A Dynamic Dialog System Using Semantic Web Technologies
ERIC Educational Resources Information Center
Ababneh, Mohammad
2014-01-01
A dialog system or a conversational agent provides a means for a human to interact with a computer system. Dialog systems use text, voice and other means to carry out conversations with humans in order to achieve some objective. Most dialog systems are created with specific objectives in mind and consist of preprogrammed conversations. The primary…
ERIC Educational Resources Information Center
Davidson, Christina; Given, Lisa M.; Danby, Susan; Thorpe, Karen
2014-01-01
Much of what is written about digital technologies in preschool contexts focuses on young children's acquisition of skills rather than their meaning-making during use of technologies. In this paper, we consider how the viewing of a YouTube video was used by a teacher and children to produce shared understandings about it. Conversation analysis of…
ERIC Educational Resources Information Center
Passonneau, Sarah; Coffey, Dan
2011-01-01
Electronic communication technologies continue to change the landscape of reference services. For many users, virtual communication is the preferred means of conversing. Synchronous virtual reference, similar to other synchronous means of communication, is an important method for reaching students and for providing teaching and learning…
ERIC Educational Resources Information Center
Higher Education Center for Alcohol, Drug Abuse, and Violence Prevention, 2011
2011-01-01
When it comes to using social media technology for alcohol, drug abuse, and violence prevention, Thomas Workman, at Baylor College of Medicine's John M. Eisenberg Center for Clinical Decisions and Communications Science, points out that social media is interactive. This means that a person is entering a conversation rather than a declaration, and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mac Dougall, James
2016-02-05
Many U.S. manufacturing facilities generate unrecovered, low-grade waste heat, and also generate or are located near organic-content waste effluents. Bioelectrochemical systems, such as microbial fuel cells and microbial electrolysis cells, provide a means to convert organic-content effluents into electric power and useful chemical products. A novel biochemical electrical system for industrial manufacturing processes uniquely integrates both waste heat recovery and waste effluent conversion, thereby significantly reducing manufacturing energy requirements. This project will enable the further development of this technology so that it can be applied across a wide variety of US manufacturing segments, including the chemical, food, pharmaceutical, refinery, andmore » pulp and paper industries. It is conservatively estimated that adoption of this technology could provide nearly 40 TBtu/yr of energy, or more than 1% of the U.S. total industrial electricity use, while reducing CO 2 emissions by more than 6 million tons per year. Commercialization of this technology will make a significant contribution to DOE’s Industrial Technology Program goals for doubling energy efficiency and providing a more robust and competitive domestic manufacturing base.« less
NASA Technical Reports Server (NTRS)
Hsu, Y.-Y.
1976-01-01
The paper discusses the U.S. resources to provide fuels from agricultural products, the present status of conversion technology of clean fuels from biomass, and a system study directed to determine the energy budget, and environmental and socioeconomic impacts. Conversion processes are discussed relative to pyrolysis and anaerobic fermentation. Pyrolysis breaks the cellulose molecules to smaller molecules under high temperature in the absence of oxygen, wheras anaerobic fermentation is used to convert biomass to methane by means of bacteria. Cost optimization and energy utilization are also discussed.
NASA Radioisotope Power Conversion Technology NRA Overview
NASA Technical Reports Server (NTRS)
Anderson, David J.
2005-01-01
The focus of the National Aeronautics and Space Administration's (NASA) Radioisotope Power Systems (RPS) Development program is aimed at developing nuclear power and technologies that would improve the effectiveness of space science missions. The Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) is an important mechanism through which research and technology activities are supported in the Advanced Power Conversion Research and Technology project of the Advanced Radioisotope Power Systems Development program. The purpose of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide higher efficiencies and specific powers than existing systems. These advances would enable a factor of two to four decrease in the amount of fuel and a reduction of waste heat required to generate electrical power, and thus could result in more cost effective science missions for NASA. The RPCT NRA selected advanced RPS power conversion technology research and development proposals in the following three areas: innovative RPS power conversion research, RPS power conversion technology development in a nominal 100 W(sub e) scale; and, milliwatt/multi-watt RPS (mWRPS) power conversion research. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, a summary of the power conversion technologies approaches being pursued, and a brief digest of first year accomplishments.
NASA Radioisotope Power Conversion Technology NRA Overview
NASA Technical Reports Server (NTRS)
Anderson, David J.
2005-01-01
The focus of the National Aeronautics and Space Administration s (NASA) Radioisotope Power Systems (RPS) Development program is aimed at developing nuclear power and technologies that would improve the effectiveness of space science missions. The Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) is an important mechanism through which research and technology activities are supported in the Advanced Power Conversion Research and Technology project of the Advanced Radioisotope Power Systems Development program. The purpose of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide higher efficiencies and specific powers than existing systems. These advances would enable a factor of 2 to 4 decrease in the amount of fuel and a reduction of waste heat required to generate electrical power, and thus could result in more cost effective science missions for NASA. The RPCT NRA selected advanced RPS power conversion technology research and development proposals in the following three areas: innovative RPS power conversion research, RPS power conversion technology development in a nominal 100We scale; and, milliwatt/multi-watt RPS (mWRPS) power conversion research. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, a summary of the power conversion technologies approaches being pursued, and a brief digest of first year accomplishments.
NASA Technical Reports Server (NTRS)
1974-01-01
A methodology for the display and analysis of postulated energy futures for the United States is presented. A systems approach methodology including the methodology of technology assessment is used to examine three energy scenarios--the Westinghouse Nuclear Electric Economy, the Ford Technical Fix Base Case and a MEGASTAR generated Alternate to the Ford Technical Fix Base Case. The three scenarios represent different paths of energy consumption from the present to the year 2000. Associated with these paths are various mixes of fuels, conversion, distribution, conservation and end-use technologies. MEGASTAR presents the estimated times and unit requirements to supply the fuels, conversion and distribution systems for the postulated end uses for the three scenarios and then estimates the aggregate manpower, materials, and capital requirements needed to develop the energy system described by the particular scenario.
MEGASTAR: The Meaning of Energy Growth: An Assessment of Systems, Technologies, and Requirements
NASA Technical Reports Server (NTRS)
1974-01-01
A methodology for the display and analysis of postulated energy futures for the United States is presented. A systems approach that includes the methodology of technology assessment is used to examine three energy scenarios--the Westinghouse Nuclear Electric Economy, the Ford Technical Fix Base Case and a MEGASTAR generated Alternate to the Ford Technical Fix Base Case. The three scenarios represent different paths of energy consumption for the present to the year 2000. Associated with these paths are various mixes of fuels, conversion, distribution, conservation and end-use technologies. MEGASTAR presents the estimated times and unit requirements to supply the fuels, conversion and distribution systems for the postulated end uses for the three scenarios and then estimates the aggregate manpower, materials, and capital requirements needed to develop the energy system described by the particular scenario. The total requirements and the energy subsystems for each scenario are assessed for their primary impacts in the areas of society, the environment, technology and the economy.
Chemical recycling of scrap composites
NASA Technical Reports Server (NTRS)
Allred, Ronald E.; Salas, Richard M.
1994-01-01
There are no well-developed technologies for recycling composite materials other than grinding to produce fillers. New approaches are needed to reclaim these valuable resources. Chemical or tertiary recycling, conversion of polymers into low molecular weight hydrocarbons for reuse as chemicals or fuels, is emerging as the most practical means for obtaining value from waste plastics and composites. Adherent Technologies is exploring a low-temperature catalytic process for recycling plastics and composites. Laboratory results show that all types of plastics, thermosets as well as thermoplastics, can be converted in high yields to valuable hydrocarbon products. This novel catalytic process runs at 200 C, conversion times are rapid, the process is closed and, thus, nonpolluting, and no highly toxic gas or liquid products have been observed so no negative environmental impact will result from its implementation. Tests on reclamation of composite materials show that epoxy, imide, and engineering thermoplastic matrices can be converted to low molecular weight hydrocarbons leaving behind the reinforcing fibers for reuse as composite reinforcements in secondary, lower-performance applications. Chemical recycling is also a means to dispose of sensitive or classified organic materials without incineration and provides a means to eliminate or reduce mixed hazardous wastes containing organic materials.
State of Practice for Emerging Waste Conversion Technologies
New technologies to convert municipal and other waste streams into fuels and chemical commodities, termed conversion technologies, are rapidly developing. Conversion technologies are garnering increasing interest and demand due primarily to alternative energy initiatives. These t...
High efficiency thermionic converter studies
NASA Technical Reports Server (NTRS)
Huffman, F. N.; Sommer, A. H.; Balestra, C. L.; Briere, T. R.; Lieb, D.; Oettinger, P. E.; Goodale, D. B.
1977-01-01
Research in thermionic energy conversion technology is reported. The objectives were to produce converters suitable for use in out of core space reactors, radioisotope generators, and solar satellites. The development of emitter electrodes that operate at low cesium pressure, stable low work function collector electrodes, and more efficient means of space charge neutralization were investigated to improve thermionic converter performance. Potential improvements in collector properties were noted with evaporated thin film barium oxide coatings. Experiments with cesium carbonate suggest this substance may provide optimum combinations of cesium and oxygen for thermionic conversion.
An Overview and Status of NASA's Radioisotope Power Conversion Technology NRA
NASA Technical Reports Server (NTRS)
Anderson, David J.; Wong, Wayne A.; Tuttle, Karen L.
2005-01-01
NASA's Advanced Radioisotope Power Systems (RPS) development program is developing next generation radioisotope power conversion technologies that will enable future missions that have requirements that can not be met by either photovoltaic systems or by current Radioisotope Power System (RPS) technology. The Advanced Power Conversion Research and Technology project of the Advanced RPS development program is funding research and technology activities through the NASA Research Announcement (NRA) 02- OSS-01, "Research Opportunities in Space Science 2002" entitled "Radioisotope Power Conversion Technology" (RPCT), 13 August 2002. The objective of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide significant improvements over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. These advances would enable a factor of 2 to 4 decrease in the amount of fuel required to generate electrical power. The RPCT NRA selected advanced RPS power conversion technology research and development proposals in the following three areas: innovative RPS power conversion research, RPS power conversion technology development in a nominal 100We scale; and, milliwatt/multi-watt RPS (mWRPS) power conversion research. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, and a brief summary of accomplishments over the first 18 months but focusing on advancements made over the last 6 months.
Green technology for conversion of renewable hydrocarbon based on plasma-catalytic approach
NASA Astrophysics Data System (ADS)
Fedirchyk, Igor; Nedybaliuk, Oleg; Chernyak, Valeriy; Demchina, Valentina
2016-09-01
The ability to convert renewable biomass into fuels and chemicals is one of the most important steps on our path to green technology and sustainable development. However, the complex composition of biomass poses a major problem for established conversion technologies. The high temperature of thermochemical biomass conversion often leads to the appearance of undesirable byproducts and waste. The catalytic conversion has reduced yield and feedstock range. Plasma-catalytic reforming technology opens a new path for biomass conversion by replacing feedstock-specific catalysts with free radicals generated in the plasma. We studied the plasma-catalytic conversion of several renewable hydrocarbons using the air plasma created by rotating gliding discharge. We found that plasma-catalytic hydrocarbon conversion can be conducted at significantly lower temperatures (500 K) than during the thermochemical ( 1000 K) and catalytic (800 K) conversion. By using gas chromatography, we determined conversion products and found that conversion efficiency of plasma-catalytic conversion reaches over 85%. We used obtained data to determine the energy yield of hydrogen in case of plasma-catalytic reforming of ethanol and compared it with other plasma-based hydrogen-generating systems.
NASA Astrophysics Data System (ADS)
Waddle, D. B.; Perlack, R. D.; Wimberly, J.
Biomass plays a significant role in energy use in developing countries: however, these resources are often used very inefficiently. Recent technology developments have made possible improved conversion efficiencies for utility scale technologies. These developments may be of interest in the wake of recent policy changes occurring in several developing countries, with respect to independent power production. Efforts are also being directed at developing biomass conversion technologies that can interface and/or compete with internal combustion engines for small, isolated loads. The technological status is reviewed of biomass conversion technologies appropriate for commercial, industrial, and small utility applications in developing countries. Market opportunities, constraints, and technology developments are also discussed.
Advanced Radioisotope Power Conversion Technology Research and Development
NASA Technical Reports Server (NTRS)
Wong, Wayne A.
2004-01-01
NASA's Radioisotope Power Conversion Technology program is developing next generation power conversion technologies that will enable future missions that have requirements that cannot be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power System (RPS) technology. Performance goals of advanced radioisotope power systems include improvement over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. NASA has awarded ten contracts in the technology areas of Brayton, Stirling, Thermoelectric, and Thermophotovoltaic power conversion including five development contracts that deal with more mature technologies and five research contracts. The Advanced RPS Systems Assessment Team includes members from NASA GRC, JPL, DOE and Orbital Sciences whose function is to review the technologies being developed under the ten Radioisotope Power Conversion Technology contracts and assess their relevance to NASA's future missions. Presented is an overview of the ten radioisotope power conversion technology contracts and NASA's Advanced RPS Systems Assessment Team.
NASA Astrophysics Data System (ADS)
Waddle, D. B.; Perlack, R. D.
1990-03-01
Biomass plays a significant role in energy use in developing countries; however, these resources are often used very inefficiently. Recent technology developments have made possible improved conversion efficiencies for utility scale technologies. These developments may be of interest in the wake of recent policy changes occurring in Central America, with respect to independent power production. Efforts are also being directed at developing biomass conversion technologies that can interface and/or compete with internal combustion engines for small, isolated loads. This paper reviews the technological status of biomass conversion technologies appropriate for commercial, industrial, and small utility applications in developing countries, and in Latin America in particular. Market opportunities, constraints, and technology developments are also discussed.
Dust Mitigation for Martian Exploration
NASA Technical Reports Server (NTRS)
Williams, Blakeley Shay
2011-01-01
One of the efforts of the In-Situ Resource Utilization project is to extract oxygen, fuel, and water from the Martian air. However, the surface of Mars is covered in a layer of dust, which is uploaded into the atmosphere by dust devils and dust storms. This atmospheric dust would be collected along with the air during the conversion process. Thus, it is essential to extract the dust from the air prior to commencing the conversion. An electrostatic precipitator is a commonly used dust removal technology on earth. Using this technology, dust particles that pass through receive an electrostatic charge by means of a corona discharge. The particles are then driven to a collector in a region of high electric field at the center of the precipitator. Experiments were conducted to develop a precipitator that will function properly in the Martian atmosphere, which has a very low pressure and is made up . of primarily carbon dioxide.
Progress in space power technology
NASA Technical Reports Server (NTRS)
Mullin, J. P.; Randolph, L. P.; Hudson, W. R.
1980-01-01
The National Aeronautics and Space Administration's Space Power Research and Technology Program has the objective of providing the technology base for future space power systems. The current technology program which consists of photovoltaic energy conversion, chemical energy conversion and storage, thermal-to-electric conversion, power systems management and distribution, and advanced energetics is discussed. In each area highlights, current programs, and near-term directions will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waddle, D.B.; Perlack, R.D.; Wimberly, J.
1990-01-01
Biomass plays a significant role in energy use in developing countries: however, these resources are often used very inefficiently. Recent technology developments have made possible improved conversion efficiencies for utility scale technologies. These developments may be of interest in the wake of recent policy changes occurring in several developing countries, with respect to independent power production. Efforts are also being directed at developing biomass conversion technologies that can interface and/or compete with internal combustion engines for small, isolated loads. This paper reviews the technological status of biomass conversion technologies appropriate for commercial, industrial, and small utility applications in developing countries.more » Market opportunities, constraints, and technology developments are also discussed. 25 refs., 1 fig., 1 tab.« less
A Historical Review of Brayton and Stirling Power Conversion Technologies for Space Applications
NASA Technical Reports Server (NTRS)
Mason, Lee S.; Schreiber, Jeffrey G.
2007-01-01
Dynamic power conversion technologies, such as closed Brayton and free-piston Stirling, offer many advantages for space power applications including high efficiency, long life, and attractive scaling characteristics. This paper presents a historical review of Brayton and Stirling power conversion technology for space and discusses on-going development activities in order to illustrate current technology readiness. The paper also presents a forecast of potential future space uses of these power technologies.
Do conversations with virtual avatars increase feelings of social anxiety?
Powers, Mark B; Briceno, Nicole F; Gresham, Robert; Jouriles, Ernest N; Emmelkamp, Paul M G; Smits, Jasper A J
2013-05-01
Virtual reality (VR) technology provides a way to conduct exposure therapy with patients with social anxiety. However, the primary limitation of current technology is that the operator is limited to pre-programed avatars that cannot be controlled to interact/converse with the patient in real time. The current study piloted new technology allowing the operator to directly control the avatar (including speaking) during VR conversations. Using an incomplete repeated measures (VR vs. in vivo conversation) design and random starting order with rotation counterbalancing, participants (N = 26) provided ratings of fear and presence during both VR and in vivo conversations. Results showed that VR conversation successfully elevated fear ratings relative to baseline (d = 2.29). Participants also rated their fear higher during VR conversation than during in vivo conversation (d = 0.85). However, in vivo conversation was rated as more realistic than VR conversation (d = 0.74). No participants dropped out and 100% completed both VR and in vivo conversations. Qualitative participant comments suggested that the VR conversations would be more realistic if they did not meet the actor/operator and if they were not in the same room as the participant. Overall, the data suggest that the novel technology allowing real time interaction/conversation in VR may prove useful for the treatment of social anxiety in future studies. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Nature of Primary Students' Conversation in Technology Education
ERIC Educational Resources Information Center
Fox-Turnbull, Wendy H.
2016-01-01
Classroom conversations are core to establishing successful learning for students. This research explores the nature of conversation in technology education in the primary classroom and the implications for teaching and learning. Over a year, two units of work in technology were taught in two primary classrooms. Most data was gathered in Round 2…
The NASA Space Power Technology Program
NASA Technical Reports Server (NTRS)
Mullin, J. P.; Hudson, W. R.; Randolph, L. P.
1979-01-01
This paper discusses the National Aeronautics and Space Administration's (NASA) Space Power Technology Program which is aimed at providing the needed technology for NASA's future missions. The technology program is subdivided into five areas: (1) photovoltaic energy conversion; (2) chemical energy conversion and storage; (3) thermal to electric conversion; (4) power system management and distribution, and (5) advanced energetics. Recent accomplishments, current status, and future directions are presented for each area.
An Overview and Status of NASA's Radioisotope Power Conversion Technology NRA
NASA Technical Reports Server (NTRS)
Anderson, David J.; Wong, Wayne A.; Tuttle, Karen L.
2005-01-01
NASA's Advanced Radioisotope Power Systems (RPS) development program is developing next generation radioisotope power conversion technologies that will enable future missions that have requirements that can not be met by either photovoltaic systems or by current Radioisotope Power System (RPS) technology. The Advanced Power Conversion Research and Technology project of the Advanced RPS development program is funding research and technology activities through the NASA Research Announcement (NRA) 02-OSS-01, "Research Opportunities in Space Science 2002" entitled "Radioisotope Power Conversion Technology" (RPCT), August 13, 2002. The objective of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide significant improvements over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, and a brief summary of accomplishments over the first 18 months but focusing on advancements made over the last 6 months.
NASA Technical Reports Server (NTRS)
1991-01-01
Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE.
Status of the advanced Stirling conversion system project for 25 kW dish Stirling applications
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Schreiber, Jeffrey G.
1991-01-01
Technology development for Stirling convertors directed toward a dynamic power source for space applications is discussed. Space power requirements include high reliability with very long life, low vibration, and high system efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although these applications appear to be quite different, their requirements complement each other. The advanced Stirling conversion system (ASCS) project at NASA Lewis Research Center is described. Each system design features a solar receiver/liquid metal heat transport system and a free-piston Stirling convertor with a means to provide nominally 25 kW of electric power to utility grid while meeting the US Department of Energy (DOE) performance and long term cost goals. The design is compared with other ASCS designs.
An empirical study of innovation-performance linkage in the paper industry
NASA Astrophysics Data System (ADS)
Farooquie, Parveen; Gani, Abdul; Zuberi, Arsalanullah K.; Hashmi, Imran
2012-10-01
To enter new markets and remain competitive in the existing markets, companies need to shift their focus from traditional means and ways to some innovative approaches. Though the paper industry in India has improved remarkably on its technological and environmental issues, yet it shows a low rate of innovation. The present paper attempts to review the industry in the perspective of technological innovations and investigates empirically the role of innovations in performance improvement and pollution control. Multivariate analysis of variance and discriminant function analysis are applied for data processing. The findings reveal that the mean scores on the factors, such as sales, quality, and flexibility, are higher for the good innovators than those for the poor innovators. Conversely, the factors which are likely to be reduced as a result of innovations, such as time, cost, emissions, and disposal of waste, have shown higher means for the poor innovators.
Induced neural stem cells as a means of treatment in Huntington's disease.
Choi, Kyung-Ah; Hong, Sunghoi
2017-11-01
Huntington's disease (HD) is an inherited neurodegenerative disease characterized by chorea, dementia, and depression caused by progressive nerve cell degeneration, which is triggered by expanded CAG repeats in the huntingtin (Htt) gene. Currently, there is no cure for this disease, nor is there an effective medicine available to delay or improve the physical, mental, and behavioral severities caused by it. Areas covered: In this review, the authors describe the use of induced neural stem cells (iNSCs) by direct conversion technology, which offers great advantages as a therapeutic cell type to treat HD. Expert opinion: Cell conversion of somatic cells into a desired stem cell type is one of the most promising treatments for HD because it could be facilitated for the generation of patient-specific neural stem cells. The induced pluripotent stem cells (iPSCs) have a powerful potential for differentiation into neurons, but they may cause teratoma formation due to an undifferentiated pluripotent stem cell after transplantation Therefore, direct conversion of somatic cells into iNSCs is a promising alternative technology in regenerative medicine and the iNSCs may be provided as a therapeutic cell source for Huntington's disease.
PREFACE: 4th International Symposium on Instrumentation Science and Technology (ISIST'2006)
NASA Astrophysics Data System (ADS)
Jiubin, Tan
2006-10-01
On behalf of the International Program Committee of ISIST'2006 and the symposium coordinators, I would like to thank all the participants for their presence at the 4th International Symposium on Instrumentation Science and Technology (ISIST'2006), a platform for scientists, researchers and experts from different parts of the world to present their achievements and to exchange their views on ways and means to further develop modern instrumentation science and technology. In the present information age, instrumentation science and technology is playing a more and more important role, not only in the acquisition and conversion of information at the very beginning of the information transformation chain, but also in the transfer, manipulation and utilization of information. It provides an analysis and test means for bioengineering, medical engineering, life science, environmental engineering and micro/nanometer technology, and integrates these disciplines to form new subdivisions of their own. The major subject of the symposium is crossover and fusion between instrumentation science and technology and other sciences and technologies. ISIST'2006 received more than 800 full papers from 12 countries and regions, from which 300 papers were finally selected by the international program committee for inclusion in the proceedings of ISIST'2006, published in 2 volumes. The major topics include instrumentation basic theory and methodology, sensors and conversion technology, signal and image processing, instruments and systems, laser and optical fiber instrumentation, advanced optical instrumentation, optoelectronics instrumentation, MEMS, nanotechnology and instrumentation, biomedical and environmental instrumentation, automatic test and control. The International Symposium on Instrumentation Science and Technology (ISIST) is sponsored by ICMI, NSFC, CSM, and CIS, and organized by ICMI, HIT and IC-CSM, and held every two years. The 1st symposium was held in LuoYang, China in 1999. The 2nd symposium was held in JiNan, China in 2002. The 3rd symposium was held in Xi'an, China in 2004. The 4th symposium is held in Harbin, China in 2006. The 5th symposium will be held in Hangzhou in 2008. We hope this symposium will further promote the development of instrumentation science and technology and get us all together to create a bright future. Professor Dr Tan Jiubin
Recent Advances in Power Conversion and Heat Rejection Technology for Fission Surface Power
NASA Technical Reports Server (NTRS)
Mason, Lee
2010-01-01
Under the Exploration Technology Development Program, the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) are jointly developing Fission Surface Power (FSP) technology for possible use in human missions to the Moon and Mars. A preliminary reference concept was generated to guide FSP technology development. The concept consists of a liquid-metal-cooled reactor, Stirling power conversion, and water heat rejection, with Brayton power conversion as a backup option. The FSP project has begun risk reduction activities on some key components with the eventual goal of conducting an end-to-end, non-nuclear, integrated system test. Several power conversion and heat rejection hardware prototypes have been built and tested. These include multi-kilowatt Stirling and Brayton power conversion units, titanium-water heat pipes, and composite radiator panels.
Relevance and speed of message delivery trade-offs in augmentative and alternative communication.
Bedrosian, Jan L; Hoag, Linda A; McCoy, Kathleen F
2003-08-01
This report is the first in a series of investigations designed to test a theory identifying the effects of conversational trade-offs between selected maxims on public attitudes toward augmentative and alternative communication (AAC) system users and their communication. In the current study, the trade-offs between the relevance of a prestored message and its speed of delivery were examined. Participating were 96 sales clerks. Twelve scripted videotaped conversational conditions, involving an AAC customer and a clerk at a checkout counter, were used to manipulate message relevance, speed of message delivery, and participant/AAC user gender. Following each assigned viewing, participants completed a questionnaire designed to assess their attitudes toward the AAC user and his or her communication. Significantly higher mean ratings were found for the conditions involving the slowly delivered relevant messages (both preceded by a conversational floorholder and without a floorholder) when compared to the quickly delivered partly relevant message condition. In addition, the condition involving the slowly delivered relevant message with a floorholder yielded significantly higher mean ratings than that without the floorholder. There was no effect for participant/user gender. Modifications of the theory and technological implications are discussed.
A Converse of the Mean Value Theorem Made Easy
ERIC Educational Resources Information Center
Mortici, Cristinel
2011-01-01
The aim of this article is to discuss some results about the converse mean value theorem stated by Tong and Braza [J. Tong and P. Braza, "A converse of the mean value theorem", Amer. Math. Monthly 104(10), (1997), pp. 939-942] and Almeida [R. Almeida, "An elementary proof of a converse mean-value theorem", Internat. J. Math. Ed. Sci. Tech. 39(8)…
The Proliferation Security Initiative: A Means to an End for the Operational Commander
2009-05-04
The Reduced Enrichment for Research and Test Reactors ( RERTR ) Program develops technology necessary to enable the conversion of civilian...facilities using high enriched uranium (HEU) to low enriched uranium (LEU) fuels and targets. The RERTR Program was initiated by the U.S. Department of...processes have been developed for producing radioisotopes with LEU targets. The RERTR Program is managed by the Office of Nuclear Material Threat
Technology and Teaching: A Conversation among Faculty Regarding the Pros and Cons of Technology
ERIC Educational Resources Information Center
Kemp, Andrew T.; Preston, John; Page, C. Steven; Harper, Rebecca; Dillard, Benita; Flynn, Joseph; Yamaguchi, Misato
2014-01-01
Technology is often touted as the savior of education (Collins & Haverson, 2009). However, is technology the panacea that it is made out to be? This paper is an extended conversation among a group of faculty members at three different universities and their attitudes and beliefs about technology and education. Three professors shared their…
NASA Technical Reports Server (NTRS)
Barrett, Michael J.
2004-01-01
The elements of Brayton technology development emphasize power conversion system risk mitigation. Risk mitigation is achieved by demonstrating system integration feasibility, subsystem/component life capability (particularly in the context of material creep) and overall spacecraft mass reduction. Closed-Brayton-cycle (CBC) power conversion technology is viewed as relatively mature. At the 2-kWe power level, a CBC conversion system Technology Readiness Level (TRL) of six (6) was achieved during the Solar Dynamic Ground Test Demonstration (SD-GTD) in 1998. A TRL 5 was demonstrated for 10 kWe-class CBC components during the development of the Brayton Rotating Unit (BRU) from 1968 to 1976. Components currently in terrestrial (open cycle) Brayton machines represent TRL 4 for similar uses in 100 kWe-class CBC space systems. Because of the baseline component and subsystem technology maturity, much of the Brayton technology task is focused on issues related to systems integration. A brief description of ongoing technology activities is given.
An overview of thermionic power conversion technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Morgan C.
1996-12-01
Thermionic energy conversion is one of the many concepts which make up the direct power conversion technologies. Specifically, thermionics is the process of changing heat directly into electricity via a material`s ability to emit electrons when heated. This thesis presents a broad overview of the engineering and physics necessary to make thermionic energy conversion (TEC) a practical reality. It begins with an introduction to the technology and the history of its development. This is followed by a discussion of the physics and engineering necessary to develop practical power systems. Special emphasis is placed on the critical issues which are stillmore » being researched. Finally, there is a discussion of the missions which this technology may fulfill.« less
Pyroelectric conversion in space: A conceptual design study
NASA Technical Reports Server (NTRS)
Olsen, R. B.
1983-01-01
Pyroelectric conversion is potentially a very lightweight means of providing electrical power generation in space. Two conceptualized systems approaches for the direct conversion of heat (from sunlight) into electrical energy using the pyroelectric effect of a new class of polar polymers were evaluated. Both of the approaches involved large area thin sheets of plastic which are thermally cycled by radiative input and output of thermal energy. The systems studied are expected to eventually achieve efficiencies of the order of 8% and may deliver as much as one half kilowatt per kilogram. In addition to potentially very high specific power, the pyroelectric conversion approaches outlined appear to offer low cost per watt in the form of an easily deployed, flexible, strong, electrically ""self-healing'', and high voltage sheet. This study assessed several potential problems such as plasma interactions and radiation degradation and suggests approaches to overcome them. The fundamental technological issues for space pyroelectric conversion are: (1) demonstration of the conversion cycle with the proposed class of polymers, (2) achievement of improved dielectric strength of the material, (3) demonstration of acceptable plasma power losses for low altitude, and (4) establishment of reasonable lifetime for the pyroelectric material in the space environment. Recommendations include an experimental demonstration of the pyroelectric conversion cycle followed by studies to improve the dielectric strength of the polymer and basic studies to discover additional pyroelectric materials.
Jacob, Eufemia; Pavlish, Carol; Duran, Joana; Stinson, Jennifer; Lewis, Mary Ann; Zeltzer, Lonnie
2013-01-01
Use of wireless devices has the potential to transform delivery of primary care services for persons with sickle cell disease (SCD). The study examined text message communications between patients and an advanced practice registered nurse (APRN) and the different primary care activities that emerged with use of wireless technology. Patients (N = 37; mean age 13.9 ± 1.8 years; 45.9% male and 54.1% female) engaged in intermittent text conversations with the APRN as part of the Wireless Pain Intervention Program. Content analyses were used to analyze the content of text message exchanges between patients and the APRN. The primary care needs that emerged were related to pain and symptom management and sickle cell crisis prevention. Two primary care categories (collaborating and coaching), four primary care subcategories (screening, referring, informing, and supporting), and 16 primary care activities were evident in text conversations. The use of wireless technology may facilitate screening, prompt management of pain and symptoms, prevention or reduction of SCD-related complications, more efficient referral for treatments, timely patient education, and psychosocial support in children and adolescents with SCD. Copyright © 2013 National Association of Pediatric Nurse Practitioners. Published by Mosby, Inc. All rights reserved.
The OTEC connection - Power from the sea
NASA Astrophysics Data System (ADS)
Petty, D.
1980-02-01
OTEC is discussed as a means of contributing to United States energy self-sufficiency. The technology involved in the conversion of ocean thermal gradients found in tropical regions to electricity transmittable by submarine cable is examined, with attention given to the operating principles of open- and closed-cycle Rankine engines and design considerations for the evaporators, condensers and heat exchangers. The environmental impact and economics of OTEC are considered, and Department of Energy research projects in areas of OTEC technology including heat transfer, biofouling, environmental assessment, underwater electrical transmission and mooring and test plants are indicated. It is pointed out that US islands presently offer excellent markets for early commercial OTEC plants, with Gulf Coast markets requiring further technology developments to be economically attractive.
Monitoring the Thickness of Coal-Conversion Slag
NASA Technical Reports Server (NTRS)
Walsh, J. V.
1984-01-01
Technique adapts analogous ocean-floor-mapping technology. Existing ocean floor acoustic technology adapted for real-time monitoring of thickness and viscosity of flowing slag in coal-conversion processing.
Space reflector technology and its system implications
NASA Technical Reports Server (NTRS)
Billman, K. W.; Gilbreath, W. P.; Bowen, S. W.
1979-01-01
The technical feasibility of providing nearly continuous solar energy to a world-distributed set of conversion sites by means of a system of orbiting, large-area, low-areal-density reflecting structures is examined. Requisite mirror area to provide a chosen, year-averaged site intensity is shown. A modeled reflector structure, with suitable planarity and ability to meet operational torques and loads, is discussed. Typical spatial and temporal insolation profiles are presented. These determine the sizing of components and the output electric power from a baselined photovoltaic conversion system. Technical and economic challenges which, if met, would allow the system to provide a large fraction of future world energy needs at costs competitive to circa-1995 fossil and nuclear sources are discussed.
NASA Technical Reports Server (NTRS)
Massier, Paul F.; Bankston, C. P.; Williams, R.; Underwood, M.; Jeffries-Nakamura, B.; Fabris, G.
1989-01-01
The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal Magnetohydrodynamic Electrical Generator (LMMHD) for the period January 1, 1989 through December 31, 1989. Research on these concepts was initiated during October 1987. Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (nitinol heat engines); and also, more complete discussions of AMTEC and LMMHD systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pannone, Greg; Thomas, John F; Reale, Michael
The three foundational elements that determine mobile source energy use and tailpipe carbon dioxide (CO2) emissions are the tractive energy requirements of the vehicle, the on-cycle energy conversion efficiency of the propulsion system, and the energy source. The tractive energy requirements are determined by the vehicle's mass, aerodynamic drag, tire rolling resistance, and parasitic drag. Oncycle energy conversion of the propulsion system is dictated by the tractive efficiency, non-tractive energy use, kinetic energy recovery, and parasitic losses. The energy source determines the mobile source CO2 emissions. For current vehicles, tractive energy requirements and overall energy conversion efficiency are readily availablemore » from the decomposition of test data. For future applications, plausible levels of mass reduction, aerodynamic drag improvements, and tire rolling resistance can be transposed into the tractive energy domain. Similarly, by combining thermodynamic, mechanical efficiency, and kinetic energy recovery fundamentals with logical proxies, achievable levels of energy conversion efficiency can be established to allow for the evaluation of future powertrain requirements. Combining the plausible levels of tractive energy and on-cycle efficiency provides a means to compute sustainable vehicle and propulsion system scenarios that can achieve future regulations. Using these principles, the regulations established in the United States (U.S.) for fuel consumption and CO2 emissions are evaluated. Fleet-level scenarios are generated and compared to the technology deployment assumptions made during rule-making. When compared to the rule-making assumptions, the results indicate that a greater level of advanced vehicle and propulsion system technology deployment will be required to achieve the model year 2025 U.S. standards for fuel economy and CO2 emissions.« less
ERIC Educational Resources Information Center
Miller, Carmen
1992-01-01
The first of two articles discusses virtual reality (VR) and online databases; the second one reports on an interview with Thomas A. Furness III, who defines VR and explains work at the Human Interface Technology Laboratory (HIT). Sidebars contain a glossary of VR terms and a conversation with Toni Emerson, the HIT lab's librarian. (LRW)
Proceedings of the 66th National Conference on Weights and Measures, 1981
NASA Astrophysics Data System (ADS)
Wollin, H. F.; Barbrow, L. E.; Heffernan, A. P.
1981-12-01
Major issues discussed included measurement science education, enforcement uniformly, national type approval, inch pound and metric labeling provisions, new design and performance requirements for weighing and measuring technology, metric conversion of retail gasoline dispensers, weights and measures program evaluation studies of model State laws and regulations and their adoption by citation or other means by State and local jurisdictions, and report of States conducting grain moisture meter testing programs.
OAST space power technology program
NASA Technical Reports Server (NTRS)
Mullin, J. P.
1978-01-01
The current research and technology (R and T) base program is first described, then special attention is directed toward outlining a new system technology specifically oriented toward providing the utility power plant technology base for semi-permanent earth orbital facilities expected to be needed in the middle to late 1980's. The R and T program involves five areas of research: (1) photovoltaic energy conversion; (2) chemical energy conversion and storage; (3) thermal-to-electric conversion; (4) environment interactions; and (5) power systems management and distribution. The general objectives and planned direction of efforts in each of these areas is summarized.
Solar Energy: Its Technologies and Applications
DOE R&D Accomplishments Database
Auh, P. C.
1978-06-01
Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.
NASA-OAST program in photovoltaic energy conversion
NASA Technical Reports Server (NTRS)
Mullin, J. P.; Flood, D. J.
1982-01-01
The NASA program in photovoltaic energy conversion includes research and technology development efforts on solar cells, blankets, and arrays. The overall objectives are to increase conversion efficiency, reduce mass, reduce cost, and increase operating life. The potential growth of space power requirements in the future presents a major challenge to the current state of technology in space photovoltaic systems.
Laparoscopic Whipple procedure: review of the literature.
Gagner, Michel; Palermo, Mariano
2009-01-01
Laparoscopic pancreatic surgery represents one of the most advanced applications for laparoscopic surgery currently in use. In the past, minimally invasive techniques were only used for diagnostic laparoscopy, staging of pancreatic cancer, and palliative procedures for unresectable pancreatic cancer. With new advances in technology and instrumentation, some sophisticated procedures are currently available, such as the Whipple procedure, one of the most sophisticated applications of minimally invasive surgery. A review of the literature shows that 146 laparoscopic Whipple procedures have been published worldwide since 1994. The authors analyzed blood loss, mean operating time, hospital stay, conversion rate, mean age, mortality rate, lymph nodes in the pathologic findings, follow up, and complications. Mean age was 59.1 years; mean operating time was 439 min. The average blood loss for the reviewed literature was 143 mL; median hospital stay was 18 days; conversion rate was 46%; number of lymph nodes in the pathologic findings was 19; and mortalities related to the procedure was low, 2 patients (1.3%) and the complication rate was 16% (23/46 patients). Complications included 2 hemorrhages, 4 bowel obstructions, 1 stress ulcer, 1 delay of gastric emptying, 4 pneumonias, and 11 leaks. This review demonstrates that the laparoscopic Whipple procedure is not only feasible but also safe, with low mortality and acceptable rates of complications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Eric C. D.; Talmadge, Michael; Dutta, Abhijit
This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s (BETO’s) efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from lignocellulosic biomass feedstocks. The research funded by BETO is designed to advance the state of technology of biomass feedstock supply and logistics, conversion, and overall system sustainability. It is expected that these research improvements will be made within the 2022 timeframe. As part of their involvement in this research and development effort, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory investigate the economics ofmore » conversion pathways through the development of conceptual biorefinery process models and techno-economic analysis models. This report describes in detail one potential conversion process for the production of high-octane gasoline blendstock via indirect liquefaction of biomass. The processing steps of this pathway include the conversion of biomass to synthesis gas or syngas via indirect gasification, gas cleanup, catalytic conversion of syngas to methanol intermediate, methanol dehydration to dimethyl ether (DME), and catalytic conversion of DME to high-octane, gasoline-range hydrocarbon blendstock product. The conversion process configuration leverages technologies previously advanced by research funded by BETO and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via reforming of tars and other hydrocarbons is one of the key technology advancements realized as part of this prior research and 2012 demonstrations. The process described in this report evaluates a new technology area for the downstream utilization of clean biomass-derived syngas for the production of high-octane hydrocarbon products through methanol and DME intermediates. In this process, methanol undergoes dehydration to DME, which is subsequently converted via homologation reactions to high-octane, gasoline-range hydrocarbon products.« less
High-energy capacitance electrostatic micromotors
NASA Astrophysics Data System (ADS)
Baginsky, I. L.; Kostsov, E. G.
2003-03-01
The design and parameters of a new electrostatic micromotor with high energy output are described. The motor is created by means of microelectronic technology. Its operation is based on the electromechanic energy conversion during the electrostatic rolling of the metallic films (petals) on the ferroelectric film surface. The mathematical simulation of the main characteristics of the rolling process is carried out. The experimentally measured parameters of the petal step micromotors are shown. The motor operation and its efficiency are investigated.
Proceedings of the First ERDA Semiannual Solar Photovoltaic Conversion Program Conference
NASA Technical Reports Server (NTRS)
1975-01-01
Organization, basic research and applied technology for the Solar Photovoltaic Conversion Program are outlined. The program aims to provide a technology base for low cost thin film solar cells and solar arrays.
Thermochemical Conversion: Using Heat and Catalysts to Make Biofuels and Bioproducts
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-07-29
This fact sheet discusses the Bioenergy Technologies Office's thermochemical conversion critical technology goal. And, how through the application of heat, robust thermochemical processes can efficiently convert a broad range of biomass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Eric; Talmadge, M.; Dutta, Abhijit
The U.S. Department of Energy (DOE) promotes research for enabling cost-competitive liquid fuels production from lignocellulosic biomass feedstocks. The research is geared to advance the state of technology (SOT) of biomass feedstock supply and logistics, conversion, and overall system sustainability. As part of their involvement in this program, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) investigate the economics of conversion pathways through the development of conceptual biorefinery process models. This report describes in detail one potential conversion process for the production of high octane gasoline blendstock via indirect liquefaction (IDL). The steps involve themore » conversion of biomass to syngas via indirect gasification followed by gas cleanup and catalytic syngas conversion to a methanol intermediate; methanol is then further catalytically converted to high octane hydrocarbons. The conversion process model leverages technologies previously advanced by research funded by the Bioenergy Technologies Office (BETO) and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via tar and hydrocarbons reforming was one of the key technology advancements as part of that research. The process described in this report evaluates a new technology area with downstream utilization of clean biomass-syngas for the production of high octane hydrocarbon products through a methanol intermediate, i.e., dehydration of methanol to dimethyl ether (DME) which subsequently undergoes homologation to high octane hydrocarbon products.« less
Energy from gasification of solid wastes.
Belgiorno, V; De Feo, G; Della Rocca, C; Napoli, R M A
2003-01-01
Gasification technology is by no means new: in the 1850s, most of the city of London was illuminated by "town gas" produced from the gasification of coal. Nowadays, gasification is the main technology for biomass conversion to energy and an attractive alternative for the thermal treatment of solid waste. The number of different uses of gas shows the flexibility of gasification and therefore allows it to be integrated with several industrial processes, as well as power generation systems. The use of a waste-biomass energy production system in a rural community is very interesting too. This paper describes the current state of gasification technology, energy recovery systems, pre-treatments and prospective in syngas use with particular attention to the different process cycles and environmental impacts of solid wastes gasification.
Feasibility of Traveling Wave Direct Energy Conversion of Fission Reaction Fragments
NASA Technical Reports Server (NTRS)
Tarditi, A. G.; George, J. A.; Miley, G. H.; Scott, J. H.
2013-01-01
Fission fragment direct energy conversion has been considered in the past for the purpose of increasing nuclear power plant efficiency and for advanced space propulsion. Since the fragments carry electric charge (typically in the order of 20 e) and have 100 MeV-range kinetic energy, techniques utilizing very high-voltage DC electrodes have been considered. This study is focused on a different approach: the kinetic energy of the charged fission fragments is converted into alternating current by means of a traveling wave coupling scheme (Traveling Wave Direct Energy Converter, TWDEC), thereby not requiring the utilization of high voltage technology. A preliminary feasibility analysis of the concept is introduced based on a conceptual level study and on a particle simulation model of the beam dynamics.
Hollywood's Conversion to Color: The Technological, Economic and Aesthetic Factors.
ERIC Educational Resources Information Center
Kindem, Forham A.
1979-01-01
Discusses the film industry's conversion to color cinematography in the period between the 1920s and 1960s. Cites economic considerations, technological modifications, and aesthetic preferences by audiences as factors in this development. (JMF)
Biological Conversion of Sugars to Hydrocarbons Technology Pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Ryan; Biddy, Mary J.; Tan, Eric
2013-03-31
In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the biological conversion of biomass derivedmore » sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.« less
The NASA program in Space Energy Conversion Research and Technology
NASA Astrophysics Data System (ADS)
Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.
The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.
The NASA program in Space Energy Conversion Research and Technology
NASA Technical Reports Server (NTRS)
Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.
1982-01-01
The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.
NASA Astrophysics Data System (ADS)
Kler, Aleksandr; Tyurina, Elina; Mednikov, Aleksandr
2018-01-01
The paper presents perspective technologies for combined conversion of fossil fuels into synthetic liquid fuels and electricity. The comparative efficiency of various process flows of conversion and transportation of energy resources of Russia's east that are aimed at supplying electricity to remote consumers is presented. These also include process flows based on production of synthetic liquid fuel.
2011-06-01
technologies, including high temperature thermal insulation and thermal to electric power conversion, have been evaluated, and a preliminary design...support technologies, including high temperature thermal insulation and thermal to electric power conversion, have been evaluated, and a preliminary...vacuum gap with low emissivity surfaces on either side as the first insulating layer.11 D. Electrical Energy Conversion There are a wide variety
Thermochemical conversion of microalgal biomass into biofuels: a review.
Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu
2015-05-01
Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Status of NASA's Advanced Radioisotope Power Conversion Technology Research and Development
NASA Technical Reports Server (NTRS)
Wong, Wayne A.; Anderson, David J.; Tuttle, Karen L.; Tew, Roy C.
2006-01-01
NASA s Advanced Radioisotope Power Systems (RPS) development program is funding the advancement of next generation power conversion technologies that will enable future missions that have requirements that can not be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power Systems (RPS). Requirements of advanced radioisotope power systems include high efficiency and high specific power (watts/kilogram) in order to meet mission requirements with less radioisotope fuel and lower mass. Other Advanced RPS development goals include long-life, reliability, and scalability so that these systems can meet requirements for a variety of future space applications including continual operation surface missions, outer-planetary missions, and solar probe. This paper provides an update on the Radioisotope Power Conversion Technology Project which awarded ten Phase I contracts for research and development of a variety of power conversion technologies consisting of Brayton, Stirling, thermoelectrics, and thermophotovoltaics. Three of the contracts continue during the current Phase II in the areas of thermoelectric and Stirling power conversion. The accomplishments to date of the contractors, project plans, and status will be summarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryant, M.; Starkey, A.H.; Dick-Peddie, W.A.
A brief overview of the present day geothermal applications for hydrothermal electrical generation and direct heat use and their environmental implications is provided. Technologies and environmental impacts are considered at all points on the pathway of development resource exploration; well field, plant and transmission line construction; and plant operation. The technologies for electrical generation-direct, dry steam conversion; separated steam conversion; single-flash conversion, separated-steam/single-flash conversion and binary cycle conversion and the technologies for direct heat use - direct use of geothermal waters, surface heat exhanger, down-the hole heat exchanger and heat pump are described. A summary of the geothermal technologies plannedmore » or in operation within New Mexico geothermal areas is provided. A review of regulations that affect geothermal development and its related environmental impact in New Mexico is presented. The regulatory pathway, both state and federal, of geothermal exploration after the securing of appropriate leases, development, and construction and implementation of a geothermal facility are described. Six categories (Geophysical, Water, Air, Noise, Biota and Socioeconomics) were selected for environmental assessment. The data available is described.« less
Changes on degree of conversion of dual-cure luting light-cured with blue LED
NASA Astrophysics Data System (ADS)
Bandéca, M. C.; El-Mowafy, O.; Saade, E. G.; Rastelli, A. N. S.; Bagnato, V. S.; Porto-Neto, S. T.
2009-05-01
The indirect adhesive procedures constitute recently a substantial portion of contemporary esthetic restorative treatments. The resin cements have been used to bond tooth substrate and restorative materials. Due to recently introduction of the self-bonding resin luting cement based on a new monomer, filler and initiation technology has become important to study the degree of conversion of these new materials. In the present work the polymerization reaction and the filler content of dual-cured dental resin cements were studied by means of infra-red spectroscopy (FT-IR) and thermogravimetry (TG). Twenty specimens were made in a metallic mold (8 mm diameter × 1 mm thick) from each of 2 cements, Panavia® F2.0 (Kuraray) and RelyX™ Unicem Applicap (3M/ESPE). Each specimen was cured with blue LED with power density of 500 mW/cm2 for 30 s. Immediately after curing, 24 and 48 h, and 7 days DC was determined. For each time interval 5 specimens were pulverized, pressed with KBr and analyzed with FT-IR. The TG measurements were performed in Netzsch TG 209 under oxygen atmosphere and heating rate of 10°C/min from 25 to 700°C. A two-way ANOVA showed DC (%) mean values statistically significance differences between two cements ( p < 0.05). The Tukey’s test showed no significant difference only for the 24 and 48 h after light irradiation for both resin cements ( p > 0.05). The Relx-Y™ Unicem mean values were significantly higher than Panavia® F 2.0. The degree of conversion means values increasing with the storage time and the filler content showed similar for both resin cements.
Comparison of Stirling engines for use with a 25-kW disk-electric conversion system
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.
