Sample records for measure dynamic surface

  1. Validation of a Laboratory Method for Evaluating Dynamic Properties of Reconstructed Equine Racetrack Surfaces

    PubMed Central

    Setterbo, Jacob J.; Chau, Anh; Fyhrie, Patricia B.; Hubbard, Mont; Upadhyaya, Shrini K.; Symons, Jennifer E.; Stover, Susan M.

    2012-01-01

    Background Racetrack surface is a risk factor for racehorse injuries and fatalities. Current research indicates that race surface mechanical properties may be influenced by material composition, moisture content, temperature, and maintenance. Race surface mechanical testing in a controlled laboratory setting would allow for objective evaluation of dynamic properties of surface and factors that affect surface behavior. Objective To develop a method for reconstruction of race surfaces in the laboratory and validate the method by comparison with racetrack measurements of dynamic surface properties. Methods Track-testing device (TTD) impact tests were conducted to simulate equine hoof impact on dirt and synthetic race surfaces; tests were performed both in situ (racetrack) and using laboratory reconstructions of harvested surface materials. Clegg Hammer in situ measurements were used to guide surface reconstruction in the laboratory. Dynamic surface properties were compared between in situ and laboratory settings. Relationships between racetrack TTD and Clegg Hammer measurements were analyzed using stepwise multiple linear regression. Results Most dynamic surface property setting differences (racetrack-laboratory) were small relative to surface material type differences (dirt-synthetic). Clegg Hammer measurements were more strongly correlated with TTD measurements on the synthetic surface than the dirt surface. On the dirt surface, Clegg Hammer decelerations were negatively correlated with TTD forces. Conclusions Laboratory reconstruction of racetrack surfaces guided by Clegg Hammer measurements yielded TTD impact measurements similar to in situ values. The negative correlation between TTD and Clegg Hammer measurements confirms the importance of instrument mass when drawing conclusions from testing results. Lighter impact devices may be less appropriate for assessing dynamic surface properties compared to testing equipment designed to simulate hoof impact (TTD). Potential Relevance Dynamic impact properties of race surfaces can be evaluated in a laboratory setting, allowing for further study of factors affecting surface behavior under controlled conditions. PMID:23227183

  2. Dynamic surface tension measurements of ionic surfactants using maximum bubble pressure tensiometry

    NASA Astrophysics Data System (ADS)

    Ortiz, Camilla U.; Moreno, Norman; Sharma, Vivek

    Dynamic surface tension refers to the time dependent variation in surface tension, and is intimately linked with the rate of mass transfer of a surfactant from liquid sub-phase to the interface. The diffusion- or adsorption-limited kinetics of mass transfer to interfaces is said to impact the so-called foamability and the Gibbs-Marangoni elasticity of surfaces. Dynamic surface tension measurements carried out with conventional methods like pendant drop analysis, Wilhelmy plate, etc. are limited in their temporal resolution (>50 ms). In this study, we describe design and application of maximum bubble pressure tensiometry for the measurement of dynamic surface tension effects at extremely short (1-50 ms) timescales. Using experiments and theory, we discuss the overall adsorption kinetics of charged surfactants, paying special attention to the influence of added salt on dynamic surface tension.

  3. Surface Preparation Methods to Enhance Dynamic Surface Property Measurements of Shocked Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Zellner, Michael; McNeil, Wendy; Gray, George, III; Huerta, David; King, Nicholas; Neal, George; Payton, Jeremy; Rubin, Jim; Stevens, Gerald; Turley, William; Buttler, William

    2008-03-01

    This effort investigates surface-preparation methods to enhance dynamic surface-property measurements of shocked metal surfaces. To assess the ability of making reliable and consistent dynamic surface-property measurements, the amount of material ejected from the free-surface upon shock release to vacuum (ejecta) was monitored for shocked Al-1100 and Sn targets. Four surface preparation methods were considered: fly-cut machined finish, diamond-turned machine finish, polished finish, and ball-rolled. The samples were shock loaded by in-contact detonation of HE PBX-9501 on the front-side of the metal coupons. Ejecta production at the back-side or free-side of the metal coupons was monitored using piezoelectric pins, optical shadowgraphy, and x-ray attenuation radiography.

  4. Surface preparation methods to enhance dynamic surface property measurements of shocked metal surfaces

    NASA Astrophysics Data System (ADS)

    Zellner, M. B.; Vogan McNeil, W.; Gray, G. T.; Huerta, D. C.; King, N. S. P.; Neal, G. E.; Valentine, S. J.; Payton, J. R.; Rubin, J.; Stevens, G. D.; Turley, W. D.; Buttler, W. T.

    2008-04-01

    This effort investigates surface-preparation methods to enhance dynamic surface-property measurements of shocked metal surfaces. To assess the ability of making reliable and consistent dynamic surface-property measurements, the amount of material ejected from the free surface upon shock release to vacuum (ejecta) was monitored for shocked Al-1100 and Sn targets. Four surface-preparation methods were considered: Fly-cut machine finish, diamond-turned machine finish, polished finish, and ball rolled. The samples were shock loaded by in-contact detonation of HE PBX-9501 on the front side of the metal coupons. Ejecta production at the back side or free side of the metal coupons was monitored using piezoelectric pins, optical shadowgraphy, and x-ray attenuation radiography.

  5. The influence of surface properties on the plasma dynamics in radio-frequency driven oxygen plasmas: Measurements and simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greb, Arthur; Niemi, Kari; O'Connell, Deborah

    2013-12-09

    Plasma parameters and dynamics in capacitively coupled oxygen plasmas are investigated for different surface conditions. Metastable species concentration, electronegativity, spatial distribution of particle densities as well as the ionization dynamics are significantly influenced by the surface loss probability of metastable singlet delta oxygen (SDO). Simulated surface conditions are compared to experiments in the plasma-surface interface region using phase resolved optical emission spectroscopy. It is demonstrated how in-situ measurements of excitation features can be used to determine SDO surface loss probabilities for different surface materials.

  6. Real-time optical measurement of the dynamic body surface for use in guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Price, G. J.; Parkhurst, J. M.; Sharrock, P. J.; Moore, C. J.

    2012-01-01

    Optical measurements are increasingly used in radiotherapy. In this paper we present, in detail, the design and implementation of a multi-channel optical system optimized for fast, high spatial resolution, dynamic body surface measurement in guided therapy. We include all algorithmic modifications and calibration procedures required to create a robust, practical system for clinical use. Comprehensive static and dynamic phantom validation measurements in the radiotherapy treatment room show: conformance with simultaneously measured cone beam CT data to within 1 mm over 62% ± 8% of the surface and 2 mm over 90% ± 3%; agreement with the measured radius of a precision geometrical phantom to within 1 mm; and true real-time performance with image capture through to surface display at 23 Hz. An example patient dataset is additionally included, indicating similar performance in the clinic.

  7. Optical dynamic deformation measurements at translucent materials.

    PubMed

    Philipp, Katrin; Koukourakis, Nektarios; Kuschmierz, Robert; Leithold, Christoph; Fischer, Andreas; Czarske, Jürgen

    2015-02-15

    Due to their high stiffness-to-weight ratio, glass fiber-reinforced polymers are an attractive material for rotors, e.g., in the aerospace industry. A fundamental understanding of the material behavior requires non-contact, in-situ dynamic deformation measurements. The high surface speeds and particularly the translucence of the material limit the usability of conventional optical measurement techniques. We demonstrate that the laser Doppler distance sensor provides a powerful and reliable tool for monitoring radial expansion at fast rotating translucent materials. We find that backscattering in material volume does not lead to secondary signals as surface scattering results in degradation of the measurement volume inside the translucent medium. This ensures that the acquired signal contains information of the rotor surface only, as long as the sample surface is rough enough. Dynamic deformation measurements of fast-rotating fiber-reinforced polymer composite rotors with surface speeds of more than 300 m/s underline the potential of the laser Doppler sensor.

  8. Modulators of heterogeneous protein surface water dynamics

    NASA Astrophysics Data System (ADS)

    Han, Songi

    The hydration water that solvates proteins is a major factor in driving or enabling biological events, including protein-protein and protein-ligand interactions. We investigate the role of the protein surface in modulating the hydration water fluctuations on both the picosecond and nanosecond timescale with an emerging experimental NMR technique known as Overhauser Dynamic Nuclear Polarization (ODNP). We carry out site-specific ODNP measurements of the hydration water fluctuations along the surface of Chemotaxis Y (CheY), and correlate the measured fluctuations to hydropathic and topological properties of the CheY surface as derived from molecular dynamics (MD) simulation. Furthermore, we compare hydration water fluctuations measured on the CheY surface to that of other globular proteins, as well as intrinsically disordered proteins, peptides, and liposome surfaces to systematically test characteristic effects of the biomolecular surface on the hydration water dynamics. Our results suggest that the labile (ps) hydration water fluctuations are modulated by the chemical nature of the surface, while the bound (ns) water fluctuations are present on surfaces that feature a rough topology and chemical heterogeneity such as the surface of a folded and structured protein. In collaboration with: Ryan Barnes, Dept of Chemistry and Biochemistry, University of California Santa Barbara

  9. Instantaneous phase mapping deflectometry for dynamic deformable mirror characterization

    NASA Astrophysics Data System (ADS)

    Trumper, Isaac; Choi, Heejoo

    2017-09-01

    We present an instantaneous phase mapping deflectometry (PMD) system in the context of measuring a continuous surface deformable mirror (DM). Deflectometry has a high dynamic range, enabling the full range of surfaces generated by the DM to be measured. The recent development of an instantaneous PMD system leverages the simple setup of the PMD system to measure dynamic objects with accuracy similar to an interferometer. To demonstrate the capabilities of this technology, we perform a linearity measurement of the actuator motion in a continuous surface DM, which is critical for closed loop control in adaptive optics applications. We measure the entire set of actuators across the DM as they traverse their full range of motion with a Shack-Hartman wavefront sensor, thereby obtaining the influence function. Given the influence function of each actuator, the DM can produce specific Zernike terms on its surface. We then measure the linearity of the Zernike modes available in the DM software using the instantaneous PMD system. By obtaining the relationship between modes, we can more accurately generate surface profiles composed of Zernike terms. This ability is useful for other dynamic freeform metrology applications that utilize the DM as a null component.

  10. Study on dynamic deformation synchronized measurement technology of double-layer liquid surfaces

    NASA Astrophysics Data System (ADS)

    Tang, Huiying; Dong, Huimin; Liu, Zhanwei

    2017-11-01

    Accurate measurement of the dynamic deformation of double-layer liquid surfaces plays an important role in many fields, such as fluid mechanics, biomechanics, petrochemical industry and aerospace engineering. It is difficult to measure dynamic deformation of double-layer liquid surfaces synchronously for traditional methods. In this paper, a novel and effective method for full-field static and dynamic deformation measurement of double-layer liquid surfaces has been developed, that is wavefront distortion of double-wavelength transmission light with geometric phase analysis (GPA) method. Double wavelength lattice patterns used here are produced by two techniques, one is by double wavelength laser, and the other is by liquid crystal display (LCD). The techniques combine the characteristics such as high transparency, low reflectivity and fluidity of liquid. Two color lattice patterns produced by laser and LCD were adjusted at a certain angle through the tested double-layer liquid surfaces simultaneously. On the basis of the refractive indexes difference of two transmitted lights, the double-layer liquid surfaces were decoupled with GPA method. Combined with the derived relationship between phase variation of transmission-lattice patterns and out-of plane heights of two surfaces, as well as considering the height curves of the liquid level, the double-layer liquid surfaces can be reconstructed successfully. Compared with the traditional measurement method, the developed method not only has the common advantages of the optical measurement methods, such as high-precision, full-field and non-contact, but also simple, low cost and easy to set up.

  11. Control Surface Interaction Effects of the Active Aeroelastic Wing Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer

    2006-01-01

    This paper presents results from testing the Active Aeroelastic Wing wind tunnel model in NASA Langley s Transonic Dynamics Tunnel. The wind tunnel test provided an opportunity to study aeroelastic system behavior under combined control surface deflections, testing for control surface interaction effects. Control surface interactions were observed in both static control surface actuation testing and dynamic control surface oscillation testing. The primary method of evaluating interactions was examination of the goodness of the linear superposition assumptions. Responses produced by independently actuating single control surfaces were combined and compared with those produced by simultaneously actuating and oscillating multiple control surfaces. Adjustments to the data were required to isolate the control surface influences. Using dynamic data, the task increases, as both the amplitude and phase have to be considered in the data corrections. The goodness of static linear superposition was examined and analysis of variance was used to evaluate significant factors influencing that goodness. The dynamic data showed interaction effects in both the aerodynamic measurements and the structural measurements.

  12. Ocean current surface measurement using dynamic elevations obtained by the GEOS-3 radar altimeter

    NASA Technical Reports Server (NTRS)

    Leitao, C. D.; Huang, N. E.; Parra, C. G.

    1977-01-01

    Remote Sensing of the ocean surface from the GEOS-3 satellite using radar altimeter data has confirmed that the altimeter can detect the dynamic ocean topographic elevations relative to an equipotential surface, thus resulting in a reliable direct measurement of the ocean surface. Maps of the ocean dynamic topography calculated over a one month period and with 20 cm contour interval are prepared for the last half of 1975. The Gulf Stream is observed by the rapid slope change shown by the crowding of contours. Cold eddies associated with the current are seen as roughly circular depressions.

  13. Study on elucidation of bactericidal effects induced by laser beam irradiation Measurement of dynamic stress on laser irradiated surface

    NASA Astrophysics Data System (ADS)

    Furumoto, Tatsuaki; Kasai, Atsushi; Tachiya, Hiroshi; Hosokawa, Akira; Ueda, Takashi

    2010-09-01

    In dental treatment, many types of laser beams have been used for various surgical treatments, and the influences of laser beam irradiation on bactericidal effect have been investigated. However, most of the work has been performed by irradiating to an agar plate with the colony of bacteria, and very few studies have been reported on the physical mechanism of bactericidal effects induced by laser beam irradiation. This paper deals with the measurement of dynamic stress induced in extracted human enamel by irradiation with Nd:YAG laser beams. Laser beams can be delivered to the enamel surface through a quartz optical fiber. Dynamic stress induced in the specimen using elastic wave propagation in a cylindrical long bar made of aluminum alloy is measured. Laser induced stress intensity is evaluated from dynamic strain measured by small semiconductor strain gauges. Carbon powder and titanium dioxide powder were applied to the human enamel surface as absorbents. Additionally, the phenomenon of laser beam irradiation to the human enamel surface was observed with an ultrahigh speed video camera. Results showed that a plasma was generated on the enamel surface during laser beam irradiation, and the melted tissues were scattered in the vertical direction against the enamel surface with a mushroom-like wave. Averaged scattering velocity of the melted tissues was 25.2 m/s. Induced dynamic stress on the enamel surface increased with increasing laser energy in each absorbent. Induced dynamic stresses with titanium dioxide powder were superior to those with carbon powder. Induced dynamic stress was related to volume of prepared cavity, and induced stress for the removal of unit volume of human enamel was 0.03 Pa/mm 3.

  14. Are the fluctuations in dynamic anterior surface aberrations of the human eye chaotic?

    PubMed

    Jayakumar, Varadharajan; Thapa, Damber; Hutchings, Natalie; Lakshminarayanan, Vasudevan

    2013-12-15

    The purpose of the study is to measure chaos in dynamic anterior surface aberrations and examine how it varies between the eyes of an individual. Noninvasive tear breakup time and dynamic corneal surface aberrations were measured for two open-eye intervals of 15 s. The maximal Lyapunov exponent (MLE) was calculated to test the nature of the fluctuations of the dynamic anterior surface aberrations. The average MLE for total higher-order aberration (HOA) was found to be small (+0.0102±0.0072) μm/s. No significant difference in MLE was found between the eyes for HOA (t-test; p=0.131). Data analysis was carried out for individual Zernike coefficients, including vertical prism as it gives a direct measure of the thickness of the tear film over time. The results show that the amount of chaos was small for each Zernike coefficient and not significantly correlated between the eyes.

  15. Unsteady-Pressure and Dynamic-Deflection Measurements on an Aeroelastic Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Seidel, David A.; Sandford, Maynard C.; Eckstrom, Clinton V.

    1991-01-01

    Transonic steady and unsteady pressure tests were conducted on a large elastic wing. The wing has a supercritical airfoil, a full span aspect ratio of 10.3, a leading edge sweepback angle of 28.8 degrees, and two inboard and one outboard trailing edge control surfaces. Only the outboard control surface was deflected statically and dynamically to generate steady and unsteady flow over the wing. The unsteady surface pressure and dynamic deflection measurements of this elastic wing are presented to permit correlations of the experimental data with theoretical predictions.

  16. Interferometer for measuring dynamic corneal topography

    NASA Astrophysics Data System (ADS)

    Micali, Jason Daniel

    The cornea is the anterior most surface of the eye and plays a critical role in vision. A thin fluid layer, the tear film, coats the outer surface of the cornea and serves to protect, nourish, and lubricate the cornea. At the same time, the tear film is responsible for creating a smooth continuous surface where the majority of refraction takes place in the eye. A significant component of vision quality is determined by the shape of the cornea and stability of the tear film. It is desirable to possess an instrument that can measure the corneal shape and tear film surface with the same accuracy and resolution that is currently performed on common optical elements. A dual interferometer system for measuring the dynamic corneal topography is designed, built, and verified. The completed system is validated by testing on human subjects. The system consists of two co-aligned polarization splitting Twyman-Green interferometers designed to measure phase instantaneously. The primary interferometer measures the surface of the tear film while the secondary interferometer simultaneously tracks the absolute position of the cornea. Eye motion, ocular variation, and a dynamic tear film surface will result in a non-null configuration of the surface with respect to the interferometer system. A non-null test results in significant interferometer induced errors that add to the measured phase. New algorithms are developed to recover the absolute surface topography of the tear film and corneal surface from the simultaneous interferometer measurements. The results are high-resolution and high-accuracy surface topography measurements of the in vivo cornea that are captured at standard camera frame rates. This dissertation will cover the development and construction of an interferometer system for measuring the dynamic corneal topography of the human eye. The discussion starts with the completion of an interferometer for measuring the tear film. The tear film interferometer is part of an ongoing research project that has spanned multiple dissertations. For this research, the instrument was tested on human subjects and resulted in refinements to the interferometer design. The final configuration of the tear film interferometer and results from human subjects testing are presented. Feedback from this instrument was used to support the development and construction of the interferometric corneal topographer system. A calibration is performed on the instrument, and then verified against simulated eye surfaces. Finally, the instrument is validated by testing on human subjects. The result is an interferometer system that can non-invasively measure the dynamic corneal topography with greater accuracy and resolution than existing technologies.

  17. Dynamics of Surface Reorganization of Poly(methyl methacrylate) in Contact with Water

    NASA Astrophysics Data System (ADS)

    Horinouchi, Ayanobu; Atarashi, Hironori; Fujii, Yoshihisa; Tanaka, Keiji

    2013-03-01

    New tools for tailor-made diagnostics, such as DNA arrays and tips for micro-total-analysis systems, are generally made from polymers. In these applications, the polymer surface is in contact with a water phase. However, despite the importance of detailed knowledge of the fundamental interactions of polymer interfaces with liquids, such studies are very limited. As an initial benchmark for designing and constructing specialized biomedical surfaces containing polymer, aggregation states and dynamics of chains at the water interface should be systematically examined. We here apply time-resolved contact angle measurement to study the dynamics of the surface reorganization of poly(methyl methacrylate) (PMMA) in contact with water. By doing the measurements at various temperatures, it is possible to discuss the surface dynamics of PMMA based on the apparent activation energy. Also, sum-frequency generation spectroscopy revealed that the surface reorganization involves the conformational changes in the main chain part as well as the side chains. Hence, the dynamics observed here may reflect the segmental motion at the outermost region of the PMMA film, in which water plays as a plasticizer.

  18. Dynamic properties of a dirt and a synthetic equine racetrack surface measured by a track-testing device.

    PubMed

    Setterbo, J J; Fyhrie, P B; Hubbard, M; Upadhyaya, S K; Stover, S M

    2013-01-01

    Racetrack surface is a risk factor for Thoroughbred racehorse injury and death that can be engineered and managed. To investigate the relationship between surface and injury, the mechanical behaviour of dirt and synthetic track surfaces must be quantified. To compare dynamic properties of a dirt and a synthetic surface in situ using a track-testing device designed to simulate equine hoof impact; and to determine the effects of impact velocity, impact angle and repeated impact on dynamic surface behaviour. A track-testing device measured force and displacement during impact into a dirt and a synthetic surface at 3 impact velocities (1.91, 2.30, 2.63 m/s), 2 impact angles (0°, 20° from vertical), and 2 consecutive impacts (initial, repeat). Surfaces were measured at 3 locations/day for 3 days. The effects of surface type, impact velocity, impact angle and impact number on dynamic surface properties were assessed using analysis of variance. Synthetic surface maximum forces, load rates and stiffnesses were 37-67% of dirt surface values. Surfaces were less stiff with lower impact velocities, angled impacts and initial impacts. The magnitude of differences between dirt and synthetic surfaces increased for repeat impacts and higher impact velocities. The synthetic surface was generally softer than the dirt surface. Greatly increased hardness for repeat impacts corroborates the importance of maintenance. Results at different impact velocities suggest that surface differences will persist at higher impact velocities. For both surfaces it is clearly important to prevent horse exposure to precompacted surfaces, particularly during high-speed training when the surface has already been trampled. These data should be useful in coordinating racetrack surface management with racehorse training to prevent injuries. © 2012 EVJ Ltd.

  19. Characterizing interstate vibrational coherent dynamics of surface adsorbed catalysts by fourth-order 3D SFG spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Yingmin; Wang, Jiaxi; Clark, Melissa L.; Kubiak, Clifford P.; Xiong, Wei

    2016-04-01

    We report the first fourth-order 3D SFG spectroscopy of a monolayer of the catalyst Re(diCN-bpy)(CO)3Cl on a gold surface. Besides measuring the vibrational coherences of single vibrational modes, the fourth-order 3D SFG spectrum also measures the dynamics of interstate coherences and vibrational coherences states between two vibrational modes. By comparing the 3D SFG to the corresponding 2D and third-order 3D IR spectroscopy of the same molecules in solution, we found that the interstate coherences exist in both liquid and surface systems, suggesting that the interstate coherence is not disrupted by surface interactions. However, by analyzing the 3D spectral lineshape, we found that the interstate coherences also experience non-negligible homogenous dephasing dynamics that originate from surface interactions. This unique ability of determining interstate vibrational coherence dynamics of the molecular monolayer can help in understanding of how energy flows within surface catalysts and other molecular monolayers.

  20. Report on Microgravity Experiments of Dynamic Surface Deformation Effects on Marangoni Instability in High-Prandtl-Number Liquid Bridges

    NASA Astrophysics Data System (ADS)

    Yano, Taishi; Nishino, Koichi; Matsumoto, Satoshi; Ueno, Ichiro; Komiya, Atsuki; Kamotani, Yasuhiro; Imaishi, Nobuyuki

    2018-04-01

    This paper reports an overview and some important results of microgravity experiments called Dynamic Surf, which have been conducted on board the International Space Station from 2013 to 2016. The present project mainly focuses on the relations between the Marangoni instability in a high-Prandtl-number (Pr= 67 and 112) liquid bridge and the dynamic free surface deformation (DSD) as well as the interfacial heat transfer. The dynamic free surface deformations of large-scale liquid bridges (say, for diameters greater than 10 mm) are measured with good accuracy by an optical imaging technique. It is found that there are two causes of the dynamic free surface deformation in the present study: the first is the time-dependent flow behavior inside the liquid bridge due to the Marangoni instability, and the second is the external disturbance due to the residual acceleration of gravity, i.e., g-jitter. The axial distributions of DSD along the free surface are measured for several conditions. The critical parameters for the onset of oscillatory Marangoni convection are also measured for various aspect ratios (i.e., relative height to the diameter) of the liquid bridge and various thermal boundary conditions. The characteristics of DSD and the onset conditions of instability are discussed in this paper.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haker, C.D.; Rix, G.J.; Lai, C.G.

    The seismic stability of municipal solid waste (MSW) landfills is often a significant consideration in landfill design. However, until recently, the dynamic properties of the waste material itself, which govern the seismic response of MSW landfills, have often been approximated or assumed. Tests to determine the dynamic properties of the material directly have been limited. Measurements of seismic surface waves were used to determine the dynamic properties of MSW, which are the initial tangent shear modulus and low-strain hysteretic damping ratio. Surface wave tests were performed at three MSW landfills to determine their shear modulus and damping ratio profiles. Surfacemore » wave tests are ideal for measuring the near-surface shear modulus and damping profiles of MSW landfills because the tests are non-invasive, an advantage for testing environmentally sensitive waste material. Factors which influence the dynamic properties of waste including density, confinement, age, and placement techniques are used to interpret the measured shear modulus and damping ratio profiles.« less

  2. Scaling law analysis of paraffin thin films on different surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dotto, M. E. R.; Camargo, S. S. Jr.

    2010-01-15

    The dynamics of paraffin deposit formation on different surfaces was analyzed based on scaling laws. Carbon-based films were deposited onto silicon (Si) and stainless steel substrates from methane (CH{sub 4}) gas using radio frequency plasma enhanced chemical vapor deposition. The different substrates were characterized with respect to their surface energy by contact angle measurements, surface roughness, and morphology. Paraffin thin films were obtained by the casting technique and were subsequently characterized by an atomic force microscope in noncontact mode. The results indicate that the morphology of paraffin deposits is strongly influenced by substrates used. Scaling laws analysis for coated substratesmore » present two distinct dynamics: a local roughness exponent ({alpha}{sub local}) associated to short-range surface correlations and a global roughness exponent ({alpha}{sub global}) associated to long-range surface correlations. The local dynamics is described by the Wolf-Villain model, and a global dynamics is described by the Kardar-Parisi-Zhang model. A local correlation length (L{sub local}) defines the transition between the local and global dynamics with L{sub local} approximately 700 nm in accordance with the spacing of planes measured from atomic force micrographs. For uncoated substrates, the growth dynamics is related to Edwards-Wilkinson model.« less

  3. Probing Ultrafast Electron Dynamics at Surfaces Using Soft X-Ray Transient Reflectivity Spectroscopy

    NASA Astrophysics Data System (ADS)

    Baker, L. Robert; Husek, Jakub; Biswas, Somnath; Cirri, Anthony

    The ability to probe electron dynamics with surface sensitivity on the ultrafast time scale is critical for understanding processes such as charge separation, injection, and surface trapping that mediate efficiency in catalytic and energy conversion materials. Toward this goal, we have developed a high harmonic generation (HHG) light source for femtosecond soft x-ray reflectivity. Using this light source we investigated the ultrafast carrier dynamics at the surface of single crystalline α-Fe2O3, polycrystalline α-Fe2O3, and the mixed metal oxide, CuFeO2. We have recently demonstrated that CuFeO2 in particular is a selective catalyst for photo-electrochemical CO2 reduction to acetate; however, the role of electronic structure and charge carrier dynamics in mediating catalytic selectivity has not been well understood. Soft x-ray reflectivity measurements probe the M2,3, edges of the 3d transition metals, which provide oxidation and spin state resolution with element specificity. In addition to chemical state specificity, these measurements are also surface sensitive, and by independently simulating the contributions of the real and imaginary components of the complex refractive index, we can differentiate between surface and sub-surface contributions to the excited state spectrum. Accordingly, this work demonstrates the ability to probe ultrafast carrier dynamics in catalytic materials with element and chemical state specificity and with surface sensitivity.

  4. Coherent X-ray Scattering from Liquid-Air Interfaces

    NASA Astrophysics Data System (ADS)

    Shpyrko, Oleg

    Advances in synchrotron x-ray scattering techniques allow studies of structure and dynamics of liquid surfaces with unprecedented resolution. I will review x-ray scattering measurements of thermally excited capillary fluctuations in liquids, thin polymer liquid films and polymer surfaces in confined geometry. X-ray Diffuse scattering profile due to Debye-Waller like roughening of the surface allows to probe the distribution of capillary fluctuations over a wide range of length scales, while using X-ray Photon Correlation Spectroscopy (XPCS) one is able to directly couple to nanoscale dynamics of these surface fluctuations, over a wide range of temporal and spacial scales. I will also discuss recent XPCS measurements of lateral diffusion dynamics in Langmuir monolayers assembled at the liquid-air interface. This research was supported by NSF CAREER Grant 0956131.

  5. Computation of the three-dimensional medial surface dynamics of the vocal folds.

    PubMed

    Döllinger, Michael; Berry, David A

    2006-01-01

    To increase our understanding of pathological and healthy voice production, quantitative measurement of the medial surface dynamics of the vocal folds is significant, albeit rarely performed because of the inaccessibility of the vocal folds. Using an excised hemilarynx methodology, a new calibration technique, herein referred to as the linear approximate (LA) method, was introduced to compute the three-dimensional coordinates of fleshpoints along the entire medial surface of the vocal fold. The results were compared with results from the direct linear transform. An associated error estimation was presented, demonstrating the improved accuracy of the new method. A test on real data was reported including computation of quantitative measurements of vocal fold dynamics.

  6. Thermal diffusivity determination using heterodyne phase insensitive transient grating spectroscopy

    NASA Astrophysics Data System (ADS)

    Dennett, Cody A.; Short, Michael P.

    2018-06-01

    The elastic and thermal transport properties of opaque materials may be measured using transient grating spectroscopy (TGS) by inducing and monitoring periodic excitations in both reflectivity and surface displacement. The "phase grating" response encodes both properties of interest, but complicates quantitative analysis by convolving temperature dynamics with surface displacement dynamics. Thus, thermal transport characteristics are typically determined using the "amplitude grating" response to isolate the surface temperature dynamics. However, this signal character requires absolute heterodyne phase calibration and contains no elastic property information. Here, a method is developed by which phase grating TGS measurements may be consistently analyzed to determine thermal diffusivity with no prior knowledge of the expected properties. To demonstrate this ability, the wavelength-dependent 1D effective thermal diffusivity of pure germanium is measured using this type of response and found to be consistent with theoretical predictions made by solving the Boltzmann transport equation. This ability to determine the elastic and thermal properties from a single set of TGS measurements will be particularly advantageous for new in situ implementations of the technique being used to study dynamic materials systems.

  7. The estimation of dynamic contact angle of ultra-hydrophobic surfaces using inclined surface and impinging droplet methods

    NASA Astrophysics Data System (ADS)

    Jasikova, Darina; Kotek, Michal

    2014-03-01

    The development of industrial technology also brings with optimized surface quality, particularly where there is contact with food. Application ultra-hydrophobic surface significantly reduces the growth of bacteria and facilitates cleaning processes. Testing and evaluation of surface quality are used two methods: impinging droplet and inclined surface method optimized with high speed shadowgraphy, which give information about dynamic contact angle. This article presents the results of research into new methods of measuring ultra-hydrophobic patented technology.

  8. A one-shot-projection method for measurement of specular surfaces.

    PubMed

    Wang, Zhenzhou

    2015-02-09

    In this paper, a method is proposed to measure the shapes of specular surfaces with one-shot-projection of structured laser patterns. By intercepting the reflection of the reflected laser pattern twice with two diffusive planes, the closed form solution is achieved for each reflected ray. The points on the specular surface are reconstructed by computing the intersections of the incident rays and the reflected rays. The proposed method can measure both static and dynamic specular shapes due to its one-shot-projection, which is beyond the capability of most of state of art methods that need multiple projections. To our knowledge, the proposed method is the only method so far that could yield the closed form solutions for the dynamic and specular surfaces.

  9. Nonlinear analysis and dynamic compensation of stylus scanning measurement with wide range

    NASA Astrophysics Data System (ADS)

    Hui, Heiyang; Liu, Xiaojun; Lu, Wenlong

    2011-12-01

    Surface topography is an important geometrical feature of a workpiece that influences its quality and functions such as friction, wearing, lubrication and sealing. Precision measurement of surface topography is fundamental for product quality characterizing and assurance. Stylus scanning technique is a widely used method for surface topography measurement, and it is also regarded as the international standard method for 2-D surface characterizing. Usually surface topography, including primary profile, waviness and roughness, can be measured precisely and efficiently by this method. However, by stylus scanning method to measure curved surface topography, the nonlinear error is unavoidable because of the difference of horizontal position of the actual measured point from given sampling point and the nonlinear transformation process from vertical displacement of the stylus tip to angle displacement of the stylus arm, and the error increases with the increasing of measuring range. In this paper, a wide range stylus scanning measurement system based on cylindrical grating interference principle is constructed, the originations of the nonlinear error are analyzed, the error model is established and a solution to decrease the nonlinear error is proposed, through which the error of the collected data is dynamically compensated.

  10. A Review of Digital Image Correlation Applied to Structura Dynamics

    NASA Astrophysics Data System (ADS)

    Niezrecki, Christopher; Avitabile, Peter; Warren, Christopher; Pingle, Pawan; Helfrick, Mark

    2010-05-01

    A significant amount of interest exists in performing non-contacting, full-field surface velocity measurement. For many years traditional non-contacting surface velocity measurements have been made by using scanning Doppler laser vibrometry, shearography, pulsed laser interferometry, pulsed holography, or an electronic speckle pattern interferometer (ESPI). Three dimensional (3D) digital image correlation (DIC) methods utilize the alignment of a stereo pair of images to obtain full-field geometry data, in three dimensions. Information about the change in geometry of an object over time can be found by comparing a sequence of images and virtual strain gages (or position sensors) can be created over the entire visible surface of the object of interest. Digital imaging techniques were first developed in the 1980s but the technology has only recently been exploited in industry and research due to the advances of digital cameras and personal computers. The use of DIC for structural dynamic measurement has only very recently been investigated. Within this paper, the advantages and limits of using DIC for dynamic measurement are reviewed. Several examples of using DIC for dynamic measurement are presented on several vibrating and rotating structures.

  11. Digital Moiré based transient interferometry and its application in optical surface measurement

    NASA Astrophysics Data System (ADS)

    Hao, Qun; Tan, Yifeng; Wang, Shaopu; Hu, Yao

    2017-10-01

    Digital Moiré based transient interferometry (DMTI) is an effective non-contact testing methods for optical surfaces. In DMTI system, only one frame of real interferogram is experimentally captured for the transient measurement of the surface under test (SUT). When combined with partial compensation interferometry (PCI), DMTI is especially appropriate for the measurement of aspheres with large apertures, large asphericity or different surface parameters. Residual wavefront is allowed in PCI, so the same partial compensator can be applied to the detection of multiple SUTs. Excessive residual wavefront aberration results in spectrum aliasing, and the dynamic range of DMTI is limited. In order to solve this problem, a method based on wavelet transform is proposed to extract phase from the fringe pattern with spectrum aliasing. Results of simulation demonstrate the validity of this method. The dynamic range of Digital Moiré technology is effectively expanded, which makes DMTI prospective in surface figure error measurement for intelligent fabrication of aspheric surfaces.

  12. Drop impact on spherical soft surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Simeng; Bertola, Volfango

    2017-08-01

    The impact of water drops on spherical soft surfaces is investigated experimentally through high-speed imaging. The effect of a convex compliant surface on the dynamics of impacting drops is relevant to various applications, such as 3D ink-jet printing, where drops of fresh material impact on partially cured soft substrates with arbitrary shape. Several quantities which characterize the morphology of impacting drops are measured through image-processing, including the maximum and minimum spreading angles, length of the wetted curve, and dynamic contact angle. In particular, the dynamic contact angle is measured using a novel digital image-processing scheme based on a goniometric mask, which does not require edge fitting. It is shown that the surface with a higher curvature enhances the retraction of the spreading drop; this effect may be due to the difference of energy dissipation induced by the curvature of the surface. In addition, the impact parameters (elastic modulus, diameter ratio, and Weber number) are observed to significantly affect the dynamic contact angle during impact. A quantitative estimation of the deformation energy shows that it is significantly smaller than viscous dissipation.

  13. Applying Parallel Adaptive Methods with GeoFEST/PYRAMID to Simulate Earth Surface Crustal Dynamics

    NASA Technical Reports Server (NTRS)

    Norton, Charles D.; Lyzenga, Greg; Parker, Jay; Glasscoe, Margaret; Donnellan, Andrea; Li, Peggy

    2006-01-01

    This viewgraph presentation reviews the use Adaptive Mesh Refinement (AMR) in simulating the Crustal Dynamics of Earth's Surface. AMR simultaneously improves solution quality, time to solution, and computer memory requirements when compared to generating/running on a globally fine mesh. The use of AMR in simulating the dynamics of the Earth's Surface is spurred by future proposed NASA missions, such as InSAR for Earth surface deformation and other measurements. These missions will require support for large-scale adaptive numerical methods using AMR to model observations. AMR was chosen because it has been successful in computation fluid dynamics for predictive simulation of complex flows around complex structures.

  14. The Influence of Dynamic Contact Angle on Wetting Dynamics

    NASA Technical Reports Server (NTRS)

    Rame, Enrique; Garoff, Steven

    2005-01-01

    When surface tension forces dominate, and regardless of whether the situation is static or dynamic, the contact angle (the angle the interface between two immiscible fluids makes when it contacts a solid) is the key parameter that determines the shape of a fluid-fluid interface. The static contact angle is easy to measure and implement in models predicting static capillary surface shapes and such associated quantities as pressure drops. By contrast, when the interface moves relative to the solid (as in dynamic wetting processes) the dynamic contact angle is not identified unambiguously because it depends on the geometry of the system Consequently, its determination becomes problematic and measurements in one geometry cannot be applied in another for prediction purposes. However, knowing how to measure and use the dynamic contact angle is crucial to determine such dynamics as a microsystem throughput reliably. In this talk we will present experimental and analytical efforts aimed at resolving modeling issues present in dynamic wetting. We will review experiments that show the inadequacy of the usual hydrodynamic model when a fluid-fluid meniscus moves over a solid surface such as the wall of a small tube or duct. We will then present analytical results that show how to parametrize these problems in a predictive manner. We will illustrate these ideas by showing how to implement the method in numerical fluid mechanical calculations.

  15. Post-fire surface fuel dynamics in California forests across three burn severity classes

    Treesearch

    Bianca N. I. Eskelson; Vicente J. Monleon

    2018-01-01

    Forest wildfires consume fuel and are followed by post-fire fuel accumulation. This study examines post-fire surface fuel dynamics over 9 years across a wide range of conditions characteristic of California fires in dry conifer and hardwood forests. We estimated post-fire surface fuel loadings (Mg ha _1) from 191 repeatedly measured United States...

  16. Application of 3D Laser Scanning Technology in Inspection and Dynamic Reserves Detection of Open-Pit Mine

    NASA Astrophysics Data System (ADS)

    Hu, Zhumin; Wei, Shiyu; Jiang, Jun

    2017-10-01

    The traditional open-pit mine mining rights verification and dynamic reserve detection means rely on the total station and RTK to collect the results of the turning point coordinates of mining surface contours. It resulted in obtaining the results of low precision and large error in the means that is limited by the traditional measurement equipment accuracy and measurement methods. The three-dimensional scanning technology can obtain the three-dimensional coordinate data of the surface of the measured object in a large area at high resolution. This paper expounds the commonly used application of 3D scanning technology in the inspection and dynamic reserve detection of open mine mining rights.

  17. Static and Dynamic Measurement of Ocular Surface Temperature in Dry Eyes

    PubMed Central

    Sanjay, Srinivasan; Morgan, Philip B.

    2016-01-01

    Purpose. To study ocular surface temperature (OST) in dry eyes by static and dynamic measures. Methods. OST was recorded on 62 dry eyes and 63 age- and sex-matched controls. Static measures were study of absolute OST at t = 0, 5, and 10 s after eye opening. Dynamic measures were study of mean change and net change in OST over 10 s of sustained eye opening. Ten OST indices studied were temperatures of the geometric center of the cornea (GCC), extreme temporal (T1) and nasal conjunctiva (T4), midtemporal (CT) and nasal conjunctiva (CN), temporal (LT) and nasal (LN) limbus, and mean (MOST), maximum (Max T), and minimum (Min T) temperatures of the region of interest. Results. For static measures, dry eyes recorded significantly lower GCC, MOST, Min T, Max T, T4, CT, LT, LN, and CN. For dynamic measures, dry eyes had significantly steeper regression line of mean change (corresponding to greater net change) for Max T 5 s onward and T4 at 3 s onward. Conclusions. Both static and dynamic measures of the OST were valuable and can be used as clinical tool to assess dry eye. PMID:27433352

  18. Characterizing heterogeneous dynamics at hydrated electrode surfaces.

    PubMed

    Willard, Adam P; Limmer, David T; Madden, Paul A; Chandler, David

    2013-05-14

    In models of Pt 111 and Pt 100 surfaces in water, motions of molecules in the first hydration layer are spatially and temporally correlated. To interpret these collective motions, we apply quantitative measures of dynamic heterogeneity that are standard tools for considering glassy systems. Specifically, we carry out an analysis in terms of mobility fields and distributions of persistence times and exchange times. In so doing, we show that dynamics in these systems is facilitated by transient disorder in frustrated two-dimensional hydrogen bonding networks. The frustration is the result of unfavorable geometry imposed by strong metal-water bonding. The geometry depends upon the structure of the underlying metal surface. Dynamic heterogeneity of water on the Pt 111 surface is therefore qualitatively different than that for water on the Pt 100 surface. In both cases, statistics of this ad-layer dynamic heterogeneity responds asymmetrically to applied voltage.

  19. Characterizing heterogeneous dynamics at hydrated electrode surfaces

    NASA Astrophysics Data System (ADS)

    Willard, Adam P.; Limmer, David T.; Madden, Paul A.; Chandler, David

    2013-05-01

    In models of Pt 111 and Pt 100 surfaces in water, motions of molecules in the first hydration layer are spatially and temporally correlated. To interpret these collective motions, we apply quantitative measures of dynamic heterogeneity that are standard tools for considering glassy systems. Specifically, we carry out an analysis in terms of mobility fields and distributions of persistence times and exchange times. In so doing, we show that dynamics in these systems is facilitated by transient disorder in frustrated two-dimensional hydrogen bonding networks. The frustration is the result of unfavorable geometry imposed by strong metal-water bonding. The geometry depends upon the structure of the underlying metal surface. Dynamic heterogeneity of water on the Pt 111 surface is therefore qualitatively different than that for water on the Pt 100 surface. In both cases, statistics of this ad-layer dynamic heterogeneity responds asymmetrically to applied voltage.

  20. Unsteady surface pressure measurements on a slender delta wing undergoing limit cycle wing rock

    NASA Technical Reports Server (NTRS)

    Arena, Andrew S., Jr.; Nelson, Robert C.

    1991-01-01

    An experimental investigation of slender wing limit cycle motion known as wing rock was investigated using two unique experimental systems. Dynamic roll moment measurements and visualization data on the leading edge vortices were obtained using a free to roll apparatus that incorporates an airbearing spindle. In addition, both static and unsteady surface pressure data was measured on the top and bottom surfaces of the model. To obtain the unsteady surface pressure data a new computer controller drive system was developed to accurately reproduce the free to roll time history motions. The data from these experiments include, roll angle time histories, vortex trajectory data on the position of the vortices relative to the model's surface, and surface pressure measurements as a function of roll angle when the model is stationary or undergoing a wing rock motion. The roll time history data was numerically differentiated to determine the dynamic roll moment coefficient. An analysis of these data revealed that the primary mechanism for the limit cycle behavior was a time lag in the position of the vortices normal to the wing surface.

  1. Molecular-dynamics study on characteristics of energy and tangential momentum accommodation coefficients

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroki; Matsuda, Yu; Niimi, Tomohide

    2017-07-01

    Gas-surface interaction is studied by the molecular dynamics method to investigate qualitatively characteristics of accommodation coefficients. A large number of trajectories of gas molecules colliding to and scattering from a surface are statistically analyzed to calculate the energy (thermal) accommodation coefficient (EAC) and the tangential momentum accommodation coefficient (TMAC). Considering experimental measurements of the accommodation coefficients, the incident velocities are stochastically sampled to represent a bulk condition. The accommodation coefficients for noble gases show qualitative coincidence with experimental values. To investigate characteristics of these accommodation coefficients in detail, the gas-surface interaction is parametrically studied by varying the molecular mass of gas, the gas-surface interaction strength, and the molecular size of gas, one by one. EAC increases with increasing every parameter, while TMAC increases with increasing the interaction strength, but decreases with increasing the molecular mass and the molecular size. Thus, contradictory results in experimentally measured TMAC for noble gases could result from the difference between the surface conditions employed in the measurements in the balance among the effective parameters of molecular mass, interaction strength, and molecular size, due to surface roughness and/or adsorbed molecules. The accommodation coefficients for a thermo-fluid dynamics field with a temperature difference between gas and surface and a bulk flow at the same time are also investigated.

  2. Land Surface Microwave Emissivity Dynamics: Observations, Analysis and Modeling

    NASA Technical Reports Server (NTRS)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Kumar, Sujay; Ringerud, Sarah

    2014-01-01

    Land surface microwave emissivity affects remote sensing of both the atmosphere and the land surface. The dynamical behavior of microwave emissivity over a very diverse sample of land surface types is studied. With seven years of satellite measurements from AMSR-E, we identified various dynamical regimes of the land surface emission. In addition, we used two radiative transfer models (RTMs), the Community Radiative Transfer Model (CRTM) and the Community Microwave Emission Modeling Platform (CMEM), to simulate land surface emissivity dynamics. With both CRTM and CMEM coupled to NASA's Land Information System, global-scale land surface microwave emissivities were simulated for five years, and evaluated against AMSR-E observations. It is found that both models have successes and failures over various types of land surfaces. Among them, the desert shows the most consistent underestimates (by approx. 70-80%), due to limitations of the physical models used, and requires a revision in both systems. Other snow-free surface types exhibit various degrees of success and it is expected that parameter tuning can improve their performances.

  3. Effective surface Debye temperature for NiMnSb(100) epitaxial films

    NASA Astrophysics Data System (ADS)

    Borca, C. N.; Komesu, Takashi; Jeong, Hae-kyung; Dowben, P. A.; Ristoiu, D.; Hordequin, Ch.; Pierre, J.; Nozières, J. P.

    2000-07-01

    The surface Debye temperature of the NiMnSb (100) epitaxial films has been obtained using low energy electron diffraction, inverse photoemission, and core-level photoemission. The normal dynamic motion of the (100) surface results in a value for the effective surface Debye temperature of 145±13 K. This is far smaller than the bulk Debye temperature of 312±5 K obtained from wave vector dependent inelastic neutron scattering. The large difference between these measures of surface and bulk dynamic motion indicates a soft and compositionally different (100) surface.

  4. Charge dynamics in aluminum oxide thin film studied by ultrafast scanning electron microscopy.

    PubMed

    Zani, Maurizio; Sala, Vittorio; Irde, Gabriele; Pietralunga, Silvia Maria; Manzoni, Cristian; Cerullo, Giulio; Lanzani, Guglielmo; Tagliaferri, Alberto

    2018-04-01

    The excitation dynamics of defects in insulators plays a central role in a variety of fields from Electronics and Photonics to Quantum computing. We report here a time-resolved measurement of electron dynamics in 100 nm film of aluminum oxide on silicon by Ultrafast Scanning Electron Microscopy (USEM). In our pump-probe setup, an UV femtosecond laser excitation pulse and a delayed picosecond electron probe pulse are spatially overlapped on the sample, triggering Secondary Electrons (SE) emission to the detector. The zero of the pump-probe delay and the time resolution were determined by measuring the dynamics of laser-induced SE contrast on silicon. We observed fast dynamics with components ranging from tens of picoseconds to few nanoseconds, that fits within the timescales typical of the UV color center evolution. The surface sensitivity of SE detection gives to the USEM the potential of applying pump-probe investigations to charge dynamics at surfaces and interfaces of current nano-devices. The present work demonstrates this approach on large gap insulator surfaces. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Temperature Measurements in Dynamically-loaded Systems Using Neutron Resonance Spectroscopy (NRS) at LANSCE

    NASA Astrophysics Data System (ADS)

    Yuan, V. W.

    2002-12-01

    In previous attempts to determine the internal temperature in systems subjected to dynamic loading, experimenters have usually relied on surface-based optical techniques that are often hampered by insufficient information regarding the emissivity of the surfaces under study. Neutron Resonance Spectroscopy (NRS) is a technique that uses Doppler-broadened neutron resonances to measure internal temperatures in dynamically-loaded samples. NRS has developed its own target-moderator assembly to provide single pulses with an order of magnitude higher brightness than the Lujan production target. The resonance line shapes from which temperature information is extracted are also influenced by non-temperature-dependent broadening from the moderator and detector phosphorescence. Dynamic NRS experiments have been performed to measure the temperature in a silver sheet jet and behind the passage of a shock wave in molybdenum.

  6. Some new results concerning the dynamic behavior of annular turbulent seals

    NASA Technical Reports Server (NTRS)

    Massmann, H.; Nordmann, R.

    1985-01-01

    The dynamic characteristics of annular turbulent seals applied in high pressure turbopumps can be described by stiffness, damping, and inertia coefficients. An improved procedure is presented for determining these parameters by using measurements made with newly developed test equipment. The dynamic system seal, consisting of the fluid between the cylindrical surfaces of the rotating shaft and the housing, is excited by test forces (input), and the relative motion between the surfaces (output) is measured. Transformation of the input and output time signals into the frequency domain leads to frequency response functions. An analytical model, depending on the seal parameters, is fitted to the measured data in order to identify the dynamic coefficients. Some new results are reported that show the dependencies of these coefficients with respect to the axial and radial Reynolds numbers and the geometrical data of the seal.

  7. Monitoring and characterizing natural hazards with satellite InSAR imagery

    USGS Publications Warehouse

    Lu, Zhong; Zhang, Jixian; Zhang, Yonghong; Dzurisin, Daniel

    2010-01-01

    Interferometric synthetic aperture radar (InSAR) provides an all-weather imaging capability for measuring ground-surface deformation and inferring changes in land surface characteristics. InSAR enables scientists to monitor and characterize hazards posed by volcanic, seismic, and hydrogeologic processes, by landslides and wildfires, and by human activities such as mining and fluid extraction or injection. Measuring how a volcano’s surface deforms before, during, and after eruptions provides essential information about magma dynamics and a basis for mitigating volcanic hazards. Measuring spatial and temporal patterns of surface deformation in seismically active regions is extraordinarily useful for understanding rupture dynamics and estimating seismic risks. Measuring how landslides develop and activate is a prerequisite to minimizing associated hazards. Mapping surface subsidence or uplift related to extraction or injection of fluids during exploitation of groundwater aquifers or petroleum reservoirs provides fundamental data on aquifer or reservoir properties and improves our ability to mitigate undesired consequences. Monitoring dynamic water-level changes in wetlands improves hydrological modeling predictions and the assessment of future flood impacts. In addition, InSAR imagery can provide near-real-time estimates of fire scar extents and fire severity for wildfire management and control. All-weather satellite radar imagery is critical for studying various natural processes and is playing an increasingly important role in understanding and forecasting natural hazards.

  8. Electrostatically confined nanoparticle interactions and dynamics.

    PubMed

    Eichmann, Shannon L; Anekal, Samartha G; Bevan, Michael A

    2008-02-05

    We report integrated evanescent wave and video microscopy measurements of three-dimensional trajectories of 50, 100, and 250 nm gold nanoparticles electrostatically confined between parallel planar glass surfaces separated by 350 and 600 nm silica colloid spacers. Equilibrium analyses of single and ensemble particle height distributions normal to the confining walls produce net electrostatic potentials in excellent agreement with theoretical predictions. Dynamic analyses indicate lateral particle diffusion coefficients approximately 30-50% smaller than expected from predictions including the effects of the equilibrium particle distribution within the gap and multibody hydrodynamic interactions with the confining walls. Consistent analyses of equilibrium and dynamic information in each measurement do not indicate any roles for particle heating or hydrodynamic slip at the particle or wall surfaces, which would both increase diffusivities. Instead, lower than expected diffusivities are speculated to arise from electroviscous effects enhanced by the relative extent (kappaa approximately 1-3) and overlap (kappah approximately 2-4) of electrostatic double layers on the particle and wall surfaces. These results demonstrate direct, quantitative measurements and a consistent interpretation of metal nanoparticle electrostatic interactions and dynamics in a confined geometry, which provides a basis for future similar measurements involving other colloidal forces and specific biomolecular interactions.

  9. Geometric, Kinematic and Radiometric Aspects of Image-Based Measurements

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu

    2002-01-01

    This paper discusses theoretical foundations of quantitative image-based measurements for extracting and reconstructing geometric, kinematic and dynamic properties of observed objects. New results are obtained by using a combination of methods in perspective geometry, differential geometry. radiometry, kinematics and dynamics. Specific topics include perspective projection transformation. perspective developable conical surface, perspective projection under surface constraint, perspective invariants, the point correspondence problem. motion fields of curves and surfaces. and motion equations of image intensity. The methods given in this paper arc useful for determining morphology and motion fields of deformable bodies such as elastic bodies. viscoelastic mediums and fluids.

  10. Reflow dynamics of thin patterned viscous films

    NASA Astrophysics Data System (ADS)

    Leveder, T.; Landis, S.; Davoust, L.

    2008-01-01

    This letter presents a study of viscous smoothening dynamics of a nanopatterned thin film. Ultrathin film manufacturing processes appearing to be a key point of nanotechnology engineering and numerous studies have been recently led in order to exhibit driving parameters of this transient surface motion, focusing on time scale accuracy method. Based on nanomechanical analysis, this letter shows that controlled shape measurements provided much more detailed information about reflow mechanism. Control of reflow process of any complex surface shape, or measurement of material parameter as thin film viscosity, free surface energy, or even Hamaker constant are therefore possible.

  11. Phase-slope and phase measurements of tunable CW-THz radiation with terahertz comb for wide-dynamic-range, high-resolution, distance measurement of optically rough object.

    PubMed

    Yasui, Takeshi; Fujio, Makoto; Yokoyama, Shuko; Araki, Tsutomu

    2014-07-14

    Phase measurement of continuous-wave terahertz (CW-THz) radiation is a potential tool for direct distance and imaging measurement of optically rough objects due to its high robustness to optical rough surfaces. However, the 2π phase ambiguity in the phase measurement of single-frequency CW-THz radiation limits the dynamic range of the measured distance to the order of the wavelength used. In this article, phase-slope measurement of tunable CW-THz radiation with a THz frequency comb was effectively used to extend the dynamic range up to 1.834 m while maintaining an error of a few tens µm in the distance measurement of an optically rough object. Furthermore, a combination of phase-slope measurement of tunable CW-THz radiation and phase measurement of single-frequency CW-THz radiation enhanced the distance error to a few µm within the dynamic range of 1.834 m without any influence from the 2π phase ambiguity. The proposed method will be a powerful tool for the construction and maintenance of large-scale structures covered with optically rough surfaces.

  12. Measurements of radiated elastic wave energy from dynamic tensile cracks

    NASA Technical Reports Server (NTRS)

    Boler, Frances M.

    1990-01-01

    The role of fracture-velocity, microstructure, and fracture-energy barriers in elastic wave radiation during a dynamic fracture was investigated in experiments in which dynamic tensile cracks of two fracture cofigurations of double cantilever beam geometry were propagating in glass samples. The first, referred to as primary fracture, consisted of fractures of intact glass specimens; the second configuration, referred to as secondary fracture, consisted of a refracture of primary fracture specimens which were rebonded with an intermittent pattern of adhesive to produce variations in fracture surface energy along the crack path. For primary fracture cases, measurable elastic waves were generated in 31 percent of the 16 fracture events observed; the condition for radiation of measurable waves appears to be a local abrupt change in the fracture path direction, such as occurs when the fracture intersects a surface flaw. For secondary fractures, 100 percent of events showed measurable elastic waves; in these fractures, the ratio of radiated elastic wave energy in the measured component to fracture surface energy was 10 times greater than for primary fracture.

  13. Film Levitation of Droplet Impact on Heated Nanotube Surfaces

    NASA Astrophysics Data System (ADS)

    Duan, Fei; Tong, Wei; Qiu, Lu

    2017-11-01

    Contact boiling of an impacting droplet impacting on a heated surface can be observed when the surface temperature is able to activate the nucleation and growth of vapor bubbles, the phenomena are related to nature and industrial application. The dynamic boiling patterns us is investigated when a single falling water droplet impacts on a heated titanium (Ti) surface covered with titanium oxide (TiO2) nanotubes. In the experiments, the droplets were generated from a flat-tipped needle connected to a syringe mounted on a syringe pump. The droplet diameter and velocity before impacting on the heated surface are measured by a high-speed camera with the Weber number is varied from 45 to 220. The dynamic wetting length, spreading diameter, levitation distance, and the associated parameter are measured. Interesting film levitation on titanium (Ti) surface has been revealed. The comparison of the phase diagrams on the nanotube surface and bare Ti surface suggests that the dynamic Leidenfrost point of the surface with the TiO2 nanotubes has been significantly delayed as compared to that on a bare Ti surface. The delay is inferred to result from the increase in the surface wettability and the capillary effect by the nanoscale tube structure. The further relation is discussed.

  14. Measuring and modeling surface sorption dynamics of organophosphate flame retardants on impervious surfaces.

    PubMed

    Liang, Y; Liu, X; Allen, M R

    2018-02-01

    Understanding the sorption mechanisms for organophosphate flame retardants (OPFRs) on impervious surfaces is important to improve our knowledge of the fate and transport of OPFRs in indoor environments. The sorption processes of semivolatile organic compounds (SVOCs) on indoor surfaces are heterogeneous (multilayer sorption) or homogeneous (monolayer sorption). In this study, we adopted simplified Langmuir isotherm and Freundlich isotherm in a dynamic sink model to characterize the sorption dynamics of OPFRs on impervious surfaces such as stainless steel and made comparisons between the two models through a series of empty chamber studies. The tests involve two types of stainless steel chambers (53-L small chambers and 44-mL micro chambers) using tris(2-chloroethyl)phosphate (TCEP) and tris(1-chloro-2-propyl)phosphate (TCPP) as target compounds. Our test results show that the dynamic sink model using Freundlich isotherm can better represent the sorption process in the empty small chamber. Micro chamber test results from this study show that the sink model using both simplified Langmuir isotherm and Freundlich isotherm can well fit the measured gas-phase concentrations of OPFRs. We further applied both models and the parameters obtained to predict the gas phase concentrations of OPFRs in a small chamber with an emission source. Comparisons between model predictions and measurements demonstrate the reliability and applicability of the sorption parameters. Published by Elsevier Ltd.

  15. Correlation between dynamic wetting behavior and chemical components of thermally modified wood

    NASA Astrophysics Data System (ADS)

    Wang, Wang; Zhu, Yuan; Cao, Jinzhen; Sun, Wenjing

    2015-01-01

    In order to investigate the dynamic wetting behavior of thermally modified wood, Cathay poplar (Populus cathayana Rehd.) and Scots pine (Pinus sylvestris L.) samples were thermally modified in an oven at 160, 180, 200, 220 or 240 °C for 4 h in this study. The dynamic contact angles and droplet volumes of water droplets on modified and unmodified wood surfaces were measured by sessile drop method, and their changing rates (expression index: K value and wetting slope) calculated by wetting models were illustrated for mapping the dynamic wetting process. The surface chemical components were also measured by X-ray photoelectron spectroscopy analysis (XPS), thus the relationship between dynamic wetting behavior and chemical components of thermally modified wood were determined. The results indicated that thermal modification was capable of decreasing the dynamic wettability of wood, expressed in lowing spread and penetration speed of water droplets on wood surfaces. This change was more obvious with the increased heating temperature. The K values varied linearly with the chemical components parameter (mass loss, O/C ratio, and C1/C2 ratio), indicating a strong correlation between dynamic wetting behavior and chemical components of thermally modified wood.

