Science.gov

Sample records for measure cardiac output

  1. Cardiac output measurement in pediatric anesthesia.

    PubMed

    Skowno, Justin J; Broadhead, Michael

    2008-11-01

    Maintenance of cardiovascular stability is crucial to safe anesthetic practice, but measurement of cardiac output has been technically challenging, particularly in pediatric patients. Cardiovascular monitoring has therefore generally relied upon pressure-based measurements, as opposed to flow-based measurements. The measurement of cardiac output under anesthesia and in critical care has recently become easier as a result of new techniques of measurement. This article reviews the basic concepts of and rationale for cardiac output monitoring, and then describes the techniques available for monitoring in clinical practice.

  2. Methods in pharmacology: measurement of cardiac output

    PubMed Central

    Geerts, Bart F; Aarts, Leon P; Jansen, Jos R

    2011-01-01

    Many methods of cardiac output measurement have been developed, but the number of methods useful for human pharmacological studies is limited. The ‘holy grail’ for the measurement of cardiac output would be a method that is accurate, precise, operator independent, fast responding, non-invasive, continuous, easy to use, cheap and safe. This method does not exist today. In this review on cardiac output methods used in pharmacology, the Fick principle, indicator dilution techniques, arterial pulse contour analysis, ultrasound and bio-impedance are reviewed. PMID:21284692

  3. A computerised dichromatic earpiece densitometer for the measurement of cardiac output.

    PubMed

    Robinson, P S; Crowther, A; Jenkins, B S; Webb-Peploe, M M; Coltart, D J

    1979-07-01

    This study assesses a precalibrated dichromatic earpiece densitometer and microprocessor for the measurement of cardiac output by indocyanine green dye dilution. The measured cardiac output is compared with values of cardiac output simultaneously determined using a cuvette densitometer. The microprocessor computation of cardiac output agreed very closely with the cardiac output determined by manual calculation from the same dye dilution curves (standard deviation +/- 1.47%). The reproducibility of the earpiece densitometer (standard deviation +/- 5.2%) was virtually identical to that of the cuvette densitometer (+/- 5.3%). In a comparison of earpiece and cuvette densitometers for 60 measurements of cardiac output following pulmonary arterial injection of dye and for 50 measurements following femoral venous injection of dye, correlation coefficients were 0.83 and 0.78 and the standard deviations of the differences of simultaneous measurements were 7.2% and 8.3% respectively. The instrument offers an accurate reproducible and relatively noninvasive technique for measuring cardiac output.

  4. Fiberoptic ear densitometer for measurement of cardiac output.

    PubMed

    Sekelj, P; Retfalvi, S; Lavoie, A

    1978-02-01

    This study presents theory, operation, and evaluation of a new earpiece method for measurement of cardiac output using the multichannel fiberoptic system recently described. The system includes an earpiece of simple design and small size suitable for applications in all subjects regardless of their age or size. The method requires no withdrawal and analysis of blood samples for calibration. Compared with earlier techniques the present method, based on measurements in three distinct absorption bands in the infrared, provides an increase in accuracy of the estimations. This accuracy was tested in children undergoing routine cardiac catheterization. Comparisons were made in 39 instances (25 subjects) between simultaneously carried out determinations by the earpiece and cuvette densitometer methods. The agreement was good (r = 0.97, p less than 0.001), with a standard deviation of the differences of 0.479 litre/min, or 10.2% of the mean values derived from the cuvette curves. The regression equation describing the values derived from ear curves in terms of values from the cuvette curves differed only slightly from unity (Y = 0.167 + 0.985X). The usefulness of the fiberoptic earpiece technique both in clinical investigations and cardiovascular diagnosis was demonstrated.

  5. Measurement of cardiac output from dynamic pulmonary circulation time CT

    SciTech Connect

    Yee, Seonghwan; Scalzetti, Ernest M.

    2014-06-15

    Purpose: To introduce a method of estimating cardiac output from the dynamic pulmonary circulation time CT that is primarily used to determine the optimal time window of CT pulmonary angiography (CTPA). Methods: Dynamic pulmonary circulation time CT series, acquired for eight patients, were retrospectively analyzed. The dynamic CT series was acquired, prior to the main CTPA, in cine mode (1 frame/s) for a single slice at the level of the main pulmonary artery covering the cross sections of ascending aorta (AA) and descending aorta (DA) during the infusion of iodinated contrast. The time series of contrast changes obtained for DA, which is the downstream of AA, was assumed to be related to the time series for AA by the convolution with a delay function. The delay time constant in the delay function, representing the average time interval between the cross sections of AA and DA, was determined by least square error fitting between the convoluted AA time series and the DA time series. The cardiac output was then calculated by dividing the volume of the aortic arch between the cross sections of AA and DA (estimated from the single slice CT image) by the average time interval, and multiplying the result by a correction factor. Results: The mean cardiac output value for the six patients was 5.11 (l/min) (with a standard deviation of 1.57 l/min), which is in good agreement with the literature value; the data for the other two patients were too noisy for processing. Conclusions: The dynamic single-slice pulmonary circulation time CT series also can be used to estimate cardiac output.

  6. Measurement of cardiac output in adult and newborn animals by ascorbic acid dilution.

    PubMed

    Smallwood, J K; Haselby, K A; Paradise, R R

    1984-05-01

    We have developed an ascorbic acid-dilution method for measuring cardiac output which requires minimal blood withdrawal. Ascorbate is injected into a central venous catheter. The indicator-dilution curve is obtained by drawing blood from an arterial catheter through an amperometric cell at 0.96 ml/min for 35 s. The current is measured by a picoammeter . A calibration curve is obtained in 15 s prior to each indicator-dilution curve. An on-line digital computer measures the curve areas and calculates the cardiac output. Cardiac outputs of heparinized dogs anesthetized with pentobarbital and halothane measured by this method (AA) compared closely to cardiac outputs measured by the dye-dilution method (CG) (AA = 0.96 CG + 20 ml/min, r = 0.98). Both the cardiac output and the arterial blood pressure remained stable during replicate measurements of the cardiac output of 1-day-old piglets. This system allows cardiac output determinations of neonatal subjects without excessive blood removal and, with further development, should be practical in human neonates.

  7. Continuous cardiac output measurement - Aspects of Doppler frequency analysis

    NASA Technical Reports Server (NTRS)

    Mackay, R. S.; Hechtman, H. B.

    1975-01-01

    From the suprasternal notch blood flow velocity in the aorta can be measured non-invasively by a Doppler probe. Integration over systole after frequency analysis gives a measure of stroke volume if a separate diameter observation is incorporated. Frequency analysis by a zero crossing counter or by a set of parallel phaselock loops was less effective than a set of bandpass filters. Observations on dogs, baboons and humans before and after exercise or surgery suggest the indications to be useful. Application to judging heart failure by the effect of introducing a volume load is indicated. Changes in output also are measured in freely moving subjects.

  8. Comparison of impedance cardiography and dye dilution method for measuring cardiac output

    PubMed Central

    Spiering, W; van Es, P N; de Leeuw, P W

    1998-01-01

    Objective—To assess the degree of agreement between impedance cardiography, using the NCCOM3-R7 device, and the gold standard—the dye dilution method—both under basal conditions and after stimulation of cardiac output.
Patients—35 paired measurements in five healthy male volunteers.
Interventions—To obtain higher levels of cardiac output, cardiac performance was stimulated with a dopamine infusion.
Results—In 35 paired measurements, the mean of all the impedance values was higher than that of the dye dilution values, at 10.2 v 7.4 l/min (p < 0.0001). The mean discrepancy between the two methods was 3.3 l/min, and the mean bias −2.9 l/min, with limits of agreement of −9.0 and 3.2 l/min. A change in cardiac output could not adequately be predicted by the NCCOM3-R7. In 20 of 25 measurements obtained during continuous intravenous dopamine infusions there was a rise in dye dilution cardiac output (range 0.2 to 5.9 l/min). Neither the magnitude nor the direction of the change in dye dilution values corresponded with the change measured by impedance cardiography. The mean discrepancy here between the two methods was 1.8 l/min, and the mean bias −0.8 l/min, with limits of agreement of −4.9 and 3.3 l/min.
Conclusions—In healthy volunteers, impedance cardiography with NCCOM3-R7 is inadequate for assessing cardiac output when compared with the dye dilution method.

 Keywords: cardiac output;  impedance cardiography;  dye dilution PMID:9659188

  9. Evaluation of transpulmonary thermodilution as a method to measure cardiac output in anesthetized cats.

    PubMed

    Beaulieu, Kim E; Kerr, Carolyn L; McDonell, Wayne N

    2009-01-01

    The objectives of this study were to evaluate the use of a transpulmonary thermodilution (Trans) technique for the measurement of cardiac output, and to determine the agreement between Trans and conventional thermodilution (TD) in anesthetized cats. Using each technique, cardiac output was measured in 5 mature cats (weights 2.4 to 5.6 kg) anesthetized with isoflurane. To induce different levels of cardiac output in each cat, anesthesia was maintained at > 1.5x end-tidal minimum alveolar concentration (MAC) of isoflurane, and at 1.3x end-tidal isoflurane MAC with and without administration of dobutamine. At least 2 comparisons between TD and Trans values were made at each cardiac output rate. Thirty-two of the 42 recorded comparisons were analyzed. Linear regression analysis (TD vs Trans) yielded an r(2) value of 0.83. The mean bias (TD-Trans) was -3.7 mL/kg/min with limits of agreement of -35.9 to 28.5 mL/kg/min. The concordance coefficient was 0.91. The Trans method showed good relationship and good agreement with TD in anesthetized cats. The Trans method is a relatively noninvasive, practical, and safe method to measure cardiac output in anesthetized cats.

  10. Noninvasive measurement of cardiac output during exercise by inert gas rebreathing technique.

    PubMed

    Cattadori, Gaia; Schmid, Jean-Paul; Agostoni, Piergiuseppe

    2009-04-01

    Reduced exercise tolerance and dyspnea during exercise are hallmarks of heart failure syndrome. Exercise capacity and various parameters of cardiopulmonary response to exercise are of important prognostic value. All the available parameters only indirectly reflect left ventricular dysfunction and hemodynamic adaptation to an increased demand. Noninvasive assessment of cardiac output, especially during an incremental exercise stress test, would allow the direct measure of cardiac reserve and may become the gold standard for prognostic evaluation in the future.

  11. Validation of a new spectrometer for noninvasive measurement of cardiac output

    NASA Astrophysics Data System (ADS)

    Baum, Marc M.; Kumar, Sasi; Moss, John A.; Wagner, Peter D.

    2004-07-01

    Acetylene is a blood-soluble gas and for many years its uptake rate during rebreathing tests has been used to calculate the flow rate of blood through the lungs (normally equal to cardiac output) as well as the volume of lung tissue. A new, portable, noninvasive instrument for cardiac output determination using the acetylene uptake method is described. The analyzer relies on nondispersive IR absorption spectroscopy as its principle of operation and is configured for extractive (side-stream) sampling. The instrument affords exceptionally fast (30 ms, 10%-90%, 90%-10%, at 500 mL min-1 flow rates), interference-free, simultaneous measurement of acetylene, sulfur hexafluoride (an insoluble reference gas used in the cardiac output calculation), and carbon dioxide (to determine alveolar ventilation), with good (typically ±2% full-scale) signal-to-noise ratios. Comparison tests with a mass spectrometer using serially diluted calibration gas samples gave excellent (R2>0.99) correlation for all three gases, validating the IR system's linearity and accuracy. A similar level of agreement between the devices also was observed during human subject C2H2 uptake tests (at rest and under incremental levels of exercise), with the instruments sampling a common extracted gas stream. Cardiac output measurements by both instruments were statistically equivalent from rest to 90% of maximal oxygen consumption; the physiological validity of the measurements was confirmed by the expected linear relationship between cardiac output and oxygen consumption, with both the slope and intercept in the published range. These results indicate that the portable, low-cost, rugged prototype analyzer discussed here is suitable for measuring cardiac output noninvasively in a point-of-care setting.

  12. Cardiac output after burn injury.

    PubMed Central

    Porter, J. M.; Shakespeare, P. G.

    1984-01-01

    Cardiac output after burn injury has been measured by the non-invasive method of impedance plethysmography. An initial study of 143 normal subjects was undertaken in order to investigate variations in cardiac output with age. Fifteen patients were monitored during resuscitation after extensive burns. Fourteen patients showed a depression of stroke volume below the lower limits of the normal range, derived from the initial study on normal people. PMID:6691694

  13. Measurement of cardiac output by earpiece dye-dilution method with automatic calibration of dye concentration.

    PubMed

    Katori, R; Hayashi, T; Kanamasa, K; Ishikawa, K

    1977-05-01

    A non-invasive method for measuring cardiac output by an earpiece dye densitometer was proposed. The densitometer is dichromatic and has an air capsule to make subject's ear bloodless by inflation, so that it can calibrate indocyanine green dye concentration without blood sampling. Duplicate measurements of cardiac output showed a good agreement in 40 cases (r = 0.97, standard deviation (S.D.) = 8.9%), which was comparable to the result of the cuvette method (r = 0.98, S.D. = 8.1%). Simultaneous measurements of cardiac output by the earpiece method (x) and the standard cuvette method (y) revealed a good agreement (r = 0.91, y = 0.96x+0.34, S.D. = 16.4%) in 52 measurements of 25 cases. A similarly good correlation was obtained between the two methods during ergometer exercise in supine position in 5 cases. These suggest that this earpiece dye-dilution method is reliable for cardiac output measurement and advantageous for clinical use because of non-invasive technique.

  14. Mathematics and the Heart: Understanding Cardiac Output

    ERIC Educational Resources Information Center

    Champanerkar, Jyoti

    2013-01-01

    This paper illustrates a biological application of the concepts of relative change and area under a curve, from mathematics. We study two biological measures "relative change in cardiac output" and "cardiac output", which are predictors of heart blockages and other related ailments. Cardiac output refers to the quantity of…

  15. [Non-invasive cardiac output measurement with USCOM in air rescue operation].

    PubMed

    Schedler, O; Handschak, H; Hensel, M

    2008-12-01

    In cardiac emergency events (NACA score = 3.4), a non-invasive cardiac output test involving transaortalic blood flow velocity measurement was used in the air rescue of 30 patients. An average velocity integral (Vti) of 21.9 +/- 9.9 cm was determined in the short examination time (t = 120 +/- 30 sec). Related to the middle body surface (BSA = 2.0 +/- 0.3 m (2)), the calculated cardiac index (CI) was 2.6 +/- 1.1 l/min/m (2). The CI was under 2.2 l/min/m (2) in 12 examinations (40 %). 5 patients in this group subsequently received catecholamine therapy. Thrombolysis therapy increased by 17 % in the myocardial infarction group with CI measurement. However, the results do not justify a definitive recommendation for application of the USCOM system in air rescue service.

  16. The clinical application of pulse contour cardiac output and intrathoracic volume measurements in critically ill patients.

    PubMed

    Hewitt, Nicky A; Braaf, Sandra C

    2006-08-01

    Cardiac output (CO) determination by pulmonary artery (PA) catheter has increasingly been criticised within the literature due to its invasive nature and poor correlation between the pressure measurements and intravascular volume status in mechanically ventilated patients. Consequently, alternative less invasive technologies to PA catheterisation are emerging within intensive care. One such novel technology are pulse contour CO (PCCO) systems. They establish comprehensive and continuous haemodynamic monitoring utilising a central venous catheter (CVC) and an arterial line. Furthermore, a key feature of this technology is its ability to produce intrathoracic volume measurements which may provide a better estimation of cardiac preload as well as indicate the presence and severity of pulmonary oedema. This article aims to discuss the theoretical basis and clinical application of PCCO systems, how PCCO systems differ from PA catheters and how the intrathoracic volume measurements are derived. Understanding these advanced concepts will ensure that clinicians are able to employ this innovative monitoring technology more effectively.

  17. A rebreathing method for measuring lung volume, diffusing capacity and cardiac output in conscious small animals.

    PubMed

    Yilmaz, Cuneyt; Johnson, Robert L; Hsia, Connie C W

    2005-04-15

    We developed a multiple gas rebreathing technique for measuring lung diffusing capacity (DL(CO)), lung volume (V(L)) and cardiac output simultaneously in conscious spontaneously breathing small animals. Lung volume was measured from the dilution of methane (CH4) or sulfur hexafluoride (SF6) and verified independently by a helium washout technique. Cardiac output and DL(CO) were estimated from the uptake of acetylene and carbon monoxide, respectively. We tested guinea pigs at two levels of alveolar oxygen tension in order to estimate membrane diffusing capacity and pulmonary capillary blood volume by the Roughton-Forster technique. Results show that measured DL(CO) are consistent with reported values in anesthetized guinea pigs as well as with allometric comparison across species. Lung volume estimated from SF6 dilution agreed closely with that estimated independently from helium washout; however, lung volume estimated from CH4 dilution was systematically lower due to the addition of endogenously produced CH4 to the rebreathing system. We conclude that this technique can be used to measure resting lung function in conscious unsedated small animals.

  18. Measurements of cardiac output of an isolated heart using a specially designed turbine.

    PubMed

    Bunc, M; Suput, D; Zupanc, O; Rozman, J

    2000-01-01

    Cardiac output is one of the important parameters used in evaluation of heart function. A turbine which works on mechanical principles was designed. It is also suitable for cardiac output measurements on isolated pig hearts in cases where some other equipment is not, like on doppler effect based transducers. The basic principle of measuring liquid flow through a turbine is based on measurement of the time that elapses when the rotor rotates by one degree. For this purpose, the rotor is fitted with transparent foil with a ring of 360 short black lines printed close to its circumference. Two infrared light-emitting diodes are mounted on one side of the foil and two photo-transistors, used as sensors of the transmitted infrared light, are mounted on the other. Voltage-regulated output ranging from 0 to +/- 2048 V at one revolution per second gives 500 mV at the output (changeable by programming), calculating time 2 ms, 1 mV resolution (11 bits), with an external power supply of 5 V. The turbine showed a linear response at a continuous saline flow up to 3000 ml min-1 at pressure loads of between 20 and 220 cm H2O. Pressure drop across the turbine depends on the volume flow and was 1 mm Hg at 100 ml min-1 and 3 mm Hg at 7000 ml min-1. A rotating movement 1.25 x 10(-4) kg m2 s-1 was calculated. The lowest volume change of a bolus of saline solution, detected by the turbine, was 1.6 ml.

  19. Measurement of cardiac output in ventricular rupture following acute myocardial infarction--pulmonary artery catheter vs transpulmonary thermodilution--a case report.

    PubMed

    Schwarzkopf, Konrad; Simon, Stefan; Preussler, Niels-Peter; Hüter, Lars

    2009-02-01

    We compared the cardiac output measured by the transpulmonary aortic single indicator thermodilution method with that by the pulmonary artery catheterization in a patient with ventricular septal rupture after acute myocardial infarction. Though the former cardiac output was lower than the latter, in the presence of the ventricular septal rupture, the cardiac outputs were equal after the rupture was closed. This indicates that, while the cardiac output measured by the pulmonary artery catheter is influenced by the ventricular left-to-right shunt, transpulmonary aortic thermodilution method measures the true cardiac output of the left heart, which is responsible for organ perfusion.

  20. Noninvasive cardiac output measurement by inert gas rebreathing in suspected pulmonary hypertension.

    PubMed

    Farina, Stefania; Teruzzi, Giovanni; Cattadori, Gaia; Ferrari, Cristina; De Martini, Stefano; Bussotti, Maurizio; Calligaris, Giuseppe; Bartorelli, Antonio; Agostoni, Piergiuseppe

    2014-02-01

    The objective of this study was to evaluate inert gas rebreathing (IGR) reliability in cardiac output (CO) measurement compared with Fick method and thermodilution. IGR is a noninvasive method for CO measurement; CO by IGR is calculated as pulmonary blood flow plus intrapulmonary shunt. IGR may be ideal for follow-up of patients with pulmonary hypertension (PH), sparing the need of repeated invasive right-sided cardiac catheterization. Right-sided cardiac catheterization with CO measurement by thermodilution, Fick method, and IGR was performed in 125 patients with possible PH by echocardiography. Patients were grouped according to right-sided cardiac catheterization-measured mean pulmonary and wedge pressures: normal pulmonary arterial pressure (n = 20, mean pulmonary arterial pressure = 18 ± 3 mm Hg, pulmonary capillary wedge pressure = 11 ± 5 mm Hg), PH and normal pulmonary capillary wedge pressure (PH-NW, n = 37 mean pulmonary arterial pressure = 42 ± 13 mm Hg, pulmonary capillary wedge pressure = 11 ± 6 mm Hg), and PH and high pulmonary capillary wedge pressure (PH-HW, n = 68, mean pulmonary arterial pressure = 37 ± 9 mm Hg, pulmonary capillary wedge pressure = 24 ± 6 mm Hg). Thermodilution and Fick measurements were comparable. Fick and IGR agreement was observed in normal pulmonary arterial pressure (CO = 4.10 ± 1.14 and 4.08 ± 0.97 L/min, respectively), whereas IGR overestimated Fick in patients with PH-NW and those with PH-HW because of intrapulmonary shunting overestimation in hypoxemic patients. When patients with arterial oxygen saturation (SO2) ≤90% were excluded, IGR and Fick agreement improved in PH-NW (CO = 4.90 ± 1.70 and 4.76 ± 1.35 L/min, respectively) and PH-HW (CO = 4.05 ± 1.04 and 4.10 ± 1.17 L/min, respectively). In hypoxemic patients, we estimated pulmonary shunt as Fick - pulmonary blood flow and calculated shunt as: -0.2423 × arterial SO2 + 21.373 L/min. In conclusion, IGR is reliable for CO measurement in patients with PH

  1. The normal ranges of cardiovascular parameters measured using the ultrasonic cardiac output monitor.

    PubMed

    Cattermole, Giles N; Leung, P Y Mia; Ho, Grace Y L; Lau, Peach W S; Chan, Cangel P Y; Chan, Stewart S W; Smith, Brendan E; Graham, Colin A; Rainer, Timothy H

    2017-03-01

    The ultrasonic cardiac output monitor (USCOM) is a noninvasive transcutaneous continuous wave Doppler method for assessing hemodynamics. There are no published reference ranges for normal values in adults (aged 18-60 years) for this device. This study aimed to (1) measure cardiovascular indices using USCOM in healthy adults aged 18-60 years; (2) combine these data with those for healthy children (aged 0-12), adolescents (aged 12-18), and the elderly (aged over 60) from our previously published studies in order to present normal ranges for all ages, and (3) establish normal ranges of USCOM-derived variables according to both weight and age. This was a population-based cross-sectional observational study of healthy Chinese subjects aged 0.5-89 years in Hong Kong. USCOM scans were performed on all subjects, to produce measurements including stroke volume, cardiac output, and systemic vascular resistance. Data from previously published studies (children, adolescents, and the elderly) were included. Normal ranges were defined as lying between the 2.5th and 97.5th percentiles. A total of 2218 subjects were studied (mean age = 16.4, range = 0.5-89; 52% male). From previous studies, 1197 children (aged 0-12, 55% male), 590 adolescents (aged 12-18, 49% male), and 77 elderly (aged 60-89, 55% male) were included. New data were collected from 354 adults aged 18-60 (47% male). Normal ranges are presented according to age and weight. We present comprehensive normal ranges for hemodynamic parameters obtained with USCOM in healthy subjects of all ages from infancy to the elderly.

  2. Differences between directly measured and calculated values for cardiac output in the dogfish: a criticism of the Fick method.

    PubMed

    Metcalfe, J D; Butler, P J

    1982-08-01

    Cardiac output has been measured directly, and calculated by the Fick method, during normoxia and hypoxia in six artificially perfused dogfish (Scyliorhinus canicula) in an attempt to estimate the accuracy of this method in fish. The construction and operation of a simple extra-corporeal cardiac bypass pump is described. This pump closely mimics the flow pulse profiles of the fish's own heart and allows complete control of both cardiac stroke volume and systolic and diastolic periods. During normoxia (PO2 = 21 kPa) there was no significant difference between directly measured and calculated values for cardiac output. However, some shunting of blood past the respiratory surface of the gills may have been obscured by cutaneous oxygen uptake. In response to hypoxia (PO2 = 8.6 kPa) there is either a decrease in the amount of blood being shunted past the respiratory surface of the gills and/or an increase in cutaneous oxygen uptake such that the Fick calculated value for cardiac output is on average 38% greater than the measured value. It is proposed that the increase in the levels of circulating catecholamines that is reported to occur in response to hypoxia in this species may play an important role in the observed response to hypoxia. The results are discussed in terms of their implications for the calculation of cardiac output by the Fick principle in fish.

  3. Noninvasive measurement of cardiac output during exercise in children with tetralogy of Fallot.

    PubMed

    Marcuccio, Elisa; Arora, Gaurav; Quivers, Eric; Yurchak, Mary Kay; McCaffrey, Francis

    2012-10-01

    In patients with surgically repaired tetralogy of Fallot (TOF), reported peak oxygen consumption (VO(2)) is decreased compared with control subjects. The measurement of exercise cardiac output (CO) could be a useful adjunct for assessing cardiovascular fitness. There are few data assessing noninvasive CO, cardiac index (CI), and stroke volume (SV) during exercise for these patients. This study sought to measure noninvasive CI and SV during rest and exercise in children with repaired TOF. The authors compared 21 asymptomatic children with repaired TOF ages 11-17 years during rest and exercise and 42 gender- and age-matched healthy control children without structural heart disease. Using a Bruce exercise protocol, exercise data were measured noninvasively by a novel inert gas rebreathing technique including peak duration and heart rate, as well as VO(2), CO, CI, and SV measured at 90 % of peak predicted theoretical heart rate (90 % ppHR). Statistical correlation between peak VO(2) and CI was performed. At baseline, there was no statistically significant difference in any of the measures between the groups. At 90 % ppHR, there was an increase in CI during exercise of 140 % in the TOF children and 180 % in the control children. During exercise, SV changed minimally in the patient group, whereas it increased more than 30 % in the control children. At 90 % ppHR, the patient group showed an increase in VO(2) during exercise similar to that of their healthy peers. The patients had a significantly shorter peak exercise duration than normal control subjects. The patients had a lower CI during exercise because they were less able to increase SV. Therefore, at similar heart rates, patients who have had TOF repair must rely on increased peripheral muscle extraction, with a higher arteriovenous oxygen difference (SaO(2)-MvO(2)) during exercise, which may limit peak exercise capacity. In this cohort of TOF patients, noninvasive CI measurement was feasible, and correlation with VO

  4. Equipment review: New techniques for cardiac output measurement – oesophageal Doppler, Fick principle using carbon dioxide, and pulse contour analysis

    PubMed Central

    Berton, Christine; Cholley, Bernard

    2002-01-01

    Measuring cardiac output is of paramount importance in the management of critically ill patients in the intensive care unit and of 'high risk' surgical patients in the operating room. Alternatives to thermodilution are now available and are gaining acceptance among practitioners who have been trained almost exclusively in the use of the pulmonary artery catheter. The present review focuses on the principles, advantages and limitations of oesophageal Doppler, Fick principle applied to carbon dioxide, and pulse contour analysis. No single method stands out or renders the others obsolete. By making cardiac output easily measurable, however, these techniques should all contribute to improvement in haemodynamic management. PMID:12133181

  5. Quantification of mitral regurgitation by automated cardiac output measurement: experimental and clinical validation

    NASA Technical Reports Server (NTRS)

    Sun, J. P.; Yang, X. S.; Qin, J. X.; Greenberg, N. L.; Zhou, J.; Vazquez, C. J.; Griffin, B. P.; Stewart, W. J.; Thomas, J. D.

    1998-01-01

    OBJECTIVES: To develop and validate an automated noninvasive method to quantify mitral regurgitation. BACKGROUND: Automated cardiac output measurement (ACM), which integrates digital color Doppler velocities in space and in time, has been validated for the left ventricular (LV) outflow tract but has not been tested for the LV inflow tract or to assess mitral regurgitation (MR). METHODS: First, to validate ACM against a gold standard (ultrasonic flow meter), 8 dogs were studied at 40 different stages of cardiac output (CO). Second, to compare ACM to the LV outflow (ACMa) and inflow (ACMm) tracts, 50 normal volunteers without MR or aortic regurgitation (44+/-5 years, 31 male) were studied. Third, to compare ACM with the standard pulsed Doppler-two-dimensional echocardiographic (PD-2D) method for quantification of MR, 51 patients (61+/-14 years, 30 male) with MR were studied. RESULTS: In the canine studies, CO by ACM (1.32+/-0.3 liter/min, y) and flow meter (1.35+/-0.3 liter/min, x) showed good correlation (r=0.95, y=0.89x+0.11) and agreement (deltaCO(y-x)=0.03+/-0.08 [mean+/-SD] liter/min). In the normal subjects, CO measured by ACMm agreed with CO by ACMa (r=0.90, p < 0.0001, deltaCO=-0.09+/-0.42 liter/min), PD (r=0.87, p < 0.0001, deltaCO=0.12+/-0.49 liter/min) and 2D (r=0.84, p < 0.0001, deltaCO=-0.16+/-0.48 liter/min). In the patients, mitral regurgitant volume (MRV) by ACMm-ACMa agreed with PD-2D (r= 0.88, y=0.88x+6.6, p < 0.0001, deltaMRV=2.68+/-9.7 ml). CONCLUSIONS: We determined that ACM is a feasible new method for quantifying LV outflow and inflow volume to measure MRV and that ACM automatically performs calculations that are equivalent to more time-consuming Doppler and 2D measurements. Additionally, ACM should improve MR quantification in routine clinical practice.

  6. Measurement of cardiac output in children by pressure-recording analytical method.

    PubMed

    Urbano, Javier; López, Jorge; González, Rafael; Solana, María José; Fernández, Sarah N; Bellón, José M; López-Herce, Jesús

    2015-02-01

    We evaluated two pressure-recording analytical method (PRAM) software versions (v.1 and v.2) to measure cardiac index (CI) in hemodynamically stable critically ill children and investigate factors that influence PRAM values. The working hypothesis was that PRAM CI measurements would stay within normal limits in hemodynamically stable patients. Ninety-five CI PRAM measurements were analyzed in 47 patients aged 1-168 months. Mean CI was 4.1 ± 1.4 L/min/m(2) (range 2.0-7.0). CI was outside limits defined as normal (3-5 L/min/m(2)) in 53.7% of measurements (47.8% with software v.1 and 69.2% with software v.2, p = 0.062). Moreover, 14.7% of measurements were below 2.5 L/min/m(2), and 13.6% were above 6 L/min/m(2). CI was significantly lower in patients with a clearly visible dicrotic notch than in those without (3.7 vs. 4.6 L/min/m(2), p = 0.004) and in children with a radial arterial catheter (3.5 L/min/m(2)) than in those with a brachial (4.4 L/min/m(2), p = 0.021) or femoral catheter (4.7 L/min/m(2), p = 0.005). By contrast, CI was significantly higher in children under 12 months (4.2 vs. 3.6 L/min/m(2), p = 0.034) and weighing under 10 kg (4.2 vs. 3.6 L/min/m(2), p = 0.026). No significant differences were observed between cardiac surgery patients and the rest of children. A high percentage of CI measurements registered by PRAM were outside normal limits in hemodynamically stable, critically ill children. CI measured by PRAM may be influenced by the age, weight, location of catheter, and presence of a dicrotic notch.

  7. Pulse Wave Velocity and Cardiac Output vs. Heart Rate in Patients with an Implanted Pacemaker Based on Electric Impedance Method Measurement

    NASA Astrophysics Data System (ADS)

    Soukup, Ladislav; Vondra, Vlastimil; Viščor, Ivo; Jurák, Pavel; Halámek, Josef

    2013-04-01

    The methods and device for estimation of cardiac output and measurement of pulse wave velocity simultaneously is presented here. The beat-to-beat cardiac output as well as pulse wave velocity measurement is based on application of electrical impedance method on the thorax and calf. The results are demonstrated in a study of 24 subjects. The dependence of pulse wave velocity and cardiac output on heart rate during rest in patients with an implanted pacemaker was evaluated. The heart rate was changed by pacemaker programming while neither exercise nor drugs were applied. The most important result is that the pulse wave velocity, cardiac output and blood pressure do not depend significantly on heart rate, while the stroke volume is reciprocal proportionally to the heart rate.

  8. Reliability of continuous cardiac output measurement during intra-abdominal hypertension relies on repeated calibrations: an experimental animal study

    PubMed Central

    Gruenewald, Matthias; Renner, Jochen; Meybohm, Patrick; Höcker, Jan; Scholz, Jens; Bein, Berthold

    2008-01-01

    Introduction Monitoring cardiac output (CO) may allow early detection of haemodynamic instability, aiming to reduce morbidity and mortality in critically ill patients. Continuous cardiac output (CCO) monitoring is recommended in septic or postoperative patients with high incidences of intra-abdominal hypertension (IAH). The aim of the present study was to compare the agreement between three CCO methods and a bolus thermodilution CO technique during acute IAH and volume loading. Methods Ten pigs were anaesthetised and instrumented for haemodynamic measurements. Cardiac output was obtained using CCO by pulse power analysis (PulseCO; LiDCO monitor), using CCO by pulse contour analysis (PCCO; PiCCO monitor) and using CCO by pulmonary artery catheter thermodilution (CCOPAC), and was compared with bolus transcardiopulmonary thermodilution CO (COTCP) at baseline, after fluid loading, at IAH and after an additional fluid loading at IAH. Whereas PulseCO was only calibrated at baseline, PCCO was calibrated at each experimental step. Results PulseCO and PCCO underestimated CO, as the overall bias ± standard deviation was 1.0 ± 1.5 l/min and 1.0 ± 1.1 l/min compared with COTCP. A clinically accepted agreement between all of the CCO methods and COTCP was observed only at baseline. Whereas IAH did not influence the CO, increased CO following fluid loading at IAH was only reflected by CCOPAC and COTCP, not by uncalibrated PulseCO and PCCO. After recalibration, PCCO was comparable with COTCP. Conclusions The CO obtained by uncalibrated PulseCO and PCCO failed to agree with COTCP during IAH and fluid loading. In the critically ill patient, recalibration of continuous arterial waveform CO methods should be performed after fluid loading or before a major change in therapy is initiated. PMID:18957114

  9. Minimally invasive measurement of cardiac output during surgery and critical care: a meta-analysis of accuracy and precision.

    PubMed

    Peyton, Philip J; Chong, Simon W

    2010-11-01

    When assessing the accuracy and precision of a new technique for cardiac output measurement, the commonly quoted criterion for acceptability of agreement with a reference standard is that the percentage error (95% limits of agreement/mean cardiac output) should be 30% or less. We reviewed published data on four different minimally invasive methods adapted for use during surgery and critical care: pulse contour techniques, esophageal Doppler, partial carbon dioxide rebreathing, and transthoracic bioimpedance, to assess their bias, precision, and percentage error in agreement with thermodilution. An English language literature search identified published papers since 2000 which examined the agreement in adult patients between bolus thermodilution and each method. For each method a meta-analysis was done using studies in which the first measurement point for each patient could be identified, to obtain a pooled mean bias, precision, and percentage error weighted according to the number of measurements in each study. Forty-seven studies were identified as suitable for inclusion: N studies, n measurements: mean weighted bias [precision, percentage error] were: pulse contour N = 24, n = 714: -0.00 l/min [1.22 l/min, 41.3%]; esophageal Doppler N = 2, n = 57: -0.77 l/min [1.07 l/min, 42.1%]; partial carbon dioxide rebreathing N = 8, n = 167: -0.05 l/min [1.12 l/min, 44.5%]; transthoracic bioimpedance N = 13, n = 435: -0.10 l/min [1.14 l/min, 42.9%]. None of the four methods has achieved agreement with bolus thermodilution which meets the expected 30% limits. The relevance in clinical practice of these arbitrary limits should be reassessed.

  10. Measurement of cardiac output during exercise in healthy, trained humans using lithium dilution and pulse contour analysis.

    PubMed

    Elliott, Adrian D; Skowno, Justin; Prabhu, Mahesh; Ansley, Les

    2012-10-01

    The aim of this study was to evaluate the use of pulse contour analysis calibrated with lithium dilution in a single device (LiDCO) for measurement of cardiac output (Q) during exercise in healthy volunteers. We sought to; (a) compare pulse contour analysis (PulseCO) and lithium indicator dilution (LiDCO) for the measurement of Q during exercise, and (b) assess the requirement for recalibration of PulseCO with LiDCO during exercise. Ten trained males performed multi-stage cycling exercise at intensities below and above ventilatory threshold before constant load maximal exercise to exhaustion. Uncalibrated PulseCO Q (Qraw) was compared to that calibrated with lithium dilution at baseline Qbaseline, during submaximal exercise below (Qlow) and above (Qhigh) ventilatory threshold, and at each exercise stage individually (Qexercise). There was a significant difference between Qbaseline and all other calibration methods during exercise, but not at rest. No significant differences were observed between other methods. Closest agreement with Qexercise was observed for Qhigh (bias ± limits of agreement: 4.8 ± 30.0%). The difference between Qexercise and both Qlow and Qraw was characterized by low bias (4-7%) and wide limits of agreement (> ± 40%). Calibration of pulse contour analysis with lithium dilution prior to exercise leads to a systematic overestimation of exercising cardiac output. A single calibration performed during exercise above the ventilatory threshold provided acceptable limits of agreement with an approach incorporating multiple calibrations throughout exercise. Pulse contour analysis may be used for Q measurement during exercise providing the system is calibrated during exercise.

  11. Seasonal variations of cardiac output in rats.

    PubMed

    Back, G; Strubelt, O

    1975-11-15

    Cardiac output of rats shows seasonal variations with low values in spring and summer and high ones in autumn and winter. The stroke volume was much more implicated in these changes than the heart rate. The seasonal changes of cardiac output are probably due to changes of thyroid function.

  12. The Treatment of Shock Based Upon Physiological Principles and Impedence Method for Measuring Cardiac Output in Shock

    DTIC Science & Technology

    1967-01-01

    cardiogenic shock following intracoronary artery microsphere embolization. The syndrome has been previously characterized by a fall in cardiac output and a...previously been oub- jected to and survived usually lethal cardiogenic shock, 5 dogs were selected. One month after intracoronary embolization, an LD, 0 0

  13. Methods and apparatus for determining cardiac output

    NASA Technical Reports Server (NTRS)

    Cohen, Richard J. (Inventor); Mukkamala, Ramakrishna (Inventor); Sherman, Derin A. (Inventor)

    2010-01-01

    The present invention provides methods and apparatus for determining a dynamical property of the systemic or pulmonary arterial tree using long time scale information, i.e., information obtained from measurements over time scales greater than a single cardiac cycle. In one aspect, the invention provides a method and apparatus for monitoring cardiac output (CO) from a single blood pressure signal measurement obtained at any site in the systemic or pulmonary arterial tree or from any related measurement including, for example, fingertip photoplethysmography.According to the method the time constant of the arterial tree, defined to be the product of the total peripheral resistance (TPR) and the nearly constant arterial compliance, is determined by analyzing the long time scale variations (greater than a single cardiac cycle) in any of these blood pressure signals. Then, according to Ohm's law, a value proportional to CO may be determined from the ratio of the blood pressure signal to the estimated time constant. The proportional CO values derived from this method may be calibrated to absolute CO, if desired, with a single, absolute measure of CO (e.g., thermodilution). The present invention may be applied to invasive radial arterial blood pressure or pulmonary arterial blood pressure signals which are routinely measured in intensive care units and surgical suites or to noninvasively measured peripheral arterial blood pressure signals or related noninvasively measured signals in order to facilitate the clinical monitoring of CO as well as TPR.

  14. Uncalibrated pulse power analysis fails to reliably measure cardiac output in patients undergoing coronary artery bypass surgery

    PubMed Central

    2011-01-01

    Introduction Uncalibrated arterial pulse power analysis has been recently introduced for continuous monitoring of cardiac index (CI). The aim of the present study was to compare the accuracy of arterial pulse power analysis with intermittent transpulmonary thermodilution (TPTD) before and after cardiopulmonary bypass (CPB). Methods Forty-two patients scheduled for elective coronary surgery were studied after induction of anaesthesia, before and after CPB respectively. Each patient was monitored with the pulse contour cardiac output (PiCCO) system, a central venous line and the recently introduced LiDCO monitoring system. Haemodynamic variables included measurement of CI derived by transpulmonary thermodilution (CITPTD) or CI derived by pulse power analysis (CIPP), before and after calibration (CIPPnon-cal., CIPPcal.). Percentage changes of CI (ΔCITPTD, ΔCIPPnon-cal./PPcal.) were calculated to analyse directional changes. Results Before CPB there was no significant correlation between CIPPnon-cal. and CITPTD (r2 = 0.04, P = 0.08) with a percentage error (PE) of 86%. Higher mean arterial pressure (MAP) values were significantly correlated with higher CIPPnon-cal. (r2 = 0.26, P < 0.0001). After CPB, CIPPcal. revealed a significant correlation compared with CITPTD (r2 = 0.77, P < 0.0001) with PE of 28%. Changes in CIPPcal. (ΔCIPPcal.) showed a correlation with changes in CITPTD (ΔCITPTD) only after CPB (r2 = 0.52, P = 0.005). Conclusions Uncalibrated pulse power analysis was significantly influenced by MAP and was not able to reliably measure CI compared with TPTD. Calibration improved accuracy, but pulse power analysis was still not consistently interchangeable with TPTD. Only calibrated pulse power analysis was able to reliably track haemodynamic changes and trends. PMID:21356060

  15. A novel method of measuring cardiac output in infants following extracorporeal procedures: preliminary validation in a swine model.

    PubMed

    Melchior, Richard; Darling, Edward; Terry, Bryan; Gunst, Gordy; Searles, Bruce

    2005-10-01

    In infants, technologies for obtaining rapid, quantified measurements of cardiac output (CO) following weaning from cardiopulmonary bypass (CPB) or extracorporeal membrane oxygenation are not readily available. A new technique to measure CO based on ultrasound velocity dilution is described. It utilizes reusable probes placed on the extracorporeal circuit that permits convenient measurement of CO prior to decannulation. This report provides preliminary validation data in an animal model. Three Yorkshire pigs (11-14 kg) were fully heparinized and cannulated via the right common carotid artery (cannula advanced to the aortic arch) and right atrium. Both the venous and arterial lines were instrumented with ultrasonic probes connected to a computer-monitoring system. A 'stopcock bridge' between the arterial and venous cannulas provided the access for saline injection and a controlled AV-shunt. For comparison, a vascular flow probe was fitted directly to the pulmonary artery (PA) in both animals and, for the larger animal, a PA catheter was inserted to obtain standard thermodilution measurements. Linear regression analysis revealed a correlation between the CO by ultrasound dilution (CO UD) technique and the vascular probe and PA thermodilution techniques to be R2 =0.94 and 0.81. This pilot study demonstrated that the CO UD technique correlates to other benchmarks of CO measurements. This novel technology has specific application in the field of pediatric open heart surgery in that it would allow the surgeon to accurately and inexpensively measure the CO of neonatal and pediatric patients before and after surgical manipulation of the heart without the need for placement of additional catheters or probes.

  16. Addressing Assumptions for the Use of Non-invasive Cardiac Output Measurement Techniques During Exercise in COPD.

    PubMed

    Perrault, Hélène; Richard, Ruddy; Kapchinsky, Sophia; Baril, Jacinthe; Bourbeau, Jean; Taivassalo, Tanja

    2016-01-01

    The multifactorial functional limitation of COPD increasingly demonstrates the need for an integrated circulatory assessment. In this study cardiac output (Qc) derived from non-inert (CO2-RB), inert (N2O-RB) gas rebreathing approaches and bioimpedance were compared to examine the limitations of currently available non-invasive techniques for exercise Qc determination in patients with chronic lung disease. Thirteen COPD patients (GOLD II-III) completed three constant cycling bouts at 20, 35, and 50% of peak work on two occasions to assess Qc with bioimpedance as well as using CO2-RB and N2O-RB for all exercise tests. Results showed significantly lower Qc using the N2O-RB or end-tidal CO2-derived Qc compared to the PaCO2-derived CO2-RB or the bioimpedance at rest and for all exercise intensities. End-tidal CO2-derived values are however not statistically different from those obtained using inert-gas rebreathing. This study show that in COPD patients, CO2-rebreathing Qc values obtained using PaCO2 contents which account for any gas exchange impairment or inadequate gas mixing are similar to those obtained using thoracic bioimpedance. Alternately, the lower values for N2O rebreathing derived Qc indicates the inability of this technique to account for gas exchange impairment in the computation of Qc. These findings indicate that the choice of a gas rebreathing technique to measure Qc in patients must be dictated by the ability to include in the derived computations a correction for either gas exchange inadequacies and/or a vascular shunt.

  17. Importance of re-calibration time on pulse contour analysis agreement with thermodilution measurements of cardiac output: a retrospective analysis of intensive care unit patients.

    PubMed

    Scully, Christopher G; Gomatam, Shanti; Forrest, Shawn; Strauss, David G

    2016-10-01

    We assessed the effect of re-calibration time on cardiac output estimation and trending performance in a retrospective analysis of an intensive care unit patient population using error grid analyses. Paired thermodilution and arterial blood pressure waveform measurements (N = 2141) from 222 patient records were extracted from the Multiparameter Intelligent Monitoring in Intensive Care II database. Pulse contour analysis was performed by implementing a previously reported algorithm at calibration times of 1, 2, 8 and 24 h. Cardiac output estimation agreement was assessed using Bland-Altman and error grid analyses. Trending was assessed by concordance and a 4-Quadrant error grid analysis. Error between pulse contour and thermodilution increased with longer calibration times. Limits of agreement were -1.85 to 1.66 L/min for 1 h maximum calibration time compared to -2.70 to 2.41 L/min for 24 h. Error grid analysis resulted in 74.2 % of points bounded by 20 % error limits of thermodilution measurements for 1 h calibration time compared to 65 % for 24 h. 4-Quadrant error grid analysis showed <75 % of changes in pulse contour estimates to be within ±80 % of the change in the thermodilution measurement at any calibration time. Shorter calibration times improved the agreement of cardiac output pulse contour estimates with thermodilution. Use of minimally invasive pulse contour methods in intensive care monitoring could benefit from prospective studies evaluating calibration protocols. The applied pulse contour analysis method and thermodilution showed poor agreement to monitor changes in cardiac output.

  18. Cardiac output determinations with ear piece densitometry.

    PubMed

    Hedenstierna, G; Schildt, B

    1975-01-01

    The results of cardiac output determinations by a dye dilution technique were compared using (a) a dichromatic earpiece which was calibrated as a flow-through cuvette, but also permitted automatic computing by virtue of a pressure capsule, and (b) an ordinary flow-through densitometer. Eleven subjects, some with cardio-pulmonary disease, were investigated. Cardiac outputs were systematically overestimated when automatically computed. The results obtained by manual calculation with the ear-piece corresponded more nearly with those derived from the flow-through cuvette, but still with a deviation from the identity line and with a residual standard deviation of 0.8 l/min. Double determinations had a residual standard deviation of 0.7 l/min. Despite its ease of handling, an earpiece densitometer seems to be too unreliable to be suitable for routine use.

  19. Evaluation of noninvasive cardiac output methods during exercise

    NASA Technical Reports Server (NTRS)

    Moore, Alan D.; Barrows, Linda H.; Rashid, Michael; Siconolfi, Steven F.

    1992-01-01

    Noninvasive techniques to estimate cardiac output (Qc) will be used during future space flight. This retrospective literature survey compared the Qc techniques of carbon dioxide rebreathing (CO2-R), CO2 single breath (CO2-S), Doppler (DOP), impedance (IM), and inert gas (IG: acetylene or nitrous oxide) to direct (DIR) assessments measured at rest and during exercise.

  20. Pathophysiology of Post-Operative Low Cardiac Output Syndrome.

    PubMed

    Epting, Conrad L; McBride, Mary E; Wald, Eric L; Costello, John M

    2016-01-01

    Low cardiac output syndrome frequently complicates the post-operative care of infants and children following cardiac surgery. The onset of low cardiac output follows a predictable course in the hours following cardiopulmonary bypass, as myocardial performance declines in the face of an elevated demand for cardiac output. When demand outstrips supply, shock ensues, and early recognition and intervention can decrease mortality. Multifactorial in etiology, this article will discuss the pathophysiology of low cardiac output syndrome, including myocardial depression following bypass, altered cardiac loading conditions, and inflammation driving a hypermetabolic state. Contributions from altered neurohormonal, thyroid, and adrenal axes will also be discussed. Sources included the clinical experiences of four cardiac intensivists, supported throughout by primary sources and relevant reviews obtained through PubMed searches and from seminal textbooks in the field. This article addresses the second of eight topics comprising the special issue entitled "Pharmacologic strategies with afterload reduction in low cardiac output syndrome after pediatric cardiac surgery".

  1. Cardiac output response to exercise in chronic cardiac failure patients.

    PubMed

    Fukuda, Taira; Matsumoto, Akihiro; Kurano, Miwa; Takano, Haruhito; Iida, Haruko; Morita, Toshihiro; Yamashita, Hiroshi; Hirata, Yasunobu; Nagai, Ryozo; Nakajima, Toshiaki

    2012-01-01

    The purpose of this study was to investigate the precise pattern of stroke volume (SV) response during exercise in patients with chronic heart failure (CHF) compared with age-matched controls. Fourteen patients with CHF and 7 controls performed symptom-limited bicycle exercise testing with respiratory gas exchange measurement. Patients were classified into group A (n = 7) with peak VO2 ≥ 18.0 mL/kg/minute and group B (n = 7) with peak VO2 < 18.0 mL/kg/ minute. SV and cardiac output (CO) were continuously measured during exercise using a novel thoracic impedance method (Physioflow). CO and SV were lower in the group B patients than those in controls at peak exercise [CO: 11.3 ± 1.0 (SE) versus 15.6 ± 0.9 L/minute, P < 0.05, SV: 89 ± 6 versus 110 ± 6 mL, P < 0.05]. SV reached its peak levels during submaximal exercise and remained close to the peak value until peak exercise in 6 of 7 group B patients (86%). On the other hand, it progressively increased until peak exercise in 6 of 7 controls (86%) and 5 of 7 group A patients (71%). In all subjects, CO at peak exercise was more closely correlated with SV at peak exercise (r = 0.86, P < 0.001) than with peak heart rate (r = 0.69, P < 0.001). CHF patients with impaired exercise capacity had attenuated increment of CO during exercise, and SV reached its peak levels during submaximal exercise.

  2. Less-invasive cardiac output monitoring by earpiece densitometry.

    PubMed

    Grasberger, R C; Yeston, N S

    1986-06-01

    Cardiac output was measured by thermodilution and ear densitometry in surgical ICU patients who had pulmonary arterial catheters. Overall comparison based on 56 sets of triplicate measurements revealed a correlation coefficient (r) of 0.76 between the two techniques. Although ear densitometry was more accurate with injection via the antecubital vein (r = 0.88) vs. more distal injection (r = 0.67), these data suggest that this technique lacks the accuracy for clinical application.

  3. Ease of noninvasive measurement of cardiac output coupled with peak VO2 determination at rest and during exercise in patients with heart failure.

    PubMed

    Lang, Chim C; Karlin, Paula; Haythe, Jennifer; Tsao, Lana; Mancini, Donna M

    2007-02-01

    Peak oxygen consumption (VO2) is a powerful prognostic predictor of survival in patients with heart failure (HF) because it provides an indirect assessment of a patient's ability to increase cardiac output (CO). However, many peripheral factors affect VO2. Inert gas rebreathing using low-concentration soluble and insoluble inert gases can derive CO by the Fick principle. The Innocor rebreathing system uses an oxygen-enriched mixture of an inert soluble gas (0.5% nitrous oxide) and an inert insoluble gas (0.1% sulfur hexafluoride) measured by photoacoustic analyzers over a 5-breath interval. The practicality of this device in measuring CO and VO2 during exercise was assessed in patients with HF. Ninety-two consecutive exercise tests were prospectively performed in 88 patients with HF using the Innocor system. Incremental bicycle exercise was performed with CO measurements at rest, at 50 W, and at peak exercise. The mean age of the 68 men and 20 women was 54 +/- 13 years; 33% had coronary artery disease, and 67% had dilated cardiomyopathy. The mean left ventricular ejection fraction was 24 +/- 9%. Patients were able to rapidly learn the rebreathing technique and easily integrate it into the exercise protocol. Eighty-six percent of the tests had successful measurement of metabolic and cardiac output data. Mean CO at rest was 3.5 +/- 1.1 L/min and increased to 7.2 +/- 2.7 L/min. Mean peak VO2 was 12.6 +/- 4.7 ml/kg/min. A significant linear correlation was observed between peak VO2 and peak CO (r = 0.64, p <0.0001). In conclusion, combined metabolic stress testing with inert gas rebreathing can be easily performed in patients with HF.

  4. The Impact of Direct Cardiac Output Determination On Using A Widely Available Direct Continuous Oxygen Consumption Measuring Device On The Hemodynamic Assessment of Aortic Valve

    PubMed Central

    Fanari, Zaher; Grove, Matthew; Rajamanickam, Anitha; Hammami, Sumaya; Walls, Cassie; Kolm, Paul; Saltzberg, Mitchell; Weintraub, William S.; Doorey, Andrew J.

    2016-01-01

    Background Accurate assessment of cardiac output (CO) is essential for the hemodynamic assessment of aortic valve area (AVA). Estimation of oxygen consumption (VO2) and Thermodilution (TD) is employed in many cardiac catheterization laboratories (CCL) given the historically cumbersome nature of direct continuous VO2 measurement, the “gold standard” for this technique. A portable facemask device simplifies the direct continuous measurement of VO2, allowing for relatively rapid and continuous assessment of CO and AVA. Methods and Materials Seventeen consecutive patients undergoing right heart catheterization had simultaneous determination of CO by both direct continuous and assumed VO2 and TD. Assessments were only made when a plateau of VO2 had occurred. All measurements of direct continuous and assumed VO2, as well as, TD CO were obtained in triplicate. Results Direct continuous VO2 CO and assumed VO2 CO correlated poorly (R= 0.57; ICC =0.59). Direct continuous VO2 CO and TD CO also correlated poorly (R= 0.51; ICC=0.60). Similarly AVA derived from direct continuous VO2 correlated poorly with those of assumed VO2 (R= 0.68; ICC=0.55) and TD (R=0.66, ICC=0.60). Repeated direct continuous VO2 CO and AVA measurements were extremely correlated and reproducible [(R=0.93; ICC=0.96) and (R=0.99; ICC>0.99) respectively], suggesting that this was the most reliable measurement of CO. Conclusions CO calculated from direct continuous VO2 measurement varies substantially from both assumed VO2 and TD based CO, which are widely used in most CCL. These differences may significantly impact the CO and AVA measurements. Furthermore, continuous, rather than average, measurement of VO2 appears to give highly reproducible results. PMID:27904163

  5. Non-invasive assessment of cardiac output in children.

    PubMed Central

    Richardson, J R; Ferguson, J; Hiscox, J; Rawles, J

    1998-01-01

    BACKGROUND: Stroke distance, the systolic velocity integral of aortic blood flow, is a linear analogue of stroke volume; its product with heart rate is minute distance, analogous to cardiac output. OBJECTIVE: To investigate the feasibility of assessing cardiac output in children with a simple non-invasive Doppler ultrasound technique, and to determine the normal range of values. METHODS: Peak aortic blood velocity, stroke distance, and minute distance were measured through the suprasternal window in 166 children (mean age 9.6 years, range 2-14) using a portable non-imaging Doppler ultrasound instrument. RESULTS: The technique was well tolerated by all the children participating. Mean peak aortic blood velocity was 138 cm/s and was independent of age. Mean stroke distance was 31.8 cm and showed a small but significant increase with age; mean minute distance was 2490 cm and fell with age, as did heart rate. CONCLUSIONS: Suprasternal Doppler ultrasound measurement of stroke distance is a convenient, well tolerated, non-invasive technique for the assessment of cardiac output in children. The normal range of values during childhood has been established. The technique has great potential for assessing hypovolaemia in children. Images p307-a PMID:9785155

  6. Comparison of stroke volume and cardiac output as measured by a single observer using four different ultrasound techniques in six clinically healthy cats.

    PubMed

    Biermann, K; Hungerbühler, S; Kästner, S B R

    2012-12-01

    The aim of this study was to assess agreement and repeatability of four ultrasound methods for measuring stroke volume (SV) and cardiac output (CO) in cats. Measurement of SV and CO was performed by the Teichholz method, the Simpson's method (SM), the area length method (ALM) and a volumetric flow method across the aorta (Trace method). For each method, the coefficient of variation (CV) was calculated and agreement was determined by Bland-Altman analysis. The CV was acceptable (<20%) for all parameters, except for SV and CO obtained by SM (28.8% and 22.4%, respectively) and ALM (21.6% and 22.6%, respectively). Narrow limits of agreement were observed between both planimetric methods (SM and ALM). The Trace method was the most repeatable, followed by the Teichholz method. Despite excellent inter-method agreement, neither of the planimetric methods produced results with adequate repeatability. As the Teichholz and Trace methods were acceptably repeatable, and probably gave the most representative values, they appear to be the most useful methods for the measurement of SV and CO in cats. Further investigations are needed to compare the echocardiographic methods described here with a standard technique such as thermodilution.

  7. Usefulness of non-invasive measurement of cardiac output during sub-maximal exercise to predict outcome in patients with chronic heart failure.

    PubMed

    Goda, Ayumi; Lang, Chim C; Williams, Paula; Jones, Margaret; Farr, Mary Jane; Mancini, Donna M

    2009-12-01

    Peak oxygen consumption (Vo(2)) is a powerful prognostic predictor of survival in patients with chronic heart failure (CHF) because it provides an indirect assessment of a patient's ability to increase cardiac output (CO). However, many patients with CHF who undergo cardiopulmonary exercise testing are unable to perform maximal exercise. New metabolic carts coupled with the inert gas rebreathing technique provide a noninvasive measurement of CO. Whether the noninvasive measurement of CO at a fixed submaximal workload can predict outcome is unknown. This study's population comprised 259 patients (mean age 54 +/- 14 years, mean left ventricular ejection fraction 27 +/- 14%) with CHF who underwent symptom-limited incremental cardiopulmonary exercise testing. Vo(2) and CO were measured at rest, at 25 W, and at peak exercise. Submaximal exercise was defined as <80% peak Vo(2). Among 259 patients, 145 had Vo(2) at 25 W <80% of peak. Vo(2) at 25 W averaged 9.3 +/- 1.8 ml/kg/min. This Vo(2) represented 62 +/- 11% of peak Vo(2), which averaged 15.4 +/- 4.4 ml/kg/min. Prospective follow-up averaged 521 +/- 337 days. In this cohort, there were 15 outcome events (death, urgent heart transplantation, or implantation of a left ventricular assist device as a bridge to transplantation). On univariate Cox hazard analysis, CO at 25 W (hazard ratio 0.64, 95% confidence interval 0.48 to 0.84, p = 0.002) was found to be significant predictor of events of outcome. In conclusion, CO at 25 W measured noninvasively during submaximal exercise may have potential value as a predictor of outcomes in patients with CHF.

  8. Reproducibility of cardiac power output and other cardiopulmonary exercise indices in patients with chronic heart failure.

    PubMed

    Jakovljevic, Djordje G; Seferovic, Petar M; Nunan, David; Donovan, Gay; Trenell, Michael I; Grocott-Mason, Richard; Brodie, David A

    2012-02-01

    Cardiac power output is a direct measure of overall cardiac function that integrates both flow- and pressure-generating capacities of the heart. The present study assessed the reproducibility of cardiac power output and other more commonly reported cardiopulmonary exercise variables in patients with chronic heart failure. Metabolic, ventilatory and non-invasive (inert gas re-breathing) central haemodynamic measurements were undertaken at rest and near-maximal exercise of the modified Bruce protocol in 19 patients with stable chronic heart failure. The same procedure was repeated 7 days later to assess reproducibility. Cardiac power output was calculated as the product of cardiac output and mean arterial pressure. Resting central haemodynamic variables demonstrate low CV (coefficient of variation) (ranging from 3.4% for cardiac output and 5.6% for heart rate). The CV for resting metabolic and ventilatory measurements ranged from 8.2% for respiratory exchange ratio and 14.2% for absolute values of oxygen consumption. The CV of anaerobic threshold, peak oxygen consumption, carbon dioxide production and respiratory exchange ratio ranged from 3.8% (for anaerobic threshold) to 6.4% (for relative peak oxygen consumption), with minute ventilation having a CV of 11.1%. Near-maximal exercise cardiac power output and cardiac output had CVs of 4.1 and 2.2%, respectively. Cardiac power output demonstrates good reproducibility suggesting that there is no need for performing more than one cardiopulmonary exercise test. As a direct measure of cardiac function (dysfunction) and an excellent prognostic marker, it is strongly advised in the assessment of patients with chronic heart failure undergoing cardiopulmonary exercise testing.

  9. A fiberoptic reflection densitometer with cardiac output calculator.

    PubMed

    Landsman, M L; Knop, N; Mook, G A; Zijlstra, W G

    1979-02-14

    A catheter-tip densitometer for indocyanine green is described consisting of a cardiac catheter containing optical fibers, an incandescent light source, a light detection unit and a processing unit. Half of the optical fibers guide the light to the blood at the tip of the catheter, the other half the back-scattered (reflected) light to the detection unit. In the detection unit the light is measured by two silicium barrier layer photocells after it has been split into two beams by a beam splitter. In the measuring channel the light passes an 800 nm filter before reaching the photocell. When fiberoptic catheters with glass fibers are employed, the other channel, used for compensation of non-specific effects such as blood flow variations, contains no filter, thus measuring light in a broad spectral band. It is shown that in this way compensation of flow effects may be about two times better than when a 920 nm filter is used. When using plastic optical fibers a 950 nm filter must be used, because above lambda = 850 nm plastic fibers transmit only a band around that wavelength (950 nm). At zero dye concentration the densitometer output or ratio of compensating and measuring photocell output R/R800 is almost insensitive to changes in haemoglobin concentration. When the blood contains dye, however, the influence of haemoglobin concentration is considerable. The densitometer output R/R800 is linearly related to dye concentration up to 50 mg . 1-1, the output R920/R800 up to 30 mg . 1(-1). The output R/R800 decreases with decreasing oxygen saturation; the slope of the calibration line, however, appears to be unaffected. The processing unit also contains an analog cardiac output calculator consisting of an integrator and a divider. Central dye dilution curves recorded from the pulmonary artery after injection of dye into the right atrium or a caval vein come down to the baseline. At this moment the reading of a digital voltmeter displaying the divider output calibrated in 1

  10. Use of the single-breath method of estimating cardiac output during exercise-stress testing.

    NASA Technical Reports Server (NTRS)

    Buderer, M. C.; Rummel, J. A.; Sawin, C. F.; Mauldin, D. G.

    1973-01-01

    The single-breath cardiac output measurement technique of Kim et al. (1966) has been modified for use in obtaining cardiac output measurements during exercise-stress tests on Apollo astronauts. The modifications involve the use of a respiratory mass spectrometer for data acquisition and a digital computer program for data analysis. The variation of the modified method for triplicate steady-state cardiac output measurements was plus or minus 1 liter/min. The combined physiological and methodological variation seen during a set of three exercise tests on a series of subjects was 1 to 2.5 liter/min. Comparison of the modified method with the direct Fick technique showed that although the single-breath values were consistently low, the scatter of data was small and the correlation between the two methods was high. Possible reasons for the low single-breath cardiac output values are discussed.

  11. Comparison of three methods for cardiac output determination in cats.

    PubMed

    Dyson, D H; Allen, D G; McDonell, W N

    1985-12-01

    Cardiac output (CO) was measured in sodium pentobarbital-anesthetized cats over a wide range of blood flow rates. In 10 cats, CO was measured simultaneously, using Fick determination and thermodilution techniques. Echocardiography was used to estimate contractility of the heart by measuring percentage change in minor diameter and velocity of circumferential fiber shortening. These indices were compared with CO by the other techniques. Echocardiographic equations used for CO determination in man were evaluated for reliability in the cat. Thermodilution and Fick determination correlated best with low CO (r = 0.89) and less with intermediate (r = 0.69) and high (r = 0.75) CO. Percentage change in minor diameter and velocity of circumferential fiber shortening correlated with thermodilution measurements of the cardiac index (r = 0.71 and r = 0.84, respectively). The value of echocardiography for CO estimation was questionable, using existing equations. Fick determination of CO was more inconsistent and was more prone to technical error than was thermodilution.

  12. Cardiac output estimation using pulmonary mechanics in mechanically ventilated patients

    PubMed Central

    2010-01-01

    The application of positive end expiratory pressure (PEEP) in mechanically ventilated (MV) patients with acute respiratory distress syndrome (ARDS) decreases cardiac output (CO). Accurate measurement of CO is highly invasive and is not ideal for all MV critically ill patients. However, the link between the PEEP used in MV, and CO provides an opportunity to assess CO via MV therapy and other existing measurements, creating a CO measure without further invasiveness. This paper examines combining models of diffusion resistance and lung mechanics, to help predict CO changes due to PEEP. The CO estimator uses an initial measurement of pulmonary shunt, and estimations of shunt changes due to PEEP to predict CO at different levels of PEEP. Inputs to the cardiac model are the PV loops from the ventilator, as well as the oxygen saturation values using known respiratory inspired oxygen content. The outputs are estimates of pulmonary shunt and CO changes due to changes in applied PEEP. Data from two published studies are used to assess and initially validate this model. The model shows the effect on oxygenation due to decreased CO and decreased shunt, resulting from increased PEEP. It concludes that there is a trade off on oxygenation parameters. More clinically importantly, the model also examines how the rate of CO drop with increased PEEP can be used as a method to determine optimal PEEP, which may be used to optimise MV therapy with respect to the gas exchange achieved, as well as accounting for the impact on the cardiovascular system and its management. PMID:21108836

  13. Comparison of cardiac output determined by bioimpedance and bioreactance methods at rest and during exercise.

    PubMed

    Jakovljevic, Djordje G; Moore, Sarah; Hallsworth, Kate; Fattakhova, Gulnar; Thoma, Christian; Trenell, Michael I

    2012-04-01

    Bioreactance is a novel non-invasive method for cardiac output measurement that involves the analysis of blood flow-dependent changes in the phase shifts of electrical currents applied across the chest. The present study (1) compared resting and exercise cardiac outputs determined by bioreactance and bioimpedance methods and those estimated from measured oxygen consumption, (2) determined the relationship between cardiac output and oxygen consumption, and (3) assessed the agreement between the bioreactance and bioimpedance methods. Twelve healthy subjects (aged 30 ± 4 years) performed graded cardiopulmonary exercise test on a recumbent cycle ergometer on two occasions, 1 week apart. Cardiac output was monitored at rest, at 30, 50, 70, 90, 150 W and at peak exercise intensity by bioreactance and bioimpedance and expired gases collected. Resting cardiac output was not significantly different between the bioreactance and bioimpedance methods (6.2 ± 1.4 vs. 6.5 ± 1.4 l min(-1), P = 0.42). During exercise cardiac outputs were correlated with oxygen uptake for both bioreactance (r = 0.84, P < 0.01) and bioimpedance techniques (r = 0.82, P < 0.01). At peak exercise bioimpedance estimated significantly lower cardiac outputs than both bioreactance and theoretically calculated cardiac output (14.3 ± 2.6 vs. 17.5 ± 5.2 vs. 16.9 ± 4.9 l min(-1), P < 0.05). Bland-Altman analyses including data from rest and exercise demonstrated that the bioimpedance method reported ~1.5 l min(-1) lower cardiac output than bioreactance with lower and upper limits of agreement of -2.98 to 5.98 l min(-1). Bioimpedance and bioreactance methods provide different cardiac output estimates, particularly at high exercise intensity, and therefore the two methods cannot be used interchangeably. In contrast with bioimpedance, bioreactance cardiac outputs are similar to those estimated from measured oxygen consumption.

  14. Pulse transit time measured by photoplethysmography improves the accuracy of heart rate as a surrogate measure of cardiac output, stroke volume and oxygen uptake in response to graded exercise.

    PubMed

    Pollonini, L; Padhye, N S; Re, R; Torricelli, A; Simpson, R J; Dacso, C C

    2015-05-01

    Heart rate (HR) is a valuable and widespread measure for physical training programs, although its description of conditioning is limited to the cardiac response to exercise. More comprehensive measures of exercise adaptation include cardiac output (Q̇), stroke volume (SV) and oxygen uptake (V̇O2), but these physiological parameters can be measured only with cumbersome equipment installed in clinical settings. In this work, we explore the ability of pulse transit time (PTT) to represent a valuable pairing with HR for indirectly estimating Q̇, SV and V̇O2 non-invasively. PTT was measured as the time interval between the peak of the electrocardiographic (ECG) R-wave and the onset of the photoplethysmography (PPG) waveform at the periphery (i.e. fingertip) with a portable sensor. Fifteen healthy young subjects underwent a graded incremental cycling protocol after which HR and PTT were correlated with Q̇, SV and V̇O2 using linear mixed models. The addition of PTT significantly improved the modeling of Q̇, SV and V̇O2 at the individual level ([Formula: see text] for SV, 0.548 for Q̇, and 0.771 for V̇O2) compared to predictive models based solely on HR ([Formula: see text] for SV, 0.503 for Q̇, and 0.745 for V̇O2). While challenges in sensitivity and artifact rejection exist, combining PTT with HR holds potential for development of novel wearable sensors that provide exercise assessment largely superior to HR monitors.

  15. Evaluation of cardiac output by 5 arterial pulse contour techniques using trend interchangeability method

    PubMed Central

    Fischer, Marc-Olivier; Diouf, Momar; de Wilde, Robert B.P.; Dupont, Hervé; Hanouz, Jean-Luc; Lorne, Emmanuel

    2016-01-01

    Abstract Cardiac output measurement with pulse contour analysis is a continuous, mini-invasive, operator-independent, widely used, and cost-effective technique, which could be helpful to assess changes in cardiac output. The 4-quadrant plot and the polar plot have been described to compare the changes between 2 measurements performed under different conditions, and the direction of change by using different methods of measurements. However, the 4-quadrant plot and the polar plot present a number of limitations, with a risk of misinterpretation in routine clinical practice. We describe a new trend interchangeability method designed to objectively define the interchangeability of each change of a variable. Using the repeatability of the reference method, we classified each change as either uninterpretable or interpretable and then as either noninterchangeable, in the gray zone or interchangeable. An interchangeability rate can then be calculated by the number of interchangeable changes divided by the total number of interpretable changes. In this observational study, we used this objective method to assess cardiac output changes with 5 arterial pulse contour techniques (Wesseling's method, LiDCO, PiCCO, Hemac method, and Modelflow) in comparison with bolus thermodilution technique as reference method in 24 cardiac surgery patients. A total of 172 cardiac output variations were available from the 199 data points: 88 (51%) were uninterpretable, according to the first step of the method. The second step of the method, based on the 84 (49%) interpretable variations, showed that only 18 (21%) to 30 (36%) variations were interchangeable regardless of the technique used. None of pulse contour cardiac output technique could be interchangeable with bolus thermodilution to assess changes in cardiac output using the trend interchangeability method in cardiac surgery patients. Future studies may consider using this method to assess interchangeability of changes between different

  16. Comparison of cardiac output measures by transpulmonary thermodilution, pulse contour analysis, and pulmonary artery thermodilution during off-pump coronary artery bypass surgery: a subgroup analysis of the cardiovascular anaesthesia registry at a single tertiary centre.

    PubMed

    Cho, Youn Joung; Koo, Chang-Hoon; Kim, Tae Kyong; Hong, Deok Man; Jeon, Yunseok

    2016-12-01

    Cardiac output measurement has a long history in haemodynamic management and many devices are now available with varying levels of accuracy. The purpose of the study was to compare the agreement and trending abilities of cardiac output, as measured by transpulmonary thermodilution and calibrated pulse contour analysis, using the VolumeView™ system, continuous thermodilution via a pulmonary artery catheter, and uncalibrated pulse contour analysis, using FloTrac™ with pulmonary artery bolus thermodilution. Twenty patients undergoing off-pump coronary artery bypass surgery using a pulmonary artery catheter and the VolumeView™ and FloTrac™ systems were included in this subgroup analysis of the cardiovascular anaesthesia registry at a single tertiary centre. During surgery, cardiac output was assessed after the induction of anaesthesia, after sternotomy, during the harvesting of grafts, during revascularization of the anterior and posterior/lateral wall, after protamine infusion, and after sternal fixation. In total, 145 sets of measurements were evaluated using Bland-Altman with % error calculation, correlation, concordance, and polar plot analyses. The percentage error (bias, limits of agreement) was 12.6 % (-0.12, -0.64 to 0.41 L/min), 26.7 % (-0.38, -1.50 to 0.74 L/min), 29.3 % (-0.08, -1.32 to 1.15 L/min), and 33.8 % (-0.05, -1.47 to 1.37 L/min) for transpulmonary thermodilution, pulmonary artery continuous thermodilution, calibrated, and uncalibrated pulse contour analysis, respectively, compared with pulmonary artery bolus thermodilution. All pairs of measurements showed significant correlations (p < 0.001), whereas only transpulmonary thermodilution revealed trending ability (concordance rate of 95.1 %, angular bias of 1.33°, and radial limits of agreement of 28.71°) compared with pulmonary artery bolus thermodilution. Transpulmonary thermodilution using the VolumeView™ system provides reliable data on cardiac output measurement and

  17. Cardiac power output and its response to exercise in athletes and non-athletes.

    PubMed

    Klasnja, Aleksandar V; Jakovljevic, Djordje G; Barak, Otto F; Popadic Gacesa, Jelena Z; Lukac, Damir D; Grujic, Nikola G

    2013-05-01

    Cardiac power output (CPO) is an integrative measure of overall cardiac function as it accounts for both, flow- and pressure-generating capacities of the heart. The purpose of the present study was twofold: (i) to assess cardiac power output and its response to exercise in athletes and non-athletes and (ii) to determine the relationship between cardiac power output and reserve and selected measures of cardiac function and structure. Twenty male athletes and 32 age- and gender-matched healthy sedentary controls participated in this study. CPO was calculated as the product of cardiac output and mean arterial pressure, expressed in watts. Measures of hemodynamic status, cardiac structure and pumping capability were assessed by echocardiography. CPO was assessed at rest and after peak bicycle exercise. At rest, the two groups had similar values of cardiac power output (1·08 ± 0·2 W versus 1·1 ± 0·24 W, P>0·05), but the athletes demonstrated lower systolic blood pressure (109·5 ± 6·2 mmHg versus 117·2 ± 8·2 mmHg, P<0·05) and thicker posterior wall of the left ventricle (9·8 ± 1 mm versus 9 ± 1·1 mm, P<0·05). Peak CPO was higher in athletes (5·87 ± 0·75 W versus 5·4 ± 0·69 W, P<0·05) as was cardiac reserve (4·92 ± 0·66 W versus 4·26 ± 0·61 W, P<0·05), respectively. Peak exercise CPO and reserve were only moderately correlated with end-diastolic volume (r = 0·54; r = 0·46, P<0·05) and end-diastolic left ventricular internal diameter (r = 0·48; r = 0·42, P<0·05), respectively. Athletes demonstrated greater maximal cardiac pumping capability and reserve than non-athletes. The study provides new evidence that resting measures of cardiac structure and function need to be considered with caution in interpretation of maximal cardiac performance.

  18. Peripheral vasodilatation determines cardiac output in exercising humans: insight from atrial pacing.

    PubMed

    Bada, A A; Svendsen, J H; Secher, N H; Saltin, B; Mortensen, S P

    2012-04-15

    In dogs, manipulation of heart rate has no effect on the exercise-induced increase in cardiac output. Whether these findings apply to humans remain uncertain, because of the large differences in cardiovascular anatomy and regulation. To investigate the role of heart rate and peripheral vasodilatation in the regulation of cardiac output during steady-state exercise, we measured central and peripheral haemodynamics in 10 healthy male subjects, with and without atrial pacing (100–150 beats min(−1)) during: (i) resting conditions, (ii) one-legged knee extensor exercise (24 W) and (iii) femoral arterial ATP infusion at rest. Exercise and ATP infusion increased cardiac output, leg blood flow and vascular conductance (P < 0.05), whereas cerebral perfusion remained unchanged. During atrial pacing increasing heart rate by up to 54 beats min(−1), cardiac output did not change in any of the three conditions, because of a parallel decrease in stroke volume (P < 0.01). Atrial pacing increased mean arterial pressure (MAP) at rest and during ATP infusion (P < 0.05), whereas MAP remained unchanged during exercise. Atrial pacing lowered central venous pressure (P < 0.05) and pulmonary capillary wedge pressure (P < 0.05) in all conditions, whereas it did not affect pulmonary mean arterial pressure. Atrial pacing lowered the left ventricular contractility index (dP/dt) (P < 0.05) in all conditions and plasma noradrenaline levels at rest (P < 0.05), but not during exercise and ATP infusion. These results demonstrate that the elevated cardiac output during steady-state exercise is regulated by the increase in skeletal muscle blood flow and venous return to the heart, whereas the increase in heart rate appears to be secondary to the regulation of cardiac output.

