Changes in the mean square charge radii and electromagnetic moments of neutron-deficient Bi isotopes
Barzakh, A. E. Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Molkanov, P. L.; Moroz, F. V.; Orlov, S. Yu.; Panteleev, V. N.; Seliverstov, M. D.; Volkov, Yu. M.
2015-10-15
In-source laser spectroscopy experiments for neutron deficient bismuth isotopes at the 306.77 nm atomic transition were carried out at the IRIS (Investigation of Radioactive Isotopes on Synchrocyclotron) facility of Petersburg Nuclear Physics Institute (PNPI). New data on isotope shifts and hyperfine structure for {sup 189–198,} {sup 211}Bi isotopes and isomers were obtained. The changes in the mean-square charge radii and the magnetic moment values were deduced. Marked deviation from the nearly spherical behavior for ground states of bismuth isotopes at N < 109 is demonstrated, in contrast to the lead and thallium isotopic chains. The big isomer shift between I = 1/2 (intruder) and I = 9/2 (normal) states for odd Bi isotopes (A = 193, 195, 197) was found.
Nuclear Charge Radii Systematics
Marinova, Krassimira
2015-09-15
This paper is a brief overview of the existing systematics on nuclear mean square charge radii, obtained by a combined analysis of data from different types of experiment. The various techniques yielding data on nuclear charge radii are summarized. Their specific feature complexities and the accuracy and precision of the obtained information are also discussed.
Mean-square radii of two-component three-body systems in two spatial dimensions
NASA Astrophysics Data System (ADS)
Sandoval, J. H.; Bellotti, F. F.; Jensen, A. S.; Yamashita, M. T.
2016-08-01
We calculate root-mean-square radii for a three-body system confined to two spatial dimensions and consisting of two identical bosons (A ) and one distinguishable particle (B ). We use zero-range two-body interactions between each of the pairs, and focus thereby directly on universal properties. We solve the Faddeev equations in momentum space and express the mean-square radii in terms of first-order derivatives of the Fourier transforms of densities. The strengths of the interactions are adjusted for each set of masses to produce equal two-body bound-state energies between different pairs. The mass ratio, A =mB/mA , between particles B and A are varied from 0.01 to 100, providing a number of bound states decreasing from 8 to 2. Energies and mean-square radii of these states are analyzed for small A by use of the Born-Oppenheimer potential between the two heavy A particles. For large A the radii of the two bound states are consistent with a slightly asymmetric three-body structure. When A approaches thresholds for binding of the three-body excited states, the corresponding mean-square radii diverge inversely proportional to the deviation of the three-body energy from the two-body thresholds. The structures at these three-body thresholds correspond to bound A B dimers and one loosely bound A particle.
Nuclear moments and charge radii of neutron-deficient francium isotopes and isomers
NASA Astrophysics Data System (ADS)
Voss, A.; Buchinger, F.; Cheal, B.; Crawford, J. E.; Dilling, J.; Kortelainen, M.; Kwiatkowski, A. A.; Leary, A.; Levy, C. D. P.; Mooshammer, F.; Ojeda, M. L.; Pearson, M. R.; Procter, T. J.; Tamimi, W. Al
2015-04-01
Collinear laser fluorescence spectroscopy has been performed on the ground and isomeric states of Fr,206204 in order to determine their spins, nuclear moments, and changes in mean-squared charge radii. A new experimental technique has been developed as part of this work which much enhances the data collection rate while maintaining the high resolution. This has permitted the extension of this study to the two isomeric states in each nucleus. The investigation of nuclear g factors and mean-squared charge radii indicates that the neutron-deficient Fr isotopes lie in a transitional region from spherical towards more collective structures.
Charge radii of neon isotopes across the sd neutron shell
Marinova, K.; Geithner, W.; Kappertz, S.; Kloos, S.; Kotrotsios, G.; Neugart, R.; Wilbert, S.; Kowalska, M.; Keim, M.; Blaum, K.; Lievens, P.; Simon, H.
2011-09-15
We report on the changes in mean square charge radii of unstable neon nuclei relative to the stable {sup 20}Ne, based on the measurement of optical isotope shifts. The studies were carried out using collinear laser spectroscopy on a fast beam of neutral neon atoms. High sensitivity on short-lived isotopes was achieved thanks to nonoptical detection based on optical pumping and state-selective collisional ionization, which was complemented by an accurate determination of the beam kinetic energy. The new results provide information on the structural changes in the sequence of neon isotopes all across the neutron sd shell, ranging from the proton drip line nucleus and halo candidate {sup 17}Ne up to the neutron-rich {sup 28}Ne in the vicinity of the ''island of inversion.'' Within this range the charge radius is smallest for {sup 24}Ne with N=14 corresponding to the closure of the neutron d{sub 5/2} shell, while it increases toward both neutron shell closures, N=8 and N=20. The general trend of the charge radii correlates well with the deformation effects which are known to be large for several neon isotopes. In the neutron-deficient isotopes, structural changes arise from the onset of proton-halo formation for {sup 17}Ne, shell closure in {sup 18}Ne, and clustering effects in {sup 20,21}Ne. On the neutron-rich side the transition to the island of inversion plays an important role, with the radii in the upper part of the sd shell confirming the weakening of the N=20 magic number. The results add new information to the radii systematics of light nuclei where data are scarce because of the small contribution of nuclear-size effects to the isotope shifts which are dominated by the finite-mass effect.
Cu charge radii reveal a weak sub-shell effect at N =40
NASA Astrophysics Data System (ADS)
Bissell, M. L.; Carette, T.; Flanagan, K. T.; Vingerhoets, P.; Billowes, J.; Blaum, K.; Cheal, B.; Fritzsche, S.; Godefroid, M.; Kowalska, M.; Krämer, J.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Yordanov, D. T.
2016-06-01
Collinear laser spectroscopy on Cu-7558 isotopes was performed at the CERN-ISOLDE radioactive ion beam facility. In this paper we report on the isotope shifts obtained from these measurements. State-of-the-art atomic physics calculations have been undertaken in order to determine the changes in mean-square charge radii δ
Charge radii of odd-A191-211Po isotopes
NASA Astrophysics Data System (ADS)
Seliverstov, M. D.; Cocolios, T. E.; Dexters, W.; Andreyev, A. N.; Antalic, S.; Barzakh, A. E.; Bastin, B.; Büscher, J.; Darby, I. G.; Fedorov, D. V.; Fedoseyev, V. N.; Flanagan, K. T.; Franchoo, S.; Fritzsche, S.; Huber, G.; Huyse, M.; Keupers, M.; Köster, U.; Kudryavtsev, Yu.; Marsh, B. A.; Molkanov, P. L.; Page, R. D.; Sjødin, A. M.; Stefan, I.; Van de Walle, J.; Van Duppen, P.; Venhart, M.; Zemlyanoy, S. G.
2013-02-01
Isotope shifts have been measured for the odd-A polonium isotopes 191-211Po and changes in the nuclear mean square charge radii δ
Nuclear ground state charge radii from electromagnetic interactions
Frickle, G.; Bernhardt, C.; Heilig, K.
1995-07-01
The Tables summarize experimental results from muonic atom transition energies, nuclear charge parameters from elastic electron scattering, and K x-ray isotope shifts in so far as they provide information on nuclear ground-state charge radii. Numerous experimental results for optical isotope shifts have been published elsewhere; for eight elements the relevant information is condensed ({open_quotes}project{close_quotes}) here to one optical line per element. A model-independent analysis which combines data from all three experimental methods is applied to these elements and is presented as an illustration of the improved accuracy for the rms radii and Barrett radii which result from this analysis. 51 refs., 11 figs, 1 tab.
Nuclear charge radii and electric quadrupole moments of even-even isotopes
Nerlo-Pomorska, B.; Mach, B.
1995-07-01
Isotope shifts of the charge mean-square radii and electric quadrupole moments of even-even nuclei with 20{le}{Zeta}{le}98 are calculated using a dynamical microscopic model. A single-particle Nilsson potential with the Seo set of correction terms, pairing forces in the BCS formalism, and a long-range interaction in the local approximation are used. A collective Hamiltionian is obtained using a generator coordinate method with the Gaussian overlap approximation. The potential energy of the nucleus consists of a microscopic-macroscopic Strutinsky energy and a zero-point vibrational term. A liquid droplet model is used for the macroscopic part of the potential. A BCS wave function is taken as a generator function, and two collective variables, quadrupole and hexadecapole deformations, serve as the generator coordinates. In general, good agreement between the theory and experimental data is achieved. 16 refs., 8 figs., 1 tab.
Nuclear charge radii as signature for structural changes
NASA Astrophysics Data System (ADS)
Angeli, I.; Marinova, K.
2016-06-01
The correlation of nuclear charge radii with other ground and excited state nuclear observables is considered. An empirical approach is used to deal with a large amount of experimental information, which is properly handled to obtain interesting correlations among different observables as one moves away from the line of stability. Especially the appearance of new magic numbers and/or disappearance of traditional ones as well as the onset of deformation in the region of light nuclei (A < 30) are discussed.
Unexpectedly large charge radii of neutron-rich calcium isotopes
NASA Astrophysics Data System (ADS)
Garcia Ruiz, R. F.; Bissell, M. L.; Blaum, K.; Ekström, A.; Frömmgen, N.; Hagen, G.; Hammen, M.; Hebeler, K.; Holt, J. D.; Jansen, G. R.; Kowalska, M.; Kreim, K.; Nazarewicz, W.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Papenbrock, T.; Papuga, J.; Schwenk, A.; Simonis, J.; Wendt, K. A.; Yordanov, D. T.
2016-06-01
Despite being a complex many-body system, the atomic nucleus exhibits simple structures for certain `magic’ numbers of protons and neutrons. The calcium chain in particular is both unique and puzzling: evidence of doubly magic features are known in 40,48Ca, and recently suggested in two radioactive isotopes, 52,54Ca. Although many properties of experimentally known calcium isotopes have been successfully described by nuclear theory, it is still a challenge to predict the evolution of their charge radii. Here we present the first measurements of the charge radii of 49,51,52Ca, obtained from laser spectroscopy experiments at ISOLDE, CERN. The experimental results are complemented by state-of-the-art theoretical calculations. The large and unexpected increase of the size of the neutron-rich calcium isotopes beyond N = 28 challenges the doubly magic nature of 52Ca and opens new intriguing questions on the evolution of nuclear sizes away from stability, which are of importance for our understanding of neutron-rich atomic nuclei.
Noertershaeuser, W.; Sanchez, R.; Ewald, G.; Dax, A.; Goette, S.; Kluge, H.-J.; Kuehl, Th.; Wojtaszek, A.; Behr, J.; Bricault, P.; Dilling, J.; Dombsky, M.; Lassen, J.; Levy, C. D. P.; Pearson, M.; Bushaw, B. A.; Drake, G. W. F.; Pachucki, K.; Puchalski, M.; Yan, Z.-C.
2011-01-15
Changes in the mean square nuclear charge radii along the lithium isotopic chain were determined using a combination of precise isotope shift measurements and theoretical atomic structure calculations. Nuclear charge radii of light elements are of high interest due to the appearance of the nuclear halo phenomenon in this region of the nuclear chart. During the past years we have developed a laser spectroscopic approach to determine the charge radii of lithium isotopes which combines high sensitivity, speed, and accuracy to measure the extremely small field shift of an 8-ms-lifetime isotope with production rates on the order of only 10 000 atoms/s. The method was applied to all bound isotopes of lithium including the two-neutron halo isotope {sup 11}Li at the on-line isotope separators at GSI, Darmstadt, Germany, and at TRIUMF, Vancouver, Canada. We describe the laser spectroscopic method in detail, present updated and improved values from theory and experiment, and discuss the results.
Multikernel least mean square algorithm.
Tobar, Felipe A; Kung, Sun-Yuan; Mandic, Danilo P
2014-02-01
The multikernel least-mean-square algorithm is introduced for adaptive estimation of vector-valued nonlinear and nonstationary signals. This is achieved by mapping the multivariate input data to a Hilbert space of time-varying vector-valued functions, whose inner products (kernels) are combined in an online fashion. The proposed algorithm is equipped with novel adaptive sparsification criteria ensuring a finite dictionary, and is computationally efficient and suitable for nonstationary environments. We also show the ability of the proposed vector-valued reproducing kernel Hilbert space to serve as a feature space for the class of multikernel least-squares algorithms. The benefits of adaptive multikernel (MK) estimation algorithms are illuminated in the nonlinear multivariate adaptive prediction setting. Simulations on nonlinear inertial body sensor signals and nonstationary real-world wind signals of low, medium, and high dynamic regimes support the approach. PMID:24807027
Nuclear Charge Radii of Li-8,Li-9 Determined by Laser Spectroscopy
Ewald, G; Nortershauser, W.; Dax, A ..; Gotte, S; Kirchner, Rolf; Kluge, H J.; Kuhl, T H.; Sanchez, R J.; Wojtasek, Alesia S.; Bushaw, Bruce A.; Drake, Gordon W. F.; Yan, Z C.; Zimmerman, Colin H.
2004-09-09
The 2S ' 3S transition of 6,7,8,9 Li was studied by high-resolution laser spectroscopy using two-photon Doppler-free excitation and resonance-ionization detection. The hyperfine structure splitting and the isotope shift were determined with precision at the 100 kHz level. Combined with recent theoretical work, the changes in nuclear charge radii of 8,9Li were determined. These are now the lightest short-lived isotopes for which the charge radii have been measured. It is found that the charge radii monotonically decrease with increasing neutron number from 6Li to 9Li.
Shell-model calculations of nuclear-charge radii
McGrory, J.B.; Brown, B.A.
1982-01-01
Shell-model calculations of charge radius differences in the Pb isotopes are discussed. Core quadrupole oscillations are found to be significant factors in the calculations. Existing data on the /sup 210/Pb isotope shift and the B(E2) strengths in /sup 210/Pb are shown to be inconsistent. Ground-state correlation effects in light nuclei (i.e., 0 and Ca isotopes) introduce odd-even staggering effects and other qualitative features in agreement with existing data.
Charge radii and nuclear moments of neutron-deficient potassium isotopes
NASA Astrophysics Data System (ADS)
Minamisono, K.; Barquest, B. R.; Bollen, G.; Hughes, M.; Strum, R.; Tarazona, D.; Asberry, H. B.; Cooper, K.; Hammerton, K.; Klose, A.; Mantica, P. F.; Morrissey, D. J.; Geppert, Ch.; Harris, J.; Ringle, R.; Rodriguez, J. A.; Rossi, D. M.; Ryder, C. A.; Smith, A.; Schwarz, S.; Sumithrarachchi, C.
2014-09-01
The monotonic change of charge radii of K isotopes across N = 20 suggests a reduction of the shell gap. A systematic study of the charge radii and ground state magnetic and quadrupole moments of neutron-deficient 35-37K isotopes is underway at the BEam COoling and LAser spectroscopy (BECOLA) facility at NSCL/MSU to investigate the anomalous trend in charge radii. The K isotopes were produced by fragmentation of a 40Ca beam, thermalized in a linear gas cell, extracted at an energy of 30 keV, and transported to BECOLA. The K ion beam was cooled and bunched, and neutralized in a Na vapor cell. Laser-induced fluorescence was detected as a function of the Doppler-tuned laser frequency and time relative to the release of the beam bunch. The beta-NMR technique was used to determine ground-state nuclear moments, where hyperfine splittings are too small to resolve using collinear laser spectroscopy. The monotonic change of charge radii of K isotopes across N = 20 suggests a reduction of the shell gap. A systematic study of the charge radii and ground state magnetic and quadrupole moments of neutron-deficient 35-37K isotopes is underway at the BEam COoling and LAser spectroscopy (BECOLA) facility at NSCL/MSU to investigate the anomalous trend in charge radii. The K isotopes were produced by fragmentation of a 40Ca beam, thermalized in a linear gas cell, extracted at an energy of 30 keV, and transported to BECOLA. The K ion beam was cooled and bunched, and neutralized in a Na vapor cell. Laser-induced fluorescence was detected as a function of the Doppler-tuned laser frequency and time relative to the release of the beam bunch. The beta-NMR technique was used to determine ground-state nuclear moments, where hyperfine splittings are too small to resolve using collinear laser spectroscopy. This work was supported in part by NSF Grant No. PHY-11-02511.
An implicit solvent model for SCC-DFTB with Charge-Dependent Radii
Hou, Guanhua; Zhu, Xiao; Cui, Qiang
2010-01-01
Motivated by the need of rapidly exploring the potential energy surface of chemical reactions that involve highly charged species, we have developed an implicit solvent model for the approximate density functional theory, SCC-DFTB. The solvation free energy is calculated using the popular model that employs Poisson-Boltzmann for electrostatics and a surface-area term for non-polar contributions. To balance the treatment of species with different charge distributions, we make the atomic radii that define the dielectric boundary and solute cavity depend on the solute charge distribution. Specifically, the atomic radii are assumed to be linearly dependent on the Mulliken charges and solved self-consistently together with the solute electronic structure. Benchmark calculations indicate that the model leads to solvation free energies of comparable accuracy to the SM6 model (especially for ions), which requires much more expensive DFT calculations. With analytical first derivatives and favorable computational speed, the SCC-DFTB based solvation model can be effectively used, in conjunction with high-level QM calculations, to explore the mechanism of solution reactions. This is illustrated with a brief analysis of the hydrolysis of mono-methyl mono-phosphate ester (MMP) and tri-methyl mono-phosphate ester (TMP). Possible future improvements are also briefly discussed. PMID:20711513
Nortershauser, W.; Bushaw, Bruce A.; Dax, A ..; Drake, Gordon W. F.; Ewald, G; Gotte, S; Kirchner, Rolf; Kluge, H J.; Kuhl, T H.; Sanchez, R; Wojtaszek, A.; Yan, Z C.; Zimmerman, C.
2005-12-01
Nuclear charge radii of 6,7,8,9Li have recently been measured at the GSI on-line mass separator using high-resolution resonance ionization mass spectroscopy. We give a brief description of the experimental method. The results for the charge radii are compared with different theoretical descriptions.
Intrinsic Mean Square Displacement in Proteins
NASA Astrophysics Data System (ADS)
Vural, Derya; Glyde, Henry R.
2012-02-01
The dynamics of biological molecules is investigated in neutron scattering experiments, in molecular dynamics simulations, and using analytical theory. Specifically, the mean square displacement (MSD),
Protein diffusion through charged nanopores with different radii at low ionic strength.
Stroeve, Pieter; Rahman, Masoud; Naidu, Lekkala Dev; Chu, Gilbert; Mahmoudi, Morteza; Ramirez, Patricio; Mafe, Salvador
2014-10-21
The diffusion of two similar molecular weight proteins, bovine serum albumin (BSA) and bovine haemoglobin (BHb), through nanoporous charged membranes with a wide range of pore radii is studied at low ionic strength. The effects of the solution pH and the membrane pore diameter on the pore permeability allow quantifying the electrostatic interaction between the charged pore and the protein. Because of the large screening Debye length, both surface and bulk diffusion occur simultaneously. By increasing the pore diameter, the permeability tends to the bulk self-diffusion coefficient for each protein. By decreasing the pore diameter, the charges on the pore surface electrostatically hinder the transport even at the isoelectric point of the protein. Surprisingly, even at pore sizes 100 times larger than the protein, the electrostatic hindrance still plays a major role in the transport. The experimental data are qualitatively explained using a two-region model for the membrane pore and approximated equations for the pH dependence of the protein and pore charges. The experimental and theoretical results should be useful for designing protein separation processes based on nanoporous charged membranes. PMID:25189648
NASA Astrophysics Data System (ADS)
Reinhard, P.-G.; Nazarewicz, W.
2016-05-01
Background: Radii of charge and neutron distributions are fundamental nuclear properties. They depend on both nuclear interaction parameters related to the equation of state of infinite nuclear matter and on quantal shell effects, which are strongly impacted by the presence of nuclear surface. Purpose: In this work, by studying the correlation of charge and neutron radii, and neutron skin, with nuclear matter parameters, we assess different mechanisms that drive nuclear sizes. Method: We apply nuclear density functional theory using a family of Skyrme functionals obtained by means of optimization protocols, which do not include any radius information. By performing the Monte Carlo sampling of reasonable functionals around the optimal parametrization, we scan all correlations between nuclear matter properties and observables characterizing charge and neutron distributions of spherical closed-shell nuclei 48Ca,208Pb, and 298Fl. Results: By considering the influence of various nuclear matter properties on charge and neutron radii in a multidimensional parameter space of Skyrme functionals, we demonstrate the existence of two strong relationships: (i) between the nuclear charge radii and the saturation density of symmetric nuclear matter ρ0, and (ii) between the neutron skins and the slope of the symmetry energy L . The impact of other nuclear matter properties on nuclear radii is weak or nonexistent. For functionals optimized to experimental binding energies only, proton and neutron radii are found to be weakly correlated due to canceling trends from different nuclear matter characteristics. Conclusion: The existence of only two strong relations connecting nuclear radii with nuclear matter properties has important consequences. First, by requiring that the nuclear functional reproduces the empirical saturation point of symmetric nuclear matter practically fixes the charge (or proton) radii, and vice versa. This explains the recent results of ab initio calculations
Few-Nucleon Charge Radii and a Precision Isotope Shift Measurement in Helium
NASA Astrophysics Data System (ADS)
Hassan Rezaeian, Nima; Shiner, David
2015-10-01
Recent improvements in atomic theory and experiment provide a valuable method to precisely determine few nucleon charge radii, complementing the more direct scattering approaches, and providing sensitive tests of few-body nuclear theory. Some puzzles with respect to this method exist, particularly in the muonic and electronic measurements of the proton radius, known as the proton puzzle. Perhaps this puzzle will also exist in nuclear size measurements in helium. Muonic helium measurements are ongoing while our new electronic results will be discussed here. We measured precisely the isotope shift of the 23S - 23P transitions in 3He and 4He. The result is almost an order of magnitude more accurate than previous measured values. To achieve this accuracy, we implemented various experimental techniques. We used a tunable laser frequency discriminator and electro-optic modulation technique to precisely control the frequency and intensity. We select and stabilize the intensity of the required sideband and eliminate unused sidebands. The technique uses a MEMS fiber switch (ts = 10 ms) and several temperature stabilized narrow band (3 GHz) fiber gratings. A beam with both species of helium is achieved using a custom fiber laser for simultaneous optical pumping. A servo-controlled retro-reflected laser beam eliminates Doppler effects. Careful detection design and software are essential for unbiased data collection. Our new results will be compared to previous measurements.
Few-Nucleon Charge Radii and a Precision Isotope Shift Measurement in Helium
NASA Astrophysics Data System (ADS)
Hassan Rezaeian, Nima; Shiner, David
2015-05-01
Precision atomic theory and experiment provide a valuable method to determine few nucleon charge radii, complementing the more direct scattering approaches, and providing sensitive tests of few-body nuclear theory. Some puzzles with respect to this method exist, particularly in the muonic and electronic measurements of the proton radius, and as well with respect to measurements of nuclear size in helium. We perform precision measurements of the isotope shift of the 23S -23P transitions in 3He and 4He. A tunable laser frequency discriminator and electro-optic modulation technique give precise frequency and intensity control. We select (ts <50 ms) and stabilize the intensity of the required sideband and eliminate the unused sidebands (<= 10¬5) . The technique uses a MEMS fiber switch (ts = 10 ms) and several temperature stabilized narrow band (3 GHz) fiber gratings. A fiber based optical circulator and amplifier provide the desired isolation and net gain for the selected frequency. A beam with both species of helium is achieved using a custom fiber laser for simultaneous optical pumping. A servo-controlled retro-reflected laser beam eliminates Doppler effects. Careful detection design and software control allows for unbiased data collection. Current results will be discussed. This work is supported by NSF PHY-1068868 and PHY-1404498.
Masses and Charge Radii of {sup 17-22}Ne and the Two-Proton-Halo Candidate {sup 17}Ne
Geithner, W.; Kappertz, S.; Keim, M.; Neugart, R.; Wilbert, S.; Neff, T.; Feldmeier, H.; Herfurth, F.; Yazidjian, C.; Audi, G.; Guenaut, C.; Lunney, D.; Blaum, K.; George, S.; Delahaye, P.; Kellerbauer, A.; Kowalska, M.; Herlert, A.; Kluge, H.-J.; Lievens, P.
2008-12-19
High-precision mass and charge radius measurements on {sup 17-22}Ne, including the proton-halo candidate {sup 17}Ne, have been performed with Penning trap mass spectrometry and collinear laser spectroscopy. The {sup 17}Ne mass uncertainty is improved by factor 50, and the charge radii of {sup 17-19}Ne are determined for the first time. The fermionic molecular dynamics model explains the pronounced changes in the ground-state structure. It attributes the large charge radius of {sup 17}Ne to an extended proton configuration with an s{sup 2} component of about 40%. In {sup 18}Ne the smaller radius is due to a significantly smaller s{sup 2} component. The radii increase again for {sup 19-22}Ne due to cluster admixtures.
Forssen, C.; Caurier, E.; Navratil, P.
2009-02-15
Recently, charge radii and ground-state electromagnetic moments of Li and Be isotopes were measured precisely. We have performed large-scale ab initio no-core shell model calculations for these isotopes using high-precision nucleon-nucleon potentials. The isotopic trends of our computed charge radii and quadrupole and magnetic-dipole moments are in good agreement with experimental results with the exception of the {sup 11}Li charge radius. The magnetic moments are in particular well described, whereas the absolute magnitudes of the quadrupole moments are about 10% too small. The small magnitude of the {sup 6}Li quadrupole moment is reproduced, and with the CD-Bonn NN potential, also its correct sign.
Forssen, C; Caurier, E; Navratil, P
2008-12-23
Recently, charge radii and ground-state electromagnetic moments of Li and Be isotopes were measured precisely. We have performed large-scale ab initio no-core shell model calculations for these isotopes using high-precision nucleon-nucleon potentials. Our computed charge radii, quadrupole and magnetic-dipole moments are in a good agreement with the measurements with the exception of the {sup 11}Li charge radius. The overall trends of all observables are well reproduced. The magnetic moments are in particular well described. Also, we are able to reproduce the small magnitude of the {sup 6}Li quadrupole moment and with the CD-Bonn NN potential also its correct sign.
Application of Least Mean Square Algorithms to Spacecraft Vibration Compensation
NASA Technical Reports Server (NTRS)
Woodard , Stanley E.; Nagchaudhuri, Abhijit
1998-01-01
This paper describes the application of the Least Mean Square (LMS) algorithm in tandem with the Filtered-X Least Mean Square algorithm for controlling a science instrument's line-of-sight pointing. Pointing error is caused by a periodic disturbance and spacecraft vibration. A least mean square algorithm is used on-orbit to produce the transfer function between the instrument's servo-mechanism and error sensor. The result is a set of adaptive transversal filter weights tuned to the transfer function. The Filtered-X LMS algorithm, which is an extension of the LMS, tunes a set of transversal filter weights to the transfer function between the disturbance source and the servo-mechanism's actuation signal. The servo-mechanism's resulting actuation counters the disturbance response and thus maintains accurate science instrumental pointing. A simulation model of the Upper Atmosphere Research Satellite is used to demonstrate the algorithms.
Some Results on Mean Square Error for Factor Score Prediction
ERIC Educational Resources Information Center
Krijnen, Wim P.
2006-01-01
For the confirmatory factor model a series of inequalities is given with respect to the mean square error (MSE) of three main factor score predictors. The eigenvalues of these MSE matrices are a monotonic function of the eigenvalues of the matrix gamma[subscript rho] = theta[superscript 1/2] lambda[subscript rho] 'psi[subscript rho] [superscript…
Least-mean-square spatial filter for IR sensors.
Takken, E H; Friedman, D; Milton, A F; Nitzberg, R
1979-12-15
A new least-mean-square filter is defined for signal-detection problems. The technique is proposed for scanning IR surveillance systems operating in poorly characterized but primarily low-frequency clutter interference. Near-optimal detection of point-source targets is predicted both for continuous-time and sampled-data systems.
Nuclear Charge Radii of {sup 9,11}Li: The Influence of Halo Neutrons
Sanchez, R.; Ewald, G.; Dax, A.; Goette, S.; Kirchner, R.; Kluge, H.-J.; Kuehl, Th.; Wojtaszek, A.; Noertershaeuser, W.; Albers, D.; Behr, J.; Bricault, P.; Dilling, J.; Dombsky, M.; Lassen, J.; Levy, C.D.P.; Pearson, M.R.; Prime, E.J.; Ryjkov, V.; Bushaw, B.A.
2006-01-27
The nuclear charge radius of {sup 11}Li has been determined for the first time by high-precision laser spectroscopy. On-line measurements at TRIUMF-ISAC yielded a {sup 7}Li-{sup 11}Li isotope shift (IS) of 25 101.23(13) MHz for the Doppler-free 2s {sup 2}S{sub 1/2}{yields}3s {sup 2}S{sub 1/2} transition. IS accuracy for all other bound Li isotopes was also improved. Differences from calculated mass-based IS yield values for change in charge radius along the isotope chain. The charge radius decreases monotonically from {sup 6}Li to {sup 9}Li, and then increases from 2.217(35) to 2.467(37) fm for {sup 11}Li. This is compared to various models, and it is found that a combination of halo neutron correlation and intrinsic core excitation best reproduces the experimental results.
Nuclear Charge Radii of 9,11Li: The Influence of Halo Neutrons
Sanchez, Rodolfo; Nortershauser, W.; Ewald, G; Albers, Daniel; Behr, John; Bricault, Pierre; Bushaw, Bruce A.; Dax, A; Dilling, Jens; Dombsky, Marik; Drake, Gordon W. F.; Gotte, S; Kirchner, R G.; Kluge, H J.; Lassen, J; Kuhl, T H.; Levy, C.D. P.; Pearson, Matthew; Prime, Erika; Ryjkov, Vladimir L.; Wojtaszek, A.; Yan, Z C.; Zimmerman, C.
2006-01-27
The nuclear charge radius of 11Li has been determined for the first time by high precision laser spectroscopy. On-line measurements at TRIUMF-ISAC yielded a 7Li ? 11Li isotope shift (IS) of 25 101.23(13) MHz for the Doppler-free 2s 2S1=2 ! 3s 2S1=2 transition. IS precision for all other bound Li isotopes was also improved. Differences from calculated mass-based IS yield values for change in charge radius along the isotope chain. The charge radius decreases monotonically from 6Li to 9Li, and then increases from 2.216(35) fm to 2.467(37) fm for 11Li. This is compared to various models, and it is found that a combination of halo neutron correlation and intrinsic core excitation best reproduces the experimental results.
Probes of shape transitions from mass and charge radii of nuclear ground states
NASA Astrophysics Data System (ADS)
Sun, B. H.; Liu, C. Y.
2016-09-01
The masses and sizes of nuclear ground states constitute two of the most precise and extensive arrays of experimental information. These data make a model-independent view of microscopic nuclear structure possible. Relevant differential observables of nuclear mass and charge radius can be highly sensitive to nuclear shape transitions. In this contribution, we examine the correlation of these two bulk properties to nuclear shape transitions. By combining different observables, it is even possible to isolate shape transitions from nuclear shell closures.
Kuechler, Erich R; Giese, Timothy J; York, Darrin M
2016-04-28
To better represent the solvation effects observed along reaction pathways, and of ionic species in general, a charge-dependent variable-radii smooth conductor-like screening model (VR-SCOSMO) is developed. This model is implemented and parameterized with a third order density-functional tight binding quantum model, DFTB3/3OB-OPhyd, a quantum method which was developed for organic and biological compounds, utilizing a specific parameterization for phosphate hydrolysis reactions. Unlike most other applications with the DFTB3/3OB model, an auxiliary set of atomic multipoles is constructed from the underlying DFTB3 density matrix which is used to interact the solute with the solvent response surface. The resulting method is variational, produces smooth energies, and has analytic gradients. As a baseline, a conventional SCOSMO model with fixed radii is also parameterized. The SCOSMO and VR-SCOSMO models shown have comparable accuracy in reproducing neutral-molecule absolute solvation free energies; however, the VR-SCOSMO model is shown to reduce the mean unsigned errors (MUEs) of ionic compounds by half (about 2-3 kcal/mol). The VR-SCOSMO model presents similar accuracy as a charge-dependent Poisson-Boltzmann model introduced by Hou et al. [J. Chem. Theory Comput. 6, 2303 (2010)]. VR-SCOSMO is then used to examine the hydrolysis of trimethylphosphate and seven other phosphoryl transesterification reactions with different leaving groups. Two-dimensional energy landscapes are constructed for these reactions and calculated barriers are compared to those obtained from ab initio polarizable continuum calculations and experiment. Results of the VR-SCOSMO model are in good agreement in both cases, capturing the rate-limiting reaction barrier and the nature of the transition state.
NASA Astrophysics Data System (ADS)
Kuechler, Erich R.; Giese, Timothy J.; York, Darrin M.
2016-04-01
To better represent the solvation effects observed along reaction pathways, and of ionic species in general, a charge-dependent variable-radii smooth conductor-like screening model (VR-SCOSMO) is developed. This model is implemented and parameterized with a third order density-functional tight binding quantum model, DFTB3/3OB-OPhyd, a quantum method which was developed for organic and biological compounds, utilizing a specific parameterization for phosphate hydrolysis reactions. Unlike most other applications with the DFTB3/3OB model, an auxiliary set of atomic multipoles is constructed from the underlying DFTB3 density matrix which is used to interact the solute with the solvent response surface. The resulting method is variational, produces smooth energies, and has analytic gradients. As a baseline, a conventional SCOSMO model with fixed radii is also parameterized. The SCOSMO and VR-SCOSMO models shown have comparable accuracy in reproducing neutral-molecule absolute solvation free energies; however, the VR-SCOSMO model is shown to reduce the mean unsigned errors (MUEs) of ionic compounds by half (about 2-3 kcal/mol). The VR-SCOSMO model presents similar accuracy as a charge-dependent Poisson-Boltzmann model introduced by Hou et al. [J. Chem. Theory Comput. 6, 2303 (2010)]. VR-SCOSMO is then used to examine the hydrolysis of trimethylphosphate and seven other phosphoryl transesterification reactions with different leaving groups. Two-dimensional energy landscapes are constructed for these reactions and calculated barriers are compared to those obtained from ab initio polarizable continuum calculations and experiment. Results of the VR-SCOSMO model are in good agreement in both cases, capturing the rate-limiting reaction barrier and the nature of the transition state.
Self-consistent, unbiased root-mean-square emittance analysis
NASA Astrophysics Data System (ADS)
Stockli, Martin P.; Welton, R. F.; Keller, R.
2004-05-01
We present a self-consistent method for analyzing measured emittance data that yields unbiased estimates for the root-mean-square (rms) emittance. The self-consistent, unbiased elliptical exclusion analysis uses an ellipse to determine the bias from the data outside the ellipse, before calculating the rms emittance from the bias-subtracted data within the ellipse. Increasing the ellipse size until the rms emittance estimate saturates allows for determining the minimum elliptical area that includes all real signals, even those buried in the noise. Variations of the ellipse shape and orientations are used to test the robustness of the results. Background fluctuations cause fluctuations in the rms emittance estimate, which are an estimate of the uncertainty incurred through the analysis.
Efficient computation of root mean square deviations under rigid transformations.
Hildebrandt, Anna K; Dietzen, Matthias; Lengauer, Thomas; Lenhof, Hans-Peter; Althaus, Ernst; Hildebrandt, Andreas
2014-04-15
The computation of root mean square deviations (RMSD) is an important step in many bioinformatics applications. If approached naively, each RMSD computation takes time linear in the number of atoms. In addition, a careful implementation is required to achieve numerical stability, which further increases runtimes. In practice, the structural variations under consideration are often induced by rigid transformations of the protein, or are at least dominated by a rigid component. In this work, we show how RMSD values resulting from rigid transformations can be computed in constant time from the protein's covariance matrix, which can be precomputed in linear time. As a typical application scenario is protein clustering, we will also show how the Ward-distance which is popular in this field can be reduced to RMSD evaluations, yielding a constant time approach for their computation.
NASA Astrophysics Data System (ADS)
Chakraborty, Tanmoy; Gazi, Kamarujjaman; Ghosh, Dulal C.
2010-08-01
A new ansatz for computing the absolute radii (r) of the atoms based upon the conjoint action of two periodic properties namely, ionization energy (I) and effective nuclear charge (Zeff ) is proposed as r = a(1/I) + b(1/Zeff ) + c, where a, b and c are constants, determined by regression analysis. The ansatz is invoked to calculate sizes of atoms of 103 elements of the periodic table. In the absence of any benchmark to perform a validity test of any set of atomic size, reliance is upon the 'sine qua non' of a set of atomic size. The express periodicity of periods and groups exhibited by the computed size data, d and f block contraction and the manifest relativistic effect in the sizes of lanthanoids and actinoids, etc. speak volumes for the efficacy of the present method. Furthermore, size data have been linked to compute some physical descriptors of the real world, such as equilibrium internuclear distances of a good number of heteronuclear diatomic molecules as validity test. A comparative study of the theoretical vis-à-vis experimental equilibrium inter-nuclear distances reveals that there is close agreement between the theoretical prediction and experimental determination.
Maiorov, V N; Crippen, G M
1994-01-14
In the study of globular protein conformations, one customarily measures the similarity in three-dimensional structure by the root-mean-square deviation (RMSD) of the C alpha atomic coordinates after optimal rigid body superposition. Even when the two protein structures each consist of a single chain having the same number of residues so that the matching of C alpha atoms is obvious, it is not clear how to interpret the RMSD. A very large value means they are dissimilar, and zero means they are identical in conformation, but at what intermediate values are they particularly similar or clearly dissimilar? While many workers in the field have chosen arbitrary cutoffs, and others have judged values of RMSD according to the observed distribution of RMSD for random structures, we propose a self-referential, non-statistical standard. We take two conformers to be intrinsically similar if their RMSD is smaller than that when one of them is mirror inverted. Because the structures considered here are not arbitrary configurations of point atoms, but are compact, globular, polypeptide chains, our definition is closely related to similarity in radius of gyration and overall chain folding patterns. Being strongly similar in our sense implies that the radii of gyration must be nearly identical, the root-mean-square deviation in interatomic distances is linearly related to RMSD, and the two chains must have the same general fold. Only when the RMSD exceeds this level can parts of the polypeptide chain undergo nontrivial rearrangements while remaining globular. This enables us to judge when a prediction of a protein's conformation is "correct except for minor perturbations", or when the ensemble of protein structures deduced from NMR experiments are "basically in mutual agreement". PMID:8289285
Fu, Tsu-Yi; Tsay, Sung-Lin; Lin, Chun-Liang
2008-02-01
Structural evolution of Co/Ag/Ge(111) at high temperatures was studied by using scanning tunneling microscopy and low energy electron diffraction. The mean square root of 3 x mean square root of 3-Ag layer between the substrate Ge( 11) and Co adatoms can avoid the formation of Co-Ge compounds below 800 K. The Co atoms nucleate to form islands where mean square root of 13 x mean square root of 13 or 2 x 2 reconstructions were observed after annealing between 373 K and 737 K. The mean square root of 13 x mean square root of 13 structure with mirror symmetry relative to [-211], [11-2], and [1-21] axes was observed for 1-2 layer Co islands. Co islands with over 2 layers appear 2 x 2 structure. All reconstruction structures of the nano-sized Co islands and substrate Ag/Ge(111) mean square root of 3 x mean square root of 3 surface were analyzed using the atomic hard sphere model. The bright protrusions of these reconstructions all sit in the centers of Ag or Ge trimers, which were predicted to have maximum binding energy.
Using Item Mean Squares To Evaluate Fit to the Rasch Model.
ERIC Educational Resources Information Center
Smith, Richard M.; And Others
In the mid to late 1970s, considerable research was conducted on the properties of Rasch fit mean squares, resulting in transformations to convert the mean squares into approximate t-statistics. In the late 1980s and the early 1990s, the trend seems to have reversed, with numerous researchers using the untransformed fit mean squares as a means of…
NASA Astrophysics Data System (ADS)
Basin, M.; Maldonado, J. J.; Zendejo, O.
2016-07-01
This paper proposes new mean-square filter and parameter estimator design for linear stochastic systems with unknown parameters over linear observations, where unknown parameters are considered as combinations of Gaussian and Poisson white noises. The problem is treated by reducing the original problem to a filtering problem for an extended state vector that includes parameters as additional states, modelled as combinations of independent Gaussian and Poisson processes. The solution to this filtering problem is based on the mean-square filtering equations for incompletely polynomial states confused with Gaussian and Poisson noises over linear observations. The resulting mean-square filter serves as an identifier for the unknown parameters. Finally, a simulation example shows effectiveness of the proposed mean-square filter and parameter estimator.
Mean-square-error bounds for reduced-order linear state estimators
NASA Technical Reports Server (NTRS)
Baram, Y.; Kalit, G.
1987-01-01
The mean-square error of reduced-order linear state estimators for continuous-time linear systems is investigated. Lower and upper bounds on the minimal mean-square error are presented. The bounds are readily computable at each time-point and at steady state from the solutions to the Ricatti and the Liapunov equations. The usefulness of the error bounds for the analysis and design of reduced-order estimators is illustrated by a practical numerical example.
Proton radii of {sup 4,6,8}He isotopes from high-precision nucleon-nucleon interactions
Caurier, E.; Navratil, P.
2006-02-15
Recently, precision laser spectroscopy on {sup 6}He atoms determined accurately the isotope shift between {sup 4}He and {sup 6}He and, consequently, the charge radius of {sup 6}He. A similar experiment for {sup 8}He is under way. We have performed large-scale ab initio calculations for {sup 4,6,8}He isotopes using high-precision nucleon-nucleon (NN) interactions within the no-core shell model (NCSM) approach. With the CD-Bonn 2000 NN potential we found point-proton root-mean-square (rms) radii of {sup 4}He and {sup 6}He 1.45(1) fm and 1.89(4), respectively, in agreement with experiment and predict the {sup 8}He point-proton rms radius to be 1.88(6) fm. At the same time, our calculations show that the recently developed nonlocal INOY NN potential gives binding energies closer to experiment, but underestimates the charge radii.
Proton Radii of 4,6,8He Isotopes from High-Precision Nucleon-Nucleon Interactions
Caurier, E; Navratil, P
2005-11-16
Recently, precision laser spectroscopy on {sup 6}He atoms determined accurately the isotope shift between {sup 4}He and {sup 6}He and, consequently, the charge radius of {sup 6}He. A similar experiment for {sup 8}He is under way. We have performed large-scale ab initio calculations for {sup 4,6,8}He isotopes using high-precision nucleon-nucleon (NN) interactions within the no-core shell model (NCSM) approach. With the CD-Bonn 2000 NN potential we found point-proton root-mean-square (rms) radii of {sup 4}He and {sup 6}He 1.45(1) fm and 1.89(4), respectively, in agreement with experiment and predict the {sup 8}He point proton rms radius to be 1.88(6) fm. At the same time, our calculations show that the recently developed nonlocal INOY NN potential gives binding energies closer to experiment, but underestimates the charge radii.
Cui, Baotong
2010-01-01
This paper aims to analyze global robust exponential stability in the mean square sense of stochastic discrete-time genetic regulatory networks with stochastic delays and parameter uncertainties. Comparing to the previous research works, time-varying delays are assumed to be stochastic whose variation ranges and probability distributions of the time-varying delays are explored. Based on the stochastic analysis approach and some analysis techniques, several sufficient criteria for the global robust exponential stability in the mean square sense of the networks are derived. Moreover, two numerical examples are presented to show the effectiveness of the obtained results. PMID:21629588
Testing Hardy-Weinberg equilibrium with a simple root-mean-square statistic.
Ward, Rachel; Carroll, Raymond J
2014-01-01
We provide evidence that, in certain circumstances, a root-mean-square test of goodness of fit can be significantly more powerful than state-of-the-art tests in detecting deviations from Hardy-Weinberg equilibrium. Unlike Pearson's $\\chi ^2$ test, the log-likelihood-ratio test, and Fisher's exact test, which are sensitive to relative discrepancies between genotypic frequencies, the root-mean-square test is sensitive to absolute discrepancies. This can increase statistical power, as we demonstrate using benchmark data sets and simulations, and through asymptotic analysis.
ERIC Educational Resources Information Center
Nevitt, Jonathan; Hancock, Gregory R.
2000-01-01
Studied incorporating adjusted model fit information into the root mean square error of approximation fit index (RMSEA). Monte Carlo simulation results show that incorporating robust information into the RMSEA may yield improved performance for assessing model fit under nonnormal data situations. (SLD)
ERIC Educational Resources Information Center
Pan, Tianshu; Yin, Yue
2012-01-01
In the discussion of mean square difference (MSD) and standard error of measurement (SEM), Barchard (2012) concluded that the MSD between 2 sets of test scores is greater than 2(SEM)[superscript 2] and SEM underestimates the score difference between 2 tests when the 2 tests are not parallel. This conclusion has limitations for 2 reasons. First,…
On the Expectations of Mean Squares Based on Nonindependent Variates in Factorials.
ERIC Educational Resources Information Center
Draper, John F.
A study was made of the problem of representing the expectations of mean squares associated with analysis of variance sources of variation for experimental designs. These designs have a factorial structure over repeated measures or, for some other reason, have variates within a factorial design not all of which are mutually independent. A simple…
Ong, A.; Berengut, J. C.; Flambaum, V. V.
2010-07-15
In this paper we consider the contribution of the anomalous magnetic moments of protons and neutrons to the nuclear charge density. We show that the spin-orbit contribution to the mean-square charge radius, which has been neglected in recent nuclear calculations, can be important in light halonuclei. We estimate the size of the effect in helium, lithium, and beryllium nuclei. It is found that the spin-orbit contribution represents a approx2% correction to the charge density at the center of the {sup 7}Be nucleus. We derive a simple expression for the correction to the mean-square charge radius due to the spin-orbit term and find that in light halonuclei it may be larger than the Darwin-Foldy term and comparable to finite size corrections. A comparison of experimental and theoretical mean-square radii including the spin-orbit contribution is presented.
2014-01-01
To make use of the sparsity property of broadband multipath wireless communication channels, we mathematically propose an lp-norm-constrained proportionate normalized least-mean-square (LP-PNLMS) sparse channel estimation algorithm. A general lp-norm is weighted by the gain matrix and is incorporated into the cost function of the proportionate normalized least-mean-square (PNLMS) algorithm. This integration is equivalent to adding a zero attractor to the iterations, by which the convergence speed and steady-state performance of the inactive taps are significantly improved. Our simulation results demonstrate that the proposed algorithm can effectively improve the estimation performance of the PNLMS-based algorithm for sparse channel estimation applications. PMID:24782663
Li, Yingsong; Hamamura, Masanori
2014-01-01
To make use of the sparsity property of broadband multipath wireless communication channels, we mathematically propose an l p -norm-constrained proportionate normalized least-mean-square (LP-PNLMS) sparse channel estimation algorithm. A general l p -norm is weighted by the gain matrix and is incorporated into the cost function of the proportionate normalized least-mean-square (PNLMS) algorithm. This integration is equivalent to adding a zero attractor to the iterations, by which the convergence speed and steady-state performance of the inactive taps are significantly improved. Our simulation results demonstrate that the proposed algorithm can effectively improve the estimation performance of the PNLMS-based algorithm for sparse channel estimation applications.
A root-mean-square approach for predicting fatigue crack growth under random loading
NASA Technical Reports Server (NTRS)
Hudson, C. M.
1981-01-01
A method for predicting fatigue crack growth under random loading which employs the concept of Barsom (1976) is presented. In accordance with this method, the loading history for each specimen is analyzed to determine the root-mean-square maximum and minimum stresses, and the predictions are made by assuming the tests have been conducted under constant-amplitude loading at the root-mean-square maximum and minimum levels. The procedure requires a simple computer program and a desk-top computer. For the eleven predictions made, the ratios of the predicted lives to the test lives ranged from 2.13 to 0.82, which is a good result, considering that the normal scatter in the fatigue-crack-growth rates may range from a factor of two to four under identical loading conditions.
Muralisankar, S; Manivannan, A; Balasubramaniam, P
2015-09-01
The aim of this manuscript is to investigate the mean square delay dependent-probability-distribution stability analysis of neutral type stochastic neural networks with time-delays. The time-delays are assumed to be interval time-varying and randomly occurring. Based on the new Lyapunov-Krasovskii functional and stochastic analysis approach, a novel sufficient condition is obtained in the form of linear matrix inequality such that the delayed stochastic neural networks are globally robustly asymptotically stable in the mean-square sense for all admissible uncertainties. Finally, the derived theoretical results are validated through numerical examples in which maximum allowable upper bounds are calculated for different lower bounds of time-delay.
Mean square displacement evaluation by elastic neutron scattering self-distribution function.
Magazù, Salvatore; Maisano, Giacomo; Migliardo, Federica; Benedetto, Antonio
2008-06-01
In the present work an operational recipe for the mean square displacement (MSD) determination, highlighting the connection between elastic incoherent neutron scattering (EINS) intensity profiles and the associated self-distribution function, is presented. The determination of the thermal behavior of the total MSD and of its partial contributions is tested on EINS data collected by the backscattering spectrometer IN13 (ILL, Grenoble) on a model system such as PolyEthylene Glycol with a mean molecular weight of 400 Dalton (PEG 400).
Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors.
Kuzmanic, Antonija; Zagrovic, Bojan
2010-03-01
Root mean-square deviation (RMSD) after roto-translational least-squares fitting is a measure of global structural similarity of macromolecules used commonly. On the other hand, experimental x-ray B-factors are used frequently to study local structural heterogeneity and dynamics in macromolecules by providing direct information about root mean-square fluctuations (RMSF) that can also be calculated from molecular dynamics simulations. We provide a mathematical derivation showing that, given a set of conservative assumptions, a root mean-square ensemble-average of an all-against-all distribution of pairwise RMSD for a single molecular species,
Analysis of S-box in Image Encryption Using Root Mean Square Error Method
NASA Astrophysics Data System (ADS)
Hussain, Iqtadar; Shah, Tariq; Gondal, Muhammad Asif; Mahmood, Hasan
2012-07-01
The use of substitution boxes (S-boxes) in encryption applications has proven to be an effective nonlinear component in creating confusion and randomness. The S-box is evolving and many variants appear in literature, which include advanced encryption standard (AES) S-box, affine power affine (APA) S-box, Skipjack S-box, Gray S-box, Lui J S-box, residue prime number S-box, Xyi S-box, and S8 S-box. These S-boxes have algebraic and statistical properties which distinguish them from each other in terms of encryption strength. In some circumstances, the parameters from algebraic and statistical analysis yield results which do not provide clear evidence in distinguishing an S-box for an application to a particular set of data. In image encryption applications, the use of S-boxes needs special care because the visual analysis and perception of a viewer can sometimes identify artifacts embedded in the image. In addition to existing algebraic and statistical analysis already used for image encryption applications, we propose an application of root mean square error technique, which further elaborates the results and enables the analyst to vividly distinguish between the performances of various S-boxes. While the use of the root mean square error analysis in statistics has proven to be effective in determining the difference in original data and the processed data, its use in image encryption has shown promising results in estimating the strength of the encryption method. In this paper, we show the application of the root mean square error analysis to S-box image encryption. The parameters from this analysis are used in determining the strength of S-boxes
An efficient implementation of Forward-Backward Least-Mean-Square Adaptive Line Enhancers
NASA Technical Reports Server (NTRS)
Yeh, H.-G.; Nguyen, T. M.
1995-01-01
An efficient implementation of the forward-backward least-mean-square (FBLMS) adaptive line enhancer is presented in this article. Without changing the characteristics of the FBLMS adaptive line enhancer, the proposed implementation technique reduces multiplications by 25% and additions by 12.5% in two successive time samples in comparison with those operations of direct implementation in both prediction and weight control. The proposed FBLMS architecture and algorithm can be applied to digital receivers for enhancing signal-to-noise ratio to allow fast carrier acquisition and tracking in both stationary and nonstationary environments.
Lower Bound on the Mean Square Displacement of Particles in the Hard Disk Model
NASA Astrophysics Data System (ADS)
Richthammer, Thomas
2016-08-01
The hard disk model is a 2D Gibbsian process of particles interacting via pure hard core repulsion. At high particle density the model is believed to show orientational order, however, it is known not to exhibit positional order. Here we investigate to what extent particle positions may fluctuate. We consider a finite volume version of the model in a box of dimensions 2 n × 2 n with arbitrary boundary configuration, and we show that the mean square displacement of particles near the center of the box is bounded from below by c log n. The result generalizes to a large class of models with fairly arbitrary interaction.
A root-mean-square pressure fluctuations model for internal flow applications
NASA Technical Reports Server (NTRS)
Chen, Y. S.
1985-01-01
A transport equation for the root-mean-square pressure fluctuations of turbulent flow is derived from the time-dependent momentum equation for incompressible flow. Approximate modeling of this transport equation is included to relate terms with higher order correlations to the mean quantities of turbulent flow. Three empirical constants are introduced in the model. Two of the empirical constants are estimated from homogeneous turbulence data and wall pressure fluctuations measurements. The third constant is determined by comparing the results of large eddy simulations for a plane channel flow and an annulus flow.
Expected distributions of root-mean-square positional deviations in proteins.
Pitera, Jed W
2014-06-19
The atom positional root-mean-square deviation (RMSD) is a standard tool for comparing the similarity of two molecular structures. It is used to characterize the quality of biomolecular simulations, to cluster conformations, and as a reaction coordinate for conformational changes. This work presents an approximate analytic form for the expected distribution of RMSD values for a protein or polymer fluctuating about a stable native structure. The mean and maximum of the expected distribution are independent of chain length for long chains and linearly proportional to the average atom positional root-mean-square fluctuations (RMSF). To approximate the RMSD distribution for random-coil or unfolded ensembles, numerical distributions of RMSD were generated for ensembles of self-avoiding and non-self-avoiding random walks. In both cases, for all reference structures tested for chains more than three monomers long, the distributions have a maximum distant from the origin with a power-law dependence on chain length. The purely entropic nature of this result implies that care must be taken when interpreting stable high-RMSD regions of the free-energy landscape as "intermediates" or well-defined stable states.
Nuclear matter radii determined by interaction cross sections
Ozawa, A.
2005-10-19
Experimental studies on nuclear matter radii determined by the interaction cross sections ({sigma}I) are reviewed. In particular, the procedure to determine the root-mean square matter radii from the measured {sigma}I by Galuber model analysis is described. Future {sigma}I measurements at the RI beam factory (RIBF) in RIKEN are introduced. As new calculations, the sensitivity of the skin is discussed in the case with a proton target based on Glauber-model calculations. In the energy region of RIBF, {sigma}I is sensitive for the skin; however, measurements with high accuracies are needed.
Optical pattern recognition architecture implementing the mean-square error correlation algorithm
Molley, Perry A.
1991-01-01
An optical architecture implementing the mean-square error correlation algorithm, MSE=.SIGMA.[I-R].sup.2 for discriminating the presence of a reference image R in an input image scene I by computing the mean-square-error between a time-varying reference image signal s.sub.1 (t) and a time-varying input image signal s.sub.2 (t) includes a laser diode light source which is temporally modulated by a double-sideband suppressed-carrier source modulation signal I.sub.1 (t) having the form I.sub.1 (t)=A.sub.1 [1+.sqroot.2m.sub.1 s.sub.1 (t)cos (2.pi.f.sub.o t)] and the modulated light output from the laser diode source is diffracted by an acousto-optic deflector. The resultant intensity of the +1 diffracted order from the acousto-optic device is given by: I.sub.2 (t)=A.sub.2 [+2m.sub.2.sup.2 s.sub.2.sup.2 (t)-2.sqroot.2m.sub.2 (t) cos (2.pi.f.sub.o t] The time integration of the two signals I.sub.1 (t) and I.sub.2 (t) on the CCD deflector plane produces the result R(.tau.) of the mean-square error having the form: R(.tau.)=A.sub.1 A.sub.2 {[T]+[2m.sub.2.sup.2.multidot..intg.s.sub.2.sup.2 (t-.tau.)dt]-[2m.sub.1 m.sub.2 cos (2.tau.f.sub.o .tau.).multidot..intg.s.sub.1 (t)s.sub.2 (t-.tau.)dt]} where: s.sub.1 (t) is the signal input to the diode modulation source: s.sub.2 (t) is the signal input to the AOD modulation source; A.sub.1 is the light intensity; A.sub.2 is the diffraction efficiency; m.sub.1 and m.sub.2 are constants that determine the signal-to-bias ratio; f.sub.o is the frequency offset between the oscillator at f.sub.c and the modulation at f.sub.c +f.sub.o ; and a.sub.o and a.sub.1 are constant chosen to bias the diode source and the acousto-optic deflector into their respective linear operating regions so that the diode source exhibits a linear intensity characteristic and the AOD exhibits a linear amplitude characteristic.
An improved filter-u least mean square vibration control algorithm for aircraft framework.
Huang, Quanzhen; Luo, Jun; Gao, Zhiyuan; Zhu, Xiaojin; Li, Hengyu
2014-09-01
Active vibration control of aerospace vehicle structures is very a hot spot and in which filter-u least mean square (FULMS) algorithm is one of the key methods. But for practical reasons and technical limitations, vibration reference signal extraction is always a difficult problem for FULMS algorithm. To solve the vibration reference signal extraction problem, an improved FULMS vibration control algorithm is proposed in this paper. Reference signal is constructed based on the controller structure and the data in the algorithm process, using a vibration response residual signal extracted directly from the vibration structure. To test the proposed algorithm, an aircraft frame model is built and an experimental platform is constructed. The simulation and experimental results show that the proposed algorithm is more practical with a good vibration suppression performance.
An improved filter-u least mean square vibration control algorithm for aircraft framework
NASA Astrophysics Data System (ADS)
Huang, Quanzhen; Luo, Jun; Gao, Zhiyuan; Zhu, Xiaojin; Li, Hengyu
2014-09-01
Active vibration control of aerospace vehicle structures is very a hot spot and in which filter-u least mean square (FULMS) algorithm is one of the key methods. But for practical reasons and technical limitations, vibration reference signal extraction is always a difficult problem for FULMS algorithm. To solve the vibration reference signal extraction problem, an improved FULMS vibration control algorithm is proposed in this paper. Reference signal is constructed based on the controller structure and the data in the algorithm process, using a vibration response residual signal extracted directly from the vibration structure. To test the proposed algorithm, an aircraft frame model is built and an experimental platform is constructed. The simulation and experimental results show that the proposed algorithm is more practical with a good vibration suppression performance.
Sea surface mean square slope from Ku-band backscatter data
NASA Technical Reports Server (NTRS)
Jackson, F. C.; Walton, W. T.; Hines, D. E.; Walter, B. A.; Peng, C. Y.
1992-01-01
A surface mean-square-slope parameter analysis is conducted for 14-GHz airborne radar altimeter near-nadir, quasi-specular backscatter data, which in raw form obtained by least-squares fitting of an optical scattering model to the return waveform show an approximately linear dependence over the 7-15 m/sec wind speed range. Slope data are used to draw inferences on the structure of the high-wavenumber portion of the spectrum. A directionally-integrated model height spectrum that encompasses wind speed-dependent k exp -5/2 and classical Phillips k exp -3 power laws subranges in the range of gravity waves is supported by the data.
NASA Astrophysics Data System (ADS)
Kim, Dalwoo; Oh, Ki-Jang; Lim, Choong-Soo
1998-12-01
We developed an on-line measurement system for the simultaneous measurement of the root-mean-square roughness and autocorrelation length which are the parameters of surface roughness. The measurement is based on the scattering theory of light on the rough surface. Computer simulation shows that the measurement range depends on the wavelength of the light source, and this is verified with the experiment. We installed the measurement system at the finishing line of a cold-rolling steel work, and measured the two parameters in situ. The rms roughness and autocorrelation length are measured and transformed in the average surface roughness and then umber of peaks per inch, respectively. The measured data for both of the parameters are compared with those of stylus method, an the optical method is well coincided with the conventional stylus method.
Nonzero mean squared momentum of quarks in the nonperturbative QCD vacuum
Zhou, Li-Juan; Kisslinger, Leonard S.; Ma, Wei-xing
2010-08-01
The nonlocal vacuum condensates of QCD describe the distributions of quarks and gluons in the nonperturbative QCD vacuum. Physically, this means that vacuum quarks and gluons have nonzero mean squared momentum, called virtuality. In this paper we study the quark virtuality which is given by the ratio of the local quark-gluon mixed vacuum condensate to the quark local vacuum condensate. The two vacuum condensates are obtained by solving Dyson-Schwinger equations of a fully dressed quark propagator with an effective gluon propagator. Using our calculated condensates, we obtain the virtuality of quarks in the QCD vacuum state. Our numerical predictions are consistent with other theoretical model calculations such as QCD sum rules, lattice QCD and instanton models.
Mean square optimal NUFFT approximation for efficient non-Cartesian MRI reconstruction
Yang, Zhili; Jacob, Mathews
2014-01-01
The fast evaluation of the discrete Fourier transform of an image at non-uniform sampling locations is key to efficient iterative non-Cartesian MRI reconstruction algorithms. Current non-uniform fast Fourier transform (NUFFT) approximations rely on the interpolation of oversampled uniform Fourier samples. The main challenge is high memory demand due to oversampling, especially when multi-dimensional datasets are involved. The main focus of this work is to design an NUFFT algorithm with minimal memory demands. Specifically, we introduce an analytical expression for the expected mean square error in the NUFFT approximation based on our earlier work. We then introduce an iterative algorithm to design the interpolator and scale factors.Experimental comparisons show that the proposed optimized NUFFT scheme provides considerably lower approximation errors than our previous scheme that rely on worst case error metrics. The improved approximations are also seen to considerably reduce the errors and artifacts in non-Cartesian MRI reconstruction. PMID:24637054
Mean square stabilisation of complex oscillatory regimes in nonlinear stochastic systems
NASA Astrophysics Data System (ADS)
Bashkirtseva, Irina; Ryashko, Lev
2016-04-01
A problem of stabilisation of the randomly forced periodic and quasiperiodic modes for nonlinear dynamic systems is considered. For this problem solution, we propose a new theoretical approach to consider these modes as invariant manifolds of the stochastic differential equations with control. The aim of the control is to provide the exponential mean square (EMS) stability for these manifolds. A general method of the stabilisation based on the algebraic criterion of the EMS-stability is elaborated. A constructive technique for the design of the feedback regulators stabilising various types of oscillatory regimes is proposed. A detailed parametric analysis of the problem of the stabilisation for stochastically forced periodic and quasiperiodic modes is given. An illustrative example of stochastic Hopf system is included to demonstrate the effectiveness of the proposed technique.
Measured and predicted root-mean-square errors in square and triangular antenna mesh facets
NASA Technical Reports Server (NTRS)
Fichter, W. B.
1989-01-01
Deflection shapes of square and equilateral triangular facets of two tricot-knit, gold plated molybdenum wire mesh antenna materials were measured and compared, on the basis of root mean square (rms) differences, with deflection shapes predicted by linear membrane theory, for several cases of biaxial mesh tension. The two mesh materials contained approximately 10 and 16 holes per linear inch, measured diagonally with respect to the course and wale directions. The deflection measurement system employed a non-contact eddy current proximity probe and an electromagnetic distance sensing probe in conjunction with a precision optical level. Despite experimental uncertainties, rms differences between measured and predicted deflection shapes suggest the following conclusions: that replacing flat antenna facets with facets conforming to parabolically curved structural members yields smaller rms surface error; that potential accuracy gains are greater for equilateral triangular facets than for square facets; and that linear membrane theory can be a useful tool in the design of tricot knit wire mesh antennas.