1987-01-01
Heat engines were evaluated for terrestrial solar heat receivers. The Stirling Engine was identified as one of the most promising engines for terrestrial applications. The potential to meet the Department of Energy (DOE) goals for performance and cost can be met by the free-piston Stirling engine. NASA Lewis is providing technical management for an Advanced Stirling Conversion System (ASCS) through a cooperative interagency agreement with DOE. Parallel contracts were awarded for conceptual designs of an ASCS. Each design will feature a free-piston Stirling engine, a liquid-metal heat pipe receiver, and a means to provide about 25 kW of electric power to a utility grid while meeting long-term performance and goals. The Mechanical Technology, Ins. (MTI) design incorporates a linear alternator to directly convert the solar energy to electricity while the Stirling Technology Company (STC) generates electrical power indirectly by using a hydraulic output to a ground-bases hydraulic pump/motor coupled to a rotating alternator. Both designs use technology which can reasonably be expected to be available in the 1980's. The ASCS designs using a free-piston Stirling engine, a heat transport system, a receiver, and the methods of providing electricity to the utility grid will be discussed.
Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Schreiber, Jeffrey G.
1990-01-01
Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's.
Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications
NASA Astrophysics Data System (ADS)
Shaltens, Richard K.; Schreiber, Jeffrey G.
Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's.
Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Schreiber, Jeffrey G.
1990-01-01
Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's
Lifecycle Assessment of Biofuel Production from Wood Pyrolysis Technology
ERIC Educational Resources Information Center
Manyele, S. V.
2007-01-01
Due to a stronger dependency on biomass for energy, there is a need for improved technologies in biomass-to-energy conversion in Tanzania. This paper presents a life cycle assessment (LCA) of pyrolysis technology used for conversion of wood and wood waste to liquid biofuel. In particular, a survey of environmental impacts of the process is…
Small reactor power system for space application
NASA Technical Reports Server (NTRS)
Shirbacheh, M.
1987-01-01
A development history and comparative performance capability evaluation is presented for spacecraft nuclear powerplant Small Reactor Power System alternatives. The choice of power conversion technology depends on the reactor's operating temperature; thermionic, thermoelectric, organic Rankine, and Alkali metal thermoelectric conversion are the primary power conversion subsystem technology alternatives. A tabulation is presented for such spacecraft nuclear reactor test histories as those of SNAP-10A, SP-100, and NERVA.
DOT National Transportation Integrated Search
1994-01-01
From September-November 1993, U.S. Department of Transportation (DOT) Secretary Federico Pena sponsored a series of meetings, called "Promoting Transportation Applications in Defense Conversion and Other Advanced Technologies," to advance President B...
COAL CONVERSION CONTROL TECHNOLOGY. VOLUME I. ENVIRONMENTAL REGULATIONS; LIQUID EFFLUENTS
This volume is the product of an information-gathering effort relating to coal conversion process streams. Available and developing control technology has been evaluated in view of the requirements of present and proposed federal, state, regional, and international environmental ...
COAL CONVERSION CONTROL TECHNOLOGY. VOLUME II. GASEOUS EMISSIONS; SOLID WASTES
This volume is the product of an information-gathering effort relating to coal conversion process streams. Available and developing control technology has been evaluated in view of the requirements of present and proposed federal, state, regional, and international environmental ...
NASA Technical Reports Server (NTRS)
1980-01-01
Six current and thirty-six advanced energy conversion systems were defined and combined with appropriate balance of plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a frame work for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Fuel energy savings of 10 to 25 percent were predicted compared to traditional on site furnaces and utility electricity. With the variety of industrial requirements, each advanced technology had attractive applications. Fuel cells indicated the greatest fuel energy savings and emission reductions. Gas turbines and combined cycles indicated high overall annual savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal derived fuels, or coal with advanced fluid bed combustion or on site gasifications. Data and information for both current and advanced energy conversion technology are presented. Schematic and physical descriptions, performance data, equipment cost estimates, and predicted emissions are included. Technical developments which are needed to achieve commercialization in the 1985-2000 period are identified.
Turning carbon dioxide into fuel.
Jiang, Z; Xiao, T; Kuznetsov, V L; Edwards, P P
2010-07-28
Our present dependence on fossil fuels means that, as our demand for energy inevitably increases, so do emissions of greenhouse gases, most notably carbon dioxide (CO2). To avoid the obvious consequences on climate change, the concentration of such greenhouse gases in the atmosphere must be stabilized. But, as populations grow and economies develop, future demands now ensure that energy will be one of the defining issues of this century. This unique set of (coupled) challenges also means that science and engineering have a unique opportunity-and a burgeoning challenge-to apply their understanding to provide sustainable energy solutions. Integrated carbon capture and subsequent sequestration is generally advanced as the most promising option to tackle greenhouse gases in the short to medium term. Here, we provide a brief overview of an alternative mid- to long-term option, namely, the capture and conversion of CO2, to produce sustainable, synthetic hydrocarbon or carbonaceous fuels, most notably for transportation purposes. Basically, the approach centres on the concept of the large-scale re-use of CO2 released by human activity to produce synthetic fuels, and how this challenging approach could assume an important role in tackling the issue of global CO2 emissions. We highlight three possible strategies involving CO2 conversion by physico-chemical approaches: sustainable (or renewable) synthetic methanol, syngas production derived from flue gases from coal-, gas- or oil-fired electric power stations, and photochemical production of synthetic fuels. The use of CO2 to synthesize commodity chemicals is covered elsewhere (Arakawa et al. 2001 Chem. Rev. 101, 953-996); this review is focused on the possibilities for the conversion of CO2 to fuels. Although these three prototypical areas differ in their ultimate applications, the underpinning thermodynamic considerations centre on the conversion-and hence the utilization-of CO2. Here, we hope to illustrate that advances in the science and engineering of materials are critical for these new energy technologies, and specific examples are given for all three examples. With sufficient advances, and institutional and political support, such scientific and technological innovations could help to regulate/stabilize the CO2 levels in the atmosphere and thereby extend the use of fossil-fuel-derived feedstocks.
ERIC Educational Resources Information Center
Dembeck, Thomas J.
2013-01-01
The purpose of this case study was to determine the nature of conversations that occur within an organizational microblog and compare them to traditional informal conversations. Since informal conversations are closely associated with reaction to change, this study explored how organizational microblog conversations may be understood to affect…
Plasma technology - a novel solution for CO2 conversion?
Snoeckx, Ramses; Bogaerts, Annemie
2017-10-02
CO 2 conversion into value-added chemicals and fuels is considered as one of the great challenges of the 21st century. Due to the limitations of the traditional thermal approaches, several novel technologies are being developed. One promising approach in this field, which has received little attention to date, is plasma technology. Its advantages include mild operating conditions, easy upscaling, and gas activation by energetic electrons instead of heat. This allows thermodynamically difficult reactions, such as CO 2 splitting and the dry reformation of methane, to occur with reasonable energy cost. In this review, after exploring the traditional thermal approaches, we have provided a brief overview of the fierce competition between various novel approaches in a quest to find the most effective and efficient CO 2 conversion technology. This is needed to critically assess whether plasma technology can be successful in an already crowded arena. The following questions need to be answered in this regard: are there key advantages to using plasma technology over other novel approaches, and if so, what is the flip side to the use of this technology? Can plasma technology be successful on its own, or can synergies be achieved by combining it with other technologies? To answer these specific questions and to evaluate the potentials and limitations of plasma technology in general, this review presents the current state-of-the-art and a critical assessment of plasma-based CO 2 conversion, as well as the future challenges for its practical implementation.
Carbon nanostructures for solar energy conversion schemes.
Guldi, Dirk M; Sgobba, Vito
2011-01-14
Developing environmentally friendly, renewable energy is one of the challenges to society in the 21st century. One of the renewable energy technologies is solar energy conversion--a technology that directly converts daylight into electricity. This highlight surveys recent breakthroughs in the field of implementing carbon nanostructures--fullerenes (0D), carbon nanotubes (1D), carbon nanohorns, and graphene (2D)--into solar energy conversion schemes, that is, bulk heterojunction and dye-sensitized solar cells.
Thermoelectric Energy Conversion: Future Directions and Technology Development Needs
NASA Technical Reports Server (NTRS)
Fleurial, Jean-Pierre
2007-01-01
This viewgraph presentation reviews the process of thermoelectric energy conversion along with key technology needs and challenges. The topics include: 1) The Case for Thermoelectrics; 2) Advances in Thermoelectrics: Investment Needed; 3) Current U.S. Investment (FY07); 4) Increasing Thermoelectric Materials Conversion Efficiency Key Science Needs and Challenges; 5) Developing Advanced TE Components & Systems Key Technology Needs and Challenges; 6) Thermoelectrics; 7) 200W Class Lightweight Portable Thermoelectric Generator; 8) Hybrid Absorption Cooling/TE Power Cogeneration System; 9) Major Opportunities in Energy Industry; 10) Automobile Waste Heat Recovery; 11) Thermoelectrics at JPL; 12) Recent Advances at JPL in Thermoelectric Converter Component Technologies; 13) Thermoelectrics Background on Power Generation and Cooling Operational Modes; 14) Thermoelectric Power Generation; and 15) Thermoelectric Cooling.
Thermionic energy conversion technology - Present and future
NASA Technical Reports Server (NTRS)
Shimada, K.; Morris, J. F.
1977-01-01
Aerospace and terrestrial applications of thermionic direct energy conversion and advances in direct energy conversion (DEC) technology are surveyed. Electrode materials, the cesium plasma drop (the difference between the barrier index and the collector work function), DEC voltage/current characteristics, conversion efficiency, and operating temperatures are discussed. Attention is centered on nuclear reactor system thermionic DEC devices, for in-core or out-of-core operation. Thermionic fuel elements, the radiation shield, power conditions, and a waste heat rejection system are considered among the thermionic DEC system components. Terrestrial applications include topping power systems in fossil fuel and solar power generation.
USDA-ARS?s Scientific Manuscript database
Economical and environmentally friendly pretreatment technologies are required for commercial conversion of lignocellulosic feedstocks to fermentable sugars for fermentation to biofuels. In this paper, a novel pretreatment technology was developed for conversion of sugarcane bagasse into ethanol usi...
[Initial experience in robot-assisted colorectal surgery in Mexico].
Villanueva-Sáenz, Eduardo; Ramírez-Ramírez, Moisés Marino; Zubieta-O'Farrill, Gregorio; García-Hernández, Luis
Colorectal surgery has advanced notably since the introduction of the mechanical suture and the minimally invasive approach. Robotic surgery began in order to satisfy the needs of the patient-doctor relationship, and migrated to the area of colorectal surgery. An initial report is presented on the experience of managing colorectal disease using robot-assisted surgery, as well as an analysis of the current role of this platform. A retrospective study was conducted in order to review five patients with colorectal disease operated using a robot-assisted technique over one year in the initial phase of the learning curve. Gender, age, diagnosis and surgical indication, surgery performed, surgical time, conversion, bleeding, post-operative complications, and hospital stay, were analysed and described. A literature review was performed on the role of robotic assisted surgery in colorectal disease and cancer. The study included 5 patients, 3 men and 2 women, with a mean age of 62.2 years. Two of them were low anterior resections with colorectal primary anastomoses, one of them extended with a loop protection ileostomy, a Frykman-Goldberg procedure, and two left hemicolectomies with primary anastomoses. The mean operating time was 6hours and robot-assisted 4hours 20minutes. There were no conversions and the mean hospital stay was 5 days. This technology is currently being used worldwide in different surgical centres because of its advantages that have been clinically demonstrated by various studies. We report the first colorectal surgical cases in Mexico, with promising results. There is enough evidence to support and recommend the use of this technology as a viable and safe option. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.
Thin film solar cells: research in an industrial perspective.
Edoff, Marika
2012-01-01
Electricity generation by photovoltaic conversion of sunlight is a technology in strong growth. The thin film technology is taking market share from the dominant silicon wafer technology. In this article, the market for photovoltaics is reviewed, the concept of photovoltaic solar energy conversion is discussed and more details are given about the present technological limitations of thin film solar cell technology. Special emphasis is given for solar cells which employ Cu(In,Ga)Se(2) and Cu(2)ZnSn(S,Se)(4) as the sunlight-absorbing layer.
Benefits of advanced technology in industrial cogeneration
NASA Technical Reports Server (NTRS)
Barna, G. J.; Burns, R. K.
1979-01-01
This broad study is aimed at identifying the most attractive advanced energy conversion systems for industrial cogeneration for the 1985 to 2000 time period and assessing the advantages of advanced technology systems compared to using today's commercially available technology. Energy conversion systems being studied include those using steam turbines, open cycle gas turbines, combined cycles, diesel engines, Stirling engines, closed cycle gas turbines, phosphoric acid and molten carbonate fuel cells and thermionics. Specific cases using today's commercially available technology are being included to serve as a baseline for assessing the advantages of advanced technology.
Advanced Thermionic Technology Program
NASA Technical Reports Server (NTRS)
1977-01-01
Topics include surface studies (surface theory, basic surface experiments, and activation chamber experiments); plasma studies (converter theory and enhanced mode conversion experiments); and component development (low temperature conversion experiments, high efficiency conversion experiments, and hot shell development).
NASA's Advanced Radioisotope Power Conversion Technology Development Status
NASA Technical Reports Server (NTRS)
Anderson, David J.; Sankovic, John; Wilt, David; Abelson, Robert D.; Fleurial, Jean-Pierre
2007-01-01
NASA's Advanced Radioisotope Power Systems (ARPS) project is developing the next generation of radioisotope power conversion technologies that will enable future missions that have requirements that cannot be met by either photovoltaic systems or by current radioisotope power systems (RPSs). Requirements of advanced RPSs include high efficiency and high specific power (watts/kilogram) in order to meet future mission requirements with less radioisotope fuel and lower mass so that these systems can meet requirements for a variety of future space applications, including continual operation surface missions, outer-planetary missions, and solar probe. These advances would enable a factor of 2 to 4 decrease in the amount of fuel required to generate electrical power. Advanced RPS development goals also include long-life, reliability, and scalability. This paper provides an update on the contractual efforts under the Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) for research and development of Stirling, thermoelectric, and thermophotovoltaic power conversion technologies. The paper summarizes the current RPCT NRA efforts with a brief description of the effort, a status and/or summary of the contractor's key accomplishments, a discussion of upcoming plans, and a discussion of relevant system-level benefits and implications. The paper also provides a general discussion of the benefits from the development of these advanced power conversion technologies and the eventual payoffs to future missions (discussing system benefits due to overall improvements in efficiency, specific power, etc.).
USDA-ARS?s Scientific Manuscript database
Plant cell wall polysaccharides, which consist of polymeric backbones with various types of substitution, were studied using the concept of combinatorial enzyme technology for conversion of agricultural fibers to functional products. Using citrus pectin as the starting substrate, an active oligo spe...
Interfacing a quantum dot with a spontaneous parametric down-conversion source
NASA Astrophysics Data System (ADS)
Huber, Tobias; Prilmüller, Maximilian; Sehner, Michael; Solomon, Glenn S.; Predojević, Ana; Weihs, Gregor
2017-09-01
Quantum networks require interfacing stationary and flying qubits. These flying qubits are usually nonclassical states of light. Here we consider two of the leading source technologies for nonclassical light, spontaneous parametric down-conversion and single semiconductor quantum dots. Down-conversion delivers high-grade entangled photon pairs, whereas quantum dots excel at producing single photons. We report on an experiment that joins these two technologies and investigates the conditions under which optimal interference between these dissimilar light sources may be achieved.
Biochemical Conversion: Using Enzymes, Microbes, and Catalysis to Make Fuels and Chemicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-07-26
This fact sheet describes the Bioenergy Technologies Office's biochemical conversion work and processes. BETO conducts collaborative research, development, and demonstration projects to improve several processing routes for the conversion of cellulosic biomass.
Life cycle environmental impacts of wastewater-based algal biofuels.
Mu, Dongyan; Min, Min; Krohn, Brian; Mullins, Kimberley A; Ruan, Roger; Hill, Jason
2014-10-07
Recent research has proposed integrating wastewater treatment with algae cultivation as a way of producing algal biofuels at a commercial scale more sustainably. This study evaluates the environmental performance of wastewater-based algal biofuels with a well-to-wheel life cycle assessment (LCA). Production pathways examined include different nutrient sources (municipal wastewater influent to the activated sludge process, centrate from the sludge drying process, swine manure, and freshwater with synthetic fertilizers) combined with emerging biomass conversion technologies (microwave pyrolysis, combustion, wet lipid extraction, and hydrothermal liquefaction). Results show that the environmental performance of wastewater-based algal biofuels is generally better than freshwater-based algal biofuels, but depends on the characteristics of the wastewater and the conversion technologies. Of 16 pathways compared, only the centrate cultivation with wet lipid extraction pathway and the centrate cultivation with combustion pathway have lower impacts than petroleum diesel in all environmental categories examined (fossil fuel use, greenhouse gas emissions, eutrophication potential, and consumptive water use). The potential for large-scale implementation of centrate-based algal biofuel, however, is limited by availability of centrate. Thus, it is unlikely that algal biofuels can provide a large-scale and environmentally preferable alternative to petroleum transportation fuels without considerable improvement in current production technologies. Additionally, the cobenefit of wastewater-based algal biofuel production as an alternate means of treating various wastewaters should be further explored.
NASA Technical Reports Server (NTRS)
Massier, P. F.; Bankston, C. P.; Fabris, G.; Kirol, L. D.
1988-01-01
The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct thermal-to-electric energy conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1988 through December 1988. Research on these concepts was initiated during October 1987. In addition, status reviews and assessments are presented for thermomagnetic converter concepts and for thermoelastic converters (Nitinol heat engines). Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic thermophotovoltaic and thermoacoustic; and also, more complete discussions of AMTEC and LMMHD systems. A tabulated summary of the various systems which have been reviewed thus far has been prepared. Some of the important technical research needs are listed and a schematic of each system is shown.
Ganner, Thomas; Sattelkow, Jürgen; Rumpf, Bernhard; Eibinger, Manuel; Reishofer, David; Winkler, Robert; Nidetzky, Bernd; Spirk, Stefan; Plank, Harald
2016-01-01
In many areas of science and technology, patterned films and surfaces play a key role in engineering and development of advanced materials. Here, we introduce a new generic technique for the fabrication of polysaccharide nano-structures via focused electron beam induced conversion (FEBIC). For the proof of principle, organosoluble trimethylsilyl-cellulose (TMSC) thin films have been deposited by spin coating on SiO2 / Si and exposed to a nano-sized electron beam. It turns out that in the exposed areas an electron induced desilylation reaction takes place converting soluble TMSC to rather insoluble cellulose. After removal of the unexposed TMSC areas, structured cellulose patterns remain on the surface with FWHM line widths down to 70 nm. Systematic FEBIC parameter sweeps reveal a generally electron dose dependent behavior with three working regimes: incomplete conversion, ideal doses and over exposure. Direct (FT-IR) and indirect chemical analyses (enzymatic degradation) confirmed the cellulosic character of ideally converted areas. These investigations are complemented by a theoretical model which suggests a two-step reaction process by means of TMSC → cellulose and cellulose → non-cellulose material conversion in excellent agreement with experimental data. The extracted, individual reaction rates allowed the derivation of design rules for FEBIC parameters towards highest conversion efficiencies and highest lateral resolution. PMID:27585861
A Solar Chimney for renewable energy production: thermo-fluid dynamic optimization by CFD analyses
NASA Astrophysics Data System (ADS)
Montelpare, S.; D'Alessandro, V.; Zoppi, A.; Costanzo, E.
2017-11-01
This paper analyzes the performance of a solar tower designed for renewable energy production. The Solar Chimney Power Plant (SCPP) involves technology that converts solar energy by means of three basic components: a large circular solar collector, a high tower in the center of the collector and a turbine generator inside the chimney. SCPPs are characterized by long term operational life, low maintenance costs, zero use of fuels, no use of water and no emissions of greenhouse gases. The main problem of this technology is the low energy global conversion coefficient due to the presence of four conversions: solar radiation > thermal energy > kinetic energy > mechanical energy > electric energy. This paper defines its starting point from the well known power plant of Manzanares in order to calibrate a numerical model based on finite volumes. Following that, a solar tower with reduced dimensions was designed and an analysis on various geometric parameters was conducted: on the inlet section, on the collector slope, and on the fillet radius among the SUPP sections. Once the optimal solution was identified, a curved deflectors able to induce a flow swirl along the vertical tower axis was designed.
Overview study of Space Power Technologies for the advanced energetics program. [spacecraft
NASA Technical Reports Server (NTRS)
Taussig, R.; Gross, S.; Millner, A.; Neugebauer, M.; Phillips, W.; Powell, J.; Schmidt, E.; Wolf, M.; Woodcock, G.
1981-01-01
Space power technologies are reviewed to determine the state-of-the-art and to identify advanced or novel concepts which promise large increases in performance. The potential for incresed performance is judged relative to benchmarks based on technologies which have been flight tested. Space power technology concepts selected for their potentially high performance are prioritized in a list of R & D topical recommendations for the NASA program on Advanced Energetics. The technology categories studied are solar collection, nuclear power sources, energy conversion, energy storage, power transmission, and power processing. The emphasis is on electric power generation in space for satellite on board electric power, for electric propulsion, or for beamed power to spacecraft. Generic mission categories such as low Earth orbit missions and geosynchronous orbit missions are used to distinguish general requirements placed on the performance of power conversion technology. Each space power technology is judged on its own merits without reference to specific missions or power systems. Recommendations include 31 space power concepts which span the entire collection of technology categories studied and represent the critical technologies needed for higher power, lighter weight, more efficient power conversion in space.
Overview of the DOE/SERI Biochemical Conversion Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, J D
1986-09-01
The Solar Energy Research Institute manages a program of research and development on the biochemical conversion of renewable lignocellulosic materials to liquid fuels for the Department of Energy's Biofuels and Municipal Waste Technology Division. The Biochemical Conversion Program is mission oriented so effort is concentrated on technologies which appear to have the greatest potential for being adopted by the private sector to economically convert lignocellulosic materials into high value liquid transportation fuels such as ethanol. The program is structured to supply the technology for such fuels to compete economically first as an octane booster or fuel additive, and, with additionalmore » improvements, as a neat fuel. 18 refs., 3 figs., 1 tab.« less
The Billion Cell Construct: Will Three-Dimensional Printing Get Us There?
Miller, Jordan S.
2014-01-01
How structure relates to function—across spatial scales, from the single molecule to the whole organism—is a central theme in biology. Bioengineers, however, wrestle with the converse question: will function follow form? That is, we struggle to approximate the architecture of living tissues experimentally, hoping that the structure we create will lead to the function we desire. A new means to explore the relationship between form and function in living tissue has arrived with three-dimensional printing, but the technology is not without limitations. PMID:24937565
Online Scholarly Conversations in General Education Astronomy Courses
NASA Astrophysics Data System (ADS)
Cai, Qijie; Wong, Ka-Wah
2018-01-01
In general education astronomy courses, many students are struggling with understanding the foundational concepts and theories in astronomy. One of the possible reasons is that, due the large class size, many of the courses are taught using a lecture mode, where human interactions and active learning are limited (Freeman et al., 2014). To address this challenge, we have applied the knowledge building framework (Scardamalia & Bereiter, 2006) to design an online collaborative learning component, called Scholarly Conversations, to be integrated into a general education astronomy course at a public, comprehensive university.During Scholarly Conversations, students are treated as scholars to advance knowledge frontiers (Scardamalia & Bereiter, 2006). The whole process involves the creation of new ideas and requires discourse and collective work for the advancement and creation of artifacts, such as theories and models (van Aalst, 2009). Based on the knowledge building principles (Scardamalia, 2002; Zhang, Scardamalia, Reeve, & Messina, 2009), several features have been built into Scholarly Conversations so that students are guided to deepen understanding of the astronomy concepts through three phases: knowledge sharing, knowledge construction and knowledge building, and reflections on learning growth (van Aalst, 2009; Cai, 2017). The online Scholarly Conversation is an extension of the lecture component of the general education astronomy course. It promotes student interactions and collaborative learning, and provides scaffolds for students to construct meanings of the essential concepts in astronomy through social learning and online technology. In this presentation, we will explain the specific design principles of the online Scholarly Conversation, and share the artifacts created to facilitate the online conversations in an general education astronomy course.Note: This project has been supported by the College of Education Research Grant Program at Minnesota State University, Mankato.
Solar Program Assessment: Environmental Factors - Ocean Thermal Energy Conversion.
ERIC Educational Resources Information Center
Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.
This report presents the environmental problems which may arise with the further development of Ocean Thermal Energy Conversion, one of the eight Federally-funded solar technologies. To provide a background for this environmental analysis, the history and basic concepts of the technology are reviewed, as are its economic and resource requirements.…
ERIC Educational Resources Information Center
Vratny-Watts, Janet; Valauskas, Edward J.
1989-01-01
Discusses the technological changes that will necessitate the prospective conversion of library data over the next decade and addresses the problems of converting data from obsolete personal computers to newer models that feature radically different operating systems. Three case studies are used to illustrate possible scenarios. (11 references)…
What Students Want: Leave Me Alone...I'm Socializing
ERIC Educational Resources Information Center
Starkman, Neal
2007-01-01
Through conversations with students across different grade levels, there is clear evidence that two of the things they most desire contradict each other--and they use electronic technology to get both of them. This author had conversations with three groups of students in Seattle about their favorite electronic technologies, and any concerns they…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-12-01
The primary objectives of the project were to identify and evaluate existing processes for (1) using gas as a feedstock for production of marketable, value-added commodities, and (2) enriching contaminated gas to pipeline quality. The following gas conversion technologies were evaluated: (1) transformation to liquid fuels, (2) manufacture of methanol, (3) synthesis of mixed alcohols, and (4) conversion to ammonia and urea. All of these involved synthesis gas production prior to conversion to the desired end products. Most of the conversion technologies evaluated were found to be mature processes operating at a large scale. A drawback in all of themore » processes was the need to have a relatively pure feedstock, thereby requiring gas clean-up prior to conversion. Despite this requirement, the conversion technologies were preliminarily found to be marginally economic. However, the prohibitively high investment for a combined gas clean-up/conversion facility required that REI refocus the project to investigation of gas enrichment alternatives. Enrichment of a gas stream with only one contaminant is a relatively straightforward process (depending on the contaminant) using available technology. However, gob gas has a unique nature, being typically composed of from constituents. These components are: methane, nitrogen, oxygen, carbon dioxide and water vapor. Each of the four contaminants may be separated from the methane using existing technologies that have varying degrees of complexity and compatibility. However, the operating and cost effectiveness of the combined system is dependent on careful integration of the clean-up processes. REI is pursuing Phase 2 of this project for demonstration of a waste gas enrichment facility using the approach described above. This is expected to result in the validation of the commercial and technical viability of the facility, and the refinement of design parameters.« less
Thermionic/AMTEC cascade converter concept for high-efficiency space power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagan, T.H. van; Smith, J.N. Jr.; Schuller, M.
1996-12-31
This paper presents trade studies that address the use of the thermionic/AMTEC cell--a cascaded, high-efficiency, static power conversion concept that appears well-suited to space power applications. Both the thermionic and AMTEC power conversion approaches have been shown to be promising candidates for space power. Thermionics offers system compactness via modest efficiency at high heat rejection temperatures, and AMTEC offers high efficiency at modest heat rejection temperature. From a thermal viewpoint the two are ideally suited for cascaded power conversion: thermionic heat rejection and AMTEC heat source temperatures are essentially the same. In addition to realizing conversion efficiencies potentially as highmore » as 35--40%, such a cascade offers the following perceived benefits: survivability; simplicity; technology readiness; and technology growth. Mechanical approaches and thermal/electric matching criteria for integrating thermionics and AMTEC into a single conversion device are described. Focusing primarily on solar thermal space power applications, parametric trends are presented to show the performance and cost potential that should be achievable with present-day technology in cascaded thermionic/AMTEC systems.« less
NASA Technical Reports Server (NTRS)
1984-01-01
Deep-space exploration; information systems and space technology development; technology applications; energy and energy conversion technology; and earth observational systems and orbital applications are discussed.
ERIC Educational Resources Information Center
Menon, Preetha
2018-01-01
This article is drawn from a study conducted to explore how assessment conversations, a type of informal formative assessment, can support science learning in a technology-aided seventh-grade classroom in Northern California. The classroom setting where the study took place used interactive whiteboards in conjunction with the inquiry-based…
NASA Technical Reports Server (NTRS)
Bennett, Gary L.
1991-01-01
The NASA Office of Aeronautics and Space Technology (OAST) space power program was established to provide the technology base to meet power system requirements for future space missions, including the Space Station, earth orbiting spacecraft, lunar and planetary bases, and solar system exploration. The program spans photovoltaic energy conversion, chemical energy conversion, thermal energy conversion, power management, thermal management, and focused initiatives on high-capacity power, surface power, and space nuclear power. The OAST space power program covers a broad range of important technologies that will enable or enhance future U.S. space missions. The program is well under way and is providing the kind of experimental and analytical information needed for spacecraft designers to make intelligent decisions about future power system options.
Progress on RERTR activities in Argentina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balart, S.; Calzetta, O.; Cristini, P.
2008-07-15
Since last RERTR meeting, several tasks involving RERTR activities continued deploying in Argentina: through an agreement between CNEA and US-DoE final steps in the RA-6 reactor core conversion from HEU to LEU are taking place; by means of a return campaign of 42 US origin SNF in the frame of the US-SNF FRR program; an effective minimization of HEU inventory is close to be accomplished; development of a LEU dispersed U-Mo fuel prototype, to be irradiated in a high flux reactor in the frame of the ARG/4/092 IAEA's Technical Cooperation project is progressing; very high density monolithic U-Mo miniplates andmore » plates using MEU and LEU fuel with Zry-4 cladding were developed to be irradiated as a part of the RERTR program irradiation experiment; atomistic modeling prediction (BFS techniques and first principles) enabled to find some trends on the interaction phases; diffusion couples tests under X-ray synchrotron analysis allowed the characterization of several phases involving U-Mo(-Zr) / Al(-Si); finally CNEA continued spreading high quality LEU technology for fission RI production by means of agreements with different producers interested on HEU-LEU conversion. (author)« less
Asahi, Shigeo; Kusaki, Kazuki; Harada, Yukihiro; Kita, Takashi
2018-01-17
Development of high-efficiency solar cells is one of the attractive challenges in renewable energy technologies. Photon up-conversion can reduce the transmission loss and is one of the promising concepts which improve conversion efficiency. Here we present an analysis of the conversion efficiency, which can be increased by up-conversion in a single-junction solar cell with a hetero-interface that boosts the output voltage. We confirm that an increase in the quasi-Fermi gap and substantial photocurrent generation result in a high conversion efficiency.
NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 4: Power technology panel
NASA Technical Reports Server (NTRS)
1975-01-01
Technology requirements in the areas of energy sources and conversion, power processing, distribution, conversion, and transmission, and energy storage are identified for space shuttle payloads. It is concluded that the power system technology currently available is adequate to accomplish all missions in the 1973 Mission Model, but that further development is needed to support space opportunities of the future as identified by users. Space experiments are proposed in the following areas: power generation in space, advanced photovoltaic energy converters, solar and nuclear thermoelectric technology, nickel-cadmium batteries, flywheels (mechanical storage), satellite-to-ground transmission and reconversion systems, and regenerative fuel cells.
Efficient electrochemical CO2 conversion powered by renewable energy.
Kauffman, Douglas R; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R; Zeng, Chenjie; Jin, Rongchao
2015-07-22
The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8-1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10(6) molCO2 molcatalyst(-1) during a multiday (36 h total hours) CO2 electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10(6) and 4 × 10(6) molCO2 molcatalyst(-1) were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient to power larger-scale, tonne per day CO2 conversion systems.
NASA Astrophysics Data System (ADS)
Herro, Danielle
2016-12-01
This review explores Anne Kamstrupp's "The Wow-effect in Science Teacher Education" by examining her theorized "wow-effect" as a teaching enactment that may serve to engage students, but often fails to provide deep understanding of science content. My response extends her perspective of socio-materiality as means to understand the "wow-effect" by suggesting social constructivism provides a more accurate lens to disentangle the phenomenon. I react to her position that tension fields within the phenomenon include the relationship between new and old technologies, boredom and engagement, and active and sedentary learning. In this conversation, I point to a new way of conceptualizing using digital media in the classroom as ecology of learning that may serve to decrease problems associated with the "wow-effect".
A multicenter experience with generic tacrolimus conversion.
McDevitt-Potter, Lisa M; Sadaka, Basma; Tichy, Eric M; Rogers, Christin C; Gabardi, Steven
2011-09-27
The first generic tacrolimus product gained Food and Drug Administration approval in August 2009. This prospective, observational trial sought to determine the need for dose titrations and measure drug cost savings on conversion to generic tacrolimus. Transplant recipients on stable tacrolimus doses were converted from brand to generic tacrolimus on a mg:mg basis. Data were collected at the time of generic conversion (study arm) and at a time point exactly 6 months before conversion (control arm) for all subjects. Seventy conversions from four centers are reported. Subjects were a mean of 70 months after kidney (n=37), liver (n=28), or multiorgan (n=5) transplant. In the study arm, mean tacrolimus doses were 4.4 and 4.5 mg/d and mean tacrolimus trough concentrations were 5.8 and 5.9 ng/mL before and after conversion, respectively. In the control arm, mean tacrolimus doses were 4.6 and 4.6 mg/d and mean tacrolimus trough concentrations were 6.1 and 5.9 ng/mL before and after the control time point, respectively. Dose titrations occurred in five patients (7%) in the control arm and 15 patients (21%) in the study arm (P=0.028). Mean monthly drug costs were $645 for brand, $593 for generic, and $595 for generic after dose titrations. Mean monthly patient copays were $38 for brand and $15 for generic. These cumulative data show that dose requirements and trough levels are similar between brand and generic tacrolimus and that generic substitution allows for savings. However, postconversion monitoring is prudent as patients may require dose titration.
Use of technology with health care providers: perspectives from urban youth.
Lindstrom Johnson, Sarah; Tandon, S Darius; Trent, Maria; Jones, Vanya; Cheng, Tina L
2012-06-01
To evaluate urban youths' use of and access to technology and solicit their opinions about using technology with healthcare providers. Urban youth (aged 14-24 years) were invited to participate in focus groups in which a trained focus group facilitator used a survey and a structured guide to elicit responses regarding the foregoing objective. All sessions were audiotaped and transcribed. Emergent themes were determined with the assistance of Atlas TI. Survey data were analyzed in SPSS (SPSS Inc, Chicago, Illinois). Eight focus groups including 82 primarily low-income urban African-American adolescents and young adults (mean age, 18.5 years) were completed. The participants reported fairly high access to and use of technology. However, they expressed some concerns regarding the use of technology with healthcare providers. Many worried about the confidentiality of conversations conducted using technology. Face-to-face meetings with a healthcare provider were preferred by most participants, who felt that the information provided would be better tailored to their individual needs and more credible. Although urban youth were high users of technology, they expressed reservations about using technology with health care providers. When developing new technology communication and information dissemination strategies, it is critical to understand and address these concerns while involving young people in the research and development process. Copyright © 2012 Mosby, Inc. All rights reserved.
Park, Junyeong; Jones, Brandon; Koo, Bonwook; Chen, Xiaowen; Tucker, Melvin; Yu, Ju-Hyun; Pschorn, Thomas; Venditti, Richard; Park, Sunkyu
2016-01-01
Mechanical refining is widely used in the pulp and paper industry to enhance the end-use properties of products by creating external fibrillation and internal delamination. This technology can be directly applied to biochemical conversion processes. By implementing mechanical refining technology, biomass recalcitrance to enzyme hydrolysis can be overcome and carbohydrate conversion can be enhanced with commercially attractive levels of enzymes. In addition, chemical and thermal pretreatment severity can be reduced to achieve the same level of carbohydrate conversion, which reduces pretreatment cost and results in lower concentrations of inhibitors. Refining is versatile and a commercially proven technology that can be operated at process flows of ∼ 1500 dry tons per day of biomass. This paper reviews the utilization of mechanical refining in the pulp and paper industry and summarizes the recent development in applications for biochemical conversion, which potentially make an overall biorefinery process more economically viable. Copyright © 2015 Elsevier Ltd. All rights reserved.
Schmitt, Elliott; Bura, Renata; Gustafson, Rick; Cooper, Joyce; Vajzovic, Azra
2012-01-01
There is little research literature on the conversion of lignocellulosic rich waste streams to ethanol, and even fewer have investigated both the technical aspects and environmental impacts together. This study assessed technical and environmental challenges of converting three lignocellulosic waste streams to ethanol: municipal solid waste (MSW), low grade mixed waste paper (MWP), and organic yard waste (YW). Experimental results showed high conversion yields for all three streams using suitable conversion methods. Environmental impacts are highly dependent on conversion technology, and process conditions used. Life cycle assessment results showed that both chemicals production and waste collection are important factors to be included within a waste-to-ethanol study. Copyright © 2011 Elsevier Ltd. All rights reserved.
Advanced Energy Conversion Technologies and Architectures for Earth and Beyond
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Fikes, John C.; Phillips, Dane J.; Laycock, Rustin L.; ONeill, Mark; Henley, Mark W.; Fork, Richard L.
2006-01-01
Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. There is a need to produce "proof-ofconcept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space surface sites. Space surface receiving sites of particular interest include the areas of permanent shadow near the moon s North and South poles, where WPT technologies could enable access to ice and other useful resources for human exploration. This paper discusses work addressing a promising approach to solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) applied to both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components (only the photovoltaic cells need to be different), economies of manufacturing and scale may be realized by using SLA on both ends of the laser power beaming system in a space solar power application. Near-term uses of this SLA-laser-SLA system may include terrestrial and space exploration in near Earth space. Later uses may include beamed power for bases or vehicles on Mars. Strategies for developing energy infrastructures in space which utilize this technology are presented. This dual use system produces electrical energy efficiently from either coherent light, such as from a highly coherent laser, or from conventional solar illumination. This allows, for example, supplementing solar energy with energy provided by highly coherent laser illumination during periods of low solar illumination or no illumination. This reduces the need for batteries and alternate sources of power. The capability of using laser illumination in a lowest order Gaussian laser mode provides means for transmitting power optically with maximum efficiency and precision over the long distances characteristic of space. A preliminary receiving system similar to that described here, has been produced and tested under solar and laser illumination. A summary of results is given.
Biological Conversion of Sugars to Hydrocarbons Technology Pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, R.; Biddy, M.; Tan, E.
2013-03-01
This technology pathway case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot-scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.
24 CFR 972.103 - Definition of “conversion.”
Code of Federal Regulations, 2011 CFR
2011-04-01
... DEVELOPMENT CONVERSION OF PUBLIC HOUSING TO TENANT-BASED ASSISTANCE Required Conversion of Public Housing Developments Purpose; Definition of Conversion § 972.103 Definition of “conversion.” For purposes of this subpart, the term “conversion” means the removal of public housing units from the inventory of a PHA, and...
24 CFR 972.103 - Definition of “conversion.”
Code of Federal Regulations, 2010 CFR
2010-04-01
... DEVELOPMENT CONVERSION OF PUBLIC HOUSING TO TENANT-BASED ASSISTANCE Required Conversion of Public Housing Developments Purpose; Definition of Conversion § 972.103 Definition of “conversion.” For purposes of this subpart, the term “conversion” means the removal of public housing units from the inventory of a PHA, and...
24 CFR 972.203 - Definition of “conversion.”
Code of Federal Regulations, 2010 CFR
2010-04-01
... DEVELOPMENT CONVERSION OF PUBLIC HOUSING TO TENANT-BASED ASSISTANCE Voluntary Conversion of Public Housing Developments Purpose; Definition of Conversion § 972.203 Definition of “conversion.” For purposes of this subpart, the term “conversion” means the removal of public housing units from the inventory of a Public...
24 CFR 972.203 - Definition of “conversion.”
Code of Federal Regulations, 2011 CFR
2011-04-01
... DEVELOPMENT CONVERSION OF PUBLIC HOUSING TO TENANT-BASED ASSISTANCE Voluntary Conversion of Public Housing Developments Purpose; Definition of Conversion § 972.203 Definition of “conversion.” For purposes of this subpart, the term “conversion” means the removal of public housing units from the inventory of a Public...
Direct digital conversion detector technology
NASA Astrophysics Data System (ADS)
Mandl, William J.; Fedors, Richard
1995-06-01
Future imaging sensors for the aerospace and commercial video markets will depend on low cost, high speed analog-to-digital (A/D) conversion to efficiently process optical detector signals. Current A/D methods place a heavy burden on system resources, increase noise, and limit the throughput. This paper describes a unique method for incorporating A/D conversion right on the focal plane array. This concept is based on Sigma-Delta sampling, and makes optimum use of the active detector real estate. Combined with modern digital signal processors, such devices will significantly increase data rates off the focal plane. Early conversion to digital format will also decrease the signal susceptibility to noise, lowering the communications bit error rate. Computer modeling of this concept is described, along with results from several simulation runs. A potential application for direct digital conversion is also reviewed. Future uses for this technology could range from scientific instruments to remote sensors, telecommunications gear, medical diagnostic tools, and consumer products.
Why All the Chatter about #EdChat?
ERIC Educational Resources Information Center
Herbert, Marion
2012-01-01
Although arguably one of the most popular education conversations to follow on Twitter, #edchat is hardly alone. Hashtag conversations have been popping up over the last few years, and many have caught on for specialized conversations on elementary schools, technology, professional development, mobile learning, principals and administrators, among…
Conversational Agents in E-Learning
NASA Astrophysics Data System (ADS)
Kerry, Alice; Ellis, Richard; Bull, Susan
This paper discusses the use of natural language or 'conversational' agents in e-learning environments. We describe and contrast the various applications of conversational agent technology represented in the e-learning literature, including tutors, learning companions, language practice and systems to encourage reflection. We offer two more detailed examples of conversational agents, one which provides learning support, and the other support for self-assessment. Issues and challenges for developers of conversational agent systems for e-learning are identified and discussed.
NASA Technical Reports Server (NTRS)
Allen, Bog; Delventhal, Rex; Frye, Patrick
2004-01-01
Recently, there has been significant interest within the aerospace community to develop space based nuclear power conversion technologies especially for exploring the outer planets of our solar system where the solar energy density is very low. To investigate these technologies NASA awarded several contracts under Project Prometheus, the Nuclear Systems Program. The studies described in this paper were performed under one of those contracts, which was to investigate the use of a nuclear power conversion system based on the closed Brayton cycle (CBC).The investigation performed included BPCS (Brayton Power Conversion System) trade studies to minimize system weight and radiator area and advance the state of the art of BPCS technology. The primary requirements for studies were a power level of 100 kWe (to the PPU), a low overall power system mass and a lifetime of 15 years (10 years full power). For the radiation environment, the system was to be capable of operation in the generic space environment and withstand the extreme environments surrounding Jupiter. The studies defined a BPCS design traceable to NEP (Nuclear Electric Propulsion) requirements and suitable for future missions with a sound technology plan for technology readiness level (TRL) advancement identified. The studies assumed a turbine inlet temperature approx. 100 C above the current the state of the art capabilities with materials issues and related development tasks identified. Analyses and evaluations of six different HRS (heat rejection system) designs and three primary power management and distribution (PMAD) configurations will be discussed in the paper.
NASA Astrophysics Data System (ADS)
Bugała, Artur; Bednarek, Karol; Kasprzyk, Leszek; Tomczewski, Andrzej
2017-10-01
The paper presents the most representative - from the three-year measurement time period - characteristics of daily and monthly electricity production from a photovoltaic conversion using modules installed in a fixed and 2-axis tracking construction. Results are presented for selected summer, autumn, spring and winter days. Analyzed measuring stand is located on the roof of the Faculty of Electrical Engineering Poznan University of Technology building. The basic parameters of the statistical analysis like mean value, standard deviation, skewness, kurtosis, median, range, or coefficient of variation were used. It was found that the asymmetry factor can be useful in the analysis of the daily electricity production from a photovoltaic conversion. In order to determine the repeatability of monthly electricity production, occurring between the summer, and summer and winter months, a non-parametric Mann-Whitney U test was used as a statistical solution. In order to analyze the repeatability of daily peak hours, describing the largest value of the hourly electricity production, a non-parametric Kruskal-Wallis test was applied as an extension of the Mann-Whitney U test. Based on the analysis of the electric energy distribution from a prepared monitoring system it was found that traditional forecasting methods of the electricity production from a photovoltaic conversion, like multiple regression models, should not be the preferred methods of the analysis.
Inganäs, Olle; Admassie, Shimelis
2014-02-12
The role of materials in civilization is well demonstrated over the centuries and millennia, as materials have come to serve as the classifier of stages of civilization. With the advent of materials science, this relation has become even more pronounced. The pivotal role of advanced materials in industrial economies has not yet been matched by the influence of advanced materials during the transition from agricultural to modern societies. The role of advanced materials in poverty eradication can be very large, in particular if new trajectories of social and economic development become possible. This is the topic of this essay, different in format from the traditional scientific review, as we try to encompass not only two infant technologies of solar energy conversion and storage by means of organic materials, but also the social conditions for introduction of the technologies. The development of organic-based photovoltaic energy conversion has been rapid, and promises to deliver new alternatives to well-established silicon photovoltaics. Our recent development of organic biopolymer composite electrodes opens avenues towards the use of renewable materials in the construction of wooden batteries or supercapacitors for charge storage. Combining these new elements may give different conditions for introduction of energy technology in areas now lacking electrical grids, but having sufficient solar energy inputs. These areas are found close to the equator, and include some of the poorest regions on earth. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Alkali metal thermal to electric conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sievers, R.K.; Ivanenok, J.F. III; Hunt, T.K.
1995-10-01
With potential efficiencies of up to 40%, AMTEC technology offers reliability and fuel flexibility for aerospace and ground power applications. Alkali Metal Thermal to Electric Conversion (AMTEC), a direct power-conversion technology, is emerging from the laboratory for use in a number of applications that require lightweight, long-running, efficient power systems. AMTEC is compatible with many heat and fuel sources, and it offers the reliability of direct (that is, no moving parts) thermal to electric conversion. These features make it an attractive technology for small spacecraft used in deep-space missions and for ground power applications, such as self-powered furnaces and themore » generators used in recreational vehicles. Researchers at Ford Scientific Laboratories, in Dearborn, Michigan, first conceived AMTEC technology in 1968 when they identified and patented a converter known as the sodium heat engine. This heat engine was based on the unique properties of {beta}-alumina solid electrolyte (BASE), a ceramic material that is an excellent sodium ion conductor but a poor electronic conductor. BASE was used to form a structural barrier across which a sodium concentration gradient could be produced from thermal energy. The engine provided a way to isothermally expand sodium through the BASE concentration gradient without moving mechanical components. Measured power density and calculated peak efficiencies were impressive, which led to funding from the Department of Energy for important material technology development.« less
Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Čada, Glenn F.
2007-04-01
A new generation of hydropower technologies, the kinetic hydro and wave energy conversion devices, offers the possibility of generating electricity from the movements of water, without the need for dams and diversions. The Energy Policy Act of 2005 encouraged the development of these sources of renewable energy in the United States, and there is growing interest in deploying them globally. The technologies that would extract electricity from free-flowing streams, estuaries, and oceans have not been widely tested. Consequently, the U.S. Department of Energy convened a workshop to (1) identify the varieties of hydrokinetic energy and wave energy conversion devices andmore » their stages of development, (2) identify where these technologies can best operate, (3) identify the potential environmental issues associated with these technologies and possible mitigation measures, and (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. The article reviews the results of that workshop, focusing on potential effects on freshwater, estuarine, and marine ecosystems, and we describe recent national and international developments.« less
NASA Technical Reports Server (NTRS)
Thekaekara, M. P.
1974-01-01
Papers on the state of the art and future prospects of solar energy utilization in the United States are included. Research and technologies for heating and cooling of buildings, solar thermal energy conversion, photovoltaic conversion, biomass production and conversion, wind energy conversion and ocean thermal energy conversion are covered. The increasing funding of the National Solar Energy Program is noted. Individual items are announced in this issue.
Review of NASA programs in applying aerospace technology to energy
NASA Technical Reports Server (NTRS)
Schwenk, F. C.
1981-01-01
NASA's role in energy research and development, with the aid of aerospace technology, is reviewed. A brief history, which began in 1974 with studies of solar energy systems on earth, is presented, and the major energy programs, consisting of over 60 different projects, are described, and include solar terrestrial systems, conservation and fossil energy systems, and space utilization systems. Special attention is given to the Satellite Power System and the isolation of nuclear wastes in space. Emerging prospects for NASA programs in energy technology include bioenergy, and ocean thermal energy conversion, coal extraction and conversion technologies, and support to the nuclear industry in power plant systems safety.
Air Force Successes and Challenges in Cr(VI) Elimination
2011-05-10
ion vapor deposited Al, and Cd coatings 2. Use trivalent chromium [Cr(III)] conversion coating (CC) on Dipsol IZ- C17+ zinc-nickel (Zn-Ni) coating...interested in results Anodized T-38 aileron levers 10 Chromium -Free Conversion Coatings Identify and evaluate chromium -free conversion coatings (CFCCs...the chromium -based conversion coating for treatment of aluminum alloys at OC-ALC • Conduct technology assessment to identify suitable Cr-free
Work Began on Contracts for Radioisotope Power Conversion Technology Research and Development
NASA Technical Reports Server (NTRS)
Wong, Wayne A.
