.; Raffin Pohlmann, A.

    2009-04-01

    herbicides release from the formulations and from the commercial products in CaCl2 0,01 mol.L-1 medium was quantified by UV/vis spectroscopy along 24 hours. Mathematical models were tested in order to establish the release kinetics. Sorption isotherms of the formulations SGATZ150 and of the SGMES150 and of the comercial products were determined in three types of soil. The ATZ yields in the formulations were around 60%, while for MES the values reached 80%. In all formulations, ATZ was physically dispersed on the Si-polymer, and the dispersion grade decreased with increasing amount of added herbicide. The same behaviour was shown by MES. Both dissolution and diffusion processes controlled the release kinetics of ATZ from the formulations, whose data was fitted to the Korsmeyer-Peppas model. With the decrease of ATZ dispersion, the mechanism of dissolution assumes a more important role. In the case of MES, the dissolution to the aqueous media was rapidly achieved and the hebiced was located mostly outside the carrier polymer. Nevertheles, both herbicides in the form of xerogel presented a lower affinity for soil than in the commercial form. However, in soils with high contents of organic matter, the retention of ATZ in high affinity sorptive sites occurs both with the herbicide in molecular form as well as bound to the sol-gel matrix.

  7. Formulation study of topically applied lotion: in vitro and in vivo evaluation.

    PubMed

    Hussain Shah, Syed Nisar; Hussain, Talib; Ullah Khan, Ikram; Asghar, Sajid; Shahzad, Yasser

    2013-01-01

    This article presents the development and evaluation of a new topical formulation of diclofenac diethylamine (DDA) as a locally applied analgesic lotion. To this end, the lotion formulations were formulated with equal volume of varying concentrations (1%, 2%, 3%, 4%; v/v) of permeation enhancers, namely propylene glycol (PG) and turpentine oil (TO). These lotions were subjected to physical studies (pH, viscosity, spreadability, homogeneity, and accelerated stability), in vitro permeation, in vivo animal studies and sensatory perception testing. In vitro permeation of DDA from lotion formulations was evaluated across polydimethylsiloxane membrane and rabbit skin using Franz cells. It was found that PG and TO content influenced the permeation of DDA across model membranes with the lotion containing 4% v/v PG and TO content showed maximum permeation enhancement of DDA. The flux values for L4 were 1.20±0.02 μg.cm(-2).min(-1) and 0.67 ± 0.02 μg.cm(-2).min(-1) for polydimethylsiloxane and rabbit skin, respectively. Flux values were significantly different (p < 0.05) from that of the control. The flux enhancement ratio of DDA from L4 was 31.6-fold and 4.8-fold for polydimethylsiloxane and rabbit skin, respectively. In the in vivo animal testing, lotion with 4% v/v enhancer content showed maximum anti-inflammatory and analgesic effect without inducing any irritation. Sensatory perception tests involving healthy volunteers rated the formulations between 3 and 4 (values ranging between -4 to +4, indicating a range of very bad to excellent, respectively). It was concluded that the DDA lotion containing 4% v/v PG and TO exhibit the best performance overall and that this specific formulation should be the basis for further clinical investigations.

  8. Formulation Study of Topically Applied Lotion: In Vitro and In Vivo Evaluation

    PubMed Central

    Hussain Shah, Syed Nisar; Hussain, Talib; Ullah Khan, Ikram; Asghar, Sajid; Shahzad, Yasser

    2013-01-01

    Introduction This article presents the development and evaluation of a new topical formulation of diclofenac diethylamine (DDA) as a locally applied analgesic lotion. Methods To this end, the lotion formulations were formulated with equal volume of varying concentrations (1%, 2%, 3%, 4%; v/v) of permeation enhancers, namely propylene glycol (PG) and turpentine oil (TO). These lotions were subjected to physical studies (pH, viscosity, spreadability, homogeneity, and accelerated stability), in vitro permeation, in vivo animal studies and sensatory perception testing. In vitro permeation of DDA from lotion formulations was evaluated across polydimethylsiloxane membrane and rabbit skin using Franz cells. Results It was found that PG and TO content influenced the permeation of DDA across model membranes with the lotion containing 4% v/v PG and TO content showed maximum permeation enhancement of DDA. The flux values for L4 were 1.20±0.02 μg.cm-2.min-1 and 0.67 ± 0.02 μg.cm-2.min-1 for polydimethylsiloxane and rabbit skin, respectively. Flux values were significantly different (p < 0.05) from that of the control. The flux enhancement ratio of DDA from L4 was 31.6-fold and 4.8-fold for polydimethylsiloxane and rabbit skin, respectively. In the in vivo animal testing, lotion with 4% v/v enhancer content showed maximum anti-inflammatory and analgesic effect without inducing any irritation. Sensatory perception tests involving healthy volunteers rated the formulations between 3 and 4 (values ranging between -4 to +4, indicating a range of very bad to excellent, respectively). Conclusion It was concluded that the DDA lotion containing 4% v/v PG and TO exhibit the best performance overall and that this specific formulation should be the basis for further clinical investigations. PMID:23678465

  9. Structural design using equilibrium programming formulations

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.

    1995-01-01

    Solutions to increasingly larger structural optimization problems are desired. However, computational resources are strained to meet this need. New methods will be required to solve increasingly larger problems. The present approaches to solving large-scale problems involve approximations for the constraints of structural optimization problems and/or decomposition of the problem into multiple subproblems that can be solved in parallel. An area of game theory, equilibrium programming (also known as noncooperative game theory), can be used to unify these existing approaches from a theoretical point of view (considering the existence and optimality of solutions), and be used as a framework for the development of new methods for solving large-scale optimization problems. Equilibrium programming theory is described, and existing design techniques such as fully stressed design and constraint approximations are shown to fit within its framework. Two new structural design formulations are also derived. The first new formulation is another approximation technique which is a general updating scheme for the sensitivity derivatives of design constraints. The second new formulation uses a substructure-based decomposition of the structure for analysis and sensitivity calculations. Significant computational benefits of the new formulations compared with a conventional method are demonstrated.