  19. Cardiac output during exercise: a comparison of four methods.

    PubMed

    Siebenmann, C; Rasmussen, P; Sørensen, H; Zaar, M; Hvidtfeldt, M; Pichon, A; Secher, N H; Lundby, C

    2015-02-01

    Several techniques assessing cardiac output (Q) during exercise are available. The extent to which the measurements obtained from each respective technique compares to one another, however, is unclear. We quantified Q simultaneously using four methods: the Fick method with blood obtained from the right atrium (Q(Fick-M)), Innocor (inert gas rebreathing; Q(Inn)), Physioflow (impedance cardiography; Q(Phys)), and Nexfin (pulse contour analysis; Q(Pulse)) in 12 male subjects during incremental cycling exercise to exhaustion in normoxia and hypoxia (FiO2  = 12%). While all four methods reported a progressive increase in Q with exercise intensity, the slopes of the Q/oxygen uptake (VO2) relationship differed by up to 50% between methods in both normoxia [4.9 ± 0.3, 3.9 ± 0.2, 6.0 ± 0.4, 4.8 ± 0.2 L/min per L/min (mean ± SE) for Q(Fick-M), Q(Inn), QP hys and Q(Pulse), respectively; P = 0.001] and hypoxia (7.2 ± 0.7, 4.9 ± 0.5, 6.4 ± 0.8 and 5.1 ± 0.4 L/min per L/min; P = 0.04). In hypoxia, the increase in the Q/VO2 slope was not detected by Nexfin. In normoxia, Q increases by 5-6 L/min per L/min increase in VO2, which is within the 95% confidence interval of the Q/VO2 slopes determined by the modified Fick method, Physioflow, and Nexfin apparatus while Innocor provided a lower value, potentially reflecting recirculation of the test gas into the pulmonary circulation. Thus, determination of Q during exercise depends significantly on the applied method.

  20. Exercise cardiac output following Skylab missions - The second manned Skylab mission

    NASA Technical Reports Server (NTRS)

    Buderer, M. C.; Mauldin, D. G.; Rummel, J. A.; Michel, E. L.; Sawin, C. F.

    1976-01-01

    Cardiac output was measured during preflight and postflight exercise-stress tests on the Skylab astronauts. In the postflight tests immediately following the 28-, 59-, and 84-d earth orbital missions, the astronauts exhibited an approximate 30% decrease in cardiac output coupled with an approximate 50% decrease in cardiac stroke volume during exercise. These changes were accompanied by elevated heart rates and significant increases in total systemic peripheral vascular resistance. Mean arterial pressure was unchanged. All parameters returned to normal preflight values within 30 d of the end of the orbital period. Duration of the zero-G exposure did not appear to influence either the magnitude of the hemodynamic changes or the time-course of their return to normal. These results are discussed in relation to other cardiovascular findings and possible mechanisms responsible for the observations are outlined.

  1. Cardiac output and venous return as interdependent and independent variables.

    PubMed

    Badeer, H S

    1981-01-01

    Under steady states the heart pumps whatever it receives and receives whatever it pumps. In other words, cardiac output (CO) and venous return (VR) are equal and the distinction between the two seems unnecessary. However, under nonsteady states the two are temporarily unequal and the distinction becomes significant. VR varies directly with the difference in pressure between the end of systemic capillaries and the right ventricle during filling and inversely with the total resistance of the venous system. Thus, the energy for VR is derived from CO. In some transient states VR becomes an independent variable and CO dependent until a new steady state is reached (e.g., exercise, hemorrhage, fevers, hyperthyroidism, severe anemia, etc.). In other conditions the opposite is true (e.g., myocardial infarction, altered ventricular contractility, etc.). Explanation of changes in cardiac output in various perturbations of circulation are based on the identification of the independent variable (VR or CO) in a given physiologic or pathologic condition during the period that a nonsteady state exists.

  2. Evaluation of two methods for continuous cardiac output assessment during exercise in chronic heart failure patients.

    PubMed

    Kemps, Hareld M C; Thijssen, Eric J M; Schep, Goof; Sleutjes, Boudewijn T H M; De Vries, Wouter R; Hoogeveen, Adwin R; Wijn, Pieter F F; Doevendans, Pieter A F M

    2008-12-01

    The purpose of this study was to evaluate the accuracy of two techniques for the continuous assessment of cardiac output in patients with chronic heart failure (CHF): a radial artery pulse contour analysis method that uses an indicator dilution method for calibration (LiDCO) and an impedance cardiography technique (Physioflow), using the Fick method as a reference. Ten male CHF patients (New York Heart Association class II-III) were included. At rest, cardiac output values obtained by LiDCO and Physioflow were compared with those of the direct Fick method. During exercise, the continuous Fick method was used as a reference. Exercise, performed on a cycle ergometer in upright position, consisted of two constant-load tests at 30% and 80% of the ventilatory threshold and a symptom-limited maximal test. Both at rest and during exercise LiDCO showed good agreement with reference values [bias +/- limits of agreement (LOA), -1% +/- 28% and 2% +/- 28%, respectively]. In contrast, Physioflow overestimated reference values both at rest and during exercise (bias +/- LOA, 48% +/- 60% and 48% +/- 52%, respectively). Exercise-related within-patient changes of cardiac output, expressed as a percent change, showed for both techniques clinically acceptable agreement with reference values (bias +/- LOA: 2% +/- 26% for LiDCO, and -2% +/- 36% for Physioflow, respectively). In conclusion, although the limits of agreement with the Fick method are pretty broad, LiDCO provides accurate measurements of cardiac output during rest and exercise in CHF patients. Although Physioflow overestimates cardiac output, this method may still be useful to estimate relative changes during exercise.

  3. Control of cardiac output in thyrotoxic calves. Evaluation of changes in the systemic circulation.

    PubMed Central

    Goldman, S; Olajos, M; Morkin, E

    1984-01-01

    The contribution of peripheral vascular factors to the high output state in thyrotoxicosis was examined in 11 calves treated with daily intramuscular injections of L-thyroxine (200 micrograms/kg) for 12-14 d. Thyroxine treatment increased cardiac output from 14.1 +/- 1.4 to 24.7 +/- 1.4 liters/min (P less than 0.001) and decreased systemic vascular resistance from 562 +/- 65 to 386 +/- 30 dyn-s/cm5 (P less than 0.01). Blood volume was increased from 65 +/- 4 ml/kg in the euthyroid state to 81 +/- 6 ml/kg when the animals were thyrotoxic (P less than 0.05). The role of low peripheral vascular resistance in maintenance of the high output state was evaluated by infusion of phenylephrine at two dosages (2.5 and 4.0 micrograms/kg per min). In the euthyroid state, no significant decrease in cardiac output was observed at either level of pressor infusion. In the thyrotoxic state, the higher dosage of phenylephrine increased peripheral resistance to the euthyroid control level and caused a small (6%) decrease in cardiac output (P less than 0.05). This small decrease in cardiac output probably could be attributed to the marked increase in left ventricular afterload caused by the pressor infusion as assessed from measurements of intraventricular pressure and dimensions. Changes in the venous circulation were evaluated by measurement of mean circulatory filling pressure and the pressure gradient for venous return in six animals during cardiac arrest induced by injection of acetylcholine into the pulmonary artery. Mean circulatory filling pressure increased from 10 +/- 1 mmHg in the euthyroid state to 16 +/- 2 mmHg (P less than 0.01) during thyrotoxicosis, while pressure gradient for venous return increased from 10 +/- 1 to 14 +/- 2 mmHg (P less than 0.02). These changes in venous return curves were not affected significantly by ganglionic blockade with trimethapan (2.0 mg/kg per min) before cardiac arrest. Thus, the high output state associated with thyrotoxicosis is not

  4. Initial Observations of the Effects of Calcium Chloride Infusions in Pediatric Patients with Low Cardiac Output.

    PubMed

    Averin, Konstantin; Villa, Chet; Krawczeski, Catherine D; Pratt, Jesse; King, Eileen; Jefferies, John L; Nelson, David P; Cooper, David S; Ryan, Thomas D; Sawyer, Jaclyn; Towbin, Jeffrey A; Lorts, Angela

    2016-03-01

    Myocardial contractility and relaxation are highly dependent on calcium homeostasis. Immature myocardium, as in pediatric patients, is thought to be more dependent on extracellular calcium for optimal function. For this reason, intravenous calcium chloride infusions may improve myocardial function in the pediatric patient. The objectives of this study were to report the hemodynamic changes seen after administration of continuous calcium chloride to critically ill children. We retrospectively identified pediatric patients (newborn to 17 years old) with hemodynamic instability admitted to the cardiac ICU between May 2011 and May 2012 who received a continuous infusion of calcium chloride. The primary outcome was improvement in cardiac output, assessed by arterial-mixed venous oxygen saturation (A-V) difference. Sixty-eight patients, mean age 0.87 ± 2.67 years, received a total of 116 calcium infusions. Calcium chloride infusions resulted in significant improvements in primary and secondary measures of cardiac output at 2 and 6 h. Six hours after calcium initiation, A-V oxygen saturation difference decreased by 7.4 % (32.6 ± 2.1 to 25.2 ± 2.0 %, p < 0.001), rSO2 increased by 5.5 % (63.1 vs 68.6 %, p < 0.001), and serum lactate decreased by 0.9 mmol/l (3.3 vs 2.4 mmol/l, p < 0.001) with no change in HR (149.1 vs 145.6 bpm p = 0.07). Urine output increased 0.66 ml/kg/h in the 8-h period after calcium initiation when compared to pre-initiation (p = 0.003). Neonates had the strongest evidence of effectiveness with other age groups trending toward significance. Calcium chloride infusions improve markers of cardiac output in a heterogenous group of pediatric patients in a cardiac ICU. Neonates appear to derive the most benefit from utilization of these infusions.

  5. High Power Amplifier Harmonic Output Level Measurement

    NASA Technical Reports Server (NTRS)

    Perez, R. M.; Hoppe, D. J.; Khan, A. R.

    1995-01-01

    A method is presented for the measurement of the harmonic output power of high power klystron amplifiers, involving coherent hemispherical radiation pattern measurements of the radiated klystron output. Results are discussed for the operation in saturated and unsaturated conditions, and with a waveguide harmonic filter included.

  6. Thermodynamics of the heart: Relation between cardiac output and oxygen consumption

    NASA Astrophysics Data System (ADS)

    Uehara, Mituo; Sakane, Kumiko K.; Bertolotti, Simone A.

    2008-06-01

    A thermodynamic approach is used to derive a relation between cardiac output and rate of oxygen consumption. As an example, the relation is used to calculate the cardiac output of a young woman exercising on a treadmill. The results can be understood by undergraduates without any previous knowledge of human physiology.

  7. Cardiac output during high afterload artificial lung attachment.

    PubMed

    Kim, Jeongho; Sato, Hitoshi; Griffith, Grant W; Cook, Keith E

    2009-01-01

    Attachment of thoracic artificial lungs (TALs) can increase right ventricular (RV) afterload and decrease cardiac output (CO) under certain conditions. However, there is no established means of predicting the extent of RV dysfunction. The zeroth harmonic impedance modulus, Z0, was thus examined to determine its effectiveness at predicting CO during high afterload TAL attachment. The MC3 Biolung was attached in four adult sheep groups based on baseline (BL) pulmonary vascular resistance and TAL attachment mode: normal, parallel (n=7); normal, series (n=7); chronic pulmonary hypertension, parallel (n=5), and chronic pulmonary hypertension, series (n=5). The resistance of each attachment mode was increased incrementally and instantaneous pulmonary system hemodynamic data were acquired at each increment. The change in Z0 from BL, DeltaZ0, and percent change in CO (DeltaCO%) were then calculated to determine their relationship. The DeltaCO% varied significantly with DeltaZ0 (p<10(-40)) and DeltaZ02 (p<10(-4)) but not with the attachment and pulmonary hemodynamics group. The relationship between the variables for all sheep groups was DeltaCO%=0.215DeltaZ0(2)-7.14DeltaZ0+2.94 (R2=0.82) for DeltaZ0 in mm Hg/(L/min). Therefore, Z0 is an effective index for determining the CO during TAL attachment in both attachment modes with and without elevated pulmonary vascular resistance.

  8. Validation and application of single breath cardiac output determinations in man

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Fletcher, E. R.; Myhre, L. G.; Luft, U. C.

    1986-01-01

    The results of a procedure for estimating cardiac output by a single-breath technique (Qsb), obtained in healthy males during supine rest and during exercise on a bicycle ergometer, were compared with the results on cardiac output obtained by the direct Fick method (QF). The single breath maneuver consisted of a slow exhalation to near residual volume following an inspiration somewhat deeper than normal. The Qsb calculations incorporated an equation of the CO2 dissociation curve and a 'moving spline' sequential curve-fitting technique to calculate the instantaneous R from points on the original expirogram. The resulting linear regression equation indicated a 24-percent underestimation of QF by the Qsb technique. After applying a correction, the Qsb-QF relationship was improved. A subsequent study during upright rest and exercise to 80 percent of VO2(max) in 6 subjects indicated a close linear relationship between Qsb and VO2 for all 95 values obtained, with slope and intercept close to those in published studies in which invasive cardiac output measurements were used.

  9. Immediate effect on cardiac output of reversion to sinus rhythm from rapid arrhythmias.

    PubMed

    Wright, J S; Fabian, J; Epstein, E J

    1970-08-08

    Cardiac output was estimated immediately before and after conversion to sinus rhythm in nine patients with rapid arrhythmias. Conversion was by synchronized direct-current shock in eight patients, and by direct atrial wall stimulation in the other. In seven patients there was an immediate increase in cardiac output after restoration of sinus rhythm. The percentage increase in output was directly proportional to the rate of the arrhythmia immediately before conversion (r=0.91, P<0.01). The critical heart rate, above which an immediate increase in cardiac output might be expected on conversion to sinus rhythm, appeared in these patients to be about 160 beats per minute.

  10. Power output measurement during treadmill cycling.

    PubMed

    Coleman, D A; Wiles, J D; Davison, R C R; Smith, M F; Swaine, I L

    2007-06-01

    The study aim was to consider the use of a motorised treadmill as a cycling ergometry system by assessing predicted and recorded power output values during treadmill cycling. Fourteen male cyclists completed repeated cycling trials on a motorised treadmill whilst riding their own bicycle fitted with a mobile ergometer. The speed, gradient and loading via an external pulley system were recorded during 20-s constant speed trials and used to estimate power output with an assumption about the contribution of rolling resistance. These values were then compared with mobile ergometer measurements. To assess the reliability of measured power output values, four repeated trials were conducted on each cyclist. During level cycling, the recorded power output was 257.2 +/- 99.3 W compared to the predicted power output of 258.2 +/- 99.9 W (p > 0.05). For graded cycling, there was no significant difference between measured and predicted power output, 268.8 +/- 109.8 W vs. 270.1 +/- 111.7 W, p > 0.05, SEE 1.2 %. The coefficient of variation for mobile ergometer power output measurements during repeated trials ranged from 1.5 % (95 % CI 1.2 - 2.0 %) to 1.8 % (95 % CI 1.5 - 2.4 %). These results indicate that treadmill cycling can be used as an ergometry system to assess power output in cyclists with acceptable accuracy.

  11. Cardiac output assessment using oxygen consumption estimated from the left ventricular pressure-volume area.

    PubMed

    Negroni, Jorge A; Lascano, Elena C; Bertolotti, Alejandro M; Gómez, Carmen B; Rodríguez Correa, Carlos A; Favaloro, Roberto R

    2010-01-01

    Use of a majority of structural variables (age, sex, height) to estimate oxygen consumption in the calculation of cardiac output (CO) by the Fick principle does not account for changes in physiological conditions. To improve this limitation, oxygen consumption was estimated based on the left ventricular pressure-volume area. A pilot study with 10 patients undergoing right cardiac catheterization showed that this approach was successful to estimate CO (r=0,73, vs. thermodilution measured CO). Further essays changing end-diastolic-volume in the pressure-volume area formula by body weight or body surface area showed that this last yielded the best correlation with the thermodilution measured CO (slope=1, ordinate =0.01 and r=0.93). These preliminary results indicate that use of a formula originated from the pressure-volume-area concept is a good alternative to estimate oxygen consumption for CO calculation.

  12. High flow variant postural orthostatic tachycardia syndrome amplifies the cardiac output response to exercise in adolescents.

    PubMed

    Pianosi, Paolo T; Goodloe, Adele H; Soma, David; Parker, Ken O; Brands, Chad K; Fischer, Philip R

    2014-08-01

    Postural orthostatic tachycardia syndrome (POTS) is characterized by chronic fatigue and dizziness and affected individuals by definition have orthostatic intolerance and tachycardia. There is considerable overlap of symptoms in patients with POTS and chronic fatigue syndrome (CFS), prompting speculation that POTS is akin to a deconditioned state. We previously showed that adolescents with postural orthostatic tachycardia syndrome (POTS) have excessive heart rate (HR) during, and slower HR recovery after, exercise - hallmarks of deconditioning. We also noted exaggerated cardiac output during exercise which led us to hypothesize that tachycardia could be a manifestation of a high output state rather than a consequence of deconditioning. We audited records of adolescents presenting with long-standing history of any mix of fatigue, dizziness, nausea, who underwent both head-up tilt table test and maximal exercise testing with measurement of cardiac output at rest plus 2-3 levels of exercise, and determined the cardiac output () versus oxygen uptake () relationship. Subjects with chronic fatigue were diagnosed with POTS if their HR rose ≥40 beat·min(-1) with head-up tilt. Among 107 POTS patients the distribution of slopes for the , relationship was skewed toward higher slopes but showed two peaks with a split at ~7.0 L·min(-1) per L·min(-1), designated as normal (5.08 ± 1.17, N = 66) and hyperkinetic (8.99 ± 1.31, N = 41) subgroups. In contrast, cardiac output rose appropriately with in 141 patients with chronic fatigue but without POTS, exhibiting a normal distribution and an average slope of 6.10 ± 2.09 L·min(-1) per L·min(-1). Mean arterial blood pressure and pulse pressure from rest to exercise rose similarly in both groups. We conclude that 40% of POTS adolescents demonstrate a hyperkinetic circulation during exercise. We attribute this to failure of normal regional vasoconstriction during exercise, such that patients must increase flow through an

  13. Cardiac output and vasodilation in the vasovagal response: An analysis of the classic papers.

    PubMed

    Wieling, Wouter; Jardine, David L; de Lange, Frederik J; Brignole, Michele; Nielsen, Henning B; Stewart, Julian; Sutton, Richard

    2016-03-01

    The simple faint is secondary to hypotension and bradycardia resulting in transient loss of consciousness. According to Ohm's law applied to the circulation, BP = SVR × CO, hypotension can result from a decrease in systemic vascular resistance (SVR), cardiac output (CO), or both. It is important to understand that when blood pressure (BP) is falling, SVR and CO do not change reciprocally as they do in the steady state. In 1932, Lewis, assuming that decreased SVR alone accounted for hypotension, defined "the vasovagal response" along pathophysiologic lines to denote the association of vasodilation with vagal-induced bradycardia in simple faint. Studies performed by Barcroft and Sharpey-Schafer between 1940 and 1950 used volume-based plethysmography to demonstrate major forearm vasodilation during extreme hypotension and concluded that the main mechanism for hypotension was vasodilation. Plethysmographic measurements were intermittent and not frequent enough to capture rapid changes in blood flow during progressive hypotension. However, later investigations by Weissler, Murray, and Stevens performed between 1950 and 1970 used invasive beat-to-beat BP measurements and more frequent measurements of CO using the Fick principle. They demonstrated that CO significantly fell before syncope, and little vasodilation occurred until very late in the vasovagal reaction Thus, since the 1970s, decreasing cardiac output rather than vasodilation has been regarded as the principal mechanism for the hypotension of vasovagal syncope.

  14. Oxygen uptake kinetics at work onset: role of cardiac output and of phosphocreatine breakdown.

    PubMed

    Francescato, M P; Cettolo, V; di Prampero, P E

    2013-01-15

    The hypothesis that variability in individual's cardiac output response affects the kinetics of pulmonary O₂ uptake (VO₂) was tested by investigating the time constants of cardiac output (Q) adjustment (τ(Q)), of PCr splitting (τ(PCr)), and of phase II pulmonary O₂ uptake (τ(VO₂)) in eight volunteers. VO₂, Q, and gastrocnemius [PCr] (by (31)P-MRS) were measured at rest and during low intensity two-legged exercise. Steady state VO₂ and Q increased (ΔVO₂(s) = 182 ± 58 mL min⁻¹; ΔQ = 1.3 ± 0.4 L min⁻¹), whereas [PCr] decreased significantly (21 ± 8%). τ(VO₂), τ(PCr) and τ(Q) were significantly different from each other (38.3 ± 4.0, 23.9 ± 2.5, 11.6 ± 4.6 s, respectively; p<0.001). τ(PCr) assumed to be equal to the time constant of VO₂ at the muscle level (τ(mVO₂)), was not related to τ(Q), whereas τ(VO₂) and τ(Q) were significantly related (p<0.05) as were τ(VO₂) and τ(PCr) (p<0.05). Venous blood O₂ stores changes, as determined from arterio-to-mixed-venous O₂ content, were essentially equal to those estimated as (τ(VO₂)-τ(PCr))·ΔVO₂(s). This suggests that cardiac output responses affect O₂ stores utilization and hence τ(VO₂) : thus τ(VO₂) is not necessarily a good estimate of τ(mVO₂).

  15. Quantification of the impaired cardiac output response to exercise in heart failure: application of a non-invasive device.

    PubMed

    Myers, Jonathan; Gujja, Pradeep; Neelagaru, Suresh; Hsu, Leon; Burkhoff, Daniel

    2009-01-01

    An impaired cardiac output (CO) response to exercise is a hallmark of chronic heart failure (CHF), and the degree to which CO is impaired is related to the severity of CHF and prognosis. However, practical methods for obtaining cardiac output during exercise are lacking, and what constitutes and impaired response is unclear. Forty six CHF patients and 13 normal subjects underwent cardiopulmonary exercise testing (CPX) while CO and other hemodynamic measurements at rest and during exercise were obtained using a novel, non-invasive, bioreactance device based on assessment of relative phase shifts of electric currents injected across the thorax, heart rate and ventricular ejection time. An abnormal cardiac output response to exercise was defined as achieving ≤ 95% of the confidence limits of the slope of the relationship between CO and oxygen uptake (VO2). An impaired CO slope identified patients with more severe CHF as evidenced by a lower peak VO2, lower peak CO, heightened VE/VCO2 slope, and lower oxygen uptake efficiency slope. CO can be estimated during exercise using a novel bioreactance technique; patients with an impaired response to exercise exhibit reduced exercise capacity and inefficient ventilation typical of more severe CHF. Non- invasive measurement of cardiac performance in response to exercise provides a simple method of identifying patients with more severe CHF and may complement the CPX in identifying CHF patients at high risk. Key pointsNon-invasive measurement of cardiac output during exercise is feasible in patients with heart failure.Impairment in the CO response to exercise identifies heart failure patients with more severe disease, lower exercise capacity and inefficient ventilation.Non-invasive measurement of cardiac performance during exercise has potentially important applications for the functional and prognostic assessment of patients with heart failure.

  16. NOTE: Increasing cardiac output and decreasing oxygenation sequence in pump twins of acardiac twin pregnancies

    NASA Astrophysics Data System (ADS)

    van Gemert, Martin J. C.; Umur, Asli; van den Wijngaard, Jeroen P. H. M.; Van Bavel, Ed; Vandenbussche, Frank P. H. A.; Nikkels, Peter G. J.

    2005-02-01

    An acardiac twin pregnancy is a rare but serious complication of monochorionic twinning and consists of an acardiac twin and a pump twin. The acardiac twin is a severely malformed fetus that lacks most organs, particularly a heart, but grows during pregnancy because it is perfused by the developmentally normal pump twin via a set of arterioarterial and venovenous placental anastomoses. Pump twins die intrauterine or neonatally in about 50% of the cases. Because the effects of an acardiac mass on the pump twin's development are incompletely known, methods for outcome prognosis are currently not available. We sought to derive simple relations for the pump twin's excess cardiac output and decreased oxygenation and to use available clinical cases for a preliminary test of the model. As a method, we used a theoretical flow model to represent the fetoplacental circulation of an acardiac twin pregnancy and estimated blood deoxygenation and reoxygenation following perfusion of the two bodies and placentas, respectively. The results show the pump twin's excess cardiac output and decrease of venous oxygen saturation to depend on the ratio of pump twin to acardiac twin umbilical blood flow, whose ratio can be measured by ultrasonography. The clinical cases show a decreasing umbilical flow ratio with gestation. In conclusion, prospective serial study is necessary to test whether measurement of umbilical flow ratios allows monitoring the pump twin's pathophysiologic development, possibly resulting in a guideline for prognosis of pump twin survival.

  17. Application of bioreactance for cardiac output assessment during exercise in healthy individuals.

    PubMed

    Elliott, Adrian; Hull, James H; Nunan, David; Jakovljevic, Djordje G; Brodie, David; Ansley, Lesley

    2010-07-01

    In patients with cardiac failure, bioreactance-based cardiac output (CO) monitoring provides a valid non-invasive method for assessing cardiac performance during exercise. The purpose of this study was to evaluate the efficacy of this technique during strenuous exercise in healthy, trained individuals. Fourteen recreational cyclists, mean (SD) age of 34 (8) years and relative peak oxygen uptake of (VO(2)) 56 (6) ml kg(-1) min(-1), underwent incremental maximal exercise testing, whilst CO was recorded continuously using a novel bioreactance-based device (CO(bio)). The CO(bio) was evaluated against relationship with VO(2), theoretical calculation of arterial-venous oxygen difference (C(a - v) O(2)) and level of agreement with an inert gas rebreathing method (CO(rb)) using a Bland-Altman plot. Bioreactance-based CO measurement was practical and straightforward in application, although there was intermittent loss of electrocardiograph signal at high-intensity exercise. At rest and during exercise, CO(bio) was strongly correlated with VO(2) (r = 0.84; P < 0.001), however, there was evidence of systematic bias with CO(bio) providing lower values than CO(rb); mean bias (limits of agreement) -19% (14.6 to -53%). Likewise, calculated (C(a - v) O(2)) was greater when determined using CO(bio) than CO(rb) (P < 0.001), although both devices provided values in excess of those reported in invasive studies. Bioreactance-based determination of CO provides a pragmatic approach to the continuous assessment of cardiac performance during strenuous exercise in trained individuals. Our findings, however, suggest that further work is needed to refine the key measurement determinants of CO using this device to improve measurement accuracy in this setting.

  18. Effect of norepinephrine dosage and calibration frequency on accuracy of pulse contour-derived cardiac output

    PubMed Central

    2011-01-01

    Introduction Continuous cardiac output monitoring is used for early detection of hemodynamic instability and guidance of therapy in critically ill patients. Recently, the accuracy of pulse contour-derived cardiac output (PCCO) has been questioned in different clinical situations. In this study, we examined agreement between PCCO and transcardiopulmonary thermodilution cardiac output (COTCP) in critically ill patients, with special emphasis on norepinephrine (NE) administration and the time interval between calibrations. Methods This prospective, observational study was performed with a sample of 73 patients (mean age, 63 ± 13 years) requiring invasive hemodynamic monitoring on a non-cardiac surgery intensive care unit. PCCO was recorded immediately before calibration by COTCP. Bland-Altman analysis was performed on data subsets comparing agreement between PCCO and COTCP according to NE dosage and the time interval between calibrations up to 24 hours. Further, central artery stiffness was calculated on the basis of the pulse pressure to stroke volume relationship. Results A total of 330 data pairs were analyzed. For all data pairs, the mean COTCP (±SD) was 8.2 ± 2.0 L/min. PCCO had a mean bias of 0.16 L/min with limits of agreement of -2.81 to 3.15 L/min (percentage error, 38%) when compared to COTCP. Whereas the bias between PCCO and COTCP was not significantly different between NE dosage categories or categories of time elapsed between calibrations, interchangeability (percentage error <30%) between methods was present only in the high NE dosage subgroup (≥0.1 μg/kg/min), as the percentage errors were 40%, 47% and 28% in the no NE, NE < 0.1 and NE ≥ 0.1 μg/kg/min subgroups, respectively. PCCO was not interchangeable with COTCP in subgroups of different calibration intervals. The high NE dosage group showed significantly increased central artery stiffness. Conclusions This study shows that NE dosage, but not the time interval between calibrations, has an

  19. The precision of a special purpose analog computer in clinical cardiac output determination.

    PubMed Central

    Sullivan, F J; Mroz, E A; Miller, R E

    1975-01-01

    Three hundred dye-dilution curves taken during our first year of clinical experience with the Waters CO-4 cardiac output computer were analyzed to estimate the errors involved in its use. Provided that calibration is accurate and 5.0 mg of dye are injected for each curve, then the percentage standard deviation of measurement using this computer is about 8.7%. Included in this are the errors inherent in the computer, errors due to baseline drift, errors in the injection of dye and acutal variation of cardiac output over a series of successive determinations. The size of this error is comparable to that involved in manual calculation. The mean value of five successive curves will be within 10% of the real value in 99 cases out of 100. Advances in methodology and equipment are discussed which make calibration simpler and more accurate, and which should also improve the quality of computer determination. A list of suggestions is given to minimize the errors involved in the clinical use of this equipment. Images Fig. 4. PMID:1089394

  20. Effects of acute hypoxia at moderate altitude on stroke volume and cardiac output during exercise.

    PubMed

    Fukuda, Taira; Maegawa, Taketeru; Matsumoto, Akihiro; Komatsu, Yutaka; Nakajima, Toshiaki; Nagai, Ryozo; Kawahara, Takashi

    2010-05-01

    It has been unclear how acute hypoxia at moderate altitude affects stroke volume (SV), an index of cardiac function, during exercise. The present study was conducted to reveal whether acute normobaric hypoxia might alter SV during exercise.Nine healthy male subjects performed maximal exercise testing under normobaric normoxic, and normobaric hypoxic conditions (O(2): 14.4%) in a randomized order. A novel thoracic impedance method was used to continuously measure SV and cardiac output (CO) during exercise. Acute hypoxia decreased maximal work rate (hypoxia; 247 + or - 6 [SE] versus normoxia; 267 + or - 8 W, P < 0.005) and VO(2) max (hypoxia; 2761 + or - 99 versus normoxia; 3039 + or - 133 mL/min, P < 0.005). Under hypoxic conditions, SV and CO at maximal exercise decreased (SV: hypoxia; 145 + or - 11 versus normoxia; 163 + or - 11 mL, P < 0.05, CO: hypoxia; 26.7 + or - 2.1 versus normoxia; 30.2 + or - 1.8 L/min, P < 0.05). In acute hypoxia, SV during submaximal exercise at identical work rate decreased. Furthermore, in hypoxia, 4 of 9 subjects attained their highest SV at maximal exercise, while in normoxia, 8 of 9 subjects did.Acute normobaric hypoxia attenuated the increment of SV and CO during exercise, and SV reached a plateau earlier under hypoxia than in normoxia. Cardiac function during exercise at this level of acute normobaric hypoxia might be attenuated.

  1. Increased cardiac output elicits higher V̇O2max in response to self-paced exercise.

    PubMed

    Astorino, Todd Anthony; McMillan, David William; Edmunds, Ross Montgomery; Sanchez, Eduardo

    2015-03-01

    Recently, a self-paced protocol demonstrated higher maximal oxygen uptake versus the traditional ramp protocol. The primary aim of the current study was to further explore potential differences in maximal oxygen uptake between the ramp and self-paced protocols using simultaneous measurement of cardiac output. Active men and women of various fitness levels (N = 30, mean age = 26.0 ± 5.0 years) completed 3 graded exercise tests separated by a minimum of 48 h. Participants initially completed progressive ramp exercise to exhaustion to determine maximal oxygen uptake followed by a verification test to confirm maximal oxygen uptake attainment. Over the next 2 sessions, they performed a self-paced and an additional ramp protocol. During exercise, gas exchange data were obtained using indirect calorimetry, and thoracic impedance was utilized to estimate hemodynamic function (stroke volume and cardiac output). One-way ANOVA with repeated measures was used to determine differences in maximal oxygen uptake and cardiac output between ramp and self-paced testing. Results demonstrated lower (p < 0.001) maximal oxygen uptake via the ramp (47.2 ± 10.2 mL·kg(-1)·min(-1)) versus the self-paced (50.2 ± 9.6 mL·kg(-1)·min(-1)) protocol, with no interaction (p = 0.06) seen for fitness level. Maximal heart rate and cardiac output (p = 0.02) were higher in the self-paced protocol versus ramp exercise. In conclusion, data show that the traditional ramp protocol may underestimate maximal oxygen uptake compared with a newly developed self-paced protocol, with a greater cardiac output potentially responsible for this outcome.

  2. Reference values for total blood volume and cardiac output in humans

    SciTech Connect

    Williams, L.R.

    1994-09-01

    Much research has been devoted to measurement of total blood volume (TBV) and cardiac output (CO) in humans but not enough effort has been devoted to collection and reduction of results for the purpose of deriving typical or {open_quotes}reference{close_quotes} values. Identification of normal values for TBV and CO is needed not only for clinical evaluations but also for the development of biokinetic models for ultra-short-lived radionuclides used in nuclear medicine (Leggett and Williams 1989). The purpose of this report is to offer reference values for TBV and CO, along with estimates of the associated uncertainties that arise from intra- and inter-subject variation, errors in measurement techniques, and other sources. Reference values are derived for basal supine CO and TBV in reference adult humans, and differences associated with age, sex, body size, body position, exercise, and other circumstances are discussed.

  3. The feasibility and applications of non-invasive cardiac output monitoring, thromboelastography and transit-time flow measurement in living-related renal transplantation surgery: results of a prospective pilot observational study

    PubMed Central

    2014-01-01

    Introduction Delayed graft function (DGF) remains a significant and detrimental postoperative phenomenon following living-related renal allograft transplantation, with a published incidence of up to 15%. Early therapeutic vasodilatory interventions have been shown to improve DGF, and modifications to immunosuppressive regimens may subsequently lessen its impact. This pilot study assesses the potential applicability of perioperative non-invasive cardiac output monitoring (NICOM), transit-time flow monitoring (TTFM) of the transplant renal artery and pre-/perioperative thromboelastography (TEG) in the early prediction of DGF and perioperative complications. Methods Ten consecutive living-related renal allograft recipients were studied. Non-invasive cardiac output monitoring commenced immediately following induction of anaesthesia and was maintained throughout the perioperative period. Doppler-based TTFM was performed during natural haemostatic pauses in the transplant surgery: immediately following graft reperfusion and following ureteric implantation. Central venous blood sampling for TEG was performed following induction of anaesthesia and during abdominal closure. Results A single incidence of DGF was seen within the studied cohort and one intra-operative (thrombotic) complication noted. NICOM confirmed a predictable trend of increased cardiac index (CI) following allograft reperfusion (mean CI - clamped: 3.17 ± 0.29 L/min/m2, post-reperfusion: 3.50 ± 0.35 L/min/m2; P < 0.05) mediated by a significant reduction in total peripheral resistance. Reduced TTFM at the point of allograft reperfusion (227 ml/min c.f. mean; 411 ml/min (95% CI: 358 to 465)) was identified in a subject who experienced intra-operative transplant renal artery thrombosis. TEG data exhibited significant reductions in clot lysis (LY30 (%): pre-op: 1.0 (0.29 to 1.71), post reperfusion 0.33 (0.15 to 0.80); P = 0.02) and a trend towards increased clot initiation following

  4. Pulmonary Artery Catheter (PAC) Accuracy and Efficacy Compared with Flow Probe and Transcutaneous Doppler (USCOM): An Ovine Cardiac Output Validation.

    PubMed

    Phillips, Robert A; Hood, Sally G; Jacobson, Beverley M; West, Malcolm J; Wan, Li; May, Clive N

    2012-01-01

    Background. The pulmonary artery catheter (PAC) is an accepted clinical method of measuring cardiac output (CO) despite no prior validation. The ultrasonic cardiac output monitor (USCOM) is a noninvasive alternative to PAC using Doppler ultrasound (CW). We compared PAC and USCOM CO measurements against a gold standard, the aortic flow probe (FP), in sheep at varying outputs. Methods. Ten conscious sheep, with implanted FPs, had measurements of CO by FP, USCOM, and PAC, at rest and during intervention with inotropes and vasopressors. Results. CO measurements by FP, PAC, and USCOM were 4.0 ± 1.2 L/min, 4.8 ± 1.5 L/min, and 4.0 ± 1.4 L/min, respectively, (n = 280, range 1.9 L/min to 11.7 L/min). Percentage bias and precision between FP and PAC, and FP and USCOM was -17 and 47%, and 1 and 36%, respectively. PAC under-measured Dobutamine-induced CO changes by 20% (relative 66%) compared with FP, while USCOM measures varied from FP by 3% (relative 10%). PAC reliably detected -30% but not +40% CO changes, as measured by receiver operating characteristic area under the curve (AUC), while USCOM reliably detected ±5% changes in CO (AUC > 0.70). Conclusions. PAC demonstrated poor accuracy and sensitivity as a measure of CO. USCOM provided equivalent measurements to FP across a sixfold range of outputs, reliably detecting ±5% changes.

  5. Rowing increases stroke volume and cardiac output to a greater extent than cycling.

    PubMed

    Horn, P; Ostadal, P; Ostadal, B

    2015-01-01

    Exercise stimulates increases in heart rate (HR), stroke volume (SV) and cardiac output (CO). These adaptive mechanisms are strongly dependent on the type of exercise. Both rowing and cycling are widely used for physical training worldwide; however, evidence regarding the differences in major hemodynamic parameters during rowing and cycling remains insufficient. Ten healthy male volunteers were randomly assigned to perform either a rowing or cycling exercise. After 20 min rest, the group who had rowed first performed the cycling exercise and vice versa. Exercise was performed at a power-to-weight ratio of 2 W/kg for 2 min. HR, SV, CO and blood pressure (BP) were measured noninvasively using pulse-wave analysis at baseline and immediately after each exercise. HR, SV and CO were significantly higher after exercise than at rest. Whereas HR was comparable between rowing and cycling, SV and CO were significantly higher after rowing than after cycling. BP was comparable among all three measurements. Rowing increased SV and CO to a greater extent than cycling, whereas HR and BP were not influenced by the type of exercise. Our data suggest that rowing leads to more extensive stimulation of cardiac contractility and/or decreases in peripheral vascular resistance compared with cycling.

  6. Is pulmonary gas exchange during exercise in hypoxia impaired with the increase of cardiac output?

    PubMed

    Calbet, José A L; Robach, Paul; Lundby, Carsten; Boushel, Robert

    2008-06-01

    During exercise in humans, the alveolar-arterial O(2) tension difference ((A-a)DO(2)) increases with exercise intensity and is an important factor determining the absolute level of oxygen binding to hemoglobin and therefore the level of systemic oxygen transport. During exercise in hypoxia, the (A-a)DO(2) is accentuated. Using the multiple inert gas elimination technique it has been shown that during exercise in acute hypoxia the contribution of ventilation-perfusion inequality to (A-a)DO(2) is rather small and in the absence of pulmonary edema intrapulmonary shunts can be ruled out. This implies that the main mechanism limiting pulmonary gas exchange is diffusion limitation. It is presumed that an elevation of cardiac output during exercise in acute hypoxia should increase the (A-a)DO(2). However, no studies have examined how variations in cardiac output independently affect pulmonary diffusion with increases in exercise intensity. We have consistently observed that during steady-state, submaximal (100-120 W) exercise on the cycle ergometer in hypoxia the lung can accommodate an increase in cardiac output of approximately 2 L x min(-1) without any significant effect on pulmonary gas exchange. This result contrasts with the predicted effect of cardiac output on (A-a)DO(2) using the model of Piiper and Scheid, and thus indicates that an elevation of cardiac output is not necessarily accompanied by a reduction of mean transit time and (or) diffusion limitation during submaximal exercise in acute hypoxia. It remains to be determined what is the influence of changes in cardiac output per se on pulmonary gas exchange during high-intensity exercise.

  7. Non-invasive assessment of cardiac output during mechanical ventilation - a novel approach using an inert gas rebreathing method.

    PubMed

    Nickl, Werner; Bugaj, Till; Mondritzki, Thomas; Kuhlebrock, Kathrin; Dinh, Winfried; Krahn, Thomas; Sohler, Florian; Truebel, Hubert

    2011-06-01

    Measurement of cardiac output (CO) is of importance in the diagnostic of critically ill patients. The invasive approach of thermodilution (TD) via pulmonary artery catheter is clinically widely used. A new non-invasive technique of inert gas rebreathing (IGR) shows a good correlation with TD measurements in spontaneously breathing individuals. For the first time, we investigated whether IGR can also be applied to sedated and mechanically ventilated subjects with a clinical point of care device. CO data from IGR were compared with TD in six healthy mongrel dogs. Data sampling was repeated under baseline conditions (rest) and under stress challenge by applying 10 μg/kg/min of dobutamine intravenously. Switching from mechanical ventilation to IGR, as well as the rebreathing procedures, were carried out manually. Cardiac output data from IGR and TD correlated with a coefficient of r=0.90 (95% confidence interval [0.81; 0.95]). The Bland-Altman analysis showed a bias of 0.46 l/min for the IGR CO measurements. Ninety-five percent of all differences fall in the interval [-1.03; 1.95], being the limit of the ± 1.96 standard deviation lines. IGR is a new approach for non-invasive cardiac output measurement in mechanically ventilated individuals, but requires further investigation for clinical use.

  8. In vivo validation of cardiac output assessment in non-standard 3D echocardiographic images

    NASA Astrophysics Data System (ADS)

    Nillesen, M. M.; Lopata, R. G. P.; de Boode, W. P.; Gerrits, I. H.; Huisman, H. J.; Thijssen, J. M.; Kapusta, L.; de Korte, C. L.

    2009-04-01

    Automatic segmentation of the endocardial surface in three-dimensional (3D) echocardiographic images is an important tool to assess left ventricular (LV) geometry and cardiac output (CO). The presence of speckle noise as well as the nonisotropic characteristics of the myocardium impose strong demands on the segmentation algorithm. In the analysis of normal heart geometries of standardized (apical) views, it is advantageous to incorporate a priori knowledge about the shape and appearance of the heart. In contrast, when analyzing abnormal heart geometries, for example in children with congenital malformations, this a priori knowledge about the shape and anatomy of the LV might induce erroneous segmentation results. This study describes a fully automated segmentation method for the analysis of non-standard echocardiographic images, without making strong assumptions on the shape and appearance of the heart. The method was validated in vivo in a piglet model. Real-time 3D echocardiographic image sequences of five piglets were acquired in radiofrequency (rf) format. These ECG-gated full volume images were acquired intra-operatively in a non-standard view. Cardiac blood flow was measured simultaneously by an ultrasound transit time flow probe positioned around the common pulmonary artery. Three-dimensional adaptive filtering using the characteristics of speckle was performed on the demodulated rf data to reduce the influence of speckle noise and to optimize the distinction between blood and myocardium. A gradient-based 3D deformable simplex mesh was then used to segment the endocardial surface. A gradient and a speed force were included as external forces of the model. To balance data fitting and mesh regularity, one fixed set of weighting parameters of internal, gradient and speed forces was used for all data sets. End-diastolic and end-systolic volumes were computed from the segmented endocardial surface. The cardiac output derived from this automatic segmentation was

  9. Pilot Study: Estimation of Stroke Volume and Cardiac Output from Pulse Wave Velocity

    PubMed Central

    Nyhan, Daniel; Berkowitz, Dan E.; Steppan, Jochen; Barodka, Viachaslau

    2017-01-01

    Background Transesophageal echocardiography (TEE) is increasingly replacing thermodilution pulmonary artery catheters to assess hemodynamics in patients at high risk for cardiovascular morbidity. However, one of the drawbacks of TEE compared to pulmonary artery catheters is the inability to measure real time stroke volume (SV) and cardiac output (CO) continuously. The aim of the present proof of concept study was to validate a novel method of SV estimation, based on pulse wave velocity (PWV) in patients undergoing cardiac surgery. Methods This is a retrospective observational study. We measured pulse transit time by superimposing the radial arterial waveform onto the continuous wave Doppler waveform of the left ventricular outflow tract, and calculated SV (SVPWV) using the transformed Bramwell-Hill equation. The SV measured by TEE (SVTEE) was used as a reference. Results A total of 190 paired SV were measured from 28 patients. A strong correlation was observed between SVPWV and SVTEE with the coefficient of determination (R2) of 0.71. A mean difference between the two (bias) was 3.70 ml with the limits of agreement ranging from -20.33 to 27.73 ml and a percentage error of 27.4% based on a Bland-Altman analysis. The concordance rate of two methods was 85.0% based on a four-quadrant plot. The angular concordance rate was 85.9% with radial limits of agreement (the radial sector that contained 95% of the data points) of ± 41.5 degrees based on a polar plot. Conclusions PWV based SV estimation yields reasonable agreement with SV measured by TEE. Further studies are required to assess its utility in different clinical situations. PMID:28060961

  10. The pioneering use of systems analysis to study cardiac output regulation.

    PubMed

    Hall, John E

    2004-11-01

    This essay examines the historical significance of an APS classic paper that is freely available online: Guyton AC, Lindsey AW, and Kaufmann BN. Effect of mean circulatory filling pressure and other peripheral circulatory factors on cardiac output. Am J Physiol 180: 463-468, 1955 (http://ajplegacy.physiology.org/cgi/reprint/180/3/463).

  11. Effect of Hemorrhage on Cardiac Output, PVP, Alodosterone and Diuresis during Immersion in Men

    NASA Technical Reports Server (NTRS)

    Simanonok, K.; Greenleaf, John E.; Bernauer, E. M.; Wade, C. E.; Keil, L. C.

    1990-01-01

    The purpose of this study was to test the hypothesis that a reduction in blood volume would attenuate or eliminate immersion-induced increases in cardiac output (Q (sup dot) sub co)) and urine excretion, and to investigate accompanying vasoactive and fluid-electrolyte hormonal responses.

  12. Pulmonary diffusing capacity, capillary blood volume, and cardiac output during sustained microgravity

    NASA Technical Reports Server (NTRS)

    Prisk, G. K.; Guy, Harold J. B.; Elliott, Ann R.; Deutschman, Robert A., III; West, John B.

    1993-01-01

    We measured pulmonary diffusing capacity (DL), diffusing capacity per unit lung volume, pulmonary capillary blood volume (Vc), membrane diffusing capacity (Dm), pulmonary capillary blood flow or cardiac output (Qc), and cardiac stroke volume (SV) in four subjects exposed to nine days of microgravity. DL in microgravity was elevated compared with preflight standing values and was higher than preflight supine because of the elevation of both Vc and Dm. The elevation in Vc was comparable to that measured supine in 1 G, but the increase in Dm was in sharp contrast to the supine value. We postulate that, in 0 G, pulmonary capillary blood is evenly distributed throughout the lung, providing for uniform capillary filling, leading to an increase in the surface area available for diffusion. By contrast, in the supine 1-G state, the capillaries are less evenly filled, and although a similar increase in blood volume is observed, the corresponding increase in surface area does not occur. DL and its subdivisions showed no adaptive changes from the first measurement 24 h after the start of 0 G to eight days later. Similarly, there were no trends in the postflight data, suggesting that the principal mechanism of these changes was gravitational. The increase in Dm suggests that subclinical pulmonary edema did not result from exposure to 0 G. Qc was modestly increased inflight and decreased postflight compared with preflight standing. Compared with preflight standing, SV was increased 46 percent inflight and decreased 14 percent in the 1st week postflight. There were temporal changes in Qc and SV during 0 G, with the highest values recorded at the first measurement, 24 h into the flight. The lowest values of Qc and SV occurred on the day of return.

  13. Accuracy of Cardiac Output by Nine Different Pulse Contour Algorithms in Cardiac Surgery Patients: A Comparison with Transpulmonary Thermodilution.

    PubMed

    Broch, Ole; Bein, Berthold; Gruenewald, Matthias; Masing, Sarah; Huenges, Katharina; Haneya, Assad; Steinfath, Markus; Renner, Jochen

    2016-01-01

    Objective. Today, there exist several different pulse contour algorithms for calculation of cardiac output (CO). The aim of the present study was to compare the accuracy of nine different pulse contour algorithms with transpulmonary thermodilution before and after cardiopulmonary bypass (CPB). Methods. Thirty patients scheduled for elective coronary surgery were studied before and after CPB. A passive leg raising maneuver was also performed. Measurements included CO obtained by transpulmonary thermodilution (COTPTD) and by nine pulse contour algorithms (COX1-9). Calibration of pulse contour algorithms was performed by esophageal Doppler ultrasound after induction of anesthesia and 15 min after CPB. Correlations, Bland-Altman analysis, four-quadrant, and polar analysis were also calculated. Results. There was only a poor correlation between COTPTD and COX1-9 during passive leg raising and in the period before and after CPB. Percentage error exceeded the required 30% limit. Four-quadrant and polar analysis revealed poor trending ability for most algorithms before and after CPB. The Liljestrand-Zander algorithm revealed the best reliability. Conclusions. Estimation of CO by nine different pulse contour algorithms revealed poor accuracy compared with transpulmonary thermodilution. Furthermore, the less-invasive algorithms showed an insufficient capability for trending hemodynamic changes before and after CPB. The Liljestrand-Zander algorithm demonstrated the highest reliability. This trial is registered with NCT02438228 (ClinicalTrials.gov).

  14. Accuracy of Cardiac Output by Nine Different Pulse Contour Algorithms in Cardiac Surgery Patients: A Comparison with Transpulmonary Thermodilution

    PubMed Central

    Bein, Berthold; Gruenewald, Matthias; Masing, Sarah; Huenges, Katharina; Haneya, Assad; Steinfath, Markus; Renner, Jochen

    2016-01-01

    Objective. Today, there exist several different pulse contour algorithms for calculation of cardiac output (CO). The aim of the present study was to compare the accuracy of nine different pulse contour algorithms with transpulmonary thermodilution before and after cardiopulmonary bypass (CPB). Methods. Thirty patients scheduled for elective coronary surgery were studied before and after CPB. A passive leg raising maneuver was also performed. Measurements included CO obtained by transpulmonary thermodilution (COTPTD) and by nine pulse contour algorithms (COX1–9). Calibration of pulse contour algorithms was performed by esophageal Doppler ultrasound after induction of anesthesia and 15 min after CPB. Correlations, Bland-Altman analysis, four-quadrant, and polar analysis were also calculated. Results. There was only a poor correlation between COTPTD and COX1–9 during passive leg raising and in the period before and after CPB. Percentage error exceeded the required 30% limit. Four-quadrant and polar analysis revealed poor trending ability for most algorithms before and after CPB. The Liljestrand-Zander algorithm revealed the best reliability. Conclusions. Estimation of CO by nine different pulse contour algorithms revealed poor accuracy compared with transpulmonary thermodilution. Furthermore, the less-invasive algorithms showed an insufficient capability for trending hemodynamic changes before and after CPB. The Liljestrand-Zander algorithm demonstrated the highest reliability. This trial is registered with NCT02438228 (ClinicalTrials.gov). PMID:28116294

  15. Asymmetric sympathetic output: The dorsomedial hypothalamus as a potential link between emotional stress and cardiac arrhythmias.

    PubMed

    Fontes, Marco Antônio Peliky; Filho, Marcelo Limborço; Santos Machado, Natália L; de Paula, Cristiane Amorim; Souza Cordeiro, Letícia M; Xavier, Carlos Henrique; Marins, Fernanda Ribeiro; Henderson, Luke; Macefield, Vaughan G

    2017-01-17

    The autonomic response to emotional stress, while involving several target organs, includes an important increase in sympathetic drive to the heart. There is ample evidence that cardiac sympathetic innervation is lateralized, and asymmetric autonomic output to the heart during stress is postulated to be a causal factor that precipitates cardiac arrhythmias. Recent animal studies provided a new picture of the central pathways involved in the cardiac sympathetic response evoked by emotional stress, pointing out a key role for the region of dorsomedial hypothalamus. However, how much of this information can be extrapolated to humans? Analysis of human functional imaging data at rest or during emotional stress shows some consistency with the components that integrate these pathways, and attention must be given to the asymmetric activation of subcortical sites. In this short review, we will discuss related findings in humans and animals, aiming to understand the neurogenic background for the origin of emotional stress-induced cardiac arrhythmias.

  16. A comparison of the Nexfin® and transcardiopulmonary thermodilution to estimate cardiac output during coronary artery surgery.

    PubMed

    Broch, O; Renner, J; Gruenewald, M; Meybohm, P; Schöttler, J; Caliebe, A; Steinfath, M; Malbrain, M; Bein, B

    2012-04-01

    The newly introduced Nexfin(®) device allows analysis of the blood pressure trace produced by a non-invasive finger cuff. We compared the cardiac output derived from the Nexfin and PiCCO, using transcardiopulmonary thermodilution, during cardiac surgery. Forty patients with preserved left ventricular function undergoing elective coronary artery bypass graft surgery were studied after induction of general anaesthesia and until discharge to the intensive care unit. There was a significant correlation between Nexfin and PiCCO before (r(2) = 0.81, p < 0.001) and after (r(2) = 0.56, p < 0.001) cardiopulmonary bypass. Bland-Altman analysis demonstrated the mean bias of Nexfin to be -0.1 (95% limits of agreement -0.6 to +0.5, percentage error 23%) and -0.1 (-0.8 to +0.6, 26%) l.min(-1).m(-2), before and after cardiopulmonary bypass, respectively. After a passive leg-raise was performed, there was also good correlation between the two methods, both before (r(2) = 0.72, p < 0.001) and after (r(2) = 0.76, p < 0.001) cardiopulmonary bypass. We conclude that the Nexfin is a reliable method of measuring cardiac output during and after cardiac surgery.

  17. Assessment of the effect of vasodilators on the distribution of cardiac output by whole-body Thallium imaging

    SciTech Connect

    Juni, J.E.; Wallis, J.; Diltz, E.; Nicholas, J.; Lahti, D.; Pitt, B.

    1985-05-01

    Vasodilator therapy (tx) of congestive heart failure (CHF) has been shown to be effective in increasing cardiac output (CO) and lowering vascular resistance. Unfortunately, these hemodynamic effects are not usually accompanied by improved peripheral circulation of exercise capacity. To assess the effect of a new vasodilator, Cl-914, on the redistribution of CO to the peripheral circulation, the authors performed testing whole-body thallium scanning (WB-Th) on 6 patients (pts) with severe CHF. Immediately following i.v. injection of 1.5 mCi Th-201, WB scanning was performed from anterior and posterior views. Regions of interest were defined for the peripheral (P) muscles (legs and arms), central torso (C), and splanchnic bed (S). The geometric mean of activity in these regions was calculated from both views. Each pt was studied before tx and again, after 1 week on tx. Invasive measurements revealed that all pts had significant improvements in resting cardiac output (mean increase 49%) and vascular resistance (mean decrease 30%). Unlike other vasodilators, all CI-914 pts had a significant improvement in treadmill exercise capacity (mean increase 54%). WB-Th revealed a significant shift in CO to the peripheral circulation with P:C increased 33.2% (rho= .001) and P:S increased 29% (rho=.01). Vasoactive drugs may significantly alter the relative distribution of cardiac output. WB-Th scanning provides a simple quantitative means of following such changes.

  18. Pulmonary Artery Catheter (PAC) Accuracy and Efficacy Compared with Flow Probe and Transcutaneous Doppler (USCOM): An Ovine Cardiac Output Validation

    PubMed Central

    Phillips, Robert A.; Hood, Sally G.; Jacobson, Beverley M.; West, Malcolm J.; Wan, Li; May, Clive N.

    2012-01-01

    Background. The pulmonary artery catheter (PAC) is an accepted clinical method of measuring cardiac output (CO) despite no prior validation. The ultrasonic cardiac output monitor (USCOM) is a noninvasive alternative to PAC using Doppler ultrasound (CW). We compared PAC and USCOM CO measurements against a gold standard, the aortic flow probe (FP), in sheep at varying outputs. Methods. Ten conscious sheep, with implanted FPs, had measurements of CO by FP, USCOM, and PAC, at rest and during intervention with inotropes and vasopressors. Results. CO measurements by FP, PAC, and USCOM were 4.0 ± 1.2 L/min, 4.8 ± 1.5 L/min, and 4.0 ± 1.4 L/min, respectively, (n = 280, range 1.9 L/min to 11.7 L/min). Percentage bias and precision between FP and PAC, and FP and USCOM was −17 and 47%, and 1 and 36%, respectively. PAC under-measured Dobutamine-induced CO changes by 20% (relative 66%) compared with FP, while USCOM measures varied from FP by 3% (relative 10%). PAC reliably detected −30% but not +40% CO changes, as measured by receiver operating characteristic area under the curve (AUC), while USCOM reliably detected ±5% changes in CO (AUC > 0.70). Conclusions. PAC demonstrated poor accuracy and sensitivity as a measure of CO. USCOM provided equivalent measurements to FP across a sixfold range of outputs, reliably detecting ±5% changes. PMID:22649718

  19. Diesel Exhaust Inhalation Increases Cardiac Output, Bradyarrhythmias, and Parasympathetic Tone in Aged Heart Failure–Prone Rats

    PubMed Central

    Farraj, Aimen K.

    2013-01-01

    Acute air pollutant inhalation is linked to adverse cardiac events and death, and hospitalizations for heart failure. Diesel engine exhaust (DE) is a major air pollutant suspected to exacerbate preexisting cardiac conditions, in part, through autonomic and electrophysiologic disturbance of normal cardiac function. To explore this putative mechanism, we examined cardiophysiologic responses to DE inhalation in a model of aged heart failure–prone rats without signs or symptoms of overt heart failure. We hypothesized that acute DE exposure would alter heart rhythm, cardiac electrophysiology, and ventricular performance and dimensions consistent with autonomic imbalance while increasing biochemical markers of toxicity. Spontaneously hypertensive heart failure rats (16 months) were exposed once to whole DE (4h, target PM2.5 concentration: 500 µg/m3) or filtered air. DE increased multiple heart rate variability (HRV) parameters during exposure. In the 4h after exposure, DE increased cardiac output, left ventricular volume (end diastolic and systolic), stroke volume, HRV, and atrioventricular block arrhythmias while increasing electrocardiographic measures of ventricular repolarization (i.e., ST and T amplitudes, ST area, T-peak to T-end duration). DE did not affect heart rate relative to air. Changes in HRV positively correlated with postexposure changes in bradyarrhythmia frequency, repolarization, and echocardiographic parameters. At 24h postexposure, DE-exposed rats had increased serum C-reactive protein and pulmonary eosinophils. This study demonstrates that cardiac effects of DE inhalation are likely to occur through changes in autonomic balance associated with modulation of cardiac electrophysiology and mechanical function and may offer insights into the adverse health effects of traffic-related air pollutants. PMID:23047911

  20. Evaluation of noninvasive exercise cardiac output determination in chronic heart failure patients: a proposal of a new diagnostic and prognostic method.

    PubMed

    Cattadori, Gaia; Salvioni, Elisabetta; Gondoni, Erica; Agostoni, Piergiuseppe

    2011-01-01

    Peak oxygen consumption (VO2) and various parameters of cardiopulmonary response to exercise are of important prognostic value in chronic heart failure patients. However, all the available parameters only indirectly reflect left-ventricular dysfunction and hemodynamic adaptation to an increased demand. Noninvasive assessment of cardiac output, especially during an incremental exercise test, would allow the direct measurement of cardiac reserve and may become the gold standard for prognostic evaluation of chronic heart failure patients.

  1. Noninvasive cardiac output determination for children by the inert gas-rebreathing method.

    PubMed

    Wiegand, Gesa; Kerst, Gunter; Baden, Winfried; Hofbeck, Michael

    2010-11-01

    Standard methods for determination of cardiac output (CO) are either invasive or technically demanding. Measurement of CO by the inert gas-rebreathing (IGR) method, applied successfully in adults, uses a low-concentration mixture of an inert and a blood-soluble gas, respectively. This study tested the feasibility of this method for determining CO during exercise for pediatric patients with complete congenital atrioventricular block (CCAVB) stimulated with a VVI pacemaker. In this study, 5 CCAVB patients (age 9.2-17.4 years) were compared with 10 healthy age-matched boys and girls. Testing was performed with the Innocor system. The patients were instructed to breathe the test gas from a closed system. Pulmonary blood flow was calculated according to the washout of the soluble gas component. During standardized treadmill testing, CO was determined at three defined levels. The CO measurements were successful for all the study participants. The patients reached a lower peak CO than the control subjects (5.9 l/min/m(2) vs 7.3 [boys] and 7.2 [girls]). The stroke volume increase under exercise also was reduced in the patients compared with the control subjects. The feasibility of the IGR method for exercise CO testing in children was documented. Application of the IGR method for children requires careful instruction of the patients and appears restricted to subjects older than 8 years. The method offers new insights into mechanisms of cardiovascular adaptation in children with congenital heart disease.

  2. Clinical review: Guyton--the role of mean circulatory filling pressure and right atrial pressure in controlling cardiac output.

    PubMed

    Henderson, William R; Griesdale, Donald E G; Walley, Keith R; Sheel, A William

    2010-01-01

    Arthur Guyton's concepts of the determinative role of right heart filling in cardiac output continue to be controversial. This paper reviews his seminal experiments in detail and clarifies the often confusing concepts underpinning his model. One primary criticism of Guyton's model is that the parameters describing venous return had not been measured in a functioning cardiovascular system in humans. Thus, concerns have been expressed in regard to the ability of Guyton's simplistic model, with few parameters, to model the complex human circulation. Further concerns have been raised in regard to the artificial experimental preparations that Guyton used. Recently reported measurements in humans support Guyton's theoretical and animal work.

  3. Peripartum cardiomyopathy: postpartum decompensation and use of non-invasive cardiac output monitoring.

    PubMed

    Lorello, G; Cubillos, J; McDonald, M; Balki, M

    2014-02-01

    The utility of a non-invasive cardiac output monitor (NICOM™) in guiding the peripartum management and identification of postpartum complications in a patient with severe peripartum cardiomyopathy is reported. A 31-year-old nulliparous woman at 35 weeks of gestation presented with a three-week history of worsening dyspnea and progressive functional deterioration. A transthoracic echocardiogram showed severe left ventricular systolic dysfunction with an ejection fraction <20%. Cardiac status was monitored using NICOM™ during labor and delivery. The baseline values were: cardiac output 5.3 L/min, total peripheral resistance 1549 dynes.sec/cm(5), stroke volume 42.1 mL and stroke volume variation 18%. She received early epidural analgesia during labor, titrated slowly with a loading dose of 0.0625% bupivacaine 10 mL and fentanyl 25 μg, followed by patient-controlled epidural analgesia (0.0625% bupivacaine with fentanyl 2 μg/mL, infusion at 10 mL/h, bolus dose 5 mL and lockout interval 10 min). After epidural drug administration, total peripheral resistance decreased, cardiac output increased, and satisfactory analgesia was obtained. She had an uneventful vaginal delivery with a forceps-assisted second stage after prophylactic administration of furosemide 20 mg. NICOM™ was discontinued after delivery. Fifteen hours post-delivery, the patient developed cardiogenic shock, which resolved after aggressive therapy with inotropes and furosemide. NICOM™ can be used to guide treatment during labor and delivery in patients with critical peripartum cardiomyopathy. We suggest that use of NICOM™ be extended into the postpartum period to detect signs of cardiac decompensation in such patients.

  4. A novel continuous cardiac output monitor based on pulse wave transit time.

    PubMed

    Sugo, Yoshihiro; Ukawa, Teiji; Takeda, Sunao; Ishihara, Hironori; Kazama, Tomiei; Takeda, Junzo

    2010-01-01

    Monitoring cardiac output (CO) is important for the management of patient circulation in an operation room (OR) or intensive care unit (ICU). We assumed that the change in pulse wave transit time (PWTT) obtained from an electrocardiogram (ECG) and a pulse oximeter wave is correlated with the change in stroke volume (SV), from which CO is derived. The present study reports the verification of this hypothesis using a hemodynamic analysis theory and animal study. PWTT consists of a pre-ejection period (PEP), the pulse transit time through an elasticity artery (T(1)), and the pulse transit time through peripheral resistance arteries (T(2)). We assumed a consistent negative correlation between PWTT and SV under all conditions of varying circulatory dynamics. The equation for calculating SV from PWTT was derived based on the following procedures. 1. Approximating SV using a linear equation of PWTT. 2. The slope and y-intercept of the above equation were determined under consideration of vessel compliance (SV was divided by Pulse Pressure (PP)), animal type, and the inherent relationship between PP and PWTT. Animal study was performed to verify the above-mentioned assumption. The correlation coefficient of PWTT and SV became r = -0.710 (p 〈 0.001), and a good correlation was admitted. It has been confirmed that accurate continuous CO and SV measurement is only possible by monitoring regular clinical parameters (ECG, SpO2, and NIBP).

  5. The comparison of a novel continuous cardiac output monitor based on pulse wave transit time and echo Doppler during exercise.

    PubMed

    Sugo, Yoshihiro; Sakai, Tomoyuki; Terao, Mami; Ukawa, Teiji; Ochiai, Ryoichi

    2012-01-01

    A new technology called estimated continuous cardiac output (esCCO) uses pulse wave transit time (PWTT) obtained from an electrocardiogram and pulse oximeter to measure cardiac output (CO) non-invasively and continuously. This study was performed to evaluate the accuracy of esCCO during exercise testing. We compared esCCO with CO measured by the echo Doppler aortic velocity-time integral (VTIao_CO). The correlation coefficient between esCCO and VTIao_CO was r= 0.87 (n= 72). Bias and precision were 0.33 ± 0.95 L/min and percentage error was 31%. The esCCO could detect change in VTIao_CO larger than 1 L/min with a concordance rate of 88%. In polar plot, 83% of data are within 0.5 L/min, and 100% of data are within 1 L/min. Those results show the acceptable accuracy and trend ability of esCCO. Change in pre-ejection period (PEP) measured by using M-mode of Diagnostic Ultrasound System accounted for approximately half of change in PWTT. This indicates that PEP included in PWTT has an impact on the accuracy of esCCO measurement. In this study, the validity of esCCO during exercise testing was assessed and shown to be acceptable. The result of this study suggests that we can expand its application.

  6. Does targeted pre-load optimisation by stroke volume variation attenuate a reduction in cardiac output in the prone position.

    PubMed

    Wu, C-Y; Lee, T-S; Chan, K-C; Jeng, C-S; Cheng, Y-J

    2012-07-01

    The prone position can reduce cardiac output by up to 25% due to reduced preload. We hypothesised that preload optimisation targeted to stroke volume variation before turning prone might alleviate this. A supine threshold stroke volume variation of 14% in a preliminary study identified patients whose cardiac outputs would decline when turned prone. In 45 patients, cardiac output declined only in the group whose supine stroke volume variation was high (mean (SD) 5.1 (2.0) to 3.9 (1.9) l.min(-1) ; p < 0.001), but not in patients in whom it was low, or in those in whom stroke volume variation was high, but who received volume preload (p = 0.525 and 0.941, respectively). We conclude that targeted preload optimisation using a supine stroke volume variation value < 14% is effective in preventing falls in cardiac output induced by the prone position.

  7. Caveolae protect endothelial cells from membrane rupture during increased cardiac output

    PubMed Central

    Cheng, Jade P.X.; Mendoza-Topaz, Carolina; Howard, Gillian; Chadwick, Jessica; Shvets, Elena; Cowburn, Andrew S.; Dunmore, Benjamin J.; Crosby, Alexi; Morrell, Nicholas W.

    2015-01-01

    Caveolae are strikingly abundant in endothelial cells, yet the physiological functions of caveolae in endothelium and other tissues remain incompletely understood. Previous studies suggest a mechanoprotective role, but whether this is relevant under the mechanical forces experienced by endothelial cells in vivo is unclear. In this study we have sought to determine whether endothelial caveolae disassemble under increased hemodynamic forces, and whether caveolae help prevent acute rupture of the plasma membrane under these conditions. Experiments in cultured cells established biochemical assays for disassembly of caveolar protein complexes, and assays for acute loss of plasma membrane integrity. In vivo, we demonstrate that caveolae in endothelial cells of the lung and cardiac muscle disassemble in response to acute increases in cardiac output. Electron microscopy and two-photon imaging reveal that the plasma membrane of microvascular endothelial cells in caveolin 1−/− mice is much more susceptible to acute rupture when cardiac output is increased. These data imply that mechanoprotection through disassembly of caveolae is important for endothelial function in vivo. PMID:26459598

  8. Improved hepatic arterial fraction estimation using cardiac output correction of arterial input functions for liver DCE MRI

    NASA Astrophysics Data System (ADS)

    Chouhan, Manil D.; Bainbridge, Alan; Atkinson, David; Punwani, Shonit; Mookerjee, Rajeshwar P.; Lythgoe, Mark F.; Taylor, Stuart A.

    2017-02-01

    Liver dynamic contrast enhanced (DCE) MRI pharmacokinetic modelling could be useful in the assessment of diffuse liver disease and focal liver lesions, but is compromised by errors in arterial input function (AIF) sampling. In this study, we apply cardiac output correction to arterial input functions (AIFs) for liver DCE MRI and investigate the effect on dual-input single compartment hepatic perfusion parameter estimation and reproducibility. Thirteen healthy volunteers (28.7  ±  1.94 years, seven males) underwent liver DCE MRI and cardiac output measurement using aortic root phase contrast MRI (PCMRI), with reproducibility (n  =  9) measured at 7 d. Cardiac output AIF correction was undertaken by constraining the first pass AIF enhancement curve using the indicator-dilution principle. Hepatic perfusion parameters with and without cardiac output AIF correction were compared and 7 d reproducibility assessed. Differences between cardiac output corrected and uncorrected liver DCE MRI portal venous (PV) perfusion (p  =  0.066), total liver blood flow (TLBF) (p  =  0.101), hepatic arterial (HA) fraction (p  =  0.895), mean transit time (MTT) (p  =  0.646), distribution volume (DV) (p  =  0.890) were not significantly different. Seven day corrected HA fraction reproducibility was improved (mean difference 0.3%, Bland–Altman 95% limits-of-agreement (BA95%LoA)  ±27.9%, coefficient of variation (CoV) 61.4% versus 9.3%, ±35.5%, 81.7% respectively without correction). Seven day uncorrected PV perfusion was also improved (mean difference 9.3 ml min‑1/100 g, BA95%LoA  ±506.1 ml min‑1/100 g, CoV 64.1% versus 0.9 ml min‑1/100 g, ±562.8 ml min‑1/100 g, 65.1% respectively with correction) as was uncorrected TLBF (mean difference 43.8 ml min‑1/100 g, BA95%LoA  ±586.7 ml min‑1/ 100 g, CoV 58.3% versus 13.3 ml min‑1/100 g, ±661.5 ml min‑1/100 g, 60

  9. Spontaneous baroreflex control of cardiac output during dynamic exercise, muscle metaboreflex activation, and heart failure.

    PubMed

    Ichinose, Masashi; Sala-Mercado, Javier A; O'Leary, Donal S; Hammond, Robert L; Coutsos, Matthew; Ichinose, Tomoko; Pallante, Marco; Iellamo, Ferdinando

    2008-03-01

    We have previously shown that spontaneous baroreflex-induced changes in heart rate (HR) do not always translate into changes in cardiac output (CO) at rest. We have also shown that heart failure (HF) decreases this linkage between changes in HR and CO. Whether dynamic exercise and muscle metaboreflex activation (via imposed reductions in hindlimb blood flow) further alter this translation in normal and HF conditions is unknown. We examined these questions using conscious, chronically instrumented dogs before and after pacing-induced HF during mild and moderate dynamic exercise with and without muscle metaboreflex activation. We measured left ventricular systolic pressure (LVSP), CO, and HR and analyzed the spontaneous HR-LVSP and CO-LVSP relationships. In normal animals, mild exercise significantly decreased HR-LVSP (-3.08 +/- 0.5 vs. -5.14 +/- 0.6 beats.min(-1).mmHg(-1); P < 0.05) and CO-LVSP (-134.74 +/- 24.5 vs. -208.6 +/- 22.2 ml.min(-1).mmHg(-1); P < 0.05). Moderate exercise further decreased both and, in addition, significantly reduced HR-CO translation (25.9 +/- 2.8% vs. 52.3 +/- 4.2%; P < 0.05). Muscle metaboreflex activation at both workloads decreased HR-LVSP, whereas it had no significant effect on CO-LVSP and the HR-CO translation. HF significantly decreased HR-LVSP, CO-LVSP, and the HR-CO translation in all situations. We conclude that spontaneous baroreflex HR responses do not always cause changes in CO during exercise. Moreover, muscle metaboreflex activation during mild and moderate dynamic exercise reduces this coupling. In addition, in HF the HR-CO translation also significantly decreases during both workloads and decreases even further with muscle metaboreflex activation.

  10. Cardiac output distribution in miniature swine during locomotory exercise to VO/sub 3max/

    SciTech Connect

    Armstrong, R.B.; Delp, M.D.; Laughlin, M.H.

    1986-03-01

    Distribution of cardiac output (CO) was studied in miniature swine (22 +/- 1 kg) during level treadmill exercise up to the speed (17.7 km/hr) that elicited maximal oxygen consumption (VO/sub 2max/) (60 +/- 4 m1/min/kg). COs and tissue blood flows (BFs) were measured with the radiolabelled microsphere technique. CO increased from a preexercise value of 2.1 +/- 0.5 1/min up to 9.9 +/- 0.5 1/min at VO/sub 2max/. In preexercise standing 43% of CO went to skeletal muscle, which comprised 36 +/- 1% of body mass, 42% to viscera (12 +/- 1% mass), 5% to brain, heart, and lungs (2% +/- 0.1% mass), and 10% to skin and skeleton (35 +/- 2% mass). Preexercise could not be considered resting because of the animals' excitability. Skeletal muscle BF increased progressively with speed up to VO/sub 2max/, both in absolute terms and in percent CO. At VO/sub 2max/, 88% of CO went to muscle, 3% to viscera, 8% to brain, heart and lungs, and 1% to skin and skeleton. Thus, at VO/sub 2max/ only 4% of CO went to the inactive tissues, which constituted 47% of body mass. In 2 pigs that ran at speeds above 17 km/hr, total muscle BF leveled off at VO/sub 2max/. These findings demonstrate that muscle BF progressively increases up to VO/sub 2max/, and that VO/sub 2/ levels off at the same intensity as muscle flow.

  11. Jet and ultrasonic nebuliser output: use of a new method for direct measurement of aerosol output.

    PubMed Central

    Dennis, J H; Stenton, S C; Beach, J R; Avery, A J; Walters, E H; Hendrick, D J

    1990-01-01

    Output from jet nebulisers is calibrated traditionally by weighing them before and after nebulisation, but the assumption that the weight difference is a close measure of aerosol generation could be invalidated by the concomitant process of evaporation. A method has been developed for measuring aerosol output directly by using a solute (fluoride) tracer and aerosol impaction, and this has been compared with the traditional weight loss method for two Wright, six Turbo, and four Micro-Cirrus jet nebulisers and two Microinhaler ultrasonic nebulisers. The weight loss method overestimated true aerosol output for all jet nebulisers. The mean aerosol content, expressed as a percentage of the total weight loss, varied from as little as 15% for the Wright jet nebulisers to 54% (range 45-61%) for the Turbo and Micro-Cirrus jet nebulisers under the operating conditions used. In contrast, there was no discrepancy between weight loss and aerosol output for the ultrasonic nebulisers. These findings, along with evidence of both concentrating and cooling effects from jet nebulisation, confirm that total output from jet nebulisers contains two distinct fractions, vapour and aerosol. The vapour fraction, but not the aerosol fraction, was greatly influenced by reservoir temperature within the nebuliser; so the ratio of aerosol output to total weight loss varied considerably with temperature. It is concluded that weight loss is an inappropriate method of calibrating jet nebuliser aerosol output, and that this should be measured directly. PMID:2247862

  12. Cooperative linear output regulation for networked systems by dynamic measurement output feedback

    NASA Astrophysics Data System (ADS)

    Li, Shaobao; Feng, Gang; Wang, Juan; Luo, Xiaoyuan; Guan, Xinping

    2016-04-01

    This paper investigates the cooperative linear output regulation problem of a class of heterogeneous networked systems with a common reference input but with different disturbances for individual nodes. A novel distributed control law is presented based on dynamic measurement output feedback. It is shown that the overall networked closed-loop control system is asymptotically stable and the output regulation errors asymptotically approach zero as time goes to infinity under a sufficient and necessary condition. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed control law.

  13. On- and off-exercise kinetics of cardiac output in response to cycling and walking in COPD patients with GOLD Stages I-IV.