2005-01-01
NASA has had a history of successful space flight missions that depended on radioisotope-fueled power systems. These Radioisotope Power Systems (RPSs) converted the heat generated from the decay of radioisotope material into useful electrical power. An RPS is most attractive in applications where photovoltaics are not optimal, such as deep-space applications where the solar flux is too low or extended applications on planets such as Mars where the day/night cycle, settling of dust, and life requirements limit the usefulness of photovoltaics. NASA s Radioisotope Power Conversion Technology (RPCT) Program is developing next-generation power-conversion technologies that will enable future missions that have requirements that cannot be met by the two RPS flight systems currently being developed by the Department of Energy for NASA: the Multi-Mission Radioisotope Thermoelectric Generator and the Stirling Radioisotope Generator (SRG).
Hunter Revell, Susan M
2013-01-01
Rubin and Rubin's responsive interviewing method is based on the conversational partnership formed between researcher and participant. This method allows the researcher to understand experiences through the participant's words and stories to create meaning. In this article, the reader is guided through a 3-part interview series with a person living with traumatic spinal cord injury. The example focuses on how interview guides were developed and tailored to the participant, and how field notations were created. Findings include the importance of establishing trust and rapport in conversational partnerships for meaning making to occur.
Demultiplexing of photonic temporal modes by a linear system
NASA Astrophysics Data System (ADS)
Xu, Shuang; Shen, H. Z.; Yi, X. X.
2018-03-01
Temporally and spatially overlapping but field-orthogonal photonic temporal modes (TMs) that intrinsically span a high-dimensional Hilbert space are recently suggested as a promising means of encoding information on photons. Presently, the realization of photonic TM technology, particularly to retrieve the information it carries, i.e., demultiplexing of photonic TMs, is mostly dependent on nonlinear medium and frequency conversion. Meanwhile, its miniaturization, simplification, and optimization remain the focus of research. In this paper, we propose a scheme of TM demultiplexing using linear systems consisting of resonators with linear couplings. Specifically, we examine a unidirectional array of identical resonators with short environment correlations. For both situations with and without tunable couplers, propagation formulas are derived to demonstrate photonic TM demultiplexing capabilities. The proposed scheme, being entirely feasible with current technologies, might find potential applications in quantum information processing.
Turbulence convective heat transfer for cooling the photovoltaic cells
NASA Astrophysics Data System (ADS)
Arianmehr, Iman
Solar PV (photovoltaic) is a rapidly advancing renewable energy technology which converts sunlight directly into electricity. One of the outstanding challenges of the current PV technology is the reduction in its conversion efficiency with increasing PV panel temperature, which is closely associated with the increase in solar intensity and the ambient temperature surrounding the PV panels. To more effectively capture the available energy when the sun is most intense, significant efforts have been invested in active and passive cooling research over the last few years. While integrated cooling systems can lead to the highest total efficiencies, they are usually neither the most feasible nor the most cost effective solutions. This work examines some simple passive means of manipulating the prevailing wind turbulence to enhance convective heat transfer over a heated plate in a wind tunnel.
Efficient electrochemical CO 2 conversion powered by renewable energy
Kauffman, Douglas R.; Thakkar, Jay; Siva, Rajan; ...
2015-06-29
Here, the catalytic conversion of CO 2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO 2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO 2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au 25 nanoclusters as renewably powered CO 2 conversion electrocatalysts with CO 2 → CO reaction rates between 400 and 800 L of CO 2 per gram of catalytic metal per hour and product selectivities betweenmore » 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8–1.6 kg of CO 2 per gram of catalytic metal per hour. We also present data showing CO 2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10 6 mol CO 2 molcatalyst–1 during a multiday (36 hours total hours) CO 2electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10 6 and 4 × 10 6 molCO 2 molcatalyst–1 were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO 2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO 2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO 2 conversion systems will produce a net increase in CO 2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient to power larger-scale, tonne per day CO 2 conversion systems.« less
Fuel cell systems program plan, FY 1990
NASA Astrophysics Data System (ADS)
1989-10-01
A principal goal of the Office of Fossil Energy is to increase the utilization of domestic fuels in an environmentally benign manner, through the development and transfer to the private sector of advanced energy conversion technology. Successful efforts to achieve this goal contribute to the stability and reliability of reasonably priced energy supplies, enhance the competitiveness of domestic fuels and energy technologies in domestic and international markets, and contribute to the development of cost effective strategies for control of acid rain and global warming. Several advanced energy conversion technologies are now under development by DOE which can help to achieve these objectives. Fuel cells are among those technologies. This report briefly describes fuel cell technology and the program plan of U.S. DOE fuel cell program.
Alternative energy technologies for the Caribbean islands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pytlinski, J.T.
1992-01-01
All islands in the Caribbean except Puerto Rico can be classified as developing islands. Of these islands, all except Trinidad and Tobago are oil importers. Uncertainties concerning uninterrupted oil supply and increasing oil prices causes economic, social and political instability and jeopardizes further development of these islands. The paper discusses the energy situation of the Caribbean islands and presents alternative energy options. Several alternative energy projects financed by local, federal and international organizations are presented. Present and future uses of alternative energy technologies are described in different islands. Barrier which handicap developing and implementing alternative energy sources in the Caribbeanmore » are discussed. The potential and possible applications of alternative energy technologies such as: solar-thermal energy, photovoltaics, wind energy, ocean thermal energy conversion (OTEC), ocean currents and tides energy, biomass, peat energy, municipal solid wastes, bioconversion, hydropower, geothermal energy, nuclear energy and energy conservation are discussed in detail as means to alleviate the energy situation in the Caribbean islands.« less
41 CFR 101-30.101-8 - Conversion.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Conversion. 101-30.101-8 Section 101-30.101-8 Public Contracts and Property Management Federal Property Management Regulations...-General § 101-30.101-8 Conversion. Conversion means the changeover from using existing supply...
41 CFR 101-30.101-8 - Conversion.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Conversion. 101-30.101-8 Section 101-30.101-8 Public Contracts and Property Management Federal Property Management Regulations...-General § 101-30.101-8 Conversion. Conversion means the changeover from using existing supply...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Conversion. 800.205 Section 800.205 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF INVESTMENT... FOREIGN PERSONS Definitions § 800.205 Conversion. The term conversion means the exercise of a right...
Cogeneration technology alternatives study. Volume 1: Summary report
NASA Technical Reports Server (NTRS)
1980-01-01
Data and information in the area of advanced energy conversion systems for industrial congeneration applications in the 1985-2000 time period was studied. Six current and thirty-one advanced energy conversion systems were defined and combined with appropriate balance-of-plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a framework for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. Various cogeneration strategies were analyzed and both topping and bottoming (using industrial by-product heat) applications were included. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Typically fuel energy savings of 10 to 25 percent were predicted compared to traditional on-site furnaces and utility electricity. With the variety of industrial requirements, each advanced technology had attractive applications. Overall, fuel cells indicated the greatest fuel energy savings and emission reductions. Gas turbines and combined cycles indicated high overall annual cost savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal-derived fuels, or coal with advanced fluid bed combustion or on-site gasification systems.
Food waste-to-energy conversion technologies: current status and future directions.
Pham, Thi Phuong Thuy; Kaushik, Rajni; Parshetti, Ganesh K; Mahmood, Russell; Balasubramanian, Rajasekhar
2015-04-01
Food waste represents a significantly fraction of municipal solid waste. Proper management and recycling of huge volumes of food waste are required to reduce its environmental burdens and to minimize risks to human health. Food waste is indeed an untapped resource with great potential for energy production. Utilization of food waste for energy conversion currently represents a challenge due to various reasons. These include its inherent heterogeneously variable compositions, high moisture contents and low calorific value, which constitute an impediment for the development of robust, large scale, and efficient industrial processes. Although a considerable amount of research has been carried out on the conversion of food waste to renewable energy, there is a lack of comprehensive and systematic reviews of the published literature. The present review synthesizes the current knowledge available in the use of technologies for food-waste-to-energy conversion involving biological (e.g. anaerobic digestion and fermentation), thermal and thermochemical technologies (e.g. incineration, pyrolysis, gasification and hydrothermal oxidation). The competitive advantages of these technologies as well as the challenges associated with them are discussed. In addition, the future directions for more effective utilization of food waste for renewable energy generation are suggested from an interdisciplinary perspective. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Sagerman, G. D.; Barna, G. J.; Burns, R. K.
1979-01-01
The Cogeneration Technology Alternatives Study (CTAS), a program undertaken to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the 1985-2000 time period, is described, and preliminary results are presented. Two cogeneration options are included in the analysis: a topping application, in which fuel is input to the energy conversion system which generates electricity and waste heat from the conversion system is used to provide heat to the process, and a bottoming application, in which fuel is burned to provide high temperature process heat and waste heat from the process is used as thermal input to the energy conversion system which generates energy. Steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics are examined. Expected plant level energy savings, annual energy cost savings, and other results of the economic analysis are given, and the sensitivity of these results to the assumptions concerning fuel prices, price of purchased electricity and the potential effects of regional energy use characteristics is discussed.
Direct conversion technology: Annual summary report CY 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massier, P.F.; Bankston, C.P.; Fabris, G.
1988-12-01
The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct thermal-to-electric energy conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1988 through December 1988. Research on these concepts was initiated during October 1987. In addition, status reviews and assessments are presented for thermomagnetic converter concepts and for thermoelastic converters (Nitinol heat engines). Reports prepared on previous occasions contain discussionsmore » on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic thermophotovoltaic and thermoacoustic; and also, more complete discussions of AMTEC and LMMHD systems. A tabulated summary of the various systems which have been reviewed thus far has been prepared. Some of the important technical research needs are listed and a schematic of each system is shown. These tabulations are included herein as figures. 43 refs., 26 figs., 1 tab.« less
Cogeneration Technology Alternatives Study (CTAS) Volume 5: Analytical approach and results
NASA Technical Reports Server (NTRS)
1980-01-01
Data and information in the area of advanced energy conversion systems for industrial cogeneration applications in the 1985 to 2000 time period are provided. Six current and thirty-six advanced energy conversion systems were defined and combined with appropriate balance of plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a framework for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. Various cogeneration strategies were analyzed and both topping and bottoming (using industrial by-product heat) applications were included. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Typically fuel energy savings of 10 to 25 percent were predicted compared to traditional on site furnaces and utility electricity. Gas turbines and combined cycles indicated high overall annual cost savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal derived fuels, or coal with advanced fluid bed combustion or on site gasification systems.
[Correlation between degree of conversion, microhardness and inorganic content in composites].
Neves, Alisson Discacciati; Discacciati, José Augusto César; Orêfice, Rodrigo Lambert; Jansen, Wellington Corrêa
2002-01-01
The purpose of this study was to evaluate the correlation between degree of conversion and microhardness in dental composites, as well as the effect of the inorganic content and type of photo-curing unit on these parameters. Three indirect composites (Artglass, Solidex and Zeta LC) were polymerized by means of three different laboratorial units (UniXS, Solidilite and an experimental device). For each material, fifteen samples were prepared using a metal matrix. The degree of conversion was analyzed by means of infrared spectroscopy, and microhardness was also assessed. The inorganic content was measured by means of thermogravimetric analysis (TGA). The Pearson s test was carried out in order to determine correlations. The degree of conversion of Artglass ranged from 37.5% to 79.2%, and its microhardness, from 32.4 to 50.3 (r = 0.904). The degree of conversion of Solidex ranged from 41.2% to 60.4%, and its microhardness, from 33.3 to 44.1 (r = 0.707). The degree of conversion and the microhardness of Zeta LC ranged from 62.0% to 78.0% and from 22.6 to 33.6, respectively (r = 0.710). It was concluded that the utilization of different photo-curing units caused variations on the degree of conversion, as a result of specific characteristics of each unit. For each material, there was strong correlation between the degree of conversion and microhardness. In addition, when different materials were compared, microhardness was more affected by filler content than by the degree of conversion.
Consistency of SAT® I: Reasoning Test Score Conversions. Research Report. ETS RR-08-67
ERIC Educational Resources Information Center
Haberman, Shelby J.; Guo, Hongwen; Liu, Jinghua; Dorans, Neil J.
2008-01-01
This study uses historical data to explore the consistency of SAT® I: Reasoning Test score conversions and to examine trends in scaled score means. During the period from April 1995 to December 2003, both Verbal (V) and Math (M) means display substantial seasonality, and a slight increasing trend for both is observed. SAT Math means increase more…
Advanced Reactor Technology/Energy Conversion Project FY17 Accomplishments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rochau, Gary E.
The purpose of the ART Energy Conversion (EC) Project is to provide solutions to convert the heat from an advanced reactor to useful products that support commercial application of the reactor designs.
On Technology and Schools: A Conversation with Chris Dede.
ERIC Educational Resources Information Center
O'Neil, John
1995-01-01
According to futurist/educational technology expert Chris Dede, new technologies will revolutionize education only when used to support new models of teaching and learning. Grafting technological solutions onto antiquated structures and learning approaches is misguided. Sidebars explain schools' technology access problems and review Clifford…
Recent Progress on Integrated Energy Conversion and Storage Systems.
Luo, Bin; Ye, Delai; Wang, Lianzhou
2017-09-01
Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future.
Recent Progress on Integrated Energy Conversion and Storage Systems
Luo, Bin; Ye, Delai
2017-01-01
Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future. PMID:28932673
Coal conversion: description of technologies and necessary biomedical and environmental research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-08-01
This document contains a description of the biomedical and environmental research necessary to ensure the timely attainment of coal conversion technologies amenable to man and his environment. The document is divided into three sections. The first deals with the types of processes currently being considered for development; the data currently available on composition of product, process and product streams, and their potential effects; and problems that might arise from transportation and use of products. Section II is concerned with a description of the necessary research in each of the King-Muir categories, while the third section presents the research strategies necessarymore » to assess the potential problems at the conversion plant (site specific) and those problems that might effect the general public and environment as a result of the operation of large-scale coal conversion plants.« less
16 CFR 801.32 - Conversion and acquisition.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Conversion and acquisition. 801.32 Section... INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.32 Conversion and acquisition. A conversion is an acquisition within the meaning of the act. Example: Assume that...
16 CFR 801.32 - Conversion and acquisition.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Conversion and acquisition. 801.32 Section... INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.32 Conversion and acquisition. A conversion is an acquisition within the meaning of the act. Example: Assume that...
Free-space microwave power transmission study, phase 3
NASA Technical Reports Server (NTRS)
Brown, W. C.
1975-01-01
The results of an investigation of the technology of free-space power transmission by microwave beam are presented. A description of the steps that were taken to increase the overall dc to dc efficiency of microwave power transmission from 15 percent to over 50 percent is given. Included in this overall efficiency were the efficiencies of the dc to microwave conversion, the microwave transmission itself, and the microwave to dc conversion. Improvements in launching the microwave beam with high efficiency by means of a dual mode horn resulted in 95 percent of the output of the microwave generator reaching the receiving area. Emphasis was placed upon successive improvements in reception and rectification of the microwave power, resulting in the design of a rectenna device for this purpose whose efficiency was 75 percent. The procedures and the hardware developed were the basis for tests certified by the Jet Propulsion Laboratory in which an overall dc to dc efficiency of 54 percent was achieved.
Thermoacoustically driven triboelectric nanogenerator: Combining thermoacoustics and nanoscience
NASA Astrophysics Data System (ADS)
Zhu, Shunmin; Yu, Aifang; Yu, Guoyao; Liu, Yudong; Zhai, Junyi; Dai, Wei; Luo, Ercang
2017-10-01
A thermoacoustic heat engine (TAHE) is a type of regenerative heat engine that converts external heat into mechanical power in the form of an acoustic wave with no moving mechanical components. One significant application of the TAHE is the generation of electricity by coupling an acoustic-to-electric conversion unit such as a linear motor or a piezoelectric ceramic assembly. However, present-day conversion technologies have considerable drawbacks, including structural complexity, high cost, and low reliability. The advent of triboelectric nanogenerators (TENGs) offers an alternative means to overcoming these shortcomings. In this paper, we propose a thermoacoustically driven TENG (TA-TENG) that continuously harvests external heat. A test rig involving a standing-wave TAHE and a contact-separation mode TENG was fabricated to demonstrate this concept. Currently, the TA-TENG produces a maximum output voltage of 10 V and a corresponding output power of 0.008 μW with a load of 400 MΩ, demonstrating the viability of this hybrid combination for electricity generation.
ERIC Educational Resources Information Center
Haddington, Pentti; Rauniomaa, Mirka
2011-01-01
This article investigates mobile phone calls initiated or received by drivers and passengers in cars and focuses on the participants' actions before the telephone conversation proper. Drawing on video-recorded data of real driving situations, and building on conversation analysis and multimodal interaction analysis, this article discusses how…
An Elementary Proof of a Converse Mean-Value Theorem
ERIC Educational Resources Information Center
Almeida, Ricardo
2008-01-01
We present a new converse mean value theorem, with a rather elementary proof. [The work was supported by Centre for Research on Optimization and Control (CEOC) from the "Fundacaopara a Ciencia e a Tecnologia" FCT, co-financed by the European Community Fund FEDER/POCTI.
ERDA-NASA wind energy project ready to involve users
NASA Technical Reports Server (NTRS)
Thomas, R.; Puthoff, R.; Savino, J.; Johnson, W.
1976-01-01
The NASA contribution to the Wind Energy Project is discussed. NASA is responsible for the following: (1) identification of cost-effective configurations and sizes of wind-conversion systems, (2) the development of technology needed to produce these systems, (3) the design of wind-conversion systems that are compatible with user requirements, particularly utility networks, and (4) technology transfer obtained from the program to stimulate rapid commercial application of wind systems. Various elements of the NASA program are outlined, including industry-built user operation, the evaluation phase, the proposed plan and schedule for site selection and user involvement, supporting research and technology (e.g., energy storage), and component and subsystem technology development.
MULTI-CHANNEL ELECTRIC PULSE HEIGHT ANALYZER
Gallagher, J.D. et al.
1960-11-22
An apparatus is given for converting binary information into coded decimal form comprising means, in combination with a binary adder, a live memory and a source of bigit pulses, for synchronizing the bigit pulses and the adder output pulses; a source of digit pulses synchronized with every fourth bigit pulse; means for generating a conversion pulse in response to the time coincidence of the adder output pulse and a digit pulse: means having a delay equal to two bigit pulse periods coupling the adder output with the memory; means for promptly impressing said conversion pulse on the input of said memory: and means having a delay equal to one bigit pulse period for again impressing the conversion pulse on the input of the memory whereby a fourth bigit adder pulse results in the insertion into the memory of second, third and fourth bigits.
NASA - Johnson Space Center's New Capabilities for Air Purification
NASA Technical Reports Server (NTRS)
Graf, John
2015-01-01
NASA has some unique and challenging air purification problems that cannot be adequately met with COTS technology: 1) ammonia removal from air, 2) hydrazine removal from air, 3) CO conversion to CO2 in low temperature, high humidity environments. NASA has sponsored the development of new sorbents and new catalysts. These new sorbents and catalysts work better than COTS technology for our application. If attendees have a need for an effective ammonia sorbent, an effective hydrazine sorbent, or an effective CO conversion catalyst, we should learn to see if NASA sponsored technology development can help.
Cogeneration Technology Alternatives Study (CTAS). Volume 2: Analytical approach
NASA Technical Reports Server (NTRS)
Gerlaugh, H. E.; Hall, E. W.; Brown, D. H.; Priestley, R. R.; Knightly, W. F.
1980-01-01
The use of various advanced energy conversion systems were compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. The ground rules established by NASA and assumptions made by the General Electric Company in performing this cogeneration technology alternatives study are presented. The analytical methodology employed is described in detail and is illustrated with numerical examples together with a description of the computer program used in calculating over 7000 energy conversion system-industrial process applications. For Vol. 1, see 80N24797.
Status of the NASA Space Power Program
NASA Technical Reports Server (NTRS)
Mullin, J. P.; Holcomb, L.
1977-01-01
The NASA Space Power Research and Technology Program has the objective to provide the technological basis for satisfying the nation's future needs regarding electrical power in space. The development of power sources of low mass and increased environmental resistance is considered. Attention is given to advances in the area of photovoltaic energy conversion, improved Ni-Cd battery components, a nickel-hydrogen battery, remotely activated silver-zinc and lithium-water batteries, the technology of an advanced water electrolysis/regenerative fuel cell system, aspects of thermal-to-electric conversion, environmental interactions, multi-kW low cost systems, and high-performance systems.
1989-12-01
SPENT FUEL REPROCESSING COULD ALSO BE EMPLOYED IRRADIATION EXPERIENCE - EXTREMELY LIMITED - JOINT US/UK PROGRAM (ONGOING) - TUI/KFK PROGRAM (CANCELED...only the use of off-the-shelf technologies. For example, conventional fuel technology (uranium dioxide), conventional thermionic conversion...advanced fuel (Americium oxide, A1TI2O3) and advanced thermionic conversion. Concept C involves use of an advanced fuel (Americium oxide, Arri203
Biomass CHP Catalog of Technologies
This report reviews the technical and economic characterization of biomass resources, biomass preparation, energy conversion technologies, power production systems, and complete integrated CHP systems.
Gliding Arc Plasmatron: Providing an Alternative Method for Carbon Dioxide Conversion.
Ramakers, Marleen; Trenchev, Georgi; Heijkers, Stijn; Wang, Weizong; Bogaerts, Annemie
2017-06-22
Low-temperature plasmas are gaining a lot of interest for environmental and energy applications. A large research field in these applications is the conversion of CO 2 into chemicals and fuels. Since CO 2 is a very stable molecule, a key performance indicator for the research on plasma-based CO 2 conversion is the energy efficiency. Until now, the energy efficiency in atmospheric plasma reactors is quite low, and therefore we employ here a novel type of plasma reactor, the gliding arc plasmatron (GAP). This paper provides a detailed experimental and computational study of the CO 2 conversion, as well as the energy cost and efficiency in a GAP. A comparison with thermal conversion, other plasma types and other novel CO 2 conversion technologies is made to find out whether this novel plasma reactor can provide a significant contribution to the much-needed efficient conversion of CO 2 . From these comparisons it becomes evident that our results are less than a factor of two away from being cost competitive and already outperform several other new technologies. Furthermore, we indicate how the performance of the GAP can still be improved by further exploiting its non-equilibrium character. Hence, it is clear that the GAP is very promising for CO 2 conversion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design of batch audio/video conversion platform based on JavaEE
NASA Astrophysics Data System (ADS)
Cui, Yansong; Jiang, Lianpin
2018-03-01
With the rapid development of digital publishing industry, the direction of audio / video publishing shows the diversity of coding standards for audio and video files, massive data and other significant features. Faced with massive and diverse data, how to quickly and efficiently convert to a unified code format has brought great difficulties to the digital publishing organization. In view of this demand and present situation in this paper, basing on the development architecture of Sptring+SpringMVC+Mybatis, and combined with the open source FFMPEG format conversion tool, a distributed online audio and video format conversion platform with a B/S structure is proposed. Based on the Java language, the key technologies and strategies designed in the design of platform architecture are analyzed emphatically in this paper, designing and developing a efficient audio and video format conversion system, which is composed of “Front display system”, "core scheduling server " and " conversion server ". The test results show that, compared with the ordinary audio and video conversion scheme, the use of batch audio and video format conversion platform can effectively improve the conversion efficiency of audio and video files, and reduce the complexity of the work. Practice has proved that the key technology discussed in this paper can be applied in the field of large batch file processing, and has certain practical application value.
Catalytic Deoxygenation of Biomass Pyrolysis Vapors to Improve Bio-oil Stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dayton, David C.
2016-12-22
The President’s Advanced Energy Initiative called for a change in the way Americans fuel their vehicles to promote improved energy security. Increasing biofuels production from domestic lignocellulosic resources requires advanced technology development to achieve the aggressive targets set forth to reduce motor gasoline consumption by 20% in ten years (by 2017). The U.S. Department of Energy (USDOE) Office of the Biomass Program (currently Bioenergy Technologies Office) is actively funding research and development in both biochemical and thermochemical conversion technologies to accelerate the deployment of biofuels technologies in the near future to meet the goals of the Advanced Energy Initiative. Thermochemicalmore » conversion technology options include both gasification and pyrolysis to enable the developing lignocellulosic biorefineries and maximize biomass resource utilization for production of biofuels.« less
Potential impact of ZT = 4 thermoelectric materials on solar thermal energy conversion technologies.
Xie, Ming; Gruen, Dieter M
2010-11-18
State-of-the-art methodologies for the conversion of solar thermal power to electricity are based on conventional electromagnetic induction techniques. If appropriate ZT = 4 thermoelectric materials were available, it is likely that conversion efficiencies of 30-40% could be achieved. The availability of all solid state electricity generation would be a long awaited development in part because of the elimination of moving parts. This paper presents a preliminary examination of the potential performance of ZT = 4 power generators in comparison with Stirling engines taking into account specific mass, volume and cost as well as system reliability. High-performance thermoelectrics appear to have distinct advantages over magnetic induction technologies.
Weight conversations in romantic relationships: What do they sound like and how do partners respond?
Berge, Jerica M; Pratt, Keeley; Miller, Laura
2016-09-01
The limited research examining weight conversations (i.e., conversations about weight, body shape, or size) in adult romantic relationships has shown associations between engaging in these conversations and disordered eating behaviors, overweight/obesity, and psychosocial problems in adults. Given the potential harmful consequences of these conversations, it is important to gather more rich qualitative data to understand how weight talk is experienced in romantic relationships and how romantic partners respond to these conversations. Adults (n = 118; mean age 35 years) from a cross-sectional study were interviewed in their homes. The majority of adults (90% female; mean age = 35 years) were from minority (64% African American) and low-income (<$25,000/year) households. Qualitative data were analyzed using inductive content analysis. Sixty-five percent of participants reported that weight conversations were occurring in their romantic relationships. Qualitative themes included the following: (a) Weight conversations were direct and focused on physical characteristics; (b) weight conversations included joking or sarcastic remarks; (c) weight conversations focused on "we" and being healthy; (d) weight conversations occurred after watching TV or movies, as a result of insecurities in oneself, as length of the relationship increased, or as partners aged; and (e) partners responded to weight conversations by feeling insecure or by engaging in reciprocal weight conversations with their romantic partner. Weight conversations were prevalent in romantic relationships, with some conversations experienced as negative and some positive. Qualitative themes from the current study should be confirmed in quantitative studies to inform future intervention research targeting weight conversations in romantic relationships. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
250 Robotic Pancreatic Resections: Safety and Feasibility
Zureikat, Amer H.; Moser, A. James; Boone, Brian A.; Bartlett, David L.; Zenati, Mazen; Zeh, Herbert J.
2015-01-01
Background and Objectives Computer Assisted Robotic Surgery allows complex resections and anastomotic reconstructions to be performed with nearly identical standards to open surgery. We applied this technology to a variety of pancreatic resections to assess the safety, feasibility, versatility and reliability of this technology. Methods A retrospective review of a prospective database of robotic pancreatic resections at a single institution between August 2008 and November 2012 was performed. Peri-operative outcomes were analyzed. Results 250 consecutive robotic pancreatic resections were analyzed; pancreaticoduodenectomy (PD =132), distal pancreatectomy (DP=83), central pancreatectomy (CP=13), pancreatic enucleation (10), total pancreatectomy (TP=5), Appleby resection (4), and Frey procedure (3). Thirty day and 90 day mortality was 0.8 % and 2.0%. Rate of Clavien 3 and 4 complications was 14 and 6 %. The ISGPF grade C fistula rate was 4%. Mean operative time for the two most common procedures was 529 ± 103 mins for PD, and 257 ± 93 mins for DP. Continuous improvement in operative times was observed over the course of the experience. Conversion to open procedure was required in 16 patients (6%);(11 PD, 2 DP, 2 CP, 1 TP) for failure to progress (14) and bleeding (2). Conclusions This represents to our knowledge the largest series of robotic pancreatic resections. Safety and feasibility metrics including the low incidence of conversion support the robustness of this platform and suggest no unanticipated risks inherent to this new technology. By defining these early outcome metrics this report begins to establish a framework for comparative effectiveness studies of this platform. PMID:24002300
NASA Technical Reports Server (NTRS)
Wolfer, B. M.
1977-01-01
Features basic to the integrated utility system, such as solid waste incineration, heat recovery and usage, and water recycling/treatment, are compared in terms of cost, fuel conservation, and efficiency to conventional utility systems in the same mean-climatic area of Washington, D. C. The larger of the two apartment complexes selected for the test showed the more favorable results in the three areas of comparison. Restrictions concerning the sole use of currently available technology are hypothetically removed to consider the introduction and possible advantages of certain advanced techniques in an integrated utility system; recommendations are made and costs are estimated for each type of system.
A Deep Space Power System Option Based on Synergistic Power Conversion Technologies
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.
2000-01-01
Deep space science missions have typically used radioisotope thermoelectric generator (RTG) power systems. The RTG power system has proven itself to be a rugged and highly reliable power system over many missions, however the thermal-to-electric conversion technology used was approximately 5% efficient. While the relatively low efficiency has some benefits in terms of system integration, there are compelling reasons why a more efficient conversion system should be pursued. The cost savings alone that are available as a result of the reduced isotope inventory are significant. The Advanced Radioisotope Power System (ARPS) project was established to fulfill this goal. Although it was not part of the ARPS project, Stirling conversion technology is being demonstrated with a low level of funding by both NASA and DOE. A power system with Stirling convertors. although intended for use with an isotope heat source. can be combined with other advanced technologies to provide a novel power system for deep space missions. An inflatable primary concentrator would be used in combination with a refractive secondary concentrator (RSC) as the heat source to power the system. The inflatable technology as a structure has made great progress for a variety of potential applications such as communications reflectors, radiators and solar arrays. The RSC has been pursued for use in solar thermal propulsion applications, and it's unique properties allow some advantageous system trades to be made. The power system proposed would completely eliminate the isotope heat source and could potentially provide power for science missions to planets as distant as Uranus. This paper will present the background and developmental status of the technologies and will then describe the power system being proposed.
Clark, Eve V
2014-07-01
Recent research has highlighted several areas where pragmatics plays a central role in the process of acquiring a first language. In talking with their children, adults display their uses of language in each context, and offer extensive feedback on form, meaning, and usage, within their conversational exchanges. These interactions depend critically on joint attention, physical co-presence, and conversational co-presence - essential factors that help children assign meanings, establish reference, and add to common ground. For young children, getting their meaning across also depends on realizing language is conventional, that words contrast in meaning, and that they need to observe Grice's cooperative principle in conversation. Adults make use of the same pragmatic principles as they solicit repairs to what children say, and thereby offer feedback on both what the language is and how to use it.
Molecular Breeding Algae For Improved Traits For The Conversion Of Waste To Fuels And Commodities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagwell, C.
This Exploratory LDRD aimed to develop molecular breeding methodology for biofuel algal strain improvement for applications in waste to energy / commodity conversion technologies. Genome shuffling technologies, specifically protoplast fusion, are readily available for the rapid production of genetic hybrids for trait improvement and have been used successfully in bacteria, yeast, plants and animals. However, genome fusion has not been developed for exploiting the remarkable untapped potential of eukaryotic microalgae for large scale integrated bio-conversion and upgrading of waste components to valued commodities, fuel and energy. The proposed molecular breeding technology is effectively sexual reproduction in algae; though compared tomore » traditional breeding, the molecular route is rapid, high-throughput and permits selection / improvement of complex traits which cannot be accomplished by traditional genetics. Genome fusion technologies are the cutting edge of applied biotechnology. The goals of this Exploratory LDRD were to 1) establish reliable methodology for protoplast production among diverse microalgal strains, and 2) demonstrate genome fusion for hybrid strain production using a single gene encoded trait as a proof of the concept.« less
Techno-economic analysis of a biomass depot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobson, Jacob Jordan; Lamers, Patrick; Roni, Mohammad Sadekuzzaman
2014-10-01
The U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) promotes the production of an array of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the technical, economic, and environmental performance of different feedstock supply systems and their impacts on the downstream conversion processes.
Flat-plate solar array project. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Callaghan, W.; Mcdonald, R.
1986-01-01
In 1975, the U.S. Government contracted the Jet Propulsion Lab. to develop, by 1985, in conjunction with industry, the photovoltaics (PV) module and array technology required for widespread use of photovoltaics as a significant terrestrial energy source. As a result, a project that eventually became known as the Flat Plate Solar Array (FSA) Project was formed to manage an industry, university, and Government team to perform the necessary research and development. The original goals were to achieve widespread commercial use of PV modules and arrays through the development of technology that would allow them to be profitably sold for $1.07/peak watts (1985 dollars). A 10% module conversion efficiency and a 20 year lifetime were also goals. It is intended that the executive summary provide the means by which one can gain a perspective on 11 years of terrestrial photovoltaic research and development conducted by the FSA Project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McAlexander, Benjamin L., E-mail: bmcalexander@trihydro.com
Petroleum-contaminated site management typically counts destruction of hydrocarbons by either natural or engineered processes as a beneficial component of remediation. While such oxidation of spilled hydrocarbons is often necessary for achieving risk reduction for nearby human and ecological receptors, site assessments tend to neglect that this also means that the pollutants are converted to greenhouse gases and emitted to the atmosphere. This article presents a suggestion that the current and long term greenhouse gas emissions from spilled hydrocarbons be incorporated to petroleum site assessments. This would provide a more complete picture of pollutant effects that could then be incorporated tomore » remedial objectives. At some sites, this additional information may affect remedy selection. Possible examples include a shift in emphasis to remedial technologies that reduce pollutant greenhouse gas effects (e.g., by conversion of methane to carbon dioxide in the subsurface), and a more holistic context for considering remedial technologies with low emission footprints.« less
Membrane technology revolutionizes water treatment.
Wilderer, P A; Paris, S
2007-01-01
Membranes play a crucial role in living cells, plants and animals. They not only serve as barriers between the inside and outside world of cells and organs. More importantly, they are means of selective transport of materials and host for biochemical conversion. Natural membrane systems have demonstrated efficiency and reliability for millions of years and it is remarkable that most of these systems are small, efficient and highly reliable even under rapidly changing ambient conditions. Thus, it appears to be advisable for technology developers to keep a close eye on Mother Nature. By doing so it is most likely that ideas for novel technical solutions are born. Following the concept of natural systems it is hypothesized that the Millennium Development Goals can be best met when counting on small water and wastewater treatment systems. The core of such systems could be membranes in which chemical reactions are integrated allowing recovery and direct utilization of valuable substances.
Kivimäki, M
1996-11-01
Although yearly confidential conversations between a supervisor and an employee have been recommended as a means for improving leadership, evidence on the actual effects of these conversations has been lacking. The present study therefore investigated whether confidential conversations improve perceptions of goal clarity, sufficiency of feedback and innovativeness, and elicit satisfaction with the supervisor's leadership style within the hospital setting. Nine wards were divided into one experimental group (3 wards) and two control groups (3 + 3 wards). A questionnaire on goal clarity, feedback, innovativeness and satisfaction was administered twice to every group (1st measurement: r = 186, 2nd measurement: n = 163). The experimental group began confidential conversations after the first measurement, control group 1 entered into conversations during both measurements, and control group 2 did not enter into conversations at the time of either measurement. Confidential conversations improved perceived feedback. In both measurements, the sufficiency of feedback was reported to be significantly better in the groups having conversations than in the other groups. In addition, there was a significant positive change in the perceived sufficiency of feedback in the experimental group but not in the other groups. Confidential conversations did not affect the perceptions of goal clarity and innovativeness or elicit satisfaction with the supervisor's management style.
NASA Technical Reports Server (NTRS)
Wetch, J. R.
1988-01-01
The major power conversion concepts considered for the Megawatt Class Nuclear Space Power System (MCNSPS) are discussed. These concepts include: (1) Rankine alkali-metal-vapor turbine alternators; (2) in-core thermionic conversion; (3) Brayton gas turbine alternators; and (4) free piston Stirling engine linear alternators. Considerations important to the coupling of these four conversion alternatives to an appropriate nuclear reactor heat source are examined along with the comparative performance characteristics of the combined systems meeting MCNSPS requirements.
Irradiation enhancement of biomass conversion
NASA Astrophysics Data System (ADS)
Smith, G. S.; Kiesling, H. E.; Galyean, M. L.; Bader, J. R.
The vast supply of cellulosic agricultural residues and industrial by-products that is produced each year is a prospective resource of biomass suitable for conversion to useful products such as feedstock for the chemicals industry and feedstuffs for the livestock industry. Conversions of such biomass is poor at present, and utilization is inefficient, because of physio-chemical barriers to biological degradation and (or) anti-quality components such as toxicants that restrict biological usages. Improvements in biodegradability of ligno-cellulosic materials have been accomplished by gamma-ray and electron-beam irradiation at intermediate dosage (˜ 50 Mrad; .5 MGy); but applications of the technology have been hampered by questionable interpretations of results. Recent research with organic wastes such as sewage sludge and straw suggests opportunity for important applications of irradiation technology in enhancement of biomass conversion. Data from experiments using irradiated straw as feed for ruminants are presented and discussed in relation to research on prospective usage of sewage products as feed for ruminants. Findings are discussed in regard to prospective applications in industrial fermentation processes. Possible usage of irradiation technology for destruction of toxicants in exotic plants is considered in regard to prospective new feedstuffs.
On the Performance Potential of Bioelectrochemical Life Support Systems
NASA Technical Reports Server (NTRS)
Mansell, J. Matthew
2013-01-01
An area of growing multi-disciplinary research and revolutionary development for bio-processing on Earth is bioelectrochemical systems. These systems exploit the capability of many microorganisms to act as biocatalysts, enhancing the performance of electrochemical processes which convert low-value materials into valuable products. Many varieties of such processes hold potential value for space exploration as means to recycle metabolic waste and other undesirable materials or insitu resources into oxygen, water, and other valuable substances. However, the wide range of possible reactants, products, configurations, and operating parameters, along with the early stage of development and application on the ground necessitate thorough consideration of which, if any, possibilities could outperform existing technologies and should thus receive investment for space applications. In turn, the decision depends on the theoretical and practical limits of performance and the value of the reactant-product conversions within spaceflight scenarios, and should, to the greatest extent possible, be examined from the perspective of a fully designed, integrated system, rather than as an isolated unit lacking critical components like valves and pumps. Herein, we select a series of possible reactant-product conversions, develop concept process flow diagrams for each, and estimate theoretical and (where sufficient literature data allows) practical performance limitations of each. The objective was to estimate the costs, benefits, and risks of each concept in order to aid strategic decisions in the early-phase technology development effort.
Fair Oaks Dairy Farms Cellulosic Ethanol Technology Review Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrew Wold; Robert Divers
2011-06-23
At Fair Oaks Dairy, dried manure solids (''DMS'') are currently used as a low value compost. United Power was engaged to evaluate the feasibility of processing these DMS into ethanol utilizing commercially available cellulosic biofuels conversion platforms. The Fair Oaks Dairy group is transitioning their traditional ''manure to methane'' mesophilic anaerobic digester platform to an integrated bio-refinery centered upon thermophilic digestion. Presently, the Digested Manure Solids (DMS) are used as a low value soil amendment (compost). United Power evaluated the feasibility of processing DMS into higher value ethanol utilizing commercially available cellulosic biofuels conversion platforms. DMS was analyzed and overmore » 100 potential technology providers were reviewed and evaluated. DMS contains enough carbon to be suitable as a biomass feedstock for conversion into ethanol by gasification technology, or as part of a conversion process that would include combined heat and power. In the first process, 100% of the feedstock is converted into ethanol. In the second process, the feedstock is combusted to provide heat to generate electrical power supporting other processes. Of the 100 technology vendors evaluated, a short list of nine technology providers was developed. From this, two vendors were selected as finalists (one was an enzymatic platform and one was a gasification platform). Their selection was based upon the technical feasibility of their systems, engineering expertise, experience in commercial or pilot scale operations, the ability or willingness to integrate the system into the Fair Oaks Biorefinery, the know-how or experience in producing bio-ethanol, and a clear path to commercial development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohan, S.M.; Barkhordar, P.M.
1979-01-01
The thermochemical conversion of biomass feedstocks generally denotes technologies that use elevated temperatures to convert the fixed carbon content of biomass materials to produce other, more useful energy forms. Examples are combustion to produce heat, steam, electricity, or combinations of these; pyrolysis to produce gas (low- or intermediate-Btu), pyrolytic liquids and chemicals, and char; gasification to produce low or intermediate Btu gas (and, from IBG, additional products such as SNG, ammonia, methanol, or Fischer-Tropsch liquids); and liquefaction to produce heavy fuel oil or, with upgrading, lighter-boiling liquid products such as distillates, light fuel oils, or gasoline. This section discusses themore » selection of the feedstock used in the analysis of thermochemical conversion technologies. The following sections present detailed technical and economic evaluations of biomass conversion to electricity and steam by combustion, SNG by gasification and methanation, methanol by gasification and synthesis, oil by catalytic liquefaction, oil and char by pyrolysis, and ammonia by gasification and synthesis. The conversion options were reviewed with DOE for approval at the start of the project.« less
NASA Astrophysics Data System (ADS)
Becerra Lopez, Humberto Ruben
2007-12-01
High expansion of power demand is expected in the Upper Rio Grande region (El Paso, Hudspeth, Culberson, Jeff Davis, Presidio and Brewster counties) as a result of both electrical demand growth and decommissioning of installed capacity. On the supply side a notable deployment of renewable power technologies can be projected owing to the recent introduction of a new energy policy in Texas, which attempts to reach 10,000 installed-MWe of renewable capacity for 2025. Power generation fueled by natural-gas might consistently expand due to the encouraged use of this fuel. In this context the array of participating technologies can be optimized, which, within a sustainability framework, translates into a multidimensional problem. The solution to the problem is presented through this dissertation in two main parts. The first part solves the thermodynamic-environmental problem through developing a dynamic model to project maximum allowable expansion of technologies. Predetermined alternatives include diverse renewable energy technologies (wind turbine, photovoltaic conversion, hybrid solar thermal parabolic trough, and solid oxide fuel cells), a conventional fossil-fuel technology (natural gas combined-cycle), and a breakthrough fossil-fuel technology (solid oxide fuel cells). The analysis is based on the concept of cumulative exergy consumption, expanded to include abatement of emissions. A Gompertz sigmoid growth is assumed and constrained by both exergetic self-sustenance and regional energy resource availability. This part of the analysis assumes that power demand expansion is met by full deployment of alternative technologies backed up by conventional technology. Results show that through a proper allowance for exergy reinvestment the power demand expansion may be met largely by alternative technologies minimizing the primary resource depletion. The second part of the study makes use of the dynamic model to support a multi-objective optimization routine, where the exergetic and economic costs are established as primary competing factors. An optimization algorithm is implemented using the constraint method. The solution is given as Pareto optimality with arrays for minimum cost and possible arrays for the tradeoff front. These arrays are further analyzed in terms of sustainability, cumulative exergy loss (i.e. irreversibilities and waste exergy) and incremental economic cost, and the results are compared with the goals of current legislated energy policy.
Conversion system overview assessment. Volume 1: solar thermoelectrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayadev, T. S.; Henderson, J.; Finegold, J.
1979-08-01
An assessment of thermoelectrics for solar energy conversion is given. There is significant potential for solar thermoelectrics in solar technologies where collector costs are low; e.g., Ocean Thermal Energy Conversion (OTEC) and solar ponds. Reports of two studies by manufacturers assessing the cost of thermoelectric generators in large scale production are included in the appendix and several new concepts thermoelectric systems are presented. (WHK)
NASA Technical Reports Server (NTRS)
Manvi, R.
1981-01-01
To assist DOE in establishing research and development funding priorities in the area of advanced energy conversion technoloy, researchers at the Jet Propulsion Laboratory studied those specific factors within various regions of the country that may influence cogeneration with advanced energy conversion systems. Regional characteristics of advanced technology cogeneration possibilities are discussed, with primary emphasis given to coal derived fuels. Factors considered for the study were regional industry concentration, purchased fuel and electricity prices, environmental constraints, and other data of interest to industrial cogeneration.
Research and evolution of mid-infrared optical source
NASA Astrophysics Data System (ADS)
Chen, Changshui; Hu, Hui; Xu, Lei
2016-10-01
3-5 μm mid-infrared wave band is in the atmosphere window, it has lots of promising applications on the spectroscopy, remote sensing, medical treatment, environmental protection and military affairs. So, it has been a hot topic around the world to research the lasers at this wave band. In recent years, adiabatic passage technology has been applied in frequency conversion area, which borrowed from atomic physics. In this paper we will introduce efficient nonlinear optics frequency conversion by suing this technology.
Space Photovoltaic Research and Technology, 1989
NASA Technical Reports Server (NTRS)
1991-01-01
Remarkable progress on a wide variety of approaches in space photovoltaics, for both near and far term applications is reported. Papers were presented in a variety of technical areas, including multi-junction cell technology, GaAs and InP cells, system studies, cell and array development, and non-solar direct conversion. Five workshops were held to discuss the following topics: mechanical versus monolithic multi-junction cells; strategy in space flight experiments; non-solar direct conversion; indium phosphide cells; and space cell theory and modeling.
NASA Astrophysics Data System (ADS)
Graule, Thomas; Ozog, Paulina; Durif, Caroline; Wilkens-Heinecke, Judit; Kata, Dariusz
2016-06-01
Porous, graded ceramic structures are of high relevance in the field of energy conversion as well as in catalysis, and additionally in filtration technology and in biomedical applications. Among different technologies for the tailored design for such structures we demonstrate here a new environmental friendly UV curing-based concept to prepare laminated structures with pore sizes ranging from a few microns up to 50 microns in diameter and with porosities ranging from 10% up to 75 vol.% porosity.
Sodium Hydroxide Pretreatment of Switchgrass for Ethanol Production
USDA-ARS?s Scientific Manuscript database
Lignocellulose-to-ethanol conversion is a promising technology to supplement corn-based ethanol production. However, the recalcitrant structure of lignocellulosic material is a major obstacle to the efficient conversion. To improve the enzymatic digestibility of switchgrass for the fermentable sugar...
Surface science approach to Pt/carbon model catalysts: XPS, STM and microreactor studies
NASA Astrophysics Data System (ADS)
Motin, Abdul Md.; Haunold, Thomas; Bukhtiyarov, Andrey V.; Bera, Abhijit; Rameshan, Christoph; Rupprechter, Günther
2018-05-01
Pt nanoparticles supported on carbon are an important technological catalyst. A corresponding model catalyst was prepared by physical vapor deposition (PVD) of Pt on sputtered HOPG (highly oriented pyrolytic graphite). The carbon substrate before and after sputtering as well as the Pt/HOPG system before and after Pt deposition and annealing were examined by XPS and STM. This yielded information on the surface density of defects, which serve as nucleation centres for Pt, and on the size distribution (mean size/height) of the Pt nanoparticles. Two different model catalysts were prepared with mean sizes of 2.0 and 3.6 nm, both turned out to be stable upon UHV-annealing to 300 °C. After transfer into a UHV-compatible flow microreactor and subsequent cleaning in UHV and under mbar pressure, the catalytic activity of the Pt/HOPG model system for ethylene hydrogenation was examined under atmospheric pressure flow conditions. This enabled to determine temperature-dependent conversion rates, turnover frequencies (TOFs) and activation energies. The catalytic results obtained are in line with the characteristics of technological Pt/C, demonstrating the validity of the current surface science based model catalyst approach.
Roadmap on optical energy conversion
NASA Astrophysics Data System (ADS)
Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; Yablonovitch, Eli; Beard, Matthew C.; Okada, Yoshitaka; Lany, Stephan; Gershon, Talia; Zakutayev, Andriy; Tahersima, Mohammad H.; Sorger, Volker J.; Naughton, Michael J.; Kempa, Krzysztof; Dagenais, Mario; Yao, Yuan; Xu, Lu; Sheng, Xing; Bronstein, Noah D.; Rogers, John A.; Alivisatos, A. Paul; Nuzzo, Ralph G.; Gordon, Jeffrey M.; Wu, Di M.; Wisser, Michael D.; Salleo, Alberto; Dionne, Jennifer; Bermel, Peter; Greffet, Jean-Jacques; Celanovic, Ivan; Soljacic, Marin; Manor, Assaf; Rotschild, Carmel; Raman, Aaswath; Zhu, Linxiao; Fan, Shanhui; Chen, Gang
2016-07-01
For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in the optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. It is our hope that the roadmap will serve as an important resource for the scientific community, new generations of researchers, funding agencies, industry experts, and investors.
Tavano, Alessandro; Pesarin, Anna; Murino, Vittorio; Cristani, Marco
2014-01-01
Individuals with Asperger syndrome/High Functioning Autism fail to spontaneously attribute mental states to the self and others, a life-long phenotypic characteristic known as mindblindness. We hypothesized that mindblindness would affect the dynamics of conversational interaction. Using generative models, in particular Gaussian mixture models and observed influence models, conversations were coded as interacting Markov processes, operating on novel speech/silence patterns, termed Steady Conversational Periods (SCPs). SCPs assume that whenever an agent's process changes state (e.g., from silence to speech), it causes a general transition of the entire conversational process, forcing inter-actant synchronization. SCPs fed into observed influence models, which captured the conversational dynamics of children and adolescents with Asperger syndrome/High Functioning Autism, and age-matched typically developing participants. Analyzing the parameters of the models by means of discriminative classifiers, the dialogs of patients were successfully distinguished from those of control participants. We conclude that meaning-free speech/silence sequences, reflecting inter-actant synchronization, at least partially encode typical and atypical conversational dynamics. This suggests a direct influence of theory of mind abilities onto basic speech initiative behavior.