  10. New lipid formulation of octenidine dihydrochloride.

    PubMed

    Szostak, Kamila; Czogalla, Aleksander; Przybyło, Magdalena; Langner, Marek

    2018-06-01

    Octenidine dihydrochloride is an effective antiseptic compound which mode of action is based on destabilization plasma membrane of microorganisms. This ensures that microorganisms cannot develop the drug resistance in a straightforward way, as the entire cellular structure, rather than specific molecular target is affected. Since the octenidine is a hydrophobic compound, it requires organic solvent such as phenoxyethanol in order to be effectively administered. However, the presence of phenoxyethanol has strong irritating effect, particularly when applied on open wounds and mucous membranes. Phospholipids are known as neutral excipients free of side effects and in their aggregated form may serve as solvent for octenidine. In this article, we propose a new antiseptic formulation composed of equimolar ratio of lipids and octenidine. The resulting particles are ∼4 nm in diameter showing that their topology is different from that known for liposomes. The new formulation has proven to be equally effective as octenidine dihydrochloride formulation marketed under the name of Octenisept®. The main advantage of the new formulation is that it does not contain phenoxyethanol, which opens new possibilities for broader application spectrum of octenidine, including treatments of mucous membranes and open wounds.

  11. Dissolution of three insensitive munitions formulations.

    PubMed

    Taylor, Susan; Park, Eileen; Bullion, Katherine; Dontsova, Katerina

    2015-01-01

    The US military fires live munitions during training. To save soldiers lives both during training and war, the military is developing insensitive munitions (IM) that minimize unintentional detonations. Some of the compounds in the IM formulation are, however, very soluble in water, raising environmental concerns about their fate and transport. We measured the dissolution of three of these IM formulations, IMX101, IMX104 and PAX21 using laboratory drip tests and studied the accompanying changes in particle structure using micro computed tomography. Our laboratory drip tests mimic conditions on training ranges, where spatially isolated particles of explosives scattered by partial detonations are dissolved by rainfall. We found that the constituents of these IM formulations dissolve sequentially and in the order predicted by their aqueous solubility. The order of magnitude differences in solubility among their constituents produce water solutions whose compositions and concentrations vary with time. For IMX101 and IMX104, that contain 3-nitro-1,2,4-triazol-5-one (NTO), the solutions also vary in pH. The good mass balances measured for the drip tests indicate that the formulations are not being photo-or bio-transformed under laboratory conditions. Published by Elsevier Ltd.

  12. Controlled poorly soluble drug release from solid self-microemulsifying formulations with high viscosity hydroxypropylmethylcellulose.

    PubMed

    Yi, Tao; Wan, Jiangling; Xu, Huibi; Yang, Xiangliang

    2008-08-07

    The objective of this work was the development of a controlled release system based on self-microemulsifying mixture aimed for oral delivery of poorly water-soluble drugs. HPMC-based particle formulations were prepared by spray drying containing a model drug (nimodipine) of low water solubility and hydroxypropylmethylcellulose (HPMC) of high viscosity. One type of formulations contained nimodipine mixed with HPMC and the other type of formulations contained HPMC and nimodipine dissolved in a self-microemulsifying system (SMES) consisting of ethyl oleate, Cremophor RH 40 and Labrasol. Based on investigation by transmission electron microscopy (TEM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and X-ray powder diffraction, differences were found in the particle structure between both types of formulations. In vitro release was performed and characterized by the power law. Nimodipine release from both types of formulations showed a controlled release profile and the two power law parameters, n and K, correlated to the viscosity of HPMC. The parameters were also influenced by the presence of SMES. For the controlled release solid SMES, oil droplets containing dissolved nimodipine diffused out of HPMC matrices following exposure to aqueous media. Thus, it is possible to control the in vitro release of poorly soluble drugs from solid oral dosage forms containing SMES.

  13. Successful lyophilization by adopting a fast ramp rate during primary drying in protein formulations.

    PubMed

    Ohori, Ryo; Akita, Tomomi; Yamashita, Chikamasa

    2018-06-15

    In the lyophilization process for injections, the shelf temperature (T s ) and chamber pressure (P c ) have mainly been investigated to optimize the primary drying process. The objective of this study was to show that lyophilization of protein formulations can be achieved by adopting a fast ramp rate of T s in the beginning of the primary drying process. Bovine serum albumin was used as the model protein, and seven different lyophilized formulations obtained were stored at elevated temperature. We found that although acceptable cake appearance was confirmed by the fast ramp cycle, all formulations of lyophilized cakes obtained by the slow ramp cycle severely collapsed (macrocollapse). It is thought that the collapse in the slow ramp cycle occurred during the shelf ramp in the beginning of primary drying and that insufficient removal of water from the dried matrix caused viscous flow (product collapse). Regarding storage stability, moisture-induced degradation was confirmed in some of the formulations prepared by the slow ramp cycle, whereas all lyophilized BSA formulations prepared by the fast ramp cycle were stable. Thus, the results indicate that the ramp rate appears to be one of the critical operational parameters required to establish a successful lyophilization cycle. Copyright © 2018. Published by Elsevier B.V.