  16. Potential and limitations of satellite laser altimetry for monitoring water surface dynamics: ICESat for US lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Liu; Qigang, Jiang; Zhang, Xuesong

    Elevation measurements from the Ice, Cloud and Land Elevation Satellite (ICESat) have been applied to monitor dynamics of lakes and other surface water bodies. Despite such potential, the true utility of ICESat--more generally, satellite laser altimetry--for tracking surface water dynamics over time has not been adequately assessed, especially in the continental or global contexts. Here, we analyzed ICESat elevation data for the conterminous United States and examined the potential and limitations of satellite laser altimetry in measuring water-level dynamics. Owing to a lack of spatially-explicit ground-based water-level data, we first resorted to high-fidelity land elevation data acquired by airborne lidarmore » to quantify ICESat’s ranging accuracy. We then performed trend and frequency analyses to evaluate how reliably ICESat could capture water-level dynamics over a range of temporal scales, as compared to in-situ gauge measurements. Our analyses showed that ICESat had a vertical ranging error of 0.16 m at the footprint level—a limit on the detectable range of water-level dynamics. The sparsity of data over time was identified as a major factor limiting the use of ICESat for water dynamics studies. Of all the US lakes, only 361 had quality ICESat measurements for more than two flight passes. Even for those lakes with sufficient temporal coverage, ICESat failed to capture the true interannual water-level dynamics in 68% of the cases. Our frequency analysis suggested that even with a repeat cycle of two months, ICESat could capture only 60% of the variations in water-level dynamics for at most 34 % of the US lakes. To capture 60% of the water-level variation for most of the US lakes, a weekly repeat cycle (e.g., less than 5 days) is needed – a requirement difficult to meet in current designs of spaceborne laser altimetry. Overall, our results highlight that current or near-future satellite laser missions, though with high ranging accuracies, are unlikely to fulfill the general needs in remotely monitoring water surface dynamics for lakes or reservoirs.« less

  17. Photogrammetry research for FAST eleven-meter reflector panel surface shape measurement

    NASA Astrophysics Data System (ADS)

    Zhou, Rongwei; Zhu, Lichun; Li, Weimin; Hu, Jingwen; Zhai, Xuebing

    2010-10-01

    In order to design and manufacture the Five-hundred-meter Aperture Spherical Radio Telescope (FAST) active reflector measuring equipment, measurement on each reflector panel surface shape was presented, static measurement of the whole neutral spherical network of nodes was performed, real-time dynamic measurement at the cable network dynamic deformation was undertaken. In the implementation process of the FAST, reflector panel surface shape detection was completed before eleven-meter reflector panel installation. Binocular vision system was constructed based on the method of binocular stereo vision in machine vision, eleven-meter reflector panel surface shape was measured with photogrammetry method. Cameras were calibrated with the feature points. Under the linearity camera model, the lighting spot array was used as calibration standard pattern, and the intrinsic and extrinsic parameters were acquired. The images were collected for digital image processing and analyzing with two cameras, feature points were extracted with the detection algorithm of characteristic points, and those characteristic points were matched based on epipolar constraint method. Three-dimensional reconstruction coordinates of feature points were analyzed and reflective panel surface shape structure was established by curve and surface fitting method. The error of reflector panel surface shape was calculated to realize automatic measurement on reflector panel surface shape. The results show that unit reflector panel surface inspection accuracy was 2.30mm, within the standard deviation error of 5.00mm. Compared with the requirement of reflector panel machining precision, photogrammetry has fine precision and operation feasibility on eleven-meter reflector panel surface shape measurement for FAST.

  18. Dynamic Speckle Imaging with Low-Cost Devices

    ERIC Educational Resources Information Center

    Vannoni, Maurizio; Trivi, Marcelo; Arizaga, Ricardo; Rabal, Hector; Molesini, Giuseppe

    2008-01-01

    Light from a rough sample surface illuminated with a laser consists of a speckle pattern. If the surface evolves with time, the pattern becomes dynamic, following the activity of the sample. This phenomenon is used both in research and in industry to monitor processes and systems that change with time. The measuring equipment generally includes…

  19. Comparative surface dynamics of amorphous and semicrystalline polymer films

    PubMed Central

    Becker, James S.; Brown, Ryan D.; Killelea, Daniel R.; Yuan, Hanqiu; Sibener, S. J.

    2011-01-01

    The surface dynamics of amorphous and semicrystalline polymer films have been measured using helium atom scattering. Time-of-flight data were collected to resolve the elastic and inelastic scattering components in the diffuse scattering of neutral helium atoms from the surface of a thin poly(ethylene terephthalate) film. Debye–Waller attenuation was observed for both the amorphous and semicrystalline phases of the polymer by recording the decay of elastically scattered helium atoms with increasing surface temperature. Thermal attenuation measurements in the specular scattering geometry yielded perpendicular mean-square displacements of 2.7•10-4 Å2 K-1 and 3.1•10-4 Å2 K-1 for the amorphous and semicrystalline surfaces, respectively. The semicrystalline surface was consistently ∼15% softer than the amorphous across a variety of perpendicular momentum transfers. The Debye–Waller factors were also measured at off-specular angles to characterize the parallel mean-square displacements, which were found to increase by an order of magnitude over the perpendicular mean-square displacements for both surfaces. In contrast to the perpendicular motion, the semicrystalline state was ∼25% stiffer than the amorphous phase in the surface plane. These results were uniquely accessed through low-energy neutral helium atom scattering due to the highly surface-sensitive and nonperturbative nature of these interactions. The goal of tailoring the chemical and physical properties of complex advanced materials requires an improved understanding of interfacial dynamics, information that is obtainable through atomic beam scattering methods. PMID:20713734

  20. Communication: Contrasting effects of glycerol and DMSO on lipid membrane surface hydration dynamics and forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrader, Alex M.; Cheng, Chi-Yuan; Israelachvili, Jacob N.

    2016-07-28

    Glycerol and dimethyl sulfoxide (DMSO) are commonly used cryoprotectants in cellular systems, but due to the challenges of measuring the properties of surface-bound solvent, fundamental questions remain regarding the concentration, interactions, and conformation of these solutes at lipid membrane surfaces. We measured the surface water diffusivity at gel-phase dipalmitoylphosphatidylcholine (DPPC) bilayer surfaces in aqueous solutions containing ≤7.5 mol. % of DMSO or glycerol using Overhauser dynamic nuclear polarization. We found that glycerol similarly affects the diffusivity of water near the bilayer surface and that in the bulk solution (within 20%), while DMSO substantially increases the diffusivity of surface water relativemore » to bulk water. We compare these measurements of water dynamics with those of equilibrium forces between DPPC bilayers in the same solvent mixtures. DMSO greatly decreases the range and magnitude of the repulsive forces between the bilayers, whereas glycerol increases it. We propose that the differences in hydrogen bonding capability of the two solutes leads DMSO to dehydrate the lipid head groups, while glycerol affects surface hydration only as much as it affects the bulk water properties. The results suggest that the mechanism of the two most common cryoprotectants must be fundamentally different: in the case of DMSO by decoupling the solvent from the lipid surface, and in the case of glycerol by altering the hydrogen bond structure and intermolecular cohesion of the global solvent, as manifested by increased solvent viscosity.« less

  1. On-line surveillance of a dynamic process by a moving system based on pulsed digital holographic interferometry.

    PubMed

    Pedrini, Giancarlo; Alexeenko, Igor; Osten, Wolfgang; Schnars, Ulf

    2006-02-10

    A method based on pulsed digital holographic interferometry for the measurement of dynamic deformations of a surface by using a moving system is presented. The measuring system may move with a speed of several meters per minute and can measure deformation of the surface with an accuracy of better than 50 nm. The deformation is obtained by comparison of the wavefronts recorded at different times with different laser pulses produced by a Nd:YAG laser. The effect due to the movement of the measuring system is compensated for by digital processing of the different holograms. The system is well suited for on-line surveillance of a dynamic process such as laser welding and friction stir welding. Experimental results are presented, and the advantages of the method are discussed.

  2. Influence of water table fluctuations on subsurface methane dynamics and surface fluxes in seasonally flooded subtropical pastures.

    NASA Astrophysics Data System (ADS)

    Chamberlain, S.; Gomez-Casanovas, N.; Boughton, E.; Keel, E.; Walter, M. T.; Groffman, P. M.; Sparks, J. P.

    2015-12-01

    Seasonally flooded subtropical pastures are major sources of methane (CH4), and periodic flooding drives complex emission dynamics from these ecosystems. Understanding the mechanisms of belowground CH4 dynamics driving soil surface fluxes is needed to better understand emissions from these systems and their response to environmental change. We investigated subsurface CH4 dynamics in relation to net surface fluxes using laboratory water table manipulations and compared these results to eddy covariance-measured fluxes to link within-soil CH4 dynamics to observed ecosystem fluxes. Pronounced hysteresis was observed in ecosystem CH4 fluxes during precipitation driven flooding events. This dynamic was replicated in mesocosm experiments, with maximum CH4 fluxes observed during periods of water table recession. Hysteresis dynamics were best explained by oxygen dynamics during precipitation recharge events and the oxidation of CH4 produced in organic soil horizons during water table recession. We observed distinct CH4 dynamics between surface organic and deeper mineral soil horizons. In surface organic soil horizons, high levels of CH4 production were temporally linked to observed surface emissions. In contrast, high concentrations of CH4 observed in deeper mineral soils did not contribute to surface fluxes. Methane production potentials in surface organic soils were orders of magnitude higher than in mineral soils, suggesting that over longer flooding regimes CH4 produced in mineral horizons is unlikely to be a significant component of net surface emissions. Our results demonstrate that distinct CH4 dynamics may be stratified by depth, and flooding of the near-surface organic soils drives the high magnitude CH4 fluxes observed from subtropical pastures. These results suggest that relatively small changes in pasture water table dynamics can drive large changes in net CH4 emissions if surface organic soils remain saturated over longer time scales.

  3. Measuring Long-Range 13C– 13C Correlations on a Surface under Natural Abundance Using Dynamic Nuclear Polarization-Enhanced Solid-State Nuclear Magnetic Resonance [Measuring Long Range 13C– 13C Correlations on Surface under Natural Abundance Using DNP-enhanced Solid-state NMR

    DOE PAGES

    Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek

    2017-10-13

    Here, we report that spatial (<1 nm) proximity between different molecules in solid bulk materials and, for the first time, different moieties on the surface of a catalyst, can be established without isotope enrichment by means of homonuclear CHHC solid-state nuclear magnetic resonance experiment. This 13C– 13C correlation measurement, which hitherto was not possible for natural-abundance solids, was enabled by the use of dynamic nuclear polarization. Importantly, it allows the study of long-range correlations in a variety of materials with high resolution.

  4. Measuring Long-Range 13C– 13C Correlations on a Surface under Natural Abundance Using Dynamic Nuclear Polarization-Enhanced Solid-State Nuclear Magnetic Resonance [Measuring Long Range 13C– 13C Correlations on Surface under Natural Abundance Using DNP-enhanced Solid-state NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek

    Here, we report that spatial (<1 nm) proximity between different molecules in solid bulk materials and, for the first time, different moieties on the surface of a catalyst, can be established without isotope enrichment by means of homonuclear CHHC solid-state nuclear magnetic resonance experiment. This 13C– 13C correlation measurement, which hitherto was not possible for natural-abundance solids, was enabled by the use of dynamic nuclear polarization. Importantly, it allows the study of long-range correlations in a variety of materials with high resolution.

  5. A New Approach for 3D Ocean Reconstruction from Limited Observations

    NASA Astrophysics Data System (ADS)

    Xiao, X.

    2014-12-01

    Satellites can measure ocean surface height and temperature with sufficient spatial and temporal resolution to capture mesoscale features across the globe. Measurements of the ocean's interior, however, remain sparse and irregular, thus the dynamical inference of subsurface flows is necessary to interpret surface measurements. The most common (and accurate) approach is to incorporate surface measurements into a data-assimilating forward ocean model, but this approach is expensive and slow, and thus completely impractical for time-critical needs, such as offering guidance to ship-based observational campaigns. Two recently-developed approaches have made use of the apparent partial consistency of upper ocean dynamics with quasigeostrophic flows that take into account surface buoyancy gradients (i.e. the "surface quasigeostrophic" (SQG) model) to "reconstruct" the interior flow from knowledge of surface height and buoyancy. Here we improve on these methods in three ways: (1) we adopt a modal decomposition that represents the surface and interior dynamics in an efficient way, allowing the separation of surface energy from total energy; (2) we make use of instantaneous vertical profile observations (e.g. from ARGO data) to improve the reconstruction of eddy variables at depth; and (3) we use advanced statistical methods to choose the optimal modes for the reconstruction. The method is tested using a series of high horizontal and vertical resolution quasigeostrophic simulation, with a wide range of surface buoyancy and interior potential vorticity gradient combinations. In addtion, we apply the method to output from a very high resolution primitive equation simulation of a forced and dissipated baroclinic front in a channel. Our new method is systematically compared to the existing methods as well. Its advantages and limitations will be discussed.

  6. Investigation of transonic region of high dynamic response encountered on an elastic supercritical wing

    NASA Technical Reports Server (NTRS)

    Seidel, David A.; Eckstrom, Clinton V.; Sandford, Maynard C.

    1987-01-01

    Unsteady aerodynamic data were measured on an aspect ratio 10.3 elastic supercritical wing while undergoing high dynamic response above Mach number of 0.90. These tests were conducted in the NASA Langley Transonic Dynamics Tunnel. A previous test of this wing predicted an unusual instability boundary based upon subcritical response data. During the present test no instability was found, but an angle of attack dependent narrow Mach number region of high dynamic wing response was observed over a wide range of dynamic pressures. The effect on dynamic wing response of wing angle of attack, static outboard control surface deflection and a lower surface spanwise fence located near the 60 percent local chordline was investigated. The driving mechanism of the dynamic wing response appears to be related to chordwise shock movement in conjunction with flow separation and reattachment on both the upper and lower surfaces.

  7. Investigation of transonic region of high dynamic response encountered on an elastic supercritical wing

    NASA Technical Reports Server (NTRS)

    Seidel, David A.; Eckstrom, Clinton V.; Sandford, Maynard C.

    1987-01-01

    Unsteady aerodynamic data were measured on an aspect ratio 10.3 elastic supercritical wing while undergoing high dynamic response above a Mach number of 0.90. These tests were conducted in the NASA Langley Transonic Dynamics Tunnel. A previous test of this wing predicted an unusual instability boundary based on subcritical response data. During the present test no instability was found, but an angle of attack dependent narrow Mach number region of high dynamic wing response was observed over a wide range of dynamic pressures. The effect on dynamic wing response of wing angle of attack, static outbound control surface deflection and a lower surface spanwise fence located near the 60 percent local chordline was investigated. The driving mechanism of the dynamic wing response appears to be related to chordwise shock movement in conjunction with flow separation and reattachment on both the upper and lower surfaces.

  8. Surface Composition Influence on Internal Gas Flow at Large Knudsen Numbers

    DTIC Science & Technology

    2000-07-09

    situated in an ultra high vacuum system . The system is supplied with means of gas phase, surface CP585, Rarefied Gas Dynamics: 22nd International...control and gas flow measuring system . The experimental procedure consists in a few stages. The first stage includes surface preparation process at...solid body system , Proceedings 20-th Int. Symp. Rarefied Gas Dynamics, Peking University Press, Beijing, China, 1997, pp. 387-391. 3. Lord, R.G

  9. Steady pressure measurements on an Aeroelastic Research Wing (ARW-2)

    NASA Technical Reports Server (NTRS)

    Sandford, Maynard C.; Seidel, David A.; Eckstrom, Clinton V.

    1994-01-01

    Transonic steady and unsteady pressure tests have been conducted in the Langley transonic dynamics tunnel on a large elastic wing known as the DAST ARW-2. The wing has a supercritical airfoil, an aspect ratio of 10.3, a leading-edge sweep back angle of 28.8 degrees, and two inboard and one outboard trailing-edge control surfaces. Only the outboard control surface was deflected to generate steady and unsteady flow over the wing during this study. Only the steady surface pressure, control-surface hinge moment, wing-tip deflection, and wing-root bending moment measurements are presented. The results from this elastic wing test are in tabulated form to assist in calibrating advanced computational fluid dynamics (CFD) algorithms.

  10. Capillary waves' dynamics at the nanoscale

    NASA Astrophysics Data System (ADS)

    Delgado-Buscalioni, Rafael; Chacón, Enrique; Tarazona, Pedro

    2008-12-01

    We study the dynamics of thermally excited capillary waves (CW) at molecular scales, using molecular dynamics simulations of simple liquid slabs. The analysis is based on the Fourier modes of the liquid surface, constructed via the intrinsic sampling method (Chacón and Tarazona 2003 Phys. Rev. Lett. 91 166103). We obtain the time autocorrelation of the Fourier modes to get the frequency and damping rate Γd(q) of each mode, with wavenumber q. Continuum hydrodynamics predicts \\Gamma (q) \\propto q\\gamma (q) and thus provides a dynamic measure of the q-dependent surface tension, γd(q). The dynamical estimation is much more robust than the structural prediction based on the amplitude of the Fourier mode, γs(q). Using the optimal estimation of the intrinsic surface, we obtain quantitative agreement between the structural and dynamic pictures. Quite surprisingly, the hydrodynamic prediction for CW remains valid up to wavelengths of about four molecular diameters. Surface tension hydrodynamics break down at shorter scales, whereby a transition to a molecular diffusion regime is observed.

  11. Dynamic MTF measurement

    NASA Astrophysics Data System (ADS)

    Bardoux, Alain; Gimenez, Thierry; Jamin, Nicolas; Seve, Frederic

    2017-11-01

    MTF (Modulation Transfer Frequency) of a detector is a key parameter for imagers. When image is not moving on the detector, MTF can be measured by some methods (knife edge, slanted slit,…). But with LEO satellites, image is moving on the surface of the detector, and MTF has to be measured in the same way: that is what we call "dynamic MTF". CNES (French Space Agency) has built a specific bench in order to measure dynamic MTF of detectors (CCD and CMOS), especially with component working in TDI (Time delay and integration) mode. The method is based on a moving edge, synchronized with the movement of charges inside the TDI detector. The moving part is a rotating cube, allowing a very stable movement of the image on the surface of the detector The main difficulties were: - stability of the rotating speed - synchronization between cube speed and charge transfer inside the detectors - synchronization between cube position and data acquisition. Different methods have been tested for the displacement of the knife edge: - geometrical displacement - electrical shift of the charge transfer clocks. Static MTF has been performed before dynamic measurements, in order to fix a reference measurement, Then dynamic MTF bench has been set up. The results, for a TDI CCD show a very good precision. So this bench is validated, and the dynamic MTF value of the TDI CCD is confirmed.

  12. Time-dynamics of the two-color emission from vertical-external-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Chernikov, A.; Wichmann, M.; Shakfa, M. K.; Scheller, M.; Moloney, J. V.; Koch, S. W.; Koch, M.

    2012-01-01

    The temporal stability of a two-color vertical-external-cavity surface-emitting laser is studied using single-shot streak-camera measurements. The collected data is evaluated via quantitative statistical analysis schemes. Dynamically stable and unstable regions for the two-color operation are identified and the dependence on the pump conditions is analyzed.

  13. Dynamics of solid thin-film dewetting in the silicon-on-insulator system

    NASA Astrophysics Data System (ADS)

    Bussmann, E.; Cheynis, F.; Leroy, F.; Müller, P.; Pierre-Louis, O.

    2011-04-01

    Using low-energy electron microscopy movies, we have measured the dewetting dynamics of single-crystal Si(001) thin films on SiO2 substrates. During annealing (T>700 °C), voids open in the Si, exposing the oxide. The voids grow, evolving Si fingers that subsequently break apart into self-organized three-dimensional (3D) Si nanocrystals. A kinetic Monte Carlo model incorporating surface and interfacial free energies reproduces all the salient features of the morphological evolution. The dewetting dynamics is described using an analytic surface-diffusion-based model. We demonstrate quantitatively that Si dewetting from SiO2 is mediated by surface-diffusion driven by surface free-energy minimization.

  14. Dynamic determination of secondary electron emission using a calorimetric probe in a plasma immersion ion implantation experiment

    NASA Astrophysics Data System (ADS)

    Haase, Fabian; Manova, Darina; Hirsch, Dietmar; Mändl, Stephan; Kersten, Holger

    2018-04-01

    A passive thermal probe has been used to detect dynamic changes in the secondary electron emission (SEE). Oxidized and nitrided materials have been studied during argon ion sputtering in a plasma immersion ion implantation process. Identical measurements have been performed for the metallic state with high voltage pulses accelerating nitrogen ions towards the surface, supposedly forming a nitride layer. Energy flux data were combined with scanning electron microscopy images of the surface to obtain information about the actual surface composition as well as trends and changes during the process. Within the measurements, a direct comparison of the SEE within both employed ion species (argon and nitrogen) is possible while an absolute quantification is still open. Additionally, the nominal composition of the investigated oxide and nitride layers does not always correspond to stoichiometric compounds. Nevertheless, the oxides showed a remarkably higher SEE compared to the pure metals, while an indistinct behavior was observed for the nitrides: some higher, some lower than the clean metal surfaces. For the aluminum alloy AlMg3 a complex time dependent evolution was observed with consecutive oxidation/sputtering cycles leading to a very rough surface with a diminished oxide layer, leading to an almost black surface of the metal and non-reproducible changes in the SEE. The presented method is a versatile technique for measuring dynamic changes of the surface for materials commonly used in PVD processes with a time resolution of about 1 min, e.g. magnetron sputtering or HiPIMS, where changes in the target or electrode composition are occurring but cannot be measured directly.

  15. Fluorescence-correlation spectroscopy study of molecular transport within reversed-phase chromatographic particles compared to planar model surfaces.

    PubMed

    Cooper, Justin; Harris, Joel M

    2014-12-02

    Reversed-phase liquid chromatography (RPLC) is a widely used technique for molecular separations. Stationary-phase materials for RPLC generally consist of porous silica-gel particles functionalized with n-alkane ligands. Understanding motions of molecules within the interior of these particles is important for developing efficient chromatographic materials and separations. To characterize these dynamics, time-resolved spectroscopic methods (photobleach recovery, fluorescence correlation, single-molecule imaging) have been adapted to measure molecular diffusion rates, typically at n-alkane-modified planar silica surfaces, which serve as models of chromatographic interfaces. A question arising from these studies is how dynamics of molecules on a planar surface relate to motions of molecules within the interior of a porous chromatographic particle. In this paper, imaging-fluorescence-correlation spectroscopy is used to measure diffusion rates of a fluorescent probe molecule 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate (DiI) within authentic RPLC porous silica particles and compared with its diffusion at a planar C18-modified surface. The results show that surface diffusion on the planar C18 substrate is much faster than the diffusion rate of the probe molecule through a chromatographic particle. Surface diffusion within porous particles, however, is governed by molecular trajectories along the tortuous contours of the interior surface of the particles. By accounting for the greater surface area that a molecule must explore to diffuse macroscopic distances through the particle, the molecular-scale diffusion rates on the two surfaces can be compared, and they are virtually identical. These results provide support for the relevance of surface-diffusion measurements made on planar model surfaces to the dynamic behavior of molecules on the internal surfaces of porous chromatographic particles.

  16. Dynamical characteristics of surface EMG signals of hand grasps via recurrence plot.

    PubMed

    Ouyang, Gaoxiang; Zhu, Xiangyang; Ju, Zhaojie; Liu, Honghai

    2014-01-01

    Recognizing human hand grasp movements through surface electromyogram (sEMG) is a challenging task. In this paper, we investigated nonlinear measures based on recurrence plot, as a tool to evaluate the hidden dynamical characteristics of sEMG during four different hand movements. A series of experimental tests in this study show that the dynamical characteristics of sEMG data with recurrence quantification analysis (RQA) can distinguish different hand grasp movements. Meanwhile, adaptive neuro-fuzzy inference system (ANFIS) is applied to evaluate the performance of the aforementioned measures to identify the grasp movements. The experimental results show that the recognition rate (99.1%) based on the combination of linear and nonlinear measures is much higher than those with only linear measures (93.4%) or nonlinear measures (88.1%). These results suggest that the RQA measures might be a potential tool to reveal the sEMG hidden characteristics of hand grasp movements and an effective supplement for the traditional linear grasp recognition methods.

  17. Effect of adjuvant physical properties on spray characteristics

    USDA-ARS?s Scientific Manuscript database

    The effects of adjuvant physical properties on spray characteristics were studied. Dynamic surface tension was measured with a Sensa Dyne surface tensiometer 6000 using the maximum bubble pressure method. Viscosity was measured with a Brookfield synchro-lectric viscometer model LVT using a UL adap...

  18. Dynamic Bubble Surface Tension Measurements in Northwest Atlantic Seawater

    NASA Astrophysics Data System (ADS)

    Kieber, D. J.; Long, M. S.; Keene, W. C.; Kinsey, J. D.; Frossard, A. A.; Beaupre, S. R.; Duplessis, P.; Maben, J. R.; Lu, X.; Chang, R.; Zhu, Y.; Bisgrove, J.

    2017-12-01

    Numerous reports suggest that most organic matter (OM) associated with newly formed primary marine aerosol (PMA) originates from the sea-surface microlayer. However, surface-active OM rapidly adsorbs onto bubble surfaces in the water column and is ejected into the atmosphere when bubbles burst at the air-water interface. Here we present dynamic surface tension measurements of bubbles produced in near surface seawater from biologically productive and oligotrophic sites and in deep seawater collected from 2500 m in the northwest Atlantic. In all cases, the surface tension of bubble surfaces decreased within seconds after the bubbles were exposed to seawater. These observations demonstrate that bubble surfaces are rapidly saturated by surfactant material scavenged from seawater. Spatial and diel variability in bubble surface evolution indicate corresponding variability in surfactant concentrations and/or composition. Our results reveal that surface-active OM is found throughout the water column, and that at least some surfactants are not of recent biological origin. Our results also support the hypothesis that the surface microlayer is a minor to negligible source of OM associated with freshly produced PMA.

  19. Dual interferometer for dynamic measurement of corneal topography

    NASA Astrophysics Data System (ADS)

    Micali, Jason D.; Greivenkamp, John E.

    2016-08-01

    The cornea is the anterior most surface of the eye and plays a critical role in vision. A thin fluid layer, the tear film, coats the outer surface of the cornea and serves to protect, nourish, and lubricate the cornea. At the same time, the tear film is responsible for creating a smooth continuous surface, where the majority of refraction takes place in the eye. A significant component of vision quality is determined by the shape of the cornea and stability of the tear film. A dual interferometer system for measuring the dynamic corneal topography is designed, built, verified, and qualified by testing on human subjects. The system consists of two coaligned simultaneous phase-shifting polarization-splitting Twyman-Green interferometers. The primary interferometer measures the surface of the tear film while the secondary interferometer tracks the absolute position of the cornea, which provides enough information to reconstruct the absolute shape of the cornea. The results are high-resolution and high-accuracy surface topography measurements of the in vivo tear film and cornea that are captured at standard camera frame rates.

  20. Uneven onset and pace of ice-dynamical imbalance in the Amundsen Sea Embayment, West Antarctica

    NASA Astrophysics Data System (ADS)

    Konrad, Hannes; Gilbert, Lin; Cornford, Stephen L.; Payne, Antony; Hogg, Anna; Muir, Alan; Shepherd, Andrew

    2017-01-01

    We combine measurements acquired by five satellite altimeter missions to obtain an uninterrupted record of ice sheet elevation change over the Amundsen Sea Embayment, West Antarctica, since 1992. Using these data, we examine the onset of surface lowering arising through ice-dynamical imbalance, and the pace at which it has propagated inland, by tracking elevation changes along glacier flow lines. Surface lowering has spread slowest (<6 km/yr) along the Pope, Smith, and Kohler (PSK) Glaciers, due to their small extent. Pine Island Glacier (PIG) is characterized by a continuous inland spreading of surface lowering, notably fast at rates of 13 to 15 km/yr along tributaries draining the southeastern lobe, possibly due to basal conditions or tributary geometry. Surface lowering on Thwaites Glacier (THG) has been episodic and has spread inland fastest (10 to 12 km/yr) along its central flow lines. The current episodes of surface lowering started approximately 10 years before the first measurements on PSK, around 1990 on PIG, and around 2000 on THG. Ice-dynamical imbalance across the sector has therefore been uneven during the satellite record.

  1. Molecular dynamics simulations and photoluminescence measurements of annealed ZnO surfaces

    NASA Astrophysics Data System (ADS)

    Min, Tjun Kit; Yoon, Tiem Leong; Ling, Chuo Ann; Mahmud, Shahrom; Lim, Thong Leng; Saw, Kim Guan

    2017-06-01

    The effect of thermal annealing on wurtzite ZnO, terminated by two surfaces, (000 1 bar) (which is oxygen-terminated) and (0 0 0 1) (which is Zn-terminated), is investigated via molecular dynamics simulation using reactive force field (ReaxFF). As a result of annealing at a threshold temperature range of 700 K

  2. Dynamic 3D shape of the plantar surface of the foot using coded structured light: a technical report

    PubMed Central

    2014-01-01

    Background The foot provides a crucial contribution to the balance and stability of the musculoskeletal system, and accurate foot measurements are important in applications such as designing custom insoles/footwear. With better understanding of the dynamic behavior of the foot, dynamic foot reconstruction techniques are surfacing as useful ways to properly measure the shape of the foot. This paper presents a novel design and implementation of a structured-light prototype system providing dense three dimensional (3D) measurements of the foot in motion. The input to the system is a video sequence of a foot during a single step; the output is a 3D reconstruction of the plantar surface of the foot for each frame of the input. Methods Engineering and clinical tests were carried out to test the accuracy and repeatability of the system. Accuracy experiments involved imaging a planar surface from different orientations and elevations and measuring the fitting errors of the data to a plane. Repeatability experiments were done using reconstructions from 27 different subjects, where for each one both right and left feet were reconstructed in static and dynamic conditions over two different days. Results The static accuracy of the system was found to be 0.3 mm with planar test objects. In tests with real feet, the system proved repeatable, with reconstruction differences between trials one week apart averaging 2.4 mm (static case) and 2.8 mm (dynamic case). Conclusion The results obtained in the experiments show positive accuracy and repeatability results when compared to current literature. The design also shows to be superior to the systems available in the literature in several factors. Further studies need to be done to quantify the reliability of the system in clinical environments. PMID:24456711

  3. Dynamic 3D shape of the plantar surface of the foot using coded structured light: a technical report.

    PubMed

    Thabet, Ali K; Trucco, Emanuele; Salvi, Joaquim; Wang, Weijie; Abboud, Rami J

    2014-01-23

    The foot provides a crucial contribution to the balance and stability of the musculoskeletal system, and accurate foot measurements are important in applications such as designing custom insoles/footwear. With better understanding of the dynamic behavior of the foot, dynamic foot reconstruction techniques are surfacing as useful ways to properly measure the shape of the foot. This paper presents a novel design and implementation of a structured-light prototype system providing dense three dimensional (3D) measurements of the foot in motion. The input to the system is a video sequence of a foot during a single step; the output is a 3D reconstruction of the plantar surface of the foot for each frame of the input. Engineering and clinical tests were carried out to test the accuracy and repeatability of the system. Accuracy experiments involved imaging a planar surface from different orientations and elevations and measuring the fitting errors of the data to a plane. Repeatability experiments were done using reconstructions from 27 different subjects, where for each one both right and left feet were reconstructed in static and dynamic conditions over two different days. The static accuracy of the system was found to be 0.3 mm with planar test objects. In tests with real feet, the system proved repeatable, with reconstruction differences between trials one week apart averaging 2.4 mm (static case) and 2.8 mm (dynamic case). The results obtained in the experiments show positive accuracy and repeatability results when compared to current literature. The design also shows to be superior to the systems available in the literature in several factors. Further studies need to be done to quantify the reliability of the system in clinical environments.

  4. Interferometer for measuring the dynamic surface topography of a human tear film

    NASA Astrophysics Data System (ADS)

    Primeau, Brian C.; Greivenkamp, John E.

    2012-03-01

    The anterior refracting surface of the eye is the thin tear film that forms on the surface of the cornea. Following a blink, the tear film quickly smoothes and starts to become irregular after 10 seconds. This irregularity can affect comfort and vision quality. An in vivo method of characterizing dynamic tear films has been designed based upon a near-infrared phase-shifting interferometer. This interferometer continuously measures light reflected from the tear film, allowing sub-micron analysis of the dynamic surface topography. Movies showing the tear film behavior can be generated along with quantitative metrics describing changes in the tear film surface. This tear film measurement allows analysis beyond capabilities of typical fluorescein visual inspection or corneal topography and provides better sensitivity and resolution than shearing interferometry methods. The interferometer design is capable of identifying features in the tear film much less than a micron in height with a spatial resolution of about ten microns over a 6 mm diameter. This paper presents the design of the tear film interferometer along with the considerations that must be taken when designing an interferometer for on-eye diagnostics. Discussions include eye movement, design of null optics for a range of ocular geometries, and laser emission limits for on-eye interferometry.

  5. Microwave remote sensing of sea ice in the AIDJEX Main Experiment. [Arctic Ice Dynamics Joint Experiment

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.; Wayenberg, J.; Ramseyer, J. B.; Ramseier, R. O.; Vant, M. R.; Weaver, R.; Redmond, A.; Arsenault, L.; Gloersen, P.; Zwally, H. J.

    1978-01-01

    A microwave remote sensing program of sea ice in the Beaufort Sea was conducted during the Arctic Ice Dynamics Joint Experiment (AIDJEX). Several types of both passive and active sensors were used to perform surface and aircraft measurements during all seasons of the year. In situ observations were made of physical properties (salinity, temperature, density, surface roughness), dielectric properties, and passive microwave measurements were made of first-year, multiyear, and first-year/multiyear mixtures. Airborne passive microwave measurements were performed with the electronically scanning microwave radiometer while airborne active microwave measurements were performed by synthetic aperture radar, X- and L-band radar, and a scatterometer.

  6. Characterization of chemical interactions during chemical mechanical polishing (CMP) of copper

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Mahn

    2003-10-01

    Chemical mechanical polishing (CMP) has received much attention as an unique technique to provide a wafer level planarization in semiconductor manufacturing. However, despite the extensive use of CMP, it still remains one of the least understood areas in semiconductor processing. The lack of the fundamental understanding is a significant barrier to further advancements in CMP technology. One critical aspect of metal CMP is the formation of a thin surface layer on the metal surface. The formation and removal of this layer controls all the aspects of the CMP process, including removal rate, surface finish, etc. In this dissertation, we focus on the characterization of the formation and removal of the thin surface layer on the copper surface. The formation dynamics was investigated using static and dynamic electrochemical techniques, including potentiodynamic scans and chronoamperometry. The results were validated using XPS measurements. The mechanical properties of the surface layer were investigated using nanoindentation measurements. The electrochemical investigation showed that the thickness of the surface layer is controlled by the chemicals such as an oxidizer (hydrogen peroxide), a corrosion inhibitor (benzotriazole), a complexing agent (citric acid), and their concentrations. The dynamic electrochemical measurements indicated that the initial layer formation kinetics is unaffected by the corrosion inhibitors. The passivation due to the corrosion inhibitor becomes important only on large time scales (>200 millisecond). The porosity and the density of the chemically modified surface layer can be affected by additives of other chemicals such as citric acid. An optimum density of the surface layer is required for high polishing rate while at the same time maintaining a high degree of surface finish. Nanoindentation measurements indicated that the mechanical properties of the surface layer are strongly dependent on the chemical additives in the slurry. The CMP removal rates were found to be in good agreement with the initial reaction kinetics as well as the mechanical properties of the chemically modified surface layer. In addition, the material removal model based on the micro- and nano-scale interactions, which were measured experimentally, has been developed.

  7. Integrated approach to estimate the ocean's time variable dynamic topography including its covariance matrix

    NASA Astrophysics Data System (ADS)

    Müller, Silvia; Brockmann, Jan Martin; Schuh, Wolf-Dieter

    2015-04-01

    The ocean's dynamic topography as the difference between the sea surface and the geoid reflects many characteristics of the general ocean circulation. Consequently, it provides valuable information for evaluating or tuning ocean circulation models. The sea surface is directly observed by satellite radar altimetry while the geoid cannot be observed directly. The satellite-based gravity field determination requires different measurement principles (satellite-to-satellite tracking (e.g. GRACE), satellite-gravity-gradiometry (GOCE)). In addition, hydrographic measurements (salinity, temperature and pressure; near-surface velocities) provide information on the dynamic topography. The observation types have different representations and spatial as well as temporal resolutions. Therefore, the determination of the dynamic topography is not straightforward. Furthermore, the integration of the dynamic topography into ocean circulation models requires not only the dynamic topography itself but also its inverse covariance matrix on the ocean model grid. We developed a rigorous combination method in which the dynamic topography is parameterized in space as well as in time. The altimetric sea surface heights are expressed as a sum of geoid heights represented in terms of spherical harmonics and the dynamic topography parameterized by a finite element method which can be directly related to the particular ocean model grid. Besides the difficult task of combining altimetry data with a gravity field model, a major aspect is the consistent combination of satellite data and in-situ observations. The particular characteristics and the signal content of the different observations must be adequately considered requiring the introduction of auxiliary parameters. Within our model the individual observation groups are combined in terms of normal equations considering their full covariance information; i.e. a rigorous variance/covariance propagation from the original measurements to the final product is accomplished. In conclusion, the developed integrated approach allows for estimating the dynamic topography and its inverse covariance matrix on arbitrary grids in space and time. The inverse covariance matrix contains the appropriate weights for model-data misfits in least-squares ocean model inversions. The focus of this study is on the North Atlantic Ocean. We will present the conceptual design and dynamic topography estimates based on time variable data from seven satellite altimeter missions (Jason-1, Jason-2, Topex/Poseidon, Envisat, ERS-2, GFO, Cryosat2) in combination with the latest GOCE gravity field model and in-situ data from the Argo floats and near-surface drifting buoys.

  8. Simultaneous measurement of dynamic force and spatial thin film thickness between deformable and solid surfaces by integrated thin liquid film force apparatus.

    PubMed

    Zhang, Xurui; Tchoukov, Plamen; Manica, Rogerio; Wang, Louxiang; Liu, Qingxia; Xu, Zhenghe

    2016-11-09

    Interactions involving deformable surfaces reveal a number of distinguishing physicochemical characteristics that do not exist in interactions between rigid solid surfaces. A unique fully custom-designed instrument, referred to as integrated thin liquid film force apparatus (ITLFFA), was developed to study the interactions between one deformable and one solid surface in liquid. Incorporating a bimorph force sensor with interferometry, this device allows for the simultaneous measurement of the time-dependent interaction force and the corresponding spatiotemporal film thickness of the intervening liquid film. The ITLFFA possesses the specific feature of conducting measurement under a wide range of hydrodynamic conditions, with a displacement velocity of deformable surfaces ranging from 2 μm s -1 to 50 mm s -1 . Equipped with a high speed camera, the results of a bubble interacting with hydrophilic and partially hydrophobic surfaces in aqueous solutions indicated that ITLFFA can provide information on interaction forces and thin liquid film drainage dynamics not only in a stable film but also in films of the quick rupture process. The weak interaction force was extracted from a measured film profile. Because of its well-characterized experimental conditions, ITLFFA permits the accurate and quantitative comparison/validation between measured and calculated interaction forces and temporal film profiles.

  9. Demonstration of Weight-Four Parity Measurements in the Surface Code Architecture.

    PubMed

    Takita, Maika; Córcoles, A D; Magesan, Easwar; Abdo, Baleegh; Brink, Markus; Cross, Andrew; Chow, Jerry M; Gambetta, Jay M

    2016-11-18

    We present parity measurements on a five-qubit lattice with connectivity amenable to the surface code quantum error correction architecture. Using all-microwave controls of superconducting qubits coupled via resonators, we encode the parities of four data qubit states in either the X or the Z basis. Given the connectivity of the lattice, we perform a full characterization of the static Z interactions within the set of five qubits, as well as dynamical Z interactions brought along by single- and two-qubit microwave drives. The parity measurements are significantly improved by modifying the microwave two-qubit gates to dynamically remove nonideal Z errors.

  10. Direct Measurements of Drag Forces in C. elegans Crawling Locomotion

    PubMed Central

    Rabets, Yegor; Backholm, Matilda; Dalnoki-Veress, Kari; Ryu, William S.

    2014-01-01

    With a simple and versatile microcantilever-based force measurement technique, we have probed the drag forces involved in Caenorhabditis elegans locomotion. As a worm crawls on an agar surface, we found that substrate viscoelasticity introduces nonlinearities in the force-velocity relationships, yielding nonconstant drag coefficients that are not captured by original resistive force theory. A major contributing factor to these nonlinearities is the formation of a shallow groove on the agar surface. We measured both the adhesion forces that cause the worm’s body to settle into the agar and the resulting dynamics of groove formation. Furthermore, we quantified the locomotive forces produced by C. elegans undulatory motions on a wet viscoelastic agar surface. We show that an extension of resistive force theory is able to use the dynamics of a nematode’s body shape along with the measured drag coefficients to predict the forces generated by a crawling nematode. PMID:25418179

  11. Remote sensing of Gulf Stream using GEOS-3 radar altimeter

    NASA Technical Reports Server (NTRS)

    Leitao, C. D.; Huang, N. E.; Parra, C. G.

    1978-01-01

    Radar altimeter measurements from the GEOS-3 satellite to the ocean surface indicated the presence of expected geostrophic height differences across the the Gulf Stream. Dynamic sea surface heights were found by both editing and filtering the raw sea surface heights and then referencing these processed data to a 5 minute x 5 minute geoid. Any trend between the processed data and the geoid was removed by subtracting out a linear fit to the residuals in the open ocean. The mean current velocity of 107 + or - 29 cm/sec calculated from the dynamic heights for all orbits corresponded with velocities obtained from hydrographic methods. Also, dynamic topographic maps were produced for August, September, and October 1975. Results pointed out limitations in the accuracy of the geoid, height anomaly deteriorations due to filtering, and lack of dense time and space distribution of measurements.

  12. Intensify dodecylamine adsorption on magnesite and dolomite surfaces by monohydric alcohols

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Liu, Wengang; Han, Cong; Wei, Dezhou

    2018-06-01

    The flotation of magnesite and dolomite were investigated with the presence of single dodecylamine (DDA) and combined mixtures of DDA and monohydric alcohols, respectively. The adsorption behavior of DDA, butanol, hexanol and octanol on the surface of the two minerals were shown by molecular dynamics simulation, and the results were corresponding with the analysis of zeta potential, measurements of the contact angle and adsorption. Flotation results indicated that part of DDA could be replaced by the three alcohols (butanol, hexanol, octanol) to get better flotation results. Molecular dynamics simulation and the results of zeta potential and contact angle measurements indicated that adsorption of DDA on mineral surfaces could be strengthened by monohydric alcohols.

  13. Dynamics of collision of a vortex ring and a planar surface

    NASA Astrophysics Data System (ADS)

    McErlean, Michael; Krane, Michael; Fontaine, Arnold

    2009-11-01

    The dynamics of the impact between a vortex ring and a planar surface orientated perpendicular to the direction of travel are presented. High Reynolds number vortex rings are injected into a quiescent tank of water using a piston-cylinder generator before colliding with a target at a long distance. Both the pressure at the stagnation point on the surface and the force imparted to the target by the ring impact are measured directly. The changes in both are related to the ring motion and deformation captured by high speed digital video, and DPIV measurements. These relations are used to develop a scaling law relation between impact force and vortex ring circulation, speed, and size.

  14. Picosecond time scale dynamics of short pulse laser-driven shocks in tin

    NASA Astrophysics Data System (ADS)

    Grigsby, W.; Bowes, B. T.; Dalton, D. A.; Bernstein, A. C.; Bless, S.; Downer, M. C.; Taleff, E.; Colvin, J.; Ditmire, T.

    2009-05-01

    The dynamics of high strain rate shock waves driven by a subnanosecond laser pulse in thin tin slabs have been investigated. These shocks, with pressure up to 1 Mbar, have been diagnosed with an 800 nm wavelength ultrafast laser pulse in a pump-probe configuration, which measured reflectivity and two-dimensional interferometry of the expanding rear surface. Time-resolved rear surface expansion data suggest that we reached pressures necessary to shock melt tin upon compression. Reflectivity measurements, however, show an anomalously high drop in the tin reflectivity for free standing foils, which can be attributed to microparticle formation at the back surface when the laser-driven shock releases.

  15. A New Technique for the Retrieval of Near Surface Water Vapor Using DIAL Measurements

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Kooi, Susan; Ferrare, Richard; Winker, David; Hair, Johnathan; Nehrir, Amin; Notari, Anthony; Hostetler, Chris

    2015-01-01

    Water vapor is one of the most important atmospheric trace gas species and influences radiation, climate, cloud formation, surface evaporation, precipitation, storm development, transport, dynamics, and chemistry. For improvements in NWP (numerical weather prediction) and climate studies, global water vapor measurements with higher accuracy and vertical resolution are needed than are currently available. Current satellite sensors are challenged to characterize the content and distribution of water vapor in the Boundary Layer (BL) and particularly near the first few hundred meters above the surface within the BL. These measurements are critically needed to infer surface evaporation rates in cloud formation and climate studies. The NASA Langley Research Center Lidar Atmospheric Sensing Experiment (LASE) system, which uses the Differential Absorption Lidar (DIAL) technique, has demonstrated the capability to provide high quality water vapor measurements in the BL and across the troposphere. A new retrieval technique is investigated to extend these DIAL water vapor measurements to the surface. This method uses signals from both atmospheric backscattering and the strong surface returns (even over low reflectivity oceanic surfaces) using multiple gain channels to cover the large signal dynamic range. Measurements can be made between broken clouds and in presence of optically thin cirrus. Examples of LASE measurements from a variety of conditions encountered during NASA hurricane field experiments over the Atlantic Ocean are presented. Comparisons of retrieved water vapor profiles from LASE near the surface with dropsonde measurements show very good agreement. This presentation also includes a discussion of the feasibility of developing space-based DIAL capability for high resolution water vapor measurements in the BL and above and an assessment of the technology needed for developing this capability.

  16. Field measurements of the linear and nonlinear shear moduli of cemented alluvium using dynamically loaded surface footings

    NASA Astrophysics Data System (ADS)

    Park, Kwangsoo

    In this dissertation, a research effort aimed at development and implementation of a direct field test method to evaluate the linear and nonlinear shear modulus of soil is presented. The field method utilizes a surface footing that is dynamically loaded horizontally. The test procedure involves applying static and dynamic loads to the surface footing and measuring the soil response beneath the loaded area using embedded geophones. A wide range in dynamic loads under a constant static load permits measurements of linear and nonlinear shear wave propagation from which shear moduli and associated shearing strains are evaluated. Shear wave velocities in the linear and nonlinear strain ranges are calculated from time delays in waveforms monitored by geophone pairs. Shear moduli are then obtained using the shear wave velocities and the mass density of a soil. Shear strains are determined using particle displacements calculated from particle velocities measured at the geophones by assuming a linear variation between geophone pairs. The field test method was validated by conducting an initial field experiment at sandy site in Austin, Texas. Then, field experiments were performed on cemented alluvium, a complex, hard-to-sample material. Three separate locations at Yucca Mountain, Nevada were tested. The tests successfully measured: (1) the effect of confining pressure on shear and compression moduli in the linear strain range and (2) the effect of strain on shear moduli at various states of stress in the field. The field measurements were first compared with empirical relationships for uncemented gravel. This comparison showed that the alluvium was clearly cemented. The field measurements were then compared to other independent measurements including laboratory resonant column tests and field seismic tests using the spectral-analysis-of-surface-waves method. The results from the field tests were generally in good agreement with the other independent test results, indicating that the proposed method has the ability to directly evaluate complex material like cemented alluvium in the field.

  17. Transonic steady- and unsteady-pressure measurements on a high-aspect-ratio supercritical-wing model with oscillating control surfaces

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Ricketts, R. H.; Cazier, F. W., Jr.

    1980-01-01

    A supercritical wing with an aspect ratio of 10.76 and with two trailing-edge oscillating control surfaces is described. The semispan wing is instrumented with 252 static orifices and 164 in situ dynamic-pressure gages for studying the effects of control-surface position and motion on steady- and unsteady-pressures at transonic speeds. Results from initial tests conducted in the Langley Transonic Dynamics Tunnel at two Reynolds numbers are presented in tabular form.

  18. Measurement of tectonic surface uplift rate in a young collisional mountain belt

    USGS Publications Warehouse

    Abbott, L.D.; Silver, E.A.; Anderson, R. Scott; Smith, R.; Ingle, J.C.; Kling, S.A.; Haig, D.; Small, E.; Galewsky, J.; Sliter, W.

    1997-01-01

    Measurement of the rate of tectonically driven surface uplift is crucial to a complete understanding of mountain building dynamics. The lack of a suitable rock record typically prevents determination of this quantity, but the unusual geology of Papua New Guinea's Finisterre mountains makes measurement of this rate possible. The tectonic surface uplift rate at the Finisterre range is 0.8-2.1 mm yr-1, approximately that expected to arise from crustal thickening.

  19. Can foot anthropometric measurements predict dynamic plantar surface contact area?

    PubMed

    McPoil, Thomas G; Vicenzino, Bill; Cornwall, Mark W; Collins, Natalie

    2009-10-28

    Previous studies have suggested that increased plantar surface area, associated with pes planus, is a risk factor for the development of lower extremity overuse injuries. The intent of this study was to determine if a single or combination of foot anthropometric measures could be used to predict plantar surface area. Six foot measurements were collected on 155 subjects (97 females, 58 males, mean age 24.5 +/- 3.5 years). The measurements as well as one ratio were entered into a stepwise regression analysis to determine the optimal set of measurements associated with total plantar contact area either including or excluding the toe region. The predicted values were used to calculate plantar surface area and were compared to the actual values obtained dynamically using a pressure sensor platform. A three variable model was found to describe the relationship between the foot measures/ratio and total plantar contact area (R2 = 0.77, p < 0.0001)). A three variable model was also found to describe the relationship between the foot measures/ratio and plantar contact area minus the toe region (R2 = 0.76, p < 0.0001). The results of this study indicate that the clinician can use a combination of simple, reliable, and time efficient foot anthropometric measurements to explain over 75% of the plantar surface contact area, either including or excluding the toe region.

  20. Can foot anthropometric measurements predict dynamic plantar surface contact area?

    PubMed Central

    2009-01-01

    Background Previous studies have suggested that increased plantar surface area, associated with pes planus, is a risk factor for the development of lower extremity overuse injuries. The intent of this study was to determine if a single or combination of foot anthropometric measures could be used to predict plantar surface area. Methods Six foot measurements were collected on 155 subjects (97 females, 58 males, mean age 24.5 ± 3.5 years). The measurements as well as one ratio were entered into a stepwise regression analysis to determine the optimal set of measurements associated with total plantar contact area either including or excluding the toe region. The predicted values were used to calculate plantar surface area and were compared to the actual values obtained dynamically using a pressure sensor platform. Results A three variable model was found to describe the relationship between the foot measures/ratio and total plantar contact area (R2 = 0.77, p < 0.0001)). A three variable model was also found to describe the relationship between the foot measures/ratio and plantar contact area minus the toe region (R2 = 0.76, p < 0.0001). Conclusion The results of this study indicate that the clinician can use a combination of simple, reliable, and time efficient foot anthropometric measurements to explain over 75% of the plantar surface contact area, either including or excluding the toe region. PMID:19863799

  1. An experiment on the dynamics of ion implantation and sputtering of surfaces

    NASA Astrophysics Data System (ADS)

    Wright, G. M.; Barnard, H. A.; Kesler, L. A.; Peterson, E. E.; Stahle, P. W.; Sullivan, R. M.; Whyte, D. G.; Woller, K. B.

    2014-02-01

    A major impediment towards a better understanding of the complex plasma-surface interaction is the limited diagnostic access to the material surface while it is undergoing plasma exposure. The Dynamics of ION Implantation and Sputtering Of Surfaces (DIONISOS) experiment overcomes this limitation by uniquely combining powerful, non-perturbing ion beam analysis techniques with a steady-state helicon plasma exposure chamber, allowing for real-time, depth-resolved in situ measurements of material compositions during plasma exposure. Design solutions are described that provide compatibility between the ion beam analysis requirements in the presence of a high-intensity helicon plasma. The three primary ion beam analysis techniques, Rutherford backscattering spectroscopy, elastic recoil detection, and nuclear reaction analysis, are successfully implemented on targets during plasma exposure in DIONISOS. These techniques measure parameters of interest for plasma-material interactions such as erosion/deposition rates of materials and the concentration of plasma fuel species in the material surface.

  2. An experiment on the dynamics of ion implantation and sputtering of surfaces.

    PubMed

    Wright, G M; Barnard, H A; Kesler, L A; Peterson, E E; Stahle, P W; Sullivan, R M; Whyte, D G; Woller, K B

    2014-02-01

    A major impediment towards a better understanding of the complex plasma-surface interaction is the limited diagnostic access to the material surface while it is undergoing plasma exposure. The Dynamics of ION Implantation and Sputtering Of Surfaces (DIONISOS) experiment overcomes this limitation by uniquely combining powerful, non-perturbing ion beam analysis techniques with a steady-state helicon plasma exposure chamber, allowing for real-time, depth-resolved in situ measurements of material compositions during plasma exposure. Design solutions are described that provide compatibility between the ion beam analysis requirements in the presence of a high-intensity helicon plasma. The three primary ion beam analysis techniques, Rutherford backscattering spectroscopy, elastic recoil detection, and nuclear reaction analysis, are successfully implemented on targets during plasma exposure in DIONISOS. These techniques measure parameters of interest for plasma-material interactions such as erosion/deposition rates of materials and the concentration of plasma fuel species in the material surface.

  3. The Evolving Role of Field and Laboratory Seismic Measurements in Geotechnical Engineering

    NASA Astrophysics Data System (ADS)

    Stokoe, K. H.

    2017-12-01

    The geotechnical engineering has been faced with the problem of characterizing geological materials for site-specific design in the built environment since the profession began. When one of the design requirements included determining the dynamic response of important and critical facilities to earthquake shaking or other types of dynamic loads, seismically-based measurements in the field and laboratory became important tools for direct characterization of the stiffnesses and energy dissipation (material damping) of these materials. In the 1960s, field seismic measurements using small-strain body waves were adapted from exploration geophysics. At the same time, laboratory measurements began using dynamic, torsional, resonant-column devices to measure shear stiffness and material damping in shear. The laboratory measurements also allowed parameters such as material type, confinement state, and nonlinear straining to be evaluated. Today, seismic measurements are widely used and evolving because: (1) the measurements have a strong theoretical basis, (2) they can be performed in the field and laboratory, thus forming an important link between these measurements, and (3) in recent developments in field testing involving surface waves, they are noninvasive which makes them cost effective in comparison to other methods. Active field seismic measurements are used today over depths ranging from about 5 to 1000 m. Examples of shear-wave velocity (VS) profiles evaluated using boreholes, penetrometers, suspension logging, and Rayleigh-type surface waves are presented. The VS measurements were performed in materials ranging from uncemented soil to unweathered rock. The coefficients of variation (COVs) in the VS profiles are generally less than 0.15 over sites with surface areas of 50 km2 or more as long as material types are not laterally mixed. Interestingly, the largest COVs often occur around layer boundaries which vary vertically. It is also interesting to observe how the stiffness of rock near the ground surface is generally overestimated. Finally, intact specimens of the geological materials recovered from many sites were tested dynamically in the laboratory. Values of VS measured in the field and laboratory are compared, and biases in VS at soil versus rock sites are shown to exhibit opposite trends.

  4. Surface Mass Balance of the Columbia Glacier, Alaska, 1978 and 2010 Balance Years

    USGS Publications Warehouse

    O'Neel, Shad

    2012-01-01

    Although Columbia Glacier is one of the largest sources of glacier mass loss in Alaska, surface mass balance measurements are sparse, with only a single data set available from 1978. The dearth of surface mass-balance data prohibits partitioning of the total mass losses between dynamics and surface forcing; however, the accurate inclusion of calving glaciers into predictive models requires both dynamic and climatic forcing of total mass balance. During 2010, the U.S. Geological Survey collected surface balance data at several locations distributed over the surface of Columbia Glacier to estimate the glacier-wide annual balance for balance year 2010 using the 2007 area-altitude distribution. This report also summarizes data collected in 1978, calculates the 1978 annual surface balance, and uses these observations to constrain the 2010 values, particularly the shape of the balance profile. Both years exhibit balances indicative of near-equilibrium surface mass-balance conditions, and demonstrate the importance of dynamic processes during the rapid retreat.

  5. Estimation of skeletal movement of human locomotion from body surface shapes using dynamic spatial video camera (DSVC) and 4D human model.

    PubMed

    Saito, Toshikuni; Suzuki, Naoki; Hattori, Asaki; Suzuki, Shigeyuki; Hayashibe, Mitsuhiro; Otake, Yoshito

    2006-01-01

    We have been developing a DSVC (Dynamic Spatial Video Camera) system to measure and observe human locomotion quantitatively and freely. A 4D (four-dimensional) human model with detailed skeletal structure, joint, muscle, and motor functionality has been built. The purpose of our research was to estimate skeletal movements from body surface shapes using DSVC and the 4D human model. For this purpose, we constructed a body surface model of a subject and resized the standard 4D human model to match with geometrical features of the subject's body surface model. Software that integrates the DSVC system and the 4D human model, and allows dynamic skeletal state analysis from body surface movement data was also developed. We practically applied the developed system in dynamic skeletal state analysis of a lower limb in motion and were able to visualize the motion using geometrically resized standard 4D human model.

  6. Validation of Laser-Induced Fluorescent Photogrammetric Targets on Membrane Structures

    NASA Technical Reports Server (NTRS)

    Jones, Thomas W.; Dorrington, Adrian A.; Shortis, Mark R.; Hendricks, Aron R.

    2004-01-01

    The need for static and dynamic characterization of a new generation of inflatable space structures requires the advancement of classical metrology techniques. A new photogrammetric-based method for non-contact ranging and surface profiling has been developed at NASA Langley Research Center (LaRC) to support modal analyses and structural validation of this class of space structures. This full field measurement method, known as Laser-Induced Fluorescence (LIF) photogrammetry, has previously yielded promising experimental results. However, data indicating the achievable measurement precision had not been published. This paper provides experimental results that indicate the LIF-photogrammetry measurement precision for three different target types used on a reflective membrane structure. The target types were: (1) non-contact targets generated using LIF, (2) surface attached retro-reflective targets, and (3) surface attached diffuse targets. Results from both static and dynamic investigations are included.

  7. Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Lone, B. M., E-mail: lalonebm@nv.doe.gov; Marshall, B. R.; Miller, E. K.

    2015-02-15

    A diagnostic was developed to simultaneously measure both the distance and velocity of rapidly moving surfaces in dynamic compression experiments, specifically non-planar experiments where integrating the velocity in one direction does not always give the material position accurately. The diagnostic is constructed mainly from fiber-optic telecommunications components. The distance measurement is based on a technique described by Xia and Zhang [Opt. Express 18, 4118 (2010)], which determines the target distance every 20 ns and is independent of the target speed. We have extended the full range of the diagnostic to several centimeters to allow its use in dynamic experiments, andmore » we multiplexed it with a photonic Doppler velocimetry (PDV) system so that distance and velocity histories can be measured simultaneously using one fiber-optic probe. The diagnostic was demonstrated on a spinning square cylinder to show how integrating a PDV record can give an incorrect surface position and how the ranging diagnostic described here obtains it directly. The diagnostic was also tested on an explosive experiment where copper fragments and surface ejecta were identified in both the distance and velocity signals. We show how the distance measurements complement the velocity data. Potential applications are discussed.« less

  8. Measurements of acoustic surface waves on fluid-filled porous rocks

    NASA Astrophysics Data System (ADS)

    Adler, Laszlo; Nagy, Peter B.