Jang, Gijeong; Yoon, Shin-ae; Lee, Sung-Eun; Park, Haeil; Kim, Joohan; Ko, Jeong Hoon; Park, Hae-Jeong
2013-11-01
In ordinary conversations, literal meanings of an utterance are often quite different from implicated meanings and the inference about implicated meanings is essentially required for successful comprehension of the speaker's utterances. Inference of finding implicated meanings is based on the listener's assumption that the conversational partner says only relevant matters according to the maxim of relevance in Grice's theory of conversational implicature. To investigate the neural correlates of comprehending implicated meanings under the maxim of relevance, a total of 23 participants underwent an fMRI task with a series of conversational pairs, each consisting of a question and an answer. The experimental paradigm was composed of three conditions: explicit answers, moderately implicit answers, and highly implicit answers. Participants were asked to decide whether the answer to the Yes/No question meant 'Yes' or 'No'. Longer reaction time was required for the highly implicit answers than for the moderately implicit answers without affecting the accuracy. The fMRI results show that the left anterior temporal lobe, left angular gyrus, and left posterior middle temporal gyrus had stronger activation in both moderately and highly implicit conditions than in the explicit condition. Comprehension of highly implicit answers had increased activations in additional regions including the left inferior frontal gyrus, left medial prefrontal cortex, left posterior cingulate cortex and right anterior temporal lobe. The activation results indicate involvement of these regions in the inference process to build coherence between literally irrelevant but pragmatically associated utterances under the maxim of relevance. Especially, the left anterior temporal lobe showed high sensitivity to the level of implicitness and showed increased activation for highly versus moderately implicit conditions, which imply its central role in inference such as semantic integration. The right hemisphere activation, uniquely found in the anterior temporal lobe for highly implicit utterances, suggests its competence for integrating distant concepts in implied utterances under the relevance principle. Copyright © 2013 Elsevier Inc. All rights reserved.
Biomass energy production. Citations from the International Aerospace Abstracts data base
NASA Technical Reports Server (NTRS)
Moore, P. W.
1980-01-01
These 210 citations from the international literature describe the production and/or utilization of most forms of biomass as a source of energy, fuel, food, and chemical intermediates or feedstocks. Biomass conversion by incineration, gasification, pyrolysis, hydrolysis, anaerobic digestion, or fermentation, as well as by catalytic, photosynthetic, chemosynthetic, and bio-electrochemical means are among the conversion processes considered. Discussions include biomass plantation and material productivity, transportation and equipment requirements, effects, comparisons of means and efficiencies of utilization and conversion, assessments of limitations, and evaluations of economic potential.
A New Technological Framework: Education, Technology and Entertainment.
ERIC Educational Resources Information Center
Elsner, Paul A.
2000-01-01
Recounts the conversations at three Sedona Conferences that attempted to align entertainment, education, and technology around a futures framework. Explores how linking insights from the entertainment world, especially from film and video production, from education, and from technology, unravels some secrets about who we are, why we are here, and…
"Sex Is a sin": Afro-Caribbean Parent and Teen Perspectives on Sex Conversations.
Gabbidon, Kemesha S; Shaw-Ridley, Mary
2018-01-18
This study characterized (a) mothers' childhood and teenage experiences with sex conversations and (b) families' perceptions of current parent-child sex conversations within two underserved Afro-Caribbean communities in the U.S. Fourteen dyads comprised of Haitian and Jamaican mothers and teens (aged 14-18) living in Miami, Florida, completed semi-structured interviews sharing their experiences with sex conversations. Researchers analyzed data using thematic content analysis. Mothers' mean age was 41.85 years, (SD = 5.50) and teens' mean age was 16.35 years, (SD = 1.31). Most mothers reported forbidden or little childhood experiences with parent-child sex conversations. They affected their sexual attitudes, behaviors, and ability to discuss sex with their children. Although some mothers benefited from educational and skill development others shared fear-based messages with their children that some teens believed adversely affected the mother-child relationship quality. Culturally appropriate, skill-based approaches are necessary to improve families' communication self-efficacy for healthy sex conversations to occur in Afro-Caribbean families.
Children's understanding of ambiguous idioms and conversational perspective-taking.
Le Sourn-Bissaoui, Sandrine; Caillies, Stéphanie; Bernard, Stéphane; Deleau, Michel; Brulé, Lauriane
2012-08-01
The aim of this study was to test the hypothesis that conversational perspective-taking is a determinant of unfamiliar ambiguous idiom comprehension. We investigated two types of ambiguous idiom, decomposable and nondecomposable expressions, which differ in the degree to which the literal meanings of the individual words contribute to the overall idiomatic meaning. We designed an experiment to assess the relationship between the acquisition of figurative comprehension and conversational perspective-taking. Our sample of children aged 5-7 years performed three conversational perspective-taking tasks (language acts, shared/unshared information, and conversational maxims). They then listened to decomposable and nondecomposable idiomatic expressions presented in context before performing a multiple-choice task (figurative, literal, and contextual responses). Results indicated that decomposable idiom comprehension was predicted by conversational perspective-taking scores and language skills, whereas nondecomposable idiom comprehension was predicted solely by language skills. We discuss our findings with respect to verbal and pragmatic skills. Copyright © 2012 Elsevier Inc. All rights reserved.
Tappen, Ruth M.; Roach, Kathryn E.; Applegate, E. Brooks; Stowell, Paula
2007-01-01
Summary Assisted walking and walking combined with conversation were compared to a conversation-only intervention in nursing home residents with Alzheimer disease. Sixty-five subjects randomly assigned to treatment group were tested at baseline and end of treatment. Subjects mean Mini-Mental State Examination score was 10.83; mean age was 87. Treatment was given for 30 minutes three times a week for 16 weeks. Subjects in the assisted walking group declined 20.9% in functional mobility; the conversation group declined 18.8%. The combined walking and conversation treatment group declined only 2.5%. These differences in outcome were significant and appear to have been affected by differences in treatment fidelity. Subjects in the conversation treatment group completed 90% of intended treatment compared with 75% in the combined group and only 57% in the assisted walking group. Failure to treat was due to subject refusal and physical illness. The conversation component of the combined walking and conversation treatment intervention appears to have improved compliance with the intervention, thereby improving treatment outcome. Results indicate that assisted walking with conversation can contribute to maintenance of functional mobility in institutionalized populations with Alzheimer disease. Staff assigned to this task should be prepared to use effective communication strategies to gain acceptance of the intervention. PMID:11186596
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aabakken, J.
This report, prepared by NREL's Strategic Energy Analysis Center, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.
PRELIMINARY COST ESTIMATES OF POLLUTION CONTROL TECHNOLOGIES FOR GEOTHERMAL DEVELOPMENTS
This report provides preliminary cost estimates of air and water pollution control technologies for geothermal energy conversion facilities. Costs for solid waste disposal are also estimated. The technologies examined include those for control of hydrogen sulfide emissions and fo...
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2014-01-01
This panel plans to cover thermal energy and electric power production issues facing our nation and the world over the next decades, with relevant technologies ranging from near term to mid-and far term.Although the main focus will be on ground based plants to provide baseload electric power, energy conversion systems (ECS) for space are also included, with solar- or nuclear energy sources for output power levels ranging tens of Watts to kilo-Watts for unmanned spacecraft, and eventual mega-Watts for lunar outposts and planetary surface colonies. Implications of these technologies on future terrestrial energy systems, combined with advanced fracking, are touched upon.Thorium based reactors, and nuclear fusion along with suitable gas turbine energy conversion systems (ECS) will also be considered by the panelists. The characteristics of the above mentioned ECS will be described, both in terms of their overall energy utilization effectiveness and also with regard to climactic effects due to exhaust emissions.
Advanced Controller Developed for the Free-Piston Stirling Convertor
NASA Technical Reports Server (NTRS)
Gerber, Scott S.
2005-01-01
A free-piston Stirling power convertor is being considered as an advanced power-conversion technology for future NASA deep-space missions requiring long-life radioisotope power systems. The NASA Glenn Research Center has identified key areas where advanced technologies can enhance the capability of Stirling energy-conversion systems. One of these is power electronic controls. Current power-conversion technology for Glenn-tested Stirling systems consists of an engine-driven linear alternator generating an alternating-current voltage controlled by a tuning-capacitor-based alternating-current peak voltage load controller. The tuning capacitor keeps the internal alternator electromotive force (EMF) in phase with its respective current (i.e., passive power factor correction). The alternator EMF is related to the piston velocity, which must be kept in phase with the alternator current in order to achieve stable operation. This tuning capacitor, which adds volume and mass to the overall Stirling convertor, can be eliminated if the controller can actively drive the magnitude and phase of the alternator current.
Horiuchi, Yu; Toyao, Takashi; Takeuchi, Masato; Matsuoka, Masaya; Anpo, Masakazu
2013-08-28
The present perspective describes recent advances in visible-light-responsive photocatalysts intended to develop novel and efficient solar energy conversion technologies, including water splitting and photofuel cells. Water splitting is recognized as one of the most promising techniques to convert solar energy as a clean and abundant energy resource into chemical energy in the form of hydrogen. In recent years, increasing concern is directed to not only the development of new photocatalytic materials but also the importance of technologies to produce hydrogen and oxygen separately. Photofuel cells can convert solar energy into electrical energy by decomposing bio-related compounds and livestock waste as fuels. The advances of photocatalysts enabling these solar energy conversion technologies have been going on since the discovery of semiconducting titanium dioxide materials and have extended to organic-inorganic hybrid materials, such as metal-organic frameworks and porous coordination polymers (MOF/PCP).
Atlanta I-85 HOV-to-HOT conversion : analysis of vehicle and person throughput.
DOT National Transportation Integrated Search
2013-10-01
This report summarizes the vehicle and person throughput analysis for the High Occupancy Vehicle to High Occupancy Toll Lane : conversion in Atlanta, GA, undertaken by the Georgia Institute of Technology research team. The team tracked changes in : o...
Design and validation of wireless system for oil monitoring base on optical sensing unit
NASA Astrophysics Data System (ADS)
Niu, Liqun; Wang, Weiming; Zhang, Shuaishuai; Li, Zhirui; Yu, Yan; Huang, Hui
2017-04-01
According to the situation of oil leakage and the development of oil detection technology, a wireless monitoring system, combining with the sensor technology, optical measurement technology, and wireless technology, is designed. In this paper, the architecture of a wireless system is designed. In the hardware, the collected data, acquired by photoelectric conversion and analog to digital conversion equipment, will be sent to the upper machine where they are saved and analyzed. The experimental results reveals that the wireless system has the characteristics of higher precision, more real-time and more convenient installation, it can reflect the condition of the measuring object truly and implement the dynamic monitoring for a long time on-site, stability—thus it has a good application prospect in the oil monitoring filed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, R.; Tao, L.; Scarlata, C.
This report describes one potential conversion process to hydrocarbon products by way of catalytic conversion of lignocellulosic-derived hydrolysate. This model leverages expertise established over time in biomass deconstruction and process integration research at NREL, while adding in new technology areas for sugar purification and catalysis. The overarching process design converts biomass to die die diesel- and naphtha-range fuels using dilute-acid pretreatment, enzymatic saccharification, purifications, and catalytic conversion focused on deoxygenating and oligomerizing biomass hydrolysates.
Conversational Competence in Academic Settings
ERIC Educational Resources Information Center
Bowman, Richard F.
2014-01-01
Conversational competence is a process, not a state. Ithaca does not exist, only the voyage to Ithaca. Vibrant campuses are a series of productive conversations. At its core, communicative competence in academic settings mirrors a collective search for meaning regarding the purpose and direction of a campus community. Communicative competence…
Snoeckx, Ramses; Ozkan, Alp; Reniers, Francois; Bogaerts, Annemie
2017-01-20
Recycling of carbon dioxide by its conversion into value-added products has gained significant interest owing to the role it can play for use in an anthropogenic carbon cycle. The combined conversion with H 2 O could even mimic the natural photosynthesis process. An interesting gas conversion technique currently being considered in the field of CO 2 conversion is plasma technology. To investigate whether it is also promising for this combined conversion, we performed a series of experiments and developed a chemical kinetics plasma chemistry model for a deeper understanding of the process. The main products formed were the syngas components CO and H 2 , as well as O 2 and H 2 O 2 , whereas methanol formation was only observed in the parts-per-billion to parts-per-million range. The syngas ratio, on the other hand, could easily be controlled by varying both the water content and/or energy input. On the basis of the model, which was validated with experimental results, a chemical kinetics analysis was performed, which allowed the construction and investigation of the different pathways leading to the observed experimental results and which helped to clarify these results. This approach allowed us to evaluate this technology on the basis of its underlying chemistry and to propose solutions on how to further improve the formation of value-added products by using plasma technology. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Energetics of the Brazil Current in the Rio Grande Cone region
NASA Astrophysics Data System (ADS)
Brum, André Lopes; Azevedo, José Luiz Lima de; Oliveira, Leopoldo Rota de; Calil, Paulo Henrique Rezende
2017-10-01
The energetics of the Brazil Current (BC) in the region of the Rio Grande Cone (RGC, 30-35.5°S), a topographic rise in the southwest portion of the Brazilian continental margin, are analyzed using 16 years of numerical data from the Ocean General Circulation Model (OGCM) for the Earth Simulator (OFES). The main focus of this study is the eddy-mean flow interactions of the BC and the local energy budgets in the study region. The kinetic and potential energy balance equations are derived for mean and eddy flows, and the resulting terms are presented and discussed. The eddy-mean flow interactions exhibit complex spatial distributions, and the intensities of the energy budgets decrease with increasing depth. However, only the mean potential energy (MPE) budget decreases southward. Eddy kinetic energy (EKE) and eddy potential energy (EPE) exhibit similar horizontal distribution patterns. Additionally, the baroclinic and barotropic conversion rates increase downstream of the bump, where the eddy energy field exhibits along-stream variability that increases southward. Barotropic conversion is more intense between 50 and 200 m, where mean kinetic energy (MKE) and EKE are concentrated, and it exhibits a horizontal cross-stream variation pattern, with mean-to-eddy energy conversion observed on the offshore side of the BC. This result indicates that the turbulence associated with the stream jet increases as the BC moves away from the coast, with the conversion term acting to stabilize the flow. Baroclinic conversion exhibits a high intensity below 300 m (where MPE and EPE display peaks), and it has a greater influence on the eddy-mean flow interaction than does the barotropic conversion. The RGC directly affects the local dynamics of the BC by increasing the eddy field as soon as the BC reaches the bump. The energy diagrams illustrate a stream characterized by evolving barotropic and baroclinic instability processes throughout the water column. This result indicates an intrinsically unstable jet in the study region. Moreover, baroclinic instability is the main source of EKE in the RGC region.
NASA Technical Reports Server (NTRS)
Sagerman, G. D.; Barna, G. J.; Burns, R. K.
1979-01-01
An overview of the organization and methodology of the Cogeneration Technology Alternatives Study is presented. The objectives of the study were to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the future and to assess the advantages of advanced technology systems compared to those systems commercially available today. Advanced systems studied include steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics. Steam turbines, open cycle gas turbines, combined cycles, and diesel engines were also analyzed in versions typical of today's commercially available technology to provide a base against which to measure the advanced systems. Cogeneration applications in the major energy consuming manufacturing industries were considered. Results of the study in terms of plant level energy savings, annual energy cost savings and economic attractiveness are presented for the various energy conversion systems considered.
Solar thermal technology report, FY 1981. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1982-01-01
The activities of the Department of Energy's Solar Thermal Technology Program are discussed. Highlights of technical activities and brief descriptions of each technology are given. Solar thermal conversion concepts are discussed in detail, particularily concentrating collectors and salt-gradient solar ponds.
Critchfield, Thomas S
2010-01-01
A popular-press self-help manual is reviewed with an eye toward two issues. First, the popularity of such books documents the existence of considerable demand for technologies that address the everyday problems (in the present case, troublesome conversations) of nondisordered individuals. Second, many ideas invoked in popular-press books may be interpretable within an analysis of verbal behavior, although much more than casual translation is required to develop technologies that outperform self-help manuals. I discuss several challenges relevant to research, theory refinement, technology development, and dissemination, and conclude that behavioral alternatives to existing popular-press resources may not emerge anytime soon. PMID:22477467
Lahiri, Uttama; Bekele, Esubalew; Dohrmann, Elizabeth; Warren, Zachary; Sarkar, Nilanjan
2015-04-01
Clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders (ASD). This project evaluated the application of a novel physiologically responsive virtual reality based technological system for conversation skills in a group of adolescents with ASD. The system altered components of conversation based on (1) performance alone or (2) the composite effect of performance and physiological metrics of predicted engagement (e.g., gaze pattern, pupil dilation, blink rate). Participants showed improved performance and looking pattern within the physiologically sensitive system as compared to the performance based system. This suggests that physiologically informed technologies may have the potential of being an effective tool in the hands of interventionists.
Experimental research of technology activating catalysts for SCR DeNOx in boiler
NASA Astrophysics Data System (ADS)
Zeng, Xi; Yang, Zhengde; Li, Yan; Chen, Donglin
2018-01-01
In order to improve activity of the catalysts used in SCR DeNOx system of flue gas, a series of catalysts activated by different activating liquids under varied conditions in boiler directly were conducted. Then these catalysts were characterized by SEM, FT-IR and BET technology. And NO conversions of the activated catalysts were studied and compared with that of inactivated catalyst. The above experiment shows that NO conversion of the activated catalyst can be up to 99%, which 30% higher than that of inactivated catalyst, so activity of catalysts were improved greatly. Furthermore, optimal activating liquid labeled L2 and effective technology parameters were gained in the experiment.
Conversational Agents in Virtual Worlds: Bridging Disciplines
ERIC Educational Resources Information Center
Veletsianos, George; Heller, Robert; Overmyer, Scott; Procter, Mike
2010-01-01
This paper examines the effective deployment of conversational agents in virtual worlds from the perspective of researchers/practitioners in cognitive psychology, computing science, learning technologies and engineering. From a cognitive perspective, the major challenge lies in the coordination and management of the various channels of information…
Basic and applied research related to the technology of space energy conversion systems, 1982 - 1983
NASA Technical Reports Server (NTRS)
Hertzberg, A.
1983-01-01
Topics on solar energy conversion concepts and applications are discussed. An overview of the current status and future utilization of radiation receivers for electrical energy generation, liquid droplet radiation systems, and liquid droplet heat exchangers is presented.
Assessment of Intergenerational Communication and Relationships
ERIC Educational Resources Information Center
Strom, Robert D.; Strom, Paris S.
2015-01-01
The revolution in communication technology has resulted in more age-segregated conversation among adolescents. In a similar way, older adults have increased online conversations with their peers. This article explores some obstacles that prevent the intergenerational connections needed for mutual understanding and care. Several research emphases…
USDA-ARS?s Scientific Manuscript database
The livestock sector remains vigilant to address effective manure treatment that also safeguards natural resources. Livestock operations must balance business concerns, efficient energy management and environmental stewardship. Fortunately, thermochemical conversion technologies for converting lives...
State of Practice for Emerging Waste Conversion Technologies
RTI International (RTI) was contracted by the U.S. Environmental Protection Agency (EPA), Office of Research and Development to conduct research to prepare a “State of Practice” report to support State and local decision-makers on the subject of emerging waste conversion technolo...
Woolf, Celia; Caute, Anna; Haigh, Zula; Galliers, Julia; Wilson, Stephanie; Kessie, Awurabena; Hirani, Shashi; Hegarty, Barbara; Marshall, Jane
2016-04-01
To test the feasibility of a randomised controlled trial comparing face to face and remotely delivered word finding therapy for people with aphasia. A quasi-randomised controlled feasibility study comparing remote therapy delivered from a University lab, remote therapy delivered from a clinical site, face to face therapy and an attention control condition. A University lab and NHS outpatient service. Twenty-one people with aphasia following left hemisphere stroke. Eight sessions of word finding therapy, delivered either face to face or remotely, were compared to an attention control condition comprising eight sessions of remotely delivered supported conversation. The remote conditions used mainstream video conferencing technology. Feasibility was assessed by recruitment and attrition rates, participant observations and interviews, and treatment fidelity checking. Effects of therapy on word retrieval were assessed by tests of picture naming and naming in conversation. Twenty-one participants were recruited over 17 months, with one lost at baseline. Compliance and satisfaction with the intervention was good. Treatment fidelity was high for both remote and face to face delivery (1251/1421 therapist behaviours were compliant with the protocol). Participants who received therapy improved on picture naming significantly more than controls (mean numerical gains: 20.2 (remote from University); 41 (remote from clinical site); 30.8 (face to face); 5.8 (attention control); P <.001). There were no significant differences between groups in the assessment of conversation. Word finding therapy can be delivered via mainstream internet video conferencing. Therapy improved picture naming, but not naming in conversation. © The Author(s) 2015.
Conversion Narratives and Construction of Identity among Christians in Malaysia
ERIC Educational Resources Information Center
Dumanig, Francisco Perlas; David, Maya Khemlani; Dealwis, Ceasar
2011-01-01
Conversion narratives in the form of testimony are powerful means of consolidating and strengthening one's new religious identity (Beit-Hallahmi, Prolegomena to the psychological study of religion, Bucknell University Press, 1989; Rambo, Understanding religious conversion, Yale University Press, 1993; Stromberg 1993, as cited in Emmons &…
ERIC Educational Resources Information Center
Gorski, Paul C.
2009-01-01
In the United States, where technological progress is portrayed as humanistic progress, computer technologies often are hailed as the great equalizers. Even within progressive education movements, such as multicultural education, the conversation about instructional technology tends to center more on this or that wonderful Web site or piece of…
Distributed combustion in a cyclonic burner
NASA Astrophysics Data System (ADS)
Sorrentino, Giancarlo; Sabia, Pino; de Joannon, Mara; Cavaliere, Antonio; Ragucci, Raffaele
2017-11-01
Distributed combustion regime occurs in several combustion technologies were efficient and environmentally cleaner energy conversion are primary tasks. For such technologies (MILD, LTC, etc…), working temperatures are enough low to boost the formation of several classes of pollutants, such as NOx and soot. To access this temperature range, a significant dilution as well as preheating of reactants is required. Such conditions are usually achieved by a strong recirculation of exhaust gases that simultaneously dilute and pre-heat the fresh reactants. However, the intersection of low combustion temperatures and highly diluted mixtures with intense pre-heating alters the evolution of the combustion process with respect to traditional flames, leading to significant features such as uniformity and distributed ignition. The present study numerically characterized the turbulence-chemistry and combustion regimes of propane/oxygen mixtures, highly diluted in nitrogen, at atmospheric pressure, in a cyclonic combustor under MILD Combustion operating conditions. The velocity and mixing fields were obtained using CFD with focus on mean and fluctuating quantities. The flow-field information helped differentiate between the impact of turbulence levels and dilution ones. The integral length scale along with the fluctuating velocity is critical to determine Damköhler and Karlovitz numbers. Together these numbers identify the combustion regime at which the combustor is operating. This information clearly distinguishes between conventional flames and distributed combustion. The results revealed that major controllers of the reaction regime are dilution and mixing levels; both are significantly impacted by lowering oxygen concentration through entrainment of hot reactive species from within the combustor, which is important in distributed combustion. Understanding the controlling factors of distributed regime is critical for the development and deployment of these novel combustion technologies for near zero emissions from high intensity combustors and energy savings using fossil and biofuels for sustainable energy conversion.
NASA Astrophysics Data System (ADS)
Lorenzi, Bruno; Acciarri, Maurizio; Narducci, Dario
2015-06-01
Exploitation of solar energy conversion has become a fundamental aspect of satisfying a growing demand for energy. Thus, improvement of the efficiency of conversion in photovoltaic (PV) devices is highly desirable to further promote this source. Because it is well known that the most relevant efficiency constraint, especially for single-junction solar cells, is unused heat within the device, hybrid thermo-photovoltaic systems seem promising . Among several hybrid solutions proposed in the literature, coupling of thermoelectric and PV devices seems one of the most interesting. Taking full advantage of this technology requires proper definition and analysis of the thermal losses occurring in PV cells. In this communication we propose a novel analysis of such losses, decoupling source-dependent and absorber-dependent losses. This analysis enables an evaluation of the actual recoverable amount of energy, depending on the absorber used in the PV cell. It shows that for incoming solar irradiation of , and depending on the choice of material, the maximum available thermal power ranges from (for single-crystal silicon) to (for amorphous silicon).
2013-01-01
The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Modification of the spectrum requires down- and/or upconversion or downshifting of the spectrum, meaning that the energy of photons is modified to either lower (down) or higher (up) energy. Nanostructures such as quantum dots, luminescent dye molecules, and lanthanide-doped glasses are capable of absorbing photons at a certain wavelength and emitting photons at a different (shorter or longer) wavelength. We will discuss upconversion by lanthanide compounds in various host materials and will further demonstrate upconversion to work for thin-film silicon solar cells. PMID:23413889
Development of a multikilowatt ion thruster power processor
NASA Technical Reports Server (NTRS)
Schoenfeld, A. D.; Goldin, D. S.; Biess, J. J.
1972-01-01
A feasibility study was made of the application of silicon-controlled, rectifier series, resonant inverter, power conditioning technology to electric propulsion power processing operating from a 200 to 400 Vdc solar array bus. A power system block diagram was generated to meet the electrical requirements of a 20 CM hollow cathode, mercury bombardment, ion engine. The SCR series resonant inverter was developed as a primary means of power switching and conversion, and the analog signal-to-discrete-time-interval converter control system was applied to achieve good regulation. A complete breadboard was designed, fabricated, and tested with a resistive load bank, and critical power processor areas relating to efficiency, weight, and part count were identified.
Adaptive Technologies for Accommodating Persons with Disabilities.
ERIC Educational Resources Information Center
Berliss, Jane; And Others
1993-01-01
Eight articles review the progress achieved in making library computing technologies and library services accessible to people with disabilities. Adaptive technologies, automated conversion into Braille, and successful programs that demonstrate compliance with the American with Disabilities Act are described. A resource list is included. (EA)
Hexavalent chromium exposures during full-aircraft corrosion control.
Carlton, Gary N
2003-01-01
Aluminum alloys used in the construction of modern aircraft are subject to corrosion. The principal means of controlling this corrosion in the U.S. Air Force are organic coatings. The organic coating system consists of a chromate conversion coat, epoxy resin primer, and polyurethane enamel topcoat. Hexavalent chromium (CrVI) is present in the conversion coat in the form of chromic acid and in the primer in the form of strontium chromate. CrVI inhalation exposures can occur when workers spray conversion coat onto bare metal and apply primer to the treated metal surface. In addition, mechanical abrasion of aircraft surfaces can generate particulates that contain chromates from previously applied primers and conversion coats. This study measured CrVI exposures during these corrosion control procedures. Mean time-weighted average (TWA) exposure to chromic acid during conversion coat treatment was 0.48 microg/m(3), below the current American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV(R)) TWA of 50 microg/m(3) for water-soluble CrVI compounds. Mean TWA exposures to strontium chromate were 5.33 microg/m(3) during mechanical abrasion and 83.8 microg/m(3) during primer application. These levels are in excess of the current ACGIH TLV-TWA of 0.5 microg/m(3) for strontium chromate. In the absence of a change from chromated to nonchromated conversion coats and primers, additional control measures are needed to reduce these exposures.
SPS Energy Conversion Power Management Workshop
NASA Technical Reports Server (NTRS)
1980-01-01
Energy technology concerning photovoltaic conversion, solar thermal conversion systems, and electrical power distribution processing is discussed. The manufacturing processes involving solar cells and solar array production are summarized. Resource issues concerning gallium arsenides and silicon alternatives are reported. Collector structures for solar construction are described and estimates in their service life, failure rates, and capabilities are presented. Theories of advanced thermal power cycles are summarized. Power distribution system configurations and processing components are presented.
ERIC Educational Resources Information Center
Nadig, Aparna; Shaw, Holly
2012-01-01
Are there consistent markers of atypical prosody in speakers with high functioning autism (HFA) compared to typically-developing speakers? We examined: (1) acoustic measurements of pitch range, mean pitch and speech rate in conversation, (2) perceptual ratings of conversation for these features and overall prosody, and (3) acoustic measurements of…
A Review of Tribomaterial Technology for Space Nuclear Power Systems
NASA Technical Reports Server (NTRS)
Stanford, Malcolm K.
2007-01-01
The National Aeronautics and Space Administration (NASA) has recently proposed a nuclear closed-cycle electric power conversion system for generation of 100-kW of electrical power for space exploration missions. A critical issue is the tribological performance of sliding components within the power conversion unit that will be exposed to neutron radiation. This paper presents a review of the main considerations that have been made in the selection of solid lubricants for similar applications in the past as well as a recommendations for continuing development of the technology.
Technology Evaluation for Paintable Computing and Paintable Displays RF Nixel Seedling
2006-04-15
0.32 mm2• 111-V LED’s may be fabricated on Si wafers using SiGe virtual substrates. The MIT Media Lab selected technologies for a 17" diagonal, 640 x...energy conversion, though betavoltaic devices, tends to have a very low efficiency, about 1%. [15] With 1% conversion efficiency on the lOmW released...200 J.!Cilyear of 63Ni, assuming that this was this person’s only exposure to man-made radiation. A prototype betavoltaic cell has been constructed
ERIC Educational Resources Information Center
Roulet, Eddy
1981-01-01
Attempts to show how the surface structure of conversation can be described by means of a few principles and simple categories, regardless of its level of complexity. Accordingly, proposes a model that emphasizes the pragmatic functions of certain connectors and markers in the context of conversation exchanges. Societe Nouvelle Didier Erudition,…
NASA Technical Reports Server (NTRS)
1973-01-01
A photovoltaic device development plan is reported that considers technological as well as economical aspects of single crystal silicon, polycrystal silicon, cadmium sulfide/copper sulfide thin films, as well as other materials and devices for solar cell energy conversion systems.
Sciences & Technology Adam.Bratis@nrel.gov | 303-384-7852 Areas of Expertise Adam Bratis joined the managerial oversight in the areas of biochemical conversion, thermochemical conversion, algal biofuels with 11 years of experience with ExxonMobil in the areas of research and development, corporate
Sustainable BECCS pathways evaluated by an integrated assessment model
NASA Astrophysics Data System (ADS)
Kato, E.
2017-12-01
Negative emissions technologies, particularly Bioenergy with Carbon Capture and Storage (BECCS), are key components of mitigation strategies in ambitious future socioeconomic scenarios analysed by integrated assessment models. Generally, scenarios aiming to keep mean global temperature rise below 2°C above pre-industrial would require net negative carbon emissions in the end of the 21st century. Also, in the context of Paris agreement which acknowledges "a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of this century", RD&D for the negative emissions technologies in this decade has a crucial role for the possibility of early deployment of the technology. Because of the requirement of potentially extensive use of land and water for producing the bioenergy feedstock to get the anticipated level of gross negative emissions, researches on how to develop sustainable scenarios of BECCS is needed. Here, we present BECCS deployment scenarios that consider economically viable flow of bioenergy system including power generation and conversion process to liquid and gaseous fuels for transportation and heat with consideration of sustainable global biomass use. In the modelling process, detailed bioenergy representations, i.e. various feedstock and conversion technologies with and without CCS, are implemented in an integrated assessment (IA) model GRAPE (Global Relationship Assessment to Protect the Environment). Also, to overcome a general discrepancy about assumed future agricultural yield between 'top-down' IA models and 'bottom-up' estimates, which would crucially affect the land-use pattern, we applied yields change of food and energy crops consistent with process-based biophysical crop models in consideration of changing climate conditions. Using the framework, economically viable strategy for implementing sustainable bioenergy and BECCS flow are evaluated in the scenarios targeting to keep global average temperature rise below 2°C and/or 1.5°C above pre-industrial.
Tavano, Alessandro; Pesarin, Anna; Murino, Vittorio; Cristani, Marco
2014-01-01
Individuals with Asperger syndrome/High Functioning Autism fail to spontaneously attribute mental states to the self and others, a life-long phenotypic characteristic known as mindblindness. We hypothesized that mindblindness would affect the dynamics of conversational interaction. Using generative models, in particular Gaussian mixture models and observed influence models, conversations were coded as interacting Markov processes, operating on novel speech/silence patterns, termed Steady Conversational Periods (SCPs). SCPs assume that whenever an agent's process changes state (e.g., from silence to speech), it causes a general transition of the entire conversational process, forcing inter-actant synchronization. SCPs fed into observed influence models, which captured the conversational dynamics of children and adolescents with Asperger syndrome/High Functioning Autism, and age-matched typically developing participants. Analyzing the parameters of the models by means of discriminative classifiers, the dialogs of patients were successfully distinguished from those of control participants. We conclude that meaning-free speech/silence sequences, reflecting inter-actant synchronization, at least partially encode typical and atypical conversational dynamics. This suggests a direct influence of theory of mind abilities onto basic speech initiative behavior. PMID:24489674
NASA Astrophysics Data System (ADS)
Medland, A. J.; Zhu, Guowang; Gao, Jian; Sun, Jian
1996-03-01
Feature conversion, also called feature transformation and feature mapping, is defined as the process of converting features from one view of an object to another view of the object. In a relatively simple implementation, for each application the design features are automatically converted into features specific for that application. All modifications have to be made via the design features. This is the approach that has attracted most attention until now. In the ideal situation, however, conversions directly from application views to the design view, and to other applications views, are also possible. In this paper, some difficulties faced in feature conversion are discussed. A new representation scheme of feature-based parts models has been proposed for the purpose of one-way feature conversion. The parts models consist of five different levels of abstraction, extending from an assembly level and its attributes, single parts and their attributes, single features and their attributes, one containing the geometric reference element and finally one for detailed geometry. One implementation of feature conversion for rotational components within GT (Group Technology) has already been undertaken using an automated coding procedure operating on a design-feature database. This database has been generated by a feature-based design system, and the GT coding scheme used in this paper is a specific scheme created for a textile machine manufacturing plant. Such feature conversion techniques presented here are only in their early stages of development and further research is underway.
808nm high-power high-efficiency GaAsP/GaInP laser bars
NASA Astrophysics Data System (ADS)
Wang, Ye; Yang, Ye; Qin, Li; Wang, Chao; Yao, Di; Liu, Yun; Wang, Lijun
2008-11-01
808nm high power diode lasers, which is rapidly maturing technology technically and commercially since the introduction in 1999 of complete kilowatt-scale diode laser systems, have important applications in the fields of industry and pumping solid-state lasers (DPSSL). High power and high power conversion efficiency are extremely important in diode lasers, and they could lead to new applications where space, weight and electrical power are critical. High efficiency devices generate less waste heat, which means less strain on the cooling system and more tolerance to thermal conductivity variation, a lower junction temperature and longer lifetimes. Diode lasers with Al-free materials have superior power conversion efficiency compared with conventional AlGaAs/GaAs devices because of their lower differential series resistance and higher thermal conductivity. 808nm GaAsP/GaInP broad-waveguide emitting diode laser bars with 1mm cavity length have been fabricated. The peak power can reach to 100.9W at 106.5A at quasicontinuous wave operation (200μs, 1000Hz). The maximum power conversion efficiency is 57.38%. Based on these high power laser bars, we fabricate a 1x3 arrays, the maximum power is 64.3W in continuous wave mode when the current is 25.0A. And the threshold current is 5.9A, the slope efficiency is 3.37 W/A.
Expanding ELSI to all areas of innovative science and technology.
Greenbaum, Dov
2015-04-01
New curricula in the study of the ethical, legal and social implications of scientific research aims to further the conversation among all stakeholders in the interactions between science, technology and society.
Geothermal Today: 2003 Geothermal Technologies Program Highlights (Revised)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2004-05-01
This outreach publication highlights milestones and accomplishments of the DOE Geothermal Technologies Program for 2003. Included in this publication are discussions of geothermal fundamentals, enhanced geothermal systems, direct-use applications, geothermal potential in Idaho, coating technology, energy conversion R&D, and the GeoPowering the West initiative.
Indigenous knowledges driving technological innovation
Lilian Alessa; Carlos Andrade; Phil Cash Cash; Christian P. Giardina; Matt Hamabata; Craig Hammer; Kai Henifin; Lee Joachim; Jay T. Johnson; Kekuhi Kealiikanakaoleohaililani; Deanna Kingston; Andrew Kliskey; Renee Pualani Louis; Amanda Lynch; Daryn McKenny; Chels Marshall; Mere Roberts; Taupouri Tangaro; Jyl Wheaton-Abraham; Everett Wingert
2011-01-01
This policy brief explores the use and expands the conversation on the ability of geospatial technologies to represent Indigenous cultural knowledge. Indigenous peoples' use of geospatial technologies has already proven to be a critical step for protecting tribal self-determination. However, the ontological frameworks and techniques of Western geospatial...
NASA Technical Reports Server (NTRS)
Billman, K. W.
1978-01-01
Concepts for space-based conversion of space radiation energy into useful energy for man's needs are developed and supported by studies of costs, material and size requirements, efficiency, and available technology. Besides the more studied solar power satellite system using microwave transmission, a number of alternative space energy concepts are considered. Topics covered include orbiting mirrors for terrestrial energy supply, energy conversion at a lunar polar site, ultralightweight structures for space power, radiatively sustained cesium plasmas for solar electric conversion, solar pumped CW CO2 laser, superelastic laser energy conversion, laser-enhanced dynamics in molecular rate processes, and electron beams in space for energy storage.
ERIC Educational Resources Information Center
Wallin, Jason James
2012-01-01
Reconceptualist and post-reconceptualist curriculum scholars have drawn upon the notion of a complicated curriculum conversation as a means to describe the imbricated, pluralist, and eclectic character of curriculum theorizing. Insofar as this curriculum conversation is accomplished via language however, it remains wed to a particular…
Analyzing Rumors, Gossip, and Urban Legends through Their Conversational Properties
ERIC Educational Resources Information Center
Guerin, Bernard; Miyazaki, Yoshihiko
2006-01-01
A conversational approach is developed to explain the ubiquitous presence of rumors, urban legends, and gossip as arising from their conversational properties rather than from side effects of cognitive processing or "effort after meaning." It is suggested that the primary function of telling rumors, gossip, and urban legends is not to impart…
Teaching into the Heart of Knowing in Online Education: Aesthetics & Pragmatics
ERIC Educational Resources Information Center
Chapman, Jocelyn Elizabeth
2012-01-01
The purpose of this dissertation is to show how aesthetic experiences and nontrivial conversations are at the heart of learning and can be designed for and practiced online. Aesthetic experiences are moments of acute attention, imbued with meaning (Parrish, 2009). Nontrivial conversations are conversations that increase possibilities for learning…
Seaborg, G.T.
1960-09-13
A nuclear conversion apparatus is described which comprises a body of neutron moderator, tubes extending therethrough, uranium in the tubes, a fluid- circulating system associated with the tubes, a thorium-containing fluid coolant in the system and tubes, and means for withdrawing the fluid from the system and replacing it in the system whereby thorium conversion products may be recovered.
Environmental assessment of digestate treatment technologies using LCA methodology.
Vázquez-Rowe, Ian; Golkowska, Katarzyna; Lebuf, Viooltje; Vaneeckhaute, Céline; Michels, Evi; Meers, Erik; Benetto, Enrico; Koster, Daniel
2015-09-01
The production of biogas from energy crops, organic waste and manure has augmented considerably the amounts of digestate available in Flanders. This has pushed authorities to steadily introduce legislative changes to promote its use as a fertilising agent. There is limited arable land in Flanders, which entails that digestate has to compete with animal manure to be spread. This forces many anaerobic digestion plants to further treat digestate in such a way that it can either be exported or the nitrogen be removed. Nevertheless, the environmental impact of these treatment options is still widely unknown, as well as the influence of these impacts on the sustainability of Flemish anaerobic digestion plants in comparison to other regions where spreading of raw digestate is allowed. Despite important economic aspects that must be considered, the use of Life Cycle Assessment (LCA) is suggested in this study to identify the environmental impacts of spreading digestate directly as compared to four different treatment technologies. Results suggest relevant environmental gains when the digestate mix is treated using the examined conversion technologies prior to spreading, although important trade-offs between impact categories were observed and discussed. The promising results of digestate conversion technologies suggest that further LCA analyses should be performed to delve into, for instance, the appropriateness to shift to nutrient recovery technologies rather than digestate conversion treatments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Visible-to-telecom quantum frequency conversion of light from a single quantum emitter.
Zaske, Sebastian; Lenhard, Andreas; Keßler, Christian A; Kettler, Jan; Hepp, Christian; Arend, Carsten; Albrecht, Roland; Schulz, Wolfgang-Michael; Jetter, Michael; Michler, Peter; Becher, Christoph
2012-10-05
We demonstrate efficient (>30%) quantum frequency conversion of visible single photons (711 nm) emitted by a quantum dot to a telecom wavelength (1313 nm). Analysis of the first- and second-order coherence before and after wavelength conversion clearly proves that pivotal properties, such as the coherence time and photon antibunching, are fully conserved during the frequency translation process. Our findings underline the great potential of single photon sources on demand in combination with quantum frequency conversion as a promising technique that may pave the way for a number of new applications in quantum technology.
Growth and Obesity Among Older Single Ventricle Patients Presenting for Fontan Conversion.
Freud, Lindsay R; Webster, Gregory; Costello, John M; Tsao, Sabrina; Rychlik, Karen; Backer, Carl L; Deal, Barbara J
2015-10-01
Long-term growth outcomes and the prevalence of obesity among older single ventricle (SV) patients have not been well characterized. We investigated these parameters, as well as the impact of obesity on survival, in an older cohort of SV patients presenting for Fontan conversion. We analyzed preoperative height, weight, and body mass index (BMI) of patients who underwent Fontan conversion. Overweight and obese were defined as BMI ≥85 percentile and ≥95 percentile for patients <20 years and BMI 25 to 30 kg/m(2) and ≥30 kg/m(2) for patients ≥20 years, respectively. Postoperative transplant-free survival was assessed among obese, overweight, and normal weight patients. We evaluated 139 patients presenting for Fontan conversion at a median age of 23.2 years. Patients had shorter stature compared to the normal population (mean Z score -0.6, P < .001). Younger patients had lower BMI compared to the normal population (<20 years: mean Z score -0.5, P = .02), while older patients had elevated BMI (≥20 years: mean Z score +0.4, P < .001). The mean BMI among older patients approached overweight at 24.6 kg/m(2). The prevalence of obesity increased with advancing age, with 36% overweight and 14% obese at >30 years. At a median of 8.2 years following Fontan conversion, obesity and overweight status were not associated with transplant-free survival. Older SV patients presenting for Fontan conversion had shorter stature compared to the normal population as well as a high prevalence of overweight and obesity. Although there was no relationship between weight status and early postoperative survival, further investigation of long-term outcomes is warranted. © The Author(s) 2015.
Conversation Analysis in Computer-Assisted Language Learning
ERIC Educational Resources Information Center
González-Lloret, Marta
2015-01-01
The use of Conversation Analysis (CA) in the study of technology-mediated interactions is a recent methodological addition to qualitative research in the field of Computer-assisted Language Learning (CALL). The expansion of CA in Second Language Acquisition research, coupled with the need for qualitative techniques to explore how people interact…
NASA Technical Reports Server (NTRS)
1973-01-01
Technological aspects of solar energy conversion by photovoltaic cells are considered. The advantage of the single crystal silicon solar cell approach is developed through comparisons with polycrystalline silicon, cadmium sulfide/copper sulfide thin film cells, and other materials and devices.
Architecture for Building Conversational Agents that Support Collaborative Learning
ERIC Educational Resources Information Center
Kumar, R.; Rose, C. P.
2011-01-01
Tutorial Dialog Systems that employ Conversational Agents (CAs) to deliver instructional content to learners in one-on-one tutoring settings have been shown to be effective in multiple learning domains by multiple research groups. Our work focuses on extending this successful learning technology to collaborative learning settings involving two or…
Department of Combat Medic Training-Technology Enhancement
2011-04-15
SAYS : ............................................................................................................................ 6 2 INTRODUCTION...determined to be exempt from IRB protocol per Appendix 1.3 What this report says : Section 1 – Executive Summary: (this section) Section 2...with automatic conversion to digital text (conversion of handwriting to text) or use pre-scripted comments from a drop-down menu. b. Validation of
Palomar College: A Technological Transformation.
ERIC Educational Resources Information Center
Halttunen, Lynda Gavigan
2002-01-01
Offers advice for colleges intending to undergo software conversions, asserting that sufficient resources are key to a smooth process. Describes the conversion process at Palomar College (California) in 1997, when Palomar purchased PeopleSoft enterprise-wide software in response to Y2K compliance issues. Stresses the ongoing need for training and…
Sustainable Bioproducts LLC’s proposed research will further develop an efficient, economical and scalable process for conversion of municipal solid wastes and agricultural wastes to biodiesel and ethanol. The technology is based on use of a novel extremophilic fun...
NASA Astrophysics Data System (ADS)
Ünsal, Zeynep; Jakobson, Britt; Molander, Bengt-Olov; Wickman, Per-Olof
2017-04-01
In this study, we examine how bilingual students in elementary school use their languages and what this means for their meaning-making in science. The class was multilingual with students bilingual in different minority languages and the teacher monolingual in Swedish. The analysis is based on a pragmatic approach and the theory of translanguaging. The science content was electricity, and the teaching involved class instruction and hands-on activities in small groups. The findings of the study are divided into two categories, students' conversations with the teacher and student's conversations with each other. Since the class was multilingual, the class instruction was carried out in Swedish. Generally, when the conversations were characterised by an initiation, response and evaluation pattern, the students made meaning of the activities without any language limitations. However, when the students, during whole class instruction, were engaged in conversations where they had to argue, discuss and explain their ideas, their language repertoire in Swedish limited their possibilities to express themselves. During hands-on activities, students with the same minority language worked together and used both of their languages as resources. In some situations, the activities proceeded without any visible language limitations. In other situations, students' language repertoire limited their possibilities to make meaning of the activities despite being able to use both their languages. What the results mean for designing and conducting science lessons in a multilingual class is discussed.
[Results and experiences of conversion of hip arthrodesis ].
Schuh, A; Zeiler, G; Werber, S
2005-03-01
With the predictably good outcome of total hip arthroplasty today (THA), hip arthrodesis currently has limited indications. Over the long term, however, most patients develop secondary degenerative arthritis in the spine, contralateral hip, and ipsilateral knee due to overloading. The deteriorating condition of these joints eventually causes the onset of pain, which often requires conversion of a fused hip to a THA. The results and experiences of conversions of a hip arthrodesis into a THA are reported. Between 1 January 1985 and 31 December 2001 conversion of a previously performed arthrodesis of the hip to THA was carried out in a total of 45 patients; 34 patients could be followed up after the conversion to THA after a mean of 77.5 months (min.: 24, max.: 208). The primary indications for the conversion were low back pain (n=21) and ipsilateral knee pain (n=13). The mean age at the time of THA was 75.3 years (min.: 32, max.: 74). The mean time interval between the arthrodesis and the conversion to THA was 30.4 years (min.: 5, max.: 66). Of 34 hips, 29 (85%) were either pain free or had minimal pain. Complications included one persisting sciatic nerve palsy, two superficial infections, two periprosthetic fractures, and two heterotopic ossifications IV degrees with one recurrence of ankylosis and one marked reduction of motion. Revision arthroplasty was performed in four hips. Postoperatively 7 patients showed no limping, 11 showed a slight limp, and 17 a pronounced limp. Recurrent dislocations occurred in one patient. We conclude that this operation can lead to satisfactory results even after a long duration of the arthrodesis. There is a high rate of complications after conversion of a hip arthrodesis to a total hip arthroplasty. These issues must be carefully considered and discussed with the patient before any conversion procedure.
Economic Impact of Laparoscopic Conversion to Open in Left Colon Resections.