  14. Formulation and Characterization of Aceclofenac -Aloe vera Transemulgel.

    PubMed

    Raju, Y Prasanna; Haritha, K; Satyanarayana, Rao P; Vandana, K R; Bindu, D Thushara; Vinesha, V; Chowdary, V Harini

    2015-01-01

    The present research was aimed to formulate aceclofenac transemulgel using Aloe vera as gel base. The prepared formulations were subjected to physical characterization, in-vitro and in-vivo assessment. Aceclofenac, a hydrophobic potential non steroidal anti inflammatory drug, causes ulceration upon chronic oral administration, could be formulated into transemulgel to enhance therapeutic efficacy and to lower the unwanted side effects. The transemulgel was prepared from aqueous Aloe vera gel and aceclofenac emulsion. The prepared transemulgel was evaluated for its pH, viscosity, drug content, skin irritation, in-vitro diffusion and accelerated stability studies. The prepared aceclofenac-Aloe vera tranemulgel and commercial aceclofenac gel were subjected to pharmacodynamic studies in albino rats of Wistar strain employing carrageenan induced left hind paw edema method to assess the anti-inflammatory effect. The transemulgel showed a pH of 6.78 and viscosity of 18 cps. In-vitro diffusion data revealed better permeation characteristics. Topical application of formulation found no skin irritation. Stability study has proved the integrity of the formulation. The prepared aceclofenac Aloe vera transemulgel showed better in-vitro drug release when compared with the commercial aceclofenac gel formulation. Anti-inflammatory activity in treated rats showed the significant paw volume reduction at p<0.05 compared with that of control. Thus, it is concluded that aceclofenac, a potential non steroidal anti inflammatory drug, showed high therapeutic efficiency when formulated into transemulgel using aqueous Aloe vera as gel base.

  15. Rheology-A pre-formulation tool for evaluating mechanical and thermal properties of transdermal formulations

    NASA Astrophysics Data System (ADS)

    Modi, Nisarg

    and lauric acid (C12) respectively. During different mixing speeds at initial time period (t=0), oleic acid showed lowest temperature loop area, which was not affected by storage period. Furthermore, by applying power law model to frequency sweep data, mechanical propereties of transdermal gels were evaluated. Transdermal gels are "physical gels" in nature which showed both frequency dependency and also had a cross-over point. Moreover, the value of n is less than 1. Time Temperature superposition principle can apply to the rheological data of Transdermal gels to obtain the thermal properties of formulations. Thermal properties of transdermal gels are very difficult to measure using traditional DSC equipment. By applying TTS principle, frequency sweep data were obtained between 5-50 °C and extrapolated to achieve the glass transition temperature, free volume and thermal expansion co-efficient of the formulations. Last but not least, In-vitro studies using human cadaver skin showed that Capric acid is the best permeability enhancing agent for escitalopram oxalate in current formulations. Furthermore, increase in carbon chain length of fatty acids decreased the permeability enhancing effect of Escitalopram Oxalate through human cadaver skin during In-vitro diffusion studies.

  16. RAACFDb: Rheumatoid arthritis ayurvedic classical formulations database.

    PubMed

    Mohamed Thoufic Ali, A M; Agrawal, Aakash; Sajitha Lulu, S; Mohana Priya, A; Vino, S

    2017-02-02

    In the past years, the treatment of rheumatoid arthritis (RA) has undergone remarkable changes in all therapeutic modes. The present newfangled care in clinical research is to determine and to pick a new track for better treatment options for RA. Recent ethnopharmacological investigations revealed that traditional herbal remedies are the most preferred modality of complementary and alternative medicine (CAM). However, several ayurvedic modes of treatments and formulations for RA are not much studied and documented from Indian traditional system of medicine. Therefore, this directed us to develop an integrated database, RAACFDb (acronym: Rheumatoid Arthritis Ayurvedic Classical Formulations Database) by consolidating data from the repository of Vedic Samhita - The Ayurveda to retrieve the available formulations information easily. Literature data was gathered using several search engines and from ayurvedic practitioners for loading information in the database. In order to represent the collected information about classical ayurvedic formulations, an integrated database is constructed and implemented on a MySQL and PHP back-end. The database is supported by describing all the ayurvedic classical formulations for the treatment rheumatoid arthritis. It includes composition, usage, plant parts used, active ingredients present in the composition and their structures. The prime objective is to locate ayurvedic formulations proven to be quite successful and highly effective among the patients with reduced side effects. The database (freely available at www.beta.vit.ac.in/raacfdb/index.html) hopefully enables easy access for clinical researchers and students to discover novel leads with reduced side effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Effects of formulation variables and post-compression curing on drug release from a new sustained-release matrix material: polyvinylacetate-povidone.

    PubMed

    Shao, Z J; Farooqi, M I; Diaz, S; Krishna, A K; Muhammad, N A

    2001-01-01

    A new commercially available sustained-release matrix material, Kollidon SR, composed of polyvinylacetate and povidone, was evaluated with respect to its ability to modulate the in vitro release of a highly water-soluble model compound, diphenhydramine HCl. Kollidon SR was found to provide a sustained-release effect for the model compound, with certain formulation and processing variables playing an important role in controlling its release kinetics. Formulation variables affecting the release include the level of the polymeric material in the matrix, excipient level, as well as the nature of the excipients (water soluble vs. water insoluble). Increasing the ratio of a water-insoluble excipient, Emcompress, to Kollidon SR enhanced drug release. The incorporation of a water-soluble excipient, lactose, accelerated its release rate in a more pronounced manner. Stability studies conducted at 40 degrees C/75% RH revealed a slow-down in dissolution rate for the drug-Kollidon SR formulation, as a result of polyvinylacetate relaxation. Further studies demonstrated that a post-compression curing step effectively stabilized the release pattern of formulations containing > or = 47% Kollidon SR. The release mechanism of Kollidon-drug and drug-Kollidon-Emcompress formulations appears to be diffusion controlled, while that of the drug-Kollidon-lactose formulation appears to be controlled predominantly by diffusion along with erosion.