    1994-09-01

    Novel experimental techniques to measure ultrasonic velocity and attenuation of surface waves on fluid-filled porous natural rocks are presented. Our experimental results are consistent with the theoretical predictions of Feng and Johnson (1983). Depending on the interface conditions, i.e., whether the surface pores are open or closed, pseudo-Rayleigh, pseudo-Stoneley, and/or Stoneley surface waves may exist on fluid-saturated rocks with closed 'slow' surface wave (true Stoneley mode) on fluid-filled porous rocks with closed surface pores. The velocity and attenuation of the 'slow' surface mode may be used to assess the dynamic permeabilty of porous formations.

  9. Automatic anatomical structures location based on dynamic shape measurement

    NASA Astrophysics Data System (ADS)

    Witkowski, Marcin; Rapp, Walter; Sitnik, Robert; Kujawinska, Malgorzata; Vander Sloten, Jos; Haex, Bart; Bogaert, Nico; Heitmann, Kjell

    2005-09-01

    New image processing methods and active photonics apparatus have made possible the development of relatively inexpensive optical systems for complex shape and object measurements. We present dynamic 360° scanning method for analysis of human lower body biomechanics, with an emphasis on the analysis of the knee joint. The anatomical structure (of high medical interest) that is possible to scan and analyze, is patella. Tracking of patella position and orientation under dynamic conditions may lead to detect pathological patella movements and help in knee joint disease diagnosis. The processed data is obtained from a dynamic laser triangulation surface measurement system, able to capture slow to normal movements with a scan frequency between 15 and 30 Hz. These frequency rates are enough to capture controlled movements used e.g. for medical examination purposes. The purpose of the work presented is to develop surface analysis methods that may be used as support of diagnosis of motoric abilities of lower limbs. The paper presents algorithms used to process acquired lower limbs surface data in order to find the position and orientation of patella. The algorithms implemented include input data preparation, curvature description methods, knee region discrimination and patella assumed position/orientation calculation. Additionally, a method of 4D (3D + time) medical data visualization is proposed. Also some exemplary results are presented.

  10. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    NASA Technical Reports Server (NTRS)

    Frederick, D. K.; Lashmet, P. K.; Moyer, W. R.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.

    1973-01-01

    The following tasks related to the design, construction, and evaluation of a mobile planetary vehicle for unmanned exploration of Mars are discussed: (1) design and construction of a 0.5 scale dynamic vehicle; (2) mathematical modeling of vehicle dynamics; (3) experimental 0.4 scale vehicle dynamics measurements and interpretation; (4) vehicle electro-mechanical control systems; (5) remote control systems; (6) collapsibility and deployment concepts and hardware; (7) design, construction and evaluation of a wheel with increased lateral stiffness, (8) system design optimization; (9) design of an on-board computer; (10) design and construction of a laser range finder; (11) measurement of reflectivity of terrain surfaces; (12) obstacle perception by edge detection; (13) terrain modeling based on gradients; (14) laser scan systems; (15) path selection system simulation and evaluation; (16) gas chromatograph system concepts; (17) experimental chromatograph separation measurements and chromatograph model improvement and evaluation.

  11. Frontiers in Chemical Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowlan, Pamela Renee

    2016-05-02

    These are slides dealing with frontiers in chemical physics. The following topics are covered: Time resolving chemistry with ultrashort pulses in the 0.1-40 THz spectral range; Example: Mid-infrared absorption spectrum of the intermediate state CH 2OO; Tracking reaction dynamics through changes in the spectra; Single-shot measurement of the mid-IR absorption dynamics; Applying 2D coherent mid-IR spectroscopy to learn more about transition states; Time resolving chemical reactions at a catalysis using mid-IR and THz pulses; Studying topological insulators requires a surface sensitive probe; Nonlinear phonon dynamics in Bi 2Se 3; THz-pump, SHG-probe as a surface sensitive coherent 2D spectroscopy; Nanometer andmore » femtosecond spatiotemporal resolution mid-IR spectroscopy; Coherent two-dimensional THz/mid-IR spectroscopy with 10nm spatial resolution; Pervoskite oxides as catalysts; Functionalized graphene for catalysis; Single-shot spatiotemporal measurements; Spatiotemporal pulse measurement; Intense, broad-band THz/mid-IR generation with organic crystals.« less

  12. The Static and Dynamic Rotary Stability Derivatives at Subsonic Speeds of an Airplane Model Having Wing and Tail Surfaces Swept Back 45 degrees

    NASA Technical Reports Server (NTRS)

    Lopez, Armando E.; Buell, Donald A.; Tinling, Bruce E.

    1959-01-01

    Wind-tunnel measurements were made of the static and dynamic rotary stability derivatives of an airplane model having sweptback wing and tail surfaces. The Mach number range of the tests was from 0.23 to 0.94. The components of the model were tested in various combinations so that the separate contribution to the stability derivatives of the component parts and the interference effects could be determined. Estimates of the dynamic rotary derivatives based on some of the simpler existing procedures which utilize static force data were found to be in reasonable agreement with the experimental results at low angles of attack. The results of the static and dynamic measurements were used to compute the short-period oscillatory characteristics of an airplane geometrically similar to the test model. The results of these calculations are compared with military flying qualities requirements.

  13. Development of a New Method to Investigate the Dynamic Friction Behavior of Interfaces Using a Kolsky Tension Bar

    DOE PAGES

    Sanborn, B.; Song, B.; Nishida, E.

    2017-11-02

    In order to understand interfacial interaction of a bi-material during an impact loading event, the dynamic friction coefficient is one of the key parameters that must be characterized and quantified. In this study, a new experimental method to determine the dynamic friction coefficient between two metals was developed by using a Kolsky tension bar and a custom-designed friction fixture. Polyvinylidene fluoride (PVDF) force sensors were used to measure the normal force applied to the friction tribo pairs and the friction force was measured with conventional Kolsky tension bar method. To evaluate the technique, the dynamic friction coefficient between 4340 steelmore » and 7075-T6 aluminum was investigated at an impact speed of approximately 8 m/s. Additionally, the dynamic friction coefficient of the tribo pairs with varied surface roughness was also investigated. The data suggest that higher surface roughness leads to higher friction coefficients at the same speed of 8 m/s.« less

  14. Dynamic surface tension measurement for the screening of biosurfactants produced by Lactobacillus plantarum subsp. plantarum PTCC 1896.

    PubMed

    Bakhshi, Nafiseh; Soleimanian-Zad, Sabihe; Sheikh-Zeinoddin, Mahmoud

    2017-06-01

    Currently, screening of microbial biosurfactants (BSs) is based on their equilibrium surface tension values obtained using static surface tension measurement. However, a good surfactant should not only have a low equilibrium surface tension, but its dynamic surface tension (DST) should also decrease rapidly with time. In this study, screening of BSs produced by Lactobacillus plantarum subsp. plantarum PTCC 1896 (probiotic) was performed based on their DST values measured by Wilhelmy plate tensiometry. The relationship between DST and structural and functional properties (anti-adhesive activity) of the BSs was investigated. The results showed that the changes in the yield, productivity and structure of the BSs were growth medium and incubation time dependent (p<0.05). Structurally different BSs produced exhibited identical equilibrium surface tension values. However, differences among the structure/yield of the BSs were observed through the measurement of their DST. The considerable dependence of DST on the concentration and composition of the BS proteins was observed (p<0.05). Moreover, the anti-adhesive activity of the BS was found to be positively correlated with its DST. The results suggest that the DST measurement could serve as an efficient method for the clever screening of BSs producer/production condition, and consequently, for the investigation of probiotic features of bacteria, since the anti-adhesive activity is an important criterion of probiotics. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Modeling of Firn Compaction for Estimating Ice-Sheet Mass Change from Observed Ice-Sheet Elevation Change

    NASA Technical Reports Server (NTRS)

    Li, Jun; Zwally, H. Jay

    2011-01-01

    Changes in ice-sheet surface elevation are caused by a combination of ice-dynamic imbalance, ablation, temporal variations in accumulation rate, firn compaction and underlying bedrock motion. Thus, deriving the rate of ice-sheet mass change from measured surface elevation change requires information on the rate of firn compaction and bedrock motion, which do not involve changes in mass, and requires an appropriate firn density to associate with elevation changes induced by recent accumulation rate variability. We use a 25 year record of surface temperature and a parameterization for accumulation change as a function of temperature to drive a firn compaction model. We apply this formulation to ICESat measurements of surface elevation change at three locations on the Greenland ice sheet in order to separate the accumulation-driven changes from the ice-dynamic/ablation-driven changes, and thus to derive the corresponding mass change. Our calculated densities for the accumulation-driven changes range from 410 to 610 kg/cu m, which along with 900 kg/cu m for the dynamic/ablation-driven changes gives average densities ranging from 680 to 790 kg/cu m. We show that using an average (or "effective") density to convert elevation change to mass change is not valid where the accumulation and the dynamic elevation changes are of opposite sign.

  16. Surface dynamics of micellar diblock copolymer films

    NASA Astrophysics Data System (ADS)

    Song, Sanghoon; Cha, Wonsuk; Kim, Hyunjung; Jiang, Zhang; Narayanan, Suresh

    2011-03-01

    We studied the structure and surface dynamics of poly(styrene)-b-poly(dimethylsiloxane) (PS-b-PDMS) diblock copolymer films with micellar PDMS surrounded by PS shells. By `in-situ' high resolution synchrotron x-ray reflectivity and diffuse scattering, we obtained exact thickness, electron density and surface tension. A segregation layer near the top surface was appeared with increasing temperature Surface dynamics were measured as a function of film thickness and temperature by x-ray photon correlation spectroscopy. The best fit to relaxation time constants as a function of in-plane wavevectors were analyzed with a theory based on capillary waves with hydrodynamics with bilayer model Finally the viscosities for the top segregated layer as well as for the bottom layer are obtained at given temperatures This work was supported by National Research Foundation of Korea (R15-2008-006-01001-0), Seoul Research and Business Development Program (10816), and Sogang University Research Grant (2010).

  17. Subsonic and transonic pressure measurements on a high-aspect-ratio supercritical-wing model with oscillating control surfaces

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Ricketts, R. H.; Watson, J. J.

    1981-01-01

    A high aspect ratio supercritical wing with oscillating control surfaces is described. The semispan wing model was instrumented with 252 static orifices and 164 in situ dynamic pressure gases for studying the effects of control surface position and sinusoidal motion on steady and unsteady pressures. Data from the present test (this is the second in a series of tests on this model) were obtained in the Langley Transonic Dynamics Tunnel at Mach numbers of 0.60 and 0.78 and are presented in tabular form.

  18. Dynamic calibration of higher eigenmode parameters of a cantilever in atomic force microscopy by using tip–surface interactions

    DOE PAGES

    Borysov, Stanislav S.; Forchheimer, Daniel; Haviland, David B.

    2014-10-29

    Here we present a theoretical framework for the dynamic calibration of the higher eigenmode parameters (stiffness and optical lever inverse responsivity) of a cantilever. The method is based on the tip–surface force reconstruction technique and does not require any prior knowledge of the eigenmode shape or the particular form of the tip–surface interaction. The calibration method proposed requires a single-point force measurement by using a multimodal drive and its accuracy is independent of the unknown physical amplitude of a higher eigenmode.

  19. Downward-deployed tethered satellite systems, measurement techniques, and instrumentation - A review

    NASA Technical Reports Server (NTRS)

    Brown, Kenneth G.; Melfi, Leonard T., Jr.; Upchurch, Billy T.; Wood, George M., Jr.

    1992-01-01

    This paper describes a number of scheduled and proposed Shuttle-based downward-deployed tethered satellite systems (TSSs) the purpose of which is to determine the structure of the lower thermosphere and to measure the atmospheric and aerodynamic effects in the vicinity of the satellite, the aerothermodynamic effects on the satellite's surface, and the dynamics of the tether and its endmass, the satellite. The instruments for the downward-deployed tethered missions will include mass spectrometers and other density sensors, plasma instrumentation, optical spectrophotometers, magnetometers, and instrumentation to measure the effects on satellite surface (such as the surface temperature, heat transfer, and pressure; gas adsorption on surfaces, chemistry with other gas molecules and surface material, and desorption from the surface; and surface charging).

  20. Close-Range Photogrammetric Measurement of Static Deflections for an Aeroelastic Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Byrdsong, Thomas A.; Adams, Richard R.; Sandford, Maynard C.

    1990-01-01

    Close range photogrammetric measurements were made for the lower wing surface of a full span aspect ratio 10.3 aeroelastic supercritical research wing. The measurements were made during wind tunnel tests for quasi-steady pressure distributions on the wing. The tests were conducted in the NASA Langley Transonic Dynamics Tunnel at Mach numbers up to 0.90 and dynamic pressures up to 300 pounds per square foot. Deflection data were obtained for 57 locations on the wing lower surface using dual non-metric cameras. Representative data are presented as graphical overview to show variations and trends of spar deflection with test variables. Comparative data are presented for photogrammetric and cathetometric results of measurements for the wing tip deflections. A tabulation of the basic measurements is presented in a supplement to this report.

  1. Towards DMD-Based Estimation and Control of Flow Separation using an Array of Surface Pressure Sensors

    NASA Astrophysics Data System (ADS)

    Deem, Eric; Cattafesta, Louis; Zhang, Hao; Rowley, Clancy

    2016-11-01

    Closed-loop control of flow separation requires the spatio-temporal states of the flow to be fed back through the controller in real time. Previously, static and dynamic estimation methods have been employed that provide reduced-order model estimates of the POD-coefficients of the flow velocity using surface pressure measurements. However, this requires a "learning" dataset a priori. This approach is effective as long as the dynamics during control do not stray from the learning dataset. Since only a few dynamical features are required for feedback control of flow separation, many of the details provided by full-field snapshots are superfluous. This motivates a state-observation technique that extracts key dynamical features directly from surface pressure, without requiring PIV snapshots. The results of identifying DMD modes of separated flow through an array of surface pressure sensors in real-time are presented. This is accomplished by employing streaming DMD "on the fly" to surface pressure snapshots. These modal characteristics exhibit striking similarities to those extracted from PIV data and the pressure field obtained via solving Poisson's equation. Progress towards closed-loop separation control based on the dynamic modes of surface pressure will be discussed. Supported by AFOSR Grant FA9550-14-1-0289.

  2. Nonlinear dynamics in the perceptual grouping of connected surfaces.

    PubMed

    Hock, Howard S; Schöner, Gregor

    2016-09-01

    Evidence obtained using the dynamic grouping method has shown that the grouping of an object's connected surfaces has properties characteristic of a nonlinear dynamical system. When a surface's luminance changes, one of its boundaries is perceived moving across the surface. The direction of this dynamic grouping (DG) motion indicates which of two flanking surfaces has been grouped with the changing surface. A quantitative measure of overall grouping strength (affinity) for adjacent surfaces is provided by the frequency of DG motion perception in directions promoted by the grouping variables. It was found that: (1) variables affecting surface grouping for three-surface objects evolve over time, settling at stable levels within a single fixation, (2) how often DG motion is perceived when a surface's luminance is perturbed (changed) depends on the pre-perturbation affinity state of the surface grouping, (3) grouping variables promoting the same surface grouping combine cooperatively and nonlinearly (super-additively) in determining the surface grouping's affinity, (4) different DG motion directions during different trials indicate that surface grouping can be bistable, which implies that inhibitory interactions have stabilized one of two alternative surface groupings, and (5) when alternative surface groupings have identical affinity, stochastic fluctuations can break the symmetry and inhibitory interactions can then stabilize one of the surface groupings, providing affinity levels are not too high (which results in bidirectional DG motion). A surface-grouping network is proposed within which boundaries vary in salience. Low salience or suppressed boundaries instantiate surface grouping, and DG motion results from changes in boundary salience. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Charge-induced equilibrium dynamics and structure at the Ag(001)–electrolyte interface

    DOE PAGES

    Karl Jr., Robert M.; Barbour, Andi; Komanicky, Vladimir; ...

    2015-06-08

    We have measured the applied potential dependent rate of atomic step motion of the Ag (001) surface in weak NaF electrolyte using a new extension of the technique of X-ray Photon Correlation Spectroscopy (XPCS). Furthermore, concurrent specular x-ray scattering measurements reveal how the ordering of the water layers at the interface correlates with the dynamics.

  4. Micromachine friction test apparatus

    DOEpatents

    deBoer, Maarten P.; Redmond, James M.; Michalske, Terry A.

    2002-01-01

    A microelectromechanical (MEM) friction test apparatus is disclosed for determining static or dynamic friction in MEM devices. The friction test apparatus, formed by surface micromachining, is based on a friction pad supported at one end of a cantilevered beam, with the friction pad overlying a contact pad formed on the substrate. A first electrostatic actuator can be used to bring a lower surface of the friction pad into contact with an upper surface of the contact pad with a controlled and adjustable force of contact. A second electrostatic actuator can then be used to bend the cantilevered beam, thereby shortening its length and generating a relative motion between the two contacting surfaces. The displacement of the cantilevered beam can be measured optically and used to determine the static or dynamic friction, including frictional losses and the coefficient of friction between the surfaces. The test apparatus can also be used to assess the reliability of rubbing surfaces in MEM devices by producing and measuring wear of those surfaces. Finally, the friction test apparatus, which is small in size, can be used as an in situ process quality tool for improving the fabrication of MEM devices.

  5. Atmospheric moisture's influence on fire behavior: surface moisture and plume dynamics.

    Treesearch

    Brian E. Potter; Joseph J. Charney; Lesley A. Fusina

    2006-01-01

    Nine measures of atmospheric surface moisture are tested for statistical relationships with fire size and number of fires using data from the Great Lakes region of the United States. The measures include relative humidity, water vapor mixing ratio, mixing ratio deficit, vapor pressure, vapor pressure deficit, dew point temperature, dew point depression, wet bulb...

  6. High dynamic range fringe acquisition: A novel 3-D scanning technique for high-reflective surfaces

    NASA Astrophysics Data System (ADS)

    Jiang, Hongzhi; Zhao, Huijie; Li, Xudong

    2012-10-01

    This paper presents a novel 3-D scanning technique for high-reflective surfaces based on phase-shifting fringe projection method. High dynamic range fringe acquisition (HDRFA) technique is developed to process the fringe images reflected from the shiny surfaces, and generates a synthetic fringe image by fusing the raw fringe patterns, acquired with different camera exposure time and the illumination fringe intensity from the projector. Fringe image fusion algorithm is introduced to avoid saturation and under-illumination phenomenon by choosing the pixels in the raw fringes with the highest fringe modulation intensity. A method of auto-selection of HDRFA parameters is developed and largely increases the measurement automation. The synthetic fringes have higher signal-to-noise ratio (SNR) under ambient light by optimizing HDRFA parameters. Experimental results show that the proposed technique can successfully measure objects with high-reflective surfaces and is insensitive to ambient light.

  7. Dynamics of collision of a vortex ring and a planar surface

    NASA Astrophysics Data System (ADS)

    McErlean, Michael; Krane, Michael; Fontaine, Arnold

    2008-11-01

    The dynamics of the impact between a vortex ring and a planar surface is presented. The vortex rings, generated by piston injection of a slug of water into a quiescent water tank, collide with a surface oriented normally to the ring's direction of travel. The time evolution of both the force imparted to a planar surface and the wall pressure are presented. These are supplemented by DPIV measurements of the evolution of ring strength and structure, before and during impact. The relation between changes in ring structure during collision and the waveforms of impact force and wall pressure will be discussed.

  8. Measurement of nanoscale molten polymer droplet spreading using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Soleymaniha, Mohammadreza; Felts, Jonathan R.

    2018-03-01

    We present a technique for measuring molten polymer spreading dynamics with nanometer scale spatial resolution at elevated temperatures using atomic force microscopy (AFM). The experimental setup is used to measure the spreading dynamics of polystyrene droplets with 2 μm diameters at 115-175 °C on sapphire, silicon oxide, and mica. Custom image processing algorithms determine the droplet height, radius, volume, and contact angle of each AFM image over time to calculate the droplet spreading dynamics. The contact angle evolution follows a power law with time with experimentally determined values of -0.29 ± 0.01, -0.08 ± 0.02, and -0.21 ± 0.01 for sapphire, silicon oxide, and mica, respectively. The non-zero steady state contact angles result in a slower evolution of contact angle with time consistent with theories combining molecular kinetic and hydrodynamic models. Monitoring the cantilever phase provides additional information about the local mechanics of the droplet surface. We observe local crystallinity on the molten droplet surface, where crystalline structures appear to nucleate at the contact line and migrate toward the top of the droplet. Increasing the temperature from 115 °C to 175 °C reduced surface crystallinity from 35% to 12%, consistent with increasingly energetically favorable amorphous phase as the temperature approaches the melting temperature. This platform provides a way to measure spreading dynamics of extremely small volumes of heterogeneously complex fluids not possible through other means.

  9. Pressure measurements on a rectangular wing with a NACA0012 airfoil during conventional flutter

    NASA Technical Reports Server (NTRS)

    Rivera, Jose A., Jr.; Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Silva, Walter A.

    1992-01-01

    The Structural Dynamics Division at NASA LaRC has started a wind tunnel activity referred to as the Benchmark Models Program. The primary objective of the program is to acquire measured dynamic instability and corresponding pressure data that will be useful for developing and evaluating aeroelastic type CFD codes currently in use or under development. The program is a multi-year activity that will involve testing of several different models to investigate various aeroelastic phenomena. The first model consisted of a rigid semispan wing having a rectangular planform and a NACA 0012 airfoil shape which was mounted on a flexible two degree-of-freedom mount system. Two wind-tunnel tests were conducted with the first model. Several dynamic instability boundaries were investigated such as a conventional flutter boundary, a transonic plunge instability region near Mach = 0.90, and stall flutter. In addition, wing surface unsteady pressure data were acquired along two model chords located at the 60 to 95-percent span stations during these instabilities. At this time, only the pressure data for the conventional flutter boundary is presented. The conventional flutter boundary and the wing surface unsteady pressure measurements obtained at the conventional flutter boundary test conditions in pressure coefficient form are presented. Wing surface steady pressure measurements obtained with the model mount system rigidized are also presented. These steady pressure data were acquired at essentially the same dynamic pressure at which conventional flutter had been encountered with the mount system flexible.

  10. Surface effects on dynamic stability and loading during outdoor running using wireless trunk accelerometry.

    PubMed

    Schütte, Kurt H; Aeles, Jeroen; De Beéck, Tim Op; van der Zwaard, Babette C; Venter, Rachel; Vanwanseele, Benedicte

    2016-07-01

    Despite frequently declared benefits of using wireless accelerometers to assess running gait in real-world settings, available research is limited. The purpose of this study was to investigate outdoor surface effects on dynamic stability and dynamic loading during running using tri-axial trunk accelerometry. Twenty eight runners (11 highly-trained, 17 recreational) performed outdoor running on three outdoor training surfaces (concrete road, synthetic track and woodchip trail) at self-selected comfortable running speeds. Dynamic postural stability (tri-axial acceleration root mean square (RMS) ratio, step and stride regularity, sample entropy), dynamic loading (impact and breaking peak amplitudes and median frequencies), as well as spatio-temporal running gait measures (step frequency, stance time) were derived from trunk accelerations sampled at 1024Hz. Results from generalized estimating equations (GEE) analysis showed that compared to concrete road, woodchip trail had several significant effects on dynamic stability (higher AP ratio of acceleration RMS, lower ML inter-step and inter-stride regularity), on dynamic loading (downward shift in vertical and AP median frequency), and reduced step frequency (p<0.05). Surface effects were unaffected when both running level and running speed were added as potential confounders. Results suggest that woodchip trails disrupt aspects of dynamic stability and loading that are detectable using a single trunk accelerometer. These results provide further insight into how runners adapt their locomotor biomechanics on outdoor surfaces in situ. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Ocean dynamics studies. [of current-wave interactions

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Both the theoretical and experimental investigations into current-wave interactions are discussed. The following three problems were studied: (1) the dispersive relation of a random gravity-capillary wave field; (2) the changes of the statistical properties of surface waves under the influence of currents; and (3) the interaction of capillary-gravity with the nonuniform currents. Wave current interaction was measured and the feasibility of using such measurements for remote sensing of surface currents was considered. A laser probe was developed to measure the surface statistics, and the possibility of using current-wave interaction as a means of current measurement was demonstrated.

  12. Interfacial dynamic surface traps of lead sulfide (PbS) nanocrystals: test-platform for interfacial charge carrier traps at the organic/inorganic functional interface

    NASA Astrophysics Data System (ADS)

    Kim, Youngjun; Ko, Hyungduk; Park, Byoungnam

    2018-04-01

    Nanocrystal (NC) size and ligand dependent dynamic trap formation of lead sulfide (PbS) NCs in contact with an organic semiconductor were investigated using a pentacene/PbS field effect transistor (FET). We used a bilayer pentacene/PbS FET to extract information of the surface traps of PbS NCs at the pentacene/PbS interface through the field effect-induced charge carrier density measurement in the threshold and subthreshold regions. PbS size and ligand dependent trap properties were elucidated by the time domain and threshold voltage measurements in which threshold voltage shift occurs by carrier charging and discharging in the trap states of PbS NCs. The observed threshold voltage shift is interpreted in context of electron trapping through dynamic trap formation associated with PbS NCs. To the best of our knowledge, this is the first demonstration of the presence of interfacial dynamic trap density of PbS NC in contact with an organic semiconductor (pentacene). We found that the dynamic trap density of the PbS NC is size dependent and the carrier residence time in the specific trap sites is more sensitive to NC size variation than to NC ligand exchange. The probing method presented in the study offers a means to investigate the interfacial surface traps at the organic-inorganic hetero-junction, otherwise understanding of the buried surface traps at the functional interface would be elusive.

  13. Molecular dynamics simulation of potentiometric sensor response: the effect of biomolecules, surface morphology and surface charge.

    PubMed

    Lowe, B M; Skylaris, C-K; Green, N G; Shibuta, Y; Sakata, T

    2018-05-10

    The silica-water interface is critical to many modern technologies in chemical engineering and biosensing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring the changes in electric potential due to changes in the interfacial electric field. Predictive modelling of this response caused by surface binding of biomolecules remains highly challenging. In this work, through the most extensive molecular dynamics simulation of the silica-water interfacial potential and electric field to date, we report a novel prediction and explanation of the effects of nano-morphology on sensor response. Amorphous silica demonstrated a larger potentiometric response than an equivalent crystalline silica model due to increased sodium adsorption, in agreement with experiments showing improved sensor response with nano-texturing. We provide proof-of-concept that molecular dynamics can be used as a complementary tool for potentiometric biosensor response prediction. Effects that are conventionally neglected, such as surface morphology, water polarisation, biomolecule dynamics and finite-size effects, are explicitly modelled.

  14. Improvement of arthroscopic cartilage stiffness probe using amorphous diamond coating.

    PubMed

    Töyräs, Juha; Korhonen, Rami K; Voutilainen, Tanja; Jurvelin, Jukka S; Lappalainen, Reijo

    2005-04-01

    During arthroscopic evaluation of articular cartilage unstable contact and even slipping of the measurement instrument on the tissue surface may degrade the reproducibility of the measurement. The main aim of the present study was to achieve more stable contact by controlling the friction between articular cartilage surface and the arthroscopic cartilage stiffness probe (Artscan 200, Artscan Oy, Helsinki, Finland) using amorphous diamond (AD) coating. In order to obtain surfaces with different average roughnesses (R(a)), polished stainless steel disks were coated with AD by using the filtered pulsed arc-discharge (FPAD) method. Dynamic coefficient of friction (mu) between the articular cartilage (n = 8) and the coated plates along one non-coated plate was then determined. The friction between AD and cartilage could be controlled over a wide range (mu = 0.027-0.728, p < 0.05, Wilcoxon test) by altering the roughness. Possible deterioration of cartilage was investigated by measuring surface roughness after friction tests and comparing it with the roughness of the adjacent, untested samples (n = 8). Importantly, even testing with the roughest AD (R(a) = 1250 nm) did not damage articular surface. On the basis of the friction measurements, a proper AD coating was selected for the stiffness probe. The performance of coated and non-coated probe was compared by measuring bovine osteochondral samples (n = 22) with both instruments. The reproducibility of the stiffness measurements was significantly better with the AD-coated probe (CV% = 4.7) than with the uncoated probe (CV% = 8.2). To conclude, AD coating can be used to safely control dynamic friction with articular surface. Sufficient friction between articular surface and reference plate of the arthroscopic probe improves significantly reproducibility of the stiffness measurements. (c) 2005 Wiley Periodicals, Inc.

  15. Precise determination of water exchanges on a mineral surface

    DOE PAGES

    Stack, Andrew G.; Borreguero, Jose M.; Prisk, Timothy R.; ...

    2016-10-03

    Solvent exchanges on solid surfaces and dissolved ions are a fundamental property important for understanding chemical reactions, but the rates of fast exchanges are poorly constrained. In this paper, we probed the diffusional motions of water adsorbed onto nanoparticles of the mineral barite (BaSO 4) using quasi-elastic neutron scattering (QENS) and classical molecular dynamics (MD) to reveal the complex dynamics of water exchange along mineral surfaces. QENS data as a function of temperature and momentum transfer (Q) were fit using scattering functions derived from MD trajectories. The simulations reproduce the dynamics measured in the experiments at ambient temperatures, but asmore » temperature is lowered the simulations overestimate slower motions. Decomposition of the MD-computed QENS intensity into contributions from adsorbed and unbound water shows that the majority of the signal arises from adsorbed species, although the dynamics of unbound water cannot be dismissed. The mean residence times of water on each of the four surface sites present on the barite {001} were calculated using MD: at room temperature the low barium site is 194 ps, whereas the high barium site contains two distributions of motions at 84 and 2.5 ps. These contrast to 13 ps residence time on both sulfate sites, with an additional surface diffusion exchange of 66 ps. Surface exchanges are similar to those of the aqueous ions calculated using the same force field: Ba aq 2+ is 208 ps and SO 4aq 2- is 5.8 ps. Finally, this work demonstrates how MD can be a reliable method to deconvolute solvent exchange reactions when quantitatively validated by QENS measurements.« less

  16. Surface charge dynamics and OH and H number density distributions in near-surface nanosecond pulse discharges at a liquid / vapor interface

    NASA Astrophysics Data System (ADS)

    Winters, Caroline; Petrishchev, Vitaly; Yin, Zhiyao; Lempert, Walter R.; Adamovich, Igor V.

    2015-10-01

    The present work provides insight into surface charge dynamics and kinetics of radical species reactions in nanosecond pulse discharges sustained at a liquid-vapor interface, above a distilled water surface. The near-surface plasma is sustained using two different discharge configurations, a surface ionization wave discharge between two exposed metal electrodes and a double dielectric barrier discharge. At low discharge pulse repetition rates (~100 Hz), residual surface charge deposition after the discharge pulse is a minor effect. At high pulse repetition rates (~10 kHz), significant negative surface charge accumulation over multiple discharge pulses is detected, both during alternating polarity and negative polarity pulse trains. Laser induced fluorescence (LIF) and two-photon absorption LIF (TALIF) line imaging are used for in situ measurements of spatial distributions of absolute OH and H atom number densities in near-surface, repetitive nanosecond pulse discharge plasmas. Both in a surface ionization wave discharge and in a double dielectric barrier discharge, peak measured H atom number density, [H] is much higher compared to peak OH number density, due to more rapid OH decay in the afterglow between the discharge pulses. Higher OH number density was measured near the regions with higher plasma emission intensity. Both OH and especially H atoms diffuse out of the surface ionization wave plasma volume, up to several mm from the liquid surface. Kinetic modeling calculations using a quasi-zero-dimensional H2O vapor / Ar plasma model are in qualitative agreement with the experimental data. The results demonstrate the experimental capability of in situ radical species number density distribution measurements in liquid-vapor interface plasmas, in a simple canonical geometry that lends itself to the validation of kinetic models.

  17. Characterizing substrate–surface interactions on alumina-supported metal catalysts by dynamic nuclear polarization-enhanced double-resonance NMR spectroscopy [Characterizing substrate-surface interactions on alumina supported metal catalysts by DNP-enhanced double-resonance NMR spectroscopy

    DOE PAGES

    Perras, Frederic A.; Padmos, J. Daniel; Johnson, Robert L.; ...

    2017-01-23

    The characterization of nanometer-scale interactions between carbon-containing substrates and alumina surfaces is of paramount importance to industrial and academic catalysis applications, but it is also very challenging. Here, we demonstrate that dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP SENS) allows the unambiguous description of the coordination geometries and conformations of the substrates at the alumina surface through high-resolution measurements of 13C– 27Al distances. We apply this new technique to elucidate the molecular-level geometry of 13C-enriched methionine and natural abundance poly(vinyl alcohol) adsorbed on γ-Al 2O 3-supported Pd catalysts, and we support these results with element-specific X-ray absorption near-edge measurements. Furthermore,more » this work clearly demonstrates a surprising bimodal coordination of methionine at the Pd–Al 2O 3 interface.« less

  18. Characterizing substrate–surface interactions on alumina-supported metal catalysts by dynamic nuclear polarization-enhanced double-resonance NMR spectroscopy [Characterizing substrate-surface interactions on alumina supported metal catalysts by DNP-enhanced double-resonance NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perras, Frederic A.; Padmos, J. Daniel; Johnson, Robert L.

    The characterization of nanometer-scale interactions between carbon-containing substrates and alumina surfaces is of paramount importance to industrial and academic catalysis applications, but it is also very challenging. Here, we demonstrate that dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP SENS) allows the unambiguous description of the coordination geometries and conformations of the substrates at the alumina surface through high-resolution measurements of 13C– 27Al distances. We apply this new technique to elucidate the molecular-level geometry of 13C-enriched methionine and natural abundance poly(vinyl alcohol) adsorbed on γ-Al 2O 3-supported Pd catalysts, and we support these results with element-specific X-ray absorption near-edge measurements. Furthermore,more » this work clearly demonstrates a surprising bimodal coordination of methionine at the Pd–Al 2O 3 interface.« less

  19. Interferometric characterization of tear film dynamics

    NASA Astrophysics Data System (ADS)

    Primeau, Brian Christopher

    The anterior refracting surface of the eye is the thin tear film that forms on the surface of the cornea. When a contact lens is on worn, the tear film covers the contact lens as it would a bare cornea, and is affected by the contact lens material properties. Tear film irregularity can cause both discomfort and vision quality degradation. Under normal conditions, the tear film is less than 10 microns thick and the thickness and topography change in the time between blinks. In order to both better understand the tear film, and to characterize how contact lenses affect tear film behavior, two interferometers were designed and built to separately measure tear film behavior in vitro and in vivo. An in vitro method of characterizing dynamic fluid layers applied to contact lenses mounted on mechanical substrates has been developed using a phase-shifting Twyman-Green interferometer. This interferometer continuously measures light reflected from the surface of the fluid layer, allowing precision analysis of the dynamic fluid layer. Movies showing this fluid layer behavior can be generated. The fluid behavior on the contact lens surface is measured, allowing quantitative analysis beyond what typical contact angle or visual inspection methods provide. The in vivo interferometer is a similar system, with additional modules included to provide capability for human testing. This tear film measurement allows analysis beyond capabilities of typical fluorescein visual inspection or videokeratometry and provides better sensitivity and resolution than shearing interferometry methods.

  20. Pump-probe Kelvin-probe force microscopy: Principle of operation and resolution limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murawski, J.; Graupner, T.; Milde, P., E-mail: peter.milde@tu-dresden.de

    Knowledge on surface potential dynamics is crucial for understanding the performance of modern-type nanoscale devices. We describe an electrical pump-probe approach in Kelvin-probe force microscopy that enables a quantitative measurement of dynamic surface potentials at nanosecond-time and nanometer-length scales. Also, we investigate the performance of pump-probe Kelvin-probe force microscopy with respect to the relevant experimental parameters. We exemplify a measurement on an organic field effect transistor that verifies the undisturbed functionality of our pump-probe approach in terms of simultaneous and quantitative mapping of topographic and electronic information at a high lateral and temporal resolution.

  1. Dynamic deformation inspection of a human arm by using a line-scan imaging system

    NASA Astrophysics Data System (ADS)

    Hu, Eryi

    2009-11-01

    A line-scan imaging system is used in the dynamic deformation measurement of a human arm when the muscle is contracting and relaxing. The measurement principle is based on the projection grating profilometry, and the measuring system is consisted of a line-scan CCD camera, a projector, optical lens and a personal computer. The detected human arm is put upon a reference plane, and a sinusoidal grating is projected onto the object surface and reference plane at an incidence angle, respectively. The deformed fringe pattern in the same line of the dynamic detected arm is captured by the line-scan CCD camera with free trigger model, and the deformed fringe pattern is recorded in the personal computer for processing. A fast Fourier transform combining with a filtering and spectrum shifting method is used to extract the phase information caused by the profile of the detected object. Thus, the object surface profile can be obtained following the geometric relationship between the fringe deformation and the object surface height. Furthermore, the deformation procedure can be obtained line by line. Some experimental results are presented to prove the feasibility of the inspection system.

  2. Dynamic interactions between a membrane binding protein and lipids induce fluctuating diffusivity

    PubMed Central

    Yamamoto, Eiji; Akimoto, Takuma; Kalli, Antreas C.; Yasuoka, Kenji; Sansom, Mark S. P.

    2017-01-01

    Pleckstrin homology (PH) domains are membrane-binding lipid recognition proteins that interact with phosphatidylinositol phosphate (PIP) molecules in eukaryotic cell membranes. Diffusion of PH domains plays a critical role in biological reactions on membrane surfaces. Although diffusivity can be estimated by long-time measurements, it lacks information on the short-time diffusive nature. We reveal two diffusive properties of a PH domain bound to the surface of a PIP-containing membrane using molecular dynamics simulations. One is fractional Brownian motion, attributed to the motion of the lipids with which the PH domain interacts. The other is temporally fluctuating diffusivity; that is, the short-time diffusivity of the bound protein changes substantially with time. Moreover, the diffusivity for short-time measurements is intrinsically different from that for long-time measurements. This fluctuating diffusivity results from dynamic changes in interactions between the PH domain and PIP molecules. Our results provide evidence that the complexity of protein-lipid interactions plays a crucial role in the diffusion of proteins on biological membrane surfaces. Changes in the diffusivity of PH domains and related membrane-bound proteins may in turn contribute to the formation/dissolution of protein complexes in membranes. PMID:28116358

  3. Proton exchange membrane fuel cell model for aging predictions: Simulated equivalent active surface area loss and comparisons with durability tests

    NASA Astrophysics Data System (ADS)

    Robin, C.; Gérard, M.; Quinaud, M.; d'Arbigny, J.; Bultel, Y.

    2016-09-01

    The prediction of Proton Exchange Membrane Fuel Cell (PEMFC) lifetime is one of the major challenges to optimize both material properties and dynamic control of the fuel cell system. In this study, by a multiscale modeling approach, a mechanistic catalyst dissolution model is coupled to a dynamic PEMFC cell model to predict the performance loss of the PEMFC. Results are compared to two 2000-h experimental aging tests. More precisely, an original approach is introduced to estimate the loss of an equivalent active surface area during an aging test. Indeed, when the computed Electrochemical Catalyst Surface Area profile is fitted on the experimental measures from Cyclic Voltammetry, the computed performance loss of the PEMFC is underestimated. To be able to predict the performance loss measured by polarization curves during the aging test, an equivalent active surface area is obtained by a model inversion. This methodology enables to successfully find back the experimental cell voltage decay during time. The model parameters are fitted from the polarization curves so that they include the global degradation. Moreover, the model captures the aging heterogeneities along the surface of the cell observed experimentally. Finally, a second 2000-h durability test in dynamic operating conditions validates the approach.

  4. Dynamic surface acoustic response to a thermal expansion source on an anisotropic half space.

    PubMed

    Zhao, Peng; Zhao, Ji-Cheng; Weaver, Richard

    2013-05-01

    The surface displacement response to a distributed thermal expansion source is solved using the reciprocity principle. By convolving the strain Green's function with the thermal stress field created by an ultrafast laser illumination, the complete surface displacement on an anisotropic half space induced by laser absorption is calculated in the time domain. This solution applies to the near field surface displacement due to pulse laser absorption. The solution is validated by performing ultrafast laser pump-probe measurements and showing very good agreement between the measured time-dependent probe beam deflection and the computed surface displacement.

  5. Modeling apple surface temperature dynamics based on weather data.

    PubMed

    Li, Lei; Peters, Troy; Zhang, Qin; Zhang, Jingjin; Huang, Danfeng

    2014-10-27

    The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST) dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed) was recorded for seven hours between 11:00-18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of "Fuji" apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management.

  6. Modeling Apple Surface Temperature Dynamics Based on Weather Data

    PubMed Central

    Li, Lei; Peters, Troy; Zhang, Qin; Zhang, Jingjin; Huang, Danfeng

    2014-01-01

    The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST) dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed) was recorded for seven hours between 11:00–18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of “Fuji” apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management. PMID:25350507

  7. Shape measurement and vibration analysis of moving speaker cone

    NASA Astrophysics Data System (ADS)

    Zhang, Qican; Liu, Yuankun; Lehtonen, Petri

    2014-06-01

    Surface three-dimensional (3-D) shape information is needed for many fast processes such as structural testing of material, standing waves on loudspeaker cone, etc. Usually measurement is done from limited number of points using electrical sensors or laser distance meters. Fourier Transform Profilometry (FTP) enables fast shape measurement of the whole surface. Method is based on angled sinusoidal fringe pattern projection and image capturing. FTP requires only one image of the deformed fringe pattern to restore the 3-D shape of the measured object, which makes real-time or dynamic data processing possible. In our experiment the method was used for loudspeaker cone distortion measurement in dynamic conditions. For sound quality issues it is important that the whole cone moves in same phase and there are no partial waves. Our imaging resolution was 1280x1024 pixels and frame rate was 200 fps. Using our setup we found unwanted spatial waves in our sample cone.

  8. Integrating dynamic stereo-radiography and surface-based motion data for subject-specific musculoskeletal dynamic modeling.

    PubMed

    Zheng, Liying; Li, Kang; Shetye, Snehal; Zhang, Xudong

    2014-09-22

    This manuscript presents a new subject-specific musculoskeletal dynamic modeling approach that integrates high-accuracy dynamic stereo-radiography (DSX) joint kinematics and surface-based full-body motion data. We illustrate this approach by building a model in OpenSim for a patient who participated in a meniscus transplantation efficacy study, incorporating DSX data of the tibiofemoral joint kinematics. We compared this DSX-incorporated (DSXI) model to a default OpenSim model built using surface-measured data alone. The architectures and parameters of the two models were identical, while the differences in (time-averaged) tibiofemoral kinematics were of the order of magnitude of 10° in rotation and 10mm in translation. Model-predicted tibiofemoral compressive forces and knee muscle activations were compared against literature data acquired from instrumented total knee replacement components (Fregly et al., 2012) and the patient's EMG recording. The comparison demonstrated that the incorporation of DSX data improves the veracity of musculoskeletal dynamic modeling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Integrating dynamic stereo-radiography and surface-based motion data for subject-specific musculoskeletal dynamic modeling

    PubMed Central

    Zheng, Liying; Li, Kang; Shetye, Snehal; Zhang, Xudong

    2014-01-01

    This paper presents a new subject-specific musculoskeletal dynamic modeling approach that integrates high-accuracy dynamic stereo-radiography (DSX) joint kinematics and surface-based full-body motion data. We illustrate this approach by building a model in OpenSim for a patient who participated in a meniscus transplantation efficacy study, incorporating DSX data of the tibiofemoral joint kinematics. We compared this DSX-incorporated (DSXI) model to a default OpenSim model built using surface-measured data alone. The architectures and parameters of the two models were identical, while the differences in (time-averaged) tibiofemoral kinematics were of the order of magnitude of 10° in rotation and 10 mm in translation. Model-predicted tibiofemoral compressive forces and knee muscle activations were compared against literature data acquired from instrumented total knee replacement components (Fregly et al., 2012) and the patient's EMG recording. The comparison demonstrated that the incorporation of DSX data improves the veracity of musculoskeletal dynamic modeling. PMID:25169658

  10. Dynamical Analysis of the Boundary Layer and Surface Wind Responses to Mesoscale SST Perturbations

    DTIC Science & Technology

    2010-02-01

    latitude (e.g., Gille and Romero 2003; Lumpkin and Pazos 2007). We thus expect that inclusion of ocean current effects in the surface stress computations...Niiler, 2007: Ocean–atmosphere interaction over Agulhas Extension meanders. J. Climate, 20, 5784–5797. Lumpkin, R., and M. Pazos , 2007: Measuring surface

  11. Investigating biomolecular recognition at the cell surface using atomic force microscopy.

    PubMed

    Wang, Congzhou; Yadavalli, Vamsi K

    2014-05-01

    Probing the interaction forces that drive biomolecular recognition on cell surfaces is essential for understanding diverse biological processes. Force spectroscopy has been a widely used dynamic analytical technique, allowing measurement of such interactions at the molecular and cellular level. The capabilities of working under near physiological environments, combined with excellent force and lateral resolution make atomic force microscopy (AFM)-based force spectroscopy a powerful approach to measure biomolecular interaction forces not only on non-biological substrates, but also on soft, dynamic cell surfaces. Over the last few years, AFM-based force spectroscopy has provided biophysical insight into how biomolecules on cell surfaces interact with each other and induce relevant biological processes. In this review, we focus on describing the technique of force spectroscopy using the AFM, specifically in the context of probing cell surfaces. We summarize recent progress in understanding the recognition and interactions between macromolecules that may be found at cell surfaces from a force spectroscopy perspective. We further discuss the challenges and future prospects of the application of this versatile technique. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Effects of ankle strengthening exercise program on an unstable supporting surface on proprioception and balance in adults with functional ankle instability.

    PubMed

    Ha, Sun-Young; Han, Jun-Ho; Sung, Yun-Hee

    2018-04-01

    The present study was conducted to investigate the effect of ankle strengthening exercise applied on unstable supporting surfaces on the proprioceptive sense and balance in adults with functional ankle instability. As for the study method, 30 adults with functional ankle instability were randomly assigned to an ankle strengthening exercise group and a stretching group on unstable supporting surfaces, and the interventions were implemented for 40 min. Before and after the interventions, a digital dual inclinometer was used to measure the proprioceptive sense of the ankle, the Balancia program was used to measure static balance ability, and the functional reach test was used to measure dynamic balance ability. In the results, both proprioceptive sense and static dynamic balance ability were significantly different between before and after the intervention in the experimental group ( P <0.05). When such results are put together, it can be seen that ankle strengthening exercise applied on unstable supporting surfaces may be presented as an effective treatment method for enhancing the proprioceptive sense and balance ability in adults with functional ankle instability.

  13. Influence of Electrification of Droplet on Hydrophobicity Reduction of Polymer Material during a Dynamic Drop Test

    NASA Astrophysics Data System (ADS)

    Haji, Kenichi; Shiibara, Daiki; Arata, Yoshihiro; Sakoda, Tatsuya; Otsubo, Masahisa

    The dynamic drop test was proposed as a method to evaluate hydrophobicity reduction of polymer materials. In this test, the formation change of a water channel was confirmed, and thereafter, the remained droplets and the dropped droplets on the sampled surface were repulsed each other. The distributions of electrification on the droplet and the sample surface were measured. The influence of the electrified droplet on the hydrophobicity reduction was examined. The results showed that the polarity on the sample surface changed by the dropped droplet, leading to the hydrophobicity loss.

  14. Steady- and unsteady-pressure measurements on a supercritical-wing model with oscillating control surfaces at subsonic and transonic speeds

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Ricketts, R. H.

    1983-01-01

    A high aspect ratio supercritical wing with oscillating control surfaces is described. The semispan wing model was instrumented with 252 static pressure orifices and 164 in situ dynamic pressure gages for studying the effects of control surface position and sinusoidal motion on steady and unsteady pressures. Results from the present test (the third in a series of tests on this model) were obtained in the Langley Transonic Dynamics Tunnel at Mach numbers of 0.60, 0.78, and 0.86 and are presented in tabular form.

  15. General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique

    NASA Astrophysics Data System (ADS)

    Feng, Shijie; Zhang, Yuzhen; Chen, Qian; Zuo, Chao; Li, Rubin; Shen, Guochen

    2014-08-01

    This paper presents a general solution for realizing high dynamic range three-dimensional (3-D) shape measurement based on fringe projection. Three concrete techniques are involved in the solution for measuring object with large range of reflectivity (LRR) or one with shiny specular surface. For the first technique, the measured surface reflectivities are sub-divided into several groups based on its histogram distribution, then the optimal exposure time for each group can be predicted adaptively so that the bright as well as dark areas on the measured surface are able to be handled without any compromise. Phase-shifted images are then captured at the calculated exposure times and a composite phase-shifted image is generated by extracting the optimally exposed pixels in the raw fringes images. For the second technique, it is proposed by introducing two orthogonal polarizers which are placed separately in front of the camera and projector into the first technique and the third one is developed by combining the second technique with the strategy of properly altering the angle between the transmission axes of the two polarizers. Experimental results show that the first technique can effectively improve the measurement accuracy of diffuse objects with LRR, the second one is capable of measuring object with weak specular reflection (WSR: e.g. shiny plastic surface) and the third can inspect surface with strong specular reflection (SSR: e.g. highlight on aluminum alloy) precisely. Further, more complex scene, such as the one with LRR and WSR, or even the one simultaneously involving LRR, WSR and SSR, can be measured accurately by the proposed solution.

  16. Surface and interface effects on non-radiative exciton recombination and relaxation dynamics in CdSe/Cd,Zn,S nanocrystals

    NASA Astrophysics Data System (ADS)

    Walsh, Brenna R.; Saari, Jonathan I.; Krause, Michael M.; Nick, Robert; Coe-Sullivan, Seth; Kambhampati, Patanjali

    2016-06-01

    Excitonic state-resolved pump/probe spectroscopy and time correlate single photon counting were used to study exciton dynamics from the femtosecond to nanosecond time scales in CdSe/Cd,Zn,S nanocrystals. These measurements reveal the role of the core/shell interface as well as surface on non-radiative excitonic processes over three time regimes. Time resolved photoluminescence reports on how the interface controls slow non-radiative processes that dictate emission at the single excitonic level. Heterogeneity in decay is minimized by interfacial structure. Pump/probe measurements explore the non-radiative multiexcitonic recombination processes on the picosecond timescale. These Auger based non-radiative processes dictate lifetimes of multiexcitonic states. Finally state-resolved pump/probe measurements on the femtosecond timescale reveal the influence of the interface on electron and hole relaxation dynamics. We find that the interface has a profound influence on all three types of non-radiative processes which ultimately control light emission from nanocrystals.

  17. Investigation of Dynamic Oxygen Adsorption in Molten Solder Jetting Technology

    NASA Technical Reports Server (NTRS)

    Megaridis, Constantine M.; Bellizia, Giulio; McNallan, Michael; Wallace, David B.

    2003-01-01

    Surface tension forces play a critical role in fluid dynamic phenomena that are important in materials processing. The surface tension of liquid metals has been shown to be very susceptible to small amounts of adsorbed oxygen. Consequently, the kinetics of oxygen adsorption can influence the capillary breakup of liquid-metal jets targeted for use in electronics assembly applications, where low-melting-point metals (such as tin-containing solders) are utilized as an attachment material for mounting of electronic components to substrates. By interpreting values of surface tension measured at various surface ages, adsorption and diffusion rates of oxygen on the surface of the melt can be estimated. This research program investigates the adsorption kinetics of oxygen on the surface of an atomizing molten-metal jet. A novel oscillating capillary jet method has been developed for the measurement of dynamic surface tension of liquids, and in particular, metal melts which are susceptible to rapid surface degradation caused by oxygen adsorption. The experimental technique captures the evolution of jet swells and necks continuously along the jet propagation axis and is used in conjunction with an existing linear, axisymmetric, constant-property model to determine the variation of the instability growth rate, and, in turn, surface tension of the liquid as a function of surface age measured from the exit orifice. The conditions investigated so far focus on a time window of 2-4ms from the jet orifice. The surface properties of the eutectic 63%Sn-37%Pb solder alloy have been investigated in terms of their variation due to O2 adsorption from a N2 atmosphere containing controlled amounts of oxygen (from 8 ppm to 1000 ppm). The method performed well for situations where the oxygen adsorption was low in that time window. The value of surface tension for the 63Sn-37Pb solder in pure nitrogen was found to be 0.49 N/m, in good agreement with previously published work. A characteristic time of O(1ms) or less was determined for the molten-metal surface to be saturated by oxygen at 1000 ppm concentration in N2.

  18. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    PubMed Central

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-01-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation. PMID:27452115

  19. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    NASA Astrophysics Data System (ADS)

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-07-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation.

  20. Objectification of Public Bus Stop's Pavement Surface Morphology

    NASA Astrophysics Data System (ADS)

    Decký, Martin; Kováč, Matúš; Mužík, Juraj; Mičechová, Lenka; Ďuriš, Lukáš

    2018-06-01

    The article deals with the road pavement surface morphology objectification in term of the surface unevenness degradation during the life cycle of bus stop pavements. The article presents the results of long-term rut depth measurements performed during 25 years on selected bus stops which were intended to determine correlation dependences of pavement rut depth on a number of design axles. The article also presents different methods for rut depth measurements including the straightedge test, Profilograph GE, TRIMBLE CX, and dynamic Road Scanner.

  1. Atomic and Molecular Beam Scattering: Characterizing Structure and Dynamics of Hybrid Organic-Semiconductor Interfaces and Introducing Novel Isotope Separation Techniques

    NASA Astrophysics Data System (ADS)

    Nihill, Kevin John

    This thesis details a range of experiments and techniques that use the scattering of atomic beams from surfaces to both characterize a variety of interfaces and harness mass-specific scattering conditions to separate and enrich isotopic components in a mixture of gases. Helium atom scattering has been used to characterize the surface structure and vibrational dynamics of methyl-terminated Ge(111), thereby elucidating the effects of organic termination on a rigid semiconductor interface. Helium atom scattering was employed as a surface-sensitive, non-destructive probe of the surface. By means of elastic gas-surface diffraction, this technique is capable of providing measurements of atomic spacing, step height, average atomic displacement as a function of surface temperature, gas-surface potential well depth, and surface Debye temperature. Inelastic time-of-flight studies provide highly resolved energy exchange measurements between helium atoms and collective lattice vibrations, or phonons; a collection of these measurements across a range of incident kinematic parameters allowed for a thorough mapping of low-energy phonons (e.g., the Rayleigh wave) across the surface Brillouin zone and subsequent comparison with complementary theoretical calculations. The scattering of molecular beams - here, hydrogen and deuterium from methyl-terminated Si(111) - enables the measurement of the anisotropy of the gas-surface interaction potential through rotationally inelastic diffraction (RID), whereby incident atoms can exchange internal energy between translational and rotational modes and diffract into unique angular channels as a result. The probability of rotational excitations as a function of incident energy and angle were measured and compared with electronic structure and scattering calculations to provide insight into the gas-surface interaction potential and hence the surface charge density distribution, revealing important details regarding the interaction of H2 with an organic-functionalized semiconductor interface. Aside from their use as probes for surface structure and dynamics, atomic beam sources are also demonstrated to enable the efficient separation of gaseous mixtures of isotopes by means of diffraction and differential condensation. In the former method, the kinematic conditions for elastic diffraction result in an incident beam of natural abundance neon diffracting into isotopically distinct angles, resulting in the enrichment of a desired isotope; this purification can be improved by exploiting the difference in arrival times of the two isotopes at a given final angle. In the latter method, the identical incident velocities of coexpanded isotopes lead to minor but important differences in their incident kinetic energies, and thus their probability of adsorbing on a sufficiently cold surface, resulting in preferential condensation of a given isotope that depends on the energy of the incident beam. Both of these isotope separation techniques are made possible by the narrow velocity distribution and velocity seeding effect offered only by high-Mach number supersonic beam sources. These experiments underscore the utility of supersonically expanded atomic and molecular beam sources as both extraordinarily precise probes of surface structure and dynamics and as a means for high-throughput, non-dissociative isotopic enrichment methods.

  2. Effects of Frothers and Oil at Saltwater–Air Interfaces for Oil Separation: Molecular Dynamics Simulations and Experimental Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chong, Leebyn; Lai, Yungchieh; Gray, McMahan

    Separating oil from saltwater is a process relevant to some industries and may be aided by bubble and froth generation. Simulating saltwater–air interfaces adsorbed with surfactants and oil molecules can assist in understanding froth stability to improve separation. Here, combining with surface tension experimental measurements, in this work we employ molecular dynamics with a united-atom force field to linear alkane oil and three surfactant frothers, methyl isobutyl carbinol (MIBC), terpineol, and ethyl glycol butyl ether (EGBE), to investigate their synergistic behaviors for oil separation. The interfacial phenomena were measured for a range of frother surface coverages on saltwater. Density profilesmore » of the hydrophilic and hydrophobic portions of the frothers show an expected orientation of alcohol groups adsorbing to the polar water. A decrease in surface tension with increasing surface coverage of MIBC and terpineol was observed and reflected in experiments where the frother concentration increased. Relations between surface coverage and bulk concentration were observed by comparing the surface tension decreases. Additionally, a range of oil surface coverages was explored when the interface has a thin layer of adsorbed frother molecules. Finally, the obtained results indicate that an increase in surface coverage of oil molecules led to an increase in surface tension for all frother types and the pair correlation functions depicted MIBC and terpineol as having higher distributions with water at closer distances than with oil.« less

  3. Effects of Frothers and Oil at Saltwater–Air Interfaces for Oil Separation: Molecular Dynamics Simulations and Experimental Measurements

    DOE PAGES

    Chong, Leebyn; Lai, Yungchieh; Gray, McMahan; ...

    2017-06-16

    Separating oil from saltwater is a process relevant to some industries and may be aided by bubble and froth generation. Simulating saltwater–air interfaces adsorbed with surfactants and oil molecules can assist in understanding froth stability to improve separation. Here, combining with surface tension experimental measurements, in this work we employ molecular dynamics with a united-atom force field to linear alkane oil and three surfactant frothers, methyl isobutyl carbinol (MIBC), terpineol, and ethyl glycol butyl ether (EGBE), to investigate their synergistic behaviors for oil separation. The interfacial phenomena were measured for a range of frother surface coverages on saltwater. Density profilesmore » of the hydrophilic and hydrophobic portions of the frothers show an expected orientation of alcohol groups adsorbing to the polar water. A decrease in surface tension with increasing surface coverage of MIBC and terpineol was observed and reflected in experiments where the frother concentration increased. Relations between surface coverage and bulk concentration were observed by comparing the surface tension decreases. Additionally, a range of oil surface coverages was explored when the interface has a thin layer of adsorbed frother molecules. Finally, the obtained results indicate that an increase in surface coverage of oil molecules led to an increase in surface tension for all frother types and the pair correlation functions depicted MIBC and terpineol as having higher distributions with water at closer distances than with oil.« less

  4. Towards attosecond measurement in molecules and at surfaces

    NASA Astrophysics Data System (ADS)

    Marangos, Jonathan

    2015-05-01

    1) We will present a number of experimental approaches that are being developed at Imperial College to make attosecond timescale measurements of electronic dynamics in suddenly photoionized molecules and at surfaces. A brief overview will be given of some of the unanswered questions in ultrafast electron and hole dynamics in molecules and solids. These questions include the existence of electronic charge migration in molecules and how this process might couple to nuclear motion even on the few femtosecond timescale. How the timescale of photoemission from a surface may differ from that of an isolated atom, e.g. due to electron transport phenomena associated with the distance from the surface of the emitting atom and the electron dispersion relation, is also an open question. 2) The measurement techniques we are currently developing to answer these questions are HHG spectroscopy, attosecond pump-probe photoelectron/photoion studies, and attosecond pump-probe transient absorption as well as attosecond streaking for measuring surface emission. We will present recent advances in generating two synchronized isolated attosecond pulses at different colours for pump-probe measurements (at 20 eV and 90 eV respectively). Results on generation of isolated attosecond pulses at 300 eV and higher photon energy using a few-cycle 1800 nm OPG source will be presented. The use of these resources for making pump-probe measurements will be discussed. Finally we will present the results of streaking measurement of photoemission wavepackets from two types of surface (WO3 and a evaporated Au film) that show a temporal broadening of ~ 100 as compared to atomic streaks that is consistent with the electron mean free path in these materials. Work supported by ERC and EPSRC.