Barchard, Kimberly A
2012-06-01
This article introduces new statistics for evaluating score consistency. Psychologists usually use correlations to measure the degree of linear relationship between 2 sets of scores, ignoring differences in means and standard deviations. In medicine, biology, chemistry, and physics, a more stringent criterion is often used: the extent to which scores are identically equal. For each test taker (or other unit of measurement), the difference between the 2 scores is calculated. The root mean square difference (RMSD) represents the average change from 1 set of scores to the other, and the concordance correlation coefficient (CCC) rescales this coefficient to have a maximum value of 1. This article shows the relationship of the RMSD and CCC to the intraclass correlation coefficients, product-moment correlation, and standard error of measurement. Finally, this article adapts the RMSD and the CCC for linear, consistency, and absolute definitions of agreement.
Sun, W Y
1993-04-01
This thesis solves the problem of finding the optimal linear noise-reduction filter for linear tomographic image reconstruction. The optimization is data dependent and results in minimizing the mean-square error of the reconstructed image. The error is defined as the difference between the result and the best possible reconstruction. Applications for the optimal filter include reconstructions of positron emission tomographic (PET), X-ray computed tomographic, single-photon emission tomographic, and nuclear magnetic resonance imaging. Using high resolution PET as an example, the optimal filter is derived and presented for the convolution backprojection, Moore-Penrose pseudoinverse, and the natural-pixel basis set reconstruction methods. Simulations and experimental results are presented for the convolution backprojection method.
Atomic motion from the mean square displacement in a monatomic liquid
NASA Astrophysics Data System (ADS)
Wallace, Duane C.; De Lorenzi-Venneri, Giulia; Chisolm, Eric D.
2016-05-01
V-T theory is constructed in the many-body Hamiltonian formulation, and is being developed as a novel approach to liquid dynamics theory. In this theory the liquid atomic motion consists of two contributions, normal mode vibrations in a single representative potential energy valley, and transits, which carry the system across boundaries between valleys. The mean square displacement time correlation function (the MSD) is a direct measure of the atomic motion, and our goal is to determine if the V-T formalism can produce a physically sensible account of this motion. We employ molecular dynamics (MD) data for a system representing liquid Na, and find the motion evolves in three successive time intervals: on the first ‘vibrational’ interval, the vibrational motion alone gives a highly accurate account of the MD data; on the second ‘crossover’ interval, the vibrational MSD saturates to a constant while the transit motion builds up from zero; on the third ‘random walk’ interval, the transit motion produces a purely diffusive random walk of the vibrational equilibrium positions. This motional evolution agrees with, and adds refinement to, the MSD atomic motion as described by current liquid dynamics theories.
NASA Technical Reports Server (NTRS)
Gupta, Hoshin V.; Kling, Harald; Yilmaz, Koray K.; Martinez-Baquero, Guillermo F.
2009-01-01
The mean squared error (MSE) and the related normalization, the Nash-Sutcliffe efficiency (NSE), are the two criteria most widely used for calibration and evaluation of hydrological models with observed data. Here, we present a diagnostically interesting decomposition of NSE (and hence MSE), which facilitates analysis of the relative importance of its different components in the context of hydrological modelling, and show how model calibration problems can arise due to interactions among these components. The analysis is illustrated by calibrating a simple conceptual precipitation-runoff model to daily data for a number of Austrian basins having a broad range of hydro-meteorological characteristics. Evaluation of the results clearly demonstrates the problems that can be associated with any calibration based on the NSE (or MSE) criterion. While we propose and test an alternative criterion that can help to reduce model calibration problems, the primary purpose of this study is not to present an improved measure of model performance. Instead, we seek to show that there are systematic problems inherent with any optimization based on formulations related to the MSE. The analysis and results have implications to the manner in which we calibrate and evaluate environmental models; we discuss these and suggest possible ways forward that may move us towards an improved and diagnostically meaningful approach to model performance evaluation and identification.
Estimating Root Mean Square Errors in Remotely Sensed Soil Moisture over Continental Scale Domains
NASA Technical Reports Server (NTRS)
Draper, Clara S.; Reichle, Rolf; de Jeu, Richard; Naeimi, Vahid; Parinussa, Robert; Wagner, Wolfgang
2013-01-01
Root Mean Square Errors (RMSE) in the soil moisture anomaly time series obtained from the Advanced Scatterometer (ASCAT) and the Advanced Microwave Scanning Radiometer (AMSR-E; using the Land Parameter Retrieval Model) are estimated over a continental scale domain centered on North America, using two methods: triple colocation (RMSETC ) and error propagation through the soil moisture retrieval models (RMSEEP ). In the absence of an established consensus for the climatology of soil moisture over large domains, presenting a RMSE in soil moisture units requires that it be specified relative to a selected reference data set. To avoid the complications that arise from the use of a reference, the RMSE is presented as a fraction of the time series standard deviation (fRMSE). For both sensors, the fRMSETC and fRMSEEP show similar spatial patterns of relatively highlow errors, and the mean fRMSE for each land cover class is consistent with expectations. Triple colocation is also shown to be surprisingly robust to representativity differences between the soil moisture data sets used, and it is believed to accurately estimate the fRMSE in the remotely sensed soil moisture anomaly time series. Comparing the ASCAT and AMSR-E fRMSETC shows that both data sets have very similar accuracy across a range of land cover classes, although the AMSR-E accuracy is more directly related to vegetation cover. In general, both data sets have good skill up to moderate vegetation conditions.
Bai, Mingsian R; Hsieh, Ping-Ju; Hur, Kur-Nan
2009-02-01
The performance of the minimum mean-square error noise reduction (MMSE-NR) algorithm in conjunction with time-recursive averaging (TRA) for noise estimation is found to be very sensitive to the choice of two recursion parameters. To address this problem in a more systematic manner, this paper proposes an optimization method to efficiently search the optimal parameters of the MMSE-TRA-NR algorithms. The objective function is based on a regression model, whereas the optimization process is carried out with the simulated annealing algorithm that is well suited for problems with many local optima. Another NR algorithm proposed in the paper employs linear prediction coding as a preprocessor for extracting the correlated portion of human speech. Objective and subjective tests were undertaken to compare the optimized MMSE-TRA-NR algorithm with several conventional NR algorithms. The results of subjective tests were processed by using analysis of variance to justify the statistic significance. A post hoc test, Tukey's Honestly Significant Difference, was conducted to further assess the pairwise difference between the NR algorithms.
Atomic motion from the mean square displacement in a monatomic liquid
Wallace, Duane C.; De Lorenzi-Venneri, Giulia; Chisolm, Eric D.
2016-04-08
V-T theory is constructed in the many-body Hamiltonian formulation, and is being developed as a novel approach to liquid dynamics theory. In this theory the liquid atomic motion consists of two contributions, normal mode vibrations in a single representative potential energy valley, and transits, which carry the system across boundaries between valleys. The mean square displacement time correlation function (the MSD) is a direct measure of the atomic motion, and our goal is to determine if the V-T formalism can produce a physically sensible account of this motion. We employ molecular dynamics (MD) data for a system representing liquid Na,more » and find the motion evolves in three successive time intervals: on the first 'vibrational' interval, the vibrational motion alone gives a highly accurate account of the MD data; on the second 'crossover' interval, the vibrational MSD saturates to a constant while the transit motion builds up from zero; on the third 'random walk' interval, the transit motion produces a purely diffusive random walk of the vibrational equilibrium positions. Furthermore, this motional evolution agrees with, and adds refinement to, the MSD atomic motion as described by current liquid dynamics theories.« less
Frequency-shift low-pass filtering and least mean square adaptive filtering for ultrasound imaging
NASA Astrophysics Data System (ADS)
Wang, Shanshan; Li, Chunyu; Ding, Mingyue; Yuchi, Ming
2016-04-01
Ultrasound image quality enhancement is a problem of considerable interest in medical imaging modality and an ongoing challenge to date. This paper investigates a method based on frequency-shift low-pass filtering (FSLF) and least mean square adaptive filtering (LMSAF) for ultrasound image quality enhancement. FSLF is used for processing the ultrasound signal in the frequency domain, while LMSAPF in the time domain. Firstly, FSLF shifts the center frequency of the focused signal to zero. Then the real and imaginary part of the complex data are filtered respectively by finite impulse response (FIR) low-pass filter. Thus the information around the center frequency are retained while the undesired ones, especially background noises are filtered. Secondly, LMSAF multiplies the signals with an automatically adjusted weight vector to further eliminate the noises and artifacts. Through the combination of the two filters, the ultrasound image is expected to have less noises and artifacts and higher resolution, and contrast. The proposed method was verified with the RF data of the CIRS phantom 055A captured by SonixTouch DAQ system. Experimental results show that the background noises and artifacts can be efficiently restrained, the wire object has a higher resolution and the contrast ratio (CR) can be enhanced for about 12dB to 15dB at different image depth comparing to delay-and-sum (DAS).
Mean square atomic displacements of LaFe4Sb12
NASA Astrophysics Data System (ADS)
Feldman, Joseph; Singh, David
2005-03-01
Calculations in the harmonic approximation of the mean square atomic displacements (MSDs) for the filled skutterudite, LaFe4Sb12, are discussed, where the first-principles based force constant model that we recently proposed for this material is employed.^1 The various values of MSDs at high temperatures are as expected, following the differences in coordination and short range force constants. The results are primarily compared with temperature dependent neutron diffraction measurements^2 of MSDs in La.75Fe3CoSb12. The differences between theory and experiment are interpreted in terms of static disorder contributions to the MSDs. In the case of the isotropic MSDs, the resulting static disorder contributions are comparable to the corresponding minimum values previously obtained^2 from a data analysis, and both the Sb and Fe values are small compared to the La value of 0.0045å^2. Nevertheless the anisotropy in the Sb static disorder is large on the basis of our analysis, and in the direction of the neighboring La site the Sb disorder parameter is comparable to the above value for La. Finally, the effect of La interactions on the Sb- and Fe-MSDs is discussed within the context of our model, as is an Einstein model, fitted to the calculated La MSD. 1. J.L. Feldman et al., Phys. Rev. B 68, 094301 (2003).2. B.C. Chakoumakos et al., Acta Cryst. B 55,341 (1999).
Khorasani, Milad; Amigo, José M; Bertelsen, Poul; Van Den Berg, Frans; Rantanen, Jukka
2015-08-01
An algorithm based on mean squares successive difference test applied to near-infrared and principal component analysis scores was developed to monitor and determine the blending profile and to assess the end-point in the statistical stabile phase. Model formulations consisting of an active compound (acetylsalicylic acid), together with microcrystalline cellulose and two grades of calcium carbonate with dramatically different particle shapes, were prepared. The formulation comprising angular-shaped calcium carbonate reached blending end-point slower when compared with the formulation comprising equant-shaped calcium carbonate. Utilizing the ring shear test, this distinction in end-point could be related to the difference in flowability of the formulations. On the basis of the two model formulations, a design of experiments was conducted to characterize the blending process by studying the effect of CaCO3 grades and fill level of the bin on blending end-point. Calcium carbonate grades, fill level, and their interaction were shown to have a significant impact on the blending process. PMID:26094601
NASA Astrophysics Data System (ADS)
Cartes, David A.; Ray, Laura R.; Collier, Robert D.
2002-04-01
An adaptive leaky normalized least-mean-square (NLMS) algorithm has been developed to optimize stability and performance of active noise cancellation systems. The research addresses LMS filter performance issues related to insufficient excitation, nonstationary noise fields, and time-varying signal-to-noise ratio. The adaptive leaky NLMS algorithm is based on a Lyapunov tuning approach in which three candidate algorithms, each of which is a function of the instantaneous measured reference input, measurement noise variance, and filter length, are shown to provide varying degrees of tradeoff between stability and noise reduction performance. Each algorithm is evaluated experimentally for reduction of low frequency noise in communication headsets, and stability and noise reduction performance are compared with that of traditional NLMS and fixed-leakage NLMS algorithms. Acoustic measurements are made in a specially designed acoustic test cell which is based on the original work of Ryan et al. [``Enclosure for low frequency assessment of active noise reducing circumaural headsets and hearing protection,'' Can. Acoust. 21, 19-20 (1993)] and which provides a highly controlled and uniform acoustic environment. The stability and performance of the active noise reduction system, including a prototype communication headset, are investigated for a variety of noise sources ranging from stationary tonal noise to highly nonstationary measured F-16 aircraft noise over a 20 dB dynamic range. Results demonstrate significant improvements in stability of Lyapunov-tuned LMS algorithms over traditional leaky or nonleaky normalized algorithms, while providing noise reduction performance equivalent to that of the NLMS algorithm for idealized noise fields.
Kassabian, Nazelie; Lo Presti, Letizia; Rispoli, Francesco
2014-06-11
Railway signaling is a safety system that has evolved over the last couple of centuries towards autonomous functionality. Recently, great effort is being devoted in this field, towards the use and exploitation of Global Navigation Satellite System (GNSS) signals and GNSS augmentation systems in view of lower railway track equipments and maintenance costs, that is a priority to sustain the investments for modernizing the local and regional lines most of which lack automatic train protection systems and are still manually operated. The objective of this paper is to assess the sensitivity of the Linear Minimum Mean Square Error (LMMSE) algorithm to modeling errors in the spatial correlation function that characterizes true pseudorange Differential Corrections (DCs). This study is inspired by the railway application; however, it applies to all transportation systems, including the road sector, that need to be complemented by an augmentation system in order to deliver accurate and reliable positioning with integrity specifications. A vector of noisy pseudorange DC measurements are simulated, assuming a Gauss-Markov model with a decay rate parameter inversely proportional to the correlation distance that exists between two points of a certain environment. The LMMSE algorithm is applied on this vector to estimate the true DC, and the estimation error is compared to the noise added during simulation. The results show that for large enough correlation distance to Reference Stations (RSs) distance separation ratio values, the LMMSE brings considerable advantage in terms of estimation error accuracy and precision. Conversely, the LMMSE algorithm may deteriorate the quality of the DC measurements whenever the ratio falls below a certain threshold.
Kassabian, Nazelie; Presti, Letizia Lo; Rispoli, Francesco
2014-01-01
Railway signaling is a safety system that has evolved over the last couple of centuries towards autonomous functionality. Recently, great effort is being devoted in this field, towards the use and exploitation of Global Navigation Satellite System (GNSS) signals and GNSS augmentation systems in view of lower railway track equipments and maintenance costs, that is a priority to sustain the investments for modernizing the local and regional lines most of which lack automatic train protection systems and are still manually operated. The objective of this paper is to assess the sensitivity of the Linear Minimum Mean Square Error (LMMSE) algorithm to modeling errors in the spatial correlation function that characterizes true pseudorange Differential Corrections (DCs). This study is inspired by the railway application; however, it applies to all transportation systems, including the road sector, that need to be complemented by an augmentation system in order to deliver accurate and reliable positioning with integrity specifications. A vector of noisy pseudorange DC measurements are simulated, assuming a Gauss-Markov model with a decay rate parameter inversely proportional to the correlation distance that exists between two points of a certain environment. The LMMSE algorithm is applied on this vector to estimate the true DC, and the estimation error is compared to the noise added during simulation. The results show that for large enough correlation distance to Reference Stations (RSs) distance separation ratio values, the LMMSE brings considerable advantage in terms of estimation error accuracy and precision. Conversely, the LMMSE algorithm may deteriorate the quality of the DC measurements whenever the ratio falls below a certain threshold. PMID:24922454
NASA Astrophysics Data System (ADS)
Benedetto, A.; Magazù, S.; Migliardo, F.; Mondelli, C.; Gonzalez, M. A.
2012-02-01
In the present contribution, a procedure for molecular motion characterization based on the evaluation of the Mean Square Displacement (MSD), through the Self-Distribution Function (SDF), is presented. It is shown how MSD, which represents an important observable for the characterization of dynamical properties, can be decomposed into different partial contributions associated to system dynamical processes within a specific spatial scale. It is also shown how the SDF procedure allows us to evaluate both total MSD and partial MSDs through total and partial SDFs. As a result, total MSD is the weighed sum of partial MSDs in which the weights are obtained by the fitting procedure of measured Elastic Incoherent Neutron Scattering (EINS) intensity. We apply SDF procedure to data collected,by IN13, IN10 and IN4 spectrometers (Institute Laue Langevin), on aqueous mixtures of two homologous disaccharides (sucrose and trehalose) and on dry and hydrated (H2O and D2O) lysozyme with and without disaccharides. It emerges that the hydrogen bond imposed network of the water-trehalose mixture appears to be stronger with respect to that of the water-sucrose mixture. This result can justify the higher bioprotectant effectiveness of trehalose. Furthermore, it emerges that partial MSDs of sucrose and trehalose are equivalent in the low Q domain (0÷1.7) Å-1 whereas they are different in the high Q domain (1.7÷4) Å-1. This suggests that the higher structure sensitivity of sucrose should be related to the small spatial observation windows. Moreover, the role of the instrumental resolution in EINS is considered. The nature of the dynamical transition is highlighted and it is shown that it occurs when the system relaxation time becomes shorter than the instrumental energy time. Finally, the bioprotectants effect on protein dynamics and the amplitude of vibrations in lysozyme are presented.
Protein structure validation by generalized linear model root-mean-square deviation prediction.
Bagaria, Anurag; Jaravine, Victor; Huang, Yuanpeng J; Montelione, Gaetano T; Güntert, Peter
2012-02-01
Large-scale initiatives for obtaining spatial protein structures by experimental or computational means have accentuated the need for the critical assessment of protein structure determination and prediction methods. These include blind test projects such as the critical assessment of protein structure prediction (CASP) and the critical assessment of protein structure determination by nuclear magnetic resonance (CASD-NMR). An important aim is to establish structure validation criteria that can reliably assess the accuracy of a new protein structure. Various quality measures derived from the coordinates have been proposed. A universal structural quality assessment method should combine multiple individual scores in a meaningful way, which is challenging because of their different measurement units. Here, we present a method based on a generalized linear model (GLM) that combines diverse protein structure quality scores into a single quantity with intuitive meaning, namely the predicted coordinate root-mean-square deviation (RMSD) value between the present structure and the (unavailable) "true" structure (GLM-RMSD). For two sets of structural models from the CASD-NMR and CASP projects, this GLM-RMSD value was compared with the actual accuracy given by the RMSD value to the corresponding, experimentally determined reference structure from the Protein Data Bank (PDB). The correlation coefficients between actual (model vs. reference from PDB) and predicted (model vs. "true") heavy-atom RMSDs were 0.69 and 0.76, for the two datasets from CASD-NMR and CASP, respectively, which is considerably higher than those for the individual scores (-0.24 to 0.68). The GLM-RMSD can thus predict the accuracy of protein structures more reliably than individual coordinate-based quality scores.
Root-mean-square-deviation-based rapid backbone resonance assignments in proteins.
Rout, Ashok K; Barnwal, Ravi P; Agarwal, Geetika; Chary, Kandala V R
2010-10-01
We have shown that the methodology based on the estimation of root-mean-square deviation (RMSD) between two sets of chemical shifts is very useful to rapidly assign the spectral signatures of (1)H(N), (13)C(α), (13)C(β), (13)C', (1)H(α) and (15)N spins of a given protein in one state from the knowledge of its resonance assignments in a different state, without resorting to routine established procedures (manual and automated). We demonstrate the utility of this methodology to rapidly assign the 3D spectra of a metal-binding protein in its holo-state from the knowledge of its assignments in apo-state, the spectra of a protein in its paramagnetic state from the knowledge of its assignments in diamagnetic state and, finally, the spectra of a mutant protein from the knowledge of the chemical shifts of the corresponding wild-type protein. The underlying assumption of this methodology is that, it is impossible for any two amino acid residues in a given protein to have all the six chemical shifts degenerate and that the protein under consideration does not undergo large conformational changes in going from one conformational state to another. The methodology has been tested using experimental data on three proteins, M-crystallin (8.5 kDa, predominantly β-sheet, for apo- to holo-state), Calbindin (7.5 kDa, predominantly α-helical, for diamagnetic to paramagnetic state and apo to holo) and EhCaBP1 (14.3 kDa, α-helical, the wild-type protein with one of its mutant). In all the cases, the extent of assignment is found to be greater than 85%.
Evaluation of the Proton Charge Radius from Electron–Proton Scattering
Arrington, John; Sick, Ingo
2015-09-15
In light of the proton radius puzzle, the discrepancy between measurements of the proton charge radius from muonic hydrogen and those from electronic hydrogen and electron–proton (e–p) scattering measurements, we re-examine the charge radius extractions from electron scattering measurements. We provide a recommended value for the proton root-mean-square charge radius, r{sub E} = 0.879 ± 0.011 fm, based on a global examination of elastic e–p scattering data. The uncertainties include contributions to account for tension between different data sets and inconsistencies between radii using different extraction procedures.
Moens, Pierre D J; Digman, Michelle A; Gratton, Enrico
2015-03-24
The image-mean square displacement technique applies the calculation of the mean square displacement commonly used in single-molecule tracking to images without resolving single particles. The image-mean square displacement plot obtained is similar to the mean square displacement plot obtained using the single-particle tracking technique. This plot is then used to reconstruct the protein diffusion law and to identify whether the labeled molecules are undergoing pure isotropic, restricted, corralled, transiently confined, or directed diffusion. In our study total internal reflection fluorescence microscopy images were taken of Cholera toxin subunit B (CtxB) membrane-labeled NIH 3T3 mouse fibroblasts and MDA 231 MB cells. We found a population of CTxB undergoing purely isotropic diffusion and one displaying restricted diffusion with corral sizes ranging from 150 to ∼1800 nm. We show that the diffusion rate of CTxB bound to GM1 is independent of the size of the confinement, suggesting that the mechanism of confinement is different from the mechanism controlling the diffusion rate of CtxB. We highlight the potential effect of continuous illumination on the diffusion mode of CTxB. We also show that aggregation of CTxB/GM1 in large complexes occurs and that these aggregates tend to have slower diffusion rates.
ERIC Educational Resources Information Center
Kelley, Ken; Lai, Keke
2011-01-01
The root mean square error of approximation (RMSEA) is one of the most widely reported measures of misfit/fit in applications of structural equation modeling. When the RMSEA is of interest, so too should be the accompanying confidence interval. A narrow confidence interval reveals that the plausible parameter values are confined to a relatively…
ERIC Educational Resources Information Center
Savalei, Victoria
2012-01-01
The fit index root mean square error of approximation (RMSEA) is extremely popular in structural equation modeling. However, its behavior under different scenarios remains poorly understood. The present study generates continuous curves where possible to capture the full relationship between RMSEA and various "incidental parameters," such as…
Mueller, P; Sulai, I A; Villari, A C C; Alcántara-Núñez, J A; Alves-Condé, R; Bailey, K; Drake, G W F; Dubois, M; Eléon, C; Gaubert, G; Holt, R J; Janssens, R V F; Lecesne, N; Lu, Z-T; O'Connor, T P; Saint-Laurent, M-G; Thomas, J-C; Wang, L-B
2007-12-21
The root-mean-square (rms) nuclear charge radius of 8He, the most neutron-rich of all particle-stable nuclei, has been determined for the first time to be 1.93(3) fm. In addition, the rms charge radius of 6He was measured to be 2.068(11) fm, in excellent agreement with a previous result. The significant reduction in charge radius from 6He to 8He is an indication of the change in the correlations of the excess neutrons and is consistent with the 8He neutron halo structure. The experiment was based on laser spectroscopy of individual helium atoms cooled and confined in a magneto-optical trap. Charge radii were extracted from the measured isotope shifts with the help of precision atomic theory calculations.
Chang, C Allen; Wu, Bo Hong; Kuan, Bu Yuan
2005-09-19
We have been interested in the design, synthesis, and characterization of artificial nucleases and ribonucleases by employing macrocyclic lanthanide complexes because their high thermodynamic stability, low kinetic lability, high coordination number, and charge density (Lewis acidity) allow more design flexibility and stability. In this paper, we report the study of the use of the europium(III) complex, EuDO2A+ (DO2A is 1,7-dicarboxymethyl-1,4,7,10-tetraazacyclododecane) and other lanthanide complexes (i.e., LaDO2A+, YbDO2A+, EuK21DA+, EuEDDA+, and EuHEDTA where K21DA is 1,7-diaza-4,10,13-trioxacyclopentadecane-N,N'-diacetic acid, EDDA is ethylenediamine-N,N'-diacetic acid, and HEDTA is N-hydroxyethyl-ethylenediamine-N,N',N'-triacetic acid), as potential catalysts for the hydrolysis of the phosphodiester bond of BNPP (sodium bis(4-nitrophenyl)-phosphate). For the pH range 7.0-11.0 studied, EuDO2A+ promotes BNPP hydrolysis with the quickest rates among LaDO2A+, EuDO2A+, and YbDO2A+. This indicates that charge density is not the only factor affecting the reaction rates. Among the four complexes, EuDO2A+, EuK21DA+, EuEDDA+, and EuHEDTA, with their respective number of inner-sphere coordinated water molecules three, two, five, and three, EuEDDA+, with the greatest number of inner-sphere coordinated water molecules and a positive charge, promotes BNPP hydrolysis more efficiently at pH below 8.4, and the observed rate trend is EuEDDA+ > EuDO2A+ > EuK21DA+ > EuHEDTA. At pH > 8.4, the EuEDDA+ solution becomes misty and precipitates form. At pH 11.0, the hydrolysis rate of BNPP in the presence of EuDO2A+ is 100 times faster than that of EuHEDTA, presumably because the positively charged EuDO2A+ is more favorable for binding with the negatively charged phosphodiester compounds. The logarithmic hydrolysis constants (pKh) were determined, and are reported in the parentheses, by fitting the kinetic k(obs) data vs pH for EuDO2A+ (8.4), LaDO2A+ (8.4), YbDO2A+ (9.4), EuK21DA+ (7
NASA Astrophysics Data System (ADS)
Borji, S.; Benzirar, M.; Sabri, L.; Bouabdellaoui, M.
2016-07-01
The purpose of this paper is to reach the root mean square (RMS) value of the fluctuating temperature along a jet plane by examining only the impact produced by a laser beam after having traversed the heated jet of air. This model is based on the Einstein-Fokker-Planck-Kolmogorov (EFPK) equation, which helped us to determine the value of the jet diffusion coefficient defined as a proportionality factor between the mean square of the deflection angle fluctuations and the length of the corresponding finite laser beam path. The numerical method of calculation in our work uses the value of the localized diffusion coefficient. This plays an essential role in measuring along the RMS of the temperature fluctuations. The obtained values are compared to the experimental measurements.
NASA Astrophysics Data System (ADS)
Sato, Takanori; Kanno, Kazutaka; Bunsen, Masatoshi
2016-09-01
We applied complex linear minimum mean-squared-error equalization to spatially quadrature-amplitude-modulated signals in holographic data storage (HDS). The equalization technique can improve dispersion in constellation outputs due to intersymbol interference. We confirm the effectiveness of the equalization technique in numerical simulations and basic optical experiments. Our numerical results have shown that intersymbol interference of a retrieved signal in a HDS system can be improved by using the equalization technique. In our experiments, a mean squared error (MSE), which indicates the deviation from an ideal signal, has been used for quantitatively evaluating the dispersion of equalized signals. Our equalization technique has been able to improve the MSE. However, symbols in the equalized signal have remained inseparable. To further improve the MSE and make the symbols separable, reducing errors in repeated measurements is our future task.
Zollanvari, Amin; Dougherty, Edward R
2014-06-01
The most important aspect of any classifier is its error rate, because this quantifies its predictive capacity. Thus, the accuracy of error estimation is critical. Error estimation is problematic in small-sample classifier design because the error must be estimated using the same data from which the classifier has been designed. Use of prior knowledge, in the form of a prior distribution on an uncertainty class of feature-label distributions to which the true, but unknown, feature-distribution belongs, can facilitate accurate error estimation (in the mean-square sense) in circumstances where accurate completely model-free error estimation is impossible. This paper provides analytic asymptotically exact finite-sample approximations for various performance metrics of the resulting Bayesian Minimum Mean-Square-Error (MMSE) error estimator in the case of linear discriminant analysis (LDA) in the multivariate Gaussian model. These performance metrics include the first, second, and cross moments of the Bayesian MMSE error estimator with the true error of LDA, and therefore, the Root-Mean-Square (RMS) error of the estimator. We lay down the theoretical groundwork for Kolmogorov double-asymptotics in a Bayesian setting, which enables us to derive asymptotic expressions of the desired performance metrics. From these we produce analytic finite-sample approximations and demonstrate their accuracy via numerical examples. Various examples illustrate the behavior of these approximations and their use in determining the necessary sample size to achieve a desired RMS. The Supplementary Material contains derivations for some equations and added figures.
Introducing Charge Hydration Asymmetry into the Generalized Born Model.
Mukhopadhyay, Abhishek; Aguilar, Boris H; Tolokh, Igor S; Onufriev, Alexey V
2014-04-01
The effect of charge hydration asymmetry (CHA)-non-invariance of solvation free energy upon solute charge inversion-is missing from the standard linear response continuum electrostatics. The proposed charge hydration asymmetric-generalized Born (CHA-GB) approximation introduces this effect into the popular generalized Born (GB) model. The CHA is added to the GB equation via an analytical correction that quantifies the specific propensity of CHA of a given water model; the latter is determined by the charge distribution within the water model. Significant variations in CHA seen in explicit water (TIP3P, TIP4P-Ew, and TIP5P-E) free energy calculations on charge-inverted "molecular bracelets" are closely reproduced by CHA-GB, with the accuracy similar to models such as SEA and 3D-RISM that go beyond the linear response. Compared against reference explicit (TIP3P) electrostatic solvation free energies, CHA-GB shows about a 40% improvement in accuracy over the canonical GB, tested on a diverse set of 248 rigid small neutral molecules (root mean square error, rmse = 0.88 kcal/mol for CHA-GB vs 1.24 kcal/mol for GB) and 48 conformations of amino acid analogs (rmse = 0.81 kcal/mol vs 1.26 kcal/mol). CHA-GB employs a novel definition of the dielectric boundary that does not subsume the CHA effects into the intrinsic atomic radii. The strategy leads to finding a new set of intrinsic atomic radii optimized for CHA-GB; these radii show physically meaningful variation with the atom type, in contrast to the radii set optimized for GB. Compared to several popular radii sets used with the original GB model, the new radii set shows better transferability between different classes of molecules.
Magazù, Salvatore; Maisano, Giacomo; Migliardo, Federica; Benedetto, Antonio
2008-07-31
In the present work an operational recipe for the mean square displacement (MSD) determination, highlighting the connection between the self-distribution function and average statistical values, is presented. The determination of the MSD and of its contributions associated with different mechanisms, together with their thermal behavior, is performed by evaluating the self-distribution function derived by elastic incoherent neutron scattering (EINS). The approach is tested on EINS data collected by the backscattering spectrometer IN13 (ILL, Grenoble, France) on two model systems such as dry myoglobin in trehalose and poly(ethylene glycol) with mean molecular weight M(w) = 400 (PEG 400).
NASA Astrophysics Data System (ADS)
Yoshizaki, Takenao; Yamakawa, Hiromi
1993-03-01
The expansion factor αμ for the mean-square electric dipole moment is studied on the basis of the helical wormlike chain with the excluded-volume effect incorporated in the Yamakawa-Stockmayer-Shimada scheme. A general expression is formulated for the first-order perturbation coefficient Kμ(L) for the chain of total contour length L. The asymptotic solution for Kμ(L) in the limit of L→∞ is evaluated analytically in the Daniels approximation by an application of the operational method. In contradiction to the common notion, it is found that, in the case of κ0τ0≠0 with κ0 and τ0 being the constant curvature and torsion, respectively, of the characteristic helix, Kμ(∞) does not vanish even for the chain having a local electric dipole moment vector perpendicular to the chain contour, indicating that αμ diverges with increasing molecular weight.
Knapp, B; Frantal, S; Cibena, M; Schreiner, W; Bauer, P
2011-08-01
Molecular dynamics is a commonly used technique in computational biology. One key issue of each molecular dynamics simulation is: When does this simulation reach equilibrium state? A widely used way to determine this is the visual and intuitive inspection of root mean square deviation (RMSD) plots of the simulation. Although this technique has been criticized several times, it is still often used. Therefore, we present a study proving that this method is not reliable at all. We conducted a survey with participants from the field in which we illustrated different RMSD plots to scientists in the field of molecular dynamics. These plots were randomized and repeated, using a statistical model and different variants of the plots. We show that there is no mutual consent about the point of equilibrium. The decisions are severely biased by different parameters. Therefore, we conclude that scientists should not discuss the equilibration of a molecular dynamics simulation on the basis of a RMSD plot.
Kelley, Ken; Lai, Keke
2011-02-01
The root mean square error of approximation (RMSEA) is one of the most widely reported measures of misfit/fit in applications of structural equation modeling. When the RMSEA is of interest, so too should be the accompanying confidence interval. A narrow confidence interval reveals that the plausible parameter values are confined to a relatively small range at the specified level of confidence. The accuracy in parameter estimation approach to sample size planning is developed for the RMSEA so that the confidence interval for the population RMSEA will have a width whose expectation is sufficiently narrow. Analytic developments are shown to work well with a Monte Carlo simulation study. Freely available computer software is developed so that the methods discussed can be implemented. The methods are demonstrated for a repeated measures design where the way in which social relationships and initial depression influence coping strategies and later depression are examined.
NASA Astrophysics Data System (ADS)
Bull, James N.; Fitchett, Christopher M.; Tennant, W. Craighead
2010-06-01
This paper reports the determination of the electric-field-gradient and mean-squared-displacement tensors in 57Fe symmetry-related sites of bar {1} Laue class in monoclinic FeCl2.4H2O at room temperature by single-crystal Mössbauer spectroscopy. Contrary to all previous work, the mean-squared-displacement matrix (tensor),
Central depression of nuclear charge density distribution
Chu Yanyun; Ren Zhongzhou; Wang Zaijun; Dong Tiekuang
2010-08-15
The center-depressed nuclear charge distributions are investigated with the parametrized distribution and the relativistic mean-field theory, and their corresponding charge form factors are worked out with the phase shift analysis method. The central depression of nuclear charge distribution of {sup 46}Ar and {sup 44}S is supported by the relativistic mean-field calculation. According to the calculation, the valence protons in {sup 46}Ar and {sup 44}S prefer to occupy the 1d{sub 3/2} state rather than the 2s{sub 1/2} state, which is different from that in the less neutron-rich argon and sulfur isotopes. As a result, the central proton densities of {sup 46}Ar and {sup 44}S are highly depressed, and so are their central charge densities. The charge form factors of some argon and sulfur isotopes are presented, and the minima of the charge form factors shift upward and inward when the central nuclear charge distributions are more depressed. Besides, the effect of the central depression on the charge form factors is studied with a parametrized distribution, when the root-mean-square charge radii remain constant.
Cheung, Y L; Wong, W O; Cheng, L
2012-07-01
An optimal design of a hybrid vibration absorber (HVA) with a displacement and a velocity feedback for minimizing the velocity response of the structure based on the H(2) optimization criterion is proposed. The objective of the optimal design is to reduce the total vibration energy of the vibrating structure under wideband excitation, i.e., the total area under the velocity response spectrum is minimized in this criterion. One of the inherent limitations of the traditional passive vibration absorber is that its vibration suppression is low if the mass ratio between the absorber mass and the mass of the primary structure is low. The active element of the proposed HVA helps further reduce the vibration of the controlled structure, and it can provide very good vibration absorption performance even at a low mass ratio. Both the passive and active elements are optimized together for the minimization of the mean square velocity of the primary system as well as the active force required in the HVA. The proposed HVA was tested on single degree-of-freedom (SDOF) and continuous vibrating structures and compared to the traditional passive vibration absorber.
Mendeleyev, V Ya; Skovorodko, S N
2011-03-28
To estimate the root mean square roughness (σ) of a surface from reflected power, it is necessary to know the diffuse reflectance (DR) and the reflectance (SSR) of a smooth surface made from the same material as the rough surface. In our study, σ is estimated from value of power reflected from one-dimensionally rough steel surfaces in the specular direction without considering SSR and DR. An expression describing dependence of an error of the estimation on SSR and DR is derived. Linear polarized light with λ=660 nm and the azimuth of polarization of 49° was used in the experiment. The angle of incidence was varied from 30° to 74°. It was found that absolute relative errors caused by influence of SSR and DR are smaller than 0.03 in the angular ranges of 46-54° and 30-58° for σ=10.2 nm and σ = 49.8 nm, respectively. Out of these ranges, SSR is the main reason for the errors lying in the wide range of ~0.05-2.5.
Moghaddam, Mahsa Bidgoli; Brown, Trevor M; Clausen, April; DaSilva, Trevor; Ho, Emily; Forrest, Christopher R
2014-02-01
Deformational plagiocephaly (DP) is a multifactorial non-synostotic cranial deformity with a reported incidence as high as 1 in 7 infants in North America. Treatment options have focused on non-operative interventions including head repositioning and the use of an orthotic helmet device. Previous studies have used linear and two dimensional outcome measures to assess changes in cranial symmetry after helmet therapy. Our objective was to demonstrate improvement in head shape after treatment with a cranial molding helmet by using Root Mean Square (RMS), a measure unique to 3D photogrammetry, which takes into account both changes in volume and shape over time. Three dimensional photographs were obtained before and after molding helmet treatment in 40 infants (4-10 months old) with deformational plagiocephaly. Anatomical reference planes and measurements were recorded using the 3dMD Vultus(®) analysis software. RMS was used to quantify symmetry by superimposing left and right quadrants and calculating the mean value of aggregate distances between surfaces. Over 95% of the patients demonstrated an improvement in symmetry with helmet therapy. Furthermore, when the sample of infants was divided into two treatment subgroups, a statistically significant correlation was found between the age at the beginning of treatment and the change in the RMS value. When helmet therapy was started before 7 months of age a greater improvement in symmetry was seen. This work represents application of the technique of RMS analysis to demonstrate the efficacy of treatment of deformational plagiocephaly with a cranial molding helmet.
Douici, M.; Allal, N. H.; Fellah, M.; Benhamouda, N.; Oudih, M. R.
2012-10-20
The particle-number fluctuation effect on the root-mean-square (rms) proton and neutron radii of even-even N Almost-Equal-To Z nuclei is studied in the isovector neutron-proton (np) pairing case using an exact particle-number projection method and the Woods-Saxon model.
Indirect Determinations of Atomic Radii
ERIC Educational Resources Information Center
Walker, Noojin
1976-01-01
Describes laboratory activities which relate the mass, volume, density, and radii of atoms through the assumption that the smallest unit of matter is a cubic box containing one atom. From calculations based on macroscopic materials, the author feels that the concept of an atom may be better developed. (CP)
Dynamic EEG-informed fMRI modeling of the pain matrix using 20-ms root mean square segments.
Brinkmeyer, Juergen; Mobascher, Arian; Warbrick, Tracy; Musso, Francesco; Wittsack, Hans-Jörg; Saleh, Andreas; Schnitzler, Alfons; Winterer, Georg
2010-11-01
Previous studies on the spatio-temporal dynamics of cortical pain processing using electroencephalography (EEG), magnetoencephalography (MEG), or intracranial recordings point towards a high degree of parallelism, e.g. parallel instead of sequential activation of primary and secondary somatosensory areas or simultaneous activation of somatosensory areas and the mid-cingulate cortex. However, because of the inverse problem, EEG and MEG provide only limited spatial resolution and certainty about the generators of cortical pain-induced electromagnetic activity, especially when multiple sources are simultaneously active. On the other hand, intracranial recordings are invasive and do not provide whole-brain coverage. In this study, we thought to investigate the spatio-temporal dynamics of cortical pain processing in 10 healthy subjects using simultaneous EEG/functional magnetic resonance imaging (fMRI). Voltages of 20 ms segments of the EEG root mean square (a global, largely reference-free measure of event-related EEG activity) in a time window 0-400 ms poststimulus were used to model trial-to-trial fluctuations in the fMRI blood oxygen level dependent (BOLD) signal. EEG-derived regressors explained additional variance in the BOLD signal from 140 ms poststimulus onward. According to this analysis, the contralateral parietal operculum was the first cortical area to become activated upon painful laser stimulation. The activation pattern in BOLD analyses informed by subsequent EEG-time windows suggests largely parallel signal processing in the bilateral operculo-insular and mid-cingulate cortices. In that regard, our data are in line with previous reports. However, the approach presented here is noninvasive and bypasses the inverse problem using only temporal information from the EEG.
Chen, Chunyi; Yang, Huamin; Tong, Shoufeng; Lou, Yan
2015-09-21
The mean-square angle-of-arrival (AOA) difference between two counter-propagating spherical waves in atmospheric turbulence is theoretically formulated. Closed-form expressions for the path weighting functions are obtained. It is found that the diffraction and refraction effects of turbulent cells make negative and positive contributions to the mean-square AOA difference, respectively, and the turbulent cells located at the midpoint of the propagation path have no contributions to the mean-square AOA difference. If the mean-square AOA difference is separated into the refraction and diffraction parts, the refraction part always dominates the diffraction one, and the ratio of the diffraction part to the refraction one is never larger than 0.5 for any turbulence spectrum. Based on the expressions for the mean-square AOA difference, formulae for the correlation coefficient between the angles of arrival of two counter-propagating spherical waves in atmospheric turbulence are derived. Numerical calculations are carried out by considering that the turbulence spectrum has no path dependence. It is shown that the mean-square AOA difference always approximates to the variance of AOA fluctuations. It is found that the correlation coefficient between the angles of arrival in the x or y direction of two counter-propagating spherical waves ranges from 0.46 to 0.5, implying that the instantaneous angles of arrival of two counter-propagating spherical waves in atmospheric turbulence are far from being perfectly correlated even when the turbulence spectrum does not vary along the path.
Tickle, Ian J
2007-12-01
A number of inconsistencies are apparent in the recent research paper by Jaskolski et al. [(2007), Acta Cryst. D63, 611-620] concerning their recommendations for the values of the magnitude and resolution-dependence of the root-mean-square deviations (RMSDs) of bond lengths and angles from their restrained ideal values in macromolecular refinement, as well as their suggestions for the use of variable standard uncertainties dependent on atomic displacement parameters (ADPs) and occupancies. Whilst many of the comments and suggestions in the paper regarding updates for the ideal geometry values proposed by Engh and Huber are entirely reasonable and supported by the experimental evidence, the recommendations concerning the optimal values of RMSDs appear to be in conflict with previous experimental and theoretical work in this area [Tickle et al. (1998), Acta Cryst. D54, 243-252] and indeed appear to be based on a misunderstanding of the distinction between RMSD and standard uncertainty (SU). In contrast, it is proposed here that the optimal values of all desired weighting parameters, in particular the weighting parameters for the ADP differences and for the diffraction terms, be estimated by the purely objective procedure of maximizing the experiment-based log(free likelihood). In principle, this allows all weighting parameters that are not known accurately a priori to be scaled globally, relative to those that are known accurately, for an optimal refinement. The RMS Z score (RMSZ) is recommended as a more satisfactory statistic than the RMSD to assess the extent to which the geometry deviates from the ideal values and a theoretical rationale for the results obtained is presented in which the optimal RMSZ is identified as the calculated versus true Z-score correlation coefficient, the latter being a monotonic function of the resolution cutoff of the data. Regarding the proposal to use variable standard uncertainties, it is suggested that any departure from the current
First Measurement of the Nuclear Carge Radii of Short-Lived Lithium Isotopes
Nortershauser, W.; Dax, A ..; Ewald, G; Gotte, S; Kirchner, Rolf; Kluge, H J.; Kuhl, T H.; Sanchez, Rodolfo; Wojtaszek, A.; Bushaw, Bruce A.; Drake, Gordon W. F.; Yan, Z C.; Zimmerman, C.
2006-04-01
A novel method for the determination of nuclear charge radii of lithium isotopes is presented. Precise laser spectroscopic measurements of the isotope shift in the lithium 2s? 3s transition are combined with highly accurate atomic physics calculation of the mass dependent isotope shift to extract the charge-distribution-sensitive information. This approach has been used to determine the charge radii of 6,7,8,9Li.
ERIC Educational Resources Information Center
Li, Libo; Bentler, Peter M.
2011-01-01
MacCallum, Browne, and Cai (2006) proposed a new framework for evaluation and power analysis of small differences between nested structural equation models (SEMs). In their framework, the null and alternative hypotheses for testing a small difference in fit and its related power analyses were defined by some chosen root-mean-square error of…
ERIC Educational Resources Information Center
Hancock, Gregory R.; Freeman, Mara J.
2001-01-01
Provides select power and sample size tables and interpolation strategies associated with the root mean square error of approximation test of not close fit under standard assumed conditions. The goal is to inform researchers conducting structural equation modeling about power limitations when testing a model. (SLD)
Nuclear radii calculations in various theoretical approaches for nucleus-nucleus interactions
Merino, C.; Novikov, I. S.; Shabelski, Yu.
2009-12-15
The information about sizes and nuclear density distributions in unstable (radioactive) nuclei is usually extracted from the data on interaction of radioactive nuclear beams with a nuclear target. We show that in the case of nucleus-nucleus collisions the values of the parameters depend somewhat strongly on the considered theoretical approach and on the assumption about the parametrization of the nuclear density distribution. The obtained values of root-mean-square radii (R{sub rms}) for stable nuclei with atomic weights A=12-40 vary by approximately 0.1 fm when calculated in the optical approximation, in the rigid target approximation, and using the exact expression of the Glauber theory. We present several examples of R{sub rms} radii calculations using these three theoretical approaches and compare these results with the data obtained from electron-nucleus scattering.
Proton Radii of B12-17 Define a Thick Neutron Surface in B17
NASA Astrophysics Data System (ADS)
Estradé, A.; Kanungo, R.; Horiuchi, W.; Ameil, F.; Atkinson, J.; Ayyad, Y.; Cortina-Gil, D.; Dillmann, I.; Evdokimov, A.; Farinon, F.; Geissel, H.; Guastalla, G.; Janik, R.; Kimura, M.; Knöbel, R.; Kurcewicz, J.; Litvinov, Yu. A.; Marta, M.; Mostazo, M.; Mukha, I.; Nociforo, C.; Ong, H. J.; Pietri, S.; Prochazka, A.; Scheidenberger, C.; Sitar, B.; Strmen, P.; Suzuki, Y.; Takechi, M.; Tanaka, J.; Tanihata, I.; Terashima, S.; Vargas, J.; Weick, H.; Winfield, J. S.
2014-09-01
The first determination of radii of point proton distribution (proton radii) of B12-17 from charge-changing cross sections (σCC) measurements at the FRS, GSI, Darmstadt is reported. The proton radii are deduced from a finite-range Glauber model analysis of the σCC. The radii show an increase from B13 to B17 and are consistent with predictions from the antisymmetrized molecular dynamics model for the neutron-rich nuclei. The measurements show the existence of a thick neutron surface with neutron-proton radius difference of 0.51(0.11) fm in B17.
Average flow between about 70 and 220 earth radii in the geomagnetic tail
NASA Technical Reports Server (NTRS)
Scholer, M.; Hovestadt, D.; Klecker, B.; Gloeckler, G.; Ipavich, F. M.
1984-01-01
A detailed statistical analysis is made of the flow magnitude and direction in the geomagnetic tail between about 70 and 220 earth radii derived from suprathermal protons measured with the ultra-low energy charge analyzer on the ISEE-3 spacecraft. It is found that the average tailward flow velocity between 203 and 220 earth radii is 567 km/s, and earthward flow occurs in less than 1 percent of all the cases. At a radial distance of 117 and 153 earth radii, the result is similar: the average tailward flow velocity is 665 km/s, and the earthward flow occurs in less than 6 percent of all measurements. In contrast, at radial distances of 61 to 76 earth radii, equal probability for earthbound and tailward flow has been found, and average flow velocities are 336 km/s in both directions. These results indicate that magnetic neutral lines rarely move or form beyond about 100 earth radii.
Radii and Binding Energies in Oxygen Isotopes: A Challenge for Nuclear Forces.
Lapoux, V; Somà, V; Barbieri, C; Hergert, H; Holt, J D; Stroberg, S R
2016-07-29
We present a systematic study of both nuclear radii and binding energies in (even) oxygen isotopes from the valley of stability to the neutron drip line. Both charge and matter radii are compared to state-of-the-art ab initio calculations along with binding energy systematics. Experimental matter radii are obtained through a complete evaluation of the available elastic proton scattering data of oxygen isotopes. We show that, in spite of a good reproduction of binding energies, ab initio calculations with conventional nuclear interactions derived within chiral effective field theory fail to provide a realistic description of charge and matter radii. A novel version of two- and three-nucleon forces leads to considerable improvement of the simultaneous description of the three observables for stable isotopes but shows deficiencies for the most neutron-rich systems. Thus, crucial challenges related to the development of nuclear interactions remain.
Radii and Binding Energies in Oxygen Isotopes: A Challenge for Nuclear Forces
NASA Astrophysics Data System (ADS)
Lapoux, V.; Somà, V.; Barbieri, C.; Hergert, H.; Holt, J. D.; Stroberg, S. R.
2016-07-01
We present a systematic study of both nuclear radii and binding energies in (even) oxygen isotopes from the valley of stability to the neutron drip line. Both charge and matter radii are compared to state-of-the-art ab initio calculations along with binding energy systematics. Experimental matter radii are obtained through a complete evaluation of the available elastic proton scattering data of oxygen isotopes. We show that, in spite of a good reproduction of binding energies, ab initio calculations with conventional nuclear interactions derived within chiral effective field theory fail to provide a realistic description of charge and matter radii. A novel version of two- and three-nucleon forces leads to considerable improvement of the simultaneous description of the three observables for stable isotopes but shows deficiencies for the most neutron-rich systems. Thus, crucial challenges related to the development of nuclear interactions remain.
NASA Technical Reports Server (NTRS)
Long, S. A. T.
1974-01-01
Formulas are derived for the root-mean-square (rms) displacement, slope, and curvature errors in an azimuth-elevation image trace of an elongated object in space, as functions of the number and spacing of the input data points and the rms elevation error in the individual input data points from a single observation station. Also, formulas are derived for the total rms displacement, slope, and curvature error vectors in the triangulation solution of an elongated object in space due to the rms displacement, slope, and curvature errors, respectively, in the azimuth-elevation image traces from different observation stations. The total rms displacement, slope, and curvature error vectors provide useful measure numbers for determining the relative merits of two or more different triangulation procedures applicable to elongated objects in space.
Li, Libo; Bentler, Peter M
2011-06-01
MacCallum, Browne, and Cai (2006) proposed a new framework for evaluation and power analysis of small differences between nested structural equation models (SEMs). In their framework, the null and alternative hypotheses for testing a small difference in fit and its related power analyses were defined by some chosen root-mean-square error of approximation (RMSEA) pairs. In this article, we develop a new method that quantifies those chosen RMSEA pairs and allows a quantitative comparison of them. Our method proposes the use of single RMSEA values to replace the choice of RMSEA pairs for model comparison and power analysis, thus avoiding the differential meaning of the chosen RMSEA pairs inherent in the approach of MacCallum et al. (2006). With this choice, the conventional cutoff values in model overall evaluation can directly be transferred and applied to the evaluation and power analysis of model differences.
NASA Astrophysics Data System (ADS)
Kim, Joo Gon; Mukherjee, Santanu; Bates, Alex; Zickel, Benjamin; Park, Sam; Son, Byung Rak; Choi, Jae Sung; Kwon, Osung; Lee, Dong Ha; Chung, Hyun-Youl
2015-12-01
Proton exchange membrane fuel cells are a promising energy conversion device which can help to solve urgent environmental and economic problems. Among the various types of fuel cells, the air breathing proton exchange membrane fuel cell, which minimizes the balance of plant, has drawn a lot of attention due to its superior energy density. In this study a compact, air breathing, proton exchange membrane fuel cell based on Nafion and a Pt/C membrane electrode assembly was designed. The fuel cell was tested using a Scribner Associates 850e fuel cell test station. Specifically, the hydrogen fuel and oxygen starvation of the fuel cell were accurately and systematically tested and analyzed using a frequency analysis method which can analyze the input and output frequency. The analysis of the frequency variation under a fuel starvation condition was done using RMSF (root mean square frequency) and ACSD (autocorrelation standard deviation). The study reveals two significant results: first, the fuel starvations show entirely different phenomenon in both RMSF and ACSD and second, the results of the Autocorrelation show clearer results for fuel starvation detection than the results with RMSF.
Terashi, Genki; Shibuya, Tetsuo; Takeda-Shitaka, Mayuko
2012-05-01
Searching for protein structure-function relationships using three-dimensional (3D) structural coordinates represents a fundamental approach for determining the function of proteins with unknown functions. Since protein structure databases are rapidly growing in size, the development of a fast search method to find similar protein substructures by comparison of protein 3D structures is essential. In this article, we present a novel protein 3D structure search method to find all substructures with root mean square deviations (RMSDs) to the query structure that are lower than a given threshold value. Our new algorithm runs in O(m + N/m(0.5)) time, after O(N log N) preprocessing, where N is the database size and m is the query length. The new method is 1.8-41.6 times faster than the practically best known O(N) algorithm, according to computational experiments using a huge database (i.e., >20,000,000 C-alpha coordinates).
NASA Astrophysics Data System (ADS)
Kapoyko, Yury A.; Drozdov, Arkadiy A.; Kozlov, Sergei A.; Zhang, Xi-Cheng
2016-09-01
Simple arithmetic dependencies of the velocity of the mass center motion and the root-mean-square duration of initially single-cycle, two-cycle, and Gaussian pulses with a random number of oscillations under the pulse envelope are derived depending on their center frequency, initial duration, and peak field amplitude, as well as on dispersive and nonlinear characteristics of homogeneous isotropic dielectric media. In media with normal group dispersion, it is shown that due to nonresonant dispersion the square of the few-cycle pulse duration increases with distance inversely proportional to the fourth power of the number of input pulse cycles. In media with normal group dispersion, the square of the pulse duration is inversely proportional to the number of input pulse cycles due to cubic nonlinearity. In media with anomalous group dispersion, it is shown that due to cubic nonlinearity, few-cycle pulse self-compression decreases with the reduction of the number of cycles in the initial pulse. This pulse self-compression effect has a threshold nature and terminates at a fixed number of cycles of the input pulse. Such a number of cycles is determined by the input intensity and the central frequency of the pulse, as well as by the dispersive and nonlinear characteristics of the medium.
NASA Astrophysics Data System (ADS)
Uneyama, Takashi; Miyaguchi, Tomoshige; Akimoto, Takuma
2015-09-01
The mean-square displacement (MSD) is widely utilized to study the dynamical properties of stochastic processes. The time-averaged MSD (TAMSD) provides some information on the dynamics which cannot be extracted from the ensemble-averaged MSD. In particular, the relative standard deviation (RSD) of the TAMSD can be utilized to study the long-time relaxation behavior. In this work, we consider a class of Langevin equations which are multiplicatively coupled to time-dependent and fluctuating diffusivities. Various interesting dynamics models such as entangled polymers and supercooled liquids can be interpreted as the Langevin equations with time-dependent and fluctuating diffusivities. We derive a general formula for the RSD of the TAMSD for the Langevin equation with the time-dependent and fluctuating diffusivity. We show that the RSD can be expressed in terms of the correlation function of the diffusivity. The RSD exhibits the crossover at the long time region. The crossover time is related to a weighted average relaxation time for the diffusivity. Thus the crossover time gives some information on the relaxation time of fluctuating diffusivity which cannot be extracted from the ensemble-averaged MSD. We discuss the universality and possible applications of the formula via some simple examples.
NASA Astrophysics Data System (ADS)
Tarnopolski, Mariusz
2016-11-01
The long range dependence of the fractional Brownian motion (fBm), fractional Gaussian noise (fGn), and differentiated fGn (DfGn) is described by the Hurst exponent H. Considering the realizations of these three processes as time series, they might be described by their statistical features, such as half of the ratio of the mean square successive difference to the variance, A, and the number of turning points, T. This paper investigates the relationships between A and H, and between T and H. It is found numerically that the formulae A(H) = aebH in case of fBm, and A(H) = a + bHc for fGn and DfGn, describe well the A(H) relationship. When T(H) is considered, no simple formula is found, and it is empirically found that among polynomials, the fourth and second order description applies best. The most relevant finding is that when plotted in the space of (A, T), the three process types form separate branches. Hence, it is examined whether A and T may serve as Hurst exponent indicators. Some real world data (stock market indices, sunspot numbers, chaotic time series) are analyzed for this purpose, and it is found that the H's estimated using the H(A) relations (expressed as inverted A(H) functions) are consistent with the H's extracted with the well known wavelet approach. This allows to efficiently estimate the Hurst exponent based on fast and easy to compute A and T, given that the process type: fBm, fGn or DfGn, is correctly classified beforehand. Finally, it is suggested that the A(H) relation for fGn and DfGn might be an exact (shifted) 3 / 2 power-law.
NASA Astrophysics Data System (ADS)
Tröger, L.; Yokoyama, T.; Arvanitis, D.; Lederer, T.; Tischer, M.; Baberschke, K.
1994-01-01
Temperature-dependent extended x-ray-absorption fine-structure (EXAFS) measurements at the oxygen and fluorine K edges of CuO, Cu2O, ZnO, CaF2, and LiF have been performed. We present an EXAFS analysis of bulk samples in the soft-x-ray region of hν<=1500 eV determining the moments of the radial pair distribution function (RDF) of the oxygen and fluorine nearest-neighbor bonds by use of the conventional cumulant expansion method, i.e., coordination numbers, bond lengths, atomic mean-square, and mean-cubic relative displacements of the RDF. It is shown that high-quality Kα-fluorescence-yield measurements, analyzed in combination with theoretical standards, allow a determination of nearest-neighbor distances within 0.015 Å and of coordination numbers with 10-20 % accuracy. Using quantum-mechanical models for the description of the atomic motions, the EXAFS Debye and Einstein temperatures, as well as the local thermal expansion of the bond under consideration, are obtained. In particular, these quantities for CaF2 are found to be in good agreement with those measured by other techniques. In contrast to the fluorides, no thermal expansion could be observed up to room temperature for the transition-metal oxides, which confirms a recent finding of enhanced anharmonicity in the low-Z adsorbate-surface interaction. A detailed compilation is given of the majority of EXAFS studies from the literature where moments of the RDF higher than the second one are reported. For these compounds the local thermal expansion is quantum mechanically calculated in contrast to previous calculations that were performed in the classical limit. Debye temperatures and the local thermal expansion measured by EXAFS and other techniques agree well for fcc metals. For binary compounds like alkali halides or superionic conductors a deviation up to 100% can be found.
Mark Burden, Adrian; Lewis, Sandra Elizabeth; Willcox, Emma
2014-12-01
Numerous ways exist to process raw electromyograms (EMGs). However, the effect of altering processing methods on peak and mean EMG has seldom been investigated. The aim of this study was to investigate the effect of using different root mean square (RMS) window lengths and overlaps on the amplitude, reliability and inter-individual variability of gluteus maximus EMGs recorded during the clam exercise, and on the statistical significance and clinical relevance of amplitude differences between two exercise conditions. Mean and peak RMS of 10 repetitions from 17 participants were obtained using processing window lengths of 0.01, 0.15, 0.2, 0.25 and 1 s, with no overlap and overlaps of 25, 50 and 75% of window length. The effect of manipulating window length on reliability and inter-individual variability was greater for peak EMG (coefficient of variation [CV] <9%) than for mean EMG (CV <3%), with the 1 s window generally displaying the lowest variability. As a consequence, neither statistical significance nor clinical relevance (effect size [ES]) of mean EMG was affected by manipulation of window length. Statistical significance of peak EMG was more sensitive to changes in window length, with lower p-values generally being recorded for the 1 s window. As use of different window lengths has a greater effect on variability and statistical significance of the peak EMG, then clinicians should use the mean EMG. They should also be aware that use of different numbers of exercise repetitions and participants can have a greater effect on EMG parameters than length of processing window.
NASA Astrophysics Data System (ADS)
Backlund, Mikael P.; Moerner, W. E.
2015-03-01
Mean-squared displacement (MSD) analysis is one of the most prevalent tools employed in the application of single-particle tracking to biological systems. In camera-based tracking, the effects of "static error" due to photon fluctuations and "dynamic error" due to motion blur on the MSD have been well-characterized for the case of pure Brownian motion, producing a known constant offset to the straight-line MSD. However, particles tracked in cellular environments often do not undergo pure Brownian motion, but instead can for instance exhibit anomalous diffusion wherein the MSD curve obeys a power law with respect to time, MSD=2D*τα, where D* is an effective diffusion coefficient and 0 < α <= 1. There are a number of models that can explain anomalous diffusive behavior in different subcellular contexts. Of these models, fractional Brownian motion (FBM) has been shown to accurately describe the motion of labeled particles such as mRNA and chromosomal loci as they traverse the cytoplasm or nucleoplasm (i.e. crowded viscoelastic environments). Despite the importance of FBM in biological tracking, there has yet to be a complete treatment of the MSD in the presence of static and dynamic errors analogous to the special case of pure Brownian motion. We here present a closed-form, analytical expression of the FBM MSD in the presence of both types of error. We have previously demonstrated its value in live-cell data by applying it to the study of chromosomal locus motion in budding yeast cells. Here we focus on validations in simulated data.
NASA Astrophysics Data System (ADS)
Ngai, K. L.; Capaccioli, S.; Paciaroni, A.
2013-06-01
The question whether the dynamics of hydrated proteins changes with temperature on crossing the glass transition temperature like that found in conventional glassformers is an interesting one. Recently, we have shown that a change of temperature dependence of the mean square displacement (MSD) at Tg is present in proteins solvated with bioprotectants, such as sugars or glycerol with or without the addition of water, coexisting with the dynamic transition at a higher temperature Td. The dynamical change at Tg is similar to that in conventional glassformers at sufficiently short times and low enough temperatures, where molecules are mutually caged by the intermolecular potential. This is a general and fundamental property of glassformers which is always observed at or near Tg independent of the energy resolution of the spectrometer, and is also the basis of the dynamical change of solvated proteins at Tg. When proteins are solvated with bioprotectants they show higher Tg and Td than the proteins hydrated by water alone, due to the stabilizing action of excipients, thus the observation of the change of T-dependence of the MSD at Tg is unobstructed by the methyl-group rotation contribution at lower temperatures [S. Capaccioli, K. L. Ngai, S. Ancherbak, and A. Paciaroni, J. Phys. Chem. B 116, 1745 (2012)], 10.1021/jp2057892. On the other hand, in the case of proteins hydrated by water alone unambiguous evidence of the break at Tg is hard to find, because of their lower Tg and Td. Notwithstanding, in this paper, we provide evidence for the change at Tg of the T-dependence of proteins hydrated by pure water. This evidence turns out from (i) neutron scattering experimental investigations where the sample has been manipulated by either full or partial deuteration to suppress the methyl-group rotation contribution, and (ii) neutron scattering experimental investigations where the energy resolution is such that only motions with characteristic times shorter than 15 ps can be
Proton Distribution Radii of C-1912 Illuminate Features of Neutron Halos
NASA Astrophysics Data System (ADS)
Kanungo, R.; Horiuchi, W.; Hagen, G.; Jansen, G. R.; Navratil, P.; Ameil, F.; Atkinson, J.; Ayyad, Y.; Cortina-Gil, D.; Dillmann, I.; Estradé, A.; Evdokimov, A.; Farinon, F.; Geissel, H.; Guastalla, G.; Janik, R.; Kimura, M.; Knöbel, R.; Kurcewicz, J.; Litvinov, Yu. A.; Marta, M.; Mostazo, M.; Mukha, I.; Nociforo, C.; Ong, H. J.; Pietri, S.; Prochazka, A.; Scheidenberger, C.; Sitar, B.; Strmen, P.; Suzuki, Y.; Takechi, M.; Tanaka, J.; Tanihata, I.; Terashima, S.; Vargas, J.; Weick, H.; Winfield, J. S.
2016-09-01
Proton radii of 12-19C densities derived from first accurate charge changing cross section measurements at 900 A MeV with a carbon target are reported. A thick neutron surface evolves from ˜0.5 fm in 15C to ˜1 fm in 19. The halo radius in 19/SUP>C is found to be 6.4 ±0.7 fm as large as 11Li. Ab initio calculations based on chiral nucleon-nucleon and three-nucleon forces reproduce the radii well.