Etter, Katherine; Davis, Brad; Roy, Sanjoy; Kalsekar, Iftekhar; Yoo, Andrew
2017-01-01
Studies have shown economic and clinical advantages of laparoscopic left-colon resections. Laparoscopic conversion to open is an important surgical outcome. We estimated conversion incidence, identified risk factors, and measured the clinical and economic impact. In this retrospective study, we used the Premier Perspective database to analyze left-sided colectomies from 2009 to 2014. Operating room time (ORT), length of stay (LOS), total hospital cost (2014 U.S. dollars); along with incidence of in-hospital clinical outcomes (anastomotic leak surrogate [Leak], transfusion, and mortality) were evaluated. Multivariable models accounting for hospital clustering were used to identify conversion risk factors and analyze the effect of conversion on economic and clinical outcomes. A total of 41,417 patients: 8,468 left hemicolectomy and 32,949 sigmoidectomy were identified. Lap-Conversion incidence was 13.3% (95% CI, 12.9-13.7). Adjusted mean LOS (±SE) days was significantly lower for the Lap-Successful group (4.9 compared with Lap-Conversion 6.8 and Open-Planned 7.0), but Lap-Conversion and Open-Planned had similar LOS. Adjusted mean cost was higher for Lap-Conversion $20,165 compared to Open-Planned $18,797; but this difference was smaller than the cost savings for Lap-Successful $16,206 ± $219. Open-Planned had lower odds of Leak compared to Lap-Conversion. Open-Planned and Lap-Conversion had similar odds of transfusion and mortality. Conversion risk factors included inflammatory bowel disease and left-hemicolectomy. Colorectal specialists were associated with 38% decreased odds of conversion. Successful laparoscopic surgery was the most cost effective, with decreased LOS and odds of blood transfusion, leak surrogate, and mortality. Conversion was the most expensive and had increased odds of leak surrogate, but similar LOS compared to Open-Planned. The beneficial effect size of successful laparoscopic surgery was larger than the negative effect of conversion compared to Open-Planned.
Economic Impact of Laparoscopic Conversion to Open in Left Colon Resections
Etter, Katherine; Davis, Brad; Roy, Sanjoy; Kalsekar, Iftekhar
2017-01-01
Background and Objectives: Studies have shown economic and clinical advantages of laparoscopic left-colon resections. Laparoscopic conversion to open is an important surgical outcome. We estimated conversion incidence, identified risk factors, and measured the clinical and economic impact. Methods: In this retrospective study, we used the Premier Perspective database to analyze left-sided colectomies from 2009 to 2014. Operating room time (ORT), length of stay (LOS), total hospital cost (2014 U.S. dollars); along with incidence of in-hospital clinical outcomes (anastomotic leak surrogate [Leak], transfusion, and mortality) were evaluated. Multivariable models accounting for hospital clustering were used to identify conversion risk factors and analyze the effect of conversion on economic and clinical outcomes. Results: A total of 41,417 patients: 8,468 left hemicolectomy and 32,949 sigmoidectomy were identified. Lap-Conversion incidence was 13.3% (95% CI, 12.9–13.7). Adjusted mean LOS (±SE) days was significantly lower for the Lap-Successful group (4.9 compared with Lap-Conversion 6.8 and Open-Planned 7.0), but Lap-Conversion and Open-Planned had similar LOS. Adjusted mean cost was higher for Lap-Conversion $20,165 compared to Open-Planned $18,797; but this difference was smaller than the cost savings for Lap-Successful $16,206 ± $219. Open-Planned had lower odds of Leak compared to Lap-Conversion. Open-Planned and Lap-Conversion had similar odds of transfusion and mortality. Conversion risk factors included inflammatory bowel disease and left-hemicolectomy. Colorectal specialists were associated with 38% decreased odds of conversion. Conclusions: Successful laparoscopic surgery was the most cost effective, with decreased LOS and odds of blood transfusion, leak surrogate, and mortality. Conversion was the most expensive and had increased odds of leak surrogate, but similar LOS compared to Open-Planned. The beneficial effect size of successful laparoscopic surgery was larger than the negative effect of conversion compared to Open-Planned. PMID:28890650
NASA Astrophysics Data System (ADS)
Lerner, Peter B.; Cutler, Paul H.; Miskovsky, Nicholas M.
2015-01-01
Modern technology allows the fabrication of antennas with a characteristic size comparable to the electromagnetic wavelength in the optical region. This has led to the development of new technologies using nanoscale rectifying antennas (rectennas) for solar energy conversion and sensing of terahertz, infrared, and visible radiation. For example, a rectenna array can collect incident radiation from an emitting source and the resulting conversion efficiency and operating characteristics of the device will depend on the spatial and temporal coherence properties of the absorbed radiation. For solar radiation, the intercepted radiation by a micro- or nanoscale array of devices has a relatively narrow spatial and angular distribution. Using the Van Cittert-Zernike theorem, we show that the coherence length (or radius) of solar radiation on an antenna array is, or can be, tens of times larger than the characteristic wavelength of the solar spectrum, i.e., the thermal wavelength, λT=2πℏc/(kBT), which for T=5000 K is about 3 μm. Such an effect is advantageous, making possible the rectification of solar radiation with nanoscale rectenna arrays, whose size is commensurate with the coherence length. Furthermore, we examine the blackbody radiation emitted from an array of antennas at temperature T, which can be quasicoherent and lead to a modified self-image, analogous to the Talbot-Lau self-imaging process but with thermal rather than monochromatic radiation. The self-emitted thermal radiation may be important as a nondestructive means for quality control of the array.
ERIC Educational Resources Information Center
Callanan, Maureen A.; Sabbagh, Mark A.
2004-01-01
Children sometimes seem to expect words to have mutually exclusive meanings in certain contexts of early word learning. In 2 studies, 12- to 24-month-old children and their parents were videotaped as they engaged in conversations while playing with sets of toys (sea creatures, vehicles, doll clothing) in free-play, storytelling, and categorization…
10Gbit/s all-optical NRZ to RZ conversion based on TOAD
NASA Astrophysics Data System (ADS)
Yan, Yumei; Yin, Lina; Zhou, Yunfeng; Liu, Guoming; Wu, Jian; Lin, Jintong
2006-01-01
Future network will include wavelength division multiplexing (WDM) and optical time division multiplexing (OTDM) technologies. All-optical format conversion between their respective preferable data formats, non-return-to-zero (NRZ) and return-to-zero (RZ), may become an important technology. In this paper, 10Gbit/s all-optical NRZ-to-RZ conversion is demonstrated based on terahertz optical asymmetric demultiplexer (TOAD) using clock all-optically recovered from the NRZ signal for the first time. The clock component is enhanced in an SOA and the pseudo-return-to-zero (PRZ) signal is filtered. The PRZ signal is input into an injection mode-locked fiber ring laser for clock recovery. The recovered clock and the NRZ signal are input into TOAD as pump signal and probe signal, respectively, and format conversion is performed. The quality of the converted RZ signal is determined by that of the recovered clock and the NRZ signal, whereas hardly influenced by gain recovery time of the SOA. In the experimental demonstration, the obtained RZ signal has an extinction ratio of 8.7dB and low pattern dependency. After conversion, the spectrum broadens obviously and shows multimode structure with spectrum interval of 0.08nm, which matches with the bit rate 10Gbit/s. Furthermore, this format conversion method has some tolerance on the pattern dependency of the clock signal.
NASA Astrophysics Data System (ADS)
Fleming, Jerry W.
2010-04-01
Thermoelectric energy harvesting has increasingly gained acceptance as a potential power source that can be used for numerous commercial and military applications. However, power electronic designers have struggled to incorporate energy harvesting methods into their designs due to the relatively small voltage levels available from many harvesting device technologies. In order to bridge this gap, an ultra-low input voltage power conversion method is needed to convert small amounts of scavenged energy into a usable form of electricity. Such a method would be an enabler for new and improved medical devices, sensor systems, and other portable electronic products. This paper addresses the technical challenges involved in ultra-low-voltage power conversion by providing a solution utilizing novel power conversion techniques and applied technologies. Our solution utilizes intelligent power management techniques to control unknown startup conditions. The load and supply management functionality is also controlled in a deterministic manner. The DC to DC converter input operating voltage is 20mV with a conversion efficiency of 90% or more. The output voltage is stored into a storage device such as an ultra-capacitor or lithium-ion battery for use during brown-out or unfavorable harvesting conditions. Applications requiring modular, low power, extended maintenance cycles, such as wireless instrumentation would significantly benefit from the novel power conversion and harvesting techniques outlined in this paper.
Kim, Ryul; Kim, Han-Joon; Kim, Aryun; Jang, Mi-Hee; Kim, Hyun Jeong; Jeon, Beomseok
2018-01-01
Objective Two conversion tables between the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) have recently been established for Parkinson’s disease (PD). This study aimed to validate them in Korean patients with PD and to evaluate whether they could be influenced by educational level. Methods A total of 391 patients with PD who undertook both the Korean MMSE and the Korean MoCA during the same session were retrospectively assessed. The mean, median, and root mean squared error (RMSE) of the difference between the true and converted MMSE scores and the intraclass correlation coefficient (ICC) were calculated according to educational level (6 or fewer years, 7–12 years, or 13 or more years). Results Both conversions had a median value of 0, with a small mean and RMSE of differences, and a high correlation between the true and converted MMSE scores. In the classification according to educational level, all groups had roughly similar values of the median, mean, RMSE, and ICC both within and between the conversions. Conclusion Our findings suggest that both MMSE-MoCA conversion tables are useful instruments for transforming MoCA scores into converted MMSE scores in Korean patients with PD, regardless of educational level. These will greatly enhance the utility of the existing cognitive data from the Korean PD population in clinical and research settings. PMID:29316782
Wastes to Resources: Appropriate Technologies for Sewage Treatment and Conversion.
ERIC Educational Resources Information Center
Anderson, Stephen P.
Appropriate technology options for sewage management systems are explained in this four-chapter report. The use of appropriate technologies is advocated for its health, environmental, and economic benefits. Chapter 1 presents background information on sewage treatment in the United States and the key issues facing municipal sewage managers.…
Converging Technology, Pedagogy, and Critical Thinking
ERIC Educational Resources Information Center
Moeller, Aleidine J.; Van Alstine, Megan
2011-01-01
The theme of children and technology has been a prevailing topic of conversation among parents, teachers and researchers, stirring debate in all sectors of society. What is gained and what is lost by these "digital natives" born into an age of globalization, social connections, instant communication and gratification? How can technology be…
Discursive Psychology and Educational Technology: Beyond the Cognitive Revolution
ERIC Educational Resources Information Center
Friesen, Norm
2009-01-01
As an alternative to dominant cognitive-constructivist approaches to educational technology, this article makes the case for what has been termed a discursive, or postcognitive, psychological research paradigm. It does so by adapting discursive psychological analyses of conversational activity to the study of educational technology use. It applies…
Introducing Technology Education at the Elementary Level
ERIC Educational Resources Information Center
McKnight, Sean
2012-01-01
Many school districts are seeing a need to introduce technology education to students at the elementary level. Pennsylvania's Penn Manor School District is one of them. Pennsylvania has updated science and technology standards for grades 3-8, and after several conversations the author had with elementary principals and the assistant superintendent…
Bekele, Esubalew; Dohrmann, Elizabeth; Warren, Zachary; Sarkar, Nilanjan
2014-01-01
Clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders (ASD). This project evaluated the application of a novel physiologically responsive virtual reality based technological system for conversation skills in a group of adolescents with ASD. The system altered components of conversation based on (1) performance alone or (2) the composite effect of performance and physiological metrics of predicted engagement (e.g., gaze pattern, pupil dilation, blink rate). Participants showed improved performance and looking pattern within the physiologically sensitive system as compared to the performance based system. This suggests that physiologically informed technologies may have the potential of being an effective tool in the hands of interventionists. PMID:25261247
Critical technology limits to silicon material and sheet production
NASA Technical Reports Server (NTRS)
Leipold, M. H.
1982-01-01
Earlier studies have indicated that expenditures related to the preparation of high-purity silicon and its conversion to silicon sheet represent from 40 to 52 percent of the cost of the entire panel. The present investigation is concerned with the elements which were selected for study in connection with the Flat-Plate Solar Array (FSA) Project. The first of two technologies which are being developed within the FSA Project involves the conversion of metallurgical-grade silicon through a silane purification process to silicon particles. The second is concerned with the conversion of trichlorosilane to dichlorosilane, and the subsequent production of silicon using modified rod reactors of the Siemens type. With respect to silicon sheet preparation, efforts have been focused both on the preparation of ingots, followed by wafering, and the direct crystallization of molten silicon into a ribbon or film.
Roadmap on optical energy conversion
Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; ...
2016-06-24
For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in themore » optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. As a result, it is our hope that the roadmap will serve as an important resource for the scientific community, new generations of researchers, funding agencies, industry experts, and investors.« less
Thermophotovoltaic Energy Conversion for Space Applications
NASA Astrophysics Data System (ADS)
Teofilo, V. L.; Choong, P.; Chen, W.; Chang, J.; Tseng, Y.-L.
2006-01-01
Thermophotovoltaic (TPV) energy conversion cells have made steady and over the years considerable progress since first evaluated by Lockheed Martin for direct conversion using nuclear power sources in the mid 1980s. The design trades and evaluations for application to the early defensive missile satellites of the Strategic Defense Initiative found the cell technology to be immature with unacceptably low cell efficiencies comparable to thermoelectric of <10%. Rapid advances in the epitaxial growth technology for ternary compound semiconductors, novel double hetero-structure junctions, innovative monolithic integrated cell architecture, and bandpass tandem filter have, in concert, significantly improved cell efficiencies to 25% with the promise of 35% using solar cell like multi-junction approach in the near future. Recent NASA sponsored design and feasibility testing programs have demonstrated the potential for 19% system efficiency for 100 We radioisotopic power sources at an integrated specific power of ~14 We/kg. Current state of TPV cell technology however limits the operating temperature of the converter cells to < 400K due to radiator mass consideration. This limitation imposes no system mass penalty for the low power application for use with radioisotopes power sources because of the high specific power of the TPV cell converters. However, the application of TPV energy conversion for high power sources has been perceived as having a major impediment above 1 kWe due to the relative low waste heat rejection temperature. We explore this limitation and compare the integrated specific power of TPV converters with current and projected TPV cells with other advanced space power conversion technologies. We find that when the redundancy needed required for extended space exploration missions is considered, the TPV converters have a much higher range of applicability then previously understood. Furthermore, we believe that with a relatively modest modifications of the current epitaxial growth in MOCVD, an optimal cell architecture for elevated TPV operation can be found to out-perform the state-of-the-art TPV at an elevated temperature.
Gogoi, Parikshit; Zhang, Zhe; Geng, Zhishuai; Liu, Wei; Hu, Weize; Deng, Yulin
2018-03-22
The pretreatment of lignocellulosic biomass plays a vital role in the conversion of cellulosic biomass to bioethanol, especially for softwoods and hardwoods. Although many pretreatment technologies have been reported so far, only a few pretreatment methods can handle large woodchips directly. To improve the efficiency of pretreatment, existing technologies require the grinding of the wood into small particles, which is an energy-consuming process. Herein, for the first time, we report a simple, effective, and low-temperature (≈100 °C) process for the pretreatment of hardwood (HW) and softwood (SW) chips directly by using a catalytic system of FeCl 3 /NaNO 3 (FCSNRC). The pretreatment experiments were conducted systematically, and a conversion of 71.53 and 70.66 % of cellulose to sugar could be obtained for the direct use of large HW and SW chips. The new method reported here overcomes one of the critical barriers in biomass-to-biofuel conversion, and both grinding and thermal energies can be reduced significantly. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Durrant, James R
2013-08-13
This review starts with a brief overview of the technological potential of molecular-based solar cell technologies. It then goes on to focus on the core scientific challenge associated with using molecular light-absorbing materials for solar energy conversion, namely the separation of short-lived, molecular-excited states into sufficiently long-lived, energetic, separated charges capable of generating an external photocurrent. Comparisons are made between different molecular-based solar cell technologies, with particular focus on the function of dye-sensitized photoelectrochemical solar cells as well as parallels with the function of photosynthetic reaction centres. The core theme of this review is that generating charge carriers with sufficient lifetime and a high quantum yield from molecular-excited states comes at a significant energetic cost-such that the energy stored in these charge-separated states is typically substantially less than the energy of the initially generated excited state. The role of this energetic loss in limiting the efficiency of solar energy conversion by such devices is emphasized, and strategies to minimize this energy loss are compared and contrasted.
Systematic Characterization and Comparative Analysis of the Rabbit Immunoglobulin Repertoire
Lavinder, Jason J.; Hoi, Kam Hon; Reddy, Sai T.; Wine, Yariv; Georgiou, George
2014-01-01
Rabbits have been used extensively as a model system for the elucidation of the mechanism of immunoglobulin diversification and for the production of antibodies. We employed Next Generation Sequencing to analyze Ig germline V and J gene usage, CDR3 length and amino acid composition, and gene conversion frequencies within the functional (transcribed) IgG repertoire of the New Zealand white rabbit (Oryctolagus cuniculus). Several previously unannotated rabbit heavy chain variable (VH) and light chain variable (VL) germline elements were deduced bioinformatically using multidimensional scaling and k-means clustering methods. We estimated the gene conversion frequency in the rabbit at 23% of IgG sequences with a mean gene conversion tract length of 59±36 bp. Sequencing and gene conversion analysis of the chicken, human, and mouse repertoires revealed that gene conversion occurs much more extensively in the chicken (frequency 70%, tract length 79±57 bp), was observed to a small, yet statistically significant extent in humans, but was virtually absent in mice. PMID:24978027
Hearsay Ethnography: Conversational Journals as a Method for Studying Culture in Action.
Watkins, Susan Cotts; Swidler, Ann
2009-04-01
Social scientists have long struggled to develop methods adequate to their theoretical understanding of meaning as collective and dynamic. While culture is widely understood as an emergent property of collectivities, the methods we use keep pulling us back towards interview-situated accounts and an image of culture as located in individual experience. Scholars who seek to access supra-individual semiotic structures by studying public rituals and other collectively-produced texts then have difficulty capturing the dynamic processes through which such meanings are created and changed in situ. To try to capture more effectively the way meaning is produced and re-produced in everyday life, we focus here on conversational interactions-the voices and actions that constitute the relational space among actors. Conversational journals provide us with a method: the analysis of texts produced by cultural insiders who keep journals of who-said-what-to-whom in conversations they overhear or events they participate in during the course of their daily lives. We describe the method, distinguishing it from other approaches and noting its drawbacks. We then illustrate the methodological advantages of conversational journals with examples from our texts. We end with a discussion of the method's potential in our setting as well as in other places and times.
Galvão, Marília Regalado; Caldas, Sergei Godeiro Fernandes Rabelo; Bagnato, Vanderlei Salvador; de Souza Rastelli, Alessandra Nara; de Andrade, Marcelo Ferrarezi
2013-01-01
The aim of this study was to evaluate the degree of conversion and hardness of different composite resins, photo-activated for 40 s with two different light guide tips, fiber optic and polymer. Five specimens were made for each group evaluated. The percentage of unreacted carbon double bonds (% C═C) was determined from the ratio of absorbance intensities of aliphatic C═C (peak at 1637 cm(-1)) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm(-1)). The Vickers hardness measurements were performed in a universal testing machine. A 50 gf load was used and the indenter with a dwell time of 30 seconds. The degree of conversion and hardness mean values were analyzed separately by ANOVA and Tukey's test, with a significance level set at 5%. The mean values of degree of conversion for the polymer and fiber optic light guide tip were statistically different (P<.001). The hardness mean values were statistically different among the light guide tips (P<.001), but also there was difference between top and bottom surfaces (P<.001). The results showed that the resins photo-activated with the fiber optic light guide tip promoted higher values for degree of conversion and hardness.
Galvão, Marília Regalado; Caldas, Sergei Godeiro Fernandes Rabelo; Bagnato, Vanderlei Salvador; de Souza Rastelli, Alessandra Nara; de Andrade, Marcelo Ferrarezi
2013-01-01
Objective: The aim of this study was to evaluate the degree of conversion and hardness of different composite resins, photo-activated for 40 s with two different light guide tips, fiber optic and polymer. Methods: Five specimens were made for each group evaluated. The percentage of unreacted carbon double bonds (% C═C) was determined from the ratio of absorbance intensities of aliphatic C═C (peak at 1637 cm−1) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm−1). The Vickers hardness measurements were performed in a universal testing machine. A 50 gf load was used and the indenter with a dwell time of 30 seconds. The degree of conversion and hardness mean values were analyzed separately by ANOVA and Tukey’s test, with a significance level set at 5%. Results: The mean values of degree of conversion for the polymer and fiber optic light guide tip were statistically different (P<.001). The hardness mean values were statistically different among the light guide tips (P<.001), but also there was difference between top and bottom surfaces (P<.001). Conclusions: The results showed that the resins photo-activated with the fiber optic light guide tip promoted higher values for degree of conversion and hardness. PMID:23407620
Biomass pyrolysis liquid to citric acid via 2-step bioconversion.
Yang, Zhiguang; Bai, Zhihui; Sun, Hongyan; Yu, Zhisheng; Li, Xingxing; Guo, Yifei; Zhang, Hongxun
2014-12-31
The use of fossil carbon sources for fuels and petrochemicals has serious impacts on our environment and is unable to meet the demand in the future. A promising and sustainable alternative is to substitute fossil carbon sources with microbial cell factories converting lignocellulosic biomass into desirable value added products. However, such bioprocesses require tolerance to inhibitory compounds generated during pretreatment of biomass. In this study, the process of sequential two-step bio-conversion of biomass pyrolysis liquid containing levoglucosan (LG) to citric acid without chemical detoxification has been explored, which can greatly improve the utilization efficiency of lignocellulosic biomass. The sequential two-step bio-conversion of corn stover pyrolysis liquid to citric acid has been established. The first step conversion by Phanerochaete chrysosporium (P. chrysosporium) is desirable to decrease the content of other compounds except levoglucosan as a pretreatment for the second conversion. The remaining levoglucosan in solution was further converted into citric acid by Aspergillus niger (A. niger) CBX-209. Thus the conversion of cellulose to citric acid is completed by both pyrolysis and bio-conversion technology. Under experimental conditions, levoglucosan yield is 12% based on the feedstock and the citric acid yield can reach 82.1% based on the levoglucosan content in the pyrolysis liquid (namely 82.1 g of citric acid per 100 g of levoglucosan). The study shows that P. chrysosporium and A. niger have the potential to be used as production platforms for value-added products from pyrolyzed lignocellulosic biomass. Selected P. chrysosporium is able to decrease the content of other compounds except levoglucosan and levoglucosan can be further converted into citric acid in the residual liquids by A. niger. Thus the conversion of cellulose to citric acid is completed by both pyrolysis and bio-conversion technology.
Pape, Lars; Ahlenstiel, Thurid; Kreuzer, Martin; Ehrich, Jochen H H
2008-09-01
It has been shown in adult kidney transplant recipients that a conversion from MMF to EC-MPS significantly reduced the GI related symptom burden. No such study exists on children with GI problems while receiving MMF therapy. Ten paediatric kidney transplant recipients (mean age 14.5 yr, s.d. 4.5) receiving triple immunosuppression (Cyclosporin A or Tacrolimus + MMF + Prednisolone) with severe GI symptoms were converted to an equimolar dose of EC-MPS. The GSRS was completed before and at four wk after the switch, and GFR was determined for a mean period of six months. Values were compared by the paired t-test. Mean GSRS improved significantly after the switch to EC-MPS in all but one patient, from 2.1 (s.d. 0.9) to 1.1 (s.d. 0.6). The differences could be found in all four subscales. Graft function did not change after conversion to EC-MPS. In children with moderate or severe GI symptoms while receiving MMF, conversion to EC-MPS led to significantly reduced GI symptoms.
Developmental Considerations on the Free-Piston Stirling Power Convertor for Use in Space
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.
2006-01-01
Free-piston Stirling power conversion has been considered a candidate for radioisotope power systems for space for more than a decade. Prior to the free-piston Stirling architecture, systems were designed with kinematic Stirling engines with rotary alternators to convert heat to electricity. These systems were proposed with lightly loaded linkages to achieve the necessary life. When the free-piston configuration was initially proposed, it was thought to be attractive due to the relatively high conversion efficiency, acceptable mass, and the potential for long life and high reliability. These features have consistently been recognized by teams that have studied technology options for radioisotope power systems. Since free-piston Stirling power conversion was first considered for space power applications, there have been major advances in three general areas of development: demonstration of life and reliability, the success achieved by Stirling cryocoolers in flight, and the overall developmental maturity of the technology for both flight and terrestrial applications. Based on these advances, free-piston Stirling convertors are currently being developed for a number of terrestrial applications. They commonly operate with the power, efficiency, life, and reliability as intended, and much of the development now centers on system integration. This paper will summarize the accomplishments of free-piston Stirling power conversion technology over the past decade, review the status, and discuss the challenges that remain.
Developmental Considerations on the Free-piston Stirling Power Convertor for Use in Space
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.
2007-01-01
Free-piston Stirling power conversion has been considered a candidate for radioisotope power systems for space for more than a decade. Prior to the free-piston Stirling architecture, systems were designed with kinematic Stirling engines with rotary alternators to convert heat to electricity. These systems were proposed with lightly loaded linkages to achieve the necessary life. When the free-piston configuration was initially proposed, it was thought to be attractive due to the relatively high conversion efficiency, acceptable mass, and the potential for long life and high reliability. These features have consistently been recognized by teams that have studied technology options for radioisotope power systems. Since free-piston Stirling power conversion was first considered for space power applications, there have been major advances in three general areas of development: demonstration of life and reliability, the success achieved by Stirling cryocoolers in flight, and the overall developmental maturity of the technology for both flight and terrestrial applications. Based on these advances, free-piston Stirling convertors are currently being developed for a number of terrestrial applications. They commonly operate with the power, efficiency, life, and reliability as intended, and much of the development now centers on system integration. This paper will summarize the accomplishments of free-piston Stirling power conversion technology over the past decade, review the status, and discuss the challenges that remain.
Conversion and the Real: The (Im)Possibility of Testimonial Representation.
Sremac, Srdjan
Although the spiritual vibration of conversion can be felt (by the curious outsider) through what conversion performers say in their testimonial discourse, what transforms the convert 'on stage' into a 'new being' and what is 'the real' ( le réel ) in conversion performance remain unclear. An important question in this connection is, What is 'real' in a conversion representation, both with respect to the convert's interaction with the audience and to the construction of social reality? Following Lacan's tripartite register of the imaginary, the symbolic, and the real, in this essay I argue that through testimonial discourse converts construct social reality as an answer to the impossibility of 'the real' in their performative discursive practice. In the first part, I question the constructed nature of testimonial representations-as well as some academic knowledge production that has governed conversion research in the last few decades-and how these representations encourage 'outsiders' to read the narrative repertoire as a negation or mirroring 'the real' of the conversion experience. In the second part, I apply Roland Barthes' analytic reflections on photography to conversion research, especially the notions of the studium (the common ground of cultural meanings) and the punctum (a personal experience that inspires private meaning). This brings me to a number of theorists (mostly never used in the field of religious conversion)-Jacques Lacan, Roland Barthes, and Slavoj Žižek-who are important to the perspective that is developed in this essay.
Gas Foil Bearings for Space Propulsion Nuclear Electric Power Generation
NASA Technical Reports Server (NTRS)
Howard, Samuel A.; DellaCorte, Christopher
2006-01-01
The choice of power conversion technology is critical in directing the design of a space vehicle for the future NASA mission to Mars. One candidate design consists of a foil bearing supported turbo alternator driven by a helium-xenon gas mixture heated by a nuclear reactor. The system is a closed-loop, meaning there is a constant volume of process fluid that is sealed from the environment. Therefore, foil bearings are proposed due to their ability to use the process gas as a lubricant. As such, the rotor dynamics of a foil bearing supported rotor is an important factor in the eventual design. The current work describes a rotor dynamic analysis to assess the viability of such a system. A brief technology background, assumptions, analyses, and conclusions are discussed in this report. The results indicate that a foil bearing supported turbo alternator is possible, although more work will be needed to gain knowledge about foil bearing behavior in helium-xenon gas.
Monetization of Nigeria coal by conversion to hydrocarbon fuels through Fischer-Tropsch process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oguejiofor, G.C.
Given the instability of crude oil prices and the disruptions in crude oil supply chains, this article offers a complementing investment proposal through diversification of Nigeria's energy source and dependence. Therefore, the following issues were examined and reported: A comparative survey of coal and hydrocarbon reserve bases in Nigeria was undertaken and presented. An excursion into the economic, environmental, and technological justifications for the proposed diversification and roll-back to coal-based resource was also undertaken and presented. The technology available for coal beneficiation for environmental pollution control was reviewed and reported. The Fischer-Tropsch synthesis and its advances into Sasol's slurry phasemore » distillate process were reviewed. Specifically, the adoption of Sasol's advanced synthol process and the slurry phase distillate process were recommended as ways of processing the products of coal gasification. The article concludes by discussing all the above-mentioned issues with regard to value addition as a means of wealth creation and investment.« less
Integrating Technology in Early Literacy: A Snapshot of Community Innovation in Family Engagement
ERIC Educational Resources Information Center
Cook, Shayna
2016-01-01
As a growing number of young children across the country are using media and interactive technology on a daily basis, the conversation has shifted from whether technology is appropriate to use at all to how it should be used to best support children's early language and literacy development. A new brief released today, Integrating Technology in…
ERIC Educational Resources Information Center
McCrory, David L.; Maughan, George R.
This document--intended for secondary school and college students--contains technology education instructional units on engines and power, energy conversion, energy futures, energy sources, communication and society, energy and power in communication, communication systems, microelectronics in communication, transportation in society, energy and…
Chemical Looping Technology: Oxygen Carrier Characteristics.
Luo, Siwei; Zeng, Liang; Fan, Liang-Shih
2015-01-01
Chemical looping processes are characterized as promising carbonaceous fuel conversion technologies with the advantages of manageable CO2 capture and high energy conversion efficiency. Depending on the chemical looping reaction products generated, chemical looping technologies generally can be grouped into two types: chemical looping full oxidation (CLFO) and chemical looping partial oxidation (CLPO). In CLFO, carbonaceous fuels are fully oxidized to CO2 and H2O, as typically represented by chemical looping combustion with electricity as the primary product. In CLPO, however, carbonaceous fuels are partially oxidized, as typically represented by chemical looping gasification with syngas or hydrogen as the primary product. Both CLFO and CLPO share similar operational features; however, the optimum process configurations and the specific oxygen carriers used between them can vary significantly. Progress in both CLFO and CLPO is reviewed and analyzed with specific focus on oxygen carrier developments that characterize these technologies.
Silicate phosphors and white LED technology: improvements and opportunities
NASA Astrophysics Data System (ADS)
Sommer, Christian; Wenzl, Franz P.; Hartmann, Paul; Pachler, Peter; Schweighart, Marko; Leising, Guenther; Tasch, Stefan
2007-09-01
With the advent of a new generation of high brightness LEDs especially in the blue spectral range, white light technology based on phosphor conversion gains maturity for a successful penetration of, e.g., the general lighting market within the next years. Major challenges ahead are originating from the specific demands of the markets on small emission areas, highest possible intensities, long-term color stability, and spatial homogeneity of color coordinates. The LED industry more or less relies on the conversion phosphor classes of YAG, Sulfates, and Silicates, embedded in silicone matrices. A number of conformal coating technologies are in use. The optimization of the coating geometries with the help of software simulation offers a high potential for increased angular color homogeneity and high package densities, especially when secondary optics is in use. We report on recent progress in simulating parameters for improved white LEDs manufactured by coating technologies.
Critical thinking about fables: examining language production and comprehension in adolescents.
Nippold, Marilyn A; Frantz-Kaspar, Megan W; Cramond, Paige M; Kirk, Cecilia; Hayward-Mayhew, Christine; MacKinnon, Melanie
2015-04-01
This study was designed primarily to determine if a critical-thinking task involving fables would elicit greater syntactic complexity than a conversational task in adolescents. Another purpose was to determine how well adolescents understand critical-thinking questions about fables. Forty adolescents (N=20 boys and 20 girls; mean age=14 years) with typical language development answered critical-thinking questions about the deeper meanings of fables. They also participated in a standard conversational task. The syntactic complexity of their responses during the speaking tasks was analyzed for mean length of communication unit (MLCU) and clausal density (CD). Both measures of syntactic complexity, MLCU and CD, were substantially greater during the critical-thinking task compared with the conversational task. It was also found that the adolescents understood the questions quite well, earning a mean accuracy score of 80%. The critical-thinking task has potential for use as a new type of language-sampling tool to examine language production and comprehension in adolescents.
New membranes could speed the biofuels conversion process and reduce cost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Michael
2014-07-23
ORNL researchers have developed a new class of membranes that could enable faster, more cost efficient biofuels production. These membranes are tunable at the nanopore level and have potential uses in separating water from fuel and acid from bio-oils. The membrane materials technology just won an R&D 100 award. ORNL and NREL are partnering, with support from the DOE Bioenergy Technologies Office, to determine the best uses of these membranes to speed the biofuels conversion process. Development of the membranes was funded by DOE BETO and ORNL's Laboratory Directed Research and Development Program.
Mixed waste paper to ethanol fuel. A technology, market, and economic assessment for Washington
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.
New membranes could speed the biofuels conversion process and reduce cost
Hu, Michael
2018-01-26
ORNL researchers have developed a new class of membranes that could enable faster, more cost efficient biofuels production. These membranes are tunable at the nanopore level and have potential uses in separating water from fuel and acid from bio-oils. The membrane materials technology just won an R&D 100 award. ORNL and NREL are partnering, with support from the DOE Bioenergy Technologies Office, to determine the best uses of these membranes to speed the biofuels conversion process. Development of the membranes was funded by DOE BETO and ORNL's Laboratory Directed Research and Development Program.
Programming an Experiment Control System
NASA Technical Reports Server (NTRS)
Lange, Stuart
2004-01-01
As NASA develops plans for more and more ambitious missions into space, it is the job of NASA's researchers to develop the technologies that will make those planed missions feasible. One such technology is energy conversion. Energy is all around us; it is in the light that we see in the chemical bonds that hold compounds together, and in mass itself.Energy is the fundamental building block of our universe, yet it has always been straggle for humans to convert this energy into useable forms, like electricity. For space-based applications, NASA requires efficient energy conversion method that require little or no fuel.
High Average Power Raman Conversion in Diamond: ’Eyesafe’ Output and Fiber Laser Conversion
2015-06-19
Eyesafe’ output and fiber laser conversion 5a. CONTRACT NUMBER FA2386-12-1-4055 5b. GRANT NUMBER Grant 12RSZ077_124055 5c. PROGRAM ELEMENT...generating 380 W was demonstrated using a 630 W Ybdoped fiber laser system. In each case the performance was unsaturated and limited by the available pump...converter for conventional high power laser technologies including Nd doped lasers and Yb-doped fiber lasers. Diamond’s power handling capability now
NASA Technical Reports Server (NTRS)
Grossman, G. R.; Roberts, A. S., Jr.
1975-01-01
An investigation was made of university research concerning energy conversion and conservation techniques which may be applied in small single-family residences. Information was accumulated through published papers, progress reports, telephone conversations, and personal interviews. A synopsis of each pertinent investigation is given. Finally, a discussion of the synopses is presented and recommendations are made concerning the applicability of concepts for the design and construction of NASA-Langley Research Center's proposed Technology Utilization House in Hampton, Virginia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, B.
2011-03-01
This report discusses an investigation that addressed two thermochemical conversion pathways for the production of liquid fuels and addressed the steps to the process, the technology providers, a method for determining the state of technology and a tool to continuously assess the state of technology. This report summarizes the findings of the investigation as well as recommendations for improvements for future studies.
Biochemical Conversion Techno-Economic Analysis | Bioenergy | NREL
dotted line separates the two sides) separates out the conversion technologies with Balance of Plant in , Distillation and Solids Recovery = $0.14, and Balance of Plant = $0.77; 2008: Feedstock = $1.04, Prehydrolysis Recovery = $0.14, and Balance of Plant = $0.76; 2009: Feedstock = $0.95, Prehydrolysis/Treatment = $0.78
The First NREL Conference on thermophotovoltaic generation of electricity: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-08-01
This collection of abstracts from the July 1994 meeting contains various information on thermophotovoltaic (TPV) conversion and converters. Discussed topics include: the current status of TPV conversion, TPV tutorials, heat source and emitter technologies, advanced TPV devices, selective emitter theory and practice, programmatic and systems issues, device fundamentals, and device and material characterization.
Conversations about Science Education: A Retrospective of Science Education Research in "CJSTME"
ERIC Educational Resources Information Center
Pegg, Jerine; Wiseman, Dawn; Brown, Carol
2015-01-01
This review focuses on science education contributions to the "Canadian Journal of Science, Mathematics and Technology Education" (CJSMTE) from January 2001 through December 2014. Through a combination of content and citation analysis, we examine the journal as a location for conversations around specific themes and broader ideas related…
From Affinity and Beyond: A Study of Online Literacy Conversations and Communities
ERIC Educational Resources Information Center
Albers, Peggy; Pace, Christi L.; Odo, Dennis Murphy
2016-01-01
Digital technologies make possible new avenues for sharing and accessing literacy research and practices worldwide. Among the myriad of options available, web seminars have become popular online learning venues. The current investigation is part of Global Conversations in Literacy Research (GCLR), a longitudinal and qualitative study now in its…
Embedding covalency into metal catalysts for efficient electrochemical conversion of CO2.
Lim, Hyung-Kyu; Shin, Hyeyoung; Goddard, William A; Hwang, Yun Jeong; Min, Byoung Koun; Kim, Hyungjun
2014-08-13
CO2 conversion is an essential technology to develop a sustainable carbon economy for the present and the future. Many studies have focused extensively on the electrochemical conversion of CO2 into various useful chemicals. However, there is not yet a solution of sufficiently high enough efficiency and stability to demonstrate practical applicability. In this work, we use first-principles-based high-throughput screening to propose silver-based catalysts for efficient electrochemical reduction of CO2 to CO while decreasing the overpotential by 0.4-0.5 V. We discovered the covalency-aided electrochemical reaction (CAER) mechanism in which p-block dopants have a major effect on the modulating reaction energetics by imposing partial covalency into the metal catalysts, thereby enhancing their catalytic activity well beyond modulations arising from d-block dopants. In particular, sulfur or arsenic doping can effectively minimize the overpotential with good structural and electrochemical stability. We expect this work to provide useful insights to guide the development of a feasible strategy to overcome the limitations of current technology for electrochemical CO2 conversion.
Cogeneration Technology Alternatives Study (CTAS). Volume 5: Cogeneration systems results
NASA Technical Reports Server (NTRS)
Gerlaugh, H. E.; Hall, E. W.; Brown, D. H.; Priestley, R. R.; Knightly, W. F.
1980-01-01
The use of various advanced energy conversion systems is examined and compared with each other and with current technology systems for savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. The methodology and results of matching the cogeneration energy conversion systems to approximately 50 industrial processes are described. Results include fuel energy saved, levelized annual energy cost saved, return on investment, and operational factors relative to the noncogeneration base cases.
Quantum frequency conversion with ultra-broadband tuning in a Raman memory
NASA Astrophysics Data System (ADS)
Bustard, Philip J.; England, Duncan G.; Heshami, Khabat; Kupchak, Connor; Sussman, Benjamin J.
2017-05-01
Quantum frequency conversion is a powerful tool for the construction of hybrid quantum photonic technologies. Raman quantum memories are a promising method of conversion due to their broad bandwidths. Here we demonstrate frequency conversion of THz-bandwidth, fs-duration photons at the single-photon level using a Raman quantum memory based on the rotational levels of hydrogen molecules. We shift photons from 765 nm to wavelengths spanning from 673 to 590 nm—an absolute shift of up to 116 THz. We measure total conversion efficiencies of up to 10% and a maximum signal-to-noise ratio of 4.0(1):1, giving an expected conditional fidelity of 0.75, which exceeds the classical threshold of 2/3. Thermal noise could be eliminated by cooling with liquid nitrogen, giving noiseless conversion with wide tunability in the visible and infrared.
Feed-conversion ratio of finisher pigs in the USA.
Losinger, W C
1998-10-09
Although the feed-conversion ratio is recognized as a prominent indicator of profitability for pork producers, only 212 (50.7%) of 418 producers who were asked the feed-conversion ratio for finisher pigs provided a response during the USA National Animal Health Monitoring System 1995 National Swine Study. Of these, 126 (59.4%) producers furnished a feed-conversion ratio which they characterized as having been calculated from records, while 86 (40.6%) gave a response that they characterized as estimated or guessed. Feed-conversion ratios ranged from 2.18 to 5.91 kg of feed fed for each kg of live-body weight gained during the grower/finisher phase, with a mean of 3.28 and a standard deviation of 0.52. Stepwise regression revealed the following management factors to be associated with improved feed-conversion ratios: > or = 3 different rations fed during the grower/finisher phase (P < 0.01); no rations mixed on the farm (P < 0.05); and not giving chlortetracycline in feed or water as a disease preventive or growth promotant (P < 0.01). In addition, operations where > or = 3000 pigs entered the grower/finisher-production phase during the six-month period prior to interview had a better mean feed-conversion ratio than operations where < 3000 pigs entered the grower/finisher phase (P < 0.01).
Evaluation of alternative future energy scenarios for Brazil using an energy mix model
NASA Astrophysics Data System (ADS)
Coelho, Maysa Joppert
The purpose of this study is to model and assess the performance and the emissions impacts of electric energy technologies in Brazil, based on selected economic scenarios, for a time frame of 40 years, taking the year of 1995 as a base year. A Base scenario has been developed, for each of three economic development projections, based upon a sectoral analysis. Data regarding the characteristics of over 300 end-use technologies and 400 energy conversion technologies have been collected. The stand-alone MARKAL technology-based energy-mix model, first developed at Brookhaven National Laboratory, was applied to a base case study and five alternative case studies, for each economic scenario. The alternative case studies are: (1) minimum increase in the thermoelectric contribution to the power production system of 20 percent after 2010; (2) extreme values for crude oil price; (3) minimum increase in the renewable technologies contribution to the power production system of 20 percent after 2010; (4) uncertainty on the cost of future renewable conversion technologies; and (5) model is forced to use the natural gas plants committed to be built in the country. Results such as the distribution of fuel used for power generation, electricity demand across economy sectors, total CO2 emissions from burning fossil fuels for power generation, shadow price (marginal cost) of technologies, and others, are evaluated and compared to the Base scenarios previous established. Among some key findings regarding the Brazilian energy system it may be inferred that: (1) diesel technologies are estimated to be the most cost-effective thermal technology in the country; (2) wind technology is estimated to be the most cost-effective technology to be used when a minimum share of renewables is imposed to the system; and (3) hydroelectric technologies present the highest cost/benefit relation among all conversion technologies considered. These results are subject to the limitations of key input assumptions and key assumptions of modeling framework, and are used as the basis for recommendations regarding energy development priorities for Brazil.
Szuhaj, Márk; Ács, Norbert; Tengölics, Roland; Bodor, Attila; Rákhely, Gábor; Kovács, Kornél L; Bagi, Zoltán
2016-01-01
Applications of the power-to-gas principle for the handling of surplus renewable electricity have been proposed. The feasibility of using hydrogenotrophic methanogens as CH4 generating catalysts has been demonstrated. Laboratory and scale-up experiments have corroborated the benefits of the CO2 mitigation via biotechnological conversion of H2 and CO2 to CH4. A major bottleneck in the process is the gas-liquid mass transfer of H2. Fed-batch reactor configuration was tested at mesophilic temperature in laboratory experiments in order to improve the contact time and H2 mass transfer between the gas and liquid phases. Effluent from an industrial biogas facility served as biocatalyst. The bicarbonate content of the effluent was depleted after some time, but the addition of stoichiometric CO2 sustained H2 conversion for an extended period of time and prevented a pH shift. The microbial community generated biogas from the added α-cellulose substrate with concomitant H2 conversion, but the organic substrate did not facilitate H2 consumption. Fed-batch operational mode allowed a fourfold increase in volumetric H2 load and a 6.5-fold augmentation of the CH4 formation rate relative to the CSTR reactor configuration. Acetate was the major by-product of the reaction. Fed-batch reactors significantly improve the efficiency of the biological power-to-gas process. Besides their storage function, biogas fermentation effluent reservoirs can serve as large-scale bio CH4 reactors. On the basis of this recognition, a novel concept is proposed, which merges biogas technology with other means of renewable electricity production for improved efficiency and sustainability.
The AECT HistoryMakers Project: Conversations with Leaders in Educational Technology
ERIC Educational Resources Information Center
Lockee, Barbara B.; Song, Kibong; Li, Wei
2014-01-01
The early beginnings and evolution of the field of educational technology (ET) have been documented by various scholars in the field. Recently, another form of historical documentation has been undertaken through a project of the Association for Educational Communications and Technology (AECT). The AECT HistoryMakers Project is a collaborative…
Advanced Controller for the Free-Piston Stirling Convertor
NASA Technical Reports Server (NTRS)
Gerber, Scott S.; Jamison, Mike; Roth, Mary Ellen; Regan, Timothy F.
2004-01-01
The free-piston Stirling power convertor is being considered as an advanced power conversion technology to be used for future NASA deep space missions requiring long life radioisotope power systems. This technology has a conversion efficiency of over 25%, which is significantly higher than the efficiency of the Radioisotope Thermal-electric Generators (RTG) now in use. The NASA Glenn Research Center has long been recognized as a leader in Stirling technology and is responsible for the development of advanced technologies that are intended to significantly improve key characteristics of the Stirling convertor. The advanced technologies identified for development also consider the requirements of potential future missions and the new capabilities that have become available in the associated technical areas. One of the key areas identified for technology development is the engine controller. To support this activity, an advanced controller is being developed for the Stirling power convertor. This controller utilizes active power factor correction electronics and microcontroller-based controls. The object of this paper is to present an overview of the advanced controller concept with modeling, simulation and hardware test data.
Energetics of eddy-mean flow interactions in the Brazil current between 20°S and 36°S
NASA Astrophysics Data System (ADS)
Magalhães, F. C.; Azevedo, J. L. L.; Oliveira, L. R.
2017-08-01
The energetics of eddy-mean flow interactions in the Brazil Current (BC) between 20°S and 36°S are investigated in 19 transects perpendicular to the 200 m isobath. Ten years (2000-2009) of output data from the Hybrid Coordinate Ocean Model (HYCOM) NCODA reanalysis, with a spatial resolution of 1/12.5° and 5 day averages, are used. The mean kinetic energy (MKE) and eddy kinetic energy (EKE) fields presented the same subsurface spatial pattern but with reduced values. The EKE increases southward, with high values along the BC path and the offshore portion of the jet. The values of the barotropic conversion term (BTC) are highest in the surface layers and decreased with depth, whereas the values of the baroclinic conversion term (BCC) and the vertical eddy heat flux (VEHF) are highest in the subsurface. Despite the vertical thickening of the BC, the highest energy conversion rates are confined to the upper 700 m of the water column. The energetic analysis showed that the current features mixed instability processes. The vertical weighted mean of the BTC and BCC presented an oscillatory pattern related to the bathymetry. The eddy field accelerates the time-mean flow upstream and downstream of bathymetric features and drains energy from the time-mean flow over the features. The BC is baroclinically unstable south of 28°S, and the highest energy conversion rates occur in Cabo de São Tomé, Cabo Frio, and the Cone do Rio Grande.
Novel silicon crystals and method for their preparation
NASA Technical Reports Server (NTRS)
Authier, B.
1977-01-01
Plate shaped silicon crystals and their preparation by pouring a silicon melt into a suitable mold and then allowing it to solidify in a temperature gradient were investigated. The production of energy by direct conversion of solar energy into electrical energy by means of solar cells takes on increasing importance. While this type of energy production is already the prevailing form today in the realm of satellite technology, its terrestrial application has thus far encountered strict limitations owing to the high price of such solar cells. Of the greatest interest in this connection are silicon cells. A substantial reduction in the semiconductor material costs and the costs involved in the further processing to make solar cells are prerequisites for a rational market growth for solar energy.
The environmental impact of future coal production and use in the EEC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-01-01
The aims of this study are to assess the expected increased levels of coal consumption in the European Community up to the year 2000; to estimate to what extent consumer demand is likely to be met by EEC production; to determine the level of polluting emissions which are likely to derive from changes in coal consumption and production; and finally, to compare the environmental impact of alternative, existing or developing means of coal utilisation. Contents: Conclusions; Future coal supply and demand in the EEC; Environmental consequences of coal production and use; Coal extraction; Transport and storage; Coal combustion: air pollution;more » Coal combustion: water pollution; Pollution from solid wastes; Coal conversion process; Environmental control technology; Bibliography.« less
Thermochemical recovery of heat contained in flue gases by means of bioethanol conversion
NASA Astrophysics Data System (ADS)
Pashchenko, D. I.
2013-06-01
In the present paper consideration is being given to the use of bioethanol in the schemes of thermochemical recovery of heat contained in exit flue gases. Schematic diagrams illustrate the realization of thermochemical heat recovery by implementing ethanol steam conversion and conversion of ethanol by means of products of its complete combustion. The feasibility of attaining a high degree of recovery of heat contained in flue gases at the moderate temperature (up to 450°C) of combustion components is demonstrated in the example of the energy balance of the system for thermochemical heat recovery. The simplified thermodynamic analysis of the process of ethanol steam conversion was carried out in order to determine possible ranges of variation of process variables (temperature, pressure, composition) of a reaction mixture providing the efficient heat utilization. It was found that at the temperature above 600 K the degree of ethanol conversion is near unity. The equilibrium composition of products of reaction of ethanol steam conversion has been identified for different temperatures at which the process occurs at the ratio H2O/EtOH = 1 and at the pressure of 0.1 MPa. The obtained results of calculation agree well with the experimental data.
Conversive disorders among children and adolescents: towards new "complementarist" paradigms?