  18. On Displacement Height, from Classical to Practical Formulation: Stress, Turbulent Transport and Vorticity Considerations

    NASA Astrophysics Data System (ADS)

    Sogachev, Andrey; Kelly, Mark

    2016-03-01

    Displacement height ( d) is an important parameter in the simple modelling of wind speed and vertical fluxes above vegetative canopies, such as forests. Here we show that, aside from implicit definition through a (displaced) logarithmic profile, accepted formulations for d do not consistently predict flow properties above a forest. Turbulent transport can affect the displacement height, and is an integral part of what is called the roughness sublayer. We develop a more general approach for estimation of d, through production of turbulent kinetic energy and turbulent transport, and show how previous stress-based formulations for displacement height can be seen as simplified cases of a more general definition including turbulent transport. Further, we also give a simplified and practical form for d that is in agreement with the general approach, exploiting the concept of vortex thickness scale from mixing-layer theory. We assess the new and previous displacement height formulations by using flow statistics derived from the atmospheric boundary-layer Reynolds-averaged Navier-Stokes model SCADIS as well as from wind-tunnel observations, for different vegetation types and flow regimes in neutral conditions. The new formulations tend to produce smaller d than stress-based forms, falling closer to the classic logarithmically-defined displacement height. The new, more generally defined, displacement height appears to be more compatible with profiles of components of the turbulent kinetic energy budget, accounting for the combined effects of turbulent transport and shear production. The Coriolis force also plays a role, introducing wind-speed dependence into the behaviour of the roughness sublayer; this affects the turbulent transport, shear production, stress, and wind speed, as well as the displacement height, depending on the character of the forest. We further show how our practical (`mixing-layer') form for d matches the new turbulence-based relation, as well as

  19. Formulations for children: problems and solutions

    PubMed Central

    Batchelor, Hannah K; Marriott, John F

    2015-01-01

    Paediatric formulation design is complex as there is a need to understand the developmental physiological changes that occur during childhood and their impact on the absorption of drugs. Paediatric dose adjustments are usually based on achieving pharmacokinetic or pharmacodynamic profiles equivalent to those achieved in adult populations. However, differences in the way in which children handle adult products or the use of bespoke paediatric formulations can result in unexpected pharmacokinetic drug profiles with altered clinical efficacy. Differences in drug formulations need to be understood by healthcare professionals involved in the prescribing, administration or dispensing of drugs to children such that appropriate advice is given to ensure that therapeutic outcomes are achieved. This issue is not confined to oral medicines but is applicable for all routes of administration encountered in paediatric therapy. PMID:25855822

  20. Formulation and characterization of modified release tablets containing isoniazid using swellable polymers.

    PubMed

    Akhtar, M F; Rabbani, M; Sharif, A; Akhtar, B; Saleem, A; Murtaza, G

    2011-01-01

    The aim of this work was to develop swellable modified release (MR) isoniazid tablets using different combinations of polyvinyl acetate (PVAc) and sodium-carboxymethylcellulose (Na-CMC). Granules were prepared by moist granulation technique and then compressed into tablets. In vitro release studies for 12 hr were carried out in dissolution media of varying pH i.e. pH 1.2, 4.5, 7.0 and 7.5. Tablets of all formulations were found to be of good physical quality with respect to appearance (width and thickness), content uniformity, hardness, weight variation and friability. In vitro release data showed that increasing total polymer content resulted in more retarding effect. Formulation with 35% polymer content exhibited zero order release profile and it released 35% of the drug in first hr, later on, controlled drug release was observed upto the 12(th) hour. Formulations with PVAc to Na-CMC ratio 20:80 exhibited zero order release pattern at levels of studied concentrations, which suggested that this combination can be used to formulate zero order release tablets of water soluble drugs like isoniazid. Korsmeyer-Peppas modeling of drug release showed that non-Fickian transport is the primary mechanism of isoniazid release from PVAc and Na-CMC based tablets. The value of mean dissolution time decreased with the increase in the release rate of drug clearly showing the retarding behavior of the swellable polymers. The application of a mixture of PVAc to Na-CMC in a specific ratio may be feasible to formulate zero order release tablets of water soluble drugs like isoniazid.

  1. Formulation development and optimization: Encapsulated system of Atenolol and Glyburide.

    PubMed

    Maboos, Madiha; Yousuf, Rabia Ismail; Shoaib, Muhammad Harris

    2016-03-01

    Objective of this study is to develop; tablet-in-a capsule system, to deliver Atenolol 25mg and Glyburide 5mg in the hard gelatin capsule. In order to improve patient compliance and reduce problems associated with complex therapeutic regimen Atenolol (cardio-selective beta-blocker) and Glyburide (anti-diabetic; sulfonylurea) are commonly, prescribed to the diabetic hypertensive patient. Metgod: In present work six different formulations of Atenolol (AF1-AF6) and Glyburide (GF1-GF6) were prepared by direct compression method using Avicel, Lactose DC, Crospovidone and Magnesium Stearate in different proportions and encapsulated in hard gelatin shells. Post compression parameters i.e. weight variation, diameter variation, thickness variation, hardness variation, % friability, disintegration, % drug release were determined at different pH 1.2, 4.5 and 6.8, and subjected to dissolution profile comparison through similarity factor (ƒ2). Stability studies were performed and shelf lives were calculated by R-Gui Stab R console 2.15.2 and determined to be 15 and 27 months for Atenolol and Glyburide respectively. The percentage drug contents of Atenolol and Glyburide were estimated spectrophotometerically at 286 nm and 314.7 nm respectively. Formulations CF1-CF6 (encapsulated) were subjected to weight variation, disintegration and dissolution tests and subjected to model dependant analysis for dissolution studies. The simultaneous quantitation of Atenolol and Glyburide for content assay was done by HPLC method of analysis. formulation CF6 is showing highest coefficient of correlation values for all models applied. So we can conclude that the proposed system can improve patient compliance by increasing the ease of administration of two drugs together.

  2. Algorithmic Perspectives on Problem Formulations in MDO

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia M.; Lewis, Robert Michael

    2000-01-01

    This work is concerned with an approach to formulating the multidisciplinary optimization (MDO) problem that reflects an algorithmic perspective on MDO problem solution. The algorithmic perspective focuses on formulating the problem in light of the abilities and inabilities of optimization algorithms, so that the resulting nonlinear programming problem can be solved reliably and efficiently by conventional optimization techniques. We propose a modular approach to formulating MDO problems that takes advantage of the problem structure, maximizes the autonomy of implementation, and allows for multiple easily interchangeable problem statements to be used depending on the available resources and the characteristics of the application problem.