Proton Distribution Radii of 12-19C Illuminate Features of Neutron Halos
Kanungo, R.; Horiuchi, W.; Hagen, Gaute; Jansen, Gustav R.; Navratil, Petr; Ameil, F.; Atkinson, J.; Ayyad, Y.; Cortina-Gil, D.; Dillmann, I.; et al
2016-09-02
We report proton radii of 12-19C densities derived from first accurate charge changing cross section measurements at 900A MeV with a carbon target. A thick neutron surface evolves from ~0.5 fm in 15C to ~1 fm in 19C. Also, the halo radius in 19C is found to be 6.4±0.7 fm as large as 11Li. Ab initio calculations based on chiral nucleon-nucleon and three-nucleon forces reproduce the radii well.
Proton Distribution Radii of ^{12-19}C Illuminate Features of Neutron Halos.
Kanungo, R; Horiuchi, W; Hagen, G; Jansen, G R; Navratil, P; Ameil, F; Atkinson, J; Ayyad, Y; Cortina-Gil, D; Dillmann, I; Estradé, A; Evdokimov, A; Farinon, F; Geissel, H; Guastalla, G; Janik, R; Kimura, M; Knöbel, R; Kurcewicz, J; Litvinov, Yu A; Marta, M; Mostazo, M; Mukha, I; Nociforo, C; Ong, H J; Pietri, S; Prochazka, A; Scheidenberger, C; Sitar, B; Strmen, P; Suzuki, Y; Takechi, M; Tanaka, J; Tanihata, I; Terashima, S; Vargas, J; Weick, H; Winfield, J S
2016-09-01
Proton radii of ^{12-19}C densities derived from first accurate charge changing cross section measurements at 900A MeV with a carbon target are reported. A thick neutron surface evolves from ∼0.5 fm in ^{15}C to ∼1 fm in ^{19}C. The halo radius in ^{19}C is found to be 6.4±0.7 fm as large as ^{11}Li. Ab initio calculations based on chiral nucleon-nucleon and three-nucleon forces reproduce the radii well. PMID:27636470
Proton Distribution Radii of 12-19C Illuminate Features of Neutron Halos
NASA Astrophysics Data System (ADS)
Kanungo, R.; Horiuchi, W.; Hagen, G.; Jansen, G. R.; Navratil, P.; Ameil, F.; Atkinson, J.; Ayyad, Y.; Cortina-Gil, D.; Dillmann, I.; Estradé, A.; Evdokimov, A.; Farinon, F.; Geissel, H.; Guastalla, G.; Janik, R.; Kimura, M.; Knöbel, R.; Kurcewicz, J.; Litvinov, Yu. A.; Marta, M.; Mostazo, M.; Mukha, I.; Nociforo, C.; Ong, H. J.; Pietri, S.; Prochazka, A.; Scheidenberger, C.; Sitar, B.; Strmen, P.; Suzuki, Y.; Takechi, M.; Tanaka, J.; Tanihata, I.; Terashima, S.; Vargas, J.; Weick, H.; Winfield, J. S.
2016-09-01
Proton radii of 12-19C densities derived from first accurate charge changing cross section measurements at 900 A MeV with a carbon target are reported. A thick neutron surface evolves from ˜0.5 fm in 15C to ˜1 fm in 19. The halo radius in 19;C is found to be 6.4 ±0.7 fm as large as 11Li. Ab initio calculations based on chiral nucleon-nucleon and three-nucleon forces reproduce the radii well.
Reliable Radii for M Dwarf Stars
NASA Astrophysics Data System (ADS)
Mann, Andrew; Feiden, Gregory A.; Gaidos, Eric
2015-01-01
Precise and accurate parameters for late-type (late K and M) dwarf stars are critical for characterizing their planets. A deluge of planets discovered by Kepler has driven the need for even more precise stellar radii. We present our efforts to better constrain the luminosity-radius and Teff-radius relations for late-type (K5-M6) stars, taking advantage of improved techniques to calculate bolometric fluxes and [Fe/H] for M dwarfs. We determine effective temperatures for these stars by comparing observed spectra to atmospheric models, and confirm the accuracy of these temperatures using stars with temperatures determined from long-baseline optical interferometry. Using the Stefan-Boltzmann law we can empirically determine radii for these stars to better than 5%. We find the Teff-radius relation depends strongly on [Fe/H], which was missed in earlier studies that used smaller samples or less precise methods. We expect our empirical relations to be increasingly useful with the arrival of Gaia parallaxes in the near future.
NASA Astrophysics Data System (ADS)
Umansky, Moti; Weihs, Daphne
2012-08-01
In many physical and biophysical studies, single-particle tracking is utilized to reveal interactions, diffusion coefficients, active modes of driving motion, dynamic local structure, micromechanics, and microrheology. The basic analysis applied to those data is to determine the time-dependent mean-square displacement (MSD) of particle trajectories and perform time- and ensemble-averaging of similar motions. The motion of particles typically exhibits time-dependent power-law scaling, and only trajectories with qualitatively and quantitatively comparable MSD should be ensembled. Ensemble averaging trajectories that arise from different mechanisms, e.g., actively driven and diffusive, is incorrect and can result inaccurate correlations between structure, mechanics, and activity. We have developed an algorithm to automatically and accurately determine power-law scaling of experimentally measured single-particle MSD. Trajectories can then categorized and grouped according to user defined cutoffs of time, amplitudes, scaling exponent values, or combinations. Power-law fits are then provided for each trajectory alongside categorized groups of trajectories, histograms of power laws, and the ensemble-averaged MSD of each group. The codes are designed to be easily incorporated into existing user codes. We expect that this algorithm and program will be invaluable to anyone performing single-particle tracking, be it in physical or biophysical systems. Catalogue identifier: AEMD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 25 892 No. of bytes in distributed program, including test data, etc.: 5 572 780 Distribution format: tar.gz Programming language: MATLAB (MathWorks Inc.) version 7.11 (2010b) or higher, program
Stellar radii from long-baseline interferometry
NASA Astrophysics Data System (ADS)
Kervella, Pierre
2008-10-01
Long baseline interferometers now measure the angular diameters of nearby stars with sub-percent accuracy. They can be translated in photospheric radii when the parallax is known, thus creating a novel and powerful constraint for stellar models. I present applications of interferometric radius measurements to the modeling of main sequence stars. Over the last few years, we obtained accurate measurements of the linear radius of many of the nearest stars: Procyon A, 61 Cyg A & B, α Cen A & B, Sirius A, Proxima. . . Firstly, I describe the example of our modeling of Procyon A (F5IV-V) with the CESAM code, constrained using spectrophotometry, the linear radius, and asteroseismic frequencies. I also present our recent results on the low-mass 61 Cyg system (K5V+K7V), for which asteroseismic frequencies have not been detected yet.
The mass and angular momentum distribution of simulated massive early-type galaxies to large radii
NASA Astrophysics Data System (ADS)
Wu, Xufen; Gerhard, Ortwin; Naab, Thorsten; Oser, Ludwig; Martinez-Valpuesta, Inma; Hilz, Michael; Churazov, Eugene; Lyskova, Natalya
2014-03-01
We study the dark and luminous mass distributions, circular velocity curves (CVCs), line-of-sight kinematics and angular momenta for a sample of 42 cosmological zoom simulations of galaxies with stellar masses from 2.0 × 1010 to 3.4 × 1011 M⊙ h-1. Using a temporal smoothing technique, we are able to reach large radii. We find the following.
THERMAL PROCESSES GOVERNING HOT-JUPITER RADII
Spiegel, David S.; Burrows, Adam E-mail: burrows@astro.princeton.edu
2013-07-20
There have been many proposed explanations for the larger-than-expected radii of some transiting hot Jupiters, including either stellar or orbital energy deposition deep in the atmosphere or deep in the interior. In this paper, we explore the important influences on hot-Jupiter radius evolution of (1) additional heat sources in the high atmosphere, the deep atmosphere, and deep in the convective interior; (2) consistent cooling of the deep interior through the planetary dayside, nightside, and poles; (3) the degree of heat redistribution to the nightside; and (4) the presence of an upper atmosphere absorber inferred to produce anomalously hot upper atmospheres and inversions in some close-in giant planets. In particular, we compare the radius expansion effects of atmospheric and deep-interior heating at the same power levels and derive the power required to achieve a given radius increase when night-side cooling is incorporated. We find that models that include consistent day/night cooling are more similar to isotropically irradiated models when there is more heat redistributed from the dayside to the nightside. In addition, we consider the efficacy of ohmic heating in the atmosphere and/or convective interior in inflating hot Jupiters. Among our conclusions are that (1) the most highly irradiated planets cannot stably have uB {approx}> 10 km s{sup -1} G over a large fraction of their daysides, where u is the zonal wind speed and B is the dipolar magnetic field strength in the atmosphere, and (2) that ohmic heating cannot in and of itself lead to a runaway in planet radius.
Le Blanc, F.; Cottereau, E.; Essabaa, S.; Obert, J.; Oms, J.; Ouchrif, A.; Roussiere, B.; Sauvage, J.; Verney, D.; Cabaret, L.; Pinard, J.; Crawford, J.E.; Lee, J.K.P.; Genevey, J.; Le Scornet, G.; Lettry, J.; Ravn, H.
2005-09-01
Laser spectroscopy measurements have been carried out on the neutron-rich tin isotopes with the COMPLIS experimental setup. Using the 5s{sup 2}5p{sup 23}P{sub 0}{yields}5s{sup 2}5p6s {sup 3}P{sub 1} optical transition, hyperfine spectra of {sup 126-132}Sn and {sup 125,127,129-131}Sn{sup m} were recorded for the first time. The nuclear moments and the mean square charge radius variation ({delta}
Atomic and Ionic Radii of Elements 1-96.
Rahm, Martin; Hoffmann, Roald; Ashcroft, N W
2016-10-01
Atomic and cationic radii have been calculated for the first 96 elements, together with selected anionic radii. The metric adopted is the average distance from the nucleus where the electron density falls to 0.001 electrons per bohr(3) , following earlier work by Boyd. Our radii are derived using relativistic all-electron density functional theory calculations, close to the basis set limit. They offer a systematic quantitative measure of the sizes of non-interacting atoms, commonly invoked in the rationalization of chemical bonding, structure, and different properties. Remarkably, the atomic radii as defined in this way correlate well with van der Waals radii derived from crystal structures. A rationalization for trends and exceptions in those correlations is provided.
Atomic and Ionic Radii of Elements 1-96.
Rahm, Martin; Hoffmann, Roald; Ashcroft, N W
2016-10-01
Atomic and cationic radii have been calculated for the first 96 elements, together with selected anionic radii. The metric adopted is the average distance from the nucleus where the electron density falls to 0.001 electrons per bohr(3) , following earlier work by Boyd. Our radii are derived using relativistic all-electron density functional theory calculations, close to the basis set limit. They offer a systematic quantitative measure of the sizes of non-interacting atoms, commonly invoked in the rationalization of chemical bonding, structure, and different properties. Remarkably, the atomic radii as defined in this way correlate well with van der Waals radii derived from crystal structures. A rationalization for trends and exceptions in those correlations is provided. PMID:27554240
Isotope-Shift Measurement of High-energy Highly Charged Ion Beams
NASA Astrophysics Data System (ADS)
Ozawa, S.; Ariga, T.; Inabe, N.; Kase, M.; Tanihata, I.; Wakasugi, M.; Yano, Y.
2001-10-01
Isotope-shift measurement by the laser spectroscopic method was aimed to apply for radioactive isotope beams up to uranium created by projectile fragmentation at RIKEN RI beam factory (T. Katayama, et al.,): Nucl. Phys., A626, 545c (1997).to make a systematic study of the mean square nuclear charge radii. The present work was started to verify the feasibility of the method. Projectile fragments are high-energy highly charged ions and weak currents. Therefore we designed ultralow-background photon-detection system (M. Wakasugi, et al.,): Nucl. Instr. and Meth., A419, 50 (1998).for collinear laser spectroscopy of such ion beams. To demonstrate isotope-shift measurement, we measured precisely the 1s2s ^3S_1-1s2p ^3P_0,1,2 transition energy of He-like ^12C ion accelerated up to 0.9 MeV/u and ^13C ion 0.6 MeV/u. For the precision measurement, the uncertainty coming from the ambiguity in the absolute ion beam velocity was suppressed by means of that the resonance energy was measured by two laser beams which propagate in parallel and anti-parallel directions to the ion beam. As the result, isotope shifts of these transitions were obtained with the accuracy of 10 %. The lower limit of the ion-beam intensity for the measurement is estimated to be 2000 ions/s.
Wetting morphologies on an array of fibers of different radii.
Sauret, Alban; Boulogne, François; Cébron, David; Dressaire, Emilie; Stone, Howard A
2015-05-28
We investigate the equilibrium morphology of a finite volume of liquid placed on two parallel rigid fibers of different radii. As observed for identical radii fibers, the liquid is either in a column morphology or adopts a drop shape depending on the inter-fiber distance. However the cross-sectional area and the critical inter-fiber distance at which the transition occurs are both modified by the polydispersity of the fibers. Using energy considerations, we analytically predict the critical inter-fiber distance corresponding to the transition between the column and the drop morphologies. This distance depends both on the radii of the fibers and on the contact angle of the liquid. We perform experiments using a perfectly wetting liquid on two parallel nylon fibers: the results are in good agreement with our analytical model. The morphology of the capillary bridges between fibers of different radii is relevant to the modeling of large arrays of polydisperse fibers. PMID:25899307
Hall Determination of Atomic Radii of Alkali Metals
ERIC Educational Resources Information Center
Houari, Ahmed
2008-01-01
I will propose here an alternative method for determining atomic radii of alkali metals based on the Hall measurements of their free electron densities and the knowledge of their crystal structure. (Contains 2 figures.)
Consistent van der Waals radii for the whole main group.
Mantina, Manjeera; Chamberlin, Adam C; Valero, Rosendo; Cramer, Christopher J; Truhlar, Donald G
2009-05-14
Atomic radii are not precisely defined but are nevertheless widely used parameters in modeling and understanding molecular structure and interactions. The van der Waals radii determined by Bondi from molecular crystals and data for gases are the most widely used values, but Bondi recommended radius values for only 28 of the 44 main-group elements in the periodic table. In the present Article, we present atomic radii for the other 16; these new radii were determined in a way designed to be compatible with Bondi's scale. The method chosen is a set of two-parameter correlations of Bondi's radii with repulsive-wall distances calculated by relativistic coupled-cluster electronic structure calculations. The newly determined radii (in A) are Be, 1.53; B, 1.92; Al, 1.84; Ca, 2.31; Ge, 2.11; Rb, 3.03; Sr, 2.49; Sb, 2.06; Cs, 3.43; Ba, 2.68; Bi, 2.07; Po, 1.97; At, 2.02; Rn, 2.20; Fr, 3.48; and Ra, 2.83.
NASA Astrophysics Data System (ADS)
Hagelstein, Franziska; Pascalutsa, Vladimir
2015-04-01
We quantify a limitation in the usual accounting of the finite-size effects, where the leading [(Zα ) 4] and subleading [(Zα ) 5] contributions to the Lamb shift are given by the mean-square radius and the third Zemach moment of the charge distribution. In the presence of any nonsmooth behavior of the nuclear form factor at scales comparable to the inverse Bohr radius, the expansion of the Lamb shift in the moments breaks down. This is relevant for some of the explanations of the "proton size puzzle." We find, for instance, that the de Rújula toy model of the proton form factor does not resolve the puzzle as claimed, despite the large value of the third Zemach moment. Without relying on the radii expansion, we show how tiny, milli-percent (pcm) changes in the proton electric form factor at a MeV scale would be able to explain the puzzle. It shows that one needs to know all the soft contributions to the proton electric form factor to pcm accuracy for a precision extraction of the proton charge radius from atomic Lamb shifts.
ON THE ANOMALOUS RADII OF THE TRANSITING EXTRASOLAR PLANETS
Laughlin, Gregory; Crismani, Matteo
2011-03-01
We present a systematic evaluation of the agreement between the observed radii of 90 well-characterized transiting extrasolar giant planets and their corresponding model radii. Our model radii are drawn from previously published calculations of coreless giant planets that have attained their asymptotic radii, and which have been tabulated for a range of planet masses and equilibrium temperatures. (We report a two-dimensional polynomial fitting function that accurately represents the models.) As expected, the model radii provide a statistically significant improvement over a null hypothesis that the sizes of giant planets are completely independent of mass and effective temperature. As is well known, however, fiducial models provide an insufficient explanation; the planetary radius anomalies, R{identical_to}R{sub obs}-R{sub pred}, are strongly correlated with planetary equilibrium temperature. We find that the radius anomalies have a best-fit dependence, R{proportional_to}T{sub eff}{sup {alpha}}, with {alpha} = 1.4 {+-} 0.6. Incorporating this relation into the model radii leads to substantially less scatter in the radius correlation. The extra temperature dependence represents an important constraint on theoretical models for hot Jupiters. Using simple scaling arguments, we find support for the hypothesis of Batygin and Stevenson that this correlation can be attributed to a planetary heating mechanism that is mediated by magnetohydrodynamic coupling between the planetary magnetic field and near-surface flow that is accompanied by ohmic dissipation at adiabatic depth. Additionally, we find that the temperature dependence is likely too strong to admit kinetic heating as the primary source of anomalous energy generation within the majority of the observed transiting planets.
Evolution of cooperation among mobile agents with heterogenous view radii
NASA Astrophysics Data System (ADS)
Zhang, Jun; Wang, Wei-Ye; Du, Wen-Bo; Cao, Xian-Bin
2011-06-01
In this paper, we study cooperative behavior among mobile agents; the agents have heterogenous view radii and they play the prisoner’s dilemma game with those being within their vision fields. It is found that the cooperation level is remarkably promoted when the heterogeneity of view radii is considered, and the degree distribution of the system is investigated to explain this interesting phenomenon. Moreover, we report that the cooperative behavior is best favored by low density, moderate view radius, and small moving speed. Our findings may be helpful in understanding cooperative behavior in natural and social systems consisting of mobile agents.
Radii of atomic ions determined from diatomic ion-He bond lengths.
Wright, Timothy G; Breckenridge, W H
2010-03-11
We propose a new definition of the effective radius of an atomic ion: the bond distance (R(e)) of the ion/He diatomic complex minus the van der Waals radius of the helium atom. Our rationale is that He is the most chemically inert and least polarizable atom, so that its interaction with the outer portions of the electron cloud causes the smallest perturbation of it. We show that such radii, which we denote R(XHe), make good qualitative sense. We also compare our R(XHe) values to more traditional ionic radii from solid crystal X-ray measurements, as well as estimates of such radii from "ionic" gas-phase MF, MOM, MF(+), and MO molecules, where M is a metal atom. Such comparisons lead to interesting conclusions about bonding in ionic crystals and in simple gas-phase oxide and fluoride molecules. The definition is shown to be reasonable for -1, +1, and even for many of the larger +2 atomic ions. Another advantage of the R(XHe) definition is that it is also consistently valid for ground states and excited states of both neutral atoms and atomic ions, even for open-shell np and nd cases where the electron clouds of the ions are not spherically symmetric and R(XHe) thus depends on the "approach" direction of the He atom. Finally, we note that when there is a contribution from covalent bonding with the He atom, and/or in cases where the ion is small and has a very high charge, so that there is distortion even of the He 1s electrons, R(XHe) is not expected to be representative of the size of the ion. We then suggest that in these cases small, and sometimes unphysical, values of R(XHe) are diagnostic of the fact that simple "physical" interactions have been supplemented by a "chemical" component. PMID:20055395
Radii of atomic ions determined from diatomic ion-He bond lengths.
Wright, Timothy G; Breckenridge, W H
2010-03-11
We propose a new definition of the effective radius of an atomic ion: the bond distance (R(e)) of the ion/He diatomic complex minus the van der Waals radius of the helium atom. Our rationale is that He is the most chemically inert and least polarizable atom, so that its interaction with the outer portions of the electron cloud causes the smallest perturbation of it. We show that such radii, which we denote R(XHe), make good qualitative sense. We also compare our R(XHe) values to more traditional ionic radii from solid crystal X-ray measurements, as well as estimates of such radii from "ionic" gas-phase MF, MOM, MF(+), and MO molecules, where M is a metal atom. Such comparisons lead to interesting conclusions about bonding in ionic crystals and in simple gas-phase oxide and fluoride molecules. The definition is shown to be reasonable for -1, +1, and even for many of the larger +2 atomic ions. Another advantage of the R(XHe) definition is that it is also consistently valid for ground states and excited states of both neutral atoms and atomic ions, even for open-shell np and nd cases where the electron clouds of the ions are not spherically symmetric and R(XHe) thus depends on the "approach" direction of the He atom. Finally, we note that when there is a contribution from covalent bonding with the He atom, and/or in cases where the ion is small and has a very high charge, so that there is distortion even of the He 1s electrons, R(XHe) is not expected to be representative of the size of the ion. We then suggest that in these cases small, and sometimes unphysical, values of R(XHe) are diagnostic of the fact that simple "physical" interactions have been supplemented by a "chemical" component.
Accurate nuclear radii and binding energies from a chiral interaction
Ekstrom, Jan A.; Jansen, G. R.; Wendt, Kyle A.; Hagen, Gaute; Papenbrock, Thomas F.; Carlsson, Boris; Forssen, Christian; Hjorth-Jensen, M.; Navratil, Petr; Nazarewicz, Witold
2015-05-01
With the goal of developing predictive ab initio capability for light and medium-mass nuclei, two-nucleon and three-nucleon forces from chiral effective field theory are optimized simultaneously to low-energy nucleon-nucleon scattering data, as well as binding energies and radii of few-nucleon systems and selected isotopes of carbon and oxygen. Coupled-cluster calculations based on this interaction, named NNLO_{sat}, yield accurate binding energies and radii of nuclei up to ^{40}Ca, and are consistent with the empirical saturation point of symmetric nuclear matter. In addition, the low-lying collective J^{π}=3^{-} states in ^{16}O and ^{40}Ca are described accurately, while spectra for selected p- and sd-shell nuclei are in reasonable agreement with experiment.
Accurate nuclear radii and binding energies from a chiral interaction
Ekstrom, Jan A.; Jansen, G. R.; Wendt, Kyle A.; Hagen, Gaute; Papenbrock, Thomas F.; Carlsson, Boris; Forssen, Christian; Hjorth-Jensen, M.; Navratil, Petr; Nazarewicz, Witold
2015-05-01
With the goal of developing predictive ab initio capability for light and medium-mass nuclei, two-nucleon and three-nucleon forces from chiral effective field theory are optimized simultaneously to low-energy nucleon-nucleon scattering data, as well as binding energies and radii of few-nucleon systems and selected isotopes of carbon and oxygen. Coupled-cluster calculations based on this interaction, named NNLOsat, yield accurate binding energies and radii of nuclei up to 40Ca, and are consistent with the empirical saturation point of symmetric nuclear matter. In addition, the low-lying collective Jπ=3- states in 16O and 40Ca are described accurately, while spectra for selected p- and sd-shellmore » nuclei are in reasonable agreement with experiment.« less
A novel method to approximate structured stability radii
NASA Astrophysics Data System (ADS)
Guglielmi, Nicola; Manetta, Manuela
2013-10-01
The unstructured stability radius of a Hurwitz matrix A (i.e. a matrix whose eigenvalues have strictly negative real part) is the smallest norm of a complex perturbation E such that A + E is not Hurwitz, which means it has at least an eigenvalue with zero real part. Such a measure is a more robust stability indicator with respect to the spectral abscissa and is much studied in the literature. However, when the matrix A has a structure (for example the matrix is real or has a prescribed sparsity pattern), it would be more meaningful to look for the smallest destabilizing perturbation E with the same structure. This problem turns out to be more difficult and in some cases unresolved. We propose here a new methodology to compute approximations of the structured stability radii, focusing our attention on real and pattern-structured stability radii.
Silicon pore optics mirror modules for inner and outer radii
NASA Astrophysics Data System (ADS)
Wille, Eric; Bavdaz, Marcos; Oosterbroek, Tim; Collon, Maximilien; Ackermann, Marcelo; Günther, Ramses; Vacanti, Giuseppe; Vervest, Mark; Yanson, Alexei; van Baren, Coen; Haneveld, Jeroen; Koelewijn, Arenda; Leenstra, Anne; Wijnperle, Maurice; Pareschi, Giovanni; Civitani, Marta; Conconi, Paolo; Spiga, Daniele; Valsecchi, Giuseppe; Marioni, Fabio; Zuknik, Karl-Heinz; Schweitzer, Mario
2015-09-01
Athena (Advanced Telescope for High Energy Astrophysics) is an x-ray observatory using a Silicon Pore Optics telescope and was selected as ESA's second L-class science mission for a launch in 2028. The x-ray telescope consists of several hundreds of mirror modules distributed over about 15-20 radial rings. The radius of curvature and the module sizes vary among the different radial positions of the rings resulting in different technical challenges for mirror modules for inner and outer radii. We present first results of demonstrating Silicon Pore Optics for the extreme radial positions of the Athena telescope. For the inner most radii (0.25 m) a new mirror plate design is shown which overcomes the challenges of larger curvatures, higher stress values and bigger plates. Preliminary designs for the mounting system and its mechanical properties are discussed for mirror modules covering all other radial positions up to the most outer radius of the Athena telescope.
Stellar masses and radii as constraints on stellar models
NASA Astrophysics Data System (ADS)
Andersen, Johannes
1993-01-01
The current status of empirical data on stellar masses and radii of sufficient accuracy to give constraints on stellar models is reviewed. Results from the best-studied eclipsing binaries can already trace the main-sequence evolution of 1-10-solar-mass stars in considerable detail and will be even more useful when supplemented by chemical abundance data. Taking the deceptively simple question of the observed width of the main sequence as an example, it is shown how careful attention to the details of the data is required to reach robust conclusions about such features of modern stellar evolution models as opacity tables or convective overshooting. Only detailed modeling of specific systems with known masses, radii, and metal abundance constrain the theory strongly enough that a truly critical test is achieved. The same is true when using tidal interactions in binaries (apsidal motion, rotational synchronization, and orbital circularization) as another probe into stellar interiors.
Centrality dependence of pion freeze-out radii in Pb-Pb collisions at √{sN N}=2.76 TeV
NASA Astrophysics Data System (ADS)
Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Chunhui, Z.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; D'Erasmo, G.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hilden, T. E.; Hillemanns, H.; Hippolyte, B.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jadlovska, S.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Khan, K. H.; Khan, M. M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, A.; Kumar, J.; Kumar, L.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Legrand, I.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Luz, P. H. F. N. D.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Masui, H.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira de Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S. K.; Pan, J.; Pandey, A. K.; Pant, D.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Peitzmann, T.; Pereira da Costa, H.; Pereira de Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Wang, Y.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.; Alice Collaboration
2016-02-01
We report on the measurement of freeze-out radii for pairs of identical-charge pions measured in Pb-Pb collisions at √{sNN}=2.76 TeV as a function of collision centrality and the average transverse momentum of the pair kT. Three-dimensional sizes of the system (femtoscopic radii), as well as direction-averaged one-dimensional radii are extracted. The radii decrease with kT, following a power-law behavior. This is qualitatively consistent with expectations from a collectively expanding system, produced in hydrodynamic calculations. The radii also scale linearly with
Variable atomic radii for continuum-solvent electrostatics calculation.
Zhou, Baojing; Agarwal, Manish; Wong, Chung F
2008-07-01
We have developed a method to improve the description of solute cavity defined by the interlocking-sphere model for continuum-solvent electrostatics calculations. Many models choose atomic radii from a finite set of atom types or uses an even smaller set developed by Bondi [J. Phys. Chem. 68, 441 (1964)]. The new model presented here allowed each atom to adapt its radius according to its chemical environment. This was achieved by first approximating the electron density of a molecule by a superposition of atom-centered spherical Gaussian functions. The parameters of the Gaussian functions were then determined by optimizing a function that minimized the difference between the properties from the model and those from ab initio quantum calculations. These properties included the electrostatics potential on molecular surface and the electron density within the core of each atom. The size of each atom was then determined by finding the radius at which the electron density associated with the atom fell to a prechosen value. This value was different for different chemical elements and was chosen such that the averaged radius for each chemical element in a training set of molecules matched its Bondi radius. Thus, our model utilized only a few adjustable parameters-the above density cutoff values for different chemical elements-but had the flexibility of allowing every atom to adapt its radius according to its chemical environment. This variable-radii model gave better solvation energy for 31 small neutral molecules than the Bondi radii did, especially for a quantum mechanics/Poisson-Boltzmann approach we developed earlier. The improvement was most significant for molecules with large dipole moment. Future directions for further improvement are also discussed.
Variable atomic radii for continuum-solvent electrostatics calculation
NASA Astrophysics Data System (ADS)
Zhou, Baojing; Agarwal, Manish; Wong, Chung F.
2008-07-01
We have developed a method to improve the description of solute cavity defined by the interlocking-sphere model for continuum-solvent electrostatics calculations. Many models choose atomic radii from a finite set of atom types or uses an even smaller set developed by Bondi [J. Phys. Chem. 68, 441 (1964)]. The new model presented here allowed each atom to adapt its radius according to its chemical environment. This was achieved by first approximating the electron density of a molecule by a superposition of atom-centered spherical Gaussian functions. The parameters of the Gaussian functions were then determined by optimizing a function that minimized the difference between the properties from the model and those from ab initio quantum calculations. These properties included the electrostatics potential on molecular surface and the electron density within the core of each atom. The size of each atom was then determined by finding the radius at which the electron density associated with the atom fell to a prechosen value. This value was different for different chemical elements and was chosen such that the averaged radius for each chemical element in a training set of molecules matched its Bondi radius. Thus, our model utilized only a few adjustable parameters—the above density cutoff values for different chemical elements—but had the flexibility of allowing every atom to adapt its radius according to its chemical environment. This variable-radii model gave better solvation energy for 31 small neutral molecules than the Bondi radii did, especially for a quantum mechanics/Poisson-Boltzmann approach we developed earlier. The improvement was most significant for molecules with large dipole moment. Future directions for further improvement are also discussed.
Kanungo, R.; Perro, C.; Prochazka, A.; Farinon, F.; Knoebel, R.; Horiuchi, W.; Nociforo, C.; Aumann, T.; Geissel, H.; Gerl, J.; Kindler, B.; Lommel, B.; Mahata, K.; Scheidenberger, C.; Weick, H.; Winkler, M.; Boutin, D.; Lenske, H.; Cortina-Gil, D.; Davids, B.
2011-02-15
The interaction cross sections of {sup 32-35}Mg at 900A MeV have been measured using the fragment separator at GSI. The deviation from the r{sub 0}A{sup 1/3} trend is slightly larger for {sup 35}Mg, signaling the possible formation of a longer tail in the neutron distribution for {sup 35}Mg. The radii extracted from a Glauber model analysis with Fermi densities are consistent with models predicting the development of neutron skins.
Correlating hydrodynamic radii with that of two-dimensional nanoparticles
Yue, Yuan; Kan, Yuwei; Clearfield, Abraham; Choi, Hyunho; Liang, Hong
2015-12-21
Dynamic light scattering (DLS) is one of the most adapted methods to measure the size of nanoparticles, as referred to the hydrodynamic radii (R{sub h}). However, the R{sub h} represents only that of three-dimensional spherical nanoparticles. In the present research, the size of two-dimensional (2D) nanoparticles of yttrium oxide (Y{sub 2}O{sub 3}) and zirconium phosphate (ZrP) was evaluated through comparing their hydrodynamic diameters via DLS with lateral sizes obtained using scanning and transmission electron microscopy. We demonstrate that the hydrodynamic radii are correlated with the lateral sizes of both square and circle shaped 2D nanoparticles. Two proportional coefficients, i.e., correcting factors, are proposed for the Brownian motion status of 2D nanoparticles. The correction is possible by simplifying the calculation of integrals in the case of small thickness approximation. The correcting factor has great significance for investigating the translational diffusion behavior of 2D nanoparticles in a liquid and in effective and low-cost measurement in terms of size and morphology of shape-specific nanoparticles.
Correlating hydrodynamic radii with that of two-dimensional nanoparticles
NASA Astrophysics Data System (ADS)
Yue, Yuan; Kan, Yuwei; Choi, Hyunho; Clearfield, Abraham; Liang, Hong
2015-12-01
Dynamic light scattering (DLS) is one of the most adapted methods to measure the size of nanoparticles, as referred to the hydrodynamic radii (Rh). However, the Rh represents only that of three-dimensional spherical nanoparticles. In the present research, the size of two-dimensional (2D) nanoparticles of yttrium oxide (Y2O3) and zirconium phosphate (ZrP) was evaluated through comparing their hydrodynamic diameters via DLS with lateral sizes obtained using scanning and transmission electron microscopy. We demonstrate that the hydrodynamic radii are correlated with the lateral sizes of both square and circle shaped 2D nanoparticles. Two proportional coefficients, i.e., correcting factors, are proposed for the Brownian motion status of 2D nanoparticles. The correction is possible by simplifying the calculation of integrals in the case of small thickness approximation. The correcting factor has great significance for investigating the translational diffusion behavior of 2D nanoparticles in a liquid and in effective and low-cost measurement in terms of size and morphology of shape-specific nanoparticles.
Masses, Radii, and the Equation of State of Neutron Stars
NASA Astrophysics Data System (ADS)
Özel, Feryal; Freire, Paulo
2016-09-01
We summarize our current knowledge of neutron-star masses and radii. Recent instrumentation and computational advances have resulted in a rapid increase in the discovery rate and precise timing of radio pulsars in binaries in the past few years, leading to a large number of mass measurements. These discoveries show that the neutron-star mass distribution is much wider than previously thought, with three known pulsars now firmly in the 1.9–2.0-M⊙ mass range. For radii, large, high-quality data sets from X-ray satellites as well as significant progress in theoretical modeling led to considerable progress in the measurements, placing them in the 10–11.5-km range and shrinking their uncertainties, owing to a better understanding of the sources of systematic errors. The combination of the massive-neutron-star discoveries, the tighter radius measurements, and improved laboratory constraints of the properties of dense matter has already made a substantial impact on our understanding of the composition and bulk properties of cold nuclear matter at densities higher than that of the atomic nucleus, a major unsolved problem in modern physics.
Masses, Radii, and the Equation of State of Neutron Stars
NASA Astrophysics Data System (ADS)
Ãzel, Feryal; Freire, Paulo
2016-09-01
We summarize our current knowledge of neutron-star masses and radii. Recent instrumentation and computational advances have resulted in a rapid increase in the discovery rate and precise timing of radio pulsars in binaries in the past few years, leading to a large number of mass measurements. These discoveries show that the neutron-star mass distribution is much wider than previously thought, with three known pulsars now firmly in the 1.9â2.0-Mâ mass range. For radii, large, high-quality data sets from X-ray satellites as well as significant progress in theoretical modeling led to considerable progress in the measurements, placing them in the 10â11.5-km range and shrinking their uncertainties, owing to a better understanding of the sources of systematic errors. The combination of the massive-neutron-star discoveries, the tighter radius measurements, and improved laboratory constraints of the properties of dense matter has already made a substantial impact on our understanding of the composition and bulk properties of cold nuclear matter at densities higher than that of the atomic nucleus, a major unsolved problem in modern physics.
Automatic differentiation for Fourier series and the radii polynomial approach
NASA Astrophysics Data System (ADS)
Lessard, Jean-Philippe; Mireles James, J. D.; Ransford, Julian
2016-11-01
In this work we develop a computer-assisted technique for proving existence of periodic solutions of nonlinear differential equations with non-polynomial nonlinearities. We exploit ideas from the theory of automatic differentiation in order to formulate an augmented polynomial system. We compute a numerical Fourier expansion of the periodic orbit for the augmented system, and prove the existence of a true solution nearby using an a-posteriori validation scheme (the radii polynomial approach). The problems considered here are given in terms of locally analytic vector fields (i.e. the field is analytic in a neighborhood of the periodic orbit) hence the computer-assisted proofs are formulated in a Banach space of sequences satisfying a geometric decay condition. In order to illustrate the use and utility of these ideas we implement a number of computer-assisted existence proofs for periodic orbits of the Planar Circular Restricted Three-Body Problem (PCRTBP).
Hypergravity effects on normal and avulsed developing avian radii
NASA Technical Reports Server (NTRS)
Negulesco, J. A.; Clark, D. L.
1976-01-01
Rhode Island red female chicks were subjected to complete closed fracture of the right radius at 2 weeks post-hatching. The animals were allowed to heal for 1 week at either earth-gravity or 2-G-hypergravity state with control and estrogen-injected groups. Intact and fractured radial length, weight, average epiphysial-diaphysial diameters, and length, width, and weight of healing fracture callus were measured. Daily 2000 IU estrogen administration for 7 d increased intact radial length. Estrogen augments the effects of the 2-G state by inhibiting growth and depleting the mass of both intact and fractured radii and by decreasing the average distal epiphysial diameter of fractured bones. Animals exposed to the hypergravity state without hormonal treatment showed decreased fractured radial length, weight, and smaller proximal epiphysial diameters. The measurable parameters of the fracture callus (width, length, and weight) were depressed by the hypergravity state regardless of whether the animal was untreated or supplemented with estrogen.
Fu, Yangyang; Luo, Haiyun; Zou, Xiaobing; Wang, Xinxin
2015-02-15
In order to investigate the influence of electrode radius on the characteristics of cathode fall thickness, experiments of low-pressure (20 Pa ≤ p ≤ 30 Pa) abnormal glow discharge were carried out between parallel-plane electrodes in different radii keeping gap distance unchanged. Axial distributions of light intensity were obtained from the discharge images captured using a Charge Coupled Device camera. The assumption that the position of the negative glow peak coincides with the edge of cathode fall layer was verified based on a two-dimensional model, and the cathode fall thicknesses, d{sub c}, were calculated from the axial distributions of light intensity. It was observed that the position of peak emission shifts closer to the cathode as current or pressure grows. The dependence of cathode fall thickness on the gas pressure and normalized current J/p{sup 2} was presented, and it was found that for discharges between electrodes in large radius the curves of pd{sub c} against J/p{sup 2} were superimposed on each other, however, this phenomenon will not hold for discharges between the smaller electrodes. The reason for this phenomenon is that the transverse diffusions of charged particles are not the same in two gaps between electrodes with different radii.
Not Available
1993-12-31
This task involved the calculation of neutron and proton radii of cesium isotopes. The author has written a computer code that calculates radii according to two models: Myers 1983 and FRDM 1992. Results of calculations in both these models for both cesium and francium isotopes are attached as figures. He is currently interpreting these results in collaboration with D. Vieira and J.R. Nix, and they expect to use the computer code for further studies of nuclear radii.
Galaxy Structure: Core Radii, and Central Mass Deficits
NASA Astrophysics Data System (ADS)
Graham, A. W.; Trujillo, I.; Erwin, P.
2004-05-01
We investigate the nuclear and global structure of elliptical galaxies, and the apparent disparity between the Nuker and Sérsic light-profile models. We show that the so-called ``power-law" galaxies in fact have Sérsic r1/n profiles over their entire observed radial range. Consequently, only three (Sérsic-profile) parameters are required to simultaneously describe both the inner (HST-resolved) and outer profiles of low-luminosity (M > -20.5 B-mag) elliptical galaxies. We also find that ``core galaxies" have Sérsic profiles with a (partially evacuated) single power-law core. We have developed a modified (5-parameter) Sérsic profile with a power-law core to model the complete radial extent of luminous galaxies with cores. In addition to quantifying the global stellar distribution in these systems, we have derived new estimates of their core radii and other central properties. Comparison of the central stellar deficits with the galaxies' black hole masses suggests that the number of (dissipationless) major mergers that have produced luminous elliptical galaxies is around 1-2, rather than 8-10, which agrees with theory and implies that the galactic merger history of the Universe is roughly an order of magnitude less violent than previous observational analyses had suggested. Support for proposal number HST-AR-09927.01-A was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.
MASSES, RADII, AND CLOUD PROPERTIES OF THE HR 8799 PLANETS
Marley, Mark S.; Saumon, Didier; Cushing, Michael; Ackerman, Andrew S.; Fortney, Jonathan J.; Freedman, Richard E-mail: dsaumon@lanl.gov E-mail: andrew.ackerman@nasa.gov E-mail: freedman@darkstar.arc.nasa.gov
2012-08-01
The near-infrared colors of the planets directly imaged around the A star HR 8799 are much redder than most field brown dwarfs of the same effective temperature. Previous theoretical studies of these objects have concluded that the atmospheres of planets b, c, and d are unusually cloudy or have unusual cloud properties. Some studies have also found that the inferred radii of some or all of the planets disagree with expectations of standard giant planet evolution models. Here, we compare the available data to the predictions of our own set of atmospheric and evolution models that have been extensively tested against observations of field L and T dwarfs, including the reddest L dwarfs. Unlike some previous studies, we require mutually consistent choices for effective temperature, gravity, cloud properties, and planetary radius. This procedure thus yields plausible values for the masses, effective temperatures, and cloud properties of all three planets. We find that the cloud properties of the HR 8799 planets are not unusual but rather follow previously recognized trends, including a gravity dependence on the temperature of the L to T spectral transition-some reasons for which we discuss. We find that the inferred mass of planet b is highly sensitive to whether or not we include the H- and the K-band spectrum in our analysis. Solutions for planets c and d are consistent with the generally accepted constraints on the age of the primary star and orbital dynamics. We also confirm that, like in L and T dwarfs and solar system giant planets, non-equilibrium chemistry driven by atmospheric mixing is also important for these objects. Given the preponderance of data suggesting that the L to T spectral type transition is gravity dependent, we present an exploratory evolution calculation that accounts for this effect. Finally we recompute the bolometric luminosity of all three planets.
Masses, Radii, and Cloud Properties of the HR 8799 Planets
NASA Astrophysics Data System (ADS)
Marley, Mark S.; Saumon, Didier; Cushing, Michael; Ackerman, Andrew S.; Fortney, Jonathan J.; Freedman, Richard
2012-08-01
The near-infrared colors of the planets directly imaged around the A star HR 8799 are much redder than most field brown dwarfs of the same effective temperature. Previous theoretical studies of these objects have concluded that the atmospheres of planets b, c, and d are unusually cloudy or have unusual cloud properties. Some studies have also found that the inferred radii of some or all of the planets disagree with expectations of standard giant planet evolution models. Here, we compare the available data to the predictions of our own set of atmospheric and evolution models that have been extensively tested against observations of field L and T dwarfs, including the reddest L dwarfs. Unlike some previous studies, we require mutually consistent choices for effective temperature, gravity, cloud properties, and planetary radius. This procedure thus yields plausible values for the masses, effective temperatures, and cloud properties of all three planets. We find that the cloud properties of the HR 8799 planets are not unusual but rather follow previously recognized trends, including a gravity dependence on the temperature of the L to T spectral transition—some reasons for which we discuss. We find that the inferred mass of planet b is highly sensitive to whether or not we include the H- and the K-band spectrum in our analysis. Solutions for planets c and d are consistent with the generally accepted constraints on the age of the primary star and orbital dynamics. We also confirm that, like in L and T dwarfs and solar system giant planets, non-equilibrium chemistry driven by atmospheric mixing is also important for these objects. Given the preponderance of data suggesting that the L to T spectral type transition is gravity dependent, we present an exploratory evolution calculation that accounts for this effect. Finally we recompute the bolometric luminosity of all three planets.
Masses, Radii, and Cloud Properties of the HR 8799 Planets
NASA Technical Reports Server (NTRS)
Marley, Mark S.; Saumon, Didier; Cushing, Michael; Ackerman, Andrew S.; Fortney, Jonathan J.; Freedman, Richard
2012-01-01
The near-infrared colors of the planets directly imaged around the A star HR 8799 are much redder than most field brown dwarfs of the same effective temperature. Previous theoretical studies of these objects have compared the photometric and limited spectral data of the planets to the predictions of various atmosphere and evolution models and concluded that the atmospheres of planets b, c, and d are unusually cloudy or have unusual cloud properties. Most studies have also found that the inferred radii of some or all of the planets disagree with expectations of standard giant planet evolution models. Here we compare the available data to the predictions of our own set of atmospheric and evolution models that have been extensively tested against field L and T dwarfs, including the reddest L dwarfs. Unlike almost all previous studies we specify mutually self-consistent choices for effective temperature, gravity, cloud properties, and planetary radius. This procedure yields plausible and self-consistent values for the masses, effective temperatures, and cloud properties of all three planets. We find that the cloud properties of the HR 8799 planets are in fact not unusual but rather follow previously recognized trends including a gravity dependence on the temperature of the L to T spectral transition, some reasons for which we discuss. We find that the inferred mass of planet b is highly sensitive to the H and K band spectrum. Solutions for planets c and particularly d are less certain but are consistent with the generally accepted constraints on the age of the primary star and orbital dynamics. We also confirm that as for L and T dwarfs and solar system giant planets, non-equilibrium chemistry driven by atmospheric mixing is also important for these objects. Given the preponderance of data suggesting that the L to T spectral type transition is gravity dependent, we present a new evolution calculation that predicts cooling tracks on the near-infrared color
Bonded Radii and the Contraction of the Electron Density of the Oxygen Atom by Bonded Interactions
Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.; Iversen, Bo B.; Spackman, M. A.
2013-02-21
The bonded radii for more than 550 bonded pairs of atoms, comprising more than 50 crystals, determined from experimental and theoretical electron density distributions, are compared with the effective ionic, ri(M), and crystal radii, rc(M), for metal atoms, M, bonded to O atoms. At odds with the fixed ionic radius of 1.40 Å, assumed for the O atom in the compilation of the ionic radii, the bonded radius for the atom, rb(O), is not fixed but displays a relatively wide range of values as the O atom is progressively polarized by the M-O bonded interactions: as such, rb(O) decreases systematically from 1.40 Å (the Pauling radius of the oxide anion) as bond lengths decrease when bonded to an electropositive atom like sodium, to 0.64 Å (Bragg’s atomic radius of the O atom) when bonded to an electronegative atom like nitrogen. Both rb(M) and rb(O) increase in tandum with the increasing coordination number of the M atom. The bonded radii of the M atoms are highly correlated with both ri(M) and rc(M), but they both depart systematically from rb(M) and become smaller as the electronegativity of the M atom increases and the M-O bond length decreases. The well-developed correlations between both sets of radii and rb(M) testifies to the relative precision of both sets of radii and the fact that both sets are highly correlated the M-O bond 1 lengths. On the other hand, the progressive departure of rb(O) from the fixed ionic radius of the O atom with the increasing electronegativity of the bonded M atom indicates that any compilation of sets of ionic radii, assuming that the radius for the oxygen atom is fixed in value, is problematical and impacts on the accuracy of the resulting sets of ionic and crystal radii thus compiled. The assumption of a fixed O atom radius not only results in a negative ionic radii for several atoms, but it also results in values of rb(M) that are much as ~ 0.6 Å larger than the ri(M) and rc(M) values, respectively, particularly for the more
Interaction radii of proton-rich radioactive nuclei at A=60-80
Lima, G. F.; Lepine-Szily, A.; Lichtenthaler, R.; Villari, A. C. C.; Mittig, W.; Casandjian, J. M.; Lewitowicz, M.; Chartier, M.; Hirata, D.; Angelique, J. C.; Orr, N. A.; Audi, G.; Cunsolo, A.; Foti, A.; Donzeaud, C.; MacCormick, M.; Stephan, C.; Suomijarvi, T.; Tassan-Got, L.; Gillibert, A.
1998-12-21
The interaction radii of proton-rich, radioactive {sub 31}Ga, {sub 32}Ge, {sub 33}As, {sub 34}Se, {sub 35}Br isotopes were measured using the direct method. The secondary beams were produced using a {sup 78}Kr primary beam of 73 MeV/nucleon in conjunction with SISSI and the SPEG spectrometers at GANIL. Most elements show reduced radii which vary with N, with a minimum around N=36-38. The experimental reduced radii are compared to theoretical values obtained from Glauber reaction cross-section calculations based on Relativistic Mean Field (RMF) nuclear densities.
Shape oscillations of an electrically charged diamagnetically levitated droplet
NASA Astrophysics Data System (ADS)
Hill, R. J. A.; Eaves, L.
2012-03-01
We use diamagnetic levitation to investigate the effect of electrical charge on the normal mode vibration frequencies of charged water droplets with radii 4.5-7.5 mm. This technique allows us to levitate almost spherical droplets, enabling us to directly compare the measured frequencies of the first seven modes with theoretical values calculated by Lord Rayleigh, with which we find good agreement.
Near-global survey of effective droplet radii in liquid water clouds using ISCCP data
NASA Technical Reports Server (NTRS)
Han, Qingyan; Rossow, William B.; Lacis, Andrew B.
1994-01-01
A global survey of cloud particle size variations can provide crucial constraints on how cloud processes determine cloud liquid water contents and their variation with temperature, and further, may indicate the magnitude of aerosol effects on clouds. A method, based on a complete radiative transfer model for Advanced Very High Resolution Radiometer (AVHRR)-measured radiances, is described for retrieving cloud particle radii in liquid water clouds from satellite data currently available from the International Satellite Cloud Climatology Project. Results of sensitivity tests and validation studies provide error estimates. AVHRR data from NOAA-9 and NOAA-10 have been analyzed for January, April, July and October in 1987 and 1988. The results of this first survey reveal systematic continental and maritime differences and hemispheric contrasts that are indicative of the effects of associated aerosol concentration differences: cloud droplet radii in continental water clouds are about 2-3 micrometers smaller than in marine clouds, and droplet radii are about 1 micrometer smaller in marine clouds of the Northern Hemisphere than in the Southern Hemisphere. The height dependencies of cloud droplet radii in continental and marine clouds are also consistent with differences in the vertical profiles of aerosol concentration. Significant seasonal and diurnal variations of effective droplet radii are also observed, particularly at lower latitudes. Variations of the relationship between cloud optical thickness and droplet radii may indicate variations in cloud microphysical regimes.
Huggins, Anne Corinne
2012-01-01
It is possible that functions used to link tests are sensitive to subpopulations of test takers. The REMSD and RMSD(x) are weighted effect sizes of linking invariance, yet it is often unclear how the weights are most appropriately applied when subpopulation group sizes are heterogeneous. The objective of this research is to apply two different weighting methods to the REMSD and RMSD(x) functions while testing for population invariance in a linkage across subpopulations of disparate sample sizes, and to subsequently compare the results across these differentially weighted effect sizes. The findings demonstrate that utilizing proportional weights in the REMSD and RMSD(x) indices can underestimate differences in linking functions for small subpopulations.
Yamagishi, Junya; Okimoto, Noriaki; Morimoto, Gentaro; Taiji, Makoto
2014-11-01
The Poisson-Boltzmann implicit solvent (PB) is widely used to estimate the solvation free energies of biomolecules in molecular simulations. An optimized set of atomic radii (PB radii) is an important parameter for PB calculations, which determines the distribution of dielectric constants around the solute. We here present new PB radii for the AMBER protein force field to accurately reproduce the solvation free energies obtained from explicit solvent simulations. The presented PB radii were optimized using results from explicit solvent simulations of the large systems. In addition, we discriminated PB radii for N- and C-terminal residues from those for nonterminal residues. The performances using our PB radii showed high accuracy for the estimation of solvation free energies at the level of the molecular fragment. The obtained PB radii are effective for the detailed analysis of the solvation effects of biomolecules.
Radii of neutron drops probed via the neutron skin thickness of nuclei
NASA Astrophysics Data System (ADS)
Zhao, P. W.; Gandolfi, S.
2016-10-01
Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. We demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208Pb and 48Ca, i.e., the difference between the neutron and proton rms radii of a nucleus. Due to its high quality, this correlation can be used to deduce the radii of neutron drops from the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces. We also present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208Pb and 48Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.
On the critical radii for ramp induced shock wave and laminar boundary layer interaction
NASA Astrophysics Data System (ADS)
John, Bibin; Kulkarni, Vinayak
2013-11-01
The shock wave and laminar boundary layer interaction is classical example of viscous and inviscid interaction. All the characteristic features of this interaction like separation length, separation and reattachment locations, upstream influence etc. are dependent on the leading edge bluntness. Upstream over pressure region and interaction of entropy layer with boundary layer alter this dynamics in the presence of blunt leading edge. Two critical radii corresponding to maximum separation size and separation length equal to reference sharp leading edge case are observed for this interaction during the present numerical studies. Freestream Mach number, wall temperature and freestream stagnation enthalpy are the governing parameters for the two critical radii for given configuration. Numerical simulations are then carried out to understand the effect of these parameters on the magnitude of the critical radii. Entropy layer swallowing by boundary layer and extension of over pressure region are reconsidered for alterations in these radii. Present studies are found very useful in devising mechanism for estimation of critical radii and as well for incorporating the amendment in the same due to change in governing parameters.
Influence of Die and Punch Profile Radii on Deep Drawing Force and Punch Load- Displacement Diagram
NASA Astrophysics Data System (ADS)
Mansourinejad, M.; Mirzakhani, B.; Pishbin, H.; Amadeh, A.; Farshchian, B.
2011-01-01
In this study, circumstances of formation and development of different zones of cup during the deep drawing process is predicted using geometrical relationships between punch and some process variables. Also, relationships between bending angle, die and punch profile radii, strain in flange and die profile regions are obtained at a given punch travel. In addition, deformation force components are calculated and based on the obtained relationships punch force-displacement diagrams for various punch and die profile radii are plotted. The effects of punch and die profile radii on these diagrams are then discussed. According to the proposed analysis, the effects of die and punch profile radii on deep drawing force are compared with each other. It is concluded that the die profile radius affects not only bending and unbending forces but also the actual drawing ratio while the punch profile radius has only an insignificant effect on actual drawing ratio. Also, effects of die and punch profile radii on punch stroke at maximum load are the same.
Energy losses in thermally cycled optical fibers constrained in small bend radii
Guild, Eric; Morelli, Gregg
2012-09-23
High energy laser pulses were fired into a 365μm diameter fiber optic cable constrained in small radii of curvature bends, resulting in a catastrophic failure. Q-switched laser pulses from a flashlamp pumped, Nd:YAG laser were injected into the cables, and the spatial intensity profile at the exit face of the fiber was observed using an infrared camera. The transmission of the radiation through the tight radii resulted in an asymmetric intensity profile with one half of the fiber core having a higher peak-to-average energy distribution. Prior to testing, the cables were thermally conditioned while constrained in the small radii of curvature bends. Single-bend, double-bend, and U-shaped eometries were tested to characterize various cable routing scenarios.
Interaction radii of proton-rich radioactive nuclei at A=60{endash}80
Lima, G.F.; Lepine-Szily, A.; Villari, A.C.; Lichtenthaler, R.; Villari, A.C.; Mittig, W.; Chartier, M.; Casandjian, J.M.; Lewitowicz, M.; Ostrowski, A.N.; Hirata, D.; Angelique, J.C.; Orr, N.A.; Audi, G.; Cunsolo, A.; Foti, A.; Donzeaud, C.; MacCormick, M.; Stephan, C.; Suomijarvi, T.; Tassan-Got, L.; Gillibert, A.; Chartier, M.; Morrissey, D.J.; Sherrill, B.M.; Ostrowski, A.N.; Vieira, D.J.; Wouters, J.M.
1998-12-01
The interaction radii of proton-rich, radioactive {sub 31}Ga,thinsp{sub 32}Ge,thinsp{sub 33}As,thinsp{sub 34}Se,thinsp{sub 35}Br isotopes were measured using the direct method. The secondary beams were produced using a {sup 78}Kr primary beam of 73 MeV/nucleon in conjunction with SISSI and the SPEG spectrometers at GANIL. Most elements show reduced radii which vary with N, with a minimum around N=36{endash}38. The experimental reduced radii are compared to theoretical values obtained from Glauber reaction cross-section calculations based on Relativistic Mean Field (RMF) nuclear densities. {copyright} {ital 1998 American Institute of Physics.}
EFFECT OF UNCERTAINTIES IN STELLAR MODEL PARAMETERS ON ESTIMATED MASSES AND RADII OF SINGLE STARS
Basu, Sarbani; Verner, Graham A.; Chaplin, William J.; Elsworth, Yvonne E-mail: gav@bison.ph.bham.ac.uk E-mail: y.p.elsworth@bham.ac.uk
2012-02-10
Accurate and precise values of radii and masses of stars are needed to correctly estimate properties of extrasolar planets. We examine the effect of uncertainties in stellar model parameters on estimates of the masses, radii, and average densities of solar-type stars. We find that in the absence of seismic data on solar-like oscillations, stellar masses can be determined to a greater accuracy than either stellar radii or densities; but to get reasonably accurate results the effective temperature, log g, and metallicity must be measured to high precision. When seismic data are available, stellar density is the most well-determined property, followed by radius, with mass the least well-determined property. Uncertainties in stellar convection, quantified in terms of uncertainties in the value of the mixing length parameter, cause the most significant errors in the estimates of stellar properties.
A new determination of radii and limb parameters for Pluto and Charon from mutual event lightcurves
NASA Technical Reports Server (NTRS)
Young, Eliot F.; Binzel, Richard P.
1994-01-01
Over the past several years Pluto-Charon mutual events have yielded progressively more accurate estimates of Charon's orbital elements and the radii of Pluto and Charon (e.g., Buie, Tholen, and Horne, 1992). Analysis of the 1988 stellar occultation by Pluto indicates a radius for Pluto that is about 4%, or 50 km, larger than the mutual event radius of 1151 km. One possible explanation for the discrepancy is that the mutual event modeling treats Pluto and Charon as uniformly bright disks. If they are limb-darkened, the mutual event fits could underestimate their radii. In this paper we use an independent mutual event data set (Young and Binzel, 1992) to fit for Pluto and Charon's radii in a manner independent of either object's limb profile or albedo distribution. Our least-squares solution indicates that Pluto's radius is 1164 +/- 22.9 km and Charon's radius is 621 +/- 20.6 km.
The effect of starspots on the radii of low-mass pre-main-sequence stars
NASA Astrophysics Data System (ADS)
Jackson, R. J.; Jeffries, R. D.
2014-07-01
A polytropic model is used to investigate the effects of dark photospheric spots on the evolution and radii of magnetically active, low-mass (M < 0.5 M⊙), pre-main-sequence (PMS) stars. Spots slow the contraction along Hayashi tracks and inflate the radii of PMS stars by a factor of (1 - β)-N compared to unspotted stars of the same luminosity, where β is the equivalent covering fraction of dark starspots and N ≃ 0.45 ± 0.05. This is a much stronger inflation than predicted by Spruit & Weiss for main-sequence stars with the same β, where N ˜ 0.2-0.3. These models have been compared to radii determined for very magnetically active K- and M-dwarfs in the young Pleiades and NGC 2516 clusters, and the radii of tidally locked, low-mass eclipsing binary components. The binary components and zero-age main-sequence K-dwarfs have radii inflated by ˜10 per cent compared to an empirical radius-luminosity relation that is defined by magnetically inactive field dwarfs with interferometrically measured radii; low-mass M-type PMS stars, that are still on their Hayashi tracks, are inflated by up to ˜40 per cent. If this were attributable to starspots alone, we estimate that an effective spot coverage of 0.35 < β < 0.51 is required. Alternatively, global inhibition of convective flux transport by dynamo-generated fields may play a role. However, we find greater consistency with the starspot models when comparing the loci of active young stars and inactive field stars in colour-magnitude diagrams, particularly for the highly inflated PMS stars, where the large, uniform temperature reduction required in globally inhibited convection models would cause the stars to be much redder than observed.
Measurement of the percolation threshold for fully penetrable disks of different radii
Quintanilla, J.
2001-06-01
We perform simulations of gradient percolation to study the percolation threshold for systems of homogeneous fully penetrable disks of variable radii. We find that, if the radii follow a uniform distribution, the percolation threshold is 0.686610{+-}0.000007. We also investigate binary dispersions, studying the influence of constitutive parameters on the percolation threshold and suggesting an empirical formula for the threshold. We find that, with the appropriate parameters, a percolation threshold of approximately 0.76 can be achieved. The minimal threshold of 0.676339{+-}0.000004 is achieved by disks of equal radius.
Fitted Hanbury-Brown-Twiss radii versus space-time variances in flow-dominated models
Frodermann, Evan; Heinz, Ulrich; Lisa, Michael Annan
2006-04-15
The inability of otherwise successful dynamical models to reproduce the Hanbury-Brown-Twiss (HBT) radii extracted from two-particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as the RHIC HBT Puzzle. Most comparisons between models and experiment exploit the fact that for Gaussian sources the HBT radii agree with certain combinations of the space-time widths of the source that can be directly computed from the emission function without having to evaluate, at significant expense, the two-particle correlation function. We here study the validity of this approach for realistic emission function models, some of which exhibit significant deviations from simple Gaussian behavior. By Fourier transforming the emission function, we compute the two-particle correlation function, and fit it with a Gaussian to partially mimic the procedure used for measured correlation functions. We describe a novel algorithm to perform this Gaussian fit analytically. We find that for realistic hydrodynamic models the HBT radii extracted from this procedure agree better with the data than the values previously extracted from the space-time widths of the emission function. Although serious discrepancies between the calculated and the measured HBT radii remain, we show that a more apples-to-apples comparison of models with data can play an important role in any eventually successful theoretical description of RHIC HBT data.
Fitted Hanbury-Brown Twiss radii versus space-time variances in flow-dominated models
NASA Astrophysics Data System (ADS)
Frodermann, Evan; Heinz, Ulrich; Lisa, Michael Annan
2006-04-01
The inability of otherwise successful dynamical models to reproduce the Hanbury-Brown Twiss (HBT) radii extracted from two-particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as the RHIC HBT Puzzle. Most comparisons between models and experiment exploit the fact that for Gaussian sources the HBT radii agree with certain combinations of the space-time widths of the source that can be directly computed from the emission function without having to evaluate, at significant expense, the two-particle correlation function. We here study the validity of this approach for realistic emission function models, some of which exhibit significant deviations from simple Gaussian behavior. By Fourier transforming the emission function, we compute the two-particle correlation function, and fit it with a Gaussian to partially mimic the procedure used for measured correlation functions. We describe a novel algorithm to perform this Gaussian fit analytically. We find that for realistic hydrodynamic models the HBT radii extracted from this procedure agree better with the data than the values previously extracted from the space-time widths of the emission function. Although serious discrepancies between the calculated and the measured HBT radii remain, we show that a more apples-to-apples comparison of models with data can play an important role in any eventually successful theoretical description of RHIC HBT data.
Determination of mechanical properties of excised dog radii from lateral vibration experiments
NASA Technical Reports Server (NTRS)
Thompson, G. A.; Anliker, M.; Young, D. R.
1973-01-01
Experimental data which can be used as a guideline in developing a mathematical model for lateral vibrations of whole bone are reported. The study used wet and dry dog radii mounted in a cantilever configuration. Data are also given on the mechanical, geometric, and viscoelastic properties of bones.
Burrows, Adam; Nampaisarn, Thane; Heng, Kevin E-mail: tnampais@astro.princeton.edu
2011-07-20
Employing realistic and consistent atmosphere boundary conditions, we have generated evolutionary models for brown dwarfs and very low mass stars (VLMs) for different atmospheric metallicities ([Fe/H]), with and without clouds. We find that the spread in radius at a given mass and age can be as large as {approx}10% to {approx}25%, with higher-metallicity, higher-cloud-thickness atmospheres resulting quite naturally in larger radii. For each 0.1 dex increase in [Fe/H], radii increase by {approx}1% to {approx}2.5%, depending upon the age and mass. We also find that, while for smaller masses and older ages brown dwarf radii decrease with increasing helium fraction (Y, as expected), for more massive brown dwarfs and a wide range of ages they increase with helium fraction. The increase in radius in going from Y = 0.25 to Y = 0.28 can be as large as {approx}0.025 R{sub J} ({approx}2.5%). Furthermore, we find that for VLMs an increase in atmospheric metallicity from 0.0 to 0.5 dex, increases radii by {approx}4%, and from -0.5 to 0.5 dex by {approx}10%. Therefore, we suggest that opacity due to higher metallicity might naturally account for the apparent radius anomalies in some eclipsing VLM systems. Ten to twenty-five percent variations in radius exceed errors stemming from uncertainties in the equation of state alone. This serves to emphasize that transit and eclipse measurements of brown dwarf radii constrain numerous effects collectively, importantly including the atmosphere and condensate cloud models, and not just the equation of state. At all times, one is testing a multi-parameter theory, and not a universal radius-mass relation.