    PubMed

    Vasilopoulou, M K; Vogiatzis, I; Nasis, I; Spetsioti, S; Cherouveim, E; Koskolou, M; Kortianou, E A; Louvaris, Z; Kaltsakas, G; Koutsoukou, A; Koulouris, N G; Alchanatis, M

    2012-05-31

    Exercise-induced dynamic hyperinflation and large intrathoracic pressure swings may compromise the normal increase in cardiac output (Q) in Chronic Obstructive Pulmonary Disease (COPD). Therefore, it is anticipated that the greater the disease severity, the greater would be the impairment in cardiac output during exercise. Eighty COPD patients (20 at each GOLD Stage) and 10 healthy age-matched individuals undertook a constant-load test on a cycle-ergometer (75% WR(peak)) and a 6min walking test (6MWT). Cardiac output was measured by bioimpedance (PhysioFlow, Enduro) to determine the mean response time at the onset of exercise (MRTon) and during recovery (MRToff). Whilst cardiac output mean response time was not different between the two exercise protocols, MRT responses during cycling were slower in GOLD Stages III and IV compared to Stages I and II (MRTon: Stage I: 45±2, Stage II: 65±3, Stage III: 90±3, Stage IV: 106±3s; MRToff: Stage I: 42±2, Stage II: 68±3, Stage III: 87±3, Stage IV: 104±3s, respectively). In conclusion, the more advanced the disease severity the more impaired is the hemodynamic response to constant-load exercise and the 6MWT, possibly reflecting greater cardiovascular impairment and/or greater physical deconditioning.

  14. A comparison of the changes in cardiac output and systemic vascular resistance during exercise following high-fat meals containing DHA or EPA.

    PubMed

    Rontoyanni, Victoria G; Hall, Wendy L; Pombo-Rodrigues, Sonia; Appleton, Amber; Chung, Roxanna; Sanders, Thomas A B

    2012-08-01

    Long-chain n-3 PUFA can lower blood pressure (BP) but their acute effects on cardiac output, BP and systemic vascular resistance (SVR) in response to dynamic exercise are uncertain. We compared the effects of high-fat meals rich in EPA (20 : 5n-3), DHA (22 : 6n-3) or oleic acid (control) on cardiac output, BP and SVR in response to exercise stress testing. High-fat meals (50 g fat) containing high-oleic sunflower oil enriched with 4·7 g of either EPA or DHA v. control (high-oleic sunflower oil only) were fed to twenty-two healthy males using a randomised cross-over design. Resting measurements of cardiac output, heart rate and BP were made before and hourly over 5 h following the meal. A standardised 12 min exercise test was then conducted with further measurements made during and post-exercise. Blood samples were collected at fasting, 5 h postprandially and immediately post-exercise for the analysis of lipid, glucose and 8-isoprostane-F2α (8-iso-PGF2α). Plasma concentrations of EPA and DHA increased by 0·22 mmol/l 5 h following the EPA and DHA meals, respectively, compared with the control (P < 0·001). Resting cardiac output and 8-iso-PGF2α increased similarly following all meals and there were no significant differences in cardiac output during exercise between the meals. SVR was lower at 5 h and during exercise following the DHA but not EPA meal, compared with the control meal, by 4·9 % (95 % CI 1·3, 8·4; P < 0·01). Meals containing DHA appear to differ from EPA with regard to their effects on cardiovascular haemodynamics during exercise.

  15. Against Journal Articles for Measuring Value in University Output

    ERIC Educational Resources Information Center

    Mbali, C.

    2010-01-01

    The following lines of arguments against the metrics of journal articles is developed: (1) Textual output should no longer be main valued output; (2) Digitalization enables other ways of advancing knowledge; (3) Measures by journal article favours the disciplines of Natural Science and Engineering (NSE) and moulds other disciplines of Social…

  16. Beta-adrenergic or parasympathetic inhibition, heart rate and cardiac output during normoxic and acute hypoxic exercise in humans.

    PubMed

    Hopkins, Susan R; Bogaard, Harm J; Niizeki, Kyuichi; Yamaya, Yoshiki; Ziegler, Michael G; Wagner, Peter D

    2003-07-15

    Acute hypoxia increases heart rate (HR) and cardiac output (Qt) at a given oxygen consumption (VO2) during submaximal exercise. It is widely believed that the underlying mechanism involves increased sympathetic activation and circulating catecholamines acting on cardiac beta receptors. Recent evidence indicating a continued role for parasympathetic modulation of HR during moderate exercise suggests that increased parasympathetic withdrawal plays a part in the increase in HR and Qt during hypoxic exercise. To test this, we separately blocked the beta-sympathetic and parasympathetic arms of the autonomic nervous system (ANS) in six healthy subjects (five male, one female; mean +/- S.E.M. age = 31.7+/-1.6 years, normoxic maximal VO2 (VO2,max)=3.1+/-0.3 l min(-1)) during exercise in conditions of normoxia and acute hypoxia (inspired oxygen fraction=0.125) to VO2,max. Data were collected on different days under the following conditions: (1)control, (2) after 8.0 mg propranolol i.v. and (3) after 0.8 mg glycopyrrolate i.v. Qt was measured using open-circuit acetylene uptake. Hypoxia increased venous [adrenaline] and [noradrenaline] but not [dopamine] at a given VO2 (P<0.05, P<0.01 and P=0.2, respectively). HR/VO2 and Qt/VO2 increased during hypoxia in all three conditions (P<0.05). Unexpectedly, the effects of hypoxia on HR and Qt were not significantly different from control with either beta-sympathetic or parasympathetic inhibition. These data suggest that although acute exposure to hypoxia increases circulating [catecholamines], the effects of hypoxia on HR and Qt do not necessarily require intact cardiac muscarinic and beta receptors. It may be that cardiac alpha receptors play a primary role in elevating HR and Qt during hypoxic exercise, or perhaps offer an alternative mechanism when other ANS pathways are blocked.

  17. Evaluation of the estimated continuous cardiac output monitoring system in adults and children undergoing kidney transplant surgery: a pilot study.

    PubMed

    Terada, Takashi; Maemura, Yumi; Yoshida, Akiko; Muto, Rika; Ochiai, Ryoichi

    2014-02-01

    Evaluation of the estimated continuous cardiac output (esCCO) allows non-invasive and continuous assessment of cardiac output. However, the applicability of this approach in children has not been assessed thus far. We compared the correlation coefficient, bias, standard deviation (SD), and the lower and upper 95 % limits of agreement for esCCO and dye densitography-cardiac output (DDG-CO) measurements by pulse dye densitometry (PDD) in adults and children. On the basis of these assessments, we aimed to examine whether esCCO can be used in pediatric patients. DDG-CO was measured by pulse dye densitometry (PDD) using indocyanine green. Modified-pulse wave transit time, obtained using pulse oximetry and electrocardiography, was used to measure esCCO. Correlations between DDG-CO and esCCO in adults and children were analyzed using regression analysis with the least squares method. Differences between the two correlation coefficients were statistically analyzed using a correlation coefficient test. Bland-Altman plots were used to evaluate bias and SD for DDG-CO and esCCO in both adults and children, and 95 % limits of agreement (bias ± 1.96 SD) and percentage error (1.96 SD/mean DDG-CO) were calculated and compared. The average age of the adult patients (n = 10) was 39.3 ± 12.1 years, while the average age of the pediatric patients (n = 7) was 9.4 ± 3.1 years (p < 0.001). For adults, the correlation coefficient was 0.756; bias, -0.258 L/min; SD, 1.583 L/min; lower and upper 95 % limits of agreement for DDG-CO and esCCO, -3.360 and 2.844 L/min, respectively; and percentage error, 42.7 %. For children, the corresponding values were 0.904; -0.270; 0.908; -2.051 and 1.510 L/min, respectively; and 35.7 %. Due to the high percentage error values, we could not establish a correlation between esCCO and DDG-CO. However, the 95 % limits of agreement and percentage error were better in children than in adults. Due to the high percentage error, we could not confirm a correlation

  18. Differential acute effects of carbohydrate- and protein-rich drinks compared with water on cardiac output during rest and exercise in healthy young men.

    PubMed

    Rontoyanni, Victoria G; Werner, Kristin; Sanders, Thomas A B; Hall, Wendy L

    2015-08-01

    The acute effects of drinks rich in protein (PRO) versus carbohydrate (CHO) on cardiovascular hemodynamics and reactivity are uncertain. A randomized crossover design was used to compare 400-mL isoenergetic (1.1 MJ) drinks containing whey protein (PRO; 44 g) or carbohydrate (CHO; 57 g) versus 400 mL of water in 14 healthy men. The primary and secondary outcomes were changes in cardiac output, blood pressure, systemic vascular resistance (SVR) and digital volume pulse measured prior to and 30 min following consumption at rest, during 12 min of multi-stage bicycle ergometry, and 15 min postexercise. The mean change (95% confidence interval (CI)) in resting cardiac output at 30 min was greater for CHO than for PRO or water: 0.7 (0.4 to 1.0), 0.1 (-0.2 to 0.40), and 0.0 (-0.3 to 0.3) L/min (P < 0.001), respectively; the higher cardiac output following CHO was accompanied by an increase in stroke volume and a lower SVR. The mean increments (95% CI) in cardiac output during exercise were CHO 4.7 (4.4 to 5.0), PRO 4.9 (4.6 to 5.2), and water 4.6 (4.3 to 4.9) L/min with the difference between PRO versus water being significant (P < 0.025). There were no other statistically significant differences. In summary, a CHO-rich drink increased cardiac output and lowered SVR in the resting state compared with a PRO-rich drink or water but the effect size of changes in these variables did not differ during or after exercise between CHO and PRO. Neither protein nor carbohydrate affected blood pressure reactivity to exercise.

  19. Low Cardiac Output Secondary to a Malpositioned Umbilical Venous Catheter: Value of Targeted Neonatal Echocardiography

    PubMed Central

    Weisz, Dany E.; Poon, Wei Bing; James, Andrew; McNamara, Patrick J.

    2014-01-01

    Systemic hypotension is common in very low birthweight preterm infants but the nature of the precipitating cause may be unclear. Targeted neonatal echocardiography (TnEcho) is being increasingly used to support hemodynamic decisions in the neonatal intensive care unit (NICU), including identifying impairments in the transitional circulation of preterm infants, providing timely re-evaluation after institution of therapies and evaluating the placement of indwelling catheters. We present a case of a preterm infant with systemic hypotension and low cardiac output secondary to a large transatrial shunt induced by a malpositioned umbilical venous catheter. Repositioning of the line led to resolution of the hemodynamic disturbance and clinical instability, highlighting the utility of TnEcho in the NICU. PMID:25032055

  20. Monitoring Cardiac Output and Transesophageal Echocardiography during Removal of a Ventricular Assist Device.

    PubMed

    Demir, Aslı; Karadeniz, Ümit; Aydınlı, Bahar; Taş, Murat; Erdemli, Özcan

    2013-12-01

    A ventricular assist device (VAD) is a mechanical pump used to support heart function and blood flow in patients with poor heart functions. For selected patients who are too ill to wait for a heart transplant or are not eligible for a heart transplant because of age or other medical problems, ventricular assist devices offer life-saving therapy. This device has also become a life-saving approach for patients with acute viral myocarditis. Following the acute illness phase, when heart function has improved, the VAD is carefully removed. It is very important to continuously monitor myocardial functions during this period. In this paper, we present a patient who underwent cardiac output and transesophageal echocardiography monitoring during VAD removal.

  1. Monitoring Cardiac Output and Transesophageal Echocardiography during Removal of a Ventricular Assist Device

    PubMed Central

    Demir, Aslı; Karadeniz, Ümit; Aydınlı, Bahar; Taş, Murat; Erdemli, Özcan

    2013-01-01

    A ventricular assist device (VAD) is a mechanical pump used to support heart function and blood flow in patients with poor heart functions. For selected patients who are too ill to wait for a heart transplant or are not eligible for a heart transplant because of age or other medical problems, ventricular assist devices offer life-saving therapy. This device has also become a life-saving approach for patients with acute viral myocarditis. Following the acute illness phase, when heart function has improved, the VAD is carefully removed. It is very important to continuously monitor myocardial functions during this period. In this paper, we present a patient who underwent cardiac output and transesophageal echocardiography monitoring during VAD removal. PMID:27366376

  2. Noninvasive aortic bloodflow by Pulsed Doppler Echocardiography (PDE) compared to cardiac output by the direct Fick procedure

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Left ventricular stroke volume was estimated from the systolic velocity integral in the ascending aorta by pulsed Doppler Echocardiography (PDE) and the cross sectional area of the aorta estimated by M mode echocardiography on 15 patients with coronary disease undergoing right catheterization for diagnostic purposes. Cardiac output was calculated from stroke volume and heart volume using the PDE method as well as the Fick procedure for comparison. The mean value for the cardiac output via the PDE method (4.42 L/min) was only 6% lower than for the cardiac output obtained from the Fick procedure (4.69 L/min) and the correlation between the two methods was excellent (r=0.967, p less than .01). The good agreement between the two methods demonstrates that the PDE technique offers a reliable noninvasive alternative for estimating cardiac output, requiring no active cooperation by the subject. It was concluded that the Doppler method is superior to the Fick method in that it provides beat by beat information on cardiac performance.

  3. The Neuromuscular Transform of the Lobster Cardiac System Explains the Opposing Effects of a Neuromodulator on Muscle Output

    PubMed Central

    Williams, Alex H.; Calkins, Andrew; O'Leary, Timothy; Symonds, Renee; Marder, Eve

    2013-01-01

    Motor neuron activity is transformed into muscle movement through a cascade of complex molecular and biomechanical events. This nonlinear mapping of neural inputs to motor behaviors is called the neuromuscular transform (NMT). We examined the NMT in the cardiac system of the lobster Homarus americanus by stimulating a cardiac motor nerve with rhythmic bursts of action potentials and measuring muscle movements in response to different stimulation patterns. The NMT was similar across preparations, which suggested that it could be used to predict muscle movement from spontaneous neural activity in the intact heart. We assessed this possibility across semi-intact heart preparations in two separate analyses. First, we performed a linear regression analysis across 122 preparations in physiological saline to predict muscle movements from neural activity. Under these conditions, the NMT was predictive of contraction duty cycle but was unable to predict contraction amplitude, likely as a result of uncontrolled interanimal variability. Second, we assessed the ability of the NMT to predict changes in motor output induced by the neuropeptide C-type allatostatin. Wiwatpanit et al. (2012) showed that bath application of C-type allatostatin produced either increases or decreases in the amplitude of the lobster heart contractions. We show that an important component of these preparation-dependent effects can arise from quantifiable differences in the basal state of each preparation and the nonlinear form of the NMT. These results illustrate how properly characterizing the relationships between neural activity and measurable physiological outputs can provide insight into seemingly idiosyncratic effects of neuromodulators across individuals. PMID:24133260

  4. Influence of heart motion on cardiac output estimation by means of electrical impedance tomography: a case study.

    PubMed

    Proença, Martin; Braun, Fabian; Rapin, Michael; Solà, Josep; Adler, Andy; Grychtol, Bartłomiej; Bohm, Stephan H; Lemay, Mathieu; Thiran, Jean-Philippe

    2015-06-01

    Electrical impedance tomography (EIT) is a non-invasive imaging technique that can measure cardiac-related intra-thoracic impedance changes. EIT-based cardiac output estimation relies on the assumption that the amplitude of the impedance change in the ventricular region is representative of stroke volume (SV). However, other factors such as heart motion can significantly affect this ventricular impedance change. In the present case study, a magnetic resonance imaging-based dynamic bio-impedance model fitting the morphology of a single male subject was built. Simulations were performed to evaluate the contribution of heart motion and its influence on EIT-based SV estimation. Myocardial deformation was found to be the main contributor to the ventricular impedance change (56%). However, motion-induced impedance changes showed a strong correlation (r = 0.978) with left ventricular volume. We explained this by the quasi-incompressibility of blood and myocardium. As a result, EIT achieved excellent accuracy in estimating a wide range of simulated SV values (error distribution of 0.57 ± 2.19 ml (1.02 ± 2.62%) and correlation of r = 0.996 after a two-point calibration was applied to convert impedance values to millilitres). As the model was based on one single subject, the strong correlation found between motion-induced changes and ventricular volume remains to be verified in larger datasets.

  5. Clinical significance of a spiral phenomenon in the plot of CO₂ output versus O₂ uptake during exercise in cardiac patients.

    PubMed

    Nagayama, Osamu; Koike, Akira; Himi, Tomoko; Sakurada, Koji; Kato, Yuko; Suzuki, Shinya; Sato, Akira; Yamashita, Takeshi; Wasserman, Karlman; Aonuma, Kazutaka

    2015-03-01

    A spiral phenomenon is sometimes noted in the plots of CO₂ output (VCO₂) against O₂ uptake (VO₂) measured during cardiopulmonary exercise testing (CPX) in patients with heart failure with oscillatory breathing. However, few data are available that elucidate the clinical significance of this phenomenon. Our group studied the prevalence of this phenomenon and its relation to cardiac and cardiopulmonary function. Of 2,263 cardiac patients who underwent CPX, 126 patients with a clear pattern of oscillatory breathing were identified. Cardiopulmonary indexes were compared between patients who showed the spiral phenomenon (n = 49) and those who did not (n = 77). The amplitudes of VO₂ and VCO₂ oscillations were greater and the phase difference between VO₂ and VCO₂ oscillations was longer in the patients with the spiral phenomenon than in those without it. Patients with the spiral phenomenon also had a lower left ventricular ejection fraction (43.4 ± 21.4% vs 57.1 ± 16.8%, p <0.001) and a higher level of brain natriuretic peptide (637.2 ± 698.3 vs 228.3 ± 351.4 pg/ml, p = 0.002). The peak VO₂ was lower (14.5 ± 5.6 vs 18.1 ± 6.3, p = 0.002), the slope of the increase in ventilation versus VCO₂ was higher (39.8 ± 9.5 vs 33.6 ± 6.8, p <0.001), and end-tidal PCO₂ both at rest and at peak exercise was lower in the patients with the spiral phenomenon than in those without it. In conclusion, the spiral phenomenon in the VCO₂-versus-VO₂ plot arising from the phase difference between VCO₂ and VO₂ oscillations reflects more advanced cardiopulmonary dysfunction in cardiac patients with oscillatory breathing.

  6. PRESAGE 3D dosimetry accurately measures Gamma Knife output factors

    NASA Astrophysics Data System (ADS)

    Klawikowski, Slade J.; Yang, James N.; Adamovics, John; Ibbott, Geoffrey S.

    2014-12-01

    Small-field output factor measurements are traditionally very difficult because of steep dose gradients, loss of lateral electronic equilibrium, and dose volume averaging in finitely sized detectors. Three-dimensional (3D) dosimetry is ideal for measuring small output factors and avoids many of these potential challenges of point and 2D detectors. PRESAGE 3D polymer dosimeters were used to measure the output factors for the 4 mm and 8 mm collimators of the Leksell Perfexion Gamma Knife radiosurgery treatment system. Discrepancies between the planned and measured distance between shot centers were also investigated. A Gamma Knife head frame was mounted onto an anthropomorphic head phantom. Special inserts were machined to hold 60 mm diameter, 70 mm tall cylindrical PRESAGE dosimeters. The phantom was irradiated with one 16 mm shot and either one 4 mm or one 8 mm shot, to a prescribed dose of either 3 Gy or 4 Gy to the 50% isodose line. The two shots were spaced between 30 mm and 60 mm apart and aligned along the central axis of the cylinder. The Presage dosimeters were measured using the DMOS-RPC optical CT scanning system. Five independent 4 mm output factor measurements fell within 2% of the manufacturer’s Monte Carlo simulation-derived nominal value, as did two independent 8 mm output factor measurements. The measured distances between shot centers varied by ±0.8 mm with respect to the planned shot displacements. On the basis of these results, we conclude that PRESAGE dosimetry is excellently suited to quantify the difficult-to-measure Gamma Knife output factors.

  7. Can stroke volume and cardiac output be determined reliably in a tilt-table test using the pulse contour method?

    PubMed

    Nieminen, T; Kööbi, T; Turjanmaa, V

    2000-11-01

    The applicability of the finger pressure-derived pulse contour (PC) technique was evaluated in the measurement of stroke volume (SV), cardiac output (CO) and their changes in different phases of the tilt-table test. The reference method was whole-body impedance cardiography (ICG). A total number of 40 physically active patients, aged 41 +/- 19 years, were randomly chosen from a pool of 230. Specifically speaking, 20 of the patients experienced (pre)syncope (tilt+ patients) during the head-up tilt (HUT), and 20 did not (tilt-). A total number of three measurement periods, 30-60 s each, were analysed: supine position, 5 min after the commencement of HUT, and 1 min before set down. SV and CO values measured by PC underestimated significantly those measured by ICG (biases +/- SD 19 +/- 14 ml and 1.55 +/- 1.14 l min-1, respectively) in agreement with earlier reports. The bias between the methods was almost the same in the different phases of the test. However, the SD of the bias was bigger for tilt+ (P < 0.05). When the bias between the methods was eliminated by scaling the first measurement to 100%, the agreement between the methods in the second and third measurements was clearly better than without scaling. Both methods showed a physiological drop in SV after the commencement of HUT. These results indicate that PC suffices in tracking the changes in CO and SV, but for absolute values it is not reliable.

  8. Acoustic output of multi-line transmit beamforming for fast cardiac imaging: a simulation study.

    PubMed

    Santos, Pedro; Tong, Ling; Ortega, Alejandra; Løvstakken, Lasse; Samset, Eigil; D'hooge, Jan

    2015-07-01

    Achieving higher frame rates in cardiac ultrasound could unveil short-lived myocardial events and lead to new insights on cardiac function. Multi-line transmit (MLT) beamforming (i.e., simultaneously transmitting multiple focused beams) is a potential approach to achieve this. However, two challenges come with it: first, it leads to cross-talk between the MLT beams, appearing as imaging artifacts, and second, it presents acoustic summation in the near field, where multiple MLT beams overlap. Although several studies have focused on the former, no studies have looked into the implications of the latter on acoustic safety. In this paper, the acoustic field of 4-MLT was simulated and compared with single-line transmit (SLT). The findings suggest that standard MLT does present potential concerns. Compared with SLT, it shows a 2-fold increase in mechanical index (MI) (from 1.0 to 2.3), a 6-fold increase in spatial-peak pulse-average intensity (I(sppa)) (from 99 to 576 W∙cm(-2)) and a 12-fold increase in spatial-peak temporalaverage intensity (I(spta)) (from 119 to 1407 mW∙cm(-2)). Subsequently, modifications of the transmit pulse and delay line of MLT were studied. These modifications allowed for a change in the spatio-temporal distribution of the acoustic output, thereby significantly decreasing the safety indices (MI = 1.2, I(sppa) = 92 W∙cm(-2) and I(spta) = 366 mW∙cm(-2)). Accordingly, they help mitigate the concerns around MLT, reducing potential tradeoffs between acoustic safety and image quality.

  9. Early predictors of acute kidney injury in patients with cirrhosis and bacterial infection: urinary neutrophil gelatinase-associated lipocalin and cardiac output as reliable tools

    PubMed Central

    Ximenes, Rafael O.; Farias, Alberto Q.; Helou, Claudia M.B.

    2015-01-01

    Background Hemodynamic abnormalities and acute kidney injury (AKI) are often present in infected cirrhotic patients. Hence, an early diagnosis of AKI is necessary, which might require the validation of new predictors as the determinations of urinary neutrophil gelatinase-associated lipocalin (uNGAL) and cardiac output. Methods We evaluated 18 infected cirrhotic patients subdivided into two groups at admission (0 hours). In Group I, we collected urine samples at 0 hours, 6 hours, 24 hours, and 48 hours for uNGAL and fractional excretion of sodium determinations. In Group II, we measured cardiac output using echocardiography. Results The age of patients was 55.0±1.9 years, and 11 patients were males. The Model for End-Stage Liver Disease score was 21±1, whereas the Child–Pugh score was C in 11 patients and B in 7 patients. Both patients in Group I and Group II showed similar baseline characteristics. In Group I, we diagnosed AKI in 5 of 9 patients, and the mean time to this diagnosis by measuring serum creatinine was 5.4 days. Patients with AKI showed higher uNGAL levels than those without AKI from 6 hours to 48 hours. The best accuracy using the cutoff values of 68 ng uNGAL/mg creatinine was achieved at 48 hours when we distinguished patients with and without AKI in all cases. In Group II, we diagnosed AKI in 4 of 9 patients, and cardiac output was significantly higher in patients who developed AKI at 0 hours. Conclusion Both uNGAL and cardiac output determinations allow the prediction of AKI in infected cirrhotic patients earlier than increments in serum creatinine. PMID:26484038

  10. Femoral Blood Flow and Cardiac Output During Blood Flow Restricted Leg Press Exercise

    NASA Technical Reports Server (NTRS)

    Everett, M. E.; Hackney, K.; Ploutz-Snyder, L.

    2011-01-01

    Low load blood flow restricted resistance exercise (LBFR) causes muscle hypertrophy that may be stimulated by the local ischemic environment created by the cuff pressure. However, local blood flow (BF) during such exercise is not well understood. PURPOSE: To characterize femoral artery BF and cardiac output (CO) during leg press exercise (LP) performed at a high load (HL) and low load (LL) with different levels of cuff pressure. METHODS: Eleven subjects (men/women 4/7, age 31.4+/-12.8 y, weight 68.9+/-13.2 kg, mean+/-SD) performed 3 sets of supine left LP to fatigue with 90 s of rest in 4 conditions: HL (%1-RM/cuff pressure: 80%/0); LL (20%/0); LBFR(sub DBP) (20%/1.3 x diastolic blood pressure, BP); LBFR(sub SBP) (20%/1.3 x supine systolic BP). The cuff remained inflated throughout the LBFR exercise sessions. Artery diameter, velocity time integral (VTI), and stroke volume (SV) were measured using Doppler ultrasound at rest and immediately after each set of exercise. Heart rate (HR) was monitored using a 3-lead ECG. BF was calculated as VTI x vessel cross-sectional area. CO was calculated as HR x SV. The data obtained after each set of exercise were averaged and used for analyses. Multi-level modeling was used to determine the effect of exercise condition on dependent variables. Statistical significance was set a priori at p< 0.05. RESULTS: Artery diameter did not change from baseline. BF increased (p<0.05) after exercise in each condition except LBFR(sub SBP) in the order of HL (12.73+/-1.42 cm3,mean+/-SE) > LL (9.92+/-0.82 cm3) > LBFR(sub dBP)(6.47+/-0.79 cm3) > LBFR(sub SBP) (3.51+/-0.59 cm3). Blunted exercise induced increases occurred in HR, SV, and CO after LBFR compared to HL and LL. HR increased 45% after HL and LL and 28% after LBFR (p<0.05), but SV increased (p<0.05) only after HL. Consequently, the increase (p<0.05) in CO was greater in HL and LL (approximately 3 L/min) than in LBFR (approximately 1 L/min). CONCLUSION: BF during LBFR(sub SBP) was 1/3 of

  11. Left ventricular atrioventricular plane displacement is preserved with lifelong endurance training and is the main determinant of maximal cardiac output.

    PubMed

    Steding-Ehrenborg, Katarina; Boushel, Robert C; Calbet, José A; Åkeson, Per; Mortensen, Stefan P

    2015-12-01

    Age-related decline in cardiac function can be prevented or postponed by lifelong endurance training. However, effects of normal ageing as well as of lifelong endurance exercise on longitudinal and radial contribution to stroke volume are unknown. The aim of this study was to determine resting longitudinal and radial pumping in elderly athletes, sedentary elderly and young sedentary subjects. Furthermore, we aimed to investigate determinants of maximal cardiac output in elderly. Eight elderly athletes (63 ± 4 years), seven elderly sedentary (66 ± 4 years) and ten young sedentary subjects (29 ± 4 years) underwent cardiac magnetic resonance imaging. All subjects underwent maximal exercise testing and for elderly subjects maximal cardiac output during cycling was determined using a dye dilution technique. Longitudinal and radial contribution to stroke volume did not differ between groups (longitudinal left ventricle (LV) 52-65%, P = 0.12, right ventricle (RV) 77-87%, P = 0.16, radial 7.9-8.6%, P = 1.0). Left ventricular atrioventricular plane displacement (LVAVPD) was higher in elderly athletes and young sedentary compared with elderly sedentary subjects (14 ± 3, 15 ± 2 and 11 ± 1 mm, respectively, P < 0.05). There was no difference between groups for RVAVPD (P = 0.2). LVAVPD was an independent predictor of maximal cardiac output (R(2) = 0.61, P < 0.01, β = 0.78). Longitudinal and radial contributions to stroke volume did not differ between groups. However, how longitudinal pumping was achieved differed; elderly athletes and young sedentary subjects showed similar AVPD whereas this was significantly lower in elderly sedentary subjects. Elderly sedentary subjects achieved longitudinal pumping through increased short-axis area of the ventricle. Large AVPD was a determinant of maximal cardiac output and exercise capacity.

  12. Validation of cardiac accelerometer sensor measurements.

    PubMed

    Remme, Espen W; Hoff, Lars; Halvorsen, Per Steinar; Naerum, Edvard; Skulstad, Helge; Fleischer, Lars A; Elle, Ole Jakob; Fosse, Erik

    2009-12-01

    In this study we have investigated the accuracy of an accelerometer sensor designed for the measurement of cardiac motion and automatic detection of motion abnormalities caused by myocardial ischaemia. The accelerometer, attached to the left ventricular wall, changed its orientation relative to the direction of gravity during the cardiac cycle. This caused a varying gravity component in the measured acceleration signal that introduced an error in the calculation of myocardial motion. Circumferential displacement, velocity and rotation of the left ventricular apical region were calculated from the measured acceleration signal. We developed a mathematical method to separate translational and gravitational acceleration components based on a priori assumptions of myocardial motion. The accuracy of the measured motion was investigated by comparison with known motion of a robot arm programmed to move like the heart wall. The accuracy was also investigated in an animal study. The sensor measurements were compared with simultaneously recorded motion from a robot arm attached next to the sensor on the heart and with measured motion by echocardiography and a video camera. The developed compensation method for the varying gravity component improved the accuracy of the calculated velocity and displacement traces, giving very good agreement with the reference methods.

  13. Cardiac output but not stroke volume is similar in a Wingate and VO2peak test in young men.

    PubMed

    Fontana, Piero; Betschon, Katharina; Boutellier, Urs; Toigo, Marco

    2011-01-01

    Wingate test (WT) training programmes lasting 2-3 weeks lead to improved peak oxygen consumption. If a single 30 s WT was capable of significantly increasing stroke volume and cardiac output, the increase in peak oxygen consumption could possibly be explained by improved oxygen delivery. Thus, we investigated whether a single WT increases stroke volume and cardiac output to similar levels than those obtained at peak exercise during a graded cycling exercise test (GXT) to exhaustion. Fifteen healthy young men (peak oxygen consumption 45.0 ± 5.3 ml kg(-1) min(-1)) performed one WT and one GXT on separate days in randomised order. During the tests, we estimated cardiac output using inert gas rebreathing (nitrous oxide and sulphur hexafluoride) and subsequently calculated stroke volume. We found that cardiac output was similar (18.2 ± 3.3 vs. 17.9 ± 2.6 l min(-1); P = 0.744), stroke volume was higher (127 ± 37 vs. 94 ± 15 ml; P < 0.001), and heart rate was lower (149 ± 26 vs. 190 ± 12 beats min(-1); P < 0.001) at the end (27 ± 2 s) of a WT as compared to peak exercise during a GXT. Our results suggest that a single WT produces a haemodynamic response which is characterised by similar cardiac output, higher stroke volume and lower heart rate as compared to peak exercise during a GXT.

  14. Gamma Knife output factor measurements using VIP polymer gel dosimetry

    SciTech Connect

    Moutsatsos, A.; Petrokokkinos, L.; Karaiskos, P.; Papagiannis, P.; Georgiou, E.; Dardoufas, K.; Sandilos, P.; Torrens, M.; Pantelis, E.; Kantemiris, I.; Sakelliou, L.; Seimenis, I.

    2009-09-15

    Purpose: Water equivalent polymer gel dosimeters and magnetic resonance imaging were employed to measure the output factors of the two smallest treatment fields available in a Gamma Knife model C radiosurgery unit, those formed employing the 4 and 8 mm final collimator helmets. Methods: Three samples of the VIP normoxic gel formulation were prepared and irradiated so that a single shot of the field whose output factor is to be measured and a single shot of the reference 18 mm field were delivered in each one. Emphasis is given to the development and benchmarking of a refined data processing methodology of reduced uncertainty that fully exploits the 3D dose distributions registered in the dosimeters. Results: Polymer gel results for the output factor of the 8 mm collimator helmet are found to be in close agreement with the corresponding value recommended by the vendor (0.955{+-}0.007 versus 0.956, respectively). For the 4 mm collimator helmet, however, polymer gel results suggest an output factor 3% lower than the value recommended by the vendor (0.841{+-}0.009 versus 0.870, respectively). Conclusions: A comparison with corresponding measurements published in the literature indicates that output factor results of this work are in agreement with those obtained using dosimetric systems which, besides fine spatial resolution and lack of angular and dose rate dependence of the dosimeter's response, share with polymer gels the favorable characteristic of minimal radiation field perturbation.

  15. Reliability of a new 4th generation FloTrac algorithm to track cardiac output changes in patients receiving phenylephrine.

    PubMed

    Ji, Fuhai; Li, Jian; Fleming, Neal; Rose, David; Liu, Hong

    2015-08-01

    Phenylephrine is often used to treat intra-operative hypotension. Previous studies have shown that the FloTrac cardiac monitor may overestimate cardiac output (CO) changes following phenylephrine administration. A new algorithm (4th generation) has been developed to improve performance in this setting. We performed a prospective observational study to assess the effects of phenylephrine administration on CO values measured by the 3rd and 4th generation FloTrac algorithms. 54 patients were enrolled in this study. We used the Nexfin, a pulse contour method shown to be insensitive to vasopressor administration, as the reference method. Radial arterial pressures were recorded continuously in patients undergoing surgery. Phenylephrine administration times were documented. Arterial pressure recordings were subsequently analyzed offline using three different pulse contour analysis algorithms: FloTrac 3rd generation (G3), FloTrac 4th generation (G4), and Nexfin (nf). One minute of hemodynamic measurements was analyzed immediately before phenylephrine administration and then repeated when the mean arterial pressure peaked. A total of 157 (4.6 ± 3.2 per patient, range 1-15) paired sets of hemodynamic recordings were analyzed. Phenylephrine induced a significant increase in stroke volume (SV) and CO with the FloTrac G3, but not with FloTrac G4 or Nexfin algorithms. Agreement between FloTrac G3 and Nexfin was: 0.23 ± 1.19 l/min and concordance was 51.1%. In contrast, agreement between FloTrac G4 and Nexfin was: 0.19 ± 0.86 l/min and concordance was 87.2%. In conclusion, the pulse contour method of measuring CO, as implemented in FloTrac 4th generation algorithm, has significantly improved its ability to track the changes in CO induced by phenylephrine.

  16. Cardiac output method comparison studies: the relation of the precision of agreement and the precision of method.

    PubMed

    Hapfelmeier, Alexander; Cecconi, Maurizio; Saugel, Bernd

    2016-04-01

    Cardiac output (CO) plays a crucial role in the hemodynamic management of critically ill patients treated in the intensive care unit and in surgical patients undergoing major surgery. In the field of cardiovascular dynamics, innovative techniques for CO determination are increasingly available. Therefore, the number of studies comparing these techniques with a reference, such as pulmonary artery thermodilution, is rapidly growing. There are mainly two outcomes of such method comparison studies: (1) the accuracy of agreement and (2) the precision of agreement. The precision of agreement depends on the precision of each method, i.e., the precision that the studied and the reference technique are able to achieve. We call this "precision of method". A decomposition of variance shows that method agreement does not only depend on the precision of method but also on another important source of variability, i.e., the method's general variability about the true values. Ignorance of that fact leads to falsified conclusions about the precision of method of the studied technique. In CO studies, serial measurements are frequently confused with repeated measurements. But as the actual CO of a subject changes from assessment to assessment, there is no real repetition of a measurement. This situation equals a scenario in which single measurements are given for multiple true values per subject. In such a case it is not possible to assess the precision of method.

  17. Kinetics of Cardiac Output at the Onset of Exercise in Precapillary Pulmonary Hypertension

    PubMed Central

    Bengueddache, Samir; Ferretti, Guido; Soccal, Paola M.; Noble, Stéphane; Beghetti, Maurice; Chemla, Denis; Hervé, Philippe; Sitbon, Olivier

    2016-01-01

    Purpose. Cardiac output (CO) is a cornerstone parameter in precapillary pulmonary hypertension (PH). The Modelflow (MF) method offers a reliable noninvasive determination of its beat-by-beat changes. So MF allows exploration of CO adjustment with the best temporal resolution. Methods. Fifteen subjects (5 PH patients, 10 healthy controls) performed a submaximal supine exercise on a cycle ergometer after 5 min of rest. CO was continuously determined by MF (COMF). Kinetics of heart rate (HR), stroke volume (SV), and CO were determined with 3 monoexponential models. Results. In PH patients, we observed a sudden and transitory drop of SV upon exercise onset. This implied a transitory drop of CO whose adjustment to a new steady state depended on HR increase. The kinetics of HR and CO for PH patients was slower than that of controls for all models and for SV in model 1. SV kinetics was faster for PH patients in models 2 and 3. Conclusion. This is the first description of beat-by-beat cardiovascular adjustments upon exercise onset in PH. The kinetics of HR and CO appeared slower than those of healthy controls and there was a transitory drop of CO upon exercise onset in PH due to a sudden drop of SV. PMID:27990432

  18. Cardiac output and associated left ventricular hypertrophy in pediatric chronic kidney disease.

    PubMed

    Weaver, Donald J; Kimball, Thomas R; Koury, Phillip R; Mitsnefes, Mark M

    2009-03-01

    A significant number of children with chronic kidney disease (CKD) have eccentric left ventricular hypertrophy (LVH), suggesting the role of preload overload. Therefore, we hypothesized that increased cardiac output (CO) might be a contributing factor for increased left ventricular mass index (LVMI) in these children. Patients aged 6-20 years with CKD stages 2-4 were enrolled. Echocardiograms were performed to assess LV function and geometry at rest and during exercise. Heart rate, stroke volume, and CO were also assessed at rest and during exercise. Twenty-four-hour ambulatory blood pressure (AMBP) monitoring was performed. Of the patients enrolled in this study, 17% had LVH. Increased stroke volume and CO were observed in patients with LVH compared to patients without LVH. Univariate analysis revealed significant positive associations between LVMI and CO, stroke volume, body mass index, pulse pressure from mean 24-h AMBP, and mean 24-h systolic BP load. No association with heart rate, age, parathyroid hormone, glomerular filtration rate, or anemia was observed. Only CO (beta = 1.98, p = 0.0005) was independently associated with increased LVMI in multivariate modeling (model R (2) = 0.25). The results of this study suggest that increased CO might predispose to increased LVMI in pediatric patients with CKD. Adaptations may be required to meet increased metabolic demand in these patients.

  19. Kinetics of Cardiac Output at the Onset of Exercise in Precapillary Pulmonary Hypertension.

    PubMed

    Lador, Frédéric; Bringard, Aurélien; Bengueddache, Samir; Ferretti, Guido; Bendjelid, Karim; Soccal, Paola M; Noble, Stéphane; Beghetti, Maurice; Chemla, Denis; Hervé, Philippe; Sitbon, Olivier

    2016-01-01

    Purpose. Cardiac output (CO) is a cornerstone parameter in precapillary pulmonary hypertension (PH). The Modelflow (MF) method offers a reliable noninvasive determination of its beat-by-beat changes. So MF allows exploration of CO adjustment with the best temporal resolution. Methods. Fifteen subjects (5 PH patients, 10 healthy controls) performed a submaximal supine exercise on a cycle ergometer after 5 min of rest. CO was continuously determined by MF (COMF). Kinetics of heart rate (HR), stroke volume (SV), and CO were determined with 3 monoexponential models. Results. In PH patients, we observed a sudden and transitory drop of SV upon exercise onset. This implied a transitory drop of CO whose adjustment to a new steady state depended on HR increase. The kinetics of HR and CO for PH patients was slower than that of controls for all models and for SV in model 1. SV kinetics was faster for PH patients in models 2 and 3. Conclusion. This is the first description of beat-by-beat cardiovascular adjustments upon exercise onset in PH. The kinetics of HR and CO appeared slower than those of healthy controls and there was a transitory drop of CO upon exercise onset in PH due to a sudden drop of SV.

  20. A computational model-based validation of Guyton's analysis of cardiac output and venous return curves

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.; Cohen, R. J.; Mark, R. G.

    2002-01-01

    Guyton developed a popular approach for understanding the factors responsible for cardiac output (CO) regulation in which 1) the heart-lung unit and systemic circulation are independently characterized via CO and venous return (VR) curves, and 2) average CO and right atrial pressure (RAP) of the intact circulation are predicted by graphically intersecting the curves. However, this approach is virtually impossible to verify experimentally. We theoretically evaluated the approach with respect to a nonlinear, computational model of the pulsatile heart and circulation. We developed two sets of open circulation models to generate CO and VR curves, differing by the manner in which average RAP was varied. One set applied constant RAPs, while the other set applied pulsatile RAPs. Accurate prediction of intact, average CO and RAP was achieved only by intersecting the CO and VR curves generated with pulsatile RAPs because of the pulsatility and nonlinearity (e.g., systemic venous collapse) of the intact model. The CO and VR curves generated with pulsatile RAPs were also practically independent. This theoretical study therefore supports the validity of Guyton's graphical analysis.

  1. High Output Cardiac Failure Resolving after Repair of AV Fistula in a Six-Month-Old

    PubMed Central

    Teomete, Uygar; Gugol, Rubee Anne; Neville, Holly; Dandin, Ozgur; Young, Ming-Lon

    2016-01-01

    Background. Acquired AVF in pediatrics are commonly caused by iatrogenic means, including arterial or venous punctures. These fistulae can cause great hemodynamic stress on the heart as soon as they are created. Case. A six-month-old 25-week gestation infant was referred for respiratory distress. Initial exam revealed tachypnea, tachycardia, and hypertension. There was a bruit noted on her left arm. An ultrasound showed an arteriovenous fistula. Its location, however, precluded intervention because of the high risk for limb-loss. An echocardiogram showed evidence of pulmonary hypertension that was treated with sildenafil and furosemide. However, no improvement was seen. On temporary manual occlusion of the fistula, the patient was noted to have increased her blood pressure and decreased her heart rate, suggesting significant hemodynamic effect of the fistula. The fistula was subsequently ligated and the patient clinically and echocardiographically improved. Conclusion. A patient in high output cardiac failure or pulmonary artery hypertension, especially prematüre patients with preexisting lung disease, should be probed for history of multiple punctures, trauma, or surgery and should have prompt evaluation for AVF. If it can be diagnosed and repaired, most of the cases have been shown to decrease the stress on the heart and reverse the pathologic hemodynamics. PMID:26885434

  2. High Output Cardiac Failure Resolving after Repair of AV Fistula in a Six-Month-Old.

    PubMed

    Teomete, Uygar; Gugol, Rubee Anne; Neville, Holly; Dandin, Ozgur; Young, Ming-Lon

    2016-01-01

    Background. Acquired AVF in pediatrics are commonly caused by iatrogenic means, including arterial or venous punctures. These fistulae can cause great hemodynamic stress on the heart as soon as they are created. Case. A six-month-old 25-week gestation infant was referred for respiratory distress. Initial exam revealed tachypnea, tachycardia, and hypertension. There was a bruit noted on her left arm. An ultrasound showed an arteriovenous fistula. Its location, however, precluded intervention because of the high risk for limb-loss. An echocardiogram showed evidence of pulmonary hypertension that was treated with sildenafil and furosemide. However, no improvement was seen. On temporary manual occlusion of the fistula, the patient was noted to have increased her blood pressure and decreased her heart rate, suggesting significant hemodynamic effect of the fistula. The fistula was subsequently ligated and the patient clinically and echocardiographically improved. Conclusion. A patient in high output cardiac failure or pulmonary artery hypertension, especially prematüre patients with preexisting lung disease, should be probed for history of multiple punctures, trauma, or surgery and should have prompt evaluation for AVF. If it can be diagnosed and repaired, most of the cases have been shown to decrease the stress on the heart and reverse the pathologic hemodynamics.

  3. Cardiac output: a central issue in patients with respiratory extracorporeal support.

    PubMed

    Romagnoli, Stefano; Zagli, Giovanni; Ricci, Zaccaria; Villa, Gianluca; Barbani, Francesco; Pinelli, Fulvio; De Gaudio, Raffaele; Chelazzi, Cosimo

    2017-01-01

    The iLA-activve(®) Novalung is a new extracorporeal device specifically designed for lung support in patients with hypercapnic and/or hypoxemic respiratory failure. To date, only low-flow applications for decompensated hypercapnic chronic obstructive pulmonary disease have been reported in the literature. Here, we briefly report three cases of iLA-activve use in patients with hypercapnic-hypoxemic acute lung failure assisted with mid-flow (up to 2.4 L/min) and different single/double venous cannulation. The main findings of our small case series were: firstly, extracorporeal blood flows over 2.0 L/min across the membrane provided clinically satisfying decarboxylation and improved oxygenation; secondly, the ratio between blood flow through the membrane and the patient's cardiac output (CO) was a major determinant for the oxygen increase. The latter could, therefore, be a useful indicator for understanding performance in the complex and multifactorial evaluation of patients with extracorporeal veno-venous lung support.

  4. Evaluation of cardiac output in intensive care using a non-invasive arterial pulse contour technique (Nexfin(®)) compared with echocardiography.

    PubMed

    Taton, O; Fagnoul, D; De Backer, D; Vincent, J-L

    2013-09-01

    In this prospective study, cardiac output was measured in 38 intensive care unit patients before and after a fluid challenge, using both pulse contour analysis (Nexfin(®); BMEYE, Amsterdam, the Netherlands) and transthoracic echocardiography. The ability of the Nexfin device to detect significant changes in the velocity-time integral was evaluated. The pulse wave could not be detected by the Nexfin device in five patients (13%), leaving 33 patients for analysis. The Nexfin device adequately tracked changes in the velocity-time integral in 20 (61%) patients. Using a cut-off of a 10% increase in cardiac output estimated by the Nexfin or by echocardiography, the sensitivity of the Nexfin device to detect a response to fluid challenge was 47%, with specificity 81% and accuracy 64%. The percentage error between the Nexfin and echocardiography was 448%; lower limit of agreement -48% (95% CI -62 to -36%) and upper limit of agreement, 32% (95% CI 20-45%). We conclude that the Nexfin device does not adequately track changes in cardiac output in critically ill patients.

  5. Heat flow calorimeter. [measures output of Ni-Cd batteries

    NASA Technical Reports Server (NTRS)

    Fletcher, J. C.; Johnston, W. V. (Inventor)

    1974-01-01

    Heat flow calorimeter devices are used to measure heat liberated from or absorbed by an object. This device is capable of measuring the thermal output of sealed nickel-cadmium batteries or cells during charge-discharge cycles. An elongated metal heat conducting rod is coupled between the calorimeter vessel and a heat sink, thus providing the only heat exchange path from the calorimeter vessel itself.

  6. Hemodynamic monitoring in the critically ill: an overview of current cardiac output monitoring methods

    PubMed Central

    Huygh, Johan; Peeters, Yannick; Bernards, Jelle; Malbrain, Manu L. N. G.

    2016-01-01

    Critically ill patients are often hemodynamically unstable (or at risk of becoming unstable) owing to hypovolemia, cardiac dysfunction, or alterations of vasomotor function, leading to organ dysfunction, deterioration into multi-organ failure, and eventually death. With hemodynamic monitoring, we aim to guide our medical management so as to prevent or treat organ failure and improve the outcomes of our patients. Therapeutic measures may include fluid resuscitation, vasopressors, or inotropic agents. Both resuscitation and de-resuscitation phases can be guided using hemodynamic monitoring. This monitoring itself includes several different techniques, each with its own advantages and disadvantages, and may range from invasive to less- and even non-invasive techniques, calibrated or non-calibrated. This article will discuss the indications and basics of monitoring, further elaborating on the different techniques of monitoring. PMID:28003877

  7. Increase in cardiac output and PEEP as mechanism of pulmonary optimization.

    PubMed

    Curiel, C; Martínez, R; Pinto, V; Rosales, A; D'Empaire, G; Sánchez De Leon, R

    1995-03-01

    The influence of cardiac output (CO) and PEEP on pulmonary shunt (Qs/Qt) has been the subjects of considerable investigation but findings are controversial. The role of CO and PEEP on 19 isolated rabbit lung preparations perfused with hypoxic mixture (6% CO2, 10% O2, and 84% N2), which resulted in a constant oxygen venous pressure (64 +/- 5.6 mmHg) has been studied. The first group of 11 preparations were used to study the influence of CO modifications with room air ventilation on the Qs/Qt when the CO rises in 48%; in the second group simultaneous modifications in CO and PEEP (0.5 and 10 cm H2O) were performed. A positive correlation (p < 0.01) in Qs/Qt (0.048 +/- 0.04 to 0.12933 +/- 0.09) was found when the CO increased in the first experimental group, the fluid filtration rate (FFR) also increased and the pulmonary vascular resistance (PVR) remained stable. In the second group an increase of 5 and 10 cm H2O of PEEP at constant CO reduced the Qs/Qt (0.0361 +/- 0.02 to 0.0184 +/- 0.006) while it increased the arterio-venous oxygen difference, PVR and FFR. During high CO conditions increase of 5 and 10 cm H2O of PEEP reduced the Qs/Qt (0.099 +/- 0.03 to 0.027 +/- 0.02) and FFR. These data suggest that when the Qs/Qt is increased, the use of PEEP can compensate the ventilation/perfusion alterations and restore pulmonary gas exchange.

  8. Dynamic asymmetries of cardiac output transients in response to muscular exercise in man.

    PubMed Central

    Yoshida, T; Whipp, B J

    1994-01-01

    1. We determined the kinetics of cardiac output (Q) with respect to oxygen uptake (VO2) at the on- and off-transients of constant-load exercise. Six subjects performed constant-load exercise which consisted of 5 min rest, 5 min one-legged pedalling at 50 W and a 5 min recovery period. 2. The transient responses were characterized by first-order kinetics. There was no significant difference between the time constants for VO2 (tau VO2) at the on- (33.9 +/- 3.5 s, mean +/- S.E.M.) and off-transient (37.2 +/- 2.9 s). The time constant for Q (tau Q, 29.4 +/- 3.2 s) was consistently shorter than tau VO2 at the on-transient. However, tau Q was appreciably longer at the off-transient (44.3 +/- 3.6 s) than the on-transient. 3. The results support the contention that the time constant for the on-transient of Q is appreciably faster than that for VO2 and hence there seems little justification for the notion that the time constants for the kinetics of VO2 are determined by the limitations of blood flow in the transient. The asymmetry of Q kinetics, with the off-transient tau Q being appreciably slower than the on-transient tau Q, serves to maintain a sufficiently high oxygen flow to the muscle during recovery from exercise at a time when the muscle oxygen uptake remains high. PMID:7869250

  9. Dynamic device properties of pulse contour cardiac output during transcatheter aortic valve implantation.

    PubMed

    Petzoldt, Martin; Riedel, Carsten; Braeunig, Jan; Haas, Sebastian; Goepfert, Matthias S; Treede, Hendrik; Baldus, Stephan; Goetz, Alwin E; Reuter, Daniel A

    2015-06-01

    This prospective single-center study aimed to determine the responsiveness and diagnostic performance of continuous cardiac output (CCO) monitors based on pulse contour analysis compared with invasive mean arterial pressure (MAP) during predefined periods of acute circulatory deterioration in patients undergoing transcatheter aortic valve implantation (TAVI). The ability of calibrated (CCO(CAL)) and self-calibrated (CCO(AUTOCAL)) pulse contour analysis to detect the hemodynamic response to 37 episodes of balloon aortic valvuloplasty enabled by rapid ventricular pacing was quantified in 13 patients undergoing TAVI. A "low" and a "high" cut-off limit were predefined as a 15 or 25 % decrease from baseline respectively. We found no significant differences between CCO(CAL) and MAP regarding mean response time [low cut-off: 8.6 (7.1-10.5) vs. 8.9 (7.3-10.8) s, p = 0.76; high cut-off: 11.4 (9.7-13.5) vs. 12.6 (10.7-14.9) s, p = 0.32] or diagnostic performance [area under the receiver operating characteristics curve (AUC): 0.99 (0.98-1.0) vs. 1.0 (0.99-1.0), p = 0.46]. But CCOCAL had a significantly higher amplitude response [95.0 (88.7-98.8) % decrease from baseline] than MAP [41.2 (30.0-52.9) %, p < 0.001]. CCOAUTOCAL had a significantly lower AUC [0.83 (0.73-0.93), p < 0.001] than MAP. Moreover, CCO(CAL) detected hemodynamic recovery significantly earlier than MAP. In conclusion, CCO(CAL) and MAP provided equivalent responsiveness and diagnostic performance to detect acute circulatory depression, whereas CCO(AUTOCAL) appeared to be less appropriate. In contrast to CCO(CAL) the amplitude response of MAP was poor. Consequently even small response amplitudes of MAP could indicate severe decreases in CO.

  10. Role of the autonomic nervous system in the reduced maximal cardiac output at altitude.

    PubMed

    Bogaard, Harm J; Hopkins, Susan R; Yamaya, Yoshiki; Niizeki, Kyuichi; Ziegler, Michael G; Wagner, Peter D

    2002-07-01

    After acclimatization to high altitude, maximal exercise cardiac output (QT) is reduced. Possible contributing factors include 1) blood volume depletion, 2) increased blood viscosity, 3) myocardial hypoxia, 4) altered autonomic nervous system (ANS) function affecting maximal heart rate (HR), and 5) reduced flow demand from reduced muscle work capability. We tested the role of the ANS reduction of HR in this phenomenon in five normal subjects by separately blocking the sympathetic and parasympathetic arms of the ANS during maximal exercise after 2-wk acclimatization at 3,800 m to alter maximal HR. We used intravenous doses of 8.0 mg of propranolol and 0.8 mg of glycopyrrolate, respectively. At altitude, peak HR was 170 +/- 6 beats/min, reduced from 186 +/- 3 beats/min (P = 0.012) at sea level. Propranolol further reduced peak HR to 139 +/- 2 beats/min (P = 0.001), whereas glycopyrrolate increased peak HR to sea level values, 184 +/- 3 beats/min, confirming adequate dosing with each drug. In contrast, peak O(2) consumption, work rate, and QT were similar at altitude under all drug treatments [peak QT = 16.2 +/- 1.2 (control), 15.5 +/- 1.3 (propranolol), and 16.2 +/- 1.1 l/min (glycopyrrolate)]. All QT results at altitude were lower than those at sea level (20.0 +/- 1.8 l/min in air). Therefore, this study suggests that, whereas the ANS may affect HR at altitude, peak QT is unaffected by ANS blockade. We conclude that the effect of altered ANS function on HR is not the cause of the reduced maximal QT at altitude.

  11. Phlebotomy eliminates the maximal cardiac output response to six weeks of exercise training.

    PubMed

    Bonne, Thomas C; Doucende, Gregory; Flück, Daniela; Jacobs, Robert A; Nordsborg, Nikolai B; Robach, Paul; Walther, Guillaume; Lundby, Carsten

    2014-05-15

    With this study we tested the hypothesis that 6 wk of endurance training increases maximal cardiac output (Qmax) relatively more by elevating blood volume (BV) than by inducing structural and functional changes within the heart. Nine healthy but untrained volunteers (Vo2max 47 ± 5 ml·min(-1)·kg(-1)) underwent supervised training (60 min; 4 times weekly at 65% Vo2max for 6 wk), and Qmax was determined by inert gas rebreathing during cycle ergometer exercise before and after the training period. After the training period, blood volume (determined in duplicates by CO rebreathing) was reestablished to pretraining values by phlebotomy and Qmax was quantified again. Resting echography revealed no structural heart adaptations as a consequence of the training intervention. After the training period, plasma volume (PV), red blood cell volume (RBCV), and BV increased (P < 0.05) by 147 ± 168 (5 ± 5%), 235 ± 64 (10 ± 3%), and 382 ± 204 ml (7 ± 4%), respectively. Vo2max was augmented (P < 0.05) by 10 ± 7% after the training period and decreased (P < 0.05) by 8 ± 7% with phlebotomy. Concomitantly, Qmax was increased (P < 0.05) from 18.9 ± 2.1 to 20.4 ± 2.3 l/min (9 ± 6%) as a consequence of the training intervention, and after normalization of BV by phlebotomy Qmax returned to pretraining values (18.1 ± 2.5 l/min; 12 ± 5% reversal). Thus the exercise training-induced increase in BV is the main mechanism increasing Qmax after 6 wk of endurance training in previously untrained subjects.

  12. Assessment of cardiac output with transpulmonary thermodilution during exercise in humans.

    PubMed

    Calbet, José A L; Boushel, Robert

    2015-01-01

    The accuracy and reproducibility of transpulmonary thermodilution (TPTd) to assess cardiac output (Q̇) in exercising men was determined using indocyanine green (ICG) dilution as a reference method. TPTd has been utilized for the assessment of Q̇ and preload indexes of global end-diastolic volume and intrathoracic blood volume, as well as extravascular lung water (EVLW) in resting humans. It remains unknown if this technique is also accurate and reproducible during exercise. Sixteen healthy men underwent catheterization of the right femoral vein (for iced saline injection), an antecubital vein (ICG injection), and femoral artery (thermistor) to determine their Q̇ by TPTd and ICG concentration during incremental one- and two-legged pedaling on a cycle ergometer and combined arm cranking with leg pedaling to exhaustion. There was a close relationship between TPTd-Q̇ and ICG-Q̇ (r = 0.95, n = 151, standard error of the estimate: 1.452 l/min, P < 0.001; mean difference of 0.06 l/min; limits of agreement -2.98 to 2.86 l/min), and TPTd-Q̇ and ICG-Q̇ increased linearly with oxygen uptake with similar intercepts and slopes. Both methods had mean coefficients of variation close to 5% for Q̇, global end-diastolic volume, and intrathoracic blood volume. The mean coefficient of variation of EVLW, assessed with both indicators (ICG and thermal) was 17% and was sensitive enough to detect a reduction in EVLW of 107 ml when changing from resting supine to upright exercise. In summary, TPTd with bolus injection into the femoral vein is an accurate and reproducible method to assess Q̇ during exercise in humans.

  13. Omega-3 fatty acid supplementation enhances stroke volume and cardiac output during dynamic exercise.

    PubMed

    Walser, Buddy; Stebbins, Charles L

    2008-10-01

    Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have beneficial effects on cardiovascular function. We tested the hypotheses that dietary supplementation with DHA (2 g/day) + EPA (3 g/day) enhances increases in stroke volume (SV) and cardiac output (CO) and decreases in systemic vascular resistance (SVR) during dynamic exercise. Healthy subjects received DHA + EPA (eight men, four women) or safflower oil (six men, three women) for 6 weeks. Both groups performed 20 min of bicycle exercise (10 min each at a low and moderate work intensity) before and after DHA + EPA or safflower oil treatment. Mean arterial pressure (MAP), heart rate (HR), SV, CO, and SVR were assessed before exercise and during both workloads. HR was unaffected by DHA + EPA and MAP was reduced, but only at rest (88 +/- 5 vs. 83 +/- 4 mm Hg). DHA + EPA augmented increases in SV (14.1 +/- 6.3 vs. 32.3 +/- 8.7 ml) and CO (8.5 +/- 1.0 vs. 10.3 +/- 1.2 L/min) and tended to attenuate decreases in SVR (-7.0 +/- 0.6 vs. -10.1 +/- 1.6 mm Hg L(-1) min(-1)) during the moderate workload. Safflower oil treatment had no effects on MAP, HR, SV, CO or SVR at rest or during exercise. DHA + EPA-induced increases in SV and CO imply that dietary supplementation with these fatty acids can increase oxygen delivery during exercise, which may have beneficial clinical implications for individuals with cardiovascular disease and reduced exercise tolerance.

  14. Invasive Hemodynamic Assessment of Cardiac Output State after MitraClip Therapy in Nonanaesthetized Patients with Functional Mitral Regurgitation

    PubMed Central

    Budesinsky, Tomas; Linkova, Hana

    2016-01-01

    Background. Surgical correction of mitral regurgitation (MR) can lead to postoperative low cardiac output state. We aimed to assess the acute hemodynamic changes after percutaneous MitraClip therapy (a unique model without influence of factors linked to surgical procedure) in patients with functional MR without the influence of general anaesthesia. Methods. We studied invasive hemodynamic parameters in 23 patients before procedure (conscious, nonsedated patients), during procedure (intubated patients), and the first day after MitraClip implantation (conscious, extubated patients). Results. Mitral valve clipping significantly increased cardiac index (CI) (from 2.0 ± 0.5 to 3.3 ± 0.6 L/min/m2; p < 0.01). Conversely, there was significant reduction in the mean pulmonary capillary wedge pressure (PCWP) (from 18.6 ± 5.7 to 10.5 ± 3.8 mmHg; p < 0.01), mean pulmonary artery pressure (from 29.8 ± 10.9 to 25.2 ± 10.3 mmHg; p = 0.03), and pulmonary vascular resistance index (from 531 ± 359 to 365 ± 193 dyn·s·cm−5/m2; p = 0.03). Conclusions. The functional MR therapy with percutaneous MitraClip device results in significant increase in CI (+66%) and concomitant decrease in PCWP (−42%). None of our patients developed low cardiac output state. Our results support the idea that significant part of low cardiac output state after cardiac surgery is due to surgery related factors rather than due to increase in afterload after MR elimination. PMID:28058260

  15. Measurement of the total acoustic output power of HITU transducers

    NASA Astrophysics Data System (ADS)

    Jenderka, Klaus-V.; Beissner, Klaus

    2010-03-01

    The majority of High Intensity Therapeutic Ultrasound (HITU) applications use strongly focused ultrasound fields generating very high local intensities in the focal region. The metrology of these high-power ultrasound fields is a challenge for the established measurement procedures and devices. This paper describes the results of measurements by means of the radiation force for a total acoustic output power up to 400 W at 1.5 MHz and up to 200 W at 2.45 MHz. For this purpose, a radiation force balance set-up was adapted for the determination of large acoustic output powers. For two types of HITU transducers, the relationship between the total acoustic output power and the applied net electrical power was determined at close transducer-target distance. Further, dependence of the measured electro-acoustic radiation conductance on the transducer-target distance was investigated at reduced power levels, considering the appearance of focal anomalies. Concluding, a list of the main uncertainty contributions, and an estimate of the uncertainty for the used radiation force balance set-up is given for measurements at high power levels.

  16. Measuring fluid flow and heat output in seafloor hydrothermal environments

    NASA Astrophysics Data System (ADS)

    Germanovich, Leonid N.; Hurt, Robert S.; Smith, Joshua E.; Genc, Gence; Lowell, Robert P.

    2015-12-01

    We review techniques for measuring fluid flow and advective heat output from seafloor hydrothermal systems and describe new anemometer and turbine flowmeter devices we have designed, built, calibrated, and tested. These devices allow measuring fluid velocity at high- and low-temperature focused and diffuse discharge sites at oceanic spreading centers. The devices perform at ocean floor depths and black smoker temperatures and can be used to measure flow rates ranging over 2 orders of magnitude. Flow velocity is determined from the rotation rate of the rotor blades or paddle assembly. These devices have an open bearing design that eliminates clogging by particles or chemical precipitates as the fluid passes by the rotors. The devices are compact and lightweight enough for deployment from either an occupied or remotely operated submersible. The measured flow rates can be used in conjunction with vent temperature or geochemical measurements to obtain heat outputs or geochemical fluxes from both vent chimneys and diffuse flow regions. The devices have been tested on 30 Alvin dives on the Juan de Fuca Ridge and 3 Jason dives on the East Pacific Rise (EPR). We measured an anomalously low entrainment coefficient (0.064) and report 104 new measurements over a wide range of discharge temperatures (5°-363°C), velocities (2-199 cm/s), and depths (1517-2511 m). These include the first advective heat output measurements at the High Rise vent field and the first direct fluid flow measurement at Middle Valley. Our data suggest that black smoker heat output at the Main Endeavour vent field may have declined since 1994 and that after the 2005-2006 eruption, the high-temperature advective flow at the EPR 9°50'N field may have become more channelized, predominately discharging through the Bio 9 structure. We also report 16 measurements on 10 Alvin dives and 2 Jason dives with flow meters that predate devices described in this work and were used in the process of their development

  17. Arterial pressure-based cardiac output monitoring: a multicenter validation of the third-generation software in septic patients

    PubMed Central

    Marx, Gernot; Tan, Andrew; Junker, Christopher; Van Nuffelen, Marc; Hüter, Lars; Ching, Willy; Michard, Frédéric; Vincent, Jean-Louis

    2010-01-01

    Purpose Second-generation FloTrac software has been shown to reliably measure cardiac output (CO) in cardiac surgical patients. However, concerns have been raised regarding its accuracy in vasoplegic states. The aim of the present multicenter study was to investigate the accuracy of the third-generation software in patients with sepsis, particularly when total systemic vascular resistance (TSVR) is low. Methods Fifty-eight septic patients were included in this prospective observational study in four university-affiliated ICUs. Reference CO was measured by bolus pulmonary thermodilution (iCO) using 3–5 cold saline boluses. Simultaneously, CO was computed from the arterial pressure curve recorded on a computer using the second-generation (COG2) and third-generation (COG3) FloTrac software. CO was also measured by semi-continuous pulmonary thermodilution (CCO). Results A total of 401 simultaneous measurements of iCO, COG2, COG3, and CCO were recorded. The mean (95%CI) biases between COG2 and iCO, COG3 and iCO, and CCO and iCO were −10 (−15 to −5)% [−0.8 (−1.1 to −0.4) L/min], 0 (−4 to 4)% [0 (−0.3 to 0.3) L/min], and 9 (6–13)% [0.7 (0.5–1.0) L/min], respectively. The percentage errors were 29 (20–37)% for COG2, 30 (24–37)% for COG3, and 28 (22–34)% for CCO. The difference between iCO and COG2 was significantly correlated with TSVR (r2 = 0.37, p < 0.0001). A very weak (r2 = 0.05) relationship was also observed for the difference between iCO and COG3. Conclusions In patients with sepsis, the third-generation FloTrac software is more accurate, as precise, and less influenced by TSVR than the second-generation software. Electronic supplementary material The online version of this article (doi:10.1007/s00134-010-2098-8) contains supplementary material, which is available to authorized users. PMID:21153399

  18. Effect of hemorrhage on cardiac output, vasopressin, aldosterone, and diuresis during immersion in men

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Simanonok, K.; Bernauer, E. M.; Wade, C. E.; Keil, L. C.

    1992-01-01

    The purpose of this research was to test the hypotesis that a reduction in blood volume would attenuate or eliminate immersion-induced increases in cardiac output (Q(sub co)) and urine excretion, and to investigate accompanying vasoactive and fluid-electrolyte hormonal responses. Eight men (19-23 yr) were supine during a 2-hr control period in air, and then sat for 5-hr test periods in air at 20 C (dry control, DC); water at 34.5 C (wet control, WC); and water (34.5 C) after hemorrhage (WH) of 14.8 plus or minus 0.3 percent of their blood volume. Blood volume was -11.6 plus or minus 0.6 percent at immersion (time 0). Mean (bar-X hrs 1-5) Q(sub co) was unchanged in WC (5.3 plus or minus 0.01 l/min) and in WH (4.5 plus or minus 0.1 l/min), but decreased (P less than 0.05) in DC to 3.6 plus or minus 0.1 l/min. Mean urine excretion rates were 1.0 plus or minus 0.2 ml/min for DC and 1.1 plus or minus 0.2 ml/min for WH; both were lower (P less than 0.05) than that for WC of 2.0 plus or minus 0.4 ml/min. Plasma (Na+) and (Osm) were unchanged in all experiments. Mean plasma vasopressin (PVP) (bar-X hrs 1-5) was 1.1 plus or minus 0.1 pg/ml in WC, and higher (P less than 0.05) in DC (2.1 plus or minus 0.2 pg/ml)and WH (2.1 plus or minus 0.1 pg/ml); it was unchanged during air and water test periods. Thus, hemorrhage attenuated the immersion-induced increase in Q(sub co), eliminated the WC diuresis, maintained plasma renin activity and PVP at DC levels and did not change immersion-induced aldosterone suppression; the osmotic diuresis during control immersion is apparently not due to either aldosterone suppression or vasopressin suppression.

  19. Cardiac Output Monitoring Managing Intravenous Therapy (COMMIT) to Treat Emergency Department Patients with Sepsis

    PubMed Central

    Hou, Peter C.; Filbin, Michael R.; Napoli, Anthony; Feldman, Joseph; Pang, Peter S.; Sankoff, Jeffrey; Lo, Bruce M.; Dickey-White, Howard; Birkhahn, Robert H.; Shapiro, Nathan I.

    2016-01-01

    ABSTRACT Objective: Fluid responsiveness is proposed as a physiology-based method to titrate fluid therapy based on preload dependence. The objectives of this study were to determine if a fluid responsiveness protocol would decrease progression of organ dysfunction, and a fluid responsiveness protocol would facilitate a more aggressive resuscitation. Methods: Prospective, 10-center, randomized interventional trial. Inclusion criteria: suspected sepsis and lactate 2.0 to 4.0 mmol/L. Exclusion criteria (abbreviated): systolic blood pressure more than 90 mmHg, and contraindication to aggressive fluid resuscitation. Intervention: fluid responsiveness protocol using Non-Invasive Cardiac Output Monitor (NICOM) to assess for fluid responsiveness (>10% increase in stroke volume in response to 5 mL/kg fluid bolus) with balance of a liter given in responsive patients. Control: standard clinical care. Outcomes: primary—change in Sepsis-related Organ Failure Assessment (SOFA) score at least 1 over 72 h; secondary—fluids administered. Trial was initially powered at 600 patients, but stopped early due to a change in sponsor's funding priorities. Results: Sixty-four patients were enrolled with 32 in the treatment arm. There were no significant differences between arms in age, comorbidities, baseline vital signs, or SOFA scores (P > 0.05 for all). Comparing treatment versus Standard of Care—there was no difference in proportion of increase in SOFA score of at least 1 point (30% vs. 33%) (note bene underpowered, P = 1.0) or mean preprotocol fluids 1,050 mL (95% confidence interval [CI]: 786–1,314) vs. 1,031 mL (95% CI: 741–1,325) (P = 0.93); however, treatment patients received more fluids during the protocol (2,633 mL [95% CI: 2,264–3,001] vs. 1,002 mL [95% CI: 707–1,298]) (P < 0.001). Conclusions: In this study of a “preshock” population, there was no change in progression of organ dysfunction with a fluid responsiveness protocol

  20. Blood pressure reduction after gastric bypass surgery is explained by a decrease in cardiac output.

    PubMed

    van Brussel, Peter M; van den Bogaard, Bas; de Weijer, Barbara A; Truijen, Jasper; Krediet, C T Paul; Janssen, Ignace M; van de Laar, Arnold; Kaasjager, Karin; Fliers, Eric; van Lieshout, Johannes J; Serlie, Mireille J; van den Born, Bert-Jan H

    2017-02-01

    Blood pressure (BP) decreases in the first weeks after Roux-and-Y gastric bypass surgery. Yet the pathophysiology of the BP-lowering effects observed after gastric bypass surgery is incompletely understood. We evaluated BP, systemic hemodynamics, and baroreflex sensitivity in 15 obese women[mean age 42 ± 7 standard deviation (SD) yr, body mass index 45 ± 6 kg/m(2)] 2 wk before and 6 wk following Roux-and-Y gastric bypass surgery. Six weeks after gastric bypass surgery, mean body weight decreased by 13 ± 5 kg (10%, P < 0.001). Office BP decreased from 137 ± 10/86 ± 6 to 128 ± 12/81 ± 9 mmHg (P < 0.001, P < 0.01), while daytime ambulatory BP decreased from 128 ± 14/80 ± 9 to 114 ± 10/73 ± 6 mmHg (P = 0.01, P = 0.05), whereas nighttime BP decreased from 111 ± 13/66 ± 7 to 102 ± 9/62 ± 7 mmHg (P = 0.04, P < 0.01). The decrease in BP was associated with a 1.6 ± 1.2 l/min (20%, P < 0.01) decrease in cardiac output (CO), while systemic vascular resistance increased (153 ± 189 dyn·s·cm(-5), 15%, P < 0.01). The maximal ascending slope in systolic blood pressure decreased (192 mmHg/s, 19%, P = 0.01), suggesting a reduction in left ventricular contractility. Baroreflex sensitivity increased from 9.0 [6.4-14.3] to 13.8 [8.5-19.0] ms/mmHg (median [interquartile range]; P < 0.01) and was inversely correlated with the reductions in heart rate (R = -0.64, P = 0.02) and CO (R = -0.61, P = 0.03). In contrast, changes in body weight were not correlated with changes in either BP or CO. The BP reduction following Roux-and-Y gastric bypass surgery is correlated with a decrease in CO independent of changes in body weight. The contribution of heart rate to the reduction in CO together with enhanced baroreflex sensitivity suggests a shift toward increased parasympathetic cardiovascular control.

  1. Cardiac output by Doppler echocardiography in the premature baboon: Comparison with radiolabeled microspheres

    SciTech Connect

    Kinsella, J.P.; Morrow, W.R.; Gerstmann, D.R.; Taylor, A.F.; deLemos, R.A. )

    1991-04-01

    Pulsed-Doppler echocardiography (PDE) is a useful noninvasive method for determining left ventricular output (LVO). However, despite increasingly widespread use in neonatal intensive care units, validation studies in prematures with cardiopulmonary disease are lacking. The purpose of this study was to compare radiolabeled microsphere (RLM) and PDE measurements of LVO, using the critically ill premature baboon as a model of the human neonate. Twenty-two paired RLM and PDE measurements of LVO were obtained in 14 animals between 3 and 24 h of age. Average PDE LVO was 152 ml/min/kg (range, 40-258 ml/min/kg) compared to 158 ml/min/kg (range, 67-278 ml/min/kg) measured by RLM. Linear regression analysis of the paired measurements showed good correlation with a slope near unity (gamma = 0.94x + 4.20, r = 0.91, SEE = 25.7 ml). The authors conclude that PDE determinations of LVO compare well with those measured by RLM in the premature baboon. PDE appears to provide a valid estimate of LVO and should be useful in human prematures with cardiopulmonary distress.

  2. Cardiac output by Doppler echocardiography in the premature baboon: comparison with radiolabeled microspheres.

    PubMed

    Kinsella, J P; Morrow, W R; Gerstmann, D R; Taylor, A F; deLemos, R A

    1991-04-01

    Pulsed-Doppler echocardiography (PDE) is a useful noninvasive method for determining left ventricular output (LVO). However, despite increasingly widespread use in neonatal intensive care units, validation studies in prematures with cardiopulmonary disease are lacking. The purpose of this study was to compare radiolabeled microsphere (RLM) and PDE measurements of LVO, using the critically ill premature baboon as a model of the human neonate. Twenty-two paired RLM and PDE measurements of LVO were obtained in 14 animals between 3 and 24 h of age. Average PDE LVO was 152 ml/min/kg (range, 40-258 ml/min/kg) compared to 158 ml/min/kg (range, 67-278 ml/min/kg) measured by RLM. Linear regression analysis of the paired measurements showed good correlation with a slope near unity (gamma = 0.94x + 4.20, r = 0.91, SEE = 25.7 ml). We conclude that PDE determinations of LVO compare well with those measured by RLM in the premature baboon. PDE appears to provide a valid estimate of LVO and should be useful in human prematures with cardiopulmonary distress.

  3. Scalp congenital hemangioma with associated high-output cardiac failure in a premature infant: Case report and review of literature.

    PubMed

    Shah, Sumedh S; Snelling, Brian M; Sur, Samir; Ramnath, Alexandra R; Bandstra, Emmalee S; Yavagal, Dileep R

    2017-02-01

    Introduction Scalp congenital hemangiomas (CHs) are rare vascular malformations among infants; they can be associated with an array of complications, including cardiac and cosmetic issues. Here, we report the endovascular treatment of a premature infant with a suspected large right parietal scalp hemangioma and associated high-output cardiac failure. Case description A two-day-old female premature infant (29 weeks gestational age; 1330 g birth weight) was referred by the neonatologists to our department for consultation and potential treatment of a large right parietal CH causing abrupt hypotension and high-output cardiac failure. Doppler ultrasound imaging at bedside revealed areas of arterial-venous shunting from the scalp and the presence of a superior sagittal sinus waveform, consistent with intracranial venous drainage. To alleviate cardiac dysfunction secondary to this lesion, trans-arterial embolization via n-butyl cyanoacrylate (nBCA) glue and deployment of detachable coils was performed via umbilical artery to occlude the right superficial temporal and occipital artery branches supplying the CH. Following treatment, the infant continued to require ventilator management, vasopressor support, and correction of coagulopathy, but by post-operative day two, her condition improved remarkably and the mass size began decreasing. The patient was discharged after a relatively uncomplicated subsequent 2½-month course in the neonatal intensive care unit. Conclusion Endovascular therapy proved effective and safe in treating cardiac failure associated with scalp CH, despite potential complications associated with neuro-interventional surgery in premature infants. Appropriate consideration in this patient population should be given to factors including blood loss, contrast use, radiation exposure, operative time, and possible intra-/post-operative complications.