  5. Measuring and modeling surface sorption dynamics of organophosphate flame retardants in chambers

    EPA Science Inventory

    Understanding the sorption mechanisms for organophosphate flame retardants (OPFRs) on impervious surfaces is important to improve our understanding of the fate and transport of OPFRs in indoor environments. Langmuir and Freundlich models are widely adopted to describe sorption be...

  6. The dynamic deformation of a layered viscoelastic medium under surface excitation

    NASA Astrophysics Data System (ADS)

    Aglyamov, Salavat R.; Wang, Shang; Karpiouk, Andrei B.; Li, Jiasong; Twa, Michael; Emelianov, Stanislav Y.; Larin, Kirill V.

    2015-06-01

    In this study the dynamic behavior of a layered viscoelastic medium in response to the harmonic and impulsive acoustic radiation force applied to its surface was investigated both theoretically and experimentally. An analytical solution for a layered viscoelastic compressible medium in frequency and time domains was obtained using the Hankel transform. A special incompressible case was considered to model soft biological tissues. To verify our theoretical model, experiments were performed using tissue-like gel-based phantoms with varying mechanical properties. A 3.5 MHz single-element focused ultrasound transducer was used to apply the radiation force at the surface of the phantoms. A phase-sensitive optical coherence tomography system was used to track the displacements of the phantom surface. Theoretically predicted displacements were compared with experimental measurements. The role of the depth dependence of the elastic properties of a medium in its response to an acoustic pulse at the surface was studied. It was shown that the low-frequency vibrations at the surface are more sensitive to the deep layers than high-frequency ones. Therefore, the proposed model in combination with spectral analysis can be used to evaluate depth-dependent distribution of the mechanical properties based on the measurements of the surface deformation.

  7. Almond-Shaped Test Body

    NASA Technical Reports Server (NTRS)

    Dominek, Allen; Wood, Richard; Gilreath, Mel

    1992-01-01

    Almond shaped test body developed for use in electromagnetic anechoic chamber for evaluation of range and measurement of components has low radar cross section that varies with angle over large dynamic range. Surface is composite formed by joining properly scaled ellipsoidal surfaces. Used to mount components whose radar cross sections are to be measured, and simulate backscatter characteristics of component as though it were over infinite ground plane.

  8. The contribution of brown vegetation to vegetation dynamics

    USDA-ARS?s Scientific Manuscript database

    Indices of vegetation dynamics that include both green vegetation (GV) and non-photosynthetic vegetation (NPV), that is, brown vegetation, were applied to MODIS surface reflectance data from 2000 to 2006 for the southwestern United States. These indices reveal that the cover of NPV, a measure of veg...

  9. Tin particle size measurements in high explosively driven shockwave experiments using Mie scattering method

    NASA Astrophysics Data System (ADS)

    Monfared, Shabnam; Buttler, William; Schauer, Martin; Lalone, Brandon; Pack, Cora; Stevens, Gerald; Stone, Joseph; Special Technologies Laboratory Collaboration; Los Alamos National Laboratory Team

    2014-03-01

    Los Alamos National Laboratory is actively engaged in the study of material failure physics to support the hydrodynamic models development, where an important failure mechanism of explosively shocked metals causes mass ejection from the backside of a shocked surface with surface perturbations. Ejecta models are in development for this situation. Our past work has clearly shown that the total ejected mass and mass-velocity distribution sensitively link to the wavelength and amplitude of these perturbations. While we have had success developing ejecta mass and mass-velocity models, we need to better understand the size and size-velocity distributions of the ejected mass. To support size measurements we have developed a dynamic Mie scattering diagnostic based on a CW laser that permits measurement of the forward attenuation cross-section combined with a dynamic mass-density and mass-velocity distribution, as well as a measurement of the forward scattering cross-section at 12 angles (5- 32.5 degrees) in increments of 2.5 degrees. We compare size distribution followed from Beers law with attenuation cross-section and mass measurement to the dynamic size distribution determined from scattering cross-section alone. We report results from our first quality experiments.

  10. Surface current dynamics under sea breeze conditions observed by simultaneous HF radar, ADCP and drifter measurements

    NASA Astrophysics Data System (ADS)

    Sentchev, Alexei; Forget, Philippe; Fraunié, Philippe

    2017-04-01

    Ocean surface boundary layer dynamics off the southern coast of France in the NW Mediterranean is investigated by using velocity observations by high-frequency (HF) radars, surface drifting buoys and a downward-looking drifting acoustic Doppler current profiler (ADCP). The analysis confirms that velocities measured by HF radars correspond to those observed by an ADCP at the effective depth z f = k -1, where k is wavenumber of the radio wave emitted by the radar. The radials provided by the radars were in a very good agreement with in situ measurements, with the relative errors of 1 and 9 % and root mean square (RMS) differences of 0.02 and 0.04 m/s for monostatic and bistatic radar, respectively. The total radar-based velocities appeared to be slightly underestimated in magnitude and somewhat biased in direction. At the end of the survey period, the difference in the surface current direction, based on HF radar and ADCP data, attained 10°. It was demonstrated that the surface boundary layer dynamics cannot be reconstructed successfully without taking into the account velocity variation with depth. A significant misalignment of ˜30° caused by the sea breeze was documented between the HF radar (HFR-derived) surface current and the background current. It was also found that the ocean response to a moderate wind forcing was confined to the 4-m-thick upper layer. The respective Ekman current attained the maximum value of 0.15 m/s, and the current rotation was found to be lagging the wind by approximately 40 min, with the current vector direction being 15-20° to the left of the wind. The range of velocity variability due to wind forcing was found comparable with the magnitude of the background current variability.

  11. Probing surface hydrogen bonding and dynamics by natural abundance, multidimensional, 17O DNP-NMR spectroscopy

    DOE PAGES

    Perras, Frederic A.; Chaudhary, Umesh; Slowing, Igor I.; ...

    2016-05-06

    Dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) spectroscopy is increasingly being used as a tool for the atomic-level characterization of surface sites. DNP surface-enhanced SSNMR spectroscopy of materials has, however, been limited to studying relatively receptive nuclei, and the particularly rare 17O nuclide, which is of great interest for materials science, has not been utilized. We demonstrate that advanced 17O SSNMR experiments can be performed on surface species at natural isotopic abundance using DNP. We use 17O DNP surface-enhanced 2D SSNMR to measure 17O{ 1H} HETCOR spectra as well as dipolar oscillations on a series of thermally treatedmore » mesoporous silica nanoparticle samples having different pore diameters. These experiments allow for a nonintrusive and unambiguous characterization of hydrogen bonding and dynamics at the surface of the material; no other single experiment can give such details about the interactions at the surface. Lastly, our data show that, upon drying, strongly hydrogen-bonded surface silanols, whose motions are greatly restricted by the interaction when compared to lone silanols, are selectively dehydroxylated.« less

  12. ICESAT GLAS Altimetry Measurements: Received Signal Dynamic Range and Saturation Correction

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Abshire, James B.; Borsa, Adrian A.; Fricker, Helen Amanda; Yi, Donghui; Dimarzio, John P.; Paolo, Fernando S.; Brunt, Kelly M.; Harding, David J.; Neumann, Gregory A.

    2017-01-01

    NASAs Ice, Cloud, and land Elevation Satellite (ICESat), which operated between 2003 and 2009, made the first satellite-based global lidar measurement of earths ice sheet elevations, sea-ice thickness, and vegetation canopy structure. The primary instrument on ICESat was the Geoscience Laser Altimeter System (GLAS), which measured the distance from the spacecraft to the earth's surface via the roundtrip travel time of individual laser pulses. GLAS utilized pulsed lasers and a direct detection receiver consisting of a silicon avalanche photodiode and a waveform digitizer. Early in the mission, the peak power of the received signal from snow and ice surfaces was found to span a wider dynamic range than anticipated, often exceeding the linear dynamic range of the GLAS 1064-nm detector assembly. The resulting saturation of the receiver distorted the recorded signal and resulted in range biases as large as approximately 50 cm for ice- and snow-covered surfaces. We developed a correction for this saturation range bias based on laboratory tests using a spare flight detector, and refined the correction by comparing GLAS elevation estimates with those derived from Global Positioning System surveys over the calibration site at the salar de Uyuni, Bolivia. Applying the saturation correction largely eliminated the range bias due to receiver saturation for affected ICESat measurements over Uyuni and significantly reduced the discrepancies at orbit crossovers located on flat regions of the Antarctic ice sheet.

  13. Surface structure of imidazolium-based ionic liquids: Quantitative comparison between simulations and high-resolution RBS measurements.

    PubMed

    Nakajima, Kaoru; Nakanishi, Shunto; Lísal, Martin; Kimura, Kenji

    2016-03-21

    Elemental depth profiles of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n = 4, 6, 8) are measured using high-resolution Rutherford backscattering spectroscopy (HRBS). The profiles are compared with the results of molecular dynamics (MD) simulations. Both MD simulations and HRBS measurements show that the depth profiles deviate from the uniform stoichiometric composition in the surface region, showing preferential orientations of ions at the surface. The MD simulations qualitatively reproduce the observed HRBS profiles but the agreement is not satisfactory. The observed discrepancy is ascribed to the capillary waves. By taking account of the surface roughness induced by the capillary waves, the agreement becomes almost perfect.

  14. Surface structure of imidazolium-based ionic liquids: Quantitative comparison between simulations and high-resolution RBS measurements

    NASA Astrophysics Data System (ADS)

    Nakajima, Kaoru; Nakanishi, Shunto; Lísal, Martin; Kimura, Kenji

    2016-03-01

    Elemental depth profiles of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n = 4, 6, 8) are measured using high-resolution Rutherford backscattering spectroscopy (HRBS). The profiles are compared with the results of molecular dynamics (MD) simulations. Both MD simulations and HRBS measurements show that the depth profiles deviate from the uniform stoichiometric composition in the surface region, showing preferential orientations of ions at the surface. The MD simulations qualitatively reproduce the observed HRBS profiles but the agreement is not satisfactory. The observed discrepancy is ascribed to the capillary waves. By taking account of the surface roughness induced by the capillary waves, the agreement becomes almost perfect.

  15. The local work function: Concept and implications

    NASA Astrophysics Data System (ADS)

    Wandelt, K.

    1997-02-01

    The term 'local work function' is now widely applied. The present work discusses the common physical basis of 'photoemission of adsorbed xenon (PAX)' and 'two-photon photonemissionspectroscopy of image potential states' as local work function probes. New examples with bimetallic and defective surfaces are presented which demonstrate the capability of PAX measurements for the characterization of heterogeneous surfaces on an atomic scale. Finally, implications of the existence of short-range variations of the surface potential at surface steps are addressed. In particular, dynamical work function change measurements are a sensitive probe for the step-density at surfaces and, as such, a powerful in-situ method to monitor film growth.

  16. Statistical contact angle analyses; "slow moving" drops on a horizontal silicon-oxide surface.

    PubMed

    Schmitt, M; Grub, J; Heib, F

    2015-06-01

    Sessile drop experiments on horizontal surfaces are commonly used to characterise surface properties in science and in industry. The advancing angle and the receding angle are measurable on every solid. Specially on horizontal surfaces even the notions themselves are critically questioned by some authors. Building a standard, reproducible and valid method of measuring and defining specific (advancing/receding) contact angles is an important challenge of surface science. Recently we have developed two/three approaches, by sigmoid fitting, by independent and by dependent statistical analyses, which are practicable for the determination of specific angles/slopes if inclining the sample surface. These approaches lead to contact angle data which are independent on "user-skills" and subjectivity of the operator which is also of urgent need to evaluate dynamic measurements of contact angles. We will show in this contribution that the slightly modified procedures are also applicable to find specific angles for experiments on horizontal surfaces. As an example droplets on a flat freshly cleaned silicon-oxide surface (wafer) are dynamically measured by sessile drop technique while the volume of the liquid is increased/decreased. The triple points, the time, the contact angles during the advancing and the receding of the drop obtained by high-precision drop shape analysis are statistically analysed. As stated in the previous contribution the procedure is called "slow movement" analysis due to the small covered distance and the dominance of data points with low velocity. Even smallest variations in velocity such as the minimal advancing motion during the withdrawing of the liquid are identifiable which confirms the flatness and the chemical homogeneity of the sample surface and the high sensitivity of the presented approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Some potential errors in the measurement of mercury gas exchange at the soil surface using a dynamic flux chamber.

    PubMed

    Gillis, A; Miller, D R

    2000-10-09

    A series of controlled environment experiments were conducted to examine the use of a dynamic flux chamber to measure soil emission and absorption of total gaseous mercury (TGM). Uncertainty about the appropriate airflow rates through the chamber and chamber exposure to ambient wind are shown to be major sources of potential error. Soil surface mercury flux measurements over a range of chamber airflow rates showed a positive linear relationship between flux rates and airflow rate through the chamber. Mercury flux measurements using the chamber in an environmental wind tunnel showed that exposure of the system to ambient winds decreased the measured flux rates by 40% at a wind speed of 1.0 m s(-1) and 90% at a wind speed of 2 m s(-1). Wind tunnel measurements also showed that the chamber footprint was limited to the area of soil inside the chamber and there is little uncertainty of the footprint size in dry soil.

  18. Global surface pressure measurements of static and dynamic stall on a wind turbine airfoil at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Disotell, Kevin J.; Nikoueeyan, Pourya; Naughton, Jonathan W.; Gregory, James W.

    2016-05-01

    Recognizing the need for global surface measurement techniques to characterize the time-varying, three-dimensional loading encountered on rotating wind turbine blades, fast-responding pressure-sensitive paint (PSP) has been evaluated for resolving unsteady aerodynamic effects in incompressible flow. Results of a study aimed at demonstrating the laser-based, single-shot PSP technique on a low Reynolds number wind turbine airfoil in static and dynamic stall are reported. PSP was applied to the suction side of a Delft DU97-W-300 airfoil (maximum thickness-to-chord ratio of 30 %) at a chord Reynolds number of 225,000 in the University of Wyoming open-return wind tunnel. Static and dynamic stall behaviors are presented using instantaneous and phase-averaged global pressure maps. In particular, a three-dimensional pressure topology driven by a stall cell pattern is detected near the maximum lift condition on the steady airfoil. Trends in the PSP-measured pressure topology on the steady airfoil were confirmed using surface oil visualization. The dynamic stall case was characterized by a sinusoidal pitching motion with mean angle of 15.7°, amplitude of 11.2°, and reduced frequency of 0.106 based on semichord. PSP images were acquired at selected phase positions, capturing the breakdown of nominally two-dimensional flow near lift stall, development of post-stall suction near the trailing edge, and a highly three-dimensional topology as the flow reattaches. Structural patterns in the surface pressure topologies are considered from the analysis of the individual PSP snapshots, enabled by a laser-based excitation system that achieves sufficient signal-to-noise ratio in the single-shot images. The PSP results are found to be in general agreement with observations about the steady and unsteady stall characteristics expected for the airfoil.

  19. Measuring and Modeling Surface Sorption Dynamics of Organophosphate Flame Retardants in Chambers

    EPA Science Inventory

    Understanding the sorption mechanisms for organophosphate flame retardants (OPFRs) on impervious surfaces is important if we are to improve our understanding of the fate and transport of OPFRs in indoor environments. Traditional Langmuir and Freundlich models are widely adopted t...

  20. Interfacial tensiometry and dilational surface visco-elasticity of biological liquids in medicine.

    PubMed

    Fainerman, V B; Trukhin, D V; Zinkovych, Igor I; Miller, R

    2018-05-01

    Dynamic surface tensions and dilational visco-elasticity are easy accessible parameters of liquids. For human body liquids, such as urine, blood serum, amniotic fluid, gastric juice, saliva and others, these parameters are very characteristic for the health status of people. In case of a disease the composition of certain liquids specifically changes and the measured characteristics of dynamic surface tension of the dilational surface elasticity and viscosity reflect these changes in a clear way. Thus, this kind of physico-chemical measurements represent sensitive tools for evaluating the severity of a disease and can serve as control tool for the efficiency of applied therapies. The overview summarises the results of a successful work over about 25years on this subject and gives specific insight into a number of diseases for which the diagnostics as well as the therapy control have been significantly improved by the application of physico-chemical experimental techniques. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Surface diffusion of cyclic hydrocarbons on nickel

    NASA Astrophysics Data System (ADS)

    Silverwood, I. P.; Armstrong, J.

    2018-08-01

    Surface diffusion of adsorbates is difficult to measure on realistic systems, yet it is of fundamental interest in catalysis and coating reactions. quasielastic neutron scattering (QENS) was used to investigate the diffusion of cyclohexane and benzene adsorbed on a nickel metal sponge catalyst. Molecular dynamics simulations of benzene on a model (111) nickel surface showed localised motion with diffusion by intermittent jumps. The experimental data was therefore fitted to the Singwi-Sjölander model and activation energies for diffusion of 4.0 kJ mol-1 for benzene and 4.3 kJ mol-1 for cyclohexane were calculated for the two dimensional model. Limited motion out-of plane was seen in the dynamics simulations and is discussed, although the resolution of the scattering experiment is insufficient to quantify this. Good agreement is seen between the use of a perfect crystal as a model for a disordered system over short time scales, suggesting that simple models are adequate to describe diffusion over polycrystalline metal surfaces on the timescale of QENS measurement.

  2. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balke, Nina; Jesse, Stephen; Yu, Pu

    Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less

  3. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy

    DOE PAGES

    Balke, Nina; Jesse, Stephen; Yu, Pu; ...

    2016-09-15

    Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less

  4. In-process deformation measurements of translucent high speed fibre-reinforced disc rotors

    NASA Astrophysics Data System (ADS)

    Philipp, Katrin; Filippatos, Angelos; Koukourakis, Nektarios; Kuschmierz, Robert; Leithold, Christoph; Langkamp, Albert; Fischer, Andreas; Czarske, Jürgen

    2015-07-01

    The high stiffness to weight ratio of glass fibre-reinforced polymers (GFRP) makes them an attractive material for rotors e.g. in the aerospace industry. We report on recent developments towards non-contact, in-situ deformation measurements with temporal resolution up to 200 µs and micron measurement uncertainty. We determine the starting point of damage evolution inside the rotor material through radial expansion measurements. This leads to a better understanding of dynamic material behaviour regarding damage evolution and the prediction of damage initiation and propagation. The measurements are conducted using a novel multi-sensor system consisting of four laser Doppler distance (LDD) sensors. The LDD sensor, a two-wavelength Mach-Zehnder interferometer was already successfully applied for dynamic deformation measurements at metallic rotors. While translucency of the GFRP rotor material limits the applicability of most optical measurement techniques due to speckles from both surface and volume of the rotor, the LDD profits from speckles and is not disturbed by backscattered laser light from the rotor volume. The LDD sensor evaluates only signals from the rotor surface. The anisotropic glass fibre-reinforcement results in a rotationally asymmetric dynamic deformation. A novel signal processing algorithm is applied for the combination of the single sensor signals to obtain the shape of the investigated rotors. In conclusion, the applied multi-sensor system allows high temporal resolution dynamic deformation measurements. First investigations regarding damage evolution inside GFRP are presented as an important step towards a fundamental understanding of the material behaviour and the prediction of damage initiation and propagation.

  5. Calibration and combination of monthly near-surface temperature and precipitation predictions over Europe

    NASA Astrophysics Data System (ADS)

    Rodrigues, Luis R. L.; Doblas-Reyes, Francisco J.; Coelho, Caio A. S.

    2018-02-01

    A Bayesian method known as the Forecast Assimilation (FA) was used to calibrate and combine monthly near-surface temperature and precipitation outputs from seasonal dynamical forecast systems. The simple multimodel (SMM), a method that combines predictions with equal weights, was used as a benchmark. This research focuses on Europe and adjacent regions for predictions initialized in May and November, covering the boreal summer and winter months. The forecast quality of the FA and SMM as well as the single seasonal dynamical forecast systems was assessed using deterministic and probabilistic measures. A non-parametric bootstrap method was used to account for the sampling uncertainty of the forecast quality measures. We show that the FA performs as well as or better than the SMM in regions where the dynamical forecast systems were able to represent the main modes of climate covariability. An illustration with the near-surface temperature over North Atlantic, the Mediterranean Sea and Middle-East in summer months associated with the well predicted first mode of climate covariability is offered. However, the main modes of climate covariability are not well represented in most situations discussed in this study as the seasonal dynamical forecast systems have limited skill when predicting the European climate. In these situations, the SMM performs better more often.

  6. Characteristics of a dynamic holographic sensor for shape control of a large reflector

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Cox, David E.

    1991-01-01

    Design of a distributed holographic interferometric sensor for measuring the surface displacement of a large segmented reflector is proposed. The reflector's surface is illuminated by laser light of two wavelengths and volume holographic gratings are formed in photorefractive crystals of the wavefront returned from the surface. The sensor is based on holographic contouring with a multiple frequency source. It is shown that the most stringent requirement of temporal stability affects both the temporal resolution and the dynamic range. Principal factor which limit the sensor performance include the response time of photorefractive crystal, laser power required to write a hologram, and the size of photorefractive crystal.

  7. Unusual dynamic dewetting behavior of smooth perfluorinated hybrid films: potential advantages over conventional textured and liquid-infused perfluorinated surfaces.

    PubMed

    Urata, Chihiro; Masheder, Benjamin; Cheng, Dalton F; Hozumi, Atsushi

    2013-10-08

    From a viewpoint of reducing the burden on the environment and human health, an alternative method for preparing liquid-repellent surfaces without relying on the long perfluorocarbons (C((X-1)/2)F(X), X ≥ 17) has been strongly demanded lately. In this study, we have successfully demonstrated that dynamic dewettability toward various probe liquids (polar and nonpolar liquids with high or low surface tension) can be tuned by not only controlling surface chemistries (surface energies) but also the physical (solid-like or liquid-like) nature of the surface. We prepared smooth and transparent organic-inorganic hybrid films exhibiting unusual dynamic dewetting behavior toward various probe liquids using a simple sol-gel reaction based on the co-hydrolysis and co-condensation of a mixture including a range of perfluoroalkylsilanes (FASX, C((X-1)/2)F(X)CH2CH2Si(OR)3, where X = 3, 9, 13, and 17) and tetramethoxysilane (Si(OCH3)4, TMOS). Dynamic contact angle (CA) and substrate tilt angle (TA) measurements confirmed that our FASX-hybrid films exhibited excellent dynamic dewetting properties and were mostly independent of the length of perfluoroalkyl (Rf) groups. For example, 10 μL droplets of ultralow surface tension liquids (e.g., diethyl ether (γ = 16.26 dyn/cm) and n-pentane (γ = 15.51 dyn/cm)) could move easily on our FAS9-, FAS13-, and FAS17-hybrid film surfaces at low substrate TAs (<4°) without pinning. This is comparable or superior to the best perfluorinated textured and flat surfaces reported so far. This exceptional dynamic dewetting behavior appeared only when TMOS molecules were added to the precursor solutions; we assume this is due to co-condensed TMOS-derived silica species working as spacers between the neighboring Rf chains, enabling them to rotate freely and in doing so provide a surface with liquid-like properties. This led to the distinguished dynamic dewettability of our hybrid films, regardless of the small static CAs. Our FASX-hybrid films also displayed excellent chemical and physical durability against thermal stress (~250 °C), high-temperature (150 °C) oil vapor, and various other media (perfluoro liquid, boiling water, and weak acid) without degrading their dynamic dewettability. Such exceptional durability has been rarely seen on conventional perfluorinated surfaces reported so far.

  8. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    NASA Astrophysics Data System (ADS)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira; Qin, Ying; Bao, Yuping

    2017-04-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  9. Dynamic metrology and data processing for precision freeform optics fabrication and testing

    NASA Astrophysics Data System (ADS)

    Aftab, Maham; Trumper, Isaac; Huang, Lei; Choi, Heejoo; Zhao, Wenchuan; Graves, Logan; Oh, Chang Jin; Kim, Dae Wook

    2017-06-01

    Dynamic metrology holds the key to overcoming several challenging limitations of conventional optical metrology, especially with regards to precision freeform optical elements. We present two dynamic metrology systems: 1) adaptive interferometric null testing; and 2) instantaneous phase shifting deflectometry, along with an overview of a gradient data processing and surface reconstruction technique. The adaptive null testing method, utilizing a deformable mirror, adopts a stochastic parallel gradient descent search algorithm in order to dynamically create a null testing condition for unknown freeform optics. The single-shot deflectometry system implemented on an iPhone uses a multiplexed display pattern to enable dynamic measurements of time-varying optical components or optics in vibration. Experimental data, measurement accuracy / precision, and data processing algorithms are discussed.

  10. Shock Location Dominated Transonic Flight Loads on the Active Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Lokos, William A.; Lizotte, Andrew; Lindsley, Ned J.; Stauf, Rick

    2005-01-01

    During several Active Aeroelastic Wing research flights, the shadow of the over-wing shock could be observed because of natural lighting conditions. As the plane accelerated, the shock location moved aft, and as the shadow passed the aileron and trailing-edge flap hinge lines, their associated hinge moments were substantially affected. The observation of the dominant effect of shock location on aft control surface hinge moments led to this investigation. This report investigates the effect of over-wing shock location on wing loads through flight-measured data and analytical predictions. Wing-root and wing-fold bending moment and torque and leading- and trailing-edge hinge moments have been measured in flight using calibrated strain gages. These same loads have been predicted using a computational fluid dynamics code called the Euler Navier-Stokes Three Dimensional Aeroelastic Code. The computational fluid dynamics study was based on the elastically deformed shape estimated by a twist model, which in turn was derived from in-flight-measured wing deflections provided by a flight deflection measurement system. During level transonic flight, the shock location dominated the wing trailing-edge control surface hinge moments. The computational fluid dynamics analysis based on the shape provided by the flight deflection measurement system produced very similar results and substantially correlated with the measured loads data.

  11. Ultrafast exciton dynamics in cadmium selenide nanocrystals determined by femtosecond fluorescence upconversion spectroscopy

    NASA Astrophysics Data System (ADS)

    Underwood, David Frederick

    Femtosecond fluorescence upconversion spectroscopy is a technique that allows the unambiguous determination of the excited state dynamics of an analyte. Combining this method with the use of tunable laser excitation, the exciton dynamics in semiconducting nanocrystals (NC's) of cadmium selenide (CdSe) have been determined, devoid of the complications arising from more common spectroscopic methods such as pump-probe. The results of this investigation were used to construct a model to fully describe the three-level system comprising of the valence and conduction bands and surface states, which have been calculated by others to lie mid-gap in energy. Smaller NC's showed faster decay components due to increased interaction between the exciton and surface states. The deep trap emission, which has never before been measured by ultrafast fluorescence techniques, shows a rapid rise time (˜2 ps), which is attributed to surface selenium dangling bonds relaxing to the valence band and radiatively combining with the photo-generated hole. The band edge fluorescence decays as the deep trap emission grows in, inherently coupling the two processes. An experiment which measured the dependence of the excitation energy showed that increased energy imparted to the NC's resulted in increased rise times, yielding the timescales for exciton relaxation through the valence and conduction band states to the lowest emitting state. Surface-oxidized and normally-passivated NC's display the same decay dynamics in time but differ in relative amplitude; the latter point agrees with steady-state measurements. The rotational anisotrophy of the NC's was measured and agrees with previous pump-probe data. Upconversion on the red and blue sides of the static fluorescence spectrum showed no discernable differences, which is either and inherent limitation of the experimental apparatus, or the possibility that lower-lying triplet states are populated on a timescale below the instrument resolution.

  12. SDVSRM - a new SSRM based technique featuring dynamically adjusted, scanner synchronized sample voltages for measurement of actively operated devices.

    PubMed

    Doering, Stefan; Wachowiak, Andre; Roetz, Hagen; Eckl, Stefan; Mikolajick, Thomas

    2018-06-01

    Scanning spreading resistance microscopy (SSRM) with its high spatial resolution and high dynamic signal range is a powerful tool for two-dimensional characterization of semiconductor dopant areas. However, the application of the method is limited to devices in equilibrium condition, as the investigation of actively operated devices would imply potential differences within the device, whereas SSRM relies on a constant voltage difference between sample surface and probe tip. Furthermore, the standard preparation includes short circuiting of all device components, limiting applications to devices in equilibrium condition. In this work scanning dynamic voltage spreading resistance microscopy (SDVSRM), a new SSRM based two pass atomic force microscopy (AFM) technique is introduced, overcoming these limitations. Instead of short circuiting the samples during preparation, wire bond devices are used allowing for active control of the individual device components. SDVSRM consists of two passes. In the first pass the local sample surface voltage dependent on the dc biases applied to the components of the actively driven device is measured as in scanning voltage microscopy (SVM). The local spreading resistance is measured within the second pass, in which the afore obtained local surface voltage is used to dynamically adjust the terminal voltages of the device under test. This is done in a way that the local potential difference across the nano-electrical contact matches the software set SSRM measurement voltage, and at the same time, the internal voltage differences within the device under test are maintained. In this work the proof of the concept could be demonstrated by obtaining spreading resistance data of an actively driven photodiode test device. SDVSRM adds a higher level of flexibility in general to SSRM, as occurring differences in cross section surface voltage are taken into account. These differences are immanent for actively driven devices, but can also be present at standard, short circuited samples. Therefore, SDVSRM could improve the characterization under equilibrium conditions as well. Copyright © 2018. Published by Elsevier B.V.

  13. Dynamic laser speckle technique as an alternative tool to determine hygroscopic capacity and specific surface area of microporous zeolites

    NASA Astrophysics Data System (ADS)

    Mojica-Sepulveda, Ruth Dary; Mendoza-Herrera, Luís Joaquín; Grumel, Eduardo; Soria, Delia Beatriz; Cabello, Carmen Inés; Trivi, Marcelo

    2018-07-01

    Adsorption phenomena have several technological applications such as desiccants, catalysts, and separation of gases. Their uses depend on the textural properties of the solid adsorbent and the type of the adsorbed liquid or gas. Therefore, it is important to determine these properties. The most common measurement methods are physicochemical based on adsorption of N2 to determine the surface area and the distribution of pores size. However these techniques present certain limitations for microporous materials. In this paper we propose the use of the Dynamic Laser Speckle (DLS) technique to measure the hygroscopic capacity of a microporous natural zeolite and their modified forms. This new approach based on the adsorption of water by solids allows determine their specific surface area (S). To test the DLS results, we compared the obtained S values to those calculated by different conventional isotherms using the N2 adsorption-desorption method.

  14. Effect of micro-topography and undrained shear strength on soil erosion

    NASA Astrophysics Data System (ADS)

    Todisco, Francesca; Vergni, Lorenzo; Vinci, Alessandra; Torri, Dino

    2017-04-01

    An experiment to evaluate the effect of the pre-event soil surface conditions on the dynamics of the interrill erosion process was performed at the Masse experimental station (Italy) in a replicated 1mx1m plot, located in a 16% slope in a silt-clay-loam soil equipped with a nozzle-type rainfall simulator. Two experiments was performed, each experiment started from a just ploughed bare surface and included 3 simulations (I, II and III in the first experiment and IV, V and VI in the second experiment) carried out in the range of few days. A 30 min pre-wetting phase ensures almost constant initial soil moisture (mean=31%, CV=5%) and bulk density (mean=1.3 g/cm3, CV=3%). Rainfall intensity was maintained constant (mean=67mm/h, CV=2.7%). The independent variables were the initial soil surface conditions that, progressively modified by the rainfall runoff process, were different for the three subsequent simulations. The soil surface initial and final micro-topography and undrained shear strength, T, were monitored through photogrammetric surveys (with I-Phone 6plus) and Torvane test (with pocket-torvane, obliged shear surface at 0.5 cm from soil surface, plate diameter 5 cm, 0.2186 full scale complete revolution 360°, test done on saturated soil surface, with water standing at the surface). Runoff, Q, runoff coefficient, Qr, soil loss, SL and sediment concentration, C, were measured every 5 min. The particle size distribution were also determined. During the simulations Q increases monotonically with typically concave trend. Almost similar consideration can be made for the other variables. A higher frequency of the roughness, RR, (i.e. vertical distance between the surface and a reference horizontal plane, obtained by removing the slope effect) lower than a fixed amount, was measured at the final than the initial step of each simulation and within the single experiment between successive simulations. Therefore, the roughness decreases along with the Q, SL and C increase. In general in the simulations equidistant from the plowing (I-IV, II-V, III-VI) the dynamic of Q, SL and C relative to the second experiment are slightly above that of the first experiment. Actually it is observed that although the frequency distributions of the initial RR of the first simulation of each experiment (I and IV) almost overlap, a higher frequency of the RR lower than a fixed amount was measured in the second experiment (the RR-V >RR-II and the RR-VI>RR-III). Higher T values were often measured at the final than the initial step of each simulation due to sealing and crusting processes associated with the surface smoothness. These and other results open interesting scenarios in the study of the dynamics of the erosion process with particular reference to the relationship between the characteristics of the soil surface and the climatic and hydrological forcing both at event and intra-event time scale. In addition, some results offer discussion points relative to the dynamics of the soil erodibility, showing that the concentration behavior cannot be fully explained by the runoff dynamics.

  15. The Measurement of Unsteady Surface Pressure Using a Remote Microphone Probe.

    PubMed

    Guan, Yaoyi; Berntsen, Carl R; Bilka, Michael J; Morris, Scott C

    2016-12-03

    Microphones are widely applied to measure pressure fluctuations at the walls of solid bodies immersed in turbulent flows. Turbulent motions with various characteristic length scales can result in pressure fluctuations over a wide frequency range. This property of turbulence requires sensing devices to have sufficient sensitivity over a wide range of frequencies. Furthermore, the small characteristic length scales of turbulent structures require small sensing areas and the ability to place the sensors in very close proximity to each other. The complex geometries of the solid bodies, often including large surface curvatures or discontinuities, require the probe to have the ability to be set up in very limited spaces. The development of a remote microphone probe, which is inexpensive, consistent, and repeatable, is described in the present communication. It allows for the measurement of pressure fluctuations with high spatial resolution and dynamic response over a wide range of frequencies. The probe is small enough to be placed within the interior of typical wind tunnel models. The remote microphone probe includes a small, rigid, and hollow tube that penetrates the model surface to form the sensing area. This tube is connected to a standard microphone, at some distance away from the surface, using a "T" junction. An experimental method is introduced to determine the dynamic response of the remote microphone probe. In addition, an analytical method for determining the dynamic response is described. The analytical method can be applied in the design stage to determine the dimensions and properties of the RMP components.

  16. A dynamic monitoring approach for the surface morphology evolution measurement of plasma facing components by means of speckle interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Hongbei; Cui, Xiaoqian; Feng, Chunlei; Li, Yuanbo; Zhao, Mengge; Luo, Guangnan; Ding, Hongbin

    2017-11-01

    Plasma Facing Components (PFCs) in a magnetically confined fusion plasma device will be exposed to high heat load and particle fluxes, and it would cause PFCs' surface morphology to change due to material erosion and redeposition from plasma wall interactions. The state of PFCs' surface condition will seriously affect the performance of long-pulse or steady state plasma discharge in a tokamak; it will even constitute an enormous threat to the operation and the safety of fusion plasma devices. The PFCs' surface morphology evolution measurement could provide important information about PFCs' real-time status or damage situation and it would help to a better understanding of the plasma wall interaction process and mechanism. Meanwhile through monitoring the distribution of dust deposition in a tokamak and providing an upper limit on the amount of loose dust, the PFCs' surface morphology measurement could indirectly contribute to keep fusion operational limits and fusion device safety. Aiming at in situ dynamic monitoring PFCs' surface morphology evolution, a laboratory experimental platform DUT-SIEP (Dalian University of Technology-speckle interferometry experimental platform) based on the speckle interferometry technique has been constructed at Dalian University of Technology (DUT) in China. With directional specific designing and focusing on the real detection condition of EAST (Experimental Advanced Superconducting Tokamak), the DUT-SIEP could realize a variable measurement range, widely increased from 0.1 μm to 300 μm, with high spatial resolution (<1 mm) and ultra-high time resolution (<2 s for EAST measuring conditions). Three main components of the DUT-SIEP are all integrated and synchronized by a time schedule control and data acquisition terminal and coupled with a three-dimensional phase unwrapping algorithm, the surface morphology information of target samples can be obtained and reconstructed in real-time. A local surface morphology of the real divertor tiles adopted from EAST has been measured, and the feasibility and reliability of this new experimental platform have been demonstrated.

  17. Trapping dynamics of xenon on Pt(111)

    NASA Astrophysics Data System (ADS)

    Arumainayagam, Christopher R.; Madix, Robert J.; Mcmaster, Mark C.; Suzawa, Valerie M.; Tully, John C.

    1990-02-01

    The dynamics of Xe trapping on Pt(111) was studied using supersonic atomic beam techniques. Initial trapping probabilities ( S0) were measured directly as a function of incident translational energy ( EinT) and angle of incidence (θ i) at a surface temperature ( Tins) 95 K. The initial trapping probability decreases smoothly with increasing ET cosθ i;, rather than ET cos 2θ i, suggesting participation of parallel momentum in the trapping process. Accordingly, the measured initial trapping probability falls off more slowly with increasing incident translational energy than predicted by one-dimensional theories. This finding is in near agreement with previous mean translational energy measurements for Xe desorbing near the Pt(111) surface normal, assuming detailed balance applies. Three-dimensional stochastic classical trajectory calculations presented herein also exhibit the importance of tangential momentum in trapping and satisfactorily reproduce the experimental initial trapping probabilities.

  18. Dynamical measurement of refractive index distribution using digital holographic interferometry based on total internal reflection.

    PubMed

    Zhang, Jiwei; Di, Jianglei; Li, Ying; Xi, Teli; Zhao, Jianlin

    2015-10-19

    We present a method for dynamically measuring the refractive index distribution in a large range based on the combination of digital holographic interferometry and total internal reflection. A series of holograms, carrying the index information of mixed liquids adhered on a total reflection prism surface, are recorded with CCD during the diffusion process. Phase shift differences of the reflected light are reconstructed exploiting the principle of double-exposure holographic interferometry. According to the relationship between the reflection phase shift difference and the liquid index, two dimensional index distributions can be directly figured out, assuming that the index of air near the prism surface is constant. The proposed method can also be applied to measure the index of solid media and monitor the index variation during some chemical reaction processes.

  19. Adaptive output feedback control of flexible-joint robots using neural networks: dynamic surface design approach.

    PubMed

    Yoo, Sung Jin; Park, Jin Bae; Choi, Yoon Ho

    2008-10-01

    In this paper, we propose a new robust output feedback control approach for flexible-joint electrically driven (FJED) robots via the observer dynamic surface design technique. The proposed method only requires position measurements of the FJED robots. To estimate the link and actuator velocity information of the FJED robots with model uncertainties, we develop an adaptive observer using self-recurrent wavelet neural networks (SRWNNs). The SRWNNs are used to approximate model uncertainties in both robot (link) dynamics and actuator dynamics, and all their weights are trained online. Based on the designed observer, the link position tracking controller using the estimated states is induced from the dynamic surface design procedure. Therefore, the proposed controller can be designed more simply than the observer backstepping controller. From the Lyapunov stability analysis, it is shown that all signals in a closed-loop adaptive system are uniformly ultimately bounded. Finally, the simulation results on a three-link FJED robot are presented to validate the good position tracking performance and robustness of the proposed control system against payload uncertainties and external disturbances.

  20. Decadal changes of surface elevation over permafrost area estimated using reflected GPS signals

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Larson, Kristine M.

    2018-02-01

    Conventional benchmark-based survey and Global Positioning System (GPS) have been used to measure surface elevation changes over permafrost areas, usually once or a few times a year. Here we use reflected GPS signals to measure temporal changes of ground surface elevation due to dynamics of the active layer and near-surface permafrost. Applying the GPS interferometric reflectometry technique to the multipath signal-to-noise ratio data collected by a continuously operating GPS receiver mounted deep in permafrost in Barrow, Alaska, we can retrieve the vertical distance between the antenna and reflecting surface. Using this unique kind of observables, we obtain daily changes of surface elevation during July and August from 2004 to 2015. Our results show distinct temporal variations at three timescales: regular thaw settlement within each summer, strong interannual variability that is characterized by a sub-decadal subsidence trend followed by a brief uplift trend, and a secular subsidence trend of 0.26 ± 0.02 cm year-1 during 2004 and 2015. This method provides a new way to fully utilize data from continuously operating GPS sites in cold regions for studying dynamics of the frozen ground consistently and sustainably over a long time.

  1. Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films

    DOE PAGES

    Yang, Ye; Yang, Mengjin; Moore, David T.; ...

    2017-01-23

    Carrier recombination at defects is detrimental to the performance of solar energy conversion systems, including solar cells and photoelectrochemical devices. Point defects are localized within the bulk crystal while extended defects occur at surfaces and grain boundaries. If not properly managed, surfaces can be a large source of carrier recombination. Separating surface carrier dynamics from bulk and/or grain-boundary recombination in thin films is challenging. Here, we employ transient reflection spectroscopy to measure the surface carrier dynamics in methylammonium lead iodide perovskite polycrystalline films. We find that surface recombination limits the total carrier lifetime in perovskite polycrystalline thin films, meaning thatmore » recombination inside grains and/or at grain boundaries is less important than top and bottom surface recombination. As a result, the surface recombination velocity in polycrystalline films is nearly an order of magnitude smaller than that in single crystals, possibly due to unintended surface passivation of the films during synthesis.« less

  2. Diffusion of GPI-anchored proteins is influenced by the activity of dynamic cortical actin

    PubMed Central

    Saha, Suvrajit; Lee, Il-Hyung; Polley, Anirban; Groves, Jay T.; Rao, Madan; Mayor, Satyajit

    2015-01-01

    Molecular diffusion at the surface of living cells is believed to be predominantly driven by thermal kicks. However, there is growing evidence that certain cell surface molecules are driven by the fluctuating dynamics of cortical cytoskeleton. Using fluorescence correlation spectroscopy, we measure the diffusion coefficient of a variety of cell surface molecules over a temperature range of 24–37°C. Exogenously incorporated fluorescent lipids with short acyl chains exhibit the expected increase of diffusion coefficient over this temperature range. In contrast, we find that GPI-anchored proteins exhibit temperature-independent diffusion over this range and revert to temperature-dependent diffusion on cell membrane blebs, in cells depleted of cholesterol, and upon acute perturbation of actin dynamics and myosin activity. A model transmembrane protein with a cytosolic actin-binding domain also exhibits the temperature-independent behavior, directly implicating the role of cortical actin. We show that diffusion of GPI-anchored proteins also becomes temperature dependent when the filamentous dynamic actin nucleator formin is inhibited. However, changes in cortical actin mesh size or perturbation of branched actin nucleator Arp2/3 do not affect this behavior. Thus cell surface diffusion of GPI-anchored proteins and transmembrane proteins that associate with actin is driven by active fluctuations of dynamic cortical actin filaments in addition to thermal fluctuations, consistent with expectations from an “active actin-membrane composite” cell surface. PMID:26378258

  3. Water at protein surfaces studied with femtosecond nonlinear spectroscopy

    NASA Astrophysics Data System (ADS)

    Bakker, Huib J.

    We report on an investigation of the structure and dynamics of water molecules near protein surfaces with femtosecond nonlinear spectroscopic techniques. We measured the reorientation dynamics of water molecules near the surface of several globular protein surfaces, using polarization-resolved femtosecond infrared spectroscopy. We found that water molecules near the protein surface have a much slower reorientation than water molecules in bulk liquid water. The number of slow water molecules scales scales with the size of the hydrophobic surface of the protein. When we denature the proteins by adding an increasing amount of urea to the protein solution, we observe that the water-exposed surface increases by 50% before the secondary structure of the proteins changes. This finding indicates that protein unfolding starts with the protein structure becoming less tight, thereby allowing water to enter. With surface vibrational sum frequency generation (VSFG) spectroscopy, we studied the structure of water at the surface of antifreeze protein III. The measured VSFG spectra showed the presence of ice-like water layers at the ice-binding site of the protein in aqueous solution, at temperatures well above the freezing point. This ordered ice-like hydration layers at the protein surface likely plays an important role in the specific recognition and binding of anti-freeze protein III to nascent ice crystallites, and thus in its anti-freeze mechanism. This research is supported by the ''Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO).

  4. Surface Tension and Viscosity Measurements in Microgravity: Some Results and Fluid Flow Observations during MSL-1

    NASA Technical Reports Server (NTRS)

    Hyer, Robert W.; Trapaga, G.; Flemings, M. C.

    1999-01-01

    The viscosity of a liquid metal was successfully measured for the first time by a containerless method, the oscillating drop technique. This method also provides a means to obtain a precise, non-contact measurement of the surface tension of the droplet. This technique involves exciting the surface of the molten sample and then measuring the resulting oscillations; the natural frequency of the oscillating sample is determined by its surface tension, and the damping of the oscillations by the viscosity. These measurements were performed in TEMPUS, a microgravity electromagnetic levitator (EML), on the Space Shuttle as a part of the First Microgravity Science Laboratory (MSL-1), which flew in April and July 1997 (STS-83 and STS-94). Some results of the surface tension and viscosity measurements are presented for Pd82Si18. Some observations of the fluid dynamic characteristics (dominant flow patterns, turbulent transition, cavitation, etc.) of levitated droplets are presented and discussed together with magnetohydrodynamic calculations, which were performed to justify these findings.

  5. The effect of surface waviness on friction between Neolite and quarry tiles.

    PubMed

    Chang, Wen-Ruey; Grönqvist, Raoul; Hirvonen, Mikko; Matz, Simon

    2004-06-22

    Friction is widely used as an indicator of surface slipperiness in preventing accidents in slips and falls. Surface texture affects friction, but it is not clear which surface characteristics are better correlated with friction. Highly correlated surface characteristics could be used as potential interventions to prevent slip and fall accidents. The dynamic friction between quarry tiles and a commonly used sole testing material, Neolite, using three different mixtures of glycerol and water as contaminants at the interface was correlated with the surface parameters of the tile surfaces. The surface texture was quantified with various surface roughness and surface waviness parameters using three different cut-off lengths to filter the measured profiles for obtaining the profiles of either surface roughness or surface waviness. The correlation coefficients between the surface parameters and the measured friction were affected by the glycerol contents and cut-off lengths. Surface waviness parameters could potentially be better indicators of friction than commonly used surface roughness parameters, especially when they were measured with commonly used cut-off lengths or when the viscosity of the liquid contaminant was high.

  6. Dynamic of cold-atom tips in anharmonic potentials

    PubMed Central

    Menold, Tobias; Federsel, Peter; Rogulj, Carola; Hölscher, Hendrik; Fortágh, József

    2016-01-01

    Background: Understanding the dynamics of ultracold quantum gases in an anharmonic potential is essential for applications in the new field of cold-atom scanning probe microscopy. Therein, cold atomic ensembles are used as sensitive probe tips to investigate nanostructured surfaces and surface-near potentials, which typically cause anharmonic tip motion. Results: Besides a theoretical description of this anharmonic tip motion, we introduce a novel method for detecting the cold-atom tip dynamics in situ and real time. In agreement with theory, the first measurements show that particle interactions and anharmonic motion have a significant impact on the tip dynamics. Conclusion: Our findings will be crucial for the realization of high-sensitivity force spectroscopy with cold-atom tips and could possibly allow for the development of advanced spectroscopic techniques such as Q-control. PMID:28144505

  7. Note: Spring constant calibration of nanosurface-engineered atomic force microscopy cantilevers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ergincan, O., E-mail: orcunergincan@gmail.com; Palasantzas, G.; Kooi, B. J.

    2014-02-15

    The determination of the dynamic spring constant (k{sub d}) of atomic force microscopy cantilevers is of crucial importance for converting cantilever deflection to accurate force data. Indeed, the non-destructive, fast, and accurate measurement method of the cantilever dynamic spring constant by Sader et al. [Rev. Sci. Instrum. 83, 103705 (2012)] is confirmed here for plane geometry but surface modified cantilevers. It is found that the measured spring constants (k{sub eff}, the dynamic one k{sub d}), and the calculated (k{sub d,1}) are in good agreement within less than 10% error.

  8. Inductive detection of the free surface of liquid metals

    NASA Astrophysics Data System (ADS)

    Zürner, Till; Ratajczak, Matthias; Wondrak, Thomas; Eckert, Sven

    2017-11-01

    A novel measurement system to determine the surface position and topology of liquid metals is presented. It is based on the induction of eddy currents by a time-harmonic magnetic field and the subsequent measurement of the resulting secondary magnetic field using gradiometric induction coils. The system is validated experimentally for static and dynamic surfaces of the low-melting liquid metal alloy gallium-indium-tin in a narrow vessel. It is shown that a precision below 1 mm and a time resolution of at least 20 Hz can be achieved.

  9. Altimeter measurements for the determination of the Earth's gravity field

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Schutz, B. E.; Shum, C. K.

    1987-01-01

    The ability of satellite-borne radar altimeter data to measure the global ocean surface with high precision and dense spatial coverage provides a unique tool for the mapping of the Earth's gravity field and its geoid. The altimeter crossover measurements, created by differencing direct altimeter measurements at the subsatellite points where the orbit ground tracks intersect, have the distinct advantage of eliminating geoid error and other nontemporal or long period oceanographic features. In the 1990's, the joint U.S./French TOPEX/POSEIDON mission and the European Space Agency's ERS-1 mission will carry radar altimeter instruments capable of global ocean mapping with high precision. This investigation aims at the development and application of dynamically consistent direct altimeter and altimeter crossover measurement models to the simultaneous mapping of the Earth's gravity field and its geoid, the ocean tides and the quasi-stationary component of the dynamic sea surface topography. Altimeter data collected by SEASAT, GEOS-3, and GEOSAT are used for the investigation.

  10. Densitometry By Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene H.

    1989-01-01

    "Static" and "dynamic" methods developed for measuring mass density of acoustically levitated solid particle or liquid drop. "Static" method, unknown density of sample found by comparison with another sample of known density. "Dynamic" method practiced with or without gravitational field. Advantages over conventional density-measuring techniques: sample does not have to make contact with container or other solid surface, size and shape of samples do not affect measurement significantly, sound field does not have to be know in detail, and sample can be smaller than microliter. Detailed knowledge of acoustic field not necessary.

  11. Silica nano-particle super-hydrophobic surfaces: the effects of surface morphology and trapped air pockets on hydrodynamic drainage forces.

    PubMed

    Chan, Derek Y C; Uddin, Md Hemayet; Cho, Kwun L; Liaw, Irving I; Lamb, Robert N; Stevens, Geoffrey W; Grieser, Franz; Dagastine, Raymond R

    2009-01-01

    We used atomic force microscopy to study dynamic forces between a rigid silica sphere (radius approximately 45 microm) and a silica nano-particle super-hydrophobic surface (SNP-SHS) in aqueous electrolyte, in the presence and absence of surfactant. Characterization of the SNP-SHS surface in air showed a surface roughness of up to two microns. When in contact with an aqueous phase, the SNP-SHS traps large, soft and stable air pockets in the surface interstices. The inherent roughness of the SNP-SHS together with the trapped air pockets are responsible for the superior hydrophobic properties of SNP-SHS such as high equilibrium contact angle (> 140 degrees) of water sessile drops on these surfaces and low hydrodynamic friction as observed in force measurements. We also observed that added surfactants adsorbed at the surface of air pockets magnified hydrodynamic interactions involving the SNP-SHS. The dynamic forces between the same silica sphere and a laterally smooth mica surface showed that the fitted Navier slip lengths using the Reynolds lubrication model were an order of magnitude larger than the length scale of the sphere surface roughness. The surface roughness and the lateral heterogeneity of the SNP-SHS hindered attempts to characterize the dynamic response using the Reynolds lubrication model even when augmented with a Navier slip boundary.

  12. Holographic otoscope for nano-displacement measurements of surfaces under dynamic excitation

    PubMed Central

    Flores-Moreno, J. M.; Furlong, Cosme; Rosowski, John J.; Harrington, Ellery; Cheng, Jeffrey T.; Scarpino, C.; Santoyo, F. Mendoza

    2011-01-01

    Summary We describe a novel holographic otoscope system for measuring nano-displacements of objects subjected to dynamic excitation. Such measurements are necessary to quantify the mechanical deformation of surfaces in mechanics, acoustics, electronics, biology and many other fields. In particular, we are interested in measuring the sound-induced motion of biological samples, such as an eardrum. Our holographic otoscope system consists of laser illumination delivery (IS), optical head (OH), and image processing computer (IP) systems. The IS delivers the object beam (OB) and the reference beam (RB) to the OH. The backscattered light coming from the object illuminated by the OB interferes with the RB at the camera sensor plane to be digitally recorded as a hologram. The hologram is processed by the IP using Fresnel numerical reconstruction algorithm, where the focal plane can be selected freely. Our holographic otoscope system is currently deployed in a clinic, and is packaged in a custom design. It is mounted in a mechatronic positioning system to increase its maneuverability degrees to be conveniently positioned in front of the object to be measured. We present representative results highlighting the versatility of our system to measure deformations of complex elastic surfaces in the wavelength scale including a copper foil membrane and postmortem tympanic membrane (TM). PMID:21898459

  13. Deducing multiple interfacial dynamics during polymeric foaming.

    PubMed

    Chandan, Mohammed Rehaan; Naskar, Nilanjon; Das, Anuja; Mukherjee, Rabibrata; Harikrishnan, Gopalakrishna Pillai

    2018-06-15

    Several interfacial phenomena are active during polymeric foaming, the dynamics of which significantly influence terminal stability, cell structure and in turn the thermo-mechanical properties of temporally evolved foam. Understanding these dynamics is important in achieving desired foam properties. Here, we introduce a method to simultaneously portray the time evolution of bubble growth, lamella thinning and Plateau border drainage, occurring during reactive polymeric foaming. In this method, we initially conduct bulk and surface shear rheology under polymerizing and non-foaming conditions. In a subsequent step, foaming experiments were conducted in a rheometer. The microscopic structural dimensions pertaining to the terminal values of the dynamics of each interfacial phenomena are then measured using a combination of scanning electron microscopy, optical microscopy and imaging ellipsometry, after the foaming is over. The measured surface and bulk rheological parameters are incorporated in time evolution equations that are derived from mass and momentum transport occurring when a model viscoelastic fluid is foamed by gas dispersion. Analytical and numerical solutions to these equations portray the dynamics. We demonstrate this method for a series of reactive polyurethane foams generated from different chemical sources. The effectiveness of our method is in simultaneously obtaining these dynamics that are difficult to directly monitor due to short active durations over multiple length scales.

  14. Spacebased Observation of Global Ocean Surface Wind Fields

    NASA Technical Reports Server (NTRS)

    Polito, P. S.; Liu, W. T.

    1997-01-01

    The ocean and the atmosphere are dynamically coupled by the transport of momentum which is driven by the wind shear at the sea surface. However, in situ wind measurements are relatively sparse over most of the world's ocean and are largely limited to the locations of shipping routes.

  15. Cumulative soil water evaporation as a function of depth and time

    USDA-ARS?s Scientific Manuscript database

    Soil water evaporation is an important component of the surface water balance and the surface energy balance. Accurate and dynamic measurements of soil water evaporation enhance the understanding of water and energy partitioning at the land-atmosphere interface. The objective of this study is to mea...

  16. Measuring the Nonuniform Evaporation Dynamics of Sprayed Sessile Microdroplets with Quantitative Phase Imaging.

    PubMed

    Edwards, Chris; Arbabi, Amir; Bhaduri, Basanta; Wang, Xiaozhen; Ganti, Raman; Yunker, Peter J; Yodh, Arjun G; Popescu, Gabriel; Goddard, Lynford L

    2015-10-13

    We demonstrate real-time quantitative phase imaging as a new optical approach for measuring the evaporation dynamics of sessile microdroplets. Quantitative phase images of various droplets were captured during evaporation. The images enabled us to generate time-resolved three-dimensional topographic profiles of droplet shape with nanometer accuracy and, without any assumptions about droplet geometry, to directly measure important physical parameters that characterize surface wetting processes. Specifically, the time-dependent variation of the droplet height, volume, contact radius, contact angle distribution along the droplet's perimeter, and mass flux density for two different surface preparations are reported. The studies clearly demonstrate three phases of evaporation reported previously: pinned, depinned, and drying modes; the studies also reveal instances of partial pinning. Finally, the apparatus is employed to investigate the cooperative evaporation of the sprayed droplets. We observe and explain the neighbor-induced reduction in evaporation rate, that is, as compared to predictions for isolated droplets. In the future, the new experimental methods should stimulate the exploration of colloidal particle dynamics on the gas-liquid-solid interface.

  17. Dynamic calibration and analysis of crack tip propagation in energetic materials using real-time radiography

    NASA Astrophysics Data System (ADS)

    Butt, Ali

    Crack propagation in a solid rocket motor environment is difficult to measure directly. This experimental and analytical study evaluated the viability of real-time radiography for detecting bore regression and propellant crack propagation speed. The scope included the quantitative interpretation of crack tip velocity from simulated radiographic images of a burning, center-perforated grain and actual real-time radiographs taken on a rapid-prototyped model that dynamically produced the surface movements modeled in the simulation. The simplified motor simulation portrayed a bore crack that propagated radially at a speed that was 10 times the burning rate of the bore. Comparing the experimental image interpretation with the calibrated surface inputs, measurement accuracies were quantified. The average measurements of the bore radius were within 3% of the calibrated values with a maximum error of 7%. The crack tip speed could be characterized with image processing algorithms, but not with the dynamic calibration data. The laboratory data revealed that noise in the transmitted X-Ray intensity makes sensing the crack tip propagation using changes in the centerline transmitted intensity level impractical using the algorithms employed.

  18. The dynamics of a surface plasma generated by an independent source in the field of laser emission

    NASA Astrophysics Data System (ADS)

    Kovalev, A. S.; Popov, A. M.; Seleznev, B. V.; Feoktistov, V. A.

    1986-09-01

    A study is made of the evolution of a plasma formation generated by a high-power short pulse of an Nd laser on a metal surface, with the relatively weak emission of a CO2 laser focused on the surface. The thresholds of a sustained breakdown plasma are measured as a function of the plasma-generating pulse energy. The dynamics of plasma front propagation along the target surface and in the direction opposite to the laser beam direction is investigated. It is shown that the use of an additional laser with an energy less than that of the CO2 laser by 2-3 orders of magnitude makes it possible to generate a surface plasma capable of absorbing and transferring to the target a significantly greater fraction of the CO2 laser energy.