Charged-Particle Calibration Of Spacecraft-Ranging Signals
NASA Technical Reports Server (NTRS)
Nguyen, Tien M.
1992-01-01
Report discusses determination of effective densities of electrically charged particles along paths of microwave signals transmitted to and from spacecraft and use of those densities to calibrate measured signal-propagation times, used to compute distances between ground stations and spacecraft. Oriented toward selection of method of calibration optimal with respect to three criteria: minimization of range error and of root-mean-square uncertainty in range error; minimization of amount, complexity, and/or cost of equipment; and capability of calibrating changes in group velocities of signals on ranging channel.
Effects on the geomagnetic tail at 60 earth radii of the geomagnetic storm of April 9, 1971.
NASA Technical Reports Server (NTRS)
Burke, W. J.; Rich, F. J.; Reasoner, D. L.; Colburn, D. S.; Goldstein, B. E.
1973-01-01
A geomagnetic storm beginning with an sc occurred on Apr. 9, 1971. During the storm the charged particle lunar environment experiment at the Apollo 14 site, the solar wind spectrometer experiment at the Apollo 12 site, and the Ames magnetometers on Explorer 35 took data in the magnetosheath, at the magnetopause, in the plasma sheet, and in the high-latitude geomagnetic tail. The MIT Faraday cup and Ames magnetometers on board Explorer 33 monitored the solar wind. The data show that the storm was caused by a corotating tangential discontinuity in the solar wind, the magnetopause position is strongly dependent on the attack angle of the solar wind, and the tail field strength was indirectly measured to increase from 10 to 14 gamma after the sc. During the main phase the field strength in the tail was observed to increase to between 28 and 34 gamma. This increase is consistent with a thermal and magnetic compression of the tail radius from about 26 to about 16 earth radii.
Libu, M.; Susanth, S.; Vasanthakumari, K. G.; Dileep Kumar, C. J.; Raghu, N.
2012-01-15
Piezoelectric based bimorph mirrors (PBM) find extensive use in focusing of x-ray beams. Many optical instruments require use of PBM whose radii of curvature can be tuned precisely. The 100 mm and 300 mm PBMs were fabricated with varying piezoelectric to fused silica plate thicknesses. The radii of curvature of free standing mirrors were measured as a function of voltage and it was found to decrease with increasing voltage. For a given piezoelectric plate thickness, as the fused silica thickness increases, the radii of curvature was found to increase owing to increase in stiffness of the mirror. On the other hand, for a given fused silica plate thickness, when the piezoelectric plate thickness is increased, the radii of curvature are decreased for a given electric field, due to increase in generated force. This study brings out the influence of piezoceramic to fused silica plate thickness on the radii of curvature of PBM.
Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm.
Krapf, Diego; Wu, Meng-Yue; Smeets, Ralph M M; Zandbergen, Henny W; Dekker, Cees; Lemay, Serge G
2006-01-01
We report on the fabrication and characterization of gold nanoelectrodes with carefully controlled nanometer dimensions in a matrix of insulating silicon nitride. A focused electron beam was employed to drill nanopores in a thin silicon nitride membrane. The size and shape of the nanopores were studied with high-resolution transmission electron microscopy and electron-energy-loss two-dimensional maps. The pores were subsequently filled with gold, yielding conically shaped nanoelectrodes. The nanoelectrodes were examined by atomic and electrostatic force microscopy. Their applicability in electrochemistry was demonstrated by steady-state cyclic voltammetry. Pores with a radii down to 0.4 nm and electrodes with radii down to 2 nm are demonstrated.
Return stroke speed of cloud-to-ground lightning estimated from elve hole radii
NASA Astrophysics Data System (ADS)
Blaes, P. R.; Marshall, R. A.; Inan, U. S.
2014-12-01
We present the first measurements of the lightning return stroke speed that directly relate to the current return stroke, as opposed to its optical manifestation. The shape of elves is determined by the electromagnetic pulse (EMP) radiation pattern at D region altitudes, which is in turn controlled by the geometry and current propagation properties of the return stroke channel. In particular, numerical simulation of the EMP-ionosphere interaction shows a strong relationship between the elve "hole" radius and the current return stroke speed. The hole radii are measured from a data set of 55 elves observed with the PIPER photometer. Using these radii observations in conjunction with numerical simulations of the EMP, we perform Bayesian inference to estimate the distribution of return stroke speeds. The results show a maximum a posteriori probability return stroke speed estimate of 0.64c for elve producing lightning.
Global properties of atomic nuclei. Masses, radii and modern methods to measure them
NASA Astrophysics Data System (ADS)
Kowalska, Magdalena
2016-08-01
The global properties of atomic nuclei, namely their masses and radii, provide important input for the understanding of the nuclear interaction. The experimental methods addressing these nuclear properties have evolved a lot in the last 30 years. Many techniques have been refined and new ones have been developed, allowing to push the limits of sensitivity and precision. This, in turn, has given access to very short-lived nuclei and has helped to probe the strong force in the nuclear medium in much finer detail than before. This paper will summarise the general features of nuclear masses and radii, will describe briefly methods to measure these properties for stable isotopes, and will concentrate on state-of-the-art techniques devoted to their investigations in radionuclides.
ON THE RADII OF BROWN DWARFS MEASURED WITH AKARI NEAR-INFRARED SPECTROSCOPY
Sorahana, S.; Yamamura, I.; Murakami, H.
2013-04-10
We derive the radii of 16 brown dwarfs observed by AKARI using their parallaxes and the ratios of observed to model fluxes. We find that the brown dwarf radius ranges between 0.64-1.13 R{sub J} with an average radius of 0.83 R{sub J} . We find a trend in the relation between radii and T{sub eff}; the radius is at a minimum at T{sub eff} {approx} 1600 K, which corresponds to the spectral types of mid- to late-L. The result is interpreted by a combination of radius-mass and radius-age relations that are theoretically expected for brown dwarfs older than 10{sup 8} yr.
Counter-streaming electrons at the geomagnetic equator near 9 earth radii
NASA Technical Reports Server (NTRS)
Klumpar, D. M.; Quinn, J. M.; Shelley, E. G.
1988-01-01
AMPTE/CEE observations are used to study short-lived, highly anisotropic electron distributions in the region of the equatorial magnetosphere bewtween 6.6 earth radii and the CCE apogee at 8.8 earth radii. Intense bursts of highly collimated counterstreaming electrons were observed at keV energies with durations of a few tens of seconds to a few minutes near the geomagnetic equator on L-shells that intersect the high-latitude ionosphere in the region normally associated with the auroral zone. It is found that the counterstreaming electrons at energies below the peak energy are accompanied by simultaneous deep depressions of the locally mirroring fluxes. It is suggested that these equatorial electrons may result from the release of auroral electrons trapped beneath the auroral accelerating potentials at lower altitudes along the same magnetic flux tubes.
Charge renormalization in nominally apolar colloidal dispersions
NASA Astrophysics Data System (ADS)
Evans, Daniel J.; Hollingsworth, Andrew D.; Grier, David G.
2016-04-01
We present high-resolution measurements of the pair interactions between dielectric spheres dispersed in a fluid medium with a low dielectric constant. Despite the absence of charge control agents or added organic salts, these measurements reveal strong and long-ranged repulsions consistent with substantial charges on the particles whose interactions are screened by trace concentrations of mobile ions in solution. The dependence of the estimated charge on the particles' radii is consistent with charge renormalization theory and, thus, offers insights into the charging mechanism in this interesting class of model systems. The measurement technique, based on optical-tweezer manipulation and artifact-free particle tracking, makes use of optimal statistical methods to reduce measurement errors to the femtonewton frontier while covering an extremely wide range of interaction energies.
Quiet time magnetospheric field depression at 2.3-3.6 earth radii.
NASA Technical Reports Server (NTRS)
Sugiura, M.
1973-01-01
Flux gate magnetometer data from OGO 5 are presented that establish the existence of large field depressions under conditions of varying degree of disturbance at distances ranging from 2.3 to 3.6 earth radii at all local times. For this study, flux gate data obtained near perigee during the period of approximately one year from Jan. 21, 1969, to Feb. 23, 1970, were used.
Determining the nuclear equation of state from neutron-star masses and radii
NASA Technical Reports Server (NTRS)
Lindblom, Lee
1992-01-01
A method is developed for determining the nuclear equation of state directly from a knowledge of the masses and radii of neutron stars. This analysis assumes only that equilibrium neutron-star matter has the stress-energy tensor of an isotropic fluid with a barotropic equation of state, and that general relativity describes a neutron star's internal gravitational field. We present numerical examples which illustrate how well this method will determine the equation of state when the appropriate observational data become available.
Which processes shape stellar population gradients of massive galaxies at large radii?
NASA Astrophysics Data System (ADS)
Hirschmann, Michaela
2016-08-01
We investigate the differential impact of physical mechanisms, mergers (stellar accretion) and internal energetic phenomena, on the evolution of stellar population gradients in massive, present-day galaxies employing a set of high-resolution, cosmological zoom simulations. We demonstrate that negative metallicity and color gradients at large radii (>2Reff) originate from the accretion of metal-poor stellar systems. At larger radii, galaxies become typically more dominated by stars accreted from satellite galaxies in major and minor mergers. However, only strong galactic winds can sufficiently reduce the metallicity content of the accreted stars to realistically steepen the outer metallicity and colour gradients in agreement with present-day observations. In contrast, the gradients of the models without winds are inconsistent with observations (too flat). In the wind model, colour and metallicity gradients are significantly steeper for systems which have accreted stars in minor mergers, while galaxies with major mergers have relatively flat gradients, confirming previous results. This analysis greatly highlights the importance of both energetic processes and merger events for stellar population properties of massive galaxies at large radii. Our results are expected to significantly contribute to the interpretation of current and up-coming IFU surveys (like MaNGA and Califa), which in turn can help to better constrain still uncertain models for energetic processes in simulations.
Determination of the capture radii of magnetite bearing hydroxide flocs in magnetic filtration
Franz, M.; Franzreb, M.
1998-11-01
Magnetic filtration may be applied in water technology for the separation of flocs which are formed in a flocculation tank together with magnetite as an additive. The capture radius is an important mathematical quantity to calculate the performance of such filters in advance. Thus, the capture radii of magnetite bearing copper hydroxide flocs were measured with a direct visual evaluation of the floc trajectories in the neighborhood of a single magnetized wire. For this purpose, an experimental setup was assembled, which allowed the observation and the measurement of the trajectories. With the image processing system used, it was possible to observe flocs larger than 30 {micro}m and the flow velocity was limited to a maximum value of 20 mm/s. Capture radii were calculated by the established single-wire theory under the assumption of potential and creeping flow conditions. It has been proved that further information on the solids content of the flocs, which strongly influences the floc susceptibility, was necessary to obtain an agreement between the experimental data and the theoretical predictions. By introducing a floc size dependent solids content into the single-wire theory, measured by means of sedimentation analysis, an accurate description of the observed capture radii was possible.
The Radii and Oblateness of Pluto and Charon: Preliminary Results from the 2015 New Horizons Flyby
NASA Astrophysics Data System (ADS)
Lisse, Carey M.; Nimmo, Francis; McKinnon, William B.; Umurhan, Orkan M.; Buie, Marc W.; Lauer, Tod R.; Roberts, James H.; Stern, S. Alan; Weaver, Hal A.; Young, Leslie A.; Ennico-Smith, Kimberly; Olkin, Cathy B.
2015-11-01
We present preliminary results for the radii and oblateness of Pluto and Charon. Accurate determinations of the mean radii of Pluto and Charon are important for establishing their densities and bulk composition. A fossil bulge, if present, would place constraints on the thermal and orbital evolution of these bodies [1,2]. The New Horizons LORRI imaging system [3] has provided global images of Pluto and Charon, with best resolutions of 3.8 and 2.3 km/pix, respectively. Three separate approaches have been used to determine mean radii and oblateness from the images, two using a threshold DN value [4,5] and one using a maximum gradient method. These approaches were validated using synthetic images having a range of photometric functions. Tradeoffs between the limb center location and the derived shape in individual images can be reduced by combining limb pixel locations obtained from different imaged rotational phases.This work was supported by NASA's New Horizons project.[1] Robuchon & Nimmo, Icarus 216, 426, 2011. [2] McKinnon & Singer, DPS 46, abs. no. 419.07, 2014. [3] Cheng et al., SSR 140, 189, 2008. [4] Dermott & Thomas, Icarus 73, 25, 1988. [5] Thomason & Nimmo, LPSC 46, abs. no. 1462, 2015.
Bastien, Fabienne A.; Stassun, Keivan G.; Pepper, Joshua
2014-06-10
Most extrasolar planets have been detected by their influence on their parent star, typically either gravitationally (the Doppler method) or by the small dip in brightness as the planet blocks a portion of the star (the transit method). Therefore, the accuracy with which we know the masses and radii of extrasolar planets depends directly on how well we know those of the stars, the latter usually determined from the measured stellar surface gravity, log g. Recent work has demonstrated that the short-timescale brightness variations ({sup f}licker{sup )} of stars can be used to measure log g to a high accuracy of ∼0.1-0.2 dex. Here, we use flicker measurements of 289 bright (Kepmag < 13) candidate planet-hosting stars with T {sub eff} = 4500-6650 K to re-assess the stellar parameters and determine the resulting impact on derived planet properties. This re-assessment reveals that for the brightest planet-host stars, Malmquist bias contaminates the stellar sample with evolved stars: nearly 50% of the bright planet-host stars are subgiants. As a result, the stellar radii, and hence the radii of the planets orbiting these stars, are on average 20%-30% larger than previous measurements had suggested.
Electrostatic attraction of charged drops of water inside dropwise cluster
Shavlov, A. V.; Dzhumandzhi, V. A.
2013-08-15
Based on the analytical solution of the Poisson-Boltzmann equation, we demonstrate that inside the electrically neutral system of charges an electrostatic attraction can occur between the like-charged particles, where charge Z ≫ 1 (in terms of elementary charge) and radius R > 0, whereas according to the literature, only repulsion is possible inside non-electrically neutral systems. We calculate the free energy of the charged particles of water inside a cluster and demonstrate that its minimum is when the interdroplet distance equals several Debye radii defined based on the light plasma component. The deepest minimum depth is in a cluster with close spatial packing of drops by type, in a face-centered cubic lattice, if almost all the electric charge of one sign is concentrated on the drops and that of the other sign is concentrated on the light compensation carriers of charge, where the charge moved by equilibrium carriers is rather small.
Effect of ionic radii on the Curie temperature in Ba1-x-ySrxCayTiO3 compounds
NASA Astrophysics Data System (ADS)
Berenov, A.; Le Goupil, F.; Alford, N.
2016-06-01
A series of Ba1-x-ySrxCayTiO3 compounds were prepared with varying average ionic radii and cation disorder on A-site. All samples showed typical ferroelectric behavior. A simple empirical equation correlated Curie temperature, TC, with the values of ionic radii of A-site cations. This correlation was related to the distortion of TiO6 octahedra observed during neutron diffraction studies. The equation was used for the selection of compounds with predetermined values of TC. The effects of A-site ionic radii on the temperatures of phase transitions in Ba1-x-ySrxCayTiO3 were discussed.
Effect of ionic radii on the Curie temperature in Ba1-x-ySrxCayTiO3 compounds.
Berenov, A; Le Goupil, F; Alford, N
2016-06-21
A series of Ba1-x-ySrxCayTiO3 compounds were prepared with varying average ionic radii and cation disorder on A-site. All samples showed typical ferroelectric behavior. A simple empirical equation correlated Curie temperature, TC, with the values of ionic radii of A-site cations. This correlation was related to the distortion of TiO6 octahedra observed during neutron diffraction studies. The equation was used for the selection of compounds with predetermined values of TC. The effects of A-site ionic radii on the temperatures of phase transitions in Ba1-x-ySrxCayTiO3 were discussed.
On the Correlation between the Magnetic Activity Levels, Metallicities, and Radii of Low-Mass Stars
NASA Astrophysics Data System (ADS)
López-Morales, Mercedes
2007-05-01
The recent increase in the number of radius measurements of very low mass stars from eclipsing binaries and interferometry of single stars has raised more questions about what could be causing the discrepancy between the observed radii and those predicted by models. The two main explanations being proposed are a correlation between the radii of the stars and either their activity levels or their metallicities. This paper presents a study of such correlations using all the data published to date. The study also investigates correlations between the radius deviations from the models and the masses of the stars. There is no clear correlation between activity level and radius for the single stars in the sample. These single stars are slow rotators, with typical velocities vrotsini<3.0 km s-1. A clear correlation however exists in the case of the faster rotating members of binaries. This result is based on the X-ray emission levels of the stars. There also appears to be an increase in the deviation of the radii of single stars from the models as a function of metallicity, as previously indicated by Berger et al. The stars in binaries do not seem to follow the same trend. Finally, the Baraffe et al. models reproduce well the radius observations below 0.30-0.35 Msolar, where the stars become fully convective, although this result is preliminary since almost all the sample stars in that mass range are slow rotators and metallicities have not been measured for most of them. The results indicate that stellar activity and metallicity play an important role in determining the radius of very low mass stars, at least above 0.35 Msolar.
Plastic set of smooth large radii of curvature thermal conductance specimens at light loads.
NASA Technical Reports Server (NTRS)
Mckinzie, D. J., Jr.
1972-01-01
Thermal contact conductance test data at high vacuum were obtained from two Armco iron specimens having smooth, large radii of curvature, convex, one-half wave length surfaces. The data are compared with calculations based on two macroscopic elastic deformation theories and an empirical expression. Major disagreement with the theories and fair agreement with the empirical expression resulted. Plastic deformation of all the contacting surfaces was verified from surface analyzer statistics. These results indicate that the theoretical assumption of macroscopic elastic deformation is inadequate for accurate prediction of heat transfer with light loads for Armco iron specimens similar to those used in this investigation.
Possible octupole deformation in Cs and Ba nuclei from their differential radii
Sheline, R.K.; Jain, A.K.; Jain, K.
1988-12-01
The odd-even staggering of the differential radii of Fr and Ra and the Cs and Ba nuclei is compared. This staggering is inverted in the region of known octupole deformation in the Fr and Ra nuclei. The normal staggering is eliminated in the Cs nuclei and attenuated in the Ba nuclei for neutron numbers 85--88. This fact is used to suggest the possible existence of octupole deformation and its neutron number range in the Cs and Ba nuclear ground states.
Pattern Corotation Radii from Potential-Density Phase-Shifts for 153 OSUBGS Sample Galaxies
NASA Astrophysics Data System (ADS)
Buta, Ronald J.; Zhang, Xiaolei
2009-06-01
The potential-density phase-shift method is an effective new tool for investigating the structure and evolution of galaxies. In this paper, we apply the method to 153 galaxies in the Ohio State University Bright Galaxy Survey (OSUBGS) to study the general relationship between pattern corotation radii and the morphology of spiral galaxies. The analysis is based on near-infrared H-band images that have been deprojected and decomposed assuming a spherical bulge. We find that multiple pattern speeds are common in disk galaxies. By selecting those corotation radii close to or slightly larger than the bar radius as being the bar corotation (CR) radius, we find that the average and standard deviation of the ratio R = r(CR)/r(bar), is 1.20 ± 0.52 for 101 galaxies having well-defined bars. There is an indication that this ratio depends weakly on galaxy type in the sense that the average ranges from 1.03 ± 0.37 for 65 galaxies of type Sbc and earlier, to 1.50 ± 0.63 for 36 galaxies of type Sc and later. Our bar corotation radii are on average smaller than those estimated from single-pattern-speed numerical simulations, most likely because these simulations tend to find the pattern speed which generates a density response in the gas that best matches the morphology of the outer spiral structure. Although we find CR radii in most of the sample galaxies that satisfy conventional ideas about the extent of bars, we also consider the alternative interpretation that in many cases the bar CR is actually inside the bar and that the bar ends close to its outer Lindblad resonance instead of its CR. These "superfast" bars are the most controversial finding from our study. We see evidence in the phase-shift distributions for ongoing decoupling of patterns, which hints at the formation pathways of nested patterns, and which in turn further hints at the longevity of the density wave patterns in galaxies. We also examine how uncertainties in the orientation parameters of galaxies and in
NEUTRON STARS WITH SMALL RADII-THE ROLE OF {Delta} RESONANCES
Schuerhoff, Torsten; Schramm, Stefan; Dexheimer, Veronica
2010-11-20
Recent neutron star observations suggest that the masses and radii of neutron stars may be smaller than previously considered, which would disfavor a purely nucleonic equation of state (EoS). In our model, we use a flavor SU(3) sigma model that includes {Delta} resonances and hyperons in the EoS. We find that if the coupling of the {Delta} resonances to the vector mesons is slightly smaller than that of the nucleons, we can reproduce both the measured mass-radius relationship and the extrapolated EoS.
Disk Radii and Grain Sizes in Herschel-resolved Debris Disks
NASA Astrophysics Data System (ADS)
Pawellek, Nicole; Krivov, Alexander V.; Marshall, Jonathan P.; Montesinos, Benjamin; Ábrahám, Péter; Moór, Attila; Bryden, Geoffrey; Eiroa, Carlos
2014-09-01
The radii of debris disks and the sizes of their dust grains are important tracers of the planetesimal formation mechanisms and physical processes operating in these systems. Here we use a representative sample of 34 debris disks resolved in various Herschel Space Observatory (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) programs to constrain the disk radii and the size distribution of their dust. While we modeled disks with both warm and cold components, and identified warm inner disks around about two-thirds of the stars, we focus our analysis only on the cold outer disks, i.e., Kuiper-belt analogs. We derive the disk radii from the resolved images and find a large dispersion for host stars of any spectral class, but no significant trend with the stellar luminosity. This argues against ice lines as a dominant player in setting the debris disk sizes, since the ice line location varies with the luminosity of the central star. Fixing the disk radii to those inferred from the resolved images, we model the spectral energy distribution to determine the dust temperature and the grain size distribution for each target. While the dust temperature systematically increases toward earlier spectral types, the ratio of the dust temperature to the blackbody temperature at the disk radius decreases with the stellar luminosity. This is explained by a clear trend of typical sizes increasing toward more luminous stars. The typical grain sizes are compared to the radiation pressure blowout limit s blow that is proportional to the stellar luminosity-to-mass ratio and thus also increases toward earlier spectral classes. The grain sizes in the disks of G- to A-stars are inferred to be several times s blow at all stellar luminosities, in agreement with collisional models of debris disks. The sizes, measured in the units of s blow, appear to decrease with the luminosity
Kim, Hoonbae; Ye, Donghyun; Won, Beomhee; Yu, SeGi; Jung, Donggeun
2016-05-01
Flexible organic solar cells (OSCs) were fabricated on an indium-tin-oxide (ITO)/poly(ethylene terephthalate) (PET) substrate and were subjected to bending tests with various bending radii. We observed that the photovoltaic properties of the OSCs precipitously deteriorated at a bending radius ≤ 0.75 cm. In order to investigate the effects of the bending test, the changes in the surface morphology and the sheet resistance of the ITO-coated PET samples were investigated, and the photovoltaic properties of bent and unbent OSCs were evaluated. Thereafter, equivalent circuits for the OSCs were assumed and the change in their parameters, such as resistance and capacitance, was observed. PMID:27483935
Plastic set of smooth large radii of curvature thermal conductance specimens at light loads
NASA Technical Reports Server (NTRS)
Mckinzie, D. J., Jr.
1972-01-01
Thermal contact conductance test data at high vacuum were obtained from two Armco iron specimens having smooth, large radii of curvature, convex, one-half wave length surfaces. The data are compared with calculations based on two macroscopic elastic deformation theories and an empirical expression. Major disagreement with the theories and fair agreement with the empirical expression resulted. Plastic deformation of all the contacting surfaces was verified from surface analyzer statistics. These results indicate that the theoretical assumption of macroscopic elastic deformation is inadequate for accurate prediction of heat transfer with light loads for Armco iron specimens similar to those used in this investigation.
The quantization of the radii of coordination spheres cubic crystals and cluster systems
NASA Astrophysics Data System (ADS)
Melnikov, G.; Emelyanov, S.; Ignatenko, N.; Ignatenko, G.
2016-02-01
The article deals with the creation of an algorithm for calculating the radii of coordination spheres and coordination numbers cubic crystal structure and cluster systems in liquids. Solution has important theoretical value since it allows us to calculate the amount of coordination in the interparticle interaction potentials, to predict the processes of growth of the crystal structures and processes of self-organization of particles in the cluster system. One option accounting geometrical and quantum factors is the use of the Fibonacci series to construct a consistent number of focal areas for cubic crystals and cluster formation in the liquid.
Disk radii and grain sizes in Herschel-resolved debris disks
Pawellek, Nicole; Krivov, Alexander V.; Marshall, Jonathan P.; Montesinos, Benjamin; Ábrahám, Péter; Moór, Attila; Bryden, Geoffrey; Eiroa, Carlos
2014-09-01
The radii of debris disks and the sizes of their dust grains are important tracers of the planetesimal formation mechanisms and physical processes operating in these systems. Here we use a representative sample of 34 debris disks resolved in various Herschel Space Observatory (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) programs to constrain the disk radii and the size distribution of their dust. While we modeled disks with both warm and cold components, and identified warm inner disks around about two-thirds of the stars, we focus our analysis only on the cold outer disks, i.e., Kuiper-belt analogs. We derive the disk radii from the resolved images and find a large dispersion for host stars of any spectral class, but no significant trend with the stellar luminosity. This argues against ice lines as a dominant player in setting the debris disk sizes, since the ice line location varies with the luminosity of the central star. Fixing the disk radii to those inferred from the resolved images, we model the spectral energy distribution to determine the dust temperature and the grain size distribution for each target. While the dust temperature systematically increases toward earlier spectral types, the ratio of the dust temperature to the blackbody temperature at the disk radius decreases with the stellar luminosity. This is explained by a clear trend of typical sizes increasing toward more luminous stars. The typical grain sizes are compared to the radiation pressure blowout limit s {sub blow} that is proportional to the stellar luminosity-to-mass ratio and thus also increases toward earlier spectral classes. The grain sizes in the disks of G- to A-stars are inferred to be several times s {sub blow} at all stellar luminosities, in agreement with collisional models of debris disks. The sizes, measured in the units of s {sub blow}, appear to decrease
Understanding the Rapidity Dependence of the Elliptic Flow and the HBT Radii at RHIC
Csanad, M.; Loerstad, B.
2006-04-11
The pseudo-rapidity dependence of the elliptic flow at various excitation energies measured by the PHOBOS Collaboration in Au+Au collisions at RHIC is one of the surprising results that has not been explained before in terms of hydrodynamical models. Here we show that these data are in agreement with theoretical predictions and satisfy the universal scaling relation predicted by the Buda-Lund hydrodynamical model, based on exact solutions of perfect fluid hydrodynamics. We also show a theoretical prediction on the rapidity and transverse momentum scaling of the HBT radii measured in heavy ion collisions, based on the Buda-Lund model.
Perturbative solution for terahertz two-wire metallic waveguides with different radii.
Gao, Hua; Cao, Qing; Teng, Da; Zhu, Minning; Wang, Kai
2015-10-19
We introduce the technique of perturbation of boundary condition to the problem of terahertz two-wire metallic waveguides with different radii. Based on the quasi-TEM analytical mode fields derived by use of Möbius transformation, a concise expression for the complex effective index is obtained analytically. The expression is in good agreement with the simulation result. Further, the dispersion and attenuation are obtained from the expression. In addition, we find a zero value point of the group velocity dispersion around 1.268 THz. The results show that the technique of perturbation of boundary condition is helpful in the analysis and design of terahertz metal waveguide. PMID:26480406
Clarke, John
1980-09-01
The purpose of this article is to review the theory of charge imbalance, and to discuss its relevance to a number of experimental situations. We introduce the concepts of quasiparticle charge and charge imbalance, and discuss the generation and detection of charge imbalance by tunneling. We describe the relaxation of the injected charge imbalance by inelastic scattering processes, and show how the Boltzmann equation can be solved to obtain the steady state quasiparticle distribution and the charge relaxation rate. Details are given of experiments to measure charge imbalance and the charge relaxation rate when inelastic scattering is the predominant relaxation mechanism. Experiments on and theories of other charge relaxation mechanisms are discussed, namely relaxation via elastic scattering in the presence of energy gap anisotropy, or in the presence of a pair breaking mechanism such as magnetic impurities or an applied supercurrent or magnetic field. We describe three other situations in which charge imbalance occurs, namely the resistance of the NS interface, phase slip centers, and the flow of a supercurrent in the presence of a temperature gradient.
Finite Larmor radii effects in fast ion measurements with neutron emission spectrometry
NASA Astrophysics Data System (ADS)
Eriksson, J.; Hellesen, C.; Andersson Sundén, E.; Cecconello, M.; Conroy, S.; Ericsson, G.; Gatu Johnson, M.; Pinches, S. D.; Sharapov, S. E.; Weiszflog, M.; EFDA contributors, JET
2013-01-01
When analysing data from fast ion measurements it is normally assumed that the gyro-phase distribution of the ions is isotropic within the field of view of the measuring instrument. This assumption is not valid if the Larmor radii of the fast ions are comparable to—or larger than—the gradient scale length in the spatial distribution of the ions, and if this scale length is comparable to—or smaller than—the width of the field of view of the measuring instrument. In this paper the effect of such an anisotropy is demonstrated by analysing neutron emission spectrometry data from a JET experiment with deuterium neutral beams together with radiofrequency heating at the third harmonic of the deuterium cyclotron frequency. In the experiment, the neutron time-of-flight spectrometer TOFOR was used to measure the neutrons from the d(d,n)3He-reaction. Comparison of the experimental data with Monte Carlo calculations shows that the finite Larmor radii of the fast ions need to be included in the modelling to get a good description of the data. Similar effects are likely to be important for other fast ion diagnostics, such as γ-ray spectroscopy and neutral particle analysis, as well.
THE INFLUENCE OF ORBITAL ECCENTRICITY ON TIDAL RADII OF STAR CLUSTERS
Webb, Jeremy J.; Harris, William E.; Sills, Alison; Hurley, Jarrod R.
2013-02-20
We have performed N-body simulations of star clusters orbiting in a spherically symmetric smooth galactic potential. The model clusters cover a range of initial half-mass radii and orbital eccentricities in order to test the historical assumption that the tidal radius of a cluster is imposed at perigalacticon. The traditional assumption for globular clusters is that since the internal relaxation time is larger than its orbital period, the cluster is tidally stripped at perigalacticon. Instead, our simulations show that a cluster with an eccentric orbit does not need to fully relax in order to expand. After a perigalactic pass, a cluster recaptures previously unbound stars, and the tidal shock at perigalacticon has the effect of energizing inner region stars to larger orbits. Therefore, instead of the limiting radius being imposed at perigalacticon, it more nearly traces the instantaneous tidal radius of the cluster at any point in the orbit. We present a numerical correction factor to theoretical tidal radii calculated at perigalacticon which takes into consideration both the orbital eccentricity and current orbital phase of the cluster.
Radii and Shape of Pluto and Charon: Preliminary Results from New Horizons
NASA Astrophysics Data System (ADS)
Nimmo, F.; Lisse, C. M.; Umurhan, O. M.; McKinnon, W. B.; Buie, M. W.; Lauer, T.; Beyer, R. A.; Moore, J. M.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.; Young, L. A.; Bierson, C. J.
2015-12-01
Accurate determinations of the mean radii of Pluto and Charon are important for establishing their densities and thus bulk composition. A fossil bulge, if present, would place constraints on the thermal and orbital evolution of these bodies [1,2]. The New Horizons LORRI imaging system [3] has provided global images of Pluto and Charon, with best resolutions of 3.8 and 2.3 km/pix, respectively. Three separate approaches have been used to determine mean radii and shape from the images, two using a threshold DN value [4,5] and one using a maximum gradient method. These approaches were validated using synthetic images having a range of photometric functions. Tradeoffs between the limb center location and the derived shape in individual images can be reduced by combining limb picks from different images. Preliminary results for both Pluto and Charon will be presented. [1] Robuchon & Nimmo, Icarus 216, 426, 2011. [2] McKinnon & Singer, DPS 46, abs. no. 419.07, 2014. [3] Cheng et al., SSR 140, 189, 2008. [4] Dermott & Thomas, Icarus 73, 25, 1988. [5] Thomason & Nimmo, LPSC 46, abs. no. 1462, 2015.
Absolute densities, masses, and radii of the WASP-47 system determined dynamically
NASA Astrophysics Data System (ADS)
Almenara, J. M.; Díaz, R. F.; Bonfils, X.; Udry, S.
2016-10-01
We present a self-consistent modelling of the available light curve and radial velocity data of WASP-47 that takes into account the gravitational interactions between all known bodies in the system. The joint analysis of light curve and radial velocity data in a multi-planetary system allows deriving absolute densities, radii, and masses without the use of theoretical stellar models. For WASP-47 the precision is limited by the reduced dynamical information that is due to the short time span of the K2 light curve. We achieve a precision of around 22% for the radii of the star and the transiting planets, between 40% and 60% for their masses, and between 1.5% and 38% for their densities. All values agree with previously reported measurements. When theoretical stellar models are included, the system parameters are determined with a precision that exceeds that achieved by previous studies, thanks to the self-consistent modelling of light curve and radial velocity data.
Zumstein, Valentin; Kraljević, Marko; Müller-Gerbl, Magdalena
2013-11-01
Subchondral mineralization represents the loading history of a joint and can be measured in vivo using computed tomography osteoabsorptiometry. Different mineralization patterns in the glenohumeral joint have been explained by the principle of physiologic incongruence. We sought to support this explanation by measurement of mineralization, radii, and cartilage thickness in 18 fresh shoulder specimens. We found three mineralization patterns: bicentric, monocentric anterior, and monocentric central. Mean radii of the glenoids were 27.4 mm for bicentric glenoids, 27.3 mm for monocentric anterior, and 24.8 mm for monocentric central glenoids. Cartilage thickness measurement revealed the highest values in anterior parts; the thinnest cartilage was found centrally. Our findings support the principle of a physiologic incongruence in the glenohumeral joint. Bicentric mineralization patterns exist in joints consisting of more flat glenoids compared to the corresponding humeral head. Monocentric distribution with a central maximum was found in specimens with glenoids being more curved, indicating higher degrees of congruence, which might represent an early stage of degenerative disease. The obtained information might also be important for implant fixation in resurfacing procedures or to achieve the best possible fit of an osteochondral allograft in the repair of cartilage defects.
NASA Technical Reports Server (NTRS)
Minow, Joseph I.
2014-01-01
(1) High energy (>100keV) electrons penetrate spacecraft walls and accumulate in dielectrics or isolated conductors; (2) Threat environment is energetic electrons with sufficient flux to charge circuit boards, cable insulation, and ungrounded metal faster than charge can dissipate; (3) Accumulating charge density generates electric fields in excess of material breakdown strenght resulting in electrostatic discharge; and (4) System impact is material damage, discharge currents inside of spacecraft Faraday cage on or near critical circuitry, and RF noise.
NASA Technical Reports Server (NTRS)
Stevens, N. John
1989-01-01
The effects of spacecraft charging on spacecraft materials are studied. Spacecraft charging interactions seem to couple environment to system performance through materials. Technology is still developing concerning both environment-driven and operating system-driven interactions. The meeting addressed environment but lacked specific mission requirements, as a result system definition are needed to prioritize interactions.
Medlin, John B.
1976-05-25
A charging machine for loading fuel slugs into the process tubes of a nuclear reactor includes a tubular housing connected to the process tube, a charging trough connected to the other end of the tubular housing, a device for loading the charging trough with a group of fuel slugs, means for equalizing the coolant pressure in the charging trough with the pressure in the process tubes, means for pushing the group of fuel slugs into the process tube and a latch and a seal engaging the last object in the group of fuel slugs to prevent the fuel slugs from being ejected from the process tube when the pusher is removed and to prevent pressure liquid from entering the charging machine.
High Precision, Directly Determined Radii and Effective Temperatures for Giant Stars
NASA Astrophysics Data System (ADS)
van Belle, Gerard
Mission Statement. The radius and temperature scale of giant stars across the Hertzsprung-Russell diagram from red giant branch stars to horizontal branch stars is understood well enough to enable an accurate prediction of temperature and size for a given star to no better than ~2.5% and ~20%, respectively, based upon photometry. The primary reason for this is the lack of empirically determined radii and temperatures across the giant branches. One of the long-running strengths of optical interferometry has been the empirical determination of fundamental stellar parameters. Through direct measurements of effective temperature and linear radius, methods such as photometric colors that indirectly predict such values can be calibrated. A substantial body of data on this topic collected for giant stars remains unpublished and stands to benefit from the advances in ancillary data sources and computational techniques of the last dozen years. Previous efforts in this regard have been limited by data sample breadth and depth. The Experiment. We will use multi-technique and multi-wavelength data available in NASA's Archives to directly measure angular sizes and bolometric fluxes for giant stars, establishing the radius-temperature scale across the giant branches. Interferometric data from NASA's Palomar Testbed Interferometer (PTI) Archive in conjunction with recent advances in calibration techniques will allow us to directly establish fundamental parameters of temperature and radius for 425 giant stars at unprecedented levels of accuracy. The majority of these objects was observed repeatedly over the 11-year run of this well- understood instrument, allowing for exquisite control of observational systematics. Optical, near-infrared and mid-infrared data from NASA Archives, including 2MASS, COBE, MSX, and WISE will constrain the bolometric fluxes; the recent reanalysis of the Hipparcos data will provide unparalleled distances to each of the 425 giant stars in the sample. We
Rodríguez, Laura; Carretero, José Miguel; García-González, Rebeca; Lorenzo, Carlos; Gómez-Olivencia, Asier; Quam, Rolf; Martínez, Ignacio; Gracia-Téllez, Ana; Arsuaga, Juan Luis
2016-01-01
Complete radii in the fossil record preceding recent humans and Neandertals are very scarce. Here we introduce the radial remains recovered from the Sima de los Huesos (SH) site in the Sierra de Atapuerca between 1976 and 2011 and which have been dated in excess of 430 ky (thousands of years) ago. The sample comprises 89 specimens, 49 of which are attributed to adults representing a minimum of seven individuals. All elements are described anatomically and metrically, and compared with other fossil hominins and recent humans in order to examine the phylogenetic polarity of certain radial features. Radial remains from SH have some traits that differentiate them from those of recent humans and make them more similar to Neandertals, including strongly curved shafts, anteroposterior expanded radial heads and both absolutely and relatively long necks. In contrast, the SH sample differs from Neandertals in showing a high overall gracility as well as a high frequency (80%) of an anteriorly oriented radial tuberosity. Thus, like the cranial and dental remains from the SH site, characteristic Neandertal radial morphology is not present fully in the SH radii. We also analyzed the cross-sectional properties of the SH radial sample at two different levels: mid-shaft and at the midpoint of the neck length. When standardized by shaft length, no difference in the mid-shaft cross-sectional properties were found between the SH hominins, Neandertals and recent humans. Nevertheless, due to their long neck length, the SH hominins show a higher lever efficiency than either Neandertals or recent humans. Functionally, the SH radial morphology is consistent with more efficient pronation-supination and flexion-extension movements. The particular trait composition in the SH sample and Neandertals resembles more closely morphology evident in recent human males. PMID:26767960
Neutron star radii, universal relations, and the role of prior distributions
NASA Astrophysics Data System (ADS)
Steiner, A. W.; Lattimer, J. M.; Brown, E. F.
2016-02-01
We investigate constraints on neutron star structure arising from the assumptions that neutron stars have crusts, that recent calculations of pure neutron matter limit the equation of state of neutron star matter near the nuclear saturation density, that the high-density equation of state is limited by causality and the largest high-accuracy neutron star mass measurement, and that general relativity is the correct theory of gravity. We explore the role of prior assumptions by considering two classes of equation of state models. In a first, the intermediate- and high-density behavior of the equation of state is parameterized by piecewise polytropes. In the second class, the high-density behavior of the equation of state is parameterized by piecewise continuous line segments. The smallest density at which high-density matter appears is varied in order to allow for strong phase transitions above the nuclear saturation density. We critically examine correlations among the pressure of matter, radii, maximum masses, the binding energy, the moment of inertia, and the tidal deformability, paying special attention to the sensitivity of these correlations to prior assumptions about the equation of state. It is possible to constrain the radii of 1.4 M_{⊙} neutron stars to be larger than 10km, even without consideration of additional astrophysical observations, for example, those from photospheric radius expansion bursts or quiescent low-mass X-ray binaries. We are able to improve the accuracy of known correlations between the moment of inertia and compactness as well as the binding energy and compactness. We also demonstrate the existence of a correlation between the neutron star binding energy and the moment of inertia.
Neutron star radii, universal relations, and the role of prior distributions
Steiner, Andrew W.; Lattimer, James M.; Brown, Edward F.
2016-02-02
We investigate constraints on neutron star structure arising from the assumptions that neutron stars have crusts, that recent calculations of pure neutron matter limit the equation of state of neutron star matter near the nuclear saturation density, that the high-density equation of state is limited by causality and the largest high-accuracy neutron star mass measurement, and that general relativity is the correct theory of gravity. We explore the role of prior assumptions by considering two classes of equation of state models. In a first, the intermediate- and high-density behavior of the equation of state is parameterized by piecewise polytropes. Inmore » the second class, the high-density behavior of the equation of state is parameterized by piecewise continuous line segments. The smallest density at which high-density matter appears is varied in order to allow for strong phase transitions above the nuclear saturation density. We critically examine correlations among the pressure of matter, radii, maximum masses, the binding energy, the moment of inertia, and the tidal deformability, paying special attention to the sensitivity of these correlations to prior assumptions about the equation of state. It is possible to constrain the radii of 1.4 solar mass neutron stars to be larger than 10 km, even without consideration of additional astrophysical observations, for example, those from photospheric radius expansion bursts or quiescent low-mass X-ray binaries. We are able to improve the accuracy of known correlations between the moment of inertia and compactness as well as the binding energy and compactness. Furthermore, we also demonstrate the existence of a correlation between the neutron star binding energy and the moment of inertia.« less
Rodríguez, Laura; Carretero, José Miguel; García-González, Rebeca; Lorenzo, Carlos; Gómez-Olivencia, Asier; Quam, Rolf; Martínez, Ignacio; Gracia-Téllez, Ana; Arsuaga, Juan Luis
2016-01-01
Complete radii in the fossil record preceding recent humans and Neandertals are very scarce. Here we introduce the radial remains recovered from the Sima de los Huesos (SH) site in the Sierra de Atapuerca between 1976 and 2011 and which have been dated in excess of 430 ky (thousands of years) ago. The sample comprises 89 specimens, 49 of which are attributed to adults representing a minimum of seven individuals. All elements are described anatomically and metrically, and compared with other fossil hominins and recent humans in order to examine the phylogenetic polarity of certain radial features. Radial remains from SH have some traits that differentiate them from those of recent humans and make them more similar to Neandertals, including strongly curved shafts, anteroposterior expanded radial heads and both absolutely and relatively long necks. In contrast, the SH sample differs from Neandertals in showing a high overall gracility as well as a high frequency (80%) of an anteriorly oriented radial tuberosity. Thus, like the cranial and dental remains from the SH site, characteristic Neandertal radial morphology is not present fully in the SH radii. We also analyzed the cross-sectional properties of the SH radial sample at two different levels: mid-shaft and at the midpoint of the neck length. When standardized by shaft length, no difference in the mid-shaft cross-sectional properties were found between the SH hominins, Neandertals and recent humans. Nevertheless, due to their long neck length, the SH hominins show a higher lever efficiency than either Neandertals or recent humans. Functionally, the SH radial morphology is consistent with more efficient pronation-supination and flexion-extension movements. The particular trait composition in the SH sample and Neandertals resembles more closely morphology evident in recent human males.
Neutron star masses and radii from quiescent low-mass x-ray binaries
Lattimer, James M.; Steiner, Andrew W. E-mail: steiner3@uw.edu
2014-04-01
We perform a systematic analysis of neutron star radius constraints from five quiescent low-mass X-ray binaries and examine how they depend on measurements of their distances and amounts of intervening absorbing material, as well as their assumed atmospheric compositions. We construct and calibrate to published results a semi-analytic model of the neutron star atmosphere which approximates these effects for the predicted masses and radii. Starting from mass and radius probability distributions established from hydrogen-atmosphere spectral fits of quiescent sources, we apply this model to compute alternate sets of probability distributions. We perform Bayesian analyses to estimate neutron star mass-radius curves and equation of state (EOS) parameters that best-fit each set of distributions, assuming the existence of a known low-density neutron star crustal EOS, a simple model for the high-density EOS, causality, and the observation that the neutron star maximum mass exceeds 2 M {sub ☉}. We compute the posterior probabilities for each set of distance measurements and assumptions about absorption and composition. We find that, within the context of our assumptions and our parameterized EOS models, some absorption models are disfavored. We find that neutron stars composed of hadrons are favored relative to those with exotic matter with strong phase transitions. In addition, models in which all five stars have hydrogen atmospheres are found to be weakly disfavored. Our most likely models predict neutron star radii that are consistent with current experimental results concerning the nature of the nucleon-nucleon interaction near the nuclear saturation density.
THE MASS-RADIUS RELATION FOR 65 EXOPLANETS SMALLER THAN 4 EARTH RADII
Weiss, Lauren M.; Marcy, Geoffrey W.
2014-03-01
We study the masses and radii of 65 exoplanets smaller than 4 R {sub ⊕} with orbital periods shorter than 100 days. We calculate the weighted mean densities of planets in bins of 0.5 R {sub ⊕} and identify a density maximum of 7.6 g cm{sup –3} at 1.4 R {sub ⊕}. On average, planets with radii up to R {sub P} = 1.5 R {sub ⊕} increase in density with increasing radius. Above 1.5 R {sub ⊕}, the average planet density rapidly decreases with increasing radius, indicating that these planets have a large fraction of volatiles by volume overlying a rocky core. Including the solar system terrestrial planets with the exoplanets below 1.5 R {sub ⊕}, we find ρ{sub P} = 2.43 + 3.39(R {sub P}/R {sub ⊕}) g cm{sup –3} for R {sub P} < 1.5 R {sub ⊕}, which is consistent with rocky compositions. For 1.5 ≤ R {sub P}/R {sub ⊕} < 4, we find M {sub P}/M {sub ⊕} = 2.69(R {sub P}/R {sub ⊕}){sup 0.93}. The rms of planet masses to the fit between 1.5 and 4 R {sub ⊕} is 4.3 M {sub ⊕} with reduced χ{sup 2} = 6.2. The large scatter indicates a diversity in planet composition at a given radius. The compositional diversity can be due to planets of a given volume (as determined by their large H/He envelopes) containing rocky cores of different masses or compositions.
Antila, Hanne S; Salonen, Emppu
2015-04-15
The Thole induced point dipole model is combined with three different point charge fitting methods, Merz-Kollman (MK), charges from electrostatic potentials using a grid (CHELPG), and restrained electrostatic potential (RESP), and two multipole algorithms, distributed multipole analysis (DMA) and Gaussian multipole model (GMM), which can be used to describe the electrostatic potential (ESP) around molecules in molecular mechanics force fields. This is done to study how the different methods perform when intramolecular polarizability contributions are self-consistently removed from the fitting done in the force field parametrization. It is demonstrated that the polarizable versions of the partial charge models provide a good compromise between accuracy and computational efficiency in describing the ESP of small organic molecules undergoing conformational changes. For the point charge models, the inclusion of polarizability reduced the the average root mean square error of ESP over the test set by 4-10%.
Anisotropic charged core envelope star
NASA Astrophysics Data System (ADS)
Mafa Takisa, P.; Maharaj, S. D.
2016-08-01
We study a charged compact object with anisotropic pressures in a core envelope setting. The equation of state is quadratic in the core and linear in the envelope. There is smooth matching between the three regions: the core, envelope and the Reissner-Nordström exterior. We show that the presence of the electric field affects the masses, radii and compactification factors of stellar objects with values which are in agreement with previous studies. We investigate in particular the effect of electric field on the physical features of the pulsar PSR J1614-2230 in the core envelope model. The gravitational potentials and the matter variables are well behaved within the stellar object. We demonstrate that the radius of the core and the envelope can vary by changing the parameters in the speed of sound.
Effect of ionic radii on the Curie temperature in Ba1-x-ySrxCayTiO3 compounds
Berenov, A.; Le Goupil, F.; Alford, N.
2016-01-01
A series of Ba1-x-ySrxCayTiO3 compounds were prepared with varying average ionic radii and cation disorder on A-site. All samples showed typical ferroelectric behavior. A simple empirical equation correlated Curie temperature, TC, with the values of ionic radii of A-site cations. This correlation was related to the distortion of TiO6 octahedra observed during neutron diffraction studies. The equation was used for the selection of compounds with predetermined values of TC. The effects of A-site ionic radii on the temperatures of phase transitions in Ba1-x-ySrxCayTiO3 were discussed. PMID:27324841
Buljan, M.; Karlusic, M.; Bogdanovic-Radovic, I.; Jaksic, M.; Radic, N.; Salamon, K.; Bernstorff, S.
2012-09-03
We report on a method for the determination of ion track radii, formed in amorphous materials by ion-beam irradiation. The method is based on the addition to an amorphous matrix of a small amount of foreign atoms, which easily diffuse and form clusters when the temperature is sufficiently increased. The irradiation causes clustering of these atoms, and the final separations of the formed clusters are dependent on the parameters of the ion-beam. Comparison of the separations between the clusters that are formed by ions with different properties in the same type of material enables the determination of ion-track radii.
Vacuum fluctuations and Brownian motion of a charged test particle near a reflecting boundary
Yu Hongwei; Ford, L. H.
2004-09-15
We study the Brownian motion of a charged test particle coupled to electromagnetic vacuum fluctuations near a perfectly reflecting plane boundary. The presence of the boundary modifies the quantum fluctuations of the electric field, which in turn modifies the motion of the test particle. We calculate the resulting mean squared fluctuations in the velocity and position of the test particle. In the case of directions transverse to the boundary, the results are negative. This can be interpreted as reducing the quantum uncertainty which would otherwise be present.
Variability of Stellar and Solar Radii and Effect on Planetary Orbits and Temperatures
NASA Astrophysics Data System (ADS)
Leubner, I. H.
2006-05-01
Based on a quantitative model, the planets are relatively loosely connected to the solar system. This was previously presented for the stability of the solar planetary system as a function of solar radiative and solar mass loss (Joint Assembly 2005). The model led to the prediction of the transition from water to ice about 3.6 billion years ago, in close agreement with experimental Mars explorations (AGU Fall meeting 2005). The model also revealed that the planetary orbits depend on the radii of their stellar parent, e.g., the Sun. The model assumes that stellar and solar radii are a function of the equilibrium between the stellar surface gravitational forces and intrasolar thermonuclear expansion forces. The model quantifies changes of planetary orbits, orbital periods, and planetary surface cooling and warming as a function of solar radius changes. The dependence on solar radius is super-linear. An increase of solar radius results in increasing planetary orbits, increasing orbital periods, and lowering of surface temperatures. At a critical solar radius, planets will separate from the solar system. The model shows that planetary orbits are highly sensitive to very small (<<1%) variations of solar radius. Solar radius and planetary orbit changes can be linked to the planetary global climate. This was evaluated for Earth. The model shows that relatively small decreases of solar radius can lead to significant increases of Earth global temperatures. These temperature increases are in addition and above to the much-studied greenhouse effects. Relatively small increases of solar radius can lead to significant lowering of Earth surface temperatures that may have been related to ages. The Earth global temperature is predicted to change at a rate of 0.29C per 0.001% solar radius change, and of 0.90C per 1.0E06 km (0.67%) orbital change. For the stability of planetary orbits as a function of solar radius, the model predicts that Pluto, Earth, and Mercury will separate from
NASA Astrophysics Data System (ADS)
Ligi, R.; Creevey, O.; Mourard, D.; Crida, A.; Lagrange, A.-M.; Nardetto, N.; Perraut, K.; Schultheis, M.; Tallon-Bosc, I.; ten Brummelaar, T.
2016-02-01
Context. Accurate stellar parameters are needed in numerous domains of astrophysics. The position of stars on the Hertzsprung-Russell diagram is an important indication of their structure and evolution, and it helps improve stellar models. Furthermore, the age and mass of stars hosting planets are required elements for studying exoplanetary systems. Aims: We aim at determining accurate parameters of a set of 18 bright exoplanet host and potential host stars from interferometric measurements, photometry, and stellar models. Methods: Using the VEGA/CHARA interferometer operating in the visible domain, we measured the angular diameters of 18 stars, ten of which host exoplanets. We combined them with their distances to estimate their radii. We used photometry to derive their bolometric flux and, then, their effective temperature and luminosity to place them on the H-R diagram. We then used the PARSEC models to derive their best fit ages and masses, with error bars derived from Monte Carlo calculations. Results: Our interferometric measurements lead to an average of 1.9% uncertainty on angular diameters and 3% on stellar radii. There is good agreement between measured and indirect estimations of angular diameters (either from SED fitting or from surface brightness relations) for main sequence (MS) stars, but not as good for more evolved stars. For each star, we provide a likelihood map in the mass-age plane; typically, two distinct sets of solutions appear (an old and a young age). The errors on the ages and masses that we provide account for the metallicity uncertainties, which are often neglected by other works. From measurements of its radius and density, we also provide the mass of 55 Cnc independently of models. From the stellar masses, we provide new estimates of semi-major axes and minimum masses of exoplanets with reliable uncertainties. We also derive the radius, density, and mass of 55 Cnc e, a super-Earth that transits its stellar host. Our exoplanetary
Charged kaon femtoscopic correlations in pp collisions at s=7TeV
NASA Astrophysics Data System (ADS)
Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agocs, A. G.; Agostinelli, A.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahn, S. U.; Ahn, S. A.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alici, A.; Alkin, A.; Almaráz Aviña, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldini Ferroli, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I. G.; Beck, H.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A. A. E.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Böttger, S.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossú, F.; Botje, M.; Botta, E.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carlin Filho, N.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chawla, I.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Coccetti, F.; Colamaria, F.; Colella, D.; Collu, A.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cruz Alaniz, E.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dalsgaard, H. H.; Danu, A.; Das, S.; Das, I.; Das, D.; Das, K.; Dash, A.; Dash, S.; De, S.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; Delagrange, H.; Deloff, A.; De Marco, N.; Dénes, E.; De Pasquale, S.; Deppman, A.; D Erasmo, G.; de Rooij, R.; Diaz Corchero, M. A.; Di Bari, D.; Dietel, T.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Dönigus, B.; Dordic, O.; Driga, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Dutta Majumdar, M. R.; Elia, D.; Emschermann, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Fenton-Olsen, B.; Feofilov, G.; Fernández Téllez, A.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, M.; Gheata, A.; Ghosh, P.; Gianotti, P.; Girard, M. R.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Ferreiro, E. G.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, C.; Grigoras, A.; Grigoriev, V.; Grigoryan, S.; Grigoryan, A.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Han, B. H.; Hanratty, L. D.; Hansen, A.; Harmanová-Tóthová, Z.; Harris, J. W.; Hartig, M.; Harton, A.; Hasegan, D.; Hatzifotiadou, D.; Hayashi, S.; Hayrapetyan, A.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, N.; Hess, B. A.; Hetland, K. F.; Hicks, B.; Hippolyte, B.; Hori, Y.; Hristov, P.; Hřivnáčová, I.; Huang, M.; Humanic, T. J.; Hwang, D. S.; Ichou, R.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G. M.; Innocenti, P. G.; Ippolitov, M.; Irfan, M.; Ivan, C.; Ivanov, V.; Ivanov, A.; Ivanov, M.; Ivanytskyi, O.; Jachołkowski, A.; Jacobs, P. M.; Jang, H. J.; Janik, M. A.; Janik, R.; Jayarathna, P. H. S. Y.; Jena, S.; Jha, D. M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kaidalov, A. B.; Kalcher, S.; Kaliňák, P.; Kalliokoski, T.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Khan, M. M.; Khan, P.; Khan, K. H.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, S.; Kim, M.; Kim, M.; Kim, J. S.; Kim, J. H.; Kim, D. W.; Kim, B.; Kim, D. J.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kliemant, M.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kompaniets, M.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kour, R.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kravčáková, A.; Krawutschke, T.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A. B.; Kurepin, A.; Kuryakin, A.; Kushpil, V.; Kushpil, S.; Kvaerno, H.; Kweon, M. J.; Kwon, Y.; Ladrón de Guevara, P.; Lakomov, I.; Langoy, R.; La Pointe, S. L.; Lara, C.; Lardeux, A.; La Rocca, P.; Lea, R.; Lechman, M.; Lee, G. R.; Lee, K. S.; Lee, S. C.; Legrand, I.; Lehnert, J.; Lenhardt, M.; Lenti, V.; León, H.; León Monzón, I.; León Vargas, H.; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Loo, K. K.; Lopez, X.; López Torres, E.; Løvhøiden, G.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luzzi, C.; Ma, K.; Ma, R.; Madagodahettige-Don, D. M.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Mangotra, L.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez Davalos, A.; Martínez García, G.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matthews, Z. L.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhailov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitu, C.; Mizuno, S.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Monteno, M.; Montes, E.; Moon, T.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Musa, L.; Musinsky, J.; Musso, A.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Navin, S.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Niida, T.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Nilsson, M. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Novitzky, N.; Nyanin, A.; Nyatha, A.; Nygaard, C.; Nystrand, J.; Ochirov, A.; Oeschler, H.; Oh, S. K.; Oh, S.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Ostrowski, P.; Otwinowski, J.; Oyama, K.; Ozawa, K.; Pachmayer, Y.; Pachr, M.; Padilla, F.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palaha, A.; Palmeri, A.; Papikyan, V.; Pappalardo, G. S.; Park, W. J.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perini, D.; Perrino, D.; Peryt, W.; Pesci, A.; Peskov, V.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrov, P.; Petrovici, M.; Petta, C.; Piano, S.; Piccotti, A.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Pitz, N.; Piyarathna, D. B.; Planinic, M.; Płoskoń, M.; Pluta, J.; Pocheptsov, T.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polák, K.; Polichtchouk, B.; Pop, A.; Porteboeuf-Houssais, S.; Pospíšil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Punin, V.; Putiš, M.; Putschke, J.; Quercigh, E.; Qvigstad, H.; Rachevski, A.; Rademakers, A.; Räihä, T. S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Ramírez Reyes, A.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riccati, L.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roy, P.; Roy, C.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahoo, R.; Sahu, P. K.; Saini, J.; Sakaguchi, H.; Sakai, S.; Sakata, D.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Santoro, R.; Sarkamo, J.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, H. R.; Schmidt, C.; Schuchmann, S.; Schukraft, J.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P. A.; Scott, R.; Segato, G.; Selyuzhenkov, I.; Senyukov, S.; Seo, J.; Serci, S.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Sharma, S.; Sharma, N.; Rohni, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Sicking, E.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, T.; Sinha, B. C.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J. M.; Søgaard, C.; Soltz, R.; Son, H.; Song, M.; Song, J.; Soos, C.; Soramel, F.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A. P.; Subieta Vásquez, M. A.; Sugitate, T.; Suire, C.; Sultanov, R.; Šumbera, M.; Susa, T.; Symons, T. J. M.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szostak, A.; Szymański, M.; Takahashi, J.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Tlusty, D.; Toia, A.; Torii, H.; Toscano, L.; Trubnikov, V.; Truesdale, D.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ulery, J.; Ullaland, K.; Ulrich, J.; Uras, A.; Urbán, J.; Urciuoli, G. M.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Vande Vyvre, P.; van Leeuwen, M.; Vannucci, L.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, Y.; Vinogradov, L.; Vinogradov, A.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Voloshin, K.; Voloshin, S.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, V.; Wagner, B.; Wan, R.; Wang, D.; Wang, M.; Wang, Y.; Wang, Y.; Watanabe, K.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, A.; Wilk, G.; Williams, M. C. S.; Windelband, B.; Xaplanteris Karampatsos, L.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I.-K.; Yoon, J.; Yu, W.; Yuan, X.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zelnicek, P.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhou, D.; Zhou, Y.; Zhou, F.; Zhu, J.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.; Zyzak, M.
2013-03-01
Correlations of two charged identical kaons (KchKch) are measured in pp collisions at s=7TeV by the ALICE experiment at the Large Hadron Collider (LHC). One-dimensional KchKch correlation functions are constructed in three multiplicity and four transverse momentum ranges. The KchKch femtoscopic source parameters R and λ are extracted. The KchKch correlations show a slight increase of femtoscopic radii with increasing multiplicity and a slight decrease of radii with increasing transverse momentum. These trends are similar to the ones observed for ππ and Ks0Ks0 correlations in pp and heavy-ion collisions. However at high multiplicities, there is an indication that the one-dimensional correlation radii for charged kaons are larger than those for pions in contrast to what was observed in heavy-ion collisions at the Relativistic Heavy-Ion Collider.
Systematic study of charged-pion and kaon femtoscopy in Au+Au collisions at √sNN = 200 GeV
Adare, A.
2015-09-23
We present a systematic study of charged pion and kaon interferometry in Au+Au collisions at √sNN=200 GeV. The kaon mean source radii are found to be larger than pion radii in the outward and longitudinal directions for the same transverse mass; this difference increases for more central collisions. The azimuthal-angle dependence of the radii was measured with respect to the second-order event plane and similar oscillations of the source radii were found for pions and kaons. Hydrodynamic models qualitatively describe the similar oscillations of the mean source radii for pions and kaons, but they do not fully describe the transverse-massmore » dependence of the oscillations.« less
Systematic study of charged-pion and kaon femtoscopy in Au+Au collisions at √s_{NN} = 200 GeV
Adare, A.
2015-09-23
We present a systematic study of charged pion and kaon interferometry in Au+Au collisions at √s_{NN}=200 GeV. The kaon mean source radii are found to be larger than pion radii in the outward and longitudinal directions for the same transverse mass; this difference increases for more central collisions. The azimuthal-angle dependence of the radii was measured with respect to the second-order event plane and similar oscillations of the source radii were found for pions and kaons. Hydrodynamic models qualitatively describe the similar oscillations of the mean source radii for pions and kaons, but they do not fully describe the transverse-mass dependence of the oscillations.
Systematic study of charged-pion and kaon femtoscopy in Au + Au collisions at √{sNN}=200 GeV
NASA Astrophysics Data System (ADS)
Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Al-Bataineh, H.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bickley, A. A.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Constantin, P.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Danley, D.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Dutta, D.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, H.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Gustafsson, H.-Å.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Hamilton, H. F.; Han, R.; Han, S. Y.; Hanks, J.; Hartouni, E. P.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hornback, D.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ide, J.; Ikeda, Y.; Imai, K.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Isobe, T.; Issah, M.; Isupov, A.; Ivanishchev, D.; Jacak, B. V.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kanda, S.; Kang, J. H.; Kapustinsky, J.; Karatsu, K.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, G. W.; Kim, M.; Kim, S. H.; Kim, Y.-J.; Kimelman, B.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Leitch, M. J.; Leite, M. A. L.; Leitner, E.; Lenzi, B.; Li, X.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Luechtenborg, R.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Masui, H.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Milov, A.; Mishra, D. K.; Mishra, M.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, T.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novak, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Oka, M.; Okada, K.; Onuki, Y.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J.; Park, J. S.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peresedov, V.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rowan, Z.; Rubin, J. G.; Rukoyatkin, P.; Ružička, P.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakashita, K.; Sako, H.; Samsonov, V.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Semenov, A. Yu.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Snowball, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Sparks, N. A.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takagui, E. M.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Themann, H.; Thomas, T. L.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Togawa, M.; Toia, A.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; Valle, H.; van Hecke, H. W.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; White, A. S.; White, S. N.; Winter, D.; Wood, J. P.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xie, W.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Young, G. R.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhang, C.; Zhou, S.; Zolin, L.; Zou, L.; Phenix Collaboration
2015-09-01
We present a systematic study of charged-pion and kaon interferometry in Au +Au collisions at √{s NN}=200 GeV. The kaon mean source radii are found to be larger than pion radii in the outward and longitudinal directions for the same transverse mass; this difference increases for more central collisions. The azimuthal-angle dependence of the radii was measured with respect to the second-order event plane and similar oscillations of the source radii were found for pions and kaons. Hydrodynamic models qualitatively describe the similar oscillations of the mean source radii for pions and kaons, but they do not fully describe the transverse-mass dependence of the oscillations.