Ouss, L; Tordjman, E
2014-10-01
This paper aims to describe current questions concerning conversive disorders among children and adolescents. We first describe prevalence and clinical characteristics of these. Many unresolved questions remain. Why do patients show excess, or loss of function? Attachment theory offers a relevant framework to answer this question. Does neurobiology of conversion disorders shed light on conversive processes? Current neurobiological research paradigms focus on the symptom, trying to infer processes, instead of proposing paradigms that test theoretical hypotheses. The most convincing theoretical framework that has already proposed a coherent theory of conversion is a psychodynamic one, which has not yet been tested with neurobiological paradigms. The interest of studying child and adolescent conversive disorders is to provide a means to more deeply investigate the two challenges we face: theoretical, and clinical ones. It provides the opportunity to access a pathopsychological process at its roots, not yet hidden by many defensive, rationalizing attitudes, and to better explore environmental features. We propose a "complementarist" model, which allows the combination of different approaches (neural, cognitive, environmental, attachment, intra-psychic) and permits proposal of different levels of therapeutic targets and means. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Ceccarelli, Graziano; Codacci-Pisanelli, Massimo; Patriti, Alberto; Ceribelli, Cecilia; Biancafarina, Alessia; Casciola, Luciano
2013-09-01
Small renal masses (T1a) are commonly diagnosed incidentally and can be treated with nephron-sparing surgery, preserving renal function and obtaining the same oncological results as radical surgery. Bigger lesions (T1b) may be treated in particular situations with a conservative approach too. We present our surgical technique based on robotic assistance for nephron-sparing surgery. We retrospectively analysed our series of 32 consecutive patients (two with 2 tumours and one with 4 bilateral tumours), for a total of 37 robotic nephron-sparing surgery (RNSS) performed between June 2008 and July 2012 by a single surgeon (G.C.). The technique differs depending on tumour site and size. The mean tumour size was 3.6 cm; according to the R.E.N.A.L. Nephrometry Score 9 procedures were considered of low, 14 of moderate and 9 of hight complexity with no conversion in open surgery. Vascular clamping was performed in 22 cases with a mean warm ischemia time of 21.5 min and the mean total procedure time was 149.2 min. Mean estimated blood loss was 187.1 ml. Mean hospital stay was 4.4 days. Histopathological evaluation confirmed 19 cases of clear cell carcinoma (all the multiple tumours were of this nature), 3 chromophobe tumours, 1 collecting duct carcinoma, 5 oncocytomas, 1 leiomyoma, 1 cavernous haemangioma and 2 benign cysts. Associated surgical procedures were performed in 10 cases (4 cholecystectomies, 3 important lyses of peritoneal adhesions, 1 adnexectomy, 1 right hemicolectomy, 1 hepatic resection). The mean follow-up time was 28.1 months ± 12.3 (range 6-54). Intraoperative complications were 3 cases of important bleeding not requiring conversion to open or transfusions. Regarding post-operative complications, there were a bowel occlusion, 1 pleural effusion, 2 pararenal hematoma, 3 asymptomatic DVT (deep vein thrombosis) and 1 transient increase in creatinine level. There was no evidence of tumour recurrence in the follow-up. RNSS is a safe and feasible technique. Challenging situations are hilar, posterior or intraparenchymal tumour localization. In our experience, robotic technology made possible a safe minimally invasive management, including vascular clamping, tumour resection and parenchyma reconstruction.
Conversing as Metaphor of Human Thinking: Is Mind like a Conversation?
Sorsana, Christine; Trognon, Alain
2018-06-01
How can researchers shape their ideas so that they understand the mind better? This theoretical paper discusses the merits of the conversation metaphor as a means of analyzing the human mind. We will develop arguments concerning conversation as i) a situated and distributed activity, ii) a "product" in perpetual construction, and iii) the amount of credence and belief we afford it. Finally, we will advocate for metaphorical tools that promote a more dynamic conceptualization of human thinking.
NASA Astrophysics Data System (ADS)
Lun Li, Oi; Lee, Hoonseung; Ishizaki, Takahiro
2018-01-01
Carbon-based materials have been widely utilized as the electrode materials in energy conversion and storage technologies, such as fuel cells and metal-air batteries. In these systems, the oxygen reduction reaction is an important step that determines the overall performance. A novel synthesis route, named the solution plasma process, has been recently utilized to synthesize various types of metal-based and heteroatom-doped carbon catalysts. In this review, we summarize cutting-edge technologies involving the synthesis and modeling of carbon-supported catalysts synthesized via solution plasma process, followed by current progress on the electrocatalytic performance of these catalysts. This review provides the fundamental and state-of-the-art performance of solution-plasma-synthesized electrode materials, as well as the remaining scientific and technological challenges for this process.
Physical Limits of Solar Energy Conversion in the Earth System.
Kleidon, Axel; Miller, Lee; Gans, Fabian
2016-01-01
Solar energy provides by far the greatest potential for energy generation among all forms of renewable energy. Yet, just as for any form of energy conversion, it is subject to physical limits. Here we review the physical limits that determine how much energy can potentially be generated out of sunlight using a combination of thermodynamics and observed climatic variables. We first explain how the first and second law of thermodynamics constrain energy conversions and thereby the generation of renewable energy, and how this applies to the conversions of solar radiation within the Earth system. These limits are applied to the conversion of direct and diffuse solar radiation - which relates to concentrated solar power (CSP) and photovoltaic (PV) technologies as well as biomass production or any other photochemical conversion - as well as solar radiative heating, which generates atmospheric motion and thus relates to wind power technologies. When these conversion limits are applied to observed data sets of solar radiation at the land surface, it is estimated that direct concentrated solar power has a potential on land of up to 11.6 PW (1 PW=10(15) W), whereas photovoltaic power has a potential of up to 16.3 PW. Both biomass and wind power operate at much lower efficiencies, so their potentials of about 0.3 and 0.1 PW are much lower. These estimates are considerably lower than the incoming flux of solar radiation of 175 PW. When compared to a 2012 primary energy demand of 17 TW, the most direct uses of solar radiation, e.g., by CSP or PV, have thus by far the greatest potential to yield renewable energy requiring the least space to satisfy the human energy demand. Further conversions into solar-based fuels would be reduced by further losses which would lower these potentials. The substantially greater potential of solar-based renewable energy compared to other forms of renewable energy simply reflects much fewer and lower unavoidable conversion losses when solar radiation is directly converted into renewable energy.
Novel Nuclear Powered Photocatalytic Energy Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
White,John R.; Kinsmen,Douglas; Regan,Thomas M.
2005-08-29
The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC)more » design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and fabrication of a range of new cell materials and geometries at Konarka's manufacturing facilities, and the irradiation testing and evaluation of these new cell designs within the UML Radiation Laboratory. The primary focus of all this work was to establish the proof of concept of the basic gammavoltaic principle using a new class of dye-sensitized photon converter (DSPC) materials based on KTI's original DSSC design. In achieving this goal, this report clearly establishes the viability of the basic gammavoltaic energy conversion concept, yet it also identifies a set of challenges that must be met for practical implementation of this new technology.« less
ERIC Educational Resources Information Center
Strong-Wilson, Teresa, Ed.
2012-01-01
How do classroom teachers envision new technologies within their practice? In the conversation on incorporating new technologies into classrooms, teachers are often sidelined. "Envisioning New Technologies in Teacher Practice" looks at the complex ways in which teachers move forward to embrace change as well as how they circle back, continually…
ERIC Educational Resources Information Center
Leonardi, Paul M.
2009-01-01
This article explores the relationship between users' interpretations of a new technology and failure of organizational change. I suggest that people form interpretations of a new technology not only based on their conversations with others, but also through their use of technology's material features directly. Through qualitative and quantitative…
Demonstration of Shear Waves, Lamb Waves, and Rayleigh Waves by Mode Conversion.
ERIC Educational Resources Information Center
Leung, W. P.
1980-01-01
Introduces an experiment that can be demonstrated in the classroom to show that shear waves, Rayleigh waves, and Lamb waves can be easily generated and observed by means of mode conversion. (Author/CS)
Kokubun, Hideya; Nakamura, Kazuyo; Fukawa, Misako; Matoba, Motohiro; Hoka, Sumio; Yago, Kazuo
2007-12-01
The demand for oxycodone increases in the treatment of patients with cancer pain, but there is no injection formulation containing oxycodone as a single ingredient in Japan. Instead, we have an oxycodone/hydrocotarnine compound product. Long ago, hydrocotarnine was added to enhance the analgesic effect of oxycodone. However, the mechanism of hydrocotarnine is unclear, and few studies have mentioned the conversion ratio between intravenous and oral oxycodone. In the present study, in order to define the conversion ratio between them, we investigated 18 patients treated by intravenous or oral oxycodone and changed to another administration route during their treatment. We surveyed the change in pain level and adverse effects before and after changing the administration route. The conversion ratio from oral oxycodone to intravenous oxycodone/hydrocotarnine was 0.71+/-0.12 (mean+/-S. D.), and no obvious change in adverse effect was observed.
ERIC Educational Resources Information Center
McConnell, Pamela Jean
1993-01-01
This third in a series of articles on EDIS (Electronic Document Imaging System) technology focuses on organizational issues. Highlights include computer platforms; management information systems; computer-based skills of staff; new technology and change; time factors; financial considerations; document conversion costs; the benefits of EDIS…
Technology for satellite power conversion
NASA Technical Reports Server (NTRS)
Campbell, D. P.; Gouker, M. A.; Summers, C.; Gallagher, J. J.
1984-01-01
Techniques for satellite electromagnetic energy transfer and power conversion at millimeter and infrared wavelengths are discussed. The design requirements for rectenna receiving elements are reviewed for both coherent radiation sources and Earth thermal infrared emission. Potential power transmitters including gyrotrons, free electron lasers, and CO2 lasers are assessed along with the rectification properties of metal-oxide metal diode power converters.
Garlicki, Mirosław; Czub, Paweł; Labuś, Krzysztof; Ehrlich, Marek P; Rdzanek, Hanna
2006-01-01
Calcineurin inhibitors (CNIs) have become the cornerstone of immunosuppressive regimens following heart transplantation, but their use is associated with nephrotoxicity. The impact on renal function after conversion from cyclosporine (CsA) to tacrolimus (TAC) is reported. Fifteen patients (men age 42 +/- 11 years) after cardiac transplantation (HTX) were switched from CsA to TAC (mean time after HTX 21 +/- 6 months). There were 13 male and 2 female patients. Mean cholesterol and LDL level at the time of conversion were 217 +/- 65 ml/dl and and 136 +/- 51 mg/100 ml respectively. Indication for HTX was ischemic cardiomyopathy (CMP) in 8, congenital in 3 and dilatative CMP in the remaining 4 patients. Mean tacrolimus level (microg/dl) at 1, 3, 6 and 12 months were 8.6 +/- 3.3, 8.6 +/- 1.4, 9.2 +/- 2.8 and 9.8 +/- 2.5 respectively. There was a statistically significant improvement in creatinine levels at 1, 3, 6 and 12 months after conversion from baseline 1.9 +/- 0.7 mg/dl to 1.4 +/- 0.5 mg/dl, 1.4 +/- 0.4 mg/dl, 1.3 +/- 0.4 mg/dl and 1.2 +/- 0.4 mg/dl, respectively (p < 0.05). Furthermore, TAC decreased cholesterol as well as LDL-levels during this one-year time frame. This study shows that conversion from CsA to tacrolimus after orthotopic heart transplantation improves renal function.
Single-photon frequency conversion via cascaded quadratic nonlinear processes
NASA Astrophysics Data System (ADS)
Xiang, Tong; Sun, Qi-Chao; Li, Yuanhua; Zheng, Yuanlin; Chen, Xianfeng
2018-06-01
Frequency conversion of single photons is an important technology for quantum interface and quantum communication networks. Here, single-photon frequency conversion in the telecommunication band is experimentally demonstrated via cascaded quadratic nonlinear processes. Using cascaded quasi-phase-matched sum and difference frequency generation in a periodically poled lithium niobate waveguide, the signal photon of a photon pair from spontaneous down-conversion is precisely shifted to identically match its counterpart, i.e., the idler photon, in frequency to manifest a clear nonclassical dip in the Hong-Ou-Mandel interference. Moreover, quantum entanglement between the photon pair is maintained after the frequency conversion, as is proved in time-energy entanglement measurement. The scheme is used to switch single photons between dense wavelength-division multiplexing channels, which holds great promise in applications in realistic quantum networks.
NASA Astrophysics Data System (ADS)
Among the topics discussed are: advanced energy conversion concepts, power sources for aircraft and spacecraft, alternate fuels for industrial and vehicular applications, biomass-derived fuels, electric vehicle design and development status, electrochemical energy conversion systems, electric power generation cycles, energy-efficient industrial processes, and energy policy and system analysis. Also discussed are advanced methods for energy storage and transport, fossil fuel conversion systems, geothermal energy system development and performance, novel and advanced heat engines, hydrogen fuel-based energy systems, MHD technology development status, nuclear energy systems, solar energy conversion methods, advanced heating and cooling systems, Stirling cycle device development, terrestrial photovoltaic systems, and thermoelectric and thermionic systems.
Takayasu, Kenichi; Muramatsu, Yukio; Mizuguchi, Yasunori; Okusaka, Takuji; Shimada, Kazuaki; Takayama, Tadatoshi; Sakamoto, Michiie
2006-08-01
The purpose of this study was to clarify the natural outcomes of hypoattenuating nodular lesions in patients with virus-related chronic liver disease depicted on dynamic CT. Sixty lesions (mean size, 1.3 cm) exhibiting hypoattenuation or isoattenuation in the arterial and delayed phases of dynamic CT were retrospectively evaluated with additional CT (mean, six examinations) for a mean period of 838 days. The primary end point was emergence of hyperattenuating areas within hypoattenuating lesions, a phenomenon called attenuation conversion. Cumulative attenuation conversion rates suggesting rates of malignant transformation were calculated with the Kaplan-Meier method, and factors affecting attenuation conversion rate were analyzed with the Cox proportional hazard model. Thirty-six (60%) of 60 hypoattenuating lesions developed to hyperattenuating lesions, 21 were unchanged, and three disappeared spontaneously. The 36 lesions that became hyperattenuating were divided into two subgroups according to lesion enhancement pattern: hyper-in-hypoattenuating (n = 25) and entirely hyperattenuating (n = 11). The cumulative attenuation conversion rates for the 60 hypoattenuating lesions were 15.8%, 44.3%, and 58.7% at 1, 2, and 3 years. The hyper-in-hypoattenuating lesions showed more rapid progression to entirely enhanced lesions. Positive results for hepatitis C viral antibody (p = 0.028) and initial lesion size (p = 0.007) showed a positive correlation with attenuation conversion rate. Hypoattenuating hepatic nodular lesions in chronic liver disease depicted on dynamic CT have high malignant potential and should be followed with special attention to conversion from hypoattenuation to hyperattenuation to determine the optimal timing of treatment.
Meiotic gene-conversion rate and tract length variation in the human genome.
Padhukasahasram, Badri; Rannala, Bruce
2013-02-27
Meiotic recombination occurs in the form of two different mechanisms called crossing-over and gene-conversion and both processes have an important role in shaping genetic variation in populations. Although variation in crossing-over rates has been studied extensively using sperm-typing experiments, pedigree studies and population genetic approaches, our knowledge of variation in gene-conversion parameters (ie, rates and mean tract lengths) remains far from complete. To explore variability in population gene-conversion rates and its relationship to crossing-over rate variation patterns, we have developed and validated using coalescent simulations a comprehensive Bayesian full-likelihood method that can jointly infer crossing-over and gene-conversion rates as well as tract lengths from population genomic data under general variable rate models with recombination hotspots. Here, we apply this new method to SNP data from multiple human populations and attempt to characterize for the first time the fine-scale variation in gene-conversion parameters along the human genome. We find that the estimated ratio of gene-conversion to crossing-over rates varies considerably across genomic regions as well as between populations. However, there is a great degree of uncertainty associated with such estimates. We also find substantial evidence for variation in the mean conversion tract length. The estimated tract lengths did not show any negative relationship with the local heterozygosity levels in our analysis.European Journal of Human Genetics advance online publication, 27 February 2013; doi:10.1038/ejhg.2013.30.
Teaching in a Digital Age: How Educators Use Technology to Improve Student Learning
ERIC Educational Resources Information Center
McKnight, Katherine; O'Malley, Kimberly; Ruzic, Roxanne; Horsley, Maria Kelly; Franey, John J.; Bassett, Katherine
2016-01-01
A successful digital conversion for classrooms, districts, and states is not determined by the technology, but by how technology enables teaching and learning. The purpose of our multisite case study was to document digital instructional strategies teachers use to enhance and transform student learning, and align that use with learning research.…
Navigating the World of Technology with Kids in the Home, in the School
ERIC Educational Resources Information Center
Rupp, Bill
2016-01-01
Bill Rupp offers practical wisdom from his perch as a Montessori parent of four children and as a self-proclaimed digital immigrant who has spent over twenty years in the information technology field. His list of "Considerations before Making Rules for Technology Use" builds on a positive environment of conversation and communication…
Solar '80s: A Teacher's Handbook for Solar Energy Education.
ERIC Educational Resources Information Center
LaHart, David E.
This guide is intended to assist the teacher in exploring energy issues and the technology of solar energy conversion and associated technologies. Sections of the guide include: (1) Rationale; (2) Technology Overview; (3) Sun Day Suggestions for School; (4) Backyard Solar Water Heater; (5) Solar Tea; (6) Biogas; (7) Solar Cells; (8) Economics; (9)…
Gasification: A Cornerstone Technology
Gary Stiegel
2017-12-09
NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants
Wood, Carla; Diehm, Emily A; Callender, Maya F
2016-04-01
The current study was designed to (a) describe average hourly Language Environment Analysis (LENA) data for preschool-age Spanish-English bilinguals (SEBs) and typically developing monolingual peers and (b) compare LENA data with mean length of utterance in words (MLUw) and total number of words (TNW) calculated on a selected sample of consecutive excerpts of audio files (CEAFs). Investigators examined average hourly child vocalizations from daylong LENA samples for 42 SEBs and 39 monolingual English-speaking preschoolers. The relationship between average hourly child vocalizations, conversational turns, and adult words from the daylong samples and MLUw from a 50-utterance CEAF was examined and compared between groups. MLUw, TNW, average hourly child vocalizations, and conversational turns were lower for young SEBs than monolingual English-speaking peers. Average hourly child vocalizations were not strongly related to MLUw performance for monolingual or SEB participants (r = .29, r = .25, respectively). In a similar manner, average hourly conversational turns were not strongly related to MLUw for either group (r = .22, r = .21, respectively). Young SEBs from socioeconomically disadvantaged backgrounds showed lower average performance on LENA measures, MLUw, and TNW than monolingual English-speaking peers. MLUw from monolinguals were also lower than typical expectations when derived from CEAFs. LENA technology may be a promising tool for communication sampling with SEBs; however, more research is needed to establish norms for interpreting MLUw and TNW from selected CEAF samples.
Gender disparity in BMD conversion: a comparison between Lunar and Hologic densitometers.
Ganda, Kirtan; Nguyen, Tuan V; Pocock, Nicholas
2014-01-01
Female-derived inter-conversion and standardised BMD equations at the lumbar spine and hip have not been validated in men. This study of 110 male subjects scanned on Hologic and Lunar densitometers demonstrates that published equations may not applicable to men at the lumbar spine. Male inter-conversion equations have also been derived. Currently, available equations for inter-manufacturer conversion of bone mineral density (BMD) and calculation of standardised BMD (sBMD) are used in both males and females, despite being derived and validated only in women. Our aim was to test the validity of the published equations in men. One hundred ten men underwent lumbar spine (L2-4), femoral neck (FN) and total hip (TH) dual X-ray absorptiometry (DXA) using Hologic and Lunar scanners. Hologic BMD was converted to Lunar using published equations derived from women for L2-4 and FN. Actual Lunar BMD (A-Lunar) was compared to converted (Lunar equivalent) Hologic BMD values (H-Lunar). sBMD was calculated separately using Hologic (sBMD-H) and Lunar BMD (sBMD-L) at L2-4, FN and TH. Conversion equations in men for Hologic to Lunar BMD were derived using Deming regression analysis. There was a strong linear correlation between Lunar and Hologic BMD at all skeletal sites. A-Lunar BMD was however significantly higher than derived H-Lunar BMD (p < 0.001) at L2-L4 (mean difference, 0.07 g/cm(2)). There was no significant difference at the FN (mean difference, 0.01 g/cm(2)). sBMD-L at the spine was significantly higher than sBMD-H (mean difference, 0.06 g/cm(2), p < 0.001), whilst there was little difference at the FN and TH (mean difference, 0.01 g/cm(2)). Published conversion equations for Lunar BMD to Hologic BMD, and formulae for lumbar spine sBMD, derived in women may not be applicable to men.
DOE Office of Scientific and Technical Information (OSTI.GOV)
This is an Aspen Plus process model for in situ and ex situ upgrading of fast pyrolysis vapors for the conversion of biomass to hydrocarbon fuels. It is based on conceptual designs that allow projections of future commercial implementations of the technologies based on a combination of research and existing commercial technologies. The process model was developed from the ground up at NREL. Results from the model are documented in a detailed design report NREL/TP-5100-62455 (available at http://www.nrel.gov/docs/fy15osti/62455.pdf).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nabeel, A.; Khan, M.A.; Husain, S.
Coal is the most abundant source of energy. However, there is a need to develop cleaner, and more efficient, economical, and convenient coal conversion technologies. It is important to understand the organic chemical structure of coal for achieving real breakthroughs in the development of such coal conversion technologies. A novel computer-assisted modeling technique based on the analysis of {sup 13}C NMR and gel permeation chromatography has been applied to predict the average molecular structure of the acetylated product of a depolymerized bituminous Indian coal. The proposed molecular structure may be of practical use in understanding the mechanism of coal conversionsmore » during the processes of liquefaction, gasification, combustion, and carbonization.« less
Status of the NASA Stirling Radioisotope Project
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.
2007-01-01
Free-piston Stirling power conversion has been considered a candidate for radioisotope power systems for space for more than a decade. Prior to the free-piston Stirling architecture, systems were designed with kinematic Stirling engines that used linkages and rotary alternators to convert heat to electricity. These systems were able to achieve long life by lightly loading the linkages; however, the live was nonetheless limited. When the free-piston configuration was initially proposed, it was thought to be attractive due to the relatively high conversion efficiency, acceptable mass, and the potential for long life and high reliability based on wear-free operation. These features have consistently been recognized by teams that have studied technology options for radioisotope space power systems. Since free-piston Stirling power conversion was first considered for space power applications, there have been major advances in three general areas of development: hardware that has demonstrated long-life and reliability, the success achieved by Stirling cryocoolers in space, and the overall developmental maturity of the technology for both space and terrestrial applications. Based on these advances, free-piston Stirling convertors are currently being developed for space power, and for a number of terrestrial applications. They commonly operate with the power, efficiency, life, and reliability as intended, and much of the development now centers on system integration. This paper will summarize the accomplishments of free-piston Stirling power conversion technology over the past decade, review the status of development with regard to space power, and discuss the challenges that remain.
Organic electronics on fibers for energy conversion applications
NASA Astrophysics Data System (ADS)
O'Connor, Brendan T.
Currently, there is great demand for pollution-free and renewable sources of electricity. Solar cells are particularly attractive from the standpoint of sunlight abundance. However, truly widespread adoption of solar cells is impeded by the high cost and poor scalability of existing technologies. For example, while 53,000 mi2 of 10% efficient solar cell modules would be required to supply the current U.S. energy demand, only about 50 mi2 have been installed worldwide. Organic semiconductors potentially offer a route to realizing low-cost solar cell modules, but currently suffer from low conversion efficiency. For organic-based solar cells to become commercially viable, further research is required to improve device performance, develop scalable manufacturing methods, and reduce installation costs via, for example, novel device form factors. This thesis makes several contributions to the field of organic solar cells, including the replacement of costly and brittle indium tin oxide (ITO) electrodes by inexpensive and malleable, thin metal films, and the application of external dielectric coatings to improve power conversion efficiency. Furthermore, we show that devices with non-planar geometries (e.g. organic solar cells deposited onto long fibers) can have higher efficiencies than conventional planar devices. Building on these results, we demonstrate novel fiber-based organic light emitting devices (OLEDs) that offer substantially improved color quality and manufacturability as a next-generation solid-state lighting technology. An intriguing possibility afforded by the fiber-based device architectures is the ability to integrate energy conversion and lighting functionalities with textiles, a mature, commodity-scale technology.
Mu, Dongyan; Seager, Thomas; Rao, P Suresh; Zhao, Fu
2010-10-01
Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle assessment model that facilitates effective decision-making regarding lignocellulosic ethanol production.
NASA Astrophysics Data System (ADS)
Mu, Dongyan; Seager, Thomas; Rao, P. Suresh; Zhao, Fu
2010-10-01
Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle assessment model that facilitates effective decision-making regarding lignocellulosic ethanol production.
Silicon nanowires for photovoltaic solar energy conversion.
Peng, Kui-Qing; Lee, Shuit-Tong
2011-01-11
Semiconductor nanowires are attracting intense interest as a promising material for solar energy conversion for the new-generation photovoltaic (PV) technology. In particular, silicon nanowires (SiNWs) are under active investigation for PV applications because they offer novel approaches for solar-to-electric energy conversion leading to high-efficiency devices via simple manufacturing. This article reviews the recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells.
NASA Astrophysics Data System (ADS)
Xu, Junfeng; Li, Weile; He, Bo; Wang, Haowei; Song, Yong; Yang, Shengyi; Ni, Guoqiang
2018-01-01
Infrared detecting and display device (IR-DDD) is a newly developed optical up-conversion device that integrates the light-emitting diode (LED) onto the infrared (IR) photo-detector, in order to convert IR light into the carriers photo-generated in detection materials and inject them into LED to emit visible light. This IR-DDD can achieve the direct up-conversion from IR ray to visible light, showing the considerable potential in night-vision application. This paper attempts a review of its working principle and current research progresses.
Microsystems Enabled Photovoltaics
Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz
2018-06-07
Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.
Bioinspired catalytic materials for energy-relevant conversions
NASA Astrophysics Data System (ADS)
Artero, Vincent
2017-09-01
The structure of active sites of enzymes involved in bioenergetic processes can inspire design of active, stable and cost-effective catalysts for renewable-energy technologies. For these materials to reach maturity, the benefits of bioinspired systems must be combined with practical technological requirements.
Heterojunction bipolar transistor technology for data acquisition and communication
NASA Technical Reports Server (NTRS)
Wang, C.; Chang, M.; Beccue, S.; Nubling, R.; Zampardi, P.; Sheng, N.; Pierson, R.
1992-01-01
Heterojunction Bipolar Transistor (HBT) technology has emerged as one of the most promising technologies for ultrahigh-speed integrated circuits. HBT circuits for digital and analog applications, data conversion, and power amplification have been realized, with speed performance well above 20 GHz. At Rockwell, a baseline AlGaAs/GaAs HBT technology has been established in a manufacturing facility. This paper describes the HBT technology, transistor characteristics, and HBT circuits for data acquisition and communication.
NASA Technical Reports Server (NTRS)
Glaser, P. E.
1977-01-01
Microwave beaming of satellite-collected solar energy to earth for conversion to useful industrial power is evaluated for feasibility, with attention given to system efficiencies and costs, ecological impact, hardware to be employed, available options for energy conversion and transmission, and orbiting and assembly. Advantages of such a power generation and conversion system are listed, plausible techniques for conversion of solar energy (thermionic, thermal electric, photovoltaic) and transmission to earth (lasers, arrays of mirrors, microwave beams) are compared. Structural fatigue likely to result from brief daily eclipses, 55% system efficiency at the present state of the art, present projections of system costs, and projected economic implications of the technology are assessed. Two-stage orbiting and assembly plans are described.
Remote Whispering Applying Time Reversal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Brian Eric
The purpose of this project was to explore the use of time reversal technologies as a means for communication to a targeted individual or location. The idea is to have the privacy of whispering in one’s ear, but to do this remotely from loudspeakers not located near the target. Applications of this work include communicating with hostages and survivors in rescue operations, communicating imaging and operational conditions in deep drilling operations, monitoring storage of spent nuclear fuel in storage casks without wires, or clandestine activities requiring signaling between specific points. This technology provides a solution in any application where wiresmore » and radio communications are not possible or not desired. It also may be configured to self calibrate on a regular basis to adjust for changing conditions. These communications allow two people to converse with one another in real time, converse in an inaudible frequency range or medium (i.e. using ultrasonic frequencies and/or sending vibrations through a structure), or send information for a system to interpret (even allowing remote control of a system using sound). The time reversal process allows one to focus energy to a specific location in space and to send a clean transmission of a selected signal only to that location. In order for the time reversal process to work, a calibration signal must be obtained. This signal may be obtained experimentally using an impulsive sound, a known chirp signal, or other known signals. It may also be determined from a numerical model of a known environment in which the focusing is desired or from passive listening over time to ambient noise.« less
Prosodic Contrasts in Ironic Speech
ERIC Educational Resources Information Center
Bryant, Gregory A.
2010-01-01
Prosodic features in spontaneous speech help disambiguate implied meaning not explicit in linguistic surface structure, but little research has examined how these signals manifest themselves in real conversations. Spontaneously produced verbal irony utterances generated between familiar speakers in conversational dyads were acoustically analyzed…
[Management of patients with conversion disorder].
Vermeulen, Marinus; Hoekstra, Jan; Kuipers-van Kooten, Mariëtte J; van der Linden, Els A M
2014-01-01
The symptoms of conversion disorder are not due to conscious simulation. There should be no doubt that the symptoms of conversion disorder are genuine, even if scans do not reveal any abnormalities. The management of patients with conversion disorder starts with an explanation of the diagnosis. The essence of this explanation is that patients first hear about what the diagnosis actually means and only after this about what they do not have. When explaining the diagnosis it is a good idea to use metaphors. The treatment of patients with conversion disorder is carried out together with a physical therapist. The collaboration of healthcare professionals who are involved in the treatment of a patient with conversion disorder should preferably be coordinated by the patient's general practitioner.
Laser-powered MHD generators for space application
NASA Technical Reports Server (NTRS)
Jalufka, N. W.
1986-01-01
Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rotman, D.
After nearly a decade of work and $150 million in development costs. Exxon Research and Engineering (ER&E; Florham Park, NJ) says its natural gas conversion process based on Fischer-Tropsch technology is ready for full-scale commercialization. ER&E is looking to entice one of Exxon`s other business units into building a plant based on the process. The Exxon technology makes refinery or petrochemical feedstocks from natural gas in an integrated three-step process, including fluid-bed reactor to make synthesis gas and a hydrocarbon synthesis step using a proprietary Fischer-Tropsch catalyst. Exxon has successfully demonstrated the process at a pilot plant in Baton Rouge,more » LA but says no commercialization decision has been made. ER&E estimates that to commercialize the technology economically will require a large gas conversion plant-with a price tag of about $2 billion.« less
Zhaodong Li; Chunhua Yao; Yanhao Yu; Zhiyong Cai; Xudong Wang
2014-01-01
Among current endeavors to explore renewable energy technologies, photoelectrochemical (PEC) water splitting holds great promise for conversion of solar energy to chemical energy. [ 1â4 ] Light absorption, charge separation, and appropriate interfacial redox reactions are three key aspects that lead to highly efficient solar energy conversion. [ 5â10 ] Therefore,...
ERIC Educational Resources Information Center
Kichuk, Diana
2015-01-01
The electronic conversion of scanned image files to readable text using optical character recognition (OCR) software and the subsequent migration of raw OCR text to e-book text file formats are key remediation or media conversion technologies used in digital repository e-book production. Despite real progress, the OCR problem of reliability and…
Technical and economical evaluation of carbon dioxide capture and conversion to methanol process
NASA Astrophysics Data System (ADS)
Putra, Aditya Anugerah; Juwari, Handogo, Renanto
2017-05-01
Phenomenon of global warming, which is indicated by increasing of earth's surface temperature, is caused by high level of greenhouse gases level in the atmosphere. Carbon dioxide, which increases year by year because of high demand of energy, gives the largest contribution in greenhouse gases. One of the most applied solution to mitigate carbon dioxide level is post-combustion carbon capture technology. Although the technology can absorb up to 90% of carbon dioxide produced, some worries occur that captured carbon dioxide that is stored underground will be released over time. Utilizing captured carbon dioxide could be a promising solution. Captured carbon dioxide can be converted into more valuable material, such as methanol. This research will evaluate the conversion process of captured carbon dioxide to methanol, technically and economically. From the research, it is found that technically methanol can be made from captured carbon dioxide. Product gives 25.6905 kg/s flow with 99.69% purity of methanol. Economical evaluation of the whole conversion process shows that the process is economically feasible. The capture and conversion process needs 176,101,157.69 per year for total annual cost and can be overcome by revenue gained from methanol product sales.
Conversion of transuranic waste to low level waste by decontamination: a site specific update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, R.P.; Hazelton, R.F.
1985-09-01
As a followup to an FY-1984 cost/benefit study, a program was conducted in FY-1985 to transfer to the relevant DOE sites the information and technology for the direct conversion of transuranic (TRU) waste to low-level waste (LLW) by decontamination. As part of this work, the economic evaluation of the various TRUW volume reduction and conversion options was updated and expanded to include site-specific factors. The results show, for the assumptions used, that size reduction, size reduction followed by decontamination, or in situ decontamination are cost effective compared with the no-processing option. The technology transfer activities included site presentations and discussionsmore » with operations and waste management personnel to identify application opportunities and site-specific considerations and constraints that could affect the implementation of TRU waste conversion principles. These discussions disclosed definite potential for the beneficial application of these principles at most of the sites, but also confirmed the existence of site-specific factors ranging from space limitations to LLW disposal restrictions that could preclude particular applications or diminish expected benefits. 8 refs., 2 figs., 4 tabs.« less
NASA Technical Reports Server (NTRS)
Knightly, W. F.
1980-01-01
Various advanced energy conversion systems (ECS) are compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidates which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. Computer generated reports of the fuel consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented for coal fired process boilers. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented.
Cogeneration Technology Alternatives Study (CTAS). Volume 3: Industrial processes
NASA Technical Reports Server (NTRS)
Palmer, W. B.; Gerlaugh, H. E.; Priestley, R. R.
1980-01-01
Cogenerating electric power and process heat in single energy conversion systems rather than separately in utility plants and in process boilers is examined in terms of cost savings. The use of various advanced energy conversion systems are examined and compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the target energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. Data and narrative descriptions of the industrial processes are given.
Biogeochemical potential of biomass pyrolysis systems for limiting global warming to 1.5 °C
NASA Astrophysics Data System (ADS)
Werner, C.; Schmidt, H.-P.; Gerten, D.; Lucht, W.; Kammann, C.
2018-04-01
Negative emission (NE) technologies are recognized to play an increasingly relevant role in strategies limiting mean global warming to 1.5 °C as specified in the Paris Agreement. The potentially significant contribution of pyrogenic carbon capture and storage (PyCCS) is, however, highly underrepresented in the discussion. In this study, we conduct the first quantitative assessment of the global potential of PyCCS as a NE technology based on biomass plantations. Using a process-based biosphere model, we calculate the land use change required to reach specific climate mitigation goals while observing biodiversity protection guardrails. We consider NE targets of 100–300 GtC following socioeconomic pathways consistent with a mean global warming of 1.5 °C as well as the option of additional carbon balancing required in case of failure or delay of decarbonization measures. The technological opportunities of PyCCS are represented by three tracks accounting for the sequestration of different pyrolysis products: biochar (as soil amendment), bio-oil (pumped into geological storages) and permanent-pyrogas (capture and storage of CO2 from gas combustion). In addition, we analyse how the gain in land induced by biochar-mediated yield increases on tropical cropland may reduce the pressure on land. Our results show that meeting the 1.5 °C goal through mitigation strategies including large-scale NE with plantation-based PyCCS may require conversion of natural vegetation to biomass plantations in the order of 133–3280 Mha globally, depending on the applied technology and the NE demand. Advancing towards additional bio-oil sequestration reduces land demand considerably by potentially up to 60%, while the benefits from yield increases account for another 3%–38% reduction (equalling 82–362 Mha). However, when mitigation commitments are increased by high balancing claims, even the most advanced PyCCS technologies and biochar-mediated co-benefits cannot compensate for delayed action towards phasing-out fossil fuels.
From Theory to Practice: Measuring end-of-life communication quality using multiple goals theory.
Van Scoy, L J; Scott, A M; Reading, J M; Chuang, C H; Chinchilli, V M; Levi, B H; Green, M J
2017-05-01
To describe how multiple goals theory can be used as a reliable and valid measure (i.e., coding scheme) of the quality of conversations about end-of-life issues. We analyzed conversations from 17 conversations in which 68 participants (mean age=51years) played a game that prompted discussion in response to open-ended questions about end-of-life issues. Conversations (mean duration=91min) were audio-recorded and transcribed. Communication quality was assessed by three coders who assigned numeric scores rating how well individuals accomplished task, relational, and identity goals in the conversation. The coding measure, which results in a quantifiable outcome, yielded strong reliability (intra-class correlation range=0.73-0.89 and Cronbach's alpha range=0.69-0.89 for each of the coded domains) and validity (using multilevel nonlinear modeling, we detected significant variability in scores between games for each of the coded domains, all p-values <0.02). Our coding scheme provides a theory-based measure of end-of-life conversation quality that is superior to other methods of measuring communication quality. Our description of the coding method enables researches to adapt and apply this measure to communication interventions in other clinical contexts. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Changing (Almost) Everything and Keeping (Almost) Everyone Happy.
ERIC Educational Resources Information Center
Stewart, Craig A.; Grover, Douglas; Vernon, R. David
1998-01-01
In 1994, the information technology organization at Indiana University, Bloomington, undertook a major computing technology conversion that affected 40,000 people. The project is described, and factors contributing to its success are discussed, including system architecture, marketing and customer communications, and migration of information…
Photovoltaics technology program summary
NASA Astrophysics Data System (ADS)
1985-05-01
An adequate supply of energy at reasonable price is discussed. Economic efficiency and the following strategies to obtain it are suggested: (1) minimization of federal regulation in energy pricing; and (2) promote a balanced and mixed energy resource system. The development of photovoltaic energy conversion technology is summarized.
Constructivism and the Technology of Instruction: A Conversation.
ERIC Educational Resources Information Center
Duffy, Thomas M., Ed.; Jonassen, David H., Ed.
The essays in this book form a dialogue between instructional developers and learning theorists about the implications of constructivism for instructional design practice. Following an introduction entitled "Constructivism: New Implications for Instructional Technology" (Thomas M. Duffy and David H. Jonassen), the papers are divided into…
Digitization of Microfilm: A Scottish Perspective.
ERIC Educational Resources Information Center
Lauder, John
1995-01-01
Discusses the Scottish Newspapers Microfilming Unit's interest in conversion of microfilm to digital technology. Concerns include cost, potential market, reliability of digital technology as a preservation medium, and the necessity to have both microfilm and digital formats for preservation. Solicits feedback and information from colleagues on the…
Business developments of nonthermal solar technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, S.A.; Watts, R.L.; Williams, T.A.
1985-10-01
Information on the developments of nonthermal solar technologies is presented. The focus is on the success of wind energy conversion systems (WECS) and photovoltaics. Detailed information on the installed generating capacity, market sectors, financing sources, systems costs and warranties of WECS and photovoltaic systems is summarized. (BCS)
Sperry Univac speech communications technology
NASA Technical Reports Server (NTRS)
Medress, Mark F.
1977-01-01
Technology and systems for effective verbal communication with computers were developed. A continuous speech recognition system for verbal input, a word spotting system to locate key words in conversational speech, prosodic tools to aid speech analysis, and a prerecorded voice response system for speech output are described.
An assessment of advanced technology for industrial cogeneration
NASA Technical Reports Server (NTRS)
Moore, N.
1983-01-01
The potential of advanced fuel utilization and energy conversion technologies to enhance the outlook for the increased use of industrial cogeneration was assessed. The attributes of advanced cogeneration systems that served as the basis for the assessment included their fuel flexibility and potential for low emissions, efficiency of fuel or energy utilization, capital equipment and operating costs, and state of technological development. Over thirty advanced cogeneration systems were evaluated. These cogeneration system options were based on Rankine cycle, gas turbine engine, reciprocating engine, Stirling engine, and fuel cell energy conversion systems. The alternatives for fuel utilization included atmospheric and pressurized fluidized bed combustors, gasifiers, conventional combustion systems, alternative energy sources, and waste heat recovery. Two advanced cogeneration systems with mid-term (3 to 5 year) potential were found to offer low emissions, multi-fuel capability, and a low cost of producing electricity. Both advanced cogeneration systems are based on conventional gas turbine engine/exhaust heat recovery technology; however, they incorporate advanced fuel utilization systems.
Bayro-Kaiser, Vinzenz; Nelson, Nathan
2017-09-01
Modern energy production is required to undergo a dramatic transformation. It will have to replace fossil fuel use by a sustainable and clean energy economy while meeting the growing world energy needs. This review analyzes the current energy sector, available energy sources, and energy conversion technologies. Solar energy is the only energy source with the potential to fully replace fossil fuels, and hydrogen is a crucial energy carrier for ensuring energy availability across the globe. The importance of photosynthetic hydrogen production for a solar-powered hydrogen economy is highlighted and the development and potential of this technology are discussed. Much successful research for improved photosynthetic hydrogen production under laboratory conditions has been reported, and attempts are underway to develop upscale systems. We suggest that a process of integrating these achievements into one system to strive for efficient sustainable energy conversion is already justified. Pursuing this goal may lead to a mature technology for industrial deployment.
Advanced Stirling Technology Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Wong, Wayne A.
2007-01-01
The NASA Glenn Research Center has been developing advanced energy-conversion technologies for use with both radioisotope power systems and fission surface power systems for many decades. Under NASA's Science Mission Directorate, Planetary Science Theme, Technology Program, Glenn is developing the next generation of advanced Stirling convertors (ASCs) for use in the Department of Energy/Lockheed Martin Advanced Stirling Radioisotope Generator (ASRG). The next-generation power-conversion technologies require high efficiency and high specific power (watts electric per kilogram) to meet future mission requirements to use less of the Department of Energy's plutonium-fueled general-purpose heat source modules and reduce system mass. Important goals include long-life (greater than 14-yr) reliability and scalability so that these systems can be considered for a variety of future applications and missions including outer-planet missions and continual operation on the surface of Mars. This paper provides an update of the history and status of the ASC being developed for Glenn by Sunpower Inc. of Athens, Ohio.
ERIC Educational Resources Information Center
Daugherty, Lindsay; Dossani, Rafiq; Johnson, Erin-Elizabeth; Wright, Cameron
2014-01-01
Conversations about what constitutes "developmentally appropriate" use of technology in early childhood education have, to date, focused largely on a single, blunt measure--screen time--that fails to capture important nuances, such as what type of media a child is accessing and whether technology use is taking place solo or with peers.…
Low Power Camera-on-a-Chip Using CMOS Active Pixel Sensor Technology
NASA Technical Reports Server (NTRS)
Fossum, E. R.
1995-01-01
A second generation image sensor technology has been developed at the NASA Jet Propulsion Laboratory as a result of the continuing need to miniaturize space science imaging instruments. Implemented using standard CMOS, the active pixel sensor (APS) technology permits the integration of the detector array with on-chip timing, control and signal chain electronics, including analog-to-digital conversion.
Enhanced converse magnetoelectric effect in cylindrical piezoelectric-magnetostrictive composites
NASA Astrophysics Data System (ADS)
Wu, Gaojian; Zhang, Ru; Zhang, Ning
2016-10-01
Enhanced converse magnetoelectric (ME) effect has been experimentally observed in cylindrical PZT-Terfenol-D piezoelectric-magnetostrictive bilayered composites, where the piezoelectric and magnetostrictive components are coupled through normal stresses instead of shear stresses that act in most of previous multiferroic composites. A theoretical model based on elastodynamics analysis has been proposed to describe the frequency response of converse ME effect for axial and radial modes in the bilayered cylindrical composites. The theory shows good agreement with the experimental results. The different variation tendency of resonant converse ME coefficient, as well as different variation rate of resonance frequency with bias magnetic field for axial and radial modes is interpreted in terms of demagnetizing effect. This work is of theoretical and technological significance for the application of converse ME effect as magnetic sensor, transducers, coil-free flux switch, etc.
Condenser design for AMTEC power conversion
NASA Technical Reports Server (NTRS)
Crowley, Christopher J.
1991-01-01
The condenser and the electrodes are the two elements of an alkali metal thermal-to-electric conversion (AMTEC) cell which most greatly affect the energy conversion performance. A condenser is described which accomplishes two critical functions in an AMTEC cell: management of the fluid under microgravity conditions and optimization of conversion efficiency. The first function is achieved via the use of a controlled surface shape, along with drainage grooves and arteries to collect the fluid. Capillary forces manage the fluid in microgravity and dominate hydrostatic effects on the ground so the device is ground-testable. The second function is achieved via a smooth film of highly reflective liquid sodium on the condensing surface, resulting in minimization of parasitic heat losses due to radiation heat transfer. Power conversion efficiencies of 25 percent to 30 percent are estimated with this condenser using present technology for the electrodes.
Trattner, Sigal; Chelliah, Anjali; Prinsen, Peter; Ruzal-Shapiro, Carrie B; Xu, Yanping; Jambawalikar, Sachin; Amurao, Maxwell; Einstein, Andrew J
2017-03-01
The purpose of this study is to determine the conversion factors that enable accurate estimation of the effective dose (ED) used for cardiac 64-MDCT angiography performed for children. Anthropomorphic phantoms representative of 1- and 10-year-old children, with 50 metal oxide semiconductor field-effect transistor dosimeters placed in organs, underwent scanning performed using a 64-MDCT scanner with different routine clinical cardiac scan modes and x-ray tube potentials. Organ doses were used to calculate the ED on the basis of weighting factors published in 1991 in International Commission on Radiological Protection (ICRP) publication 60 and in 2007 in ICRP publication 103. The EDs and the scanner-reported dose-length products were used to determine conversion factors for each scan mode. The effect of infant heart rate on the ED and the conversion factors was also assessed. The mean conversion factors calculated using the current definition of ED that appeared in ICRP publication 103 were as follows: 0.099 mSv · mGy -1 · cm -1 , for the 1-year-old phantom, and 0.049 mSv · mGy -1 · cm -1 , for the 10-year-old phantom. These conversion factors were a mean of 37% higher than the corresponding conversion factors calculated using the older definition of ED that appeared in ICRP publication 60. Varying the heart rate did not influence the ED or the conversion factors. Conversion factors determined using the definition of ED in ICRP publication 103 and cardiac, rather than chest, scan coverage suggest that the radiation doses that children receive from cardiac CT performed using a contemporary 64-MDCT scanner are higher than the radiation doses previously reported when older chest conversion factors were used. Additional up-to-date pediatric cardiac CT conversion factors are required for use with other contemporary CT scanners and patients of different age ranges.
Multicenter Trial of the VenaTech Convertible Vena Cava Filter.
Hohenwalter, Eric J; Stone, James R; O'Moore, Paul V; Smith, Steven J; Selby, J Bayne; Lewandowski, Robert J; Samuels, Shaun; Kiproff, Paul M; Trost, David W; Madoff, David C; Handel, Jeremy; Gandras, Eric J; Vlahos, Athanasios; Rilling, William S
2017-10-01
To demonstrate rates of successful filter conversion and 6-month major device-related adverse events in subjects with converted caval filters. An investigational device exemption multicenter, prospective, single-arm study was performed at 11 sites enrolling 149 patients. The VenaTech Convertible Vena Cava Filter (B. Braun Interventional Systems, Inc, Bethlehem, Pennsylvania) was implanted in 149 patients with venous thromboembolism and contraindication to or failure of anticoagulation (n = 119), with high-risk trauma (n = 14), and for surgical prophylaxis (n = 16). When the patient was no longer at risk for pulmonary embolism as determined by clinical assessment, an attempt at filter conversion was made. Follow-up of converted patients (n = 93) was conducted at 30 days, 3 months, and 6 months after conversion. Patients who did not undergo a conversion attempt (n = 53) had follow-up at 6 months after implant. All implants were successful. One 7-day migration to the right atrium required surgical removal. Technical success rate for filter conversion was 92.7% (89/96). Mean time from placement to conversion was 130.7 days (range, 15-391 d). No major conversion-related events were reported. The mean conversion procedure time was 30.7 minutes (range, 7-135 min). There were 89 converted and 32 unconverted patients who completed 6-month follow-up with no delayed complications. The VenaTech Convertible filter has a high conversion rate and low 6-month device-related adverse event rate. Further studies are necessary to determine long-term safety and efficacy in both converted and unconverted patients. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.