  3. Heterogeneity in the pharmacodynamics of two long-acting methylphenidate formulations for children with attention deficit/hyperactivity disorder. A growth mixture modelling analysis.

    PubMed

    Sonuga-Barke, Edmund J S; Van Lier, Pol; Swanson, James M; Coghill, David; Wigal, Sharon; Vandenberghe, Mieke; Hatch, Simon

    2008-06-01

    To use growth mixture modelling (GMM) to identify subgroups of children with attention deficit hyperactive disorder (ADHD) who have different pharmacodynamic profiles in response to extended release methylphenidate as assessed in a laboratory classroom setting. GMM analysis was performed on data from the COMACS study (Comparison of Methylphenidates in the Analog Classroom Setting): a large (n = 184) placebo-controlled cross-over study comparing three treatment conditions in the Laboratory School Protocol (with a 1.5-h cycle of attention and deportment assessments). Two orally administered, once-daily methylphenidate (MPH) bioequivalent formulations [Metadate CD/Equasym XL (MCD-EQXL) and Concerta XL (CON)] were compared with placebo (PLA). Three classes of children with distinct severity profiles in the PLA condition were identified. For both MCD-EQXL and CON, the more severe their PLA symptoms the better, the children's response. However, the formulations produced different growth curves by class, with CON having essentially a flat profile for all three classes (i.e. no effect of PLA severity) and MCD-EQXL showing a marked decline in symptoms immediately post-dosing in the two most severe classes compared with the least severe. Comparison of daily doses matched for immediate-release (IR) components accounted for this difference. The results suggest considerable heterogeneity in the pharmacodynamics of MPH response by children with ADHD. When treatment response for near-equal, bioequivalent daily doses the two formulations was compared, marked differences were seen for children in the most severe classes with a strong curvilinear trajectory for MCD-EQXL related to the greater IR component.

  4. A New Time Domain Formulation for Broadband Noise Predictions

    NASA Technical Reports Server (NTRS)

    Casper, J.; Farassat, F.

    2002-01-01

    A new analytic result in acoustics called "Formulation 1B," proposed by Farassat, is used to compute the loading noise from an unsteady surface pressure distribution on a thin airfoil in the time domain. This formulation is a new solution of the Ffowcs Williams-Hawkings equation with the loading source term. The formulation contains a far field surface integral that depends on the time derivative and the surface gradient of the pressure on the airfoil, as well as a contour integral on the boundary of the airfoil surface. As a first test case, the new formulation is used to compute the noise radiated from a flat plate, moving through a sinusoidal gust of constant frequency. The unsteady surface pressure for this test case is analytically specified from a result based on linear airfoil theory. This test case is used to examine the velocity scaling properties of Formulation 1B and to demonstrate its equivalence to Formulation 1A of Farassat. The new acoustic formulation, again with an analytic surface pressure, is then used to predict broadband noise radiated from an airfoil immersed in homogeneous, isotropic turbulence. The results are compared with experimental data previously reported by Paterson and Amiet. Good agreement between predictions and measurements is obtained. Finally, an alternative form of Formulation 1B is described for statistical analysis of broadband noise.

  5. A New Time Domain Formulation for Broadband Noise Predictions

    NASA Technical Reports Server (NTRS)

    Casper, Jay H.; Farassat, Fereidoun

    2002-01-01

    A new analytic result in acoustics called "Formulation 1B," proposed by Farassat, is used to compute the loading noise from an unsteady surface pressure distribution on a thin airfoil in the time domain. This formulation is a new solution of the Ffowcs Williams-Hawkings equation with the loading source term. The formulation contains a far field surface integral that depends on the time derivative and the surface gradient of the pressure on the airfoil, as well as a contour integral on the boundary of the airfoil surface. As a first test case, the new formulation is used to compute the noise radiated from a flat plate, moving through a sinusoidal gust of constant frequency. The unsteady surface pressure for this test case is analytically specied from a result based on linear airfoil theory. This test case is used to examine the velocity scaling properties of Formulation 1B and to demonstrate its equivalence to Formulation 1A of Farassat. The new acoustic formulation, again with an analytic surface pressure, is then used to predict broadband noise radiated from an airfoil immersed in homogeneous, isotropic turbulence. The results are compared with experimental data previously reported by Paterson and Amiet. Good agreement between predictions and measurements is obtained. Finally, an alternative form of Formulation 1B is described for statistical analysis of broadband noise.

  6. Comparative steady-state pharmacokinetic study of an extended-release formulation of itopride and its immediate-release reference formulation in healthy volunteers

    PubMed Central

    Yoon, Seonghae; Lee, Howard; Kim, Tae-Eun; Lee, SeungHwan; Chee, Dong-Hyun; Cho, Joo-Youn; Yu, Kyung-Sang; Jang, In-Jin

    2014-01-01

    Background This study was conducted to compare the oral bioavailability of an itopride extended-release (ER) formulation with that of the reference immediate-release (IR) formulation in the fasting state. The effect of food on the bioavailability of itopride ER was also assessed. Methods A single-center, open-label, randomized, multiple-dose, three-treatment, three-sequence, crossover study was performed in 24 healthy male subjects, aged 22–48 years, who randomly received one of the following treatments for 4 days in each period: itopride 150 mg ER once daily under fasting or fed conditions, or itopride 50 mg IR three times daily in the fasting state. Steady-state pharmacokinetic parameters of itopride, including peak plasma concentration (Cmax) and area under the plasma concentration versus time curve over 24 hours after dosing (AUC0–24h), were determined by noncompartmental analysis. The geometric mean ratio of the pharmacokinetic parameters was derived using an analysis of variance model. Results A total of 24 healthy Korean subjects participated, 23 of whom completed the study. The geometric mean ratio and its 90% confidence interval of once-daily ER itopride versus IR itopride three times a day for AUC0–24h were contained within the conventional bioequivalence range of 0.80–1.25 (0.94 [0.88–1.01]), although Cmax was reached more slowly and was lower for itopride ER than for the IR formulation. Food delayed the time taken to reach Cmax for itopride ER, but AUC0–24h was not affected. There were no serious adverse events and both formulations were generally well tolerated. Conclusion At steady state, once-daily itopride ER at 150 mg has a bioavailability comparable with that of itopride IR at 50 mg given three times a day under fasting conditions. Food delayed the absorption of itopride ER, with no marked change in its oral bioavailability. PMID:24470753

  7. Toward the establishment of standardized in vitro tests for lipid-based formulations. 5. Lipolysis of representative formulations by gastric lipase.