Molecular single-bond covalent radii for elements 1-118.
Pyykkö, Pekka; Atsumi, Michiko
2009-01-01
A self-consistent system of additive covalent radii, R(AB)=r(A) + r(B), is set up for the entire periodic table, Groups 1-18, Z=1-118. The primary bond lengths, R, are taken from experimental or theoretical data corresponding to chosen group valencies. All r(E) values are obtained from the same fit. Both E-E, E-H, and E-CH(3) data are incorporated for most elements, E. Many E-E' data inside the same group are included. For the late main groups, the system is close to that of Pauling. For other elements it is close to the methyl-based one of Suresh and Koga [J. Phys. Chem. A 2001, 105, 5940] and its predecessors. For the diatomic alkalis MM' and halides XX', separate fits give a very high accuracy. These primary data are then absorbed with the rest. The most notable exclusion are the transition-metal halides and chalcogenides which are regarded as partial multiple bonds. Other anomalies include H(2) and F(2). The standard deviation for the 410 included data points is 2.8 pm.
DNA stretching on the wall surfaces in curved microchannels with different radii
2014-01-01
DNA molecule conformation dynamics and stretching were made on semi-circular surfaces with different radii (500 to 5,000 μm) in microchannels measuring 200 μm × 200 μm in cross section. Five different buffer solutions - 1× Tris-acetate-EDTA (TAE), 1× Tris-borate-EDTA (TBE), 1× Tris-EDTA (TE), 1× Tris-phosphate-EDTA (TPE), and 1× Tris-buffered saline (TBS) solutions - were used with a variety of viscosity such as 40, 60, and 80 cP, with resultant 10−4 ≤ Re ≤ 10−3 and the corresponding 5 ≤ Wi ≤ 12. The test fluids were seeded with JOJO-1 tracer particles for flow visualization and driven through the test channels via a piezoelectric (PZT) micropump. Micro particle image velocimetry (μPIV) measuring technique was applied for the centered-plane velocity distribution measurements. It is found that the radius effect on the stretch ratio of DNA dependence is significant. The stretch ratio becomes larger as the radius becomes small due to the larger centrifugal force. Consequently, the maximum stretch was found at the center of the channel with a radius of 500 μm. PMID:25147488
DNA stretching on the wall surfaces in curved microchannels with different radii
NASA Astrophysics Data System (ADS)
Hsieh, Shou-Shing; Wu, Fong-He; Tsai, Ming-Ju
2014-08-01
DNA molecule conformation dynamics and stretching were made on semi-circular surfaces with different radii (500 to 5,000 μm) in microchannels measuring 200 μm × 200 μm in cross section. Five different buffer solutions - 1× Tris-acetate-EDTA (TAE), 1× Tris-borate-EDTA (TBE), 1× Tris-EDTA (TE), 1× Tris-phosphate-EDTA (TPE), and 1× Tris-buffered saline (TBS) solutions - were used with a variety of viscosity such as 40, 60, and 80 cP, with resultant 10-4 ≤ Re ≤ 10-3 and the corresponding 5 ≤ Wi ≤ 12. The test fluids were seeded with JOJO-1 tracer particles for flow visualization and driven through the test channels via a piezoelectric (PZT) micropump. Micro particle image velocimetry (μPIV) measuring technique was applied for the centered-plane velocity distribution measurements. It is found that the radius effect on the stretch ratio of DNA dependence is significant. The stretch ratio becomes larger as the radius becomes small due to the larger centrifugal force. Consequently, the maximum stretch was found at the center of the channel with a radius of 500 μm.
Quantifying mass segregation and new core radii for 54 Milky Way globular clusters
Goldsbury, Ryan; Heyl, Jeremy; Richer, Harvey E-mail: heyl@phas.ubc.ca
2013-11-20
We present core radii for 54 Milky Way globular clusters determined by fitting King-Michie models to cumulative projected star count distributions. We find that fitting star counts rather than surface brightness profiles produces results that differ significantly due to the presence of mass segregation. The sample in each cluster is further broken down into various mass groups, each of which is fit independently, allowing us to determine how the concentration of each cluster varies with mass. The majority of the clusters in our sample show general agreement with the standard picture that more massive stars will be more centrally concentrated. We find that core radius versus stellar mass can be fit with a two-parameter power law. The slope of this power law is a value that describes the amount of mass segregation present in the cluster, and is measured independently of our distance from the cluster. This value correlates strongly with the core relaxation time and physical size of each cluster. Supplementary figures are also included showing the best fits and likelihood contours of fit parameters for all 54 clusters.
Continuum percolation of overlapping disks with a distribution of radii having a power-law tail.
Sasidevan, V
2013-08-01
We study the continuum percolation problem of overlapping disks with a distribution of radii having a power-law tail; the probability that a given disk has a radius between R and R+dR is proportional to R(-(a+1)), where a>2. We show that in the low-density nonpercolating phase, the two-point function shows a power-law decay with distance, even at arbitrarily low densities of the disks, unlike the exponential decay in the usual percolation problem. As in the problem of fluids with long-range interaction, we argue that in our problem, the critical exponents take their short-range values for a>3-η(sr) whereas they depend on a for a<3-η(sr) where η(sr) is the anomalous dimension for the usual percolation problem. The mean-field regime obtained in the fluid problem corresponds to the fully covered regime, a≤2, in the percolation problem. We propose an approximate renormalization scheme to determine the correlation length exponent ν and the percolation threshold. We carry out Monte Carlo simulations and determine the exponent ν as a function of a. The determined values of ν show that it is independent of the parameter a for a>3-η(sr) and is equal to that for the lattice percolation problem, whereas ν varies with a for 2
Structure of the magnetic field at altitudes of 1-1.15 solar radii
NASA Astrophysics Data System (ADS)
Akhtemov, Z. S.; Stepanyan, N. N.; Fainshtein, V. G.; Rudenko, G. V.
2016-09-01
An analysis of the characteristics of unipolar structures detected at latitudes from -40° to +40°, longitudes of 0°-360°, and altitudes of 1-1.15 solar radii during the period from May 1996 (the 23rd solar minimum) to October 2000 (the 23rd solar maximum) has been carried out. Synoptic maps of the solar radial magnetic field calculated in a potential approximation are used. The boundaries between unipolar structures with opposite magnetic polarities ("+/-" and "-/+" polarities) form chains extending along meridians at all the considered latitudes and altitudes. Depending on the latitude, the single-peaked distributions of the number of structures found at the lowest altitudes are replaced by double-peaked distributions at higher altitudes. The time variations of the total number of structures are non-monotonic. The growth in the number of unipolar structures begins before the growth in the Wolf number. This indicates that new unipolar structures already appear together with flocculi, preceding the formation of sunspots. It is found that structures with positive field have larger mean sizes that do structures with negative field. The polar field in the northern hemisphere penetrates to middle latitudes of the southern hemisphere. The existence of sets of structures with typical sizes is shown. The sizes of the smallest structures vary little with latitude, but increase slightly with altitude.
Acceleration of protons at 32 Jovian radii in the outer magnetosphere of jupiter
NASA Technical Reports Server (NTRS)
Schardt, A. W.; Mcdonald, F. B.; Trainor, J. H.
1977-01-01
During the inbound pass of Pioneer 10, a rapid ten-fold increase of the 0.2 to MeV proton flux was observed at 32 Jovian radii (R sub J). The total event lasted for 30 minutes and was made up of a number of superimposed individual events. At the time, the spacecraft was in the outer magnetosphere about 7 R sub J below the magnetic equator. Before and after the event, the proton flux was characteristic of the low flux level normally encountered between crossings of the magnetic equator. Flux changes at different energies were coherent within 1 minute; a time comparable to the time resolution of the data. The angular distributions were highly anisotropic with protons streaming towards Jupiter. A field-aligned dumbbell distribution was observed initially, and a pancake distribution just before the flux decayed to its pre-event value. The alpha particle flux changed as rapidly as the proton flux but peaked at different times. The energetic electron flux behaved differently; it increased gradually throughout the period.
Tracing the stellar halo of an early type galaxy out to 25 effective radii
NASA Astrophysics Data System (ADS)
Rejkuba, Marina
2016-08-01
We have used ACS and WFC3 cameras on board HST to resolve stars in the halo of NGC 5128 out to 140 kpc (25 effective radii, R eff) along the major axis and 70 kpc (13 R eff) along the minor axis. This dataset provides an unprecedented radial coverage of stellar halo properties in any galaxy. Color-magnitude diagrams clearly reveal the presence of the red giant branch stars belonging to the halo of NGC 5128 even in the most distant fields. The V-I colors of the red giants enable us to measure the metallicity distribution in each field and so map the metallicity gradient over the sampled area. The stellar metallicity follows a shallow gradient and even out at 140 kpc (25 R eff) its median value does not go below [M/H]~-1 dex. We observe significant field-to-field metallicity and stellar density variations. The star counts are higher along the major axis when compared to minor axis field located 90 kpc from the galaxy centre, indicating flattening in the outer halo. These observational results provide new important constraints for the assembly history of the halo and the formation of this gE galaxy.
Alfvenic Turbulence from the Sun to 65 Solar Radii: Numerical predictions.
NASA Astrophysics Data System (ADS)
Perez, J. C.; Chandran, B. D. G.
2015-12-01
The upcoming NASA Solar Probe Plus (SPP) mission will fly to within 9 solar radii from the solar surface, about 7 times closer to the Sun than any previous spacecraft has ever reached. This historic mission will gather unprecedented remote-sensing data and the first in-situ measurements of the plasma in the solar atmosphere, which will revolutionize our knowledge and understanding of turbulence and other processes that heat the solar corona and accelerate the solar wind. This close to the Sun the background solar-wind properties are highly inhomogeneous. As a result, outward-propagating Alfven waves (AWs) arising from the random motions of the photospheric magnetic-field footpoints undergo strong non-WKB reflections and trigger a vigorous turbulent cascade. In this talk I will discuss recent progress in the understanding of reflection-driven Alfven turbulence in this scenario by means of high-resolution numerical simulations, with the goal of predicting the detailed nature of the velocity and magnetic field fluctuations that the SPP mission will measure. In particular, I will place special emphasis on relating the simulations to relevant physical mechanisms that might govern the radial evolution of the turbulence spectra of outward/inward-propagating fluctuations and discuss the conditions that lead to universal power-laws.
In hot water: effects of temperature-dependent interiors on the radii of water-rich super-Earths
NASA Astrophysics Data System (ADS)
Thomas, Scott W.; Madhusudhan, Nikku
2016-05-01
Observational advancements are leading to increasingly precise measurements of super-Earth masses and radii. Such measurements are used in internal structure models to constrain interior compositions of super-Earths. It is now critically important to quantify the effect of various model assumptions on the predicted radii. In particular, models often neglect thermal effects, a choice justified by noting that the thermal expansion of a solid Earth-like planet is small. However, the thermal effects for water-rich interiors may be significant. We have systematically explored the extent to which thermal effects can influence the radii of water-rich super-Earths over a wide range of masses, surface temperatures, surface pressures and water mass fractions. We developed temperature-dependent internal structure models of water-rich super-Earths that include a comprehensive temperature-dependent water equation of state. We found that thermal effects induce significant changes in their radii. For example, for super-Earths with 10 per cent water by mass, the radius increases by up to 0.5 R⊕ when the surface temperature is increased from 300 to 1000 K, assuming a surface pressure of 100 bar and an adiabatic temperature gradient in the water layer. The increase is even larger at lower surface pressures and/or higher surface temperatures, while changing the water fraction makes only a marginal difference. These effects are comparable to current super-Earth radial measurement errors, which can be better than 0.1 R⊕. It is therefore important to ensure that the thermal behaviour of water is taken into account when interpreting super-Earth radii using internal structure models.
NASA Astrophysics Data System (ADS)
Li, Shi-bin; Wang, Zhen-guo; Barakos, George N.; Huang, Wei; Steijl, Rene
2016-10-01
Waverider will endure the huge aero-heating in the hypersonic flow, thus, it need be blunt for the leading edge. However, the aerodynamic performance will decrease for the blunt waverider because of the drag hoik. How to improve the aerodynamic performance and reduce the drag and aero-heating is very important. The variable blunt radii method will improve the aerodynamic performance, however, the huge aero-heating and bow shock wave at the head is still serious. In the current study, opposing jet is used in the waverider with variable blunt radii to improve its performance. The three-dimensional coupled implicit Reynolds-averaged Navier-Stokes(RANS) equation and the two equation SST k-ω turbulence model have been utilized to obtain the flow field properties. The numerical method has been validated against the available experimental data in the open literature. The obtained results show that the L/D will drop 7-8% when R changes from 2 to 8. The lift coefficient will increase, and the drag coefficient almost keeps the same when the variable blunt radii method is adopted, and the L/D will increase. The variable blunt radii method is very useful to improve the whole characteristics of blunt waverider and the L/D can improve 3%. The combination of the variable blunt radii method and opposing jet is a novel way to improve the whole performance of blunt waverider, and L/D can improve 4-5%. The aperture as a novel way of opposing jet is suitable for blunt waverider and also useful to improve the aerodynamic and aerothermodynamic characteristics of waverider in the hypersonic flow. There is the optimal P0in/P0 that can make the detached shock wave reattach the lower surface again so that the blunt waverider can get the better aerodynamic performance.
Determination of time zero from a charged particle detector
Green, Jesse Andrew
2011-03-15
A method, system and computer program is used to determine a linear track having a good fit to a most likely or expected path of charged particle passing through a charged particle detector having a plurality of drift cells. Hit signals from the charged particle detector are associated with a particular charged particle track. An initial estimate of time zero is made from these hit signals and linear tracks are then fit to drift radii for each particular time-zero estimate. The linear track having the best fit is then searched and selected and errors in fit and tracking parameters computed. The use of large and expensive fast detectors needed to time zero in the charged particle detectors can be avoided by adopting this method and system.
NASA Astrophysics Data System (ADS)
Mellor, Brett; Cruz Cortes, Efren; Busath, David; Mazzeo, Brian
2010-10-01
Protein structure, function, and interaction are, in part, a consequence of the low permittivity region surrounding the hydrophobic core of the molecule. We present a novel approach to estimate the dielectric constant of this region using measured and simulated first- and second-order charge moments. The second-order moment, the dipole moment, is measured using dielectric spectroscopy in a temperature-stable parallel-plate cell. The first-order moment, overall charge, and the dipole moment are calculated using structures from the Protein Data Bank and refined structures using molecular dynamics in CHARMM. The best estimate is evaluated in terms of the dielectric constant that minimizes the root mean square residual between measured and simulated charge moments. This method is carried out on the protein β-lactoglobulin, for which a dielectric constant in the range of 6 to 7 is estimated.
Parameter-free calculation of charge-changing cross sections at high energy
NASA Astrophysics Data System (ADS)
Suzuki, Y.; Horiuchi, W.; Terashima, S.; Kanungo, R.; Ameil, F.; Atkinson, J.; Ayyad, Y.; Cortina-Gil, D.; Dillmann, I.; Estradé, A.; Evdokimov, A.; Farinon, F.; Geissel, H.; Guastalla, G.; Janik, R.; Knoebel, R.; Kurcewicz, J.; Litvinov, Yu. A.; Marta, M.; Mostazo, M.; Mukha, I.; Nociforo, C.; Ong, H. J.; Pietri, S.; Prochazka, A.; Scheidenberger, C.; Sitar, B.; Strmen, P.; Takechi, M.; Tanaka, J.; Tanihata, I.; Vargas, J.; Weick, H.; Winfield, J. S.
2016-07-01
Charge-changing cross sections at high energies are expected to provide useful information on nuclear charge radii. No reliable theory to calculate the cross section has yet been available. We develop a formula using Glauber and eikonal approximations and test its validity with recent new data on carbon isotopes measured at around 900 A MeV. We first confirm that our theory reproduces the cross sections of 12,13,14C+12C consistently with the known charge radii. Next we show that the cross sections of C-1912 on a proton target are all well reproduced provided the role of neutrons is accounted for. We also discuss the energy dependence of the charge-changing cross sections.
Charged rotating black holes on a 3-brane
Aliev, A.N.; Guemruekcueoglu, A.E.
2005-05-15
We study exact stationary and axisymmetric solutions describing charged rotating black holes localized on a 3-brane in the Randall-Sundrum braneworld. The charges of the black holes are considered to be of two types, the first being an induced tidal charge that appears as an imprint of nonlocal gravitational effects from the bulk space and the second is a usual electric charge arising due to a Maxwell field trapped on the brane. We assume a special ansatz for the metric on the brane taking it to be of the Kerr-Schild form and show that the Kerr-Newman solution of ordinary general relativity in which the electric charge is superseded by a tidal charge satisfies a closed system of the effective gravitational field equations on the brane. It turns out that the negative tidal charge may provide a mechanism for spinning up the black hole so that its rotation parameter exceeds its mass. This is not allowed in the framework of general relativity. We also find a new solution that represents a rotating black hole on the brane carrying both charges. We show that for a rapid enough rotation the combined influence of the rotational dynamics and the local bulk effects of the 'squared' energy-momentum tensor on the brane distort the horizon structure of the black hole in such a way that it can be thought of as composed of nonuniformly rotating null circles with growing radii from the equatorial plane to the poles. We finally study the geodesic motion of test particles in the equatorial plane of a rotating black hole with tidal charge. We show that the effects of negative tidal charge tend to increase the horizon radius, as well as the radii of the limiting photon orbit, the innermost bound and the innermost stable circular orbits for both direct and retrograde motions of the particles.
Jenkins, H. Donald B.; Roobottom, Helen K.; Passmore, Jack; Glasser, Leslie
1999-08-01
The linear generalized equation described in this paper provides a further dimension to the prediction of lattice potential energies/enthalpies of ionic solids. First, it offers an alternative (and often more direct) approach to the well-established Kapustinskii equation (whose capabilities have also recently been extended by our recent provision of an extended set of thermochemical radii). Second, it makes possible the acquisition of lattice energy estimates for salts which, up until now, except for simple 1:1 salts, could not be considered because of lack of crystal structure data. We have generalized Bartlett's correlation for MX (1:1) salts, between the lattice enthalpy and the inverse cube root of the molecular (formula unit) volume, such as to render it applicable across an extended range of ionic salts for the estimation of lattice potential energies. When new salts are synthesized, acquisition of full crystal structure data is not always possible and powder data provides only minimal structural information-unit cell parameters and the number of molecules per cell. In such cases, lack of information about cation-anion distances prevents use of the Kapustinskii equation to predict the lattice energy of the salt. However, our new equation can be employed even when the latter information is not available. As is demonstrated, the approach can be utilized to predict and rationalize the thermochemistry in topical areas of synthetic inorganic chemistry as well as in emerging areas. This is illustrated by accounting for the failure to prepare diiodinetetrachloroaluminum(III), [I(2)(+)][AlCl(4)(-)] and the instability of triiodinetetrafluoroarsenic(III), [I(3)(+)][AsF(6)(-)]. A series of effective close-packing volumes for a range of ions, which will be of interest to chemists, as measures of relative ionic size and which are of use in making our estimates of lattice energies, is generated from our approach.
THE INNERMOST COLLIMATION STRUCTURE OF THE M87 JET DOWN TO ∼10 SCHWARZSCHILD RADII
Hada, Kazuhiro; Giroletti, Marcello; Giovannini, Gabriele; Kino, Motoki; Doi, Akihiro; Nagai, Hiroshi; Honma, Mareki; Hagiwara, Yoshiaki; Kawaguchi, Noriyuki
2013-09-20
We investigated the detailed inner jet structure of M87 using Very Long Baseline Array data at 2, 5, 8.4, 15, 23.8, 43, and 86 GHz, especially focusing on the multi-frequency properties of the radio core at the jet base. First, we measured the size of the core region transverse to the jet axis, defined as W{sub c}, at each frequency ν, and found a relation between W{sub c} and ν: W{sub c}(ν)∝ν{sup –0.71±0.05}. Then, by combining W{sub c}(ν) and the frequency dependence of the core position r{sub c}(ν), which was obtained in our previous study, we constructed a collimation profile of the innermost jet W{sub c}(r) down to ∼10 Schwarzschild radii (R{sub s}) from the central black hole. We found that W{sub c}(r) smoothly connects with the width profile of the outer edge-brightened, parabolic jet and then follows a similar radial dependence down to several tens of R{sub s}. Closer to the black hole, the measured radial profile suggests a possible change in the jet collimation shape from the outer parabolic one, where the jet shape tends to become more radially oriented. This result could be related to a magnetic collimation process or/and interactions with surrounding materials at the jet base. The present results shed light on the importance of higher-sensitivity/resolution imaging studies of M87 at 86, 43, and 22 GHz; these studies should be examined more rigorously.
Fabrication of large radii toroidal surfaces by single point diamond turning
Cunningham, J.P.; Marlar, T.A.; Miller, A.C.; Paterson, R. L.
1995-12-31
An unconventional machining technique has been developed for producing relatively large radii quasi-toroidal surfaces which could not normally be produced by conventional diamond turning technology. The maximum radial swing capacity of a diamond turning lathe is the limiting factor for the rotational radius of any toroid. A typical diamond turned toroidal surface is produced when a part is rotated about the spindle axis while the diamond tool contours the surface with any curved path. Toric surfaces sliced horizontally, have been used in laser resonator cavities. This paper will address the fabrication of a special case of toroids where a rotating tool path is a circle whose center is offset from the rotational axis of the toroid by a distance greater than the minor radius of the tool path. The quasi-toroidal surfaces produced by this technique approximate all asymmetrical combinations of concave/convex section of a torus. Other machine configurations have been reported which offer alternative approaches to the fabrication of concave asymmetric aspheric surfaces. Prototypes of unique lenses each having two quasi-toroidal surfaces were fabricated in the Ultraprecision Manufacturing Technology Center at form key components of a scanned laser focusing system. As an example of the problem faced, the specifications for one of the surfaces was equivalent to a section of a torus with a two meter diameter hole. The lenses were fabricated on a Nanoform 600 diamond turning lathe. This is a numerically controlled two axis T-base lathe with an air bearing spindle and oil hydrostatic slides. The maximum radial swing for this machine is approximately 0.3 meters.
Electrostatic charge confinement using bulky tetraoctylammonium cation and four anions
NASA Astrophysics Data System (ADS)
Andreeva, Nadezhda A.; Chaban, Vitaly V.
2016-04-01
Thanks to large opposite electrostatic charges, cations and anions establish strong ionic bonds. However, applications of ionic systems - electrolytes, gas capture, solubilization, etc. - benefit from weaker non-covalent bonds. The common approaches are addition of cosolvents and delocalization of electron charge density via functionalization of ions. We report fine tuning of closest-approach distances, effective radii, and cation geometry by different anions using the semi-empirical molecular dynamics simulations. We found that long fatty acid chains employed in the tetraalkylammonium cation are largely inefficient and new substituents must be developed. The reported results foster progress of task-specific ionic liquids.
Nuclear Shape And Size Properties For Rare-earth Neutron-rich Nuclei
Benhamouda, N.; Oudih, M. R.; Allal, N. H.; Fellah, M.
2009-01-28
Two-neutron separation energies, quadrupole moments and mean square charge radii, are evaluated for even-even Osmium isotopes with 78{<=}N{<=}114. The calculations are performed in the framework of a microscopic model including the pairing correlations rigorously by means of the FSBCS (Fixed-Sharp-BCS) method.
NASA Astrophysics Data System (ADS)
Paquin, Francis; Latini, Gianluca; Sakowicz, Maciej; Karsenti, Paul-Ludovic; Wang, Linjun; Beljonne, David; Stingelin, Natalie; Silva, Carlos
2011-05-01
We probe charge photogeneration and subsequent recombination dynamics in neat regioregular poly(3-hexylthiophene) films over six decades in time by means of time-resolved photoluminescence spectroscopy. Exciton dissociation at 10 K occurs extrinsically at interfaces between molecularly ordered and disordered domains. Polaron pairs thus produced recombine by tunneling with distributed rates governed by the distribution of electron-hole radii. Quantum-chemical calculations suggest that hot-exciton dissociation at such interfaces results from a high charge-transfer character.
A Hard Look at Neutron Star Radii and Disks with XMM-Newton and NuSTAR
NASA Astrophysics Data System (ADS)
Miller, Jon
2013-10-01
We request 40 ks observations of Cygnus X-2, 4U 1636-53, GX 17+2 and 4U 1705-44, jointly with XMM-Newton and NuSTAR. The primary goals are to test the ubiquity of relativistic lines in "Z" and "atoll" sources, and to obtain constraints on stellar radii and/or inner disk radii in cases where relativistic lines are found. With NuSTAR as a guide, we will determine when pile-up has been removed from the EPIC-pn ``timing'' mode observations via the exclusion of central pixels. We can then fully leverage the superior resolution of the EPIC-pn in the Fe K band in order to check for ionized disk winds that could distort disk reflection. The low energy coverage of XMM-Newton will give the best possible contraints on the direct continuum and the neutral line-of-sight absorption.
Mercator maps of orientations of a C60 molecule in single-walled nanotubes with distinct radii
Michel, K.H.; Verberck, B.; Nikolaev, A.V.
2005-09-27
We study the confinement of a C60 molecule encapsulated in a cylindrical nanotube as a function of the tube radius. Drawing the Mercator maps of the potential, we find two distinct molecular orientations; for tubes with small radii, RT < or approx. 7 A, a fivefold axis of the molecule coincides with the tube long axis, for larger radii, RT > or approx. 8 A, a threefold axis of the molecule coincides with the tube long axis. These different orientations are caused by the relative importance of the repulsive and the attractive parts of the van der Waals potentials of the molecule with the tube wall for small and large tubes respectively. Experimental evidence is provided by the apparent splitting of Ag modes of the C60 molecule in resonant Raman scattering.
NASA Astrophysics Data System (ADS)
Zhao, Yuqiong; Feng, Qibo; Zhang, Bin; Cui, Cunxing
2016-08-01
The laser beam drift is a main factor that influences laser collimation measurement accuracies. In such measurements, the common-path compensation method is an efficient way to eliminate errors which are normally produced by the laser beam drift. Based on our current common-path compensation system, compensations for the laser beam drift were studied by different laser beam radii and detectors. The measurements have shown that the compensation effect for 3 mm beam radius is better than the ones of 1.5 mm and 4.0 mm beam radii. Based on this, the ratio between the 3 mm beam radius and the total area of the quadrant detector, which is 36%, has indicated the best compensation effect.
Aerosol Charge Model Consistent with Flight Data from the ECOMA/MASS Rocket Campaign
NASA Astrophysics Data System (ADS)
Knappmiller, S.; Robertson, S. H.; Rapp, M.; Gumbel, J.; Horanyi, M.; Sternovsky, Z.; Friedrich, M.; Baumgarten, G.; Latteck, R.
2009-12-01
In August of 2007 two sounding rockets were launched from the Andoya Rocket Range, Norway carrying the MASS instrument (Mesospheric Aerosol Sampling Spectrometer). The instrument detects charged aerosols in four different mass ranges on four pairs of biased collector plates, one set for positive particles and one set for negative particles. The first sounding rocket was launched into PMSE and NLC on 3 August. The solar zenith angle was 93 degrees and NLC were seen in the previous hour at 83 km by the ALOMAR RMR lidar. NLC were also detected at the same altitude by rocket-borne photometer measurements. The data from the MASS instrument shows a negatively charged population with radii >3 nm in the 83-89 km altitude range, which is collocated with PMSE detected by the ALWIN radar. Smaller particles, 1-2 nm in radius with both positive and negative polarity were detected between 86-88 km. Positively charged particles <1 nm in radius were detected at the same altitude. A charging model is developed to investigate the coexistence of positively and negatively charged aerosols in the NLC environment. Natanson’s rate equations are used for the attachment of free electrons and ions and the model includes charging by photo-electron emission and photo-detachment. Although the MASS flight occurred during night time conditions, the solar flux was still significant to affect the charge state of the aerosols. The calculations are done assuming three types of particles with different photo-electron charging properties: 1) Icy NLC particles, 2) Hematite particles of meteoric origin as condensation nuclei, and 3) Hematite particles coated with ice. The charge model results are consistent with the MASS rocket data, displaying both positively and negatively charged aerosols for small radii and only negatively charged particles for large radii.
Neutron star radii and crusts: Uncertainties and unified equations of state
NASA Astrophysics Data System (ADS)
Fortin, M.; Providência, C.; Raduta, Ad. R.; Gulminelli, F.; Zdunik, J. L.; Haensel, P.; Bejger, M.
2016-09-01
The uncertainties in neutron star radii and crust properties due to our limited knowledge of the equation of state are quantitatively analyzed. We first demonstrate the importance of a unified microscopic description for the different baryonic densities of the star. If the pressure functional is obtained matching a crust and a core equation of state based on models with different properties at nuclear matter saturation, the uncertainties can be as large as ˜30 % for the crust thickness and 4% for the radius. Necessary conditions for causal and thermodynamically consistent matchings between the core and the crust are formulated and their consequences examined. A large set of unified equations of state for purely nucleonic matter is obtained based on twenty-four Skyrme interactions and nine relativistic mean-field nuclear parametrizations. In addition, for relativistic models fifteen equations of state including a transition to hyperonic matter at high density are presented. All these equations of state have in common the property of describing a 2 M⊙ star and of being causal within stable neutron stars. Spans of ˜3 and ˜4 km are obtained for the radius of, respectively, 1.0 M⊙ and 2.0 M⊙ stars. Applying a set of nine further constraints from experiment and ab initio calculations the uncertainty is reduced to ˜1 and 2 km, respectively. These residual uncertainties reflect lack of constraints at large densities and insufficient information on the density dependence of the equation of state near the nuclear matter saturation point. The most important parameter to be constrained is shown to be the symmetry energy slope L . Indeed, this parameter exhibits a linear correlation with the stellar radius, which is particularly clear for small mass stars around 1.0 M⊙ . The other equation-of-state parameters do not show clear correlations with the radius, within the present uncertainties. Potential constraints on L , the neutron star radius, and the equation of
NASA Astrophysics Data System (ADS)
Rutenberg, Andrew D.; Brown, Aidan I.; Kreplak, Laurent
2016-08-01
Collagen fibril cross-sectional radii show no systematic variation between the interior and the periphery of fibril bundles, indicating an effectively constant rate of collagen incorporation into fibrils throughout the bundle. Such spatially homogeneous incorporation constrains the extracellular diffusion of collagen precursors from sources at the bundle boundary to sinks at the growing fibrils. With a coarse-grained diffusion equation we determine stringent bounds, using parameters extracted from published experimental measurements of tendon development. From the lack of new fibril formation after birth, we further require that the concentration of diffusing precursors stays below the critical concentration for fibril nucleation. We find that the combination of the diffusive bound, which requires larger concentrations to ensure homogeneous fibril radii, and lack of nucleation, which requires lower concentrations, is only marginally consistent with fully processed collagen using conservative bounds. More realistic bounds may leave no consistent concentrations. Therefore, we propose that unprocessed pC-collagen diffuses from the bundle periphery followed by local C-proteinase activity and subsequent collagen incorporation at each fibril. We suggest that C-proteinase is localized within bundles, at fibril surfaces, during radial fibrillar growth. The much greater critical concentration of pC-collagen, as compared to fully processed collagen, then provides broad consistency between homogeneous fibril radii and the lack of fibril nucleation during fibril growth.
NASA Astrophysics Data System (ADS)
Hirschmann, Michaela; Naab, Thorsten
2015-08-01
We investigate the differential impact of physical mechanisms, mergers (stellar accretion) and internal energetic phenomena, on the evolution of stellar population gradients in massive, present-day galaxies employing a set of high-resolved, cosmological zoom simulations. We demonstrate that negative metallicity and color gradients at large radii (>2Reff) originate from the accretion of metal-poor stellar systems. At larger radii, galaxies become typically more dominated by stars accreted from satellite galaxies in major and minor mergers. However, only strong galactic winds can sufficiently reduce the metallicity content of the accreted stars to realistically steepen the outer metallicity and colour gradients in agreement with present-day observations. In contrast, the gradients of the models without winds are inconsistent with observations (too flat). In the wind model, colour and metallicity gradients are significantly steeper for systems which have accreted stars in minor mergers, while galaxies with major mergers have relatively flat gradients, confirming previous results. This analysis greatly highlights the importance of both energetic processes and merger events for stellar population properties of massive galaxies at large radii. Our results are expected to significantly contribute to the interpretation of current and up-coming IFU surveys (like MaNGA and Califa), which in turn can help to constrain models for energetic processes in simulations.
On neutron stars in f(R) theories: Small radii, large masses and large energy emitted in a merger
NASA Astrophysics Data System (ADS)
Aparicio Resco, Miguel; de la Cruz-Dombriz, Álvaro; Llanes Estrada, Felipe J.; Zapatero Castrillo, Víctor
2016-09-01
In the context of f(R) gravity theories, we show that the apparent mass of a neutron star as seen from an observer at infinity is numerically calculable but requires careful matching, first at the star's edge, between interior and exterior solutions, none of them being totally Schwarzschild-like but presenting instead small oscillations of the curvature scalar R; and second at large radii, where the Newtonian potential is used to identify the mass of the neutron star. We find that for the same equation of state, this mass definition is always larger than its general relativistic counterpart. We exemplify this with quadratic R2 and Hu-Sawicki-like modifications of the standard General Relativity action. Therefore, the finding of two-solar mass neutron stars basically imposes no constraint on stable f(R) theories. However, star radii are in general smaller than in General Relativity, which can give an observational handle on such classes of models at the astrophysical level. Both larger masses and smaller matter radii are due to much of the apparent effective energy residing in the outer metric for scalar-tensor theories. Finally, because the f(R) neutron star masses can be much larger than General Relativity counterparts, the total energy available for radiating gravitational waves could be of order several solar masses, and thus a merger of these stars constitutes an interesting wave source.
Thatcher, Jack D
2013-04-16
This Teaching Resource provides three animated lessons that describe the storage and utilization of energy across plasma membranes. The "Na,K ATPase" animation explains how these pumps establish the electrochemical gradient that stores energy across plasma membranes. The "ATP synthesizing complexes" animation shows how these complexes transfer energy from the inner mitochondrial membrane to adenosine triphosphate (ATP). The "action potential" lesson explains how charged membranes are used to propagate signals along the axons of neurons. These animations serve as valuable resources for any collegiate-level course that describes these important factors. Courses that might employ them include introductory biology, biochemistry, biophysics, cell biology, pharmacology, and physiology.
Transportable charge in a periodic alternating gradient system
Lee, E.P.; Fessenden, T.J.; Laslett, L.J.
1985-05-01
A simple set of formulas is derived which relate emittance, line charge density, matched maximum and average envelope radii, occupancy factors, and the (space charge) depressed and vacuum values of tune. This formulation is an improvement on the smooth limit approximation; deviations from exact (numerically determined) relations are on the order of +-2%, while the smooth limit values are in error by up to +-30%. This transport formalism is used to determine the limits of transportable line charge density in an electrostatic quadrupole array, with specific application to the low energy portion of the High Temperature Experiment of Heavy Ion Fusion Accelerator Research. The line charge density limit is found to be essentially proportional to the voltage on the pole faces and the fraction of occupied aperture area. A finite injection energy (greater than or equal to 2 MeV) is required to realize this limit, independent of particle mass.
Energetic charged particles in Saturn's magnetosphere: Voyager 2 results
Vogt, R.E.; Chenette, D.L.; Cummings, A.C.; Garrard, T.L.; Stone, E.C.; Schardt, A.W.; Trainor, J.H.; Lal, N.; McDonald, F.B.
1982-01-29
Results from the cosmic-ray system on Voyager 2 in Saturn's magnetosphere are presented. During the inbound pass through the outer magnetosphere, the greater than or equal to 0.43-million-electron-volt proton flux was more intense, and both the proton and electron fluxes were more varible, than previously observed. These changes are attributed to the influence on the magnetosphere of variations in the solar wind conditions. Outbound, beyond 18 Saturn radii, impulsive bursts of 0.14- to > 1.0-million-electron-volt electrons were observed. In the inner magnetosphere, the charged particle absorption signatures of Mimas, Enceladus, and Tethys are used to constrain the possible tilt and offset of Saturn's internal magnetic dipole. At approx. 3 Saturn radii, a transient decrease was observed in the electron flux which was not due to Mimas. Characteristics of this decrease suggest the existence of additional material, perhaps another satellite, in the orbit of Mimas.
Energetic Charged Particles in Saturn's Magnetosphere: Voyager 2 Results.
Vogt, R E; Chenette, D L; Cummings, A C; Garrard, T L; Stone, E C; Schardt, A W; Trainor, J H; Lal, N; McDonald, F B
1982-01-29
Results from the cosmic-ray system on Voyager 2 in Saturn's magnetosphere are presented. During the inbound pass through the outer magnetosphere, the >/= 0.43-million-electron-volt proton flux was more intense, and both the proton and electron fluxes were more variable, than previously observed. These changes are attributed to the influence on the magnetosphere of variations in the solar wind conditions. Outbound, beyond 18 Saturn radii, impulsive bursts of 0.14- to > 1.0- million-electron-volt electrons were observed. In the inner magnetosphere, the charged particle absorption signatures of Mimas, Enceladus, and Tethys are used to constrain the possible tilt and offset of Saturn's internal magnetic dipole. At approximately 3 Saturn radii, a transient decrease was observed in the electron flux which was not due to Mimas. Characteristics of this decrease suggest the existence of additional material, perhaps another satellite, in the orbit of Mimas.
Silva, Arnaldo F; Richter, Wagner E; Meneses, Helen G C; Bruns, Roy E
2014-11-14
Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.
Experimental bound on the charge radius of the electron neutrino
Allen, R.C.; Chen, H.H.; Doe, P.J.; Hausamann, R.; Lee, W.P.; Lu, X.; Mahler, H.J.; Potter, M.E.; Wang, K.C. ); Bowles, T.J.; Burman, R.L.; Carlini, R.D.; Cochran, D.R.F.; Frank, J.S.; Piasetzky, E.; Sandberg, V.D. ); Krakauer, D.A.; Talaga, R.L. )
1991-01-01
A limit on the electron-neutrino charge radius {vert bar}{ital r}{vert bar} is derived from a measurement of the weak-neutral-current vector coupling constant {ital g}{sub {ital V}} obtained in electron-neutrino electron elastic scattering. The 90%-confidence interval for {ital g}{sub {ital V}} is {minus}0.177{lt}{ital g}{sub {ital V}}{lt}0.187, which for sin{sup 2}{theta}{sub {ital W}}=0.227 implies that the {nu}{sub {ital e}} mean-square charge radius is in the range {minus}2.74{times}10{sup {minus}32}{lt}{l angle}{ital r}{sup 2}{r angle}{lt}4.88{times}10{sup {minus}32} cm{sup 2}, or simply {vert bar}{ital r}{vert bar}{lt}2.2{times}10{sup {minus}16} cm. This is the first experimental bound on the {nu}{sub {ital e}} charge radius, and is the same order of magnitude as bounds for {nu}{sub {mu}} structure.
Diffusion Dynamics of Charged Dust Particles in Capacitively Coupled RF Discharge System
Chew, W. X.; Muniandy, S. V.; Wong, C. S.; Yap, S. L.; Tan, K. S.
2011-03-30
Dusty plasma is loosely defined as electron-ion plasma with additional charged components of micron-sized dust particles. In this study, we developed a particle diagnostic technique based on light scattering and particle tracking velocimetry to investigate the dynamics of micron-sized titanium oxide particles in Argon gas capacitively coupled rf-discharge. The particle trajectories are constructed from sequence of image frames and treated as sample paths of charged Brownian motion. At specific sets of plasma parameters, disordered liquid-like dust particle configuration are observed. Mean-square-displacement of the particle trajectories are determined to characterize the transport dynamics. We showed that the dust particles in disordered liquid phase exhibit anomalous diffusion with different scaling exponents for short and large time scales, indicating the presence of slow and fast modes which can be related to caging effect and dispersive transport, respectively.
Charge-changing cross section measurement of neutron-rich carbon isotopes at 50 AMeV
NASA Astrophysics Data System (ADS)
Tran, D. T.; Nguyen, T. T.; Tanihata, I.; Ong, H. J.; Fukuda, M.; Aoi, N.; Ayyad, Y.; Sakaguchi, H.; Tanaka, J.; Chan, P. Y.; Hoang, T. H.; Hashimoto, T.; Ideguchi, E.; Inoue, A.; Kawabata, T.; Khiem, L. H.; Matsuta, K.; Mihara, M.; Momota, S.; Nagae, D.; Ozawa, A.; Ren, P. P.; Terashima, S.; Wada, R.; Lin, W. P.; Yamamoto, T.
2016-05-01
Charge Changing Cross Sections (CCCS or σCC) of neutron-rich carbon isotopes on carbon target were measured at low energy (50A MeV) for the first time. The consistency between Glauber calculation and experimental σCC of 12C isotope at low energy region shows that proton distribution radii can be derived from CCCS at low energy.
Chang, Zhiwei; Li, Jiguang; Dong, Chenzhong
2010-12-30
Multiconfiguration Dirac-Fock (MCDF) method was employed to calculate the first five ionization potentials, electron affinities, resonance excitation energies, oscillator strengths, and radii for the element Uus and its homologue At. Main valence correlation effects were taken into account. The Breit interaction and QED effects were also estimated. The uncertainties of calculated IPs, EAs, and IR for Uus and At were reduced through an extrapolation procedure. The good consistency with available experimental and other theoretical values demonstrates the validity of the present results. These theoretical data therefore can be used to predict some unknown physicochemical properties of element Uus, Astatine, and their compounds. PMID:21141866
NASA Technical Reports Server (NTRS)
Davis, T. N.; Stanley, G. M.; Boyd, J. S.
1973-01-01
The geophysical disturbance environment was quiet during the NASA/MPE barium release at 5 earth radii on September 21, 1971. At the time of the release, the magnetosphere was in the late recovery phase of a principal magnetic storm, the provisional Dst value was -13 gammas, and the local horizontal disturbance at Great Whale River was near zero. Riometer and other observations indicated low-level widespread precipitation of high-energy electrons at Great Whale River before, during, and after the release. Cloudy sky at this station prevented optical observation of aurora. No magnetic or ionospheric effects attributable to the barium release were detected at Great Whale River.
Chang, Zhiwei; Li, Jiguang; Dong, Chenzhong
2010-12-30
Multiconfiguration Dirac-Fock (MCDF) method was employed to calculate the first five ionization potentials, electron affinities, resonance excitation energies, oscillator strengths, and radii for the element Uus and its homologue At. Main valence correlation effects were taken into account. The Breit interaction and QED effects were also estimated. The uncertainties of calculated IPs, EAs, and IR for Uus and At were reduced through an extrapolation procedure. The good consistency with available experimental and other theoretical values demonstrates the validity of the present results. These theoretical data therefore can be used to predict some unknown physicochemical properties of element Uus, Astatine, and their compounds.
NASA Astrophysics Data System (ADS)
Gräfener, G.; Owocki, S. P.; Vink, J. S.
2012-02-01
Context. It has been proposed that the envelopes of luminous stars may be subject to substantial radius inflation. The peculiar structure of such inflated envelopes, with an almost void, radiatively dominated region beneath a thin, dense shell could mean that many in reality compact stars are hidden below inflated envelopes, displaying much lower effective temperatures. The inflation effect has been discussed in relation to the radius problem of Wolf-Rayet (WR) stars, but has yet failed to explain the large observed radii of Galactic WR stars. Aims: We wish to obtain a physical perspective of the inflation effect, and study the consequences for the radii of WR stars, and luminous blue variables (LBVs). For WR stars the observed radii are up to an order of magnitude larger than predicted by theory, whilst S Doradus-type LBVs are subject to humongous radius variations, which remain as yet ill-explained. Methods: We use a dual approach to investigate the envelope inflation, based on numerical models for stars near the Eddington limit, and a new analytic formalism to describe the effect. An additional new aspect is that we take the effect of density inhomogeneities (clumping) within the outer stellar envelopes into account. Results: Due to the effect of clumping we are able to bring the observed WR radii in agreement with theory. Based on our new formalism, we find that the radial inflation is a function of a dimensionless parameter W, which largely depends on the topology of the Fe-opacity peak, i.e., on material properties. For W > 1, we discover an instability limit, for which the stellar envelope becomes gravitationally unbound, i.e. there no longer exists a static solution. Within this framework we are also able to explain the S Doradus-type instabilities for LBVs like AG Car, with a possible triggering due to changes in stellar rotation. Conclusions: The stellar effective temperatures in the upper Hertzsprung-Russell (HR) diagram are potentially strongly affected
Susa, Anna C; Mortensen, Daniel N; Williams, Evan R
2014-06-01
The effects of eight different cations with ionic radii between 69 and 337 pm on the charging of peptides and proteins with electrospray ionization from aqueous acetate salt solutions are reported. Significant adduction occurs for all cations except NH4(+), and the average protein charge is lower when formed from solutions containing salts compared with solutions without salts added. Circular dichroism and ion mobility results show the protein conformations are different in pure water compared with salt solutions, which likely affects the extent of charging. The average charge of protein and peptide ions formed from solutions with Li(+) and Cs(+), which have Gibbs solvation free energies (GSFEs) that differ by 225 kJ/mol, is similar. Lower charge states are typically formed from solutions with tetramethylammonium and tetraethylammonium that have lower GSFE values. Loss of the larger cations that have the lowest GSFEs is facile when adducted protein ions are collisionally activated, resulting in the formation of lower analyte charge states. This reaction pathway provides a route to produce abundant singly protonated protein ions under native mass spectrometry conditions. The average protein and peptide charge with NH4(+) is nearly the same as that with Rb(+) and K(+), cations with similar GSFE and ionic radii. This indicates that proton transfer from NH4(+) to proteins plays an insignificant role in the extent of protein charging in native mass spectrometry.
Andriulli, J.B.
1997-01-01
In mechanical dynamic problems, it is often necessary to know the radii of gyration or equivalent mass moments of inertia of components and assemblies. Using the rotational pendulum technique described, one can easily measure the radii of gyration about the polar and diametric axes of any rigid rotor without requiring a special fixture. The principals employed are also applicable to more complicated assemblies such as aircraft, boats, and cars, where the radius of gyration and vehicle maneuverability are of interest. This description focuses on rotors. The relative values of polar and diametric radii of gyration characterize some dynamic behavior and stability of spinning rotors. When the ratio of polar to diametric radii of gyration approaches unity, the spinning rotor may exhibit undesirable dynamic behavior. Consequently, prior to high-speed spin testing the rotor or otherwise operating the assembly, it is desirable to have a simple and inexpensive procedure to directly measure the radii of gyration of existing hardware. These data permit the technician to estimate the rotor dynamic behavior or identify potential problems prior to committing to operation. If sufficient part information is available, such as dimensions, geometry and material density, one can calculate the radii of gyration. For complicated parts, this can be time consuming. Often the technician does not have access to the rotor`s dimensional details to make the calculations. Hence, an inexpensive empirical technique such as the one described is valuable.
NASA Astrophysics Data System (ADS)
Aslan, Gürkan; Soydugan, Faruk; Eker, Zeki; Bilir, Selçuk; Bakış, Volkan
2016-07-01
A semi-empirical technique of improving effective temperature for main sequence stars from their observed mass and radius based on the Stefan-Boltzmann law, was introduced and applied to 450 main-sequence stars with accurate parameters. The method requires a mass-luminosity relation (MLR) and theoretical predictions of radius and effective temperature for stars at zero age main-sequence and at terminal age main-sequence. The MLRs, which act as if a catalyst, are necessary but have no effect on the final result. The present sample of main-sequence stars, which are members of the detached double-lined eclipsing binaries in the solar neighborhood chosen from Eker et al. (2014), have an error histogram for the observed effective temperatures with a peak at 2-3%. Errors of refined effective temperatures by the present method are the propagated errors of the observed masses and radii, that is, the refined temperatures and associated errors are independent of the observational temperatures and their associated errors. The histogram of the refined temperature errors shows a peak at less than 1%. A refined sample of stars (270 out of 450) with masses and radii accurate up to 3% and their refined effective temperatures has been used in this study to improve the classical MLRs. One may prefer, however, to use improved classical MLRs, which allows one to compute effective temperatures as accurate as 3.5%.
NASA Astrophysics Data System (ADS)
Joner, Michael D.; Laney, C. D.
2012-05-01
We have used 41 galactic Cepheids for which parallax or cluster/association distances are available, and for which pulsation parallaxes can be calculated, to calibrate the p-factor to be used in K-band Baade-Wesselink radius calculations. Our sample includes the 10 Cepheids from Benedict et al. (2007), and three additional Cepheids with Hipparcos parallaxes derived from van Leeuwen et al. (2007). Turner and Burke (2002) list cluster distances for 33 Cepheids for which radii have been or (in a few cases) can be calculated. Revised cluster distances from Turner (2010), Turner and Majaess (2008, 2012), and Majaess and Turner (2011, 2012a, 2012b) have been used where possible. Radii have been calculated using the methods described in Laney and Stobie (1995) and converted to K-band absolute magnitudes using the methods described in van Leeuwen et al. (2007), Feast et al. (2008), and Laney and Joner (2009). The resulting pulsation parallaxes have been used to estimate the p-factor for each Cepheid. These new results stand in contradiction to those derived by Storm et al. (2011), but are in good agreement with theoretical predictions by Nardetto et al. (2009) and with interferometric estimates of the p-factor, as summarized in Groenewegen (2007). We acknowledge the Brigham Young University College of Physical and Mathematical Sciences for continued support of research done using the facilities and personnel at the West Mountain Observatory. This support is connected with NSF/AST grant #0618209.
NASA Astrophysics Data System (ADS)
Harrigan, Robert L.; Plassard, Andrew J.; Mawn, Louise A.; Galloway, Robert L.; Smith, Seth A.; Landman, Bennett A.
2015-03-01
Optic neuritis is a sudden inflammation of the optic nerve (ON) and is marked by pain on eye movement, and visual symptoms such as a decrease in visual acuity, color vision, contrast and visual field defects. The ON is closely linked with multiple sclerosis (MS) and patients have a 50% chance of developing MS within 15 years. Recent advances in multi-atlas segmentation methods have omitted volumetric assessment. In the past, measuring the size of the ON has been done by hand. We utilize a new method of automatically segmenting the ON to measure the radii of both the ON and surrounding cerebrospinal fluid (CSF) sheath to develop a normative distribution of healthy young adults. We examine this distribution for any trends and find that ON and CSF sheath radii do not vary between 20-35 years of age and between sexes. We evaluate how six patients suffering from optic neuropathy compare to this distribution of controls. We find that of these six patients, five of them qualitatively differ from the normative distribution which suggests this technique could be used in the future to distinguish between optic neuritis patients and healthy controls
Brik, Mikhail G; Suchocki, Andrzej; Kamińska, Agata
2014-05-19
A thorough consideration of the relation between the lattice parameters of 185 binary and ternary spinel compounds, on one side, and ionic radii and electronegativities of the constituting ions, on the other side, allowed for establishing a simple empirical model and finding its linear equation, which links together the above-mentioned quantities. The derived equation gives good agreement between the experimental and modeled values of the lattice parameters in the considered group of spinels, with an average relative error of about 1% only. The proposed model was improved further by separate consideration of several groups of spinels, depending on the nature of the anion (oxygen, sulfur, selenium/tellurium, nitrogen). The developed approach can be efficiently used for prediction of lattice constants for new isostructural materials. In particular, the lattice constants of new hypothetic spinels ZnRE2O4, CdRE2S4, CdRE2Se4 (RE = rare earth elements) are predicted in the present Article. In addition, the upper and lower limits for the variation of the ionic radii, electronegativities, and their certain combinations were established, which can be considered as stability criteria for the spinel compounds. The findings of the present Article offer a systematic overview of the structural properties of spinels and can serve as helpful guides for synthesis of new spinel compounds.
NASA Technical Reports Server (NTRS)
Glazman, R. E.
1986-01-01
Statistics of two-dimensional wave groups, of steep wave events, and of a cascade pattern manifested in the surface geometry in a developed sea state are derived. A systematic view is presented of the spectral moment problem, highlighting its physical meaning and showing its relationship with the theory of random fields. A solution of this problem is suggested that is appropriate to the case of wind-generated surface waves. The solution method treats the surface elevation field as specified on a spatial (temporal) running grid, developing an averaging procedure which employs the Taylor microscale as the mesh size. The technique is illustrated by first exposing errors in direct calculations of the effective surface impedance for a coherently reflected L-band radio wave. The technique is then used to study wave groups and steep waves for a Gaussian, two-dimensional, time-varying surface. Finally, the theory is applied to estimate breaking wave statistics,
NASA Technical Reports Server (NTRS)
Walker, H. F.
1979-01-01
In many pattern recognition problems, data vectors are classified although one or more of the data vector elements are missing. This problem occurs in remote sensing when the ground is obscured by clouds. Optimal linear discrimination procedures for classifying imcomplete data vectors are discussed.
NASA Technical Reports Server (NTRS)
Serafini, J. S.; Terdan, F. F.
1973-01-01
Measurements of the RMS magnitude, spectra and cross-correlations for the fluctuations in the beam, discharge and neutralizer keeper currents are presented for a 30-cm diameter dished grid ion thrustor for a range of magnetic baffle currents and up to 2.0 amperes beam current. The ratio of RMS to mean ion beam current varied from 0.04 to 0.23. The spectra of the amplitudes of the beam and discharge current fluctuations were taken up to 9 MHz and show that the predominant amplitudes occur at frequencies of 10 kHz or below. The fall-off with increasing frequency is rapid. Frequencies above 100 kHz the spectral levels are 45 kb or more below the maximum peak amplitudes. The cross-correlations revealed the ion beam fluctuations to have large radial and axial scales which implied that the beam fluctuates as a whole or 'in-phase.' The cross-correlations of the beam and neutralizer keeper current fluctuations indicated the neutralizer contributions to the beam fluctuations to be small, but not negligible. The mode of operation of the thrustor (values of beam and magnetic baffle currents) was significant in determining the RMS magnitude and spectral shape of the beam fluctuations. The major oscillations were not found to be directly dependent on the power conditioner inverter frequencies.
ERIC Educational Resources Information Center
Barchard, Kimberly A.
2012-01-01
This article introduces new statistics for evaluating score consistency. Psychologists usually use correlations to measure the degree of linear relationship between 2 sets of scores, ignoring differences in means and standard deviations. In medicine, biology, chemistry, and physics, a more stringent criterion is often used: the extent to which…
Quick spacecraft charging primer
Larsen, Brian Arthur
2014-03-12
This is a presentation in PDF format which is a quick spacecraft charging primer, meant to be used for program training. It goes into detail about charging physics, RBSP examples, and how to identify charging.
Nuclear Charge Radius of Lithium-11
Sanchez, Rodolfo; Nortershauser, W.; Dax, A. ..; Ewald, G.; Gotte, S.; Kirchner, R. G.; Kluge, H. J.; Kuhl, T. H.; Wojtaszek, A.; Bushaw, Bruce A.; Drake, Gordon W. F.; Yan, Z. C.; Zimmermann, Claus; Albers, Daniel; Behr, John; Bricault, Pierre; Dilling, Jens; Dombsky, Marik; Lassen, J.; Levy, C.D. P.; Pearson, Matthew; Prime, Erika; Ryjkov, Vladimir L.
2006-07-01
We have determined the nuclear charge radius of 11Li by high-precision laser spectroscopy. The experiment was performed at the TRIUMF-ISAC facility where the 7Li-11Li isotope shift was measured in the 2s to 3s electronic transition using Doppler-free two-photon spectroscopy with a relative accuracy better than 10 5. The accuracy reached in previous experiments on the other lithium isotopes was improved. Most of the isotope shifts measured in the experiment are due to difference in the mass of the nuclei but small contributions are produced by the change in proton distribution, QED and relativistic effects have to be taken into account as well. By comparing the experimental results with sophisticated atomic calculations of the mass dependent effect the nuclear charge radii of the lithium isotopes are found to decrease monotonically from 6Li to 9Li while the nuclear charge radius of 11Li is about 11% larger than that of 9Li.
Space Charge Compensation (SSC) in hadron beams
Shiltsev, V; /Fermilab
2010-04-01
Longitudinal space-charge fields can generate substantial distortion of the rf-generated potential wells, fill the extraction kicker gap in the beam, affect the incoherent synchrotron tune spread, and have the potential for causing instability and longitudinal emittance growth. The net effective voltage per turn resulting from the space-charge self voltage and the ring inductive wall impedance ?0L is proportional to the slope of the beam current distribution e{beta}c {lambda}(s) and can be expressed as: V{sub s} = {partial_derivative}{lambda}(s)/{partial_derivative}s [g{sub 0}Z{sub 0}/2{beta}{gamma}{sup 2} - {omega}{sub 0}L]e{beta}cR where R = c/{omega}{sub 0} is the average machine radius, Z{sub 0} = 377 Ohm and g{sub 0} = 1 + 2ln(b/a) is the geometric space-charge constant, a and b are the beam radii and vacuum-chamber aperture. By introduction a tunable inductance L, e.g. of ferrite rings, the term in brackets and, consequently, the space-charge effect may be substantially reduced or canceled at some chosen energy [1]. This concept has been experimentally proven at the LANL Proton Storage Ring at LANL where three inductive inserts, each consisting of 30 'cores' of a cylindrically shaped ferrite with thickness of 1 inch, inner diameter of 5 inches, and an outer diameter of 8 inches, were installed. The magnetic permeability of the ferrite could be adjusted by introducing current into solenoids wound around the ferrite so that in the MHz range of frequencies the longitudinal space charge impedance of the machine was compensated. A strong longitudinal instability was noticed at much higher frequencies of about 75 MHz, but it was later suppressed by heating the ferrite to a temperature of 130 C to make it more lossy.
NASA Astrophysics Data System (ADS)
Wang, Z.; Ireland, P. T.; Jones, T. V.
1995-04-01
The heat transfer coefficient over the surface of a pedestal with fillet radii has been measured using thermochromic liquid crystals and the transient heat transfer method. The tests were performed at engine representative Reynolds numbers for a geometry typical of those used in turbine blade cooling systems. The heat conduction process that occurs in the engine was subsequently modeled numerically with a finite element discretization of the solid pedestal. The measured heat transfer coefficients were used to derive the exact boundary conditions applicable to the engine. The temperature field within the pedestal, calculated using the correct heat transfer coefficient distribution, is compared to that calculated using an area-averaged heat transfer coefficient. Metal temperature differences of 90 K are predicted across the blade wall.
Synchrotron radiation from the winds of O supergiants - Tb = 10 to the 7. 6th K at 60 stellar radii
Phillips, R.B.; Titus, M.A. )
1990-08-01
Results are presented on VLBI measurements of the nonthermal radio components around two O supergiant stars: Cyg OB2 No. 9 and HD 167971. The measurements were used to characterize the brightness temperature of the emission and to measure the size of compact 5-10 mJy components in these stars, reported by Bieging et al. (1989). The sizes found for the 5-10 mJy components are consistent with the free-free wind radii, indicating that the compact companions are not the sources of nonthermal radiation. Results suggest that there is a small fractional population (10 to the -4th to 10 to the -7th) of ultrarelativistic electrons (Teff of about 10 to the 11th K) coexisting with the stellar wind, which emit optically thin synchrotron radiation. This is in agreement with the synchrotron model of White (1985). 21 refs.
NASA Astrophysics Data System (ADS)
Foresti, Daniele; Nabavi, Majid; Poulikakos, Dimos
2012-05-01
Acoustic levitation is a physical phenomenon that arises when the acoustic radiation pressure is strong enough to overcome gravitational force. It is a nonlinear phenomenon which can be predicted only if higher order terms are included in the acoustic field calculation. The study of acoustic levitation is usually conducted by solving the linear acoustic equation and bridging the gap with an analytical solution. Only recently, the scientific community has shown interest in the full solution of the Navier-Stokes' equation with the aim of deeply investigating the acoustic radiation pressure. We present herein a numerical model based on Finite Volume Method (FVM) and Dynamic Mesh (DM) for the calculation of the acoustic radiation pressure acting on a rigid sphere inside an axisymmetric levitator which is the most widely used and investigated type of levitators. In this work, we focus on the third resonance mode. The use of DM is new in the field of acoustic levitation, allowing a more realistic simulation of the phenomenon, since no standing wave has to be necessarily imposed as boundary condition. The radiating plate is modeled as a rigid cylinder moving sinusoidally along the central axis. The time-averaged acoustic force exerting on the sphere is calculated for different radii Rs of the sphere (0.025 to 0.5 wavelengths). It is shown that the acoustic force increases proportional to Rs3 for small radii, then decreases when the standing wave condition is violated and finally rises again in the travelling wave radiation pressure configuration. The numerical model is validated for the inviscid case with a Finite Element Method model of the linear acoustic model based on King's approximation.
Deng, Zhao-Peng; Kang, Wei; Zhu, Zhi-Biao; Huo, Li-Hua; Zhao, Hui; Gao, Shan
2012-07-21
Nucleobase tautomers and their metal complexes have attracted considerable attention due to their fascinating architectures along with wide applications. In this paper, 4,6-dihydroxypyrimidine (H(2)DHP), an analogue of uracil and thymine, was employed to react with the vital elements of alkaline earth metals in an aqueous solution and lead to the formation of four novel complexes, [Mg(HDHP)(2) (H(2)O)(4)] (1), [Ca(HDHP)(2)(H(2)O)(3)](n)·nH(2)O (2), [Sr(HDHP)(2)(H(2)O)(3)](n)·nH(2)O (3), and [Ba(HDHP)(2)(H(2)O)(2)](n)·nH(2)O (4), which have been characterized by elemental analysis, IR, TG, UV-Vis, PL, powder and single-crystal X-ray diffraction and progressively evolve from zero-dimensional (0D) mononuclear, one-dimensional (1D) zig-zag double chain, two-dimensional (2D) double layer, to a three-dimensional (3D) porous network along with the increase of cation radii. This tendency in dimensionality follows salient crystal engineering principles and can be explained by considering factors such as hard-soft acid-base principles and cation radii. The deprotonated H(2)DHP ligand exhibits four new coordination modes, namely, O-monodentate (complex 1), N,O-chelating (complexes 2 and 3), O,O-bridging (complexes 2 and 3), and κ(1)O:κ(2)O-bridging mode (complex 4). Interestingly, the structural investigation indicates that the HDHP(-) monoanion shows three unusual types of tautomers, which are essential for the diagnosis of disease and investigation of medicine. Furthermore, the four complexes exhibit strong blue emission compared to free H(2)DHP ligand at room temperature and may be potential candidates for blue fluorescent biological materials used in organisms.
Zhang, Xiuwen; Zunger, Alex
2010-05-18
The A_{2}BX_{4} family of compounds manifest a wide range of physical properties, including transparent conductivity, ferromagnetism, and superconductivity. A 98% successful diagrammatic separation of the 44 different crystal structures of 688 oxide A_{2}BX_{4} compounds (96% for 266 oxide-only) is described by plotting the total radius of the A atom R_{A} versus the radius of the B atom R_{B} for many A_{2}BX_{4} compounds of known structure types and seeking heuristically simple, straight boundaries in the R_{A} versus R_{B} plane that best separate the domains of different structure types. The radii are sums R_{A} = R_{s}(A) + R_{p}(A) of the quantum-mechanically calculated “orbital radii” R_{s}(R_{p}), rather than empirical radii or phenomenological electronegativity scales. These success rates using first-principles orbital radii uniformly exceed the success rates using classic radii. Such maps afford a quick guess of the crystal structure of a yet unmade A_{2}BX_{4} compound by placing its atomic orbital radii on such maps and reading off its structure type.