  19. Detailed statistical contact angle analyses; "slow moving" drops on inclining silicon-oxide surfaces.

    PubMed

    Schmitt, M; Groß, K; Grub, J; Heib, F

    2015-06-01

    Contact angle determination by sessile drop technique is essential to characterise surface properties in science and in industry. Different specific angles can be observed on every solid which are correlated with the advancing or the receding of the triple line. Different procedures and definitions for the determination of specific angles exist which are often not comprehensible or reproducible. Therefore one of the most important things in this area is to build standard, reproducible and valid methods for determining advancing/receding contact angles. This contribution introduces novel techniques to analyse dynamic contact angle measurements (sessile drop) in detail which are applicable for axisymmetric and non-axisymmetric drops. Not only the recently presented fit solution by sigmoid function and the independent analysis of the different parameters (inclination, contact angle, velocity of the triple point) but also the dependent analysis will be firstly explained in detail. These approaches lead to contact angle data and different access on specific contact angles which are independent from "user-skills" and subjectivity of the operator. As example the motion behaviour of droplets on flat silicon-oxide surfaces after different surface treatments is dynamically measured by sessile drop technique when inclining the sample plate. The triple points, the inclination angles, the downhill (advancing motion) and the uphill angles (receding motion) obtained by high-precision drop shape analysis are independently and dependently statistically analysed. Due to the small covered distance for the dependent analysis (<0.4mm) and the dominance of counted events with small velocity the measurements are less influenced by motion dynamics and the procedure can be called "slow moving" analysis. The presented procedures as performed are especially sensitive to the range which reaches from the static to the "slow moving" dynamic contact angle determination. They are characterised by small deviations of the computed values. Additional to the detailed introduction of this novel analytical approaches plus fit solution special motion relations for the drop on inclined surfaces and detailed relations about the reactivity of the freshly cleaned silicon wafer surface resulting in acceleration behaviour (reactive de-wetting) are presented. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Correlation between Surface Tension and Water Activity in New Particle Formation

    NASA Astrophysics Data System (ADS)

    Daskalakis, E.; Salameh, A.

    2016-12-01

    The impact of aerosol properties on cloud dynamics and the radiative balance of the atmosphere relies on the parametrizations of cloud droplet formation. Such parametrization is based on equilibrium thermodynamics proposed by Köhler in 1936. There is considerable debate in the literature on the importance of factors like the surface tension depression or the water activity decrease for the correct parametrization. To gain fundamental insight into New Particle Formation (NPF), or Cloud Condensation Nuclei (CCN) activation one has to study microscopic properties of aqueous droplets, involving surface and bulk dynamics. The surface tension of droplets can be associated with the effects from Organic Matter (OM), whereas the static dielectric constant of water reflects the structure and dynamics of ions within solutions and can present a measure of water activity. In this study we employ Molecular Dynamics Simulations on aquatic droplets that contain surface active OM (acetaldehyde, methylglyoxal) and salts. We give insight into the dynamics of aquatic droplets with radials of 3.6nm at a level of detail that is not accessible experimentally (J. Phys. Chem. C 2016, 120:11508). We propose that as the surface tension of an aquatic droplet is decreased in the presence of surface-active OM, the water activity is affected as well. This is due to the fact that the water dipoles are oriented based on the salt morphology within the droplet. We suggest that the surface tension depression can be accompanied by the water activity change. This can be associated with the possible effects of surface-active species in terms of salt morphology transitions within an aerosol at the NPF and early particle growth time scales. Based on this study, surface-active OM seems important in controlling (a) the salt morphology transitions within a nucleus during NPF and particle growth and (b) a correlation between surface activity and water activity of ionic aquatic droplets. The latter correlation could be a fundamental property to consider when assessing NPF and the Köhler theory.

  1. Correlating structural dynamics and catalytic activity of AgAu nanoparticles with ultrafast spectroscopy and all-atom molecular dynamics simulations.

    PubMed

    Ferbonink, G F; Rodrigues, T S; Dos Santos, D P; Camargo, P H C; Albuquerque, R Q; Nome, R A

    2018-05-29

    In this study, we investigated hollow AgAu nanoparticles with the goal of improving our understanding of the composition-dependent catalytic activity of these nanoparticles. AgAu nanoparticles were synthesized via the galvanic replacement method with controlled size and nanoparticle compositions. We studied extinction spectra with UV-Vis spectroscopy and simulations based on Mie theory and the boundary element method, and ultrafast spectroscopy measurements to characterize decay constants and the overall energy transfer dynamics as a function of AgAu composition. Electron-phonon coupling times for each composition were obtained from pump-power dependent pump-probe transients. These spectroscopic studies showed how nanoscale surface segregation, hollow interiors and porosity affect the surface plasmon resonance wavelength and fundamental electron-phonon coupling times. Analysis of the spectroscopic data was used to correlate electron-phonon coupling times to AgAu composition, and thus to surface segregation and catalytic activity. We have performed all-atom molecular dynamics simulations of model hollow AgAu core-shell nanoparticles to characterize nanoparticle stability and equilibrium structures, besides providing atomic level views of nanoparticle surface segregation. Overall, the basic atomistic and electron-lattice dynamics of core-shell AgAu nanoparticles characterized here thus aid the mechanistic understanding and performance optimization of AgAu nanoparticle catalysts.

  2. New sensitive micro-measurements of dynamic surface tension and diffusion coefficients: Validated and tested for the adsorption of 1-Octanol at a microscopic air-water interface and its dissolution into water.

    PubMed

    Kinoshita, Koji; Parra, Elisa; Needham, David

    2017-02-15

    Currently available dynamic surface tension (DST) measurement methods, such as Wilhelmy plate, droplet- or bubble-based methods, still have various experimental limitations such as the large size of the interface, convection in the solution, or a certain "dead time" at initial measurement. These limitations create inconsistencies for the kinetic analysis of surfactant adsorption/desorption, especially significant for ionic surfactants. Here, the "micropipette interfacial area-expansion method" was introduced and validated as a new DST measurement having a high enough sensitivity to detect diffusion controlled molecular adsorption at the air-water interfaces. To validate the new technique, the diffusion coefficient of 1-Octanol in water was investigated with existing models: the Ward Tordai model for the long time adsorption regime (1-100s), and the Langmuir and Frumkin adsorption isotherm models for surface excess concentration. We found that the measured diffusion coefficient of 1-Octanol, 7.2±0.8×10 -6 cm 2 /s, showed excellent agreement with the result from an alternative method, "single microdroplet catching method", to measure the diffusion coefficient from diffusion-controlled microdroplet dissolution, 7.3±0.1×10 -6 cm 2 /s. These new techniques for determining adsorption and diffusion coefficients can apply for a range of surface active molecules, especially the less-characterized ionic surfactants, and biological compounds such as lipids, peptides, and proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Membrane dynamics of dividing cells imaged by lattice light-sheet microscopy

    PubMed Central

    Aguet, François; Upadhyayula, Srigokul; Gaudin, Raphaël; Chou, Yi-ying; Cocucci, Emanuele; He, Kangmin; Chen, Bi-Chang; Mosaliganti, Kishore; Pasham, Mithun; Skillern, Wesley; Legant, Wesley R.; Liu, Tsung-Li; Findlay, Greg; Marino, Eric; Danuser, Gaudenz; Megason, Sean; Betzig, Eric; Kirchhausen, Tom

    2016-01-01

    Membrane remodeling is an essential part of transferring components to and from the cell surface and membrane-bound organelles and for changes in cell shape, which are particularly critical during cell division. Earlier analyses, based on classical optical live-cell imaging and mostly restricted by technical necessity to the attached bottom surface, showed persistent formation of endocytic clathrin pits and vesicles during mitosis. Taking advantage of the resolution, speed, and noninvasive illumination of the newly developed lattice light-sheet fluorescence microscope, we reexamined their assembly dynamics over the entire cell surface and found that clathrin pits form at a lower rate during late mitosis. Full-cell imaging measurements of cell surface area and volume throughout the cell cycle of single cells in culture and in zebrafish embryos showed that the total surface increased rapidly during the transition from telophase to cytokinesis, whereas cell volume increased slightly in metaphase and was relatively constant during cytokinesis. These applications demonstrate the advantage of lattice light-sheet microscopy and enable a new standard for imaging membrane dynamics in single cells and multicellular assemblies. PMID:27535432

  4. Surface polarity of beta-HMX crystal and the related adhesive forces with Estane binder.

    PubMed

    Yang, Lu

    2008-12-02

    Here I present the results on the study of surface properties of beta-HMX crystal utilizing molecular dynamics simulations. The surface polarity of three principal crystal surfaces, (011), (010), and (110), is investigated by measuring the water contact angles. The calculated contact angles are in excellent agreement with the values measured by experiment and show that the surface polarity of three crystal surfaces are different. The free energies and forces of detaching an Estane chain (with and without surrounding nitroplasticizer molecules) from the three principal crystal surfaces are also calculated using the umbrella sampling method. I find that the force for Estane detachment increases with the increasing HMX surface polarity. In addition, my results show that the nitroplasticizer also plays an important role in the adhesion between Estane and HMX surfaces.

  5. Static and Dynamic Measurement of Dopamine Adsorption in Carbon Fiber Microelectrodes Using Electrochemical Impedance Spectroscopy.

    PubMed

    Rivera-Serrano, Nilka; Pagan, Miraida; Colón-Rodríguez, Joanisse; Fuster, Christian; Vélez, Román; Almodovar-Faria, Jose; Jiménez-Rivera, Carlos; Cunci, Lisandro

    2018-02-06

    In this study, electrochemical impedance spectroscopy was used for the first time to study the adsorption of dopamine in carbon fiber microelectrodes. In order to show a proof-of-concept, static and dynamic measurements were taken at potentials ranging from -0.4 to 0.8 V versus Ag|AgCl to demonstrate the versatility of this technique to study dopamine without the need of its oxidation. We used electrochemical impedance spectroscopy and single frequency electrochemical impedance to measure different concentrations of dopamine as low as 1 nM. Moreover, the capacitance of the microelectrodes surface was found to decrease due to dopamine adsorption, which is dependent on its concentration. The effect of dissolved oxygen and electrochemical oxidation of the surface in the detection of dopamine was also studied. Nonoxidized and oxidized carbon fiber microelectrodes were prepared and characterized by optical microscopy, scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Optimum working parameters of the electrodes, such as frequency and voltage, were obtained for better measurement. Electrochemical impedance of dopamine was determined at different concentration, voltages, and frequencies. Finally, dynamic experiments were conducted using a flow cell and single frequency impedance in order to study continuous and real-time measurements of dopamine.

  6. Normal contour error measurement on-machine and compensation method for polishing complex surface by MRF

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Chen, Jihong; Wang, Baorui; Zheng, Yongcheng

    2016-10-01

    The Magnetorheological finishing (MRF) process, based on the dwell time method with the constant normal spacing for flexible polishing, would bring out the normal contour error in the fine polishing complex surface such as aspheric surface. The normal contour error would change the ribbon's shape and removal characteristics of consistency for MRF. Based on continuously scanning the normal spacing between the workpiece and the finder by the laser range finder, the novel method was put forward to measure the normal contour errors while polishing complex surface on the machining track. The normal contour errors was measured dynamically, by which the workpiece's clamping precision, multi-axis machining NC program and the dynamic performance of the MRF machine were achieved for the verification and security check of the MRF process. The unit for measuring the normal contour errors of complex surface on-machine was designed. Based on the measurement unit's results as feedback to adjust the parameters of the feed forward control and the multi-axis machining, the optimized servo control method was presented to compensate the normal contour errors. The experiment for polishing 180mm × 180mm aspherical workpiece of fused silica by MRF was set up to validate the method. The results show that the normal contour error was controlled in less than 10um. And the PV value of the polished surface accuracy was improved from 0.95λ to 0.09λ under the conditions of the same process parameters. The technology in the paper has been being applied in the PKC600-Q1 MRF machine developed by the China Academe of Engineering Physics for engineering application since 2014. It is being used in the national huge optical engineering for processing the ultra-precision optical parts.

  7. Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyatkin, Boris; Osti, Naresh C.; Zhang, Yu

    In this paper, we investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as model electrode materials. Our goal was to obtain a fundamental understanding of room-temperature ionic liquid ion orientation, mobility, and electrosorption behavior. Neat 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in CDCs was studied using an integrated experimental and modeling approach, consisting of quasielastic neutron scattering, small-angle neutron scattering, X-ray pair distribution function analysis, and electrochemical measurements, which were combined with molecular dynamics simulations. Our analysismore » shows that surface oxygen groups increase the diffusion of confined electrolytes. Consequently, the ions become more than twice as mobile in oxygen-rich pores. Although greater self-diffusion of ions translates into higher electrochemical mobilities in oxidized pores, bulk-like behavior of ions dominates in the larger mesopores and increases the overall capacitance in defunctionalized pores. Experimental results highlight strong confinement and surface effects of carbon electrodes on electrolyte behavior, and molecular dynamics simulations yield insight into diffusion and capacitance differences in specific pore regions. Finally, we demonstrate the significance of surface defects on electrosorption dynamics of complex electrolytes in hierarchical pore architectures of supercapacitor electrodes.« less

  8. Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces

    DOE PAGES

    Dyatkin, Boris; Osti, Naresh C.; Zhang, Yu; ...

    2017-12-05

    In this paper, we investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as model electrode materials. Our goal was to obtain a fundamental understanding of room-temperature ionic liquid ion orientation, mobility, and electrosorption behavior. Neat 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in CDCs was studied using an integrated experimental and modeling approach, consisting of quasielastic neutron scattering, small-angle neutron scattering, X-ray pair distribution function analysis, and electrochemical measurements, which were combined with molecular dynamics simulations. Our analysismore » shows that surface oxygen groups increase the diffusion of confined electrolytes. Consequently, the ions become more than twice as mobile in oxygen-rich pores. Although greater self-diffusion of ions translates into higher electrochemical mobilities in oxidized pores, bulk-like behavior of ions dominates in the larger mesopores and increases the overall capacitance in defunctionalized pores. Experimental results highlight strong confinement and surface effects of carbon electrodes on electrolyte behavior, and molecular dynamics simulations yield insight into diffusion and capacitance differences in specific pore regions. Finally, we demonstrate the significance of surface defects on electrosorption dynamics of complex electrolytes in hierarchical pore architectures of supercapacitor electrodes.« less

  9. Effect of Surface Oxidation on Interfacial Water Structure at a Pyrite (100) Surface as Studied by Molecular Dynamics Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Jiaqi; Miller, Jan D.; Dang, Liem X.

    2015-06-01

    In the first part of this paper, a Scanning Electron Microscopy and contact angle study of a pyrite surface (100) is reported describing the relationship between surface oxidation and the hydrophilic surface state. In addition to these experimental results, the following simulated surface states were examined using Molecular Dynamics Simulation (MDS): fresh unoxidized (100) surface; polysulfide at the (100) surface; elemental sulfur at the (100) surface. Crystal structures for the polysulfide and elemental sulfur at the (100) surface were simulated using Density Functional Theory (DFT) quantum chemical calculations. The well known oxidation mechanism which involves formation of a metal deficientmore » layer was also described with DFT. Our MDS results of the behavior of interfacial water at the fresh and oxidized pyrite (100) surfaces without/with the presence of ferric hydroxide include simulated contact angles, number density distribution for water, water dipole orientation, water residence time, and hydrogen-bonding considerations. The significance of the formation of ferric hydroxide islands in accounting for the corresponding hydrophilic surface state is revealed not only from experimental contact angle measurements but also from simulated contact angle measurements using MDS. The hydrophilic surface state developed at oxidized pyrite surfaces has been described by MDS, on which basis the surface state is explained based on interfacial water structure. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the DOE funded work performed by Liem X. Dang. Battelle operates the Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES.« less

  10. Wetting Hysteresis at the Molecular Scale

    NASA Technical Reports Server (NTRS)

    Jin, Wei; Koplik, Joel; Banavar, Jayanth R.

    1996-01-01

    The motion of a fluid-fluid-solid contact line on a rough surface is well known to display hysteresis in the contact angle vs. velocity relationship. In order to understand the phenomenon at a fundamental microscopic level, we have conducted molecular dynamics computer simulations of a Wilhelmy plate experiment in which a solid surface is dipped into a liquid bath, and the force-velocity characteristics are measured. We directly observe a systematic variation of force and contact angle with velocity, which is single-valued for the case of an atomically smooth solid surface. In the microscopically rough case, however, we find (as intuitively expected) an open hysteresis loop. Further characterization of the interface dynamics is in progress.

  11. Laser-induced surface deformation microscope for the study of the dynamic viscoelasticity of plasma membrane in a living cell.

    PubMed

    Morisaku, Toshinori; Yui, Hiroharu

    2018-05-15

    A laser-induced surface deformation (LISD) microscope is developed and applied to measurement of the dynamic relaxation responses of the plasma membrane in a living cell. A laser beam is tightly focused on an optional area of cell surface and the focused light induces microscopic deformation on the surface via radiation pressure. The LISD microscope not only allows non-contact and destruction-free measurement but provides power spectra of the surface responses depending on the frequency of the intensity of the laser beam. An optical system for the LISD is equipped via a microscope, allowing us to measure the relaxation responses in sub-cellular-sized regions of the plasma membrane. In addition, the forced oscillation caused by the radiation pressure for surface deformation extends the upper limit of the frequency range in the obtained power spectra to 106 Hz, which enables us to measure relaxation responses in local regions within the plasma membrane. From differences in power-law exponents at higher frequencies, it is realized that a cancerous cell obeys a weaker single power-law than a normal fibroblast cell. Furthermore, the power spectrum of a keratinocyte cell obeys a power-law with two exponents, indicating that alternative mechanical models to a conventional soft glassy rheology model (where single power-laws explain cells' responses below about 103 Hz) are needed for the understanding over a wider frequency range. The LISD microscope would contribute to investigation of microscopic cell rheology, which is important for clarifying the mechanisms of cell migration and tissue construction.

  12. 4D cone beam CT phase sorting using high frequency optical surface measurement during image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Price, G. J.; Marchant, T. E.; Parkhurst, J. M.; Sharrock, P. J.; Whitfield, G. A.; Moore, C. J.

    2011-03-01

    In image guided radiotherapy (IGRT) two of the most promising recent developments are four dimensional cone beam CT (4D CBCT) and dynamic optical metrology of patient surfaces. 4D CBCT is now becoming commercially available and finds use in treatment planning and verification, and whilst optical monitoring is a young technology, its ability to measure during treatment delivery without dose consequences has led to its uptake in many institutes. In this paper, we demonstrate the use of dynamic patient surfaces, simultaneously captured during CBCT acquisition using an optical sensor, to phase sort projection images for 4D CBCT volume reconstruction. The dual modality approach we describe means that in addition to 4D volumetric data, the system provides correlated wide field measurements of the patient's skin surface with high spatial and temporal resolution. As well as the value of such complementary data in verification and motion analysis studies, it introduces flexibility into the acquisition of the signal required for phase sorting. The specific technique used may be varied according to individual patient circumstances and the imaging target. We give details of three different methods of obtaining a suitable signal from the optical surfaces: simply following the motion of triangulation spots used to calibrate the surfaces' absolute height; monitoring the surface height in a single, arbitrarily selected, camera pixel; and tracking, in three dimensions, the movement of a surface feature. In addition to describing the system and methodology, we present initial results from a case study oesophageal cancer patient.

  13. Diurnal Cycles of High Resolution Land Surface Temperatures (LSTs) Determined from UAV Platforms Across a Range of Surface Types

    NASA Astrophysics Data System (ADS)

    McCabe, M.; Rosas Aguilar, J.; Parkes, S. D.; Aragon, B.

    2017-12-01

    Observation of land surface temperature (LST) has many practical uses, from studying boundary layer dynamics and land-atmosphere coupling, to investigating surface properties such as soil moisture status, heat stress and surface heat fluxes. Typically, LST is observed via satellite based sensors such as LandSat or via point measurements using IR radiometers. These measurements provide either good spatial coverage and resolution or good temporal coverage. However, neither are able to provide the needed spatial and temporal resolution for many of the research applications described above. Technological developments in the use of Unmanned Aerial Vehicles (UAVs), together with small thermal frame cameras, has enabled a capacity to overcome this spatiotemporal constraint. Utilising UAV platforms to collect LST measurements across diurnal cycles provides an opportunity to study how meteorological and surface properties vary in both space and time. Here we describe the collection of LST data from a multi-rotor UAV across a study domain that is observed multiple times throughout the day. Flights over crops of Rhodes grass and alfalfa, along with a bare desert surface, were repeated with between 8 and 11 surveys covering the period from early morning to sunset. Analysis of the collected thermal imagery shows that the constructed LST maps illustrate a strong diurnal cycle consistent with expected trends, but with considerable spatial and temporal variability observed within and between the different domains. These results offer new insights into the dynamics of land surface behavior in both dry and wet soil conditions and at spatiotemporal scales that are unable to be replicated using traditional satellite platforms.

  14. Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer.

    PubMed

    Wilcox, Eric M; Thomas, Rick M; Praveen, Puppala S; Pistone, Kristina; Bender, Frida A-M; Ramanathan, Veerabhadran

    2016-10-18

    The introduction of cloud condensation nuclei and radiative heating by sunlight-absorbing aerosols can modify the thickness and coverage of low clouds, yielding significant radiative forcing of climate. The magnitude and sign of changes in cloud coverage and depth in response to changing aerosols are impacted by turbulent dynamics of the cloudy atmosphere, but integrated measurements of aerosol solar absorption and turbulent fluxes have not been reported thus far. Here we report such integrated measurements made from unmanned aerial vehicles (UAVs) during the CARDEX (Cloud Aerosol Radiative Forcing and Dynamics Experiment) investigation conducted over the northern Indian Ocean. The UAV and surface data reveal a reduction in turbulent kinetic energy in the surface mixed layer at the base of the atmosphere concurrent with an increase in absorbing black carbon aerosols. Polluted conditions coincide with a warmer and shallower surface mixed layer because of aerosol radiative heating and reduced turbulence. The polluted surface mixed layer was also observed to be more humid with higher relative humidity. Greater humidity enhances cloud development, as evidenced by polluted clouds that penetrate higher above the top of the surface mixed layer. Reduced entrainment of dry air into the surface layer from above the inversion capping the surface mixed layer, due to weaker turbulence, may contribute to higher relative humidity in the surface layer during polluted conditions. Measurements of turbulence are important for studies of aerosol effects on clouds. Moreover, reduced turbulence can exacerbate both the human health impacts of high concentrations of fine particles and conditions favorable for low-visibility fog events.

  15. Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer

    PubMed Central

    Wilcox, Eric M.; Thomas, Rick M.; Praveen, Puppala S.; Pistone, Kristina; Bender, Frida A.-M.; Ramanathan, Veerabhadran

    2016-01-01

    The introduction of cloud condensation nuclei and radiative heating by sunlight-absorbing aerosols can modify the thickness and coverage of low clouds, yielding significant radiative forcing of climate. The magnitude and sign of changes in cloud coverage and depth in response to changing aerosols are impacted by turbulent dynamics of the cloudy atmosphere, but integrated measurements of aerosol solar absorption and turbulent fluxes have not been reported thus far. Here we report such integrated measurements made from unmanned aerial vehicles (UAVs) during the CARDEX (Cloud Aerosol Radiative Forcing and Dynamics Experiment) investigation conducted over the northern Indian Ocean. The UAV and surface data reveal a reduction in turbulent kinetic energy in the surface mixed layer at the base of the atmosphere concurrent with an increase in absorbing black carbon aerosols. Polluted conditions coincide with a warmer and shallower surface mixed layer because of aerosol radiative heating and reduced turbulence. The polluted surface mixed layer was also observed to be more humid with higher relative humidity. Greater humidity enhances cloud development, as evidenced by polluted clouds that penetrate higher above the top of the surface mixed layer. Reduced entrainment of dry air into the surface layer from above the inversion capping the surface mixed layer, due to weaker turbulence, may contribute to higher relative humidity in the surface layer during polluted conditions. Measurements of turbulence are important for studies of aerosol effects on clouds. Moreover, reduced turbulence can exacerbate both the human health impacts of high concentrations of fine particles and conditions favorable for low-visibility fog events. PMID:27702889

  16. PREFACE: A Short History of the Surphon Workshop Series

    NASA Astrophysics Data System (ADS)

    Toennies, J. Peter

    2004-07-01

    It all began in 1979 when Bruce Doak decided to leave MIT after a year of graduate school to come to Göttingen to do something new. Within a year he succeeded in putting together a novel helium atom surface scattering apparatus, with which the first surface phonon dispersion curves were measured on the LiF surface out to the zone boundary [1]. To help us understand these results we invited Giorgio Benedek to Göttingen in June 1980. Giorgio then was a regular guest in the lattice dynamics theory group of Heinz Bilz, a director at the Max Planck Institut für Festköroperforschung in Stuttgart. Heinz Bilz at that time was developing models for phonons in metals in which the electron degrees of freedom were modeled by assigning multipole deformabilities to the ion cores [2]. This explains his excitement, when in 1983 he heard through Giorgio Benedek that another PhD student, Ulrich Harten [3], had succeeded in another apparatus (HUGO I) in our Institut to measure the surface phonon dispersion curves on Ag(111) [4]. Both Benedek and Bilz were especially fascinated by the discovery of a second dispersion curve at frequencies above the ubiquitous Rayligh mode. This prompted Bilz to organize on short notice an informal gathering in his Institut on `Oberflächenstatistik and dynamik'. My opening lecture on the new experiments was followed by six half hour theoretical lectures including talks by Fritz de Wette and by Giorgio Benedek, the pioneers in realistic calculations of surface dispersion curves on alkali halide surfaces. This was the birthday of the Surphon Series. The official conference names, organizers, venues, dates and numbers of participants of all the Surphon meetings held since are listed below: Statics and Dynamics of Surfaces, H Bilz (Max-Planck-Insitut für Festkörperforschung, Stuttgart, 27 September 1983) 7 speakers Statics and Dynamics of Surfaces, J P Toennies (Max-Planck-Insitut für Strömungsforschung, Göttingen, 15 June 1984) 11 speakers, 31 participants Statics and Dynamics of Surfaces, H Bilz and W Kress (Max-Planck-Insitut für Festkörperforschung, Stuttgart, 27--28 June 1985) 12 speakers Workshop on Surface Phonons , J P Toennies and W Kress (Ringberg Schloss, Rottach-Egern, 22--25 June 1987) 24 speakers, 38 participants Workshop on Surface Phonons, J P Toennies and W Kress (Ringberg Schloss, Rottach-Egern, 24--28 June 1990) 25 speakers, 38 participants Workshop on Surface Phonons, J P Toennies and W Kress (Ringberg Schloss, Rottach-Egern, 24--28 May 1992) 26 speakers, 38 participants Workshop on Dynamical Phenomena at Crystal Surfaces, D L Mills ( Countryside Inn, Costa Mesa, CA, USA, 27 June--1 July 1994) 33 speakers, 45 participants Workshop on Surface Dynamics Adsorbate Vibrations and Diffusion, J P Toennies and W Kress (Ringberg Schloss, Rottach-Egern, 18--21 June 1997) 30 speakers, 40 participants Workshop on Surface Dynamics, V Celli, A Kara, T Raman and J Skofronik (University of Virginia, Charlottesville, USA, 2--6 June 1999) 24 speakers, 35 participants Workshop on Surface Dynamics Phonons, Adsorbate Vibrations and Diffusion, D Farias and S Miret-Artes (Eroforum Hotel, l Escorial, Spain, 13--17 June 2001) 20 speakers, 36 participants Workshop on Surface Dynamics, Phonons, Adsorbate Vibrations and Diffusion, M Bertino (Meramec Park, Sullivan, MO, USA, 2--5 October 2003) 25 speakers, 33 participants Speaking for the late Heinz Bilz and others attending the first meeting a little over 20 years ago it is indeed gratifying to witness the strong continued interest in surface dynamics and the close personal contacts among the congenial group of second generation surphon enthusiasts. We wish them lots of satisfying scientific success and many more exciting surphon meetings. J Peter Toennies References [1] Brusdeylins G, Doak R B and Toennies J P 1980 Rev. Phys. Lett. 44 1417 Brusdeylins G, Doak R B and Toennies J P 1981 Rev. Phys. Lett. 46 437 [2] See for example: Bilz H, Güntherodt G, Kleppman W and Kress W 1979 Phys. Rev. Lett. 43 1998 [3] Ulrich Harten was another enterprising student who forsook a safely initiated PhD project at another German university to join us in this new venture [4] Doak R B, Harten U and Toennies J P Phys. Rev. Lett. 51 578

  17. Prediction of Viking lander camera image quality

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Burcher, E. E.; Jobson, D. J.; Wall, S. D.

    1976-01-01

    Formulations are presented that permit prediction of image quality as a function of camera performance, surface radiance properties, and lighting and viewing geometry. Predictions made for a wide range of surface radiance properties reveal that image quality depends strongly on proper camera dynamic range command and on favorable lighting and viewing geometry. Proper camera dynamic range commands depend mostly on the surface albedo that will be encountered. Favorable lighting and viewing geometries depend mostly on lander orientation with respect to the diurnal sun path over the landing site, and tend to be independent of surface albedo and illumination scattering function. Side lighting with low sun elevation angles (10 to 30 deg) is generally favorable for imaging spatial details and slopes, whereas high sun elevation angles are favorable for measuring spectral reflectances.

  18. Medial surface dynamics of the vocal folds in an in vivo canine model

    NASA Astrophysics Data System (ADS)

    Doellinger, Michael; Berke, Gerald S.; Chhetri, Dinesh K.; Berry, David A.

    2004-05-01

    Quantitative measurement of the medial surface dynamics of the vocal folds is important for understanding how sound is generated in the larynx. However, such data are hard to gather because of the inaccessibility of the vocal folds. Recent studies have applied hemi-larynx methodology to excised human larynges, to visualize these dynamics. The present study extends this methodology to obtain similar quantitative measurements using an in vivo canine hemi-larynx setup, with varying levels of stimulation to the recurrent laryngeal nerve. Use of an in vivo model allows us to examine effects of intrinsic muscle contraction on the medial surface of the vocal folds, to provide greater insight into mechanisms of vocal control. Data were collected using digital high-speed imaging with a sampling frequency of up to 4000 Hz, and a spatial resolution of up to 1024×1024 pixels. Three-dimensional motion will be extracted, computed, visualized, and contrasted as a function of the level of stimulation to the recurrent laryngeal nerve. Results will also be compared to patterns of vibration in excised larynges. Finally, commonly applied quantitative analyses will be performed to investigate the underlying modes of vibration. [Work supported by NIH/NIDCD.

  19. Tribological Behavior and the Mild–Severe Wear Transition of Mg97Zn1Y2 Alloy with a LPSO Structure Phase

    PubMed Central

    Sun, Wei; Xuan, Xihua; Li, Liang; An, Jian

    2018-01-01

    Dry friction and wear tests were performed on as-cast Mg97Zn1Y2 alloy using a pin-on-disc configuration. Coefficients of friction and wear rates were measured as a function of applied load at sliding speeds of 0.2, 0.8 and 3.0 m/s. The wear mechanisms were identified in the mild and severe wear regimes by means of morphological observation and composition analysis of worn surfaces using scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDS). Analyses of microstructure and hardness changes in subsurfaces verified the microstructure transformation from the deformed to the dynamically recrystallized, and properties changed from the strain hardening to dynamic crystallization (DRX) softening before and after the mild–severe wear transition. The mild–severe wear transition can be determined by a proposed contact surface DRX temperature criterion, from which the critical DRX temperatures at different sliding speeds are calculated using DRX dynamics; hence transition loads can also be calculated using a transition load model. The calculated transition loads are in good agreement with the measured ones, demonstrating the validity and applicability of the contact surface DRX temperature criterion. PMID:29584692

  20. Decarboxylation of furfural on Pd(111): Ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Xue, Wenhua; Dang, Hongli; Shields, Darwin; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu

    2013-03-01

    Furfural conversion over metal catalysts plays an important role in the studies of biomass-derived feedstocks. We report ab initio molecular dynamics simulations for the decarboxylation process of furfural on the palladium surface at finite temperatures. We observed and analyzed the atomic-scale dynamics of furfural on the Pd(111) surface and the fluctuations of the bondlengths between the atoms in furfural. We found that the dominant bonding structure is the parallel structure in which the furfural plane, while slightly distorted, is parallel to the Pd surface. Analysis of the bondlength fluctuations indicates that the C-H bond is the aldehyde group of a furfural molecule is likely to be broken first, while the C =O bond has a tendency to be isolated as CO. Our results show that the reaction of decarbonylation dominates, consistent with the experimental measurements. Supported by DOE (DE-SC0004600). Simulations and calculations were performed on XSEDE's and NERSC's supercomputers.

  1. Quantum transition state dynamics of the cyclooctatetraene unimolecular reaction on ab initio potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Tokizaki, Chihiro; Yoshida, Takahiko; Takayanagi, Toshiyuki

    2016-05-01

    The cyclooctatetraene (COT) anion has a stable D4h structure that is similar to the transition state configurations of the neutral C-C bond-alternation (D4h ↔ D8h ↔ D4h) and ring-inversion (D2d ↔ D4h ↔ D2d) unimolecular reactions. The previously measured photodetachment spectrum of COT- revealed the reaction dynamics in the vicinity of the two transition states on the neutral potential energy surface. In this work, the photodetachment spectrum is calculated quantum mechanically on ab initio-level potential energy surfaces within a three degree-of-freedom reduced-dimensionality model. Very good agreement has been obtained between theory and experiment, providing reliable interpretations for the experimental spectrum. A detailed picture of the reactive molecular dynamics of the COT unimolecular reaction in the transition state region is also discussed.

  2. Broad-Band Pump-Probe Spectroscopy Quantifies Ultrafast Solvation Dynamics of Proteins and Molecules.

    PubMed

    Jumper, Chanelle C; Arpin, Paul C; Turner, Daniel B; McClure, Scott D; Rafiq, Shahnawaz; Dean, Jacob C; Cina, Jeffrey A; Kovac, Philip A; Mirkovic, Tihana; Scholes, Gregory D

    2016-11-17

    In this work, we demonstrate the use of broad-band pump-probe spectroscopy to measure femtosecond solvation dynamics. We report studies of a rhodamine dye in methanol and cryptophyte algae light-harvesting proteins in aqueous suspension. Broad-band impulsive excitation generates a vibrational wavepacket that oscillates on the excited-state potential energy surface, destructively interfering with itself at the minimum of the surface. This destructive interference gives rise to a node at a certain probe wavelength that varies with time. This reveals the Gibbs free-energy changes of the excited-state potential energy surface, which equates to the solvation time correlation function. This method captures the inertial solvent response of water (∼40 fs) and the bimodal inertial response of methanol (∼40 and ∼150 fs) and reveals how protein-buried chromophores are sensitive to the solvent dynamics inside and outside of the protein environment.

  3. In-process, non-destructive, dynamic testing of high-speed polymer composite rotors

    NASA Astrophysics Data System (ADS)

    Kuschmierz, Robert; Filippatos, Angelos; Günther, Philipp; Langkamp, Albert; Hufenbach, Werner; Czarske, Jürgen; Fischer, Andreas

    2015-03-01

    Polymer composite rotors are lightweight and offer great perspectives in high-speed applications such as turbo machinery. Currently, novel rotor structures and materials are investigated for the purpose of increasing machine efficiency and lifetime, as well as allowing for higher dynamic loads. However, due to the complexity of the composite materials an in-process measurement system is required. This allows for monitoring the evolution of damages under dynamic loads, for testing and predicting the structural integrity of composite rotors in process. In rotor design, it can be used for calibrating and improving models, simulating the dynamic behaviour of polymer composite rotors. The measurement system is to work non-invasive, offer micron uncertainty, as well as a high measurement rate of several tens of kHz. Furthermore, it must be applicable at high surface speeds and under technical vacuum. In order to fulfil these demands a novel laser distance measurement system was developed. It provides the angle resolved measurement of the biaxial deformation of a fibre-reinforced polymer composite rotor with micron uncertainty at surface speeds of more than 300 m/s. Furthermore, a simulation procedure combining a finite element model and a damage mechanics model is applied. A comparison of the measured data and the numerically calculated data is performed to validate the simulation towards rotor expansion. This validating procedure can be used for a model calibration in the future. The simulation procedure could be used to investigate different damage-test cases of the rotor, in order to define its structural behaviour without further experiments.

  4. Atmospheric stability analysis over statically and dynamically rough surfaces

    NASA Astrophysics Data System (ADS)

    Maric, Emina; Metzger, Meredith; Singha, Arindam; Sadr, Reza

    2011-11-01

    The ratio of buoyancy flux to turbulent kinetic energy production in the atmospheric surface layer is investigated experimentally for air flow over two types of surfaces characterized by static and dynamic roughness. In this study, ``static'' refers to the time-invariant nature of naturally-occurring roughness over a mud/salt playa; while, ``dynamic'' refers to the behavior of water waves along an air-water interface. In both cases, time-resolved measurements of the momentum and heat fluxes were acquired from synchronized 3D sonic anemometers mounted on a vertical tower. Field campaigns were conducted at two sites, representing the ``statically'' and ``dynamically'' rough surfaces, respectively: (1) the SLTEST facility in Utah's western desert, and (2) the new Doha airport in Qatar under construction along the coast of the Persian Gulf. Note, at site 2, anemometers were located directly above the water by extension from a tower secured to the end of a 1 km-long pier. Comparisons of the Monin-Obukhov length, flux Richardson number, and gradient Richardson number are presented, and discussed in the context of the observed evolution of the turbulent spectra in response to diurnal variations of atmospheric stability. Supported by the Qatar National Research Fund.

  5. Water Touch-and-Bounce from a Soft Viscoelastic Substrate: Wetting, Dewetting, and Rebound on Bitumen.

    PubMed

    Lee, Jae Bong; Dos Santos, Salomé; Antonini, Carlo

    2016-08-16

    Understanding the interaction between liquids and deformable solid surfaces is a fascinating fundamental problem, in which interaction and coupling of capillary and viscoelastic effects, due to solid substrate deformation, give rise to complex wetting mechanisms. Here we investigated as a model case the behavior of water drops on two smooth bitumen substrates with different rheological properties, defined as hard and soft (with complex shear moduli in the order of 10(7) and 10(5) Pa, respectively, at 1 Hz), focusing both on wetting and on dewetting behavior. By means of classical quasi-static contact angle measurements and drop impact tests, we show that the water drop behavior can significantly change from the quasi-static to the dynamic regime on soft viscoelastic surfaces, with the transition being defined by the substrate rheological properties. As a result, we also show that on the hard substrate, where the elastic response is dominant under all investigated conditions, classical quasi-static contact angle measurements provide consistent results that can be used to predict the drop dynamic wetting behavior, such as drop deposition or rebound after impact, as typically observed for nondeformable substrates. Differently, on soft surfaces, the formation of wetting ridges did not allow to define uniquely the substrate intrinsic advancing and receding contact angles. In addition, despite showing a high adhesion to the soft surface in quasi-static measurements, the drop was surprisingly able to rebound and escape from the surface after impact, as it is typically observed for hydrophobic surfaces. These results highlight that measurements of wetting properties for viscoelastic substrates need to be critically used and that wetting behavior of a liquid on viscoelastic surfaces is a function of the characteristic time scales.

  6. Diode‐based transmission detector for IMRT delivery monitoring: a validation study

    PubMed Central

    Li, Taoran; Wu, Q. Jackie; Matzen, Thomas; Yin, Fang‐Fang

    2016-01-01

    The purpose of this work was to evaluate the potential of a new transmission detector for real‐time quality assurance of dynamic‐MLC‐based radiotherapy. The accuracy of detecting dose variation and static/dynamic MLC position deviations was measured, as well as the impact of the device on the radiation field (surface dose, transmission). Measured dose variations agreed with the known variations within 0.3%. The measurement of static and dynamic MLC position deviations matched the known deviations with high accuracy (0.7–1.2 mm). The absorption of the device was minimal (∼ 1%). The increased surface dose was small (1%–9%) but, when added to existing collimator scatter effects could become significant at large field sizes (≥30×30 cm2). Overall the accuracy and speed of the device show good potential for real‐time quality assurance. PACS number(s): 87.55.Qr PMID:27685115

  7. Mars Entry Atmospheric Data System Modeling, Calibration, and Error Analysis

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; VanNorman, John; Siemers, Paul M.; Schoenenberger, Mark; Munk, Michelle M.

    2014-01-01

    The Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI)/Mars Entry Atmospheric Data System (MEADS) project installed seven pressure ports through the MSL Phenolic Impregnated Carbon Ablator (PICA) heatshield to measure heatshield surface pressures during entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. In particular, the quantities to be estimated from the MEADS pressure measurements include the dynamic pressure, angle of attack, and angle of sideslip. This report describes the calibration of the pressure transducers utilized to reconstruct the atmospheric data and associated uncertainty models, pressure modeling and uncertainty analysis, and system performance results. The results indicate that the MEADS pressure measurement system hardware meets the project requirements.

  8. Multiple Waveband Temperature Sensor (MWTS)

    NASA Technical Reports Server (NTRS)

    Bandara, Sumith V.; Gunapala, Sarath; Wilson, Daniel; Stirbl, Robert; Blea, Anthony; Harding, Gilbert

    2006-01-01

    This slide presentation reviews the development of Multiple Waveband Temperature Sensor (MWTS). The MWTS project will result in a highly stable, monolithically integrated, high resolution infrared detector array sensor that records registered thermal imagery in four infrared wavebands to infer dynamic temperature profiles on a laser-irradiated ground target. An accurate surface temperature measurement of a target in extreme environments in a non-intrusive manner is required. The development challenge is to: determine optimum wavebands (suitable for target temperatures, nature of the targets and environments) to measure accurate target surface temperature independent of the emissivity, integrate simultaneously readable multiband Quantum Well Infrared Photodetectors (QWIPs) in a single monolithic focal plane array (FPA) sensor and to integrate the hardware/software and system calibration for remote temperature measurements. The charge was therefore to develop and demonstrate a multiband infrared imaging camera with the detectors simultaneously sensitive to multiple distinct color bands for front surface temperature measurements Wavelength ( m) measurements. Amongst the requirements are: that the measurement system will not affect target dynamics or response to the laser irradiation and that the simplest criterion for spectral band selection is to choose those practically feasible spectral bands that create the most contrast between the objects or scenes of interest in the expected environmental conditions. There is in the presentation a review of the modeling and simulation of multi-wave infrared temperature measurement and also a review of the detector development and QWIP capacities.

  9. Effect of the plate surface characteristics and gap height on yield stresses of a magnetorheological fluid

    NASA Astrophysics Data System (ADS)

    Jonkkari, I.; Kostamo, E.; Kostamo, J.; Syrjala, S.; Pietola, M.

    2012-07-01

    Effects of the plate material, surface roughness and measuring gap height on static and dynamic yield stresses of a magnetorheological (MR) fluid were investigated with a commercial plate-plate magnetorheometer. Magnetic and non-magnetic plates with smooth (Ra ˜ 0.3 μm) and rough (Ra ˜ 10 μm) surface finishes were used. It was shown by Hall probe measurements and finite element simulations that the use of magnetic plates or higher gap heights increases the level of magnetic flux density and changes the shape of the radial flux density profile. The yield stress increase caused by these factors was determined and subtracted from the measured values in order to examine only the effect of the wall characteristics or the gap height. Roughening of the surfaces offered a significant increase in the yield stresses for non-magnetic plates. With magnetic plates the yield stresses were higher to start with, but roughening did not increase them further. A significant part of the difference in measured stresses between rough non-magnetic and magnetic plates was caused by changes in magnetic flux density rather than by better contact of the particles to the plate surfaces. In a similar manner, an increase in gap height from 0.25 to 1.00 mm can lead to over 20% increase in measured stresses due to changes in the flux density profile. When these changes were compensated the dynamic yield stresses generally remained independent of the gap height, even in the cases where it was obvious that the wall slip was present. This suggests that with MR fluids the wall slip cannot be reliably detected by comparison of flow curves measured at different gap heights.

  10. Origin of two time-scale regimes in potentiometric titration of metal oxides. A replica kinetic Monte Carlo study.

    PubMed

    Zarzycki, Piotr; Rosso, Kevin M

    2009-06-16

    Replica kinetic Monte Carlo simulations were used to study the characteristic time scales of potentiometric titration of the metal oxides and (oxy)hydroxides. The effect of surface heterogeneity and surface transformation on the titration kinetics were also examined. Two characteristic relaxation times are often observed experimentally, with the trailing slower part attributed to surface nonuniformity, porosity, polymerization, amorphization, and other dynamic surface processes induced by unbalanced surface charge. However, our simulations show that these two characteristic relaxation times are intrinsic to the proton-binding reaction for energetically homogeneous surfaces, and therefore surface heterogeneity or transformation does not necessarily need to be invoked. However, all such second-order surface processes are found to intensify the separation and distinction of the two kinetic regimes. The effect of surface energetic-topographic nonuniformity, as well dynamic surface transformation, interface roughening/smoothing were described in a statistical fashion. Furthermore, our simulations show that a shift in the point-of-zero charge is expected from increased titration speed, and the pH-dependence of the titration measurement error is in excellent agreement with experimental studies.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarzycki, Piotr P.; Rosso, Kevin M.

    Replica Kinetic Monte Carlo simulations were used to study the characteristic time scales of potentiometric titration of the metal oxides and (oxy)hydroxides. The effect of surface heterogeneity and surface transformation on the titration kinetics were also examined. Two characteristic relaxation times are often observed experimentally, with the trailing slower part attributed to surface non-uniformity, porosity, polymerization, amorphization, and other dynamic surface processes induced by unbalanced surface charge. However, our simulations show that these two characteristic relaxation times are intrinsic to the proton binding reaction for energetically homogeneous surfaces, and therefore surface heterogeneity or transformation do not necessarily need to bemore » invoked. However, all such second-order surface processes are found to intensify the separation and distinction of the two kinetic regimes. The effect of surface energetic-topographic non-uniformity, as well dynamic surface transformation, interface roughening/smoothing were described in a statistical fashion. Furthermore, our simulations show that a shift in the point-of-zero charge is expected from increased titration speed and the pH-dependence of the titration measurement error is in excellent agreement with experimental studies.« less

  12. Contact Angle and Adhesion Dynamics and Hysteresis on Molecularly Smooth Chemically Homogeneous Surfaces.

    PubMed

    Chen, Szu-Ying; Kaufman, Yair; Schrader, Alex M; Seo, Dongjin; Lee, Dong Woog; Page, Steven H; Koenig, Peter H; Isaacs, Sandra; Gizaw, Yonas; Israelachvili, Jacob N

    2017-09-26

    Measuring truly equilibrium adhesion energies or contact angles to obtain the thermodynamic values is experimentally difficult because it requires loading/unloading or advancing/receding boundaries to be measured at rates that can be slower than 1 nm/s. We have measured advancing-receding contact angles and loading-unloading adhesion energies for various systems and geometries involving molecularly smooth and chemically homogeneous surfaces moving at different but steady velocities in both directions, ±V, focusing on the thermodynamic limit of ±V → 0. We have used the Bell Theory (1978) to derive expressions for the dynamic (velocity-dependent) adhesion energies and contact angles suitable for both (i) dynamic adhesion measurements using the classic Johnson-Kendall-Roberts (JKR, 1971) theory of "contact mechanics" and (ii) dynamic contact angle hysteresis measurements of both rolling droplets and syringe-controlled (sessile) droplets on various surfaces. We present our results for systems that exhibited both steady and varying velocities from V ≈ 10 mm/s to 1 nm/s, where in all cases but one, the advancing (V > 0) and receding (V < 0) adhesion energies and/or contact angles converged toward the same theoretical (thermodynamic) values as V → 0. Our equations for the dynamic contact angles are similar to the classic equations of Blake & Haynes (1969) and fitted the experimental adhesion data equally well over the range of velocities studied, although with somewhat different fitting parameters for the characteristic molecular length/dimension or area and characteristic bond formation/rupture lifetime or velocity. Our theoretical and experimental methods and results unify previous kinetic theories of adhesion and contact angle hysteresis and offer new experimental methods for testing kinetic models in the thermodynamic, quasi-static, limit. Our analyses are limited to kinetic effects only, and we conclude that hydrodynamic, i.e., viscous, and inertial effects do not play a role at the interfacial velocities of our experiments, i.e., V < (1-10) mm/s (for water and hexadecane, but for viscous polymers it may be different), consistent with previously reported studies.

  13. Nocturnal Near-Surface Temperature, but not Flow Dynamics, can be Predicted by Microtopography in a Mid-Range Mountain Valley

    NASA Astrophysics Data System (ADS)

    Pfister, Lena; Sigmund, Armin; Olesch, Johannes; Thomas, Christoph K.

    2017-11-01

    We investigate nocturnal flow dynamics and temperature behaviour near the surface of a 170-m long gentle slope in a mid-range mountain valley. In contrast to many existing studies focusing on locations with significant topographic variations, gentle slopes cover a greater spatial extent of the Earth's surface. Air temperatures were measured using the high-resolution distributed-temperature-sensing method within a two-dimensional fibre-optic array in the lowest metre above the surface. The main objectives are to characterize the spatio-temporal patterns in the near-surface temperature and flow dynamics, and quantify their responses to the microtopography and land cover. For the duration of the experiment, including even clear-sky nights with weak winds and strong radiative forcing, the classical cold-air drainage predicted by theory could not be detected. In contrast, we show that the airflow for the two dominant flow modes originates non-locally. The most abundant flow mode is characterized by vertically-decoupled layers featuring a near-surface flow perpendicular to the slope and strong stable stratification, which contradicts the expectation of a gravity-driven downslope flow of locally produced cold air. Differences in microtopography and land cover clearly affect spatio-temporal temperature perturbations. The second most abundant flow mode is characterized by strong mixing, leading to vertical coupling with airflow directed down the local slope. Here variations of microtopography and land cover lead to negligible near-surface temperature perturbations. We conclude that spatio-temporal temperature perturbations, but not flow dynamics, can be predicted by microtopography, which complicates the prediction of advective-heat components and the existence and dynamics of cold-air pools in gently sloped terrain in the absence of observations.

  14. Subpicosecond surface dynamics in genomic DNA from in vitro-grown plant species: a SERS assessment.

    PubMed

    Muntean, Cristina M; Bratu, Ioan; Leopold, Nicolae; Morari, Cristian; Buimaga-Iarinca, Luiza; Purcaru, Monica A P

    2015-09-07

    In this work the surface-enhanced Raman total half band widths of seven genomic DNAs from leaves of chrysanthemum (Dendranthema grandiflora Ramat.), common sundew (Drosera rotundifolia L.), edelweiss (Leontopodium alpinum Cass), Epilobium hirsutum L., Hypericum richeri ssp. transsilvanicum (Čelak) Ciocârlan, rose (Rosa x hybrida L.) and redwood (Sequoia sempervirens D. Don. Endl.) have been measured. We have shown that surface-enhanced Raman spectroscopy (SERS) can be used to study the fast subpicosecond dynamics of DNA in the proximity of a metallic surface. The dependencies of the total half band widths and the global relaxation times, on the DNA molecular subgroup structure and on the type of genomic DNA, are reported. In our study, the full widths at half-maximum (FWHMs) for the SERS bands of genomic DNAs from different leaf tissues are typically in the wavenumber range from 15 to 55 cm(-1). Besides, it can be observed that molecular relaxation processes studied in this work have a global relaxation time smaller than 0.71 ps and larger than 0.19 ps. A comparison between different ranges of FT-Raman and SERS band parameters, respectively, corresponding to DNA extracted from leaf tissues is given. It is shown that the interaction between DNA and a metallic surface has the potential to lead to a shortening of the global relaxation times, as compared with molecular dynamics in solution. We have found that the surface dynamics of molecular subgroups in plant DNA is, in some cases, about two times faster than the solution dynamics of nucleic acids. This can be rationalized in a qualitative manner by invoking the complex landscape of the interaction energy between the molecule and the silver surface.

  15. High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Huang, Yao-Ting; Chang, Pi-Bai

    2006-10-01

    The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed.

  16. Exploring Richtmyer-Meshkov instability phenomena and ejecta cloud physics

    NASA Astrophysics Data System (ADS)

    Zellner, M. B.; Buttler, W. T.

    2008-09-01

    This effort investigates ejecta cloud expansion from a shocked Sn target propagating into vacuum. To assess the expansion, dynamic ejecta cloud density distributions were measured via piezoelectric pin diagnostics offset at three heights from the target free surface. The dynamic distributions were first converted into static distributions, similar to a radiograph, and then self compared. The cloud evolved self-similarly at the distances and times measured, inferring that the amount of mass imparted to the instability, detected as ejecta, either ceased or approached an asymptotic limit.

  17. Ultrafast surface carrier dynamics in the topological insulator Bi₂Te₃.

    PubMed

    Hajlaoui, M; Papalazarou, E; Mauchain, J; Lantz, G; Moisan, N; Boschetto, D; Jiang, Z; Miotkowski, I; Chen, Y P; Taleb-Ibrahimi, A; Perfetti, L; Marsi, M

    2012-07-11

    We discuss the ultrafast evolution of the surface electronic structure of the topological insulator Bi(2)Te(3) following a femtosecond laser excitation. Using time and angle-resolved photoelectron spectroscopy, we provide a direct real-time visualization of the transient carrier population of both the surface states and the bulk conduction band. We find that the thermalization of the surface states is initially determined by interband scattering from the bulk conduction band, lasting for about 0.5 ps; subsequently, few picoseconds are necessary for the Dirac cone nonequilibrium electrons to recover a Fermi-Dirac distribution, while their relaxation extends over more than 10 ps. The surface sensitivity of our measurements makes it possible to estimate the range of the bulk-surface interband scattering channel, indicating that the process is effective over a distance of 5 nm or less. This establishes a correlation between the nanoscale thickness of the bulk charge reservoir and the evolution of the ultrafast carrier dynamics in the surface Dirac cone.

  18. Direct measurement of the propagation velocity of defects using coherent X-rays

    DOE PAGES

    Ulbrandt, Jeffrey G.; Rainville, Meliha G.; Wagenbach, Christa; ...

    2016-03-28

    The properties of artificially grown thin films are often strongly affected by the dynamic relationships between surface growth processes and subsurface structure. Coherent mixing of X-ray signals promises to provide an approach to better understand such processes. Here, we demonstrate the continuously variable mixing of surface and bulk scattering signals during realtime studies of sputter deposition of a-Si and a-WSi2 films by controlling the X-ray penetration and escape depths in coherent grazing-incidence small-angle X-ray scattering. Under conditions where the X-ray signal comes from both the growth surface and the thin film bulk, oscillations in temporal correlations arise from coherent interferencemore » between scattering from stationary bulk features and from the advancing surface. We also observe evidence that elongated bulk features propagate upwards at the same velocity as the surface. Moreover, a highly surface-sensitive mode is demonstrated that can access the surface dynamics independently of the subsurface structure.« less

  19. Structure of Colloidal Quantum Dots from Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy.

    PubMed

    Piveteau, Laura; Ong, Ta-Chung; Rossini, Aaron J; Emsley, Lyndon; Copéret, Christophe; Kovalenko, Maksym V

    2015-11-04

    Understanding the chemistry of colloidal quantum dots (QDs) is primarily hampered by the lack of analytical methods to selectively and discriminately probe the QD core, QD surface and capping ligands. Here, we present a general concept for studying a broad range of QDs such as CdSe, CdTe, InP, PbSe, PbTe, CsPbBr3, etc., capped with both organic and inorganic surface capping ligands, through dynamic nuclear polarization (DNP) surface enhanced NMR spectroscopy. DNP can enhance NMR signals by factors of 10-100, thereby reducing the measurement times by 2-4 orders of magnitude. 1D DNP enhanced spectra acquired in this way are shown to clearly distinguish QD surface atoms from those of the QD core, and environmental effects such as oxidation. Furthermore, 2D NMR correlation experiments, which were previously inconceivable for QD surfaces, are demonstrated to be readily performed with DNP and provide the bonding motifs between the QD surfaces and the capping ligands.

  20. Dynamic technique for measuring adsorption in a gas chromatograph

    NASA Technical Reports Server (NTRS)

    Deuel, C. L.; Hultgren, N. W.; Mobert, M. L.

    1973-01-01

    Gas-chromatographic procedure, together with mathematical analysis of adsorption isotherm, allows relative surface areas and adsorptive powers for trace concentrations to be determined in a few minutes. Technique may be used to evaluate relative surface areas of different adsorbates, expressed as volume of adsorbent/gram of adsorbate, and to evaluate their relative adsorptive power.

  1. 2011 Dynamics at Surfaces Gordon Research Conference (August 7-12, 2011, Salve Regina University, Newport, Rhode Island)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greg Sitz

    2011-08-12

    The 2011 Gordon Conference on Dynamics at Surfaces is the 32nd anniversary of a meeting held every two years that is attended by leading researchers in the area of experimental and theoretical dynamics at liquid and solid surfaces. The conference focuses on the dynamics of the interaction of molecules with either liquid or solid surfaces, the dynamics of the outermost layer of liquid and solid surfaces and the dynamics at the liquid-solid interface. Specific topics that are featured include state-to-state scattering dynamics, chemical reaction dynamics, non-adiabatic effects in reactive and inelastic scattering of molecules from surfaces, single molecule dynamics atmore » surfaces, surface photochemistry, ultrafast dynamics at surfaces, and dynamics at water interfaces. The conference brings together investigators from a variety of scientific disciplines including chemistry, physics, materials science, geology, biophysics, and astronomy.« less

  2. Dynamic data driven bidirectional reflectance distribution function measurement system

    NASA Astrophysics Data System (ADS)

    Nauyoks, Stephen E.; Freda, Sam; Marciniak, Michael A.

    2014-09-01

    The bidirectional reflectance distribution function (BRDF) is a fitted distribution function that defines the scatter of light off of a surface. The BRDF is dependent on the directions of both the incident and scattered light. Because of the vastness of the measurement space of all possible incident and reflected directions, the calculation of BRDF is usually performed using a minimal amount of measured data. This may lead to poor fits and uncertainty in certain regions of incidence or reflection. A dynamic data driven application system (DDDAS) is a concept that uses an algorithm on collected data to influence the collection space of future data acquisition. The authors propose a DDD-BRDF algorithm that fits BRDF data as it is being acquired and uses on-the-fly fittings of various BRDF models to adjust the potential measurement space. In doing so, it is hoped to find the best model to fit a surface and the best global fit of the BRDF with a minimum amount of collection space.

  3. Test Cases for the Benchmark Active Controls: Spoiler and Control Surface Oscillations and Flutter

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.; Scott, Robert C.; Wieseman, Carol D.

    2000-01-01

    As a portion of the Benchmark Models Program at NASA Langley, a simple generic model was developed for active controls research and was called BACT for Benchmark Active Controls Technology model. This model was based on the previously-tested Benchmark Models rectangular wing with the NACA 0012 airfoil section that was mounted on the Pitch and Plunge Apparatus (PAPA) for flutter testing. The BACT model had an upper surface spoiler, a lower surface spoiler, and a trailing edge control surface for use in flutter suppression and dynamic response excitation. Previous experience with flutter suppression indicated a need for measured control surface aerodynamics for accurate control law design. Three different types of flutter instability boundaries had also been determined for the NACA 0012/PAPA model, a classical flutter boundary, a transonic stall flutter boundary at angle of attack, and a plunge instability near M = 0.9. Therefore an extensive set of steady and control surface oscillation data was generated spanning the range of the three types of instabilities. This information was subsequently used to design control laws to suppress each flutter instability. There have been three tests of the BACT model. The objective of the first test, TDT Test 485, was to generate a data set of steady and unsteady control surface effectiveness data, and to determine the open loop dynamic characteristics of the control systems including the actuators. Unsteady pressures, loads, and transfer functions were measured. The other two tests, TDT Test 502 and TDT Test 5 18, were primarily oriented towards active controls research, but some data supplementary to the first test were obtained. Dynamic response of the flexible system to control surface excitation and open loop flutter characteristics were determined during Test 502. Loads were not measured during the last two tests. During these tests, a database of over 3000 data sets was obtained. A reasonably extensive subset of the data sets from the first two tests have been chosen for Test Cases for computational comparisons concentrating on static conditions and cases with harmonically oscillating control surfaces. Several flutter Test Cases from both tests have also been included. Some aerodynamic comparisons with the BACT data have been made using computational fluid dynamics codes at the Navier-Stokes level (and in the accompanying chapter SC). Some mechanical and active control studies have been presented. In this report several Test Cases are selected to illustrate trends for a variety of different conditions with emphasis on transonic flow effects. Cases for static angles of attack, static trailing-edge and upper-surface spoiler deflections are included for a range of conditions near those for the oscillation cases. Cases for trailing-edge control and upper-surface spoiler oscillations for a range of Mach numbers, angle of attack, and static control deflections are included. Cases for all three types of flutter instability are selected. In addition some cases are included for dynamic response measurements during forced oscillations of the controls on the flexible mount. An overview of the model and tests is given, and the standard formulary for these data is listed. Some sample data and sample results of calculations are presented. Only the static pressures and the first harmonic real and imaginary parts of the pressures are included in the data for the Test Cases, but digitized time histories have been archived. The data for the Test Cases are also available as separate electronic files.