  4. Ultrasonic Power Output Measurement by Pulsed Radiation Pressure.

    PubMed

    Fick, Steven E; Breckenridge, Franklin R

    1996-01-01

    Direct measurements of time-averaged spatially integrated output power radiated into reflectionless water loads can be made with high accuracy using techniques which exploit the radiation pressure exerted by sound on all objects in its path. With an absorptive target arranged to intercept the entirety of an ultrasound beam, total beam power can be determined as accurately as the radiation force induced on the target can be measured in isolation from confounding forces due to buoyancy, streaming, surface tension, and vibration. Pulse modulation of the incident ultrasound at a frequency well above those characteristics of confounding phenomena provides the desired isolation and other significant advantages in the operation of the radiation force balance (RFB) constructed in 1974. Equipped with purpose-built transducers and electronics, the RFB is adjusted to equate the radiation force and a counterforce generated by an actuator calibrated against reference masses using direct current as the transfer variable. Improvements made during its one overhaul in 1988 have nearly halved its overall measurement uncertainty and extended the capabilities of the RFB to include measuring the output of ultrasonic systems with arbitrary pulse waveforms.

  5. Ultrasonic Power Output Measurement by Pulsed Radiation Pressure

    PubMed Central

    Fick, Steven E.; Breckenridge, Franklin R.

    1996-01-01

    Direct measurements of time-averaged spatially integrated output power radiated into reflectionless water loads can be made with high accuracy using techniques which exploit the radiation pressure exerted by sound on all objects in its path. With an absorptive target arranged to intercept the entirety of an ultrasound beam, total beam power can be determined as accurately as the radiation force induced on the target can be measured in isolation from confounding forces due to buoyancy, streaming, surface tension, and vibration. Pulse modulation of the incident ultrasound at a frequency well above those characteristics of confounding phenomena provides the desired isolation and other significant advantages in the operation of the radiation force balance (RFB) constructed in 1974. Equipped with purpose-built transducers and electronics, the RFB is adjusted to equate the radiation force and a counterforce generated by an actuator calibrated against reference masses using direct current as the transfer variable. Improvements made during its one overhaul in 1988 have nearly halved its overall measurement uncertainty and extended the capabilities of the RFB to include measuring the output of ultrasonic systems with arbitrary pulse waveforms. PMID:27805084

  6. Effects of hypertrophic and dilated cardiomyopathy mutations on power output by human β-cardiac myosin.

    PubMed

    Spudich, James A; Aksel, Tural; Bartholomew, Sadie R; Nag, Suman; Kawana, Masataka; Yu, Elizabeth Choe; Sarkar, Saswata S; Sung, Jongmin; Sommese, Ruth F; Sutton, Shirley; Cho, Carol; Adhikari, Arjun S; Taylor, Rebecca; Liu, Chao; Trivedi, Darshan; Ruppel, Kathleen M

    2016-01-01

    Hypertrophic cardiomyopathy is the most frequently occurring inherited cardiovascular disease, with a prevalence of more than one in 500 individuals worldwide. Genetically acquired dilated cardiomyopathy is a related disease that is less prevalent. Both are caused by mutations in the genes encoding the fundamental force-generating protein machinery of the cardiac muscle sarcomere, including human β-cardiac myosin, the motor protein that powers ventricular contraction. Despite numerous studies, most performed with non-human or non-cardiac myosin, there is no clear consensus about the mechanism of action of these mutations on the function of human β-cardiac myosin. We are using a recombinantly expressed human β-cardiac myosin motor domain along with conventional and new methodologies to characterize the forces and velocities of the mutant myosins compared with wild type. Our studies are extending beyond myosin interactions with pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin, the roles of regulatory light chain phosphorylation on the functions of the system, and the possible roles of myosin binding protein-C and titin, important regulatory components of both cardiac and skeletal muscles.

  7. Accuracy and precision of minimally-invasive cardiac output monitoring in children: a systematic review and meta-analysis.

    PubMed

    Suehiro, Koichi; Joosten, Alexandre; Murphy, Linda Suk-Ling; Desebbe, Olivier; Alexander, Brenton; Kim, Sang-Hyun; Cannesson, Maxime

    2016-10-01

    Several minimally-invasive technologies are available for cardiac output (CO) measurement in children, but the accuracy and precision of these devices have not yet been evaluated in a systematic review and meta-analysis. We conducted a comprehensive search of the medical literature in PubMed, Cochrane Library of Clinical Trials, Scopus, and Web of Science from its inception to June 2014 assessing the accuracy and precision of all minimally-invasive CO monitoring systems used in children when compared with CO monitoring reference methods. Pooled mean bias, standard deviation, and mean percentage error of included studies were calculated using a random-effects model. The inter-study heterogeneity was also assessed using an I(2) statistic. A total of 20 studies (624 patients) were included. The overall random-effects pooled bias, and mean percentage error were 0.13 ± 0.44 l min(-1) and 29.1 %, respectively. Significant inter-study heterogeneity was detected (P < 0.0001, I(2) = 98.3 %). In the sub-analysis regarding the device, electrical cardiometry showed the smallest bias (-0.03 l min(-1)) and lowest percentage error (23.6 %). Significant residual heterogeneity remained after conducting sensitivity and subgroup analyses based on the various study characteristics. By meta-regression analysis, we found no independent effects of study characteristics on weighted mean difference between reference and tested methods. Although the pooled bias was small, the mean pooled percentage error was in the gray zone of clinical applicability. In the sub-group analysis, electrical cardiometry was the device that provided the most accurate measurement. However, a high heterogeneity between studies was found, likely due to a wide range of study characteristics.

  8. Glucagon-like peptide-1 (7-36) but not (9-36) augments cardiac output during myocardial ischemia via a Frank-Starling mechanism.

    PubMed

    Goodwill, Adam G; Tune, Johnathan D; Noblet, Jillian N; Conteh, Abass M; Sassoon, Daniel; Casalini, Eli D; Mather, Kieren J

    2014-01-01

    This study examined the cardiovascular effects of GLP-1 (7-36) or (9-36) on myocardial oxygen consumption, function and systemic hemodynamics in vivo during normal perfusion and during acute, regional myocardial ischemia. Lean Ossabaw swine received systemic infusions of saline vehicle or GLP-1 (7-36 or 9-36) at 1.5, 3.0, and 10.0 pmol/kg/min in sequence for 30 min at each dose, followed by ligation of the left circumflex artery during continued infusion at 10.0 pmol/kg/min. Systemic GLP-1 (9-36) had no effect on coronary flow, blood pressure, heart rate or indices of cardiac function before or during regional myocardial ischemia. Systemic GLP-1 (7-36) exerted no cardiometabolic or hemodynamic effects prior to ischemia. During ischemia, GLP-1 (7-36) increased cardiac output by approximately 2 L/min relative to vehicle-controls (p = 0.003). This response was not diminished by treatment with the non-depolarizing ganglionic blocker hexamethonium. Left ventricular pressure-volume loops measured during steady-state conditions with graded occlusion of the inferior vena cava to assess load-independent contractility revealed that GLP-1 (7-36) produced marked increases in end-diastolic volume (74 ± 1 to 92 ± 5 ml; p = 0.03) and volume axis intercept (8 ± 2 to 26 ± 8; p = 0.05), without any change in the slope of the end-systolic pressure-volume relationship vs. vehicle during regional ischemia. GLP-1 (9-36) produced no changes in any of these parameters compared to vehicle. These findings indicate that short-term systemic treatment with GLP-1 (7-36) but not GLP-1 (9-36) significantly augments cardiac output during regional myocardial ischemia, via increases in ventricular preload without changes in cardiac inotropy.

  9. Noninvasive assessment of cardiac output from arterial pressure profiles during exercise.

    PubMed

    Antonutto, G; Girardis, M; Tuniz, D; di Prampero, P E

    1995-01-01

    , MAPin, HR, PP, MAP are the above parameters at rest and during exercise, respectively. Also in this case, the coefficients f to 1 were determined by a computerized statistical method using Z* as the experimental reference. The values of Zcor so obtained allowed us to calculate SV from arterial pulse contour analysis as SVF = As.Z-1cor. The mean percentage error between the SVF obtained and the values simultaneously determined by PDE, was 10.0 (SD 8.7)%. It is concluded that the SV of the left ventricle, and hence cardiac output, can be determined during exercise from photoplethysmograph tracings with reasonable accuracy, provided that an initial estimate of SV at rest is made by means an independent high quality reference method.

  10. The thick left ventricular wall of the giraffe heart normalises wall tension, but limits stroke volume and cardiac output.

    PubMed

    Smerup, Morten; Damkjær, Mads; Brøndum, Emil; Baandrup, Ulrik T; Kristiansen, Steen Buus; Nygaard, Hans; Funder, Jonas; Aalkjær, Christian; Sauer, Cathrine; Buchanan, Rasmus; Bertelsen, Mads Frost; Østergaard, Kristine; Grøndahl, Carsten; Candy, Geoffrey; Hasenkam, J Michael; Secher, Niels H; Bie, Peter; Wang, Tobias

    2016-02-01

    Giraffes--the tallest extant animals on Earth--are renowned for their high central arterial blood pressure, which is necessary to secure brain perfusion. Arterial pressure may exceed 300 mmHg and has historically been attributed to an exceptionally large heart. Recently, this has been refuted by several studies demonstrating that the mass of giraffe heart is similar to that of other mammals when expressed relative to body mass. It thus remains unexplained how the normal-sized giraffe heart generates such massive arterial pressures. We hypothesized that giraffe hearts have a small intraventricular cavity and a relatively thick ventricular wall, allowing for generation of high arterial pressures at normal left ventricular wall tension. In nine anaesthetized giraffes (495±38 kg), we determined in vivo ventricular dimensions using echocardiography along with intraventricular and aortic pressures to calculate left ventricular wall stress. Cardiac output was also determined by inert gas rebreathing to provide an additional and independent estimate of stroke volume. Echocardiography and inert gas-rebreathing yielded similar cardiac outputs of 16.1±2.5 and 16.4±1.4 l min(-1), respectively. End-diastolic and end-systolic volumes were 521±61 ml and 228±42 ml, respectively, yielding an ejection fraction of 56±4% and a stroke volume of 0.59 ml kg(-1). Left ventricular circumferential wall stress was 7.83±1.76 kPa. We conclude that, relative to body mass, a small left ventricular cavity and a low stroke volume characterizes the giraffe heart. The adaptations result in typical mammalian left ventricular wall tensions, but produce a lowered cardiac output.

  11. Reduced central blood volume and cardiac output and increased vascular resistance during static handgrip exercise in postural tachycardia syndrome.

    PubMed

    Stewart, Julian M; Taneja, Indu; Medow, Marvin S

    2007-09-01

    Postural tachycardia syndrome (POTS) is characterized by exercise intolerance and sympathoactivation. To examine whether abnormal cardiac output and central blood volume changes occur during exercise in POTS, we studied 29 patients with POTS (17-29 yr) and 12 healthy subjects (18-27 yr) using impedance and venous occlusion plethysmography to assess regional blood volumes and flows during supine static handgrip to evoke the exercise pressor reflex. POTS was subgrouped into normal and low-flow groups based on calf blood flow. We examined autonomic effects with variability techniques. During handgrip, systolic blood pressure increased from 112 +/- 4 to 139 +/- 9 mmHg in control, from 119 +/- 6 to 143 +/- 9 in normal-flow POTS, but only from 117 +/- 4 to 128 +/- 6 in low-flow POTS. Heart rate increased from 63 +/- 6 to 82 +/- 4 beats/min in control, 76 +/- 3 to 92 +/- 6 beats/min in normal-flow POTS, and 88 +/- 4 to 100 +/- 6 beats/min in low-flow POTS. Heart rate variability and coherence markedly decreased in low-flow POTS, indicating uncoupling of baroreflex heart rate regulation. The increase in central blood volume with handgrip was absent in low-flow POTS and blunted in normal-flow POTS associated with abnormal splanchnic emptying. Cardiac output increased in control, was unchanged in low-flow POTS, and was attenuated in normal-flow POTS. Total peripheral resistance was increased compared with control in all POTS. The exercise pressor reflex was attenuated in low-flow POTS. While increased cardiac output and central blood volume characterizes controls, increased peripheral resistance with blunted or eliminated in central blood volume increments characterizes POTS and may contribute to exercise intolerance.

  12. Rest and exercise cardiac output and diffusing capacity assessed by a single slow exhalation of methane, acetylene, and carbon monoxide.

    PubMed

    Ramage, J E; Coleman, R E; MacIntyre, N R

    1987-07-01

    To study rest and exercise pulmonary capillary blood flow (Qc) and diffusing capacity (DLexh) assessed by the rapid analysis of methane, acetylene, and carbon monoxide during a single, slow exhalation, we evaluated 36 subjects during first-pass radionuclide angiography (RNA). At rest (N = 36) and at exercise (N = 21) there was no difference in the respective measurements of cardiac output (Qc = 6.0 +/- 1.7 and CORNA = 6.9 +/- 2.5 at rest; Qc = 13.7 +/- 3.2 and CORNA = 14.5 +/- 4.1 at exercise, L/min, mean +/- SD, r = .80). Mild maldistribution of ventilation, as manifested by an increased phase 3 alveolar slope for methane (CH4 slope), did not significantly influence the results. CH4 slope and DLexh did increase significantly with exercise, while total lung capacity remained unchanged (CH4 slope: 6.2 +/- 5.0 vs 12.5 +/- 6.8% delta CH4/L, mean +/- SD, p less than 0.001; Dsb: 27.7 +/- 9.2 vs 42.0 +/- 17.9 ml/min/mm Hg, mean +/- SD, p less than 0.001; TLC: 5.47 +/- .20 vs 5.96 +/- 1.20 L, mean +/- SD). DLexh was related to CORNA (r = .68) and RNA stroke volume (r = .50). Qc was significantly less than CORNA in the subset of studies with valvular regurgitation (VHD) (N = 7). On the other hand, Qc was significantly greater than CORNA in the setting of coronary artery disease (CAD) and severe wall motion abnormalities (N = 7). These differences may be attributed to regurgitant fractions in VHD, and the influence of wall motion abnormalities on the estimation of left ventricular volume by the area-length method in CAD. These two noninvasive methods compare well at rest and exercise in clinical subjects and may provide complementary information in certain cardiopulmonary diseases.

  13. Distance measurements in cardiac troponin C.

    PubMed

    Wang, C L; Leavis, P C

    1990-01-01

    Intramolecular distance measurements were made in cardiac troponin C (cTnC) by fluorescence energy transfer using Eu3+ or Tb3+ as energy donors and Nd3+ or an organic chromophore as acceptors. The laser-induced luminescence of bound Eu3+ is quenched in Eu1Nd1cTnC with a lifetime of 0.328 ms, compared with 0.43 ms for Eu2cTnC. The enhanced decay corresponds to an energy transfer efficiency of 0.25, or a distance of 1.1 nm between the two high affinity sites. We have also labeled cTnC with 4-dimethylaminophenylazophenyl-4'-maleimide (DAB-Mal) at the two cysteine residues (Cys-35 and Cys-84). Energy transfer measurements were carried out between Tb3+ bound to the high affinity sites and the labels attached to the domain containing the low affinity site. Upon uv irradiation at pH 6.7, Tb1cTnCDAB emits tyrosine-sensitized Tb3+ luminescence that decays bioexponentially with lifetimes of 1.29 and 0.76 ms. The shorter lifetime is ascribed to energy transfer from Tb3+ to the DAB labels, yielding an average distance of 3.4 nm between the donor and the acceptors. At pH 5.0, however, the luminescence decays exclusively with a single lifetime of 1.31 ms, suggesting that under these conditions all Tb3+ ions are more than 5.2 nm away from the label. Thus cTnC, like skeletal TnC, undergoes a pH-dependent conformational transition which converts an elongated structure at lower pH's to a rather compact conformation in a more physiological medium.

  14. Combined use of phenoxybenzamine and dopamine for low cardiac output syndrome in children at withdrawal from cardiopulmonary bypass.

    PubMed

    Kawamura, M; Minamikawa, O; Yokochi, H; Maki, S; Yasuda, T; Mizukawa, Y

    1980-04-01

    The combined use of phenoxybenzamine and dopamine was applied in infants and children when it was difficult to come off cardiopulmonary bypass for low cardiac output. The rationale of this method is to prevent the alpha-adrenergic action of dopamine by phenoxybenzamine and to encourage the beta-adrenergic and direct specific action of dopamine. Dopamine was used in dosage of 10 to 30 micrograms/kg per min after the additional administration of a half of the initial dosage of phenoxybenzamine; this was infused by drip always in a dosage of 0.5 to 1.0 mg/kg during the first half of cardiopulmonary bypass. It was possible to come off cardiopulmonary bypass with a stable haemodynamic state (mean arterial pressure more than 60 mmHg and total peripheral vascular resistance less than 2000 bynes s cm-5) and a good urinary output.

  15. Combined use of phenoxybenzamine and dopamine for low cardiac output syndrome in children at withdrawal from cardiopulmonary bypass.

    PubMed Central

    Kawamura, M; Minamikawa, O; Yokochi, H; Maki, S; Yasuda, T; Mizukawa, Y

    1980-01-01

    The combined use of phenoxybenzamine and dopamine was applied in infants and children when it was difficult to come off cardiopulmonary bypass for low cardiac output. The rationale of this method is to prevent the alpha-adrenergic action of dopamine by phenoxybenzamine and to encourage the beta-adrenergic and direct specific action of dopamine. Dopamine was used in dosage of 10 to 30 micrograms/kg per min after the additional administration of a half of the initial dosage of phenoxybenzamine; this was infused by drip always in a dosage of 0.5 to 1.0 mg/kg during the first half of cardiopulmonary bypass. It was possible to come off cardiopulmonary bypass with a stable haemodynamic state (mean arterial pressure more than 60 mmHg and total peripheral vascular resistance less than 2000 bynes s cm-5) and a good urinary output. PMID:7397040

  16. Quality measures for congenital and pediatric cardiac surgery.

    PubMed

    Jacobs, Jeffrey Phillip; Jacobs, Marshall Lewis; Austin, Erle H; Mavroudis, Constantine; Pasquali, Sara K; Lacour-Gayet, Francois G; Tchervenkov, Christo I; Walters, Hal; Bacha, Emile A; Nido, Pedro J Del; Fraser, Charles D; Gaynor, J William; Hirsch, Jennifer C; Morales, David L S; Pourmoghadam, Kamal K; Tweddell, James S; Prager, Richard L; Mayer, John E

    2012-01-01

    This article presents 21 "Quality Measures for Congenital and Pediatric Cardiac Surgery" that were developed and approved by the Society of Thoracic Surgeons (STS) and endorsed by the Congenital Heart Surgeons' Society (CHSS). These Quality Measures are organized according to Donabedian's Triad of Structure, Process, and Outcome. It is hoped that these quality measures can aid in congenital and pediatric cardiac surgical quality assessment and quality improvement initiatives.

  17. Reduced heart rate and cardiac output differentially affect angiogenesis, growth, and development in early chicken embryos (Gallus domesticus).

    PubMed

    Branum, Sylvia R; Yamada-Fisher, Miho; Burggren, Warren

    2013-01-01

    An increase in both vascular circumferential tension and shear stress in the developing vasculature of the chicken embryo has been hypothesized to stimulate angiogenesis in the developing peripheral circulation chorioallantoic membrane (CAM). To test this hypothesis, angiogenesis in the CAM, development, and growth were measured in the early chicken embryo, following acute and chronic topical application of the purely bradycardic drug ZD7288. At hour 56, ZD7288 reduced heart rate (f(H)) by ~30% but had no significant effect on stroke volume (~0.19 ± 0.2 μL), collectively resulting in a significant fall in cardiac output (CO) from ~27 ± 3 to 18 ± 2 μL min(-1). Mean f(H) at 72 h of development was similarly significantly lowered by acute ZD7288 treatment (250 μM) to 128 ± 0.3 beats min(-1), compared with 174.5 ± 0.3 and 174.7 ± 0.8 beats min(-1) in control and Pannett-Compton (P-C) saline-treated embryos, respectively. Chronic dosing with ZD7288-and the attendant decreases in f(H) and CO-did not change eye diameter or cervical flexion (key indicators of development rate) at 120 h but significantly reduced overall growth (wet and dry body mass decreased by 20%). CAM vessel density index (reflecting angiogenesis) measured 200-400 μm from the umbilical stalk was not altered, but ZD7288 reduced vessel numbers-and therefore vessel density-by 13%-16% more distally (500-600 μm from umbilical stalk) in the CAM. In the ZD7288-treated embryos, a decrease in vessel length was found within the second branch order (~300-400 μm from the umbilical stock), while a decrease in vessel diameter was found closer to the umbilical stock, beginning in the first branch order (~200-300 μm). Paradoxically, chronic application of P-C saline also reduced peripheral CAM vessel density index at 500 and 600 μm by 13% and 7%, respectively, likely from washout of local angiogenic factors. In summary, decreased f(H) with reduced CO did not slow development rate but reduced embryonic

  18. Evaluating cardiac physiology through echocardiography in bottlenose dolphins: using stroke volume and cardiac output to estimate systolic left ventricular function during rest and following exercise.

    PubMed

    Miedler, Stefan; Fahlman, Andreas; Valls Torres, Mónica; Álvaro Álvarez, Teresa; Garcia-Parraga, Daniel

    2015-11-01

    Heart-rate (fH) changes during diving and exercise are well documented for marine mammals, but changes in stroke volume (SV) and cardiac output (CO) are much less known. We hypothesized that both SV and CO are also modified following intense exercise. Using transthoracic ultrasound Doppler at the level of the aortic valve, we compared blood flow velocities in the left ventricle and cardiac frequencies during rest and at 1, 3 and 4 min after a bout of exercise in 13 adult bottlenose dolphins (Tursiops truncatus, six male and seven female, body mass range 143-212 kg). Aortic cross-sectional area and ventricle blood velocity at the aortic valve were used to calculate SV, which together with fH provided estimates of left CO at rest and following exercise. fH and SV stabilized approximately 4-7 s following the post-respiratory tachycardia, so only data after the fH had stabilized were used for analysis and comparison. There were significant increases in fH, SV and CO associated with each breath. At rest, fH, SV and CO were uncorrelated with body mass, and averaged 41±9 beats min(-1), 136±19 ml and 5514±1182 l min(-1), respectively. One minute following high intensity exercise, the cardiac variables had increased by 104±43%, 63±11% and 234±84%, respectively. All variables remained significantly elevated in all animals for at least 4 min after the exercise. These baseline values provide the first data on SV and CO in awake and unrestrained cetaceans in water.

  19. Measured performance parameters of gradiometers with digital output

    SciTech Connect

    Drung, D.; Crocoll, E.; Herwig, R.; Neuhaus, M.; Jutzi, W.

    1989-03-01

    A planar first order gradiometer and a dc SQUID comparator have been integrated on the same 6x6 mm/sup 2/ chip in the Nb-Nb/sub 2/O/sub 5/-PbInAu technology and operated in a flux-locked loop. Owing to the digital gradiometer output, a very low flux noise of 7x10/sup -7/PHI/sub O//..sqrt..Hz, a coupled noise energy of 34 times Planck's constant h and a gradient noise of 3.8 pT/(m..sqrt..Hz) have been achieved in the white noise region above about 60 Hz. In spite of the very low flux noise, a maximum slew rate of 1.5x10/sup 5/ PHI/sub O//s at a signal frequency of 4 kHz has been measured. A simple modulation scheme has been developed to cancel Josephson junction critical current fluctuations yielding 4.5x10/sup -6/ PHI/sub O//..sqrt..Hz at 0.1 Hz.

  20. Comparison of cardiac power output and exercise performance in patients with left ventricular assist devices, explanted (recovered) patients, and those with moderate to severe heart failure.

    PubMed

    Jakovljevic, Djordje G; George, Robert S; Donovan, Gay; Nunan, David; Henderson, Keiran; Bougard, Robert S; Yacoub, Magdi H; Birks, Emma J; Brodie, David A

    2010-06-15

    Peak cardiac power output (CPO), as a direct measurement of overall cardiac function, has been shown to be a most powerful predictor of prognosis for patients with chronic heart failure. The present study assessed CPO and exercise performance in patients implanted with a left ventricular assist device (LVAD), those explanted due to myocardial recovery, and those with moderate to severe heart failure. Hemodynamic and respiratory gas exchange measurements were undertaken at rest and at peak graded exercise. These were performed in 54 patients-20 with moderate to severe heart failure, 18 with implanted LVADs, and 16 with explanted LVADs. At rest there was a nonsignificant difference in CPO among groups (p >0.05). Peak CPO was significantly higher in the explanted LVAD than in the heart failure and implanted LVAD groups (heart failure 1.90 +/- 0.45 W, implanted LVAD 2.37 +/- 0.55 W, explanted LVAD 3.39 +/- 0.61 W, p <0.01) as was peak cardiac output (heart failure 9.1 +/- 2.1 L/min, implanted LVAD 12.4 +/- 2.2 L/min, explanted LVD 14.6 +/- 2.9 L/min, p <0.01). Peak oxygen consumption was higher in the explanted LVAD than in the heart failure and implanted LVAD groups (heart failure 15.8 +/- 4.1 ml/kg/min, implanted LVAD 19.8 +/- 5.8 ml/kg/min, explanted LVAD 28.2 +/- 5.0 ml/kg/min, p <0.05) as was anaerobic threshold (heart failure 11.2 +/- 1.9 ml/kg/min, implanted LVAD 14.7 +/- 4.9 ml/kg/min, explanted LVAD 21.4 +/- 5.0 ml/kg/min, p <0.05). In conclusion, peak CPO differentiates well during cardiac restoration using LVADs and emphasizes the benefits of this therapy. CPO has the potential to be a key physiologic marker of heart failure severity and can guide management of patients with LVAD.

  1. Nine Criteria for a Measure of Scientific Output

    PubMed Central

    Kreiman, Gabriel; Maunsell, John H. R.

    2011-01-01

    Scientific research produces new knowledge, technologies, and clinical treatments that can lead to enormous returns. Often, the path from basic research to new paradigms and direct impact on society takes time. Precise quantification of scientific output in the short-term is not an easy task but is critical for evaluating scientists, laboratories, departments, and institutions. While there have been attempts to quantifying scientific output, we argue that current methods are not ideal and suffer from solvable difficulties. Here we propose criteria that a metric should have to be considered a good index of scientific output. Specifically, we argue that such an index should be quantitative, based on robust data, rapidly updated and retrospective, presented with confidence intervals, normalized by number of contributors, career stage and discipline, impractical to manipulate, and focused on quality over quantity. Such an index should be validated through empirical testing. The purpose of quantitatively evaluating scientific output is not to replace careful, rigorous review by experts but rather to complement those efforts. Because it has the potential to greatly influence the efficiency of scientific research, we have a duty to reflect upon and implement novel and rigorous ways of evaluating scientific output. The criteria proposed here provide initial steps toward the systematic development and validation of a metric to evaluate scientific output. PMID:22102840

  2. A review of intraoperative goal-directed therapy using arterial waveform analysis for assessment of cardiac output.

    PubMed

    Mehta, Neil; Fernandez-Bustamante, Ana; Seres, Tamas

    2014-01-01

    Increasing evidence shows that goal-directed hemodynamic management can improve outcomes in surgical and intensive care settings. Arterial waveform analysis is one of the different techniques used for guiding goal-directed therapy. Multiple proprietary systems have developed algorithms for obtaining cardiac output from an arterial waveform, including the FloTrac, LiDCO, and PiCCO systems. These systems vary in terms of how they analyze the arterial pressure waveform as well as their requirements for invasive line placement and calibration. Although small-scale clinical trials using these monitors show promising data, large-scale multicenter trials are still needed to better determine how intraoperative goal-directed therapy with arterial waveform analysis can improve patient outcomes. This review provides a comparative analysis of the different arterial waveform monitors for intraoperative goal-directed therapy.

  3. Continuous cardiac output and left atrial pressure monitoring by long time interval analysis of the pulmonary artery pressure waveform: proof of concept in dogs.

    PubMed

    Xu, Da; Olivier, N Bari; Mukkamala, Ramakrishna

    2009-02-01

    We developed a technique to continuously (i.e., automatically) monitor cardiac output (CO) and left atrial pressure (LAP) by mathematical analysis of the pulmonary artery pressure (PAP) waveform. The technique is unique to the few previous related techniques in that it jointly estimates the two hemodynamic variables and analyzes the PAP waveform over time scales greater than a cardiac cycle wherein wave reflections and inertial effects cease to be major factors. First, a 6-min PAP waveform segment is analyzed so as to determine the pure exponential decay and equilibrium pressure that would eventually result if cardiac activity suddenly ceased (i.e., after the confounding wave reflections and inertial effects vanish). Then, the time constant of this exponential decay is computed and assumed to be proportional to the average pulmonary arterial resistance according to a Windkessel model, while the equilibrium pressure is regarded as average LAP. Finally, average proportional CO is determined similar to invoking Ohm's law and readily calibrated with one thermodilution measurement. To evaluate the technique, we performed experiments in five dogs in which the PAP waveform and accurate, but highly invasive, aortic flow probe CO and LAP catheter measurements were simultaneously recorded during common hemodynamic interventions. Our results showed overall calibrated CO and absolute LAP root-mean-squared errors of 15.2% and 1.7 mmHg, respectively. For comparison, the root-mean-squared error of classic end-diastolic PAP estimates of LAP was 4.7 mmHg. On future successful human testing, the technique may potentially be employed for continuous hemodynamic monitoring in critically ill patients with pulmonary artery catheters.

  4. Comparison of Levosimendan, Milrinone and Dobutamine in treating Low Cardiac Output Syndrome Following Valve Replacement Surgeries with Cardiopulmonary Bypass

    PubMed Central

    Sunny; Karim, Habib Md Reazaul; Saikia, Manuj Kumar; Bhattacharyya, Prithwis; Dey, Samarjit

    2016-01-01

    Introduction Low Cardiac Output Syndrome (LCOS) following Cardiopulmonary Bypass (CPB) is common and associated with increased mortality. Maintenance of adequate cardiac output is one of the primary objectives in management of such patients. Aim To compare Levosimendan, Milrinone and Dobutamine for the treatment of LCOS after CPB in patients who underwent valve replacement surgeries. Materials and Methods Sixty eligible patients meeting LCOS were allocated into three treatment groups: Group A-Levosimendan (loading dose 10μg/kg over 10 minutes, followed by 0.1μg/kg/min); Group B-Milrinone (loading dose 50 mcg/kg over 10 minutes followed by 0.5mcg/kg/min) and Group C-Dobutamine @ 5μg/kg/min to achieve target cardiac index (CI) of > 2.5 L/min/m2. In case of failure, other drugs were added as required. Hemodynamic parameters were monitored using EV1000TM clinical platform till 30 minutes post CPB. INSTAT software was used for statistics and p<0.05 was considered significant. Results The mean±standard deviation of time taken by Dobutamine, Levosimendan and Milrinone to bring the CI to target were 11.1±8.79, 11.3±6.34 and 16.62±9.33 minutes respectively (p=0.064). Levosimendan was equally effective in increasing and maintaining adequate CI as compared to Dobutamine (p>0.05). Levosimendan and Milrinone increased MAP (Mean Arterial Pressure) equally while Dobutamine was more effective as compared to both Levosimendan and Milrinone 20th minute onwards (p<0.01). Milrinone was less effective in increasing the stroke volume as compared to Dobutamine and Levosimendan while Dobutamine and Levosimendan were equally effective. There was no difference in the HR (Heart Rate) achieved with all these three drugs. Conclusion Levosimendan is equally effective to Dobutamine and better than Milrinone for the treatment of LCOS following CPB in patients undergoing valve replacement surgeries. PMID:28208977

  5. Output trends, characteristics, and measurements of three megavoltage radiotherapy linear accelerators.

    PubMed

    Hossain, Murshed

    2014-07-08

    The purpose of this study is to characterize and understand the long-term behavior of the output from megavoltage radiotherapy linear accelerators. Output trends of nine beams from three linear accelerators over a period of more than three years are reported and analyzed. Output, taken during daily warm-up, forms the basis of this study. The output is measured using devices having ion chambers. These are not calibrated by accredited dosimetry laboratory, but are baseline-compared against monthly output which is measured using calibrated ion chambers. We consider the output from the daily check devices as it is, and sometimes normalized it by the actual output measured during the monthly calibration of the linacs. The data show noisy quasi-periodic behavior. The output variation, if normalized by monthly measured "real' output, is bounded between ± 3%. Beams of different energies from the same linac are correlated with a correlation coefficient as high as 0.97, for one particular linac, and as low as 0.44 for another. These maximum and minimum correlations drop to 0.78 and 0.25 when daily output is normalized by the monthly measurements. These results suggest that the origin of these correlations is both the linacs and the daily output check devices. Beams from different linacs, independent of their energies, have lower correlation coefficient, with a maximum of about 0.50 and a minimum of almost zero. The maximum correlation drops to almost zero if the output is normalized by the monthly measured output. Some scatter plots of pairs of beam output from the same linac show band-like structures. These structures are blurred when the output is normalized by the monthly calibrated output. Fourier decomposition of the quasi-periodic output is consistent with a 1/f power law. The output variation appears to come from a distorted normal distribution with a mean of slightly greater than unity. The quasi-periodic behavior is manifested in the seasonally averaged output

  6. 47 CFR 2.1046 - Measurements required: RF power output.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Section 2.1046 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Equipment Authorization Procedures Certification § 2.1046... frequency load attached to the output terminals when this test is made shall be stated. (b) For...

  7. 47 CFR 2.1046 - Measurements required: RF power output.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Section 2.1046 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Equipment Authorization Procedures Certification § 2.1046... frequency load attached to the output terminals when this test is made shall be stated. (b) For...

  8. 47 CFR 2.1046 - Measurements required: RF power output.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Section 2.1046 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Equipment Authorization Procedures Certification § 2.1046... frequency load attached to the output terminals when this test is made shall be stated. (b) For...

  9. 47 CFR 2.1046 - Measurements required: RF power output.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Section 2.1046 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Equipment Authorization Procedures Certification § 2.1046... frequency load attached to the output terminals when this test is made shall be stated. (b) For...

  10. Measuring Equity: Creating a New Standard for Inputs and Outputs

    ERIC Educational Resources Information Center

    Knoeppel, Robert C.; Della Sala, Matthew R.

    2013-01-01

    The purpose of this article is to introduce a new statistic to capture the ratio of equitable student outcomes given equitable inputs. Given the fact that finance structures should be aligned to outcome standards according to judicial interpretation, a ratio of outputs to inputs, or "equity ratio," is introduced to discern if conclusions can be…

  11. Effect of increased cardiac output on liver blood flow, oxygen exchange and metabolic rate during longterm endotoxin-induced shock in pigs

    PubMed Central

    Šantak, Borislav; Radermacher, Peter; Adler, Jens; Iber, Thomas; Rieger, Karen M; Wachter, Ulrich; Vogt, Josef; Georgieff, Michael; Träger, Karl

    1998-01-01

    We investigated hepatic blood flow, O2 exchange and metabolism in porcine endotoxic shock (Control, n=8; Endotoxin, n=10) with administration of hydroxyethylstarch to maintain arterial pressure (MAP)>60 mmHg. Before and 12, 18 and 24 h after starting continuous i.v. endotoxin we measured portal venous and hepatic arterial blood flow, intracapillary haemoglobin O2 saturation (Hb-O2%) of the liver surface and arterial, portal and hepatic venous lactate, pyruvate, glyercol and alanine concentrations. Glucose production rate was derived from the plasma isotope enrichment during infusion of [6,6-2H2]-glucose. Despite a sustained 50% increase in cardiac output endotoxin caused a progressive, significant fall in MAP. Liver blood flow significantly increased, but endotoxin affected neither hepatic O2 delivery and uptake nor mean intracapillary Hb-O2% and Hb-O2% frequency distributions. Endotoxin nearly doubled endogenous glucose production rate while hepatic lactate, alanine and glycerol uptake rates progressively decreased significantly. The lactate uptake rate even became negative (P<0.05 vs Control). Endotoxin caused portal and hepatic venous pH to fall significantly concomitant with significantly increased arterial, portal and hepatic venous lactate/pyruvate ratios. During endotoxic shock increased cardiac output achieved by colloid infusion maintained elevated liver blood flow and thereby macro- and microcirculatory O2 supply. Glucose production rate nearly doubled with complete dissociation of hepatic uptake of glucogenic precursors and glucose release. Despite well-preserved capillary oxygenation increased lactate/pyruvate ratios reflecting impaired cytosolic redox state suggested deranged liver energy balance, possibly due to the O2 requirements of gluconeogenesis. PMID:9756385

  12. The effect of lidocaine on regional blood flows and cardiac output in the non-stressed and the stressed foetal lamb.

    PubMed

    Friesen, C; Yarnell, R; Bachman, C; Meatheral, R; Biehl, D

    1986-03-01

    Lidocaine has been used in obstetrical anaesthesia for many years but there are still concerns about possible adverse affects of this drug on the foetus in utero. To examine in greater detail the effects of lidocaine in the foetus, the following two-part study was done. In Part A, seven pregnant ewes were surgically prepared with maternal and foetal arterial and venous catheters. After recovery from surgery lidocaine was infused intravenously, initially into the ewe and then into both ewe and foetus. Blood lidocaine concentrations were monitored and foetal regional blood flows were determined by the radioactive microsphere method. In Part B, 14 ewes were prepared as in Part A with the addition of an inflatable loop around the umbilical cord. During each study the loop was inflated to partially compress the cord and produce foetal acidosis. In all animals this cord compression was maintained for 30 minutes. In seven animals a lidocaine infusion was given, to examine the effect of lidocaine in the acidotic foetus. Organ blood flows were measured and cardiac outputs calculated. The normal foetuses in Part A showed no change in organ blood flow or cardiac output with arterial lidocaine concentrations of 1.5-3.4 mg X ml-1. In the acidotic foetuses, lidocaine concentrations of 1.4-1.5 mg X ml-1 produced a tachycardia and an increase in cerebral blood flow compared to the control acidotic foetuses. There were no other significant changes. We conclude that arterial lidocaine concentrations of less than 3.5 mg X ml-1 do not produce significant alterations in organ blood flow in normal foetal lambs.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Role of cardiac output and the autonomic nervous system in the antinatriuretic response to acute constriction of the thoracic superior vena cava.

    NASA Technical Reports Server (NTRS)

    Schrier, R. W.; Humphreys, M. H.; Ufferman, R. C.

    1971-01-01

    Study of the differential characteristics of hepatic congestion and decreased cardiac output in terms of potential afferent stimuli in the antinatriuretic effect of acute thoracic inferior vena cava (TIVC) constriction. An attempt is made to see if the autonomic nervous system is involved in the antinatriuretic effect of acute TIVC or thoracic superior vena cava constriction.

  14. Pulmonary tissue volume, cardiac output, and diffusing capacity in sustained microgravity

    NASA Technical Reports Server (NTRS)

    Verbanck, S.; Larsson, H.; Linnarsson, D.; Prisk, G. K.; West, J. B.; Paiva, M.

    1997-01-01

    In microgravity (microG) humans have marked changes in body fluids, with a combination of an overall fluid loss and a redistribution of fluids in the cranial direction. We investigated whether interstitial pulmonary edema develops as a result of a headward fluid shift or whether pulmonary tissue fluid volume is reduced as a result of the overall loss of body fluid. We measured pulmonary tissue volume (Vti), capillary blood flow, and diffusing capacity in four subjects before, during, and after 10 days of exposure to microG during spaceflight. Measurements were made by rebreathing a gas mixture containing small amounts of acetylene, carbon monoxide, and argon. Measurements made early in flight in two subjects showed no change in Vti despite large increases in stroke volume (40%) and diffusing capacity (13%) consistent with increased pulmonary capillary blood volume. Late in-flight measurements in four subjects showed a 25% reduction in Vti compared with preflight controls (P < 0.001). There was a concomittant reduction in stroke volume, to the extent that it was no longer significantly different from preflight control. Diffusing capacity remained elevated (11%; P < 0.05) late in flight. These findings suggest that, despite increased pulmonary perfusion and pulmonary capillary blood volume, interstitial pulmonary edema does not result from exposure to microG.

  15. Fetal cardiac ventricular volume, cardiac output, and ejection fraction determined with four-dimensional ultrasound using Spatio-Temporal Image Correlation (STIC) and Virtual Organ Computed-aided AnaLysis (VOCAL™)

    PubMed Central

    Hamill, Neil; Yeo, Lami; Romero, Roberto; Hassan, Sonia S.; Myers, Stephen A.; Mittal, Pooja; Kusanovic, Juan Pedro; Balasubramaniam, Mamtha; Chaiworapongsa, Tinnakorn; Vaisbuch, Edi; Espinoza, Jimmy; Gotsch, Francesca; Goncalves, Luis F.; Lee, Wesley

    2011-01-01

    Objective To quantify fetal cardiovascular parameters with Spatio-Temporal Image Correlation (STIC) and Virtual Organ Computed-aided AnaLysis (VOCAL™) utilizing the sub-feature: “Contour Finder: Trace”. Study Design A cross-sectional study was designed consisting of patients with normal pregnancies between 19 and 40 weeks of gestation. After STIC datasets were acquired, analysis was performed offline (4DView) and the following cardiovascular parameters were evaluated: ventricular volume in end systole and end diastole, stroke volume, cardiac output, and ejection fraction. To account for fetal size, cardiac output was also expressed as a function of head circumference, abdominal circumference, or femoral diaphysis length. Regression models were fitted for each cardiovascular parameter to assess the effect of gestational age and paired comparisons were made between the left and right ventricles. Results 1) Two hundred and seventeen patients were retrospectively identified, of whom 184 had adequate STIC datasets (85% acceptance); 2) ventricular volume, stroke volume, cardiac output, and adjusted cardiac output increased with gestational age; whereas, the ejection fraction decreased as gestation advanced; 3) the right ventricle was larger than the left in both systole (Right: 0.50 ml, IQR: 0.2 – 0.9; vs. Left: 0.27 ml, IQR: 0.1 – 0.5; p<0.001) and diastole (Right: 1.20 ml, IQR: 0.7 – 2.2; vs. Left: 1.03 ml, IQR: 0.5 – 1.7; p<0.001); 4) there were no differences between the left and right ventricle with respect to stroke volume, cardiac output, or adjusted cardiac output; and 5) the left ventricular ejection fraction was greater than the right (Left: 72.2%, IQR: 64 – 78; vs. Right: 62.4%, IQR: 56 – 69; p<0.001). Conclusion Fetal echocardiography, utilizing STIC and VOCAL™ with the sub-feature: “Contour Finder: Trace”, allows assessment of fetal cardiovascular parameters. Normal fetal cardiovascular physiology is characterized by ventricular

  16. Diesel Exhaust Inhalation Increases Cardiac Output, Bradyarrhythmias, and Parasympathetic Tone in Aged Heart Failure-Prone Rats

    EPA Science Inventory

    Acute air pollutant inhalation is linked to adverse cardiac events and death, and hospitalizations for heart failure. Diesel exhaust (DE) is a major air pollutant suspected to exacerbate preexisting cardiac conditions, in part, through autonomic and electrophysiologic disturbance...

  17. Assessment of cardiac output from noninvasive determination of arterial pressure profile in subjects at rest.

    PubMed

    Antonutto, G; Girardis, M; Tuniz, D; Petri, E; Capelli, C

    1994-01-01

    The stroke volume of the left ventricle (SV) was calculated from noninvasive recordings of the arterial pressure using a finger photoplethysmograph and compared to the values obtained by pulsed Doppler echocardiography (PDE). A group of 19 healthy men and 12 women [mean ages: 20.8 (SD 1.6) and 22.2 (SD 1.6) years respectively] were studied at rest in the supine position. The ratio of the area below the ejection phase of the arterial pressure wave (A(s)) to SV, as obtained by PDE, yielded a "calibration factor" dimensionally equal to the hydraulic impedance of the system (Zao = A(s).SV-1). The Zao amounted on average to 0.062 (SD 0.018) mmHg.s.cm-3 for the men and to 0.104 (SD 0.024) mmHg.s.cm-3 for the women. The Zao was also estimated from the equation: Zao = a.(d + b.HR + c.PP + e.MAP)-1, where HR was the heart rate, PP the pulse pressure, MAP the mean arterial pressure and the coefficients of the equation were obtained by an iterating statistical package. The value of Zao thus obtained allowed the calculation of SV from measurements derived from the photoplethysmograph only. The mean percentage error between the SV thus obtained and those experimentally determined by PDE amounted to 14.8 and 15.6 for the men and the women, respectively. The error of the estimate was reduced to 12.3 and to 11.1, respectively, if the factor Zao, experimentally obtained from a given heart beat, was subsequently applied to other beats to obtain SV from the A(s) measurement in the same subject.

  18. Cardiac output, O2 delivery and VO2 kinetics during step exercise in acute normobaric hypoxia.

    PubMed

    Lador, Frédéric; Tam, Enrico; Adami, Alessandra; Kenfack, Marcel Azabji; Bringard, Aurélien; Cautero, Michela; Moia, Christian; Morel, Denis R; Capelli, Carlo; Ferretti, Guido

    2013-04-01

    We hypothesised that phase II time constant (τ2) of alveolar O2 uptake ( [Formula: see text] ) is longer in hypoxia than in normoxia as a consequence of a parallel deceleration of the kinetics of O2 delivery ( [Formula: see text] ). To test this hypothesis, breath-by-breath [Formula: see text] and beat-by-beat [Formula: see text] were measured in eight male subjects (25.4±3.4yy, 1.81±0.05m, 78.8±5.7kg) at the onset of cycling exercise (100W) in normoxia and acute hypoxia ( [Formula: see text] ). Blood lactate ([La]b) accumulation during the exercise transient was also measured. The τ2 for [Formula: see text] was shorter than that for [Formula: see text] in normoxia (8.3±6.8s versus 17.8±3.1s), but not in hypoxia (31.5±21.7s versus 28.4 5.4±5.4s). [La]b was increased in the exercise transient in hypoxia (3.0±0.5mM at exercise versus 1.7±0.2mM at rest), but not in normoxia. We conclude that the slowing down of the [Formula: see text] kinetics generated the longer τ2 for [Formula: see text] in hypoxia, with consequent contribution of anaerobic lactic metabolism to the energy balance in exercise transient, witnessed by the increase in [La]b.

  19. The 24 h pattern of arterial pressure in mice is determined mainly by heart rate‐driven variation in cardiac output

    PubMed Central

    Kurtz, Theodore W.; Lujan, Heidi L.; DiCarlo, Stephen E.

    2014-01-01

    Abstract Few studies have systematically investigated whether daily patterns of arterial blood pressure over 24 h are mediated by changes in cardiac output, peripheral resistance, or both. Understanding the hemodynamic mechanisms that determine the 24 h patterns of blood pressure may lead to a better understanding of how such patterns become disturbed in hypertension and influence risk for cardiovascular events. In conscious, unrestrained C57BL/6J mice, we investigated whether the 24 h pattern of arterial blood pressure is determined by variation in cardiac output, systemic vascular resistance, or both and also whether variations in cardiac output are mediated by variations in heart rate and or stroke volume. As expected, arterial pressure and locomotor activity were significantly (P < 0.05) higher during the nighttime period compared with the daytime period when mice are typically sleeping (+12.5 ± 1.0 mmHg, [13%] and +7.7 ± 1.3 activity counts, [254%], respectively). The higher arterial pressure during the nighttime period was mediated by higher cardiac output (+2.6 ± 0.3 mL/min, [26%], P < 0.05) in association with lower peripheral resistance (−1.5 ± 0.3 mmHg/mL/min, [−13%] P < 0.05). The increased cardiac output during the nighttime was mainly mediated by increased heart rate (+80.0 ± 16.5 beats/min, [18%] P < 0.05), as stroke volume increased minimally at night (+1.6 ± 0.5 μL per beat, [6%] P < 0.05). These results indicate that in C57BL/6J mice, the 24 h pattern of blood pressure is hemodynamically mediated primarily by the 24 h pattern of cardiac output which is almost entirely determined by the 24 h pattern of heart rate. These findings suggest that the differences in blood pressure between nighttime and daytime are mainly driven by differences in heart rate which are strongly correlated with differences in locomotor activity. PMID:25428952

  20. 40 CFR 92.116 - Engine output measurement system calibrations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... torque measurement for each range used by the following: (i) Warm up the dynamometer following the... NIST weights. (ii) Warm up the dynamometer following the equipment manufacturer's specifications. (iii... the dynamometer warm-up. (d) Electrical load banks. Equipment used to measure the electrical...

  1. 40 CFR 92.116 - Engine output measurement system calibrations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... torque measurement for each range used by the following: (i) Warm up the dynamometer following the... NIST weights. (ii) Warm up the dynamometer following the equipment manufacturer's specifications. (iii... the dynamometer warm-up. (d) Electrical load banks. Equipment used to measure the electrical...

  2. Scale-Independent Measures and Pathologic Cardiac Dynamics

    NASA Astrophysics Data System (ADS)

    Amaral, Luís A.; Goldberger, Ary L.; Ivanov, Plamen Ch.; Stanley, H. Eugene

    1998-09-01

    We study several scale-independent measures of cardiac interbeat interval dynamics defined through the application of the wavelet transform. We test their performance in detecting heart disease using a database consisting of records of interbeat intervals for a group of healthy individuals and subjects with congestive heart failure. We find that scale-independent measures effectively distinguish healthy from pathologic behavior and propose a new two-variable scale-independent measure that could be clinically useful. We compare the performance of a recently proposed scale-dependent measure and find that the results depend on the database analyzed and on the analyzing wavelet.

  3. Cardiac output response to exercise in relation to metabolic demand in heart failure with preserved ejection fraction

    PubMed Central

    Abudiab, Muaz M.; Redfield, Margaret M.; Melenovsky, Vojtech; Olson, Thomas P.; Kass, David A.; Johnson, Bruce D.; Borlaug, Barry A.

    2013-01-01

    Aims Exercise intolerance is a hallmark of heart failure with preserved ejection fraction (HFpEF), yet its mechanisms remain unclear. The current study sought to determine whether increases in cardiac output (CO) during exercise are appropriately matched to metabolic demands in HFpEF. Methods and results Patients with HFpEF (n = 109) and controls (n = 73) exercised to volitional fatigue with simultaneous invasive (n = 96) or non-invasive (n = 86) haemodynamic assessment and expired gas analysis to determine oxygen consumption (VO2) during upright or supine exercise. At rest, HFpEF patients had higher LV filling pressures but similar heart rate, stroke volume, EF, and CO. During supine and upright exercise, HFpEF patients displayed lower peak VO2 coupled with blunted increases in heart rate, stroke volume, EF, and CO compared with controls. LV filling pressures increased dramatically in HFpEF patients, with secondary elevation in pulmonary artery pressures. Reduced peak VO2 in HFpEF patients was predominantly attributable to CO limitation, as the slope of the increase in CO relative to VO2 was 20% lower in HFpEF patients (5.9 ± 2.5 vs. 7.4 ± 2.6 L blood/L O2, P = 0.0005). While absolute increases in arterial–venous O2 difference with exercise were similar in HFpEF patients and controls, augmentation in arterial–venous O2 difference relative to VO2 was greater in HFpEF patients (8.9 ± 3.4 vs. 5.5 ± 2.0 min/dL, P < 0.0001). These differences were observed in the total cohort and when upright and supine exercise modalities were examined individually. Conclusion While diastolic dysfunction promotes congestion and pulmonary hypertension with stress in HFpEF, reduction in exercise capacity is predominantly related to inadequate CO relative to metabolic needs. PMID:23426022

  4. Dynamic cardiac output regulation at rest, during exercise, and muscle metaboreflex activation: impact of congestive heart failure.

    PubMed

    Ichinose, Masashi; Sala-Mercado, Javier A; Coutsos, Matthew; Li, Zhenhua; Ichinose, Tomoko K; Dawe, Elizabeth; Fano, Dominic; O'Leary, Donal S

    2012-10-01

    We tested whether mild and moderate dynamic exercise and muscle metaboreflex activation (MMA) affect dynamic baroreflex control of heart rate (HR) and cardiac output (CO), and the influence of stroke volume (SV) fluctuations on CO regulation in normal (N) and pacing-induced heart failure (HF) dogs by employing transfer function analyses of the relationships between spontaneous changes in left ventricular systolic pressure (LVSP) and HR, LVSP and CO, HR and CO, and SV and CO at low and high frequencies (Lo-F, 0.04-0.15 Hz; Hi-F, 0.15-0.6 Hz). In N dogs, both workloads significantly decreased the gains for LVSP-HR and LVSP-CO in Hi-F, whereas only moderate exercise also reduced the LVSP-CO gain in Lo-F. MMA during mild exercise further decreased the gains for LVSP-HR in both frequencies and for LVSP-CO in Lo-F. MMA during moderate exercise further reduced LVSP-HR gain in Lo-F. Coherence for HR-CO in Hi-F was decreased by exercise and MMA, whereas that in Lo-F was sustained at a high level (>0.8) in all settings. HF significantly decreased dynamic HR and CO regulation in all situations. In HF, the coherence for HR-CO in Lo-F decreased significantly in all settings; the coherence for SV-CO in Lo-F was significantly higher. We conclude that dynamic exercise and MMA reduces dynamic baroreflex control of HR and CO, and these are substantially impaired in HF. In N conditions, HR modulation plays a major role in CO regulation. In HF, influence of HR modulation wanes, and fluctuations of SV dominate in CO variations.

  5. Plasma volume expansion does not increase maximal cardiac output or VO2 max in lowlanders acclimatized to altitude.

    PubMed

    Calbet, José A L; Rådegran, Göran; Boushel, Robert; Søndergaard, Hans; Saltin, Bengt; Wagner, Peter D

    2004-09-01

    With altitude acclimatization, blood hemoglobin concentration increases while plasma volume (PV) and maximal cardiac output (Qmax) decrease. This investigation aimed to determine whether reduction of Qmax at altitude is due to low circulating blood volume (BV). Eight Danish lowlanders (3 females, 5 males: age 24.0 +/- 0.6 yr; mean +/- SE) performed submaximal and maximal exercise on a cycle ergometer after 9 wk at 5,260 m altitude (Mt. Chacaltaya, Bolivia). This was done first with BV resulting from acclimatization (BV = 5.40 +/- 0.39 liters) and again 2-4 days later, 1 h after PV expansion with 1 liter of 6% dextran 70 (BV = 6.32 +/- 0.34 liters). PV expansion had no effect on Qmax, maximal O2 consumption (VO2), and exercise capacity. Despite maximal systemic O2 transport being reduced 19% due to hemodilution after PV expansion, whole body VO2 was maintained by greater systemic O2 extraction (P < 0.05). Leg blood flow was elevated (P < 0.05) in hypervolemic conditions, which compensated for hemodilution resulting in similar leg O2 delivery and leg VO2 during exercise regardless of PV. Pulmonary ventilation, gas exchange, and acid-base balance were essentially unaffected by PV expansion. Sea level Qmax and exercise capacity were restored with hyperoxia at altitude independently of BV. Low BV is not a primary cause for reduction of Qmax at altitude when acclimatized. Furthermore, hemodilution caused by PV expansion at altitude is compensated for by increased systemic O2 extraction with similar peak muscular O2 delivery, such that maximal exercise capacity is unaffected.

  6. An efficient method of measuring the 4 mm helmet output factor for the Gamma Knife

    NASA Astrophysics Data System (ADS)

    Ma, Lijun; Li, X. Allen; Yu, Cedric X.

    2000-03-01

    It is essential to have accurate measurements of the 4 mm helmet output factor in the treatment of trigeminal neuralgia patients using the Gamma Knife. Because of the small collimator size and the sharp dose gradient at the beam focus, this measurement is generally tedious and difficult. We have developed an efficient method of measuring the 4 mm helmet output factor using regular radiographic films. The helmet output factor was measured by exposing a single Kodak XV film in the standard Leksell spherical phantom using the 18 mm helmet with 30-40 of its plug collimators replaced by the 4 mm plug collimators. The 4 mm helmet output factor was measured to be 0.876 ± 0.009. This is in excellent agreement with our EGS4 Monte Carlo simulated value of 0.876 ± 0.005. This helmet output factor value also agrees with more tedious TLD, diode and radiochromic film measurements that were each obtained using two separate measurements with the 18 mm helmet and the 4 mm helmet respectively. The 4 mm helmet output factor measured by the diode was 0.884 ± 0.016, and the TLD measurement was 0.890 ± 0.020. The radiochromic film measured value was 0.870 ± 0.018. Because a single-exposure measurement was performed instead of a double-exposure measurement, most of the systematic errors that appeared in the double-exposure measurements due to experimental setup variations were cancelled out. Consequently, the 4 mm helmet output factor is more precisely determined by the single-exposure approach. Therefore, routine measurement and quality assurance of the 4 mm helmet output factor of the Gamma Knife could be efficiently carried out using the proposed single-exposure technique.

  7. Continuous registration of blood velocity and cardiac output with a hot-film anemometer probe, mounted on a Swan-Ganz thermodilution catheter.

    PubMed

    Paulsen, P K; Andersen, M

    1981-01-01

    In order to construct a catheter, capable of monitoring cardiac output, a specially designed double-conical hot-film anemometer probe was fastened at the tip of a Swan-Ganz thermodilution catheter. Common sources of error for most catheter velocity probes include difficult calibration, unknown velocity profile at the point of measurement and unknown position of the probe in this profile. By using mongrel dogs and in order to exclude these sources of error, the intermittent thermodilution method was used to in vitro calibrate the hot-film anemometer, which registered velocity continuously. A mean correlation coefficient between these two methods was found to be 0.886. A mean line of regression between thermodilution (abscissa) and anemometer (ordinate) had a slope of 0.796 +/- 0.223 (+/- SD) and a y-intercept of 24 +/- 14 ml/min/kg. The slope was significantly lower than one (t test, p less than 0.05) and the y-intercept significantly larger than zero (t test, p less than 0.02). As a control of the thermodilution method, electromagnetic flow in the ascending aorta was registered and a mean correlation coefficient of 0.967 found. The hot-film sensor itself can be used as thermodilution method with the hot-film anemometer's continuous registration of velocity.

  8. Measuring cardiac autonomic nervous system (ANS) activity in children.

    PubMed

    van Dijk, Aimée E; van Lien, René; van Eijsden, Manon; Gemke, Reinoud J B J; Vrijkotte, Tanja G M; de Geus, Eco J

    2013-04-29

    The autonomic nervous system (ANS) controls mainly automatic bodily functions that are engaged in homeostasis, like heart rate, digestion, respiratory rate, salivation, perspiration and renal function. The ANS has two main branches: the sympathetic nervous system, preparing the human body for action in times of danger and stress, and the parasympathetic nervous system, which regulates the resting state of the body. ANS activity can be measured invasively, for instance by radiotracer techniques or microelectrode recording from superficial nerves, or it can be measured non-invasively by using changes in an organ's response as a proxy for changes in ANS activity, for instance of the sweat glands or the heart. Invasive measurements have the highest validity but are very poorly feasible in large scale samples where non-invasive measures are the preferred approach. Autonomic effects on the heart can be reliably quantified by the recording of the electrocardiogram (ECG) in combination with the impedance cardiogram (ICG), which reflects the changes in thorax impedance in response to respiration and the ejection of blood from the ventricle into the aorta. From the respiration and ECG signals, respiratory sinus arrhythmia can be extracted as a measure of cardiac parasympathetic control. From the ECG and the left ventricular ejection signals, the preejection period can be extracted as a measure of cardiac sympathetic control. ECG and ICG recording is mostly done in laboratory settings. However, having the subjects report to a laboratory greatly reduces ecological validity, is not always doable in large scale epidemiological studies, and can be intimidating for young children. An ambulatory device for ECG and ICG simultaneously resolves these three problems. Here, we present a study design for a minimally invasive and rapid assessment of cardiac autonomic control in children, using a validated ambulatory device (1-5), the VU University Ambulatory Monitoring System (VU

  9. Nexfin Noninvasive Continuous Hemodynamic Monitoring: Validation against Continuous Pulse Contour and Intermittent Transpulmonary Thermodilution Derived Cardiac Output in Critically Ill Patients

    PubMed Central

    Van De Vijver, Katrijn; De laet, Inneke; Schoonheydt, Karen; Dits, Hilde; Bein, Berthold; Malbrain, Manu L. N. G.

    2013-01-01

    Introduction. Nexfin (Bmeye, Amsterdam, Netherlands) is a noninvasive cardiac output (CO) monitor based on finger arterial pulse contour analysis. The aim of this study was to validate Nexfin CO (NexCO) against thermodilution (TDCO) and pulse contour CO (CCO) by PiCCO (Pulsion Medical Systems, Munich, Germany). Patients and Methods. In a mix of critically ill patients (n = 45), NexCO and CCO were measured continuously and recorded at 2-hour intervals during the 8-hour study period. TDCO was measured at 0–4–8 hrs. Results. NexCO showed a moderate to good (significant) correlation with TDCO (R2 0.68, P < 0.001) and CCO (R2 0.71, P < 0.001). Bland and Altman analysis comparing NexCO with TDCO revealed a bias (± limits of agreement, LA) of 0.4 ± 2.32 L/min (with 36% error) while analysis comparing NexCO with CCO showed a bias (±LA) of 0.2 ± 2.32 L/min (37% error). NexCO is able to follow changes in TDCO and CCO during the same time interval (level of concordance 89.3% and 81%). Finally, polar plot analysis showed that trending capabilities were acceptable when changes in NexCO (ΔNexCO) were compared to ΔTDCO and ΔCCO (resp., 89% and 88.9% of changes were within the level of 10% limits of agreement). Conclusion. we found a moderate to good correlation between CO measurements obtained with Nexfin and PiCCO. PMID:24319373

  10. The effect of head up tilting on bioreactance cardiac output and stroke volume readings using suprasternal transcutaneous Doppler as a control in healthy young adults.

    PubMed

    Zhang, Jie; Critchley, Lester A H; Lee, Daniel C W; Khaw, Kim S; Lee, Shara W Y

    2016-10-01

    To compare the performance of a bioreactance cardiac output (CO) monitor (NICOM) and transcutaneous Doppler (USCOM) during head up tilting (HUT). Healthy young adult subjects, age 22 ± 1 years, 7 male and 7 female, were tilted over 3-5 s from supine to 70° HUT, 30° HUT and back to supine. Positions were held for 3 min. Simultaneous readings of NICOM and USCOM were performed 30 s into each new position. Mean blood pressure (MBP), heart rate (HR), CO and stroke volume (SV), and thoracic fluid content (TFC) were recorded. Bland-Altman, percentage changes and analysis of variance for repeated measures were used for statistical analysis. Pre-tilt NICOM CO and SV readings (6.1 ± 1.0 L/min and 113 ± 25 ml) were higher than those from USCOM (4.1 ± 0.6 L/min and 77 ± 9 ml) (P < 0.001). Bland-Altman limits of agreement for CO were wide with a percentage error of 38 %. HUT increased MBP and HR (P < 0.001). CO and SV readings decreased with HUT. However, the percentage changes in USCOM and NICOM readings did not concur (P < 0.001). Whereas USCOM provided gravitational effect proportional changes in SV readings of 23 ± 15 % (30° half tilt) and 44 ± 11 % (70° near full tilt), NICOM changes did not being 28 ± 10 and 33 ± 11 %. TFC decreased linearly with HUT. The NICOM does not provide linear changes in SV as predicted by physiology when patients are tilted. Furthermore there is a lack of agreement with USCOM measurements at baseline and during tilting.

  11. Measuring hospital efficiency with Data Envelopment Analysis: nonsubstitutable vs. substitutable inputs and outputs.

    PubMed

    Barnum, Darold T; Walton, Surrey M; Shields, Karen L; Schumock, Glen T

    2011-12-01

    There is a conflict between Data Envelopment Analysis (DEA) theory's requirement that inputs (outputs) be substitutable, and the ubiquitous use of nonsubstitutable inputs and outputs in DEA applications to hospitals. This paper develops efficiency indicators valid for nonsubstitutable variables. Then, using a sample of 87 community hospitals, it compares the new measures' efficiency estimates with those of conventional DEA measures. DEA substantially overestimated the hospitals' efficiency on the average, and reported many inefficient hospitals to be efficient. Further, it greatly overestimated the efficiency of some hospitals but only slightly overestimated the efficiency of others, thus making any comparisons among hospitals questionable. These results suggest that conventional DEA models should not be used to estimate the efficiency of hospitals unless there is empirical evidence that the inputs (outputs) are substitutable. If inputs (outputs) are not substitutes, efficiency indicators valid for nonsubstitutability should be employed, or, before applying DEA, the nonsubstitutable variables should be combined using an appropriate weighting scheme or statistical methodology.

  12. The effect of small field output factor measurements on IMRT dosimetry

    SciTech Connect

    Azimi, Rezvan; Alaei, Parham; Higgins, Patrick

    2012-08-15

    Purpose: To evaluate how changes in the measured small field output factors affect the doses in intensity-modulated treatment planning. Methods: IMRT plans were created using Philips Pinnacle treatment planning system. The plans were optimized to treat a cylindrical target 2 cm in diameter and 2 cm in length. Output factors for 2 Multiplication-Sign 2 and 3 Multiplication-Sign 3 cm{sup 2} field sizes were changed by {+-}5%, {+-}10%, and {+-}20% increments from the baseline measurements and entered into the planning system. The treatment units were recommissioned in the treatment planning system after each modification of the output factors and treatment plans were reoptimized. All plans were delivered to a solid water phantom and dose measurements were made using an ionization chamber. The percentage differences between measured and computed doses were calculated. An Elekta Synergy and a Varian 2300CD linear accelerator were separately evaluated. Results: For the Elekta unit, decreasing the output factors resulted in higher measured than computed doses by 0.8% for -5%, 3.6% for -10%, and 8.7% for -20% steps. Increasing the output factors resulted in lower doses by 2.9% for +5%, 5.4% for +10%, and 8.3% for +20% steps. For the Varian unit no changes were observed for either increased or decreased output factors. Conclusions: The measurement accuracy of small field output factors are of importance especially when the treatment plan consists of small segments as in IMRT. The method proposed here could be used to verify the accuracy of the measured small field output factors for certain linear accelerators as well as to test the beam model. The Pinnacle treatment planning system model uses output factors as a function of jaw setting. Consequently, plans using the Elekta unit, which conforms the jaws to the segments, are sensitive to small field measurement accuracy. On the other hand, for the Varian unit, jaws are fixed and segments are modeled as blocked fields hence

  13. Technical Note: PRESAGE three-dimensional dosimetry accurately measures Gamma Knife output factors

    PubMed Central

    Klawikowski, Slade J.; Yang, James N.; Adamovics, John; Ibbott, Geoffrey S.

    2014-01-01

    Small-field output factor measurements are traditionally very difficult because of steep dose gradients, loss of lateral electronic equilibrium, and dose volume averaging in finitely sized detectors. Three-dimensional (3D) dosimetry is ideal for measuring small output factors and avoids many of these potential challenges of point and two-dimensional detectors. PRESAGE 3D polymer dosimeters were used to measure the output factors for the 4 mm and 8 mm collimators of the Leksell Perfexion Gamma Knife radiosurgery treatment system. Discrepancies between the planned and measured distance between shot centers were also investigated. A Gamma Knife head frame was mounted onto an anthropomorphic head phantom. Special inserts were machined to hold 60 mm diameter, 70 mm tall cylindrical PRESAGE dosimeters. The phantom was irradiated with one 16 mm shot and either one 4 mm or one 8 mm shot, to a prescribed dose of either 3 Gy or 4 Gy to the 50% isodose line. The two shots were spaced between 30 mm and 60 mm apart and aligned along the central axis of the cylinder. The Presage dosimeters were measured using the DMOS-RPC optical CT scanning system. Five independent 4 mm output factor measurements fell within 2% of the manufacturer’s Monte Carlo simulation-derived nominal value, as did two independent 8 mm output factor measurements. The measured distances between shot centers varied by ± 0.8 mm with respect to the planned shot displacements. On the basis of these results, we conclude that PRESAGE dosimetry is excellently suited to quantify the difficult-to-measure Gamma Knife output factors. PMID:25368961

  14. Exercise capacity in patients supported with rotary blood pumps is improved by a spontaneous increase of pump flow at constant pump speed and by a rise in native cardiac output.

    PubMed

    Jacquet, Luc; Vancaenegem, Olivier; Pasquet, Agnès; Matte, Pascal; Poncelet, Alain; Price, Joel; Gurné, Olivier; Noirhomme, Philippe

    2011-07-01

    Exercise capacity is improved in patients supported with continuous flow rotary blood pumps (RP). The aim of this study was to investigate the mechanisms underlying this improvement. Ten patients implanted with a RP underwent cardiopulmonary exercise testing (CPET) at 6 months after surgery with hemodynamic and metabolic measurements (RP group). A group of 10 matched heart failure patients were extracted from our heart transplant database, and the results of their last CPET before transplantation were used for comparison (heart failure [HF] group). Peak VO(2) was significantly higher in RP than in HF patients (15.8 ± 6.2 vs. 10.9 ± 3 mL O(2)/kg.min) reaching 52 ± 16% of their predicted peak VO(2). The total output measured by a Swan-Ganz catheter increased from 5.6 ± 1.6 to 9.2 ± 1.8 L/min in the RP group and was significantly higher at rest and at peak exercise than in the HF group, whose output increased from 3.5 ± 0.4 to 5.6 ± 1.6 L/min. In the RP group, the estimated pump flow increased from 5.3 ± 0.4 to 6.2 ± 0.8, whereas the native cardiac output increased from 0.0 ± 0.5 to 3 ± 1.7 L/min. Cardiac output at peak exercise was inversely correlated with age (r = -0.86, P = 0.001) and mean pulmonary artery pressure (r = -0.75, P = 0.012). Maximal exercise capacity is improved in patients supported by RP as compared to matched HF patients and reaches about 50% of the expected values. Both a spontaneous increase of pump flow at constant pump speed and an increase of the native cardiac output contribute to total flow elevation. These findings may suggest that an automatic pump speed adaptation during exercise would further improve the exercise capacity. This hypothesis should be examined.

  15. Implantable magnetic relaxation sensors measure cumulative exposure to cardiac biomarkers.

    PubMed

    Ling, Yibo; Pong, Terrence; Vassiliou, Christophoros C; Huang, Paul L; Cima, Michael J

    2011-03-01

    Molecular biomarkers can be used as objective indicators of pathologic processes. Although their levels often change over time, their measurement is often constrained to a single time point. Cumulative biomarker exposure would provide a fundamentally different kind of measurement to what is available in the clinic. Magnetic resonance relaxometry can be used to noninvasively monitor changes in the relaxation properties of antibody-coated magnetic particles when they aggregate upon exposure to a biomarker of interest. We used implantable devices containing such sensors to continuously profile changes in three clinically relevant cardiac biomarkers at physiological levels for up to 72 h. Sensor response differed between experimental and control groups in a mouse model of myocardial infarction and correlated with infarct size. Our prototype for a biomarker monitoring device also detected doxorubicin-induced cardiotoxicity and can be adapted to detect other molecular biomarkers with a sensitivity as low as the pg/ml range.

  16. A Theoretical Framework for Educational Output Measurement. AIR Forum Paper 1978.

    ERIC Educational Resources Information Center

    Reece, William S.

    Construction of a theoretical measure of educational output is attempted in this paper. The effort begins by specifying the purpose for which this measure is intended: centralized allocation, according to the equimarginal principle, of limited resources to alternative units producing education. It then specifies a simple and narrow goal that…

  17. Input-output relations in biological systems: measurement, information and the Hill equation

    PubMed Central

    2013-01-01

    Biological systems produce outputs in response to variable inputs. Input-output relations tend to follow a few regular patterns. For example, many chemical processes follow the S-shaped Hill equation relation between input concentrations and output concentrations. That Hill equation pattern contradicts the fundamental Michaelis-Menten theory of enzyme kinetics. I use the discrepancy between the expected Michaelis-Menten process of enzyme kinetics and the widely observed Hill equation pattern of biological systems to explore the general properties of biological input-output relations. I start with the various processes that could explain the discrepancy between basic chemistry and biological pattern. I then expand the analysis to consider broader aspects that shape biological input-output relations. Key aspects include the input-output processing by component subsystems and how those components combine to determine the system’s overall input-output relations. That aggregate structure often imposes strong regularity on underlying disorder. Aggregation imposes order by dissipating information as it flows through the components of a system. The dissipation of information may be evaluated by the analysis of measurement and precision, explaining why certain common scaling patterns arise so frequently in input-output relations. I discuss how aggregation, measurement and scale provide a framework for understanding the relations between pattern and process. The regularity imposed by those broader structural aspects sets the contours of variation in biology. Thus, biological design will also tend to follow those contours. Natural selection may act primarily to modulate system properties within those broad constraints. Reviewers This article was reviewed by Eugene Koonin, Georg Luebeck and Sergei Maslov. PMID:24308849

  18. Measurement of dynamic gas disengagement profile by using an analog output level gauge

    NASA Astrophysics Data System (ADS)

    Mikkilineni, S.; Koelle, M.; Xu, H.

    The dynamic gas disengagement profile was measured in a 0.14 m diameter and 3.66 m high plexiglas column by using an analog output gauge, which was connected to a data acquisition system. This analog output gauge is a high accuracy continuous measurement level gauge. It is made up of a wave guide, a float, a motion or stress sensing device and a probe housing. The fluid level at any gas velocity is obtained by using the data acquisition system. The dynamic gas disengagement profile produced one slope in the bubble flow and two slopes in the churn turbulent flow representing unimodal and bimodal distributions of bubbles.

  19. Optimal Tracking Control of Unknown Discrete-Time Linear Systems Using Input-Output Measured Data.

    PubMed

    Kiumarsi, Bahare; Lewis, Frank L; Naghibi-Sistani, Mohammad-Bagher; Karimpour, Ali

    2015-12-01

    In this paper, an output-feedback solution to the infinite-horizon linear quadratic tracking (LQT) problem for unknown discrete-time systems is proposed. An augmented system composed of the system dynamics and the reference trajectory dynamics is constructed. The state of the augmented system is constructed from a limited number of measurements of the past input, output, and reference trajectory in the history of the augmented system. A novel Bellman equation is developed that evaluates the value function related to a fixed policy by using only the input, output, and reference trajectory data from the augmented system. By using approximate dynamic programming, a class of reinforcement learning methods, the LQT problem is solved online without requiring knowledge of the augmented system dynamics only by measuring the input, output, and reference trajectory from the augmented system. We develop both policy iteration (PI) and value iteration (VI) algorithms that converge to an optimal controller that require only measuring the input, output, and reference trajectory data. The convergence of the proposed PI and VI algorithms is shown. A simulation example is used to verify the effectiveness of the proposed control scheme.

  20. SU-E-T-257: Output Constancy: Reducing Measurement Variations in a Large Practice Group

    SciTech Connect

    Hedrick, K; Fitzgerald, T; Miller, R

    2014-06-01

    Purpose: To standardize output constancy check procedures in a large medical physics practice group covering multiple sites, in order to identify and reduce small systematic errors caused by differences in equipment and the procedures of multiple physicists. Methods: A standardized machine output constancy check for both photons and electrons was instituted within the practice group in 2010. After conducting annual TG-51 measurements in water and adjusting the linac to deliver 1.00 cGy/MU at Dmax, an acrylic phantom (comparable at all sites) and PTW farmer ion chamber are used to obtain monthly output constancy reference readings. From the collected charge reading, measurements of air pressure and temperature, and chamber Ndw and Pelec, a value we call the Kacrylic factor is determined, relating the chamber reading in acrylic to the dose in water with standard set-up conditions. This procedure easily allows for multiple equipment combinations to be used at any site. The Kacrylic factors and output results from all sites and machines are logged monthly in a central database and used to monitor trends in calibration and output. Results: The practice group consists of 19 sites, currently with 34 Varian and 8 Elekta linacs (24 Varian and 5 Elekta linacs in 2010). Over the past three years, the standard deviation of Kacrylic factors measured on all machines decreased by 20% for photons and high energy electrons as systematic errors were found and reduced. Low energy electrons showed very little change in the distribution of Kacrylic values. Small errors in linac beam data were found by investigating outlier Kacrylic values. Conclusion: While the use of acrylic phantoms introduces an additional source of error through small differences in depth and effective depth, the new standardized procedure eliminates potential sources of error from using many different phantoms and results in more consistent output constancy measurements.