NASA Astrophysics Data System (ADS)
Crone, Timothy J.; Tolstoy, Maya; Carton, Helene
2014-10-01
seismic surveys in shallow-water environments, the complexity of local geology and seafloor topography can make it difficult to accurately predict associated sound levels and establish appropriate mitigation radii required to ensure the safety of local marine protected species. This is primarily because necessary detailed information regarding the local seafloor topography and subseafloor geology is often unavailable before a survey begins. One potential solution to this problem is to measure received levels using the ship's multichannel seismic (MCS) streamer, which could allow for the dynamic real-time determination of sound levels and mitigation radii while a survey is underway. We analyze R/V Langseth streamer data collected on the shelf and slope near the Washington coast during the Cascadia Open-Access Seismic Transects (COAST) and Ridge2Trench projects to measure received levels up to a distance of approximately 8 km from the sound source array. We establish methods to filter, clean, and process streamer data to accurately determine received power levels and confidently establish mitigation radii. We show that in shallow water measured power levels can fluctuate due to the influence of seafloor topographic features, but that the use of the streamer for the establishment of dynamic mitigation radii is feasible and should be further pursued. The establishment of mitigation radii based on local conditions may help to maximize the safety of marine protected species while also maximizing the ability of researchers to conduct seismic studies.
Charge Self-Regulation Upon Changing the Oxidation State of Transition Metals in Insulators
Raebiger, H.; Lany, S.; Zunger, A.
2008-06-01
Transition-metal atoms embedded in an ionic or semiconducting crystal can exist in various oxidation states that have distinct signatures in X-ray photoemission spectroscopy and 'ionic radii' which vary with the oxidation state of the atom. These oxidation states are often tacitly associated with a physical ionization of the transition-metal atoms--that is, a literal transfer of charge to or from the atoms. Physical models have been founded on this charge-transfer paradigm, but first-principles quantum mechanical calculations show only negligible changes in the local transition-metal charge as the oxidation state is altered. Here we explain this peculiar tendency of transition-metal atoms to maintain a constant local charge under external perturbations in terms of an inherent, homeostasis-like negative feedback. We show that signatures of oxidation states and multivalence--such as X-ray photoemission core-level shifts, ionic radii and variations in local magnetization--that have often been interpreted as literal charge transfer are instead a consequence of the negative-feedback charge regulation.
Brownian motion of a charged test particle in vacuum between two conducting plates
Yu Hongwei; Chen Jun
2004-12-15
The Brownian motion of a charged test particle caused by quantum electromagnetic vacuum fluctuations between two perfectly conducting plates is examined and the mean squared fluctuations in the velocity and position of the test particle are calculated. Our results show that the Brownian motion in the direction normal to the plates is reinforced in comparison to that in the single plate case. The effective temperature associated with this normal Brownian motion could be three times as large as that in the single plate case. However, the negative dispersions for the velocity and position in the longitudinal directions, which could be interpreted as reducing the quantum uncertainties of the particle, acquire positive corrections due to the presence of the second plate, and are thus weakened.
Brownian motion of a charged test particle in vacuum between two conducting plates
NASA Astrophysics Data System (ADS)
Yu, Hongwei; Chen, Jun
2004-12-01
The Brownian motion of a charged test particle caused by quantum electromagnetic vacuum fluctuations between two perfectly conducting plates is examined and the mean squared fluctuations in the velocity and position of the test particle are calculated. Our results show that the Brownian motion in the direction normal to the plates is reinforced in comparison to that in the single plate case. The effective temperature associated with this normal Brownian motion could be three times as large as that in the single plate case. However, the negative dispersions for the velocity and position in the longitudinal directions, which could be interpreted as reducing the quantum uncertainties of the particle, acquire positive corrections due to the presence of the second plate, and are thus weakened.
Improving outpatient charge capture.
Gautschi, Daniel; Sanderson, Brian
2014-10-01
Hospitals can identify opportunities to enhance revenue collection by closely analyzing outpatient charge-capture data. A hospital can bolster its charge-capture analysis by performing a charge-capture process walk-through and scrutinizing subsystem links, third-party payer contracts, and electronic health record structures. The hospital then can integrate charge-integrity functions into clinical departments as needed by developing charge-reconciliation tools and reports and monitoring their utilization, and incorporating charge-reconciliation responsibilities into clinical department managers' job descriptions and goals. PMID:25647902
The charged black-hole bomb: A lower bound on the charge-to-mass ratio of the explosive scalar field
NASA Astrophysics Data System (ADS)
Hod, Shahar
2016-04-01
The well-known superradiant amplification mechanism allows a charged scalar field of proper mass μ and electric charge q to extract the Coulomb energy of a charged Reissner-Nordström black hole. The rate of energy extraction can grow exponentially in time if the system is placed inside a reflecting cavity which prevents the charged scalar field from escaping to infinity. This composed black-hole-charged-scalar-field-mirror system is known as the charged black-hole bomb. Previous numerical studies of this composed physical system have shown that, in the linearized regime, the inequality q / μ > 1 provides a necessary condition for the development of the superradiant instability. In the present paper we use analytical techniques to study the instability properties of the charged black-hole bomb in the regime of linearized scalar fields. In particular, we prove that the lower bound q/μ>√{rm/r--1/rm /r+-1 } provides a necessary condition for the development of the superradiant instability in this composed physical system (here r± are the horizon radii of the charged Reissner-Nordström black hole and rm is the radius of the confining mirror). This analytically derived lower bound on the superradiant instability regime of the composed black-hole-charged-scalar-field-mirror system is shown to agree with direct numerical computations of the instability spectrum.
NASA Technical Reports Server (NTRS)
Scholer, M.; Hovestadt, D.; Klecker, B.; Gloeckler, G.; Ipavich, F. M.; Zwickl, R. D.
1984-01-01
Energetic particle data were obtained in the dawn magnetosheath at about 50 earth radii (ER), analyzed, and compared with data taken at 180 ER. Both data sets were acquired during the ISEE-3 geotail mission. The results of analyses of the 16 sec time profiles of 32 and 130 keV protons, 75-115 keV electrons, and some of the 30-36 keV proton angular distributions (PAD) are presented. No temporal dispersions were detected in the particle bursts, implying instead a spatial dispersion. The particles filled flux tubes of 6 ER, with the energetic electrons being beamed along magnetic field lines. PADs displayed anisotropy symmetric relative to the magnetic field. The electrons were not detected at 180 ER. The phenomena are modeled as flux tubes connected to the magnetotail magnetic field in the near-earth magnetopause. The particles leak out along connected field lines. Lion roars scatter the electrons, which escape into interplanetary space. Ions, however, may carry their intensity out to 200 ER, a factor which awaits verification by further data.
Moreno, Edmundo; Pichardo, Bárbara; Velázquez, Héctor
2014-10-01
We calculate orbits, tidal radii, and bulge-bar and disk shocking destruction rates for 63 globular clusters in our Galaxy. Orbits are integrated in both an axisymmetric and a nonaxisymmetric Galactic potential that includes a bar and a three-dimensional model for the spiral arms. With the use of a Monte Carlo scheme, we consider in our simulations observational uncertainties in the kinematical data of the clusters. In the analysis of destruction rates due to the bulge-bar, we consider the rigorous treatment of using the real Galactic cluster orbit instead of the usual linear trajectory employed in previous studies. We compare results in both treatments. We find that the theoretical tidal radius computed in the nonaxisymmetric Galactic potential compares better with the observed tidal radius than that obtained in the axisymmetric potential. In both Galactic potentials, bulge-shocking destruction rates computed with a linear trajectory of a cluster at its perigalacticons give a good approximation of the result obtained with the real trajectory of the cluster. Bulge-shocking destruction rates for clusters with perigalacticons in the inner Galactic region are smaller in the nonaxisymmetric potential than those in the axisymmetric potential. For the majority of clusters with high orbital eccentricities (e > 0.5), their total bulge+disk destruction rates are smaller in the nonaxisymmetric potential.
NASA Astrophysics Data System (ADS)
Scholer, M.; Hovestadt, D.; Klecker, B.; Gloeckler, G.; Ipavich, F. M.; Zwickl, R. D.
1984-10-01
Energetic particle data were obtained in the dawn magnetosheath at about 50 earth radii (ER), analyzed, and compared with data taken at 180 ER. Both data sets were acquired during the ISEE-3 geotail mission. The results of analyses of the 16 sec time profiles of 32 and 130 keV protons, 75-115 keV electrons, and some of the 30-36 keV proton angular distributions (PAD) are presented. No temporal dispersions were detected in the particle bursts, implying instead a spatial dispersion. The particles filled flux tubes of 6 ER, with the energetic electrons being beamed along magnetic field lines. PADs displayed anisotropy symmetric relative to the magnetic field. The electrons were not detected at 180 ER. The phenomena are modeled as flux tubes connected to the magnetotail magnetic field in the near-earth magnetopause. The particles leak out along connected field lines. Lion roars scatter the electrons, which escape into interplanetary space. Ions, however, may carry their intensity out to 200 ER, a factor which awaits verification by further data.
Eccentric ringlet in the maxwell gap at 1.45 saturn radii: multi-instrument voyager observations.
Esposito, L W; Borderies, N; Goldreich, P; Cuzzi, J N; Holberg, J B; Lane, A L; Pomphrey, R B; Terrile, R J; Lissauer, J J; Marouf, E A; Tyler, G L
1983-10-01
The Voyager spacecraft observed a narrow, eccentric ringlet in the Maxwell gap (1.45 Saturn radii) in Saturn's rings. Intercomparison of the Voyager imaging, photopolarimeter, ultraviolet spectrometer, and radio science observations yields results not available from individual observations. The width of the ringlet varies from about 30 to about 100 kilometers, its edges are sharp on a radial scale < 1 kilometer, and its opacity exhibits a double peak near the center. The shape and width of the ringlet are consistent with a set of uniformly precessing, confocal ellipses with foci at Saturn's center of mass. The ringlet precesses as a unit at a rate consistent with the known dynamical oblateness of Saturn; the lack of differential precession across the ringlet yields a ringlet mass of about 5 x 10(18) grams. The ratio of surface mass density to particle cross-sectional area is about five times smaller than values obtained elsewhere in the Saturn ring system, indicating a relatively larger fraction of small particles. Also, comparison of the measured transmission of the ringlet at radio, visible, and ultraviolet wavelengths indicates that about half of the total extinction is due to particles smaller than 1 centimeter in radius, in contrast even with nearby regions of the C ring. However, the color and brightness of the ringlet material are not measurably different from those of nearby C ring particles. We find this ringlet is similar to several of the rings of Uranus.
Sandbakk, Oyvind; Bucher Sandbakk, Silvana; Supej, Matej; Holmberg, Hans-Christer
2014-01-01
This study examined the influence of turn radius on velocity and energy profiles when skidding and step turning during more and less effective downhill turns while cross-country skiing. Thirteen elite female cross-country skiers performed single turns with a 9- or 12-m radius using the skidding technique and a 12- or 15-m radius with step turning. Mechanical parameters were monitored using a real-time kinematic Global Navigation Satellite System and video analysis. Step turning was more effective during all phases of a turn, leading to higher velocities than skidding (P < .05). With both techniques, a greater radius was associated with higher velocity (P < .05), but the quality of turning, as assessed on the basis of energy characteristics, was the same. More effective skidding turns involved more pronounced deceleration early in the turn and maintenance of higher velocity thereafter, while more effective step turning involved lower energy dissipation during the latter half of the turn. In conclusion, the single-turn analysis employed here reveals differences in the various techniques chosen by elite cross-country skiers when executing downhill turns of varying radii and can be used to assess the quality of such turns.
Relativistic electrons and magnetic fields of the M87 jet on the ∼10 Schwarzschild radii scale
Kino, M.; Takahara, F.; Hada, K.; Doi, A.
2014-05-01
We explore energy densities of the magnetic fields and relativistic electrons in the M87 jet. Since the radio core at the jet base is identical to the optically thick surface against synchrotron self-absorption (SSA), the observing frequency is identical to the SSA turnover frequency. As a first step, we assume the radio core has a simple uniform sphere geometry. Using the observed angular size of the radio core measured by the Very Long Baseline Array at 43 GHz, we estimate the energy densities of magnetic fields (U{sub B} ) and relativistic electrons (U{sub e} ) on the basis of the standard SSA formula. Imposing the condition that the Poynting power and kinetic power of relativistic electrons should be smaller than the total power of the jet, we find that (1) the allowed range of the magnetic field strength (B {sub tot}) is 1 G ≤ B {sub tot} ≤ 15 G and that (2) 1 × 10{sup –5} ≤ U{sub e} /U{sub B} ≤ 6 × 10{sup 2} holds. The uncertainty of U{sub e} /U{sub B} comes from the strong dependence on the angular size of the radio core and the minimum Lorentz factor of non-thermal electrons (γ {sub e,min}) in the core. It is still unsettled whether resultant energetics are consistent with either the magnetohydrodynamic jet or the kinetic power dominated jet even on the ∼10 Schwarzschild radii scale.
NASA Astrophysics Data System (ADS)
Ciardi, David R.; Beichman, Charles A.; Horch, Elliott P.; Howell, Steve B.
2015-05-01
We present a study on the effect of undetected stellar companions on the derived planetary radii for Kepler Objects of Interest (KOIs). The current production of the KOI list assumes that each KOI is a single star. Not accounting for stellar multiplicity statistically biases the planets toward smaller radii. The bias toward smaller radii depends on the properties of the companion stars and whether the planets orbit the primary or the companion stars. Defining a planetary radius correction factor, XR, we find that if the KOIs are assumed to be single, then, on average, the planetary radii may be underestimated by a factor of < {{X}R}> ≈ 1.5. If typical radial velocity and high-resolution imaging observations are performed and no companions are detected, then this factor reduces to < {{X}R}> ≈ 1.2. The correction factor < {{X}R}> is dependent on the primary star properties and ranges from < {{X}R}> ≈ 1.6 for A and F stars to < {{X}R}> ≈ 1.2 for K and M stars. For missions like K2 and TESS where the stars may be closer than the stars in the Kepler target sample, observational vetting (primary imaging) reduces the radius correction factor to < {{X}R}> ≈ 1.1. Finally, we show that if the stellar multiplicity rates are not accounted for correctly, then occurrence rate calculations for Earth-sized planets may overestimate the frequency of small planets by as much as 15%–20%.
Ball, Don G.
1992-01-01
A charge regulation circuit provides regulation of an unregulated voltage supply in the range of 0.01%. The charge regulation circuit is utilized in a preferred embodiment in providing regulated voltage for controlling the operation of a laser.
Charge Exchange with Highly Charged Ions
NASA Astrophysics Data System (ADS)
Glick, Jeremy; Ferri, Kevin; Schmitt, Jaclyn; Hanson, Joshua; Marler, Joan
2016-05-01
A detailed study of the physics of highly charged ions (HCIs) is critical for a deep understanding of observed phenomena resulting from interactions of HCIs with neutral atoms in astrophysical and fusion environments. Specifically the charge transfer rates and spectroscopy of the subsequent decay fluorescence are of great interest to these communities. Results from a laboratory based investigation of these rates will be presented. The experiment takes advantage of an energy and charge state selected beam of HCIs from the recently on-line Clemson University EBIT (CUEBIT). Progress towards an experimental apparatus for retrapping HCIs towards precision spectroscopy of HCIs will also be presented.
Active space debris charging for contactless electrostatic disposal maneuvers
NASA Astrophysics Data System (ADS)
Schaub, Hanspeter; Sternovsky, Zoltán
2014-01-01
The remote charging of a passive object using an electron beam enables touchless re-orbiting of large space debris from geosynchronous orbit (GEO) using electrostatic forces. The advantage of this method is that it can operate with a separation distance of multiple craft radii, thus reducing the risk of collision. The charging of the tug-debris system to high potentials is achieved by active charge transfer using a directed electron beam. Optimal potential distributions using isolated- and coupled-sphere models are discussed. A simple charging model takes into account the primary electron beam current, ultra-violet radiation induced photoelectron emission, collection of plasma particles, secondary electron emission and the recapture of emitted particles. The results show that through active charging in a GEO space environment high potentials can be both achieved and maintained with about a 75% transfer efficiency. Further, the maximum electrostatic tractor force is shown to be insensitive to beam current levels. This latter later result is important when considering debris with unknown properties.
Nanoparticle gel electrophoresis: bare charged spheres in polyelectrolyte hydrogels.
Li, Fei; Hill, Reghan J
2013-03-15
Nanoparticle gel electrophoresis has recently emerged as an attractive means of separating and characterizing nanoparticles. Consequently, a theory that accounts for electroosmotic flow in the gel, and coupling of the nanoparticle and hydrogel electrostatics and hydrodynamics, is required, particularly for gels in which the mesh size is comparable to or smaller than the particle radii. Here, we present an electrokinetic model for charged, spherical colloidal particles undergoing electrophoresis in charged (polyelectrolyte) hydrogels: the gel-electrophoresis analogue of Henry's theory for electrophoresis in Newtonian electrolytes. We compare numerically exact solutions of the model with several independent asymptotic approximations, identifying regions in the parameter space where these approximations are accurate or break down. As previously assumed in the literature, Henry's formula, modified by the addition of a constant electroosmotic flow mobility, is accurate only for nanoparticles that are small compared to the hydrogel mesh size. We derived an exact analytical solution of the full model by judiciously modifying the theory of Allison et al. for uncharged gels, drawing on the superposition methodology of Doane et al. to account for hydrogel charge. This furnishes accurate and economical mobility predictions for the entire parameter space. The present model suggests that nanoparticle size separations (with diameters ≲40 nm) are optimal at low ionic strength, with a gel mesh size that is selected according to the particle charging mechanism. For weakly charged particles, optimal size separation is achieved when the Brinkman screening length is matched to the mean particle size. PMID:23153681
Svobodová Vareková, Radka; Geidl, Stanislav; Ionescu, Crina-Maria; Skrehota, Ondrej; Kudera, Michal; Sehnal, David; Bouchal, Tomás; Abagyan, Ruben; Huber, Heinrich J; Koca, Jaroslav
2011-08-22
The acid dissociation (ionization) constant pK(a) is one of the fundamental properties of organic molecules. We have evaluated different computational strategies and models to predict the pK(a) values of substituted phenols using partial atomic charges. Partial atomic charges for 124 phenol molecules were calculated using 83 approaches containing seven theory levels (MP2, HF, B3LYP, BLYP, BP86, AM1, and PM3), three basis sets (6-31G*, 6-311G, STO-3G), and five population analyses (MPA, NPA, Hirshfeld, MK, and Löwdin). The correlations between pK(a) and various atomic charge descriptors were examined, and the best descriptors were selected for preparing the quantitative structure-property relationship (QSPR) models. One QSPR model was created for each of the 83 approaches to charge calculation, and then the accuracy of all these models was analyzed and compared. The pK(a)s predicted by most of the models correlate strongly with experimental pK(a) values. For example, more than 25% of the models have correlation coefficients (R²) greater than 0.95 and root-mean-square errors smaller than 0.49. All seven examined theory levels are applicable for pK(a) prediction from charges. The best results were obtained for the MP2 and HF level of theory. The most suitable basis set was found to be 6-31G*. The 6-311G basis set provided slightly weaker correlations, and unexpectedly also, the STO-3G basis set is applicable for the QSPR modeling of pK(a). The Mulliken, natural, and Löwdin population analyses provide accurate models for all tested theory levels and basis sets. The results provided by the Hirshfeld population analysis were also acceptable, but the QSPR models based on MK charges show only weak correlations.
Anderson, Oscar A.
1978-01-01
An improved charge exchange system for substantially reducing pumping requirements of excess gas in a controlled thermonuclear reactor high energy neutral beam injector. The charge exchange system utilizes a jet-type blanket which acts simultaneously as the charge exchange medium and as a shield for reflecting excess gas.
NASA Technical Reports Server (NTRS)
Fuerstenau, Stephen D. (Inventor)
2004-01-01
An airflow through a tube is used to guide a charged particle through the tube. A detector may be used to detect charge passing through the tube on the particle. The movement of the particle through the tube may be used to both detect its charge and size.
Spacecraft Charging Technology, 1980
NASA Technical Reports Server (NTRS)
1981-01-01
The third Spacecraft Charging Technology Conference proceedings contain 66 papers on the geosynchronous plasma environment, spacecraft modeling, charged particle environment interactions with spacecraft, spacecraft materials characterization, and satellite design and testing. The proceedings is a compilation of the state of the art of spacecraft charging and environmental interaction phenomena.
D'Avino, Gabriele; Muccioli, Luca; Olivier, Yoann; Beljonne, David
2016-02-01
We address charge separation and recombination in polymer/fullerene solar cells with a multiscale modeling built from accurate atomistic inputs and accounting for disorder, interface electrostatics and genuine quantum effects on equal footings. Our results show that bound localized charge transfer states at the interface coexist with a large majority of thermally accessible delocalized space-separated states that can be also reached by direct photoexcitation, thanks to their strong hybridization with singlet polymer excitons. These findings reconcile the recent experimental reports of ultrafast exciton separation ("hot" process) with the evidence that high quantum yields do not require excess electronic or vibrational energy ("cold" process), and show that delocalization, by shifting the density of charge transfer states toward larger effective electron-hole radii, may reduce energy losses through charge recombination. PMID:26785294
The SLUGGS Survey: stellar kinematics, kinemetry and trends at large radii in 25 early-type galaxies
NASA Astrophysics Data System (ADS)
Foster, Caroline; Pastorello, Nicola; Roediger, Joel; Brodie, Jean P.; Forbes, Duncan A.; Kartha, Sreeja S.; Pota, Vincenzo; Romanowsky, Aaron J.; Spitler, Lee R.; Strader, Jay; Usher, Christopher; Arnold, Jacob A.
2016-03-01
Due to longer dynamical time-scales, the outskirts of early-type galaxies retain the footprint of their formation and assembly. Under the popular two-phase galaxy formation scenario, an initial in situ phase of star formation is followed by minor merging and accretion of ex situ stars leading to the expectation of observable transitions in the kinematics and stellar populations on large scales. However, observing the faint galactic outskirts is challenging, often leaving the transition unexplored. The large-scale, spatially resolved stellar kinematic data from the SAGES Legacy Unifying Galaxies and GlobularS (SLUGGS) survey are ideal for detecting kinematic transitions. We present kinematic maps out to 2.6 effective radii on average, kinemetry profiles, measurement of kinematic twists and misalignments, and the average outer intrinsic shape of 25 SLUGGS galaxies. We find good overall agreement in the kinematic maps and kinemetry radial profiles with literature. We are able to confirm significant radial modulations in rotational versus pressure support of galaxies with radius so that the central and outer rotational properties may be quite different. We also test the suggestion that galaxies may be more triaxial in their outskirts and find that while fast rotating galaxies were already shown to be axisymmetric in their inner regions, we are unable to rule out triaxiality in their outskirts. We compare our derived outer kinematic information to model predictions from a two-phase galaxy formation scenario. We find that the theoretical range of local outer angular momentum agrees well with our observations, but that radial modulations are much smaller than predicted.
NASA Astrophysics Data System (ADS)
Parker, M. L.; Wilkins, D. R.; Fabian, A. C.; Grupe, D.; Dauser, T.; Matt, G.; Harrison, F. A.; Brenneman, L.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Gallo, L. C.; Hailey, C. J.; Kara, E.; Komossa, S.; Marinucci, A.; Miller, J. M.; Risaliti, G.; Stern, D.; Walton, D. J.; Zhang, W. W.
2014-09-01
We present 3-50 keV NuSTAR observations of the active galactic nuclei Mrk 335 in a very low flux state. The spectrum is dominated by very strong features at the energies of the iron line at 5-7 keV and Compton hump from 10-30 keV. The source is variable during the observation, with the variability concentrated at low energies, which suggesting either a relativistic reflection or a variable absorption scenario. In this work, we focus on the reflection interpretation, making use of new relativistic reflection models that self consistently calculate the reflection fraction, relativistic blurring and angle-dependent reflection spectrum for different coronal heights to model the spectra. We find that the spectra can be well fitted with relativistic reflection, and that the lowest flux state spectrum is described by reflection alone, suggesting the effects of extreme light-bending occurring within ˜2 gravitational radii (RG) of the event horizon. The reflection fraction decreases sharply with increasing flux, consistent with a point source moving up to above 10 RG as the source brightens. We constrain the spin parameter to greater than 0.9 at the 3σ confidence level. By adding a spin-dependent upper limit on the reflection fraction to our models, we demonstrate that this can be a powerful way of constraining the spin parameter, particularly in reflection dominated states. We also calculate a detailed emissivity profile for the iron line, and find that it closely matches theoretical predictions for a compact source within a few RG of the black hole.
Interferometric radii of bright Kepler stars with the CHARA Array: θ Cygni and 16 Cygni A and B
NASA Astrophysics Data System (ADS)
White, T. R.; Huber, D.; Maestro, V.; Bedding, T. R.; Ireland, M. J.; Baron, F.; Boyajian, T. S.; Che, X.; Monnier, J. D.; Pope, B. J. S.; Roettenbacher, R. M.; Stello, D.; Tuthill, P. G.; Farrington, C. D.; Goldfinger, P. J.; McAlister, H. A.; Schaefer, G. H.; Sturmann, J.; Sturmann, L.; ten Brummelaar, T. A.; Turner, N. H.
2013-08-01
We present the results of long-baseline optical interferometry observations using the Precision Astronomical Visual Observations (PAVO) beam combiner at the Center for High Angular Resolution Astronomy (CHARA) Array to measure the angular sizes of three bright Kepler stars: θ Cygni, and both components of the binary system 16 Cygni. Supporting infrared observations were made with the Michigan Infrared Combiner (MIRC) and Classic beam combiner, also at the CHARA Array. We find limb-darkened angular diameters of 0.753 ± 0.009 mas for θ Cyg, 0.539 ± 0.007 mas for 16 Cyg A and 0.490 ± 0.006 mas for 16 Cyg B. The Kepler Mission has observed these stars with outstanding photometric precision, revealing the presence of solar-like oscillations. Due to the brightness of these stars the oscillations have exceptional signal-to-noise, allowing for detailed study through asteroseismology, and are well constrained by other observations. We have combined our interferometric diameters with Hipparcos parallaxes, spectrophotometric bolometric fluxes and the asteroseismic large frequency separation to measure linear radii (θ Cyg: 1.48 ± 0.02 R⊙, 16 Cyg A: 1.22 ± 0.02 R⊙, 16 Cyg B: 1.12 ± 0.02 R⊙), effective temperatures (θ Cyg: 6749 ± 44 K, 16 Cyg A: 5839 ± 42 K, 16 Cyg B: 5809 ± 39 K) and masses (θ Cyg: 1.37 ± 0.04 M⊙, 16 Cyg A: 1.07 ± 0.05 M⊙, 16 Cyg B: 1.05 ± 0.04 M⊙) for each star with very little model dependence. The measurements presented here will provide strong constraints for future stellar modelling efforts.
NASA Astrophysics Data System (ADS)
Alabi, Adebusola B.; Forbes, Duncan A.; Romanowsky, Aaron J.; Brodie, Jean P.; Strader, Jay; Janz, Joachim; Pota, Vincenzo; Pastorello, Nicola; Usher, Christopher; Spitler, Lee R.; Foster, Caroline; Jennings, Zachary G.; Villaume, Alexa; Kartha, Sreeja
2016-08-01
We study mass distributions within and beyond 5 effective radii (Re) in 23 early-type galaxies from the SAGES Legacy Unifying Globulars and Galaxies Survey, using their globular cluster (GC) kinematic data. The data are obtained with Keck/DEep Imaging Multi-Object Spectrograph, and consist of line-of-sight velocities for ˜3500 GCs, measured with a high precision of ˜15 km s-1 per GC and extending out to ˜13 Re. We obtain the mass distribution in each galaxy using the tracer mass estimator of Watkins et al. and account for kinematic substructures, rotation of the GC systems and galaxy flattening in our mass estimates. The observed scatter between our mass estimates and results from the literature is less than 0.2 dex. The dark matter fraction within 5 Re (fDM) increases from ˜0.6 to ˜0.8 for low- and high-mass galaxies, respectively, with some intermediate-mass galaxies (M* ˜ 1011 M⊙) having low fDM ˜ 0.3, which appears at odds with predictions from simple galaxy models. We show that these results are independent of the adopted orbital anisotropy, stellar mass-to-light (M/L) ratio, and the assumed slope of the gravitational potential. However, the low fDM in the ˜1011 M⊙ galaxies agrees with the cosmological simulations of Wu et al. where the pristine dark matter distribution has been modified by baryons during the galaxy assembly process. We find hints that these M* ˜ 1011 M⊙ galaxies with low fDM have very diffuse dark matter haloes, implying that they assembled late. Beyond 5 Re, the M/L gradients are steeper in the more massive galaxies and shallower in both low and intermediate mass galaxies.
Silva, Arnaldo F; da Silva, João V; Haiduke, R L A; Bruns, Roy E
2011-11-17
Infrared fundamental vibrational intensities and quantum theory atoms in molecules (QTAIM) charge-charge flux-dipole flux (CCFDF) contributions to the polar tensors of the fluorochloromethanes have been calculated at the QCISD/cc-pVTZ level. A root-mean-square error of 20.0 km mol(-1) has been found compared to an experimental error estimate of 14.4 and 21.1 km mol(-1) for MP2/6-311++G(3d,3p) results. The errors in the QCISD polar tensor elements and mean dipole moment derivatives are 0.059 e when compared with the experimental values. Both theoretical levels provide results showing that the dynamical charge and dipole fluxes provide significant contributions to the mean dipole moment derivatives and tend to be of opposite signs canceling one another. Although the experimental mean dipole moment derivative values suggest that all the fluorochloromethane molecules have electronic structures consistent with a simple electronegativity model with transferable atomic charges for their terminal atoms, the QTAIM/CCFDF models confirm this only for the fluoromethanes. Whereas the fluorine atom does not suffer a saturation effect in its capacity to drain electronic charge from carbon atoms that are attached to other fluorine and chlorine atoms, the zero flux electronic charge of the chlorine atom depends on the number and kind of the other substituent atoms. Both the QTAIM carbon charges (r = 0.990) and mean dipole moment derivatives (r = 0.996) are found to obey Siegbahn's potential model for carbon 1s electron ionization energies at the QCISD/cc-pVTZ level. The latter is a consequence of the carbon mean derivatives obeying the electronegativity model and not necessarily to their similarities with atomic charges. Atomic dipole contributions to the neighboring atom electrostatic potentials of the fluorochloromethanes are found to be of comparable size to the atomic charge contributions and increase the accuracy of Siegbahn's model for the QTAIM charge model results
The stability of the oscillation motion of charged grains in the Saturnian ring system
NASA Astrophysics Data System (ADS)
Xu, R.-L.; Houpis, L. F.
1985-02-01
A perturbation approach for the gravitoelectrodynamic forces encountered in the corotating plasma environment of Saturn is used to determine the stability of charged grains, given a random initial velocity. Attention is given to the implications of the Northrop and Hill (1982) and Mendis et al. (1982) results for the formation of the Saturnian ring system, and it is suggested that the marginal z stability radius at 1.5245 Saturn radii for Kepler-launched particles is due to an erosion process with ejecta of the order 0.05-0.5 microns, rather than that of the previously suggested plasma. The diffuseness of the Saturnian rings beyond the F ring is also explained in terms of instability, while a new critical radius for r instability is suggestd for the optical depth feature at 1.72 Saturn radii. The F ring is analyzed in detail.
Lunar Dust Charging by Photoelectric Emissions
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.
2007-01-01
The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon s surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17, and Luna 24 missions, as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield
Lunar Dust Charging by Photoelectric Emissions
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.
2007-01-01
The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar ultraviolet (UV) radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function (WF) of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17 and Luna-24 missions as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with
Jarmusik, Keith E; Eppell, Steven J; Lacks, Daniel J; Zypman, Fredy R
2011-03-01
We develop the self-consistent sum of dipoles (SCSD) theory for the purpose of recovering charge densities present on nanostructures using scanning force microscope (SFM) force-separation experiments. The dielectric probe is discretized into volume elements characterized by their atomic polarizabilities. Magnitudes of the induced dipole in each element are calculated based on discrete charges placed on the surfaces, dipole-dipole interactions, and dielectric and ionic properties of the surrounding medium. We perform two model-model comparisons, one with a macroscopic dielectric sphere and one with a nanocluster of silicon atoms. In both cases, using a single adjustable parameter, our SCSD theory agrees with the accepted theories to better than 99%. Force-separation curves between a silicon nitride probe and the basal plane of highly oriented pyrolytic graphite in nine ionic concentration and pH combinations were fit with a root-mean-square error of 3.6 pN, an improvement over the 12 pN error obtained using the Derjaguin approximation. These results suggest that the SCSD will be useful in modeling SFM force-separation data to obtain spatially varying charge densities on surfaces with complex geometries.
Charge Islands Through Tunneling
NASA Technical Reports Server (NTRS)
Robinson, Daryl C.
2002-01-01
It has been recently reported that the electrical charge in a semiconductive carbon nanotube is not evenly distributed, but rather it is divided into charge "islands." This paper links the aforementioned phenomenon to tunneling and provides further insight into the higher rate of tunneling processes, which makes tunneling devices attractive. This paper also provides a basis for calculating the charge profile over the length of the tube so that nanoscale devices' conductive properties may be fully exploited.
Battery formation charging apparatus
Stewart, J.L.
1987-08-04
An apparatus is describe for charging electric storage batteries, the apparatus comprising: (a) a host computer for providing charging information to and receiving status information from at least one slave computer by means of a data link; and (b) at least one control module coupled to the slave computer for applying charging current to at least one electric storage battery in response to instructions received from the slave computer, and for providing feedback and status information to the slave computer.
Pauling, Linus; Kamb, Barclay
1986-01-01
An earlier discussion [Pauling, L. (1947) J. Am. Chem. Soc. 69, 542] of observed bond lengths in elemental metals with correction for bond number and resonance energy led to a set of single-bond metallic radii with values usually somewhat less than the corresponding values obtained from molecules and complex ions. A theory of resonating covalent bonds has now been developed that permits calculation of the number of resonance structures per atom and of the effective resonance energy per bond. With this refined method of correcting the observed bond lengths for the effect of resonance energy, a new set of single-bond covalent radii, in better agreement with values from molecules and complex ions, has been constructed. PMID:16593698
Van den Bergh, Sidney
2010-10-15
The Milky Way system and the Andromeda galaxy experienced radically different evolutionary histories. Nevertheless, it is found that these two galaxies ended up with globular cluster systems in which individual clusters have indistinguishable distributions of half-light radii. Furthermore, globulars in both M31 and the Galaxy are found to have radii that are independent of their luminosities. In this respect, globular clusters differ drastically from early-type galaxies in which half-light radius and luminosity are tightly correlated. Metal-rich globular clusters in M31 occupy a slightly larger volume than do those in the Galaxy. The specific globular cluster frequency in the Andromeda galaxy is found to be significantly higher than it is in the Milky Way system. The present discussion is based on the 107 Galactic globular clusters, and 200 putative globulars in M31, for which UBV photometry was available.
LOCAL GROUP DWARF ELLIPTICAL GALAXIES. II. STELLAR KINEMATICS TO LARGE RADII IN NGC 147 AND NGC 185
Geha, M.; Van der Marel, R. P.; Kalirai, J.; Guhathakurta, P.; Kirby, E. N.
2010-03-01
We present kinematic and metallicity profiles for the M 31 dwarf elliptical (dE) satellite galaxies NGC 147 and NGC 185. The profiles represent the most extensive spectroscopic radial coverage for any dE galaxy, extending to a projected distance of 8 half-light radii (8r{sub eff} {approx} 14'). We achieve this coverage via Keck/DEIMOS multislit spectroscopic observations of 520 and 442 member red giant branch stars in NGC 147 and NGC 185, respectively. In contrast to previous studies, we find that both dEs have significant internal rotation. We measure a maximum rotational velocity of 17 +- 2 km s{sup -1} for NGC 147 and 15 +- 5 km s{sup -1} for NGC 185. While both rotation profiles suggest a flattening in the outer regions, there is no indication that we have reached the radius of maximum rotation velocity. The velocity dispersions decrease gently with radius with average dispersions of 16 +- 1 km s{sup -1} and 24 +- 1 km s{sup -1} for NGC 147 and NGC 185, respectively. The average metallicities for NGC 147 and NGC 185 are [Fe/H] = -1.1 +- 0.1 and [Fe/H] = -1.3 +- 0.1, respectively; both dEs have internal metallicity dispersions of 0.5 dex, but show no evidence for a radial metallicity gradient. We construct two-{integral} axisymmetric dynamical models and find that the observed kinematical profiles cannot be explained without modest amounts of non-baryonic dark matter. We measure central mass-to-light ratios of M/L{sub V} = 4.2 +- 0.6 and M/L{sub V} = 4.6 +- 0.6 for NGC 147 and NGC 185, respectively. Both dE galaxies are consistent with being primarily flattened by their rotational motions, although some anisotropic velocity dispersion is needed to fully explain their observed shapes. The velocity profiles of all three Local Group dEs (NGC 147, NGC 185, and NGC 205) suggest that rotation is more prevalent in the dE galaxy class than previously assumed, but often manifests only at several times the effective radius. Since all dEs outside the Local Group have been
Beam Extraction from Laser Driven Multi-Charged Ion Source
Anderson, O A; Logan, B G
2001-03-19
A newly proposed type of multicharged ion source offers the possibility of an economically advantageous high-charge-state fusion driver. Multiphoton absorption in an intense uniform laser focus can give multiple charge states of high purity, simplifying or eliminating the need for charge-state separation downstream. Very large currents (hundreds of amperes) can be extracted from this type of source. Several arrangements are possible. For example, the laser plasma could be tailored for storage in a magnetic bucket, with beam extracted from the bucket. A different approach, described in this report, is direct beam extraction from the expanding laser plasma. They discuss extraction and focusing for the particular case of a 4.1-MV beam of Xe{sup 16+} ions. The maximum duration of the beam pulse is limited by the total charge in the plasma, while the practical pulse length is determined by the range of plasma radii over which good beam optics can be achieved. The extraction electrode contains a solenoid for beam focusing. The design studies were carried out first with an envelope code and then with a self-consistent particle code. Results from the initial model showed that hundreds of amperes could be extracted, but that most of this current missed the solenoid entrance or was intercepted by the wall and that only a few amperes were able to pass through. They conclude with an improved design which increases the surviving beam to more than 70 amperes.
Charging of interplanetary grains
NASA Technical Reports Server (NTRS)
Baragiola, R. A.; Johnson, R. E.; Newcomb, John L.
1995-01-01
The objective of this program is to quantify, by laboratory experiments, the charging of ices and other insulators subject to irradiation with electrons, ions and ultraviolet photons and to model special conditions based on the data. The system and conditions to be studied are those relevant for charging of dust in magnetospheric plasmas. The measurements are supplemented by computer simulations of charging or grains under a variety of conditions. Our work for this period involved experiments on water ice, improved models of charging of ice grains for Saturn's E-ring, and the construction of apparatus for electron impact studies and measurements of electron energy distributions.
Muirhead, Philip S.; Hamren, Katherine; Schlawin, Everett; Lloyd, James P.; Rojas-Ayala, Barbara; Covey, Kevin R.
2012-05-10
We report stellar parameters for late-K and M-type planet-candidate host stars announced by the Kepler Mission. We obtained medium-resolution, K-band spectra of 84 cool (T{sub eff} {approx}< 4400 K) Kepler Objects of Interest (KOIs) from Borucki et al. We identified one object as a giant (KOI 977); for the remaining dwarfs, we measured effective temperatures (T{sub eff}) and metallicities [M/H] using the K-band spectral indices of Rojas-Ayala et al. We determine the masses (M{sub *}) and radii (R{sub *}) of the cool KOIs by interpolation onto the Dartmouth evolutionary isochrones. The resultant stellar radii are significantly less than the values reported in the Kepler Input Catalog and, by construction, correlate better with T{sub eff}. Applying the published KOI transit parameters to our stellar radius measurements, we report new physical radii for the planet candidates. Recalculating the equilibrium temperatures of the planet-candidates assuming Earth's albedo and re-radiation fraction, we find that three of the planet-candidates are terrestrial sized with orbital semimajor axes that lie within the habitable zones of their host stars (KOI 463.01, KOI 812.03, and KOI 854.01). The stellar parameters presented in this Letter serve as a resource for prioritization of future follow-up efforts to validate and characterize the cool KOI planet candidates.
Space charge stopband correction
Huang, Xiaobiao; Lee, S.Y.; /Indiana U.
2005-09-01
It is speculated that the space charge effect cause beam emittance growth through the resonant envelope oscillation. Based on this theory, we propose an approach, called space charge stopband correction, to reduce such emittance growth by compensation of the half-integer stopband width of the resonant oscillation. It is illustrated with the Fermilab Booster model.
Morris, C L; King, N S P; Kwiatkowski, K; Mariam, F G; Merrill, F E; Saunders, A
2013-04-01
New applications of charged particle radiography have been developed over the past two decades that extend the range of radiographic techniques providing high-speed sequences of radiographs of thicker objects with higher effective dose than can be obtained with conventional radiographic techniques. In this paper, we review the motivation and the development of flash radiography and in particular, charged particle radiography. PMID:23481477
NASA Astrophysics Data System (ADS)
Morris, C. L.; King, N. S. P.; Kwiatkowski, K.; Mariam, F. G.; Merrill, F. E.; Saunders, A.
2013-04-01
New applications of charged particle radiography have been developed over the past two decades that extend the range of radiographic techniques providing high-speed sequences of radiographs of thicker objects with higher effective dose than can be obtained with conventional radiographic techniques. In this paper, we review the motivation and the development of flash radiography and in particular, charged particle radiography.
NASA Astrophysics Data System (ADS)
Schneider, J. F.
1984-11-01
This invention relates to a charge depletion meter apparatus having a current to frequency converter to sense and convert the current drain of a battery source to a digital signal which is divided and then accumulated in a counter. An LCD display unit displays the accumulated charge which is received from the counter.
Zagrovic, Bojan; Jayachandran, Guha; Millett, Ian S.; Doniach, Sebastian; Pande, Vijay S.
2010-11-30
Using synchrotron radiation and the small-angle X-ray scattering technique we have measured the radii of gyration of a series of alanine-based alpha-helix-forming peptides of the composition Ace-(AAKAA)(n)-GY-NH(2), n=2-7, in aqueous solvent at 10(+/-1) degrees C. In contrast to other techniques typically used to study alpha-helices in isolation (such as nuclear magnetic resonance and circular dichroism), small-angle X-ray scattering reports on the global structure of a molecule and, as such, provides complementary information to these other, more sequence-local measuring techniques. The radii of gyration that we measure are, except for the 12-mer, lower than the radii of gyration of ideal alpha-helices or helices with frayed ends of the equivalent sequence-length. For example, the measured radius of gyration of the 37-mer is 14.2(+/-0.6)A, which is to be compared with the radius of gyration of an ideal 37-mer alpha-helix of 17.6A. Attempts are made to analyze the origin of this discrepancy in terms of the analytical Zimm-Bragg-Nagai (ZBN) theory, as well as distributed computing explicit solvent molecular dynamics simulations using two variants of the AMBER force-field. The ZBN theory, which treats helices as cylinders connected by random walk segments, predicts markedly larger radii of gyration than those measured. This is true even when the persistence length of the random walk parts is taken to be extremely short (about one residue). Similarly, the molecular dynamics simulations, at the level of sampling available to us, give inaccurate values of the radii of gyration of the molecules (by overestimating them by around 25% for longer peptides) and/or their helical content. We conclude that even at the short sequences examined here (< or =37 amino acid residues), these alpha-helical peptides behave as fluctuating semi-broken rods rather than straight cylinders with frayed ends.
NASA Astrophysics Data System (ADS)
S, Sreekanth T.
begin{center} Large Large Rain Drop Charge Sensor Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , S. Murali Das (2) *Atmospheric Sciences Division, Centre for Earth Science Studies, Thiruvananthapuram 695011 (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) Kavyam, Manacaud, Thiruvananthapuram 695009 begin{center} ABSTRACT To study the inter-relations with precipitation electricity and precipitation microphysical parameters a rain drop charge sensor was designed and developed at CESS Electronics & Instrumentation Laboratory. Simultaneous measurement of electric charge and fall speed of rain drops could be done using this charge sensor. A cylindrical metal tube (sensor tube) of 30 cm length is placed inside another thick metal cover opened at top and bottom for electromagnetic shielding. Mouth of the sensor tube is exposed and bottom part is covered with metal net in the shielding cover. The instrument is designed in such a way that rain drops can pass only through unhindered inside the sensor tube. When electrically charged rain drops pass through the sensor tube, it is charged to the same magnitude of drop charge but with opposite polarity. The sensor tube is electrically connected the inverted input of a current to voltage converter operational amplifier using op-amp AD549. Since the sensor is electrically connected to the virtual ground of the op-amp, the charge flows to the ground and the generated current is converted to amplified voltage. This output voltage is recorded using a high frequency (1kHz) voltage recorder. From the recorded pulse, charge magnitude, polarity and fall speed of rain drop are calculated. From the fall speed drop diameter also can be calculated. The prototype is now under test running at CESS campus. As the magnitude of charge in rain drops is an indication of accumulated charge in clouds in lightning, this instrument has potential application in the field of risk and disaster management. By knowing the charge
NASA Astrophysics Data System (ADS)
Chng, Brenda; Mann, Robert; Radu, Eugen; Stelea, Cristian
2008-12-01
We construct new charged static solutions of the Einstein-Maxwell field equations in five dimensions via a solution generation technique utilizing the symmetries of the reduced Lagrangian. By applying our method on the multi-Reissner-Nordström solution in four dimensions, we generate the multi-Reissner-Nordström solution in five dimensions. We focus on the five-dimensional solution describing a pair of charged black objects with general masses and electric charges. This solution includes the double Reissner-Nordström solution as well as the charged version of the five-dimensional static black Saturn. However, all the black Saturn configurations that we found contain either a conical or naked singularity. We also obtain a non-extremal configuration of charged black strings that reduces in the extremal limit to a Majumdar-Papapetrou like solution in five dimensions.
Charged topological entanglement entropy
NASA Astrophysics Data System (ADS)
Matsuura, Shunji; Wen, Xueda; Hung, Ling-Yan; Ryu, Shinsei
2016-05-01
A charged entanglement entropy is a new measure which probes quantum entanglement between different charge sectors. We study symmetry-protected topological (SPT) phases in (2+1)-dimensional space-time by using this charged entanglement entropy. SPT phases are short-range entangled states without topological order and hence cannot be detected by the topological entanglement entropy. We demonstrate that the universal part of the charged entanglement entropy is nonzero for nontrivial SPT phases and therefore it is a useful measure to detect short-range entangled topological phases. We also discuss that the classification of SPT phases based on the charged topological entanglement entropy is related to that of the braiding statistics of quasiparticles.
NASA Astrophysics Data System (ADS)
Tennakone, K.
2012-04-01
Ball lightning or faintly luminous floating spheres with radii of the order of ten centimeters appearing transiently in air notably during stormy weather continue to remain an unresolved phenomenon. It is suggested that these objects are organized structures constituted of an electrically charged spherical thin shell of electro-frozen dipole oriented water molecules carrying an electric charge, balanced by the internal negative pressure and outward electrostatic stress. A model presented, resembling the classical theory of the electron with Poincare stresses explain almost all observed attributes of this phenomenon. The possibility of realizing macroscopic spherical surface charge distributions in the vacuum and their implication on the problem of electron are commented.
Kurnik, Martin; Hedberg, Linda; Danielsson, Jens; Oliveberg, Mikael
2012-01-01
Surface charges of proteins have in several cases been found to function as “structural gatekeepers,” which avoid unwanted interactions by negative design, for example, in the control of protein aggregation and binding. The question is then if side-chain charges, due to their desolvation penalties, play a corresponding role in protein folding by avoiding competing, misfolded traps? To find out, we removed all 32 side-chain charges from the 101-residue protein S6 from Thermus thermophilus. The results show that the charge-depleted S6 variant not only retains its native structure and cooperative folding transition, but folds also faster than the wild-type protein. In addition, charge removal unleashes pronounced aggregation on longer timescales. S6 provides thus an example where the bias toward native contacts of a naturally evolved protein sequence is independent of charges, and point at a fundamental difference in the codes for folding and intermolecular interaction: specificity in folding is governed primarily by hydrophobic packing and hydrogen bonding, whereas solubility and binding relies critically on the interplay of side-chain charges. PMID:22454493
Dynamics of nonlinear excitations of helically confined charges
NASA Astrophysics Data System (ADS)
Zampetaki, A. V.; Stockhofe, J.; Schmelcher, P.
2015-10-01
We explore the long-time dynamics of a system of identical charged particles trapped on a closed helix. This system has recently been found to exhibit an unconventional deformation of the linear spectrum when tuning the helix radius. Here we show that the same geometrical parameter can affect significantly also the dynamical behavior of an initially broad excitation for long times. In particular, for small values of the radius, the excitation disperses into the whole crystal whereas within a specific narrow regime of larger radii the excitation self-focuses, assuming finally a localized form. Beyond this regime, the excitation defocuses and the dispersion gradually increases again. We analyze this geometrically controlled nonlinear behavior using an effective discrete nonlinear Schrödinger model, which allows us among others to identify a number of breatherlike excitations.
NASA Astrophysics Data System (ADS)
Bardhan, Jaydeep P.; Knepley, Matthew G.
2014-10-01
We show that charge-sign-dependent asymmetric hydration can be modeled accurately using linear Poisson theory after replacing the standard electric-displacement boundary condition with a simple nonlinear boundary condition. Using a single multiplicative scaling factor to determine atomic radii from molecular dynamics Lennard-Jones parameters, the new model accurately reproduces MD free-energy calculations of hydration asymmetries for: (i) monatomic ions, (ii) titratable amino acids in both their protonated and unprotonated states, and (iii) the Mobley "bracelet" and "rod" test problems [D. L. Mobley, A. E. Barber II, C. J. Fennell, and K. A. Dill, "Charge asymmetries in hydration of polar solutes," J. Phys. Chem. B 112, 2405-2414 (2008)]. Remarkably, the model also justifies the use of linear response expressions for charging free energies. Our boundary-element method implementation demonstrates the ease with which other continuum-electrostatic solvers can be extended to include asymmetry.
Charge measurements of particles exiting electrostatic precipitators. Final report Oct 78-Oct 79
McDonald, J.R.; Anderson, M.H.; Mosley, R.B.
1980-04-01
The report gives results of an investigation of particle charging in positive and negative corona discharge as a function of temperature from 38 to 343C in order to establish, especially at hot-side electrostatic precipitator (ESP) temperatures, the relative effectiveness of the two possible methods of charging. Charge values on individual particles exiting two laboratory ESPs were measured in an experimental apparatus utilizing a Millikan cell. Measurements were directed at fine particles with radii between 0.3 and 1.5 micrometers. Measurements were obtained for redispersed fly ash particles carried in air at temperatures from 38 to 343C. The electrode geometries and electrical operating conditions utilized were typical of full-scale ESPs.
Bardhan, Jaydeep P; Knepley, Matthew G
2014-10-01
We show that charge-sign-dependent asymmetric hydration can be modeled accurately using linear Poisson theory after replacing the standard electric-displacement boundary condition with a simple nonlinear boundary condition. Using a single multiplicative scaling factor to determine atomic radii from molecular dynamics Lennard-Jones parameters, the new model accurately reproduces MD free-energy calculations of hydration asymmetries for: (i) monatomic ions, (ii) titratable amino acids in both their protonated and unprotonated states, and (iii) the Mobley "bracelet" and "rod" test problems [D. L. Mobley, A. E. Barber II, C. J. Fennell, and K. A. Dill, "Charge asymmetries in hydration of polar solutes," J. Phys. Chem. B 112, 2405-2414 (2008)]. Remarkably, the model also justifies the use of linear response expressions for charging free energies. Our boundary-element method implementation demonstrates the ease with which other continuum-electrostatic solvers can be extended to include asymmetry. PMID:25296776
Bardhan, Jaydeep P.; Knepley, Matthew G.
2014-10-07
We show that charge-sign-dependent asymmetric hydration can be modeled accurately using linear Poisson theory after replacing the standard electric-displacement boundary condition with a simple nonlinear boundary condition. Using a single multiplicative scaling factor to determine atomic radii from molecular dynamics Lennard-Jones parameters, the new model accurately reproduces MD free-energy calculations of hydration asymmetries for: (i) monatomic ions, (ii) titratable amino acids in both their protonated and unprotonated states, and (iii) the Mobley “bracelet” and “rod” test problems [D. L. Mobley, A. E. Barber II, C. J. Fennell, and K. A. Dill, “Charge asymmetries in hydration of polar solutes,” J. Phys. Chem. B 112, 2405–2414 (2008)]. Remarkably, the model also justifies the use of linear response expressions for charging free energies. Our boundary-element method implementation demonstrates the ease with which other continuum-electrostatic solvers can be extended to include asymmetry.
Tu, Tao; Luo, Huiying; Meng, Kun; Cheng, Yanli; Ma, Rui; Shi, Pengjun; Huang, Huoqing; Bai, Yingguo; Wang, Yaru
2015-01-01
Improving enzyme thermostability is of importance for widening the spectrum of application of enzymes. In this study, a structure-based rational design approach was used to improve the thermostability of a highly active, wide-pH-range-adaptable, and stable endopolygalacturonase (PG8fn) from Achaetomium sp. strain Xz8 via the optimization of charge-charge interactions. By using the enzyme thermal stability system (ETSS), two residues—D244 and D299—were inferred to be crucial contributors to thermostability. Single (D244A and D299R) and double (D244A/D299R) mutants were then generated and compared with the wild type. All mutants showed improved thermal properties, in the order D244A < D299R < D244A/D299R. In comparison with PG8fn, D244A/D299R showed the most pronounced shifts in temperature of maximum enzymatic activity (Tmax), temperature at which 50% of the maximal activity of an enzyme is retained (T50), and melting temperature (Tm), of about 10, 17, and 10.2°C upward, respectively, with the half-life (t1/2) extended by 8.4 h at 50°C and 45 min at 55°C. Another distinguishing characteristic of the D244A/D299R mutant was its catalytic activity, which was comparable to that of the wild type (23,000 ± 130 U/mg versus 28,000 ± 293 U/mg); on the other hand, it showed more residual activity (8,400 ± 83 U/mg versus 1,400 ± 57 U/mg) after the feed pelleting process (80°C and 30 min). Molecular dynamics (MD) simulation studies indicated that mutations at sites D244 and D299 lowered the overall root mean square deviation (RMSD) and consequently increased the protein rigidity. This study reveals the importance of charge-charge interactions in protein conformation and provides a viable strategy for enhancing protein stability. PMID:26209675
Charge exchange in a planetary corona - Its effect on the distribution and escape of hydrogen
NASA Technical Reports Server (NTRS)
Chamberlain, J. W.
1977-01-01
The theory for a spherical collisionless planetary corona is extended to include charge-exchange collisions between H(+) and H, which are assumed to constitute intermingled gases with different kinetic temperatures. The treatment is based on the conventional concept of a critical level (or exobase) above which the only collisions considered in the Boltzmann equation are those that resonantly exchange charge. Although the geometry treated is an oversimplification for a real planet, numerical examples are given for an idealized earth and Venus. For earth, an ion temperature of 4 times the neutral temperature, an ion density at the exobase of 14,000 per cu cm, and a plasmapause at 1.5 earth radii will raise the escape flux of H by a factor of 6. The total H above the exobase is changed by less than 1%. For Venus, conditions are examined that would account for the peculiar H distribution observed from Mariner 5. The plasma conditions required are not obviously outrageous by terrestrial standards, but the Mariner 5 ionosphere measurements did not show a high plasmapause at, say, 1.25 or 1.5 planetary radii, a fact that might argue against a charge-exchange model.
Ovchinnikova, Kate; Pollack, Gerald H.
2010-01-01
Previous work from this and other laboratories has demonstrated large pH gradients in water. Established by passing current between immersed electrodes, pH gradients between electrodes were found to disappear slowly, persisting for tens of minutes after the current had been turned off. We find here that these pH gradients reflect a genuine separation of charge: at times well after disconnection of the power supply, current could be drawn through a resistor placed between the charging electrodes or between pairs of electrodes positioned on either side of the midline between original electrodes. In some experiments, it was possible to recover the majority of charge that had been imparted to the water. It appears, then, that water has the capacity to store and release substantial amounts of charge. PMID:19053655
NASA Technical Reports Server (NTRS)
de Wit, A.; Cohn, N.
1999-01-01
The Netherlands Directorate General of Civil Aviation (DGCA) commissioned Hague Consulting Group (HCG) to complete a benchmark study of airport charges at twenty eight airports in Europe and around the world, based on 1996 charges. This study followed previous DGCA research on the topic but included more airports in much more detail. The main purpose of this new benchmark study was to provide insight into the levels and types of airport charges worldwide and into recent changes in airport charge policy and structure. This paper describes the 1996 analysis. It is intended that this work be repeated every year in order to follow developing trends and provide the most up-to-date information possible.
Generating charge from diffeomorphisms
NASA Astrophysics Data System (ADS)
Hansen, James; Kraus, Per
2006-12-01
We unravel some subtleties involving the definition of sphere angular momentum charges in AdSq × Sp spacetimes, or equivalently, R-symmetry charges in the dual boundary CFT. In the AdS3 context, it is known that charges can be generated by coordinate transformations, even though the underlying theory is diffeomorphism invariant. This is the bulk version of spectral flow in the boundary CFT. We trace this behavior back to special properties of the p-form field strength supporting the solution, and derive the explicit formulas for angular momentum charges. This analysis also reveals the higher dimensional origin of three dimensional Chern-Simons terms and of chiral anomalies in the boundary theory.
Low-energy charged particle environment at Jupiter - A first look
NASA Technical Reports Server (NTRS)
Krimigis, S. M.; Bostrom, C. O.; Keath, E. P.; Zwickl, R. D.; Carbary, J. F.; Armstrong, T. P.; Axford, W. I.; Fan, C. Y.; Gloeckler, G.; Lanzerotti, L. J.
1979-01-01
Preliminary results of measurements obtained by the low energy charged particle instrument on board the Voyager 1 spacecraft during its traversal of the Jovian magnetosphere are reported. The instrument consists of the low energy particle telescope and the low energy magnetospheric particle analyzer, designed to perform measurements in the inner and outer magnetosphere respectively. Ions and electrons comprising the Jovian magnetosphere were first detected at a distance of about 600 Jupiter radii from the planet, with the first bow shock crossing at 85.6 Jupiter radii. Upon crossing the magnetopause at about 67 Jupiter radii, the flows of electrons and ions were observed to change direction from away from the planet to the corotational direction. The hot plasma near the magnetosphere boundary is comprised predominantly of protons, sulfur and oxygen. Selective particle absorption near the Io flux tube indicates some form of particle deflection by Io. Fluxes in the outbound region were found to be enhanced from 90 to 160 deg longitude, and 5- and 10-hour low energy particle flux periodicities were observed.
Modeling of spacecraft charging
NASA Technical Reports Server (NTRS)
Whipple, E. C., Jr.
1977-01-01
Three types of modeling of spacecraft charging are discussed: statistical models, parametric models, and physical models. Local time dependence of circuit upset for DoD and communication satellites, and electron current to a sphere with an assumed Debye potential distribution are presented. Four regions were involved in spacecraft charging: (1) undisturbed plasma, (2) plasma sheath region, (3) spacecraft surface, and (4) spacecraft equivalent circuit.
NASA Technical Reports Server (NTRS)
Fuerstenau, Stephen; Wilson, Gregory R.
2008-01-01
An instrument for rapidly measuring the electric charges and sizes (from approximately 1 to approximately 100 micrometers) of airborne particles is undergoing development. Conceived for monitoring atmospheric dust particles on Mars, instruments like this one could also be used on Earth to monitor natural and artificial aerosols in diverse indoor and outdoor settings for example, volcanic regions, clean rooms, powder-processing machinery, and spray-coating facilities. The instrument incorporates a commercially available, low-noise, ultrasensitive charge-sensing preamplifier circuit. The input terminal of this circuit--the gate of a field-effect transistor--is connected to a Faraday-cage cylindrical electrode. The charged particles of interest are suspended in air or other suitable gas that is made to flow along the axis of the cylindrical electrode without touching the electrode. The flow can be channeled and generated by any of several alternative means; in the prototype of this instrument, the gas is drawn along a glass capillary tube (see upper part of figure) coaxial with the electrode. The size of a particle affects its rate of acceleration in the flow and thus affects the timing and shape of the corresponding signal peak generated by the charge-sensing amplifier. The charge affects the magnitude (and thus also the shape) of the signal peak. Thus, the signal peak (see figure) conveys information on both the size and electric charge of a sensed particle. In experiments thus far, the instrument has been found to be capable of measuring individual aerosol particle charges of magnitude greater than 350 e (where e is the fundamental unit of electric charge) with a precision of +/- 150 e. The instrument can sample particles at a rate as high as several thousand per second.
Goodman, Ronald K.; Hunt, Angus L.
1984-01-01
Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.
Atomic charges derived from electrostatic potentials for molecular and periodic systems.
Chen, De-Li; Stern, Abraham C; Space, Brian; Johnson, J Karl
2010-09-23
We present a method for fitting atomic charges to the electrostatic potential (ESP) of periodic and nonperiodic systems. This method is similar to the method of Campa et al. [ J. Chem. Theory Comput. 2009, 5, 2866]. We compare the Wolf and Ewald long-range electrostatic summation methods in calculating the ESP for periodic systems. We find that the Wolf summation is computationally more efficient than the Ewald summation by about a factor of 5 with comparable accuracy. Our analysis shows that the choice of grid mesh size influences the fitted atomic charges, especially for systems with buried (highly coordinated) atoms. We find that a maximum grid spacing of 0.2−0.3 A is required to obtain reliable atomic charges. The effect of the exclusion radius for point selection is assessed; we find that the common choice of using the van der Waals (vdW) radius as the exclusion radius for each atom may result in large deviations between the ESP generated from the ab initio calculations and that computed from the fitted charges, especially for points closest to the exclusion radii. We find that a larger value of exclusion radius than commonly used, 1.3 times the vdW radius, provides more reliable results. We find that a penalty function approach for fitting charges for buried atoms, with the target charge taken from Bader charge analysis, gives physically reasonable results.
NASA Astrophysics Data System (ADS)
Cappellari, Michele; Romanowsky, Aaron J.; Brodie, Jean P.; Forbes, Duncan A.; Strader, Jay; Foster, Caroline; Kartha, Sreeja S.; Pastorello, Nicola; Pota, Vincenzo; Spitler, Lee R.; Usher, Christopher; Arnold, Jacob A.
2015-05-01
We study the total mass–density profile for a sample of 14 fast-rotator early-type galaxies (stellar masses 10.2≲ log {{M}*}/{{M}ȯ }≲ 11.7). We combine observations from the SLUGGS and ATLAS3D surveys to map out the stellar kinematics in two dimensions, out to a median radius for the sample of four half-light radii Re (or 10 kpc) and a maximum radius of 2.0–6.2 Re (or 4–21 kpc). We use axisymmetric dynamical models based on the Jeans equations, which allow for a spatially varying anisotropy; employ quite general profiles for the dark halos; and, in particular, do not place any restrictions on the profile slope. This is made possible by the availability of spatially extended two-dimensional kinematics. We find that our relatively simple models provide a remarkably good description of the observed kinematics. The resulting total density profiles are well described by a nearly isothermal power law {{ρ }tot}(r)\\propto {{r}-γ } from Re/10 to at least 4Re, the largest average deviation being 11%. The average logarithmic slope is < γ > =2.19+/- 0.03 with observed rms scatter of just {{σ }γ }=0.11. This scatter out to large radii, where dark matter dominates, is as small as previously reported by lensing studies around r ≈ Re/2, where the stars dominate. Our bulge–halo conspiracy places much tighter constraints on galaxy formation models. It illustrates the power of two-dimensional stellar kinematics observations at large radii. It is now important to test the generality of our results for different galaxy types and larger samples.