Setnik, Beatrice; Roland, Carl L; Sommerville, Kenneth W; Pixton, Glenn C; Berke, Robert; Calkins, Anne; Goli, Veeraindar
2015-01-01
To evaluate the conversion of opioid-experienced patients with chronic moderate-to-severe pain to extended-release morphine sulfate with sequestered naltrexone hydrochloride (MSN) using a standardized conversion guide. This open-label, single-arm study was conducted in 157 primary care centers in the United States. A total of 684 opioid-experienced adults with chronic moderate-to-severe pain were converted to oral administration of MSN from transdermal fentanyl and oral formulations of hydrocodone, hydromorphone, methadone, oxycodone, oxymorphone, and other morphine products using a standardized conversion guide. The primary endpoint was the percentage of patients achieving a stable MSN dose within a 6-week titration phase. Secondary endpoints included duration of time to stable dose, number of titration steps, safety and efficacy measures, and investigator assessment of conversion guide utility. Of the 684 patients, 51.3% were converted to a stable dose of MSN (95% confidence interval: 47.5%, 55.1%). The mean (standard deviation) number of days to stable dose was 20 (8.94), and number of titration steps to stable dose was 2.4 (1.37). The majority of adverse events were mild/moderate and consistent with opioid therapy. Mean pain scores at stable dose decreased from baseline. Investigators were generally satisfied with the conversion guide and, in 94% of cases, reported they would use it again. Conversion to MSN treatment using the standardized MSN conversion guide was an attainable goal in approximately half of the population of opioid-experienced patients with chronic moderate-to-severe pain. Investigators found the guide to be a useful tool to assist conversion of opioid-experienced patients to MSN.
Tomaru, Yohei; Yoshioka, Tomokazu; Sugaya, Hisashi; Shimizu, Yukiyo; Aoto, Katsuya; Wada, Hiroshi; Akaogi, Hiroshi; Yamazaki, Masashi; Mishima, Hajime
2018-04-28
We had previously established concentrated autologous bone marrow aspirate transplantation (CABMAT), a one-step, low-invasive, joint-preserving surgical technique for treating osteonecrosis of the femoral head (ONFH). This study aimed to evaluate the effects of CABMAT as a hip-preserving surgical approach, preventing conversion to total hip arthroplasty (THA) and femoral head collapse in patients with systemic lupus erythematosus (SLE). Since 2003, 52 SLE patients (8 male, 44 female, 92 hips, mean age 35.3 (16-77) (years) were treated with CABMAT. The mean follow-up period was 5.5 (0.7-14) years. Conversion rate to THA and its predicting factors were analyzed. The overall conversion rate to THA was 29% (27/92). Conversion rate to THA was 0% (0/3), 0% (0/4), 22% (9/41), and 41% (18/44) in types A, B, C1, and C2, respectively. Conversion rate to THA was 26% (5/19), 26% (6/23), 28% (11/39), 44% (4/9), and 50% (1/2) in stages 1, 2, 3A, 3B, and 4, respectively. In multivariate logistic regression analysis, sex, body mass index (BMI), pre-operative type, and pre-operative stage were significantly correlated with conversion to THA. The conversion rate to THA was lower than that in the natural course and core decompression, but was higher than that seen in other bone marrow transplantation and osteotomy. Since sex, pre-operative type, and pre-operative stage were significantly correlated with conversion to THA, it is suggested that the higher proportion of women, advanced stage (stage 3A or above), and advanced type (type C or above) in this study affected the THA conversion rate.
NASA Technical Reports Server (NTRS)
Madnia, C. K.; Frankel, S. H.; Givi, P.
1992-01-01
The presently obtained closed-form analytical expressions, which predict the limiting rate of mean reactant conversion in homogeneous turbulent flows under the influence of a binary reaction, are derived via the single-point pdf method based on amplitude mapping closure. With this model, the maximum rate of the mean reactant's decay can be conveniently expressed in terms of definite integrals of the parabolic cylinder functions. The results obtained are shown to be in good agreement with data generated by direct numerical simulations.
ERIC Educational Resources Information Center
Nilsen, Don L. F.
This paper attempts to dispel a number of misconceptions about the nature of meaning, namely that: (1) synonyms are words that have the same meanings, (2) antonyms are words that have opposite meanings, (3) homonyms are words that sound the same but have different spellings and meanings, (4) converses are antonyms rather than synonyms, (5)…
A Boiling-Potassium Fluoride Reactor for an Artificial-Gravity NEP Vehicle
NASA Technical Reports Server (NTRS)
Sorensen, Kirk; Juhasz, Albert
2007-01-01
Several years ago a rotating manned spacecraft employing nuclear-electric propulsion was examined for Mars exploration. The reactor and its power conversion system essentially served as the counter-mass to an inflatable manned module. A solid-core boiling potassium reactor based on the MPRE concept of the 1960s was baselined in that study. This paper proposes the use of a liquid-fluoride reactor, employing direct boiling of potassium in the core, as a means to overcome some of the residual issues with the MPRE reactor concept. Several other improvements to the rotating Mars vehicle are proposed as well, such as Canfield joints to enable the electric engines to track the inertial thrust vector during rotation, and innovative "cold-ion" engine technologies to improve engine performance.
Reducing noise in a Raman quantum memory.
Bustard, Philip J; England, Duncan G; Heshami, Khabat; Kupchak, Connor; Sussman, Benjamin J
2016-11-01
Optical quantum memories are an important component of future optical and hybrid quantum technologies. Raman schemes are strong candidates for use with ultrashort optical pulses due to their broad bandwidth; however, the elimination of deleterious four-wave mixing noise from Raman memories is critical for practical applications. Here, we demonstrate a quantum memory using the rotational states of hydrogen molecules at room temperature. Polarization selection rules prohibit four-wave mixing, allowing the storage and retrieval of attenuated coherent states with a mean photon number 0.9 and a pulse duration 175 fs. The 1/e memory lifetime is 85.5 ps, demonstrating a time-bandwidth product of ≈480 in a memory that is well suited for use with broadband heralded down-conversion and fiber-based photon sources.
Log polar image sensor in CMOS technology
NASA Astrophysics Data System (ADS)
Scheffer, Danny; Dierickx, Bart; Pardo, Fernando; Vlummens, Jan; Meynants, Guy; Hermans, Lou
1996-08-01
We report on the design, design issues, fabrication and performance of a log-polar CMOS image sensor. The sensor is developed for the use in a videophone system for deaf and hearing impaired people, who are not capable of communicating through a 'normal' telephone. The system allows 15 detailed images per second to be transmitted over existing telephone lines. This framerate is sufficient for conversations by means of sign language or lip reading. The pixel array of the sensor consists of 76 concentric circles with (up to) 128 pixels per circle, in total 8013 pixels. The interior pixels have a pitch of 14 micrometers, up to 250 micrometers at the border. The 8013-pixels image is mapped (log-polar transformation) in a X-Y addressable 76 by 128 array.
Conversational evidence in therapeutic dialogue.
Strong, Tom; Busch, Robbie; Couture, Shari
2008-07-01
Family therapists' participation in therapeutic dialogue with clients is typically informed by evidence of how such dialogue is developing. In this article, we propose that conversational evidence, the kind that can be empirically analyzed using discourse analyses, be considered a contribution to widening psychotherapy's evidence base. After some preliminaries about what we mean by conversational evidence, we provide a genealogy of evaluative practice in psychotherapy, and examine qualitative evaluation methods for their theoretical compatibilities with social constructionist approaches to family therapy. We then move on to examine the notion of accomplishment in therapeutic dialogue given how such accomplishments can be evaluated using conversation analysis. We conclude by considering a number of research and pedagogical implications we associate with conversational evidence.
Fission Power System Technology for NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Mason, Lee; Houts, Michael
2011-01-01
Under the NASA Exploration Technology Development Program, and in partnership with the Department of Energy (DOE), NASA is conducting a project to mature Fission Power System (FPS) technology. A primary project goal is to develop viable system options to support future NASA mission needs for nuclear power. The main FPS project objectives are as follows: 1) Develop FPS concepts that meet expected NASA mission power requirements at reasonable cost with added benefits over other options. 2) Establish a hardware-based technical foundation for FPS design concepts and reduce overall development risk. 3) Reduce the cost uncertainties for FPS and establish greater credibility for flight system cost estimates. 4) Generate the key products to allow NASA decisionmakers to consider FPS as a preferred option for flight development. In order to achieve these goals, the FPS project has two main thrusts: concept definition and risk reduction. Under concept definition, NASA and DOE are performing trade studies, defining requirements, developing analytical tools, and formulating system concepts. A typical FPS consists of the reactor, shield, power conversion, heat rejection, and power management and distribution (PMAD). Studies are performed to identify the desired design parameters for each subsystem that allow the system to meet the requirements with reasonable cost and development risk. Risk reduction provides the means to evaluate technologies in a laboratory test environment. Non-nuclear hardware prototypes are built and tested to verify performance expectations, gain operating experience, and resolve design uncertainties.
Synthesis and purification of galacto-oligosaccharides: state of the art.
Vera, Carlos; Córdova, Andrés; Aburto, Carla; Guerrero, Cecilia; Suárez, Sebastián; Illanes, Andrés
2016-12-01
Lactose-derived non-digestible oligosaccharides are prominent components of functional foods. Among them, galacto-oligosaccharides (GOS) outstand for being prebiotics whose health-promoting effects are supported on strong scientific evidences, having unique properties as substitutes of human milk oligosaccharides in formulas for newborns and infants. GOS are currently produced enzymatically in a kinetically-controlled reaction of lactose transgalactosylation catalyzed by β-galactosidases from different microbial strains. The enzymatic synthesis of GOS, although being an established technology, still offers many technological challenges and opportunities for further development that has to be considered within the framework of functional foods which is the most rapidly expanding market within the food sector. This paper presents the current technological status of GOS production, its main achievements and challenges. Most of the problems yet to be solved refer to the rather low GOS yields attainable that rarely exceed 40 %, corresponding to lactose conversions around 60 %. This means that the product or reaction (raw GOS) contains significant amounts of residual lactose and monosaccharides (glucose and galactose). Efforts to increase such yields have been for the most part unsuccessful, even though improvements by genetic and protein engineering strategies are to be expected in the near future. Low yields impose a burden on downstream processing to obtain a GOS product of the required purity. Different strategies for raw GOS purification are reviewed and their technological significance is appraised.
Thirst for Power: Energy, Water and Human Survival
NASA Astrophysics Data System (ADS)
Webber, M.
2015-12-01
Energy and water are precious resources, and they are interconnected. The energy sector uses a lot of water -- the thermoelectric power sector alone is the largest user of water in the U.S., withdrawing 200 billion gallons daily for powerplant cooling. Conversely, the water sector is responsible for over twelve percent of national energy consumption for moving, pumping, treating, and heating water. This interdependence means that droughts can cause energy shortages, and power outages can bring the water system to a halt. It also means that water efficiency is a pathway to energy efficiency and vice versa. This talk will give a big-picture overview of global energy and water trends to describe how they interact, what conflicts are looming, and how they can work together. This talk will include the vulnerabilities and cross-cutting solutions such as efficient markets and smart technologies that embed more information about resource management. It will include discussion of how population growth, economic growth, climate change, and short-sighted policies are likely to make things worse. Yet, more integrated planning with long-term sustainability in mind along with cultural shifts, advanced technologies, and better design can avert such a daunting future. Combining anecdotes and personal stories with insights into the latest science of energy and water, this talk will identify a hopeful path toward wise, long-range water-energy decisions and a more reliable and abundant future for humanity.
Methods and analysis of factors impact on the efficiency of the photovoltaic generation
NASA Astrophysics Data System (ADS)
Tianze, Li; Xia, Zhang; Chuan, Jiang; Luan, Hou
2011-02-01
First of all, the thesis elaborates two important breakthroughs which happened In the field of the application of solar energy in the 1950s.The 21st century the development of solar photovoltaic power generation will have the following characteristics: the continued high growth of industrial development, the significantly reducing cost of the solar cell, the large-scale high-tech development of photovoltaic industries, the breakthroughs of the film battery technology, the rapid development of solar PV buildings integration and combined to the grids. The paper makes principles of solar cells the theoretical analysis. On the basis, we study the conversion efficiency of solar cells, find the factors impact on the efficiency of the photovoltaic generation, solve solar cell conversion efficiency of technical problems through the development of new technology, and open up new ways to improve the solar cell conversion efficiency. Finally, the paper connecting with the practice establishes policies and legislation to the use of encourage renewable energy, development strategy, basic applied research etc.
SP-100 multimegawatt scaleup to meet electric propulsion mission requirements
NASA Astrophysics Data System (ADS)
Newkirk, D. W.; Salamah, S. A.; Stewart, S. L.; Pluta, P. R.
The SP-100 nuclear heat source technology, utilizing uranium nitride fuel clad in PWC-11 in a fast reactor with lithium coolant circulated by an electromagnetic pump, is shown to be directly extrapolatable to thermal power levels that meet NASA nuclear electric propulsion requirements using different power conversion techniques. The SP-100 nuclear technology can be applied to missions with NEP (nuclear electric propulsion) requirements as low as tens of kWe to tens of MWe. It is pointed out that the SP-100 heat source has a great advantage of very long lifetime capability, since it utilizes very rugged refractory metal fuel pins and is independent of the power conversion scheme chosen for a given mission. The only moving parts in the nuclear subsystems are the control rods moved to compensate for fuel enrichment degradation due to fission and for power shutdown. Lowest alpha values in the range of interest for potential NASA missions are predicted for the dynamic Rankine and static HYTEC conversion systems.
Energy conversion of animal manures: Feasibility analysis for thirteen western states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whittier, J.; Haase, S.; Milward, R.
1993-12-31
The growth and concentration of the livestock industry has led to environmental disposal problems for large quantities of manure at feedlots, dairies, poultry production plants, animal holding areas and pasturelands. Consequently, waste management systems that facilitate energy recovery are becoming increasingly attractive since they address pollution problems and allow for energy generation from manure resources. This paper presents a manure resource assessment for the 13 US Department of Energy, Western Regional Biomass Energy Program states, describes and evaluates available energy conversion technologies, identifies environmental and regulatory factors associated with manure collection, storage and disposal, and identifies common disposal practices specificmore » to animal types and areas within the WRBEP region. The paper also presents a pro forma economic analysis for selected manure-to-energy conversion technologies. The annual energy potential of various manures within the WRBEP region is equivalent to approximately 111 {times} 10{sup 13} Btu. Anaerobic digestion systems, both lagoon and plug flow, offer positive economic returns in a broad range of utility service territories.« less
Yanagita, Satoshi; Imahana, Masato; Suwa, Kazuaki; Sugimura, Hitomi; Nishiki, Masayuki
2016-01-01
Japanese Society of Radiological Technology (JSRT) standard digital image database contains many useful cases of chest X-ray images, and has been used in many state-of-the-art researches. However, the pixel values of all the images are simply digitized as relative density values by utilizing a scanned film digitizer. As a result, the pixel values are completely different from the standardized display system input value of digital imaging and communications in medicine (DICOM), called presentation value (P-value), which can maintain a visual consistency when observing images using different display luminance. Therefore, we converted all the images from JSRT standard digital image database to DICOM format followed by the conversion of the pixel values to P-value using an original program developed by ourselves. Consequently, JSRT standard digital image database has been modified so that the visual consistency of images is maintained among different luminance displays.
Catalytic conversion of methane to methanol using Cu-zeolites.
Alayon, Evalyn Mae C; Nachtegaal, Maarten; Ranocchiari, Marco; van Bokhoven, Jeroen A
2012-01-01
The conversion of methane to value-added liquid chemicals is a promising answer to the imminent demand for fuels and chemical synthesis materials in the advent of a dwindling petroleum supply. Current technology requires high energy input for the synthesis gas production, and is characterized by low overall selectivity, which calls for alternative reaction routes. The limitation to achieve high selectivity is the high C-H bond strength of methane. High-temperature reaction systems favor gas-phase radical reactions and total oxidation. This suggests that the catalysts for methane activation should be active at low temperatures. The enzymatic-inspired metal-exchanged zeolite systems apparently fulfill this need, however, methanol yield is low and a catalytic process cannot yet be established. Homogeneous and heterogeneous catalytic systems have been described which stabilize the intermediate formed after the first C-H activation. The understanding of the reaction mechanism and the determination of the active metal sites are important for formulating strategies for the upgrade of methane conversion catalytic technologies.
Kolpak, Alexie M; Grossman, Jeffrey C
2013-01-21
Challenges with cost, cyclability, and/or low energy density have largely prevented the development of solar thermal fuels, a potentially attractive alternative energy technology based on molecules that can capture and store solar energy as latent heat in a closed cycle. In this paper, we present a set of novel hybrid photoisomer/template solar thermal fuels that can potentially circumvent these challenges. Using first-principles computations, we demonstrate that these fuels, composed of organic photoisomers bound to inexpensive carbon-based templates, can reversibly store solar energy at densities comparable to Li-ion batteries. Furthermore, we show that variation of the template material in combination with the photoisomer can be used to optimize many of the key performance metrics of the fuel-i.e., the energy density, the storage lifetime, the temperature of the output heat, and the efficiency of the solar-to-heat conversion. Our work suggests that the solar thermal fuels concept can be translated into a practical and highly customizable energy storage and conversion technology.
Optimization of air plasma reconversion of UF6 to UO2 based on thermodynamic calculations
NASA Astrophysics Data System (ADS)
Tundeshev, Nikolay; Karengin, Alexander; Shamanin, Igor
2018-03-01
The possibility of plasma-chemical conversion of depleted uranium-235 hexafluoride (DUHF) in air plasma in the form of gas-air mixtures with hydrogen is considered in the paper. Calculation of burning parameters of gas-air mixtures is carried out and the compositions of mixtures obtained via energy-efficient conversion of DUHF in air plasma are determined. With the help of plasma-chemical conversion, thermodynamic modeling optimal composition of UF6-H2-Air mixtures and its burning parameters, the modes for production of uranium dioxide in the condensed phase are determined. The results of the conducted researches can be used for creation of technology for plasma-chemical conversion of DUHF in the form of air-gas mixtures with hydrogen.
In-use catalyst surface area and its relation to HC conversion efficiency and FTP emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donahue, K.S.; Sabourin, M.A.; Larson, R.E.
1986-01-01
Surface area data, steady-state hydrocarbon conversion efficiency data, and hydrocarbon emissions results have been determined for catalysts collected by the U.S. Environmental Protection Agency from properly maintained 1981 and 1982 model year vehicles. Catalysts covered in this study were limited to those with three-way-plus-oxidation monolith technologies. Catalyst surface areas were measured using the BET method, conversion efficiencies were measured on an exhaust gas generator, and emissions results were determined using the Urban Driving Schedule of the Federal Test Procedure. Results indicate that correlation of catalyst surface area data with hydrocarbon conversion efficiency data and hydrocarbon emissions results is significant formore » the sample studied.« less
NASA Astrophysics Data System (ADS)
Huang, Qi-Zhang; Zhu, Yan-Qing; Shi, Ji-Fu; Wang, Lei-Lei; Zhong, Liu-Wen; Xu, Gang
2017-03-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 21103194, 51506205, and 21673243), the Science and Technology Planning Project of Guangdong Province, China (Grant Nos. 2014A010106018 and 2013A011401011), the Guangdong-Hong Kong Joint Innovation Project of Guangdong Province, China (Grant No. 2014B050505015), the Special Support Program of Guangdong Province, China (Grant No. 2014TQ01N610), the Director Innovation Foundation of Guangzhou Institute of Energy Conversion, China (Grant No. y307p81001), and the Solar Photothermal Advanced Materials Engineering Research Center Construction Project of Guangdong Province, China (Grant No. 2014B090904071).
Advanced technology applications for second and third general coal gasification systems
NASA Technical Reports Server (NTRS)
Bradford, R.; Hyde, J. D.; Mead, C. W.
1980-01-01
The historical background of coal conversion is reviewed and the programmatic status (operational, construction, design, proposed) of coal gasification processes is tabulated for both commercial and demonstration projects as well as for large and small pilot plants. Both second and third generation processes typically operate at higher temperatures and pressures than first generation methods. Much of the equipment that has been tested has failed. The most difficult problems are in process control. The mechanics of three-phase flow are not fully understood. Companies participating in coal conversion projects are ordering duplicates of failure prone units. No real solutions to any of the significant problems in technology development have been developed in recent years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, H.L.
Much of the polymer composites industry is built around the thermochemical conversion of raw material into useful composites. The raw materials (molding compound, prepreg) often are made up of thermosetting resins and small fibers or particles. While this conversion can follow a large number of paths, only a few paths are efficient, economical and lead to desirable composite properties. Processing instrument (P/I) technology enables a computer to sense and interpret changes taking place during the cure of prepreg or molding compound. P/I technology has been used to make estimates of gel time and cure time, thermal diffusivity measurements and transitionmore » temperature measurements. Control and sensing software is comparatively straightforward. The interpretation of results with appropriate software is under development.« less
NASA Technical Reports Server (NTRS)
Wilcox, R. E.
1983-01-01
The results of a Research Opportunity Notice (RON) disseminated by the Jet Propulsion Laboratory for the U.S. Department of Energy Conversion and Utilization Technologies (ECUT) Program's Biocatalysis Research Activity are presented. The RON was issued in late April of 1983 and solicited expressions of interest from petrochemical and chemical companies, bioengineering firms, biochemical engineering consultants, private research laboratories, and universities for participating in a federal research program to investigate potential applications of biotechnology in producing chemicals. The RON results indicate that broad interest exists within the nation's industry, universities, and research institutes for the Activity and its planned research and development program.
ERIC Educational Resources Information Center
Critchfield, Thomas S.
2010-01-01
A popular-press self-help manual is reviewed with an eye toward two issues. First, the popularity of such books documents the existence of considerable demand for technologies that address the everyday problems (in the present case, troublesome conversations) of nondisordered individuals. Second, many ideas invoked in popular-press books may be…
ERIC Educational Resources Information Center
Muthiah, Rajendran
2015-01-01
The purpose of the study is to assess the effect of computer games on the proficiency of the B.Ed teacher trainees in using the conventional expressions in conversations. The role of technology in language learning has made outdated, drills, grammatical explanations and translation of texts, and the focus is shifted to communication based…
Sauer, Julian P; Kinfe, Thomas M; Pintea, Bogdan; Schäfer, Andreas; Boström, Jan P
2018-05-23
Data concerning the clinical usefulness of steady-state sequences (SSS) for vestibular schwannomas (VS) after linear accelerator (LINAC) stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT) are scarce. The aim of the study was to investigate whether SSS provide an additional useful follow-up (FU) tool to the established thin-layered T1 sequences with contrast enhancement. Pre- and post-treatment SSS were identified in 45 consecutive VS patients (2012-2016) with a standardized FU protocol including SSS at 2-3 months and 6 months/yearly in our prospective database and were retrospectively re-evaluated. The SSS were used throughout for the segmentation of the cochlea and partly of the trigeminal nerve in the treatment planning. Data analysis included signal conversion in SSS and possible correlation with neuro-otological outcome and volumetric assessment after a certain time interval. The series included 42 SRS and 3 SRT patients (31 female/14 male; mean age 59.3 years, range: 25-81 years). An SSS signal conversion was observed in 20 tumors (44.4%) within a mean time of 11 months (range: 7-15 months). Mean FU time was 26 months (median of 4 FU visits) and demonstrated tumor volume shrinkage in 29 cases (64.4%) correlating with FU time (p = 0.07). The incidence rate of combined shrinkage and signal conversion (48.3%) compared to those without signal conversion (51.7%) did not differ significantly (p = 0.49). In case of an early signal conversion at the first FU, a weak statistical significance (p = 0.05) for a higher shrinkage rate of VS with signal conversion was found. Side effects in cases with signal conversion (9/20, 45%) were more frequently than without signal conversion (6/25, 24%) without reaching statistical significance (p = 0.13). Our data confirmed the usefulness of SSS for anatomical segmentation of VS in LINAC-SRS/SRT treatment planning and add data supporting their potential as an adjunctive FU option in VS patients.
Ethanol production from renewable resources.
Gong, C S; Cao, N J; Du, J; Tsao, G T
1999-01-01
Vast amounts of renewable biomass are available for conversion to liquid fuel, ethanol. In order to convert biomass to ethanol, the efficient utilization of both cellulose-derived and hemicellulose-derived carbohydrates is essential. Six-carbon sugars are readily utilized for this purpose. Pentoses, on the other hand, are more difficult to convert. Several metabolic factors limit the efficient utilization of pentoses (xylose and arabinose). Recent developments in the improvement of microbial cultures provide the versatility of conversion of both hexoses and pentoses to ethanol more efficiently. In addition, novel bioprocess technologies offer a promising prospective for the efficient conversion of biomass and recovery of ethanol.
Xie, Xiuqiang; Kretschmer, Katja; Wang, Guoxiu
2015-08-28
Graphene-based semiconductor photocatalysis has been regarded as a promising technology for solar energy storage and conversion. In this review, we summarized recent developments of graphene-based photocatalysts, including preparation of graphene-based photocatalysts, typical key advances in the understanding of graphene functions for photocatalytic activity enhancement and methodologies to regulate the electron transfer efficiency in graphene-based composite photocatalysts, by which we hope to offer enriched information to harvest the utmost fascinating properties of graphene as a platform to construct efficient graphene-based composite photocatalysts for solar-to-energy conversion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, O. Jr.
1979-03-01
This work was supported by the United States Department of Energy, Division of Biomedical and Environmental Research, Analysis and Assessment Program, through the Safety and Environmental Protection Division at Brookhaven National Laboratory. The symposium program included presentations centering around the themes: Recognition of Occupational Health Monitoring Requirements for the Coal Conversion and Oil Shale Industries and Status of Dosimetry Technology for Occupational Health Monitoring for the Coal Conversion and Oil Shale Industries. Sixteen papers have been entered individually into EDB and ERA; six had been entered previously from other sources. (LTN)
Borole, Abhijeet P.
2015-08-25
Conversion of biomass into bioenergy is possible via multiple pathways resulting in production of biofuels, bioproducts and biopower. Efficient and sustainable conversion of biomass, however, requires consideration of many environmental and societal parameters in order to minimize negative impacts. Integration of multiple conversion technologies and inclusion of upcoming alternatives such as bioelectrochemical systems can minimize these impacts and improve conservation of resources such as hydrogen, water and nutrients via recycle and reuse. This report outlines alternate pathways integrating microbial electrolysis in biorefinery schemes to improve energy efficiency while evaluating environmental sustainability parameters.
NASA Technical Reports Server (NTRS)
Sornchamni, T.; Jovanovic, G. N.; Reed, B. P.; Atwater, J. E.; Akse, J. R.; Wheeler, R. R.
2004-01-01
The conversion of solid waste into useful resources in support of long duration manned missions in space presents serious technological challenges. Several technologies, including supercritical water oxidation, microwave powered combustion and fluidized bed incineration, have been tested for the conversion of solid waste. However, none of these technologies are compatible with microgravity or hypogravity operating conditions. In this paper, we present the gradient magnetically assisted fluidized bed (G-MAFB) as a promising operating platform for fluidized bed operations in the space environment. Our experimental and theoretical work has resulted in both the development of a theoretical model based on fundamental principles for the design of the G-MAFB, and also the practical implementation of the G-MAFB in the filtration and destruction of solid biomass waste particles from liquid streams. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Analysis to develop a program for energy-integrated farm systems
NASA Astrophysics Data System (ADS)
Eakin, D. E.; Clark, M. A.; Inaba, L. K.; Johnson, K. I.
1981-09-01
A program to use renewable energy resources and possibly develop decentralization of energy systems for agriculture is discussed. The program's objective is determined by: (1) an analysis of the technologies that could be utilized to transform renewable farm resources to energy by the year 2000, (2) the quantity of renewable farm resources that are available, and (3) current energy-use patterns. Individual research, development, and demonstration projects are fit into a national program of energy-integrated farm systems on the basis of market need, conversion potential, technological opportunities, and acceptability. Quantification of these factors for the purpose of establishing program guidelines is conducted using the following four precepts: (1) market need is identified by current use of energy for agricultural production; (2) conversion potential is determined by the availability of renewable resources; and (3) technological opportunities are determined by the state-of-the-art methods, techniques, and processes that can convert renewable resources into farm energy.
Conversational Flow Promotes Solidarity
Koudenburg, Namkje; Postmes, Tom; Gordijn, Ernestine H.
2013-01-01
Social interaction is fundamental to the development of various aspects of “we-ness”. Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here). The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay). Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition) increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed. PMID:24265683
Conversational flow promotes solidarity.
Koudenburg, Namkje; Postmes, Tom; Gordijn, Ernestine H
2013-01-01
Social interaction is fundamental to the development of various aspects of "we-ness". Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here). The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay). Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition) increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed.
Overheard cell-phone conversations: when less speech is more distracting.
Emberson, Lauren L; Lupyan, Gary; Goldstein, Michael H; Spivey, Michael J
2010-10-01
Why are people more irritated by nearby cell-phone conversations than by conversations between two people who are physically present? Overhearing someone on a cell phone means hearing only half of a conversation--a "halfalogue." We show that merely overhearing a halfalogue results in decreased performance on cognitive tasks designed to reflect the attentional demands of daily activities. By contrast, overhearing both sides of a cell-phone conversation or a monologue does not result in decreased performance. This may be because the content of a halfalogue is less predictable than both sides of a conversation. In a second experiment, we controlled for differences in acoustic factors between these types of overheard speech, establishing that it is the unpredictable informational content of halfalogues that results in distraction. Thus, we provide a cognitive explanation for why overheard cell-phone conversations are especially irritating: Less-predictable speech results in more distraction for a listener engaged in other tasks.
Fluorescent Lamp Replacement Study
2017-07-01
friendly products, advances in efficiency, and lower production costs for lamps. The conversion of fluorescent bulbs to LED technology has many benefits ...of 4727 W. An economic analysis was calculated to compare the various lighting technologies that were implemented at ATC and the cost benefits ...the various lighting technologies that were implemented at ATC and the cost benefits of each, a lifecycle comparison was made between the fluorescent
Energy, environmental and climate assessment with the EPA MARKAL energy system modeling framework
The energy system is comprised of the technologies and fuels that extend from the import or extraction of energy resources (e.g., mines and wells), through the conversion of these resources into useful forms (e.g., electricity and gasoline), to the technologies (e.g., cars, light...
Computer Simulation and New Ways of Creating Matched-Guise Techniques
ERIC Educational Resources Information Center
Connor, Robert T.
2008-01-01
Matched-guise experiments have passed their 40th year as a powerful attitudinal research tool, and they are becoming more relevant and useful as technology is applied to language research. Combining the specificity of conversation analysis with the generalizability of social psychology research, technological innovations allow the measurement of…
ERIC Educational Resources Information Center
Lahiri, Uttama; Bekele, Esubalew; Dohrmann, Elizabeth; Warren, Zachary; Sarkar, Nilanjan
2015-01-01
Clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders (ASD). This project evaluated the application of a novel physiologically responsive virtual reality based technological system for conversation skills in a group of adolescents with ASD. The system altered components…
Conversations about Technology
ERIC Educational Resources Information Center
Wagner, Michael Andrew
2012-01-01
Since the early 1980s, exposure to digital technologies/devices has occurred on a wide cultural/societal level. Numerous writers have posited their impressions of these encounters often times suggesting an ease, comfort, and acceptance on the part of the users, especially those born in 1980 or later. This study examined the ongoing relationship…
Development of advanced technological systems for accelerator transmutation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batskikh, G.I.; Bondarev, B.I.; Durkin, A.P.
1995-10-01
A development concept of the accelerator nuclear energy reactors is considered for energy generation and nuclear power plant waste conversion into short-lived nuclides along with the requirements imposed on the technological systems necessary for implementation of such projects. The state of art in the field is discussed.
Effects of Deployment Investment on the Growth of the Biofuels Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vimmerstedt, Laura J.; Bush, Brian W.
2013-12-01
In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in earlier stages of development. The advancement of a new pathway toward commercialization involves various types of progress, including yield improvements, process engineering, and financial performance. Actions of private investors and public programs can accelerate the demonstration and deployment of new conversion technology pathways. These investors (both private and public) will pursue a range of pilot, demonstration, and pioneer scalemore » biorefinery investments; the most cost-effective set of investments for advancing the maturity of any given biomass to biofuel conversion technology pathway is unknown. In some cases, whether or not the pathway itself will ultimately be technically and financially successful is also unknown. This report presents results from the Biomass Scenario Model -- a system dynamics model of the biomass to biofuels system -- that estimate effects of investments in biorefineries at different maturity levels and operational scales. The report discusses challenges in estimating effects of such investments and explores the interaction between this deployment investment and a volumetric production incentive. Model results show that investments in demonstration and deployment have a substantial positive effect on the development of the biofuels industry. Results also show that other conditions, such as supportive policies, have major impacts on the effectiveness of such investments.« less
In Conversation: Transforming Experience Into Learning.
ERIC Educational Resources Information Center
Baker, Ann C.; And Others
1997-01-01
Simulations and games are designed to provide participants with an experiential context for reflection and learning in classrooms, corporate training centers, and community-based organizations. A conversational approach to debriefing sessions is one way to more deeply involve participants in exploring the meaning of their experience from multiple…
Advanced Electrical Materials and Components Development: An Update
NASA Technical Reports Server (NTRS)
Schwarze, Gene E.
2005-01-01
The primary means to develop advanced electrical components is to develop new and improved materials for magnetic components (transformers, inductors, etc.), capacitors, and semiconductor switches and diodes. This paper will give an update of the Advanced Power Electronics and Components Technology being developed by the NASA Glenn Research Center for use in future Power Management and Distribution subsystems used in space power systems for spacecraft and lunar and planetary surface power. The initial description and status of this technology program was presented two years ago at the First International Energy Conversion Engineering Conference held at Portsmouth, Virginia, August 2003. The present paper will give a brief background of the previous work reported and a summary of research performed the past several years on soft magnetic materials characterization, dielectric materials and capacitor developments, high quality silicon carbide atomically smooth substrates, and SiC static and dynamic device characterization under elevated temperature conditions. The rationale for and the benefits of developing advanced electrical materials and components for the PMAD subsystem and also for the total power system will also be briefly discussed.
Banatao, Diosdado R.; Pastine, Stefan J.
2018-01-01
An innovative recycling process for thermoset polymer composites developed by Connora Technologies (Hayward, CA, USA) was studied. The process efficacy has already been tested, and it is currently working at the plant level. The main aspect investigated in the present paper was the environmental impact by means of the Life Cycle Assessment (LCA) method. Because of the need to recycle and recover materials at their end of life, the Connora process creates a great innovation in the market of epoxy composites, as they are notoriously not recyclable. Connora Technologies developed a relatively gentle chemical recycling process that induces the conversion of thermosets into thermoplastics. The LCA demonstrated that low environmental burdens are associated with the process itself and, furthermore, impacts are avoided due to the recovery of the epoxy-composite constituents (fibres and matrix). A carbon fibre (CF) epoxy-composite panel was produced through Vacuum Resin Transfer Moulding (VRTM) and afterwards treated using the Connora recycling process. The LCA results of both the production and the recycling phases are reported. PMID:29495571
Impact of novel energy sources: OTEC, wind, goethermal, biomass
NASA Technical Reports Server (NTRS)
Roberts, A. S., Jr.
1978-01-01
Alternate energy conversion methods such as ocean thermal energy conversion (OTEC), wind power, geothermal wells and biomass conversion are being explored, and re-examined in some cases, for commercial viability. At a time when United States fossil fuel and uranium resources are found to be insufficient to supply national needs into the twenty-first century, it is essential to broaden the base of feasible energy conversion technologies. The motivations for development of these four alternative energy forms are established. Primary technical aspects of OTEC, wind, geothermal and biomass energy conversion systems are described along with a discussion of relative advantages and disadvantages of the concepts. Finally, the sentiment is voiced that each of the four systems should be developed to the prototype stage and employed in the region of the country and in the sector of economy which is complimentary to the form of system output.
Lifetime Measurement of the 229Th nuclear isomer
NASA Astrophysics Data System (ADS)
Seiferle, Benedict; von der Wense, Lars; Thirolf, Peter G.
2017-01-01
The first excited isomeric state of 229Th possesses the lowest energy among all known excited nuclear states. The expected energy is accessible with today's laser technology and in principle allows for a direct optical laser excitation of the nucleus. The isomer decays via three channels to its ground state (internal conversion, γ decay, and bound internal conversion), whose strengths depend on the charge state of Thm229 . We report on the measurement of the internal-conversion decay half-life of neutral Thm229 . A half-life of 7 ±1 μ s has been measured, which is in the range of theoretical predictions and, based on the theoretically expected lifetime of ≈1 04 s of the photonic decay channel, gives further support for an internal conversion coefficient of ≈1 09, thus constraining the strength of a radiative branch in the presence of internal conversion.
NASA Astrophysics Data System (ADS)
Wang, Zujun; Xue, Yuanyuan; Guo, Xiaoqiang; Bian, Jingying; Yao, Zhibin; He, Baoping; Ma, Wuying; Sheng, Jiangkun; Dong, Guantao; Liu, Yan
2018-07-01
The conversion gain of the CMOS image sensor (CIS) is one of the most important key parameters to the CIS detector. The conversion gain degradation induced by radiation damage will seriously affect the performances of the CIS detector. The experiments of the CISs irradiated by protons, neutrons, and gamma rays are presented. The CISs have 4 Megapixels and pinned photodiode (PPD) pixel architecture with a standard 0.18 μm CMOS technology. The conversion gains versus the proton fluence (including the proton ionizing dose), neutron fluence and gamma total ionizing dose are presented, respectively. The mechanisms of the conversion gain degradation induced by radiation damage are analyzed in details. The investigations will help to improve the PPD CIS detector design, reliability and applicability for applications in the harsh radiation environments such as space and nuclear environments.
Jin, Xin; Zhang, Zhen-Hai; Zhu, Jing; Sun, E; Yu, Dan-Hong; Chen, Xiao-Yun; Liu, Qi-Yuan; Ning, Qing; Jia, Xiao-Bin
2012-04-01
This article reports that nano-silica solid dispersion technology was used to raise genistein efficiency through increasing the enzymatic hydrolysis rate. Firstly, genistin-nano-silica solid dispersion was prepared by solvent method. And differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) were used to verify the formation of solid dispersion, then enzymatic hydrolysis of solid dispersion was done by snailase to get genistein. With the conversion of genistein as criteria, single factor experiments were used to study the different factors affecting enzymatic hydrolysis of genistin and its solid dispersion. And then, response surface method was used to optimize of nano-silica solid dispersion technology assistant enzymatic hydrolysis. The optimum condition to get genistein through enzymatic hydrolysis of genistin-nano-silica solid dispersion was pH 7.1, temperature 52.2 degrees C, enzyme concentration 5.0 mg x mL(-1) and reaction time 7 h. Under this condition, the conversion of genistein was (93.47 +/- 2.40)%. Comparing with that without forming the genistin-nano-silica solid dispersion, the conversion increased 2.62 fold. At the same time, the product of hydrolysis was purified to get pure genistein. The method of enzymatic hydrolysis of genistin-nano-silica solid dispersion by snailase to obtain genistein is simple, efficiency and suitable for the modern scale production.
Biological conversion of pyrolytic products to ethanol and lipids
NASA Astrophysics Data System (ADS)
Lian, Jieni
Pyrolysis is a promising technology that can convert up to 75 % of lignocellulosic biomass into crude bio-oil. However, due to the complex chemical compositions of bio-oil, its further refining into fuels and high value chemicals faces great challenges. This dissertation research proposed new technologies for biological conversion of pyrolytic products derived from cellulose and hemicellulose, such as anhydrosugars and carbolic acids to fuels and chemicals. First, the pyrolytic anhydrosugars (chiefly levoglucosan (LG)) were hydrolysed into glucose followed by neutralization, detoxification and fermentation to produce ethanol by ethanogenetic yeast and lipids by oleaginous yeasts. Second, a novel process for the conversion of C1-C4 pyrolytic products to lipid with oleaginous yeasts was investigated. Third, oleaginous yeasts that can directly convert LG to lipids were studied and a recombined yeast with LG kinase was constructed for the direct convertion of LG into lipids. This allowed a reduction of existing process for LG fermentation from four steps into two steps and eliminated the need for acids and bases as well as the disposal of chemicals. The development of genetic modified organisms with LG kinase opens a promising avenue for the direct LG fermentation to produce a wide range of fuels and chemicals. The simplification of LG utilization process would enhance the economic viability of this technology.
New Trends in Forging Technologies
NASA Astrophysics Data System (ADS)
Behrens, B.-A.; Hagen, T.; Knigge, J.; Elgaly, I.; Hadifi, T.; Bouguecha, A.
2011-05-01
Limited natural resources increase the demand on highly efficient machinery and transportation means. New energy-saving mobility concepts call for design optimisation through downsizing of components and choice of corrosion resistant materials possessing high strength to density ratios. Component downsizing can be performed either by constructive structural optimisation or by substituting heavy materials with lighter high-strength ones. In this context, forging plays an important role in manufacturing load-optimised structural components. At the Institute of Metal Forming and Metal-Forming Machines (IFUM) various innovative forging technologies have been developed. With regard to structural optimisation, different strategies for localised reinforcement of components were investigated. Locally induced strain hardening by means of cold forging under a superimposed hydrostatic pressure could be realised. In addition, controlled martensitic zones could be created through forming induced phase conversion in metastable austenitic steels. Other research focused on the replacement of heavy steel parts with high-strength nonferrous alloys or hybrid material compounds. Several forging processes of magnesium, aluminium and titanium alloys for different aeronautical and automotive applications were developed. The whole process chain from material characterisation via simulation-based process design to the production of the parts has been considered. The feasibility of forging complex shaped geometries using these alloys was confirmed. In spite of the difficulties encountered due to machine noise and high temperature, acoustic emission (AE) technique has been successfully applied for online monitoring of forging defects. New AE analysis algorithm has been developed, so that different signal patterns due to various events such as product/die cracking or die wear could be detected and classified. Further, the feasibility of the mentioned forging technologies was proven by means of the finite element analysis (FEA). For example, the integrity of forging dies with respect to crack initiation due to thermo-mechanical fatigue as well as the ductile damage of forgings was investigated with the help of cumulative damage models. In this paper some of the mentioned approaches are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckley, Merry; Wall, Judy D.
2006-10-01
The American Academy of Microbiology convened a colloquium March 10-12, 2006, in San Francisco, California, to discuss the production of energy fuels by microbial conversions. The status of research into various microbial energy technologies, the advantages and disadvantages of each of these approaches, research needs in the field, and education and training issues were examined, with the goal of identifying routes for producing biofuels that would both decrease the need for fossil fuels and reduce greenhouse gas emissions. Currently, the choices for providing energy are limited. Policy makers and the research community must begin to pursue a broader array ofmore » potential energy technologies. A diverse energy portfolio that includes an assortment of microbial energy choices will allow communities and consumers to select the best energy solution for their own particular needs. Funding agencies and governments alike need to prepare for future energy needs by investing both in the microbial energy technologies that work today and in the untested technologies that will serve the world’s needs tomorrow. More mature bioprocesses, such as ethanol production from starchy materials and methane from waste digestors, will find applications in the short term. However, innovative techniques for liquid fuel or biohydrogen production are among the longer term possibilities that should also be vigorously explored, starting now. Microorganisms can help meet human energy needs in any of a number of ways. In their most obvious role in energy conversion, microorganisms can generate fuels, including ethanol, hydrogen, methane, lipids, and butanol, which can be burned to produce energy. Alternatively, bacteria can be put to use in microbial fuel cells, where they carry out the direct conversion of biomass into electricity. Microorganisms may also be used some day to make oil and natural gas technologies more efficient by sequestering carbon or by assisting in the recovery of oil and natural gas from the subsurface. The participants discussed--key microbial conversion paths; overarching research issues; current funding models and microbial energy research; education, training, interdisciplinary cooperation and communication. Their recommendations are--Cellulose and lignocellulose are the preferred substrates for producing liquid transportation fuels, of which ethanol is the most commonly considered example. Generating fuels from these materials is still difficult and costly. A number of challenges need to be met in order to make the conversion of cellulose and lignocellulose to transportation fuels more cost-competitive. The design of hydrogen-producing bioreactors must be improved in order to more effectively manage hydrogen removal, oxygen exclusion, and, in the case of photobioreactors, to capture light energy more efficiently. Methane production may be optimized by fine-tuning methanogenic microbial communities. The ability to transfer electrons to an anode in a microbial fuel cell is probably very broadly distributed in the bacterial world. The scientific community needs a larger inventory of cultivated microorganisms from which to draw for energy conversion development. New and unusual organisms for manufacturing fuels and for use in fuel cells can be discovered using bioprospecting techniques. Particular emphasis should be placed on finding microbes, microbial communities, and enzymes that can enhance the conversion of lignocellulosic biomass to usable sugars. Many of the microbial processes critical to energy conversion are carried out by complex communities of organisms, and there is a need to better understand the community interactions that make these transformations possible. Better understanding of microbial community structure, robustness, networks, homeostasis, and cell-to-cell signaling is also needed. A better understanding of the basic enzymology of microorganisms is needed in order to move forward more quickly with microbial energy production. Research should focus on the actions of enzymes and enzyme complexes within the context of the whole cell, how they’re regulated, where they’re placed, and what they interact with. Better modeling tools are needed to facilitate progress in microbial energy transformations. Models of metabolic dynamics, including levels of reductants and regulation of electron flow need to be improved. Global techno-economic models of microbial energy conversion systems, which seek to simultaneously describe the resource flows into and out of a system as well as its economics, are needed and should be made publicly available on the internet. Finally, more emphasis needs to be placed on multidisciplinary education and training and on cooperation between disciplines in order to make the most of microbial energy conversion technologies and to meet the research needs of the future.« less
On the surface-to-bulk mode conversion of Rayleigh waves.
NASA Technical Reports Server (NTRS)
Chang, C.-P.; Tuan, H.-S.
1973-01-01
Surface-to-bulk wave conversion phenomena occurring at a discontinuity characterized by a surface contour deformation are shown to be usable as a means for tapping Rayleigh waves in a nonpiezoelectric solid. A boundary perturbation technique is used in the treatment of the mode conversion problem. A systematic procedure is presented for calculating not only the first-order scattered waves, which include the reflected surface wave and the converted bulk wave, but also the higher order terms.
Scalable 3D image conversion and ergonomic evaluation
NASA Astrophysics Data System (ADS)
Kishi, Shinsuke; Kim, Sang Hyun; Shibata, Takashi; Kawai, Takashi; Häkkinen, Jukka; Takatalo, Jari; Nyman, Göte
2008-02-01
Digital 3D cinema has recently become popular and a number of high-quality 3D films have been produced. However, in contrast with advances in 3D display technology, it has been pointed out that there is a lack of suitable 3D content and content creators. Since 3D display methods and viewing environments vary widely, there is expectation that high-quality content will be multi-purposed. On the other hand, there is increasing interest in the bio-medical effects of image content of various types and there are moves toward international standardization, so 3D content production needs to take into consideration safety and conformity with international guidelines. The aim of the authors' research is to contribute to the production and application of 3D content that is safe and comfortable to watch by developing a scalable 3D conversion technology. In this paper, the authors focus on the process of changing the screen size, examining a conversion algorithm and its effectiveness. The authors evaluated the visual load imposed during the viewing of various 3D content converted by the prototype algorithm as compared with ideal conditions and with content expanded without conversion. Sheffe's paired comparison method was used for evaluation. To examine the effects of screen size reduction on viewers, changes in user impression and experience were elucidated using the IBQ methodology. The results of the evaluation are presented along with a discussion of the effectiveness and potential of the developed scalable 3D conversion algorithm and future research tasks.
Piezoelectric Composites by Solid Freeform Fabrication: A Nature-Inspired Approach
NASA Astrophysics Data System (ADS)
Safari, A.; Akdoğan, E. K.
Piezoelectrics and electrostrictors are indispensable materials for use in transducer technology, as they inherently possess both direct (sensing) and converse (actuation) effects. A piezoelectric/electrostrictive sensor converts a mechanical input (displacement or force) into a measurable electrical output through piezoelectric/electrostrictive energy conversion. In the case of a piezoelectric, an applied mechanical force (stress) induces a voltage across the terminals of the transducer. On the other hand, an applied mechanical force induces a change in the capacitance of an electrostrictive transducer that could be electrically detected. Hence, the mechanical to electrical energy conversion is accomplished directly when a piezoelectric is used, while the same is obtained indirectly if the electroactive material of choice is an electrostrictor. Conversely, both piezoelectric and electrostrictive materials develop an elastic strain under an applied electric field. The said elastic strain is linearly proportional to the applied field in a piezoelectric, whereas electrostrictive coupling involves the second-order (quadratic) coupling of electric field with elastic strain. While piezoelectricity is possible only in noncentrosymetric point groups, electrostriction is observed in all solids, which make it a much more general solid-state phenomenon. Sensing and actuation functions can coexist in a given transducer by the intelligent use of such materials. Piezoelectrics and electrostrictors, therefore, constitute the backbone of modern transducer technology, as mechanical to electric energy (and vice versa) conversion can be accomplished with great efficiency in a way that is second to none among all phenomena known to date [1,2].
Solar concentrator technology development for space based applications, volume 1
NASA Technical Reports Server (NTRS)
Pintz, A.; Castle, C. H.; Reimer, R. R.