  1. A particle image velocimeter for measuring the output of high energy detonators

    SciTech Connect

    Murphy, Michael J; Adrian, Ronald J; Clarke, Steven A

    2010-01-01

    Results from feasibility experiments are presented to confirm that tracer-particle motion resulting from mass-velocity fields created by driving high-energy detonator output into dynamic witness plates can be successfully measured using particle image velocimetry (PIV). Experimental results, application challenges, and PIV system development are presented. In shock mechanics research, the ability to quantitatively measure the state of compression of shocked materials in two and three dimensions based on particle tracer methods is of extreme importance since such measurements provide precise temporal snapshots of two and three-dimensional shock-induced velocity fields. This is especially true in the science of detonation physics where such measurements provide enormous insight into fundamental. questions for understanding shock-loading processes, effects of shock-front curvature, and mechanisms of energy conversion from stimulus to shock output. As an example, answering such questions is paramount to the understanding and development of newer, safer detonators. To date, few attempts have been made to develop and implement standard particle tracer techniques to measure shock-induced flows resulting from explosive devices. The experimental challenge lies in developing a methodology wherein a tracer particle's inertia does not hinder its ability to accurately move with the rapidly changing flow field. We have recently developed the ability to characterize the output of unloaded explosive initiators (e.g. exploding bridge wires, exploding foils, laser-driven plasmas, etc.) using an optically-based diagnostic consisting of an ultra-high speed, time-resolved PIV system and inert, transparent polymers serving as dynamic witness plates. Initiator output is directed into a witness plate, and measurements of shock and mass velocities are made in a two-dimensional plane aligned with the initiator centerline. The results allow initiator output to be quantified in any in

  2. Standardisation of cardiac troponin I measurement: past and present.

    PubMed

    Tate, Jillian R; Bunk, David M; Christenson, Robert H; Katrukha, Alexei; Noble, James E; Porter, Robert A; Schimmel, Heinz; Wang, Lili; Panteghini, Mauro

    2010-01-01

    The laboratory measurement of cardiac troponin (cTn) concentration is a critical tool in the diagnosis of acute myocardial infarction (MI). Current cTnI assays produce different absolute troponin numbers and use different clinical cut-off values; hence cTnI values cannot be interchanged, with consequent confusion for clinicians. A recent Australian study compared patient results for seven cTnI assays and showed that between-method variation was approximately 2- to 5-fold. A major reason for poor method agreement is the lack of a suitable common reference material for the calibration of cTnI assays by manufacturers. Purified complexed troponin material lacks adequate commutability for all assays; hence a serum-based secondary reference material is required for cTnI with value assignment by a higher order reference measurement procedure. There is considerable debate about how best to achieve comparability of results for heterogeneous analytes such as cTnI, whether it should be via the harmonisation or the standardisation process. Whereas harmonisation depends upon consensus value assignment and uses those commercial methods which give the closest agreement at the time, standardisation comes closer to the true value through a reference measurement system that is based upon long-term calibration traceability. The current paper describes standardisation efforts by the International Federation of Clinical Chemistry and Laboratory Medicine Working Group on Standardization of cTnI (IFCC WG-TNI) to establish a reference immunoassay measurement procedure for cTnI of a higher order than current commercial immunoassay methods and a commutable secondary reference material for cTnI to which companies can reference their calibration materials.

  3. TU-F-BRE-08: Significant Variations in Measured Small Cone Output Factor for FFF Beams

    SciTech Connect

    Sudhyadhom, A; Ma, L; Kirby, N

    2014-06-15

    Purpose: To evaluate the measurement accuracy of several dosimeters for small cone output factors in two SRS/SBRT dedicated systems with Flattening Filter Free (FFF) beams: a Varian TrueBeam STx (TB) and an Accuray CyberKnife VSI (CK). Output factors (OFs) were measured for both machines and for CK, compared against a Monte Carlo model. Methods: Dose measurements were taken using three different FFF beams (TB 6XFFF, TB 10XFFF, and CK 6XFFF). Three commonly used types of dosimeters were examined in this work: a micro-ion chamber (Exradin A16), two shielded diodes (PTW TN60008 and PTW TN60017), and radiochromic film (Gafchromic EBT2). Measured OFs from these dosimeters were compared with each other and OFs measured with an Exradin W1 scintillator. Monte Carlo determined correction factors for the CK beam for the micro-ion chamber and diodes were applied to the respective OF measurements and compared against scintillator measured OFs corrected for volume averaging. Results: OFs measured for the smallest fields using the micro-ion chamber, diodes, scintillator, and film varied substantially (with up to a 16% difference between dosimeters). Micro-ion chamber and film OF measurements were up to 9% and 10%, respectively, lower than scintillator measurements for the smallest fields. OF measurements by diode were up to 6% greater than scintillator measurements for the smallest fields. With correction factors, the micro-ion chamber and diode measured OFs showed good agreement with scintillator measured OFs for the CK 6XFFF beam (within 3% and 1.5%, respectively). Conclusion: Uncorrected small field OFs vary significantly with dosimeter. The accuracy of scintillator measurements for small field OFs may be greater than the other dosimeters studied in this work (when uncorrected). Measurements involving EBT2 film may Result in lower accuracy for smaller fields (less than 10mm). Care should be taken in the choice of the dosimeter used for small field OF measurements.

  4. Role of heart rate and stroke volume during muscle metaboreflex-induced cardiac output increase: differences between activation during and after exercise.

    PubMed

    Crisafulli, Antonio; Piras, Francesco; Filippi, Michele; Piredda, Carlo; Chiappori, Paolo; Melis, Franco; Milia, Raffaele; Tocco, Filippo; Concu, Alberto

    2011-09-01

    We hypothesized that the role of stroke volume (SV) in the metaboreflex-induced cardiac output (CO) increase was blunted when the metaboreflex was stimulated by exercise muscle ischemia (EMI) compared with post-exercise muscle ischemia (PEMI), because during EMI heart rate (HR) increases and limits diastolic filling. Twelve healthy volunteers were recruited and their hemodynamic responses to the metaboreflex evoked by EMI, PEMI, and by a control dynamic exercise were assessed. The main finding was that the blood pressure increment was very similar in the EMI and PEMI settings. In both conditions the main mechanism used to raise blood pressure was a CO elevation. However, during the EMI test CO was increased as a result of HR elevation whereas during the PEMI test CO was increased as a result of an increase in SV. These results were explainable on the basis of the different HR behavior between the two settings, which in turn led to different diastolic time and myocardial performance.

  5. A Summary of Selected Major Studies Which Associate Input and Process Variables with Various Measures of School Quality or Output.

    ERIC Educational Resources Information Center

    Robbins, Jerry H.

    This paper summarizes studies conducted to predict various educational outputs or other measures of quality from measures of student and community input and educational processes, groups the studies by the type of output measure used, and searches for trends in the results. The data are arranged in five columns in an extensive chart. The first…

  6. METHOD OF MEASURING THE INTEGRATED ENERGY OUTPUT OF A NEUTRONIC CHAIN REACTOR

    DOEpatents

    Sturm, W.J.

    1958-12-01

    A method is presented for measuring the integrated energy output of a reactor conslsting of the steps of successively irradiating calibrated thin foils of an element, such as gold, which is rendered radioactive by exposure to neutron flux for periods of time not greater than one-fifth the mean life of the induced radioactlvity and producing an indication of the radioactivity induced in each foil, each foil belng introduced into the reactor immediately upon removal of its predecessor.

  7. Comparisons of soil moisture data from in situ measurements and global hydrological model outputs

    NASA Astrophysics Data System (ADS)

    Ramillien, G.; Cazenave, A.; Milly, C.; Robock, A.

    2003-04-01

    In the context of the calibration of the GRACE geodetic mission, we investigated the accuracy of soil moisture variations predicted by a hydrological model. For this purpose, we compare outputs of the global hydrological LaD model with in situ measurements of soil moisture. In situ soil moisture measurements are available from the global moisture data bank (http://climate.envsci.rutgers.edu). The soil moisture values are interpolated in different regions of Eurasia (China, Mongolia, India, Russia) and in the United States, and for periods of several decades. To perform the observations-model comparisons, we interpolated the 1-degree gridded Land Dynamics hydrological model outputs at the locations of the in situ stations. We computed local and regional rms differences and their cross-coherency versus time and space for hundreds of station locations. In general, the model tends to under-estimate the absolute water storage in the soil, and provides smoother values than in situ measurements. However, in terms of temporal variations, both monthly model outputs and direct observations remain highly consistent, especially for the average seasonal cycle.

  8. Measures of endothelial dysfunction predict response to cardiac resynchronisation therapy

    PubMed Central

    Warriner, David R; Lawford, Patricia; Sheridan, Paul J

    2016-01-01

    Objectives Cardiac resynchronisation therapy (CRT) improves morbidity and mortality in heart failure (HF). Impaired endothelial function, as measured by flow-mediated dilation (FMD) is associated with increased morbidity and mortality in HF and may help to differentiate responders from non-responders. Methods 19 patients were recruited, comprising 94% men, mean age 69±8 years, New York Heart Association functional classes II–IV, QRSd 161±21 ms and mean left ventricular ejection fraction 26±8%. Markers of response and FMD were measured at baseline, 6 and 12 months following CRT. Results 14 patients were responders to CRT. Responders had significant improvements in VO2 (12.6±1.7 to 14.7±1.5 mL/kg/min, p<0.05), quality of life score (44.4±22.9–24.1±21.3, p<0.01), left ventricular end diastolic volume (201.5±72.5 mL–121.3±72.0 mL, p<0.01) and 6-min walk distance (374.0±112.8 m at baseline to 418.1±105.3 m, p<0.05). Baseline FMD in responders was 2.9±1.9% and 7.4±3.73% in non-responders (p<0.05). Conclusions Response to CRT at 6 and 12 months is predicted by baseline FMD. This study confirms that FMD identifies responders to CRT, due to endothelium-dependent mechanisms alone. PMID:27335654

  9. Flow balance between the left and right cardiac output of an eccentric roller type total artificial heart.

    PubMed

    Wada, H; Fukunaga, S; Watari, M; Sakai, H; Sugawara, Y; Ochikubo, H; Imai, K; Shibamura, H; Orihashi, K; Sueda, T; Matsuura, Y

    1999-08-01

    We have made an eccentric roller type total artificial heart (ERTAH). The ERTAH is a positive-displacement device comparable to a DeBakey roller pump. Its left and right outputs are determined by the size of its blood chambers, and the ratio of its left and right output is almost constant. We focused on an interatrial shunt to achieve left-right balance. We have conducted numerical simulation, a mock test, and an acute animal experiment to analyze left-right heart balance during ERTAH operation. Numerical simulation was performed under conditions in which the flow of the left artificial heart was fixed at 6 L/min, the flow of the right artificial heart was varied from 4.8 to 6 L/min, and the interatrial resistance was also varied. The relationship between the interatrial shunt flow rate and the output of the left and right artificial hearts was balanced when the flow of the right artificial heart was at 5.45 L/min. In a mock test, 2 DeBakey roller pumps were connected to the left and right sides of a Donovan mock circulatory system, and an interatrial shunt was created between the inlet ports of the left and right roller pumps. The interatrial resistance of the mock system was varied from 7.7, to 4.3, and to 2.9 mm Hg x min/L when the inner diameter of the interatrial shunt was 6, 8, and 10 mm, respectively. As in the mock test, 2 roller pumps were used to bypass the right and left hearts of a goat weighing 60 kg. The flow rate of the left heart was almost constant (4.7 L/min). The flow of the right heart was approximately 4.1 L/min when the interatrial shunt flow rate was zero. A leading consideration was that the left to left shunt through the bronchial arteries in this goat was approximately 0.6 L/min. In developing the ERTAH, we considered that creating an interatrial shunt between the inlet ports of the ERTAH as well as making a difference between the chamber volumes might be effective in balancing the left-right sides of the artificial heart.

  10. Simple wide-range method for angle measurement with a point fiber-optic output.

    PubMed

    Ilev, I; Kumagai, H; Toyoda, K

    1997-01-01

    We propose a simple optical method for precise, wide-range angle measurement based on the use of a single-mode optical fiber as a registration scheme output. Because of its micrometric core dimensions, the fiber serves as a point receiver that is highly sensitive to angular displacements of focused laser emission. The method allows the independent photoelectric measurement of both rotation and spatial angles of various optical elements, combining a wide angular dynamic range (from 0 degrees to 360 degrees ) with high accuracy (exceeding 3 arcsec).

  11. Estimating photoreceptor excitations from spectral outputs of a personal light exposure measurement device.

    PubMed

    Cao, Dingcai; Barrionuevo, Pablo A

    2015-03-01

    The intrinsic circadian clock requires photoentrainment to synchronize the 24-hour solar day. Therefore, light stimulation is an important component of chronobiological research. Currently, the chronobiological research field overwhelmingly uses photopic illuminance that is based on the luminous efficiency function, V(λ), to quantify light levels. However, recent discovery of intrinsically photosensitive retinal ganglion cells (ipRGCs), which are activated by self-contained melanopsin photopigment and also by inputs from rods and cones, makes light specification using a one-dimensional unit inadequate. Since the current understanding of how different photoreceptor inputs contribute to the circadian system through ipRGCs is limited, it is recommended to specify light in terms of the excitations of five photoreceptors (S-, M-, L-cones, rods and ipRGCs; Lucas et al., 2014). In the current study, we assessed whether the spectral outputs from a commercially available spectral watch (i.e. Actiwatch Spectrum) could be used to estimate photoreceptor excitations. Based on the color sensor spectral sensitivity functions from a previously published work, as well as from our measurements, we computed spectral outputs in the long-wavelength range (R), middle-wavelength range (G), short-wavelength range (B) and broadband range (W) under 52 CIE illuminants (25 daylight illuminants, 27 fluorescent lights). We also computed the photoreceptor excitations for each illuminant using human photoreceptor spectral sensitivity functions. Linear regression analyses indicated that the Actiwatch spectral outputs could predict photoreceptor excitations reliably, under the assumption of linear responses of the Actiwatch color sensors. In addition, R, G, B outputs could classify illuminant types (fluorescent versus daylight illuminants) satisfactorily. However, the assessment of actual Actiwatch recording under several testing light sources showed that the spectral outputs were subject to

  12. Input-output finite-time stabilisation of nonlinear stochastic system with missing measurements

    NASA Astrophysics Data System (ADS)

    Song, Jun; Niu, Yugang; Jia, Tinggang

    2016-09-01

    This paper considers the problem of the input-output finite-time stabilisation for a class of nonlinear stochastic system with state-dependent noise. The phenomenon of the missing measurements may occur when state signals are transmitted via communication networks. An estimating method is proposed to compensate the lost state information. And then, a compensator-based controller is designed to ensure the input-output finite-time stochastic stability (IO-FTSS) of the closed-loop system. Some parameters-dependent sufficient conditions are derived and the corresponding solving approach is given. Finally, numerical simulations are provided to demonstrate the feasibility and effectiveness of the developed IO-FTSS scheme.

  13. Measurement of cardiac reserve in cardiogenic shock: implications for prognosis and management.

    PubMed Central

    Tan, L B; Littler, W A

    1990-01-01

    The hypothesis that the prognosis of cardiogenic shock patients is primarily dependent on cardiac pumping reserve was tested in a prospective study of 28 consecutive patients clinically diagnosed to be in cardiogenic shock and treated medically. Haemodynamic function was assessed by thermodilution Swan-Ganz catheters and arterial cannulas. The cardiac pumping reserve was evaluated by the response of the failing heart to graded incremental dobutamine infusion (2.5 to 40 micrograms/kg/min) after optimalising the left ventricular preload. Eleven of the patients survived for more than the one year of follow up and the rest died. Haemodynamic evaluation during the basal resting state was only able to identify unambiguously non-survivors whose cardiac function was most severely compromised. Survivors and non-survivors with higher values were indistinguishable by basal haemodynamic criteria. The response to dobutamine stimulation clearly separated the cardiac pump function of survivors and those who died. All patients with peak cardiac power output of less than 1.0 W or peak left ventricular stroke work index of less than 0.25 J/m2 died whereas all those with higher values lived for more than a year. Thus this study showed that haemodynamic evaluation of cardiac reserve can provide objective criteria for predicting outcome in individual patients with cardiogenic shock. The availability of such a prognostic indicator will be invaluable in formulating management plans for these patients. PMID:2393609

  14. An updated h-index measures both the primary and total scientific output of a researcher

    PubMed Central

    Bucur, Octavian; Almasan, Alex; Zubarev, Roman; Friedman, Mark; Nicolson, Garth L.; Sumazin, Pavel; Leabu, Mircea; Nikolajczyk, Barbara S.; Avram, Dorina; Kunej, Tanja; Calin, George A.; Godwin, Andrew K.; Adami, Hans-Olov; Zaphiropoulos, Peter G.; Richardson, Des R.; Schmitt-Ulms, Gerold; Westerblad, Håkan; Keniry, Megan; Grau, Georges E. R.; Carbonetto, Salvatore; Stan, Radu V.; Popa-Wagner, Aurel; Takhar, Kasumov; Baron, Beverly W.; Galardy, Paul J.; Yang, Feng; Data, Dipak; Fadare, Oluwole; Yeo, KT Jerry; Gabreanu, Georgiana R.; Andrei, Stefan; Soare, Georgiana R.; Nelson, Mark A.; Liehn, Elisa A.

    2015-01-01

    The growing interest in scientometry stems from ethical concerns related to the proper evaluation of scientific contributions of an author working in a hard science. In the absence of a consensus, institutions may use arbitrary methods for evaluating scientists for employment and promotion. There are several indices in use that attempt to establish the most appropriate and suggestive position of any scientist in the field he/she works in. A scientist’s Hirsch-index (h-index) quantifies their total effective published output, but h-index summarizes the total value of their published work without regard to their contribution to each publication. Consequently, articles where the author was a primary contributor carry the same weight as articles where the author played a minor role. Thus, we propose an updated h-index named Hirsch(p,t)-index that informs about both total scientific output and output where the author played a primary role. Our measure, h(p,t) = h(p),h(t), is composed of the h-index h(t) and the h-index calculated for articles where the author was a key contributor; i.e. first/shared first or senior or corresponding author. Thus, a h(p,t) = 5,10 would mean that the author has 5 articles as first, shared first, senior or corresponding author with at least 5 citations each, and 10 total articles with at least 10 citations each. This index can be applied in biomedical disciplines and in all areas where the first and last position on an article are the most important. Although other indexes, such as r- and w-indexes, were proposed for measuring the authors output based on the position of researchers within the published articles, our simpler strategy uses the already established algorithms for h-index calculation and may be more practical to implement. PMID:26504901

  15. An updated h-index measures both the primary and total scientific output of a researcher.

    PubMed

    Bucur, Octavian; Almasan, Alex; Zubarev, Roman; Friedman, Mark; Nicolson, Garth L; Sumazin, Pavel; Leabu, Mircea; Nikolajczyk, Barbara S; Avram, Dorina; Kunej, Tanja; Calin, George A; Godwin, Andrew K; Adami, Hans-Olov; Zaphiropoulos, Peter G; Richardson, Des R; Schmitt-Ulms, Gerold; Westerblad, Håkan; Keniry, Megan; Grau, Georges E R; Carbonetto, Salvatore; Stan, Radu V; Popa-Wagner, Aurel; Takhar, Kasumov; Baron, Beverly W; Galardy, Paul J; Yang, Feng; Data, Dipak; Fadare, Oluwole; Yeo, Kt Jerry; Gabreanu, Georgiana R; Andrei, Stefan; Soare, Georgiana R; Nelson, Mark A; Liehn, Elisa A

    2015-01-01

    The growing interest in scientometry stems from ethical concerns related to the proper evaluation of scientific contributions of an author working in a hard science. In the absence of a consensus, institutions may use arbitrary methods for evaluating scientists for employment and promotion. There are several indices in use that attempt to establish the most appropriate and suggestive position of any scientist in the field he/she works in. A scientist's Hirsch-index (h-index) quantifies their total effective published output, but h-index summarizes the total value of their published work without regard to their contribution to each publication. Consequently, articles where the author was a primary contributor carry the same weight as articles where the author played a minor role. Thus, we propose an updated h-index named Hirsch(p,t)-index that informs about both total scientific output and output where the author played a primary role. Our measure, h(p,t) = h(p),h(t), is composed of the h-index h(t) and the h-index calculated for articles where the author was a key contributor; i.e. first/shared first or senior or corresponding author. Thus, a h(p,t) = 5,10 would mean that the author has 5 articles as first, shared first, senior or corresponding author with at least 5 citations each, and 10 total articles with at least 10 citations each. This index can be applied in biomedical disciplines and in all areas where the first and last position on an article are the most important. Although other indexes, such as r- and w-indexes, were proposed for measuring the authors output based on the position of researchers within the published articles, our simpler strategy uses the already established algorithms for h-index calculation and may be more practical to implement.

  16. Characterization of cardiac quiescence from retrospective cardiac computed tomography using a correlation-based phase-to-phase deviation measure

    PubMed Central

    Wick, Carson A.; McClellan, James H.; Arepalli, Chesnal D.; Auffermann, William F.; Henry, Travis S.; Khosa, Faisal; Coy, Adam M.; Tridandapani, Srini

    2015-01-01

    Purpose: Accurate knowledge of cardiac quiescence is crucial to the performance of many cardiac imaging modalities, including computed tomography coronary angiography (CTCA). To accurately quantify quiescence, a method for detecting the quiescent periods of the heart from retrospective cardiac computed tomography (CT) using a correlation-based, phase-to-phase deviation measure was developed. Methods: Retrospective cardiac CT data were obtained from 20 patients (11 male, 9 female, 33–74 yr) and the left main, left anterior descending, left circumflex, right coronary artery (RCA), and interventricular septum (IVS) were segmented for each phase using a semiautomated technique. Cardiac motion of individual coronary vessels as well as the IVS was calculated using phase-to-phase deviation. As an easily identifiable feature, the IVS was analyzed to assess how well it predicts vessel quiescence. Finally, the diagnostic quality of the reconstructed volumes from the quiescent phases determined using the deviation measure from the vessels in aggregate and the IVS was compared to that from quiescent phases calculated by the CT scanner. Three board-certified radiologists, fellowship-trained in cardiothoracic imaging, graded the diagnostic quality of the reconstructions using a Likert response format: 1 = excellent, 2 = good, 3 = adequate, 4 = nondiagnostic. Results: Systolic and diastolic quiescent periods were identified for each subject from the vessel motion calculated using the phase-to-phase deviation measure. The motion of the IVS was found to be similar to the aggregate vessel (AGG) motion. The diagnostic quality of the coronary vessels for the quiescent phases calculated from the aggregate vessel (PAGG) and IVS (PIV S) deviation signal using the proposed methods was comparable to the quiescent phases calculated by the CT scanner (PCT). The one exception was the RCA, which improved for PAGG for 18 of the 20 subjects when compared to PCT (PCT = 2.48; PAGG = 2.07, p = 0

  17. Characterization of cardiac quiescence from retrospective cardiac computed tomography using a correlation-based phase-to-phase deviation measure

    SciTech Connect

    Wick, Carson A.; McClellan, James H.; Arepalli, Chesnal D.; Auffermann, William F.; Henry, Travis S.; Khosa, Faisal; Coy, Adam M.; Tridandapani, Srini

    2015-02-15

    Purpose: Accurate knowledge of cardiac quiescence is crucial to the performance of many cardiac imaging modalities, including computed tomography coronary angiography (CTCA). To accurately quantify quiescence, a method for detecting the quiescent periods of the heart from retrospective cardiac computed tomography (CT) using a correlation-based, phase-to-phase deviation measure was developed. Methods: Retrospective cardiac CT data were obtained from 20 patients (11 male, 9 female, 33–74 yr) and the left main, left anterior descending, left circumflex, right coronary artery (RCA), and interventricular septum (IVS) were segmented for each phase using a semiautomated technique. Cardiac motion of individual coronary vessels as well as the IVS was calculated using phase-to-phase deviation. As an easily identifiable feature, the IVS was analyzed to assess how well it predicts vessel quiescence. Finally, the diagnostic quality of the reconstructed volumes from the quiescent phases determined using the deviation measure from the vessels in aggregate and the IVS was compared to that from quiescent phases calculated by the CT scanner. Three board-certified radiologists, fellowship-trained in cardiothoracic imaging, graded the diagnostic quality of the reconstructions using a Likert response format: 1 = excellent, 2 = good, 3 = adequate, 4 = nondiagnostic. Results: Systolic and diastolic quiescent periods were identified for each subject from the vessel motion calculated using the phase-to-phase deviation measure. The motion of the IVS was found to be similar to the aggregate vessel (AGG) motion. The diagnostic quality of the coronary vessels for the quiescent phases calculated from the aggregate vessel (P{sub AGG}) and IVS (P{sub IV} {sub S}) deviation signal using the proposed methods was comparable to the quiescent phases calculated by the CT scanner (P{sub CT}). The one exception was the RCA, which improved for P{sub AGG} for 18 of the 20 subjects when compared to P

  18. Measurements of Output Factors For Small Photon Fields Up to 10 cm x 10 cm

    NASA Astrophysics Data System (ADS)

    Bacala, Angelina

    Field output factors (OF) for photon beams from a 6 MV medical accelerator were measured using five different detectors in a scanning water phantom. The measurements were taken for square field sizes of integral widths ranging from 1 cm to 10 cm for two reference source-to-surface distances (SSD) and depths in water. For the diode detectors, square field widths as small as 2.5 mm were also studied. The photon beams were collimated by using either the jaws or the multileaf collimators. Measured OFs are found to depend upon the field size, SSD, depth and also upon the type of beam collimation, size and type of detector used. For field sizes larger than 3 cm x 3 cm, the OF measurements agree to within 1% or less. The largest variation in OF occurs for jawsshaped field of size 1 cm x 1cm, where a difference of more than 18% is observed.

  19. Weak values and weak coupling maximizing the output of weak measurements

    SciTech Connect

    Di Lorenzo, Antonio

    2014-06-15

    In a weak measurement, the average output 〈o〉 of a probe that measures an observable A{sup -hat} of a quantum system undergoing both a preparation in a state ρ{sub i} and a postselection in a state E{sub f} is, to a good approximation, a function of the weak value A{sub w}=Tr[E{sub f}A{sup -hat} ρ{sub i}]/Tr[E{sub f}ρ{sub i}], a complex number. For a fixed coupling λ, when the overlap Tr[E{sub f}ρ{sub i}] is very small, A{sub w} diverges, but 〈o〉 stays finite, often tending to zero for symmetry reasons. This paper answers the questions: what is the weak value that maximizes the output for a fixed coupling? What is the coupling that maximizes the output for a fixed weak value? We derive equations for the optimal values of A{sub w} and λ, and provide the solutions. The results are independent of the dimensionality of the system, and they apply to a probe having a Hilbert space of arbitrary dimension. Using the Schrödinger–Robertson uncertainty relation, we demonstrate that, in an important case, the amplification 〈o〉 cannot exceed the initial uncertainty σ{sub o} in the observable o{sup -hat}, we provide an upper limit for the more general case, and a strategy to obtain 〈o〉≫σ{sub o}. - Highlights: •We have provided a general framework to find the extremal values of a weak measurement. •We have derived the location of the extremal values in terms of preparation and postselection. •We have devised a maximization strategy going beyond the limit of the Schrödinger–Robertson relation.

  20. Sex differences in carotid baroreflex control of arterial blood pressure in humans: relative contribution of cardiac output and total vascular conductance

    PubMed Central

    Kim, Areum; Deo, Shekhar H.; Vianna, Lauro C.; Balanos, George M.; Hartwich, Doreen; Fisher, James P.

    2011-01-01

    It is presently unknown whether there are sex differences in the magnitude of blood pressure (BP) responses to baroreceptor perturbation or if the relative contribution of cardiac output (CO) and total vascular conductance (TVC) to baroreflex-mediated changes in BP differs in young women and men. Since sympathetic vasoconstrictor tone is attenuated in women, we hypothesized that carotid baroreflex-mediated BP responses would be attenuated in women by virtue of a blunted vascular response (i.e., an attenuated TVC response). BP, heart rate (HR), and stroke volume were continuously recorded during the application of 5-s pulses of neck pressure (NP; carotid hypotension) and neck suction (NS; carotid hypertension) ranging from +40 to −80 Torr in women (n = 20, 21 ± 0.5 yr) and men (n = 20, 21 ± 0.4 yr). CO and TVC were calculated on a beat-to-beat basis. Women demonstrated greater depressor responses to NS (e.g., −60 Torr, −17 ± 1%baseline in women vs. −11 ± 1%baseline in men, P < 0.05), which were driven by augmented decreases in HR that, in turn, contributed to larger reductions in CO (−60 Torr, −15 ± 2%baseline in women vs. −6 ± 2%baseline in men, P < 0.05). In contrast, pressor responses to NP were similar in women and men (e.g., +40 Torr, +14 ± 2%baseline in women vs. +10 ± 1%baseline in men, P > 0.05), with TVC being the primary mediating factor in both groups. Our findings indicate that sex differences in the baroreflex control of BP are evident during carotid hypertension but not carotid hypotension. Furthermore, in contrast to our hypothesis, young women exhibited greater BP responses to carotid hypertension by virtue of a greater cardiac responsiveness. PMID:21963834

  1. A device for rapid and quantitative measurement of cardiac myocyte contractility

    NASA Astrophysics Data System (ADS)

    Gaitas, Angelo; Malhotra, Ricky; Li, Tao; Herron, Todd; Jalife, José

    2015-03-01

    Cardiac contractility is the hallmark of cardiac function and is a predictor of healthy or diseased cardiac muscle. Despite advancements over the last two decades, the techniques and tools available to cardiovascular scientists are limited in their utility to accurately and reliably measure the amplitude and frequency of cardiomyocyte contractions. Isometric force measurements in the past have entailed cumbersome attachment of isolated and permeabilized cardiomyocytes to a force transducer followed by measurements of sarcomere lengths under conditions of submaximal and maximal Ca2+ activation. These techniques have the inherent disadvantages of being labor intensive and costly. We have engineered a micro-machined cantilever sensor with an embedded deflection-sensing element that, in preliminary experiments, has demonstrated to reliably measure cardiac cell contractions in real-time. Here, we describe this new bioengineering tool with applicability in the cardiovascular research field to effectively and reliably measure cardiac cell contractility in a quantitative manner. We measured contractility in both primary neonatal rat heart cardiomyocyte monolayers that demonstrated a beat frequency of 3 Hz as well as human embryonic stem cell-derived cardiomyocytes with a contractile frequency of about 1 Hz. We also employed the β-adrenergic agonist isoproterenol (100 nmol l-1) and observed that our cantilever demonstrated high sensitivity in detecting subtle changes in both chronotropic and inotropic responses of monolayers. This report describes the utility of our micro-device in both basic cardiovascular research as well as in small molecule drug discovery to monitor cardiac cell contractions.

  2. Scanner-based image quality measurement system for automated analysis of EP output

    NASA Astrophysics Data System (ADS)

    Kipman, Yair; Mehta, Prashant; Johnson, Kate

    2003-12-01

    Inspection of electrophotographic print cartridge quality and compatibility requires analysis of hundreds of pages on a wide population of printers and copiers. Although print quality inspection is often achieved through the use of anchor prints and densitometry, more comprehensive analysis and quantitative data is desired for performance tracking, benchmarking and failure mode analysis. Image quality measurement systems range in price and performance, image capture paths and levels of automation. In order to address the requirements of a specific application, careful consideration was made to print volume, budgetary limits, and the scope of the desired image quality measurements. A flatbed scanner-based image quality measurement system was selected to support high throughput, maximal automation, and sufficient flexibility for both measurement methods and image sampling rates. Using an automatic document feeder (ADF) for sample management, a half ream of prints can be measured automatically without operator intervention. The system includes optical character recognition (OCR) for automatic determination of target type for measurement suite selection. This capability also enables measurement of mixed stacks of targets since each sample is identified prior to measurement. In addition, OCR is used to read toner ID, machine ID, print count, and other pertinent information regarding the printing conditions and environment. This data is saved to a data file along with the measurement results for complete test documentation. Measurement methods were developed to replace current methods of visual inspection and densitometry. The features that were being analyzed visually could be addressed via standard measurement algorithms. Measurement of density proved to be less simple since the scanner is not a densitometer and anything short of an excellent estimation would be meaningless. In order to address the measurement of density, a transfer curve was built to translate the

  3. A device for automatically measuring and supervising the critical care patient's urine output.

    PubMed

    Otero, Abraham; Palacios, Francisco; Akinfiev, Teodor; Fernández, Roemi

    2010-01-01

    Critical care units are equipped with commercial monitoring devices capable of sensing patients' physiological parameters and supervising the achievement of the established therapeutic goals. This avoids human errors in this task and considerably decreases the workload of the healthcare staff. However, at present there still is a very relevant physiological parameter that is measured and supervised manually by the critical care units' healthcare staff: urine output. This paper presents a patent-pending device capable of automatically recording and supervising the urine output of a critical care patient. A high precision scale is used to measure the weight of a commercial urine meter. On the scale's pan there is a support frame made up of Bosch profiles that isolates the scale from force transmission from the patient's bed, and guarantees that the urine flows properly through the urine meter input tube. The scale's readings are sent to a PC via Bluetooth where an application supervises the achievement of the therapeutic goals. The device is currently undergoing tests at a research unit associated with the University Hospital of Getafe in Spain.

  4. Modal parameter identification of stay cables from output-only measurements

    NASA Astrophysics Data System (ADS)

    Lardies, Joseph; Minh-Ngi, Ta

    2011-01-01

    Stay cables are one of the most critical structural components in modern cable-stayed bridges and the cable tension plays an important role in the construction, control and monitoring of cable-stayed bridges. We propose a time domain and a time-frequency domain approaches for modal parameter identification of stay cables using output-only measurements. The time domain approach uses the subspace algorithm which is improved with a new modal coherence indicator. The time-frequency approach uses the wavelet transform of signals which is improved with a new analyzing wavelet. The wavelet transform is applied to the free response of ambient vibration which is obtained using the random decrement technique. Two experiments of stay cables are presented. The first experiment concerns a stay cable in laboratory where the external load is applied through an impact hammer and the vibratory signals are acquired through four accelerometers. The second experiment concerns the Jinma cable-stayed bridge that connects Guangzhou and Zhaoqing in China. It is a single tower, double row cable-stayed bridge supported by 112 stay cables. Ambient vibration of each stay cable is carried out using accelerometers. From output-only measurements, the modal parameters of stay cables are extracted. Once the eigenfrequencies and the damping coefficients are obtained, the cable forces and the Scruton number are derived. In a continuous monitoring and modal analysis process, the tension forces and Scruton numbers could be used to assess the health of stay cables in cable-stayed bridges.

  5. Tracking Changes in Cardiac Output: Statistical Considerations on the 4-Quadrant Plot and the Polar Plot Methodology.

    PubMed

    Saugel, Bernd; Grothe, Oliver; Wagner, Julia Y

    2015-08-01

    When comparing 2 technologies for measuring hemodynamic parameters with regard to their ability to track changes, 2 graphical tools are omnipresent in the literature: the 4-quadrant plot and the polar plot recently proposed by Critchley et al. The polar plot is thought to be the more advanced statistical tool, but care should be taken when it comes to its interpretation. The polar plot excludes possibly important measurements from the data. The polar plot transforms the data nonlinearily, which may prevent it from being seen clearly. In this article, we compare the 4-quadrant and the polar plot in detail and thoroughly describe advantages and limitations of each. We also discuss pitfalls concerning the methods to prepare the researcher for the sound use of both methods. Finally, we briefly revisit the Bland-Altman plot for the use in this context.

  6. Direct Measurements of Hydrothermal Heat Output at Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; di Iorio, D.; Genc, G.; Hurt, R. S.; Lowell, R. P.; Holden, J. F.; Butterfield, D. A.; Olson, E. J.

    2009-12-01

    Heat output and fluid flow are key parameters for characterizing seafloor hydrothermal systems at oceanic spreading centers. In particular, they are essential for examining partition of heat and geochemical fluxes between discrete and diffuse flow components. Hydrothermal heat output also constrains permeability of young oceanic crust and thickness of the conductive boundary layer separating hydrothermal circulation from the underlying magmatic heat source. Over the past several years, we have deployed a number of relatively simple devices to make direct measurements of focused and diffuse flow. Most recently, we have used cup anemometer and turbine flow meters to measure fluid flow and heat flux at individual high-temperature vents and diffuse flow sites. The turbine flow meter (Figure 1) includes a titanium rotor assembly housed within a stainless steel tube and supported by sapphire bearings. The device can be used at different seafloor settings for measurements of both diffuse and focused flow. The spin of the rotor blades is videotaped to acquire the angular velocity, which is a function of the flow rate determined through calibration. We report data obtained during four cruises to the Main Endeavor and High Rise vent fields, Juan de Fuca Ridge (JdFR), between 2007 and 2009. Overall more than 50 successful measurements of heat flow have been made on a variety of high-, medium-, and low-temperature hydrothermal sites on the Endeavor, Mothra, and High Rise structures. For example, the velocity of diffuse flow at Endeavor ranged from ~1 to ~10 cm/sec. The flow velocity from black smokers varied from ~10 cm/sec to ~1 m/sec, which appears to be similar to EPR 9°N. Typical measurements of heat flux obtained at JdFR ranged from ~1 kW for diffuse flow to ~1 MW for black smokers. Although it is difficult to extrapolate the data and obtain the integrated heat output for a vent field on JdFR, the data are used to characterize the heat fluxes from individual vent

  7. Evaluating digital libraries in the health sector. Part 1: measuring inputs and outputs.

    PubMed

    Cullen, Rowena

    2003-12-01

    This is the first part of a two-part paper which explores methods that can be used to evaluate digital libraries in the health sector. In this first part, some approaches to evaluation that have been proposed for mainstream digital information services are examined for their suitability to provide models for the health sector. The paper summarizes some major national and collaborative initiatives to develop measures for digital libraries, and analyses these approaches in terms of their relationship to traditional measures of library performance, which are focused on inputs and outputs, and their relevance to current debates among health information specialists. The second part* looks more specifically at evaluative models based on outcomes, and models being developed in the health sector.

  8. Acoustic output measured by thermal and mechanical indices during fetal echocardiography at the time of the first trimester scan.

    PubMed

    Nemescu, Dragos; Berescu, Anca

    2015-01-01

    We measured acoustic output, expressed as the thermal index (TI) and mechanical index (MI), during fetal echocardiography at the time of the first trimester scan. TI and MI were retrieved from the saved displays during gray-mode, high-definition color flow Doppler and pulsed-wave Doppler (tricuspid flow) ultrasound examinations of the fetal heart and from the ductus venosus assessment. A total of 399 fetal cardiac examinations were evaluated. There was a significant increase in TI values from B-mode studies (0.07 ± 0.04 [mean ± SD]) to color flow mapping (0.2 ± 0.0) and pulsed-wave Doppler studies (0.36 ± 0.05). The TI from ductus venosus assessment (0.1 ± 0.01) was significantly lower than those from Doppler examinations of the heart. MI values from B-mode scans (0.65 ± 0.12) and color flow mapping (0.71 ± 0.11) were comparable, although different, and both values were higher than those from pulsed-wave Doppler tricuspid evaluation (0.39 ± 0.03). There were no differences in MI values from power Doppler assessment between the tricuspid flow and ductus venosus. Safety indices were remarkably stable and were largely constant, especially for color Doppler (TI), tricuspid flow (MI) and ductus venosus assessment (TI, MI). We acquired satisfactory Doppler images and/or signals at acoustic levels that were lower than the actual recommendations and never reached a TI of 0.5.

  9. Hypertensive crises in quadriplegic patients. Changes in cardiac output, blood volume, serum dopamine-beta-hydroxylase activity, and arterial prostaglandin PGE2.

    PubMed

    Naftchi, N E; Demeny, M; Lowman, E W; Tuckman, J

    1978-02-01

    The syndrome of autonomic dysreflexia often occurs in quadriplegic subjects and is characterized by paroxysmal hypertension, headache, vasoconstriction below and flushing of the skin above the level of transection, and bradycardia. These attacks may cause hypertnesive encephalopathy, cerebral vascular accidents, and death. In five patients during crises, the mean arterial pressure changed from 95 to 154 mm Hg, heart rate 72 to 45 beats/min, cardiac output 4.76 to 4.70 L/min, and peripheral resistance 1650 to 2660 dynes.sec.cm-5. In eight subjects the control plasma, red cell, and total blood volumes were 19.1, 10.5, and 29.6 ml/cm body height, respectively, and when hypertensive, the plasma protein concentration increased by 9.9% and the hematocrit by 9.5%. Plasma volume was only reduced by an estimated 10-15%. At that time, arterial dopamine-beta-hydroxylase (DbetaH) activity increased 65% and prostaglandin E2 concentration by 68%. Thus, the augmented DbetaH activity presented primarily an elevated sympathetic tone and not hemoconcentration of that protein. The rise in prostaglandin may contribute to the severe headaches during hypertensive episodes.

  10. The relation between cardiac output kinetics and skeletal muscle oxygenation during moderate exercise in moderately impaired patients with chronic heart failure.

    PubMed

    Spee, Ruud F; Niemeijer, Victor M; Schoots, Thijs; Wijn, Pieter F; Doevendans, Pieter A; Kemps, Hareld M

    2016-07-01

    Oxygen uptake (V̇o2) kinetics are prolonged in patients with chronic heart failure (CHF). This may be caused by impaired oxygen delivery or skeletal muscle derangements. We investigated whether impaired cardiac output (Q̇) kinetics limit skeletal muscle oxygen delivery relative to the metabolic demands at submaximal exercise in CHF patients by evaluating the relation between Q̇ kinetics and skeletal muscle deoxygenation. Forty-three CHF patients, NYHA II-III, performed a constant-load exercise test at 80% of the ventilatory aerobic threshold (VAT) to assess V̇o2 kinetics (τV̇o2). Q̇ kinetics (τQ̇) were assessed by a radial artery pulse contour analysis method. Skeletal muscle deoxygenation was assessed by near infrared spectroscopy at the m. vastus lateralis, using the minimal value of the tissue saturation index during onset of exercise (TSImin). Patients were categorized in slow and normal Q̇ responders relative to metabolic demands (τQ̇/V̇o2 ≥1 and τQ̇/V̇o2 <1, respectively), τQ̇ (62 ± 29 s), and τV̇o2 (60 ± 21 s) were significantly related (r = 0.66, P = 0.001). There was a significant correlation between τQ̇ and TSImin in the slow Q̇ responders [rs= -0.57, P = 0.005, n = 22 (51%)]. In conclusion, in moderately impaired CHF patients with relatively slow Q̇ kinetics, central hemodynamics may limit skeletal muscle oxygenation during moderate-intensity exercise.

  11. Deconvolution of detector size effect for output factor measurement for narrow Gamma Knife radiosurgery beams

    NASA Astrophysics Data System (ADS)

    Bednarz, G.; Saiful Huq, M.; Rosenow, U. F.

    2002-10-01

    This paper presents the results of measurements of output factors (OFs) for a model U Gamma Knife collimator, with special emphasis on the accurate determination of the OF for the 4 mm collimator (OF4). In the past, the OF4 was set to 0.800 relative to the 18 mm collimator. Recently, the manufacturer has recommended a new value of 0.870 for OF4. However, most centres still use the old value of the OF4. In the present study, the Gamma Knife OFs were measured using a commercially available miniature diamond detector and a miniature 0.006 cc ion chamber, which was especially designed for the task. The measured OF4 were corrected for spatial averaging effects by measuring dose profiles for the 4 mm collimator with the same detectors and deconvolving their response from the measured profiles. A Gaussian kernel was used to describe the detector response. The relative OFs measured with the diamond detector/ion chamber were 0.986/0.982, 0.953/0.935 and 0.812/0.765 for the 14, 8 and 4 mm collimators, respectively, as compared with the manufacturer's values of 0.984, 0.956 and 0.87. The corrected OF4 was 0.881 +/- 0.012 for the diamond detector and 0.851 +/- 0.012 for the ion chamber, supporting the manufacturer's revised value for this collimator.

  12. Measurement of Trailing Edge Noise Using Directional Array and Coherent Output Power Methods

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Brooks, Thomas F.

    2002-01-01

    The use of a directional (or phased) array of microphones for the measurement of trailing edge (TE) noise is described and tested. The capabilities of this method arc evaluated via measurements of TE noise from a NACA 63-215 airfoil model and from a cylindrical rod. This TE noise measurement approach is compared to one that is based on thc cross spectral analysis of output signals from a pair of microphones placed on opposite sides of an airframe model (COP method). Advantages and limitations of both methods arc examined. It is shown that the microphone array can accurately measures TE noise and captures its two-dimensional characteristic over a large frequency range for any TE configuration as long as noise contamination from extraneous sources is within bounds. The COP method is shown to also accurately measure TE noise but over a more limited frequency range that narrows for increased TE thickness. Finally, the applicability and generality of an airfoil self-noise prediction method was evaluated via comparison to the experimental data obtained using the COP and array measurement methods. The predicted and experimental results are shown to agree over large frequency ranges.

  13. Reinforcement learning for partially observable dynamic processes: adaptive dynamic programming using measured output data.

    PubMed

    Lewis, F L; Vamvoudakis, Kyriakos G

    2011-02-01

    Approximate dynamic programming (ADP) is a class of reinforcement learning methods that have shown their importance in a variety of applications, including feedback control of dynamical systems. ADP generally requires full information about the system internal states, which is usually not available in practical situations. In this paper, we show how to implement ADP methods using only measured input/output data from the system. Linear dynamical systems with deterministic behavior are considered herein, which are systems of great interest in the control system community. In control system theory, these types of methods are referred to as output feedback (OPFB). The stochastic equivalent of the systems dealt with in this paper is a class of partially observable Markov decision processes. We develop both policy iteration and value iteration algorithms that converge to an optimal controller that requires only OPFB. It is shown that, similar to Q -learning, the new methods have the important advantage that knowledge of the system dynamics is not needed for the implementation of these learning algorithms or for the OPFB control. Only the order of the system, as well as an upper bound on its "observability index," must be known. The learned OPFB controller is in the form of a polynomial autoregressive moving-average controller that has equivalent performance with the optimal state variable feedback gain.

  14. An innovative work-loop calorimeter for in vitro measurement of the mechanics and energetics of working cardiac trabeculae.

    PubMed

    Taberner, Andrew J; Han, June-Chiew; Loiselle, Denis S; Nielsen, Poul M F; Nielsen, Paul M F

    2011-12-01

    We describe a unique work-loop calorimeter with which we can measure, simultaneously, the rate of heat production and force-length work output of isolated cardiac trabeculae. The mechanics of the force-length work-loop contraction mimic those of the pressure-volume work-loops experienced by the heart. Within the measurement chamber of a flow-through microcalorimeter, a trabecula is electrically stimulated to respond, under software control, in one of three modes: fixed-end, isometric, or isotonic. In each mode, software controls the position of a linear motor, with feedback from muscle force, to adjust muscle length in the desired temporal sequence. In the case of a work-loop contraction, the software achieves seamless transitions between phases of length control (isometric contraction, isometric relaxation, and restoration of resting muscle length) and force control (isotonic shortening). The area enclosed by the resulting force-length loop represents the work done by the trabecula. The change of enthalpy expended by the muscle is given by the sum of the work term and the associated amount of evolved heat. With these simultaneous measurements, we provide the first estimation of suprabasal, net mechanical efficiency (ratio of work to change of enthalpy) of mammalian cardiac trabeculae. The maximum efficiency is at the vicinity of 12%.

  15. Measurement of output power density from mobile phone as a function of input sound frequency.

    PubMed

    Calabrò, Emanuele; Magazù, Salvatore

    2013-01-01

    Measurements of power density emitted by a mobile phone were carried out as a function of the sound frequency transmitted by a sound generator, ranging from 250 to 14000 Hz. Output power density was monitored by means of the selective radiation meter Narda SRM 3000 in spectrum analysis mode, and the octave frequency analysis of each tone used for the experimental design was acquired by the sound level meter Larson Davis LxT Wind. Vodafone providers were used for mobile phone calls with respect to various local base station in Southern-Italy. A relationship between the mobile phone microwaves power density and the sound frequencies transmitted by the sound generator was observed. In particular, microwaves power density level decreases significantly at sound frequency values larger than 4500 Hz. This result can be explained assuming that discontinuous transmission mode of global system for mobile communications is powered not only in silence-mode, but also at frequencies larger than 4500 Hz.

  16. Multivariable adaptive control using only input and output measurements for turbojet engines

    SciTech Connect

    Huang, J.Q.; Sun, J.G.

    1995-04-01

    Current and future aircraft engines are increasingly relying upon the use of multivariable control approach for meeting advanced performance requirements. A multivariable model reference adaptive control (MRAC) scheme is proposed in this paper. The adaptation law is derived using only input and output (I/O) measurements. Simulation studies are performed for a two-spool turbojet engine. The satisfactory transient responses are obtained at different operating points from idle to maximum dry power level and flight condition. Simulation results also show high effectiveness of reducing interaction in multivariable systems with significant coupling. Using the multivariable MRAC controller, the engine acceleration time is reduced by about 19 percent in comparison with the conventional engine controller.

  17. Heart mass and the maximum cardiac output of birds and mammals: implications for estimating the maximum aerobic power input of flying animals

    PubMed Central

    Bishop, C. M.

    1997-01-01

    Empirical studies of cardiovascular variables suggest that relative heart muscle mass (relative Mh) is a good indicator of the degree of adaptive specialization for prolonged locomotor activities, for both birds and mammals. Reasonable predictions for the maximum oxygen consumption of birds during flight can be obtained by assuming that avian heart muscle has the same maximum physiological and biomechanical performance as that of terrestrial mammals. Thus, data on Mh can be used to provide quantitative estimates for the maximum aerobic power input (aerobic Pi,max) available to animals during intense levels of locomotor activity. The maximum cardiac output of birds and mammals is calculated to scale with respect to Mh (g) as 213 Mh0.88+-0.04 (ml min-1), while aerobic Pi,max is estimated to scale approximately as 11 Mh0.88+-0.09 (W). In general, estimated inter-species aerobic Pi,max, based on Mh for all bird species (excluding hummingbirds), is calculated to scale with respect to body mass (Mb in kg) as 81 Mb0.82+-0.11 (W). Comparison of family means for Mh indicate that there is considerable diversity in aerobic capacity among birds and mammals, for example, among the medium to large species of birds the Tinamidae have the smallest relative Mh (0.25 per cent) while the Otidae have unusually large relative Mh (1.6 per cent). Hummingbirds have extremely large relative Mh (2.28 per cent), but exhibit significant sexual dimorphism in their scaling of Mh and flight muscle mass, so that when considering hummingbird flight performance it may be useful to control for sexual differences in morphology. The estimated scaling of aerobic Pi,max (based on Mh and Mb in g) for male and female hummingbirds is 0.51 Mb0.83 +/-0.07 and 0.44 Mb0.85+- 0.11 (W), respectively. Locomotory muscles are dynamic structures and it might be anticipated that where additional energetic 'costs' occur seasonally (e.g. due to migratory fattening or the development of large secondary sexual

  18. The first measurements of hydrothermal heat output at 9°50‧N, East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Ramondenc, Pierre; Germanovich, Leonid N.; Von Damm, Karen L.; Lowell, Robert P.

    2006-05-01

    Despite the importance of the heat output of seafloor hydrothermal systems for the Earth's energy budget, hydrothermal heat output measurements have been very limited. In this paper, we report the first measurements of hydrothermal heat output at the RIDGE 2000 Integrated Study Site on the East Pacific Rise. We focused our work on the Bio 9 complex, situated at 9°50'N, where there has been an extensive measurement and sampling program since 1991. This site is located along the eruptive fissure of the 1991/1992 event and the site of the 1995 earthquake swarm. We made direct measurements of advective heat output at several individual vents and at one site of diffuse flow (Tica). Although these data do not describe the complete heat flux picture at this vent field, the data yield a total hydrothermal heat output of ˜ 325 ± 160 MW with ˜ 42 ± 21 MW coming from high-temperature vents along this 2 km segment of ridge. This result assumes a diffuse flux similar to that measured at Tica occurs at each high-temperature vent site. Our initial measurements thus suggest that the heat output of the low-temperature diffuse venting is approximately 10 times that of the high-temperature vents, but may also be one or two orders of magnitude greater.

  19. Simultaneous orientation and cellular force measurements in adult cardiac myocytes using three-dimensional polymeric microstructures.

    PubMed

    Zhao, Yi; Lim, Chee Chew; Sawyer, Douglas Brian; Liao, Ronglih; Zhang, Xin

    2007-09-01

    A number of techniques have been developed to monitor contractile function in isolated cardiac myocytes. While invaluable observations have been gained from these methodologies in understanding the contractile processes of the heart, they are invariably limited by their in vitro conditions. The present challenge is to develop innovative assays to mimic the in vivo milieu so as to allow a more physiological assessment of cardiac myocyte contractile forces. Here we demonstrate the use of a silicone elastomer, poly(dimethylsiloxane) (PDMS), to simultaneously orient adult cardiac myocytes in primary culture and measure the cellular forces in a three-dimensional substrate. The realignment of adult cardiac myocytes in long-term culture (7 days) was achieved due to directional reassembly of the myofibrils along the parallel polymeric sidewalls. The cellular mechanical forces were recorded in situ by observing the deformation of the micropillars embedded in the substrate. By coupling the cellular mechanical force measurements with on-chip cell orientation, this novel assay is expected to provide a means of a more physiological assessment of single cardiac myocyte contractile function and may facilitate the future development of in vitro assembled functional cardiac tissue.

  20. Theory and cardiac applications of electrical impedance measurements.

    PubMed

    Penney, B C

    1986-01-01

    The methodology of the two-electrode, four-electrode, and guard-ring techniques is presented following a brief history of impedance plethysmography. The theoretical basis for predicting the sampling fields for conductivity and volume changes is presented. Theoretical and experimental studies of the sampling field associated with various electrode arrays are reviewed. With this background, the use of impedance plethysmography for cardiac monitoring and diagnosis is reviewed. The basic methodology is presented and models used to interpret the signal are reviewed. Theoretical and experimental studies of what is sampled are summarized. The accuracy of impedance stroke volume estimates is evaluated by surveying the results of human studies and examining critical animal studies. The usefulness of impedance cardiography for ventricular performance evaluation is also reviewed. Additional uses for cardiopulmonary diagnosis are briefly presented.

  1. ARX model-based damage sensitive features for structural damage localization using output-only measurements

    NASA Astrophysics Data System (ADS)

    Roy, Koushik; Bhattacharya, Bishakh; Ray-Chaudhuri, Samit

    2015-08-01

    The study proposes a set of four ARX model (autoregressive model with exogenous input) based damage sensitive features (DSFs) for structural damage detection and localization using the dynamic responses of structures, where the information regarding the input excitation may not be available. In the proposed framework, one of the output responses of a multi-degree-of-freedom system is assumed as the input and the rest are considered as the output. The features are based on ARX model coefficients, Kolmogorov-Smirnov (KS) test statistical distance, and the model residual error. At first, a mathematical formulation is provided to establish the relation between the change in ARX model coefficients and the normalized stiffness of a structure. KS test parameters are then described to show the sensitivity of statistical distance of ARX model residual error with the damage location. The efficiency of the proposed set of DSFs is evaluated by conducting numerical studies involving a shear building and a steel moment-resisting frame. To simulate the damage scenarios in these structures, stiffness degradation of different elements is considered. It is observed from this study that the proposed set of DSFs is good indicator for damage location even in the presence of damping, multiple damages, noise, and parametric uncertainties. The performance of these DSFs is compared with mode shape curvature-based approach for damage localization. An experimental study has also been conducted on a three-dimensional six-storey steel moment frame to understand the performance of these DSFs under real measurement conditions. It has been observed that the proposed set of DSFs can satisfactorily localize damage in the structure.

  2. Phase I dynamics of cardiac output, systemic O2 delivery, and lung O2 uptake at exercise onset in men in acute normobaric hypoxia.

    PubMed

    Lador, Frédéric; Tam, Enrico; Azabji Kenfack, Marcel; Cautero, Michela; Moia, Christian; Morel, Denis R; Capelli, Carlo; Ferretti, Guido

    2008-08-01

    We tested the hypothesis that vagal withdrawal plays a role in the rapid (phase I) cardiopulmonary response to exercise. To this aim, in five men (24.6+/-3.4 yr, 82.1+/-13.7 kg, maximal aerobic power 330+/-67 W), we determined beat-by-beat cardiac output (Q), oxygen delivery (QaO2), and breath-by-breath lung oxygen uptake (VO2) at light exercise (50 and 100 W) in normoxia and acute hypoxia (fraction of inspired O2=0.11), because the latter reduces resting vagal activity. We computed Q from stroke volume (Qst, by model flow) and heart rate (fH, electrocardiography), and QaO2 from Q and arterial O2 concentration. Double exponentials were fitted to the data. In hypoxia compared with normoxia, steady-state fH and Q were higher, and Qst and VO2 were unchanged. QaO2 was unchanged at rest and lower at exercise. During transients, amplitude of phase I (A1) for VO2 was unchanged. For fH, Q and QaO2, A1 was lower. Phase I time constant (tau1) for QaO2 and VO2 was unchanged. The same was the case for Q at 100 W and for fH at 50 W. Qst kinetics were unaffected. In conclusion, the results do not fully support the hypothesis that vagal withdrawal determines phase I, because it was not completely suppressed. Although we can attribute the decrease in A1 of fH to a diminished degree of vagal withdrawal in hypoxia, this is not so for Qst. Thus the dual origin of the phase I of Q and QaO2, neural (vagal) and mechanical (venous return increase by muscle pump action), would rather be confirmed.

  3. The influence of priming exercise on oxygen uptake, cardiac output, and muscle oxygenation kinetics during very heavy-intensity exercise in 9- to 13-yr-old boys.

    PubMed

    Barker, Alan R; Jones, Andrew M; Armstrong, Neil

    2010-08-01

    The present study examined the effect of priming exercise on O(2) uptake (Vo(2)) kinetics during subsequent very heavy exercise in eight 9- to 13-yr-old boys. We hypothesised that priming exercise would 1) elevate muscle O(2) delivery prior to the subsequent bout of very heavy exercise, 2) have no effect on the phase II Vo(2) tau, 3) elevate the phase II Vo(2) total amplitude, and 4) reduce the magnitude of the Vo(2) slow component. Each participant completed repeat 6-min bouts of very heavy-intensity cycling exercise separated by 6 min of light pedaling. During the tests Vo(2), muscle oxygenation (near infrared spectroscopy), and cardiac output (Q) (thoracic impedance) were determined. Priming exercise increased baseline muscle oxygenation and elevated Q at baseline and throughout the second exercise bout. The phase II Vo(2) tau was not altered by priming exercise (bout 1: 22 + or - 7 s vs. bout 2: 20 + or - 4 s; P = 0.30). However, the time constant describing the entire Vo(2) response from start to end of exercise was accelerated (bout 1: 43 + or - 8 s vs. bout 2: 36 + or - 5 s; P = 0.002) due to an increased total phase II Vo(2) amplitude (bout 1: 1.73 + or - 0.33 l/min vs. bout 2: 1.80 + or - 0.59 l/min; P = 0.002) and a reduced Vo(2) slow component amplitude (bout 1: 0.18 + or - 0.08 l/min vs. bout 2: 0.12 + or - 0.09 l/min; P = 0.048). These results suggest that phase II Vo(2) kinetics in young boys is principally limited by intrinsic muscle metabolic factors, whereas the Vo(2) total phase II and slow component amplitudes may be O(2) delivery sensitive.

  4. Persistence Length of Human Cardiac α-Tropomyosin Measured by Single Molecule Direct Probe Microscopy

    PubMed Central

    Loong, Campion K. P.; Zhou, Huan-Xiang; Chase, P. Bryant

    2012-01-01

    α-Tropomyosin (αTm) is the predominant tropomyosin isoform in adult human heart and constitutes a major component in Ca2+-regulated systolic contraction of cardiac muscle. We present here the first direct probe images of WT human cardiac αTm by atomic force microscopy, and quantify its mechanical flexibility with three independent analysis methods. Single molecules of bacterially-expressed human cardiac αTm were imaged on poly-lysine coated mica and their contours were analyzed. Analysis of tangent-angle (θ(s)) correlation along molecular contours, second moment of tangent angles (<θ2(s)>), and end-to-end length (Le-e) distributions respectively yielded values of persistence length (Lp) of 41–46 nm, 40–45 nm, and 42–52 nm, corresponding to 1–1.3 molecular contour lengths (Lc). We also demonstrate that a sufficiently large population, with at least 100 molecules, is required for a reliable Lp measurement of αTm in single molecule studies. Our estimate that Lp for αTm is only slightly longer than Lc is consistent with a previous study showing there is little spread of cooperative activation into near-neighbor regulatory units of cardiac thin filaments. The Lp determined here for human cardiac αTm perhaps represents an evolutionarily tuned optimum between Ca2+ sensitivity and cooperativity in cardiac thin filaments and likely constitutes an essential parameter for normal function in the human heart. PMID:22737252

  5. [Effects of temporary dual-chamber cardiac pacing in refractory cardiac failure].

    PubMed

    Scanu, P; Lecluse, E; Michel, L; Bureau, G; Saloux, E; Cleron, S; Valette, B; Grollier, G; Potier, J C; Foucault, J P

    1996-12-01

    The authors studied 18 patients (15 men, 3 women) with an average age of 67 +/- 8 years with refractory cardiac failure. In order to determine the potential of pacing to raise cardiac output in severe cardiac failure. The average ejection fraction was 26 +/- 6.5%. All patients were in sinus rhythm:resting cardiac output was 3.35 l/min. Two temporary pacing catheters were positioned in the right atrium and at the apex of the right ventricle for dual-chamber mode pacing triggered by the spontaneous P waves. Changes in cardiac output were measured by Doppler echocardiography at different values of atrioventricular delay. Patients were considered to be responders if their cardiac outputs rose by 15%. In 7 patients meeting this criterion, the average increase in cardiac output was 27% (2.99 +/- 0.7 to 3.81 +/- 0.86 l/mn; p < 0.01); all had dilated cardiomyopathies with left bundle branch block and the optimal AV delay was 103 +/- 21 ms (80-140 ms); the duration of diastolic filling increased from 212 +/- 98 to 292 +/- 116 ms (p = 0.02). In the non-responding group (11 patients with an increase of cardiac output of only 3.6 +/- 0.09 to 3.9 +/- 0.92 l/mn; p < 0.01), the underlying disease process was mainly ischaemic. Two predictive factors of efficacy of dual-chamber pacing were identified: a short ventricular filling period (29 +/- 8% of the RR interval in the responders vs 44 +/- 9% in the non-responders; p < 0.01) and the presence of 1st degree atrioventricular block. Dual-chamber pacing could be a valuable method of increasing resting cardiac outputs in a selected group of patients with severe, refractory, cardiac failure.

  6. Measuring the impact of medical research: moving from outputs to outcomes.

    PubMed

    Weiss, Anthony P

    2007-02-01

    Billions of dollars are spent every year to support medical research, with a substantial percentage coming from charitable foundations. To justify these expenditures, some measure of the return on investment would be useful, particularly one aligned with the intended ultimate outcome of this scientific effort: the amelioration of disease. The current mode of reporting on the success of medical research is output based, with an emphasis on measurable productivity. This approach falls short in many respects and may be contributing to the well-described efficacy-effectiveness gap in clinical care. The author argues for an outcomes-based approach and describes the steps involved, using an adaptation of the logic model. A shift in focus to the outcomes of our work would provide our founders with clearer mission-central return-on-investment feedback, would make explicit the benefits of science to an increasingly skeptical public, and would serve as a compass to guide the scientific community in playing a more prominent role in reducing the efficacy-effectiveness gap. While acknowledging the enormous complexity involved with the implementation of this approach on a large scale, the author hopes that this essay will encourage some initial steps toward this aim and stimulate further discussion of this concept.

  7. Output field-quadrature measurements and squeezing in ultrastrong cavity-QED

    NASA Astrophysics Data System (ADS)

    Stassi, Roberto; Savasta, Salvatore; Garziano, Luigi; Spagnolo, Bernardo; Nori, Franco

    2016-12-01

    We study the squeezing of output quadratures of an electro-magnetic field escaping from a resonator coupled to a general quantum system with arbitrary interaction strengths. The generalized theoretical analysis of output squeezing proposed here is valid for all the interaction regimes of cavity-quantum electrodynamics: from the weak to the strong, ultrastrong, and deep coupling regimes. For coupling rates comparable or larger then the cavity resonance frequency, the standard input-output theory for optical cavities fails to calculate the variance of output field-quadratures and predicts a non-negligible amount of output squeezing, even if the system is in its ground state. Here we show that, for arbitrary interaction strength and for general cavity-embedded quantum systems, no squeezing can be found in the output-field quadratures if the system is in its ground state. We also apply the proposed theoretical approach to study the output squeezing produced by: (i) an artificial two-level atom embedded in a coherently-excited cavity; and (ii) a cascade-type three-level system interacting with a cavity field mode. In the latter case the output squeezing arises from the virtual photons of the atom-cavity dressed states. This work extends the possibility of predicting and analyzing the results of continuous-variable optical quantum-state tomography when optical resonators interact very strongly with other quantum systems.

  8. Using ballistocardiography to measure cardiac performance: a brief review of its history and future significance.

    PubMed

    Vogt, Emelie; MacQuarrie, David; Neary, John Patrick

    2012-11-01

    Ballistocardiography (BCG) is a non-invasive technology that has been used to record ultra-low-frequency vibrations of the heart allowing for the measurement of cardiac cycle events including timing and amplitudes of contraction. Recent developments in BCG have made this technology simple to use, as well as time- and cost-efficient in comparison with other more complicated and invasive techniques used to evaluate cardiac performance. Recent technological advances are considerably greater since the advent of microprocessors and laptop computers. Along with the history of BCG, this paper reviews the present and future potential benefits of using BCG to measure cardiac cycle events and its application to clinical and applied research.

  9. The Measurement of Maximal (Anaerobic) Power Output on a Cycle Ergometer: A Critical Review

    PubMed Central

    Driss, Tarak; Vandewalle, Henry

    2013-01-01

    The interests and limits of the different methods and protocols of maximal (anaerobic) power (Pmax) assessment are reviewed: single all-out tests versus force-velocity tests, isokinetic ergometers versus friction-loaded ergometers, measure of Pmax during the acceleration phase or at peak velocity. The effects of training, athletic practice, diet and pharmacological substances upon the production of maximal mechanical power are not discussed in this review mainly focused on the technical (ergometer, crank length, toe clips), methodological (protocols) and biological factors (muscle volume, muscle fiber type, age, gender, growth, temperature, chronobiology and fatigue) limiting Pmax in cycling. Although the validity of the Wingate test is questionable, a large part of the review is dedicated to this test which is currently the all-out cycling test the most often used. The biomechanical characteristics specific of maximal and high speed cycling, the bioenergetics of the all-out cycling exercises and the influence of biochemical factors (acidosis and alkalosis, phosphate ions…) are recalled at the beginning of the paper. The basic knowledge concerning the consequences of the force-velocity relationship upon power output, the biomechanics of sub-maximal cycling exercises and the study on the force-velocity relationship in cycling by Dickinson in 1928 are presented in Appendices. PMID:24073413

  10. The measurement of maximal (anaerobic) power output on a cycle ergometer: a critical review.

    PubMed

    Driss, Tarak; Vandewalle, Henry

    2013-01-01

    The interests and limits of the different methods and protocols of maximal (anaerobic) power (Pmax) assessment are reviewed: single all-out tests versus force-velocity tests, isokinetic ergometers versus friction-loaded ergometers, measure of Pmax during the acceleration phase or at peak velocity. The effects of training, athletic practice, diet and pharmacological substances upon the production of maximal mechanical power are not discussed in this review mainly focused on the technical (ergometer, crank length, toe clips), methodological (protocols) and biological factors (muscle volume, muscle fiber type, age, gender, growth, temperature, chronobiology and fatigue) limiting Pmax in cycling. Although the validity of the Wingate test is questionable, a large part of the review is dedicated to this test which is currently the all-out cycling test the most often used. The biomechanical characteristics specific of maximal and high speed cycling, the bioenergetics of the all-out cycling exercises and the influence of biochemical factors (acidosis and alkalosis, phosphate ions…) are recalled at the beginning of the paper. The basic knowledge concerning the consequences of the force-velocity relationship upon power output, the biomechanics of sub-maximal cycling exercises and the study on the force-velocity relationship in cycling by Dickinson in 1928 are presented in Appendices.

  11. Sperm DNA damage output parameters measured by the alkaline Comet assay and their importance.

    PubMed

    Simon, L; Aston, K I; Emery, B R; Hotaling, J; Carrell, D T

    2017-03-01

    The alkaline Comet assay has shown high diagnostic value to determine male reproductive health and prognostic ability to predict ART success. Here, spermatozoon was analysed in 47 fertile donors and 238 patients, including 132 couples undergoing ART [semen was collected: Group I - within 3 months of their treatment (n = 79); and Group II - 3 months prior to their treatment (n = 53)]. We introduce four Comet distribution plots (A, B1, B2 and C) by plotting the level of DNA damage (x-axis) and percentage of comets (y-axis). Fertile donors had low mean DNA damage, olive tail moment and per cent of spermatozoa with damage and increased type A plots. Comet parameters were associated with clinical pregnancies in Group I. About 66% of couples with type A distribution plot were successful after ART, whereas couples with type B1, B2 and C distribution plots achieved 56%, 44% and 33% pregnancies respectively. The efficiency of the Comet assay was due to complete decondensation process, where the compact sperm nuclear DNA (28.2 ± 0.2 μm(3) ) is decondensed to ~63 μm(3) (before lysis) and ~1018 μm(3) (after lysis). A combinational analysis of all the Comet output parameters may provide a comprehensive evaluation of patient's reproductive health as these parameters measure different aspects of DNA damage within the spermatozoa.

  12. Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes

    SciTech Connect

    Brian Leen, J.; Berman, Elena S. F.; Gupta, Manish; Liebson, Lindsay

    2012-04-15

    Developments in cavity-enhanced absorption spectrometry have made it possible to measure water isotopes using faster, more cost-effective field-deployable instrumentation. Several groups have attempted to extend this technology to measure water extracted from plants and found that other extracted organics absorb light at frequencies similar to that absorbed by the water isotopomers, leading to {delta}{sup 2}H and {delta}{sup 18}O measurement errors ({Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O). In this note, the off-axis integrated cavity output spectroscopy (ICOS) spectra of stable isotopes in liquid water is analyzed to determine the presence of interfering absorbers that lead to erroneous isotope measurements. The baseline offset of the spectra is used to calculate a broadband spectral metric, m{sub BB}, and the mean subtracted fit residuals in two regions of interest are used to determine a narrowband metric, m{sub NB}. These metrics are used to correct for {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O. The method was tested on 14 instruments and {Delta}{delta}{sup 18}O was found to scale linearly with contaminant concentration for both narrowband (e.g., methanol) and broadband (e.g., ethanol) absorbers, while {Delta}{delta}{sup 2}H scaled linearly with narrowband and as a polynomial with broadband absorbers. Additionally, the isotope errors scaled logarithmically with m{sub NB}. Using the isotope error versus m{sub NB} and m{sub BB} curves, {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O resulting from methanol contamination were corrected to a maximum mean absolute error of 0.93 per mille and 0.25 per mille respectively, while {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O from ethanol contamination were corrected to a maximum mean absolute error of 1.22 per mille and 0.22 per mille . Large variation between instruments indicates that the sensitivities must be calibrated for each individual isotope analyzer. These results suggest that the

  13. SU-E-T-506: Intercomparison Study On Small Field Output Factor Measurements

    SciTech Connect

    Talamonti, C; Casati, M; Compagnucci, A; Arilli, C; Greto, D; Marrazzo, L; Pallotta, S; Zani, M; Marinelli, M; Verona, G; Menichelli, D; Scotti, L

    2015-06-15

    Purpose In radiotherapy, uncertainties due to small field measurements (SFM) introduce systematic errors to the treatment process and the development of new dosimeters for quality assurance programs is a challenge. In this work we analyze the behavior of seven detectors measuring output factors of 6MV photon beam. Methods The dosimeters employed are: a single cristal diamond detector (SCCD) developed at the University of Rome Tor Vergata, a silicon diode developed within the project MAESTRO, a IBA Razor silicon diode, A1SL and A26 Exradin ion chambers, an EBT3 Gafchromic film and the Exradin W1 Scintillator.Diamond sensitive volume is a cylinder 2.2mm in diameter and 1μm thick. MAESTRO diode is 2×2mm2 active area. Razor sensitive volume is a cylinder 0.6 mm in diameter and 0.02 mm thick. A16 and A1Sl have a collecting volume of 0,015cc and 0,053cc. The W1 is an optical fiber with an active volume of 0.002cc. All measurements were performed in a water phantom, with detector positioned at the isocenter (SSD=90cm, d=10cm), MAESTRO diode being sandwiched in solid water to obtain an equivalent experimental setup. Results These measurements are challenging due to the absence of charged particle equilibrium conditions, detector size and positioning problems. They are in good agreement among each other, especially GAF, Razor, W1 and SCDD. Maximum deviations reported are related to the field 0.8×0.8cm2 for MAESTRO and chambers data with respect to EBT3: around 15% (A1SLvsEBT3), 16% (MAESTROvsEBT3). Razor and W1 show a deviation around 3% with respect to SCDD. Conclusion In this work measurements made with a variety of detectors are compared. These study show the possibility to choose different detectors for SFM and that smaller ion chambers are still not competitive with solid state detectors. Silicon, diamond and optical fiber dosimeters show a similar behavior with minor discrepancies for the smallest field.

  14. Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes

    NASA Astrophysics Data System (ADS)

    Brian Leen, J.; Berman, Elena S. F.; Liebson, Lindsay; Gupta, Manish

    2012-04-01

    Developments in cavity-enhanced absorption spectrometry have made it possible to measure water isotopes using faster, more cost-effective field-deployable instrumentation. Several groups have attempted to extend this technology to measure water extracted from plants and found that other extracted organics absorb light at frequencies similar to that absorbed by the water isotopomers, leading to δ2H and δ18O measurement errors (Δδ2H and Δδ18O). In this note, the off-axis integrated cavity output spectroscopy (ICOS) spectra of stable isotopes in liquid water is analyzed to determine the presence of interfering absorbers that lead to erroneous isotope measurements. The baseline offset of the spectra is used to calculate a broadband spectral metric, mBB, and the mean subtracted fit residuals in two regions of interest are used to determine a narrowband metric, mNB. These metrics are used to correct for Δδ2H and Δδ18O. The method was tested on 14 instruments and Δδ18O was found to scale linearly with contaminant concentration for both narrowband (e.g., methanol) and broadband (e.g., ethanol) absorbers, while Δδ2H scaled linearly with narrowband and as a polynomial with broadband absorbers. Additionally, the isotope errors scaled logarithmically with mNB. Using the isotope error versus mNB and mBB curves, Δδ2H and Δδ18O resulting from methanol contamination were corrected to a maximum mean absolute error of 0.93 ‰ and 0.25 ‰ respectively, while Δδ2H and Δδ18O from ethanol contamination were corrected to a maximum mean absolute error of 1.22 ‰ and 0.22 ‰. Large variation between instruments indicates that the sensitivities must be calibrated for each individual isotope analyzer. These results suggest that the properly calibrated interference metrics can be used to correct for polluted samples and extend off-axis ICOS measurements of liquid water to include plant waters, soil extracts, wastewater, and alcoholic beverages. The general technique

  15. First measurement of the volcanic gas output from Anak Krakatau, Indonesia

    NASA Astrophysics Data System (ADS)

    Bani, Philipson; Normier, Adrien; Bacri, Clémentine; Allard, Patrick; Gunawan, Hendra; Hendrasto, Muhammad; Surono; Tsanev, Vitchko

    2015-09-01

    Anak Krakatau is the active cone that has built up in the caldera of Krakatau volcano after the 1883 cataclysmic eruption, in the Sunda Strait. Initially submarine, this new cone definitely emerged from the sea in 1930 and since then has progressively grown up through both explosive and effusive eruptions (~ one eruption every 3 years). Here we report on the first quantification of volcanic gas output from Anak Krakatau, based on airborn UV measurements of the SO2 flux in 2014, and then discuss its implication in terms of magma degassing budget since 1930. We find that during non-eruptive activity Anak Krakatau passively emits 190 ± 40 tons per day of SO2, which is comparable to the emission rate during lava dome extrusion at Merapi, central Java, but substantially more than those measured on few other Indonesian volcanoes (Tangkubanparahu, Slamet, Bromo and Papandayan). Anak Krakatau thus appears to be an important persistent emitter of volcanic volatiles in the Indonesian arc, even though this very active region still remains weakly documented on that aspect. Combining with available data for the composition of its high-temperature (~ 700 °C) crater gases, Anak Krakatau may release annually 0.07 Tg of SO2, 3 Tg of H2O, and 0.13 moles of 3He. Using published data for the sulfur content of its feeding magma, we estimate that about 1.3 km3 of magma may have been degassed during its subaerial growth over the past 85 years. The subaerial cone represents only 14% of this volume. Thus, a substantial fraction (1.1 km3) of the degassed magma did not extrude and may have accumulated in the plumbing system. This inference is consistent with geophysical and petrologic evidence of the presence of dense magma bodies in the shallow crustal basement of Krakatau volcano.

  16. Continuous measurements of water vapor isotopic compositions using an integrated cavity output spectrometer: calibrations and applications

    NASA Astrophysics Data System (ADS)

    Wang, L.; Caylor, K.; Dragoni, D.