Masters, Karen L.; Jordan, Andres; Cote, Patrick; Ferrarese, Laura; Blakeslee, John P.; Infante, Leopoldo; Peng, Eric W.; Mei, Simona; West, Michael J.
2010-06-01
We measure the half-light radii of globular clusters (GCs) in 43 galaxies from the Advanced Camera for Surveys (ACS) Fornax Cluster Survey. We use these data to extend previous work in which the environmental dependencies of the half-light radii of GCs in early-type galaxies in the ACS Virgo Cluster Survey were studied, and a corrected mean half-light radius (corrected for the observed environmental trends) was suggested as a reliable distance indicator. This work both increases the sample size for the study of the environmental dependencies, and adds leverage to the study of the corrected half-light radius as a possible distance indicator (since Fornax lies at a larger distance than the Virgo cluster). We study the environmental dependencies of the size of GCs using both a Principal Component Analysis as well as two-dimensional scaling relations. We largely confirm the environmental dependencies shown in Jordan et al., but find evidence that there is a residual correlation in the mean half-light radius of GC systems with galaxy magnitude, and subtle differences in the other correlations-so there may not be a universal correction for the half-light radii of lower luminosity galaxy GC systems. The main factor determining the size of a GC in an early-type galaxy is the GC color. Red GCs have (r{sub h}) = 2.8 {+-} 0.3 pc, while blue GCs have (r{sub h}) = 3.4 {+-} 0.3 pc. We show that for bright early-type galaxies (M{sub B} < -19 mag), the uncorrected mean half-light radius of the GC system is by itself an excellent distance indicator (with error {approx}11%), having the potential to reach cosmologically interesting distances in the era of high angular resolution adaptive optics on large optical telescopes.
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
2014-01-01
At end of the 2012 hurricane season the National Hurricane Center retired the original HURDAT dataset and replaced it with the newer version HURDAT2, which reformatted the original data and included additional information, in particular, estimates of the 34-, 50, and 64-kt wind radii for the interval 2004-2013. During the brief 10-year interval, some 164 tropical cyclones are noted to have formed in the North Atlantic basin, with 77 becoming hurricanes. Hurricane Sandy (2012) stands out as being the largest individual storm that occurred in the North Atlantic basin during the 2004 -2013 timeframe, both in terms of its 34- and 64-kt wind radii and wind areas, having maximum 34- and 64-kt wind radii, maximum wind areas, and average wind areas each more than 2 standard deviations larger than the corresponding means. In terms of the largest yearly total 34-kt wind area (i.e., the sum of all individual storm 34-kt wind areas during the year), the year 2010 stands out as being the largest (about 423 × 10(exp 6) nmi(exp 2)), compared to the mean of about 174 × 10(exp 6) nmi(exp 2)), surpassing the year 2005 (353 x 10(exp 6) nmi(exp 2)) that had the largest number of individual storms (28). However, in terms of the largest yearly total 64-kt wind area, the year 2005 was the largest (about 9 × 10(exp 6) nmi(exp 2)), compared to the mean of about 3 × 106 nmi(exp 2)). Interesting is that the ratio of total 64-kt wind area to total 34-kt wind area has decreased over time, from 0.034 in 2004 to 0.008 in 2013.
NASA Technical Reports Server (NTRS)
Robinson, Paul A., Jr.
1988-01-01
Charged-particle probe compact and consumes little power. Proposed modification enables metal oxide/semiconductor field-effect transistor (MOSFET) to act as detector of static electric charges or energetic charged particles. Thickened gate insulation acts as control structure. During measurements metal gate allowed to "float" to potential of charge accumulated in insulation. Stack of modified MOSFET'S constitutes detector of energetic charged particles. Each gate "floats" to potential induced by charged-particle beam penetrating its layer.
An Examination of Proton Charge Radius Extractions from e–p Scattering Data
Arrington, John
2015-09-15
A detailed examination of issues associated with proton radius extractions from elastic electron–proton scattering experiments is presented. Sources of systematic uncertainty and model dependence in the extractions are discussed, with an emphasis on how these may impact the proton charge and magnetic radii. A comparison of recent Mainz data to previous world data is presented, highlighting the difference in treatment of systematic uncertainties as well as tension between different data sets. We find several issues that suggest that larger uncertainties than previously quoted may be appropriate, but do not find any corrections which would resolve the proton radius puzzle.
Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Alexander, J; Al-Jamel, A; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Bazilevsky, A; Belikov, S; Bennett, R; Berdnikov, Y; Bjorndal, M T; Boissevain, J G; Borel, H; Boyle, K; Brooks, M L; Brown, D S; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Campbell, S; Chai, J-S; Chernichenko, S; Chiba, J; Chi, C Y; Chiu, M; Choi, I J; Chujo, T; Cianciolo, V; Cleven, C R; Cobigo, Y; Cole, B A; Comets, M P; Constantin, P; Csanád, M; Csörgo, T; Dahms, T; Das, K; David, G; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Drachenberg, J L; Drapier, O; Drees, A; Dubey, A K; Durum, A; Dzhordzhadze, V; Efremenko, Y V; Egdemir, J; Enokizono, A; En'yo, H; Espagnon, B; Esumi, S; Fields, D E; Fleuret, F; Fokin, S L; Forestier, B; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fukao, Y; Fung, S-Y; Gadrat, S; Gastineau, F; Germain, M; Glenn, A; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-A; Hachiya, T; Hadj Henni, A; Haggerty, J S; Hagiwara, M N; Hamagaki, H; Harada, H; Hartouni, E P; Haruna, K; Harvey, M; Haslum, E; Hasuko, K; Hayano, R; Heffner, M; Hemmick, T K; Heuser, J M; He, X; Hiejima, H; Hill, J C; Hobbs, R; Holmes, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hur, M G; Ichihara, T; Imai, K; Inaba, M; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Jacak, B V; Jia, J; Jin, J; Jinnouchi, O; Johnson, B M; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kaneta, M; Kang, J H; Kawagishi, T; Kazantsev, A V; Kelly, S; Khanzadeev, A; Kim, D J; Kim, E; Kim, Y-S; Kinney, E; Kiss, A; Kistenev, E; Kiyomichi, A; Klein-Boesing, C; Kochenda, L; Kochetkov, V; Komkov, B; Konno, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kunde, G J; Kurihara, N; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lajoie, J G; Lebedev, A; Le Bornec, Y; Leckey, S; Lee, D M; Lee, M K; Leitch, M J; Leite, M A L; Lim, H; Litvinenko, A; Liu, M X; Li, X H; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Masui, H; Matathias, F; McCain, M C; McGaughey, P L; Miake, Y; Miller, T E; Milov, A; Mioduszewski, S; Mishra, G C; Mitchell, J T; Morrison, D P; Moss, J M; Moukhanova, T V; Mukhopadhyay, D; Murata, J; Nagamiya, S; Nagata, Y; Nagle, J L; Naglis, M; Nakamura, T; Newby, J; Nguyen, M; Norman, B E; Nouicer, R; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, H; Okada, K; Omiwade, O O; Oskarsson, A; Otterlund, I; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Pisani, R P; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Rykov, V L; Ryu, S S; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Samsonov, V; Sato, H D; Sato, S; Sawada, S; Semenov, V; Seto, R; Sharma, D; Shea, T K; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shohjoh, T; Shoji, K; Sickles, A; Silva, C L; Silvermyr, D; Sim, K S; Singh, C P; Singh, V; Skutnik, S; Smith, W C; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sullivan, J P; Sziklai, J; Tabaru, T; Takagi, S; Takagui, E M; Taketani, A; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarján, P; Thomas, T L; Togawa, M; Tojo, J; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Tuli, S K; Tydesjö, H; Tyurin, N; Vale, C; Valle, H; van Hecke, H W; Velkovska, J; Vértesi, R; Vinogradov, A A; Vznuzdaev, E; Wagner, M; Wang, X R; Watanabe, Y; Wessels, J; White, S N; Willis, N; Winter, D; Woody, C L; Wysocki, M; Xie, W; Yanovich, A; Yokkaichi, S; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zimányi, J; Zolin, L
2009-10-01
Bose-Einstein correlations of charged kaons are used to probe Au+Au collisions at sqrt[S(NN)]=200 GeV and are compared to charged pion probes, which have a larger hadronic scattering cross section. Three-dimensional Gaussian source radii are extracted, along with a one-dimensional kaon emission source function. The centrality dependences of the three Gaussian radii are well described by a single linear function of N(part)1/3 with a zero intercept. Imaging analysis shows a deviation from a Gaussian tail at r greater than or approximately equal to 10 fm, although the bulk emission at lower radius is well described by a Gaussian. The presence of a non-Gaussian tail in the kaon source reaffirms that the particle emission region in a heavy-ion collision is extended, and that similar measurements with pions are not solely due to the decay of long-lived resonances. PMID:19905563
Afanasiev, S.; Awes, Terry C; Cianciolo, Vince; Efremenko, Yuri; Enokizono, Akitomo; Read Jr, Kenneth F; Silvermyr, David O; Sorensen, Soren P; Stankus, Paul W; Young, Glenn R; PHENIX, Collaboration
2009-01-01
Bose-Einstein correlations of charged kaons are used to probe Au+Au collisions at {radical}s{sub NN} = 200 GeV and are compared to charged pion probes, which have a larger hadronic scattering cross section. Three-dimensional Gaussian source radii are extracted, along with a one-dimensional kaon emission source function. The centrality dependences of the three Gaussian radii are well described by a single linear function of N{sub part}{sup 1/3} with a zero intercept. Imaging analysis shows a deviation from a Gaussian tail at r {approx}> 10 fm, although the bulk emission at lower radius is well described by a Gaussian. The presence of a non-Gaussian tail in the kaon source reaffirms that the particle emission region in a heavy-ion collision is extended, and that similar measurements with pions are not solely due to the decay of long-lived resonances.
Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Alexander, J; Al-Jamel, A; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Bazilevsky, A; Belikov, S; Bennett, R; Berdnikov, Y; Bjorndal, M T; Boissevain, J G; Borel, H; Boyle, K; Brooks, M L; Brown, D S; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Campbell, S; Chai, J-S; Chernichenko, S; Chiba, J; Chi, C Y; Chiu, M; Choi, I J; Chujo, T; Cianciolo, V; Cleven, C R; Cobigo, Y; Cole, B A; Comets, M P; Constantin, P; Csanád, M; Csörgo, T; Dahms, T; Das, K; David, G; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Drachenberg, J L; Drapier, O; Drees, A; Dubey, A K; Durum, A; Dzhordzhadze, V; Efremenko, Y V; Egdemir, J; Enokizono, A; En'yo, H; Espagnon, B; Esumi, S; Fields, D E; Fleuret, F; Fokin, S L; Forestier, B; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fukao, Y; Fung, S-Y; Gadrat, S; Gastineau, F; Germain, M; Glenn, A; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-A; Hachiya, T; Hadj Henni, A; Haggerty, J S; Hagiwara, M N; Hamagaki, H; Harada, H; Hartouni, E P; Haruna, K; Harvey, M; Haslum, E; Hasuko, K; Hayano, R; Heffner, M; Hemmick, T K; Heuser, J M; He, X; Hiejima, H; Hill, J C; Hobbs, R; Holmes, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hur, M G; Ichihara, T; Imai, K; Inaba, M; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Jacak, B V; Jia, J; Jin, J; Jinnouchi, O; Johnson, B M; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kaneta, M; Kang, J H; Kawagishi, T; Kazantsev, A V; Kelly, S; Khanzadeev, A; Kim, D J; Kim, E; Kim, Y-S; Kinney, E; Kiss, A; Kistenev, E; Kiyomichi, A; Klein-Boesing, C; Kochenda, L; Kochetkov, V; Komkov, B; Konno, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kunde, G J; Kurihara, N; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lajoie, J G; Lebedev, A; Le Bornec, Y; Leckey, S; Lee, D M; Lee, M K; Leitch, M J; Leite, M A L; Lim, H; Litvinenko, A; Liu, M X; Li, X H; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Masui, H; Matathias, F; McCain, M C; McGaughey, P L; Miake, Y; Miller, T E; Milov, A; Mioduszewski, S; Mishra, G C; Mitchell, J T; Morrison, D P; Moss, J M; Moukhanova, T V; Mukhopadhyay, D; Murata, J; Nagamiya, S; Nagata, Y; Nagle, J L; Naglis, M; Nakamura, T; Newby, J; Nguyen, M; Norman, B E; Nouicer, R; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, H; Okada, K; Omiwade, O O; Oskarsson, A; Otterlund, I; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Pisani, R P; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Rykov, V L; Ryu, S S; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Samsonov, V; Sato, H D; Sato, S; Sawada, S; Semenov, V; Seto, R; Sharma, D; Shea, T K; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shohjoh, T; Shoji, K; Sickles, A; Silva, C L; Silvermyr, D; Sim, K S; Singh, C P; Singh, V; Skutnik, S; Smith, W C; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sullivan, J P; Sziklai, J; Tabaru, T; Takagi, S; Takagui, E M; Taketani, A; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarján, P; Thomas, T L; Togawa, M; Tojo, J; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Tuli, S K; Tydesjö, H; Tyurin, N; Vale, C; Valle, H; van Hecke, H W; Velkovska, J; Vértesi, R; Vinogradov, A A; Vznuzdaev, E; Wagner, M; Wang, X R; Watanabe, Y; Wessels, J; White, S N; Willis, N; Winter, D; Woody, C L; Wysocki, M; Xie, W; Yanovich, A; Yokkaichi, S; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zimányi, J; Zolin, L
2009-10-01
Bose-Einstein correlations of charged kaons are used to probe Au+Au collisions at sqrt[S(NN)]=200 GeV and are compared to charged pion probes, which have a larger hadronic scattering cross section. Three-dimensional Gaussian source radii are extracted, along with a one-dimensional kaon emission source function. The centrality dependences of the three Gaussian radii are well described by a single linear function of N(part)1/3 with a zero intercept. Imaging analysis shows a deviation from a Gaussian tail at r greater than or approximately equal to 10 fm, although the bulk emission at lower radius is well described by a Gaussian. The presence of a non-Gaussian tail in the kaon source reaffirms that the particle emission region in a heavy-ion collision is extended, and that similar measurements with pions are not solely due to the decay of long-lived resonances.
NASA Astrophysics Data System (ADS)
Iyer, Venkatraman
1997-10-01
Backside illuminated thinned CCDs have the highest response in the UV and blue spectral region. Their use in detectors is limited due to the instability of the CCD. A low temperature oxide nearly 30 A thick is grown on the acid thinned backside to tie up dangling bonds. The oxide carries fixed positive charges that attract and trap photogenerated electrons. A permanent and stable backside charging procedure is necessary to create a negative bias that will drive electrons to the frontside collection wells. We have shown chemisorption charging to be a novel method to permanently charge CCDs. The catalytic nature of certain metals are exploited to chemisorb oxygen as negative atomic species at the metal/oxide interface. Charging is shown to occur by depositing a thin film 10 A of platinum on the backside. No tunneling occurs because of the thick oxide. The Passivated Platinum Film (PPtF) which utilizes a hafnium oxide antireflection coating to passivate the platinum is an effective process, but it is sensitive to the environment and discharges quickly upon hydrogen exposure. A silver catalytic coating is shown to be far superior to other charging techniques. Silver irreversibly chemisorbs oxygen and hydrogen is not dissociatively adsorbed except at temperatures <100oK. High quantum efficiencies have been recorded for the UV-blue ranges. A slight drop is seen at cold temperatures due to interaction of water with oxygen to form hydroxyl ions. No change in QE is seen upon exposure to hydrogen or during outgassing. Silver is also one of the most transparent metals and easily deposited by evaporation. We therefore have developed a charging process which is nearly ideal for CCD imaging.
NASA Astrophysics Data System (ADS)
Dennerl, Konrad
2010-12-01
Charge transfer, or charge exchange, describes a process in which an ion takes one or more electrons from another atom. Investigations of this fundamental process have accompanied atomic physics from its very beginning, and have been extended to astrophysical scenarios already many decades ago. Yet one important aspect of this process, i.e. its high efficiency in generating X-rays, was only revealed in 1996, when comets were discovered as a new class of X-ray sources. This finding has opened up an entirely new field of X-ray studies, with great impact due to the richness of the underlying atomic physics, as the X-rays are not generated by hot electrons, but by ions picking up electrons from cold gas. While comets still represent the best astrophysical laboratory for investigating the physics of charge transfer, various studies have already spotted a variety of other astrophysical locations, within and beyond our solar system, where X-rays may be generated by this process. They range from planetary atmospheres, the heliosphere, the interstellar medium and stars to galaxies and clusters of galaxies, where charge transfer may even be observationally linked to dark matter. This review attempts to put the various aspects of the study of charge transfer reactions into a broader historical context, with special emphasis on X-ray astrophysics, where the discovery of cometary X-ray emission may have stimulated a novel look at our universe.
Taming Highly Charged Radioisotopes
NASA Astrophysics Data System (ADS)
Chowdhury, Usman; Eberhardt, Benjamin; Jang, Fuluni; Schultz, Brad; Simon, Vanessa; Delheij, Paul; Dilling, Jens; Gwinner, Gerald
2012-10-01
The precise and accurate mass of short-lived radioisotopes is a very important parameter in physics. Contribution to the improvement of nuclear models, metrological standard fixing and tests of the unitarity of the Caibbibo-Kobayashi-Maskawa (CKM) matrix are a few examples where the mass value plays a major role. TRIUMF's ion trap for atomic and nuclear physics (TITAN) is a unique facility of three online ion traps that enables the mass measurement of short-lived isotopes with high precision (˜10-8). At present TITAN's electron beam ion trap (EBIT) increases the charge state to increase the precision, but there is no facility to significantly reduce the energy spread introduced by the charge breeding process. The precision of the measured mass of radioisotopes is linearly dependent on the charge state while the energy spread of the charged radioisotopes affects the precision adversely. To boost the precision level of mass measurement at TITAN without loosing too many ions, a cooler Penning trap (CPET) is being developed. CPET is designed to use either positively (proton) or negatively (electron) charged particles to reduce the energy spread via sympathetic cooling. Off-line setup of CPET is complete. Details of the working principles and updates are presented
Freeze-out radii extracted from three-pion cumulants in pp, p-Pb and Pb-Pb collisions at the LHC
NASA Astrophysics Data System (ADS)
Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Belmont, R.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Böhmer, F. V.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; De, S.; Delagrange, H.; Deloff, A.; Dénes, E.; D'Erasmo, G.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Di Bari, D.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dørheim, S.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Esposito, M.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gumbo, M.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hippolyte, B.; Hladky, J.; Hristov, P.; Huang, M.; Humanic, T. J.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Innocenti, G. M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Jachołkowski, A.; Jacobs, P. M.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kadyshevskiy, V.; Kalcher, S.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Khan, M. M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; La Pointe, S. L.; La Rocca, P.; Lea, R.; Lee, G. R.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; Leoncino, M.; León Monzón, I.; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Lopez, X.; López Torres, E.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luparello, G.; Luzzi, C.; Ma, R.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martin Blanco, J.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mlynarz, J.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Sahoo, P.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Pesci, A.; Peskov, V.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Pohjoisaho, E. H. O.; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Sakai, S.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Segato, G.; Seger, J. E.; Sekiguchi, Y.; Selyuzhenkov, I.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Spacek, M.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Susa, T.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Torii, H.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ulery, J.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Vande Vyvre, P.; Vannucci, L.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Xiang, C.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I.-K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, F.; Zhou, Y.; Zhou, Zhuo; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zoccarato, Y.; Zyzak, M.
2014-12-01
In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose-Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage of interaction, called kinetic freeze-out. In low-multiplicity collisions, unlike in high-multiplicity collisions, two-pion correlations are substantially altered by background correlations, e.g. mini-jets. Such correlations can be suppressed using three-pion cumulant correlations. We present the first measurements of the size of the system at freeze-out extracted from three-pion cumulant correlations in pp, p-Pb and Pb-Pb collisions at the LHC with ALICE. At similar multiplicity, the invariant radii extracted in p-Pb collisions are found to be 5-15% larger than those in pp, while those in Pb-Pb are 35-55% larger than those in p-Pb. Our measurements disfavor models which incorporate substantially stronger collective expansion in p-Pb as compared to pp collisions at similar multiplicity.
NASA Astrophysics Data System (ADS)
Zitrin, Adi; Broadhurst, Tom; Barkana, Rennan; Rephaeli, Yoel; Benítez, Narciso
2011-01-01
We present the results of a strong-lensing analysis of a complete sample of 12 very luminous X-ray clusters at z > 0.5 using HST/ACS images. Our modelling technique has uncovered some of the largest known critical curves outlined by many accurately predicted sets of multiple images. The distribution of Einstein radii has a median value of ≃28 arcsec (for a source redshift of zs˜ 2), twice as large as other lower z samples, and extends to 55 arcsec for MACS J0717.5+3745, with an impressive enclosed Einstein mass of 7.4 × 1014 M⊙. We find that nine clusters cover a very large area (>2.5 arcmin2) of high magnification (μ > 10×) for a source redshift of zs˜ 8, providing primary targets for accessing the first stars and galaxies. We compare our results with theoretical predictions of the standard Λ cold dark matter (ΛCDM) model which we show systematically fall short of our measured Einstein radii by a factor of ≃1.4, after accounting for the effect of lensing projection. Nevertheless, a revised analysis, once arc redshifts become available, and similar analyses of larger samples, is needed in order to establish more precisely the level of discrepancy with ΛCDM predictions.
Nanoparticle coagulation in fractionally charged and charge fluctuating dusty plasmas
Nunomura, Shota; Kondo, Michio; Shiratani, Masaharu; Koga, Kazunori; Watanabe, Yukio
2008-08-15
The kinetics of nanoparticle coagulation has been studied in fractionally charged and charge fluctuating dusty plasmas. The coagulation occurs when the mutual collision frequency among nanoparticles exceeds their charging and decharging/neutralization frequency. Interestingly, the coagulation is suppressed while a fraction (several percent) of nanoparticles are negatively charged in a plasma, in which stochastic charging plays an important role. A model is developed to predict a phase diagram of the coagulation and its suppression.
Space charge field in a FEL with axially symmetric electron beam
Goncharov, I.A.; Belyavskiy, E.D.
1995-12-31
Nonlinear two-dimensional theory of the space charge of an axially symmetric electron beam propagating in combined right-hand polarized wiggler and uniform axial guide fields in a presence of high-frequency electromagnetic wave is presented. The well-known TE{sub 01} mode in a cylindrical waveguide for the model of radiation fields and paraxial approximation for the wiggler field are used. Space charge field components are written in the Lagrange coordinates by the twice averaged Green`s functions of two equally charged infinitely thin discs. For that {open_quotes}compensating charges{close_quotes} method is applied in which an electron ring model is substituted by one with two different radii and signs discs. On this approach the initial Green`s functions peculiarities are eliminated and all calculations are considerably simplified. Coefficients of a twice averaged Green`s function expansion into a Fourier series are obtained by use of corresponding expansion coefficients of longitudinal Green`s functions of equal radii discs and identical rings known from the one-dimensional theory of super HF devices taking into account electron bunches periodicity. This approach permit the space charge field components for an arbitrary stratified stream to be expressed in a simple and strict enough form. The expressions obtained can be employed in a nonlinear two-dimensional FEL theory in order to investigate beam dynamical defocusing and electrons failing on the waveguide walls in the high gain regime. This is especially important for FEL operation in mm and submm.
Parise, R.J.
1998-07-01
Electric and hybrid electric vehicles (EVs and HEVs) will become a significant reality in the near future of the automotive industry. Both types of vehicles will need a means to store energy on board. For the present, the method of choice would be lead-acid batteries, with the HEV having auxiliary power supplied by a small internal combustion engine. One of the main drawbacks to lead-acid batteries is internal heat generation as a natural consequence of the charging process as well as resistance losses. This limits the re-charging rate to the battery pack for an EV which has a range of about 80 miles. A quick turnaround on recharge is needed but not yet possible. One of the limiting factors is the heat buildup. For the HEV the auxiliary power unit provides a continuous charge to the battery pack. Therefore heat generation in the lead-acid battery is a constant problem that must be addressed. Presented here is a battery that is capable of quick charging, the Quick Charge Battery with Thermal Management. This is an electrochemical battery, typically a lead-acid battery, without the inherent thermal management problems that have been present in the past. The battery can be used in an all-electric vehicle, a hybrid-electric vehicle or an internal combustion engine vehicle, as well as in other applications that utilize secondary batteries. This is not restricted to only lead-acid batteries. The concept and technology are flexible enough to use in any secondary battery application where thermal management of the battery must be addressed, especially during charging. Any battery with temperature constraints can benefit from this advancement in the state of the art of battery manufacturing. This can also include nickel-cadmium, metal-air, nickel hydroxide, zinc-chloride or any other type of battery whose performance is affected by the temperature control of the interior as well as the exterior of the battery.
Charged conformal Killing spinors
Lischewski, Andree
2015-01-15
We study the twistor equation on pseudo-Riemannian Spin{sup c}-manifolds whose solutions we call charged conformal Killing spinors (CCKSs). We derive several integrability conditions for the existence of CCKS and study their relations to spinor bilinears. A construction principle for Lorentzian manifolds admitting CCKS with nontrivial charge starting from CR-geometry is presented. We obtain a partial classification result in the Lorentzian case under the additional assumption that the associated Dirac current is normal conformal and complete the classification of manifolds admitting CCKS in all dimensions and signatures ≤5 which has recently been initiated in the study of supersymmetric field theories on curved space.
1997-07-25
Guilford County Superior Court Judge James Webb ruled there was not enough evidence to convict HIV-positive [name removed] on charges of attempted murder and assault with a deadly weapon in connection with the rape of a 12-year-old girl. Prosecutors argued [name removed] knew he was HIV-positive when the rape occurred and defense attorney Randy Jones argued that there was no medical proof of [name removed]'s HIV status at the time of the attack. The judge dismissed the two charges against [name removed]. A jury later convicted [name removed] of statutory rape and taking indecent liberties with a minor. PMID:11364510
ION PRODUCING MECHANISM (CHARGE CUPS)
Brobeck, W.W.
1959-04-21
The problems of confining a charge material in a calutron and uniformly distributing heat to the charge is described. The charge is held in a cup of thermally conductive material removably disposed within the charge chamber of the ion source block. A central thermally conducting stem is incorporated within the cup for conducting heat to the central portion of the charge contained within the cup.
Guo, Xuhong; Kirton, Gavin F; Dubin, Paul L
2006-10-26
Carboxylated ficolls were prepared as model spherical colloids of variable charge and size, with radii ranging from 3.0 to 19.3 nm. Capillary electrophoresis (CE), electrophoretic light scattering (ELS), and potentiometric titration were used to determine mobilities as a function of pH, degree of ionization alpha, and surface potential psi(0). Measured mobilities typically display a plateau at high pH, corresponding to high alpha and psi(0), confirming the general nature of this effect for charged spheres, seen also for charged dendrimers and charged latex particles. This result is examined in the context of a discontinuity in mobility predicted by the Wiersema, O'Brien, and White (WOW) theory and a more recent primitive model electrophoresis (PME) theory, in which bound counterions are considered either as point charges or as hard spheres. While no mobility maximum can be determined as expected by these two theories, our data seem more to support Belloni's theoretical expectations on charged polymers and spheres. Here we explain the mobility plateaus in terms of counterions accumulated close to the surface (surface potential-determining ions) or within the shear plane (mobility-determining ions).
ERIC Educational Resources Information Center
Humphries, Jack W.
1986-01-01
Even though most decisions are made before they reach the superintendent's desk, and even though these are times of "litigious paranoia," the superintendent is still in charge of the public schools. Some of the responsibilities of the superintendent are outlined. (MLW)
ERIC Educational Resources Information Center
Olejnik, Stephen F.; Porter, Andrew C.
1981-01-01
The evaluation of competing analysis strategies based on estimator bias and variance is demonstrated using gains in standard scores and analysis of covariance procedures for quasi-experiments conforming to the fan-spread hypothesis. The findings do not lead to a uniform recommendation of either approach. (Author/JKS)
NASA Technical Reports Server (NTRS)
Low, B.-C.
1972-01-01
The generation of a magnetic field by statistically homogeneous, stationary velocity turbulence is considered. The generation of rms magnetic fluctuation is explicitly demonstrated in the limit of short turbulence correlation time. It is shown that the fluctuation associated with a growing or stationary mean field grows with time such that the ratio of the fluctuation and the square of the mean field tends to a steady value, which is a monotonically decreasing function of the growth rate of the mean field.
NASA Technical Reports Server (NTRS)
Melick, H. C., Jr.; Ybarra, A. H.; Bencze, D. P.
1975-01-01
An inexpensive method is developed to determine the extreme values of instantaneous inlet distortion. This method also provides insight into the basic mechanics of unsteady inlet flow and the associated engine reaction. The analysis is based on fundamental fluid dynamics and statistical methods to provide an understanding of the turbulent inlet flow and quantitatively relate the rms level and power spectral density (PSD) function of the measured time variant total pressure fluctuations to the strength and size of the low pressure regions. The most probable extreme value of the instantaneous distortion is then synthesized from this information in conjunction with the steady state distortion. Results of the analysis show the extreme values to be dependent upon the steady state distortion, the measured turbulence rms level and PSD function, the time on point, and the engine response characteristics. Analytical projections of instantaneous distortion are presented and compared with data obtained by a conventional, highly time correlated, 40 probe instantaneous pressure measurement system.
Analytic treatment of the charged black-hole-mirror bomb in the highly explosive regime
NASA Astrophysics Data System (ADS)
Hod, Shahar
2013-09-01
A charged scalar field impinging upon a charged Reissner-Nordström black hole can be amplified as it scatters off the hole, a phenomenon known as super-radiant scattering. This scattering process in the super-radiant regime ω
Optimization of BEV Charging Strategy
NASA Astrophysics Data System (ADS)
Ji, Wei
This paper presents different approaches to optimize fast charging and workplace charging strategy of battery electric vehicle (BEV) drivers. For the fast charging analysis, a rule-based model was built to simulate BEV charging behavior. Monte Carlo analysis was performed to explore to the potential range of congestion at fast charging stations which could be more than four hours at the most crowded stations. Genetic algorithm was performed to explore the theoretical minimum waiting time at fast charging stations, and it can decrease the waiting time at the most crowded stations to be shorter than one hour. A deterministic approach was proposed as a feasible suggestion that people should consider to take fast charging when the state of charge is approaching 40 miles. This suggestion is hoped to help to minimize potential congestion at fast charging stations. For the workplace charging analysis, scenario analysis was performed to simulate temporal distribution of charging demand under different workplace charging strategies. It was found that if BEV drivers charge as much as possible and as late as possible at workplace, it could increase the utility of solar-generated electricity while relieve grid stress of extra intensive electricity demand at night caused by charging electric vehicles at home.
Sedimentation of a charged colloidal sphere in a charged cavity.
Keh, Huan J; Cheng, Tsung F
2011-12-01
An analytical study is presented for the quasisteady sedimentation of a charged spherical particle located at the center of a charged spherical cavity. The overlap of the electric double layers is allowed, and the polarization (relaxation) effect in the double layers is considered. The electrokinetic equations that govern the ionic concentration distributions, electric potential profile, and fluid flow field in the electrolyte solution are linearized assuming that the system is only slightly distorted from equilibrium. Using a perturbation method, these linearized equations are solved for a symmetric electrolyte with the surface charge densities of the particle and cavity as the small perturbation parameters. An analytical expression for the settling velocity of the charged sphere is obtained from a balance among the gravitational, electrostatic, and hydrodynamic forces acting on it. Our results indicate that the presence of the particle charge reduces the magnitude of the sedimentation velocity of the particle in an uncharged cavity and the presence of the fixed charge at the cavity surface increases the magnitude of the sedimentation velocity of an uncharged particle in a charged cavity. For the case of a charged sphere settling in a charged cavity with equivalent surface charge densities, the net effect of the fixed charges will increase the sedimentation velocity of the particle. For the case of a charged sphere settling in a charged cavity with their surface charge densities in opposite signs, the net effect of the fixed charges in general reduces/increases the sedimentation velocity of the particle if the surface charge density of the particle has a greater/smaller magnitude than that of the cavity. The effect of the surface charge at the cavity wall on the sedimentation of a colloidal particle is found to increase with a decrease in the particle-to-cavity size ratio and can be significant in appropriate situations.
Sedimentation of a charged colloidal sphere in a charged cavity
NASA Astrophysics Data System (ADS)
Keh, Huan J.; Cheng, Tsung F.
2011-12-01
An analytical study is presented for the quasisteady sedimentation of a charged spherical particle located at the center of a charged spherical cavity. The overlap of the electric double layers is allowed, and the polarization (relaxation) effect in the double layers is considered. The electrokinetic equations that govern the ionic concentration distributions, electric potential profile, and fluid flow field in the electrolyte solution are linearized assuming that the system is only slightly distorted from equilibrium. Using a perturbation method, these linearized equations are solved for a symmetric electrolyte with the surface charge densities of the particle and cavity as the small perturbation parameters. An analytical expression for the settling velocity of the charged sphere is obtained from a balance among the gravitational, electrostatic, and hydrodynamic forces acting on it. Our results indicate that the presence of the particle charge reduces the magnitude of the sedimentation velocity of the particle in an uncharged cavity and the presence of the fixed charge at the cavity surface increases the magnitude of the sedimentation velocity of an uncharged particle in a charged cavity. For the case of a charged sphere settling in a charged cavity with equivalent surface charge densities, the net effect of the fixed charges will increase the sedimentation velocity of the particle. For the case of a charged sphere settling in a charged cavity with their surface charge densities in opposite signs, the net effect of the fixed charges in general reduces/increases the sedimentation velocity of the particle if the surface charge density of the particle has a greater/smaller magnitude than that of the cavity. The effect of the surface charge at the cavity wall on the sedimentation of a colloidal particle is found to increase with a decrease in the particle-to-cavity size ratio and can be significant in appropriate situations.
NASA Astrophysics Data System (ADS)
Dossett, Jason; Ishak, M.; Rindler, W.; Moldenhauer, J.; Allison, C.
2008-05-01
Recently, Rindler and Ishak (2007) made a breakthrough in the field of gravitational lensing showing that a cosmological constant, Λ, will indeed contribute to the bending angle of light by a concentric mass, in fact, by decreasing it. Then Ishak et al. (2007) showed that the effect can be applied to observations of Einstein radii around clusters of galaxies. We present here various higher-order calculations and results for the bending angle and the Lambda contribution. Surprisingly, we find that the Lambda term is the next largest term after the Einstein first-order term for many cluster lens systems. For those lens systems, the Lambda contribution is larger than the second-order term and may be the next targeted term by future high precision experiments.
Kepler-62: a five-planet system with planets of 1.4 and 1.6 Earth radii in the habitable zone.
Borucki, William J; Agol, Eric; Fressin, Francois; Kaltenegger, Lisa; Rowe, Jason; Isaacson, Howard; Fischer, Debra; Batalha, Natalie; Lissauer, Jack J; Marcy, Geoffrey W; Fabrycky, Daniel; Désert, Jean-Michel; Bryson, Stephen T; Barclay, Thomas; Bastien, Fabienne; Boss, Alan; Brugamyer, Erik; Buchhave, Lars A; Burke, Chris; Caldwell, Douglas A; Carter, Josh; Charbonneau, David; Crepp, Justin R; Christensen-Dalsgaard, Jørgen; Christiansen, Jessie L; Ciardi, David; Cochran, William D; DeVore, Edna; Doyle, Laurance; Dupree, Andrea K; Endl, Michael; Everett, Mark E; Ford, Eric B; Fortney, Jonathan; Gautier, Thomas N; Geary, John C; Gould, Alan; Haas, Michael; Henze, Christopher; Howard, Andrew W; Howell, Steve B; Huber, Daniel; Jenkins, Jon M; Kjeldsen, Hans; Kolbl, Rea; Kolodziejczak, Jeffery; Latham, David W; Lee, Brian L; Lopez, Eric; Mullally, Fergal; Orosz, Jerome A; Prsa, Andrej; Quintana, Elisa V; Sanchis-Ojeda, Roberto; Sasselov, Dimitar; Seader, Shawn; Shporer, Avi; Steffen, Jason H; Still, Martin; Tenenbaum, Peter; Thompson, Susan E; Torres, Guillermo; Twicken, Joseph D; Welsh, William F; Winn, Joshua N
2013-05-01
We present the detection of five planets--Kepler-62b, c, d, e, and f--of size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii (R⊕), orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4, and 267.3 days, respectively. The outermost planets, Kepler-62e and -62f, are super-Earth-size (1.25 R⊕ < planet radius ≤ 2.0 R⊕) planets in the habitable zone of their host star, respectively receiving 1.2 ± 0.2 times and 0.41 ± 0.05 times the solar flux at Earth's orbit. Theoretical models of Kepler-62e and -62f for a stellar age of ~7 billion years suggest that both planets could be solid, either with a rocky composition or composed of mostly solid water in their bulk.
Line10 Charge Injection Biases
NASA Astrophysics Data System (ADS)
Baggett, Sylvia
2012-10-01
Radiation damage on-orbit, in the form of charge traps, gradually reduces the charge transfer efficiency {CTE} of CCDs over time. In WFC3, one option for mitigating CTE losses is charge injection i.e. electronically inserting charge every Nth row. The benefit of this method is the significantly lower noise penalty, much less than the traditional Poissonian noise imparted by a pre- or post-flash of the same charge level. This program acquires the calibration data necessary to support science observations using charge injection.
Benner, W. Henry
1999-01-01
The design and operation of a new type of charged-particle trap provides simultaneous measurements of mass, charge, and velocity of large electrospray ions. The trap consists of a detector tube mounted between two sets of center-bored trapping plates. Voltages applied to the trapping plates define symmetrically-opposing potential valleys which guide axially-injected ions to cycle back and forth through the charge-detection tube. A low noise charge-sensitive amplifier, connected to the tube, reproduces the image charge of individual ions as they pass through the detector tube. Ion mass is calculated from measurement of ion charge and velocity following each passage through the detector.
Multiscale simulations of protein G B1 adsorbed on charged self-assembled monolayers.
Liu, Jie; Liao, Chenyi; Zhou, Jian
2013-09-10
The orientation of an antibody plays an important role in the development of immunosensors. Protein G is an antibody binding protein, which specifically targets the Fc fragment of an antibody. In this work, the orientation of prototypical and mutated protein G B1 adsorbed on positively and negatively charged self-assembled monolayers was studied by parallel tempering Monte Carlo and all-atom molecular dynamics simulations. Both methods present generally similar orientation distributions of protein G B1 for each kind of surface. The root-mean-square deviation, DSSP, gyration radius, eccentricity, dipole moment, and superimposed structures of protein G B1 were analyzed. Moreover, the orientation of binding antibody was also predicted in this work. Simulation results show that with the same orientation trends, the mutant exhibits narrower orientation distributions than does the prototype, which was mainly caused by the stronger dipole of the mutant. Both kinds of proteins adsorbed on charged surfaces were induced by the competition of electrostatic interaction and vdW interaction; the electrostatic interaction energy dominated the adsorption behavior. The protein adsorption was also largely affected by the distribution of charged residues within the proteins. Thus, the prototype could adsorb on a negatively charged surface, although it keeps a net charge of -4 e. The mutant has imperfect opposite orientation when it adsorbed on oppositely charged surfaces. For the mutant on a carboxyl-functionalized self-assembled monolayer (COOH-SAM), the orientation was the same as that inferred by experiments. While for the mutant on amine-functionalized self-assembled monolayer (NH2-SAM), the orientation was induced by the competition between attractive interactions (led by ASP40 and GLU56) and repulsive interactions (led by LYS10); thus, the perfect opposite orientation could not be obtained. On both surfaces, the adsorbed protein could retain its native conformation. The desired
23. 175 TON CAPACITY CHARGING LADLE ON THE CHARGING AISLE ...
23. 175 TON CAPACITY CHARGING LADLE ON THE CHARGING AISLE OF THE BOP SHOP LOOKING SOUTH. HISTORIAN FOR SCALE. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
Intelligent battery charging system
NASA Astrophysics Data System (ADS)
Everett, Hobert R., Jr.
1991-09-01
The present invention is a battery charging system that provides automatic voltage selection, short circuit protection, and delayed output to prevent arcing or pitting. A second embodiment of the invention provides a homing beacon which transmits a signal so that a battery powered mobile robot may home in on and contact the invention to charge its battery. The invention includes electric terminals isolated from one another. One terminal is grounded and the other has a voltage applied to it through a resistor connected to the output of a DC power supply. A voltage scaler is connected between the resistor and the hot terminal. An On/Off controller and a voltage mode selector sense the voltage provided at the output of the voltage scaler.
Controlling charge on levitating drops.
Hilger, Ryan T; Westphall, Michael S; Smith, Lloyd M
2007-08-01
Levitation technologies are used in containerless processing of materials, as microscale manipulators and reactors, and in the study of single drops and particles. Presented here is a method for controlling the amount and polarity of charge on a levitating drop. The method uses single-axis acoustic levitation to trap and levitate a single, initially neutral drop with a diameter between 400 microm and 2 mm. This drop is then charged in a controllable manner using discrete packets of charge in the form of charged drops produced by a piezoelectric drop-on-demand dispenser equipped with a charging electrode. The magnitude of the charge on the dispensed drops can be adjusted by varying the voltage applied to the charging electrode. The polarity of the charge on the added drops can be changed allowing removal of charge from the trapped drop (by neutralization) and polarity reversal. The maximum amount of added charge is limited by repulsion of like charges between the drops in the trap. This charging scheme can aid in micromanipulation and the study of charged drops and particles using levitation. PMID:17580951
Interaction between heterogeneously charged surfaces: Surface patches and charge modulation
NASA Astrophysics Data System (ADS)
Ben-Yaakov, Dan; Andelman, David; Diamant, Haim
2013-02-01
When solid surfaces are immersed in aqueous solutions, some of their charges can dissociate and leave behind charged patches on the surface. Although the charges are distributed heterogeneously on the surface, most of the theoretical models treat them as homogeneous. For overall non-neutral surfaces, the assumption of surface charge homogeneity is rather reasonable since the leading terms of two such interacting surfaces depend on the nonzero average charge. However, for overall neutral surfaces the nature of the surface charge distribution is crucial in determining the intersurface interaction. In the present work we study the interaction between two charged surfaces across an aqueous solution for several charge distributions. The analysis is preformed within the framework of the linearized Poisson-Boltzmann theory. For periodic charge distributions the interaction is found to be repulsive at small separations, unless the two surface distributions are completely out-of-phase with respect to each other. For quenched random charge distributions we find that due to the presence of the ionic solution in between the surfaces, the intersurface repulsion dominates over the attraction in the linear regime of the Poisson-Boltzmann theory. The effect of quenched charge heterogeneity is found to be particularly substantial in the case of large charged domains.
Distributed charging of electrical assets
Ghosh, Soumyadip; Phan, Dung; Sharma, Mayank; Wu, Chai Wah; Xiong, Jinjun
2016-02-16
The present disclosure relates generally to the field of distributed charging of electrical assets. In various examples, distributed charging of electrical assets may be implemented in the form of systems, methods and/or algorithms.
Submerged AUV Charging Station
NASA Technical Reports Server (NTRS)
Jones, Jack A.; Chao, Yi; Curtin, Thomas
2014-01-01
Autonomous Underwater Vehicles (AUVs) are becoming increasingly important for military surveillance and mine detection. Most AUVs are battery powered and have limited lifetimes of a few days to a few weeks. This greatly limits the distance that AUVs can travel underwater. Using a series of submerged AUV charging stations, AUVs could travel a limited distance to the next charging station, recharge its batteries, and continue to the next charging station, thus traveling great distances in a relatively short time, similar to the Old West “Pony Express.” One solution is to use temperature differences at various depths in the ocean to produce electricity, which is then stored in a submerged battery. It is preferred to have the upper buoy submerged a reasonable distance below the surface, so as not to be seen from above and not to be inadvertently destroyed by storms or ocean going vessels. In a previous invention, a phase change material (PCM) is melted (expanded) at warm temperatures, for example, 15 °C, and frozen (contracted) at cooler temperatures, for example, 8 °C. Tubes containing the PCM, which could be paraffin such as pentadecane, would be inserted into a container filled with hydraulic oil. When the PCM is melted (expanded), it pushes the oil out into a container that is pressurized to about 3,000 psi (approx equals 20.7 MPa). When a valve is opened, the high-pressure oil passes through a hydraulic motor, which turns a generator and charges a battery. The low-pressure oil is finally reabsorbed into the PCM canister when the PCM tubes are frozen (contracted). Some of the electricity produced could be used to control an external bladder or a motor to the tether line, such that depth cycling is continued for a very long period of time. Alternatively, after the electricity is generated by the hydraulic motor, the exiting low-pressure oil from the hydraulic motor could be vented directly to an external bladder on the AUV, such that filling of the bladder
Modular Battery Charge Controller
NASA Technical Reports Server (NTRS)
Button, Robert; Gonzalez, Marcelo
2009-01-01
A new approach to masterless, distributed, digital-charge control for batteries requiring charge control has been developed and implemented. This approach is required in battery chemistries that need cell-level charge control for safety and is characterized by the use of one controller per cell, resulting in redundant sensors for critical components, such as voltage, temperature, and current. The charge controllers in a given battery interact in a masterless fashion for the purpose of cell balancing, charge control, and state-of-charge estimation. This makes the battery system invariably fault-tolerant. The solution to the single-fault failure, due to the use of a single charge controller (CC), was solved by implementing one CC per cell and linking them via an isolated communication bus [e.g., controller area network (CAN)] in a masterless fashion so that the failure of one or more CCs will not impact the remaining functional CCs. Each micro-controller-based CC digitizes the cell voltage (V(sub cell)), two cell temperatures, and the voltage across the switch (V); the latter variable is used in conjunction with V(sub cell) to estimate the bypass current for a given bypass resistor. Furthermore, CC1 digitizes the battery current (I1) and battery voltage (V(sub batt) and CC5 digitizes a second battery current (I2). As a result, redundant readings are taken for temperature, battery current, and battery voltage through the summation of the individual cell voltages given that each CC knows the voltage of the other cells. For the purpose of cell balancing, each CC periodically and independently transmits its cell voltage and stores the received cell voltage of the other cells in an array. The position in the array depends on the identifier (ID) of the transmitting CC. After eight cell voltage receptions, the array is checked to see if one or more cells did not transmit. If one or more transmissions are missing, the missing cell(s) is (are) eliminated from cell
Energy awareness for supercapacitors using Kalman filter state-of-charge tracking
NASA Astrophysics Data System (ADS)
Nadeau, Andrew; Hassanalieragh, Moeen; Sharma, Gaurav; Soyata, Tolga
2015-11-01
Among energy buffering alternatives, supercapacitors can provide unmatched efficiency and durability. Additionally, the direct relation between a supercapacitor's terminal voltage and stored energy can improve energy awareness. However, a simple capacitive approximation cannot adequately represent the stored energy in a supercapacitor. It is shown that the three branch equivalent circuit model provides more accurate energy awareness. This equivalent circuit uses three capacitances and associated resistances to represent the supercapacitor's internal SOC (state-of-charge). However, the SOC cannot be determined from one observation of the terminal voltage, and must be tracked over time using inexact measurements. We present: 1) a Kalman filtering solution for tracking the SOC; 2) an on-line system identification procedure to efficiently estimate the equivalent circuit's parameters; and 3) experimental validation of both parameter estimation and SOC tracking for 5 F, 10 F, 50 F, and 350 F supercapacitors. Validation is done within the operating range of a solar powered application and the associated power variability due to energy harvesting. The proposed techniques are benchmarked against the simple capacitive model and prior parameter estimation techniques, and provide a 67% reduction in root-mean-square error for predicting usable buffered energy.
NASA Astrophysics Data System (ADS)
Martelli, Fausto; Vuilleumier, Rodolphe; Simonin, Jean-Pierre; Spezia, Riccardo
2012-10-01
In this work, we show how increasing the charge of small cations affects the structural, thermodynamical, and dynamical properties of these ions in liquid water. We have studied the case of lanthanoid and actinoid ions, for which we have recently developed accurate polarizable force fields, and the ionic radius is in the 0.995-1.250 Å range, and explored the valency range from 0 to 4+. We found that the ion charge strongly structures the neighboring water molecules and that, in this range of charges, the hydration enthalpies exhibit a quadratic dependence with respect to the charge, in line with the Born model. The diffusion process follows two main regimes: a hydrodynamical regime for neutral or low charges, and a dielectric friction regime for high charges in which the contraction of the ionic radius along the series of elements causes a decrease of the diffusion coefficient. This latter behavior can be qualitatively described by theoretical models, such as the Zwanzig and the solvated ion models. However, these models need be modified in order to obtain agreement with the observed behavior in the full charge range. We have thus modified the solvated ion model by introducing a dependence of the bare ion radius as a function of the ionic charge. Besides agreement between theory and simulation this modification allows one to obtain an empirical unified model. Thus, by analyzing the contributions to the drag coefficient from the viscous and the dielectric terms, we are able to explain the transition from a regime in which the effect of viscosity dominates to one in which dielectric friction governs the motion of ions with radii of ca. 1 Å.
High resolution printing of charge
Rogers, John; Park, Jang-Ung
2015-06-16
Provided are methods of printing a pattern of charge on a substrate surface, such as by electrohydrodynamic (e-jet) printing. The methods relate to providing a nozzle containing a printable fluid, providing a substrate having a substrate surface and generating from the nozzle an ejected printable fluid containing net charge. The ejected printable fluid containing net charge is directed to the substrate surface, wherein the net charge does not substantially degrade and the net charge retained on the substrate surface. Also provided are functional devices made by any of the disclosed methods.
Charge sniffer for electrostatics demonstrations
NASA Astrophysics Data System (ADS)
Dinca, Mihai P.
2011-02-01
An electronic electroscope with a special design for demonstrations and experiments on static electricity is described. It operates as an electric charge sniffer by detecting slightly charged objects when they are brought to the front of its sensing electrode. The sniffer has the advantage of combining high directional sensitivity with a logarithmic bar display. It allows for the identification of electric charge polarity during charge separation by friction, peeling, electrostatic induction, batteries, or secondary coils of power transformers. Other experiments in electrostatics, such as observing the electric field of an oscillating dipole and the distance dependence of the electric field generated by simple charge configurations, are also described.
Droplet charging for wet scrubbers.
Pilat, Michael J; Lukas, John C
2004-01-01
Water droplet charge/mass of wet scrubbers was measured over the direct charging applied potential range of 0-20 kV, 30-70 pounds per square inch gauge (206.8-482.6 kPa) water pressure, and with spiral, impingement, and whirl nozzles. The measured charge/mass ranged from -0.0005 to 0.2 microcoulomb/gm and was directly related to the applied voltage. The water charge/mass was a function of the spray nozzle, with the smaller orifice lower-flow nozzles having the higher charge/mass.
42 CFR 405.506 - Charges higher than customary or prevailing charges or lowest charge levels.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 2 2010-10-01 2010-10-01 false Charges higher than customary or prevailing charges or lowest charge levels. 405.506 Section 405.506 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM FEDERAL HEALTH INSURANCE FOR THE...
Acceleration of energetic charged particles: Shocks, reconnection or turbulence?
NASA Astrophysics Data System (ADS)
Jokipii, J. R.
2012-05-01
Acceleration of energetic charged charged particles, most-often with power-law energy spectra occurs everywhere is space where particle-particle collision mean free paths are significantly larger than their gyro-radii. Shocks, reconnection events and turbulence have variously been proposed as acceleration mechanisms, and each must currently be considered a viable mechanism. Shocks have the advantage that they produce naturally power-law spectra in the observed range which are not very sensitive to the parameters. They are usually also fast accelerators. I first discuss the constraints which observations place on the acceleration mechanisms and show that there are both temporal and spatial constraints. Stochastic acceleration tends to be slow, so the rate of acceleration is important. In the inner heliosphere, this rate must exceed the rate of adiabatic cooling ~ 2Vw/r, where Vw is the radial solar-wind velocity. Acceleration of anomalous cosmic rays (ACR) in the heliosheath must occur on a time scale of on year to avoid producing too many multiply charged ACR. It is shown that here, stochastic acceleration has difficulties in the inner heliosheath. Reconnection events are essentially incompressible, so the divergence of the flow velocity is nearly zero, and the Parker equation would give little acceleration. Acceleration at reconnection therefore must go beyond the Parker equation - either by invoking large pitch-angle anisotropies or by extending the equation to higher order in the flow speed relative to the particle speed. An approach to using an extension of Parker's equation is discussed. Diffusive shock acceleration at the heliospheric termination shock is also discussed. It is suggested that inclusion of upstream turbulence and shock geometry provides reasonable solutions to the perceived problems with this mechanism. Finally, observation evidence is presented which suggests, strongly, that the acceleration of the ACR occurs in the inner heliosphere, not far
Relativistic model of anisotropic charged fluid sphere in general relativity
NASA Astrophysics Data System (ADS)
Pant, Neeraj; Pradhan, N.; Bansal, Rajeev K.
2016-01-01
In this present paper, we present a class of static, spherically symmetric charged anisotropic fluid models of super dense stars in isotropic coordinates by considering a particular type of metric potential, a specific choice of electric field intensity E and pressure anisotropy factor Δ which involve parameters K (charge) and α (anisotropy) respectively. The solutions so obtained are utilized to construct the models for super-dense stars like neutron stars and strange quark stars. Our solutions are well behaved within the following ranges of different constant parameters. In the absence of pressure anisotropy and charge present model reduces to the isotropic model Pant et al. (Astrophys. Space Sci. 330:353-359, 2010). Our solution is well behaved in all respects for all values of X lying in the range 0< X ≤ 0.18, α lying in the range 0 ≤ α ≤6.6, K lying in the range 0< K ≤ 6.6 and Schwarzschild compactness parameter "u" lying in the range 0< u ≤ 0.38. Since our solution is well behaved for a wide ranges of the parameters, we can model many different types of ultra-cold compact stars like quark stars and neutron stars. We have shown that corresponding to X=0.088, α=0.6 and K=4.3 for which u=0.2054 and by assuming surface density ρb = 4.6888 × 10^{14} g/cm3 the mass and radius are found to be 1.51 M_{\\varTheta} and 10.90 km respectively. Assuming surface density ρb = 2 × 10^{14} g/cm3 the mass and radius for a neutron star candidate are found to be 2.313 M_{\\varTheta} and 16.690 km respectively. Hence we obtain masses and radii that fall in the range of what is generally expected for quark stars and neutron stars.
Effect of surface charge on colloidal charge reversal.
Martín-Molina, A; Rodríguez-Beas, C; Hidalgo-Alvarez, R; Quesada-Pérez, M
2009-05-14
The objective of this research work is to understand the effect of the surface charge density on the charge reversal phenomenon. To this end, we use experimental results and computer simulations. In particular, we measure the electrophoretic mobility of latex particles (macroions) in the presence of a multivalent electrolyte. We have focused on the electrolyte concentration range at which a reversal in the electrophoretic mobility is expected to happen. In particular, the role of the surface charge on the charge reversal process is looked into from several latexes with the same functional group but different surface charge densities. Although the mechanism responsible for the colloidal charge reversal is still a controversial issue, it is proved that ionic correlations are behind the appearance of such phenomenon (especially near the macroion surface). This conclusion can be inferred from a great variety of theoretical models. According to them, one of the factors that determine the charge reversal is the surface charge density of the macroions. However, this feature has been rarely analyzed in experiments. Our results appear therefore as a demanded survey to test the validity of the theoretical predictions. Moreover, we have also performed Monte Carlo simulations that take the ion size into account. The correlation found between experiments and simulations is fairly good. The combination of these techniques provides new insight into the colloidal charge reversal phenomena showing the effect of surface charge. PMID:19385634
NASA Astrophysics Data System (ADS)
Newton, Elisabeth R.
2016-01-01
Despite the prevalence of M dwarfs, their fundamental properties--their sizes, compositions, and ages--are not well-constrained. Empirical determination of these properties is important for gaining insight into their stellar structure, magnetic field generation, and angular momentum evolution. Knowledge of the stellar parameters is also key to characterizing planetary systems. I used observations to empirically constrain the properties of nearby, mid-to-late M dwarfs targeted by the MEarth transiting planet survey. I obtained low-resolution (R=2000) NIR spectra of 450 M dwarfs using SpeX on IRTF. I measured their absolute radial velocities with an accuracy of 4 km/s by exploiting telluric lines to establish an absolute wavelength calibration, and developed techniques to estimate M dwarf metallicities from K-band spectral line equivalent widths (EWs) or 2MASS colors to 0.15 dex. Using stars with interferometric radii, I showed that H-band EWs can be used to infer K and M dwarf temperatures to 69K, and radii to 0.027Rsun. I applied these relations to planet-hosting stars from Kepler, showing that the typical planet is 15% larger than is inferred if adopting other stellar parameters. Using photometry from the MEarth-North Observatory, I measured rotation periods from 0.1 to 150 days for 350 M dwarfs. There is a prevalence of stable spot patterns, and no correlation between period and amplitude for fully-convective stars. Using galactic kinematics as a proxy for age, I demonstrated a smooth age-rotation relation. I found that rapid rotators (P<10 days) are <2 Gyr, and that the slowest are on average 5+-3 Gyr old. I will discuss the extension of this work to the southern hemisphere, which utilizes FIRE on Magellan and the MEarth-South Observatory. MEarth acknowledges funding from the NSF, the David and Lucile Packard Foundation and the John Templeton Foundation. ERN was supported by the NSF GRFP. This work includes observations obtained at the Infrared Telescope
Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar E-mail: christos.charmousis@th.u-psud.fr
2015-05-01
We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.
Zhao, Tianshan; Zhou, Jian; Wang, Qian; Jena, Puru
2016-07-21
Using multiscale first-principles calculations, we show that two interacting negatively charged B12I9(-) monoanions not only attract, in defiance of the Coulomb's law, but also the energy barrier at 400 K is small enough that these two moieties combine to form a stable B24I18(2-) moiety. Ab initio molecular dynamics simulations further confirm its stability up to 1500 K. Studies of other B12X9(-) (X = Br, Cl, F, H, Au, CN) show that while all of these B24X18(2-) moieties are stable against dissociation, the energy barrier, with the exception of B24Au18(2-), is large so as to hinder their experimental observation. Our results explain the recent experimental observation of the "spontaneous" formation of B24I18(2-) in an ion trap. A simple model based upon electrostatics shows that this unusual behavior is due to competition between the attractive dipole-dipole interaction caused by the aspherical shape of the particle and the repulsive interaction between the like charges. PMID:27351125
Charged pion production in $$\
Eberly, B.; et al.
2015-11-23
Charged pion production via charged-current νμ interactions on plastic scintillator (CH) is studied using the MINERvA detector exposed to the NuMI wideband neutrino beam at Fermilab. Events with hadronic invariant mass W < 1.4 GeV and W < 1.8 GeV are selected in separate analyses: the lower W cut isolates single pion production, which is expected to occur primarily through the Δ(1232) resonance, while results from the higher cut include the effects of higher resonances. Cross sections as functions of pion angle and kinetic energy are compared to predictions from theoretical calculations and generator-based models for neutrinos ranging in energymore » from 1.5–10 GeV. The data are best described by calculations which include significant contributions from pion intranuclear rescattering. As a result, these measurements constrain the primary interaction rate and the role of final state interactions in pion production, both of which need to be well understood by neutrino oscillation experiments.« less
NASA Astrophysics Data System (ADS)
Stryker, Jesse R.; Miller, Gerald A.
2016-01-01
We examine how corrections to S -state energy levels En S in hydrogenic atoms due to the finite proton size are affected by moments of the proton charge distribution. The corrections to En S are computed moment by moment. The results demonstrate that the next-to-leading order term in the expansion is of order rp/aB times the size of the leading order
Charge disproportionation, everywhere!
NASA Astrophysics Data System (ADS)
Takahashi, T.; Hiraki, K.; Moroto, S.; Tajima, N.; Takano, Y.; Kubo, Y.; Satsukawa, H.; Chiba, R.; Yamamoto, H. M.; Kato, R.; Naito, T.
2005-12-01
Charge disproportionation (CD) recently observed in many organic conductors is reviewed. CD is closely related to the charge ordering (CO) but is observed even when no long range CO is established. In a θ -phase BEDT-TTF salt, (BEDT-TTF){2}RbZn(SCN){4}, an extremely slow dynamics of CD has been observed above T_MI. A similar phenomenon is also observed in the Cs-analog, (BEDT-TTF){2}CsZn(SCN){4}. However, a spin-singlet ground state without CD is suggested in this salt at low temperatures. It is shown that α -(BETS){2}I{3} exhibits CD at low temperatures, as in α -(BET-TTF){2}I{3}. Recently, an abnormal line broadening has been observed in 13C-NMR of (TMTSF){2}FSO{3} under pressure as well as in 77Se-NMR of λ-(BETS){2}FeCl{4} in a high field. We expect that both are very likely caused by a large CD among the organic molecular sites. The current investigation is a part of a Grant-in-Aid for Scientific Research on Priority Areas of Molecular Conductors (No. 15073221) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and the “Japan-Korea Joint Research Project” from Japan Society for the Promotion of Science (03-01-8) and Korea Science and Engineering Foundation (F01-2003-000-20023-0).
Eberly, B.; et al.
2015-11-23
Charged pion production via charged-current νμ interactions on plastic scintillator (CH) is studied using the MINERvA detector exposed to the NuMI wideband neutrino beam at Fermilab. Events with hadronic invariant mass W < 1.4 GeV and W < 1.8 GeV are selected in separate analyses: the lower W cut isolates single pion production, which is expected to occur primarily through the Δ(1232) resonance, while results from the higher cut include the effects of higher resonances. Cross sections as functions of pion angle and kinetic energy are compared to predictions from theoretical calculations and generator-based models for neutrinos ranging in energy from 1.5–10 GeV. The data are best described by calculations which include significant contributions from pion intranuclear rescattering. As a result, these measurements constrain the primary interaction rate and the role of final state interactions in pion production, both of which need to be well understood by neutrino oscillation experiments.
XMM-Newton Observations of Solar Wind Charge Exchange Emission
NASA Technical Reports Server (NTRS)
Snowden, S. L.; Collier, M. R.; Kuntz, K. D.
2004-01-01
We present an XMM-Newton spectrum of diffuse X-ray emission from within the solar system. The spectrum is dominated by O VII and O VIII lines at 0.57 keV and 0.65 keV, O VIII (and possibly Fe XVII) lines at approximately 0.8 keV, Ne IX lines at approximately 0.92 keV, and Mg XI lines at approximately 1.35 keV. This spectrum is consistent with what is expected from charge exchange emission between the highly ionized solar wind and either interstellar neutrals in the heliosphere or material from Earth's exosphere. The emission is clearly seen as a low-energy ( E less than 1.5 keV) spectral enhancement in one of a series of observations of the Hubble Deep Field North. The X-ray enhancement is concurrent with an enhancement in the solar wind measured by the ACE satellite. The solar wind enhancement reaches a flux level an order of magnitude more intense than typical fluxes at 1 AU, and has ion ratios with significantly enhanced higher ionization states. Whereas observations of the solar wind plasma made at a single point reflect only local conditions which may only be representative of solar wind properties with spatial scales ranging from less than half of an Earth radii (approximately 10 s) to 100 Earth radii, X-ray observations of solar wind charge exchange are remote sensing measurements which may provide observations which are significantly more global in character. Besides being of interest in its own right for studies of the solar system, this emission can have significant consequences for observations of more cosmological objects. It can provide emission lines at zero redshift which are of particular interest (e.g., O VII and O VIII) in studies of diffuse thermal emission, and which can therefore act as contamination in objects which cover the entire detector field of view. We propose the use of solar wind monitoring data, such as from the ACE and Wind spacecraft, as a diagnostic to screen for such possibilities.