1992-01-01
Thermoelectric conversion using a radio-isotope heat source has been used where outer planetary space craft are too far away for absorbing significant solar energy. Solar dynamic power (SDP) conversion is one technology that offers advantages for applications within the inner planet region. Since SDP conversion efficiency can be 2 to 3 times higher than photovoltaic, the collecting surfaces are much reduced in area and therefore lighter. This becomes an advantage in allocating more weight to launched payloads. A second advantage results for low earth orbit applications. The reduced area results in lower drag forces on the spacecraft and requires less reboost propellant to maintain orbit. A third advantage occurs because of the sun-to-shade cycling while in earth orbit. Photovoltaic systems require batteries to store energy for use when in the shade, and battery life for periods of 10 to 15 years is not presently achievable. For these reasons the Solar Dynamics and Thermal Systems Branch at NASA LeRC has funded work in developing SDP systems. The generic SDP system uses a large parabolic solar concentrator to focus solar energy onto a power conversion device. The concentrators are large areas and must therefore be efficient and have low specific weights. Yet these surfaces must be precise and capable of being stowed in a launch vehicle and then deployed and sometimes unfurled in space. There are significant technical challenges in engineering such structures, and considerable investigation has been made to date. This is the first of two volumes reporting on the research done by the Advanced Manufacturing Center at Cleveland State University to assist NASA LeRC in evaluating this technology. The objective of the grant was to restore the solar concentrator development technology of the 1960s while improving it with advances that have occurred since then. This report summarizes the work done from January 1989 through December 1991.
Solar concentrator technology development for space based applications, volume 2
NASA Technical Reports Server (NTRS)
Pintz, A.; Castle, C. H.; Reimer, R. R.
1992-01-01
Thermoelectric conversion using a radio-isotope heat source has been used where outer planetary space craft are too far away for absorbing significant solar energy. Solar dynamic power (SDP) conversion is one technology that offers advantages for applications within the inner planet region. Since SDP conversion efficiency can be 2 to 3 times higher than photovoltaic, the collecting surfaces are much reduced in area and therefore lighter. This becomes an advantage in allocating more weight to launched payloads. A second advantage results for low earth orbit applications. The reduced area results in lower drag forces on the spacecraft and requires less reboost propellant to maintain orbit. A third advantage occurs because of the sun-to-shade cycling while in earth orbit. Photovoltaic systems require batteries to store energy for use when in the shade, and battery life for periods of 10 to 15 years is not presently achievable. For these reasons the Solar Dynamics and Thermal Systems Branch at NASA LeRC has funded work in developing SDP systems. The generic SDP system uses a large parabolic solar concentrator to focus solar energy onto a power conversion device. The concentrators are large areas and must therefore be efficient and have low specific weights. Yet these surfaces must be precise and capable of being stowed in a launch vehicle and then deployed and sometimes unfurled in space. There are significant technical challenges in engineering such structures, and considerable investigation has been made to date. This is the second of two volumes reporting on the research done by the Advanced Manufacturing Center at Cleveland State University to assist NASA LeRC in evaluating this technology. This volume includes the appendices of selected data sets, drawings, and procedures. The objective of the grant was to restore the solar concentrator development technology of the 1960s while improving it with advances that have occurred since then. This report summarizes the work done from January 1989 through December 1991.
ERIC Educational Resources Information Center
Bavelas, Janet; Gerwing, Jennifer; Healing, Sara
2014-01-01
"Demonstrations" (e.g., direct quotations, conversational facial portrayals, conversational hand gestures, and figurative references) lack conventional meanings, relying instead on a resemblance to their referent. Two experiments tested our theory that demonstrations are a class of communicative acts that speakers are more likely to use…
Swahili. An Active Introduction. General Conversation.
ERIC Educational Resources Information Center
Indakwa, John; And Others
This textbook is aimed towards the beginning student of Swahili and is designed to cover almost all the main features of Swahili structure. The course is divided into 87 "cycles," each of which begins with an "M" phase (mimicry, meaning, manipulation, memorization), and ends with a "C" phase (conversation and…
Young People's Conversations about Environmental and Sustainability Issues in Social Media
ERIC Educational Resources Information Center
Andersson, Erik; Öhman, Johan
2017-01-01
Young people's conversations about environmental and sustainability issues in social media and their educational implications are under-researched. Understanding young people's meaning-making in social media and the experiences they acquire could help teachers to stage pluralistic and participatory approaches to classroom discussions about the…
Organizational Identification and Social Motivation: A Field Descriptive Study in Two Organizations.
ERIC Educational Resources Information Center
Barge, J. Kevin
A study examined the relationships between leadership conversation and its impact upon organizational members' levels of organizational identification and behavior. It was hypothesized (1) that effective leader conversation would be associated with higher levels of role, means, goal and overall organizational identification, and (2) that…
Berge, Jerica M.; MacLehose, Rich; Loth, Katie A.; Eisenberg, Marla; Bucchianeri, Michaela M.; Neumark-Sztainer, Dianne
2013-01-01
Objective The prevalence of weight-related problems in adolescents is high. Parents of adolescents may wonder whether talking about eating habits and weight is useful or detrimental. This study aimed to examine the associations between parent conversations about healthful eating and weight and adolescent disordered eating behaviors. Design Cross-sectional analysis using data from two linked multi-level population-based studies. Setting Anthropometric assessments and surveys completed at school by adolescents and surveys completed at home by parents in 2009–2010. Participants Socio-economically and racially/ethnically diverse sample (81% ethnic minority; 60% low income) of adolescents from EAT (Eating and Activity in Teens) 2010 (n = 2,793, mean age=14.4) and parents from F-EAT (Families and Eating and Activity in Teens) (n = 3,709, mean age = 42.3). Main Exposure Parent conversations about healthful eating and weight/size. Outcome Measures Adolescent dieting, unhealthy weight control behaviors, and binge eating. Results Mothers and fathers who engaged in weight-related conversations had adolescents who were more likely to diet, use unhealthy weight control behaviors, and engage in binge eating. Overweight/obese adolescents whose mothers engaged in conversations that were focused only on healthful eating behaviors were less likely to diet and use unhealthy weight control behaviors. Additionally, sub-analyses with adolescents with data from two parents showed that when both parents engaged in healthful eating conversations, their overweight/obese adolescent children were less likely to diet and use unhealthy weight control behaviors. Conclusion Parent conversations focused on weight/size are associated with increased risk for adolescent disordered eating behaviors, whereas conversations focused on healthful eating are protective against disordered eating behaviors. PMID:23797808
1990-08-01
Computer Conferencing ’ DTIC •ELECTEM. b ~Novo JIML 0*- B August 1990 Field Element al Boise, Idaho Field Unit at Fort Knox, Kentucky Training Resecarch...Distributed Training for the Reserve Component: Course Conversion and implementation Guidelines for Computer (onferencing _________________ __________ 12...identify by block number) FIELD GROUP SUB-GROT;W Asynchironous computer conferencing ’rt i1inimg technology _____ 1Reserve Component jtr ibuted
Ocean Thermal Energy Conversion (OTEC) program. FY 1977 program summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1978-01-01
An overview is given of the ongoing research, development, and demonstration efforts. Each of the DOE's Ocean Thermal Energy Conversion projects funded during fiscal year 1977 (October 1, 1976 through September 30, 1977) is described and each project's status as of December 31, 1977 is reflected. These projects are grouped as follows: program support, definition planning, engineering development, engineering test and evaluation, and advanced research and technology. (MHR)
Nanoscale Advances in Catalysis and Energy Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yimin; Somorjai, Gabor A.
2010-05-12
In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.
Wireless Power Transmission Technology State-Of-The-Art
NASA Astrophysics Data System (ADS)
Dickinson, R. M. T.
2002-01-01
This first Bill Brown SSP La Crescenta, CA 91214 technology , including microwave and laser systems for the transfer of electric , as related to eventually developing Space Solar Power (SSP) systems. Current and past technology accomplishments in ground based and air and space applied energy conversion devices, systems and modeling performance and cost information is presented, where such data are known to the author. The purpose of the presentation is to discuss and present data to encourage documenting and breaking the current technology records, so as to advance the SOA in WPT for SSP . For example, regarding DC to RF and laser converters, 83% efficient 2.45 GHz cooker-tube magnetrons with 800W CW output have been jointly developed by Russia and US. Over 50% wa11-plug efficient 1.5 kW/cm2 CW, water cooled, multibeam, solid state laser diode bar-arrays have been developed by LLNL at 808 nm wavelength. The Gennans have developed a 36% efficient, kW level, sing1e coherent beam, lateral pumped semiconductor laser. The record for end-to-end DC input to DC output power overall WPT link conversion efficiency is 54% during the Raytheon-JPL experiments in 1975 for 495.6 W recovered at 1.7-mrange at 2.4469 GAz. The record for usefully recovered electric power output ( as contrasted with thennally induced power in structures) is 34 kW OC output at a range of 1.55 km, using 2.388 GHz microwaves, during the JPL- Raytheon experiments by Bill Brown and the author at Goldstone, CA in 1975. The GaAs-diode rectenna array had an average collection-conversion efficiency of 82.5%. A single rectenna element operating a 6W RF input, developed by Bill Brown demonstrated 91.4% efficiency. The comparable record for laser light to OC output power conversion efficiency of photovoltaics is 590/0. for AlGaAs at 1.7 Wand 826nm wavelength. Russian cyclotron-wave converters have demonstrated 80% rectification efficiency at S-band. Concerning WPT technology equipment costs, magnetron conversion devices for microwave ovens are approximately O.O25/W, due to the large manufacturing quantities. Comparable, remanufactured lasers for industrial applications at the 4 kW CW level are of order 25/W. Industrial klystrons cost over 1/W and solid state power amplifiers cost over 3/W. Model tethered helicopters, model airplanes, a smal1 airship and several small rovers have been powered with microwave beams at 2.45, 5.8 and 35 GHz. Smal1 rovers have been powered with laser beams. Two space-to-space microwave power link experiments have been conducted by the Japanese and with Texas A&M assistance in one case. International records for WPT link electric power delivered, range, 1ink efficiency and other salient parameters for both wireless-laser and -microwave power demonstrations win be reviewed. Also, costing models for WPT -system figure- of-merit (FOM) in terms of capital costs, in /MW -km, as a fonction of range and power level are reviewed. Records in Japan. France, Korea, Russia, Canada and the US will be reviewed for various land based WPT demonstrations. SSP applicable elements of technology in fiber and wireless links, cell phones and base stations, aircraft, and spacecraft phased arrays, industrial and scientific klystrons and lasers, military equipment (where information is available in open literature) microwave heating, and other telecommunication activities win be presented, concerning power handling, frequency or wavelength, conversion efficiency, specific mass, specific cost, etc. Previously studied and proposed applications of WPT technology will be presented to show the range of WPT technology being considered for commercial and other applications that will lead to advancing the SOA of WPT technology that win benefit SSP .
Experimental study of NO2 reduction in N2/Ar and O2/Ar mixtures by pulsed corona discharge.
Zhu, Xinbo; Zheng, Chenghang; Gao, Xiang; Shen, Xu; Wang, Zhihua; Luo, Zhongyang; Cen, Kefa
2014-11-01
Non-thermal plasma technology has been regarded as a promising alternative technology for NOx removal. The understanding of NO2 reduction characteristics is extremely important since NO2 reduction could lower the total NO oxidation rate in the plasma atmosphere. In this study, NO2 reduction was experimentally investigated using a non-thermal plasma reactor driven by a pulsed power supply for different simulated gas compositions and operating parameters. The NO2 reduction was promoted by increasing the specific energy density (SED), and the highest conversion rates were 33.7%, 42.1% and 25.7% for Ar, N2/Ar and O2/Ar, respectively. For a given SED, the NO2 conversion rate had the order N2/Ar>Ar>O2/Ar. The highest energy yield of 3.31g/kWh was obtained in N2/Ar plasma and decreased with increasing SED; the same trends were also found in the other two gas compositions. The conversion rate decreased with increasing initial NO2 concentration. Furthermore, the presence of N2 or O2 led to different reaction pathways for NO2 conversion due to the formation of different dominating reactive radicals. Copyright © 2014. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skaggs, Richard L.; Coleman, Andre M.; Seiple, Timothy E.
Here, waste-to-Energy (WtE) technologies offer the promise of diverting organic wastes, including wastewater sludge, livestock waste, and food waste, for beneficial energy use while reducing the quantities of waste that are disposed or released to the environment. To ensure economic and environmental viability of WtE feedstocks, it is critical to gain an understanding of the spatial and temporal variability of waste production. Detailed information about waste characteristics, capture/diversion, transport requirements, available conversion technologies, and overall energy conversion efficiency is also required. Building on the development of a comprehensive WtE feedstock database that includes municipal wastewater sludge; animal manure; food processingmore » waste; and fats, oils, and grease for the conterminous United States, we conducted a detailed analysis of the wastes' potential for biofuel production on a site-specific basis. Our analysis indicates that with conversion by hydrothermal liquefaction, these wastes have the potential to produce up to 22.3 GL/y (5.9 Bgal/y) of a biocrude oil intermediate that can be upgraded and refined into a variety of liquid fuels, in particular renewable diesel and aviation kerosene. Conversion to aviation kerosene can potentially meet 23.9% of current U.S. demand.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skaggs, Richard L.; Coleman, André M.; Seiple, Timothy E.
Waste-to-Energy (WtE) technologies offer the promise of diverting organic wastes, including wastewater sludge, livestock waste, and food waste, for beneficial energy use while reducing the quantities of waste that are disposed or released to the environment. To ensure economic and environmental viability of WtE feedstocks, it is critical to gain an understanding of the spatial and temporal variability of waste production. Detailed information about waste characteristics, capture/diversion, transport requirements, available conversion technologies, and overall energy conversion efficiency is also required. Building on the development of a comprehensive WtE feedstock database that includes municipal wastewater sludge; animal manure; food processing waste;more » and fats, oils, and grease for the conterminous United States, we conducted a detailed analysis of the wastes’ potential for biofuel production on a site-specific basis. Our analysis indicates that with conversion by hydrothermal liquefaction, these wastes have the potential to produce up to 22.3 GL/y (5.9 Bgal/y) of a biocrude oil intermediate that can be upgraded and refined into a variety of liquid fuels, in particular renewable diesel and aviation kerosene. Conversion to aviation kerosene can potentially meet 23.9% of current U.S. demand.« less
Skaggs, Richard L.; Coleman, André M.; Seiple, Timothy E.; ...
2017-10-18
Waste-to-Energy (WtE) technologies offer the promise of diverting organic wastes, including wastewater sludge, livestock waste, and food waste, for beneficial energy use while reducing the quantities of waste that are disposed or released to the environment. To ensure economic and environmental viability of WtE feedstocks, it is critical to gain an understanding of the spatial and temporal variability of waste production. Detailed information about waste characteristics, capture/diversion, transport requirements, available conversion technologies, and overall energy conversion efficiency is also required. Building on the development of a comprehensive WtE feedstock database that includes municipal wastewater sludge; animal manure; food processing waste;more » and fats, oils, and grease for the conterminous United States, we conducted a detailed analysis of the wastes’ potential for biofuel production on a site-specific basis. Our analysis indicates that with conversion by hydrothermal liquefaction, these wastes have the potential to produce up to 22.3 GL/y (5.9 Bgal/y) of a biocrude oil intermediate that can be upgraded and refined into a variety of liquid fuels, in particular renewable diesel and aviation kerosene. Conversion to aviation kerosene can potentially meet 23.9% of current U.S. demand.« less
Skaggs, Richard L.; Coleman, Andre M.; Seiple, Timothy E.; ...
2017-10-18
Here, waste-to-Energy (WtE) technologies offer the promise of diverting organic wastes, including wastewater sludge, livestock waste, and food waste, for beneficial energy use while reducing the quantities of waste that are disposed or released to the environment. To ensure economic and environmental viability of WtE feedstocks, it is critical to gain an understanding of the spatial and temporal variability of waste production. Detailed information about waste characteristics, capture/diversion, transport requirements, available conversion technologies, and overall energy conversion efficiency is also required. Building on the development of a comprehensive WtE feedstock database that includes municipal wastewater sludge; animal manure; food processingmore » waste; and fats, oils, and grease for the conterminous United States, we conducted a detailed analysis of the wastes' potential for biofuel production on a site-specific basis. Our analysis indicates that with conversion by hydrothermal liquefaction, these wastes have the potential to produce up to 22.3 GL/y (5.9 Bgal/y) of a biocrude oil intermediate that can be upgraded and refined into a variety of liquid fuels, in particular renewable diesel and aviation kerosene. Conversion to aviation kerosene can potentially meet 23.9% of current U.S. demand.« less
NASA Radioisotope Power System Program - Technology and Flight Systems
NASA Technical Reports Server (NTRS)
Sutliff, Thomas J.; Dudzinski, Leonard A.
2009-01-01
NASA sometimes conducts robotic science missions to solar system destinations for which the most appropriate power source is derived from thermal-to-electrical energy conversion of nuclear decay of radioactive isotopes. Typically the use of a radioisotope power system (RPS) has been limited to medium and large-scale missions, with 26 U,S, missions having used radioisotope power since 1961. A research portfolio of ten selected technologies selected in 2003 has progressed to a point of maturity, such that one particular technology may he considered for future mission use: the Advanced Stirling Converter. The Advanced Stirling Radioisotope Generator is a new power system in development based on this Stirling cycle dynamic power conversion technology. This system may be made available for smaller, Discovery-class NASA science missions. To assess possible uses of this new capability, NASA solicited and funded nine study teams to investigate unique opportunities for exploration of potential destinations for small Discovery-class missions. The influence of the results of these studies and the ongoing development of the Advanced Stirling Radioisotope Generator system are discussed in the context of an integrated Radioisotope Power System program. Discussion of other and future technology investments and program opportunities are provided.
Space-based solar power conversion and delivery systems study. Volume 5: Economic analysis
NASA Technical Reports Server (NTRS)
1977-01-01
Space-based solar power conversion and delivery systems are studied along with a variety of economic and programmatic issues relevant to their development and deployment. The costs, uncertainties and risks associated with the current photovoltaic Satellite Solar Power System (SSPS) configuration, and issues affecting the development of an economically viable SSPS development program are addressed. In particular, the desirability of low earth orbit (LEO) and geosynchronous (GEO) test satellites is examined and critical technology areas are identified. The development of SSPS unit production (nth item), and operation and maintenance cost models suitable for incorporation into a risk assessment (Monte Carlo) model (RAM) are reported. The RAM was then used to evaluate the current SSPS configuration expected costs and cost-risk associated with this configuration. By examining differential costs and cost-risk as a function of postulated technology developments, the critical technologies, that is, those which drive costs and/or cost-risk, are identified. It is shown that the key technology area deals with productivity in space, that is, the ability to fabricate and assemble large structures in space, not, as might be expected, with some hardware component technology.
Environmental Restoration - Expedient Methods and Technologies: A User Guide with Case Studies
1998-03-01
benzene, high fructose corn syrup , raw molasses, butane gas, sodium benzoate, or acetate. Enhanced anaerobic biodegradation of jet fuels in ground water...appendix discusses technology applications that are deemed impractical because of high cost, difficulty of use, or other factors. Also included is a...conversations with knowledgeable 1 Technologically sophisticated processes are not addressed in this study because of high cost, which includes the engineering
Blazing the trailway: Nuclear electric propulsion and its technology program plans
NASA Technical Reports Server (NTRS)
Doherty, Michael P.
1992-01-01
An overview is given of the plans for a program in nuclear electric propulsion (NEP) technology for space applications being considered by NASA, DOE, and DOD. Possible missions using NEP are examined, and NEP technology plans are addressed regarding concept development, systems engineering, nuclear fuels, power conversion, thermal management, power management and distribution, electric thrusters, facilities, and issues related to safety and environment. The programmatic characteristics are considered.
Pellet to Part Manufacturing System for CNCs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roschli, Alex C.; Love, Lonnie J.; Post, Brian K.
Oak Ridge National Laboratory’s Manufacturing Demonstration Facility worked with Hybrid Manufacturing Technologies to develop a compact prototype composite additive manufacturing head that can effectively extrude injection molding pellets. The head interfaces with conventional CNC machine tools enabling rapid conversion of conventional machine tools to additive manufacturing tools. The intent was to enable wider adoption of Big Area Additive Manufacturing (BAAM) technology and combine BAAM technology with conventional machining systems.
The NASA CSTI high capacity power project
NASA Technical Reports Server (NTRS)
Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.
1992-01-01
The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.
The NASA CSTI high capacity power project
NASA Astrophysics Data System (ADS)
Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.
1992-08-01
The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.
Ka-band to L-band frequency down-conversion based on III-V-on-silicon photonic integrated circuits
NASA Astrophysics Data System (ADS)
Van Gasse, K.; Wang, Z.; Uvin, S.; De Deckere, B.; Mariën, J.; Thomassen, L.; Roelkens, G.
2017-12-01
In this work, we present the design, simulation and characterization of a frequency down-converter based on III-V-on-silicon photonic integrated circuit technology. We first demonstrate the concept using commercial discrete components, after which we demonstrate frequency conversion using an integrated mode-locked laser and integrated modulator. In our experiments, five channels in the Ka-band (27.5-30 GHz) with 500 MHz bandwidth are down-converted to the L-band (1.5 GHz). The breadboard demonstration shows a conversion efficiency of - 20 dB and a flat response over the 500 MHz bandwidth. The simulation of a fully integrated circuit indicates that a positive conversion gain can be obtained on a millimeter-sized photonic integrated circuit.
Sustainable land-use by regional energy and material flow management using "Terra-Preta-Technology
NASA Astrophysics Data System (ADS)
Friede, K.; Rößler, K.; Terytze, K.; Vogel, I.; Worzyk, F.; Schatten, R.; Wagner, R.; Haubold-Rosar, M.; Rademacher, A.; Weiß, U.; Weinfurtner, K.; Drabkin, D.; Zundel, S.; Trabelsi, S.
2012-04-01
The interdisciplinary and transdisciplinary joint research project seeks innovative system solutions for resource efficiency, climate protection and area revaluation by means of an integrative approach. The project's fundament is set by implementing the zero-emission-strategy, launching a regional resource efficient material flow management as well as utilising "Terra-Preta-Technology" as an innovative system component. As the centrepiece of optimised regional biogenic material flows Terra Preta Substrate (TPS) contains biochar shall be utilised exemplarily in model regions. In regional project 1 (state of Brandenburg, county Teltow-Fläming) TPS shall be used on military conversion areas, which are contaminated with polycyclic aromatic hydrocarbons and mineral oil hydrocarbons. It will be examined, whether the use of TPS causes accelerated pollutant reduction and whether this area is available for renewable raw material production. In regional project 2 (Western Lusatia, county Oberspreewald-Lusatia) reclamation and renaturation of post-mining-landscapes is first priority. In this case, the project seeks for an upgrade of devastated soils for plant production as well as for restoration of soil functions and setup of organic soil substances. In regional project 3 (state of North Rhine-Westphalia, city of Schmallenberg) reforestations of large scale windbreakage areas shall be supported by using TPS. Soil stabilisation, increased growth and survival of young trees and decreased nutrient losses are desired achievements. The crop production effectiveness and environmental compatibility of TPS will be determined by tests in laboratories, by lysimeter and open land taking into account chemical and physical as well as biological parameters. Currently diverse chemical, physical and biological examinations are performed. First results will be presented. The focus will be set on the use of TPS on military conversion areas to reduce specific organic contaminations.
Feedstock Supply and Logistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Providing biomass for conversion into high-quality biofuels, biopower, and bioproducts represents an economic opportunity for communities across the nation. The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) and its partners are developing the technologies and systems needed to sustainably and economically deliver a diverse range of biomass in formats that enable efficient use in biorefineries.
JPL CMOS Active Pixel Sensor Technology
NASA Technical Reports Server (NTRS)
Fossum, E. R.
1995-01-01
This paper will present the JPL-developed complementary metal- oxide-semiconductor (CMOS) active pixel sensor (APS) technology. The CMOS APS has achieved performance comparable to charge coupled devices, yet features ultra low power operation, random access readout, on-chip timing and control, and on-chip analog to digital conversion. Previously published open literature will be reviewed.
The Status of and key barriers in lignocellulosic ethanol production : a technological perspective
J.Y. Zhu; G.S. Wang; X.J. Pan; R. Gleisner
2008-01-01
The development of biorefineries to produce fuel ethanol and commodity chemicals from lignocellulosic biomass is a potential alternative to current reliance on non-renewable resources. However, many technological barriers remain despite research progress in the past several decades. This article examines the major process barriers in biochemical conversion of biomass...
Conversations with Technical Writing Teachers: Defining a Problem.
ERIC Educational Resources Information Center
Selting, Bonita R.
2002-01-01
Considers if teaching technology is problematic for technical writing instructors. Presents ideas of 64 Association of Teachers of Technical Writing (ATTW) members who were queried on their roles as teachers of technical writing in relation to the demands made upon them to also be teachers of technology skills. Concludes with a call for more…
Mobile Applications and Decolonization: Cautionary Notes about the Curriculum of Code
ERIC Educational Resources Information Center
Smith, Bryan
2016-01-01
The current generation of students live and learn within a pedagogical milieu saturated by digital technologies. Curriculum scholars have not ignored this, theorizing and critiquing the ways that technology both affords and limits opportunities for students. Notably absent from this conversation, however, is a consideration of how the technologies…
Financial performance of a mobile pyrolysis system used to produce biochar from sawmill residues
Dongyeob Kim; Nathaniel McLean Anderson; Woodam Chung
2015-01-01
Primary wood products manufacturers generate significant amounts of woody biomass residues that can be used as feedstocks for distributed-scale thermochemical conversion systems that produce valuable bioenergy and bioproducts. However, private investment in these technologies is driven primarily by financial performance, which is often unknown for new technologies with...
Earth Science Learning in SMALLab: A Design Experiment for Mixed Reality
ERIC Educational Resources Information Center
Birchfield, David; Megowan-Romanowicz, Colleen
2009-01-01
Conversational technologies such as email, chat rooms, and blogs have made the transition from novel communication technologies to powerful tools for learning. Currently virtual worlds are undergoing the same transition. We argue that the next wave of innovation is at the level of the computer interface, and that mixed-reality environments offer…
Need of Digital-Age Literacy in Teacher Education
ERIC Educational Resources Information Center
Nachimuthu, K.
2010-01-01
The amount of knowledge in the world has doubled in the past 10 years and is doubling every 12 months according to NCTE. Now technology increases conversation, sharing, and learning among and between students and teachers. Today's digital students think of information and communications technology (ICT) as something akin to oxygen: they expect it,…
Applications of Technology to Teach Social Skills to Children with Autism
ERIC Educational Resources Information Center
DiGennaro Reed, Florence D.; Hyman, Sarah R.; Hirst, Jason M.
2011-01-01
Children with autism spectrum disorder show deficits in social skills such as initiating conversation, responding in social situations, social problem-solving, and others. These deficits are targeted through the use of social skills interventions, some of which use a technology-based approach as a resource-efficient alternative to common forms of…
ERIC Educational Resources Information Center
Neo, Mai; Neo, Ken Tse-Kian; Lim, Sally Thian-Li
2013-01-01
Classrooms today have received a significant overhaul with the inclusion of ICT and new learning pedagogies. Advancements in computing and multimedia technologies in education have resulted in an emerging breed of technologically proficient learners. Today's students are "digital natives" and very influenced by current digital…
Scope of Algae as Third Generation Biofuels
Behera, Shuvashish; Singh, Richa; Arora, Richa; Sharma, Nilesh Kumar; Shukla, Madhulika; Kumar, Sachin
2015-01-01
An initiative has been taken to develop different solid, liquid, and gaseous biofuels as the alternative energy resources. The current research and technology based on the third generation biofuels derived from algal biomass have been considered as the best alternative bioresource that avoids the disadvantages of first and second generation biofuels. Algal biomass has been investigated for the implementation of economic conversion processes producing different biofuels such as biodiesel, bioethanol, biogas, biohydrogen, and other valuable co-products. In the present review, the recent findings and advance developments in algal biomass for improved biofuel production have been explored. This review discusses about the importance of the algal cell contents, various strategies for product formation through various conversion technologies, and its future scope as an energy security. PMID:25717470
De novo generation of HSCs from somatic and pluripotent stem cell sources
Vo, Linda T.
2015-01-01
Generating human hematopoietic stem cells (HSCs) from autologous tissues, when coupled with genome editing technologies, is a promising approach for cellular transplantation therapy and for in vitro disease modeling, drug discovery, and toxicology studies. Human pluripotent stem cells (hPSCs) represent a potentially inexhaustible supply of autologous tissue; however, to date, directed differentiation from hPSCs has yielded hematopoietic cells that lack robust and sustained multilineage potential. Cellular reprogramming technologies represent an alternative platform for the de novo generation of HSCs via direct conversion from heterologous cell types. In this review, we discuss the latest advancements in HSC generation by directed differentiation from hPSCs or direct conversion from somatic cells, and highlight their applications in research and prospects for therapy. PMID:25762177
An Overview of Power, Energy Storage, and Conversion Efforts for 2014 SBIR Phases I and II
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2016-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights 15 of the innovative SBIR 2014 Phase I and II projects that focus on one of NASA Glenn Research Center's six core competencies-Power, Energy Storage and Conversion. The technologies cover a wide spectrum of applications such as high-radiation-tolerant ceramic voltage isolators, development of hermetic sealing glasses for solid oxide fuel cells, rechargeable lithium metal cells, high-efficiency direct methane solid oxide fuel cell systems, Li metal protection for high-energy space batteries, isolated bidirectional direct current converters for distributed battery energy applications, and high-efficiency rad-hard ultrathin Si photovoltaic cell technology for space. Each article describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.
FreedomCAR - Aftertreatment Subsystem Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisa A. Prentiss
2005-09-30
The primary objective of this program was to develop generic aftertreatment technologies applicable for LDV and LDT engines ranging from 55 kW to 200kW, to develop an optimized and integrated aftertreatment system for a LDT (Light Duty Truck) type vehicle, and to demonstrate the technology which will enable light duty diesel engines to meet Federal Tier II regulation with minimum impact on fuel economy. Specifically, the development targets for emissions reduction and fuel injection penalty are given below: (1) NOx conversion efficiency > 90% (hot), > 84% (combined); (2) PM conversion efficiency > 90% (hot), > 84% (combined); (3) Fuelmore » penalty over FTP-75 Less than 5%; and (4) Fuel penalty at Cruise condition Less than 3%. Development of cost-effective, highly efficient diesel exhaust aftertreatment systems in combination with very low engine out emission combustion development are essential elements for realization of Federal Tier II emission standards for Light Duty Trucks and Vehicles. Evaluation of several aftertreatment technologies was completed as part of this program. A combination of Diesel Oxidation Catalyst, NOx Adsorbing Catalyst and Catalyzed Soot Filter was found to provide the levels of conversion efficiency required to achieve the emission targets. While early systems required relatively large catalyst volumes, external dosing, sulfur traps, full bypass configurations and high levels of Platinum metals; the final system is a compact, scalable, flow-through, fully-integrated and engine-managed aftertreatment system capable of commercial application for Light Duty Vehicles and Trucks. NOx adsorber/particulate filter technology is particularly attractive for Light Duty applications due to the lower exhaust flow and temperature requirements as compared to Heavy Duty engines. Despite these strong positive aspects, NOx Adsorbers are challenged by their regeneration requirements and susceptibility to sulfur poisoning and thermal degradation. Capability was developed to regenerate the NOx Adsorber for NOx and SOx as well as the Particulate Filter for soot. This system was fully integrated into a truck and evaluated over the chassis dynamometer for emissions capability and in real-world winter field testing. Durability of the system was evaluated over a variety of accelerated and real-time dynamometer tests. Excellent NOx and PM conversion efficiency was demonstrated, even following 3000 hrs of endurance testing. Unregulated emissions emitted by the system were evaluated as was the fuel penalty associated with the DeNOx and DeSOx regeneration processes. In the final evaluation, the system demonstrated 90% NOx conversion and 99% PM conversion at a 6% fuel penalty over the FTP-75 test cycle. While target fuel penalty levels were demonstrated using full-bypass configuration systems, the cost associated with those systems was prohibitively high and would preclude successful commercialization of the technology. Although the flow-through configuration fell 1% short of the 5% fuel penalty target, the cost of this configuration is such that commercial application is feasible. Cost drivers for the final system configuration were identified and demonstrate areas where future development areas could focus.« less
Communications dashboard (control rooms, take a cue from Facebook® !) Chapter 1
NASA Astrophysics Data System (ADS)
Scott, David W.
Papers published via IEEE and AIAA conferences have presented an overview of how social media could benefit NASA working environments in general [1] and proposed three specific social applications to benefit space flight control operations [2]. One of them, Communications Dashboard, would help a real time flight controller keep up with both the “ big picture” and significant details of operations via a cohesive interface similar to those of social networking services (SNS). Instead of recreational social features, “ CommDash” would support functions like console logging, categorized and threaded text chat streams with enhanced accountability and graphics display features, high-level status displays driven by telemetry or other events, and an on-screen hailing function for requesting voice or text stream conversation. Moving certain voice conversations to text streams would reduce confusion and stress in two ways. Within text conversations, there would be far less repetition of content since text conversations have visual persistence and are reviewable instantly, e.g., there's no need to brief new participants to a discussion - they just read what's already there. Remaining voice traffic would stand out more clearly, and quieter voice loops means fewer “ say again” calls and less distraction from visual and mental tasks, thus less stress. (Most flight controllers monitor 4 or 5 voice loops at once.) Links could be created from console log entries to chat selections so that underlying details are readily available yet unobtrusive. This would reduce the confusion that rises from having multiple and sometimes divergent copies of the same information due to cut/copy and paste operations, attachments, and asynchronous editing. This concept could apply to a plethora of real time control environments and to other settings with lots of information juggling. This paper explores the dashboard concept in further detail and chronic- es the first phase of a NASA IT Labs (Information Technology) project that could lead to a working system.
Communications Dashboard (Control Rooms Take a Cue from Facebook), Chapter 1
NASA Technical Reports Server (NTRS)
Scott, David w.
2013-01-01
Papers published via IEEE and AIAA conferences have presented an overview of how social media could benefit NASA working environments in general and proposed three specific social applications to benefit space flight control operations. One of them, Communications Dashboard, would help a real time flight controller keep up with both the "big picture" and significant details of operations via a cohesive interface similar to those of social networking services (SNS). Instead of recreational social features, "CommDash" would support functions like console logging, categorized and threaded text chat streams with enhanced accountability and graphics display features, high-level status displays driven by telemetry or other events, and an on-screen hailing function for requesting voice or text stream conversation. Moving certain voice conversations to text streams would reduce confusion and stress in two ways. Within text conversations, there would be far less repetition of content since text conversations have visual persistence and are reviewable instantly, e.g., there s no need to brief new participants to a discussion -- they just read what s already there. Remaining voice traffic would stand out more clearly, and quieter voice loops means fewer "say again" calls and less distraction from visual and mental tasks, thus less stress. (Most flight controllers monitor 4 or 5 voice loops at once.) Links could be created from console log entries to chat selections so that underlying details are readily available yet unobtrusive. This would reduce the confusion that rises from having multiple and sometimes divergent copies of the same information due to cut/copy and paste operations, attachments, and asynchronous editing. This concept could apply to a plethora of real time control environments and to other settings with lots of information juggling. This paper explores the dashboard concept in further detail and chronicles the first phase of a NASA IT Labs (Information Technology) project that could lead to a working system
A Capacitance-To-Digital Converter for MEMS Sensors for Smart Applications.
Pérez Sanjurjo, Javier; Prefasi, Enrique; Buffa, Cesare; Gaggl, Richard
2017-06-07
The use of MEMS sensors has been increasing in recent years. To cover all the applications, many different readout circuits are needed. To reduce the cost and time to market, a generic capacitance-to-digital converter (CDC) seems to be the logical next step. This work presents a configurable CDC designed for capacitive MEMS sensors. The sensor is built with a bridge of MEMS, where some of them function with pressure. Then, the capacitive to digital conversion is realized using two steps. First, a switched-capacitor (SC) preamplifier is used to make the capacitive to voltage (C-V) conversion. Second, a self-oscillated noise-shaping integrating dual-slope (DS) converter is used to digitize this magnitude. The proposed converter uses time instead of amplitude resolution to generate a multibit digital output stream. In addition it performs noise shaping of the quantization error to reduce measurement time. This article shows the effectiveness of this method by measurements performed on a prototype, designed and fabricated using standard 0.13 µm CMOS technology. Experimental measurements show that the CDC achieves a resolution of 17 bits, with an effective area of 0.317 mm², which means a pressure resolution of 1 Pa, while consuming 146 µA from a 1.5 V power supply.
Rollin, Joseph A; Martin del Campo, Julia; Myung, Suwan; Sun, Fangfang; You, Chun; Bakovic, Allison; Castro, Roberto; Chandrayan, Sanjeev K; Wu, Chang-Hao; Adams, Michael W W; Senger, Ryan S; Zhang, Y-H Percival
2015-04-21
The use of hydrogen (H2) as a fuel offers enhanced energy conversion efficiency and tremendous potential to decrease greenhouse gas emissions, but producing it in a distributed, carbon-neutral, low-cost manner requires new technologies. Herein we demonstrate the complete conversion of glucose and xylose from plant biomass to H2 and CO2 based on an in vitro synthetic enzymatic pathway. Glucose and xylose were simultaneously converted to H2 with a yield of two H2 per carbon, the maximum possible yield. Parameters of a nonlinear kinetic model were fitted with experimental data using a genetic algorithm, and a global sensitivity analysis was used to identify the enzymes that have the greatest impact on reaction rate and yield. After optimizing enzyme loadings using this model, volumetric H2 productivity was increased 3-fold to 32 mmol H2⋅L(-1)⋅h(-1). The productivity was further enhanced to 54 mmol H2⋅L(-1)⋅h(-1) by increasing reaction temperature, substrate, and enzyme concentrations--an increase of 67-fold compared with the initial studies using this method. The production of hydrogen from locally produced biomass is a promising means to achieve global green energy production.
Rollin, Joseph A.; Martin del Campo, Julia; Myung, Suwan; Sun, Fangfang; You, Chun; Bakovic, Allison; Castro, Roberto; Chandrayan, Sanjeev K.; Wu, Chang-Hao; Adams, Michael W. W.; Senger, Ryan S.; Zhang, Y.-H. Percival
2015-01-01
The use of hydrogen (H2) as a fuel offers enhanced energy conversion efficiency and tremendous potential to decrease greenhouse gas emissions, but producing it in a distributed, carbon-neutral, low-cost manner requires new technologies. Herein we demonstrate the complete conversion of glucose and xylose from plant biomass to H2 and CO2 based on an in vitro synthetic enzymatic pathway. Glucose and xylose were simultaneously converted to H2 with a yield of two H2 per carbon, the maximum possible yield. Parameters of a nonlinear kinetic model were fitted with experimental data using a genetic algorithm, and a global sensitivity analysis was used to identify the enzymes that have the greatest impact on reaction rate and yield. After optimizing enzyme loadings using this model, volumetric H2 productivity was increased 3-fold to 32 mmol H2⋅L−1⋅h−1. The productivity was further enhanced to 54 mmol H2⋅L−1⋅h−1 by increasing reaction temperature, substrate, and enzyme concentrations—an increase of 67-fold compared with the initial studies using this method. The production of hydrogen from locally produced biomass is a promising means to achieve global green energy production. PMID:25848015
A Capacitance-To-Digital Converter for MEMS Sensors for Smart Applications
Pérez Sanjurjo, Javier; Prefasi, Enrique; Buffa, Cesare; Gaggl, Richard
2017-01-01
The use of MEMS sensors has been increasing in recent years. To cover all the applications, many different readout circuits are needed. To reduce the cost and time to market, a generic capacitance-to-digital converter (CDC) seems to be the logical next step. This work presents a configurable CDC designed for capacitive MEMS sensors. The sensor is built with a bridge of MEMS, where some of them function with pressure. Then, the capacitive to digital conversion is realized using two steps. First, a switched-capacitor (SC) preamplifier is used to make the capacitive to voltage (C-V) conversion. Second, a self-oscillated noise-shaping integrating dual-slope (DS) converter is used to digitize this magnitude. The proposed converter uses time instead of amplitude resolution to generate a multibit digital output stream. In addition it performs noise shaping of the quantization error to reduce measurement time. This article shows the effectiveness of this method by measurements performed on a prototype, designed and fabricated using standard 0.13 µm CMOS technology. Experimental measurements show that the CDC achieves a resolution of 17 bits, with an effective area of 0.317 mm2, which means a pressure resolution of 1 Pa, while consuming 146 µA from a 1.5 V power supply. PMID:28590425
Rollin, Joseph A.; Martin del Campo, Julia; Myung, Suwan; ...
2015-04-06
The use of hydrogen (H 2) as a fuel offers enhanced energy conversion efficiency and tremendous potential to decrease greenhouse gas emissions, but producing it in a distributed, carbon-neutral, low-cost manner requires new technologies. Herein we demonstrate the complete conversion of glucose and xylose from plant biomass to H 2 and CO 2 based on an in vitro synthetic enzymatic pathway. Glucose and xylose were simultaneously converted to H 2 with a yield of two H 2 per carbon, the maximum possible yield. Parameters of a nonlinear kinetic model were fitted with experimental data using a genetic algorithm, and amore » global sensitivity analysis was used to identify the enzymes that have the greatest impact on reaction rate and yield. After optimizing enzyme loadings using this model, volumetric H 2 productivity was increased 3-fold to 32 mmol H 2∙L ₋1∙h ₋1. The productivity was further enhanced to 54 mmol H 2∙L ₋1∙h ₋1 by increasing reaction temperature, substrate, and enzyme concentrations—an increase of 67-fold compared with the initial studies using this method. The production of hydrogen from locally produced biomass is a promising means to achieve global green energy production.« less
Cogeneration technology alternatives study. Volume 6: Computer data
NASA Technical Reports Server (NTRS)
1980-01-01
The potential technical capabilities of energy conversion systems in the 1985 - 2000 time period were defined with emphasis on systems using coal, coal-derived fuels or alternate fuels. Industrial process data developed for the large energy consuming industries serve as a framework for the cogeneration applications. Ground rules for the study were established and other necessary equipment (balance-of-plant) was defined. This combination of technical information, energy conversion system data ground rules, industrial process information and balance-of-plant characteristics was analyzed to evaluate energy consumption, capital and operating costs and emissions. Data in the form of computer printouts developed for 3000 energy conversion system-industrial process combinations are presented.
A neural network model for predicting weighted mean temperature
NASA Astrophysics Data System (ADS)
Ding, Maohua
2018-02-01
Water vapor is an important element of the Earth's atmosphere, and most of it concentrates at the bottom of the troposphere. Knowledge of the water vapor measured by Global Navigation Satellite Systems (GNSS) is an important direction of GNSS research. In particular, when the zenith wet delay is converted to precipitable water vapor, the weighted mean temperature T_m is a variable parameter to be determined in this conversion. The purpose of the study is getting a more accurate T_m model for global users by a combination of two different characteristics of T_m (i.e., the T_m seasonal variations and the relationships between T_m and surface meteorological elements). The modeling process was carried out by using the neural network technology. A multilayer feedforward neural network model (the NN) was established. The NN model is used with measurements of only surface temperature T_S . The NN was validated and compared with four other published global T_m models. The results show that the NN performed better than any of the four compared models on the global scale.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND STATEMENTS OF GENERAL POLICY ACTIVITIES OF... meaning contained in section 3 of the Federal Deposit Insurance Act (12 U.S.C. 1813). (b) Activity means... conversion. (g) Equity investment means an ownership interest in any company; any membership interest that...
Explanatory Parent-Child Conversation Predominates at an Evolution Exhibit
ERIC Educational Resources Information Center
Tare, Medha; French, Jason; Frazier, Brandy N.; Diamond, Judy; Evans, E. Margaret
2011-01-01
To investigate how parents support children's learning at an exhibit on evolution, the conversations of 12 families were recorded, transcribed, and coded (6,263 utterances). Children (mean age 9.6 years) and parents visited Explore Evolution, which conveyed current research about the evolution of seven organisms. Families were engaged with the…
ERIC Educational Resources Information Center
Cameron, Harriet; Billington, Tom
2017-01-01
There are different ways of theorising dyslexia and different ways of constructing meanings around dyslexia in different learning contexts. This paper considers the role of neoliberalist ideology in shaping conversations about dyslexia and "fairness" during two focus group conversations analysed as part of a study into the discursive…
Children's Understanding of Ambiguous Idioms and Conversational Perspective-Taking
ERIC Educational Resources Information Center
Le Sourn-Bissaoui, Sandrine; Caillies, Stephanie; Bernard, Stephane; Deleau, Michel; Brule, Lauriane
2012-01-01
The aim of this study was to test the hypothesis that conversational perspective-taking is a determinant of unfamiliar ambiguous idiom comprehension. We investigated two types of ambiguous idiom, decomposable and nondecomposable expressions, which differ in the degree to which the literal meanings of the individual words contribute to the overall…
The Function of Gesture in Lexically Focused L2 Instructional Conversations
ERIC Educational Resources Information Center
Smotrova, Tetyana; Lantolf, James P.
2013-01-01
The purpose of the present study is to investigate the mediational function of the gesture-speech interface in the instructional conversation that emerged as teachers attempted to explain the meaning of English words to their students in two EFL classrooms in the Ukraine. Its analytical framework is provided by Vygotsky's sociocultural psychology…
Constructing Visually-Based Digital Conversations in EFL with VoiceThread
ERIC Educational Resources Information Center
Kent, David
2017-01-01
VoiceThread holds potential to provide students who rarely speak in class a means to create visually-based digital conversations. In light of this, pedagogical affordances of the tool are considered, along with efficacy behind VoiceThread development within English as a Foreign Language contexts. Instructional strategies, supported by examples,…
Changing over a Project Changing over: A Project-Research Supervision as a Conversation
ERIC Educational Resources Information Center
Clarke, Helen; Ryan, Charly
2006-01-01
Extracts from the written conversation between research student and supervisor show the nature of educative research supervision. The authors argue that researcher-supervisor relationships are methodological in nature as they shape and influence the people, the project and the field. Such relationships, which construct meanings, are complex. A…
Mother-Adolescent Health Communication: Are All Conversations Created Equally?
ERIC Educational Resources Information Center
Boone, Tanya L.; Lefkowitz, Eva S.
2007-01-01
Fifty-two mother-adolescent dyads (mean adolescent age = 16.3) participated in an observational study of communication about health topics. The aim of the study was to examine mother-adolescent conversations about health issues--drugs/alcohol, sexuality, nutrition/exercise--to determine the extent to which the mothers treat these issues similarly.…
Combining theory and experiment in electrocatalysis: Insights into materials design
Seh, Zhi Wei; Kibsgaard, Jakob; Dickens, Colin F.; ...
2017-01-12
Electrocatalysis plays a central role in clean energy conversion, enabling a number of sustainable processes for future technologies. This review discusses design strategies for state-of-the-art heterogeneous electrocatalysts and associated materials for several different electrochemical transformations involving water, hydrogen, and oxygen, using theory as a means to rationalize catalyst performance. By examining the common principles that govern catalysis for different electrochemical reactions, we describe a systematic framework that clarifies trends in catalyzing these reactions, serving as a guide to new catalyst development while highlighting key gaps that need to be addressed. Here, we conclude by extending this framework to emerging cleanmore » energy reactions such as hydrogen peroxide production, carbon dioxide reduction, and nitrogen reduction, where the development of improved catalysts could allow for the sustainable production of a broad range of fuels and chemicals.« less
Oxygen Penalty for Waste Oxidation in an Advanced Life Support System: A Systems Approach
NASA Technical Reports Server (NTRS)
Pisharody, Suresh; Wignarajah, K.; Fisher, John
2002-01-01
Oxidation is one of a number of technologies that are being considered for waste management and resource recovery from waste materials generated on board space missions. Oxidation processes are a very effective and efficient means of clean and complete conversion of waste materials to sterile products. However, because oxidation uses oxygen there is an "oxygen penalty" associated either with resupply of oxygen or with recycling oxygen from some other source. This paper is a systems approach to the issue of oxygen penalty in life support systems and presents findings on the oxygen penalty associated with an integrated oxidation-Sabatier-Oxygen Generation System (OGS) for waste management in an Advanced Life Support System. The findings reveal that such an integrated system can be operated to form a variety of useful products without a significant oxygen penalty.
NASA Technical Reports Server (NTRS)
Billman, Kenneth W.; Gilbreath, William P.; Bowen, Stuart W.
1978-01-01
A system of orbiting, large-area, low mass density reflector satellites which provide nearly continuous solar energy to a world-distributed set of conversion sites is examined under the criteria for any potential new energy system: technical feasibility, significant and renewable energy impact, economic feasibility and social/political acceptability. Although many technical issues need further study, reasonable advances in space technology appear sufficient to implement the system. The enhanced insolation is shown to greatly improve the economic competitiveness of solar-electric generation to circa 1995 fossil/nuclear alternatives. The system is shown to have the potential for supplying a significant fraction of future domestic and world energy needs. Finally, the environmental and social issues, including a means for financing such a large shift to a world solar energy dependence, is addressed.