    2009-04-01

    The 18O and 2H of water vapor can be used to investigate couplings between biological processes (e.g., photosynthesis or transpiration) and hydrologic processes (e.g., evaporation) and therefore serve as powerful tracers in hydrological cycles. A typical method for determining δ18O and δ2H fluxes in landscapes is a "Keeling Plot" approach, which uses field-collected vapor samples coupled with a traditional isotope ratio mass spectrometer to infer the isotopic composition of evapotranspiration. However, fractionation accompanying inefficient vapor trapping can lead to large measurement uncertainty and the intensive laboring involved in cold-trap make it almost impossible for continuous measurements. Over the last 3-4 years a few groups have developed continuous approaches for measuring δ18O and δ2H that use laser absorption spectroscopy (LAS) to achieve accuracy levels similar to lab-based mass spectrometry methods. Unfortunately, most LAS systems need cryogenic cooling, constant calibration to a reference gas, and substantial power requirements, which make them unsuitable for long-term field deployment at remote field sites. In this research, we tested out a new LAS-based water vapor isotope analyzer (WVIA, Los Gatos Research, Inc, Mountain View, CA) based on Integrated Cavity Output Spectroscopy (ICOS) and coupled this instrument with a flux gradient system. The WVIA was calibrated bi-weekly using a dew point generator and water with known δ18O and δ2H signatures. The field work was performed at Morgan-Monroe State Forest Ameriflux tower site (central Indiana) between August 8 and August 27, 2008. The combination method was able to produce hourly δ18O and δ2H fluxes data with reproducibility similar to lab-based mass spectrometry methods. Such high temporal resolution data were also able to capture signatures of canopy and bare soil evaporation to individual rainfall events. The use of the ICOS water vapor analyzer within a gradient system has the

  17. Single session of sprint interval training elicits similar cardiac output but lower oxygen uptake versus ramp exercise to exhaustion in men and women

    PubMed Central

    Horn, Trevor; Roverud, Garret; Sutzko, Kandice; Browne, Melissa; Parra, Cristina; Astorino, Todd A

    2016-01-01

    Sprint interval training (SIT) elicits comparable long-term adaptations versus continuous exercise training (CEX) including increased maximal oxygen uptake (VO2max) and fat utilization. However, there is limited research examining acute hemodynamic responses to SIT. The aim of this study was to examine hemodynamic responses to low-volume SIT. Active men (n=6, VO2max = 39.8 ± 1.7 mL/kg/min) and women (n=7, VO2max = 37.3 ± 5.7 mL/kg/min) performed a ramp-based VO2max test (RAMP) to determine workload for the SIT session. Subjects returned within 1 wk and completed a session of SIT consisting of six 30-s bouts of “all-out” cycling at 130% maximal workload (Wmax) interspersed with 120 s of active recovery. Continuously during RAMP and exercise and recovery in SIT, VO2 was obtained and thoracic impedance was used to estimate heart rate (HR), stroke volume (SV), and cardiac output (CO). Results revealed no significant differences in COmax (p = 0.12, 19.7 ± 2.4 L/min vs. 20.3 ± 1.8 L/min) but lower SVmax (p = 0.004, 110.4 ± 15.7 mL vs. 119.4 ± 15.5 mL) in RAMP versus SIT. HRmax from SIT (179.0 ± 11.8 b/min) was lower (p = 0.008) versus RAMP (184.4 ± 7.9 b/min). Peak VO2 (L/min) was lower (p < 0.001) in response to SIT (2.43 ± 0.82 L/min) compared to RAMP (2.84 ± 0.82 L/min). Hemodynamic variables increased linearly across SIT bouts and remained significantly elevated in recovery. Sprint interval training consisting of 3 min of supramaximal exercise elicits similar CO yet lower VO2 compared to RAMP. PMID:27785335

  18. Single session of sprint interval training elicits similar cardiac output but lower oxygen uptake versus ramp exercise to exhaustion in men and women.

    PubMed

    Horn, Trevor; Roverud, Garret; Sutzko, Kandice; Browne, Melissa; Parra, Cristina; Astorino, Todd A

    2016-01-01

    Sprint interval training (SIT) elicits comparable long-term adaptations versus continuous exercise training (CEX) including increased maximal oxygen uptake (VO2max) and fat utilization. However, there is limited research examining acute hemodynamic responses to SIT. The aim of this study was to examine hemodynamic responses to low-volume SIT. Active men (n=6, VO2max = 39.8 ± 1.7 mL/kg/min) and women (n=7, VO2max = 37.3 ± 5.7 mL/kg/min) performed a ramp-based VO2max test (RAMP) to determine workload for the SIT session. Subjects returned within 1 wk and completed a session of SIT consisting of six 30-s bouts of "all-out" cycling at 130% maximal workload (Wmax) interspersed with 120 s of active recovery. Continuously during RAMP and exercise and recovery in SIT, VO2 was obtained and thoracic impedance was used to estimate heart rate (HR), stroke volume (SV), and cardiac output (CO). Results revealed no significant differences in COmax (p = 0.12, 19.7 ± 2.4 L/min vs. 20.3 ± 1.8 L/min) but lower SVmax (p = 0.004, 110.4 ± 15.7 mL vs. 119.4 ± 15.5 mL) in RAMP versus SIT. HRmax from SIT (179.0 ± 11.8 b/min) was lower (p = 0.008) versus RAMP (184.4 ± 7.9 b/min). Peak VO2 (L/min) was lower (p < 0.001) in response to SIT (2.43 ± 0.82 L/min) compared to RAMP (2.84 ± 0.82 L/min). Hemodynamic variables increased linearly across SIT bouts and remained significantly elevated in recovery. Sprint interval training consisting of 3 min of supramaximal exercise elicits similar CO yet lower VO2 compared to RAMP.

  19. Wind tunnel measurements of the power output variability and unsteady loading in a micro wind farm model

    NASA Astrophysics Data System (ADS)

    Bossuyt, Juliaan; Howland, Michael; Meneveau, Charles; Meyers, Johan

    2015-11-01

    To optimize wind farm layouts for a maximum power output and wind turbine lifetime, mean power output measurements in wind tunnel studies are not sufficient. Instead, detailed temporal information about the power output and unsteady loading from every single wind turbine in the wind farm is needed. A very small porous disc model with a realistic thrust coefficient of 0.75 - 0.85, was designed. The model is instrumented with a strain gage, allowing measurements of the thrust force, incoming velocity and power output with a frequency response up to the natural frequency of the model. This is shown by reproducing the -5/3 spectrum from the incoming flow. Thanks to its small size and compact instrumentation, the model allows wind tunnel studies of large wind turbine arrays with detailed temporal information from every wind turbine. Translating to field conditions with a length-scale ratio of 1:3,000 the frequencies studied from the data reach from 10-4 Hz up to about 6 .10-2 Hz. The model's capabilities are demonstrated with a large wind farm measurement consisting of close to 100 instrumented models. A high correlation is found between the power outputs of stream wise aligned wind turbines, which is in good agreement with results from prior LES simulations. Work supported by ERC (ActiveWindFarms, grant no. 306471) and by NSF (grants CBET-113380 and IIA-1243482, the WINDINSPIRE project).

  20. Automation of Mode Locking in a Nonlinear Polarization Rotation Fiber Laser through Output Polarization Measurements.

    PubMed

    Olivier, Michel; Gagnon, Marc-Daniel; Habel, Joé

    2016-02-28

    When a laser is mode-locked, it emits a train of ultra-short pulses at a repetition rate determined by the laser cavity length. This article outlines a new and inexpensive procedure to force mode locking in a pre-adjusted nonlinear polarization rotation fiber laser. This procedure is based on the detection of a sudden change in the output polarization state when mode locking occurs. This change is used to command the alignment of the intra-cavity polarization controller in order to find mode-locking conditions. More specifically, the value of the first Stokes parameter varies when the angle of the polarization controller is swept and, moreover, it undergoes an abrupt variation when the laser enters the mode-locked state. Monitoring this abrupt variation provides a practical easy-to-detect signal that can be used to command the alignment of the polarization controller and drive the laser towards mode locking. This monitoring is achieved by feeding a small portion of the signal to a polarization analyzer measuring the first Stokes parameter. A sudden change in the read out of this parameter from the analyzer will occur when the laser enters the mode-locked state. At this moment, the required angle of the polarization controller is kept fixed. The alignment is completed. This procedure provides an alternate way to existing automating procedures that use equipment such as an optical spectrum analyzer, an RF spectrum analyzer, a photodiode connected to an electronic pulse-counter or a nonlinear detecting scheme based on two-photon absorption or second harmonic generation. It is suitable for lasers mode locked by nonlinear polarization rotation. It is relatively easy to implement, it requires inexpensive means, especially at a wavelength of 1550 nm, and it lowers the production and operation costs incurred in comparison to the above-mentioned techniques.

  1. Effects of fasting on plasma glucose and prolonged tracer measurement of hepatic glucose output in NIDDM

    SciTech Connect

    Glauber, H.; Wallace, P.; Brechtel, G.

    1987-10-01

    We studied the measurement of hepatic glucose output (HGO) with prolonged (3-/sup 3/H)glucose infusion in 14 patients with non-insulin-dependent diabetes mellitus (NIDDM). Over the course of 10.5 h, plasma glucose concentration fell with fasting by one-third, from 234 +/- 21 to 152 +/- 12 mg/dl, and HGO fell from 2.35 +/- 0.18 to 1.36 +/- 0.07 mg . kg-1 . min-1 (P less than .001). In the basal state, HGO and glucose were significantly correlated (r = 0.68, P = .03), and in individual patients, HGO and glucose were closely correlated as both fell with fasting (mean r = 0.79, P less than .01). Plasma (3-/sup 3/H)glucose radioactivity approached a steady state only 5-6 h after initiation of the primed continuous infusion, and a 20% overestimate of HGO was demonstrated by not allowing sufficient time for tracer labeling of the glucose pool. Assumption of steady-state instead of non-steady-state kinetics in using Steele's equations to calculate glucose turnover resulted in a 9-24% overestimate of HGO. Stimulation of glycogenolysis by glucagon injection demonstrated no incorporation of (3-/sup 3/H)glucose in hepatic glycogen during the prolonged tracer infusion. In a separate study, plasma glucose was maintained at fasting levels (207 +/- 17 mg/dl) for 8 h with the glucose-clamp technique. Total glucose turnover rates remained constant during this prolonged tracer infusion. However, HGO fell to 30% of the basal value simply by maintaining fasting hyperglycemia in the presence of basal insulin levels.

  2. Optimisation of output factor measurements using the Magic Plate 512 silicon dosimeter array in small megavoltage photon fields

    NASA Astrophysics Data System (ADS)

    Utitsarn, K.; Alrowaili, Z. A.; Stansook, N.; Lerch, M.; Petasecca, M.; Carolan, M.; Rosenfeld, A.

    2017-01-01

    We evaluate the impact of an air gap and optimization of this air gap for the MP512 silicon detector array when operated in dosimetry mode for small photon field measurements in solid water. We present output factor measurements for 6MV and 10 MV photon beams with the square field sizes ranging from 0.5 to 10 cm2. The size of the air gap above the MP512 detector was changed from 0.5, 1.0, 1.2, 2.0 and 2.6 mm. We compare the output factors measurements of the MP512 with EBT3 film and the MOSkin dosimeter. For the two photon energies investigated, we find that the output factor measured by the MP512 reduce with increasing air gap and reducing of field size. The reduction in output factor is most pronounced for the 0.5 and 1 cm2 field sizes. The air gap of 0.5 mm and 1.2 mm showed good agreement with the EBT3 film and MOSkin output factor for 6 and 10 MV photon fields, respectively. The negligible effect on dosimetry for the field sizes larger than 4x4 cm2 demonstrates that the electronic disequilibrium caused by small air gap only influences the dosimetry measurements for small fields. The study shows that the output factor reduction is enhanced by increasing of air gap and demonstrates that the optimal air gap for the MP512 at 6 and 10 MV photon fields is 0.5mm.

  3. A simple and effective method for validation and measurement of collimator output factors for Leksell Gamma Knife® Perfexion™

    NASA Astrophysics Data System (ADS)

    Ma, Lijun; Kjäll, Per; Novotny, Josef Jr; Nordström, Håkan; Johansson, Jonas; Verhey, Lynn

    2009-06-01

    Accurate determination of collimator output factors is important for Leksell Gamma Knife radiosurgery. The new Leksell Gamma Knife® Perfexion™ system has a completely redesigned collimator system and the collimator output factors are different from the other Leksell Gamma Knife® models. In this study, a simple method was developed to validate the collimator output factors specifically for Leksell Gamma Knife® Perfexion™. The method uses double-shot exposures on a single film to eliminate repeated setups and the necessity to acquire dose calibration curves required for the traditional film exposure method. Using the method, the collimator output factors with respect to the 16 mm collimator were measured to be 0.929 ± 0.009 and 0.817 ± 0.012 for the 8 mm and the 4 mm collimator, respectively. These values are in agreement (within 2%) with the default values of 0.924 and 0.805 in the Leksell Gamma Plan® treatment planning system. These values also agree with recently published results of 0.917 (8 mm collimator) and 0.818 (4 mm collimator) obtained from the traditional methods. Given the efficiency of the method, measurement and validation of the collimator output factors can be readily adopted in commissioning and quality assurance of a Leksell Gamma Knife® Perfexion™ system.

  4. Direct measurement of a patient's entrance skin dose during pediatric cardiac catheterization

    PubMed Central

    Sun, Lue; Mizuno, Yusuke; Iwamoto, Mari; Goto, Takahisa; Koguchi, Yasuhiro; Miyamoto, Yuka; Tsuboi, Koji; Chida, Koichi; Moritake, Takashi

    2014-01-01

    Children with complex congenital heart diseases often require repeated cardiac catheterization; however, children are more radiosensitive than adults. Therefore, radiation-induced carcinogenesis is an important consideration for children who undergo those procedures. We measured entrance skin doses (ESDs) using radio-photoluminescence dosimeter (RPLD) chips during cardiac catheterization for 15 pediatric patients (median age, 1.92 years; males, n = 9; females, n = 6) with cardiac diseases. Four RPLD chips were placed on the patient's posterior and right side of the chest. Correlations between maximum ESD and dose–area products (DAP), total number of frames, total fluoroscopic time, number of cine runs, cumulative dose at the interventional reference point (IRP), body weight, chest thickness, and height were analyzed. The maximum ESD was 80 ± 59 (mean ± standard deviation) mGy. Maximum ESD closely correlated with both DAP (r = 0.78) and cumulative dose at the IRP (r = 0.82). Maximum ESD for coiling and ballooning tended to be higher than that for ablation, balloon atrial septostomy, and diagnostic procedures. In conclusion, we directly measured ESD using RPLD chips and found that maximum ESD could be estimated in real-time using angiographic parameters, such as DAP and cumulative dose at the IRP. Children requiring repeated catheterizations would be exposed to high radiation levels throughout their lives, although treatment influences radiation dose. Therefore, the radiation dose associated with individual cardiac catheterizations should be analyzed, and the effects of radiation throughout the lives of such patients should be followed. PMID:24968708

  5. Linear system identification - The application of Lion's identification scheme to a third order system with noisy input-output measurements

    NASA Technical Reports Server (NTRS)

    Brown, C. M., Jr.; Monopoli, R. V.

    1974-01-01

    A linear system identification technique developed by Lion is adapted for use on a third-order system with six unknown parameters and noisy input-output measurements. A digital computer is employed so that rapid identification takes place with only two state variable filters. Bias in the parameter estimates is partially eliminated by a signal-to-noise ratio testing procedure.

  6. Light output measurements and computational models of microcolumnar CsI scintillators for x-ray imaging

    SciTech Connect

    Nillius, Peter Klamra, Wlodek; Danielsson, Mats; Sibczynski, Pawel; Sharma, Diksha; Badano, Aldo

    2015-02-15

    Purpose: The authors report on measurements of light output and spatial resolution of microcolumnar CsI:Tl scintillator detectors for x-ray imaging. In addition, the authors discuss the results of simulations aimed at analyzing the results of synchrotron and sealed-source exposures with respect to the contributions of light transport to the total light output. Methods: The authors measured light output from a 490-μm CsI:Tl scintillator screen using two setups. First, the authors used a photomultiplier tube (PMT) to measure the response of the scintillator to sealed-source exposures. Second, the authors performed imaging experiments with a 27-keV monoenergetic synchrotron beam and a slit to calculate the total signal generated in terms of optical photons per keV. The results of both methods are compared to simulations obtained with hybridMANTIS, a coupled x-ray, electron, and optical photon Monte Carlo transport package. The authors report line response (LR) and light output for a range of linear absorption coefficients and describe a model that fits at the same time the light output and the blur measurements. Comparing the experimental results with the simulations, the authors obtained an estimate of the absorption coefficient for the model that provides good agreement with the experimentally measured LR. Finally, the authors report light output simulation results and their dependence on scintillator thickness and reflectivity of the backing surface. Results: The slit images from the synchrotron were analyzed to obtain a total light output of 48 keV{sup −1} while measurements using the fast PMT instrument setup and sealed-sources reported a light output of 28 keV{sup −1}. The authors attribute the difference in light output estimates between the two methods to the difference in time constants between the camera and PMT measurements. Simulation structures were designed to match the light output measured with the camera while providing good agreement with the

  7. Dynamic CT perfusion measurement in a cardiac phantom.

    PubMed

    Ziemer, Benjamin P; Hubbard, Logan; Lipinski, Jerry; Molloi, Sabee

    2015-10-01

    Widespread clinical implementation of dynamic CT myocardial perfusion has been hampered by its limited accuracy and high radiation dose. The purpose of this study was to evaluate the accuracy and radiation dose reduction of a dynamic CT myocardial perfusion technique based on first pass analysis (FPA). To test the FPA technique, a pulsatile pump was used to generate known perfusion rates in a range of 0.96-2.49 mL/min/g. All the known perfusion rates were determined using an ultrasonic flow probe and the known mass of the perfusion volume. FPA and maximum slope model (MSM) perfusion rates were measured using volume scans acquired from a 320-slice CT scanner, and then compared to the known perfusion rates. The measured perfusion using FPA (P(FPA)), with two volume scans, and the maximum slope model (P(MSM)) were related to known perfusion (P(K)) by P(FPA) = 0.91P(K) + 0.06 (r = 0.98) and P(MSM) = 0.25P(K) - 0.02 (r = 0.96), respectively. The standard error of estimate for the FPA technique, using two volume scans, and the MSM was 0.14 and 0.30 mL/min/g, respectively. The estimated radiation dose required for the FPA technique with two volume scans and the MSM was 2.6 and 11.7-17.5 mSv, respectively. Therefore, the FPA technique can yield accurate perfusion measurements using as few as two volume scans, corresponding to approximately a factor of four reductions in radiation dose as compared with the currently available MSM. In conclusion, the results of the study indicate that the FPA technique can make accurate dynamic CT perfusion measurements over a range of clinically relevant perfusion rates, while substantially reducing radiation dose, as compared to currently available dynamic CT perfusion techniques.

  8. Measuring output factors of small fields formed by collimator jaws and multileaf collimator using plastic scintillation detectors

    SciTech Connect

    Klein, David M.; Tailor, Ramesh C.; Archambault, Louis; Wang, Lilie; Therriault-Proulx, Francois; Beddar, A. Sam

    2010-10-15

    Purpose: As the practice of using high-energy photon beams to create therapeutic radiation fields of subcentimeter dimensions (as in intensity-modulated radiotherapy or stereotactic radiosurgery) grows, so too does the need for accurate verification of beam output at these small fields in which standard practices of dose verification break down. This study investigates small-field output factors measured using a small plastic scintillation detector (PSD), as well as a 0.01 cm{sup 3} ionization chamber. Specifically, output factors were measured with both detectors using small fields that were defined by either the X-Y collimator jaws or the multileaf collimator (MLC). Methods: A PSD of 0.5 mm diameter and 2 mm length was irradiated with 6 and 18 MV linac beams. The PSD was positioned vertically at a source-to-axis distance of 100 cm, at 10 cm depth in a water phantom, and irradiated with fields ranging in size from 0.5x0.5 to 10x10 cm{sup 2}. The field sizes were defined either by the collimator jaws alone or by a MLC alone. The MLC fields were constructed in two ways: with the closed leaves (i.e., those leaves that were not opened to define the square field) meeting at either the field center line or at a 4 cm offset from the center line. Scintillation light was recorded using a CCD camera and an estimation of error in the median-filtered signals was made using the bootstrapping technique. Measurements were made using a CC01 ionization chamber under conditions identical to those used for the PSD. Results: Output factors measured by the PSD showed close agreement with those measured using the ionization chamber for field sizes of 2.0x2.0 cm{sup 2} and above. At smaller field sizes, the PSD obtained output factors as much as 15% higher than those found using the ionization chamber by 0.6x0.6 cm{sup 2} jaw-defined fields. Output factors measured with no offset of the closed MLC leaves were as much as 20% higher than those measured using a 4 cm leaf offset

  9. TU-A-12A-09: Absolute Blood Flow Measurement in a Cardiac Phantom Using Low Dose CT

    SciTech Connect

    Ziemer, B; Hubbard, L; Lipinski, J; Molloi, S

    2014-06-15

    Purpose: To investigate a first pass analysis technique to measure absolute flow from low dose CT images in a cardiac phantom. This technique can be combined with a myocardial mass assignment to yield absolute perfusion using only two volume scans and reduce the radiation dose to the patient. Methods: A four-chamber cardiac phantom and perfusion chamber were constructed from poly-acrylic and connected with tubing to approximate anatomical features. The system was connected to a pulsatile pump, input/output reservoirs and power contrast injector. Flow was varied in the range of 1-2.67 mL/s with the pump operating at 60 beats/min. The system was imaged once a second for 14 seconds with a 320-row scanner (Toshiba Medical Systems) using a contrast-enhanced, prospective-gated cardiac perfusion protocol. Flow was calculated by the following steps: subsequent images of the perfusion volume were subtracted to find the contrast entering the volume; this was normalized by an upstream, known volume region to convert Hounsfield (HU) values to concentration; this was divided by the subtracted images time difference. The technique requires a relatively stable input contrast concentration and no contrast can leave the perfusion volume before the flow measurement is completed. Results: The flow calculated from the images showed an excellent correlation with the known rates. The data was fit to a linear function with slope 1.03, intercept 0.02 and an R{sup 2} value of 0.99. The average root mean square (RMS) error was 0.15 mL/s and the average standard deviation was 0.14 mL/s. The flow rate was stable within 7.7% across the full scan and served to validate model assumptions. Conclusion: Accurate, absolute flow rates were measured from CT images using a conservation of mass model. Measurements can be made using two volume scans which can substantially reduce the radiation dose compared with current dynamic perfusion techniques.

  10. Waveform-Diverse Multiple-Input Multiple-Output Radar Imaging Measurements

    NASA Astrophysics Data System (ADS)

    Stewart, Kyle B.

    Multiple-input multiple-output (MIMO) radar is an emerging set of technologies designed to extend the capabilities of multi-channel radar systems. While conventional radar architectures emphasize the use of antenna array beamforming to maximize real-time power on target, MIMO radar systems instead attempt to preserve some degree of independence between their received signals and to exploit this expanded matrix of target measurements in the signal-processing domain. Specifically the use of sparse “virtual” antenna arrays may allow MIMO radars to achieve gains over traditional multi-channel systems by post-processing diverse received signals to implement both transmit and receive beamforming at all points of interest within a given scene. MIMO architectures have been widely examined for use in radar target detection, but these systems may yet be ideally suited to real and synthetic aperture radar imaging applications where their proposed benefits include improved resolutions, expanded area coverage, novel modes of operation, and a reduction in hardware size, weight, and cost. While MIMO radar's theoretical benefits have been well established in the literature, its practical limitations have not received great attention thus far. The effective use of MIMO radar techniques requires a diversity of signals, and to date almost all MIMO system demonstrations have made use of time-staggered transmission to satisfy this requirement. Doing so is reliable but can be prohibitively slow. Waveform-diverse systems have been proposed as an alternative in which multiple, independent waveforms are broadcast simultaneously over a common bandwidth and separated on receive using signal processing. Operating in this way is much faster than its time-diverse equivalent, but finding a set of suitable waveforms for this technique has proven to be a difficult problem. In light of this, many have questioned the practicality of MIMO radar imaging and whether or not its theoretical benefits

  11. Geometrical measurement of cardiac wavelength in reaction-diffusion models

    NASA Astrophysics Data System (ADS)

    Dupraz, Marie; Jacquemet, Vincent

    2014-09-01

    The dynamics of reentrant arrhythmias often consists in multiple wavelets propagating throughout an excitable medium. An arrhythmia can be sustained only if these reentrant waves have a sufficiently short wavelength defined as the distance traveled by the excitation wave during its refractory period. In a uniform medium, wavelength may be estimated as the product of propagation velocity and refractory period (electrophysiological wavelength). In order to accurately measure wavelength in more general substrates relevant to atrial arrhythmias (heterogeneous and anisotropic), we developed a mathematical framework to define geometrical wavelength at each time instant based on the length of streamlines following the propagation velocity field within refractory regions. Two computational methods were implemented: a Lagrangian approach in which a set of streamlines were integrated, and an Eulerian approach in which wavelength was the solution of a partial differential equation. These methods were compared in 1D/2D tissues and in a model of the left atrium. An advantage of geometrical definition of wavelength is that the wavelength of a wavelet can be tracked over time with high temporal resolution and smaller temporal variability in an anisotropic and heterogeneous medium. The results showed that the average electrophysiological wavelength was consistent with geometrical measurements of wavelength. Wavelets were however often shorter than the electrophysiological wavelength due to interactions with boundaries and other wavelets. These tools may help to assess more accurately the relation between substrate properties and wavelet dynamics in computer models.

  12. Enhancing ejection fraction measurement through 4D respiratory motion compensation in cardiac PET imaging.

    PubMed

    Tang, Jing; Wang, Xinhui; Gao, Xiangzhen; Segars, Paul; Lodge, Martin; Rahmim, Arman

    2017-03-02

    ECG gated cardiac PET imaging measures functional parameters such as left ventricle (LV) ejection fraction (EF), providing diagnostic and prognostic information for management of patients with coronary artery disease (CAD). Respiratory motion degrades spatial resolution and affects the accuracy in measuring the LV volumes for EF calculation. The goal of this study is to systematically investigate the effect of respiratory motion correction on the estimation of end-diastolic volume (EDV), end-systolic volume (ESV), and EF, especially on the separation of normal and abnormal EFs. We developed a respiratory motion incorporated 4D PET image reconstruction technique which uses all gated-frame data to acquire a motion-suppressed image. Using the standard XCAT phantom and two individual-specific volunteer XCAT phantoms, we simulated dual-gated myocardial perfusion imaging data for normally and abnormally beating hearts. With and without respiratory motion correction, we measured the EDV, ESV, and EF from the cardiac gated reconstructed images. For all the phantoms, the estimated volumes increased and the biases significantly reduced with motion correction compared with those without. Furthermore, the improvement of ESV measurement in the abnormally beating heart led to better separation of normal and abnormal EFs. The simulation study demonstrated the significant effect of respiratory motion correction on cardiac imaging data with motion amplitude as small as 0.7 cm. The larger the motion amplitude the more improvement respiratory motion correction brought about on the measurement of EF. Using data-driven respiratory gating, we also demonstrated the effect of respiratory motion correction on estimation of the above functional parameters from list mode patient data. Respiratory motion correction is shown to improve the accuracy of EF measurement in clinical cardiac PET imaging.

  13. Agreement between the force platform method and the combined method measurements of power output during the loaded countermovement jump.

    PubMed

    Mundy, Peter D; Lake, Jason P; Carden, Patrick J C; Smith, Neal A; Lauder, Mike A

    2016-01-01

    There are two perceived criterion methods for measuring power output during the loaded countermovement jump (CMJ): the force platform method and the combined method (force platform + optoelectronic motion capture system). Therefore, the primary aim of the present study was to assess agreement between the force platform method and the combined method measurements of peak power and mean power output during the CMJ across a spectrum of loads. Forty resistance-trained team sport athletes performed maximal effort CMJ with additional loads of 0 (body mass only), 25, 50, 75 and 100% of body mass (BM). Bias was present for peak velocity, mean velocity, peak power and mean power at all loads investigated, and present for mean force up to 75% of BM. Peak velocity, mean velocity, peak power and mean power 95% ratio limits of agreement were clinically unacceptable at all loads investigated. The 95% ratio limits of agreement were widest at 0% of BM and decreased linearly as load increased. Therefore, the force platform method and the combined method cannot be used interchangeably for measuring power output during the loaded CMJ. As such, if power output is to be meaningfully investigated, a standardised method must be adopted.

  14. Simultaneous measurement of cerebral and muscle tissue parameters during cardiac arrest and cardiopulmonary resuscitation

    NASA Astrophysics Data System (ADS)

    Nosrati, Reyhaneh; Ramadeen, Andrew; Hu, Xudong; Woldemichael, Ermias; Kim, Siwook; Dorian, Paul; Toronov, Vladislav

    2015-03-01

    In this series of animal experiments on resuscitation after cardiac arrest we had a unique opportunity to measure hyperspectral near-infrared spectroscopy (hNIRS) parameters directly on the brain dura, or on the brain through the intact pig skull, and simultaneously the muscle hNIRS parameters. Simultaneously the arterial blood pressure and carotid and femoral blood flow were recorded in real time using invasive sensors. We used a novel hyperspectral signalprocessing algorithm to extract time-dependent concentrations of water, hemoglobin, and redox state of cytochrome c oxidase during cardiac arrest and resuscitation. In addition in order to assess the validity of the non-invasive brain measurements the obtained results from the open brain was compared to the results acquired through the skull. The comparison of hNIRS data acquired on brain surface and through the adult pig skull shows that in both cases the hemoglobin and the redox state cytochrome c oxidase changed in similar ways in similar situations and in agreement with blood pressure and flow changes. The comparison of simultaneously measured brain and muscle changes showed expected differences. Overall the results show feasibility of transcranial hNIRS measurements cerebral parameters including the redox state of cytochrome oxidase in human cardiac arrest patients.

  15. Harmonic force spectroscopy measures load-dependent kinetics of individual human β-cardiac myosin molecules

    NASA Astrophysics Data System (ADS)

    Sung, Jongmin; Nag, Suman; Mortensen, Kim I.; Vestergaard, Christian L.; Sutton, Shirley; Ruppel, Kathleen; Flyvbjerg, Henrik; Spudich, James A.

    2015-08-01

    Molecular motors are responsible for numerous cellular processes from cargo transport to heart contraction. Their interactions with other cellular components are often transient and exhibit kinetics that depend on load. Here, we measure such interactions using `harmonic force spectroscopy'. In this method, harmonic oscillation of the sample stage of a laser trap immediately, automatically and randomly applies sinusoidally varying loads to a single motor molecule interacting with a single track along which it moves. The experimental protocol and the data analysis are simple, fast and efficient. The protocol accumulates statistics fast enough to deliver single-molecule results from single-molecule experiments. We demonstrate the method's performance by measuring the force-dependent kinetics of individual human β-cardiac myosin molecules interacting with an actin filament at physiological ATP concentration. We show that a molecule's ADP release rate depends exponentially on the applied load, in qualitative agreement with cardiac muscle, which contracts with a velocity inversely proportional to external load.

  16. Harmonic force spectroscopy measures load-dependent kinetics of individual human β-cardiac myosin molecules.

    PubMed

    Sung, Jongmin; Nag, Suman; Mortensen, Kim I; Vestergaard, Christian L; Sutton, Shirley; Ruppel, Kathleen; Flyvbjerg, Henrik; Spudich, James A

    2015-08-04

    Molecular motors are responsible for numerous cellular processes from cargo transport to heart contraction. Their interactions with other cellular components are often transient and exhibit kinetics that depend on load. Here, we measure such interactions using 'harmonic force spectroscopy'. In this method, harmonic oscillation of the sample stage of a laser trap immediately, automatically and randomly applies sinusoidally varying loads to a single motor molecule interacting with a single track along which it moves. The experimental protocol and the data analysis are simple, fast and efficient. The protocol accumulates statistics fast enough to deliver single-molecule results from single-molecule experiments. We demonstrate the method's performance by measuring the force-dependent kinetics of individual human β-cardiac myosin molecules interacting with an actin filament at physiological ATP concentration. We show that a molecule's ADP release rate depends exponentially on the applied load, in qualitative agreement with cardiac muscle, which contracts with a velocity inversely proportional to external load.

  17. Association Between a Quantitative CT Scan Measure of Brain Edema and Outcome After Cardiac Arrest

    PubMed Central

    Metter, Robert B.; Rittenberger, Jon C.; Guyette, Francis X.; Callaway, Clifton W.

    2011-01-01

    Background Cerebral edema is one physical change associated with brain injury and decreased survival after cardiac arrest. Edema appears on computed tomography (CT) scan of the brain as decreased x-ray attenuation by gray matter. This study tested whether the gray matter attenuation to white matter attenuation ratio (GWR) was associated with survival and functional recovery. Methods Subjects were patients hospitalized after cardiac arrest at a single institution between 1/1/2005 and 7/30/2010. Subjects were included if they had non-traumatic cardiac arrest and a non-contrast CT scan within 24 hours after cardiac arrest. Attenuation (Hounsfield Units) was measured in gray matter (caudate nucleus, putamen, thalamus, and cortex) and in white matter (internal capsule, corpus callosum and centrum semiovale). The GWR was calculated for basal ganglia and cerebrum. Outcomes included survival and functional status at hospital discharge. Results For 680 patients, 258 CT scans were available, but 18 were excluded because of hemorrhage (10), intravenous contrast (3) or technical artifact (5), leaving 240 CT scans for analysis. Lower GWR values were associated with lower initial Glasgow Coma Scale motor score. Overall survival was 36%, but decreased with decreasing GWR. The average of basal ganglia and cerebrum GWR provided the best discrimination. Only 2/58 subjects with average GWR<1.20 survived and both were treated with hypothermia. The association of GWR with functional outcome was completely explained by mortality when GWR<1.20. Conclusions Subjects with severe cerebral edema, defined by GWR<1.20, have very low survival with conventional care, including hypothermia. GWR estimates pre-treatment likelihood of survival after cardiac arrest. PMID:21592642

  18. Magnetic resonance imaging--cardiac ejection fraction measurements. Phantom study comparing four different methods.

    PubMed

    Debatin, J F; Nadel, S N; Sostman, H D; Spritzer, C E; Evans, A J; Grist, T M

    1992-03-01

    The accuracy of cardiac ejection fraction (EF) measurements with thin, contiguous cine-magnetic resonance imaging (MR) sections is well established. Still, faster imaging and measurement techniques would be desirable. The authors evaluated the accuracy of four different MR EF measurements methods in a biventricular, anthropomorphic, foam-latex rubber phantom which was connected via noncompliant fluid-filled tubing to a pulsatile flow pump. Nine contiguous 10 mm cine-MR sections (TR/TE, 25/13; flip angle, 45 degrees) were obtained through the heart in long and short cardiac axes at 16 frames per cardiac cycle at a pump rate of 60 beats/minute. EF measurements were based on either the multi-slice summation technique (nine contiguous 10-mm sections versus four 10-mm sections spaced 10 mm apart) or the area-length method (single largest long section versus combination of largest long- and short-axis section). Three replications were performed for each of the tested EFs (40.8%, 29.4%, and 13.4%), which were compared with actual EFs. EF measurements based on contiguous 1-cm sections correlated best with the actual EFs. Average relative errors ranged from 3.2% to 6.0%. EF measurements based on every other section were less accurate; average relative errors were between 5.2% and 10.2%. Single and biplane area-length algorithm EF measurements were significantly less accurate; average relative errors were as high as 59%. EF measurements based on multi-slice summation are more accurate than those based on the area-length algorithm. Contiguous 1-cm section acquisitions are most accurate and most time consuming. With slight decrease of accuracy, acquisition and processing times can be halved by skipping every other slice.

  19. Modified technique for differential mode delay map measurement by scanning of input/output ends of tested multimode fiber

    NASA Astrophysics Data System (ADS)

    Bourdine, Anton V.; Burdin, Vladimir A.; Pashin, Stanislav S.; Praporshchikov, Denis E.; Sevruk, Nikita L.

    2016-03-01

    We present modified technique for differential mode delay map measurement. Here according to well-known methods a fast laser pulse is also launched into a tested multimode fiber (MMF) via single mode fiber (SMF), which scans core of MMF under precision offset positions. However unlike known technique formalized in ratified standards, proposed modification differs by addition scanning of the output end of tested MMF by short tail of SMF. Therefore for each radial offset position at the input/output MMF ends, the shape of pulse response of launched optical signal is recorded, that provides to get more informative differential mode delay map. This work presents some results of experimental approbation of proposed modified technique for differential mode delay map measurement.

  20. Design of a platinum resistance thermometer temperature measuring transducer and improved accuracy of linearizing the output voltage

    SciTech Connect

    Malygin, V.M.

    1995-06-01

    An improved method is presented for designing a temperature measuring transducer, the electrical circuit of which comprises an unbalanced bridge, in one arm of which is a platinum resistance thermometer, and containing a differential amplifier with feedback. Values are given for the coefficients, the minimum linearization error is determined, and an example is also given of the practical design of the transducer, using the given coefficients. A determination is made of the limiting achievable accuracy in linearizing the output voltage of the measuring transducer, as a function of the range of measured temperature.

  1. Price and Real Output Measures for the Education Function of Government: Exploratory Estimates for Primary & Secondary Education. NBER Working Paper No. 14099

    ERIC Educational Resources Information Center

    Fraumeni, Barbara M.; Reinsdorf, Marshall B.; Robinson, Brooks B.; Williams, Matthew P.

    2008-01-01

    In a previous paper, the authors took the first step in their research on measuring the education function of government by estimating real output measures (Fraumeni, et. al. 2004). In this paper, chain-type Fisher quantity indexes for those output measures are calculated to be more consistent with Bureau of Economic Analysis (BEA) methodology and…

  2. Measurement of cardiac contractility using fetal isovolumetric contraction time in fetal tachyarrhythmia.

    PubMed

    Fujita, Yasuyuki; Athayde, Neil; Tokunaga, Shoji; Trudinger, Brian

    2011-02-01

    The isovolumetric contraction time (ICT) is known to be an index of cardiac contractility. In this study, we examined the relationship between the fetal ICT and fetal heart rate (FHR) and evaluated the usefulness of ICT in the assessment of fetal cardiac contractility in cases with fetal tachyarrhythmia. Seven cases with fetal tachyarrhythmia between 32 and 40 weeks' gestation were included in this study. The fetal ICT was measured using a continuous Doppler device and digital filters. The relationship between the fetal ICT and FHR was analyzed using the Spearman's rank correlation test in each fetus. Based on the FHR and ultrasound findings of hydrops at the measurement of ICT, the obtained data were divided into three groups: normal, tachyarrhythmia only and hydrops. The clinical usefulness of ICT was assessed using the random effect model. In 7 fetuses, a total of 60 data points were obtained. A significant correlation between fetal ICT and FHR was not noted in each fetus. The ICT of the hydrops group was significantly prolonged compared with those of the normal and tachyarrhythmia-only groups (p < 0.01). An association between the fetal ICT and FHR is not noted and the fetal ICT might have some utility to detect impaired fetal cardiac contractility even in fetuses with tachyarrhythmia.

  3. Measurement of relative output factors for the 8 and 4 mm collimators of Leksell Gamma Knife Perfexion by film dosimetry

    SciTech Connect

    Novotny, Josef Jr.; Bhatnagar, Jagdish P.; Quader, Mubina A.; Bednarz, Greg; Lunsford, L. Dade; Huq, M. Saiful

    2009-05-15

    Three types of films, Kodak EDR2, Gafchromic EBT, and Gafchromic MD-V2-55, were used to measure relative output factors of 4 and 8 mm collimators of the Leksell Gamma Knife Perfexion. The optical density to dose calibration curve for each of the film types was obtained by exposing the films to a range of known doses. Ten data points were acquired for each of the calibration curves in the dose ranges from 0 to 4 Gy, 0 to 8 Gy, and 0 to 80 Gy for Kodak EDR2, Gafchromic EBT, and Gafchromic MD-V2-55 films, respectively. For the measurement of relative output factors, five films of each film type were exposed to a known dose. All films were scanned using EPSON EXPRESSION 10000 XL scanner with 200 dpi resolution in 16 bit gray scale for EDR2 film and 48 bit color scale for Gafchromic films. The scanned images were imported in the red channel for both Gafchromic films. The background corrections from an unexposed film were applied to all films. The output factors obtained from film measurements were in a close agreement both with the Monte Carlo calculated values of 0.924 and 0.805 for 8 and 4 mm collimators, respectively. These values are provided by the vendor and used as default values in the vendor's treatment planning system. The largest differences were noted for the Kodak EDR 2 films (-2.1% and -4.5% for 8 and 4 mm collimators, respectively). The best agreement observed was for EBT Gafchromic film (-0.8% and +0.6% differences for 8 and 4 mm collimators, respectively). Based on the present values, no changes in the default relative output factor values were made in the treatment planning system.

  4. Derivation of continuous wave mode output power from burst mode measurements in high-intensity ultrasound applications.

    PubMed

    Haller, Julian; Wilkens, Volker

    2014-03-01

    Measurement of the acoustic output power of transducers in burst mode and derivation of the results to the continuous wave (CW) case reduces heating problems during power measurements with radiation force balances and absorbing targets at high power levels, but requires the knowledge of an "effective duty factor," DReff. In this work, an alternative method for determining DReff is presented that allows the determination at any input voltage amplitude as it can be calculated from the input voltage rf signal in burst mode. Thus with this method, it is not necessary to apply CW signals at all.

  5. Fiber bragg grating sensor based device for simultaneous measurement of respiratory and cardiac activities.

    PubMed

    Chethana, K; Guru Prasad, A S; Omkar, S N; Asokan, S

    2017-02-01

    This paper reports a novel optical ballistocardiography technique, which is non-invasive, for the simultaneous measurement of cardiac and respiratory activities using a Fiber Bragg Grating Heart Beat Device (FBGHBD). The unique design of FBGHBD offers additional capabilities such as monitoring nascent morphology of cardiac and breathing activity, heart rate variability, heart beat rhythm, etc., which can assist in early clinical diagnosis of many conditions associated with heart and lung malfunctioning. The results obtained from the FBGHBD positioned around the pulmonic area on the chest have been evaluated against an electronic stethoscope which detects and records sound pulses originated from the cardiac activity. In order to evaluate the performance of the FBGHBD, quantitative and qualitative studies have been carried out and the results are found to be reliable and accurate, validating its potential as a standalone medical diagnostic device. The developed FBGHBD is simple in design, robust, portable, EMI proof, shock proof and non-electric in its operation which are desired features for any clinical diagnostic tool used in hospital environment.

  6. Development of an accurate EPID-based output measurement and dosimetric verification tool for electron beam therapy

    PubMed Central

    Ding, Aiping; Xing, Lei; Han, Bin

    2015-01-01

    Purpose: To develop an efficient and robust tool for output measurement and absolute dose verification of electron beam therapy by using a high spatial-resolution and high frame-rate amorphous silicon flat panel electronic portal imaging device (EPID). Methods: The dosimetric characteristics of the EPID, including saturation, linearity, and ghosting effect, were first investigated on a Varian Clinac 21EX accelerator. The response kernels of the individual pixels of the EPID to all available electron energies (6, 9, 12, 16, and 20 MeV) were calculated by using Monte Carlo (MC) simulations, which formed the basis to deconvolve an EPID raw images to the incident electron fluence map. The two-dimensional (2D) dose distribution at reference depths in water was obtained by using the constructed fluence map with a MC simulated pencil beam kernel with consideration of the geometric and structural information of the EPID. Output factor measurements were carried out with the EPID at a nominal source–surface distance of 100 cm for 2 × 2, 3 × 3, 6 × 6, 10 × 10, and 15 × 15 cm2 fields for all available electron energies, and the results were compared with that measured in a solid water phantom using film and a Farmer-type ion chamber. The dose distributions at a reference depth specific to each energy and the flatness and symmetry of the 10 × 10 cm2 electron beam were also measured using EPID, and the results were compared with ion chamber array and water scan measurements. Finally, three patient cases with various field sizes and irregular cutout shapes were also investigated. Results: EPID-measured dose changed linearly with the monitor units and showed little ghosting effect for dose rate up to 600 MU/min. The flatness and symmetry measured with the EPID were found to be consistent with ion chamber array and water scan measurements. The EPID-measured output factors for standard square fields of 2 × 2, 3 × 3, 6 × 6, 10 × 10, 15 × 15 cm2 agreed with film and ion

  7. Measurement of unsteady loading and power output variability in a micro wind farm model in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Bossuyt, Juliaan; Howland, Michael F.; Meneveau, Charles; Meyers, Johan

    2017-01-01

    Unsteady loading and spatiotemporal characteristics of power output are measured in a wind tunnel experiment of a microscale wind farm model with 100 porous disk models. The model wind farm is placed in a scaled turbulent boundary layer, and six different layouts, varied from aligned to staggered, are considered. The measurements are done by making use of a specially designed small-scale porous disk model, instrumented with strain gages. The frequency response of the measurements goes up to the natural frequency of the model, which corresponds to a reduced frequency of 0.6 when normalized by the diameter and the mean hub height velocity. The equivalent range of timescales, scaled to field-scale values, is 15 s and longer. The accuracy and limitations of the acquisition technique are documented and verified with hot-wire measurements. The spatiotemporal measurement capabilities of the experimental setup are used to study the cross-correlation in the power output of various porous disk models of wind turbines. A significant correlation is confirmed between streamwise aligned models, while staggered models show an anti-correlation.

  8. Cardiac catheterization

    MedlinePlus

    Catheterization - cardiac; Heart catheterization; Angina - cardiac catheterization; CAD - cardiac catheterization; Coronary artery disease - cardiac catheterization; Heart valve - cardiac catheterization; Heart failure - ...

  9. Comparisons between data assimilated HYCOM output and in situ Argo measurements in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Wilson, E. A.; Riser, S.

    2014-12-01

    This study evaluates the performance of data assimilated Hybrid Coordinate Ocean Model (HYCOM) output for the Bay of Bengal from September 2008 through July 2013. We find that while HYCOM assimilates Argo data, the model still suffers from significant temperature and salinity biases in this region. These biases are most severe in the northern Bay of Bengal, where the model tends to be too saline near the surface and too fresh at depth. The maximum magnitude of these biases is approximately 0.6 PSS. We also find that the model's salinity biases have a distinct seasonal cycle. The most problematic periods are the months following the summer monsoon (Oct-Jan). HYCOM's near surface temperature estimates compare more favorably with Argo, but significant errors exist at deeper levels. We argue that optimal interpolation will tend to induce positive salinity biases in the northern regions of the Bay. Further, we speculate that these biases are introduced when the model relaxes to climatology and assimilates real-time data.

  10. Gravity Compensation Method for Combined Accelerometer and Gyro Sensors Used in Cardiac Motion Measurements.

    PubMed

    Krogh, Magnus Reinsfelt; Nghiem, Giang M; Halvorsen, Per Steinar; Elle, Ole Jakob; Grymyr, Ole-Johannes; Hoff, Lars; Remme, Espen W

    2017-01-23

    A miniaturized accelerometer fixed to the heart can be used for monitoring of cardiac function. However, an accelerometer cannot differentiate between acceleration caused by motion and acceleration due to gravity. The accuracy of motion measurements is therefore dependent on how well the gravity component can be estimated and filtered from the measured signal. In this study we propose a new method for estimating the gravity, based on strapdown inertial navigation, using a combined accelerometer and gyro. The gyro was used to estimate the orientation of the gravity field and thereby remove it. We compared this method with two previously proposed gravity filtering methods in three experimental models using: (1) in silico computer simulated heart motion; (2) robot mimicked heart motion; and (3) in vivo measured motion on the heart in an animal model. The new method correlated excellently with the reference (r (2) > 0.93) and had a deviation from reference peak systolic displacement (6.3 ± 3.9 mm) below 0.2 ± 0.5 mm for the robot experiment model. The new method performed significantly better than the two previously proposed methods (p < 0.001). The results show that the proposed method using gyro can measure cardiac motion with high accuracy and performs better than existing methods for filtering the gravity component from the accelerometer signal.

  11. Fast-acting calorimeter measures heat output of plasma gun accelerator

    NASA Technical Reports Server (NTRS)

    Dethlefson, R.; Larson, A. V.; Liebing, L.

    1967-01-01

    Calorimeter measures the exhaust energy from a shot of a pulsed plasma gun accelerator. It has a fast response time and requires only one measurement to determine the total energy. It uses a long ribbon of copper foil wound around a glass frame to form a reentrant cavity.

  12. Quantitatively accurate activity measurements with a dedicated cardiac SPECT camera: Physical phantom experiments

    SciTech Connect

    Pourmoghaddas, Amir Wells, R. Glenn

    2016-01-15

    Purpose: Recently, there has been increased interest in dedicated cardiac single photon emission computed tomography (SPECT) scanners with pinhole collimation and improved detector technology due to their improved count sensitivity and resolution over traditional parallel-hole cameras. With traditional cameras, energy-based approaches are often used in the clinic for scatter compensation because they are fast and easily implemented. Some of the cardiac cameras use cadmium-zinc-telluride (CZT) detectors which can complicate the use of energy-based scatter correction (SC) due to the low-energy tail—an increased number of unscattered photons detected with reduced energy. Modified energy-based scatter correction methods can be implemented, but their level of accuracy is unclear. In this study, the authors validated by physical phantom experiments the quantitative accuracy and reproducibility of easily implemented correction techniques applied to {sup 99m}Tc myocardial imaging with a CZT-detector-based gamma camera with multiple heads, each with a single-pinhole collimator. Methods: Activity in the cardiac compartment of an Anthropomorphic Torso phantom (Data Spectrum Corporation) was measured through 15 {sup 99m}Tc-SPECT acquisitions. The ratio of activity concentrations in organ compartments resembled a clinical {sup 99m}Tc-sestamibi scan and was kept consistent across all experiments (1.2:1 heart to liver and 1.5:1 heart to lung). Two background activity levels were considered: no activity (cold) and an activity concentration 1/10th of the heart (hot). A plastic “lesion” was placed inside of the septal wall of the myocardial insert to simulate the presence of a region without tracer uptake and contrast in this lesion was calculated for all images. The true net activity in each compartment was measured with a dose calibrator (CRC-25R, Capintec, Inc.). A 10 min SPECT image was acquired using a dedicated cardiac camera with CZT detectors (Discovery NM530c, GE

  13. Synthesis of guinea-pig cardiac myosin as measured by constant infusion.

    PubMed Central

    Wyborny, L E; Kritcher, E M; Luchi, R J

    1978-01-01

    An equation was derived from which the turnover time of individual muscle proteins could be calculated from measurements made at a single time interval in individual animals after initiation of constant intravenous infusion of labelled amino acid. The calculation requires only the specific radioactivities of the amino acid in plasma, in the intracellular fluid and in the protein under study. Pool sizes were not required. When the equation was applied to adult guinea-pig cardiac myosin, the average turnover time was 16 +/- 1 days. PMID:629779

  14. Cardiac-Activity Measures for Assessing Airport Ramp-Tower Controller's Workload

    NASA Technical Reports Server (NTRS)

    Hayashi, Miwa; Dulchinos, Victoria

    2016-01-01

    Heart rate (HR) and heart rate variability (HRV) potentially offer objective, continuous, and non-intrusive measures of human-operators mental workload. Such measurement capability is attractive for workload assessment in complex laboratory simulations or safety-critical field testing. The present study compares mean HR and HRV data with self-reported subjective workload ratings collected during a high-fidelity human-in-the-loop simulation of airport ramp traffic control operations, which involve complex cognitive and coordination tasks. Mean HR was found to be weakly sensitive to the workload ratings, while HRV was not sensitive or even contradictory to the assumptions. Until more knowledge on stress response mechanisms of the autonomic nervous system is obtained, it is recommended that these cardiac-activity measures be used with other workload assessment tools, such as subjective measures.

  15. Cardiac-Activity Measures for Assessing Airport Ramp-Tower Controller's Workload

    NASA Technical Reports Server (NTRS)

    Hayashi, Miwa; Dulchinos, Victoria L.

    2016-01-01

    Heart rate (HR) and heart rate variability (HRV) potentially offer objective, continuous, and non-intrusive measures of human-operator's mental workload. Such measurement capability is attractive for workload assessment in complex laboratory simulations or safety-critical field testing. The present study compares mean HR and HRV data with self-reported subjective workload ratings collected during a high-fidelity human-in-the-loop simulation of airport ramp traffic control operations, which involve complex cognitive and coordination tasks. Mean HR was found to be weakly sensitive to the workload ratings, while HRV was not sensitive or even contradictory to the assumptions. Until more knowledge on stress response mechanisms of the autonomic nervous system is obtained, it is recommended that these cardiac-activity measures be used with other workload assessment tools, such as subjective measures.

  16. Comparison of treadmill and cycle ergometer measurements of force-velocity relationships and power output.

    PubMed

    Jaskólska, A; Goossens, P; Veenstra, B; Jaskólski, A; Skinner, J S

    1999-04-01

    Since body balance and weight-bearing factors present while running on the treadmill might cause additional muscle recruitment and thus could influence the force-velocity relationship and power, the present study was undertaken to find out whether the F-V and F-P relationships measured while running on the treadmill are different from the respective indices measured during cycling. On two separate occasions, 32 male subjects were tested using a series of 5 sec, all-out sprints against different braking forces on the Gymrol Sprint treadmill and on the Monark ergometer. The maximal peak power (PPmax) and maximal mean power (MPmax) were measured. The equation: EP = 0.5 maximal force (Fo) x0.5 maximal velocity (Vo) was used to calculate the estimated values of peak power (EPP) and mean power (EMP). The F-V relationship was linear in both cycle ergometer and treadmill measurements. PPmax, MPmax, EPP, and EMP values on the treadmill were lower than the respective values on the ergometer. EPP on the ergometer and on the treadmill, as well as EMP values on the ergometer, were slightly higher than the corresponding measured values of PPmax and MPmax. The levels of braking force at which PP, MP, PPmax, and MPmax were obtained were lower on the ergometer than on the treadmill. High correlation coefficients were found between PPmax, MPmax, EPP, and EMP measured on the ergometer and on the treadmill (r = 0.86, r = 0.84, r = 0.71, r = 0.78, respectively, P<0.01). In both tests, significant relationships between PPmax, MPmax, EPP, and EMP were observed. It is concluded that independent of the type of ergometry the force-velocity relationship is similar in the measured range of velocities which suggests that the number of muscle groups and joints engaged in movement are more important than body balance and weight-bearing factors present while running on a treadmill.

  17. The effect of age on the relationship between cardiac and vascular function.

    PubMed

    Houghton, David; Jones, Thomas W; Cassidy, Sophie; Siervo, Mario; MacGowan, Guy A; Trenell, Michael I; Jakovljevic, Djordje G

    2016-01-01

    Age-related changes in cardiac and vascular function are associated with increased risk of cardiovascular mortality and morbidity. The aim of the present study was to define the effect of age on the relationship between cardiac and vascular function. Haemodynamic and gas exchange measurements were performed at rest and peak exercise in healthy individuals. Augmentation index was measured at rest. Cardiac power output, a measure of overall cardiac function, was calculated as the product of cardiac output and mean arterial blood pressure. Augmentation index was significantly higher in older than younger participants (27.7 ± 10.1 vs. 2.5 ± 10.1%, P<0.01). Older people demonstrated significantly higher stroke volume and mean arterial blood pressure (P<0.05), but lower heart rate (145 ± 13 vs. 172 ± 10 beats/min, P<0.01) and peak oxygen consumption (22.5 ± 5.2 vs. 41.2 ± 8.4 ml/kg/min, P<0.01). There was a significant negative relationship between augmentation index and peak exercise cardiac power output (r=-0.73, P=0.02) and cardiac output (r=-0.69, P=0.03) in older participants. Older people maintain maximal cardiac function due to increased stroke volume. Vascular function is a strong predictor of overall cardiac function in older but in not younger people.

  18. Validation of a Modified One-Step Rebreathing Technique for Non-Invasive Measurement of Submaximal Cardiac Output

    DTIC Science & Technology

    1988-01-01

    steel hypodermic needle permanently affixed to the coimmon port of the T-shaped Collins valve served as the sampling inlet of the LB-2 CC2 analyzer. A...in FIGURE 1. 3 S CO2 ANALYZER PI/4CK-UP HEAD ELECTRICAL LICONNE MODIFIED HYPODERMIC LINE SAMPLE LINE COLLINS VALVE /- ANESTHESIA BAG /- QUICK RELEASE...computer. The BASIC language program used for analysis of the tracings is based on the theory and assumptions proposed by Farhi et al. (1). Essentially

  19. Optimal output feedback control of linear systems in presence of forcing and measurement noise

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1974-01-01

    The problem of obtaining an optimal control law, which is constrained to be a linear feedback of the available measurements, for both continuous and discrete time linear systems subjected to additive white process noise and measurement noise was Necessary conditions are obtained for minimizing a quadratic performance function for both finite and infinite terminal time cases. The feedback gains are constrained to be time invariant for the infinite terminal time cases. For all the cases considered, algorithms are derived for generating sequences of feedback gain matrices which successively improve the performance function. A continuous time numerical example is included for the purpose of demonstration.

  20. Using Integrated Cavity Output Spectroscopy (ICOS) for Aircraft Measurements of Methane Isotopologues

    NASA Astrophysics Data System (ADS)

    Wilkerson, J. P.; Sayres, D. S.; Healy, C. E.; Munster, J. B.; Dubey, M. K.; Anderson, J. G.

    2014-12-01

    Methane emissions in arctic regions have the potential to contribute a large positive radiative forcing to our climate structure. However, methane in the Arctic has multiple sources and sinks which can complicate source attribution and quantification attempts. In situ stable isotope measurements provide a way to help tease apart different methane sources since the two primary methane sources, thermogenic and biogenic, have distinct isotopic signatures. Ultimately, this knowledge about the ratio between 13CH4 and 12CH4 concentrations can help us understand the relative contribution from each source. The ICOS instrument developed in our lab is an ideal candidate to obtain this type of information. Unlike other measurement methods such as IRMS, our instrument has been tailored to fit in a small aircraft capable of flying below the boundary layer in the arctic region. We flew ICOS in Summer 2013 over the north slope of Alaska and obtained spatially (every 160 m) and temporally (every 2 s) resolved δ13CH4 measurements in real time. Future missions will entail a Stirling-cooled detector in the instrument to further enhance the precision and sensitivity of the measurements. These field missions will enhance our understanding of the routes by which methane is being produced in these regions. This improved knowledge can then lead to improved predictive ability regarding the characteristics of future methane flux and its effect on our climate.

  1. An Evaluative Measure for Outputs in Student-Run Public Relations Firms and Applied Courses

    ERIC Educational Resources Information Center

    Deemer, Rebecca A.

    2012-01-01

    A valid, reliable survey instrument was created to be used by public relations student-run firms and other applied public relations courses to gauge client satisfaction. A series of focus groups and pilot tests were conducted to ascertain themes, refine questions, and then to refine the entire instrument. Six constructs to be measured, including…

  2. Evoked potential, cardiac, blink, and respiration measures of pilot workload in air-to-ground missions.

    PubMed

    Wilson, G F; Fullenkamp, P; Davis, I

    1994-02-01

    Brain evoked potentials were successfully recorded from F-4 pilots during air-to-ground training missions. They were recorded during two flight segments. During one the pilot was flying, and during the other, the weapon systems officer was flying the aircraft. The P2 component of the brain-evoked potential evidenced reduced amplitude during the pilot-flying segment, while the N1 component was reduced during both flight tasks compared to ground-based tasks. These data indicate that the P2 amplitude is sensitive to the level of pilot workload. These results were further substantiated using simultaneously recorded physiological data and subjective workload measures. For example, cardiac inter-beat intervals decreased during flight segments relative to those recorded when performing a tracking task, and further reduced for the pilot-flying vs. the weapon systems officer-flying segment. Eye blink measures were sensitive to the visual demands of the various tasks. These data show that evoked potentials can be recorded during flight, and that, together with cardiac and eye blink data, they provide a composite picture of operator state.

  3. Harmonic force spectroscopy measures load-dependent kinetics of individual human β-cardiac myosin molecules

    PubMed Central

    Sung, Jongmin; Nag, Suman; Mortensen, Kim I.; Vestergaard, Christian L.; Sutton, Shirley; Ruppel, Kathleen; Flyvbjerg, Henrik; Spudich, James A.

    2015-01-01

    Molecular motors are responsible for numerous cellular processes from cargo transport to heart contraction. Their interactions with other cellular components are often transient and exhibit kinetics that depend on load. Here, we measure such interactions using ‘harmonic force spectroscopy'. In this method, harmonic oscillation of the sample stage of a laser trap immediately, automatically and randomly applies sinusoidally varying loads to a single motor molecule interacting with a single track along which it moves. The experimental protocol and the data analysis are simple, fast and efficient. The protocol accumulates statistics fast enough to deliver single-molecule results from single-molecule experiments. We demonstrate the method's performance by measuring the force-dependent kinetics of individual human β-cardiac myosin molecules interacting with an actin filament at physiological ATP concentration. We show that a molecule's ADP release rate depends exponentially on the applied load, in qualitative agreement with cardiac muscle, which contracts with a velocity inversely proportional to external load. PMID:26239258

  4. Effects of two different anesthetic protocols on cardiac flow measured by two dimensional phase contrast MRI

    PubMed Central

    Drees, Randi; Johnson, Rebecca A; Stepien, Rebecca L; Del Rio, Alejandro Munoz; François, Christopher J

    2014-01-01

    Companion animals are anesthetized or heavily sedated to comply for cardiac MRI and different anesthetic protocols are expected to have variable effects on functional parameters measured. This study compared two anesthetic protocols (Protocol A: Midazolam, fentanyl; Protocol B: Dexmedetomidine) for their effect on quantitative and qualitative analysis of blood flow through the aortic, pulmonic, mitral and tricuspid valves using 2D phase contrast (PC) MRI in dogs. Mean flow per heartbeat through the pulmonary artery (Qp) and aorta (Qs) was compared to right (RVSV) and left (LVSV) ventricular stroke volumes determined using 2D Cine balanced steady-state free precession MRI as a reference standard. Pulmonary to systemic flow ratio (Qp/Qs) was also calculated. Differences in flow and Qp/Qs values generated using 2D PC MRI were not different between the two anesthetic protocols (P=1). Mean differences between Qp and right ventricular stroke volume (RVSV) were 3.82 (95% limits of agreement: 3.62, −11.26) ml/beat and 1.9 (−7.86, 11.66) ml/beat for anesthesia protocols A and B, respectively. Mean differences between Qs and left ventricular stroke volume (LVSV) were 1.65 (−5.04, 8.34) ml/beat and 0.03 (−4.65, 4.72) ml/beat for anesthesia protocols A and B, respectively. Mild tricuspid or mitral reflux was seen in 2/10 dogs using 2D PC MRI. No aortic or pulmonic insufficiency was observed. This study provides baseline data for evaluation of cardiac blood flow using 2D PC MRI in dogs. Where as no significant difference of cardiac blood flow was found for the anesthetic protocols used, verification in clinically affected patients is desirable. PMID:25124271

  5. Correction of measured Gamma-Knife output factors for angular dependence of diode detectors and PinPoint ionization chamber.

    PubMed

    Hršak, Hrvoje; Majer, Marija; Grego, Timor; Bibić, Juraj; Heinrich, Zdravko

    2014-12-01

    Dosimetry for Gamma-Knife requires detectors with high spatial resolution and minimal angular dependence of response. Angular dependence and end effect time for p-type silicon detectors (PTW Diode P and Diode E) and PTW PinPoint ionization chamber were measured with Gamma-Knife beams. Weighted angular dependence correction factors were calculated for each detector. The Gamma-Knife output factors were corrected for angular dependence and end effect time. For Gamma-Knife beams angle range of 84°-54°. Diode P shows considerable angular dependence of 9% and 8% for the 18 mm and 14, 8, 4 mm collimator, respectively. For Diode E this dependence is about 4% for all collimators. PinPoint ionization chamber shows angular dependence of less than 3% for 18, 14 and 8 mm helmet and 10% for 4 mm collimator due to volumetric averaging effect in a small photon beam. Corrected output factors for 14 mm helmet are in very good agreement (within ±0.3%) with published data and values recommended by vendor (Elekta AB, Stockholm, Sweden). For the 8 mm collimator diodes are still in good agreement with recommended values (within ±0.6%), while PinPoint gives 3% less value. For the 4 mm helmet Diodes P and E show over-response of 2.8% and 1.8%, respectively. For PinPoint chamber output factor of 4 mm collimator is 25% lower than Elekta value which is generally not consequence of angular dependence, but of volumetric averaging effect and lack of lateral electronic equilibrium. Diodes P and E represent good choice for Gamma-Knife dosimetry.

  6. The FMRFamide-related peptides F1 and F2 alter hemolymph distribution and cardiac output in the crab Cancer magister.

    PubMed

    McGaw, I J; McMahon, B R

    1995-04-01

    The FMRFamide-related peptides F1 and F2, originally isolated from lobster pericardial organs, have been shown to exert cardioexcitatory effects on isolated or semi-isolated crustacean hearts. The present study sought to determine the in vivo effects of F1 and F2 on cardiac and circulatory performance of Cancer magister using a pulsed-Doppler technique. In general the effects of F1 and F2 were similar; however, F1 was more potent and its effects were of longer duration than those exerted by F2. Infusion of either F1 or F2 caused a decrease in heart rate and subsequent periods of acardia. These decreases in rate occurred concurrently with a short-term increase in stroke volume of the heart, followed by a longer-term decrease in stroke volume. Hemolymph flow rates through the anterior aorta, anterolateral arteries, sternal artery, and posterior aorta also showed the same trend, with an initial short-term increase in flow rate followed by a longer-term decrease with periods of ischemia. Hemolymph flow through the paired hepatic arteries simply decreased, but recovery to pretreatment levels was faster than in the other arterial systems. Threshold for these responses occurred at circulating concentrations between 10(-9) mol.l-1 and 10(-8) mol.l-1 for F1 and somewhat higher, between 10(-8) mol.l-1 and 10(-7) mol.l-1, for F2.

  7. Validity and reliability of an alternative method for measuring power output during six-second all-out cycling.

    PubMed

    Watson, Martin; Bibbo, Daniele; Duffy, Charles R; Riches, Philip E; Conforto, Silvia; Macaluso, Andrea

    2014-08-01

    In a laboratory setting where both a mechanically-braked cycling ergometer and a motion analysis (MA) system are available, flywheel angular displacement can be estimated by using MA. The purpose of this investigation was to assess the validity and reliability of a MA method for measuring maximal power output (Pmax) in comparison with a force transducer (FT) method. Eight males and eight females undertook three identical sessions, separated by 4 to 6 days; the first being a familiarization session. Individuals performed three 6-second sprints against 50% of the maximal resistance to complete two pedal revolutions with a 3-minute rest between trials. Power was determined independently using both MA and FT analyses. Validity: MA recorded significantly higher Pmax than FT (P < .05). Bland-Altman plots showed that there was a systematic bias in the difference between the measures of the two systems. This difference increased as power increased. Repeatability: Intraclass correlation coefficients were on average 0.90 ± 0.05 in males and 0.85 ± 0.08 in females. Measuring Pmax by MA, therefore, is as appropriate for use in exercise physiology research as Pmax measured by FT, provided that a bias between these measurements methods is allowed for.

  8. Comparison and relation of indirect and direct dynamic indexes of cardiac pumping capacity in chronic heart failure.

    PubMed

    Williams, Simon G; Tzeng, Bing-H; Barker, Diane; Tan, Lip-Bun

    2005-10-15

    Cardiac power output (CPO), the product of cardiac output (CO) and mean arterial pressure (MAP), is a direct measure of cardiac pumping capability and is strongly indicative of prognosis and exercise ability in patients with chronic heart failure (CHF). However, it is not as easily measured as indirect indicators of cardiac function, such as peak oxygen consumption (VO(2)) or peak "circulatory power" (CircP), the product of VO(2) and MAP. The relation between direct and indirect indexes of cardiac pumping capacity was evaluated in 219 ambulatory patients with CHF. CircP was found to have a direct and consistent relation with CPO, overall (R = 0.93, p <0.0001) and at peak exercise (R = 0.84, p < 0.0001). The results suggest CircP to be an adequate measure of cardiac pumping capacity when the more directly measured CPO is not available.

  9. Analysis of Upper Bound Power Output for a Wrist-Worn Rotational Energy Harvester from Real-World Measured Inputs

    NASA Astrophysics Data System (ADS)

    Xue, T.; Ma, X.; Rahn, C.; Roundy, S.

    2014-11-01

    Energy harvesting from human motion addresses the growing need for battery-free health and wellness sensors in wearable applications. The major obstacles to harvesting energy in such applications are low and random frequencies due to the nature of human motion. This paper presents a generalized rotational harvester model in 3 dimensions to determine the upper bound of power output from real world measured data. Simulation results indicate much space for improvement on power generation comparing to existing devices. We have developed a rotational energy harvester for human motion that attempts to close the gap between theoretical possibility and demonstrated devices. Like previous work, it makes use of magnetically plucked piezoelectric beams. However, it more fully utilizes the space available and has many degrees of freedom available for optimization. Finally we present a prototype harvester based on the coupled harvester model with preliminary experimental validation.

  10. Adjusting the Measurement of the Output of the Medical Sector for Quality: A Review of the Literature.

    PubMed

    Hall, Anne E

    2016-08-11

    The Bureau of Economic Analysis recently created new price indexes for health care in its health care satellite account and now faces the problem of how to adjust them for quality. I review the literature on this topic and divide the articles that created quality-adjusted price indexes for individual medical conditions into those that use primarily outcomes-based adjustments and those that use only process-based adjustments. Outcomes-based adjustments adjust the indexes based on observed aggregate health outcomes, usually mortality. Process-based adjustments adjust the indexes based on the treatments provided and medical knowledge of their effectiveness. Outcomes-based adjustments are easier to implement, while process-based adjustments are more demanding in terms of data and medical knowledge. In general, the research literature shows adjusting for quality in the measurement of output in the medical sector to be quantitatively important.

  11. Product definition for healthcare contracting: an overview of approaches to measuring hospital output with reference to the UK internal market.

    PubMed Central

    Söderlund, N

    1994-01-01

    OBJECTIVE--In many industrialised countries, health care third party payers are moving towards contracted provision arrangements with suppliers of hospital care. Essential to such a process is a standard approach to quantifying the care provided. This paper aims to outline the possible approaches to hospital product definition for the UK National Health Service, and recommends appropriate further research. METHODS--All published and unpublished studies on hospital output measurement in the NHS since 1980 were sought for the purposes of the review. This included both discursive and empirical work, and no exclusion criteria were applied. Most empirical reports on this topic, however, come from the United States. Consequently, the published reports since 1980 from the USA, accessed from the Medline and Healthplan CD-ROM databases, have also been included in the overview. CONCLUSIONS--Where data are sufficient, the true casemix approach offers advantages over other methods of output measurement. In the UK NHS, two systems--diagnosis-related groups (DRGs) and healthcare resource groups (HRGs)--are the only casemix measures that have achieved any significant degree of attention. DRGs have been extensively evaluated internationally, and explain variations in resource use in the UK slightly better than do HRGs. As a local product, HRGs can be more easily adapted to the specific needs of the NHS internal market, however, and will thus probably emerge as a better measure for the UK in the long term. In both cases, locally derived cost weights are unavailable, and their development constitutes a major requirement for use in contracting. Adaptations for long stay and outpatient hospital episodes would enhance the usefulness of hospital casemix systems in the NHS. Existing approaches, such as specialty based classifications, are neither standardised nor predictive of resource use, and would be better replaced by casemix systems. Other countries facing similar choices between

  12. Cardiac troponin I measurement with the ACCESS immunoassay system: analytical and clinical performance characteristics.

    PubMed

    Christenson, R H; Apple, F S; Morgan, D L; Alonsozana, G L; Mascotti, K; Olson, M; McCormack, R T; Wians, F H; Keffer, J H; Duh, S H

    1998-01-01

    We evaluated the ACCESS cardiac troponin I (cTnI) immunoassay as a marker for myocardial infarction (MI). Total imprecision was 6.0% to 13.5%, the minimum detectable concentration was 0.007 microg/L, and the limit of quantitation was 0.046 microg/L. Comparison of cTnI measurement between the ACCESS and Stratus systems (n = 114) showed a proportional difference: ACCESS cTnI = 0.0996 Stratus cTnI + 0.049 microg/L (r = 0.811). Fifty-nine of 61 ambulatory patients without cardiac symptoms had no detectable cTnI (95% range, 0.00 to 0.025 microg/L). The optimum cutoff for discriminating MI (n = 289, 45 with MI) was 0.15 microg/L by receiver operator characteristic curve analysis; at this cutoff, the ACCESS cTnI assay showed a sensitivity of 88.9% (95% CI, 79.7-98.1%) and specificity of 91.8% (95% CI, 88.4-95.2%). The ACCESS cTnI assay results showed 89.4% and 93.0% concordance with the MB isoenzyme of creatine kinase (CK-MB) mass and Stratus cTnI results, respectively, for classification of patients with suspected MI. The ACCESS cTnI assay appears to show sensitivity and specificity comparable with those of both CK-MB mass and Stratus cTnI assays for the diagnosis of MI in patients presenting within 12 h of onset of symptoms.

  13. Detection of Cardiac Quiescence from B-Mode Echocardiography Using a Correlation-Based Frame-to-Frame Deviation Measure

    PubMed Central

    Mcclellan, James H.; Ravichandran, Lakshminarayan; Tridandapani, Srini

    2013-01-01

    Two novel methods for detecting cardiac quiescent phases from B-mode echocardiography using a correlation-based frame-to-frame deviation measure were developed. Accurate knowledge of cardiac quiescence is crucial to the performance of many imaging modalities, including computed tomography coronary angiography (CTCA). Synchronous electrocardiography (ECG) and echocardiography data were obtained from 10 healthy human subjects (four male, six female, 23–45 years) and the interventricular septum (IVS) was observed using the apical four-chamber echocardiographic view. The velocity of the IVS was derived from active contour tracking and verified using tissue Doppler imaging echocardiography methods. In turn, the frame-to-frame deviation methods for identifying quiescence of the IVS were verified using active contour tracking. The timing of the diastolic quiescent phase was found to exhibit both inter- and intra-subject variability, suggesting that the current method of CTCA gating based on the ECG is suboptimal and that gating based on signals derived from cardiac motion are likely more accurate in predicting quiescence for cardiac imaging. Two robust and efficient methods for identifying cardiac quiescent phases from B-mode echocardiographic data were developed and verified. The methods presented in this paper will be used to develop new CTCA gating techniques and quantify the resulting potential improvement in CTCA image quality. PMID:26609501

  14. Measuring Cardiac Autonomic Nervous System (ANS) Activity in Toddlers - Resting and Developmental Challenges

    PubMed Central

    Bush, Nicole R.; Caron, Zoe K.; Blackburn, Katherine S.; Alkon, Abbey

    2016-01-01

    The autonomic nervous system (ANS) consists of two branches, the parasympathetic and sympathetic nervous systems, and controls the function of internal organs (e.g., heart rate, respiration, digestion) and responds to everyday and adverse experiences 1. ANS measures in children have been found to be related to behavior problems, emotion regulation, and health 2-7. Therefore, understanding the factors that affect ANS development during early childhood is important. Both branches of the ANS affect young children's cardiovascular responses to stimuli and have been measured noninvasively, via external monitoring equipment, using valid and reliable measures of physiological change 8-11. However, there are few studies of very young children with simultaneous measures of the parasympathetic and sympathetic nervous systems, which limits understanding of the integrated functioning of the two systems. In addition, the majority of existing studies of young children report on infants' resting ANS measures or their reactivity to commonly used mother-child interaction paradigms, and less is known about ANS reactivity to other challenging conditions. We present a study design and standardized protocol for a non-invasive and rapid assessment of cardiac autonomic control in 18 month old children. We describe methods for continuous monitoring of the parasympathetic and sympathetic branches of the ANS under resting and challenge conditions during a home or laboratory visit and provide descriptive findings from our sample of 140 ethnically diverse toddlers using validated equipment and scoring software. Results revealed that this protocol can produce a range of physiological responses to both resting and developmentally challenging conditions, as indicated by changes in heart rate and indices of parasympathetic and sympathetic activity. Individuals demonstrated variability in resting levels, responses to challenges, and challenge reactivity, which provides additional evidence that

  15. Simulation method for cardiac stroke volume estimation by intracardiac electrical impedance measurement.

    PubMed

    Barak, C; Leviatan, Y; Inbar, G F; Hoekstein, K N

    1992-09-01

    Using the electrical impedance measurement technique to investigate stroke volume estimation, three models of the ventricle were simulated. A four-electrode impedance catheter was used; two electrodes to set up an electric field in the model and the other two to measure the potential difference. A new approach, itself an application of the quasi-static case of a method used to solve electromagnetic field problems, was used to solve the electric field in the model. The behaviour of the estimation is examined with respect to the electrode configuration on the catheter and to catheter location with respect to the ventricle walls. Cardiac stroke volume estimation was found to be robust to catheter location generating a 10 per cent error for an offset of 40 per cent of the catheter from the chamber axis and rotation of 20 degrees with respect to the axis. The electrode configuration has a dominant effect on the sensitivity and accuracy of the estimation. Certain configurations gave high accuracy, whereas in others high sensitivity was found with lower accuracy. This led to the conclusion that the electrode configuration should be carefully chosen according to the desired criteria.