    PubMed

    Bakala-N'Goma, Jean-Claude; Williams, Hywel D; Sassene, Philip J; Kleberg, Karen; Calderone, Marilyn; Jannin, Vincent; Igonin, Annabel; Partheil, Anette; Marchaud, Delphine; Jule, Eduardo; Vertommen, Jan; Maio, Mario; Blundell, Ross; Benameur, Hassan; Müllertz, Anette; Pouton, Colin W; Porter, Christopher J H; Carrière, Frédéric

    2015-04-01

    Lipid-based formulations (LBF) are substrates for digestive lipases and digestion can significantly alter their properties and potential to support drug absorption. LBFs have been widely examined for their behaviour in the presence of pancreatic enzymes. Here, the impact of gastric lipase on the digestion of representative formulations from the Lipid Formulation Classification System has been investigated. The pHstat technique was used to measure the lipolysis by recombinant dog gastric lipase (rDGL) of eight LBFs containing either medium (MC) or long (LC) chain triglycerides and a range of surfactants, at various pH values [1.5 to 7] representative of gastric and small intestine contents under both fasting and fed conditions. All LBFs were hydrolyzed by rDGL. The highest specific activities were measured at pH 4 with the type II and IIIA MC formulations that contained Tween®85 or Cremophor EL respectively. The maximum activity on LC formulations was recorded at pH 5 for the type IIIA-LC formulation. Direct measurement of LBF lipolysis using the pHstat, however, was limited by poor LC fatty acid ionization at low pH. Since gastric lipase initiates lipid digestion in the stomach, remains active in the intestine and acts on all representative LBFs, its implementation in future standardized in vitro assays may be beneficial. At this stage, however, routine use remains technically challenging.

  8. The development of a stable, coated pellet formulation of a water-sensitive drug, a case study: development of a stable core formulation.

    PubMed

    Fitzpatrick, Shaun; Taylor, Scott; Booth, Steven W; Newton, Michael J

    2006-01-01

    A development program has been carried out to provide a stable extrusion/spheronisation pellet formulation for a highly water-soluble drug, sitagliptin, which undergoes a change in physical form on processing and is subject to hydrolytic decomposition. A conventional extrusion/spheronization formulation resulted in significant degradation of the drug. The inclusion of glyceryl monostearate into the formulation was found to reduce the water levels required to such a level that there was no significant degradation of the drug during processing to form pellets. The use of a ram extruder to screen formulations with small quantities minimizes the need for the drug in the formulation-screening process, and the results from this method of extrusion were found to be translatable to the use of a screen extruder, which allowed scale-up of the process.

  9. Applications of Quantum Cascade Laser Spectroscopy in the Analysis of Pharmaceutical Formulations.

    PubMed

    Galán-Freyle, Nataly J; Pacheco-Londoño, Leonardo C; Román-Ospino, Andrés D; Hernandez-Rivera, Samuel P

    2016-09-01

    Quantum cascade laser spectroscopy was used to quantify active pharmaceutical ingredient content in a model formulation. The analyses were conducted in non-contact mode by mid-infrared diffuse reflectance. Measurements were carried out at a distance of 15 cm, covering the spectral range 1000-1600 cm(-1) Calibrations were generated by applying multivariate analysis using partial least squares models. Among the figures of merit of the proposed methodology are the high analytical sensitivity equivalent to 0.05% active pharmaceutical ingredient in the formulation, high repeatability (2.7%), high reproducibility (5.4%), and low limit of detection (1%). The relatively high power of the quantum-cascade-laser-based spectroscopic system resulted in the design of detection and quantification methodologies for pharmaceutical applications with high accuracy and precision that are comparable to those of methodologies based on near-infrared spectroscopy, attenuated total reflection mid-infrared Fourier transform infrared spectroscopy, and Raman spectroscopy. © The Author(s) 2016.

  10. Quantum Dynamics in Continuum for Proton Transport I: Basic Formulation.

    PubMed

    Chen, Duan; Wei, Guo-Wei

    2013-01-01

    Proton transport is one of the most important and interesting phenomena in living cells. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins. We describe proton dynamics quantum mechanically via a density functional approach while implicitly model other solvent ions as a dielectric continuum to reduce the number of degrees of freedom. The densities of all other ions in the solvent are assumed to obey the Boltzmann distribution. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic level. We formulate a total free energy functional to put proton kinetic and potential energies as well as electrostatic energy of all ions on an equal footing. The variational principle is employed to derive nonlinear governing equations for the proton transport system. Generalized Poisson-Boltzmann equation and Kohn-Sham equation are obtained from the variational framework. Theoretical formulations for the proton density and proton conductance are constructed based on fundamental principles. The molecular surface of the channel protein is utilized to split the discrete protein domain and the continuum solvent domain, and facilitate the multiscale discrete/continuum/quantum descriptions. A number of mathematical algorithms, including the Dirichlet to Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov space techniques are utilized to implement the proposed model in a computationally efficient manner. The Gramicidin A (GA) channel is used to demonstrate the performance of the proposed proton transport model and validate the efficiency of proposed mathematical algorithms. The electrostatic characteristics of the GA channel is analyzed with a wide range of model parameters. The proton conductances are studied over a number of applied voltages and reference concentrations. A

  11. Antimicrobial effects of a new therapeutic liquid dentifrice formulation on oral bacteria including odorigenic species.