Tuffner, Francis K.; Kintner-Meyer, Michael C. W.; Hammerstrom, Donald J.; Pratt, Richard M.
2012-05-22
Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.
Semiconductor nanocrystals in photoconductive polymers: Charge generation and charge transport
Wang, Ying; Herron, Norman; Suna, A.
1996-10-01
A new class of photoconductive polymer composites, based on semiconductor nanocrystals (clusters) and carder-transporting polymers, have been developed. These materials are interesting for their potentials in laser printing, imaging, and photorefractives. We will describe material synthesis, charge transport and charge generation mechanisms. In particular, a model of field-dependent charge generation and separation in nonpolar media (e.g. polymers) will be discussed.
NASA Astrophysics Data System (ADS)
Gilson, Erik P.; Davidson, Ronald C.; Dorf, Mikhail; Efthimion, Philip C.; Majeski, Richard; Chung, Moses; Gutierrez, Michael S.; Kabcenell, Aaron N.
2010-05-01
The Paul Trap Simulator Experiment (PTSX) is a compact laboratory experiment that places the physicist in the frame-of-reference of a long, charged-particle bunch coasting through a kilometers-long magnetic alternating-gradient (AG) transport system. The transverse dynamics of particles in both systems are described by the same set of equations, including nonlinear space-charge effects. The time-dependent voltages applied to the PTSX quadrupole electrodes in the laboratory frame are equivalent to the spatially periodic magnetic fields applied in the AG system. The transverse emittance of the charge bunch, which is a measure of the area in the transverse phase space that the beam distribution occupies, is an important metric of beam quality. Maintaining low emittance is an important goal when defining AG system tolerances and when designing AG systems to perform beam manipulations such as transverse beam compression. Results are reviewed from experiments in which white noise and colored noise of various amplitudes and durations have been applied to the PTSX electrodes. This noise is observed to drive continuous emittance growth and increase in root-mean-square beam radius over hundreds of lattice periods. Additional results are reviewed from experiments that determine the conditions necessary to adiabatically reduce the charge bunch's transverse size and simultaneously maintain high beam quality. During adiabatic transitions, there is no change in the transverse emittance. The transverse compression can be achieved either by a gradual change in the PTSX voltage waveform amplitude or frequency. Results are presented from experiments in which low emittance is achieved by using focusing-off-defocusing-off waveforms.
NASA Astrophysics Data System (ADS)
Ahmad Kamaruddin, Saadi Bin; Md Ghani, Nor Azura; Mohamed Ramli, Norazan
2013-04-01
The concept of Private Financial Initiative (PFI) has been implemented by many developed countries as an innovative way for the governments to improve future public service delivery and infrastructure procurement. However, the idea is just about to germinate in Malaysia and its success is still vague. The major phase that needs to be given main attention in this agenda is value for money whereby optimum efficiency and effectiveness of each expense is attained. Therefore, at the early stage of this study, estimating unitary charges or materials price indexes in each region in Malaysia was the key objective. This particular study aims to discover the best forecasting method to estimate unitary charges price indexes in construction industry by different regions in the central region of Peninsular Malaysia (Selangor, Federal Territory of Kuala Lumpur, Negeri Sembilan, and Melaka). The unitary charges indexes data used were from year 2002 to 2011 monthly data of different states in the central region Peninsular Malaysia, comprising price indexes of aggregate, sand, steel reinforcement, ready mix concrete, bricks and partition, roof material, floor and wall finishes, ceiling, plumbing materials, sanitary fittings, paint, glass, steel and metal sections, timber and plywood. At the end of the study, it was found that Backpropagation Neural Network with linear transfer function produced the most accurate and reliable results for estimating unitary charges price indexes in every states in central region Peninsular Malaysia based on the Root Mean Squared Errors, where the values for both estimation and evaluation sets were approximately zero and highly significant at p < 0.01. Therefore, artificial neural network is sufficient to forecast construction materials price indexes in Malaysia. The estimated price indexes of construction materials will contribute significantly to the value for money of PFI as well as towards Malaysian economical growth.
Forming parts over small radii
NASA Astrophysics Data System (ADS)
Hazra, S. K.; Hughes, D. J.; Pereira, M. P.; Rolfe, B. F.
2016-08-01
Stamping simulations usually make the plane stress simplifying assumption. However, this becomes less valid when material draws around features with radius to sheet thickness ratios less than 20. Pereira, Yan & Rolfe (Wear, Vol.265, p.1687 (2008)) predicted that out-of-plane stress equivalent to material yield can occur because a line contact forms briefly at the start of the draw process. The high transient stress can cause high rates of tool wear and may cause the ‘die impact line’ cosmetic defect. In this work, we present residual strain results of a channel section that was drawn over a small radius. Using the neutron source at the Institut Laue-Langevin, in-plane and out-of-plane strains were measured in the channel part to show some support for the conclusions of Pereira et. al.
Charge Storage, Conductivity and Charge Profiles of Insulators as Related to Spacecraft Charging
NASA Technical Reports Server (NTRS)
Dennison, J. R.; Swaminathan, Prasanna; Frederickson, A. R.
2004-01-01
Dissipation of charges built up near the surface of insulators due to space environment interaction is central to understanding spacecraft charging. Conductivity of insulating materials is key to determine how accumulated charge will distribute across the spacecraft and how rapidly charge imbalance will dissipate. To understand these processes requires knowledge of how charge is deposited within the insulator, the mechanisms for charge trapping and charge transport within the insulator, and how the profile of trapped charge affects the transport and emission of charges from insulators. One must consider generation of mobile electrons and holes, their trapping, thermal de-trapping, mobility and recombination. Conductivity is more appropriately measured for spacecraft charging applications as the "decay" of charge deposited on the surface of an insulator, rather than by flow of current across two electrodes around the sample. We have found that conductivity determined from charge storage decay methods is 102 to 104 smaller than values obtained from classical ASTM and IEC methods for a variety of thin film insulating samples. For typical spacecraft charging conditions, classical conductivity predicts decay times on the order of minutes to hours (less than typical orbit periods); however, the higher charge storage conductivities predict decay times on the order of weeks to months leading to accumulation of charge with subsequent orbits. We found experimental evidence that penetration profiles of radiation and light are exceedingly important, and that internal electric fields due to charge profiles and high-field conduction by trapped electrons must be considered for space applications. We have also studied whether the decay constants depend on incident voltage and flux or on internal charge distributions and electric fields; light-activated discharge of surface charge to distinguish among differing charge trapping centers; and radiation-induced conductivity. Our
Understanding the Linkage between Charging Network Coverage and Charging Opportunity
Liu, Changzheng; Lin, Zhenhong; Kontou, Eleftheria; Wu, Xing
2016-01-01
Using GPS-based travel survey data, this paper estimates the relationship between public charging network coverage and charging opportunity, defined as the probability of being able to access public charging for a driver at one of his/her stops or at one travel day. Understanding this relationship is of important interests to the electric vehicle industry and government in determining appropriate charging infrastructure deployment level and estimating the impact of public charging on market adoption of electric vehicles. The analysis finds that drivers trip destinations concentrate on a few popular places. If top 1% of most popular places are installed with public chargers, on average, drivers will be able to access public charging at 20% of all their stops and 1/3 of their travel days; If 20% of most popular places are installed with public chargers, drivers will be able to access public charging at 89% of all their stops and 94% of their travel days. These findings are encouraging, implying charging network can be efficiently designed by concentrating at a few popular places while still providing a high level of charging opportunity.
Surface charge compensation for a highly charged Ion emissionmicroscope
McDonald, J.W.; Hamza, A.V.; Newman, M.W.; Holder, J.P.; Schneider, D.H.G.; Schenkel, T.
2003-04-01
A surface charge compensation electron flood gun has been added to the Lawrence Livermore National Laboratory (LLNL) highly charged ion (HCI) emission microscope. HCI surface interaction results in a significant charge residue being left on the surface of insulators and semiconductors. This residual charge causes undesirable aberrations in the microscope images and a reduction of the Time-Of-Flight (TOF) mass resolution when studying the surfaces of insulators and semiconductors. The benefits and problems associated with HCI microscopy and recent results of the electron flood gun enhanced HCI microscope are discussed.
NASA Astrophysics Data System (ADS)
Bolghasi, Alireza; Ghadimi, Parviz; Chekab, Mohammad A. Feizi
2016-09-01
The aim of the present study is to improve the capabilities and precision of a recently introduced Sea Surface Acoustic Simulator (SSAS) developed based on optimization of the Helmholtz-Kirchhoff-Fresnel (HKF) method. The improved acoustic simulator, hereby known as the Modified SSAS (MSSAS), is capable of determining sound scattering from the sea surface and includes an extended Hall-Novarini model and optimized HKF method. The extended Hall-Novarini model is used for considering the effects of sub-surface bubbles over a wider range of radii of sub-surface bubbles compared to the previous SSAS version. Furthermore, MSSAS has the capability of making a three-dimensional simulation of scattered sound from the rough bubbly sea surface with less error than that of the Critical Sea Tests (CST) experiments. Also, it presents scattered pressure levels from the rough bubbly sea surface based on various incident angles of sound. Wind speed, frequency, incident angle, and pressure level of the sound source are considered as input data, and scattered pressure levels and scattering coefficients are provided. Finally, different parametric studies were conducted on wind speeds, frequencies, and incident angles to indicate that MSSAS is quite capable of simulating sound scattering from the rough bubbly sea surface, according to the scattering mechanisms determined by Ogden and Erskine. Therefore, it is concluded that MSSAS is valid for both scattering mechanisms and the transition region between them that are defined by Ogden and Erskine.
Kepler-62: a five-planet system with planets of 1.4 and 1.6 Earth radii in the habitable zone.
Borucki, William J; Agol, Eric; Fressin, Francois; Kaltenegger, Lisa; Rowe, Jason; Isaacson, Howard; Fischer, Debra; Batalha, Natalie; Lissauer, Jack J; Marcy, Geoffrey W; Fabrycky, Daniel; Désert, Jean-Michel; Bryson, Stephen T; Barclay, Thomas; Bastien, Fabienne; Boss, Alan; Brugamyer, Erik; Buchhave, Lars A; Burke, Chris; Caldwell, Douglas A; Carter, Josh; Charbonneau, David; Crepp, Justin R; Christensen-Dalsgaard, Jørgen; Christiansen, Jessie L; Ciardi, David; Cochran, William D; DeVore, Edna; Doyle, Laurance; Dupree, Andrea K; Endl, Michael; Everett, Mark E; Ford, Eric B; Fortney, Jonathan; Gautier, Thomas N; Geary, John C; Gould, Alan; Haas, Michael; Henze, Christopher; Howard, Andrew W; Howell, Steve B; Huber, Daniel; Jenkins, Jon M; Kjeldsen, Hans; Kolbl, Rea; Kolodziejczak, Jeffery; Latham, David W; Lee, Brian L; Lopez, Eric; Mullally, Fergal; Orosz, Jerome A; Prsa, Andrej; Quintana, Elisa V; Sanchis-Ojeda, Roberto; Sasselov, Dimitar; Seader, Shawn; Shporer, Avi; Steffen, Jason H; Still, Martin; Tenenbaum, Peter; Thompson, Susan E; Torres, Guillermo; Twicken, Joseph D; Welsh, William F; Winn, Joshua N
2013-05-01
We present the detection of five planets--Kepler-62b, c, d, e, and f--of size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii (R⊕), orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4, and 267.3 days, respectively. The outermost planets, Kepler-62e and -62f, are super-Earth-size (1.25 R⊕ < planet radius ≤ 2.0 R⊕) planets in the habitable zone of their host star, respectively receiving 1.2 ± 0.2 times and 0.41 ± 0.05 times the solar flux at Earth's orbit. Theoretical models of Kepler-62e and -62f for a stellar age of ~7 billion years suggest that both planets could be solid, either with a rocky composition or composed of mostly solid water in their bulk. PMID:23599262
NASA Technical Reports Server (NTRS)
Savelyev, V. V.
1943-01-01
For computing the critical flutter velocity of a wing among the data required are the position of the line of centers of gravity of the wing sections along the span and the mass moments and radii of inertia of any section of the wing about the axis passing through the center of gravity of the section. A sufficiently detailed computation of these magnitudes even if the weights of all the wing elements are known, requires a great deal of time expenditure. Thus a rapid competent worker would require from 70 to 100 hours for the preceding computations for one wing only, while hundreds of hours would be required if all the weights were included. With the aid of the formulas derived in the present paper, the preceding work can be performed with a degree of accuracy sufficient for practical purposes in from one to two hours, the only required data being the geometric dimensions of the outer wing (tapered part), the position of its longerons, the total weight of the outer wing, and the approximate weight of the longerons, The entire material presented in this paper is applicable mainly to wings of longeron construction of the CAHI type and investigations are therefore being conducted by CAHI for the derivation of formulas for the determination of the preceding data for wings of other types.
NASA Astrophysics Data System (ADS)
Güver, Tolga; Özel, Feryal; Marshall, Herman; Psaltis, Dimitrios; Guainazzi, Matteo; Díaz-Trigo, Maria
2016-09-01
Many techniques for measuring neutron star radii rely on absolute flux measurements in the X-rays. As a result, one of the fundamental uncertainties in these spectroscopic measurements arises from the absolute flux calibrations of the detectors being used. Using the stable X-ray burster, GS 1826-238, and its simultaneous observations by Chandra HETG/ACIS-S and RXTE/PCA as well as by XMM-Newton EPIC-pn and RXTE/PCA, we quantify the degree of uncertainty in the flux calibration by assessing the differences between the measured fluxes during bursts. We find that the RXTE/PCA and the Chandra gratings measurements agree with each other within their formal uncertainties, increasing our confidence in these flux measurements. In contrast, XMM-Newton EPIC-pn measures 14.0 ± 0.3% less flux than the RXTE/PCA. This is consistent with the previously reported discrepancy with the flux measurements of EPIC-pn, compared with EPIC MOS1, MOS2, and ACIS-S detectors. We also show that any intrinsic time-dependent systematic uncertainty that may exist in the calibration of the satellites has already been implicity taken into account in the neutron star radius measurements.
NASA Astrophysics Data System (ADS)
Bolghasi, Alireza; Ghadimi, Parviz; Chekab, Mohammad A. Feizi
2016-08-01
The aim of the present study is to improve the capabilities and precision of a recently introduced Sea Surface Acoustic Simulator (SSAS) developed based on optimization of the Helmholtz-Kirchhoff-Fresnel (HKF) method. The improved acoustic simulator, hereby known as the Modified SSAS (MSSAS), is capable of determining sound scattering from the sea surface and includes an extended Hall-Novarini model and optimized HKF method. The extended Hall-Novarini model is used for considering the effects of sub-surface bubbles over a wider range of radii of sub-surface bubbles compared to the previous SSAS version. Furthermore, MSSAS has the capability of making a three-dimensional simulation of scattered sound from the rough bubbly sea surface with less error than that of the Critical Sea Tests (CST) experiments. Also, it presents scattered pressure levels from the rough bubbly sea surface based on various incident angles of sound. Wind speed, frequency, incident angle, and pressure level of the sound source are considered as input data, and scattered pressure levels and scattering coefficients are provided. Finally, different parametric studies were conducted on wind speeds, frequencies, and incident angles to indicate that MSSAS is quite capable of simulating sound scattering from the rough bubbly sea surface, according to the scattering mechanisms determined by Ogden and Erskine. Therefore, it is concluded that MSSAS is valid for both scattering mechanisms and the transition region between them that are defined by Ogden and Erskine.
NASA Technical Reports Server (NTRS)
Strothers, Richard B.; Hansen, James E. (Technical Monitor)
2001-01-01
Stratospheric extinction can be derived from ground-based spectral photometric observations of the Sun and other stars (as well as from satellite and aircraft measurements, available since 1979), and is found to increase after large volcanic eruptions. This increased extinction shows a characteristic wavelength dependence that gives information about the chemical composition and the effective (or area weighted mean) radius of the particles responsible for it. Known to be tiny aerosols constituted of sulfuric acid in a water solution, the stratospheric particles at midlatitudes exhibit a remarkable uniformity of their column-averaged effective radii r(sub eff) in the first few months after the eruption. Considering the seven largest eruptions of the twentieth century, r(sub eff) at this phase of peak aerosol abundance is approx. 0.3 micrometers in all cases. A year later, r(sub eff) either has remained about the same size (almost certainly in the case of the Katmai eruption of 1912) or has increased to approx. 0.5 micrometers (definitely so for the Pinatubo eruption of 1991). The reasons for this divergence in aerosol growth are unknown.
Bergey, M.
1997-12-01
This paper discusses the concept of battery charging stations (BCSs), designed to service rural owners of battery power sources. Many such power sources now are transported to urban areas for recharging. A BCS provides the opportunity to locate these facilities closer to the user, is often powered by renewable sources, or hybrid systems, takes advantage of economies of scale, and has the potential to provide lower cost of service, better service, and better cost recovery than other rural electrification programs. Typical systems discussed can service 200 to 1200 people, and consist of stations powered by photovoltaics, wind/PV, wind/diesel, or diesel only. Examples of installed systems are presented, followed by cost figures, economic analysis, and typical system design and performance numbers.
Miller, Jacob Lee
2015-04-21
An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.
Weigel, H.; Quandt, M.; Graham, N.
2011-03-11
We study the quantum stabilization of a cosmic string by a heavy fermion doublet in a reduced version of the standard model. We show that charged strings, obtained by populating fermionic bound state levels, become stable if the electroweak bosons are coupled to a fermion that is less than twice as heavy as the top quark. This result suggests that extraordinarily large fermion masses or unrealistic couplings are not required to bind a cosmic string in the standard model. Numerically we find the most favorable string profile to be a simple trough in the Higgs vacuum expectation value of radius {approx_equal}10{sup -18} m. The vacuum remains stable in our model, because neutral strings are not energetically favored.
Stable charged cosmic strings.
Weigel, H; Quandt, M; Graham, N
2011-03-11
We study the quantum stabilization of a cosmic string by a heavy fermion doublet in a reduced version of the standard model. We show that charged strings, obtained by populating fermionic bound state levels, become stable if the electroweak bosons are coupled to a fermion that is less than twice as heavy as the top quark. This result suggests that extraordinarily large fermion masses or unrealistic couplings are not required to bind a cosmic string in the standard model. Numerically we find the most favorable string profile to be a simple trough in the Higgs vacuum expectation value of radius ≈10(-18) m. The vacuum remains stable in our model, because neutral strings are not energetically favored. PMID:21469786
High dynamic range charge measurements
De Geronimo, Gianluigi
2012-09-04
A charge amplifier for use in radiation sensing includes an amplifier, at least one switch, and at least one capacitor. The switch selectively couples the input of the switch to one of at least two voltages. The capacitor is electrically coupled in series between the input of the amplifier and the input of the switch. The capacitor is electrically coupled to the input of the amplifier without a switch coupled therebetween. A method of measuring charge in radiation sensing includes selectively diverting charge from an input of an amplifier to an input of at least one capacitor by selectively coupling an output of the at least one capacitor to one of at least two voltages. The input of the at least one capacitor is operatively coupled to the input of the amplifier without a switch coupled therebetween. The method also includes calculating a total charge based on a sum of the amplified charge and the diverted charge.
12 CFR 226.4 - Finance charge.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 12 Banks and Banking 3 2012-01-01 2012-01-01 false Finance charge. 226.4 Section 226.4 Banks and... LENDING (REGULATION Z) General § 226.4 Finance charge. (a) Definition. The finance charge is the cost of...) Charges by third parties. The finance charge includes fees and amounts charged by someone other than...
12 CFR 226.4 - Finance charge.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 12 Banks and Banking 3 2014-01-01 2014-01-01 false Finance charge. 226.4 Section 226.4 Banks and...) TRUTH IN LENDING (REGULATION Z) General § 226.4 Finance charge. (a) Definition. The finance charge is... transaction. (1) Charges by third parties. The finance charge includes fees and amounts charged by...
Sub-diffusion and trapped dynamics of neutral and charged probes in DNA-protein coacervates
NASA Astrophysics Data System (ADS)
Arfin, Najmul; Yadav, Avinash Chand; Bohidar, H. B.
2013-11-01
The physical mechanism leading to the formation of large intermolecular DNA-protein complexes has been studied. Our study aims to explain the occurrence of fast coacervation dynamics at the charge neutralization point, followed by the appearance of smaller complexes and slower coacervation dynamics as the complex experiences overcharging. Furthermore, the electrostatic potential and probe mobility was investigated to mimic the transport of DNA / DNA-protein complex in a DNA-protein complex coacervate medium [N. Arfin and H. B. Bohidar, J. Phys. Chem. B 116, 13192 (2012)] by assigning neutral, negative, or positive charge to the probe particle. The mobility of the neutral probe was maximal at low matrix concentrations and showed random walk behavior, while its mobility ceased at the jamming concentration of c = 0.6, showing sub-diffusion and trapped dynamics. The positively charged probe showed sub-diffusive random walk followed by trapped dynamics, while the negatively charged probe showed trapping with occasional hopping dynamics at much lower concentrations. Sub-diffusion of the probe was observed in all cases under consideration, where the electrostatic interaction was used exclusively as the dominant force involved in the dynamics. For neutral and positive probes, the mean square displacement ⟨R2⟩ exhibits a scaling with time as ⟨R2⟩ ˜ tα, distinguishing random walk and trapped dynamics at α = 0.64 ± 0.04 at c = 0.12 and c = 0.6, respectively. In addition, the same scaling factors with the exponent β = 0.64 ± 0.04 can be used to distinguish random walk and trapped dynamics for the neutral and positive probes using the relation between the number of distinct sites visited by the probe, S(t), which follows the scaling, S(t) ˜ tβ/ln (t). Our results established the occurrence of a hierarchy of diffusion dynamics experienced by a probe in a dense medium that is either charged or neutral.
Sub-diffusion and trapped dynamics of neutral and charged probes in DNA-protein coacervates
Arfin, Najmul; Yadav, Avinash Chand; Bohidar, H. B.
2013-11-15
The physical mechanism leading to the formation of large intermolecular DNA-protein complexes has been studied. Our study aims to explain the occurrence of fast coacervation dynamics at the charge neutralization point, followed by the appearance of smaller complexes and slower coacervation dynamics as the complex experiences overcharging. Furthermore, the electrostatic potential and probe mobility was investigated to mimic the transport of DNA / DNA-protein complex in a DNA-protein complex coacervate medium [N. Arfin and H. B. Bohidar, J. Phys. Chem. B 116, 13192 (2012)] by assigning neutral, negative, or positive charge to the probe particle. The mobility of the neutral probe was maximal at low matrix concentrations and showed random walk behavior, while its mobility ceased at the jamming concentration of c = 0.6, showing sub-diffusion and trapped dynamics. The positively charged probe showed sub-diffusive random walk followed by trapped dynamics, while the negatively charged probe showed trapping with occasional hopping dynamics at much lower concentrations. Sub-diffusion of the probe was observed in all cases under consideration, where the electrostatic interaction was used exclusively as the dominant force involved in the dynamics. For neutral and positive probes, the mean square displacement 〈R{sup 2}〉 exhibits a scaling with time as 〈R{sup 2}〉 ∼ t{sup α}, distinguishing random walk and trapped dynamics at α = 0.64 ± 0.04 at c = 0.12 and c = 0.6, respectively. In addition, the same scaling factors with the exponent β = 0.64 ± 0.04 can be used to distinguish random walk and trapped dynamics for the neutral and positive probes using the relation between the number of distinct sites visited by the probe, S(t), which follows the scaling, S(t) ∼ t{sup β}/ln (t). Our results established the occurrence of a hierarchy of diffusion dynamics experienced by a probe in a dense medium that is either charged or neutral.
Charge contribution to patch-charged microparticle adhesion
NASA Astrophysics Data System (ADS)
Vallabh, Chaitanya Krishna Prasad; Vahdat, Armin Saeedi; Cetinkaya, Cetin
2014-11-01
Microparticle adhesion influenced by electrostatic charge has been a significant research interest for over past three decades or so in a wide spectrum of areas of interest from manufacturing (electrophotography, powder technology, metallurgy, and semi-conductor manufacturing) to natural phenomena (desert sandstorms and northern lights (auroras)). However, over the years, as a result of the strong discrepancies between the experimental adhesion measurements data and theoretical predictions, some key issues regarding the contributors of adhesion forces in charged microparticles and the nature of surface charge distribution still remain unresolved. In the current work, a non-contact ultrasonic approach is presented and employed for understanding the nature of charge distribution on a single microparticle and determining the effect of electrostatic charge on its adhesion in a non-invasive manner. From the vibrational spectra of the charged particle response to the ultrasonic substrate oscillations under various electrostatic loading conditions, three distinct shifting patterns of vibrational (rocking) resonance frequencies are observed for each level of applied substrate surface voltage, implying an un-symmetric force field on the particle, thus depicting non-uniform non-symmetric surface charge distribution on its surface. Also, a simple mathematical model was presented and employed for predicting the equivalent bulk charge on a single microparticle (toner) from resonance frequency shifts. In summary, it is found that the charge levels reported here are consistent with the previously published data, and it is demonstrated that, in a non-invasive manner, non-uniform charge distribution on a single microparticle can be observed and its total charge can be predicted.
Clinical characteristics of CHARGE syndrome.
Ahn, B S; Oh, S Y
1998-12-01
CHARGE syndrome, first described by Pagon, was named for its six major clinical features. They are: coloboma of the eye, heart defects, atresia of the choanae, retarded growth and development including CNS anomalies, genital hypoplasia and/or urinary tract anomalies, and ear anomalies and/or hearing loss. We experienced three cases of CHARGE syndrome who displayed ocular coloboma, heart defects, retarded growth and development, and external ear anomalies, and we also review the previously reported literature concerning CHARGE syndrome. PMID:10188375
Photoelectric Charging of Dust Particles
NASA Technical Reports Server (NTRS)
Sickafoose, A.; Colwell, J.; Horanyi, M.; Robertson, S.; Walch, B.
1999-01-01
Laboratory experiments have been performed on the photoelectric charging of dust particles which are either isolated or adjacent to a surface that is also a photoemitter. We find that zinc dust charges to a positive potential of a few volts when isolated in vacuum and that it charges to a negative potential of a few volts when passed by a photoemitting surface. The illumination is an arc lamp emitting wavelengths longer than 200 nm and the emitting surface is a zirconium foil.
The surface charge of trypanosomatids.
Souto-Padrón, Thaïs
2002-12-01
The surface charge of trypanosomatids was evaluated by means of the binding of cationic particles, as visualized by electron microscopy and by direct measurements of the electrophoretic mobility of cells. The results obtained indicate that most of the trypanosomatids exhibit a negatively charged surface whose value is species specific and varies according to the developmental stages. Sialic acids associated with glycoproteins, glycolipids and phosphate groups are the major components responsible for the net negative surface charge of the trypanosomatids.
Modeling of direct beam extraction for a high-charge-state fusion driver
NASA Astrophysics Data System (ADS)
Anderson, O. A.; Grant Logan, B.
A newly proposed type of multicharged ion source offers the possibility of an economically advantageous high-charge-state fusion driver. Multiphoton absorption in an intense uniform laser focus can give multiple charge states of high purity, simplifying or eliminating the need for charge-state separation downstream. Very large currents (hundreds of amperes) can be extracted from this type of source. Several arrangements are possible. For example, the laser plasma could be tailored for storage in a magnetic bucket, with beam extracted from the bucket. A different approach, described in this report, is direct beam extraction from the expanding laser plasma. We discuss extraction and focusing for the particular case of a 4.1 MV beam of Xe 16+ ions. The maximum duration of the beam pulse is limited by the total charge in the plasma, while the practical pulse length is determined by the range of plasma radii over which good beam optics can be achieved. The extraction electrode contains a solenoid for beam focusing. Our design studies were carried out first with an envelope code and then with a self-consistent particle code. Results from our initial model showed that hundreds of amperes could be extracted, but that most of this current missed the solenoid entrance or was intercepted by the wall and that only a few amperes were able to pass through. We conclude with an improved design which increases the surviving beam to more than 70 A.
Shepard, K.W.; Kim, J.W.
1995-08-01
A design is being developed for a low-charge-state linac suitable for injecting ATLAS with a low-charge-state, radioactive beam. Initial work indicates that the existing ATLAS interdigital superconducting accelerating structures, together with the superconducting quadrupole transverse focussing element discussed above, provides a basis for a high-performance low-charge-state linac. The initial 2 or 3 MV of such a linac could be based on a normally-conducting, low-frequency RFQ, possibly combined with 24-MHz superconducting interdigital structures. Beam dynamics studies of the whole low-charge-state post-accelerator section were carried out in early FY 1995.
Butterflies with rotation and charge
NASA Astrophysics Data System (ADS)
Reynolds, Alan P.; Ross, Simon F.
2016-11-01
We explore the butterfly effect for black holes with rotation or charge. We perturb rotating BTZ and charged black holes in 2 + 1 dimensions by adding a small perturbation on one asymptotic region, described by a shock wave in the spacetime, and explore the effect of this shock wave on the length of geodesics through the wormhole and hence on correlation functions. We find the effect of the perturbation grows exponentially at a rate controlled by the temperature; dependence on the angular momentum or charge does not appear explicitly. We comment on issues affecting the extension to higher-dimensional charged black holes.
Charge exchange molecular ion source
Vella, Michael C.
2003-06-03
Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.
Charged doubly spinning black ring
Hoskisson, James
2009-05-15
This paper devises a procedure for adding fundamental and momentum charges to a neutral 5d solution of Einstein's vacuum equations, when the solution has three Killing vectors. This procedure uses the standard method of boosting and T-dualising a generic metric to give a new two-charge 5d solution to Einstein's vacuum equations. The physical properties of the charged solution are derived and their implications for the solution are then examined, with the two-charge dual spinning black ring being used as an example.
NASA Astrophysics Data System (ADS)
Osman, H.; Castle, G. S. P.; Adamiak, K.; Fan, H. T.; Simmer, J.
2015-10-01
The charge on a liquid droplet is a critical parameter that needs to be determined to accurately predict the behaviour of the droplet in many electrostatic applications, for example, electrostatic painting and ink-jet printing. The charge depends on many factors, such as the liquid conductivity, droplet and ligament radii, ligament length, droplet shape, electric field intensity, space charge, the presence of adjacent ligaments and previously formed droplets. In this paper, a 2D axisymmetric model is presented which can be used to predict the electric charge on a conductive spherical droplet ejected from a single ligament directly supplied with high voltage. It was found that the droplet charging levels for the case of isolated electrified ligaments are as much as 60 times higher than that in the case of ligaments connected to a planar high voltage electrode. It is suggested that practical atomization systems lie somewhere between these two extremes and that a better model was achieved by developing a 3D approximation of a linear array of ligaments connected to an electrode having variable width. The effect on droplet charge and its radius was estimated for several cases of different boundary conditions.
Charge transfer in multicomponent oxides
NASA Astrophysics Data System (ADS)
Kohan, A. F.; Ceder, G.
1998-02-01
The transfer of charge between different ions in an oxide plays an essential role in the stability of these compounds. Since small variations in charge can introduce large changes in the total energy, a correct description of this phenomenon is critical. In this work, we show that the ionic charge in oxides can strongly depend on its atomic environment. A model to assign point charges to atoms as a function of their atomic environment has recently been proposed for binary alloys [C. Wolverton, A. Zunger, S. Froyen, and S.-H. Wei, Phys. Rev. B 54, 7843 (1996)] and proven to be very successful in screened solids such as semiconductors and metals. Here, we extend this formalism to multicomponent oxides and we assess its applicability. The simple point-charge model predicts a linear relation between the charge on an atom and the number of unlike neighbors, and between the net value of the charge and the Coulomb field at a given site. The applicability of this approach is tested in a large-supercell self-consistent tight-binding calculation for a random Zr-Ca-O alloy. The observed fluctuations of the ionic charge about the average linear behavior (as a function of the number of unlike neighbors) was larger than 0.25 electrons even when many shells of atomic neighbors were considered in the fit. This variation is significant since it can introduce large errors in the electrostatic energy. On the other hand, for small absolute values of the charge, the ionic charge varied linearly with the Coulomb field, in agreement with previous findings. However, for large Coulomb fields, this function saturates at the formal chemical charge.
Size and Charge Dependence of Ion Transport in Human Nail Plate.
Baswan, Sudhir M; Li, S Kevin; LaCount, Terri D; Kasting, Gerald B
2016-03-01
The electrical properties of human nail plate are poorly characterized yet are a key determinate of the potential to treat nail diseases, such as onychomycosis, using iontophoresis. To address this deficiency, molar conductivities of 17 electrolytes comprising 12 ionic species were determined in hydrated human nail plate in vitro. Cation transport numbers across the nail for 11 of these electrolytes were determined by the electromotive force method. Effective ionic mobilities and diffusivities at infinite dilution for all ionic species were determined by regression analysis. The ratios of diffusivities in nail to those in solution were found to correlate inversely with the hydrodynamic radii of the ions according to a power law relationship having an exponent of -1.75 ± 0.27, a substantially steeper size dependence than observed for similar experiments in skin. Effective diffusivities of cations in nail were 3-fold higher than those of comparably sized anions. These results reflect the strong size and charge selectivity of the nail plate for ionic conduction and diffusion. The analysis implies that efficient transungual iontophoretic delivery of ionized drugs having radii upward of 5 Å (molecular weight, ca. ≥ 340 Da) will require chemical or mechanical alteration of the nail plate. PMID:26886342
Charged particle dynamics in the presence of non-Gaussian Lévy electrostatic fluctuations
NASA Astrophysics Data System (ADS)
Moradi, Sara; del-Castillo-Negrete, Diego; Anderson, Johan
2016-09-01
Full orbit dynamics of charged particles in a 3-dimensional helical magnetic field in the presence of α-stable Lévy electrostatic fluctuations and linear friction modeling collisional Coulomb drag is studied via Monte Carlo numerical simulations. The Lévy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space resulting from intermittent electrostatic turbulence. The probability distribution functions of energy, particle displacements, and Larmor radii are computed and showed to exhibit a transition from exponential decay, in the case of Gaussian fluctuations, to power law decay in the case of Lévy fluctuations. The absolute value of the power law decay exponents is linearly proportional to the Lévy index α. The observed anomalous non-Gaussian statistics of the particles' Larmor radii (resulting from outlier transport events) indicate that, when electrostatic turbulent fluctuations exhibit non-Gaussian Lévy statistics, gyro-averaging and guiding centre approximations might face limitations and full particle orbit effects should be taken into account.
Size and Charge Dependence of Ion Transport in Human Nail Plate.
Baswan, Sudhir M; Li, S Kevin; LaCount, Terri D; Kasting, Gerald B
2016-03-01
The electrical properties of human nail plate are poorly characterized yet are a key determinate of the potential to treat nail diseases, such as onychomycosis, using iontophoresis. To address this deficiency, molar conductivities of 17 electrolytes comprising 12 ionic species were determined in hydrated human nail plate in vitro. Cation transport numbers across the nail for 11 of these electrolytes were determined by the electromotive force method. Effective ionic mobilities and diffusivities at infinite dilution for all ionic species were determined by regression analysis. The ratios of diffusivities in nail to those in solution were found to correlate inversely with the hydrodynamic radii of the ions according to a power law relationship having an exponent of -1.75 ± 0.27, a substantially steeper size dependence than observed for similar experiments in skin. Effective diffusivities of cations in nail were 3-fold higher than those of comparably sized anions. These results reflect the strong size and charge selectivity of the nail plate for ionic conduction and diffusion. The analysis implies that efficient transungual iontophoretic delivery of ionized drugs having radii upward of 5 Å (molecular weight, ca. ≥ 340 Da) will require chemical or mechanical alteration of the nail plate.
Negatively charged nano-grains at 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Gombosi, T. I.; Burch, J. L.; Horányi, M.
2015-11-01
Shortly after the Rosetta mission's rendezvous with 67P/Churyumov-Gerasimenko the RPC/IES instrument intermittently detected negative particles that were identified as singly charged nano-dust grains. These grains were recorded as a nearly mono-energetic beam of particles in the 200-500 eV range arriving from the direction of the comet. Occasionally, another population of particles in the energy range of 1-20 keV were also noticed arriving from the approximate direction of the Sun. In this paper we review the processes that can explain the energization and the directionality of the observed nano-dust populations. We show that the observations are consistent with gas-drag acceleration of the outflowing particles with radii of 3-4 nm, and with the returning fragments of bigger particles accelerated by radiation pressure with approximate radii of 30-80 nm. In addition to gas drag and radiation pressure, we also examine the role of the solar wind induced motional electric field, and its possible role in explaining the intermittency of the detection of a nano-grain population arriving from the solar direction.
NASA Technical Reports Server (NTRS)
Walker, J. W.; Hornbeck, L. J.; Stubbs, D. P.
1977-01-01
The results are presented of a program to design, fabricate, and test CCD arrays suitable for operation in an electron-bombarded mode. These intensified charge coupled devices have potential application to astronomy as photon-counting arrays. The objectives of this program were to deliver arrays of 250 lines of 400 pixels each and some associated electronics. Some arrays were delivered on tube-compatible headers and some were delivered after incorporation in vacuum tubes. Delivery of these devices required considerable improvements to be made in the processing associated with intensified operation. These improvements resulted in a high yield in the thinning process, reproducible results in the accumulation process, elimination of a dark current source in the accumulation process, solution of a number of header related problems, and the identification of a remaining major source of dark current. Two systematic failure modes were identified and protective measures established. The effects of tube processing on the arrays in the delivered ICCDs were determined and are reported along with the characterization data on the arrays.
Hada, Kazuhiro; Giroletti, Marcello; Giovannini, Gabriele; Doi, Akihiro; Nagai, Hiroshi; Honma, Mareki; Inoue, Makoto
2013-12-10
The Sombrero galaxy (M 104, NGC 4594) is associated with one of the nearest low-luminosity active galactic nuclei (AGNs). We investigated the detailed radio structure of the Sombrero nucleus using high-resolution, quasi-simultaneous, multi-frequency, phase-referencing Very Long Baseline Array observations. We obtained high-quality images of this nucleus at seven frequencies, where those at 15, 24, and 43 GHz are the first clear very long baseline interferometry detections. At 43 GHz, the nuclear structure was imaged on a linear scale under 0.01 pc or 100 Schwarzschild radii, revealing a compact, high-brightness-temperature (≳ 3 × 10{sup 9} K) radio core. We discovered the presence of the extended structure emanating from the core on two sides in the northwest and southeast directions. The nuclear radio spectra show a clear spatial gradient, which is similar to that seen in more luminous AGNs with powerful relativistic jets. Moreover, the size and position of the core tend to be frequency dependent. These findings provide evidence that the central engine of the Sombrero is powering radio jets and the jets are overwhelming the emission from the underlying radiatively inefficient accretion flow over the observed frequencies. Based on these radio characteristics, we constrained the following physical parameters for the M 104 jets: (1) the northern side is approaching, whereas the southern one is receding; (2) the jet viewing angle is relatively close to our line-of-sight (≲ 25°); and (3) the intrinsic jet velocity is highly sub-relativistic (≲ 0.2c). The derived pole-on nature of the M 104 jets is consistent with the previous argument that this nucleus contains a true type II AGN, i.e., the broad line region is actually absent or intrinsically weak if the plane of the circumnuclear torus is perpendicular to the jet axis.
Eichert, Thomas; Goldbach, Heiner E
2008-04-01
Foliar uptake pathways for hydrophilic solutes were studied by the analysis of co-uptake of 15N-labelled urea, NH4+ or NO3- and 13C-labelled sucrose across leaf surfaces of various plant species. Uptake of N (y) and sucrose (x) were strongly correlated. Curvilinear regression revealed significantly positive intercepts with the y-axis indicating the involvement of a sucrose-excluding pathway consisting of small pores with radii <0.5 nm. Depending on plant species, N source, leaf side and aperture of stomata, these small pores accounted for 6-62% of total N uptake. Regression analysis revealed that in stomatous leaf surfaces of Vicia faba L., Coffea arabica L. and Prunus cerasus L., the remaining N uptake occurred via another pathway with an estimated average pore radius (r(P)) greater than 20 nm. This is two orders of magnitude greater than previous estimations of cuticular r(P), indicating that this pathway, which was only found in stomatous leaf surfaces, was probably not located in the cuticle but at the surfaces of the stomatal pores. In astomatous leaf surfaces of C. arabica and Populus x canadensis Moench, average r(P) was 2.0 and 2.4 nm, respectively, which is four to eight times larger than previous estimations of cuticular r(P). These results indicate that for polar solutes, the size exclusion limits of plant surfaces can be considerably larger than previously estimated. The far-reaching implications of these findings are discussed. PMID:18334002
NASA Technical Reports Server (NTRS)
Vivian, H. C.
1985-01-01
Charge-state model for lead/acid batteries proposed as part of effort to make equivalent of fuel gage for battery-powered vehicles. Models based on equations that approximate observable characteristics of battery electrochemistry. Uses linear equations, easier to simulate on computer, and gives smooth transitions between charge, discharge, and recuperation.
NASA Astrophysics Data System (ADS)
Neumann, C.; Volk, C.; Engels, S.; Stampfer, C.
2013-11-01
We discuss graphene nanoribbon-based charge sensors and focus on their functionality in the presence of external magnetic fields and high frequency pulses applied to a nearby gate electrode. The charge detectors work well with in-plane magnetic fields of up to 7 T and pulse frequencies of up to 20 MHz. By analyzing the step height in the charge detector’s current at individual charging events in a nearby quantum dot, we determine the ideal operation conditions with respect to the applied charge detector bias. Average charge sensitivities of 1.3 × 10-3e Hz-1/2 can be achieved. Additionally, we investigate the back action of the charge detector current on the quantum transport through a nearby quantum dot. By varying the charge detector bias from 0 to 4.5 mV, we can increase the Coulomb peak currents measured at the quantum dot by a factor of around 400. Furthermore, we can completely lift the Coulomb blockade in the quantum dot.
MODELING PARTICULATE CHARGING IN ESPS
In electrostatic precipitators there is a strong interaction between the particulate space charge and the operating voltage and current of an electrical section. Calculating either the space charge or the operating point when the other is fixed is not difficult, but calculating b...
Dust Charge in Cryogenic Environment
Kubota, J.; Kojima, C.; Sekine, W.; Ishihara, O.
2008-09-07
Dust charges in a complex helium gas plasma, surrounded by cryogenic liquid, are studied experimentally. The charge is determined by frequency and equilibrium position of damped dust oscillation proposed by Tomme et al.(2000) and is found to decrease with ion temperature of the complex plasma.
Fork truck battery charging system
Ducharme, R.L.; Taylor, R.
1983-11-01
A battery charging system includes a highrise storage rack system for holding a plurality of battery chargers and defining a plurality of battery locations. Each battery to be charged is placed on a pallet which has a connection block with a cable connectable to the battery and a male connector. A load carrier carries the pallet and the battery to a selected battery location in the rack and deposits it thereat in a charging position, thereby connecting the male connector to a female connector on the rack connected to one of the chargers. The load carrier also retrieves charged batteries on their pallets from the rack, the retrieval motion effecting disconnection of the pallet from the charger. Each pallet has a fluid receiving trough provided with a drain which cooperates with fluid inlets of a fluid collection system on the rack for collecting fluids emitted during the charging process.
Gravitational duality, branes and charges
NASA Astrophysics Data System (ADS)
Hull, C. M.
1998-03-01
D = 10 type II strings and M-theory in D = 11 have D - 5 branes and 9-branes that are not standard p-branes coupled to anti-symmetric tensors. The global charges in a D-dimensional theory of gravity consist of a momentum PM and a dual D - 5 form charge KM1… MD-5 , which is related to the NUT charge. On dimensional reduction, P gives the electric charge and K the magnetic charge of the graviphoton. Supersymmetry and U-duality imply that the type IIB theory has ( p, q) 9-branes. Orientifolding with 32 (0,1) 9-branes gives the type I string, while modding out by a related discrete symmetry with 32 (1,0) 9-branes gives the SO(32) heterotic string. Some of this material appeared in Nuclear Physics B509 (1997) 252, hep-th/9705162.
NASA Technical Reports Server (NTRS)
Indoe, William
2012-01-01
A gas-charging plug can be easily analyzed for random vibration. The design features two steeped O-rings in a radial configuration at two different diameters, with a 0.050-in. (.1.3-mm) diameter through-hole between the two O-rings. In the charging state, the top O-ring is engaged and sealing. The bottom O-ring outer diameter is not squeezed, and allows air to flow by it into the tank. The inner diameter is stretched to plug the gland diameter, and is restrained by the O-ring groove. The charging port bushing provides mechanical stop to restrain the plug during gas charge removal. It also prevents the plug from becoming a projectile when removing gas charge from the accumulator. The plug can easily be verified after installation to ensure leakage requirements are met.
NASA Technical Reports Server (NTRS)
Rowlette, J. J. (Inventor)
1985-01-01
A coulometer for accurately measuring the state-of-charge of an open-cell battery utilizing an aqueous electrolyte, includes a current meter for measuring the battery/discharge current and a flow meter for measuring the rate at which the battery produces gas during charge and discharge. Coupled to the flow meter is gas analyzer which measures the oxygen fraction of the battery gas. The outputs of the current meter, flow meter, and gas analyzer are coupled to a programmed microcomputer which includes a CPU and program and data memories. The microcomputer calculates that fraction of charge and discharge current consumed in the generation of gas so that the actual state-of-charge can be determined. The state-of-charge is then shown on a visual display.
EBIS charge breeder for CARIBU.
Kondrashev, S; Barcikowski, A; Dickerson, C; Fischer, R; Ostroumov, P N; Vondrasek, R; Pikin, A
2014-02-01
A high-efficiency charge breeder based on an Electron Beam Ion Source (EBIS) is being developed by the ANL Physics Division to increase the intensity and improve the purity of accelerated radioactive ion beams. A wide variety of low-energy neutron-rich ion beams are produced by the Californium Rare Isotope Breeder Upgrade (CARIBU) for the Argonne Tandem Linac Accelerator System (ATLAS). These beams will be charge-bred by an EBIS charge breeder to a charge-to-mass ratio (q/A) ≥ 1/7 and accelerated by ATLAS to energies of about 10 MeV/u. The assembly of the CARIBU EBIS charge breeder except the injection/extraction beam lines has been completed. This summer we started electron beam commissioning of the EBIS. The first results on electron beam extraction, transport from the electron gun to a high power electron collector are presented and discussed. PMID:24593606
EBIS charge breeder for CARIBU
NASA Astrophysics Data System (ADS)
Kondrashev, S.; Barcikowski, A.; Dickerson, C.; Fischer, R.; Ostroumov, P. N.; Vondrasek, R.; Pikin, A.
2014-02-01
A high-efficiency charge breeder based on an Electron Beam Ion Source (EBIS) is being developed by the ANL Physics Division to increase the intensity and improve the purity of accelerated radioactive ion beams. A wide variety of low-energy neutron-rich ion beams are produced by the Californium Rare Isotope Breeder Upgrade (CARIBU) for the Argonne Tandem Linac Accelerator System (ATLAS). These beams will be charge-bred by an EBIS charge breeder to a charge-to-mass ratio (q/A) ≥ 1/7 and accelerated by ATLAS to energies of about 10 MeV/u. The assembly of the CARIBU EBIS charge breeder except the injection/extraction beam lines has been completed. This summer we started electron beam commissioning of the EBIS. The first results on electron beam extraction, transport from the electron gun to a high power electron collector are presented and discussed.
Theory of using magnetic deflections to combine charged particle beams
Steckbeck, Mackenzie K.; Doyle, Barney Lee
2014-09-01
Several radiation effects projects in the Ion Beam Lab (IBL) have recently required two disparate charged particle beams to simultaneously strike a single sample through a single port of the target chamber. Because these beams have vastly different mass–energy products (MEP), the low-MEP beam requires a large angle of deflection toward the sample by a bending electromagnet. A second electromagnet located further upstream provides a means to compensate for the small angle deflection experienced by the high-MEP beam during its path through the bending magnet. This paper derives the equations used to select the magnetic fields required by these two magnets to achieve uniting both beams at the target sample. A simple result was obtained when the separation of the two magnets was equivalent to the distance from the bending magnet to the sample, and the equations is given by: B_{s}= 1/2(r_{c}/r_{s}) B_{c}, where B_{s} and B_{c} are the magnetic fields in the steering and bending magnet and r_{c}/r_{s} is the ratio of the radii of the bending magnet to that of the steering magnet. This result is not dependent upon the parameters of the high MEP beam, i.e. energy, mass, charge state. Therefore, once the field of the bending magnet is set for the low-MEP beam, and the field in the steering magnet is set as indicted in the equation, the trajectory path of any high-MEP beam will be directed into the sample.
When Charged Black Holes Merge
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-08-01
Most theoretical models assume that black holes arent charged. But a new study shows that mergers of charged black holes could explain a variety of astrophysical phenomena, from fast radio bursts to gamma-ray bursts.No HairThe black hole no hair theorem states that all black holes can be described by just three things: their mass, their spin, and their charge. Masses and spins have been observed and measured, but weve never measured the charge of a black hole and its widely believed that real black holes dont actually have any charge.That said, weve also never shown that black holes dont have charge, or set any upper limits on the charge that they might have. So lets suppose, for a moment, that its possible for a black hole to be charged. How might that affect what we know about the merger of two black holes? A recent theoretical study by Bing Zhang (University of Nevada, Las Vegas) examines this question.Intensity profile of a fast radio burst, a sudden burst of radio emission that lasts only a few milliseconds. [Swinburne Astronomy Productions]Driving TransientsZhangs work envisions a pair of black holes in a binary system. He argues that if just one of the black holes carries charge possibly retained by a rotating magnetosphere then it may be possible for the system to produce an electromagnetic signal that could accompany gravitational waves, such as a fast radio burst or a gamma-ray burst!In Zhangs model, the inspiral of the two black holes generates a global magnetic dipole thats perpendicular to the plane of the binarys orbit. The magnetic flux increases rapidly as the separation between the black holes decreases, generating an increasingly powerful magnetic wind. This wind, in turn, can give rise to a fast radio burst or a gamma-ray burst, depending on the value of the black holes charge.Artists illustration of a short gamma-ray burst, thought to be caused by the merger of two compact objects. [ESO/A. Roquette]Zhang calculates lower limits on the charge
Brainard, John P.; Christenson, Todd R.
2009-11-03
A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.
Neutron and weak-charge distributions of the 48Ca nucleus
Hagen, Gaute; Forssen, Christian; Nazarewicz, Witold; Papenbrock, Thomas F.; Bacca, S.; Barnea, Nir; Carlsson, Boris; Drischler, Christian; Hebeler, Kai; Hjorth-Jensen, M.; et al
2015-11-02
What is the size of the atomic nucleus? This deceivably simple question is difficult to answer. Although the electric charge distributions in atomic nuclei were measured accurately already half a century ago, our knowledge of the distribution of neutrons is still deficient. In addition to constraining the size of atomic nuclei, the neutron distribution also impacts the number of nuclei that can exist and the size of neutron stars. We present an ab initio calculation of the neutron distribution of the neutron-rich nucleus 48Ca. We show that the neutron skin (difference between the radii of the neutron and proton distributions)more » is significantly smaller than previously thought. We also make predictions for the electric dipole polarizability and the weak form factor; both quantities that are at present targeted by precision measurements. Here, based on ab initio results for 48Ca, we provide a constraint on the size of a neutron star.« less
Electron-beam-charged dielectrics: Internal charge distribution
NASA Technical Reports Server (NTRS)
Beers, B. L.; Pine, V. W.
1981-01-01
Theoretical calculations of an electron transport model of the charging of dielectrics due to electron bombardment are compared to measurements of internal charge distributions. The emphasis is on the distribution of Teflon. The position of the charge centroid as a function of time is not monotonic. It first moves deeper into the material and then moves back near to the surface. In most time regimes of interest, the charge distribution is not unimodal, but instead has two peaks. The location of the centroid near saturation is a function of the incident current density. While the qualitative comparison of theory and experiment are reasonable, quantitative comparison shows discrepancies of as much as a factor of two.
Fog dispersion. [charged particle technique
NASA Technical Reports Server (NTRS)
Christensen, L. S.; Frost, W.
1980-01-01
The concept of using the charged particle technique to disperse warm fog at airports is investigated and compared with other techniques. The charged particle technique shows potential for warm fog dispersal, but experimental verification of several significant parameters, such as particle mobility and charge density, is needed. Seeding and helicopter downwash techniques are also effective for warm fog disperals, but presently are not believed to be viable techniques for routine airport operations. Thermal systems are currently used at a few overseas airports; however, they are expensive and pose potential environmental problems.
Rewritable artificial magnetic charge ice
NASA Astrophysics Data System (ADS)
Wang, Yong-Lei; Xiao, Zhi-Li; Snezhko, Alexey; Xu, Jing; Ocola, Leonidas E.; Divan, Ralu; Pearson, John E.; Crabtree, George W.; Kwok, Wai-Kwong
2016-05-01
Artificial ices enable the study of geometrical frustration by design and through direct observation. However, it has proven difficult to achieve tailored long-range ordering of their diverse configurations, limiting both fundamental and applied research directions. We designed an artificial spin structure that produces a magnetic charge ice with tunable long-range ordering of eight different configurations. We also developed a technique to precisely manipulate the local magnetic charge states and demonstrate write-read-erase multifunctionality at room temperature. This globally reconfigurable and locally writable magnetic charge ice could provide a setting for designing magnetic monopole defects, tailoring magnonics, and controlling the properties of other two-dimensional materials.
NASA Astrophysics Data System (ADS)
Zhang, Bing
2016-08-01
The discoveries of GW150914, GW151226, and LVT151012 suggest that double black hole (BH-BH) mergers are common in the universe. If at least one of the two merging black holes (BHs) carries a certain amount of charge, possibly retained by a rotating magnetosphere, the inspiral of a BH-BH system would drive a global magnetic dipole normal to the orbital plane. The rapidly evolving magnetic moment during the merging process would drive a Poynting flux with an increasing wind power. The magnetospheric activities during the final phase of the merger would make a fast radio burst (FRB) if the BH charge can be as large as a factor of \\hat{q}˜ ({10}-9{--}{10}-8) of the critical charge Q c of the BH. At large radii, dissipation of the Poynting flux energy in the outflow would power a short-duration high-energy transient, which would appear as a detectable short-duration gamma-ray burst (GRB) if the charge can be as large as \\hat{q}˜ ({10}-5{--}{10}-4). The putative short GRB coincident with GW150914 recorded by Fermi GBM may be interpreted with this model. Future joint GW/GRB/FRB searches would lead to a measurement or place a constraint on the charges carried by isolate BHs.
NASA Astrophysics Data System (ADS)
Zhang, Bing
2016-08-01
The discoveries of GW150914, GW151226, and LVT151012 suggest that double black hole (BH–BH) mergers are common in the universe. If at least one of the two merging black holes (BHs) carries a certain amount of charge, possibly retained by a rotating magnetosphere, the inspiral of a BH–BH system would drive a global magnetic dipole normal to the orbital plane. The rapidly evolving magnetic moment during the merging process would drive a Poynting flux with an increasing wind power. The magnetospheric activities during the final phase of the merger would make a fast radio burst (FRB) if the BH charge can be as large as a factor of \\hat{q}˜ ({10}-9{--}{10}-8) of the critical charge Q c of the BH. At large radii, dissipation of the Poynting flux energy in the outflow would power a short-duration high-energy transient, which would appear as a detectable short-duration gamma-ray burst (GRB) if the charge can be as large as \\hat{q}˜ ({10}-5{--}{10}-4). The putative short GRB coincident with GW150914 recorded by Fermi GBM may be interpreted with this model. Future joint GW/GRB/FRB searches would lead to a measurement or place a constraint on the charges carried by isolate BHs.
Ting, T. O.; Lim, Eng Gee
2014-01-01
In this work, a state-space battery model is derived mathematically to estimate the state-of-charge (SoC) of a battery system. Subsequently, Kalman filter (KF) is applied to predict the dynamical behavior of the battery model. Results show an accurate prediction as the accumulated error, in terms of root-mean-square (RMS), is a very small value. From this work, it is found that different sets of Q and R values (KF's parameters) can be applied for better performance and hence lower RMS error. This is the motivation for the application of a metaheuristic algorithm. Hence, the result is further improved by applying a genetic algorithm (GA) to tune Q and R parameters of the KF. In an online application, a GA can be applied to obtain the optimal parameters of the KF before its application to a real plant (system). This simply means that the instantaneous response of the KF is not affected by the time consuming GA as this approach is applied only once to obtain the optimal parameters. The relevant workable MATLAB source codes are given in the appendix to ease future work and analysis in this area. PMID:25162041
Vigren, E.; Eriksson, A. I.; Wahlund, J.-E.; Galand, M.; Lavvas, P.
2015-01-10
We approach the complicated phenomena of gas-dust interactions in a cometary ionosphere, focusing in particular on the possibility of significant depletion in electron number density due to grain charging. Our one-dimensional ionospheric model, accounting for grain charging processes, is applied to the subsolar direction and the diamagnetic cavity of 67P/Churyuomov-Gerasimenko, the target comet for the ESA Rosetta mission, at perihelion (∼1.25-1.30 AU). We argue on the one hand that grains with radii >100 nm are unlikely to significantly affect the overall ionospheric particle balance within this environment, at least for cometocentric distances >10 km. On the other hand, if nanograins with radii in the 1-3 nm range are ejected to the coma at a level of ∼1% with respect to the mass of the sublimated gas, a significant electron depletion is expected up to cometocentric distances of several tens of kilometers. We relate these results to the recent Cassini discoveries of very pronounced electron depletion compared with the positive ion population in the plume of Enceladus, which has been attributed to nanograin charging.
Search for fractionally charged particles
Lackner, K.S.; Zweig, G.
1982-01-01
Quarks, the constituents of hadrons and fermion fields of quantum chromodynamics, have fractional charges -1/3e and 2/3e. All charges are integral multiples of 1/3e and not e, as was previously believed. Therefore it is natural to ask if isolated particles of fractional charge exist, either as an intrinsic part of matter, or as particles that can be produced at high energy accelerators. This question can only be answered by experiment, and remains interesting even if quantum chromodynamics turns out to be an absolutely confining theory of quarks. For example, small deviations from the standard version of quantum chromodynamics, or the incorporation of quantum chromodynamics into a more comprehensive theory, could require the existence of free fractionally charged particles.
Electrokinetic concentration of charged molecules
Singh, Anup K.; Neyer, David W.; Schoeniger, Joseph S.; Garguilo, Michael G.
2002-01-01
A method for separating and concentrating charged species from uncharged or neutral species regardless of size differential. The method uses reversible electric field induced retention of charged species, that can include molecules and molecular aggregates such as dimers, polymers, multimers, colloids, micelles, and liposomes, in volumes and on surfaces of porous materials. The retained charged species are subsequently quantitatively removed from the porous material by a pressure driven flow that passes through the retention volume and is independent of direction thus, a multi-directional flow field is not required. Uncharged species pass through the system unimpeded thus effecting a complete separation of charged and uncharged species and making possible concentration factors greater than 1000-fold.
Quantum tunneling with global charge
Lee, K. )
1994-10-15
We investigate quantum tunneling in the theory of a complex scalar field with a global U(1) symmetry when the charge density of the initial configuration does not vanish. We discuss the possible final configurations and set up the Euclidean path integral formalism to find the bubble nucleation and to study the bubble evolution. For the stationary path, or the bounce solution, in the Euclidean time, the phase variable becomes pure imaginary so that the charge density remains real. We apply this formalism to examples when the initial charge density is small. While the phase transition considered here occurs in zero temperature, the bubble dynamics is richly complicated, involving conserved charge, the sound wave, and the supersonic bubble wall.
Measurements of W Charge Asymmetry
Holzbauer, J. L.
2015-10-06
We discuss W boson and lepton charge asymmetry measurements from W decays in the electron channel, which were made using 9.7 fb$^{-1}$ of RunII data collected by the D0 detector at the Fermilab Tevatron Collider. The electron charge asymmetry is presented as a function of pseudo-rapidity out to |$\\eta$| $\\le$ 3.2, in five symmetric and asymmetric kinematic bins of electron transverse momentum and the missing transverse energy of the event. We also give the W charge asymmetry as a function of W boson rapidity. The asymmetries are compared with next-to-leading order perturbative quantum chromodynamics calculations. These charge asymmetry measurements will allow more accurate determinations of the proton parton distribution functions and are the most precise to date.
Electronegativity Equalization and Partial Charge
ERIC Educational Resources Information Center
Sanderson, R. T.
1974-01-01
This article elaborates the relationship between covalent radius, homonuclear bond energy, and electronegativity, and sets the background for bond energy calculation by discussing the nature of heteronuclear covalent bonding on the basis of electronegativity equalization and particle charge. (DT)
Smokeless charging with most charge in a new type of charging car
Khadzhioglo, A.V.; Semisalov, L.P.; Kuropyatnik, G.N.; Shchelkunov, F.S.; Azimov, A.A.
1981-01-01
The following scientific considerations formed the basis of our development work on smokeless charging and the new charging car. Over the charging cycle the composition and evolution rate of the charging gases vary quite substantially. Consequently, when the charging gases are extracted completely (and hence smokelessly) through an autonomous extraction and cleaning system mounted on the charging car, it is impossible to prevent drawing in some air; under certain conditions, the air volume is sufficient to form a combustible mixture. It is further obvious that ignition from extraneous sources cannot be excluded under coke-oven charging conditions. These factors make it essential to humidify the charging gases, for example by irrigation with water. Partial evaporation of this water significantly lowers the temperature and raises the humidity of the gas mixture. It has been established that heavy irrigation with water lowers the risk of forming and igniting combustible mixtures, but that on the other hand it causes much coal-tar vapor to condense out. Our investigations have shown that the radical solution to the problem of safeguarding the performance of the autonomous gas extraction and cleaning system on the charging car is to burn the gases out (flame decontamination) as they enter the extraction system, and subsequently cool the combustion products by the evaporative technique. Since the flame decontamination prevents deposit formation in the gas extraction system it becomes possible to use the venturi-tube coagulator to separate the solids. This is the most efficient type of cleaner, especially for single-stage gas cooling and cleaning systems. Since the combustion products are safe from the explosion viewpoint, the extraction system need no longer be made absolutely leakproof.
Measuring momentum for charged particle tomography
Morris, Christopher; Fraser, Andrew Mcleod; Schultz, Larry Joe; Borozdin, Konstantin N.; Klimenko, Alexei Vasilievich; Sossong, Michael James; Blanpied, Gary
2010-11-23
Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.
Quantum physics: Destruction of discrete charge
NASA Astrophysics Data System (ADS)
Nazarov, Yuli V.
2016-08-01
Electric charge is quantized in units of the electron's charge. An experiment explores the suppression of charge quantization caused by quantum fluctuations and supports a long-standing theory that explains this behaviour. See Letter p.58
Superradiance from a charged dilation black hole
Shiraishi, K. )
1992-12-07
In this paper, the authors study the behavior of the wave function of charged Klein-Gordon field around a charge dilaton black hole. The rate of spontaneous charge loss is estimated for large black hole case.
Charge transfer in zirconium films
NASA Astrophysics Data System (ADS)
Mel'Nichuk, B. L.; Stasyuk, Z. V.
1991-12-01
In superhigh-vacuum conditions (residual gas pressure less than 10-8 Pa), electro-conductive dimensional phenomena, the Hall constant, and the absolute differential thermoemf of zirconium films are investigated. The experimental results are analyzed within the framework of current model concepts regarding volume, surface, and grain-boundary scattering of charge carriers (the Mayadas-Schatzkes and Tel'e-Tosser-Pichard models). The charge-transfer parameters in zirconium are determined.