  16. Measurement of the Red Blood Cell Distribution Width Improves the Risk Prediction in Cardiac Resynchronization Therapy

    PubMed Central

    Boros, András Mihály; Perge, Péter; Jenei, Zsigmond; Karády, Júlia; Zima, Endre; Molnár, Levente; Becker, Dávid; Gellér, László; Prohászka, Zoltán; Merkely, Béla; Széplaki, Gábor

    2016-01-01

    Objectives. Increases in red blood cell distribution width (RDW) and NT-proBNP (N-terminal pro-B-type natriuretic peptide) predict the mortality of chronic heart failure patients undergoing cardiac resynchronization therapy (CRT). It was hypothesized that RDW is independent of and possibly even superior to NT-proBNP from the aspect of long-term mortality prediction. Design. The blood counts and serum NT-proBNP levels of 134 patients undergoing CRT were measured. Multivariable Cox regression models were applied and reclassification analyses were performed. Results. After separate adjustment to the basic model of left bundle branch block, beta blocker therapy, and serum creatinine, both the RDW > 13.35% and NT-proBNP > 1975 pg/mL predicted the 5-year mortality (n = 57). In the final model including all variables, the RDW [HR = 2.49 (1.27–4.86); p = 0.008] remained a significant predictor, whereas the NT-proBNP [HR = 1.18 (0.93–3.51); p = 0.07] lost its predictive value. On addition of the RDW measurement, a 64% net reclassification improvement and a 3% integrated discrimination improvement were achieved over the NT-proBNP-adjusted basic model. Conclusions. Increased RDW levels accurately predict the long-term mortality of CRT patients independently of NT-proBNP. Reclassification analysis revealed that the RDW improves the risk stratification and could enhance the optimal patient selection for CRT. PMID:26903690

  17. Automatic detection of cardiac cycle and measurement of the mitral annulus diameter in 4D TEE images

    NASA Astrophysics Data System (ADS)

    Graser, Bastian; Hien, Maximilian; Rauch, Helmut; Meinzer, Hans-Peter; Heimann, Tobias

    2012-02-01

    Mitral regurgitation is a wide spread problem. For successful surgical treatment quantification of the mitral annulus, especially its diameter, is essential. Time resolved 3D transesophageal echocardiography (TEE) is suitable for this task. Yet, manual measurement in four dimensions is extremely time consuming, which confirms the need for automatic quantification methods. The method we propose is capable of automatically detecting the cardiac cycle (systole or diastole) for each time step and measuring the mitral annulus diameter. This is done using total variation noise filtering, the graph cut segmentation algorithm and morphological operators. An evaluation took place using expert measurements on 4D TEE data of 13 patients. The cardiac cycle was detected correctly on 78% of all images and the mitral annulus diameter was measured with an average error of 3.08 mm. Its full automatic processing makes the method easy to use in the clinical workflow and it provides the surgeon with helpful information.

  18. In situ measurement of dissolved methane and carbon dioxide in freshwater ecosystems by off-axis integrated cavity output spectroscopy.

    PubMed

    Gonzalez-Valencia, Rodrigo; Magana-Rodriguez, Felipe; Gerardo-Nieto, Oscar; Sepulveda-Jauregui, Armando; Martinez-Cruz, Karla; Anthony, Katey Walter; Baer, Doug; Thalasso, Frederic

    2014-10-07

    A novel low-cost method for the combined, real-time, and in situ determination of dissolved methane and carbon dioxide concentrations in freshwater ecosystems was designed and developed. This method is based on the continuous sampling of water from a freshwater ecosystem to a gas/liquid exchange membrane. Dissolved gas is transferred through the membrane to a continuous flow of high purity nitrogen, which is then measured by an off-axis integrated cavity output spectrometer (OA-ICOS). This method, called M-ICOS, was carefully tested in a laboratory and was subsequently applied to four lakes in Mexico and Alaska with contrasting climates, ecologies, and morphologies. The M-ICOS method allowed for the determination of dissolved methane and carbon dioxide concentrations with a frequency of 1 Hz and with a method detection limit of 2.76 × 10(-10) mol L(-1) for methane and 1.5 × 10(-7) mol L(-1) for carbon dioxide. These detection limits are below saturated concentrations with respect to the atmosphere and significantly lower than the minimum concentrations previously reported in lakes. The method is easily operable by a single person from a small boat, and the small size of the suction probe allows the determination of dissolved gases with a minimized impact on shallow freshwater ecosystems.

  19. Combined heart rate variability and dynamic measures for quantitatively characterizing the cardiac stress status during cycling exercise.

    PubMed

    Chen, Szi-Wen; Liaw, Jiunn-Woei; Chang, Ya-Ju; Chuang, Li-Ling; Chien, Chun-Tse

    2015-08-01

    In this study, we aimed to seek for different ways of measuring cardiac stress in terms of heart rate variability (HRV) and heart rate (HR) dynamics, and to develop a novel index that can effectively summarize the information reflected by these measures to continuously and quantitatively characterize the cardiac stress status during physical exercise. Standard deviation, spectral measure of HRV as well as a nonlinear detrended fluctuation analysis (DFA) based fractal-like behavior measure of HR dynamics were all evaluated on the RR time series derived from windowed electrocardiogram (ECG) data for the subjects undergoing cycling exercise. We recruited eleven young healthy subjects in our tests. Each subject was asked to maintain a fixed speed under a constant load during the pedaling test. We obtained the running estimates of the standard deviation of the normal-to-normal interval (SDNN), the high-fidelity power spectral density (PSD) of HRV, and the DFA scaling exponent α, respectively. A trend analysis and a multivariate linear regression analysis of these measures were then performed. Numerical experimental results produced by our analyses showed that a decrease in both SDNN and α was seen during the cycling exercise, while there was no significant correlation between the standard lower frequency to higher frequency (LF-to-HF) spectral power ratio of HRV and the exercise intensity. In addition, while the SDNN and α were both negatively correlated with the Borg rating of perceived exertion (RPE) scale value, it seemed that the LF-to-HF power ratio might not have substantial impact on the Borg value, suggesting that the SDNN and α may be further used as features to detect the cardiac stress status during the physical exercise. We further approached this detection problem by applying a linear discriminant analysis (LDA) to both feature candidates for the task of cardiac stress stratification. As a result, a time-varying parameter, referred to as the cardiac

  20. Measuring high-sensitivity cardiac troponin T blood concentration in population surveys

    PubMed Central

    Mindell, Jennifer S.

    2017-01-01

    Introduction The blood test for high-sensitivity cardiac troponin T (HS-CTnT) has been proposed as a marker of cardiovascular risk in the general population, as it is associated with subsequent incidence of cardiovascular events and mortality. We aimed at evaluating the feasibility of HS-CTnT testing within large nationally-representative population surveys in which blood samples are collected during household visits, shipped using the standard civil postal service, and then frozen for subsequent analyses. Methods The Health Survey for England (HSE) consists of a series of annual surveys beginning in 1991. It is designed to provide regular information on various aspects of the nation’s health and risk factors. We measured HS-CTnT in the blood of 200 people from the HSE 2016 wave, then froze and stored their blood samples at -40°C for 5–10 weeks, and then thawed and retested them to appreciate the extent of within-person agreement or test-retest reliability of the two measurements. Results The Cronbach's Alpha (Scale Reliability Coefficient) and the Interclass Correlation Coefficient (two-way mixed-effects model for consistency of agreement at individual level) were 0.97 (95%CI = 0.96–0.99) and 0.95 (95%CI = 0.94–0.96) respectively. The time delay from blood withdrawal to analysis and storage (1–4 days) did not affect the results, nor did the freezing time before the retest (5–10 weeks). Conclusion The measurement of HS-CTnT plasma concentration within large nationally-representative surveys such as the Health Survey for England is feasible. PMID:28141863

  1. Cardiac metabolism during exercise in healthy volunteers measured by 31P magnetic resonance spectroscopy

    PubMed Central

    Conway, Michael A; Bristow, J David; Blackledge, Martin J; Rajagopalan, Bheeshma; Radda, George K

    1991-01-01

    A technique was devised for individuals to exercise prone in a magnet during magnetic resonance spectroscopy of the heart and phosphorus-31 magnetic resonance spectra of the heart were obtained by the phase modulated rotating frame imaging technique in six healthy volunteers during steady state dynamic quadriceps exercise. During prone exercise heart rate, blood pressure, and total body oxygen consumption were measured at increasing loads and the results were compared with those during Bruce protocol treadmill exercise. During prone exercise with a 5 kg load the heart rate was similar and the systolic and diastolic blood pressures were higher than those during stage 1 of the Bruce protocol. The rate-pressure products were similar but the total body oxygen consumption was lower during prone exercise. There was no difference in the ratio of phosphocreatine to adenosine triphosphate during rest and exercise. Thus during exercise that produced a local cardiac stress equal to or greater than that during stage 1 of the Bruce protocol treadmill exercise, the energy requirements of the normal human myocardium were adequately supplied by oxidative phosphorylation. PMID:1993127

  2. Measuring hourly 18O and 2H fluxes in a mixed hardwood forest using an integrated cavity output spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, L.; Caylor, K.; Dragoni, D.

    2008-12-01

    The 18O and 2H of water vapor can be used to investigate couplings between biological processes (e.g., photosynthesis or transpiration) and hydrologic processes (e.g., evaporation) and therefore serve as powerful tracers in hydrological cycles. A typical method for determining δ18O and δ2H fluxes in landscapes is a 'Keeling Plot' approach, which uses field-collected vapor samples coupled with a traditional isotope ratio mass spectrometer to infer the isotopic composition of evapotranspiration. However, fractionation accompanying inefficient vapor trapping can lead to large measurement uncertainty and the intensive laboring involved in cold-trap make it almost impossible for continuous measurements. Over the last 3-4 years a few groups have developed continuous approaches for measuring δ18O and δ2H that use laser absorption spectroscopy (LAS) to achieve accuracy levels similar to lab-based mass spectrometry methods. Unfortunately, most LAS systems need cryogenic cooling, constant calibration to a reference gas, and substantial power requirements, which make them unsuitable for long-term field deployment at remote field sites. In this research, we tested out a new LAS--based water vapor isotope analyzer (WVIA, Los Gatos Research, Inc, Mountain View, CA) based on Integrated Cavity Output Spectroscopy (ICOS) and coupled this instrument with a flux gradient system. The WVIA was calibrated bi- weekly using a dew point generator and water with known δ18O and δ2H signatures. The field work was performed at Morgan-Monroe State Forest Ameriflux tower site (central Indiana) between August 8 and August 27, 2008. The combination method was able to produce hourly δ18O and δ2H fluxes data with reproducibility similar to lab-based mass spectrometry methods. Such high temporal resolution data were also able to capture signatures of canopy and bare soil evaporation to individual rainfall events. The use of the ICOS water vapor analyzer within a gradient system has the

  3. Gel stretch method: a new method to measure constitutive properties of cardiac muscle cells

    NASA Technical Reports Server (NTRS)

    Zile, M. R.; Cowles, M. K.; Buckley, J. M.; Richardson, K.; Cowles, B. A.; Baicu, C. F.; Cooper G, I. V.; Gharpuray, V.

    1998-01-01

    Diastolic dysfunction is an important cause of congestive heart failure; however, the basic mechanisms causing diastolic congestive heart failure are not fully understood, especially the role of the cardiac muscle cell, or cardiocyte, in this process. Before the role of the cardiocyte in this pathophysiology can be defined, methods for measuring cardiocyte constitutive properties must be developed and validated. Thus this study was designed to evaluate a new method to characterize cardiocyte constitutive properties, the gel stretch method. Cardiocytes were isolated enzymatically from normal feline hearts and embedded in a 2% agarose gel containing HEPES-Krebs buffer and laminin. This gel was cast in a shape that allowed it to be placed in a stretching device. The ends of the gel were held between a movable roller and fixed plates that acted as mandibles. Distance between the right and left mandibles was increased using a stepper motor system. The force applied to the gel was measured by a force transducer. The resultant cardiocyte strain was determined by imaging the cells with a microscope, capturing the images with a CCD camera, and measuring cardiocyte and sarcomere length changes. Cardiocyte stress was characterized with a finite-element method. These measurements of cardiocyte stress and strain were used to determine cardiocyte stiffness. Two variables affecting cardiocyte stiffness were measured, the passive elastic spring and viscous damping. The passive spring was assessed by increasing the force on the gel at 1 g/min, modeling the resultant stress vs. strain relationship as an exponential [sigma = A/k(ekepsilon - 1)]. In normal cardiocytes, A = 23.0 kN/m2 and k = 16. Viscous damping was assessed by examining the loop area between the stress vs. strain relationship during 1 g/min increases and decreases in force. Normal cardiocytes had a finite loop area = 1.39 kN/m2, indicating the presence of viscous damping. Thus the gel stretch method provided accurate

  4. SU-E-T-586: Field Size Dependence of Output Factor for Uniform Scanning Proton Beams: A Comparison of TPS Calculation, Measurement and Monte Carlo Simulation

    SciTech Connect

    Zheng, Y; Singh, H; Islam, M

    2014-06-01

    Purpose: Output dependence on field size for uniform scanning beams, and the accuracy of treatment planning system (TPS) calculation are not well studied. The purpose of this work is to investigate the dependence of output on field size for uniform scanning beams and compare it among TPS calculation, measurements and Monte Carlo simulations. Methods: Field size dependence was studied using various field sizes between 2.5 cm diameter to 10 cm diameter. The field size factor was studied for a number of proton range and modulation combinations based on output at the center of spread out Bragg peak normalized to a 10 cm diameter field. Three methods were used and compared in this study: 1) TPS calculation, 2) ionization chamber measurement, and 3) Monte Carlos simulation. The XiO TPS (Electa, St. Louis) was used to calculate the output factor using a pencil beam algorithm; a pinpoint ionization chamber was used for measurements; and the Fluka code was used for Monte Carlo simulations. Results: The field size factor varied with proton beam parameters, such as range, modulation, and calibration depth, and could decrease over 10% from a 10 cm to 3 cm diameter field for a large range proton beam. The XiO TPS predicted the field size factor relatively well at large field size, but could differ from measurements by 5% or more for small field and large range beams. Monte Carlo simulations predicted the field size factor within 1.5% of measurements. Conclusion: Output factor can vary largely with field size, and needs to be accounted for accurate proton beam delivery. This is especially important for small field beams such as in stereotactic proton therapy, where the field size dependence is large and TPS calculation is inaccurate. Measurements or Monte Carlo simulations are recommended for output determination for such cases.

  5. Preoperative levosimendan decreases mortality and the development of low cardiac output in high-risk patients with severe left ventricular dysfunction undergoing coronary artery bypass grafting with cardiopulmonary bypass

    PubMed Central

    Levin, Ricardo; Degrange, Marcela; Del Mazo, Carlos; Tanus, Eduardo; Porcile, Rafael

    2012-01-01

    BACKGROUND: The calcium sensitizer levosimendan has been used in cardiac surgery for the treatment of postoperative low cardiac output syndrome (LCOS) and difficult weaning from cardiopulmonary bypass (CPB). OBJECTIVES: To evaluate the effects of preoperative treatment with levosimendan on 30-day mortality, the risk of developing LCOS and the requirement for inotropes, vasopressors and intra-aortic balloon pumps in patients with severe left ventricular dysfunction. METHODS: Patient with severe left ventricular dysfunction and an ejection fraction <25% undergoing coronary artery bypass grafting with CPB were admitted 24 h before surgery and were randomly assigned to receive levosimendan (loading dose 10 μg/kg followed by a 23 h continuous infusion of 0.1μg/kg/min) or a placebo. RESULTS: From December 1, 2002 to June 1, 2008, a total of 252 patients were enrolled (127 in the levosimendan group and 125 in the control group). Individuals treated with levosimendan exhibited a lower incidence of complicated weaning from CPB (2.4% versus 9.6%; P<0.05), decreased mortality (3.9% versus 12.8%; P<0.05) and a lower incidence of LCOS (7.1% versus 20.8%; P<0.05) compared with the control group. The levosimendan group also had a lower requirement for inotropes (7.9% versus 58.4%; P<0.05), vasopressors (14.2% versus 45.6%; P<0.05) and intra-aortic balloon pumps (6.3% versus 30.4%; P<0.05). CONCLUSION: Patients with severe left ventricle dysfunction (ejection fraction <25%) undergoing coronary artery bypass grafting with CPB who were pretreated with levosimendan exhibited lower mortality, a decreased risk for developing LCOS and a reduced requirement for inotropes, vasopressors and intra-aortic balloon pumps. Studies with a larger number of patients are required to confirm whether these findings represent a new strategy to reduce the operative risk in this high-risk patient population. PMID:23620700

  6. Applications of minimally invasive cardiac output monitors

    PubMed Central

    2012-01-01

    Because of the increasing age of the population, critical care and emergency medicine physicians have seen an increased number of critically ill patients over the last decade. Moreover, the trend of hospital closures in the United States t imposes a burden of increased efficiency. Hence, the identification of devices that facilitate accurate but rapid assessments of hemodynamic parameters without the added burden of invasiveness becomes tantamount. The purpose of this review is to understand the applications and limitations of these new technologies. PMID:22531454

  7. The Heat Output of the Waimangu, Waiotapu-Waikite and Reporoa Geothermal Systems (NZ): Do Chloride Fluxes Provide an Accurate Measure?

    SciTech Connect

    Bibby, H.M.; Glover, R.B.; Whiteford, P.C.

    1995-01-01

    Geothermal waters from the Waimangu, Waiotapu-Waikite and Reporoa geothermal systems find their way into three separate watersheds. The heat flow data from each of these drainage areas have been assessed making it possible to compare the heat outputs from two independent methods: direct heat measurements and the chloride flux method. For both the Waiotapu/Reporoa Valley drainage and the Waikite drainage a discrepancy exists between the two assessments, with the heat output observed at the surface (Waiotapu-540 {+-} 110 MW; Waikite-80 MW) nearly double of that calculated from the chloride flux (300 MW; 36 MW respectively). It appears that much of the throughput of chloride does not reach the surface within the area which was monitored and the basic assumption on which the method is based has been violated. For Waimangu the direct heat output is assessed as 510 {+-} 60 MW. However the ratio of enthalpy to chloride concentration of the source fluid is not well determined. Depending on the ratio chosen the heat output could lie between 360 and 800 MW. Although the chloride flux is accurately known, the heat output cannot be measured accurately without well determined data on the source fluid at depth.

  8. Automatic Cardiac Pacing Technique for Electrophysiologic Investigations: Measurement of Myocardial Excitability in the Dog during Exposure to +Gz

    DTIC Science & Technology

    1987-12-01

    computer-based instrument have been combined to provide a useful model in which cardiac threshold of excitability changes can be observed in response...demonstrated a system In which an animal with a chronic pacing catheter and a computer-based instrument have been combined to provide a useful model ...loading were measured by a technioue proven in previous studies (5)(7)(8). Invasive techniques were required so animal models rather than human

  9. Transplanting hearts after death measured by cardiac criteria: the challenge to the dead donor rule.

    PubMed

    Veatch, Robert M

    2010-06-01

    The current definition of death used for donation after cardiac death relies on a determination of the irreversible cessation of the cardiac function. Although this criterion can be compatible with transplantation of most organs, it is not compatible with heart transplantation since heart transplants by definition involve the resuscitation of the supposedly "irreversibly" stopped heart. Subsequently, the definition of "irreversible" has been altered so as to permit heart transplantation in some circumstances, but this is unsatisfactory. There are three available strategies for solving this "irreversibility problem": altering the definition of death so as to rely on circulatory irreversibility, rather than cardiac; defining death strictly on the basis of brain death (either whole-brain or more pragmatically some higher brain criteria); or redefining death in traditional terms and simultaneously legalizing some limited instances of medical killing to procure viable hearts. The first two strategies are the most ethically justifiable and practical.

  10. Prognostic significance of early cardiac index measurements in severely burned patients.

    PubMed

    Bernard, F; Gueugniaud, P Y; Bertin-Maghit, M; Bouchard, C; Vilasco, B; Petit, P

    1994-12-01

    Invasive monitoring during early resuscitation was performed. To compare the heamodynamic results of severely burned patients, the results of 38 patients hospitalized between 1988 and 1991 in the burn centre of Lyon were retrospectively reviewed. Survivors and non-Survivors' data were compared. No difference existed between the two groups in age, unit burn score, fluid requirement and dose of dobutamine. Survivors had a significantly higher cardiac index, O2 delivery and systolic blood pressure index than non-survivors. It is suggested that the ability to sustain a high cardiac index in response to the burn injury plays a role in the outcome of the patients. There is an indication that dobutamine could have a beneficial effect in this way. Further studies are needed to confirm the benefit of the maintenance of high cardiac index levels by the pressors.

  11. Cardiac Impairment Evaluated by Transesophageal Echocardiography and Invasive Measurements in Rats Undergoing Sinoaortic Denervation

    PubMed Central

    Sirvente, Raquel A.; Irigoyen, Maria C.; Souza, Leandro E.; Mostarda, Cristiano; La Fuente, Raquel N.; Candido, Georgia O.; Souza, Pamella R. M.; Medeiros, Alessandra; Mady, Charles; Salemi, Vera M. C.

    2014-01-01

    Background Sympathetic hyperactivity may be related to left ventricular (LV) dysfunction and baro- and chemoreflex impairment in hypertension. However, cardiac function, regarding the association of hypertension and baroreflex dysfunction, has not been previously evaluated by transesophageal echocardiography (TEE) using intracardiac echocardiographic catheter. Methods and Results We evaluated exercise tests, baroreflex sensitivity and cardiovascular autonomic control, cardiac function, and biventricular invasive pressures in rats 10 weeks after sinoaortic denervation (SAD). The rats (n = 32) were divided into 4 groups: 16 Wistar (W) with (n = 8) or without SAD (n = 8) and 16 spontaneously hypertensive rats (SHR) with (n = 8) or without SAD (SHRSAD) (n = 8). Blood pressure (BP) and heart rate (HR) did not change between the groups with or without SAD; however, compared to W, SHR groups had higher BP levels and BP variability was increased. Exercise testing showed that SHR had better functional capacity compared to SAD and SHRSAD. Echocardiography showed left ventricular (LV) concentric hypertrophy; segmental systolic and diastolic biventricular dysfunction; indirect signals of pulmonary arterial hypertension, mostly evident in SHRSAD. The end-diastolic right ventricular (RV) pressure increased in all groups compared to W, and the end-diastolic LV pressure increased in SHR and SHRSAD groups compared to W, and in SHRSAD compared to SAD. Conclusions Our results suggest that baroreflex dysfunction impairs cardiac function, and increases pulmonary artery pressure, supporting a role for baroreflex dysfunction in the pathogenesis of hypertensive cardiac disease. Moreover, TEE is a useful and feasible noninvasive technique that allows the assessment of cardiac function, particularly RV indices in this model of cardiac disease. PMID:24828834

  12. Ca2+ transients in cardiac myocytes measured with high and low affinity Ca2+ indicators.

    PubMed Central

    Berlin, J R; Konishi, M

    1993-01-01

    Intracellular calcium ion ([Ca2+]i) transients were measured in voltage-clamped rat cardiac myocytes with fura-2 or furaptra to quantitate rapid changes in [Ca2+]i. Patch electrode solutions contained the K+ salt of fura-2 (50 microM) or furaptra (300 microM). With identical experimental conditions, peak amplitude of stimulated [Ca2+]i transients in furaptra-loaded myocytes was 4- to 6-fold greater than that in fura-2-loaded cells. To determine the reason for this discrepancy, intracellular fura-2 Ca2+ buffering, kinetics of Ca2+ binding, and optical properties were examined. Decreasing cellular fura-2 concentration by lowering electrode fura-2 concentration 5-fold, decreased the difference between the amplitudes of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes by twofold. Thus, fura-2 buffers [Ca2+]i under these conditions; however, Ca2+ buffering is not the only factor that explains the different amplitudes of the [Ca2+]i transients measured with these indicators. From the temporal comparison of the [Ca2+]i transients measured with fura-2 and furaptra, the apparent reverse rate constant for Ca2+ binding of fura-2 was at least 65s-1, much faster than previously reported in skeletal muscle fibers. These binding kinetics do not explain the difference in the size of the [Ca2+]i transients reported by fura-2 and furaptra. Parameters for fura-2 calibration, Rmin, Rmax, and beta, were obtained in salt solutions (in vitro) and in myocytes exposed to the Ca2+ ionophore, 4-Br A23187, in EGTA-buffered solutions (in situ). Calibration of fura-2 fluorescence signals with these in situ parameters yielded [Ca2+]i transients whose peak amplitude was 50-100% larger than those calculated with in vitro parameters. Thus, in vitro calibration of fura-2 fluorescence significantly underestimates the amplitude of the [Ca2+]i transient. These data suggest that the difference in amplitude of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes is due, in part, to Ca2

  13. Measurement of Pressure and Related Energy Output from Thermally Ignited Pyrotechnic Compositions Burning in a Partially Vented Vessel

    DTIC Science & Technology

    1981-05-01

    need to develop appropriate criteria for describing their outputs. 49 REFERENCES 1. W.A. Keenan and J.E. Tancreto, "Blast Environment from Fully...Commander Naval Weapons Support Center ATTN: Code 5042, Dr. B. Douda Dr. H. Webster Crane , IN 47522 Commander Naval Weapons Center ATTN

  14. Measurement of oxygen consumption in children undergoing cardiac catheterization: comparison between mass spectrometry and the breath-by-breath method.

    PubMed

    Guo, Long; Cui, Yong; Pharis, Scott; Walsh, Mark; Atallah, Joseph; Tan, Meng-Wei; Rutledge, Jennifer; Coe, J Y; Adatia, Ian

    2014-06-01

    Accurate measurement of oxygen consumption (VO2) is important to precise calculation of blood flow using the Fick equation. This study aimed to validate the breath-by-breath method (BBBM) of measuring oxygen consumption VO2 compared with respiratory mass spectroscopy (MS) for intubated children during cardiac catheterization. The study used MS and BBBM to measure VO2 continuously and simultaneously for 10 min in consecutive anesthetized children undergoing cardiac catheterization who were intubated with a cuffed endotracheal tube, ventilated mechanically, and hemodynamically stable, with normal body temperature. From 26 patients, 520 data points were obtained. The mean VO2 was 94.5 ml/min (95 % confidence interval [CI] 65.7-123.3 ml/min) as measured by MS and 91.4 ml/min (95 % CI 64.9-117.9 ml/min) as measured by BBBM. The mean difference in VO2 measurements between MS and BBBM (3.1 ml/min; 95 % CI -1.7 to +7.9 ml/min) was not significant (p = 0.19). The MS and BBBM VO2 measurements were highly correlated (R (2) = 0.98; P < 0.0001). Bland-Altman analysis showed good correspondence between MS and BBBM, with a mean difference of -3.01 and 95 % limits of agreement ranging from -26.2 to +20.0. The mean VO2 indexed to body surface area did not differ significantly between MS and BBBM (3.4 ml/min m(2); 95 % CI -1.4 to 8.2; p = 0.162). The mean difference and limits of agreement were -3.8 ml/min m(2) (range, -19.9 to 26.7). Both MS and BBBM may be used to measure VO2 in anesthetized intubated children undergoing cardiac catheterization. The two methods demonstrated excellent agreement. However, BBBM may be more suited to clinical use with children.

  15. Quartz crystal microbalance for the cardiac markers/antibodies binding kinetic measurements in the plasma samples

    NASA Astrophysics Data System (ADS)

    Agafonova, L. E.; Shumyantseva, V. V.; Archakov, A. I.

    2014-06-01

    The quartz crystal microbalance (QCM) was exploited for cardiac markers detection and kinetic studies of immunochemical reaction of cardiac troponin I (cTnI) and human heart fatty acid binding protein (H-FABP) with the corresponding monoclonal antibodies in undiluted plasma (serum) and standard solutions. The QCM technique allowed to dynamically monitor the kinetic differences in specific interactions and nonspecific sorption, without multiple labeling procedures and separation steps. The affinity binding process was characterized by the association (ka) and the dissociation (kd) kinetic constants and the equilibrium association (K) constant, all of which were obtained from experimental data.

  16. [Changes in the morphology of the normal left ventricle during the phases of isovolumic contraction and relaxation. Consequences on the calculation of the volume and cardiac output by cineangiocardiographic methods].

    PubMed

    Nitenberg, A; Geschwind, H; Herreman, F

    1976-04-01

    It is well known that the left ventricular volume, as measured by the cineangiographic method, decreases during the phase of isometric contraction. What is more, the cardiac index and the ejection fraction measured by this method are definitely larger than those derived from dilution methods. These discrepancies can be explained by movements of the mitral valve during the phases of isometric contraction and relaxation. The systolic ejection volume (SEV) was measured by three different methods: 1. End-diastolic volume (EDV) -end-systolic volume (ESV) ; 2. EDV - pre-filling volume (PFV) ; 3. Pre-ejection volume (PEV) - ESV. It has emerged that the results given by the methods (2) and (3) correspond closely, and differ significantly from those given by method (1); they are also close to those obtained by the dilution method. This difference seems to arise from the fact that the movements of the mitral valve during the phase of isometric relaxation are diametrically opposite to those which occur during isometric contraction; thus, when the values EDV-ESV are used in the calculation of SEV, an overestimate is made because the mitral valve is not to be found in the same position within the ventricular cavity for both values.

  17. Control of cardiac function and venous return in thyrotoxic calves.

    PubMed

    Gay, R; Lee, R W; Appleton, C; Olajos, M; Martin, G V; Morkin, E; Goldman, S

    1987-03-01

    The mechanisms responsible for maintenance of the high-output state associated with thyrotoxicosis have been investigated by measurement of cardiac-function curves and venous compliance during ganglionic blockade with trimethaphan. Thirteen calves were injected daily with L-thyroxine (200 micrograms/kg) for 12-14 days. Thyroxine treatment increased heart rate (70%), left ventricular systolic pressure (22%), cardiac output (120%), left ventricular maximum rate of pressure development (dP/dt) (56%), and total blood volume (18%) and decreased systemic vascular resistance (39%). These hemodynamic changes persisted during ganglionic blockade or autonomic blockade with atropine and propranolol. Cardiac-function curves in conscious thyrotoxic calves were displaced upward and to the left. Mean circulatory filling pressure (MCFP), measured during anesthesia, was increased from 8 +/- 1 to 12 +/- 1 mmHg. During autonomic and ganglionic blockade MCFP remained elevated after treatment with thyroxine. Venous compliance decreased from 2.1 +/- 0.2 to 1.3 +/- 0.1 ml X mmHg-1 X kg-1 after thyroxine. Unstressed vascular volume was increased from 52.3 +/- 1.1 to 67.1 +/- 0.9 ml/kg. Thus the elevated cardiac output and new cardiac-function curve in thyrotoxicosis are associated with a combination of increased inotropic state, increased blood volume, and decreased venous compliance. These effects are not the result of autonomic influences and may represent direct actions of thyroid hormone on the heart and peripheral venous circulation.

  18. Short communication: milk output in llamas (Lama glama) in relation to energy intake and water turnover measured by an isotope dilution technique.

    PubMed

    Riek, A; Klinkert, A; Gerken, M; Hummel, J; Moors, E; Südekum, K-H

    2013-03-01

    Despite the fact that llamas have become increasingly popular as companion and farm animals in both Europe and North America, scientific knowledge on their nutrient requirements is scarce. Compared with other livestock species, relatively little is known especially about the nutrient and energy requirements for lactating llamas. Therefore, we aimed to measure milk output in llama dams using an isotope dilution technique and relate it to energy intakes at different stages of lactation. We also validated the dilution technique by measuring total water turnover (TWT) directly and comparing it with values estimated by the isotope dilution technique. Our study involved 5 lactating llama dams and their suckling young. Milk output and TWT were measured at 4 stages of lactation (wk 3, 10, 18, and 26 postpartum). The method involved the application of the stable hydrogen isotope deuterium ((2)H) to the lactating dam. Drinking water intake and TWT decreased significantly with lactation stage, whether estimated by the isotope dilution technique or calculated from drinking water and water ingested from feeds. In contrast, lactation stage had no effect on dry matter intake, metabolizable energy (ME) intake, or the milk water fraction (i.e., the ratio between milk water excreted and TWT). The ratios between TWT measured and TWT estimated (by isotope dilution) did not differ with lactation stage and were close to 100% in all measurement weeks, indicating that the D(2)O dilution technique estimated TWT with high accuracy and only small variations. Calculating the required ME intakes for lactation from milk output data and gross energy content of milk revealed that, with increasing lactation stage, ME requirements per day for lactation decreased but remained constant per kilogram of milk output. Total measured ME intakes at different stages of lactation were similar to calculated ME intakes from published recommendation models for llamas.

  19. Relationship between peak cardiac pumping capability and indices of cardio-respiratory fitness in healthy individuals.

    PubMed

    Jakovljevic, Djordje G; Popadic-Gacesa, Jelena Z; Barak, Otto F; Nunan, David; Donovan, Gay; Trenell, Michael I; Grujic, Nikola G; Brodie, David A

    2012-09-01

    Cardiac power output (CPO) is a unique and direct measure of overall cardiac function (i.e. cardiac pumping capability) that integrates both flow- and pressure-generating capacities of the heart. The present study assessed the relationship between peak exercise CPO and selected indices of cardio-respiratory fitness. Thirty-seven healthy adults (23 men and 14 women) performed an incremental exercise test to volitional fatigue using the Bruce protocol with gas exchange and ventilatory measurements. Following a 40-min recovery, the subjects performed a constant maximum workload exercise test at or above 95% of maximal oxygen consumption. Cardiac output was measured using the exponential CO(2) rebreathing method. The CPO, expressed in W, was calculated as the product of the mean arterial blood pressure and cardiac output. At peak exercise, CPO was well correlated with cardiac output (r = 0·92, P<0·01), stroke volume (r = 0·90, P<0·01) and peak oxygen consumption (r = 0·77, P<0·01). The coefficient of correlation was moderate between CPO and anaerobic threshold (r = 0·47, P<0·01), oxygen pulse (r = 0·57, P<0·01), minute ventilation (r = 0·53, P<0·01) and carbon dioxide production (r = 0·56, P<0·01). Small but significant relationship was found between peak CPO and peak heart rate (r = 0·23, P<0·05). These findings suggest that only peak cardiac output and stroke volume truly reflect CPO. Other indices of cardio-respiratory fitness such as oxygen consumption, anaerobic threshold, oxygen pulse, minute ventilation, carbon dioxide production and heart rate should not be used as surrogates for overall cardiac function and pumping capability of the heart.

  20. Effects of two different anesthetic protocols on cardiac flow measured by two dimensional phase contrast magnetic resonance imaging.

    PubMed

    Drees, Randi; Johnson, Rebecca A; Stepien, Rebecca L; Munoz Del Rio, Alejandro; François, Christopher J

    2015-01-01

    Companion animals are routinely anesthetized or heavily sedated for cardiac MRI studies, however effects of varying anesthetic protocols on cardiac function measurements are incompletely understood. The purpose of this prospective study was to compare effects of two anesthetic protocols (Protocol A: Midazolam, fentanyl; Protocol B: Dexmedetomidine) on quantitative and qualitative blood flow values measured through the aortic, pulmonic, mitral, and tricuspid valves using two-dimensional phase contrast magnetic resonance imaging (2D PC MRI) in healthy dogs. Mean flow per heartbeat values through the pulmonary artery (Qp) and aorta (Qs) were compared to right and left ventricular stroke volumes (RVSV, LVSV) measured using a reference standard of 2D Cine balanced steady-state free precession MRI. Pulmonary to systemic flow ratio (Qp/Qs) was also calculated. Differences in flow and Qp/Qs values generated using 2D PC MRI did not differ between the two anesthetic protocols (P = 1). Mean differences between Qp and RVSV were 3.82 ml/beat (95% limits of agreement: 3.62, -11.26) and 1.9 ml/beat (-7.86, 11.66) for anesthesia protocols A and B, respectively. Mean differences between Qs and LVSV were 1.65 ml/beat (-5.04, 8.34) and 0.03 ml/beat (-4.65, 4.72) for anesthesia protocols A and B, respectively. Mild tricuspid or mitral reflux was seen in 2/10 dogs using 2D PC MRI. No aortic or pulmonic insufficiency was observed. Findings from the current study indicated that these two anesthetic protocols yield similar functional measures of cardiac blood flow using 2D PC MRI in healthy dogs. Future studies in clinically affected patients are needed.

  1. The effect of age on the relationship between cardiac and vascular function

    PubMed Central

    Houghton, David; Jones, Thomas W.; Cassidy, Sophie; Siervo, Mario; MacGowan, Guy A.; Trenell, Michael I.; Jakovljevic, Djordje G.

    2016-01-01

    Age-related changes in cardiac and vascular function are associated with increased risk of cardiovascular mortality and morbidity. The aim of the present study was to define the effect of age on the relationship between cardiac and vascular function. Haemodynamic and gas exchange measurements were performed at rest and peak exercise in healthy individuals. Augmentation index was measured at rest. Cardiac power output, a measure of overall cardiac function, was calculated as the product of cardiac output and mean arterial blood pressure. Augmentation index was significantly higher in older than younger participants (27.7 ± 10.1 vs. 2.5 ± 10.1%, P < 0.01). Older people demonstrated significantly higher stroke volume and mean arterial blood pressure (P < 0.05), but lower heart rate (145 ± 13 vs. 172 ± 10 beats/min, P < 0.01) and peak oxygen consumption (22.5 ± 5.2 vs. 41.2 ± 8.4 ml/kg/min, P < 0.01). There was a significant negative relationship between augmentation index and peak exercise cardiac power output (r = −0.73, P = 0.02) and cardiac output (r = −0.69, P = 0.03) in older participants. Older people maintain maximal cardiac function due to increased stroke volume. Vascular function is a strong predictor of overall cardiac function in older but in not younger people. PMID:26590322

  2. Simultaneous cardiac and respiratory frequency measurement based on a single fiber Bragg grating sensor

    NASA Astrophysics Data System (ADS)

    Silva, A. F.; Carmo, J. P.; Mendes, P. M.; Correia, J. H.

    2011-07-01

    A respiratory and cardiac-frequency sensor has been designed and manufactured to monitor both components with a single fiber Bragg grating (FBG) sensor. The main innovation of the explored system is the structure in which the FBG sensor is embedded. A specially developed polymeric foil allowed the simultaneous detection of heart rate and respiration cycles. The PVC has been designed to enhance the sensor sensitivity. In order to retrieve both components individually, a signal processing system was implemented for filtering out the respiratory and cardiac frequencies. The developed solution was tested along with a commercial device for referencing, from which the proposed system reliability is concluded. This optical-fiber system type has found an application niche in magnetic resonance imaging (MRI) exam rooms, where no other types of sensors than optical ones are advised to enter due to the electromagnetic interference.

  3. Cerebral oxygenation and hemodynamic changes during infant cardiac surgery: measurements by near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    du Plessis, Adre J.; Volpe, Joseph J.

    1996-10-01

    Despite dramatic advances in the survival rate among infants undergoing cardiac surgery for congenital heart disease, the incidence of brain injury suffered by survivors remains unacceptably high. This is largely due to our limited understanding of the complex changes in cerebral oxygen utilization and supply occurring during the intraoperative period as a result of hypothermia, neuroactive drugs, and profound circulatory changes. Current techniques for monitoring the adequacy of cerebral oxygen supply and utilization during hypothermic cardiac surgery are inadequate to address this complex problem and consequently to identify the infant at risk for such brain injury. Furthermore, this inability to detect imminent hypoxic- ischemic brain injury is likely to become all the more conspicuous as new neuroprotective strategies, capable of salvaging 'insulated' neuronal tissue form cell death, enter the clinical arena. Near infrared spectroscopy is a relatively new, noninvasive, and portable technique capable of interrogating the oxygenation and hemodynamics of tissue in vivo. These characteristics of the technique have generated enormous interest among clinicians in the ability of near infrared spectroscopy to elucidate the mechanisms of intraoperative brain injury and ultimately to identify infants oat risk for such injury. This paper reviews the experience with this technique to date during infant cardiac surgery.

  4. Cardiac function and perfusion dynamics measured on a beat-by-beat basis in the live mouse using ultra-fast 4D optoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Ford, Steven J.; Deán-Ben, Xosé L.; Razansky, Daniel

    2015-03-01

    The fast heart rate (~7 Hz) of the mouse makes cardiac imaging and functional analysis difficult when studying mouse models of cardiovascular disease, and cannot be done truly in real-time and 3D using established imaging modalities. Optoacoustic imaging, on the other hand, provides ultra-fast imaging at up to 50 volumetric frames per second, allowing for acquisition of several frames per mouse cardiac cycle. In this study, we combined a recently-developed 3D optoacoustic imaging array with novel analytical techniques to assess cardiac function and perfusion dynamics of the mouse heart at high, 4D spatiotemporal resolution. In brief, the heart of an anesthetized mouse was imaged over a series of multiple volumetric frames. In another experiment, an intravenous bolus of indocyanine green (ICG) was injected and its distribution was subsequently imaged in the heart. Unique temporal features of the cardiac cycle and ICG distribution profiles were used to segment the heart from background and to assess cardiac function. The 3D nature of the experimental data allowed for determination of cardiac volumes at ~7-8 frames per mouse cardiac cycle, providing important cardiac function parameters (e.g., stroke volume, ejection fraction) on a beat-by-beat basis, which has been previously unachieved by any other cardiac imaging modality. Furthermore, ICG distribution dynamics allowed for the determination of pulmonary transit time and thus additional quantitative measures of cardiovascular function. This work demonstrates the potential for optoacoustic cardiac imaging and is expected to have a major contribution toward future preclinical studies of animal models of cardiovascular health and disease.

  5. Output beam energy measurement of a 100-MeV KOMAC drift tube linac by using a stripline beam position monitor

    NASA Astrophysics Data System (ADS)

    Kim, Han-Sung

    2015-10-01

    The 100-MeV proton linac at the KOMAC (Korea Multi-purpose Accelerator Complex) is composed of a 50-keV proton injector, a 3-MeV RFQ (radio-frequency quadrupole) and a 100-MeV DTL (drift tube linac). The proton beam is accelerated from 3 MeV to 100 MeV through 11 DTL tanks. The precise measurement of the proton-beam's energy at the output of each DTL tank is important for the longitudinal beam dynamics and can be performed by using a time-of-flight method with a BPM (beam position monitor), which is installed between each DTL tank. The details of the output beam energy measurement of the KOMAC DTL with stripline-type BPM and BPM signal processing, along with a comparison with the simulation results, will be presented in this paper.

  6. Temporal-Bone Measurements of the Maximum Equivalent Pressure Output and Maximum Stable Gain of a Light Driven Hearing System that Mechanically Stimulates the Umbo

    PubMed Central

    Puria, Sunil; Santa Maria, Peter Luke; Perkins, Rodney

    2015-01-01

    Hypothesis That maximum equivalent pressure output (MEPO) and maximum stable gain (MSG) measurements demonstrate high output and high gain margins in a Light Driven Hearing System (Earlens). Background The non-surgical Earlens consists of a light-activated balanced-armature Tympanic Lens (Lens) to drive the middle ear through direct umbo contact. The Lens is driven and powered by encoded pulses of light. In comparison to conventional hearing aids, the Earlens is designed to provide higher levels of output over a broader frequency range and a significantly higher MSG with the MEPO providing an important fitting guideline. Methods Four fresh human cadaver temporal bones were used to measure MEPO directly. To calculate MEPO and MSG, we measured the pressure close to the eardrum and stapes velocity for sound drive and light drive using the Earlens. Results The baseline sound-driven measurements are consistent with previous reports. The average MEPO (N=4) varies from 116 to 128 dB SPL in the 0.7 to 10 kHz range, with the peak occurring at 7.6 kHz. From 0.1–0.7 kHz, it varies from 83 to 121 dB SPL. For the average MSG, a broad minimum of about 10 dB occurs in the 1–4 kHz range, above which it rises as high as 42 dB at 7.6 kHz. From 0.2 to 1 kHz, the MSG decreases linearly from about 40 dB to 10 dB. Conclusion With high output and high gain margins, the Earlens may offer broader spectrum amplification for treatment of mild to severe hearing impairment. PMID:26756140

  7. Output factor comparison of Monte Carlo and measurement for Varian TrueBeam 6 MV and 10 MV flattening filter-free stereotactic radiosurgery system.

    PubMed

    Cheng, Jason Y; Ning, Holly; Arora, Barbara C; Zhuge, Ying; Miller, Robert W

    2016-05-08

    The dose measurements of the small field sizes, such as conical collimators used in stereotactic radiosurgery (SRS), are a significant challenge due to many factors including source occlusion, detector size limitation, and lack of lateral electronic equilibrium. One useful tool in dealing with the small field effect is Monte Carlo (MC) simulation. In this study, we report a comparison of Monte Carlo simulations and measurements of output factors for the Varian SRS system with conical collimators for energies of 6 MV flattening filter-free (6 MV) and 10 MV flattening filter-free (10 MV) on the TrueBeam accelerator. Monte Carlo simulations of Varian's SRS system for 6 MV and 10 MV photon energies with cones sizes of 17.5 mm, 15.0 mm, 12.5 mm, 10.0 mm, 7.5 mm, 5.0 mm, and 4.0 mm were performed using EGSnrc (release V4 2.4.0) codes. Varian's version-2 phase-space files for 6 MV and 10 MV of TrueBeam accelerator were utilized in the Monte Carlo simulations. Two small diode detectors Edge (Sun Nuclear) and Small Field Detector (SFD) (IBA Dosimetry) were applied to measure the output factors. Significant errors may result if detector correction factors are not applied to small field dosimetric measurements. Although it lacked the machine-specific kfclin,fmsrQclin,Qmsr correction factors for diode detectors in this study, correction factors were applied utilizing published studies conducted under similar conditions. For cone diameters greater than or equal to 12.5 mm, the differences between output factors for the Edge detector, SFD detector, and MC simulations are within 3.0% for both energies. For cone diameters below 12.5 mm, output factors differences exhibit greater variations.

  8. Output factor comparison of Monte Carlo and measurement for Varian TrueBeam 6 MV and 10 MV flattening filter-free stereotactic radiosurgery system.

    PubMed

    Cheng, Jason Y; Ning, Holly; Arora, Barbara C; Zhuge, Ying; Miller, Robert W

    2016-05-01

    The dose measurements of the small field sizes, such as conical collimators used in stereotactic radiosurgery (SRS), are a significant challenge due to many factors including source occlusion, detector size limitation, and lack of lateral electronic equilibrium. One useful tool in dealing with the small field effect is Monte Carlo (MC) simulation. In this study, we report a comparison of Monte Carlo simulations and measurements of output factors for the Varian SRS system with conical collimators for energies of 6 MV flattening filter-free (6 MV) and 10 MV flattening filter-free (10 MV) on the TrueBeam accelerator. Monte Carlo simulations of Varian's SRS system for 6 MV and 10 MV photon energies with cones sizes of 17.5 mm, 15.0 mm, 12.5 mm, 10.0 mm, 7.5 mm, 5.0 mm, and 4.0 mm were performed using EGSnrc (release V4 2.4.0) codes. Varian's version-2 phase-space files for 6 MV and 10 MV of TrueBeam accelerator were utilized in the Monte Carlo simulations. Two small diode detectors Edge (Sun Nuclear) and Small Field Detector (SFD) (IBA Dosimetry) were applied to measure the output factors. Significant errors may result if detector correction factors are not applied to small field dosimetric measurements. Although it lacked the machine-specific kQclin,Qmsrfclin,fmsr correction factors for diode detectors in this study, correction factors were applied utilizing published studies conducted under similar conditions. For cone diameters greater than or equal to 12.5 mm, the differences between output factors for the Edge detector, SFD detector, and MC simulations are within 3.0% for both energies. For cone diameters below 12.5 mm, output factors differences exhibit greater variations. PACS number(s): 87.55.k, 87.55.Qr.

  9. Assessment of the dose distribution inside a cardiac cath lab using TLD measurements and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Baptista, M.; Teles, P.; Cardoso, G.; Vaz, P.

    2014-11-01

    Over the last decade, there was a substantial increase in the number of interventional cardiology procedures worldwide, and the corresponding ionizing radiation doses for both the medical staff and patients became a subject of concern. Interventional procedures in cardiology are normally very complex, resulting in long exposure times. Also, these interventions require the operator to work near the patient and, consequently, close to the primary X-ray beam. Moreover, due to the scattered radiation from the patient and the equipment, the medical staff is also exposed to a non-uniform radiation field that can lead to a significant exposure of sensitive body organs and tissues, such as the eye lens, the thyroid and the extremities. In order to better understand the spatial variation of the dose and dose rate distributions during an interventional cardiology procedure, the dose distribution around a C-arm fluoroscopic system, in operation in a cardiac cath lab at Portuguese Hospital, was estimated using both Monte Carlo (MC) simulations and dosimetric measurements. To model and simulate the cardiac cath lab, including the fluoroscopic equipment used to execute interventional procedures, the state-of-the-art MC radiation transport code MCNPX 2.7.0 was used. Subsequently, Thermo-Luminescent Detector (TLD) measurements were performed, in order to validate and support the simulation results obtained for the cath lab model. The preliminary results presented in this study reveal that the cardiac cath lab model was successfully validated, taking into account the good agreement between MC calculations and TLD measurements. The simulated results for the isodose curves related to the C-arm fluoroscopic system are also consistent with the dosimetric information provided by the equipment manufacturer (Siemens). The adequacy of the implemented computational model used to simulate complex procedures and map dose distributions around the operator and the medical staff is discussed, in

  10. A new framework for output feedback controller design for a class of discrete-time stochastic nonlinear system with quantization and missing measurement

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Liu, Yurong; Alsaadi, Fuad E.

    2016-07-01

    In this paper, we are concerned with the problem of analysis and synthesis for a class of output feedback control system. The system under consideration is a discrete-time stochastic system with time-varying delay. It is assumed that the measurement of system is quantized via a logarithmic quantizer before it is transmitted, and the measurement data would be missing from time to time which can be described by a Bernoulli distributed white sequence. In addition, the nonlinearities are assumed to satisfy the sector conditions. The problem addressed is to design an output feedback controller such that the resulting closed-loop system is exponentially stable in the mean square. By employing Lyapunov theory and some new techniques, a new framework is established to cope with the design of output feedback controller for nonlinear systems involving quantization and missing measurement. Sufficient conditions are derived to guarantee the existence of the desired controllers, and the controller parameters are given in an explicit expression as well. A numerical example is exploited to show the usefulness of the results obtained.

  11. Effect of patient imaging angle on apparent cardiac volumes and the potential impact on measurement of valvular regurgitant fractions.

    PubMed

    Nelson, T R; Slutsky, R A; Verba, J W

    1983-01-01

    The accurate measurement of cardiac chamber volume is of major importance in assessing cardiac performance. Accurate equilibrium radionuclide volume estimations are difficult to obtain, due to the geometry of the chambers, and the physical characteristics of the imaging system. The purpose of this study was to examine the effects of imaging projections on relative cardiac chamber volumes, indexes, and stroke volume ratios. Twenty-two male patients, free of clinical evidence of disease, were studied. A series of four 2-minute acquisitions were made with the patient successively imaged in the anterior, 30 degrees left anterior oblique (LAO), 45 degrees LAO, and 60 degrees LAO projections with 15 degrees of caudal inclination. Filtered stroke volume and original images were used by the operator to assign right ventricular (RV), left ventricular (LV), and a combined right and left ventricular (TOT) regions-of-interest. From the data we determined end-diastolic counts (EDC), end-systolic counts (ESC), stroke counts (SC), ejection fractions (EF), and R/L stroke count ratios. The following changes were observed as the projection was moved from the anterior to 60 degrees LAO: 1) all RV parameters decreased in value, including, RVEDC (P less than .001), RVESC (P less than .01), RVESC (P less than .01) and RVEF (P less than .001); 2) LVEDC and LVESC (both P less than .01) increased while LVEF decreased (P less than .004); and 3) the R/L stroke count ratio decreased (P less than .001). Variability could be explained by 1) chamber overlap and geometry; 2) patient variability; and 3) intrachamber, interchamber and chest wall photon attenuation and scatter. We suggest that close attention to detail, with computer assistance, to optimally position the patient may reduce the effect of inherent limitations in radionuclide volumetric measurements, thus improving the reliability and usefulness of existing studies.

  12. Blind identification of full-field vibration modes of output-only structures from uniformly-sampled, possibly temporally-aliased (sub-Nyquist), video measurements

    NASA Astrophysics Data System (ADS)

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles; Mascareñas, David

    2017-03-01

    what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. The proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.

  13. Blind identification of full-field vibration modes of output-only structures from uniformly-sampled, possibly temporally-aliased (sub-Nyquist), video measurements

    DOE PAGES

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler; ...

    2016-12-05

    lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.« less

  14. Blind identification of full-field vibration modes of output-only structures from uniformly-sampled, possibly temporally-aliased (sub-Nyquist), video measurements

    SciTech Connect

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles Reed; Mascarenas, David Dennis Lee

    2016-12-05

    what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.

  15. The optimal hemodynamics management of post-cardiac arrest shock.

    PubMed

    Pellis, Tommaso; Sanfilippo, Filippo; Ristagno, Giuseppe

    2015-12-01

    Patients resuscitated from cardiac arrest develop a pathophysiological state named "post-cardiac arrest syndrome." Post-resuscitation myocardial dysfunction is a common feature of this syndrome, and many patients eventually die from cardiovascular failure. Cardiogenic shock accounts for most deaths in the first 3 days, when post-resuscitation myocardial dysfunction peaks. Thus, identification and treatment of cardiovascular failure is one of the key therapeutic goals during hospitalization of post-cardiac arrest patients. Patients with hemodynamic instability may require advanced cardiac output monitoring. Inotropes and vasopressors should be considered if hemodynamic goals are not achieved despite optimized preload. If these measures fail to restore adequate organ perfusion, a mechanical circulatory assistance device may be considered. Adequate organ perfusion should be ensured in the absence of definitive data on the optimal target pressure goals. Hemodynamic goals should also take into account targeted temperature management and its effect on the cardiovascular function.

  16. A laser-based method to measure thermal nociception in dairy cows: short-term repeatability and effects of power output and skin condition.

    PubMed

    Herskin, M S; Müller, R; Schrader, L; Ladewig, J

    2003-04-01

    To validate a laser-based method to measure thermal nociception in dairy cows (e.g., for the use in studies on stress-induced analgesia), we performed three experiments to observe the behavioral responses to a computer-controlled CO2 laser beam applied to the skin on the caudal aspect of the metatarsus. In Exp. 1, effects of power output (0, 1.3, 1.8, 2.2, 2.4 and 2.6 W) on nociceptive responses were examined using 18 dairy cows kept and tested in tie stalls. Increasing the power output affected the latencies to respond (decreasing latencies, P < or = 0.01), types of response (less nonresponding and more kicking, P < 0.0001), and behavior during (increasing frequency of tail flicking, P = 0.003) and between single laser exposures (increasing frequency of kicking, P = 0.02). Therefore, behavioral responses to a laser stimulus seem to be a valid measure of nociception in dairy cows. Repeatability within 15 min was investigated in Exp. 2 using n = 36 dairy cows kept and tested in tie stalls and a power output of 1.8 W. The variables' latency to move the exposed leg and frequency of tail flicking during laser exposure showed the highest level of repeatability (0.50 and 0.38, respectively). However, retesting at t = 15 min led to increased responses in terms of shorter latencies to respond (P < 0.05), increased kicking (P = 0.05), and tail flicking (P = 0.02), which probably can be explained by sensitization. Effects of power output (1.0 vs. 1.8 W) and skin condition (naked vs. intact) were examined in Exp. 3 on 11 group-housed dairy cows, tested just outside their home pen. Increasing the power output and shaving off hair led to increased responses as seen by shorter latencies to respond (P < 0.0001), less nonresponding (P < 0.0001), and increased kicking (P = 0.0003), as well as reduced intra- and interindividual variability (P < or = 0.04). In conclusion, the results of these experiments suggest that behavioral responses to laser stimulation are a valid and reliable

  17. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium

    NASA Astrophysics Data System (ADS)

    Xu, Lizhi; Gutbrod, Sarah R.; Bonifas, Andrew P.; Su, Yewang; Sulkin, Matthew S.; Lu, Nanshu; Chung, Hyun-Joong; Jang, Kyung-In; Liu, Zhuangjian; Ying, Ming; Lu, Chi; Webb, R. Chad; Kim, Jong-Seon; Laughner, Jacob I.; Cheng, Huanyu; Liu, Yuhao; Ameen, Abid; Jeong, Jae-Woong; Kim, Gwang-Tae; Huang, Yonggang; Efimov, Igor R.; Rogers, John A.

    2014-02-01

    Means for high-density multiparametric physiological mapping and stimulation are critically important in both basic and clinical cardiology. Current conformal electronic systems are essentially 2D sheets, which cannot cover the full epicardial surface or maintain reliable contact for chronic use without sutures or adhesives. Here we create 3D elastic membranes shaped precisely to match the epicardium of the heart via the use of 3D printing, as a platform for deformable arrays of multifunctional sensors, electronic and optoelectronic components. Such integumentary devices completely envelop the heart, in a form-fitting manner, and possess inherent elasticity, providing a mechanically stable biotic/abiotic interface during normal cardiac cycles. Component examples range from actuators for electrical, thermal and optical stimulation, to sensors for pH, temperature and mechanical strain. The semiconductor materials include silicon, gallium arsenide and gallium nitride, co-integrated with metals, metal oxides and polymers, to provide these and other operational capabilities. Ex vivo physiological experiments demonstrate various functions and methodological possibilities for cardiac research and therapy.

  18. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium

    PubMed Central

    Xu, Lizhi; Gutbrod, Sarah R.; Bonifas, Andrew P.; Su, Yewang; Sulkin, Matthew S.; Lu, Nanshu; Chung, Hyun-Joong; Jang, Kyung-In; Liu, Zhuangjian; Ying, Ming; Lu, Chi; Webb, R. Chad; Kim, Jong-Seon; Laughner, Jacob I.; Cheng, Huanyu; Liu, Yuhao; Ameen, Abid; Jeong, Jae-Woong; Kim, Gwang-Tae; Huang, Yonggang; Efimov, Igor R.; Rogers, John A.

    2015-01-01

    Means for high-density multiparametric physiological mapping and stimulation are critically important in both basic and clinical cardiology. Current conformal electronic systems are essentially 2D sheets, which cannot cover the full epicardial surface or maintain reliable contact for chronic use without sutures or adhesives. Here we create 3D elastic membranes shaped precisely to match the epicardium of the heart via the use of 3D printing, as a platform for deformable arrays of multifunctional sensors, electronic and optoelectronic components. Such integumentary devices completely envelop the heart, in a form-fitting manner, and possess inherent elasticity, providing a mechanically stable bioti-/abiotic interface during normal cardiac cycles. Component examples range from actuators for electrical, thermal and optical stimulation, to sensors for pH, temperature and mechanical strain. The semiconductor materials include silicon, gallium arsenide and gallium nitride, co-integrated with metals, metal oxides and polymers, to provide these and other operational capabilities. Ex vivo physiological experiments demonstrate various functions and methodological possibilities for cardiac research and therapy. PMID:24569383

  19. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium.

    PubMed

    Xu, Lizhi; Gutbrod, Sarah R; Bonifas, Andrew P; Su, Yewang; Sulkin, Matthew S; Lu, Nanshu; Chung, Hyun-Joong; Jang, Kyung-In; Liu, Zhuangjian; Ying, Ming; Lu, Chi; Webb, R Chad; Kim, Jong-Seon; Laughner, Jacob I; Cheng, Huanyu; Liu, Yuhao; Ameen, Abid; Jeong, Jae-Woong; Kim, Gwang-Tae; Huang, Yonggang; Efimov, Igor R; Rogers, John A

    2014-02-25

    Means for high-density multiparametric physiological mapping and stimulation are critically important in both basic and clinical cardiology. Current conformal electronic systems are essentially 2D sheets, which cannot cover the full epicardial surface or maintain reliable contact for chronic use without sutures or adhesives. Here we create 3D elastic membranes shaped precisely to match the epicardium of the heart via the use of 3D printing, as a platform for deformable arrays of multifunctional sensors, electronic and optoelectronic components. Such integumentary devices completely envelop the heart, in a form-fitting manner, and possess inherent elasticity, providing a mechanically stable biotic/abiotic interface during normal cardiac cycles. Component examples range from actuators for electrical, thermal and optical stimulation, to sensors for pH, temperature and mechanical strain. The semiconductor materials include silicon, gallium arsenide and gallium nitride, co-integrated with metals, metal oxides and polymers, to provide these and other operational capabilities. Ex vivo physiological experiments demonstrate various functions and methodological possibilities for cardiac research and therapy.

  20. The low frequency power of heart rate variability is neither a measure of cardiac sympathetic tone nor of baroreflex sensitivity.

    PubMed

    Martelli, Davide; Silvani, Alessandro; McAllen, Robin M; May, Clive N; Ramchandra, Rohit

    2014-10-01

    The lack of noninvasive approaches to measure cardiac sympathetic nerve activity (CSNA) has driven the development of indirect estimates such as the low-frequency (LF) power of heart rate variability (HRV). Recently, it has been suggested that LF HRV can be used to estimate the baroreflex modulation of heart period (HP) rather than cardiac sympathetic tone. To test this hypothesis, we measured CSNA, HP, blood pressure (BP), and baroreflex sensitivity (BRS) of HP, estimated with the modified Oxford technique, in conscious sheep with pacing-induced heart failure and in healthy control sheep. We found that CSNA was higher and systolic BP and HP were lower in sheep with heart failure than in control sheep. Cross-correlation analysis showed that in each group, the beat-to-beat changes in HP correlated with those in CSNA and in BP, but LF HRV did not correlate significantly with either CSNA or BRS. However, when control sheep and sheep with heart failure were considered together, CSNA correlated negatively with HP and BRS. There was also a negative correlation between CSNA and BRS in control sheep when considered alone. In conclusion, we demonstrate that in conscious sheep, LF HRV is neither a robust index of CSNA nor of BRS and is outperformed by HP and BRS in tracking CSNA. These results do not support the use of LF HRV as a noninvasive estimate of either CSNA or baroreflex function, but they highlight a link between CSNA and BRS.

  1. Measuring the evolution and output of cross-disciplinary collaborations within the NCI Physical Sciences-Oncology Centers Network.

    PubMed

    Basner, Jodi E; Theisz, Katrina I; Jensen, Unni S; Jones, C David; Ponomarev, Ilya; Sulima, Pawel; Jo, Karen; Eljanne, Mariam; Espey, Michael G; Franca-Koh, Jonathan; Hanlon, Sean E; Kuhn, Nastaran Z; Nagahara, Larry A; Schnell, Joshua D; Moore, Nicole M

    2013-12-01

    Development of effective quantitative indicators and methodologies to assess the outcomes of cross-disciplinary collaborative initiatives has the potential to improve scientific program management and scientific output. This article highlights an example of a prospective evaluation that has been developed to monitor and improve progress of the National Cancer Institute Physical Sciences-Oncology Centers (PS-OC) program. Study data, including collaboration information, was captured through progress reports and compiled using the web-based analytic database: Interdisciplinary Team Reporting, Analysis, and Query Resource. Analysis of collaborations was further supported by data from the Thomson Reuters Web of Science database, MEDLINE database, and a web-based survey. Integration of novel and standard data sources was augmented by the development of automated methods to mine investigator pre-award publications, assign investigator disciplines, and distinguish cross-disciplinary publication content. The results highlight increases in cross-disciplinary authorship collaborations from pre- to post-award years among the primary investigators and confirm that a majority of cross-disciplinary collaborations have resulted in publications with cross-disciplinary content that rank in the top third of their field. With these evaluation data, PS-OC Program officials have provided ongoing feedback to participating investigators to improve center productivity and thereby facilitate a more successful initiative. Future analysis will continue to expand these methods and metrics to adapt to new advances in research evaluation and changes in the program.

  2. Cardiac-Gated En Face Doppler Measurement of Retinal Blood Flow Using Swept-Source Optical Coherence Tomography at 100,000 Axial Scans per Second

    PubMed Central

    Lee, ByungKun; Choi, WooJhon; Liu, Jonathan J.; Lu, Chen D.; Schuman, Joel S.; Wollstein, Gadi; Duker, Jay S.; Waheed, Nadia K.; Fujimoto, James G.

    2015-01-01

    Purpose. To develop and demonstrate a cardiac gating method for repeatable in vivo measurement of total retinal blood flow (TRBF) in humans using en face Doppler optical coherence tomography (OCT) at commercially available imaging speeds. Methods. A prototype swept-source OCT system operating at 100-kHz axial scan rate was developed and interfaced with a pulse oximeter. Using the plethysmogram measured from the earlobe, Doppler OCT imaging of a 1.5- × 2-mm area at the optic disc at 1.8 volumes/s was synchronized to cardiac cycle to improve sampling of pulsatile blood flow. Postprocessing algorithms were developed to achieve fully automatic calculation of TRBF. We evaluated the repeatability of en face Doppler OCT measurement of TRBF in 10 healthy young subjects using three methods: measurement at 100 kHz with asynchronous acquisition, measurement at 100 kHz with cardiac-gated acquisition, and a control measurement using a 400-kHz instrument with asynchronous acquisition. Results. The median intrasubject coefficients of variation (COV) of the three methods were 8.0%, 4.9%, and 6.1%, respectively. All three methods correlated well, without a significant bias. Mean TRBF measured at 100 kHz with cardiac-gated acquisition was 40.5 ± 8.2 μL/min, and the range was from 26.6 to 55.8 μL/min. Conclusions. Cardiac-gated en face Doppler OCT can achieve smaller measurement variability than previously reported methods. Although further validation in older subjects and diseased subjects is required, precise measurement of TRBF using cardiac-gated en face Doppler OCT at commercially available imaging speeds should be feasible. PMID:25744974

  3. Assesment of Heart Rate Variability As A Measure of Cardiac Autonomic Status in Psychiatric Patients Exposed to Chemical Irritants

    PubMed Central

    Gupta, Supriya; Rastogi, Rajesh; Gupta, Manushree

    2015-01-01

    Background and Purpose However, little is known about the cardiac autonomic activity due to chemicals in psychiatric patients. Therefore, the objective of this study was to assess the effect of chemical irritants on the ANS of the person and measure that in the form of Heart Rate Variability (HRV), a noninvasive method to estimate the cardiac autonomic activity. The autonomic nervous system can significantly compromised by use of chemical irritants. Materials and Methods A cross-sectional hospital based study was conducted in which 33 patients (mean age: 29.94 years) of depression/anxiety were compared with 37 age matched controls (mean age: 28.10). The patients who were diagnosed as either depressed or anxious by the psychiatry were included in the study group by random sampling. Out of these 8 patients gave positive history of odour use. Thirty seven age matched healthy persons were taken as controls. Grading of patients was done according to DSMV-IV criteria and short- term HRV was recorded. Five minute HRV recording was done and time domain and frequency domain indices of HRV were assessed using RMS Polyearite D. The result in case and control groups was compared. Results We have reported a poor HRV compared to control group in patients of depression/anxiety as reflected by NN50 values (p< 0.05). Although not significant the trend shows a better HRV control in almost all the time domain and frequency domain parameters in controls compared to cases. Regarding the history of use of chemical irritants the trend showed a poor HRV control in these cases compared to the patients who did not give any such history. Conclusion Our results suggest that impaired cardiac autonomic nerve function characterized by sympathetic over activity may occur in depression/phobic patients. The study also proves a poor HRV in psychiatric subjects with history of use of odoriferous substances. PMID:26266195

  4. SU-E-T-557: Measuring Neutron Activation of Cardiac Devices Irradiated During Proton Therapy Using Indium Foils

    SciTech Connect

    Avery, S; Christodouleas, J; Delaney, K; Diffenderfer, E; Brown, K

    2014-06-01

    Purpose: Measuring Neutron Activation of Cardiac devices Irradiated during Proton Therapy using Indium Foils Methods: The foils had dimensions of 25mm x 25mm x 1mm. After being activated, the foils were placed in a Canberra Industries well chamber utilizing a NaI(Tl) scintillation detector. The resulting gamma spectrum was acquired and analyzed using Genie 2000 spectroscopy software. One activation foil was placed over the upper, left chest of RANDO where a pacemaker would be. The rest of the foils were placed over the midline of the patient at different distances, providing a spatial distribution over the phantom. Using lasers and BBs to align the patient, 200 MU square fields were delivered to various treatment sites: the brain, the pancreas, and the prostate. Each field was shot at least a day apart, giving more than enough time for activity of the foil to decay (t1=2 = 54.12 min). Results: The net counts (minus background) of the three aforementioned peaks were used for our measurements. These counts were adjusted to account for detector efficiency, relative photon yields from decay, and the natural abundance of 115-In. The average neutron flux for the closed multi-leaf collimator irradiation was measured to be 1.62 x 106 - 0.18 x 106 cm2 s-1. An order of magnitude estimate of the flux for neutrons up to 1 keV from Diffenderfer et al. gives 3 x 106 cm2 s-1 which does agree on the order of magnitude. Conclusion: Lower energy neutrons have higher interaction cross-sections and are more likely to damage pacemakers. The thermal/slow neutron component may be enough to estimate the overall risk. The true test of the applicability of activation foils is whether or not measurements are capable of predicting cardiac device malfunction. For that, additional studies are needed to provide clinical evidence one way or the other.

  5. Monte Carlo simulated correction factors for machine specific reference field dose calibration and output factor measurement using fixed and iris collimators on the CyberKnife system

    NASA Astrophysics Data System (ADS)

    Francescon, P.; Kilby, W.; Satariano, N.; Cora, S.

    2012-06-01

    Monte Carlo (MC) simulation of dose to water and dose to detector has been used to calculate the correction factors needed for dose calibration and output factor measurements on the CyberKnife system. Reference field ionization chambers simulated were the PTW 30006, Exradin A12, and NE 2571 Farmer chambers, and small volume chambers PTW 31014 and 31010. Correction factors for Farmer chambers were found to be 0.7%-0.9% larger than those determined from TRS-398 due mainly to the dose gradient across the chamber cavity. For one microchamber where comparison was possible, the factor was 0.5% lower than TRS-398 which is consistent with previous MC simulations of flattening filter free Linacs. Output factor detectors simulated were diode models PTW 60008, 60012, 60017, 60018, Sun Nuclear edge detector, air-filled microchambers Exradin A16 and PTW 31014, and liquid-filled microchamber PTW 31018 microLion. Factors were generated for both fixed and iris collimators. The resulting correction factors differ from unity by up to +11% for air-filled microchambers and -6% for diodes at the smallest field size (5 mm), and tend towards unity with increasing field size (correction factor magnitude <1% for all detectors at field sizes >15 mm). Output factor measurements performed using these detectors with fixed and iris collimators on two different CyberKnife systems showed initial differences between detectors of >15% at 5 mm field size. After correction the measurements on each unit agreed within ˜1.5% at the smallest field size. This paper provides a complete set of correction factors needed to apply a new small field dosimetry formalism to both collimator types on the CyberKnife system using a range of commonly used detectors.

  6. Ultrasound imaging in teaching cardiac physiology.

    PubMed

    Johnson, Christopher D; Montgomery, Laura E A; Quinn, Joe G; Roe, Sean M; Stewart, Michael T; Tansey, Etain A

    2016-09-01

    This laboratory session provides hands-on experience for students to visualize the beating human heart with ultrasound imaging. Simple views are obtained from which students can directly measure important cardiac dimensions in systole and diastole. This allows students to derive, from first principles, important measures of cardiac function, such as stroke volume, ejection fraction, and cardiac output. By repeating the measurements from a subject after a brief exercise period, an increase in stroke volume and ejection fraction are easily demonstrable, potentially with or without an increase in left ventricular end-diastolic volume (which indicates preload). Thus, factors that affect cardiac performance can readily be discussed. This activity may be performed as a practical demonstration and visualized using an overhead projector or networked computers, concentrating on using the ultrasound images to teach basic physiological principles. This has proved to be highly popular with students, who reported a significant improvement in their understanding of Frank-Starling's law of the heart with ultrasound imaging.

  7. Equilibrator-based measurements of dissolved nitrous oxide in the surface ocean using an integrated cavity output laser absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Grefe, I.; Kaiser, J.

    2013-07-01

    A laser-based analyser for nitrous oxide, carbon monoxide and water vapour was coupled to an equilibrator for continuous high-resolution dissolved gas measurements in the surface ocean. Results for nitrous oxide measurements from laboratory tests and field deployments are presented here. Short-term precision for 10 s-average N2O mole fractions at an acquisition rate of 1 Hz was better than 0.2 nmol mol-1 for standard gases and equilibrator measurements. The same precision was achieved for replicate standard gas analyses within 1 h of each other. The accuracy of the equilibrator measurements was verified by comparison with purge-and-trap GC-MS measurements of N2O concentrations in discrete samples from the Southern Ocean and showed agreement to within the 2% measurement uncertainty of the GC-MS method. Measured atmospheric N2O mole fractions agreed with AGAGE values to within 0.4%. The equilibrator response time to concentration changes in water was 142 to 203 s, depending on the headspace flow rate. The system was tested at sea during a north-to-south transect of the Atlantic Ocean. While the subtropical gyres were slightly undersaturated, the equatorial region was a source of nitrous oxide to the atmosphere. The ability to measure at high temporal and spatial resolution revealed sub-mesoscale variability in dissolved N2O concentrations. The magnitude of the observed saturation is in agreement with published data. Mean sea-to-air fluxes in the tropical and subtropical Atlantic ranged between -1.6 and 0.11 μmol m-2d-1 and confirm that the subtropical Atlantic is not an important source region for N2O to the atmosphere, compared to average global fluxes of 0.6 to 2.4 μmol m-2d-1. The system can be easily modified for autonomous operation on voluntary observing ships (VOS). Further work should include an interlaboratory comparison exercise with other methods of dissolved N2O analyses.

  8. Cardiac catheterization - discharge

    MedlinePlus

    Catheterization - cardiac - discharge; Heart catheterization - discharge: Catheterization - cardiac; Heart catheterization; Angina - cardiac catheterization discharge; CAD - cardiac catheterization discharge; Coronary artery disease - cardiac catheterization ...

  9. [Psychosomatic aspects of cardiac arrhythmias].

    PubMed

    Siepmann, Martin; Kirch, Wilhelm

    2010-07-01

    Emotional stress facilitates the occurrence of cardiac arrhythmias including sudden cardiac death. The prevalence of anxiety and depression is increased in cardiac patients as compared to the normal population. The risk of cardiovascular mortality is enhanced in patients suffering from depression. Comorbid anxiety disorders worsen the course of cardiac arrhythmias. Disturbance of neurocardiac regulation with predominance of the sympathetic tone is hypothesized to be causative for this. The emotional reaction to cardiac arrhythmias is differing to a large extent between individuals. Emotional stress may result from coping with treatment of cardiac arrhythmias. Emotional stress and cardiac arrhythmias may influence each other in the sense of a vicious circle. Somatoform cardiac arrhythmias are predominantly of psychogenic origin. Instrumental measures and frequent contacts between physicians and patients may facilitate disease chronification. The present review is dealing with the multifaceted relationships between cardiac arrhythmias and emotional stress. The underlying mechanisms and corresponding treatment modalities are discussed.

  10. Measurement of changes in high-energy phosphates in the cardiac cycle by using gated /sup 31/P nuclear magnetic resonance. [Rats

    SciTech Connect

    Fossel, E.T.; Morgan, H.E.; Ingwall, J.S.

    1980-06-01

    Levels of the high-energy phosphate-containing compounds, ATP and creatine phosphate, and of inorganic phosphate (P/sub i/ were measured as a function of position in the cardiac cycle. Measurements were made on isolated, perfused, working rat hearts through the use of gated /sup 31/P nuclear magnetic resonance spectroscopy. Levels of ATP and creatine phosphate were found to vary during the cardiac cycle and were maximal at minimal aortic pressure and minimal at maximal aortic pressure. P/sub i/ varied inversely with the high-energy phosphates.

  11. Evaluation of Tropical Cirrus Cloud Properties Derived from ECMWF Model Output and Ground Based Measurements over Nauru Island

    SciTech Connect

    Comstock, Jennifer M.; Jakob, Christian

    2004-05-26

    Cirrus clouds play an important role both radiatively and dynamically in the tropics. Understanding the mechanisms responsible for the formation and persistence of tropical cirrus is an important step in accurately predicting cirrus in forecast models. In this study, we compare ground-based measurements of cloud properties with those predicted by the ECMWF model at a location in the tropical western Pacific. Our comparisons of cloud height and optical depth over an 8 month time period indicate that the model and measurements agree relatively well. The ECMWF model predicts cirrus anvils associated with deep convection during convectively active periods, and also isolated cirrus events that are influenced by large-scale vertical ascent. We also show through examination of an upper tropospheric cirrus case that the model produces tropospheric waves that appear to influence the morphology and maintenance of the cirrus layer.