  4. Ocean Surface Wave Optical Roughness - Analysis of Innovative Measurements

    DTIC Science & Technology

    2012-09-30

    goals of the program are to (1) examine time -dependent oceanic radiance distribution in relation to dynamic surface boundary layer (SBL) processes; (2... Analysis of Innovative Measurements 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER...RESULTS An overview of results is provided by Zappa et al. [2012] and Dickey et al. [2012]. TOGA-COARE and Air-sea fluxes Time series

  5. How coalescing droplets jump.

    PubMed

    Enright, Ryan; Miljkovic, Nenad; Sprittles, James; Nolan, Kevin; Mitchell, Robert; Wang, Evelyn N

    2014-10-28

    Surface engineering at the nanoscale is a rapidly developing field that promises to impact a range of applications including energy production, water desalination, self-cleaning and anti-icing surfaces, thermal management of electronics, microfluidic platforms, and environmental pollution control. As the area advances, more detailed insights of dynamic wetting interactions on these surfaces are needed. In particular, the coalescence of two or more droplets on ultra-low adhesion surfaces leads to droplet jumping. Here we show, through detailed measurements of jumping droplets during water condensation coupled with numerical simulations of binary droplet coalescence, that this process is fundamentally inefficient with only a small fraction of the available excess surface energy (≲ 6%) convertible into translational kinetic energy. These findings clarify the role of internal fluid dynamics during the jumping droplet coalescence process and underpin the development of systems that can harness jumping droplets for a wide range of applications.

  6. Influence of chemistry on wetting dynamics of nanotextured hydrophobic surfaces.

    PubMed

    Di Mundo, Rosa; Palumbo, Fabio; d'Agostino, Riccardo

    2010-04-06

    In this work, the role of a chemical parameter, such as the degree of fluorination, on the wetting behavior of nanotextured hydrophobic surfaces is investigated. Texture and chemistry tuning of the surfaces has been accomplished with single batch radiofrequency low-pressure plasma processes. Polystyrene substrates have been textured by CF(4) plasma etching and subsequently covered by thin films with a tunable F-to-C ratio, obtained in discharges fed with C(4)F(8)-C(2)H(4). Measurements of wetting dynamics reveal a regime transition from adhesive-hydrophobic to slippery-superhydrophobic, i.e., from wet to non wet states, as the F-to-C rises at constant topography. Such achievements are strengthened by calculation of the solid fraction of surface water contact area applying Cassie-Baxter advancing and receding equations to water contact angle data of textured and flat reference surfaces.

  7. The energy landscape of glassy dynamics on the amorphous hafnium diboride surface

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc; Mallek, Justin; Cloud, Andrew N.; Abelson, John R.; Girolami, Gregory S.; Lyding, Joseph; Gruebele, Martin

    2014-11-01

    Direct visualization of the dynamics of structural glasses and amorphous solids on the sub-nanometer scale provides rich information unavailable from bulk or conventional single molecule techniques. We study the surface of hafnium diboride, a conductive ultrahigh temperature ceramic material that can be grown in amorphous films. Our scanning tunneling movies have a second-to-hour dynamic range and single-point current measurements extend that to the millisecond-to-minute time scale. On the a-HfB2 glass surface, two-state hopping of 1-2 nm diameter cooperatively rearranging regions or "clusters" occurs from sub-milliseconds to hours. We characterize individual clusters in detail through high-resolution (<0.5 nm) imaging, scanning tunneling spectroscopy and voltage modulation, ruling out individual atoms, diffusing adsorbates, or pinned charges as the origin of the observed two-state hopping. Smaller clusters are more likely to hop, larger ones are more likely to be immobile. HfB2 has a very high bulk glass transition temperature Tg, and we observe no three-state hopping or sequential two-state hopping previously seen on lower Tg glass surfaces. The electronic density of states of clusters does not change when they hop up or down, allowing us to calibrate an accurate relative z-axis scale. By directly measuring and histogramming single cluster vertical displacements, we can reconstruct the local free energy landscape of individual clusters, complete with activation barrier height, a reaction coordinate in nanometers, and the shape of the free energy landscape basins between which hopping occurs. The experimental images are consistent with the compact shape of α-relaxors predicted by random first order transition theory, whereas the rapid hopping rate, even taking less confined motion at the surface into account, is consistent with β-relaxations. We make a proposal of how "mixed" features can show up in surface dynamics of glasses.

  8. Monitoring Earth's reservoir and lake dynamics from space

    NASA Astrophysics Data System (ADS)

    Donchyts, G.; Eilander, D.; Schellekens, J.; Winsemius, H.; Gorelick, N.; Erickson, T.; Van De Giesen, N.

    2016-12-01

    Reservoirs and lakes constitute about 90% of the Earth's fresh surface water. They play a major role in the water cycle and are critical for the ever increasing demands of the world's growing population. Water from reservoirs is used for agricultural, industrial, domestic, and other purposes. Current digital databases of lakes and reservoirs are scarce, mainly providing only descriptive and static properties of the reservoirs. The Global Reservoir and Dam (GRanD) database contains almost 7000 entries while OpenStreetMap counts more than 500 000 entries tagged as a reservoir. In the last decade several research efforts already focused on accurate estimates of surface water dynamics, mainly using satellite altimetry, However, currently they are limited only to less than 1000 (mostly large) water bodies. Our approach is based on three main components. Firstly, a novel method, allowing automated and accurate estimation of surface area from (partially) cloud-free optical multispectral or radar satellite imagery. The algorithm uses satellite imagery measured by Landsat, Sentinel and MODIS missions. Secondly, a database to store reservoir static and dynamic parameters. Thirdly, a web-based tool, built on top of Google Earth Engine infrastructure. The tool allows estimation of surface area for lakes and reservoirs at planetary-scale at high spatial and temporal resolution. A prototype version of the method, database, and tool will be presented as well as validation using in-situ measurements.

  9. Ocean dynamics in the Nordic Seas using satellite altimetry

    NASA Technical Reports Server (NTRS)

    Pettersson, Lasse H.; Johannessen, O. M.; Olaussen, T. I.

    1991-01-01

    The main objective of this TOPEX/POSEIDON project is to integrate the accurately measured sea surface topography, as resolved by both TOPEX/POSEIDON radar altimeters, into the above-mentioned quantitative studies of the short- and long-term variations in the mesoscale ocean dynamics of the Nordic Seas south of 66 deg N. This implies: (1) comparison and validation of the capability to resolve the general basin-scale circulation and the mesoscale variability by, respectively, radar altimeters and numerical ocean circulation models; (2) calibration and validation of the altimeter-derived sea surface topography against in situ measurements from research vessels and moorings, particularly under extreme wind and wave conditions; and (3) improved monitoring and understanding of the flux variations between the North Atlantic and the Nordic Seas, both on the short and seasonal time scales.

  10. Dynamic Corneal Surface Mapping with Electronic Speckle Pattern Interferometry

    NASA Astrophysics Data System (ADS)

    Iqbal, S.; Gualini, M. M. S.

    2013-06-01

    In view of the fast advancement in ophthalmic technology and corneal surgery, there is a strong need for the comprehensive mapping and characterization techniques for corneal surface. Optical methods with precision non-contact approaches have been found to be very useful for such bio measurements. Along with the normal mapping approaches, elasticity of corneal surface has an important role in its characterization and needs to be appropriately measured or estimated for broader diagnostics and better prospective surgical results, as it has important role in the post-op corneal surface reconstruction process. Use of normal corneal topographic devices is insufficient for any intricate analysis since these devices operate at relatively moderate resolution. In the given experiment, Pulsed Electronic Speckle Pattern Interferometry has been utilized along with an excitation mechanism to measure the dynamic response of the sample cornea. A Pulsed ESPI device has been chosen for the study because of its micron-level resolution and other advantages in real-time deformation analysis. A bovine cornea has been used as a sample in the subject experiment. The dynamic response has been taken on a chart recorder and it is observed that it does show a marked deformation at a specific excitation frequency, which may be taken as a characteristic elasticity parameter for the surface of that corneal sample. It was seen that outside resonance conditions the bovine cornea was not that much deformed. Through this study, the resonance frequency and the corresponding corneal deformations are mapped and plotted in real time. In these experiments, data was acquired and processed by FRAMES plus computer analysis system. With some analysis of the results, this technique can help us to refine a more detailed corneal surface mathematical model and some preliminary work was done on this. Such modelling enhancements may be useful for finer ablative surgery planning. After further experimentation, this technique can possibly be developed for in-vivo experiments on animals and humans and then may prospectively be matured for future clinical usage.

  11. Simultaneous measurement of temperature and emissivity of lunar regolith simulant using dual-channel millimeter-wave radiometry.

    PubMed

    McCloy, J S; Sundaram, S K; Matyas, J; Woskov, P P

    2011-05-01

    Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments (high temperature, pressure, and corrosive environments). The state-of-the-art dual channel MMW passive radiometer with active interferometric capabilities at 137 GHz described here allows for radiometric measurements of sample temperature and emissivity up to at least 1600 °C with simultaneous measurement of sample surface dynamics. These capabilities have been used to demonstrate dynamic measurement of melting of powders of simulated lunar regolith and static measurement of emissivity of solid samples. The paper presents the theoretical background and basis for the dual-receiver system, describes the hardware in detail, and demonstrates the data analysis. Post-experiment analysis of emissivity versus temperature allows further extraction from the radiometric data of millimeter wave viewing beam coupling factors, which provide corroboratory evidence to the interferometric data of the process dynamics observed. These results show the promise of the MMW system for extracting quantitative and qualitative process parameters for industrial processes and access to real-time dynamics of materials behavior in extreme environments.

  12. Continuous measurements of water surface height and width along a 6.5km river reach for discharge algorithm development

    NASA Astrophysics Data System (ADS)

    Tuozzolo, S.; Durand, M. T.; Pavelsky, T.; Pentecost, J.

    2015-12-01

    The upcoming Surface Water and Ocean Topography (SWOT) satellite will provide measurements of river width and water surface elevation and slope along continuous swaths of world rivers. Understanding water surface slope and width dynamics in river reaches is important for both developing and validating discharge algorithms to be used on future SWOT data. We collected water surface elevation and river width data along a 6.5km stretch of the Olentangy River in Columbus, Ohio from October to December 2014. Continuous measurements of water surface height were supplemented with periodical river width measurements at twenty sites along the study reach. The water surface slope of the entire reach ranged from during 41.58 cm/km at baseflow to 45.31 cm/km after a storm event. The study reach was also broken into sub-reaches roughly 1km in length to study smaller scale slope dynamics. The furthest upstream sub-reaches are characterized by free-flowing riffle-pool sequences, while the furthest downstream sub-reaches were directly affected by two low-head dams. In the sub-reaches immediately upstream of each dam, baseflow slope is as low as 2 cm/km, while the furthest upstream free-flowing sub-reach has a baseflow slope of 100 cm/km. During high flow events the backwater effect of the dams was observed to propagate upstream: sub-reaches impounded by the dams had increased water surface slopes, while free flowing sub-reaches had decreased water surface slopes. During the largest observed flow event, a stage change of 0.40 m affected sub-reach slopes by as much as 30 cm/km. Further analysis will examine height-width relationships within the study reach and relate cross-sectional flow area to river stage. These relationships can be used in conjunction with slope data to estimate discharge using a modified Manning's equation, and are a core component of discharge algorithms being developed for the SWOT mission.

  13. Multi-sensor measurements of mixed-phase clouds above Greenland

    NASA Astrophysics Data System (ADS)

    Stillwell, Robert A.; Shupe, Matthew D.; Thayer, Jeffrey P.; Neely, Ryan R.; Turner, David D.

    2018-04-01

    Liquid-only and mixed-phase clouds in the Arctic strongly affect the regional surface energy and ice mass budgets, yet much remains unknown about the nature of these clouds due to the lack of intensive measurements. Lidar measurements of these clouds are challenged by very large signal dynamic range, which makes even seemingly simple tasks, such as thermodynamic phase classification, difficult. This work focuses on a set of measurements made by the Clouds Aerosol Polarization and Backscatter Lidar at Summit, Greenland and its retrieval algorithms, which use both analog and photon counting as well as orthogonal and non-orthogonal polarization retrievals to extend dynamic range and improve overall measurement quality and quantity. Presented here is an algorithm for cloud parameter retrievals that leverages enhanced dynamic range retrievals to classify mixed-phase clouds. This best guess retrieval is compared to co-located instruments for validation.

  14. Adsorption of halogens on metal surfaces

    NASA Astrophysics Data System (ADS)

    Andryushechkin, B. V.; Pavlova, T. V.; Eltsov, K. N.

    2018-06-01

    This paper presents a review of the experimental and theoretical investigations of halogen interaction with metal surfaces. The emphasis was placed on the recent measurements performed with a scanning tunneling microscope in combination with density functional theory calculations. The surface structures formed on metal surface after halogen interaction are classified into three groups: chemisorbed monolayer, surface halide, bulk-like halide. Formation of monolayer structures is described in terms of surface phase transitions. Surface halide phases are considered to be intermediates between chemisorbed halogen and bulk halide. The modern theoretical approaches in studying the dynamics of metal halogenation reactions are also presented.

  15. Experimental and theoretical studies on inhibition of mild steel corrosion by some synthesized polyurethane tri-block co-polymers

    PubMed Central

    Kumar, Sudershan; Vashisht, Hemlata; Olasunkanmi, Lukman O.; Bahadur, Indra; Verma, Hemant; Singh, Gurmeet; Obot, Ime B.; Ebenso, Eno E.

    2016-01-01

    Polyurethane based tri-block copolymers namely poly(N-vinylpyrrolidone)-b-polyurethane-b-poly(N-vinylpyrrolidone) (PNVP-PU) and poly(dimethylaminoethylmethacrylate)-b-polyurethane-b-poly(dimethylaminoethylmethacrylate) (PDMAEMA-PU) were synthesized through atom transfer radical polymerization (ATRP) mechanism. The synthesized polymers were characterized using nuclear magnetic resonance (NMR) spectroscopy and gel permeation chromatography (GPC) methods. The corrosion inhibition performances of the compounds were investigated on mild steel (MS) in 0.5 M H2SO4 medium using electrochemical measurements, surface analysis, quantum chemical calculations and molecular dynamic simulations (MDS). Potentiodynamic polarization (PDP) measurements revealed that the polymers are mixed-type corrosion inhibitors. Electrochemical impedance spectroscopy (EIS) measurements showed that the polymers inhibit MS corrosion by adsorbing on MS surface to form pseudo-capacitive interface. The inhibitive effects of the polymers increase with increasing concentration and decrease with increasing temperature. The adsorption of both the polymers on MS surface obey the Langmuir adsorption isotherm and involves both physisorption and chemisorption mechanisms. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses showed that the polymers formed protective film on MS surface and shield it from direct acid attack. Quantum chemical calculations and molecular dynamic simulations studies corroborate experimental results. PMID:27515383

  16. Impact of polymer surface characteristics on the microrheological measurement quality of protein solutions - A tracer particle screening.

    PubMed

    Bauer, Katharina Christin; Schermeyer, Marie-Therese; Seidel, Jonathan; Hubbuch, Jürgen

    2016-05-30

    Microrheological measurements prove to be suitable to identify rheological parameters of biopharmaceutical solutions. These give information about the flow characteristics but also about the interactions and network structures in protein solutions. For the microrheological measurement tracer particles are required. Due to their specific surface characteristic not all are suitable for reliable measurement results in biopharmaceutical systems. In the present work a screening of melamine, PMMA, polystyrene and surface modified polystyrene as tracer particles were investigated at various protein solution conditions. The surface characteristics of the screened tracer particles were evaluated by zeta potential measurements. Furthermore each tracer particle was used to determine the dynamic viscosity of lysozyme solutions by microrheology and compared to a standard. The results indicate that the selection of the tracer particle had a strong impact on the quality of the microrheological measurement dependent on pH and additive type. Surface modified polystyrene was the only tracer particle that yielded good microrheological results for all tested conditions. The study indicated that the electrostatic surface charge of the tracer particle had a minor impact than its hydrophobicity. This characteristic was the crucial surface property that needs to be considered for the selection of a suitable tracer particle to achieve high measurement accuracy. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. First UAV Measurements of Entrainment Layer Fluxes with Coupled Cloud Property Measurements

    NASA Astrophysics Data System (ADS)

    Thomas, R. M.; Praveen, P. S.; Wilcox, E. M.; Pistone, K.; Bender, F.; Ramanathan, V.

    2012-12-01

    This study details entrainment flux measurements made from a lightweight unmanned aerial vehicle (UAV) containing turbulent water vapor flux instrumentation (Thomas et al., 2012). The system was flown for 26 flights during the Cloud, Aerosol, Radiative forcing, Dynamics EXperiment (CARDEX) in the Maldives in March 2012 to study interrelationships between entrainment, aerosols, water budget, cloud microphysics and radiative fluxes in a trade wind cumulus cloud regime. A major advantage of using this lightweight, precision autopiloted UAV system with scientific telemetry is the ability to target small-scale features in the boundary layer, such as an entrainment layer, with minimal aircraft induced disruption. Results are presented from two UAVs flown in stacked formation: one UAV situated in-cloud measuring cloud-droplet size distribution spectra and liquid water content, and another co-located 100m above measuring turbulent properties and entrainment latent heat flux (λEE). We also show latent heat flux and turbulence measurements routinely made at the entrainment layer base and altitudes from the surface up to 4kft. Ratios of λEE to corresponding surface tower values (λES) display a bimodal frequency distribution with ranges 0.22-0.53 and 0.79-1.5, with occasional events >7. Reasons for this distribution are discussed drawing upon boundary layer and free tropospheric dynamics and meteorology, turbulence length scales, surface conditions, and cloud interactions. Latent heat flux profiles are combined with in-cloud UAV Liquid Water Content (LWC) data and surface based Liquid Water Path (LWP) and Precipitable Water Vapor (PWV) measurements to produce observationally constrained vertical water budgets, providing insights into diurnal coupling of λEE and λES. Observed λEE, λES, water budgets, and cloud microphysical responses to entrainment are then contextualized with respect to measured aerosol loading profiles and airmass history.

  18. Holographic otoscope for nanodisplacement measurements of surfaces under dynamic excitation.

    PubMed

    Flores-Moreno, J M; Furlong, Cosme; Rosowski, John J; Harrington, Ellery; Cheng, Jeffrey T; Scarpino, C; Santoyo, F Mendoza

    2011-01-01

    We describe a novel holographic otoscope system for measuring nanodisplacements of objects subjected to dynamic excitation. Such measurements are necessary to quantify the mechanical deformation of surfaces in mechanics, acoustics, electronics, biology, and many other fields. In particular, we are interested in measuring the sound-induced motion of biological samples, such as an eardrum. Our holographic otoscope system consists of laser illumination delivery (IS), optical head (OH), and image processing computer (IP) systems. The IS delivers the object beam (OB) and the reference beam (RB) to the OH. The backscattered light coming from the object illuminated by the OB interferes with the RB at the camera sensor plane to be digitally recorded as a hologram. The hologram is processed by the IP using the Fresnel numerical reconstruction algorithm, where the focal plane can be selected freely. Our holographic otoscope system is currently deployed in a clinic, and is packaged in a custom design. It is mounted in a mechatronic positioning system to increase its maneuverability degrees to be conveniently positioned in front of the object to be measured. We present representative results highlighting the versatility of our system to measure deformations of complex elastic surfaces in the wavelength scale including a copper foil membrane and postmortem tympanic membrane. SCANNING 33: 342-352, 2011. © 2011 Wiley Periodicals, Inc. Copyright © 2011 Wiley Periodicals, Inc.

  19. Effects of tear film dynamics on quality of vision.

    PubMed

    Koh, Shizuka; Tung, Cynthia I; Inoue, Yasushi; Jhanji, Vishal

    2018-06-15

    The precorneal tear film is maintained by blinking and exhibits different phases in the tear cycle. The tear film serves as the most anterior surface of the eye and plays an important role as a first refractive component of the eye. Alterations in tear film dynamics may cause both vision-related and ocular surface-related symptoms. Although the optical quality associated with the tear film dynamics previously received little attention, objective measurements of optical quality using wavefront sensors have enabled us to quantify optical aberrations induced by the tear film. This has provided an objective method for assessing reduced optical quality in dry eye; thus, visual disturbances were included in the definition of dry eye disease in the 2007 Dry Eye Workshop report. In addition, sequential measurements of wavefront aberrations have provided us with valuable insights into the dynamic optical changes associated with tear film dynamics. This review will focus on the current knowledge of the mechanisms of wavefront variations that are caused by different aspects of tear film dynamics: specifically, quality, quantity and properties of the tear film, demonstrating the respective effects of dry eye, epiphora and instillation of eye drops on the quality of vision. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Modeling thermal dynamics of active layer soils and near-surface permafrost using a fully coupled water and heat transport model

    USGS Publications Warehouse

    Jiang, Yueyang; Zhuang, Qianlai; O'Donnell, Jonathan A.

    2012-01-01

    Thawing and freezing processes are key components in permafrost dynamics, and these processes play an important role in regulating the hydrological and carbon cycles in the northern high latitudes. In the present study, we apply a well-developed soil thermal model that fully couples heat and water transport, to simulate the thawing and freezing processes at daily time steps across multiple sites that vary with vegetation cover, disturbance history, and climate. The model performance was evaluated by comparing modeled and measured soil temperatures at different depths. We use the model to explore the influence of climate, fire disturbance, and topography (north- and south-facing slopes) on soil thermal dynamics. Modeled soil temperatures agree well with measured values for both boreal forest and tundra ecosystems at the site level. Combustion of organic-soil horizons during wildfire alters the surface energy balance and increases the downward heat flux through the soil profile, resulting in the warming and thawing of near-surface permafrost. A projection of 21st century permafrost dynamics indicates that as the climate warms, active layer thickness will likely increase to more than 3 meters in the boreal forest site and deeper than one meter in the tundra site. Results from this coupled heat-water modeling approach represent faster thaw rates than previously simulated in other studies. We conclude that the discussed soil thermal model is able to well simulate the permafrost dynamics and could be used as a tool to analyze the influence of climate change and wildfire disturbance on permafrost thawing.

  1. Exploration, Sampling, And Reconstruction of Free Energy Surfaces with Gaussian Process Regression.

    PubMed

    Mones, Letif; Bernstein, Noam; Csányi, Gábor

    2016-10-11

    Practical free energy reconstruction algorithms involve three separate tasks: biasing, measuring some observable, and finally reconstructing the free energy surface from those measurements. In more than one dimension, adaptive schemes make it possible to explore only relatively low lying regions of the landscape by progressively building up the bias toward the negative of the free energy surface so that free energy barriers are eliminated. Most schemes use the final bias as their best estimate of the free energy surface. We show that large gains in computational efficiency, as measured by the reduction of time to solution, can be obtained by separating the bias used for dynamics from the final free energy reconstruction itself. We find that biasing with metadynamics, measuring a free energy gradient estimator, and reconstructing using Gaussian process regression can give an order of magnitude reduction in computational cost.

  2. Global Skin-Friction Measurements Using Particle Image Surface FLow Visualization and a Luminescent Oil-Film

    NASA Technical Reports Server (NTRS)

    Husen, Nicholas; Roozeboom, Nettie; Liu, Tianshu; Sullivan, John P.

    2015-01-01

    A quantitative global skin-friction measurement technique is proposed. An oil-film is doped with a luminescent molecule and thereby made to fluoresce in order to resolve oil-film thickness, and Particle Image Surface Flow Visualization is used to resolve the velocity field of the surface of the oil-film. Skin-friction is then calculated at location x as (x )xh, where x is the displacement of the surface of the oil-film and is the dynamic viscosity of the oil. The data collection procedure and data analysis procedures are explained, and preliminary experimental skin-friction results for flow over the wing of the CRM are presented.

  3. Structure and Dynamics of Interfaces: Drops and Films

    NASA Technical Reports Server (NTRS)

    Mann, J. Adin, Jr.; Mann, Elizabeth K.; Meyer, William V.; Neumann, A. Wilhelm; Tavana, Hossein

    2015-01-01

    We aim to acquire measurements of the structure and dynamics of certain liquid-fluid interfaces using an ensemble of techniques in collaboration: (1) Total internal reflection (TIR) Surface light scattering spectroscopy (SLSS), (2) Brewster angle microscopy (BAM), and (3) Drop-shape analysis. SLSS and BAM can be done on a shared interfacial footprint. Results using a 50-50 mixture of pentane-isohexane, which extends the range of NASA's Confined Vapor Bubble (CVB) experiment, yield surface tension results that differ from the expected Langmuir Fit. These results were confirmed using both the SLSS and drop-shape analysis approaches.

  4. Ultrafast control and monitoring of material properties using terahertz pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowlan, Pamela Renee

    These are a set of slides on ultrafast control and monitoring of material properties using terahertz pulses. A few of the topics covered in these slides are: How fast is a femtosecond (fs), Different frequencies probe different properties of molecules or solids, What can a THz pulse do to a material, Ultrafast spectroscopy, Generating and measuring ultrashort THz pulses, Tracking ultrafast spin dynamics in antiferromagnets through spin wave resonances, Coherent two-dimensional THz spectroscopy, and Probing vibrational dynamics at a surface. Conclusions are: Coherent two-dimensional THz spectroscopy: a powerful approach for studying coherence and dynamics of low energy resonances. Applying thismore » to graphene we investigated the very strong THz light mater interaction which dominates over scattering. Useful for studying coupled excitations in multiferroics and monitoring chemical reactions. Also, THz-pump, SHG-probe spectoscopy: an ultrafast, surface sensitive probe of atomic-scale symmetry changes and nonlinear phonon dymanics. We are using this in Bi 2Se 3 to investigate the nonlinear surface phonon dynamics. This is potentially very useful for studying catalysis.« less

  5. Single-molecule interfacial electron transfer dynamics in solar energy conversion

    NASA Astrophysics Data System (ADS)

    Dhital, Bharat

    This dissertation work investigated the parameters affecting the interfacial electron transfer (ET) dynamics in dye-semiconductor nanoparticles (NPs) system by using single-molecule fluorescence spectroscopy and imaging combined with electrochemistry. The influence of the molecule-substrate electronic coupling, the molecular structure, binding geometry on the surface and the molecule-attachment surface chemistry on interfacial charge transfer processes was studied on zinc porphyrin-TiO2 NP systems. The fluorescence blinking measurement on TiO2 NP demonstrated that electronic coupling regulates dynamics of charge transfer processes at the interface depending on the conformation of molecule on the surface. Moreover, semiconductor surface charge induced electronic coupling of molecule which is electrostatically adsorbed on the semiconductor surface also predominantly alters the ET dynamics. Furthermore, interfacial electric field and electron accepting state density dependent ET dynamics has been dissected in zinc porphyrin-TiO2 NP system by observing the single-molecule fluorescence blinking dynamics and fluorescence lifetime with and without applied bias. The significant difference in fluorescence fluctuation and lifetime suggested the modulation of charge transfer dynamics at the interface with external electric field perturbation. Quasi-continuous distribution of fluorescence intensity with applied negative potential was attributed to the faster charge recombination due to reduced density of electron accepting states. The driving force and electron accepting state density ET dependent dynamics has also been probed in zinc porphyrin-TiO2 NP and zinc porphyrin-indium tin oxide (ITO) systems. Study of a molecule adsorbed on two different semiconductors (ITO and TiO2), with large difference in electron densities and distinct driving forces, allows us to observe the changes in rates of back electron transfer process reflected by the suppressed fluorescence blinking of molecule on ITO surface. Finally, the electric field effect on the interface properties has been probed by using surface-enhanced Raman spectroscopy and supported by density functional theory calculations in alizarin-TiO2 system. The perturbation, created by the external potential, has been observed to cause a shift and/or splitting interfacial bond vibrational mode, typical indicator of the coupling energy changes between alizarin and TiO2. Such splitting provides evidence for electric field-dependent electronic coupling changes that have a significant impact on the interfacial electron transfer dynamics.

  6. Rubber friction on road surfaces: Experiment and theory for low sliding speeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, B.; Persson, B. N. J.; Oh, Y. R.

    We study rubber friction for tire tread compounds on asphalt road surfaces. The road surface topographies are measured using a stylus instrument and atomic force microscopy, and the surface roughness power spectra are calculated. The rubber viscoelastic modulus mastercurves are obtained from dynamic mechanical analysis measurements and the large-strain effective modulus is obtained from strain sweep data. The rubber friction is measured at different temperatures and sliding velocities, and is compared to the calculated data obtained using the Persson contact mechanics theory. We conclude that in addition to the viscoelastic deformations of the rubber surface by the road asperities, theremore » is an important contribution to the rubber friction from shear processes in the area of contact. The analysis shows that the latter contribution may arise from rubber molecules (or patches of rubber) undergoing bonding-stretching-debonding cycles as discussed in a classic paper by Schallamach.« less

  7. Dynamics of an optically confined nanoparticle diffusing normal to a surface.

    PubMed

    Schein, Perry; O'Dell, Dakota; Erickson, David

    2016-06-01

    Here we measure the hindered diffusion of an optically confined nanoparticle in the direction normal to a surface, and we use this to determine the particle-surface interaction profile in terms of the absolute height. These studies are performed using the evanescent field of an optically excited single-mode silicon nitride waveguide, where the particle is confined in a height-dependent potential energy well generated from the balance of optical gradient and surface forces. Using a high-speed cmos camera, we demonstrate the ability to capture the short time-scale diffusion dominated motion for 800-nm-diam polystyrene particles, with measurement times of only a few seconds per particle. Using established theory, we show how this information can be used to estimate the equilibrium separation of the particle from the surface. As this measurement can be made simultaneously with equilibrium statistical mechanical measurements of the particle-surface interaction energy landscape, we demonstrate the ability to determine these in terms of the absolute rather than relative separation height. This enables the comparison of potential energy landscapes of particle-surface interactions measured under different experimental conditions, enhancing the utility of this technique.

  8. Communication: Rigorous quantum dynamics of O + O{sub 2} exchange reactions on an ab initio potential energy surface substantiate the negative temperature dependence of rate coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yaqin; Sun, Zhigang, E-mail: zsun@dicp.ac.cn, E-mail: dawesr@mst.edu, E-mail: hguo@unm.edu; Center for Advanced Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026

    2014-08-28

    The kinetics and dynamics of several O + O{sub 2} isotope exchange reactions have been investigated on a recently determined accurate global O{sub 3} potential energy surface using a time-dependent wave packet method. The agreement between calculated and measured rate coefficients is significantly improved over previous work. More importantly, the experimentally observed negative temperature dependence of the rate coefficients is for the first time rigorously reproduced theoretically. This negative temperature dependence can be attributed to the absence in the new potential energy surface of a submerged “reef” structure, which was present in all previous potential energy surfaces. In addition, contributionsmore » of rotational excited states of the diatomic reactant further accentuate the negative temperature dependence.« less

  9. Fabrication of phytic acid sensor based on mixed phytase-lipid Langmuir-Blodgett films.

    PubMed

    Caseli, Luciano; Moraes, Marli L; Zucolotto, Valtencir; Ferreira, Marystela; Nobre, Thatyane M; Zaniquelli, Maria Elisabete D; Rodrigues Filho, Ubirajara P; Oliveira, Osvaldo N

    2006-09-26

    This paper reports the surface activity of phytase at the air-water interface, its interaction with lipid monolayers, and the construction of a new phytic acid biosensor on the basis of the Langmuir-Blodgett (LB) technique. Phytase was inserted in the subphase solution of dipalmitoylphosphatidylglycerol (DPPG) Langmuir monolayers, and its incorporation to the air-water interface was monitored with surface pressure measurements. Phytase was able to incorporate into DPPG monolayers even at high surface pressures, ca. 30 mN/m, under controlled ionic strength, pH, and temperature. Mixed Langmuir monolayers of phytase and DPPG were characterized by surface pressure-area and surface potential-area isotherms, and the presence of the enzyme provided an expansion in the monolayers (when compared to the pure lipid at the interface). The enzyme incorporation also led to significant changes in the equilibrium surface compressibility (in-plane elasticity), especially in liquid-expanded and liquid-condensed regions. The dynamic surface elasticity for phytase-containing interfaces was investigated using harmonic oscillation and axisymmetric drop shape analysis. The insertion of the enzyme at DPPG monolayers caused an increase in the dynamic surface elasticity at 30 mN m(-)(1), indicating a strong interaction between the enzyme and lipid molecules at a high-surface packing. Langmuir-Blodgett (LB) films containing 35 layers of mixed phytase-DPPG were characterized by ultraviolet-visible and fluorescence spectroscopy and crystal quartz microbalance nanogravimetry. The ability in detecting phytic acid was studied with voltammetric measurements.

  10. Road profile estimation of city roads using DTPS

    NASA Astrophysics Data System (ADS)

    Wang, Qi; McDaniel, J. Gregory; Sun, Nian X.; Wang, Ming L.

    2013-04-01

    This work presents a non-destructive and non-contact acoustic sensing approach for measuring road profile of road and bridge deck with vehicles running at normal speed without stopping traffic. This approach uses an instantaneous and real-time dynamic tire pressure sensor (DTPS) that can measure dynamic response of the tire-road interaction and increases the efficiency of currently used road profile measuring systems with vehicle body-mounted profilers and axle-mounted accelerometers. In this work, a prototype of real-time DTPS system has been developed and demonstrated on a testing van at speeds from 5 to 80 miles per hour (mph). A data analysis algorithm has been developed to remove axle dynamic motions from the measured DTPS data and to find the transfer function between dynamic tire pressure change and the road profile. Field test has been performed to estimate road profiles. The road profile resolution is approximately 5 to 10 cm in width and sensitivity is 0. 3 cm for the height road surface features at driving speeds of 5 to 80 mph.

  11. A MODEL FOR THE TEAR FILM AND OCULAR SURFACE TEMPERATURE FOR PARTIAL BLINKS

    PubMed Central

    Deng, Quan; Braun, R. J.; Driscoll, T. A.; King-Smith, P. E.

    2015-01-01

    In this paper, we investigate the dynamics of tear film and the associated temperature variation for partial blinks. We investigate the mechanism of fluid supply during partial blink cycles, and compare the film thickness with observation in vivo. We find that varying the thickness of the fluid layer beneath the moving upper lid improves the agreement for the in vivo measurement of tear film thickness after a half blink. By examining the flux of the fluid, we provide an explanation of this assumption. We also investigate the temperature dynamics both at the ocular surface and inside the simulated anterior chamber. Our simulation results suggest that the ocular surface temperature readjusts rapidly to normal temperature distribution after partial blinks. PMID:25635242

  12. Subsurface damage in precision ground ULE(R) and Zerodur(R) surfaces.

    PubMed

    Tonnellier, X; Morantz, P; Shore, P; Baldwin, A; Evans, R; Walker, D D

    2007-09-17

    The total process cycle time for large ULE((R)) and Zerodur((R))optics can be improved using a precise and rapid grinding process, with low levels of surface waviness and subsurface damage. In this paper, the amounts of defects beneath ULE((R)) and Zerodur((R) )surfaces ground using a selected grinding mode were compared. The grinding response was characterised by measuring: surface roughness, surface profile and subsurface damage. The observed subsurface damage can be separated into two distinct depth zones, which are: 'process' and 'machine dynamics' related.

  13. Tear dynamics in healthy and dry eyes.

    PubMed

    Cerretani, Colin F; Radke, C J

    2014-06-01

    Dry-eye disease, an increasingly prevalent ocular-surface disorder, significantly alters tear physiology. Understanding the basic physics of tear dynamics in healthy and dry eyes benefits both diagnosis and treatment of dry eye. We present a physiological-based model to describe tear dynamics during blinking. Tears are compartmentalized over the ocular surface; the blink cycle is divided into three repeating phases. Conservation laws quantify the tear volume and tear osmolarity of each compartment during each blink phase. Lacrimal-supply and tear-evaporation rates are varied to reveal the dependence of tear dynamics on dry-eye conditions, specifically tear osmolarity, tear volume, tear-turnover rate (TTR), and osmotic water flow. Predicted periodic-steady tear-meniscus osmolarity is 309 and 321 mOsM in normal and dry eyes, respectively. Tear osmolarity, volume, and TTR all match available clinical measurements. Osmotic water flow through the cornea and conjunctiva contribute 10 and 50% to the total tear supply in healthy and dry-eye conditions, respectively. TTR in aqueous-deficient dry eye (ADDE) is only half that in evaporative dry eye (EDE). The compartmental periodic-steady tear-dynamics model accurately predicts tear behavior in normal and dry eyes. Inclusion of osmotic water flow is crucial to match measured tear osmolarity. Tear-dynamics predictions corroborate the use of TTR as a clinical discriminator between ADDE and EDE. The proposed model is readily extended to predict the dynamics of aqueous solutes such as drugs or fluorescent tags.

  14. Dynamic characterization of small fibers based on the flexural vibrations of a piezoelectric cantilever probe

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofei; Ye, Xuan; Li, Xide

    2016-08-01

    In this paper, we present a cantilever-probe system excited by a piezoelectric actuator, and use it to measure the dynamic mechanical properties of a micro- and nanoscale fiber. Coupling the fiber to the free end of the cantilever probe, we found the dynamic stiffness and damping coefficient of the fiber from the resonance frequency and the quality factor of the fiber-cantilever-probe system. The properties of Bacillus subtilis fibers measured using our proposed system agreed with tensile measurements, validating our method. Our measurements show that the piezoelectric actuator coupled to cantilever probe can be made equivalent to a clamped cantilever with an effective length, and calculated results show that the errors of measured natural frequency of the system can be ignored if the coupled fiber has an inclination angle of alignment of less than 10°. A sensitivity analysis indicates that the first or second resonant mode is the sensitive mode to test the sample’s dynamic stiffness, while the damping property has different sensitivities for the first four modes. Our theoretical analysis demonstrates that the double-cantilever probe is also an effective sensitive structure that can be used to perform dynamic loading and characterize dynamic response. Our method has the advantage of using amplitude-frequency curves to obtain the dynamic mechanical properties without directly measuring displacements and forces as in tensile tests, and it also avoids the effects of the complex surface structure and deformation presenting in contact resonance method. Our method is effective for measuring the dynamic mechanical properties of fiber-like one-dimensional (1D) materials.

  15. Measuring water level in rivers and lakes from lightweight Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Bandini, Filippo; Jakobsen, Jakob; Olesen, Daniel; Reyna-Gutierrez, Jose Antonio; Bauer-Gottwein, Peter

    2017-05-01

    The assessment of hydrologic dynamics in rivers, lakes, reservoirs and wetlands requires measurements of water level, its temporal and spatial derivatives, and the extent and dynamics of open water surfaces. Motivated by the declining number of ground-based measurement stations, research efforts have been devoted to the retrieval of these hydraulic properties from spaceborne platforms in the past few decades. However, due to coarse spatial and temporal resolutions, spaceborne missions have several limitations when assessing the water level of terrestrial surface water bodies and determining complex water dynamics. Unmanned Aerial Vehicles (UAVs) can fill the gap between spaceborne and ground-based observations, and provide high spatial resolution and dense temporal coverage data, in quick turn-around time, using flexible payload design. This study focused on categorizing and testing sensors, which comply with the weight constraint of small UAVs (around 1.5 kg), capable of measuring the range to water surface. Subtracting the measured range from the vertical position retrieved by the onboard Global Navigation Satellite System (GNSS) receiver, we can determine the water level (orthometric height). Three different ranging payloads, which consisted of a radar, a sonar and an in-house developed camera-based laser distance sensor (CLDS), have been evaluated in terms of accuracy, precision, maximum ranging distance and beam divergence. After numerous flights, the relative accuracy of the overall system was estimated. A ranging accuracy better than 0.5% of the range and a maximum ranging distance of 60 m were achieved with the radar. The CLDS showed the lowest beam divergence, which is required to avoid contamination of the signal from interfering surroundings for narrow fields of view. With the GNSS system delivering a relative vertical accuracy better than 3-5 cm, water level can be retrieved with an overall accuracy better than 5-7 cm.

  16. Measurement of contact-angle hysteresis for droplets on nanopillared surface and in the Cassie and Wenzel states: a molecular dynamics simulation study.

    PubMed

    Koishi, Takahiro; Yasuoka, Kenji; Fujikawa, Shigenori; Zeng, Xiao Cheng

    2011-09-27

    We perform large-scale molecular dynamics simulations to measure the contact-angle hysteresis for a nanodroplet of water placed on a nanopillared surface. The water droplet can be in either the Cassie state (droplet being on top of the nanopillared surface) or the Wenzel state (droplet being in contact with the bottom of nanopillar grooves). To measure the contact-angle hysteresis in a quantitative fashion, the molecular dynamics simulation is designed such that the number of water molecules in the droplets can be systematically varied, but the number of base nanopillars that are in direct contact with the droplets is fixed. We find that the contact-angle hysteresis for the droplet in the Cassie state is weaker than that in the Wenzel state. This conclusion is consistent with the experimental observation. We also test a different definition of the contact-angle hysteresis, which can be extended to estimate hysteresis between the Cassie and Wenzel state. The idea is motivated from the appearance of the hysteresis loop typically seen in computer simulation of the first-order phase transition, which stems from the metastability of a system in different thermodynamic states. Since the initial shape of the droplet can be controlled arbitrarily in the computer simulation, the number of base nanopillars that are in contact with the droplet can be controlled as well. We show that the measured contact-angle hysteresis according to the second definition is indeed very sensitive to the initial shape of the droplet. Nevertheless, the contact-angle hystereses measured based on the conventional and new definition seem converging in the large droplet limit. © 2011 American Chemical Society

  17. Jet-Surface Interaction Test: Flow Measurements Results

    NASA Technical Reports Server (NTRS)

    Brown, Cliff; Wernet, Mark

    2014-01-01

    Modern aircraft design often puts the engine exhaust in close proximity to the airframe surfaces. Aircraft noise prediction tools must continue to develop in order to meet the challenges these aircraft present. The Jet-Surface Interaction Tests have been conducted to provide a comprehensive quality set of experimental data suitable for development and validation of these exhaust noise prediction methods. Flow measurements have been acquired using streamwise and cross-stream particle image velocimetry (PIV) and fluctuating surface pressure data acquired using flush mounted pressure transducers near the surface trailing edge. These data combined with previously reported far-field and phased array noise measurements represent the first step toward the experimental data base. These flow data are particularly applicable to development of noise prediction methods which rely on computational fluid dynamics to uncover the flow physics. A representative sample of the large flow data set acquired is presented here to show how a surface near a jet affects the turbulent kinetic energy in the plume, the spatial relationship between the jet plume and surface needed to generate surface trailing-edge noise, and differences between heated and unheated jet flows with respect to surfaces.

  18. Preliminary results on ocean dynamics from Skylab and their implications for future spacecraft

    NASA Technical Reports Server (NTRS)

    Hayes, J.; Pierson, W. J.; Cardone, V. J.

    1975-01-01

    The instrument aboard Skylab designated S193 - a combined passive and active microwave radar system acting as a radiometer, scatterometer, and altimeter - is used to measure the surface vector wind speeds in the planetary boundary layer over the oceans. Preliminary results corroborate the hypothesis that sea surface winds in the planetary boundary layer can be determined from satellite data. Future spacecraft plans for measuring a geoid with an accuracy up to 10 cm are discussed.

  19. Molecular dynamics simulation of the folding of single alkane chains with different lengths on single-walled carbon nanotubes and graphene.

    PubMed

    Liu, Yan Fang; Yang, Hua; Zhang, Hui

    2018-05-31

    Chain folding is an important step during polymer crystallization. In order to study the effects of the surface on chain folding, molecular dynamics simulations of the folding of different alkane chains on three kinds of single-walled carbon nanotubes (SWCNTs) and graphene were performed. The folding behaviors of the single alkane chains on these surfaces were found to be different from their folding behaviors in vacuum. The end-to-end distances of the chains were calculated to explore the chain folding. An increasing tendency to fold into two or more stems with increasing alkane chain length was observed. This result indicates that the occurrence and the stability of chain folding are related to the surface curvature, the diameter of the SWCNT, and surface texture. In addition, the angle between the direction of the alkane chain segment and the direction of the surface texture was measured on different surfaces.

  20. Direct measurements of meltwater runoff on the Greenland ice sheet surface

    NASA Astrophysics Data System (ADS)

    Smith, Laurence C.; Yang, Kang; Pitcher, Lincoln H.; Overstreet, Brandon T.; Chu, Vena W.; Rennermalm, Åsa K.; Ryan, Jonathan C.; Cooper, Matthew G.; Gleason, Colin J.; Tedesco, Marco; Jeyaratnam, Jeyavinoth; van As, Dirk; van den Broeke, Michiel R.; van de Berg, Willem Jan; Noël, Brice; Langen, Peter L.; Cullather, Richard I.; Zhao, Bin; Willis, Michael J.; Hubbard, Alun; Box, Jason E.; Jenner, Brittany A.; Behar, Alberto E.

    2017-12-01

    Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland's midelevation (1,207–1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems.

  1. Direct measurements of meltwater runoff on the Greenland ice sheet surface.

    PubMed

    Smith, Laurence C; Yang, Kang; Pitcher, Lincoln H; Overstreet, Brandon T; Chu, Vena W; Rennermalm, Åsa K; Ryan, Jonathan C; Cooper, Matthew G; Gleason, Colin J; Tedesco, Marco; Jeyaratnam, Jeyavinoth; van As, Dirk; van den Broeke, Michiel R; van de Berg, Willem Jan; Noël, Brice; Langen, Peter L; Cullather, Richard I; Zhao, Bin; Willis, Michael J; Hubbard, Alun; Box, Jason E; Jenner, Brittany A; Behar, Alberto E

    2017-12-12

    Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km 2 moulin-terminating internally drained catchment (IDC) on Greenland's midelevation (1,207-1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems. Copyright © 2017 the Author(s). Published by PNAS.

  2. Direct measurements of meltwater runoff on the Greenland ice sheet surface

    PubMed Central

    Smith, Laurence C.; Yang, Kang; Pitcher, Lincoln H; Overstreet, Brandon T.; Chu, Vena W.; Rennermalm, Åsa K.; Ryan, Jonathan C.; Cooper, Matthew G.; Gleason, Colin J.; Tedesco, Marco; Jeyaratnam, Jeyavinoth; van As, Dirk; van den Broeke, Michiel R.; van de Berg, Willem Jan; Noël, Brice; Langen, Peter L.; Cullather, Richard I.; Zhao, Bin; Hubbard, Alun; Box, Jason E.; Jenner, Brittany A.; Behar, Alberto E.

    2017-01-01

    Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland’s midelevation (1,207–1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems. PMID:29208716

  3. Trajectory-based change detection for automated characterization of forest disturbance dynamics

    Treesearch

    Robert E. Kennedy; Warren B. Cohen; Todd A. Schroeder

    2007-01-01

    Satellite sensors are well suited to monitoring changes on the Earth's surface through provision of consistent and repeatable measurements at a spatial scale appropriate for many processes causing change on the land surface. Here, we describe and test a new conceptual approach to change detection of forests using a dense temporal stack of Landsat Thematic Mapper (...

  4. Contribution of glue layer into epidermis sample fluorescence dynamics

    NASA Astrophysics Data System (ADS)

    Salomatina, Elena V.; Chernova, Svetlana P.; Pravdin, Alexander B.

    2000-04-01

    In this work, the temporal behavior of autofluorescence of epidermis samples under UV-irradiation has ben studied. The samples were prepared using surface epidermis stripping technique. Fluorescence spectra and kinetic curves of fluorescence intensity have been obtained. It has been concluded that the glue composition used allows the measurement of epidermis fluorescence dynamics with the first 60 min of experiment.

  5. Biological Response to the Dynamic Spectral-Polarized Underwater Light Field

    DTIC Science & Technology

    2011-09-30

    www.bio.utexas.edu/research/cummingslab/ LONG-TERM GOALS Camouflage in marine environments requires matching all of the background optical ...polarized light field in near-shore and near-surface environments (2) Characterize the biological camouflage response of organisms to these dynamic optical ...field will be measured by the simultaneous deployment of a comprehensive optical suite including underwater video-polarimetry (Cummings), inherent

  6. Structure and dynamics of protein waters revealed by radiolysis and mass spectrometry

    PubMed Central

    Gupta, Sayan; D’Mello, Rhijuta; Chance, Mark R.

    2012-01-01

    Water is critical for the structure, stability, and functions of macromolecules. Diffraction and NMR studies have revealed structure and dynamics of bound waters at atomic resolution. However, localizing the sites and measuring the dynamics of bound waters, particularly on timescales relevant to catalysis and macromolecular assembly, is quite challenging. Here we demonstrate two techniques: first, temperature-dependent radiolytic hydroxyl radical labeling with a mass spectrometry (MS)-based readout to identify sites of bulk and bound water interactions with surface and internal residue side chains, and second, H218O radiolytic exchange coupled MS to measure the millisecond dynamics of bound water interactions with various internal residue side chains. Through an application of the methods to cytochrome c and ubiquitin, we identify sites of water binding and measure the millisecond dynamics of bound waters in protein crevices. As these MS-based techniques are very sensitive and not protein size limited, they promise to provide unique insights into protein–water interactions and water dynamics for both small and large proteins and their complexes. PMID:22927377

  7. The study of dynamic force acted on water strider leg departing from water surface

    NASA Astrophysics Data System (ADS)

    Sun, Peiyuan; Zhao, Meirong; Jiang, Jile; Zheng, Yelong

    2018-01-01

    Water-walking insects such as water striders can skate on the water surface easily with the help of the hierarchical structure on legs. Numerous theoretical and experimental studies show that the hierarchical structure would help water strider in quasi-static case such as load-bearing capacity. However, the advantage of the hierarchical structure in the dynamic stage has not been reported yet. In this paper, the function of super hydrophobicity and the hierarchical structure was investigated by measuring the adhesion force of legs departing from the water surface at different lifting speed by a dynamic force sensor. The results show that the adhesion force decreased with the increase of lifting speed from 0.02 m/s to 0.4 m/s, whose mechanic is investigated by Energy analysis. In addition, it can be found that the needle shape setae on water strider leg can help them depart from water surface easily. Thus, it can serve as a starting point to understand how the hierarchical structure on the legs help water-walking insects to jump upward rapidly to avoid preying by other insects.

  8. Molecular dynamics simulation of shock induced ejection on fused silica surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Rui; Xiang, Meizhen; Jiang, Shengli

    2014-05-21

    Shock response and surface ejection behaviors of fused silica are studied by using non-equilibrium molecular dynamics combining with the Tersoff potential. First, bulk structure and Hugoniot curves of fused silica are calculated and compared with experimental results. Then, the dynamical process of surface ejection behavior is simulated under different loading velocities ranging from 3.5 to 5.0 km∕s, corresponding to shock wave velocities from 7.1 to 8.8 km∕s. The local atomistic shear strain parameter is used to describe the local plastic deformation under conditions of shock compression or releasing. Our result shows that the shear strain is localized in the bottom area ofmore » groove under the shock compression. Surface ejection is observed when the loading velocity exceeds 4.0 km∕s. Meanwhile, the temperature of the micro-jet is ∼5574.7 K, which is close to experiment measurement. Several kinds of structural defects including non-bridging oxygen are found in the bulk area of the sample after ejection.« less

  9. Long-Term Performance Evaluation of Asphalt Surface Treatments: Product Placement

    DTIC Science & Technology

    2010-02-01

    20 Wheeler-Sack Army Airfield, Fort Drum , New York ...............................................................28 4...Grip Tester underside view ................................................................................ 6 Figure 3. Rotating disc of Dynamic...measures pavement friction using the braked -wheel, fixed-slip principle. Two wheels support the Grip Tester on a drive axle, while a measuring wheel with

  10. Straining and wrinkling processes during turbulence-premixed flame interaction measured using temporally-resolved diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinberg, Adam M.; Driscoll, James F.

    2009-12-15

    The dynamical processes of flame surface straining and wrinkling that occur as turbulence interacts with a premixed flame were measured using cinema-stereoscopic PIV (CS-PIV) and orthogonal-plane cinema-stereoscopic PIV (OPCS-PIV). These diagnostics provided temporally resolved measurements of turbulence-flame interaction at frame rates of up to 3 kHz and spatial resolutions as small as 280{mu} m. Previous descriptions of flame straining and wrinkling have typically been derived based on a canonical interaction between a pair of counter-rotating vortices and a planar flame surface. However, it was found that this configuration did not properly represent real turbulence-flame interaction. Interactions resembling the canonical configurationmore » were observed in less than 10% of the recorded frames. Instead, straining and wrinkling were generally caused more geometrically complex turbulence, consisting of large groups of structures that could be multiply curved and intertwined. The effect of the interaction was highly dependent on the interaction geometry. Furthermore, even when the turbulence did exist in the canonical geometry, the straining and wrinkling of the flame surface were not well characterized by the vortical structures. A new mechanistic description of the turbulence-flame interaction was therefore identified and confirmed by the measurements. In this description, flame surface straining is caused by coherent structures of fluid-dynamic strain-rate (strain-rate structures). The role of vortical structures is to curve existing flame surface, creating wrinkles. By simultaneously considering both forms of turbulent structure, turbulence-flame interactions in both the canonical configuration and more complex geometries could be understood. (author)« less

  11. High resolution optical surface metrology with the slope measuring portable optical test system

    NASA Astrophysics Data System (ADS)

    Maldonado, Alejandro V.

    New optical designs strive to achieve extreme performance, and continually increase the complexity of prescribed optical shapes, which often require wide dynamic range and high resolution. SCOTS, or the Software Configurable Optical Test System, can measure a wide range of optical surfaces with high sensitivity using surface slope. This dissertation introduces a high resolution version of SCOTS called SPOTS, or the Slope measuring Portable Optical Test System. SPOTS improves the metrology of surface features on the order of sub-millimeter to decimeter spatial scales and nanometer to micrometer level height scales. Currently there is no optical surface metrology instrument with the same utility. SCOTS uses a computer controlled display (such as an LCD monitor) and camera to measure surface slopes over the entire surface of a mirror. SPOTS differs in that an additional lens is placed near the surface under test. A small prototype system is discussed in general, providing the support for the design of future SPOTS devices. Then the SCOTS instrument transfer function is addressed, which defines the way the system filters surface heights. Lastly, the calibration and performance of larger SPOTS device is analyzed with example measurements of the 8.4-m diameter aspheric Large Synoptic Survey Telescope's (LSST) primary mirror. In general optical systems have a transfer function, which filters data. In the case of optical imaging systems the instrument transfer function (ITF) follows the modulation transfer function (MTF), which causes a reduction of contrast as a function of increasing spatial frequency due to diffraction. In SCOTS, ITF is shown to decrease the measured height of surface features as their spatial frequency increases, and thus the SCOTS and SPOTS ITF is proportional to their camera system's MTF. Theory and simulations are supported by a SCOTS measurement of a test piece with a set of lithographically written sinusoidal surface topographies. In addition, an example of a simple inverse filtering technique is provided. The success of a small SPOTS proof of concept instrument paved the way for a new larger prototype system, which is intended to measure subaperture regions on large optical mirrors. On large optics, the prototype SPOTS is light weight and it rests on the surface being tested. One advantage of this SPOTS is stability over time in maintaining its calibration. Thus the optician can simply place SPOTS on the mirror, perform a simple alignment, collect measurement data, then pick the system up and repeat at a new location. The entire process takes approximately 5 to 10 minutes, of which 3 minutes is spent collecting data. SPOTS' simplicity of design, light weight, robustness, wide dynamic range, and high sensitivity make it a useful tool for optical shop use during the fabrication and testing process of large and small optics.

  12. Glacial Lake Growth and Associated Glacier Dynamics: Case Study from the Himalayas, Andes, Alaska and New Zealand

    NASA Astrophysics Data System (ADS)

    Binger, D. J.; Haritashya, U. K.; Kargel, J. S.; Shugar, D. H.

    2016-12-01

    Glacial lake growth and associated glacier dynamics: Case study from the Himalayas, Andes, Alaska and New Zealand David J. Binger1, Umesh K. Haritashya1 and Jeffrey S. Kargel21University of Dayton, Dayton, OH 2University of Arizona, Tucson, AZ As a result of climate change most of the world's alpine glaciers are undergoing measurable retreat and dynamic changes. The result of accelerated melting has led to the formation and growth of potentially dangerous glacial lakes. In this study, alpine glaciers and associated lakes from the Himalayas, Andes, Alaska and New Zealand, showing similar geomorphological settings were analyzed to compare differences in regional proglacial lake growth and its relationship with glacier dynamics. Specifically, we analyzed the surface area growth of the lakes, retreat of glacier terminus, changes in glacier velocity, surface temperature and potential glacial lake outburst flood triggers. Using Landsat and ASTER satellite images, Cosi - Corr software, and in house thermal mapping, 10 glaciers were analyzed and compared. Results show a substantial increase in proglacial lake surface area, accelerated velocity and significant calving of the glaciers. Glacier surface temperatures varied by location, with some remaining constant and others 2°C - 4°C increases; although increased surface temperature did not always show a direct correlation with increasing retreat rate. Lakes with high rates of surface area growth paired with glaciers with increased velocity and calving could prove to be unsustainable and lead to an increased risk for glacial lake outburst floods. Overall, result show the changing dynamics of the alpine glaciers in different mountain regions and the growth of their proglacial lakes.

  13. Dynamics and Instabilities of Acoustically Stressed Interfaces

    NASA Astrophysics Data System (ADS)

    Shi, William Tao

    An intense sound field exerts acoustic radiation pressure on a transitional layer between two continuous fluid media, leading to the unconventional dynamical behavior of the interface in the presence of the sound field. An understanding of this behavior has applications in the study of drop dynamics and surface rheology. Acoustic fields have also been utilized in the generation of interfacial instability, which may further encourage the dispersion or coalescence of liquids. Therefore, the study of the dynamics of the acoustically stressed interfaces is essential to infer the mechanism of the various phenomena related to interfacial dynamics and to acquire the properties of liquid surfaces. This thesis studies the dynamics of acoustically stressed interfaces through a theoretical model of surface interactions on both closed and open interfaces. Accordingly, a boundary integral method is developed to simulate the motions of a stressed interface. The method has been employed to determine the deformation, oscillation and instability of acoustically levitated drops. The generalized computations are found to be in good agreement with available experimental results. The linearized theory is also derived to predict the instability threshold of the flat interface, and is then compared with experiments conducted to observe and measure the unstable motions of the horizontal interface. This thesis is devoted to describing and classifying the simplest mechanisms by which acoustic fields provide a surface interaction with a fluid. A physical picture of the competing processes introduced by the evolution of an interface in a sound field is presented. The development of an initial small perturbation into a sharp form is observed on either a drop surface or a horizontal interface, indicating a strong focusing of acoustic energy at certain spots of the interface. Emphasis is placed on understanding the basic coupling mechanisms, rather than on particular applications that may involve this coupling. The dynamical behavior of a stressed drop can be determined in terms of a given form of an incident sound field and three dimensionless quantities. Thus, the behavior of a complex dynamic system has been clarified, permitting the exploration and interpretation of the nature of liquid surface phenomena.