    PubMed

    Sreenivasan, P K; Furgang, D; Zhang, Y; DeVizio, W; Fine, D H

    2005-03-01

    The control of oral malodor is well-recognized in efforts to improve oral health. Antimicrobial formulations can mitigate oral malodor, however, procedures to assess effects on oral bacteria including those implicated in halitosis are unavailable. This investigation examined the antimicrobial effects of a new liquid triclosan/copolymer dentifrice (test) formulation that demonstrated significant inhibition of oral malodor in previous organoleptic clinical studies. Procedures compared antimicrobial effects of the test and control formulations on a range of oral micro-organisms including members implicated in halitosis, substantive antimicrobial effects of formulations with hydroxyapatite as a surrogate for human teeth and ex vivo effects on oral bacteria from human volunteers. With Actinomyces viscosus, as a model system, the test formulation demonstrated a dose-dependent effect. At these concentrations the test formulation provided significant antimicrobial effects on 13 strains of oral bacteria including those implicated in bad breath at selected posttreatment time points. Treatment of hydroxyapatite by the test dentifrice resulted in a significant and substantive antimicrobial effect vs. controls. Oral bacteria from subjects treated ex vivo with the test dentifrice resulted in significant reductions in cultivable oral bacteria and odorigenic bacteria producing hydrogen sulfide. In summary, microbiological methods adapted to study odorigenic bacteria demonstrate the significant antimicrobial effects of the test (triclosan/copolymer) dentifrice with laboratory and clinical strains of oral bacteria implicated in bad breath.

  12. Studies on wound healing potential of polyherbal formulation using in vitro and in vivo assays.

    PubMed

    Talekar, Yogesh P; Apte, Kishori G; Paygude, Shubhangi V; Tondare, Prasad R; Parab, Pradeep B

    The use of herbal plant extracts in wound healing is known through decades, but it is necessary to provide scientific data through reverse pharmacology. The aim of the present study is to find the mechanism behind the healing of wounds using in vitro and in vivo assays. The study was designed to determine proliferation and mobilization of fibroblast and keratinocytes at the site of injury, angiogenesis at the site of healing and reduction in oxidative stress while healing. In our earlier studies it was observed that herbal extract of Vitex negundo L. (VN), Emblica officinalis Gaertn (EO), and Tridax procumbens L. (TP) showed rapid regeneration of skin, wound contraction and collagen synthesis at the site of injury in excision wound model. In the present study the cell mobilization was monitored in the scratch assay on L929 fibroblastic cell line and HaCaT keratinocytes cell line under the influence of aqueous plant extracts and its formulation. This formulation was also assessed for its angiogenic potential using CAM assay. Study was carried out to probe synergistic effect of polyherbal formulation using excision model in rat. The formulation was found to contain high amount of flavonoids, tannins and phenols which facilitate wound healing. At 20 μg/ml concentration of formulation, significant increase in tertiary and quaternary vessels were observed due to angiogenic potential of formulation. Formulation at the concentration of 3 μg/ml and 5 μg/ml showed significant mobilization of keratinocytes and fibroblasts respectively at the site of injury. Polyherbal formulation showed rapid regeneration of skin and wound contraction. Biochemical parameters like hydroxyproline, hexosamine and collagen turnover was increased in test drug treated animals as compared to untreated, whereas antioxidants such as catalase and GSH were increased significantly and decreased amount of tissue MDA was observed. Polyherbal formulation prepared from the plant extracts accelerates

  13. Antiarthritic activity of Majoon Suranjan (a polyherbal Unani formulation) in rat

    PubMed Central

    Singh, Surender; Nair, Vinod; Gupta, Y.K.

    2011-01-01

    Background & objectives: Majoon Suranjan (MS) is a polyherbal formulation used in Unani system of medicine for the treatment of rheumatoid arthritis (RA). The present study evaluates the antiarthritic efficacy of this formulation in three different experimental models. Methods: The anti-inflammatory activity of MS (in doses of 450, 900 and 1800 mg/kg body wt) was evaluated using the turpentine oil induced paw oedema model and the antiarthritic efficacy was evaluated using the formaldehyde and complete Freund's adjuvant (CFA) induced arthritis models. Aspirin (100 mg/kg body wt) was used as the standard drug in all the models. In order to assess the safety of the test drug, oral acute and 28 day toxicity studies were also carried out. Results: MS produced a dose dependent protective effect in all the experimental models. Its antiarthritic efficacy was comparable to aspirin in formaldehyde induced arthritis and was superior to aspirin in turpentine oil induced paw oedema and CFA induced arthritis. MS also inhibited the delayed increase in joint diameter as seen in control and aspirin treated animals in CFA induced arthritis. Oral LD50 of MS was found to be >5000 mg/kg in rats. Chronic administration did not produce any significant physiological changes in the tested animals. Interpretation & conclusions: Results of the present study suggest that the antiarthritic activity of MS was due to the interplay between its anti-inflammatory and disease modifying activities, thus supporting its use in traditional medicine for the treatment of RA. PMID:21985823

  14. 36 CFR 906.4 - Formulation of affirmative action plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CORPORATION AFFIRMATIVE ACTION POLICY AND PROCEDURE Development Program § 906.4 Formulation of affirmative action plan. (a) The developer, in formulating the Affirmative Action Plan, should consider all phases of... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Formulation of affirmative...