  12. First measurements of gas output from bubbling pools in a mud volcano at the periphery of Mt Etna (Italy): methodologies and implications for monitoring purposes

    NASA Astrophysics Data System (ADS)

    Federico, Cinzia; Giudice, Gaetano; Liuzzo, Marco; Pedone, Maria; Cosenza, Paolo; Riccobono, Giuseppe

    2014-05-01

    Gases and brines emitted in the southern sector of Mt Etna from mofettes, mud pools and mud volcanoes come from an hydrothermal reservoir hosted within the clayey formations of the sedimentary basement (Chiodini et al., 1996). The gas emitted consists mainly of CO2, with CH4, N2 and He as minor species. CO2 and He stable isotopes indicate a clear magmatic origin for these gases, and their compositional changes during either eruptive or rest periods closely parallel that of crater fumaroles (Paonita et al., 2012). Altough these manifestations are the most significant CO2 emitters outside the crater area, their mass output has never been measured. We present the first measurements of gas flux from several bubbling mud pools in a mud volcano located in the village of Paternò (Lon 14.89° Lat 37.57°), in the southern flank of the volcano. We performed gas measurements using a home-made apparatus, able to capture all the bubbles over an area of 0.4 m2. Over an area of about 7000 m2, we measured the flow rate of every single bubbling pool, providing that it had a minimum flux rate of 0.5 l/min. The maximum measured flow rate for a single pool was 15 l/min. A preliminary estimate of the total CO2 output over the whole mud volcano is in the order of few t/d. At the same time, we measured the chemical composition of emitted gases in various pools, characterised by different gas flow rates, to calculate the output of CO2 and verify the effect of eventual chemical fractionation processes upon gas chemistry. During the same campaign of direct measurements, we also used a commercial infrared laser unit (GasFinder 2.0 from Boreal Laser Ltd) for measurement of volcanic CO2 path-integrated concentrations along cross-sections of the atmospheric plumes in the area. The GasFinder was set as to measure CO2 concentrations at 1 Hz rate. During the field campaigns, the position of the GasFinder unit was sequentially moved so as to scan the plumes from different viewing directions and

  13. Epicardial measurement of alterations in extracellular pH and electrolytes during ischemia and reperfusion in cardiac surgery.

    PubMed

    Vogt, Sebastian; Troitzsch, Dirk; Moosdorf, Rainer

    2009-12-01

    Simultaneous measurements of extracellular pH, potassium (K(+)), and calcium (Ca(2+)) activity might be indicative of myocardium vitality or ischemia. Ten consecutive patients undergoing elective coronary artery bypass grafting were studied. Epicardial extracellular pH, potassium, and calcium were measured by a miniaturized disposable multi-sensor probe. Blood gases and electrolytes were derived with measurements of arterial and mixed venous blood samples at intervals during surgery. The mean epicardial baseline levels for pH in all patients were 8.04+/-0.22 arbitrary units (AU) for the right ventricle (RV) and 8.03+/-0.21 AU for the left ventricle (LV); for Ca(2+) 0.23+/-0.07 mmol/l (RV) and 0.20+/-0.10 mmol/l (LV); and for K(+) 4.54+/-1.51 mmol/l (RV) and 4.38+/-0.57 mmol/l (LV). Before ischemia, epicardial pH was moderately (p<0.05), and K(+), and Ca(2+) were closely correlated (p<0.001) with blood values. During reperfusion, epicardial measurements were weakly correlated (p<0.001) with blood values for pH, venous K(+) and Ca(2+), but moderately correlated with arterial K(+) and Ca(2+) (p<0.01). The measurements indicated intraoperative episodes of ischemia and reperfusion with reproducible trends of extracellular pH, K(+), and Ca(2+), which results in electrolyte patterns applicable for detecting inadequate myocardial protection during cardiac surgery in patients.

  14. The left ventricle as a mechanical engine: from Leonardo da Vinci to the echocardiographic assessment of peak power output-to-left ventricular mass.

    PubMed

    Dini, Frank L; Guarini, Giacinta; Ballo, Piercarlo; Carluccio, Erberto; Maiello, Maria; Capozza, Paola; Innelli, Pasquale; Rosa, Gian M; Palmiero, Pasquale; Galderisi, Maurizio; Razzolini, Renato; Nodari, Savina

    2013-03-01

    The interpretation of the heart as a mechanical engine dates back to the teachings of Leonardo da Vinci, who was the first to apply the laws of mechanics to the function of the heart. Similar to any mechanical engine, whose performance is proportional to the power generated with respect to weight, the left ventricle can be viewed as a power generator whose performance can be related to left ventricular mass. Stress echocardiography may provide valuable information on the relationship between cardiac performance and recruited left ventricular mass that may be used in distinguishing between adaptive and maladaptive left ventricular remodeling. Peak power output-to-mass, obtained during exercise or pharmacological stress echocardiography, is a measure that reflects the number of watts that are developed by 100 g of left ventricular mass under maximal stimulation. Power output-to-mass may be calculated as left ventricular power output per 100 g of left ventricular mass: 100× left ventricular power output divided by left ventricular mass (W/100 g). A simplified formula to calculate power output-to-mass is as follows: 0.222 × cardiac output (l/min) × mean blood pressure (mmHg)/left ventricular mass (g). When the integrity of myocardial structure is compromised, a mismatch becomes apparent between maximal cardiac power output and left ventricular mass; when this occurs, a reduction of the peak power output-to-mass index is observed.

  15. An Application of Case-Mix Adjusted Lengths of Stay in Naval Medical Treatment Facility’s Output Measurement.

    DTIC Science & Technology

    1980-09-01

    Catim..n do ,. sewo ide 01 Recooda mad idm5iU5f 5 OF too mber) LENGTH OF STAY DIAGNOSTIC GROUPINGS AVERAGE LENGTH OF STAY WORKLOAD INDEX CASE-MIX...for case-mix variations. 21 Average Length of Stay is the average number of days of service rendered to each inpatient discharged during a given...period [American Hospital Association 1960, p. 21]. As with the other measures, the average length of stay is influenced by many variables. It may vary

  16. External cardiac compression may be harmful in some scenarios of pulseless electrical activity.

    PubMed

    Hogan, T S

    2012-10-01

    Pulseless electrical activity occurs when organised or semi-organised electrical activity of the heart persists but the product of systemic vascular resistance and the increase in systemic arterial flow generated by the ejection of the left venticular stroke volume is not sufficient to produce a clinically detectable pulse. Pulseless electrical activity encompasses a very heterogeneous variety of severe circulatory shock states ranging in severity from pseudo-cardiac arrest to effective cardiac arrest. Outcomes of cardiopulmonary resuscitation for pulseless electrical activity are generally poor. Impairment of cardiac filling is the limiting factor to cardiac output in many scenarios of pulseless electrical activity, including extreme vasodilatory shock states. There is no evidence that external cardiac compression can increase cardiac output when impaired cardiac filling is the limiting factor to cardiac output. If impaired cardiac filling is the limiting factor to cardiac output and the heart is effectively ejecting all the blood returning to it, then external cardiac compression can only increase cardiac output if it increases venous return and cardiac filling. Repeated cardiac compression asynchronous with the patient's cardiac cycle and raised mean intrathoracic pressure due to chest compression can be expected to reduce rather than to increase cardiac filling and therefore to reduce rather than to increase cardiac output in such circumstances. The hypothesis is proposed that the performance of external cardiac compression will have zero or negative effect on cardiac output in pulseless electrical activity when impaired cardiac filling is the limiting factor to cardiac output. External cardiac compression may be both directly and indirectly harmful to significant sub-groups of patients with pulseless electrical activity. We have neither evidence nor theory to provide comfort that external cardiac compression is not harmful in many scenarios of pulseless

  17. Differential-output B-dot and D-dot monitors for current and voltage measurements on a 20-MA, 3-MV pulsed-power accelerator

    NASA Astrophysics Data System (ADS)

    Wagoner, T. C.; Stygar, W. A.; Ives, H. C.; Gilliland, T. L.; Spielman, R. B.; Johnson, M. F.; Reynolds, P. G.; Moore, J. K.; Mourning, R. L.; Fehl, D. L.; Androlewicz, K. E.; Bailey, J. E.; Broyles, R. S.; Dinwoodie, T. A.; Donovan, G. L.; Dudley, M. E.; Hahn, K. D.; Kim, A. A.; Lee, J. R.; Leeper, R. J.; Leifeste, G. T.; Melville, J. A.; Mills, J. A.; Mix, L. P.; Moore, W. B. S.; Peyton, B. P.; Porter, J. L.; Rochau, G. A.; Rochau, G. E.; Savage, M. E.; Seamen, J. F.; Serrano, J. D.; Sharpe, A. W.; Shoup, R. W.; Slopek, J. S.; Speas, C. S.; Struve, K. W.; van de Valde, D. M.; Woodring, R. M.

    2008-10-01

    are not combined in a balun; they are instead numerically processed for common-mode-noise rejection after digitization. All the current monitors are calibrated on a 76-cm-diameter axisymmetric radial transmission line that is driven by a 10-kA current pulse. The reference current is measured by a current-viewing resistor (CVR). The stack voltage monitors are also differential-output gauges, consisting of one 1.8-cm-diameter D-dot sensor and one null sensor. Hence, each voltage monitor is also a differential detector with two output signals, processed as described above. The voltage monitors are calibrated in situ at 1.5 MV on dedicated accelerator shots with a short-circuit load. Faraday’s law of induction is used to generate the reference voltage: currents are obtained from calibrated outer-MITL B-dot monitors, and inductances from the system geometry. In this way, both current and voltage measurements are traceable to a single CVR. Dependable and consistent measurements are thus obtained with this system of calibrated diagnostics. On accelerator shots that deliver 22 MA to a low-impedance z-pinch load, the peak lineal current densities at the stack, outer-MITL, and inner-MITL monitor locations are 0.5, 1, and 58MA/m, respectively. On such shots the peak currents measured at these three locations agree to within 1%.

  18. Cardiac interbeat interval dynamics from childhood to senescence : comparison of conventional and new measures based on fractals and chaos theory

    NASA Technical Reports Server (NTRS)

    Pikkujamsa, S. M.; Makikallio, T. H.; Sourander, L. B.; Raiha, I. J.; Puukka, P.; Skytta, J.; Peng, C. K.; Goldberger, A. L.; Huikuri, H. V.

    1999-01-01

    BACKGROUND: New methods of R-R interval variability based on fractal scaling and nonlinear dynamics ("chaos theory") may give new insights into heart rate dynamics. The aims of this study were to (1) systematically characterize and quantify the effects of aging from early childhood to advanced age on 24-hour heart rate dynamics in healthy subjects; (2) compare age-related changes in conventional time- and frequency-domain measures with changes in newly derived measures based on fractal scaling and complexity (chaos) theory; and (3) further test the hypothesis that there is loss of complexity and altered fractal scaling of heart rate dynamics with advanced age. METHODS AND RESULTS: The relationship between age and cardiac interbeat (R-R) interval dynamics from childhood to senescence was studied in 114 healthy subjects (age range, 1 to 82 years) by measurement of the slope, beta, of the power-law regression line (log power-log frequency) of R-R interval variability (10(-4) to 10(-2) Hz), approximate entropy (ApEn), short-term (alpha(1)) and intermediate-term (alpha(2)) fractal scaling exponents obtained by detrended fluctuation analysis, and traditional time- and frequency-domain measures from 24-hour ECG recordings. Compared with young adults (<40 years old, n=29), children (<15 years old, n=27) showed similar complexity (ApEn) and fractal correlation properties (alpha(1), alpha(2), beta) of R-R interval dynamics despite lower spectral and time-domain measures. Progressive loss of complexity (decreased ApEn, r=-0.69, P<0.001) and alterations of long-term fractal-like heart rate behavior (increased alpha(2), r=0.63, decreased beta, r=-0.60, P<0.001 for both) were observed thereafter from middle age (40 to 60 years, n=29) to old age (>60 years, n=29). CONCLUSIONS: Cardiac interbeat interval dynamics change markedly from childhood to old age in healthy subjects. Children show complexity and fractal correlation properties of R-R interval time series comparable to those

  19. Studies on Feedback Control of Cardiac Alternans

    PubMed Central

    Dubljevic, Stevan; Lin, Shien-Fong; Christofides, Panagiotis

    2011-01-01

    A beat-to-beat variation in the electric wave propagation morphology in myocardium is referred to as cardiac alternans and it has been linked to the onset of life threatening arrhythmias and sudden cardiac death. Experimental studies have demonstrated that alternans can be annihilated by the feedback modulation of the basic pacing interval in a small piece of cardiac tissue. In this work, we study the capability of feedback control to suppress alternans both spatially and temporally in an extracted rabbit heart and in a cable of cardiac cells. This work demonstrates real-time control of cardiac alternans in an extracted rabbit heart and provides an analysis of the control methodology applied in the case of a one-dimensional (1D) cable of cardiac cells. The real-time system control is realized through feedback by proportional perturbation of the basic pacing cycle length (PCL). The measurements of the electric wave propagation are obtained by optical mapping of fluorescent dye from the surface of the heart and are fed into a custom-designed software that provides the control action signal that perturbs the basic pacing cycle length. In addition, a novel pacing protocol that avoids conduction block is applied. A numerical analysis, complementary to the experimental study is also carried out, by the ionic model of a 1D cable of cardiac cells under a self-referencing feedback protocol, which is identical to the one applied in the experimental study. Further, the amplitude of alternans linear parabolic PDE that is associated with the 1D ionic cardiac cell cable model under full state feedback control is analyzed. We provide an analysis of the amplitude of alternans parabolic PDE which admits a standard evolutionary form in a well defined functional space. Standard modal decomposition techniques are used in the analysis and the controller synthesis is carried out through pole-placement. State and output feedback controller realizations are developed and the important

  20. Ambulatory and Challenge-Associated Heart Rate Variability Measures Predict Cardiac Responses to “Real-World” Acute Emotional Stress

    PubMed Central

    Dikecligil, GN; Mujica-Parodi, LR

    2010-01-01

    Background Heart rate variability (HRV) measures homeostatic regulation of the autonomic nervous system in response to perturbation, and has been previously shown to quantify risk for cardiac events. In spite of known interactions between stress vulnerability, psychiatric illness, and cardiac health, however, to our knowledge this is the first study to directly compare the value of laboratory HRV in predicting autonomic modulation of “real-world” emotional stress. Methods We recorded ECG on 56 subjects: first, within the laboratory, and then during an acute emotional stressor: a first-time skydive. Laboratory sessions included two five-minute ECG recordings separated by one ambulatory 24-hour recording. To test the efficacy of introducing a mild emotional challenge, during each of the five-minute laboratory recordings subjects viewed either aversive or benign images. Following the laboratory session, subjects participated in the acute stressor wearing a holter ECG. Artifact-free ECGs (N=33) were analyzed for HRV, then statistically compared across laboratory and acute stress sessions. Results There were robust correlations (r=0.7-0.8) between the laboratory and acute stress HRV, indicating that the two most useful paradigms (long-term wake, followed by short-term challenge) also were most sensitive to distinct components of the acute stressor: the former correlated with the fine-tuned regulatory modulation occurring immediately prior and following the acute stressor, while the latter correlated with gross amplitude and recovery. Conclusions Our results confirmed the efficacy of laboratory-acquired HRV in predicting autonomic response to acute emotional stress, and suggest that ambulatory and challenge protocols enhance predictive value. PMID:20299007

  1. Measurement of Cardiac and Respiratory Responses in Physically Disabled and Non-Disabled Groups in a Variety of Psychological and Industrial Conditions.

    ERIC Educational Resources Information Center

    Human Resources Center, Albertson, NY.

    In order to determine ways in which disabled and non-disabled people react to low levels of stress, the reliability of heart and respiratory measures under different conditions was studied. Eighty-five subjects (paraplegics, cardiacs, and physically normal controls) were given a variety of tests with the following results: over a 1-week interval…

  2. A prospective evaluation of cardiovascular magnetic resonance measures of dyssynchrony in the prediction of response to cardiac resynchronization therapy

    PubMed Central

    2014-01-01

    Background Many patients with electrical dyssynchrony who undergo cardiac resynchronization therapy (CRT) do not obtain substantial benefit. Assessing mechanical dyssynchrony may improve patient selection. Results from studies using echocardiographic imaging to measure dyssynchrony have ultimately proved disappointing. We sought to evaluate cardiac motion in patients with heart failure and electrical dyssynchrony using cardiovascular magnetic resonance (CMR). We developed a framework for comparing measures of myocardial mechanics and evaluated how well they predicted response to CRT. Methods CMR was performed at 1.5 Tesla prior to CRT. Steady-state free precession (SSFP) cine images and complementary modulation of magnetization (CSPAMM) tagged cine images were acquired. Images were processed using a novel framework to extract regional ventricular volume-change, thickening and deformation fields (strain). A systolic dyssynchrony index (SDI) for all parameters within a 16-segment model of the ventricle was computed with high SDI denoting more dyssynchrony. Once identified, the optimal measure was applied to a second patient population to determine its utility as a predictor of CRT response compared to current accepted predictors (QRS duration, LBBB morphology and scar burden). Results Forty-four patients were recruited in the first phase (91% male, 63.3 ± 14.1 years; 80% NYHA class III) with mean QRSd 154 ± 24 ms. Twenty-one out of 44 (48%) patients showed reverse remodelling (RR) with a decrease in end systolic volume (ESV) ≥ 15% at 6 months. Volume-change SDI was the strongest predictor of RR (PR 5.67; 95% CI 1.95-16.5; P = 0.003). SDI derived from myocardial strain was least predictive. Volume-change SDI was applied as a predictor of RR to a second population of 50 patients (70% male, mean age 68.6 ± 12.2 years, 76% NYHA class III) with mean QRSd 146 ± 21 ms. When compared to QRSd, LBBB morphology and scar burden, volume

  3. Direct measurement of SR release flux by tracking 'Ca2+ spikes' in rat cardiac myocytes.

    PubMed

    Song, L S; Sham, J S; Stern, M D; Lakatta, E G; Cheng, H

    1998-11-01

    1. Ca2+ release flux across the sarcoplasmic reticulum (SR) during cardiac excitation-contraction coupling was investigated using a novel fluorescence method. Under whole-cell voltage-clamp conditions, rat ventricular myocytes were dialysed with a high concentration of EGTA (4.0 mM, 150 nM free Ca2+), to minimize the residence time of released Ca2+ in the cytoplasm, and a low-affinity, fast Ca2+ indicator, Oregon Green 488 BAPTA-5N (OG-5N; 1.0 mM, Kd approximately 31 microM), to optimize the detection of localized high [Ca2+] in release site microdomains. Confocal microscopy was employed to resolve intracellular [Ca2+] at high spatial and temporal resolution. 2. Analytical and numerical analyses indicated that, under conditions of high EGTA concentration, the free [Ca2+] change is the sum of two terms: one major term proportional to the SR release flux/Ca2+ influx, and the other reflecting the running integral of the released Ca2+. 3. Indeed, the OG-5N transients in EGTA-containing cells consisted of a prominent spike followed by a small pedestal. The OG-5N spike closely resembled the first derivative (d[Ca2+]/dt) of the conventional Ca2+ transient (with no EGTA), and mimicked the model-derived SR Ca2+ release function reported previously. In SR Ca2+-depleted cells, the OG-5N transient also closely followed the waveform of L-type Ca2+ current (ICa). Using ICa as a known source of Ca2+ influx, SR flux can be calibrated in vivo by a linear extrapolation of the ICa-elicited OG-5N signal. 4. The OG-5N image signal was localized to discrete release sites at the Z-line level of sarcomeres, indicating that the local OG-5N spike arises from 'Ca2+ spikes' at transverse (T) tubule-SR junctions (due to the imbalance between calcium ions entering the cytosol and the buffer molecules). 5. Both peak SR release flux and total amount of released Ca2+ exhibited a bell-shaped voltage dependence. The temporal pattern of SR release also varied with membrane voltage: Ca2+ release was

  4. Simultaneous measurement of respiration and cardiac period in preterm infants by laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Scalise, Lorenzo; Marchionni, Paolo; Ercoli, Ilaria; Tomasini, Enrico Primo

    2012-06-01

    The paper presents an optical non-contact method for simultaneous measurement of the heart beat and respiration period, based on the assessment of the chest wall movements induced by the pumping action of the heart, and by inspiration/expiration acts of the lungs. The measurement method is applied on 40 patients recovered in a Neonatal Intensive Care Unit (NICU), where the operating conditions are often critical and the contact with the patient's skin needs to be minimized. The method proposed is based on optical recording of the movements of chest wall by means of a laser Doppler vibrometer directly pointed onto the left, frontal part of the thoracic surface. Data measured were compared with reference instrumentation; to reach this goal, the ECG and Laser Doppler Vibrometer (LDV) signals were simultaneously acquired to monitor the heart period (HP), while to measure respiration period (RP) signals from a spirometer and a LDV were collected simultaneously. After LDV signals decomposition, heart and respiration acts were detected and compared in term of beat per minute (bpm). HPs measured by the proposed method showed an uncertainty <6% (respect to ECG), while for RPs data an uncertainty of 3% (respect to spirometer data) was estimated. The proposed method has the intrinsic advantage to be totally without contact and to allow the simultaneous measurement of heart and respiration rate also in critical, clinical environments such as the NICU.

  5. Calibration of δ13C and δ18O measurements in CO2 using Off-axis Integrated Cavity Output Spectrometer (ICOS)

    NASA Astrophysics Data System (ADS)

    Joseph, Jobin; Külls, Christoph

    2014-05-01

    The δ13C and δ18O of CO2 has enormous potential as tracers to study and quantify the interaction between the water and carbon cycles. Isotope ratio mass spectrometry (IRMS) being the conventional method for stable isotopic measurements, has many limitations making it impossible for deploying them in remote areas for online or in-situ sampling. New laser based absorption spectroscopy approaches like Cavity Ring Down Spectroscopy (CRDS) and Integrated Cavity Output Spectroscopy (ICOS) have been developed for online measurements of stable isotopes at an expense of considerably less power requirement but with precision comparable to IRMS. In this research project, we introduce a new calibration system for an Off- Axis ICOS (Los Gatos Research CCIA-36d) for a wide range of varying concentrations of CO2 (800ppm - 25,000ppm), a typical CO2 flux range at the plant-soil continuum. The calibration compensates for the concentration dependency of δ13C and δ18O measurements, and was performed using various CO2 standards with known CO2 concentration and δC13 and δO18 values. A mathematical model was developed after the calibration procedure as a correction factor for the concentration dependency of δ13C and δ18O measurements. Temperature dependency of δ13C and δ18O measurements were investigated and no significant influence was found. Simultaneous calibration of δ13C and δ18O is achieved using this calibration system with an overall accuracy of (~ 0.75±0.24 ‰ for δ13C, ~ 0.81 ±0.26‰ for δ18O). This calibration procedure is found to be appropriate for making Off-Axis ICOS suitable for measuring CO2 concentration and δ13C and δ18O measurements at atmosphere-plant-soil continuum.

  6. Automatic computation of 2D cardiac measurements from B-mode echocardiography

    NASA Astrophysics Data System (ADS)

    Park, JinHyeong; Feng, Shaolei; Zhou, S. Kevin

    2012-03-01

    We propose a robust and fully automatic algorithm which computes the 2D echocardiography measurements recommended by America Society of Echocardiography. The algorithm employs knowledge-based imaging technologies which can learn the expert's knowledge from the training images and expert's annotation. Based on the models constructed from the learning stage, the algorithm searches initial location of the landmark points for the measurements by utilizing heart structure of left ventricle including mitral valve aortic valve. It employs the pseudo anatomic M-mode image generated by accumulating the line images in 2D parasternal long axis view along the time to refine the measurement landmark points. The experiment results with large volume of data show that the algorithm runs fast and is robust comparable to expert.

  7. Cardiac troponins and high-sensitivity cardiac troponin assays.

    PubMed

    Conrad, Michael J; Jarolim, Petr

    2014-03-01

    Measurement of circulating cardiac troponins I and T has become integral to the diagnosis of myocardial infarction. This article discusses the structure and function of the troponin complex and the release of cardiac troponin molecules from the injured cardiomyocyte into the circulation. An overview of current cardiac troponin assays and their classification according to sensitivity is presented. The diagnostic criteria, role, and usefulness of cardiac troponin for myocardial infarction are discussed. In addition, several examples are given of the usefulness of high-sensitivity cardiac troponin assays for short-term and long-term prediction of adverse events.

  8. Establishing an appropriate mode of comparison for measuring the performance of marbling score output from video image analysis beef carcass grading systems.

    PubMed

    Moore, C B; Bass, P D; Green, M D; Chapman, P L; O'Connor, M E; Yates, L D; Scanga, J A; Tatum, J D; Smith, G C; Belk, K E

    2010-07-01

    A beef carcass instrument grading system that improves accuracy and consistency of marbling score (MS) evaluation would have the potential to advance value-based marketing efforts and reduce disparity in quality grading among USDA graders, shifts, and plants. The objectives of this study were to use output data from the Video Image Analysis-Computer Vision System (VIA-CVS, Research Management Systems Inc., Fort Collins, CO) to develop an appropriate method by which performance of video image analysis MS output could be evaluated for accuracy, precision, and repeatability for purposes of seeking official USDA approval for using an instrument in commerce to augment assessment of quality grade, and to use the developed standards to gain approval for VIA-CVS to assist USDA personnel in assigning official beef carcass MS. An initial MS output algorithm was developed (phase I) for the VIA-CVS before 2 separate preliminary instrument evaluation trials (phases II and III) were conducted. During phases II and III, a 3-member panel of USDA expert graders independently assigned MS to 1,068 and 1,242 stationary carcasses, respectively. Mean expert MS was calculated for each carcass. Additionally, a separate 3-member USDA expert panel developed a consensus MS for each carcass in phase III. In phase II, VIA-CVS stationary triple-placement and triple-trigger instrument repeatability values (n = 262 and 260, respectively), measured as the percentage of total variance explained by carcasses, were 99.9 and 99.8%, respectively. In phases II and III, 95% of carcasses were assigned expert MS for which differences between individual expert MS, and for which the consensus MS in phase III only, was < or = 96 MS units. Two differing approaches to simple regression analysis, as well as a separate method-comparability analysis that accommodates error in both dependent and independent variables, were used to assess accuracy and precision of instrument MS predictions vs. mean expert MS. Method

  9. SU-C-201-01: Investigation of the Effects of Scintillator Surface Treatment On Light Output Measurements with SiPM Detectors

    SciTech Connect

    Valenciaga, Y; Prout, D; Chatziioannou, A

    2015-06-15

    Purpose: To examine the effect of different scintillator surface treatments (BGO crystals) on the fraction of scintillation photons that exit the crystal and reach the photodetector (SiPM). Methods: Positron Emission Tomography is based on the detection of light that exits scintillator crystals, after annihilation photons deposit energy inside these crystals. A considerable fraction of the scintillation light gets trapped or absorbed after going through multiple internal reflections on the interfaces surrounding the crystals. BGO scintillator crystals generate considerably less scintillation light than crystals made of LSO and its variants. Therefore, it is crucial that the small amount of light produced by BGO exits towards the light detector. The surface treatment of scintillator crystals is among the factors affecting the ability of scintillation light to reach the detectors. In this study, we analyze the effect of different crystal surface treatments on the fraction of scintillation light that is detected by the solid state photodetector (SiPM), once energy is deposited inside a BGO crystal. Simulations were performed by a Monte Carlo based software named GATE, and validated by measurements from individual BGO crystals coupled to Philips digital-SiPM sensor (DPC-3200). Results: The results showed an increment in light collection of about 4 percent when only the exit face of the BGO crystal, is unpolished; compared to when all the faces are polished. However, leaving several faces unpolished caused a reduction of at least 10 percent of light output when the interaction occurs as far from the exit face of the crystal as possible compared to when it occurs very close to the exit face. Conclusion: This work demonstrates the advantages on light collection from leaving unpolished the exit face of BGO crystals. The configuration with best light output will be used to obtain flood images from BGO crystal arrays coupled to SiPM sensors.

  10. Machine learning based vesselness measurement for coronary artery segmentation in cardiac CT volumes

    NASA Astrophysics Data System (ADS)

    Zheng, Yefeng; Loziczonek, Maciej; Georgescu, Bogdan; Zhou, S. Kevin; Vega-Higuera, Fernando; Comaniciu, Dorin

    2011-03-01

    Automatic coronary centerline extraction and lumen segmentation facilitate the diagnosis of coronary artery disease (CAD), which is a leading cause of death in developed countries. Various coronary centerline extraction methods have been proposed and most of them are based on shortest path computation given one or two end points on the artery. The major variation of the shortest path based approaches is in the different vesselness measurements used for the path cost. An empirically designed measurement (e.g., the widely used Hessian vesselness) is by no means optimal in the use of image context information. In this paper, a machine learning based vesselness is proposed by exploiting the rich domain specific knowledge embedded in an expert-annotated dataset. For each voxel, we extract a set of geometric and image features. The probabilistic boosting tree (PBT) is then used to train a classifier, which assigns a high score to voxels inside the artery and a low score to those outside. The detection score can be treated as a vesselness measurement in the computation of the shortest path. Since the detection score measures the probability of a voxel to be inside the vessel lumen, it can also be used for the coronary lumen segmentation. To speed up the computation, we perform classification only for voxels around the heart surface, which is achieved by automatically segmenting the whole heart from the 3D volume in a preprocessing step. An efficient voxel-wise classification strategy is used to further improve the speed. Experiments demonstrate that the proposed learning based vesselness outperforms the conventional Hessian vesselness in both speed and accuracy. On average, it only takes approximately 2.3 seconds to process a large volume with a typical size of 512x512x200 voxels.

  11. Walnut ingestion in adults at risk for diabetes: effects on body composition, diet quality, and cardiac risk measures

    PubMed Central

    Njike, Valentine Yanchou; Ayettey, Rockiy; Petraro, Paul; Treu, Judith A; Katz, David L

    2015-01-01

    Background Despite their energy density, walnuts can be included in the diet without adverse effects on weight or body composition. The effect of habitual walnut intake on total calorie intake is not well studied. Effects on overall diet quality have not been reported. Methods Randomized, controlled, modified Latin square parallel design study with 2 treatment arms. The 112 participants were randomly assigned to a diet with or without dietary counseling to adjust calorie intake. Within each treatment arm, participants were further randomized to 1 of the 2 possible sequence permutations to receive a walnut-included diet with 56 g (providing 366 kcal) of walnuts per day and a walnut-excluded diet. Participants were assessed for diet quality, body composition, and cardiac risk measures. Results When compared with a walnut-excluded diet, a walnut-included diet for 6 months, with or without dietary counseling to adjust caloric intake, significantly improved diet quality as measured by the Healthy Eating Index 2010 (9.14±17.71 vs 0.40±15.13; p=0.02 and 7.02±15.89 vs -5.92±21.84; p=0.001, respectively). Endothelial function, total and low-density lipoprotein (LDL) cholesterol improved significantly from baseline in the walnut-included diet. Body mass index, percent body fat, visceral fat, fasting glucose, glycated hemoglobin, and blood pressure did not change significantly. Conclusions The inclusion of walnuts in an ad libitum diet for 6 months, with or without dietary counseling to adjust calorie intake, significantly improved diet quality, endothelial function, total and LDL cholesterol, but had no effects on anthropometric measures, blood glucose level, and blood pressure. Trial registration number: NCT02330848 PMID:26688734

  12. Measures of sleep and cardiac functioning during sleep using a multi-sensory commercially-available wristband in adolescents.

    PubMed

    de Zambotti, Massimiliano; Baker, Fiona C; Willoughby, Adrian R; Godino, Job G; Wing, David; Patrick, Kevin; Colrain, Ian M

    2016-05-01

    To validate measures of sleep and heart rate (HR) during sleep generated by a commercially-available activity tracker against those derived from polysomnography (PSG) in healthy adolescents. Sleep data were concurrently recorded using FitbitChargeHR™ and PSG, including electrocardiography (ECG), during an overnight laboratory sleep recording in 32 healthy adolescents (15 females; age, mean±SD: 17.3±2.5years). Sleep and HR measures were compared between FitbitChargeHR™ and PSG using paired t-tests and Bland-Altman plots. Epoch-by-epoch analysis showed that FitbitChargeHR™ had high overall accuracy (91%), high sensitivity (97%) in detecting sleep, and poor specificity (42%) in detecting wake on a min-to-min basis. On average, FitbitChargeHR™ significantly but negligibly overestimated total sleep time by 8min and sleep efficiency by 1.8%, and underestimated wake after sleep onset by 5.6min (p<0.05). Within FitbitChargeHR™ epochs of sleep, the average HR was 59.3±7.5bpm, which was significantly but negligibly lower than that calculated from ECG (60.2±7.6bpm, p<0.001), with no change in mean discrepancies throughout the night. FitbitChargeHR™ showed good agreement with PSG and ECG in measuring sleep and HR during sleep, supporting its use in assessing sleep and cardiac function in healthy adolescents. Further validation is needed to assess its reliability over prolonged periods of time in ecological settings and in clinical populations.

  13. Novel experimental results in human cardiac electrophysiology: measurement of the Purkinje fibre action potential from the undiseased human heart.

    PubMed

    Nagy, Norbert; Szél, Tamás; Jost, Norbert; Tóth, András; Gy Papp, Julius; Varró, András

    2015-09-01

    Data obtained from canine cardiac electrophysiology studies are often extrapolated to the human heart. However, it has been previously demonstrated that because of the lower density of its K(+) currents, the human ventricular action potential has a less extensive repolarization reserve. Since the relevance of canine data to the human heart has not yet been fully clarified, the aim of the present study was to determine for the first time the action potentials of undiseased human Purkinje fibres (PFs) and to compare them directly with those of dog PFs. All measurements were performed at 37 °C using the conventional microelectrode technique. At a stimulation rate of 1 Hz, the plateau potential of human PFs is more positive (8.0 ± 1.8 vs 8.6 ± 3.4 mV, n = 7), while the amplitude of the spike is less pronounced. The maximal rate of depolarization is significantly lower in human PKs than in canine PFs (406.7 ± 62 vs 643 ± 36 V/s, respectively, n = 7). We assume that the appreciable difference in the protein expression profiles of the 2 species may underlie these important disparities. Therefore, caution is advised when canine PF data are extrapolated to humans, and further experiments are required to investigate the characteristics of human PF repolarization and its possible role in arrhythmogenesis.

  14. Complexity-Measure-Based Sequential Hypothesis Testing for Real-Time Detection of Lethal Cardiac Arrhythmias

    NASA Astrophysics Data System (ADS)

    Chen, Szi-Wen

    2006-12-01

    A novel approach that employs a complexity-based sequential hypothesis testing (SHT) technique for real-time detection of ventricular fibrillation (VF) and ventricular tachycardia (VT) is presented. A dataset consisting of a number of VF and VT electrocardiogram (ECG) recordings drawn from the MIT-BIH database was adopted for such an analysis. It was split into two smaller datasets for algorithm training and testing, respectively. Each ECG recording was measured in a 10-second interval. For each recording, a number of overlapping windowed ECG data segments were obtained by shifting a 5-second window by a step of 1 second. During the windowing process, the complexity measure (CM) value was calculated for each windowed segment and the task of pattern recognition was then sequentially performed by the SHT procedure. A preliminary test conducted using the database produced optimal overall predictive accuracy of[InlineEquation not available: see fulltext.]. The algorithm was also implemented on a commercial embedded DSP controller, permitting a hardware realization of real-time ventricular arrhythmia detection.

  15. Real time measurement of myocardial oxygen dynamics during cardiac ischemia-reperfusion of rats.

    PubMed

    Lee, Gi-Ja; Kim, Seung Ki; Kang, Sung Wook; Kim, Ok-Kyun; Chae, Su-Jin; Choi, Samjin; Shin, Jae Ho; Park, Hun-Kuk; Chung, Joo-Ho

    2012-11-21

    Because oxygen plays a critical role in the pathophysiology of myocardial injury during subsequent reperfusion, as well as ischemia, the accurate measurement of myocardial oxygen tension is crucial for the assessment of myocardial viability by ischemia-reperfusion (IR) injury. Therefore, we utilized a sol-gel derived electrochemical oxygen microsensor to monitor changes in oxygen tension during myocardial ischemia-reperfusion. We also analyzed differences in oxygen tension recovery in post-ischemic myocardium depending on ischemic time to investigate the correlation between recovery parameters for oxygen tension and the severity of IR injury. An oxygen sensor was built using a xerogel-modified platinum microsensor and a coiled Ag/AgCl reference electrode. Rat hearts were randomly divided into 5 groups: control (0 min ischemia), I-10 (10 min ischemia), I-20 (20 min ischemia), I-30 (30 min ischemia), and I-40 (40 min ischemia) groups (n = 3 per group, respectively). After the induction of ischemia, reperfusion was performed for 60 min. As soon as the ischemia was initiated, oxygen tension rapidly declined to near zero levels. When reperfusion was initiated, the changes in oxygen tension depended on ischemic time. The normalized peak level of oxygen tension during the reperfusion episode was 188 ± 27 in group I-10, 120 ± 24 in group I-20, 12.5 ± 10.6 in group I-30, and 1.24 ± 1.09 in group I-40 (p < 0.001, n = 3, respectively). After 60 min of reperfusion, the normalized restoration level was 129 ± 30 in group I-10, 88 ± 4 in group I-20, 3.40 ± 4.82 in group I-30, and 0.99 ± 0.94 in group I-40 (p < 0.001, n = 3, respectively). The maximum and restoration values of oxygen tension in groups I-30 and I-40 after reperfusion were lower than pre-ischemic values. In particular, oxygen tension in the I-40 group was not recovered at all. These results were also demonstrated by TTC staining. We suggest that these recovery parameters could be utilized as an index of

  16. Acoustic measurements of post-dive cardiac responses in southern elephant seals (Mirounga leonina) during surfacing at sea.

    PubMed

    Day, Louise; Jouma'a, Joffrey; Bonnel, Julien; Guinet, Christophe

    2017-02-15

    Measuring physiological data in free-ranging marine mammals remains challenging, owing to their far-ranging foraging habitat. Yet, it is important to understand how these divers recover from effort expended underwater, as marine mammals can perform deep and recurrent dives. Among them, southern elephant seals (Mirounga leonina) are one of the most extreme divers, diving continuously at great depth and for long duration while travelling over large distances within the Southern Ocean. To determine how they manage post-dive recovery, we deployed hydrophones on four post-breeding female southern elephant seals. Cardiac data were extracted from sound recordings when the animal was at the surface breathing. Mean heart rate at the surface was 102.4±4.9 beats.min(-1) and seals spent on average 121±20 s breathing. During these surface intervals, the instantaneous heart rate is increasing with time. Elephant seals are supposed to drastically slow their heart rate (bradycardia) while they are deep underwater, and increase it (tachycardia) during the ascent towards the surface. Our finding suggests that tachycardia continues while the animal stays breathing at the surface. Also, the measured mean heart rate at the surface was unrelated to the duration and swimming effort of the dive prior to the surface interval. Recovery (at the surface) after physical effort (underwater) appears to be related to the overall number of heart beats performed at the surface, and therefore total surface duration. Southern elephant seals recover from dives by adjusting the time spent at the surface rather than their heart rate.

  17. Stored-fluorography mode reduces radiation dose during cardiac catheterization measured with OSLD dosimeter

    NASA Astrophysics Data System (ADS)

    Ting, Chien-Yi; Chen, Zhih-Cherng; Tang, Kuo-Ting; Liu, Wei-Chung; Lin, Chun-Chih; Wang, Hsin-Ell

    2015-12-01

    Coronary angiogram is an imperative tool for diagnosis of coronary artery diseases, in which cine-angiography is a commonly used method. Although the angiography proceeds under radiation, the potential risk of radiation exposure for both the patients and the operators was seldom noticed. In this study, the absorbed radiation dose in stored-fluorography mode was compared with that in cine-angiography mode by using optically simulated luminescent dosimeters to realize their effects on radiation dose. Patients received coronary angiogram via radial artery approach were randomized into the stored-fluorography group (N=30) or the cine-angiography group (N=30). The excluded criteria were: 1. women at pregnancy or on breast feeding, 2. chronic kidney diseases with glomerular filtration rate less than 60 mL/min. During the coronary angiogram, absorbed dose of the patients and the operator radiation exposure was measured with optically simulated luminescent dosimeter (OSLD). The absorbed dose of the patients in the stored-fluorography group (3.13±0.25 mGy) was apparently lower than that in the cine-angiography group (65.57±5.37 mGy; P<0.001). For the operator, a statistical difference (P<0.001) was also found between the stored-fluorography group (0.09163 μGy) and the cine-angiography (0.6519μGy). Compared with traditional cine-angiography mode, the stored-fluorography mode can apparently reduce radiation exposure of the patients and the operator in coronary angiogram.

  18. Cardiac Sarcoidosis.

    PubMed

    Birnie, David; Ha, Andrew C T; Gula, Lorne J; Chakrabarti, Santabhanu; Beanlands, Rob S B; Nery, Pablo

    2015-12-01

    Studies suggest clinically manifest cardiac involvement occurs in 5% of patients with pulmonary/systemic sarcoidosis. The principal manifestations of cardiac sarcoidosis (CS) are conduction abnormalities, ventricular arrhythmias, and heart failure. Data indicate that an 20% to 25% of patients with pulmonary/systemic sarcoidosis have asymptomatic (clinically silent) cardiac involvement. An international guideline for the diagnosis and management of CS recommends that patients be screened for cardiac involvement. Most studies suggest a benign prognosis for patients with clinically silent CS. Immunosuppression therapy is advocated for clinically manifest CS. Device therapy, with implantable cardioverter defibrillators, is recommended for some patients.

  19. Symmetry of cardiac function assessment

    PubMed Central

    Bai, Xu-Fang; Ma, Amy X

    2016-01-01

    Both right and left ventricles are developed from two adjacent segments of the primary heart tube. Though they are different with regard to shape and power, they mirror each other in terms of behavior. This is the first level of symmetry in cardiac function assessment. Both cardiac muscle contraction and relaxation are active. This constructs the second level of symmetry in cardiac function assessment. Combination of the two levels will help to find some hidden indexes or approaches to evaluate cardiac function. In this article, four major indexes from echocardiography were analyzed under this principal, another seventeen indexes or measurement approaches came out of the shadow, which is very helpful in the assessment of cardiac function, especially for the right cardiac function and diastolic cardiac function. PMID:27582768

  20. Measurement of OCS, CO2, CO and H2O aboard NASA's WB-57 High Altitude Platform Using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS)

    NASA Astrophysics Data System (ADS)

    Leen, J. B.; Owano, T. G.; Du, X.; Gardner, A.; Gupta, M.

    2014-12-01

    Carbonyl sulfide (OCS) is the most abundant sulfur gas in the atmosphere and has been implicated in controlling the sulfur budget and aerosol loading of the stratosphere. In the troposphere, OCS is irreversibly consumed during photosynthesis and may serve as a tracer for gross primary production (GPP). Its primary sources are ocean outgassing, industrial processes, and biomass burning. Its primary sinks are vegetation and soils. Despite the importance of OCS in atmospheric processes, the OCS atmospheric budget is poorly determined and has high uncertainty. OCS is typically monitored using either canisters analyzed by gas chromatography or integrated atmospheric column measurements. Improved in-situ terrestrial flux and airborne measurements are required to constrain the OCS budget and further elucidate its role in stratospheric aerosol formation and as a tracer for biogenic volatile organics and photosynthesis. Los Gatos Research has developed a flight capable mid-infrared Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) analyzer to simultaneously quantify OCS, CO2, CO, and H2O in ambient air at up to 2 Hz. The prototype was tested on diluted, certified samples and found to be precise (OCS, CO2, CO, and H2O to better than ±4 ppt, ±0.2 ppm, ±0.31 ppb, and ±3.7 ppm respectively, 1s in 1 sec) and linear (R2 > 0.9997 for all gases) over a wide dynamic range (OCS, CO2, CO, and H2O ranging from 0.2 - 70 ppb, 500 - 3000 ppm, 150 - 480 ppb, and 7000 - 21000 ppm respectively). Cross-interference measurements showed no appreciable change in measured OCS concentration with variations in CO2 (500 - 3500 ppm) or CO. We report on high altitude measurements made aboard NASA's WB-57 research aircraft. Two research flights were conducted from Houston, TX. The concentration of OCS, CO2, CO, and H2O were continuously recorded from sea level to approximately 60,000 feet. The concentration of OCS was observed to increase with altitude through the troposphere due to the

  1. Conversion of cardiac performance data in analog form for digital computer entry

    NASA Technical Reports Server (NTRS)

    Miller, R. L.

    1972-01-01

    A system is presented which will reduce analog cardiac performance data and convert the results to digital form for direct entry into a commercial time-shared computer. Circuits are discussed which perform the measurement and digital conversion of instantaneous systolic and diastolic parameters from the analog blood pressure waveform. Digital averaging over a selected number of heart cycles is performed on these measurements, as well as those of flow and heart rate. The determination of average cardiac output and peripheral resistance, including trends, is the end result after processing by digital computer.

  2. A pilot study to assess the feasibility of a submaximal exercise test to measure individual response to cardiac medication in dogs with acquired heart failure.

    PubMed

    Ferasin, L; Marcora, S

    2007-08-01

    Exercise testing is not commonly used in canine medicine because of several limitations. The aim of this study was to investigate the suitability of a treadmill test to measure the exercise capacity of untrained canine cardiac patients and to measure some biological parameters that might reflect the tolerance of dogs with heart failure to submaximal exercise. The exercise capacity of seven dogs with naturally occurring heart failure was evaluated before the institution of cardiac medication and 7 days after the beginning of the study. An additional re-examination was requested after 28 days. The exercise test was performed on a motorized treadmill at three different speeds (0.5 m/s, 1.0 m/s and 1.5 m/s). The following parameters were measured at the end of each stage and after 20 min recovery: heart rate, rectal temperature, glucose, lactate, aspartate aminotransferase, creatine kinase, PvO(2), PvCO(2), pH, haematocrit, bicarbonate, sodium, potassium and chloride. Serum cardiac troponin-I was also measured at the beginning of the test and at the end of the recovery period. Owners' perception reflected the ability of their dogs to exercise on the treadmill. Lactate level increased noticeably with the intensity of the exercise test, and its variation coincided with different exercise tolerance observed by the owners. Heart rate seemed to follow a similar trend in the few dogs presented in sinus rhythm. None of the remaining parameters appeared to be sensitive indicators of activity level in the dogs used in this study. The treadmill exercise test in dogs with acquired heart failure is feasible and might provide useful information for assessing individual response to cardiac medication. Lactate and heart rate seemed to reflect individual levels of exercise tolerance, although further studies are necessary to confirm the reliability and repeatability of this test.

  3. An updated model for nitrate uptake modelling in plants. II. Assessment of active root involvement in nitrate uptake based on integrated root system age: measured versus modelled outputs

    PubMed Central

    Malagoli, Philippe; Le Deunff, Erwan

    2014-01-01

    Background and Aims An updated version of a mechanistic structural–functional model was developed to predict nitrogen (N) uptake throughout the growth cycle by a crop of winter oilseed rape, Brassica napus, grown under field conditions. Methods The functional component of the model derives from a revisited conceptual framework that combines the thermodynamic Flow–Force interpretation of nitrate uptake isotherms and environmental and in planta effects on nitrate influx. Estimation of the root biomass (structural component) is based upon a combination of root mapping along the soil depth profile in the field and a relationship between the specific root length and external nitrate concentration. The root biomass contributing actively to N uptake was determined by introduction of an integrated root system age that allows assignment of a root absorption capacity at a specific age of the root. Key Results Simulations were well matched to measured data of N taken up under field conditions for three levels of N fertilization. The model outputs indicated that the two topsoil layers (0–30 and 30–60 cm) contained 75–88 % of the total root length and biomass, and accounted for 90–95 % of N taken up at harvest. Conclusions This conceptual framework provides a model of nitrate uptake that is able to respond to external nitrate fluctuations at both functional and structural levels. PMID:24709791

  4. On the calibration of continuous, high-precision delta18O and delta2H measurements using an off-axis integrated cavity output spectrometer.

    PubMed

    Wang, Lixin; Caylor, Kelly K; Dragoni, Danilo

    2009-02-01

    The (18)O and (2)H of water vapor serve as powerful tracers of hydrological processes. The typical method for determining water vapor delta(18)O and delta(2)H involves cryogenic trapping and isotope ratio mass spectrometry. Even with recent technical advances, these methods cannot resolve vapor composition at high temporal resolutions. In recent years, a few groups have developed continuous laser absorption spectroscopy (LAS) approaches for measuring delta(18)O and delta(2)H which achieve accuracy levels similar to those of lab-based mass spectrometry methods. Unfortunately, most LAS systems need cryogenic cooling and constant calibration to a reference gas, and have substantial power requirements, making them unsuitable for long-term field deployment at remote field sites. A new method called Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) has been developed which requires extremely low-energy consumption and neither reference gas nor cryogenic cooling. In this report, we develop a relatively simple pumping system coupled to a dew point generator to calibrate an ICOS-based instrument (Los Gatos Research Water Vapor Isotope Analyzer (WVIA) DLT-100) under various pressures using liquid water with known isotopic signatures. Results show that the WVIA can be successfully calibrated using this customized system for different pressure settings, which ensure that this instrument can be combined with other gas-sampling systems. The precisions of this instrument and the associated calibration method can reach approximately 0.08 per thousand for delta(18)O and approximately 0.4 per thousand for delta(2)H. Compared with conventional mass spectrometry and other LAS-based methods, the OA-ICOS technique provides a promising alternative tool for continuous water vapor isotopic measurements in field deployments.

  5. An investigation into the viability of image processing for the measurement of sarcomere length in isolated cardiac trabeculae.

    PubMed

    Anderson, Alexander J; Nielsen, Poul M F; Taberner, Andrew J

    2012-01-01

    A preliminary investigation was performed into the viability of using frequency domain image processing techniques to determine sarcomere length from bright-field images of isolated cardiac trabecula in real-time. Hardware based data processing was used to compute the average sarcomere length in a cardiac trabecula undergoing stretch. Our technique estimated the increase in mean sarcomere length with increasing muscle length as the trabecula was stretched to and beyond the normal physiological limit of 2.4 µm. The standard error in the mean sarcomere length extracted from each image was typically10 nm.

  6. Assessing cardiac pumping capability by exercise testing and inotropic stimulation.

    PubMed Central

    Tan, L B; Bain, R J; Littler, W A

    1989-01-01

    In heart failure both functional capacity and prognosis are primarily determined by the degree of pump dysfunction. Although data on haemodynamic function at rest may indicate impaired cardiac function, they do not assess the capacity of the heart to respond to stress. Maximal bicycle ergometry and incremental intravenous inotropic stimulation in 31 patients with moderately severe heart failure were evaluated as methods of stressing the heart to determine cardiac pumping capability, which is defined as the cardiac power obtained during maximal stimulation. There was good agreement between the cardiac pumping capabilities assessed by these two methods. Maximal cardiac power output was better than maximal cardiac output and left ventricular stroke work index in representing cardiac pumping capability, because it was less dependent on the type of stimulation used during evaluation. Inotropic challenge is at least as effective as exercise testing in assessing cardiac pumping capability in heart failure, and may be a better method in patients who find physical exercise difficult. PMID:2757870

  7. Detector to detector corrections: A comprehensive experimental study of detector specific correction factors for beam output measurements for small radiotherapy beams

    SciTech Connect

    Azangwe, Godfrey Grochowska, Paulina; Izewska, Joanna; Meghzifene, Ahmed; Georg, Dietmar; Hopfgartner, Johannes; Lechner, Wolfgang; Mizuno, Hideyuki; Fukumura, Akifumi; Yajima, Kaori; Gouldstone, Clare; Sharpe, Peter; Palmans, Hugo

    2014-07-15

    Purpose: The aim of the present study is to provide a comprehensive set of detector specific correction factors for beam output measurements for small beams, for a wide range of real time and passive detectors. The detector specific correction factors determined in this study may be potentially useful as a reference data set for small beam dosimetry measurements. Methods: Dose response of passive and real time detectors was investigated for small field sizes shaped with a micromultileaf collimator ranging from 0.6 × 0.6 cm{sup 2} to 4.2 × 4.2 cm{sup 2} and the measurements were extended to larger fields of up to 10 × 10 cm{sup 2}. Measurements were performed at 5 cm depth, in a 6 MV photon beam. Detectors used included alanine, thermoluminescent dosimeters (TLDs), stereotactic diode, electron diode, photon diode, radiophotoluminescent dosimeters (RPLDs), radioluminescence detector based on carbon-doped aluminium oxide (Al{sub 2}O{sub 3}:C), organic plastic scintillators, diamond detectors, liquid filled ion chamber, and a range of small volume air filled ionization chambers (volumes ranging from 0.002 cm{sup 3} to 0.3 cm{sup 3}). All detector measurements were corrected for volume averaging effect and compared with dose ratios determined from alanine to derive a detector correction factors that account for beam perturbation related to nonwater equivalence of the detector materials. Results: For the detectors used in this study, volume averaging corrections ranged from unity for the smallest detectors such as the diodes, 1.148 for the 0.14 cm{sup 3} air filled ionization chamber and were as high as 1.924 for the 0.3 cm{sup 3} ionization chamber. After applying volume averaging corrections, the detector readings were consistent among themselves and with alanine measurements for several small detectors but they differed for larger detectors, in particular for some small ionization chambers with volumes larger than 0.1 cm{sup 3}. Conclusions: The results demonstrate

  8. Evaluation of Scientific Outputs of Kashan University of Medical Sciences in Scopus Citation Database based on Scopus, ResearchGate, and Mendeley Scientometric Measures

    PubMed Central

    Batooli, Zahra; Ravandi, Somaye Nadi; Bidgoli, Mohammad Sabahi

    2016-01-01

    Introduction It is essential to evaluate the impact of scientific publications through citation analysis in citation indexes. In addition, scientometric measures of social media also should be assessed. These measures include how many times the publications were read, viewed, and downloaded. The present study aimed to assess the scientific output of scholars at Kashan University of Medical Sciences by the end of March 2014 based on scientometric measures of Scopus, ResearchGate, and Mendeley. Methods A survey method was used to study the articles published in Scopus journals by scholars at Kashan University of Medical Sciences by the end of March 2014. The required data were collected from Scopus, ResearchGate, and Mendeley. The data were analyzed with descriptive statistics. Also, the Spearman correlation was used between the number of views of articles in ResearchGate with citation number of the articles in Scopus and reading frequency of the articles in Mendeley with citation number in Scopus were examined using the Spearman correlation in SPSS 16. Results Five-hundred and thirty-three articles were indexed in the Scopus Citation Database by the end of March 2014. Collectively, those articles were cited 1,315 times. The articles were covered by ResearchGate (74%) more than Mendeley (44%). In addition, 98% of the articles indexed in ResearchGate and 92% of the articles indexed in Mendeley were viewed at least once. The results showed that there was a positive correlation between the number of views of the articles in ResearchGate and Mendeley and the number of citations of the articles in Scopus. Conclusion Coverage and the number of visitors were higher in ResearchGate than in Mendeley. The increase in the number of views of articles in ResearchGate and Mendeley also increased the number of citations of the papers. Social networks, such as ResearchGate and Mendeley, also can be used as tools for the evaluation of academics and scholars based on the scientific

  9. Cardiac tamponade, constrictive pericarditis, and restrictive cardiomyopathy.

    PubMed

    Goldstein, James A

    2004-09-01

    The pericardium envelopes the cardiac chambers and under physiological conditions exerts subtle functions, including mechanical effects that enhance normal ventricular interactions that contribute to balancing left and right cardiac outputs. Because the pericardium is non-compliant, conditions that cause intrapericardial crowding elevate intrapericardial pressure, which may be the mediator of adverse cardiac compressive effects. Elevated intrapericardial pressure may result from primary disease of the pericardium itself (tamponade or constriction) or from abrupt chamber dilatation (eg, right ventricular infarction). Regardless of the mechanism leading to increased intrapericardial pressure, the resultant pericardial constraint exerts adverse effects on cardiac filling and output. Constriction and restrictive cardiomyopathy share common pathophysiological and clinical features; their differentiation can be quite challenging. This review will consider the physiology of the normal pericardium and its dynamic interactions with the heart and review in detail the pathophysiology and clinical manifestations of cardiac tamponade, constrictive pericarditis, and restrictive cardiomyopathy.

  10. Phenotypic screen quantifying differential regulation of cardiac myocyte hypertrophy identifies CITED4 regulation of myocyte elongation

    PubMed Central

    Ryall, Karen A.; Bezzerides, Vassilios J.; Rosenzweig, Anthony; Saucerman, Jeffrey J.

    2014-01-01

    Cardiac hypertrophy is controlled by a highly connected signaling network with many effectors of cardiac myocyte size. Quantification of the contribution of individual pathways to specific changes in shape and transcript abundance is needed to better understand hypertrophy signaling and to improve heart failure therapies. We stimulated cardiac myocytes with 15 hypertrophic agonists and quantitatively characterized differential regulation of 5 shape features using high-throughput microscopy and transcript levels of 12 genes using qPCR. Transcripts measured were associated with phenotypes including fibrosis, cell death, contractility, proliferation, angiogenesis, inflammation, and the fetal cardiac gene program. While hypertrophy pathways are highly connected, the agonist screen revealed distinct hypertrophy phenotypic signatures for the 15 receptor agonists. We then used k-means clustering of inputs and outputs to identify a network map linking input modules to output modules. Five modules were identified within inputs and outputs with many maladaptive outputs grouping together in one module: Bax, C/EBPβ, Serca2a, TNFα, and CTGF. Subsequently, we identified mechanisms underlying two correlations revealed in the agonist screen: correlation between regulators of fibrosis and cell death signaling (CTGF and Bax mRNA) caused by AngII; and myocyte proliferation (CITED4 mRNA) and elongation caused by Nrg1. Follow-up experiments revealed positive regulation of Bax mRNA level by CTGF and an incoherent feedforward loop linking Nrg1, CITED4 and elongation. With this agonist screen, we identified the most influential inputs in the cardiac hypertrophy signaling network for a variety of features related to pathological and protective hypertrophy signaling and shared regulation among cardiac myocyte phenotypes. PMID:24613264

  11. Comparison between noninvasive measurement of central venous pressure using near infrared spectroscopy with an invasive central venous pressure monitoring in cardiac surgical Intensive Care Unit

    PubMed Central

    Sathish, N.; Singh, Naveen G.; Nagaraja, P. S.; Sarala, B. M.; Prabhushankar, C. G.; Dhananjaya, Manasa; Manjunatha, N.

    2016-01-01

    Introduction: Central venous pressure (CVP) measurement is essential in the management of certain clinical situations, including cardiac failure, volume overload and sepsis. CVP measurement requires catheterization of the central vein which is invasive and may lead to complications. The aim of this study was to evaluate the accuracy of measurement of CVP using a new noninvasive method based on near infrared spectroscopy (NIRS) in a group of cardiac surgical Intensive Care Unit (ICU) patients. Methodology: Thirty patients in cardiac surgical ICU were enrolled in the study who had an in situ central venous catheter (CVC). Sixty measurements were recorded in 1 h for each patient. A total of 1800 values were compared between noninvasive CVP (CVPn) obtained from Mespere VENUS 2000 CVP system and invasive CVP (CVPi) obtained from CVC. Results: Strong positive correlation was found between CVPi and CVPn (R = 0.9272, P < 0.0001). Linear regression equation - CVPi = 0.5404 + 0.8875 × CVPn (r2 = 0.86, P < 0.001), Bland–Altman bias plots showed mean difference ± standard deviation and limits of agreement: −0.31 ± 1.36 and − 2.99 to + 2.37 (CVPi–CVPn). Conclusion: Noninvasive assessment of the CVP based on NIRS yields readings consistently close to those measured invasively. CVPn may be a clinically useful substitute for CVPi measurements with an advantage of being simple and continuous. It is a promising tool for early management of acute state wherein knowledge of CVP is helpful. PMID:27397443

  12. Baroreceptor output during normal and obstructed breathing and Mueller maneuvers.

    PubMed

    Fitzgerald, R S; Robotham, J L; Anand, A

    1981-05-01

    Cardiovascular control during asthma and other forms of obstructed breathing has not been extensively investigated. Previous studies in dogs have shown that obstructed breathing or an inspiratory effort against a blocked airway (Mueller maneuver) provoke large oscillations in blood pressure. During the inspiratory phase transmural systolic pressure relative to atmosphere drops initially, but transmural systolic pressure relative to intrathoracic pressure can remain unchanged or even increase. Because the carotid baroreceptors are located in the extrathoracic circulation, whereas the aortic baroreceptors are located in the intrathoracic circulation, and each responds to local transmural arterial pressure, simultaneous baroreceptor output from these two areas was measured in the anesthetized cat during normal and obstructed breathing and during Mueller maneuvers. Both whole-nerve and single-fiber preparations showed a significantly decreased output from the carotid baroreceptors during obstructed inspiratory efforts, whereas aortic baroreceptor output decreased significantly less or not at all. Transmural systolic pressure decreased significantly less in the aorta than in the carotid regions. Further, the aortic baroreceptors were more sensitive to changes in pulse pressure than were the carotid baroreceptors. These results suggest a mechanism for stabilizing the cardiac responses to precipitous falls in blood pressure that occur in obstructed breathing.

  13. Measuring the environmental sustainability performance of global supply chains: A multi-regional input-output analysis for carbon, sulphur oxide and water footprints.

    PubMed

    Acquaye, Adolf; Feng, Kuishuang; Oppon, Eunice; Salhi, Said; Ibn-Mohammed, Taofeeq; Genovese, Andrea; Hubacek, Klaus

    2017-02-01

    Measuring the performance of environmentally sustainable supply chains instead of chain constitute has become a challenge despite the convergence of the underlining principles of sustainable supply chain management. This challenge is exacerbated by the fact that supply chains are inherently dynamic and complex and also because multiple measures can be used to characterize performances. By identifying some of the critical issues in the literature regarding performance measurements, this paper contributes to the existing body of literature by adopting an environmental performance measurement approach for economic sectors. It uses economic sectors and evaluates them on a sectoral level in specific countries as well as part of the Global Value Chain based on the established multi-regional input-output (MRIO) modeling framework. The MRIO model has been used to calculate direct and indirect (that is supply chain or upstream) environmental effects such as CO2, SO2, biodiversity, water consumption and pollution to name just a few of the applications. In this paper we use MRIO analysis to calculate emissions and resource consumption intensities and footprints, direct and indirect impacts, and net emission flows between countries. These are exemplified by using carbon emissions, sulphur oxide emissions and water use in two highly polluting industries; Electricity production and Chemical industry in 33 countries, including the EU-27, Brazil, India and China, the USA, Canada and Japan from 1995 to 2009. Some of the highlights include: On average, direct carbon emissions in the electricity sector across all 27 member states of the EU was estimated to be 1368 million tons and indirect carbon emissions to be 470.7 million tons per year representing 25.6% of the EU-27 total carbon emissions related to this sector. It was also observed that from 2004, sulphur oxide emissions intensities in electricity production in India and China have remained relatively constant at about 62.8 g

  14. Influence of gravity on cardiac performance

    NASA Technical Reports Server (NTRS)

    Pantalos, G. M.; Sharp, M. K.; Woodruff, S. J.; O'Leary, D. S.; Lorange, R.; Everett, S. D.; Bennett, T. E.; Shurfranz, T.

    1998-01-01

    Results obtained by the investigators in ground-based experiments and in two parabolic flight series of tests aboard the NASA KC-135 aircraft with a hydraulic simulator of the human systemic circulation have confirmed that a simple lack of hydrostatic pressure within an artificial ventricle causes a decrease in stroke volume of 20%-50%. A corresponding drop in stroke volume (SV) and cardiac output (CO) was observed over a range of atrial pressures (AP), representing a rightward shift of the classic CO versus AP cardiac function curve. These results are in agreement with echocardiographic experiments performed on space shuttle flights, where an average decrease in SV of 15% was measured following a three-day period of adaptation to weightlessness. The similarity of behavior of the hydraulic model to the human system suggests that the simple physical effects of the lack of hydrostatic pressure may be an important mechanism for the observed changes in cardiac performance in astronauts during the weightlessness of space flight.

  15. Cardiac Cephalgia

    PubMed Central

    Wassef, Nancy; Ali, Ali Turab; Katsanevaki, Alexia-Zacharoula; Nishtar, Salman

    2014-01-01

    Although most of the patients presenting with ischemic heart disease have chest pains, there are other rare presenting symptoms like cardiac cephalgia. In this report, we present a case of acute coronary syndrome with an only presentation of exertional headache. It was postulated as acute presentation of coronary artery disease, due to previous history of similar presentation associated with some chest pains with previous left coronary artery stenting. We present an unusual case with cardiac cephalgia in a young patient under the age of 50 which was not reported at that age before. There are four suggested mechanisms for this cardiac presentation. PMID:28352454

  16. Mobile Measurement of Methane and Ethane for the Detection and Attribution of Natural Gas Pipeline Leaks Using Off-Axis Integrated Output Spectroscopy

    NASA Astrophysics Data System (ADS)

    Leen, J. B.; Spillane, S.; Gardner, A.; Hansen, P. C.; Gupta, M.; Baer, D. S.

    2015-12-01

    Natural gas leaks pose a risk to public safety both because of potential explosions as well as from the greenhouse gas potential of fugitive methane. The rapid and cost effective detection of leaks in natural gas distribution is critical to providing a system that is safe for the public and the environment. Detection of methane from a mobile platform (vehicles, aircraft, etc.) is an accepted method of identifying leaks. A robust approach to differentiating pipeline gas (thermogenic) from other biogenic sources is the detection of ethane along with methane. Ethane is present in nearly all thermogenic gas but not in biogenic sources and its presence can be used to positively identify a gas sample. We present a mobile system for the simultaneous measurement of methane and ethane that is capable of detecting pipeline leaks and differentiating pipeline gas from other biogenic sources such as landfills, swamps, sewers, and enteric fermentation. The mobile system consists of a high precision GPS, sonic anemometer, and methane/ethane analyzer based on off-axis integrated cavity output spectroscopy (OA-ICOS). In order to minimize the system cost and facilitate the wide use of mobile leak detection, the analyzer operates in the near-infrared portion of the spectrum where lasers and optics are significantly less costly than in the mid-infrared. The analyzer is capable of detecting methane with a precision of <2 ppb (1σ in 1 sec) and detecting ethane with a precision of <30 ppb (1σ in 1 sec). Additionally, measurement rates of 5 Hz allow for detection of leaks at speeds up to 50 mph. The sonic anemometer, GPS and analyzer inlet are mounted to a generic roof rack for attachment to available fleet vehicles. The system can detect leaks having a downwind concentration of as little as 10 ppb of methane above ambient, while leaks 500 ppb above ambient can be identified as thermogenic with greater than 99% certainty (for gas with 6% ethane). Finally, analysis of wind data provides

  17. Measurement of Mean Cardiac Dose for Various Breast Irradiation Techniques and Corresponding Risk of Major Cardiovascular Event

    PubMed Central

    Merino Lara, Tomas Rodrigo; Fleury, Emmanuelle; Mashouf, Shahram; Helou, Joelle; McCann, Claire; Ruschin, Mark; Kim, Anthony; Makhani, Nadiya; Ravi, Ananth; Pignol, Jean-Philippe

    2014-01-01

    After breast conserving surgery, early stage breast cancer patients are currently treated with a wide range of radiation techniques including whole breast irradiation (WBI), accelerated partial breast irradiation (APBI) using high-dose rate (HDR) brachytherapy, or 3D-conformal radiotherapy (3D-CRT). This study compares the mean heart’s doses for a left breast irradiated with different breast techniques. An anthropomorphic Rando phantom was modified with gelatin-based breast of different sizes and tumors located medially or laterally. The breasts were treated with WBI, 3D-CRT, or HDR APBI. The heart’s mean doses were measured with Gafchromic films and controlled with optically stimulated luminescent dosimeters. Following the model reported by Darby (1), major cardiac were estimated assuming a linear risk increase with the mean dose to the heart of 7.4% per gray. WBI lead to the highest mean heart dose (2.99 Gy) compared to 3D-CRT APBI (0.51 Gy), multicatheter (1.58 Gy), and balloon HDR (2.17 Gy) for a medially located tumor. This translated into long-term coronary event increases of 22, 3.8, 11.7, and 16% respectively. The sensitivity analysis showed that the tumor location had almost no effect on the mean heart dose for 3D-CRT APBI and a minimal impact for HDR APBI. In case of WBI large breast size and set-up errors lead to sharp increases of the mean heart dose. Its value reached 10.79 Gy for women with large breast and a set-up error of 1.5 cm. Such a high value could increase the risk of having long-term coronary events by 80%. Comparison among different irradiation techniques demonstrates that 3D-CRT APBI appears to be the safest one with less probability of having cardiovascular events in the future. A sensitivity analysis showed that WBI is the most challenging technique for patients with large breasts or when significant set-up errors are anticipated. In those cases, additional heart shielding techniques are required. PMID:25374841

  18. Cardiac septic pulmonary embolism

    PubMed Central

    Song, Xin yu; Li, Shan; Cao, Jian; Xu, Kai; Huang, Hui; Xu, Zuo jun

    2016-01-01

    Abstract Based on the source of the embolus, septic pulmonary embolism (SPE) can be classified as cardiac, peripheral endogenous, or exogenous. Cardiac SPEs are the most common. We conducted a retrospective analysis of 20 patients with cardiac SPE hospitalized between 1991 and 2013 at a Chinese tertiary referral hospital. The study included 14 males and 6 females with a median age of 38.1 years. Fever (100%), cough (95%), hemoptysis (80%), pleuritic chest pain (80%), heart murmur (80%), and moist rales (75%) were common clinical manifestations. Most patients had a predisposing condition: congenital heart disease (8 patients) and an immunocompromised state (5 patients) were the most common. Staphylococcal (8 patients) and Streptococcal species (4 patients) were the most common causative pathogens. Parenchymal opacities, nodules, cavitations, and pleural effusions were the most common manifestations observed via computed tomography (CT). All patients exhibited significant abnormalities by echocardiography, including 15 patients with right-sided vegetations and 4 with double-sided vegetations. All patients received parenteral antimicrobial therapy as an initial treatment. Fourteen patients received cardiac surgery, and all survived. Among the 6 patients who did not undergo surgery, only 1 survived. Most patients in our cardiac SPE cohort had predisposing conditions. Although most exhibited typical clinical manifestations and radiography, they were nonspecific. For suspected cases of SPE, blood culture, echocardiography, and CT pulmonary angiography (CTPA) are important measures to confirm an early diagnosis. Vigorous early therapy, including appropriate antibiotic treatment and timely cardiac surgery to eradicate the infective source, is critical. PMID:27336870

  19. Design and testing of an MRI-compatible cycle ergometer for non-invasive cardiac assessments during exercise

    PubMed Central

    2012-01-01

    Background Magnetic resonance imaging (MRI) is an important tool for cardiac research, and it is frequently used for resting cardiac assessments. However, research into non-pharmacological stress cardiac evaluation is limited. Methods We aimed to design a portable and relatively inexpensive MRI cycle ergometer capable of continuously measuring pedalling workload while patients exercise to maintain target heart rates. Results We constructed and tested an MRI-compatible cycle ergometer for a 1.5 T MRI scanner. Resting and sub-maximal exercise images (at 110 beats per minute) were successfully obtained in 8 healthy adults. Conclusions The MRI-compatible cycle ergometer constructed by our research group enabled cardiac assessments at fixed heart rates, while continuously recording power output by directly measuring pedal force and crank rotation. PMID:22423637

  20. Monte Carlo simulated correction factors for output factor measurement with the CyberKnife system—results for new detectors and correction factor dependence on measurement distance and detector orientation

    NASA Astrophysics Data System (ADS)

    Francescon, P.; Kilby, W.; Satariano, N.

    2014-03-01

    A previous study of the corrections needed for output factor measurements with the CyberKnife system has been extended to include new diode detectors (IBA SFD and Exradin D1V), an air filled microchamber (Exradin CC01) and a scintillation detector (Exradin W1). The dependence of the corrections on detector orientation (detector long axis parallel versus perpendicular to the beam axis) and source to detector distance (SDD) was evaluated for these new detectors and for those in our previous study. The new diodes are found to over-respond at the smallest (5 mm) field size by 2.5% (D1V) and 3.3% (SFD) at 800 mm SDD, while the CC01 under-responds by 7.4% at the same distance when oriented parallel to the beam. Corrections for all detectors tend to unity as field size increases. The W1 corrections are <0.5% at all field sizes. Microchamber correction factors increase substantially if the detector is oriented perpendicular to the beam (by up to 23% for the PTW 31014). Corrections also vary with SDD, with the largest variations seen for microchambers in the perpendicular orientation (up to 13% change at 650 mm SDD versus 800 mm) and smallest for diodes (˜1% change at 650 mm versus 800 mm). The smallest and most stable corrections are found for diodes, liquid filled microchambers and scintillation detectors, therefore these should be preferred for small field output factor measurements. If air filled microchambers are used, then the parallel orientation should be preferred to the perpendicular, and care should be taken to use corrections appropriate to the measurement SDD.

  1. Measurement of Strain in Cardiac Myocytes at Micrometer Scale Based on Rapid Scanning Confocal Microscopy and Non-Rigid Image Registration.

    PubMed

    Lichter, J; Li, Hui; Sachse, Frank B

    2016-10-01

    Measurement of cell shortening is an important technique for assessment of physiology and pathophysiology of cardiac myocytes. Many types of heart disease are associated with decreased myocyte shortening, which is commonly caused by structural and functional remodeling. Here, we present a new approach for local measurement of 2-dimensional strain within cells at high spatial resolution. The approach applies non-rigid image registration to quantify local displacements and Cauchy strain in images of cells undergoing contraction. We extensively evaluated the approach using synthetic cell images and image sequences from rapid scanning confocal microscopy of fluorescently labeled isolated myocytes from the left ventricle of normal and diseased canine heart. Application of the approach yielded a comprehensive description of cellular strain including novel measurements of transverse strain and spatial heterogeneity of strain. Quantitative comparison with manual measurements of strain in image sequences indicated reliability of the developed approach. We suggest that the developed approach provides researchers with a novel tool to investigate contractility of cardiac myocytes at subcellular scale. In contrast to previously introduced methods for measuring cell shorting, the developed approach provides comprehensive information on the spatio-temporal distribution of 2-dimensional strain at micrometer scale.

  2. Cardiac and Arterial Adaptation to a 60 Day Bedrest with and without Counter-Measures (ES-I IBREP)

    NASA Astrophysics Data System (ADS)

    Arbeille, Philippe; Yuan, Ming; Bai, Yanqiang; Jiang, Shizhong; Wan, Yuming; Li, Yinghui

    2008-06-01

    Objective was to quantified the impact of a 60-day head-down tilt bed rest (HDBR) with countermeasures "CM" on the Cardiac arterial and venous hemodynamics at rest. Method: Twenty-one men (25-40y) divided into 3 groups [Control (Con), daily 30 min Foot vibration (Vib) and Chinese Herb (Herb)] were studied pre and at HDBR day 58. The subjects were allowed to have a daily 10 min squat/stand period for toilets. Post HDBR 10 min Tilt identified Finishers (F) and Non Finishers (NF). Result: (a) Most of the cardiac and arterial parameters reduced after 58d in HDBR as observed in other long term HDBR (b) the Vibration CM induced a reduction in lower limb vascular resistance (c) the short 10 min squat/stand period should have contributed to lower the proportion of NF at the post HDBR tilt.

  3. Nuclear cardiac

    SciTech Connect

    Slutsky, R.; Ashburn, W.L.

    1982-01-01

    The relationship between nuclear medicine and cardiology has continued to produce a surfeit of interesting, illuminating, and important reports involving the analysis of cardiac function, perfusion, and metabolism. To simplify the presentation, this review is broken down into three major subheadings: analysis of myocardial perfusion; imaging of the recent myocardial infarction; and the evaluation of myocardial function. There appears to be an increasingly important relationship between cardiology, particularly cardiac physiology, and nuclear imaging techniques. (KRM)

  4. Cardiac cameras.

    PubMed

    Travin, Mark I

    2011-05-01

    Cardiac imaging with radiotracers plays an important role in patient evaluation, and the development of suitable imaging instruments has been crucial. While initially performed with the rectilinear scanner that slowly transmitted, in a row-by-row fashion, cardiac count distributions onto various printing media, the Anger scintillation camera allowed electronic determination of tracer energies and of the distribution of radioactive counts in 2D space. Increased sophistication of cardiac cameras and development of powerful computers to analyze, display, and quantify data has been essential to making radionuclide cardiac imaging a key component of the cardiac work-up. Newer processing algorithms and solid state cameras, fundamentally different from the Anger camera, show promise to provide higher counting efficiency and resolution, leading to better image quality, more patient comfort and potentially lower radiation exposure. While the focus has been on myocardial perfusion imaging with single-photon emission computed tomography, increased use of positron emission tomography is broadening the field to include molecular imaging of the myocardium and of the coronary vasculature. Further advances may require integrating cardiac nuclear cameras with other imaging devices, ie, hybrid imaging cameras. The goal is to image the heart and its physiological processes as accurately as possible, to prevent and cure disease processes.

  5. Effectiveness of risk minimization measures for cabergoline-induced cardiac valve fibrosis in clinical practice in Italy.

    PubMed

    Italiano, Domenico; Bianchini, Elisa; Ilardi, Maura; Cilia, Roberto; Pezzoli, Gianni; Zanettini, Renzo; Vacca, Laura; Stocchi, Fabrizio; Bramanti, Placido; Ciurleo, Rosella; Di Lorenzo, Giuseppe; Polimeni, Giovanni; de Luise, Cynthia; Ross, Douglas; Rijnbeek, Peter; Sturkenboom, Miriam; Trifirò, Gianluca

    2015-06-01

    On June 2008, the European Medicines Agency (EMA) introduced changes to the Summary of Product Characteristics (SPC) for cabergoline and pergolide, to reduce the risk of cardiac valvulopathy in users of these drugs. To assess the effectiveness of EMA recommendations in Italian clinical practice, we retrospectively reviewed medical charts of patients with degenerative Parkinsonism treated with cabergoline in three large Italian clinics between January 2006 and June 2012. The prevalence and the severity of cardiac valve regurgitation were assessed in pa