  15. Preclinical efficacy and safety of herbal formulation for management of wounds.

    PubMed

    Ogwang, P E; Nyafuono, J; Agwaya, Moses; Omujal, F; Tumusiime, H R; Kyakulaga, A H

    2011-09-01

    Medicinal plants in Uganda and other developing countries have been scientifically demonstrated to have medicinal benefits but few or none have been translated to products for clinical use. Most herbal products developed by local herbalists and sold to the public are not standardized and lack efficacy and safety data to support use. To formulate from two Ugandan medicinal plants a herbal product for wound management and test its preclinical safety and efficacy using rat models. Thirty (30) Wistar albino rats were randomly divided into three groups and wounds were surgically created on the mid-dorsal region. The wounds were treated topically with distilled water (group I), Jena(®) (group II)and Neomycin sulfate cream (group III). The effects of the treatments on rate of wound closure, epithelialisation time and histological organization of tissue were assessed. The herbal formulation (Jena) had a significantly higher rate of wound closure than neomycin (p<0.05) which itself was better than distilled water. Epithelialisation time was also significantly shorter for the herbal product (p<0.01). Histological picture revealed more collagen fibers, less inflammation and better tissue remodeling for rats treated with herbal product. The herbal formulation Jena(®) systematically designed and formulated based on two Ugandan medicinal plants is according to this study better than neomycin and probably other imported products for wound management in Uganda. We recommend its trial in a clinical setting as an alternative in wound management.

  16. Note on the ideal frame formulation

    NASA Astrophysics Data System (ADS)

    Lara, Martin

    2017-09-01

    An implementation of the ideal frame formulation of perturbed Keplerian motion is presented which only requires the integration of a differential system of dimension 7, contrary to the 8 variables traditionally integrated with this approach. The new formulation is based on the integration of a scaled version of the Eulerian set of redundant parameters and slightly improves runtime performance with respect to the 8-dimensional case while retaining comparable accuracy.

  17. Curcumin phytosomal softgel formulation: Development, optimization and physicochemical characterization.

    PubMed

    Allam, Ahmed N; Komeil, Ibrahim A; Abdallah, Ossama Y

    2015-09-01

    Curcumin, a naturally occurring lipophilic molecule can exert multiple and diverse bioactivities. However, its limited aqueous solubility and extensive presystemic metabolism restrict its bioavailability. Curcumin phytosomes were prepared by a simple solvent evaporation method where free flowing powder was obtained in addition to a newly developed semisolid formulation to increase curcumin content in softgels. Phytosomal powder was characterized in terms of drug content and zeta potential. Thirteen different softgel formulations were developed using oils such as Miglyol 812, castor oil and oleic acid, a hydrophilic vehicle such as PEG 400 and bioactive surfactants such as Cremophor EL and KLS P 124. Selected formulations were characterized in terms of curcumin in vitro dissolution. TEM analysis revealed good stability and a spherical, self-closed structure of curcumin phytosomes in complex formulations. Stability studies of chosen formulations prepared using the hydrophilic vehicle revealed a stable curcumin dissolution pattern. In contrast, a dramatic decrease in curcumin dissolution was observed in case of phytosomes formulated in oily vehicles.

  18. The Vocational Significance of Black Identity: Cultural Formulation Approach to Career Assessment and Career Counseling

    ERIC Educational Resources Information Center

    Byars-Winston, Angela

    2010-01-01

    Scholarship is emerging on intervention models that purposefully attend to cultural variables throughout the career assessment and career counseling process. One heuristic model that offers promise to advance culturally relevant vocational practice with African Americans is the Outline for Cultural Formulation (CF). This article explicates the…

  19. Variational formulation and stability analysis of a three dimensional superelastic model for shape memory alloys

    NASA Astrophysics Data System (ADS)

    Alessi, Roberto; Pham, Kim

    2016-02-01

    This paper presents a variational framework for the three-dimensional macroscopic modelling of superelastic shape memory alloys in an isothermal setting. Phase transformation is accounted through a unique second order tensorial internal variable, acting as the transformation strain. Postulating the total strain energy density as the sum of a free energy and a dissipated energy, the model depends on two material scalar functions of the norm of the transformation strain and a material scalar constant. Appropriate calibration of these material functions allows to render a wide range of constitutive behaviours including stress-softening and stress-hardening. The quasi-static evolution problem of a domain is formulated in terms of two physical principles based on the total energy of the system: a stability criterion, which selects the local minima of the total energy, and an energy balance condition, which ensures the consistency of the evolution of the total energy with respect to the external loadings. The local phase transformation laws in terms of Kuhn-Tucker relations are deduced from the first-order stability condition and the energy balance condition. The response of the model is illustrated with a numerical traction-torsion test performed on a thin-walled cylinder. Evolutions of homogeneous states are given for proportional and non-proportional loadings. Influence of the stress-hardening/softening properties on the evolution of the transformation domain is emphasized. Finally, in view of an identification process, the issue of stability of homogeneous states in a multi-dimensional setting is answered based on the study of second-order derivative of the total energy. Explicit necessary and sufficient conditions of stability are provided.

  20. Multiple-layer compression-coated tablets: formulation and humidity studies of novel chewable amoxicillin/clavulanate tablet formulations.

    PubMed

    Wardrop, J; Jaber, A B; Ayres, J W

    1998-08-01

    The purpose of this study was to produce novel multiple-layer, compression-coated, chewable tablet formulations containing amoxicillin trihydrate, and clavulanic acid as potassium clavulanate, and to test in vitro dissolution characteristics and the effect of humidity stability compared to Augmentin chewable tablets as a reference. Double- and triple-layer tablets were manufactured on a laboratory scale by multiple-layer dry compression, and dissolution profiles of both active ingredients were determined. Tablets were subjected to stability evaluation in laboratory-scale humidity tanks maintained at constant humidity. Assay of content was determined by HPLC or UV spectroscopy. Physical characteristics of the powder mixture, such as angle of repose, and of tablets for hardness and friability, were also determined. Chewable tablets showed similar dissolution profiles in vitro for both active ingredients, compared to the marketed reference, Augmentin. The stability of clavulanic acid, but not amoxicillin, was increased in the novel triple or bilayer formulation. The tablets showed suitable friability, hardness, and angle of repose for starting materials to suggest that industrial scale-up is feasible. This approach to formulation of drugs containing multiple or moisture-sensitive ingredients has been shown to increase the stability of the central core drug without changing the dissolution pattern of the active ingredients. This formulation is expected to be bioequivalent in vivo based on these in vitro results.