  14. Skin-Friction Measurements in a 3-D, Supersonic Shock-Wave/Boundary-Layer Interaction

    NASA Technical Reports Server (NTRS)

    Wideman, J. K.; Brown, J. L.; Miles, J. B.; Ozcan, O.

    1994-01-01

    The experimental documentation of a three-dimensional shock-wave/boundary-layer interaction in a nominal Mach 3 cylinder, aligned with the free-stream flow, and 20 deg. half-angle conical flare offset 1.27 cm from the cylinder centerline. Surface oil flow, laser light sheet illumination, and schlieren were used to document the flow topology. The data includes surface-pressure and skin-friction measurements. A laser interferometric skin friction data. Included in the skin-friction data are measurements within separated regions and three-dimensional measurements in highly-swept regions. The skin-friction data will be particularly valuable in turbulence modeling and computational fluid dynamics validation.

  15. Precise measurement of surface plasmon forces at a metal-dielectric interface using a calibrated evanescent wave

    NASA Astrophysics Data System (ADS)

    Liu, Lulu; Woolf, Alex

    2015-03-01

    By observing the motion of an optically trapped microscopic colloid, sub-piconewton static and dynamical forces have been measured using a technique called photonic force microscopy. This technique, though potentially powerful, has in the past struggled to make precise measurements in the vicinity of a reflective or metallic interface, due to distortions of the optical field. We introduce a new in-situ, contact-free calibration method for particle tracking using an evanescent wave, and demonstrate its expanded capability by the precise measurement of forces of interaction between a single colloid and the optical field generated by a propagating surface plasmon polariton on gold.

  16. The Applicability of Nonlinear Systems Dynamics Chaos Measures to Cardiovascular Physiology Variables

    NASA Technical Reports Server (NTRS)

    Hooker, John C.

    1991-01-01

    Three measures of nonlinear chaos (fractal dimension, Approximate Entropy (ApEn), and Lyapunov exponents) were studied as potential measures of cardiovascular condition. It is suggested that these measures have potential in the assessment of cardiovascular condition in environments of normal cardiovascular stress (normal gravity on the Earth surface), cardiovascular deconditioning (microgravity of space), and increased cardiovascular stress (lower body negative pressure (LBNP) treatments).

  17. Effects of incoming surface wind conditions on the wake characteristics and dynamic wind loads acting on a wind turbine model

    NASA Astrophysics Data System (ADS)

    Tian, Wei; Ozbay, Ahmet; Hu, Hui

    2014-12-01

    An experimental investigation was conducted to examine the effects of incoming surface wind conditions on the wake characteristics and dynamic wind loads acting on a wind turbine model. The experimental study was performed in a large-scale wind tunnel with a scaled three-blade Horizontal Axial Wind Turbine model placed in two different types of Atmospheric Boundary Layer (ABL) winds with distinct mean and turbulence characteristics. In addition to measuring dynamic wind loads acting on the model turbine by using a force-moment sensor, a high-resolution Particle Image Velocimetry system was used to achieve detailed flow field measurements to characterize the turbulent wake flows behind the model turbine. The measurement results reveal clearly that the discrepancies in the incoming surface winds would affect the wake characteristics and dynamic wind loads acting on the model turbine dramatically. The dynamic wind loads acting on the model turbine were found to fluctuate much more significantly, thereby, much larger fatigue loads, for the case with the wind turbine model sited in the incoming ABL wind with higher turbulence intensity levels. The turbulent kinetic energy and Reynolds stress levels in the wake behind the model turbine were also found to be significantly higher for the high turbulence inflow case, in comparison to those of the low turbulence inflow case. The flow characteristics in the turbine wake were found to be dominated by the formation, shedding, and breakdown of various unsteady wake vortices. In comparison with the case with relatively low turbulence intensities in the incoming ABL wind, much more turbulent and randomly shedding, faster dissipation, and earlier breakdown of the wake vortices were observed for the high turbulence inflow case, which would promote the vertical transport of kinetic energy by entraining more high-speed airflow from above to re-charge the wake flow and result in a much faster recovery of the velocity deficits in the turbine wake.

  18. Dynamic comparisons of piezoelectric ejecta diagnostics

    NASA Astrophysics Data System (ADS)

    Buttler, W. T.; Zellner, M. B.; Olson, R. T.; Rigg, P. A.; Hixson, R. S.; Hammerberg, J. E.; Obst, A. W.; Payton, J. R.; Iverson, A.; Young, J.

    2007-03-01

    We investigate the quantitative reliability and precision of three different piezoelectric technologies for measuring ejected areal mass from shocked surfaces. Specifically we performed ejecta measurements on Sn shocked at two pressures, P ≈215 and 235 kbar. The shock in the Sn was created by launching a impactor with a powder gun. We self-compare and cross-compare these measurements to assess the ability of these probes to precisely determine the areal mass ejected from a shocked surface. We demonstrate the precision of each technology to be good, with variabilities on the order of ±10%. We also discuss their relative accuracy.

  19. The fabrication of flip-covered plasmonic nanostructure surfaces with enhanced wear resistance

    NASA Astrophysics Data System (ADS)

    Jung, Joo-Yun; Sung, Sang-Keun; Kim, Kwang-Seop; Cheon, So-Hui; Lee, Jihye; Choi, Jun-Hyuk; Lee, Eungsug

    2017-01-01

    Exposed nanostructure surfaces often suffer from external dynamic wear, particularly when used in human interaction, resulting in surface defects and the degradation of plasmonic resonance properties particularly in terms of transmittance extinction rate and peak-to-valley slope. In this work, a method for the fabrication of flip-covered silver nanostructure-arrayed surfaces is shown to enhance wear resistance. Selectively transferred silver dot and silver webbed-trench exposed reference samples were fabricated by metal nanoimprint, and flip-covered samples were created by flipping and bonding reference samples onto a PET film coated with an adhesive layer. The samples' spectral transmittance was measured before and after a dynamic wear test. Some spectral shift was observed due to the change in refractive index of the surrounding media, but this was not as significant as the effects of the other chosen geometry factors. It was found that dynamic wear had a greater effect on the plasmonic resonance behavior of the exposed samples than in those that had been flip-covered. This suggests that flip-covering may be an effective strategy for the protection of plasmonic resonators against dynamic wear. It is expected that the slight variations in spectral transmittance could be compensated through proper tuning of the sample geometry.

  20. Application of Spaceborne Scatterometer for Mapping Freeze-Thaw State in Northern Landscapes as a Measure of Ecological and Hydrological Processes

    NASA Technical Reports Server (NTRS)

    McDonald, Kyle; Kimball, John; Zimmermann, Reiner; Way, JoBea; Frolking, Steve; Running, Steve

    1994-01-01

    Landscape freeze/thaw transitions coincide with marked shifts in albedo, surface energy and mass exchange, and associated snow dynamics. monitoring landscape freeze/thaw dynamics would improve our ability to quantify the interannual variability of boreal hydrology and river runoff/flood dynamics, The annual duration of frost-free period also bounds the period of photosynthetic activity in borel and arctic regions thus affecting the carbon budget and the interannual variability fo regional carbon fluxes.

  1. Predicting full-field dynamic strain on a three-bladed wind turbine using three dimensional point tracking and expansion techniques

    NASA Astrophysics Data System (ADS)

    Baqersad, Javad; Niezrecki, Christopher; Avitabile, Peter

    2014-03-01

    As part of a project to predict the full-field dynamic strain in rotating structures (e.g. wind turbines and helicopter blades), an experimental measurement was performed on a wind turbine attached to a 500-lb steel block and excited using a mechanical shaker. In this paper, the dynamic displacement of several optical targets mounted to a turbine placed in a semi-built-in configuration was measured by using three-dimensional point tracking. Using an expansion algorithm in conjunction with a finite element model of the blades, the measured displacements were expanded to all finite element degrees of freedom. The calculated displacements were applied to the finite element model to extract dynamic strain on the surface as well as within the interior points of the structure. To validate the technique for dynamic strain prediction, the physical strain at eight locations on the blades was measured during excitation using strain-gages. The expansion was performed by using both structural modes of an individual cantilevered blade and using modes of the entire structure (three-bladed wind turbine and the fixture) and the predicted strain was compared to the physical strain-gage measurements. The results demonstrate the ability of the technique to predict full-field dynamic strain from limited sets of measurements and can be used as a condition based monitoring tool to help provide damage prognosis of structures during operation.

  2. Bayesian inference of ice thickness from remote-sensing data

    NASA Astrophysics Data System (ADS)

    Werder, Mauro A.; Huss, Matthias

    2017-04-01

    Knowledge about ice thickness and volume is indispensable for studying ice dynamics, future sea-level rise due to glacier melt or their contribution to regional hydrology. Accurate measurements of glacier thickness require on-site work, usually employing radar techniques. However, these field measurements are time consuming, expensive and sometime downright impossible. Conversely, measurements of the ice surface, namely elevation and flow velocity, are becoming available world-wide through remote sensing. The model of Farinotti et al. (2009) calculates ice thicknesses based on a mass conservation approach paired with shallow ice physics using estimates of the surface mass balance. The presented work applies a Bayesian inference approach to estimate the parameters of a modified version of this forward model by fitting it to both measurements of surface flow speed and of ice thickness. The inverse model outputs ice thickness as well the distribution of the error. We fit the model to ten test glaciers and ice caps and quantify the improvements of thickness estimates through the usage of surface ice flow measurements.

  3. An interferometric study of the dissolution kinetics of anorthite: The role of reactive surface area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luettge, A.; Bolton, E.W.; Lasaga, A.C.

    1999-07-01

    An optical interferometry system has been used to study the dynamics of the dissolution of anorthite (010) cleavage surfaces. With this technique, it is possible to measure directly the surface retreat of alumino-silicates as a function of time and thereby the dissolution rate using a new application of interferometry. The dissolution experiments are carried out in a flow-through cell system with a near endmember anorthite (An{sub 98}) from Miyake-Jima, Tokyo, Japan, Perchloric acid solutions (pH 3) were used at a constant temperature of 25 C. After having measured the topography of the original pristine anorthite surface, measurements of the surfacemore » normal retreat were taken after 48,84,120, and 168 hrs of run duration at 15 different regions on the surface. An internal-reference technique allows absolute measurements of the changes in surface height for the very first time. From these measurements, an average bulk rate for dissolution of the (010) anorthite surface is calculated to be 5.7 x 10{sup {minus}13} [moles/cm{sub 2}/sec]. Finally, their directly determined bulk rate for the (010) face is compared with the bulk rates calculated from the rate law obtained from powder experiments and using the BET or total surface area.« less

  4. Temporal response of a surface flashover on a velvet cathode in a relativistic diode

    DOE PAGES

    Coleman, J. E.; Moir, D. C.; Crawford, M. T.; ...

    2015-03-11

    Surface flashover of a carbon fiber velvet cathode generates a discharge from which electrons are relativistically accelerated to γ ranging from 4.9 to 8.8 through a 17.8 cm diode. This discharge is assumed to be a hydrocarbon mixture. Our objective is to quantify the dynamics over the ~100 ns pulse of the plasma discharge generated on the surface of the velvet cathode and across the anode-cathode (A-K) gap. We present a qualitative comparison of calculated and measured results, which includes time resolved measurements with a photomultiplier tube and charge-coupled device images. Additionally, initial visible spectroscopy measurements will also be presentedmore » confirming the ion species are dominated by hydrogen.« less

  5. Dynamics of confined reactive water in smectite clay-zeolite composites.

    PubMed

    Pitman, Michael C; van Duin, Adri C T

    2012-02-15

    The dynamics of water confined to mesoporous regions in minerals such as swelling clays and zeolites is fundamental to a wide range of resource management issues impacting many processes on a global scale, including radioactive waste containment, desalination, and enhanced oil recovery. Large-scale atomic models of freely diffusing multilayer smectite particles at low hydration confined in a silicalite cage are used to investigate water dynamics in the composite environment with the ReaxFF reactive force field over a temperature range of 300-647 K. The reactive capability of the force field enabled a range of relevant surface chemistry to emerge, including acid/base equilibria in the interlayer calcium hydrates and silanol formation on the edges of the clay and inner surface of the zeolite housing. After annealing, the resulting clay models exhibit both mono- and bilayer hydration structures. Clay surface hydration redistributed markedly and yielded to silicalite water loading. We find that the absolute rates and temperature dependence of water dynamics compare well to neutron scattering data and pulse field gradient measures from relevant samples of Ca-montmorillonite and silicalite, respectively. Within an atomistic, reactive context, our results distinguish water dynamics in the interlayer Ca(OH)(2)·nH(2)O environment from water flowing over the clay surface, and from water diffusing within silicalite. We find that the diffusion of water when complexed to Ca hydrates is considerably slower than freely diffusing water over the clay surface, and the reduced mobility is well described by a difference in the Arrhenius pre-exponential factor rather than a change in activation energy.

  6. Modelling carbon fluxes of forest and grassland ecosystems in Western Europe using the CARAIB dynamic vegetation model: evaluation against eddy covariance data.

    NASA Astrophysics Data System (ADS)

    Henrot, Alexandra-Jane; François, Louis; Dury, Marie; Hambuckers, Alain; Jacquemin, Ingrid; Minet, Julien; Tychon, Bernard; Heinesch, Bernard; Horemans, Joanna; Deckmyn, Gaby

    2015-04-01

    Eddy covariance measurements are an essential resource to understand how ecosystem carbon fluxes react in response to climate change, and to help to evaluate and validate the performance of land surface and vegetation models at regional and global scale. In the framework of the MASC project (« Modelling and Assessing Surface Change impacts on Belgian and Western European climate »), vegetation dynamics and carbon fluxes of forest and grassland ecosystems simulated by the CARAIB dynamic vegetation model (Dury et al., iForest - Biogeosciences and Forestry, 4:82-99, 2011) are evaluated and validated by comparison of the model predictions with eddy covariance data. Here carbon fluxes (e.g. net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RECO)) and evapotranspiration (ET) simulated with the CARAIB model are compared with the fluxes measured at several eddy covariance flux tower sites in Belgium and Western Europe, chosen from the FLUXNET global network (http://fluxnet.ornl.gov/). CARAIB is forced either with surface atmospheric variables derived from the global CRU climatology, or with in situ meteorological data. Several tree (e.g. Pinus sylvestris, Fagus sylvatica, Picea abies) and grass species (e.g. Poaceae, Asteraceae) are simulated, depending on the species encountered on the studied sites. The aim of our work is to assess the model ability to reproduce the daily, seasonal and interannual variablility of carbon fluxes and the carbon dynamics of forest and grassland ecosystems in Belgium and Western Europe.

  7. Visualizing characteristics of ocean data collected during the Shuttle Imaging Radar-B experiment

    NASA Technical Reports Server (NTRS)

    Tilley, David G.

    1991-01-01

    Topographic measurements of sea surface elevation collected by the Surface Contour Radar (SCR) during NASA's Shuttle Imaging Radar (SIR-B) experiment are plotted as three dimensional surface plots to observe wave height variance along the track of a P-3 aircraft. Ocean wave spectra were computed from rotating altimeter measurements acquired by the Radar Ocean Wave Spectrometer (ROWS). Fourier power spectra computed from SIR-B synthetic aperture radar (SAR) images of the ocean are compared to ROWS surface wave spectra. Fourier inversion of SAR spectra, after subtraction of spectral noise and modeling of wave height modulation, yields topography similar to direct measurements made by SCR. Visual perspectives on the SCR and SAR ocean data are compared. Threshold distinctions between surface elevation and texture modulations of SAR data are considered within the context of a dynamic statistical model of rough surface scattering. The result of these endeavors is insight as to the physical mechanism governing the imaging of ocean waves with SAR.

  8. Beach groundwater dynamics

    NASA Astrophysics Data System (ADS)

    Horn, Diane P.

    2002-11-01

    An understanding of the interaction between surface and groundwater flows in the swash zone is necessary to understand beach profile evolution. Coastal researchers have recognized the importance of beach watertable and swash interaction to accretion and erosion above the still water level (SWL), but the exact nature of the relationship between swash flows, beach watertable flow and cross-shore sediment transport is not fully understood. This paper reviews research on beach groundwater dynamics and identifies research questions which will need to be answered before swash zone sediment transport can be successfully modelled. After defining the principal terms relating to beach groundwater, the behavior, measurement and modelling of beach groundwater dynamics is described. Research questions related to the mechanisms of surface-subsurface flow interaction are reviewed, particularly infiltration, exfiltration and fluidisation. The implications of these mechanisms for sediment transport are discussed.

  9. Studies of Itokawa's Surface Exposure by Measurements of Cosmic-ray Produced Nuclides

    NASA Technical Reports Server (NTRS)

    Caffee, M. W.; Nishiizumi, K.; Tsuchiyama, A.; Uesugi, M.; Zolensky, M. E.

    2014-01-01

    We plan to investigate the evolutionary history of surface materials from 25143 Itokawa, the Hayabusa samples. Our studies are based on the measurement of nuclides produced in asteroidal surface materials by cosmic rays. Cosmogenic radionuclides are used to determine the duration and nature of the exposure of materials to energetic particles. Our goals are to understand both the fundamental processes on the asteroidal surface and the evolutionary history of its surface materials. They are also key to understanding the history of Itokawa's surface and asteroid-meteoroid evolutionary dynamics. To achieve our key goals, in particular reconstructing the evolutionary histories of the asteroidal surface, we proposed: (1) characterizing Itokawa particles using SXCT, SXRD, and FE-SEM without modification of the sample; (2) embedding each particle in acrylic resin, then slicing a small corner with an ultra-microtome and examining it using super-STEM and SIMS for characterizing surface morphology, space weathering, and oxygen three-isotope analysis; and finally (3) measuring small amounts of cosmogenic radionuclides (104-105 atoms) in Hayabusa samples by AMS. However, we have to modify our plan due to unexpected situation.

  10. Scanning dimensional measurement using laser-trapped microsphere with optical standing-wave scale

    NASA Astrophysics Data System (ADS)

    Michihata, Masaki; Ueda, Shin-ichi; Takahashi, Satoru; Takamasu, Kiyoshi; Takaya, Yasuhiro

    2017-06-01

    We propose a laser trapping-based scanning dimensional measurement method for free-form surfaces. We previously developed a laser trapping-based microprobe for three-dimensional coordinate metrology. This probe performs two types of measurements: a tactile coordinate and a scanning measurement in the same coordinate system. The proposed scanning measurement exploits optical interference. A standing-wave field is generated between the laser-trapped microsphere and the measured surface because of the interference from the retroreflected light. The standing-wave field produces an effective length scale, and the trapped microsphere acts as a sensor to read this scale. A horizontal scan of the trapped microsphere produces a phase shift of the standing wave according to the surface topography. This shift can be measured from the change in the microsphere position. The dynamics of the trapped microsphere within the standing-wave field was estimated using a harmonic model, from which the measured surface can be reconstructed. A spherical lens was measured experimentally, yielding a radius of curvature of 2.59 mm, in agreement with the nominal specification (2.60 mm). The difference between the measured points and a spherical fitted curve was 96 nm, which demonstrates the scanning function of the laser trapping-based microprobe for free-form surfaces.

  11. Formation of protein/surfactant adsorption layer at the air/water interface as studied by dilational surface rheology.

    PubMed

    Mikhailovskaya, A A; Noskov, B A; Lin, S-Y; Loglio, G; Miller, R

    2011-08-25

    The dynamic dilatational surface elasticity of mixed solutions of globular proteins (β-lactoglobulin (BLG) and bovine serum albumin (BSA)) with cationic (dodecyltrimethylammonium bromide (DTAB)) and anionic (sodium dodecyl sulfate (SDS)) surfactants was measured as a function of the surfactant concentration and surface age. If the cationic surfactant concentration exceeds a certain critical value, the kinetic dependencies of the dynamic surface elasticity of BLG/DTAB and BSA/DTAB solutions become nonmonotonous and resemble those of mixed solutions of proteins with guanidine hydrochloride. This result indicates not only the destruction of the protein tertiary structure in the surface layer of mixed solution but also a strong perturbation of the secondary structure. The corresponding kinetic dependencies for protein solutions with added anionic surfactants are always monotonous, thereby revealing a different mechanism of the adsorption layer formation. One can assume that the secondary structure is destroyed to a lesser extent in the latter case and hinders the formation of loops and tails at the interface. The increase of the solution's ionic strength by the addition of sodium chloride results in stronger changes of the protein conformations in the surface layer and the appearance of a local maximum in the kinetic dependencies of the dynamic surface elasticity in a relatively narrow range of SDS concentration. © 2011 American Chemical Society

  12. Modified Mason number for charged paramagnetic colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Du, Di; Hilou, Elaa; Biswal, Sibani Lisa

    2016-06-01

    The dynamics of magnetorheological fluids have typically been described by the Mason number, a governing parameter defined as the ratio between viscous and magnetic forces in the fluid. For most experimental suspensions of magnetic particles, surface forces, such as steric and electrostatic interactions, can significantly influence the dynamics. Here we propose a theory of a modified Mason number that accounts for surface forces and show that this modified Mason number is a function of interparticle distance. We demonstrate that this modified Mason number is accurate in describing the dynamics of a rotating pair of paramagnetic colloids of identical or mismatched sizes in either high or low salt solutions. The modified Mason number is confirmed to be pseudoconstant for particle pairs and particle chains undergoing a stable-metastable transition during rotation. The interparticle distance term can be calculated using theory or can be measured experimentally. This modified Mason number is more applicable to magnetorheological systems where surface forces are not negligible.

  13. Free Surface Flows and Extensional Rheology of Polymer Solutions

    NASA Astrophysics Data System (ADS)

    Dinic, Jelena; Jimenez, Leidy Nallely; Biagioli, Madeleine; Estrada, Alexandro; Sharma, Vivek

    Free-surface flows - jetting, spraying, atomization during fuel injection, roller-coating, gravure printing, several microfluidic drop/particle formation techniques, and screen-printing - all involve the formation of axisymmetric fluid elements that spontaneously break into droplets by a surface-tension-driven instability. The growth of the capillary-driven instability and pinch-off dynamics are dictated by a complex interplay of inertial, viscous and capillary stresses for simple fluids. Additional contributions by elasticity, extensibility and extensional viscosity play a role for complex fluids. We show that visualization and analysis of capillary-driven thinning and pinch-off dynamics of the columnar neck in an asymmetric liquid bridge created by dripping-onto-substrate (DoS) can be used for characterizing the extensional rheology of complex fluids. Using a wide variety of complex fluids, we show the measurement of the extensional relaxation time, extensional viscosity, power-law index and shear viscosity. Lastly, we elucidate how polymer composition, flexibility, and molecular weight determine the thinning and pinch-off dynamics of polymeric complex fluids.

  14. Medial surface dynamics of an in vivo canine vocal fold during phonation

    NASA Astrophysics Data System (ADS)

    Döllinger, Michael; Berry, David A.; Berke, Gerald S.

    2005-05-01

    Quantitative measurement of the medial surface dynamics of the vocal folds is important for understanding how sound is generated within the larynx. Building upon previous excised hemilarynx studies, the present study extended the hemilarynx methodology to the in vivo canine larynx. Through use of an in vivo model, the medial surface dynamics of the vocal fold were examined as a function of active thyroarytenoid muscle contraction. Data were collected using high-speed digital imaging at a sampling frequency of 2000 Hz, and a spatial resolution of 1024×1024 pixels. Chest-like and fry-like vibrations were observed, but could not be distinguished based on the input stimulation current to the recurrent laryngeal nerve. The subglottal pressure did distinguish the registers, as did an estimate of the thyroarytenoid muscle activity. Upon quantification of the three-dimensional motion, the method of Empirical Eigenfunctions was used to extract the underlying modes of vibration, and to investigate mechanisms of sustained oscillation. Results were compared with previous findings from excised larynx experiments and theoretical models. .

  15. Evaluation of seatback vibration based on ISO 2631-1 (1997) standard method: The influence of vehicle seat structural resonance.

    PubMed

    Ittianuwat, R; Fard, M; Kato, K

    2017-01-01

    Although much research has been done in developing the current ISO 2631-1 (1997) standard method for assessment seat vibration comfort, little consideration has been given to the influence of vehicle seat structural dynamics on comfort assessment. Previous research has shown that there are inconsistencies between standard methods and subjective evaluation of comfort at around vehicle seat twisting resonant frequencies. This study reports the frequency-weighted r.m.s. accelerations in [Formula: see text], [Formula: see text] and [Formula: see text] axes and the total vibration (point vibration total value) at five locations on seatback surface at around vehicle seat twisting resonant frequencies. The results show that the vibration measured at the centre of seatback surface, suggested by current ISO 2631-1 (1997), at around twisting resonant frequencies was the least for all tested vehicle seats. The greatest point vibration total value on the seatback surface varies among vehicle seats. The variations in vibration measured at different locations on seatback surface at around twisting resonant frequencies were sufficiently great that might affect the comfort assessment of vehicle seat.Practitioner Summary: The influence of vehicle seat structural dynamics has not been considered in current ISO 2631-1 (1997). The results of this study show that the vibration measures on seatback surface at around vehicle seat twisting resonant frequency depends on vehicle seats and dominate at the top or the bottom of seatback but not at the centre.

  16. Correlating steric hydration forces with water dynamics through surface force and diffusion NMR measurements in a lipid–DMSO–H2O system

    PubMed Central

    Schrader, Alex M.; Donaldson, Stephen H.; Song, Jinsuk; Cheng, Chi-Yuan; Lee, Dong Woog; Han, Songi; Israelachvili, Jacob N.

    2015-01-01

    Dimethyl sulfoxide (DMSO) is a common solvent and biological additive possessing well-known utility in cellular cryoprotection and lipid membrane permeabilization, but the governing mechanisms at membrane interfaces remain poorly understood. Many studies have focused on DMSO–lipid interactions and the subsequent effects on membrane-phase behavior, but explanations often rely on qualitative notions of DMSO-induced dehydration of lipid head groups. In this work, surface forces measurements between gel-phase dipalmitoylphosphatidylcholine membranes in DMSO–water mixtures quantify the hydration- and solvation-length scales with angstrom resolution as a function of DMSO concentration from 0 mol% to 20 mol%. DMSO causes a drastic decrease in the range of the steric hydration repulsion, leading to an increase in adhesion at a much-reduced intermembrane distance. Pulsed field gradient NMR of the phosphatidylcholine (PC) head group analogs, dimethyl phosphate and tetramethylammonium ions, shows that the ion hydrodynamic radius decreases with increasing DMSO concentration up to 10 mol% DMSO. The complementary measurements indicate that, at concentrations below 10 mol%, the primary effect of DMSO is to decrease the solvated volume of the PC head group and that, from 10 mol% to 20 mol%, DMSO acts to gradually collapse head groups down onto the surface and suppress their thermal motion. This work shows a connection between surface forces, head group conformation and dynamics, and surface water diffusion, with important implications for soft matter and colloidal systems. PMID:26261313

  17. Dynamic measurement of the corneal tear film with a Twyman-Green interferometer

    NASA Astrophysics Data System (ADS)

    Micali, Jason D.; Greivenkamp, John E.; Primeau, Brian C.

    2014-07-01

    An interferometer for measuring dynamic properties of the in vivo tear film on the human cornea has been developed. The system is a near-infrared instantaneous phase-shifting Twyman-Green interferometer. The laser source is a 785 nm solidstate laser; the system has been carefully designed and calibrated to ensure that the system operates at eye safe levels. Measurements are made over a 6 mm diameter on the cornea. Successive frames of interferometric height measurements are combined to produce movies showing both the quantitative and qualitative changes in the topography of the tear film surface and structure. To date, measurement periods of up to 120 seconds at 28.6 frames per second have been obtained. Several human subjects have been examined using this system, demonstrating a surface height resolution of 25 nm and spatial resolution of 6 μm. Examples of features that have been observed in these in preliminary studies of the tear film include: post-blink disruption, evolution, and stabilization of the tear film; tear film artifacts generated by blinking; tear film evaporation and break-up; and the propagation of foreign objects in the tear film. This paper discusses the interferometer design and presents results from in vivo measurements.

  18. Dynamic measurement of the corneal tear film with a Twyman-Green interferometer

    NASA Astrophysics Data System (ADS)

    Micali, Jason D.; Greivenkamp, John E.; Primeau, Brian C.

    2015-05-01

    An interferometer for measuring dynamic properties of the in vivo tear film on the human cornea has been developed. The system is a near-infrared instantaneous phase-shifting Twyman-Green interferometer. The laser source is a 785 nm solid-state laser, and the system has been carefully designed and calibrated to ensure that the system operates at eye-safe levels. Measurements are made over a 6 mm diameter on the cornea. Successive frames of interferometric height measurements are combined to produce movies showing both the quantitative and qualitative changes in the topography of the tear film surface and structure. To date, measurement periods of up to 120 s at 28.6 frames per second have been obtained. Several human subjects have been examined using this system, demonstrating a surface height resolution of 25 nm and spatial resolution of 6 μm. Examples of features that have been observed in these preliminary studies of the tear film include postblink disruption, evolution, and stabilization of the tear film; tear film artifacts generated by blinking; tear film evaporation and breakup; and the propagation of foreign objects in the tear film. This paper discusses the interferometer design and presents results from in vivo measurements.

  19. Doppler spectra of airborne ultrasound forward scattered by the rough surface of open channel turbulent water flows.

    PubMed

    Dolcetti, Giulio; Krynkin, Anton

    2017-11-01

    Experimental data are presented on the Doppler spectra of airborne ultrasound forward scattered by the rough dynamic surface of an open channel turbulent flow. The data are numerically interpreted based on a Kirchhoff approximation for a stationary random water surface roughness. The results show a clear link between the Doppler spectra and the characteristic spatial and temporal scales of the water surface. The decay of the Doppler spectra is proportional to the velocity of the flow near the surface. At higher Doppler frequencies the measurements show a less steep decrease of the Doppler spectra with the frequency compared to the numerical simulations. A semi-empirical equation for the spectrum of the surface elevation in open channel turbulent flows over a rough bed is provided. The results of this study suggest that the dynamic surface of open channel turbulent flows can be characterized remotely based on the Doppler spectra of forward scattered airborne ultrasound. The method does not require any equipment to be submerged in the flow and works remotely with a very high signal to noise ratio.

  20. Down to the roughness scale assessment of piston-ring/liner contacts

    NASA Astrophysics Data System (ADS)

    Checo, H. M.; Jaramillo, A.; Ausas, R. F.; Jai, M.; Buscaglia, G. C.

    2017-02-01

    The effects of surface roughness in hydrodynamic bearings been accounted for through several approaches, the most widely used being averaging or stochastic techniques. With these the surface is not treated “as it is”, but by means of an assumed probability distribution for the roughness. The so called direct, deterministic or measured-surface simulation) solve the lubrication problem with realistic surfaces down to the roughness scale. This leads to expensive computational problems. Most researchers have tackled this problem considering non-moving surfaces and neglecting the ring dynamics to reduce the computational burden. What is proposed here is to solve the fully-deterministic simulation both in space and in time, so that the actual movement of the surfaces and the rings dynamics are taken into account. This simulation is much more complex than previous ones, as it is intrinsically transient. The feasibility of these fully-deterministic simulations is illustrated two cases: fully deterministic simulation of liner surfaces with diverse finishings (honed and coated bores) with constant piston velocity and load on the ring and also in real engine conditions.

  1. Dynamic Mechanical Properties and Fracture Surface Morphologies of Core-Shell Rubber (CSR) Toughened Epoxy at Liquid Nitrogen (Ln2) Temperatures

    NASA Technical Reports Server (NTRS)

    Wang, J.; Magee, D.; Schneider, J. A.

    2009-01-01

    The dynamic mechanical properties and fracture surface morphologies were evaluated for a commercial epoxy resin toughened with two types of core-shell rubber (CSR) toughening agents (Kane Ace(Registered TradeMark) MX130 and MX960). The impact resistance (R) was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The resulting fracture surface morphologies were examined using Scanning Electron Microscopy (SEM). Fractographic observations of the CSR toughened epoxy tested at ambient temperature, showed a fracture as characterized by slender dendrite textures with large voids. The increasing number of dendrites and decreasing size of scale-like texture with more CSR particles corresponded with increased R. As the temperature decreased to Liquid Nitrogen (LN 2), the fracture surfaces showed a fracture characterized by a rough, torn texture containing many river markings and deep furrows.

  2. Limitations on Inferring 3D Architecture and Dynamics From Surface Velocities in the India-Eurasia Collision Zone

    NASA Astrophysics Data System (ADS)

    Flesch, L.; Bendick, R.; Bischoff, S.

    2018-02-01

    Surface velocities derived from Global Positioning System observations and Quaternary fault slip rates measured throughout an extended region of high topography in South Asia vary smoothly over thousands of kilometers and are broadly symmetrical, with components of both north-south shortening and east-west extension relative to stable Eurasia. The observed velocity field does not contain discontinuities or steep gradients attributable to along-strike differences in collision architecture, despite the well-documented presence of a lithospheric slab beneath the Pamir but not the Tibetan Plateau. We use a modified Akaike information criterion (AICc) to show that surface velocities do not efficiently constrain 3D rheology, geometry, or force balance. Therefore, although other geophysical and geological observations may indicate the presence of mechanical or dynamic heterogeneities within the Indian-Asian collision, the surface Global Positioning System velocities contain little or no usable information about them.

  3. Ablation of gold irradiated by femtosecond laser pulse: Experiment and modeling

    NASA Astrophysics Data System (ADS)

    Ashitkov, S. I.; Komarov, P. S.; Zhakhovsky, V. V.; Petrov, Yu V.; Khokhlov, V. A.; Yurkevich, A. A.; Ilnitsky, D. K.; Inogamov, N. A.; Agranat, M. B.

    2016-11-01

    We report on the ablation phenomena in gold sample irradiated by femtosecond laser pulses of moderate intensity. Dynamics of optical constants and expansion of a heated surface layer was investigated in a range from picosecond up to subnanosecond using ultrafast interferometry. Also morphology of the ablation craters and value of an ablation threshold (for absorbed fluence) were measured. The experimental data are compared with simulations of mass flows obtained by two-temperature hydrodynamics and molecular dynamics methods. Simulation shows evolution of a thin surface layer pressurized by a laser pulse. Unloading of the pressurized layer proceeds together with electron-ion thermalization, melting, cavitation and spallation of a part of surface liquid layer. The experimental and simulation results on two-temperature physics and on a fracture, surface morphology and strength of liquid gold at a strain rate ∼ 109 s-1 are discussed.

  4. Molecular switches and motors on surfaces.

    PubMed

    Pathem, Bala Krishna; Claridge, Shelley A; Zheng, Yue Bing; Weiss, Paul S

    2013-01-01

    Molecular switches and motors respond structurally, electronically, optically, and/or mechanically to external stimuli, testing and potentially enabling extreme miniaturization of optoelectronic devices, nanoelectromechanical systems, and medical devices. The assembly of motors and switches on surfaces makes it possible both to measure the properties of individual molecules as they relate to their environment and to couple function between assembled molecules. In this review, we discuss recent progress in assembling molecular switches and motors on surfaces, measuring static and dynamic structures, understanding switching mechanisms, and constructing functional molecular materials and devices. As demonstrative examples, we choose a representative molecule from three commonly studied classes including molecular switches, photochromic molecules, and mechanically interlocked molecules. We conclude by offering perspectives on the future of molecular switches and motors on surfaces.

  5. Inflatable antenna for earth observing systems

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Jian; Guan, Fu-ling; Xu, Yan; Yi, Min

    2010-09-01

    This paper describe mechanical design, dynamic analysis, and deployment demonstration of the antenna , and the photogrammetry detecting RMS of inflatable antenna surface, the possible errors results form the measurement are also analysed. Ticra's Grasp software are used to predict the inflatable antenna pattern based on the coordinates of the 460 points on the parabolic surface, the final results verified the whole design process.

  6. Speckle photography during dynamic impact of an energetic material using laser-induced fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asay, B.W.; Laabs, G.W.; Henson, B.F.

    1997-08-01

    Laser and white light speckle photography have been used to observe surface displacement in a number of materials and over a varied range of strain rates. However, each suffers from limitations. We have developed a novel application of speckle photography in very difficult environments by using laser-induced fluorescence to generate the speckle pattern. This permits confinement of the free surface without undue degradation of the correlation upon which speckle methods are based. We have applied this method to measure the surface displacement of a reactive material during dynamic deformation at moderate strain rates. Conventional methods were tried but were unsuccessful,more » necessitating a novel approach. To the best of our knowledge, neither high-speed laser nor white light speckle photography has been performed using energetic materials. These measurements are very difficult because of the low material strength (yield strength {approximately}8{endash}80 MPa), and because significant out-of-plane motion and surface disruption occur during fracture, and early during the deformation process. We report results from experiments in which these major problems have been overcome. {copyright} {ital 1997 American Institute of Physics.}« less

  7. Shock tube investigation of dynamic response of pressure transducers for validation of rotor performance measurements

    NASA Technical Reports Server (NTRS)

    Bershader, Daniel

    1988-01-01

    For some time now, NASA has had a program under way to aid in the validation of rotor performance and acoustics codes associated with the UH-60 rotary-wing aircraft; and to correlate results of such studies with those obtained from investigations of other selected aircraft rotor performance. A central feature of these studies concerns the dynamic measurement of surface pressure at various locations up to frequencies of 25 KHz. For this purpose, fast-response gauges of the Kulite type are employed. The latter need to be buried in the rotor; they record surface pressures which are transmitted by a pipette connected to the gauge. The other end of the pipette is cut flush with the surface. In certain locations, the pipette configuration includes a rather sharp right-angle bend. The natural question has arisen in this connection: In what way are the pipettes modifying the signals received at the rotor surface and subsequently transmitted to the sensitive Kulite transducer element. The basic details and results of the program performed and recently completed in the High Pressure Shock Tube Laboratory of the Department of Aeronautics and Astronautics at Stanford University are given.

  8. Stereo Refractive Imaging of Breaking Free-Surface Waves in the Surf Zone

    NASA Astrophysics Data System (ADS)

    Mandel, Tracy; Weitzman, Joel; Koseff, Jeffrey; Environmental Fluid Mechanics Laboratory Team

    2014-11-01

    Ocean waves drive the evolution of coastlines across the globe. Wave breaking suspends sediments, while wave run-up, run-down, and the undertow transport this sediment across the shore. Complex bathymetric features and natural biotic communities can influence all of these dynamics, and provide protection against erosion and flooding. However, our knowledge of the exact mechanisms by which this occurs, and how they can be modeled and parameterized, is limited. We have conducted a series of controlled laboratory experiments with the goal of elucidating these details. These have focused on quantifying the spatially-varying characteristics of breaking waves and developing more accurate techniques for measuring and predicting wave setup, setdown, and run-up. Using dynamic refraction stereo imaging, data on free-surface slope and height can be obtained over an entire plane. Wave evolution is thus obtained with high spatial precision. These surface features are compared with measures of instantaneous turbulence and mean currents within the water column. We then use this newly-developed ability to resolve three-dimensional surface features over a canopy of seagrass mimics, in order to validate theoretical formulations of wave-vegetation interactions in the surf zone.

  9. Materials Properties and Solvated Electron Dynamics of Isolated Nanoparticles and Nanodroplets Probed with Ultrafast Extreme Ultraviolet Beams.

    PubMed

    Ellis, Jennifer L; Hickstein, Daniel D; Xiong, Wei; Dollar, Franklin; Palm, Brett B; Keister, K Ellen; Dorney, Kevin M; Ding, Chengyuan; Fan, Tingting; Wilker, Molly B; Schnitzenbaumer, Kyle J; Dukovic, Gordana; Jimenez, Jose L; Kapteyn, Henry C; Murnane, Margaret M

    2016-02-18

    We present ultrafast photoemission measurements of isolated nanoparticles in vacuum using extreme ultraviolet (EUV) light produced through high harmonic generation. Surface-selective static EUV photoemission measurements were performed on nanoparticles with a wide array of compositions, ranging from ionic crystals to nanodroplets of organic material. We find that the total photoelectron yield varies greatly with nanoparticle composition and provides insight into material properties such as the electron mean free path and effective mass. Additionally, we conduct time-resolved photoelectron yield measurements of isolated oleylamine nanodroplets, observing that EUV photons can create solvated electrons in liquid nanodroplets. Using photoemission from a time-delayed 790 nm pulse, we observe that a solvated electron is produced in an excited state and subsequently relaxes to its ground state with a lifetime of 151 ± 31 fs. This work demonstrates that femotosecond EUV photoemission is a versatile surface-sensitive probe of the properties and ultrafast dynamics of isolated nanoparticles.

  10. Hydrodynamic boundary condition of water on hydrophobic surfaces.

    PubMed

    Schaeffel, David; Yordanov, Stoyan; Schmelzeisen, Marcus; Yamamoto, Tetsuya; Kappl, Michael; Schmitz, Roman; Dünweg, Burkhard; Butt, Hans-Jürgen; Koynov, Kaloian

    2013-05-01

    By combining total internal reflection fluorescence cross-correlation spectroscopy with Brownian dynamics simulations, we were able to measure the hydrodynamic boundary condition of water flowing over a smooth solid surface with exceptional accuracy. We analyzed the flow of aqueous electrolytes over glass coated with a layer of poly(dimethylsiloxane) (advancing contact angle Θ = 108°) or perfluorosilane (Θ = 113°). Within an error of better than 10 nm the slip length was indistinguishable from zero on all surfaces.

  11. Measuring surface flow velocity with smartphones: potential for citizen observatories

    NASA Astrophysics Data System (ADS)

    Weijs, Steven V.; Chen, Zichong; Brauchli, Tristan; Huwald, Hendrik

    2014-05-01

    Stream flow velocity is an important variable for discharge estimation and research on sediment dynamics. Given the influence of the latter on rating curves (stage-discharge relations), and the relative scarcity of direct streamflow measurements, surface velocity measurements can offer important information for, e.g., flood warning, hydropower, and hydrological science and engineering in general. With the growing amount of sensing and computing power in the hands of more outdoorsy individuals, and the advances in image processing techniques, there is now a tremendous potential to obtain hydrologically relevant data from motivated citizens. This is the main focus of the interdisciplinary "WeSenseIt" project, a citizen observatory of water. In this subproject, we investigate the feasibility of stream flow surface velocity measurements from movie clips taken by (smartphone-) cameras. First results from movie-clip derived velocity information will be shown and compared to reference measurements.

  12. Direct measurement of nonlinear dispersion relation for water surface waves

    NASA Astrophysics Data System (ADS)

    Magnus Arnesen Taklo, Tore; Trulsen, Karsten; Elias Krogstad, Harald; Gramstad, Odin; Nieto Borge, José Carlos; Jensen, Atle

    2013-04-01

    The linear dispersion relation for water surface waves is often taken for granted for the interpretation of wave measurements. High-resolution spatiotemporal measurements suitable for direct validation of the linear dispersion relation are on the other hand rarely available. While the imaging of the ocean surface with nautical radar does provide the desired spatiotemporal coverage, the interpretation of the radar images currently depends on the linear dispersion relation as a prerequisite, (Nieto Borge et al., 2004). Krogstad & Trulsen (2010) carried out numerical simulations with the nonlinear Schrödinger equation and its generalizations demonstrating that the nonlinear evolution of wave fields may render the linear dispersion relation inadequate for proper interpretation of observations, the reason being that the necessary domain of simultaneous coverage in space and time would allow significant nonlinear evolution. They found that components above the spectral peak can have larger phase and group velocities than anticipated by linear theory, and that the spectrum does not maintain a thin dispersion surface. We have run laboratory experiments and accurate numerical simulations designed to have sufficient resolution in space and time to deduce the dispersion relation directly. For a JONSWAP spectrum we find that the linear dispersion relation can be appropriate for the interpretation of spatiotemporal measurements. For a Gaussian spectrum with narrower bandwidth we find that the dynamic nonlinear evolution in space and time causes the directly measured dispersion relation to deviate from the linear dispersion surface in good agreement with our previous numerical predictions. This work has been supported by RCN grant 214556/F20. Krogstad, H. E. & Trulsen, K. (2010) Interpretations and observations of ocean wave spectra. Ocean Dynamics 60:973-991. Nieto Borge, J. C., Rodríguez, G., Hessner, K., Izquierdo, P. (2004) Inversion of marine radar images for surface wave analysis. J. Atmos. Ocean. Tech. 21:1291-1300.

  13. The Thermal Infrared Sensor onboard NASA's Mars 2020 Mission

    NASA Astrophysics Data System (ADS)

    Martinez, G.; Perez-Izquierdo, J.; Sebastian, E.; Ramos, M.; Bravo, A.; Mazo, M.; Rodriguez-Manfredi, J. A.

    2017-12-01

    NASA's Mars 2020 rover mission is scheduled for launch in July/August 2020 and will address key questions about the potential for life on Mars. The Mars Environmental Dynamics Analyzer (MEDA) is one of the seven instruments onboard the rover [1] and has been designed to assess the environmental conditions across the rover traverse. MEDA will extend the current record of in-situ meteorological measurements at the surface [2] to other locations on Mars. The Thermal InfraRed Sensor (TIRS) [3] is one of the six sensors comprising MEDA. TIRS will use three downward-looking channels to measure (1) the surface skin temperature (with high heritage from the Rover Environmental Monitoring Station onboard the Mars Science Laboratory mission [4]), (2) the upwelling thermal infrared radiation from the surface and (3) the reflected solar radiation at the surface, and two upward-looking channels to measure the (4) downwelling thermal infrared radiation at the surface and (5) the atmospheric temperature. In combination with other MEDA's sensors, TIRS will allow the quantification of the surface energy budget [5] and the determination of key geophysical properties of the terrain such as the albedo and thermal inertia with an unprecedented spatial resolution. Here we present a general description of the TIRS, with focus on its scientific requirements and results from field campaigns showing the performance of the different channels. References:[1] Rodríguez-Manfredi, J. A. et al. (2014), MEDA: An environmental and meteorological package for Mars 2020, LPSC, 45, 2837. [2] Martínez, G.M. et al. (2017), The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity, Space Science Reviews, 1-44. [3] Pérez-Izquierdo, J. et al. (2017), The Thermal Infrared Sensor (TIRS) of the Mars Environmental Dynamics Analyzer (MEDA) Instrument onboard Mars 2020, IEEE. [4] Sebastián, E. et al. (2010), The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars," Sensors, vol. 10(10), pp. 9211-9231. [5] Martínez, G. M. et al. (2014), Surface energy budget and thermal inertia at Gale Crater: Calculations from ground-based measurements, J.Geophys. Res. Planets, 119.

  14. Evaluation of thermal behavior during laser metal deposition using optical pyrometry and numerical simulation

    NASA Astrophysics Data System (ADS)

    Dubrov, Alexander V.; Zavalov, Yuri N.; Mirzade, Fikret K.; Dubrov, Vladimir D.

    2017-06-01

    3D mathematical model of non-stationary processes of heat and mass transfer was developed for additive manufacturing of materials by direct laser metal deposition. The model takes into account self-consistent dynamics of free surface, temperature fields, and melt flow speeds. Evolution of free surface is modelled using combined Volume of Fluid and Level-Set method. Article presents experimental results of the measurement of temperature distribution in the area of bead formation by direct laser metal deposition, using multi-channel pyrometer, that is based on two-color sensors line. A comparison of experimental data with the results of numerical modeling was carried out. Features of thermal dynamics on the surface of melt pool have been detected, which were caused by thermo-capillary convection.

  15. Computer Simulation of the Forces Acting on a Submerged Polystyrene Probe as it Approaches the Succinonitrile Melt-Solid Interface

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Kaukler, William; Whitaker, Ann (Technical Monitor)

    2001-01-01

    A Modeling approach to simulate both mesoscale and microscopic forces acting in a typical AFM experiment is presented. A mesoscale level interaction between the cantilever tip and the sample surface is primarily described by the balance of attractive Van der Waals and repulsive forces. Ultimately, the goal is to measure the forces between a particle and the crystal-melt interface. Two modes of AFM operation are considered in this paper - a stationary and a "tapping" one. The continuous mechanics approach to model tip-surface interaction is presented. At microscopic levels, tip contamination and details of tip-surface interaction are modeled using a molecular dynamics approach for the case of polystyrene - succinonitrile contact. Integration of the mesoscale model with a molecular dynamic model is discussed.

  16. Linear Stability and Instability Patterns in Ion Bombarded Silicon Surfaces

    NASA Astrophysics Data System (ADS)

    Madi, Charbel Said

    2011-12-01

    This thesis is a combined experimental and theoretical study of the fundamental physical mechanisms governing nanoscale surface morphology evolution of Ar + ion bombarded silicon surfaces. I experimentally determined the topographical phase diagram resulting from Ar+ ion irradiation of Si surfaces at room temperature in the linear regime of surface dynamics as we vary the control parameters ion beam energy and incidence angle. At all energies, it is characterized by a diverging wavelength bifurcation from a smooth stable surface to parallel mode ripples (wavevector parallel to the projected ion beam on the surface) as the ion beam incidence angle is varied. At sufficiently high angles theta ≈ 85°, I observed perpendicular mode ripples (wavevector perpendicular to the ion beam). Through real-time Grazing-Incidence Small Angle X-ray Scattering, I have definitively established that ion-induced erosion, which is the consensus predominant cause of pattern formation, is not only of the wrong sign to explain the measured curvature coefficients responsible in driving the surface dynamics, but also is so small in magnitude as to be essentially negligible for pattern formation except possibly at the most grazing angles of incidence where both erosion and redistribution effects converge to zero. That the contribution of ion impact induced prompt atomic redistribution effects entirely overwhelms that of erosion in both the stabilizing and destabilizing regimes is of profound significance, as it overturns the erosion-based paradigm that has dominated the pattern formation field for over two decades. In situ wafer curvature measurements using the Multi-beam Optical Stress Sensor system were performed during amorphization of silicon by normal incidence 250 eV ion irradiation. An average compressive saturation stress built up in the amorphous layer was found to be as large as 1.5 GPa. By assuming the ion-induced amorphization layer to be modeled as a viscoelastic film that is anisotropically stressed by ion beam irradiation, we measure the deformation imparted per ion due to anisotropic deformation to be equal to A =1.15x10-16 cm2/ion. Although compressive stress is being injected into a thin viscoelastic ion-stimulated surface layer, the surface is unconditionally stable to topographic perturbations, corroborating the measured experimental phase diagram.

  17. High-precision drop shape analysis on inclining flat surfaces: introduction and comparison of this special method with commercial contact angle analysis.

    PubMed

    Schmitt, Michael; Heib, Florian

    2013-10-07

    Drop shape analysis is one of the most important and frequently used methods to characterise surfaces in the scientific and industrial communities. An especially large number of studies, which use contact angle measurements to analyse surfaces, are characterised by incorrect or misdirected conclusions such as the determination of surface energies from poorly performed contact angle determinations. In particular, the characterisation of surfaces, which leads to correlations between the contact angle and other effects, must be critically validated for some publications. A large number of works exist concerning the theoretical and thermodynamic aspects of two- and tri-phase boundaries. The linkage between theory and experiment is generally performed by an axisymmetric drop shape analysis, that is, simulations of the theoretical drop profiles by numerical integration onto a number of points of the drop meniscus (approximately 20). These methods work very well for axisymmetric profiles such as those obtained by pendant drop measurements, but in the case of a sessile drop onto real surfaces, additional unknown and misunderstood effects on the dependence of the surface must be considered. We present a special experimental and practical investigation as another way to transition from experiment to theory. This procedure was developed to be especially sensitive to small variations in the dependence of the dynamic contact angle on the surface; as a result, this procedure will allow the properties of the surface to be monitored with a higher precession and sensitivity. In this context, water drops onto a 111 silicon wafer are dynamically measured by video recording and by inclining the surface, which results in a sequence of non-axisymmetric drops. The drop profiles are analysed by commercial software and by the developed and presented high-precision drop shape analysis. In addition to the enhanced sensitivity for contact angle determination, this analysis technique, in combination with innovative fit algorithms and data presentations, can result in enhanced reproducibility and comparability of the contact angle measurements in terms of the material characterisation in a comprehensible way.

  18. High-precision drop shape analysis on inclining flat surfaces: Introduction and comparison of this special method with commercial contact angle analysis

    NASA Astrophysics Data System (ADS)

    Schmitt, Michael; Heib, Florian

    2013-10-01

    Drop shape analysis is one of the most important and frequently used methods to characterise surfaces in the scientific and industrial communities. An especially large number of studies, which use contact angle measurements to analyse surfaces, are characterised by incorrect or misdirected conclusions such as the determination of surface energies from poorly performed contact angle determinations. In particular, the characterisation of surfaces, which leads to correlations between the contact angle and other effects, must be critically validated for some publications. A large number of works exist concerning the theoretical and thermodynamic aspects of two- and tri-phase boundaries. The linkage between theory and experiment is generally performed by an axisymmetric drop shape analysis, that is, simulations of the theoretical drop profiles by numerical integration onto a number of points of the drop meniscus (approximately 20). These methods work very well for axisymmetric profiles such as those obtained by pendant drop measurements, but in the case of a sessile drop onto real surfaces, additional unknown and misunderstood effects on the dependence of the surface must be considered. We present a special experimental and practical investigation as another way to transition from experiment to theory. This procedure was developed to be especially sensitive to small variations in the dependence of the dynamic contact angle on the surface; as a result, this procedure will allow the properties of the surface to be monitored with a higher precession and sensitivity. In this context, water drops onto a 111 silicon wafer are dynamically measured by video recording and by inclining the surface, which results in a sequence of non-axisymmetric drops. The drop profiles are analysed by commercial software and by the developed and presented high-precision drop shape analysis. In addition to the enhanced sensitivity for contact angle determination, this analysis technique, in combination with innovative fit algorithms and data presentations, can result in enhanced reproducibility and comparability of the contact angle measurements in terms of the material characterisation in a comprehensible way.

  19. Dependence of the residual surface resistance of superconducting radio frequency cavities on the cooling dynamics around T{sub c}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanenko, A., E-mail: aroman@fnal.gov; Grassellino, A., E-mail: annag@fnal.gov; Melnychuk, O.

    We report a strong effect of the cooling dynamics through T{sub c} on the amount of trapped external magnetic flux in superconducting niobium cavities. The effect is similar for fine grain and single crystal niobium and all surface treatments including electropolishing with and without 120 °C baking and nitrogen doping. Direct magnetic field measurements on the cavity walls show that the effect stems from changes in the flux trapping efficiency: slow cooling leads to almost complete flux trapping and higher residual resistance, while fast cooling leads to the much more efficient flux expulsion and lower residual resistance.

  20. Dynamics of near-surface electric discharges and mechanisms of their interaction with the airflow

    NASA Astrophysics Data System (ADS)

    Leonov, Sergey B.; Adamovich, Igor V.; Soloviev, Victor R.

    2016-12-01

    The main focus of the review is on dynamics and kinetics of near-surface discharge plasmas, such as surface dielectric barrier discharges sustained by AC and repetitively pulsed waveforms, pulsed DC discharges, and quasi-DC discharges, generated in quiescent air and in the airflow. A number of technical issues related to plasma flow control applications are discussed in detail, including discharge development via surface ionization waves, charge transport and accumulation on dielectric surface, discharge contraction, different types of flow perturbations generated by surface discharges, and effect of high-speed flow on discharge dynamics. In the first part of the manuscript, plasma morphology and results of electrical and optical emission spectroscopy measurements are discussed. Particular attention is paid to dynamics of surface charge accumulation and dissipation, both in diffuse discharges and during development of ionization instabilities resulting in discharge contraction. Contraction leads to significant increase of both the surface area of charge accumulation and the energy coupled to the plasma. The use of alternating polarity pulse waveforms accelerates contraction of surface dielectric barrier discharges and formation of filamentary plasmas. The second part discusses the interaction of discharge plasmas with quiescent air and the external airflow. Four major types of flow perturbations have been identified: (1) low-speed near-surface jets generated by electrohydrodynamic interaction (ion wind); (2) spanwise and streamwise vortices formed by both electrohydrodynamic and thermal effects; (3) weak shock waves produced by rapid heating in pulsed discharges on sub-microsecond time scale; and (4) near-surface localized stochastic perturbations, on sub-millisecond time, detected only recently. The mechanism of plasma-flow interaction remains not fully understood, especially in filamentary surface dielectric barrier discharges. Localized quasi-DC surface discharges sustained in a high-speed flow are discussed in the third part of the review. Although dynamics of this type of the discharge is highly transient, due to its strong interaction with the flow, the resultant flow structure is stationary, including the oblique shock and the flow separation region downstream of the discharge. The oblique shock is attached to a time-averaged, wedge-shaped, near-wall plasma layer, with the shock angle controlled by the discharge power, which makes possible changing the flow structure and parameters in a controlled way. Finally, unresolved and open-ended issues are discussed in the summary.

  1. Continuous monitoring bed-level dynamics on an intertidal flat: introducing novel stand-alone high-resolution SED-sensors

    NASA Astrophysics Data System (ADS)

    Hu, Zhan; Lenting, Walther; van der Wal, Daphne; Bouma, Tjeerd

    2015-04-01

    Tidal flat morphology is continuously shaped by hydrodynamic force, resulting in highly dynamic bed elevations. The knowledge of short-term bed-level changes is important both for understanding sediment transport processes as well as for assessing critical ecological processes such as e.g. vegetation recruitment chances on tidal flats. Due to the labour involved, manual discontinuous measurements lack the ability to continuously monitor bed-elevation changes. Existing methods for automated continuous monitoring of bed-level changes lack vertical accuracy (e.g., Photo-Electronic Erosion Pin sensor and resistive rod) or limited in spatial application by using expensive technology (e.g., acoustic bed level sensors). A method provides sufficient accuracy with a reasonable cost is needed. In light of this, a high-accuracy sensor (2 mm) for continuously measuring short-term Surface-Elevation Dynamics (SED-sensor) was developed. This SED-sensor makes use of photovoltaic cells and operates stand-alone using internal power supply and data logging system. The unit cost and the labour in deployments is therefore reduced, which facilitates monitoring with a number of units. In this study, the performance of a group of SED-sensors is tested against data obtained with precise manual measurements using traditional Sediment Erosion Bars (SEB). An excellent agreement between the two methods was obtained, indicating the accuracy and precision of the SED-sensors. Furthermore, to demonstrate how the SED-sensors can be used for measuring short-term bed-level dynamics, two SED-sensors were deployed for 1 month at two sites with contrasting wave exposure conditions. Daily bed-level changes were obtained including a severe storm erosion event. The difference in observed bed-level dynamics at both sites was statistically explained by their different hydrodynamic conditions. Thus, the stand-alone SED-sensor can be applied to monitor sediment surface dynamics with high vertical and temporal resolutions, which provides opportunities to pinpoint morphological responses to various forces in a number of environments (e.g. tidal flats, beaches, rivers and dunes).

  2. Simultaneous measurement of temperature and emissivity of lunar regolith simulant using dual-channel millimeter-wave radiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloy, J. S.; Sundaram, S. K.; Matyas, J.

    Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments (high temperature, pressure, and corrosive environments). The state-of-the-art dual channel MMW passive radiometer with active interferometric capabilities at 137 GHz described here allows for radiometric measurements of sample temperature and emissivity up to at least 1600 °C with simultaneous measurement of sample surface dynamics. These capabilities have been used to demonstrate dynamic measurement of melting of powders of simulated lunar regolith and static measurement of emissivity of solid samples. The paper presents the theoretical background and basis for the dual-receiver system,more » describes the hardware in detail, and demonstrates the data analysis. Post-experiment analysis of emissivity versus temperature allows further extraction from the radiometric data of millimeter wave viewing beam coupling factors, which provide corroboratory evidence to the interferometric data of the process dynamics observed. Finally, these results show the promise of the MMW system for extracting quantitative and qualitative process parameters for industrial processes and access to real-time dynamics of materials behavior in extreme environments.« less

  3. Correlation of Spatially Filtered Dynamic Speckles in Distance Measurement Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenov, Dmitry V.; Nippolainen, Ervin; Kamshilin, Alexei A.

    2008-04-15

    In this paper statistical properties of spatially filtered dynamic speckles are considered. This phenomenon was not sufficiently studied yet while spatial filtering is an important instrument for speckles velocity measurements. In case of spatial filtering speckle velocity information is derived from the modulation frequency of filtered light power which is measured by photodetector. Typical photodetector output is represented by a narrow-band random noise signal which includes non-informative intervals. Therefore more or less precious frequency measurement requires averaging. In its turn averaging implies uncorrelated samples. However, conducting research we found that correlation is typical property not only of dynamic speckle patternsmore » but also of spatially filtered speckles. Using spatial filtering the correlation is observed as a response of measurements provided to the same part of the object surface or in case of simultaneously using several adjacent photodetectors. Found correlations can not be explained using just properties of unfiltered dynamic speckles. As we demonstrate the subject of this paper is important not only from pure theoretical point but also from the point of applied speckle metrology. E.g. using single spatial filter and an array of photodetector can greatly improve accuracy of speckle velocity measurements.« less

  4. Ozone budgets from the Dynamics and Chemistry of Marine Stratocumulus experiment

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Pearson, R., Jr.

    1989-01-01

    Measurements from the Dynamics and Chemistry of marine Stratocumulus experiment have been used to study components of the regional ozone budget. The surface destruction rate is determined by eddy correlation of ozone and vertical velocity measured by a low-flying aircraft. Significant variability is found in the measured surface resistance; it is partially correlated with friction velocity but appears to have other controlling influences as well. The mean resistance is 4190 s/m which is higher (slower destruction) than most previous estimates for seawater. Flux and mean measurements throughout the marine boundary layer are used to estimate the net rate of in situ photochemical production/destruction of ozone. Averaged over the flights, ozone concentration is found to be near steady state, and a net of photochemical destruction of 0.02-0.07 ng/cu m per sec is diagnosed. This is an important confirmation of photochemical model results for the remote marine boundary layer. Ozone vertical distributions above the boundary layer show a strongly layered structure with very sharp gradients. These distributions are possibly related to the stratospheric ozone source.

  5. Polymer dynamics under cylindrical confinement featuring a locally repulsive surface: A quasielastic neutron scattering study.

    PubMed

    Krutyeva, M; Pasini, S; Monkenbusch, M; Allgaier, J; Maiz, J; Mijangos, C; Hartmann-Azanza, B; Steinhart, M; Jalarvo, N; Richter, D

    2017-05-28

    We investigated the effect of intermediate cylindrical confinement with locally repulsive walls on the segmental and entanglement dynamics of a polymer melt by quasielastic neutron scattering. As a reference, the corresponding polymer melt was measured under identical conditions. The locally repulsive confinement was realized by hydrophilic anodic alumina nanopores with a diameter of 20 nm. The end-to-end distance of the hydrophobic infiltrated polyethylene-alt-propylene was close to this diameter. In the case of hard wall repulsion with negligible local attraction, several simulations predicted an acceleration of segmental dynamics close to the wall. Other than in attractive or neutral systems, where the segmental dynamics is slowed down, we found that the segmental dynamics in the nanopores is identical to the local mobility in the bulk. Even under very careful scrutiny, we could not find any acceleration of the surface-near segmental motion. On the larger time scale, the neutron spin-echo experiment showed that the Rouse relaxation was not altered by confinement effects. Also the entanglement dynamics was not affected. Thus at moderate confinement conditions, facilitated by locally repulsive walls, the dynamics remains as in the bulk melt, a result that is not so clear from simulations.

  6. Polymer dynamics under cylindrical confinement featuring a locally repulsive surface: A quasielastic neutron scattering study

    NASA Astrophysics Data System (ADS)

    Krutyeva, M.; Pasini, S.; Monkenbusch, M.; Allgaier, J.; Maiz, J.; Mijangos, C.; Hartmann-Azanza, B.; Steinhart, M.; Jalarvo, N.; Richter, D.

    2017-05-01

    We investigated the effect of intermediate cylindrical confinement with locally repulsive walls on the segmental and entanglement dynamics of a polymer melt by quasielastic neutron scattering. As a reference, the corresponding polymer melt was measured under identical conditions. The locally repulsive confinement was realized by hydrophilic anodic alumina nanopores with a diameter of 20 nm. The end-to-end distance of the hydrophobic infiltrated polyethylene-alt-propylene was close to this diameter. In the case of hard wall repulsion with negligible local attraction, several simulations predicted an acceleration of segmental dynamics close to the wall. Other than in attractive or neutral systems, where the segmental dynamics is slowed down, we found that the segmental dynamics in the nanopores is identical to the local mobility in the bulk. Even under very careful scrutiny, we could not find any acceleration of the surface-near segmental motion. On the larger time scale, the neutron spin-echo experiment showed that the Rouse relaxation was not altered by confinement effects. Also the entanglement dynamics was not affected. Thus at moderate confinement conditions, facilitated by locally repulsive walls, the dynamics remains as in the bulk melt, a result that is not so clear from simulations.

  7. The effects of different substrates on the electron stimulated desorption dynamics of O - from physisorbed O2

    NASA Astrophysics Data System (ADS)

    Hedhili, M. N.; Parenteau, L.; Huels, M. A.; Azria, R.; Tronc, M.; Sanche, L.

    1997-11-01

    We report condensed phase measurements of kinetic energy (Ek) distributions of O-, produced by dissociative electron attachment (DEA) at 6 eV incident electron energy; they are obtained under identical experimental conditions from submonolayer quantities of 16O2 deposited on disordered multilayer substrates of 18O2, Ar, Kr, Xe, CH4, and C2H6, all condensed at 20 K on polycrystalline platinum (Pt). The results suggest that the desorption dynamics of O- DEA fragments is, in part, determined by large angle elastic scattering of O- prior to desorption, as well as the net image charge potential (Ep) induced in the condensed dielectric solid and the Pt metal. The measurements also indicate that, particularly at small Kr substrate thicknesses, the Ep may not necessarily be uniform across the surface, but may fluctuate due to surface roughness. Thus, in addition to energy losses in the substrate prior to, and during, DEA, these effects may influence the dissociation dynamics of the O2- resonance itself, as well as the desorption of the DEA O- fragment.

  8. Aerodynamic Measurements on a Large Splitter Plate for the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Schuster, David M.

    2001-01-01

    Tests conducted in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT) assess the aerodynamic characteristics of a splitter plate used to test some semispan models in this facility. Aerodynamic data are analyzed to determine the effect of the splitter plate on the operating characteristics of the TDT, as well as to define the range of conditions over which the plate can be reasonably used to obtain aerodynamic data. Static pressures measurements on the splitter plate surface and the equipment fairing between the wind tunnel wall and the splitter plate are evaluated to determine the flow quality around the apparatus over a range of operating conditions. Boundary layer rake data acquired near the plate surface define the viscous characteristics of the flow over the plate. Data were acquired over a range of subsonic, transonic and supersonic conditions at dynamic pressures typical for models tested on this apparatus. Data from this investigation should be used as a guide for the design of TDT models and tests using the splitter plate, as well as to guide future splitter plate design for this facility.

  9. Relationships between substrate, surface characteristics, and vegetation in an initial ecosystem

    NASA Astrophysics Data System (ADS)

    Biber, P.; Seifert, S.; Zaplata, M. K.; Schaaf, W.; Pretzsch, H.; Fischer, A.

    2013-12-01

    We investigated surface and vegetation dynamics in the artificial initial ecosystem "Chicken Creek" (Lusatia, Germany) in the years 2006-2011 across a wide spectrum of empirical data. We scrutinized three overarching hypotheses concerning (1) the relations between initial geomorphological and substrate characteristics with surface structure and terrain properties, (2) the effects of the latter on the occurrence of grouped plant species, and (3) vegetation density effects on terrain surface change. Our data comprise and conflate annual vegetation monitoring results, biennial terrestrial laser scans (starting in 2008), annual groundwater levels, and initially measured soil characteristics. The empirical evidence mostly confirms the hypotheses, revealing statistically significant relations for several goal variables: (1) the surface structure properties, local rill density, local relief energy and terrain surface height change; (2) the cover of different plant groups (annual, herbaceous, grass-like, woody, Fabaceae), and local vegetation height; and (3) terrain surface height change showed significant time-dependent relations with a variable that proxies local plant biomass. Additionally, period specific effects (like a calendar-year optimum effect for the occurrence of Fabaceae) were proven. Further and beyond the hypotheses, our findings on the spatiotemporal dynamics during the system's early development grasp processes which generally mark the transition from a geo-hydro-system towards a bio-geo-hydro system (weakening geomorphology effects on substrate surface dynamics, while vegetation effects intensify with time), where pure geomorphology or substrate feedbacks are changing into vegetation-substrate feedback processes.

  10. The coupled dynamics of fluids and spacecraft in low gravity and low gravity fluid measurement

    NASA Technical Reports Server (NTRS)

    Hansman, R. John; Peterson, Lee D.; Crawley, Edward F.

    1987-01-01

    The very large mass fraction of liquids stored on broad current and future generation spacecraft has made critical the technologies of describing the fluid-spacecraft dynamics and measuring or gauging the fluid. Combined efforts in these areas are described, and preliminary results are presented. The coupled dynamics of fluids and spacecraft in low gravity study is characterizing the parametric behavior of fluid-spacecraft systems in which interaction between the fluid and spacecraft dynamics is encountered. Particular emphasis is given to the importance of nonlinear fluid free surface phenomena to the coupled dynamics. An experimental apparatus has been developed for demonstrating a coupled fluid-spacecraft system. In these experiments, slosh force signals are fed back to a model tank actuator through a tunable analog second order integration circuit. In this manner, the tank motion is coupled to the resulting slosh force. Results are being obtained in 1-g and in low-g (on the NASA KC-135) using dynamic systems nondimensionally identical except for the Bond numbers.

  11. A New "Quasi-Dynamic" Method for Determining the Hamaker Constant of Solids Using an Atomic Force Microscope.

    PubMed

    Fronczak, Sean G; Dong, Jiannan; Browne, Christopher A; Krenek, Elizabeth C; Franses, Elias I; Beaudoin, Stephen P; Corti, David S

    2017-01-24

    In order to minimize the effects of surface roughness and deformation, a new method for estimating the Hamaker constant, A, of solids using the approach-to-contact regime of an atomic force microscope (AFM) is presented. First, a previous "jump-into-contact" quasi-static method for determining A from AFM measurements is analyzed and then extended to include various AFM tip-surface force models of interest. Then, to test the efficacy of the "jump-into-contact" method, a dynamic model of the AFM tip motion is developed. For finite AFM cantilever-surface approach speeds, a true "jump" point, or limit of stability, is found not to appear, and the quasi-static model fails to represent the dynamic tip behavior at close tip-surface separations. Hence, a new "quasi-dynamic" method for estimating A is proposed that uses the dynamically well-defined deflection at which the tip and surface first come into contact, d c , instead of the dynamically ill-defined "jump" point. With the new method, an apparent Hamaker constant, A app , is calculated from d c and a corresponding quasi-static-based equation. Since A app depends on the cantilever's approach speed, v c , and the AFM's sampling resolution, δ, a double extrapolation procedure is used to determine A app in the quasi-static (v c → 0) and continuous sampling (δ → 0) limits, thereby recovering the "true" value of A. The accuracy of the new method is validated using simulated AFM data. To enable the experimental implementation of this method, a new dimensionless parameter τ is introduced to guide cantilever selection and the AFM operating conditions. The value of τ quantifies how close a given cantilever is to its quasi-static limit for a chosen cantilever-surface approach speed. For sufficiently small values of τ (i.e., a cantilever that effectively behaves "quasi-statically"), simulated data indicate that A app will be within ∼3% or less of the inputted value of the Hamaker constant. This implies that Hamaker constants can be reliably estimated using a single measurement taken with an appropriately chosen cantilever and a slow, yet practical, approach speed (with no extrapolation required). This result is confirmed by the very good agreement found between the experimental AFM results obtained using this new method and previously reported predictions of A for amorphous silica, polystyrene, and α-Al 2 O 3 substrates obtained using the Lifshitz method.

  12. Interplay of polyelectrolytes with different adsorbing surfaces

    NASA Astrophysics Data System (ADS)

    Xie, Feng

    We study the adsorption of polyelectrolytes from solution onto different adsorbing surfaces, focusing on the electrostatic interactions. Measurements of the surface excess, fractional ionization of chargeable groups, segmental orientation, and adsorption kinetics were made using Fourier transform infrared spectroscopy in the mode of attenuated total reflection. Different adsorbing surfaces, from single solid surfaces, solid surfaces modified with adsorbed polymer layer, to fluid-like surfaces-biomembranes were adopted. Both atomic force microscopy (AFM) and fluorescent techniques were employed to investigate the fluid-like surfaces in the absence and in the presence of polyelectrolytes. The work focuses on three primary issues: (i) the charge regulation of weak polyelectrolytes on both homogeneous and heterogeneous surfaces, (ii) the dynamics of adsorption when the surface possesses reciprocal mobility, i.e., biomembrane surface, and (iii) the structural and dynamical properties of the fluid-like surfaces interacting with polyelectrolytes. We find that the ionization of chargeable groups in weak polyelectrolytes is controlled by the charge balance between the adsorbates and the surfaces. A new interpretation of ionization in the adsorbed layer provides a new insight into the fundamental problem of whether ions of opposite charge associate or remain separate. Bjerrum length is found to be a criterion for the onset of surface ionization suppression, which helps to predict and control the conformation transition of proteins. In addition to the effect of different surfaces on the adsorption behavior of polyelectrolytes, we also focused on the response of the surfaces to the adsorbates. Chains that encountered sparsely-covered surfaces spread to maximize the number of segment-surface contacts at rates independent of the molar mass. Surface reconstruction rather than molar mass of the adsorbing molecules appeared to determine the rate of spreading. This contrasts starkly with traditional polymer adsorption onto surfaces whose structure is "frozen" and unresponsive. Finally, preliminary studies on dynamical properties of biomembrane surfaces interacting with polyelectrolytes are presented, using fluorescence correlation spectroscopy (FCS). The significance is to characterize domains induced by polyelectrolyte binding.

  13. Measures of static postural control moderate the association of strength and power with functional dynamic balance.

    PubMed

    Forte, Roberta; Boreham, Colin A G; De Vito, Giuseppe; Ditroilo, Massimiliano; Pesce, Caterina

    2014-12-01

    Age-related reductions in strength and power are considered to negatively impact balance control, but the existence of a direct association is still an issue of debate. This is possibly due to the fact that balance assessment is complex, reflects different underlying physiologic mechanisms and involves quantitative measurements of postural sway or timing of performance during balance tasks. The present study evaluated the moderator effect of static postural control on the association of power and strength with dynamic balance tasks. Fifty-seven healthy 65-75 year old individuals performed tests of dynamic functional balance (walking speed under different conditions) and of strength, power and static postural control. Dynamic balance performance (walking speed) was associated with lower limb strength and power, as well as postural control under conditions requiring postural adjustments (narrow surface walking r(2) = 0.31, p < 0.001). An interaction effect between strength and static postural control was found with narrow surface walking and talking while walking (change of β 0.980, p < 0.001 in strength for 1 SD improvements in static postural control for narrow walking, and [Formula: see text] -0.730, p < 0.01 in talking while walking). These results indicate that good static postural control facilitates the utilisation of lower limb strength to better perform complex, dynamic functional balance tasks. Practical implications for assessment and training are discussed.

  14. Dielectric relaxation measurement and analysis of restricted water structure in rice kernels

    NASA Astrophysics Data System (ADS)

    Yagihara, Shin; Oyama, Mikio; Inoue, Akio; Asano, Megumi; Sudo, Seiichi; Shinyashiki, Naoki

    2007-04-01

    Dielectric relaxation measurements were performed for rice kernels by time domain reflectometry (TDR) with flat-end coaxial electrodes. Difficulties in good contact between the surfaces of the electrodes and the kernels are eliminated by a TDR set-up with a sample holder for a kernel, and the water content could be evaluated from relaxation curves. Dielectric measurements were performed for rice kernels, rice flour and boiled rice with various water contents, and the water amount and dynamic behaviour of water molecules were explained from restricted dynamics of water molecules and also from the τ-β (relaxation time versus the relaxation-time distribution parameter of the Cole-Cole equation) diagram. In comparison with other aqueous systems, the dynamic structure of water in moist rice is more similar to aqueous dispersion systems than to aqueous solutions.

  15. Experimental and analytical study on the flutter and gust response characteristics of a torsion-free-wing airplane model. [in the Langley transonic dynamics tunnel

    NASA Technical Reports Server (NTRS)

    Murphy, A. C.

    1981-01-01

    Experimental data and correlative analytical results on the flutter and gust response characteristics of a torsion-free-wing (TFW) fighter airplane model are presented. TFW consists of a combined wing/boom/canard surface and was tested with the TFW free to pivot in pitch and with the TFW locked to the fuselage. Flutter and gust response characteristics were measured in the Langley Transonic Dynamics Tunnel with the complete airplane model mounted on a cable mount system that provided a near free flying condition. Although the lowest flutter dynamic pressure was measured for the wing free configuration, it was only about 20 deg less than that for the wing locked configuration. However, no appreciable alleviation of the gust response was measured by freeing the wing.

  16. The dynamic behavior of mortar under impact-loading

    NASA Astrophysics Data System (ADS)

    Kawai, Nobuaki; Inoue, Kenji; Misawa, Satoshi; Tanaka, Kyoji; Hayashi, Shizuo; Kondo, Ken-Ichi; Riedel, Werner

    2007-06-01

    Concrete and mortar are the most fundamental structural material. Therefore, considerable interest in characterizing the dynamic behavior of them under impact-loading exists. In this study, plate impact experiments have been performed to determine the dynamic behavior of mortar. Longitudinal and lateral stresses have been directly measured by means of embedded polyvinylidene fluoride (PVDF) gauges up to 1 GPa. A 200 mm-cal. powder gun enable us to measure longitudinal and lateral stresses at several point from the impact surface, simultaneously. The shear strength under impact-loading has been obtained from measured longitudinal and lateral stresses. The longitudinal stress profile shows a two-wave structure. It is indicated that this structure is associated with the onset of pore compaction and failure of mortar by comparing with hydrocode simulations using an elastic-plastic damage model for concrete.

  17. Differential surface models for tactile perception of shape and on-line tracking of features

    NASA Technical Reports Server (NTRS)

    Hemami, H.

    1987-01-01

    Tactile perception of shape involves an on-line controller and a shape perceptor. The purpose of the on-line controller is to maintain gliding or rolling contact with the surface, and collect information, or track specific features of the surface such as edges of a certain sharpness. The shape perceptor uses the information to perceive, estimate the parameters of, or recognize the shape. The differential surface model depends on the information collected and on the a priori information known about the robot and its physical parameters. These differential models are certain functionals that are projections of the dynamics of the robot onto the surface gradient or onto the tangent plane. A number of differential properties may be directly measured from present day tactile sensors. Others may have to be indirectly computed from measurements. Others may constitute design objectives for distributed tactile sensors of the future. A parameterization of the surface leads to linear and nonlinear sequential parameter estimation techniques for identification of the surface. Many interesting compromises between measurement and computation are possible.

  18. Toward understanding dynamic annealing processes in irradiated ceramics

    NASA Astrophysics Data System (ADS)

    Myers, Michael Thomas

    High energy particle irradiation inevitably generates defects in solids in the form of collision cascades. The ballistic formation and thermalization of cascades occur rapidly and are believed to be reasonably well understood. However, knowledge of the evolution of defects after damage cascade thermalization, referred to as dynamic annealing, is quite limited. Unraveling the mechanisms associated with dynamic an- nealing is crucial since such processes play an important role in the formation of stable post-irradiation disorder in ion-beam-processed semiconductors and determines the "radiation tolerance" of many nuclear materials. The purpose of this dissertation is to further our understanding of the processes involved in dynamic annealing. In order to achieve this, two main tasks are undertaken. First, the effects of dynamic annealing are investigated in ZnO, a technologically relevant material that exhibits very high dynamic defect annealing at room temper- ature. Such high dynamic annealing leads to unusual defect accumulation in heavy ion bombarded ZnO. Through this work, the puzzling features that were observed more than a decade ago in ion-channeling spectra have finally been explained. We show that the presence of a polar surface substantially alters damage accumulation. Non-polar surface terminations of ZnO are shown to exhibit enhanced dynamic an- nealing compared to polar surface terminated ZnO. Additionally, we demonstrate one method to reduce radiation damage in polar surface terminated ZnO by means of a surface modification. These results advance our efforts in the long-sought-after goal of understanding complex radiation damage processes in ceramics. Second, a pulsed-ion-beam method is developed and demonstrated in the case of Si as a prototypical non-metallic target. Such a method is shown to be a novel experimental technique for direct extraction of dynamic annealing parameters. The relaxation times and effective diffusion lengths of mobile defects during the dynamic annealing process play a vital role in damage accumulation. We demonstrate that these parameters dominate the formation of stable post-irradiation disorder. In Si, a defect lifetime of ˜ 6 ms and a characteristic defect diffusion length of ˜ 30 nm are measured. These results should nucleate future pulsed-beam studies of dynamic defect interaction processes in technologically relevant materials. In particular, un- derstanding length- and time-scales of defect interactions are essential for extending laboratory findings to nuclear material lifetimes and to the time-scales of geological storage of nuclear waste.

  19. Elucidating ultrafast electron dynamics at surfaces using extreme ultraviolet (XUV) reflection-absorption spectroscopy.

    PubMed

    Biswas, Somnath; Husek, Jakub; Baker, L Robert

    2018-04-24

    Here we review the recent development of extreme ultraviolet reflection-absorption (XUV-RA) spectroscopy. This method combines the benefits of X-ray absorption spectroscopy, such as element, oxidation, and spin state specificity, with surface sensitivity and ultrafast time resolution, having a probe depth of only a few nm and an instrument response less than 100 fs. Using this technique we investigated the ultrafast electron dynamics at a hematite (α-Fe2O3) surface. Surface electron trapping and small polaron formation both occur in 660 fs following photoexcitation. These kinetics are independent of surface morphology indicating that electron trapping is not mediated by defects. Instead, small polaron formation is proposed as the likely driving force for surface electron trapping. We also show that in Fe2O3, Co3O4, and NiO, band gap excitation promotes electron transfer from O 2p valence band states to metal 3d conduction band states. In addition to detecting the photoexcited electron at the metal M2,3-edge, the valence band hole is directly observed as transient signal at the O L1-edge. The size of the resulting charge transfer exciton is on the order of a single metal-oxygen bond length. Spectral shifts at the O L1-edge correlate with metal-oxygen bond covalency, confirming the relationship between valence band hybridization and the overpotential for water oxidation. These examples demonstrate the unique ability to measure ultrafast electron dynamics with element and chemical state resolution using XUV-RA spectroscopy. Accordingly, this method is poised to play an important role to reveal chemical details of previously unseen surface electron dynamics.

  20. 3D Dynamics of the Near-Surface Layer of the Ocean in the Presence of Freshwater Influx

    NASA Astrophysics Data System (ADS)

    Dean, C.; Soloviev, A.

    2015-12-01

    Freshwater inflow due to convective rains or river runoff produces lenses of freshened water in the near surface layer of the ocean. These lenses are localized in space and typically involve both salinity and temperature anomalies. Due to significant density anomalies, strong pressure gradients develop, which result in lateral spreading of freshwater lenses in a form resembling gravity currents. Gravity currents inherently involve three-dimensional dynamics. The gravity current head can include the Kelvin-Helmholtz billows with vertical density inversions. In this work, we have conducted a series of numerical experiments using computational fluid dynamics tools. These numerical simulations were designed to elucidate the relationship between vertical mixing and horizontal advection of salinity under various environmental conditions and potential impact on the pollution transport including oil spills. The near-surface data from the field experiments in the Gulf of Mexico during the SCOPE experiment were available for validation of numerical simulations. In particular, we observed a freshwater layer within a few-meter depth range and, in some cases, a density inversion at the edge of the freshwater lens, which is consistent with the results of numerical simulations. In conclusion, we discuss applicability of these results to the interpretation of Aquarius and SMOS sea surface salinity satellite measurements. The results of this study indicate that 3D dynamics of the near-surface layer of the ocean are essential in the presence of freshwater inflow.

  1. A Buoy for Continuous Monitoring of Suspended Sediment Dynamics

    PubMed Central

    Mueller, Philip; Thoss, Heiko; Kaempf, Lucas; Güntner, Andreas

    2013-01-01

    Knowledge of Suspended Sediments Dynamics (SSD) across spatial scales is relevant for several fields of hydrology, such as eco-hydrological processes, the operation of hydrotechnical facilities and research on varved lake sediments as geoarchives. Understanding the connectivity of sediment flux between source areas in a catchment and sink areas in lakes or reservoirs is of primary importance to these fields. Lacustrine sediments may serve as a valuable expansion of instrumental hydrological records for flood frequencies and magnitudes, but depositional processes and detrital layer formation in lakes are not yet fully understood. This study presents a novel buoy system designed to continuously measure suspended sediment concentration and relevant boundary conditions at a high spatial and temporal resolution in surface water bodies. The buoy sensors continuously record turbidity as an indirect measure of suspended sediment concentrations, water temperature and electrical conductivity at up to nine different water depths. Acoustic Doppler current meters and profilers measure current velocities along a vertical profile from the water surface to the lake bottom. Meteorological sensors capture the atmospheric boundary conditions as main drivers of lake dynamics. It is the high spatial resolution of multi-point turbidity measurements, the dual-sensor velocity measurements and the temporally synchronous recording of all sensors along the water column that sets the system apart from existing buoy systems. Buoy data collected during a 4-month field campaign in Lake Mondsee demonstrate the potential and effectiveness of the system in monitoring suspended sediment dynamics. Observations were related to stratification and mixing processes in the lake and increased turbidity close to a catchment outlet during flood events. The rugged buoy design assures continuous operation in terms of stability, energy management and sensor logging throughout the study period. We conclude that the buoy is a suitable tool for continuous monitoring of suspended sediment concentrations and general dynamics in fresh water bodies. PMID:24129017

  2. Dynamic measurement of the optical properties of bovine enamel demineralization models using four-dimensional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Aden, Abdirahman; Anthony, Arthi; Brigi, Carel; Merchant, Muhammad Sabih; Siraj, Huda; Tomlins, Peter H.

    2017-07-01

    Dental enamel mineral loss is multifactorial and is consequently explored using a variety of in vitro models. Important factors include the presence of acidic pH and its specific ionic composition, which can both influence lesion characteristics. Optical coherence tomography (OCT) has been demonstrated as a promising tool for studying dental enamel demineralization. However, OCT-based characterization and comparison of demineralization model dynamics are challenging without a consistent experimental environment. Therefore, an automated four-dimensional OCT system was integrated with a multispecimen flow cell to measure and compare the optical properties of subsurface enamel demineralization in different models. This configuration was entirely automated, thus mitigating any need to disturb the specimens and ensuring spatial registration of OCT image volumes at multiple time points. Twelve bovine enamel disks were divided equally among three model groups. The model demineralization solutions were citric acid (pH 3.8), acetic acid (pH 4.0), and acetic acid with added calcium and phosphate (pH 4.4). Bovine specimens were exposed to the solution continuously for 48 h. Three-dimensional OCT data were obtained automatically from each specimen at a minimum of 1-h intervals from the same location within each specimen. Lesion dynamics were measured in terms of the depth below the surface to which the lesion extended and the attenuation coefficient. The net loss of surface enamel was also measured for comparison. Similarities between the dynamics of each model were observed, although there were also distinct characteristic differences. Notably, the attenuation coefficients showed a systematic offset and temporal shift with respect to the different models. Furthermore, the lesion depth curves displayed a discontinuous increase several hours after the initial acid challenge. This work demonstrated the capability of OCT to distinguish between different enamel demineralization models by making dynamic quantitative measurements of lesion properties. This has important implications for future applications in clinical dentistry.

  3. Piezoelectric modulation of surface voltage in GaN and AlGaN/GaN: charge screening effects and 2DEG

    NASA Astrophysics Data System (ADS)

    Wilson, Marshall; Schrayer, Bret; Savtchouk, Alexandre; Hillard, Bob; Lagowski, Jacek

    2017-02-01

    Surface voltage response to pulses of piezoelectric polarization is measured with a Kelvin-probe providing a unique means for investigation of the dynamics of polarization induced sheet charge and 2DEG. Combined with biasing of the surface with a corona-deposited charge from accumulation to deep depletion and corresponding non-contact C-V type characterization, the technique identifies surface band bending and interface traps as key factors that affect the magnitude and time decay of piezoelectric polarization. For 2DEG structures, surface potential pinning is observed when the 2DEG is fully populated. Pinning is released by negative corona charging to fully deplete the 2DEG. These results are consistent with the role of surface states. Presently demonstrated polarization modulation and wafer scale measurements shall impact the in-depth characterization and fundamental understanding of AlGaN/GaN 2DEG structures.

  4. Insights into Regolith Dynamics from the Irradiation Record Preserved in Hayabusa Samples

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Berger, E. L.

    2014-01-01

    The rates of space weathering processes are poorly constrained for asteroid surfaces, with recent estimates ranging over 5 orders of magnitude. The return of the first surface samples from a space-weathered asteroid by the Hayabusa mission and their laboratory analysis provides "ground truth" to anchor the timescales for space weathering. We determine the rates of space weathering on Itokawa by measuring solar flare track densities and the widths of solar wind damaged rims on grains. These measurements are made possible through novel focused ion beam (FIB) sample preparation methods.

  5. NCTM of liquids at high temperatures using polarization techniques

    NASA Technical Reports Server (NTRS)

    Krishnan, Shankar; Weber, J. K. Richard; Nordine, Paul C.; Schiffman, Robert A.

    1990-01-01

    Temperature measurement and control is extremely important in any materials processing application. However, conventional techniques for non-contact temperature measurement (mainly optical pyrometry) are very uncertain because of unknown or varying surface emittance. Optical properties like other properties change during processing. A dynamic, in-situ measurement of optical properties including the emittance is required. Intersonics is developing new technologies using polarized laser light scattering to determine surface emittance of freely radiating bodies concurrent with conventional optical pyrometry. These are sufficient to determine the true surface temperature of the target. Intersonics is currently developing a system called DAPP, the Division of Amplitude Polarimetric Pyrometer, that uses polarization information to measure the true thermodynamic temperature of freely radiating objects. This instrument has potential use in materials processing applications in ground and space based equipment. Results of thermophysical and thermodynamic measurements using laser reflection as a temperature measuring tool are presented. The impact of these techniques on thermophysical property measurements at high temperature is discussed.

  6. Patterning pallet arrays for cell selection based on high-resolution measurements of fluorescent biosensors

    PubMed Central

    Shadpour, Hamed; Zawistowski, Jon S.; Herman, Annadele; Hahn, Klaus; Allbritton, Nancy L.

    2011-01-01

    Pallet arrays enable cells to be separated while they remain adherent to a surface and provide a much greater range of cell selection criteria relative to that of current technologies. However there remains a need to further broaden cell selection criteria to include dynamic intracellular signaling events. To demonstrate the feasibility of measuring cellular protein behavior on the arrays using high resolution microscopy, the surfaces of individual pallets were modified to minimize the impact of scattered light at the pallet edges. The surfaces of the three-dimensional pallets on an array were patterned with a coating such as fibronectin using a customized stamping tool. Micropatterns of varying shape and size were printed in designated regions on the pallets in single or multiple steps to demonstrate the reliability and precision of patterning molecules on the pallet surface. Use of a fibronectin matrix stamped at the center of each pallet permitted the localization of H1299 and mouse embryonic fibroblast (MEF) cells to the pallet centers and away from the edges. Compared to pallet arrays with fibronection coating the entire top surface, arrays with a central fibronectin pattern increased the percentage of cells localized to the pallet center by 3-4 fold. Localization of cells to the pallet center also enabled the physical separation of cells from optical artifacts created by the rough pallet side walls. To demonstrate the measurement of dynamic intracellular signaling on the arrays, fluorescence measurements of high spatial resolution were performed using a RhoA GTPase biosensor. This biosensor utilized fluorescence resonance energy transfer (FRET) between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) to measure localized RhoA activity in cellular ruffles at the cell periphery. These results demonstrated the ability to perform spatially resolved measurements of fluorescence-based sensors on the pallet arrays. Thus, the patterned pallet arrays should enable novel cell separations in which cell selection is based on complex cellular signaling properties. PMID:21621038

  7. Contributions of the NASA Langley Research Center to the DARPA/AFRL/NASA/ Northrop Grumman Smart Wing Program

    NASA Technical Reports Server (NTRS)

    Florance, Jennifer P.; Burner, Alpheus W.; Fleming, Gary A.; Martin, Christopher A.

    2003-01-01

    An overview of the contributions of the NASA Langley Research Center (LaRC) to the DARPA/AFRL/NASA/ Northrop Grumman Corporation (NGC) Smart Wing program is presented. The overall objective of the Smart Wing program was to develop smart** technologies and demonstrate near-flight-scale actuation systems to improve the aerodynamic performance of military aircraft. NASA LaRC s roles were to provide technical guidance, wind-tunnel testing time and support, and Computational Fluid Dynamics (CFD) analyses. The program was divided into two phases, with each phase having two wind-tunnel entries in the Langley Transonic Dynamics Tunnel (TDT). This paper focuses on the fourth and final wind-tunnel test: Phase 2, Test 2. During this test, a model based on the NGC Unmanned Combat Air Vehicle (UCAV) concept was tested at Mach numbers up to 0.8 and dynamic pressures up to 150 psf to determine the aerodynamic performance benefits that could be achieved using hingeless, smoothly-contoured control surfaces actuated with smart materials technologies. The UCAV-based model was a 30% geometric scale, full-span, sting-mounted model with the smart control surfaces on the starboard wing and conventional, hinged control surfaces on the port wing. Two LaRC-developed instrumentation systems were used during the test to externally measure the shapes of the smart control surface and quantify the effects of aerodynamic loading on the deflections: Videogrammetric Model Deformation (VMD) and Projection Moire Interferometry (PMI). VMD is an optical technique that uses single-camera photogrammetric tracking of discrete targets to determine deflections at specific points. PMI provides spatially continuous measurements of model deformation by computationally analyzing images of a grid projected onto the model surface. Both the VMD and PMI measurements served well to validate the use of on-board (internal) rotary potentiometers to measure the smart control surface deflection angles. Prior to the final entry, NASA LaRC also performed three-dimensional unstructured Navier Stokes CFD analyses in an attempt to predict the potential aerodynamic impact of the smart control surface on overall model forces and moments. Eight different control surface shapes were selected for study at Mach = 0.6, Reynolds number = 3.25 x 10(exp 6), and + 2 deg., 3 deg., 8 deg., and 10 deg.model angles-of-attack. For the baseline, undeflected control surface geometry, the CFD predictions and wind-tunnel results matched well. The agreement was not as good for the more complex aero-loaded control surface shapes, though, because of the inability to accurately predict those shapes. Despite these results, the NASA CFD study served as an important step in studying advanced control effectors.

  8. Temporal response of a surface flashover on a velvet cathode in a relativistic diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, J. E.; Moir, D. C.; Crawford, M. T.

    2015-03-15

    Surface flashover of a carbon fiber velvet cathode generates a discharge from which electrons are relativistically accelerated to γ ranging from 4.9 to 8.8 through a 17.8 cm diode. This discharge is assumed to be a hydrocarbon mixture. The principal objective of these experiments is to quantify the dynamics over the ∼100 ns pulse of the plasma discharge generated on the surface of the velvet cathode and across the anode-cathode (A-K) gap. A qualitative comparison of calculated and measured results is presented, which includes time resolved measurements with a photomultiplier tube and charge-coupled device images. In addition, initial visible spectroscopy measurements willmore » also be presented confirming the ion species are dominated by hydrogen.« less

  9. A fast and accurate Langmuir-type polymer microtensiometer.

    PubMed

    Gijsenbergh, Pieter; Puers, Robert

    2018-05-01

    A semi-flexible polymer microtensiometer for local surface pressure measurements of Langmuir monolayers is presented. The current device geometry and read-out method via image analysis result in a theoretical accuracy of ±0.02mN⋅m -1 for a dynamic range between 0 and 75mN⋅m -1 . The tensiometer sensitivity and dynamic range are easily tunable as they are solely based on the tensiometer spring dimensions. Finite element simulations are used to determine the response time of 20ms for a subphase viscosity of 1mPa⋅s. A poroviscomechanical model of the sensor is composed and the subphase viscosity is shown to dominate the transient behavior. The tensiometer performance is verified in a Langmuir trough by applying rapid local surface pressure oscillations. A Wilhelmy plate is used as an independent measurement tool and the results of both techniques correlate well. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Landslide Hazard from Coupled Inherent and Dynamic Probabilities

    NASA Astrophysics Data System (ADS)

    Strauch, R. L.; Istanbulluoglu, E.; Nudurupati, S. S.

    2015-12-01

    Landslide hazard research has typically been conducted independently from hydroclimate research. We sought to unify these two lines of research to provide regional scale landslide hazard information for risk assessments and resource management decision-making. Our approach couples an empirical inherent landslide probability, based on a frequency ratio analysis, with a numerical dynamic probability, generated by combining subsurface water recharge and surface runoff from the Variable Infiltration Capacity (VIC) macro-scale land surface hydrologic model with a finer resolution probabilistic slope stability model. Landslide hazard mapping is advanced by combining static and dynamic models of stability into a probabilistic measure of geohazard prediction in both space and time. This work will aid resource management decision-making in current and future landscape and climatic conditions. The approach is applied as a case study in North Cascade National Park Complex in northern Washington State.

  11. Measurements of unsteady pressure and structural response for an elastic supercritical wing

    NASA Technical Reports Server (NTRS)

    Eckstrom, Clinton V.; Seidel, David A.; Sandford, Maynard C.

    1994-01-01

    Results are presented which define unsteady flow conditions associated with the high-dynamic structural response of a high-aspect-ratio, elastic, supercritical wing at transonic speeds. The wing was tested in the Langley Transonic Dynamics Tunnel with a heavy gas test medium. The supercritical wing, designed for a cruise lift coefficient of 0.53 at a Mach number of 0.80, experienced the high-dynamic structural response from Mach 0.90 to 0.94 with the maximum response occurring at about Mach 0.92. At the maximum response conditions of the wing, the forcing function appears to be the oscillatory chordwise movement of strong shocks located on the upper and lower surfaces of the wing in conjunction with the flow separation on the lower surface of the wing in the trailing-edge cove region.

  12. Theory of activated glassy relaxation, mobility gradients, surface diffusion, and vitrification in free standing thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirigian, Stephen, E-mail: kschweiz@illinois.edu, E-mail: smirigian@gmail.com; Schweizer, Kenneth S., E-mail: kschweiz@illinois.edu, E-mail: smirigian@gmail.com

    2015-12-28

    We have constructed a quantitative, force level, statistical mechanical theory for how confinement in free standing thin films introduces a spatial mobility gradient of the alpha relaxation time as a function of temperature, film thickness, and location in the film. The crucial idea is that relaxation speeds up due to the reduction of both near-surface barriers associated with the loss of neighbors in the local cage and the spatial cutoff and dynamical softening near the vapor interface of the spatially longer range collective elasticity cost for large amplitude hopping. These two effects are fundamentally coupled. Quantitative predictions are made formore » how an apparent glass temperature depends on the film thickness and experimental probe technique, the emergence of a two-step decay and mobile layers in time domain measurements, signatures of confinement in frequency-domain dielectric loss experiments, the dependence of film-averaged relaxation times and dynamic fragility on temperature and film thickness, surface diffusion, and the relationship between kinetic experiments and pseudo-thermodynamic measurements such as ellipsometry.« less

  13. Theory of activated glassy relaxation, mobility gradients, surface diffusion, and vitrification in free standing thin films.

    PubMed

    Mirigian, Stephen; Schweizer, Kenneth S

    2015-12-28

    We have constructed a quantitative, force level, statistical mechanical theory for how confinement in free standing thin films introduces a spatial mobility gradient of the alpha relaxation time as a function of temperature, film thickness, and location in the film. The crucial idea is that relaxation speeds up due to the reduction of both near-surface barriers associated with the loss of neighbors in the local cage and the spatial cutoff and dynamical softening near the vapor interface of the spatially longer range collective elasticity cost for large amplitude hopping. These two effects are fundamentally coupled. Quantitative predictions are made for how an apparent glass temperature depends on the film thickness and experimental probe technique, the emergence of a two-step decay and mobile layers in time domain measurements, signatures of confinement in frequency-domain dielectric loss experiments, the dependence of film-averaged relaxation times and dynamic fragility on temperature and film thickness, surface diffusion, and the relationship between kinetic experiments and pseudo-thermodynamic measurements such as ellipsometry.

  14. Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI)

    NASA Technical Reports Server (NTRS)

    Donnellan, Andrea; Rosen, Paul; Ranson, Jon; Zebker, Howard

    2008-01-01

    The National Research Council Earth Science Decadal Survey, Earth Science Applications from Space, recommends that DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice), an integrated L-band InSAR and multibeam Lidar mission, launch in the 2010- 2013 timeframe. The mission will measure surface deformation for solid Earth and cryosphere objectives and vegetation structure for understanding the carbon cycle. InSAR has been used to study surface deformation of the solid Earth and cryosphere and more recently vegetation structure for estimates of biomass and ecosystem function. Lidar directly measures topography and vegetation structure and is used to estimate biomass and detect changes in surface elevation. The goal of DESDynI is to take advantage of the spatial continuity of InSAR and the precision and directness of Lidar. There are several issues related to the design of the DESDynI mission, including combining the two instruments into a single platform, optimizing the coverage and orbit for the two techniques, and carrying out the science modeling to define and maximize the scientific output of the mission.

  15. Surface Behavior of BSA/Water/Carbohydrate Systems from Molecular Polarizability Measurements.

    PubMed

    Alvarado, Ysaías J; Ferrebuz, Atilio; Paz, Jose Luis; Rodríguez-Lugo, Patricia; Restrepo, Jelem; Romero, Freddy; Fernández-Acuña, Jaqueline; Williams, Yhan O'Neil; Toro-Mendoza, Jhoan

    2018-04-19

    The effect of the presence of glucose and sucrose on the nonintrinsic contribution to partial molar volume ⟨Θ⟩ ni of bovine serum albumin (BSA) is determined by means of static and dynamic electronic polarizability measurements. For that aim, a combined strategy based on high-resolution refractometry, high exactitude densitometry, and synchronous fluorescence spectroscopy is applied. Both static and dynamic mean electronic molecular polarizability values are found to be sensitive to the presence of glucose. In the case of sucrose, the polarizability of BSA is not appreciably affected. In fact, our results revealed that the electronic changes observed occurred without a modification of the native conformation of BSA. On the contrary, a nonmonotonous behavior with the concentration is observed in presence of glucose. These results advocate the influence of the electronic polarization on the repulsive and attractive protein-carbohydrate interactions. An analysis using the scaled particle theory indicates that the accumulation of glucose on the protein surface promotes dehydration. Inversely, hydration and preferential exclusion occur in the vicinity of the protein surface for sucrose-enriched systems.

  16. Ultrafast terahertz spectroscopy study of a Kondo insulating thin-film Sm B6 : Evidence for an emergent surface state

    NASA Astrophysics Data System (ADS)

    Zhang, Jingdi; Yong, Jie; Takeuchi, Ichiro; Greene, Richard L.; Averitt, Richard D.

    2018-04-01

    We utilize terahertz time domain spectroscopy to investigate thin films of the heavy fermion compound Sm B6 , a prototype Kondo insulator. Temperature-dependent terahertz (THz) conductivity measurements reveal a rapid decrease in the Drude weight and carrier scattering rate at ˜T*=20 K , well below the hybridization gap onset temperature (100 K). Moreover, a low-temperature conductivity plateau (below 20 K) suggests the emergence of a surface state with an effective electron mass of 0.1 me . The conductivity dynamics following optical excitation is also measured and interpreted using Rothwarf-Taylor (R-T) phenomenology, yielding a hybridization gap energy of 17 meV. However, R-T modeling of the conductivity dynamics reveals a deviation from the expected thermally excited quasiparticle density at temperatures below 20 K, indicative of another channel opening up in the low-energy electrodynamics. Taken together, these results are consistent with the onset of a surface state well below the crossover temperature (100 K) after long-range coherence of the f -electron Kondo lattice is established.

  17. Imaging surface acoustic wave dynamics in semiconducting polymers by scanning ultrafast electron microscopy.

    PubMed

    Najafi, Ebrahim; Liao, Bolin; Scarborough, Timothy; Zewail, Ahmed

    2018-01-01

    Understanding the mechanical properties of organic semiconductors is essential to their electronic and photovoltaic applications. Despite a large volume of research directed toward elucidating the chemical, physical and electronic properties of these materials, little attention has been directed toward understanding their thermo-mechanical behavior. Here, we report the ultrafast imaging of surface acoustic waves (SAWs) on the surface of the Poly(3-hexylthiophene-2,5-diyl) (P3HT) thin film at the picosecond and nanosecond timescales. We then use these images to measure the propagation velocity of SAWs, which we then employ to determine the Young's modulus of P3HT. We further validate our experimental observation by performing a semi-empirical transient thermoelastic finite element analysis. Our findings demonstrate the potential of ultrafast electron microscopy to not only probe charge carrier dynamics in materials as previously reported, but also to measure their mechanical properties with great accuracy. This is particularly important when in situ characterization of stiffness for thin devices and nanomaterials is required. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Characterizing an Integrated Annual Global Measure of the Earth's Maximum Land Surface Temperatures from 2003 to 2012 Reveals Strong Biogeographic Influences

    NASA Astrophysics Data System (ADS)

    Mildrexler, D. J.; Zhao, M.; Running, S. W.

    2014-12-01

    Land Surface Temperature (LST) is a good indicator of the surface energy balance because it is determined by interactions and energy fluxes between the atmosphere and the ground. The variability of land surface properties and vegetation densities across the Earth's surface changes these interactions and gives LST a unique biogeographic influence. Natural and human-induced disturbances modify the surface characteristics and alter the expression of LST. This results in a heterogeneous and dynamic thermal environment. Measurements that merge these factors into a single global metric, while maintaining the important biophysical and biogeographical factors of the land surface's thermal environment are needed to better understand integrated temperature changes in the Earth system. Using satellite-based LST we have developed a new global metric that focuses on one critical component of LST that occurs when the relationship between vegetation density and surface temperature is strongly coupled: annual maximum LST (LSTmax). A 10 year evaluation of LSTmax histograms that include every 1-km pixel across the Earth's surface reveals that this integrative measurement is strongly influenced by the biogeographic patterns of the Earth's ecosystems, providing a unique comparative view of the planet every year that can be likened to the Earth's thermal maximum fingerprint. The biogeographical component is controlled by the frequency and distribution of vegetation types across the Earth's land surface and displays a trimodal distribution. The three modes are driven by ice covered polar regions, forests, and hot desert/shrubland environments. In ice covered areas the histograms show that the heat of fusion results in a convergence of surface temperatures around the melting point. The histograms also show low interannual variability reflecting two important global land surface dynamics; 1) only a small fraction of the Earth's surface is disturbed in any given year, and 2) when considered at the global scale, the positive and negative climate forcings resulting from the aggregate effects of the loss of vegetation to disturbances and the regrowth from natural succession are roughly in balance. Changes in any component of the histogram can be tracked and would indicate a major change in the Earth system.

  19. Real-Time Parameter Estimation in the Frequency Domain

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2000-01-01

    A method for real-time estimation of parameters in a linear dynamic state-space model was developed and studied. The application is aircraft dynamic model parameter estimation from measured data in flight. Equation error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle were used to demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Parameter estimates converged in less than one cycle of the dominant dynamic mode, using no a priori information, with control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation method has low computational requirements and could be implemented

  20. Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells.

    PubMed

    Theodorakakos, A; Ous, T; Gavaises, M; Nouri, J M; Nikolopoulos, N; Yanagihara, H

    2006-08-15

    The detachment of liquid droplets from porous material surfaces used with proton exchange membrane (PEM) fuel cells under the influence of a cross-flowing air is investigated computationally and experimentally. CCD images taken on a purpose-built transparent fuel cell have revealed that the water produced within the PEM is forming droplets on the surface of the gas-diffusion layer. These droplets are swept away if the velocity of the flowing air is above a critical value for a given droplet size. Static and dynamic contact angle measurements for three different carbon gas-diffusion layer materials obtained inside a transparent air-channel test model have been used as input to the numerical model; the latter is based on a Navier-Stokes equations flow solver incorporating the volume of fluid (VOF) two-phase flow methodology. Variable contact angle values around the gas-liquid-solid contact-line as well as their dynamic change during the droplet shape deformation process, have allowed estimation of the adhesion force between the liquid droplet and the solid surface and successful prediction of the separation line at which droplets loose their contact from the solid surface under the influence of the air stream flowing around them. Parametric studies highlight the relevant importance of various factors affecting the detachment of the liquid droplets from the solid surface.

  1. Evidence for Conformationa1 Heterogeneity of Fission Protein Fis1 from Saccharomyces cerevisiae†

    PubMed Central

    Picton, Lora K.; Casares, Salvador; Monahan, Ann C.; Majumdar, Ananya; Hill, R. Blake

    2009-01-01

    Fission 1 (Fis1) is an evolutionarily conserved, type II integral membrane protein implicated in maintaining the proper morphology of mitochondria and peroxisomes. A concave surface on the cytosolic domain of Fis1 from Saccharomyces cerevisiae is implicated in binding other fission proteins, yet structural studies reveal that this surface is sterically occluded by its N-terminal arm. Here we address the question of whether the N-terminal arm of yeast Fis1 exists in a dynamic equilibrium that would allow access to this functionally important surface. NMR measurements sensitive to dynamics occurring on a wide range of time scales (picoseconds to minutes) were used to assess whether the Fis1 arm is dynamic. Hydrogen–deuterium exchange experiments revealed that the Fis1 arm, α-helix 6, and proximal loops were not protected from solvent exchange, consistent with motions on the second to minute time scale. An engineered cysteine, I85C, located on the concave surface that lies underneath the Fis1 arm, was readily modified by a fluorescent probe, revealing more solvent accessibility of this position than would be predicted from the structure. Chemical denaturation, NMR chemical shift perturbation, and residual dipolar coupling experiments support the idea that the dynamic equilibrium can be shifted on the basis of changing pH and temperature, with the changes primarily localizing to the Fis1 arm and proximal regions. The data as a whole are consistent with the Fis1 arm adopting a primarily “closed” conformational state able to undergo dynamic excursions that reveal the concave surface and therefore may be important for binding other fission factors and for Fis1 function. PMID:19522466

  2. Diffusion of GPI-anchored proteins is influenced by the activity of dynamic cortical actin.

    PubMed

    Saha, Suvrajit; Lee, Il-Hyung; Polley, Anirban; Groves, Jay T; Rao, Madan; Mayor, Satyajit

    2015-11-05

    Molecular diffusion at the surface of living cells is believed to be predominantly driven by thermal kicks. However, there is growing evidence that certain cell surface molecules are driven by the fluctuating dynamics of cortical cytoskeleton. Using fluorescence correlation spectroscopy, we measure the diffusion coefficient of a variety of cell surface molecules over a temperature range of 24-37 °C. Exogenously incorporated fluorescent lipids with short acyl chains exhibit the expected increase of diffusion coefficient over this temperature range. In contrast, we find that GPI-anchored proteins exhibit temperature-independent diffusion over this range and revert to temperature-dependent diffusion on cell membrane blebs, in cells depleted of cholesterol, and upon acute perturbation of actin dynamics and myosin activity. A model transmembrane protein with a cytosolic actin-binding domain also exhibits the temperature-independent behavior, directly implicating the role of cortical actin. We show that diffusion of GPI-anchored proteins also becomes temperature dependent when the filamentous dynamic actin nucleator formin is inhibited. However, changes in cortical actin mesh size or perturbation of branched actin nucleator Arp2/3 do not affect this behavior. Thus cell surface diffusion of GPI-anchored proteins and transmembrane proteins that associate with actin is driven by active fluctuations of dynamic cortical actin filaments in addition to thermal fluctuations, consistent with expectations from an "active actin-membrane composite" cell surface. © 2015 Saha et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Interfacial welding of dynamic covalent network polymers

    NASA Astrophysics Data System (ADS)

    Yu, Kai; Shi, Qian; Li, Hao; Jabour, John; Yang, Hua; Dunn, Martin L.; Wang, Tiejun; Qi, H. Jerry

    2016-09-01

    Dynamic covalent network (or covalent adaptable network) polymers can rearrange their macromolecular chain network by bond exchange reactions (BERs) where an active unit replaces a unit in an existing bond to form a new bond. Such macromolecular events, when they occur in large amounts, can attribute to unusual properties that are not seen in conventional covalent network polymers, such as shape reforming and surface welding; the latter further enables the important attributes of material malleability and powder-based reprocessing. In this paper, a multiscale modeling framework is developed to study the surface welding of thermally induced dynamic covalent network polymers. At the macromolecular network level, a lattice model is developed to describe the chain density evolution across the interface and its connection to bulk stress relaxation due to BERs. The chain density evolution rule is then fed into a continuum level interfacial model that takes into account surface roughness and applied pressure to predict the effective elastic modulus and interfacial fracture energy of welded polymers. The model yields particularly accessible results where the moduli and interfacial strength of the welded samples as a function of temperature and pressure can be predicted with four parameters, three of which can be measured directly. The model identifies the dependency of surface welding efficiency on the applied thermal and mechanical fields: the pressure will affect the real contact area under the consideration of surface roughness of dynamic covalent network polymers; the chain density increment on the real contact area of interface is only dependent on the welding time and temperature. The modeling approach shows good agreement with experiments and can be extended to other types of dynamic covalent network polymers using different stimuli for BERs, such as light and moisture etc.

  4. Acceleration of osteogenesis by using barium titanate piezoelectric ceramic as an implant material

    NASA Astrophysics Data System (ADS)

    Furuya, K.; Morita, Y.; Tanaka, K.; Katayama, T.; Nakamachi, E.

    2011-04-01

    As bone has piezoelectric properties, it is expected that activity of bone cells and bone formation can be accelerated by applying piezoelectric ceramics to implants. Since lead ions, included in ordinary piezoelectric ceramics, are harmful, a barium titanate (BTO) ceramic, which is a lead-free piezoelectric ceramic, was used in this study. The purpose of this study was to investigate piezoelectric effects of surface charge of BTO on cell differentiation under dynamic loading in vitro. Rat bone marrow cells seeded on surfaces of BTO ceramics were cultured in culture medium supplemented with dexamethasone, β-glycerophosphate and ascorbic acid while a dynamic load was applied to the BTO ceramics. After 10 days of cultivation, the cell layer and synthesized matrix on the BTO surfaces were scraped off, and then DNA content, alkaline phosphtase (ALP) activity and calcium content were measured, to evaluate osteogenic differentiation. ALP activity on the charged BTO surface was slightly higher than that on the non-charged BTO surface. The amount of calcium on the charged BTO surface was also higher than that on the non-charged BTO surface. These results showed that the electric charged BTO surface accelerated osteogenesis.

  5. SU-E-T-196: Comparative Analysis of Surface Dose Measurements Using MOSFET Detector and Dose Predicted by Eclipse - AAA with Varying Dose Calculation Grid Size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badkul, R; Nejaiman, S; Pokhrel, D

    2015-06-15

    Purpose: Skin dose can be the limiting factor and fairly common reason to interrupt the treatment, especially for treating head-and-neck with Intensity-modulated-radiation-therapy(IMRT) or Volumetrically-modulated - arc-therapy (VMAT) and breast with tangentially-directed-beams. Aim of this study was to investigate accuracy of near-surface dose predicted by Eclipse treatment-planning-system (TPS) using Anisotropic-Analytic Algorithm (AAA)with varying calculation grid-size and comparing with metal-oxide-semiconductor-field-effect-transistors(MOSFETs)measurements for a range of clinical-conditions (open-field,dynamic-wedge, physical-wedge, IMRT,VMAT). Methods: QUASAR™-Body-Phantom was used in this study with oval curved-surfaces to mimic breast, chest wall and head-and-neck sites.A CT-scan was obtained with five radio-opaque markers(ROM) placed on the surface of phantom to mimic themore » range of incident angles for measurements and dose prediction using 2mm slice thickness.At each ROM, small structure(1mmx2mm) were contoured to obtain mean-doses from TPS.Calculations were performed for open-field,dynamic-wedge,physical-wedge,IMRT and VMAT using Varian-21EX,6&15MV photons using twogrid-sizes:2.5mm and 1mm.Calibration checks were performed to ensure that MOSFETs response were within ±5%.Surface-doses were measured at five locations and compared with TPS calculations. Results: For 6MV: 2.5mm grid-size,mean calculated doses(MCD)were higher by 10%(±7.6),10%(±7.6),20%(±8.5),40%(±7.5),30%(±6.9) and for 1mm grid-size MCD were higher by 0%(±5.7),0%(±4.2),0%(±5.5),1.2%(±5.0),1.1% (±7.8) for open-field,dynamic-wedge,physical-wedge,IMRT,VMAT respectively.For 15MV: 2.5mm grid-size,MCD were higher by 30%(±14.6),30%(±14.6),30%(±14.0),40%(±11.0),30%(±3.5)and for 1mm grid-size MCD were higher by 10% (±10.6), 10%(±9.8),10%(±8.0),30%(±7.8),10%(±3.8) for open-field, dynamic-wedge, physical-wedge, IMRT, VMAT respectively.For 6MV, 86% and 56% of all measured values agreed better than ±20% for 1mm and 2.5mm grid-sizes respectively. For 18MV, 56% and 18% of all measured-values agreed better than ±20% for 1mm and 2.5mm grid-sizes respectively. Conclusion: Reliable Skin-dose calculations by TPS can be very difficult due to steep dose-gradient and inaccurate beam-modelling in buildup region.Our results showed that Eclipse over-estimates surface-dose.Impact of grid-size is also significant,surface-dose increased up to 40% from 1mm to 2.5mm,however, 1mm calculated-values closely agrees with measurements. Due to large uncertnities in skin-dose predictions from TPS, outmost caution must be exercised when skin dose is evaluated,a sufficiently smaller grid-size(1mm)can improve the accuracy and MOSFETs can be used for verification.« less

  6. Inclusion Complexes Behavior at the Air-Water Interface. Molecular Dynamic Simulation Study.

    NASA Astrophysics Data System (ADS)

    Gargallo, L.; Vargas, D.; Sandoval, C.; Saavedra, M.; Becerra, N.; Leiva, A.; Radić, D.

    2008-08-01

    The interfacial properties of the inclusion complexes (ICs), obtained from the threading of α-cyclodextrin (α-CD) onto poly(ethylene-oxide)(PEO), poly(ɛ-caprolactone)(PEC) and poly(tetrahydrofuran)(PTHF) and their precursor homopolymers (PHPoly), were studied at the air-water interface. The free surface energy was determined by wettability measurements. The experimental behavior of these systems was described by an atomistic molecular dynamics simulation (MDS).

  7. Pluto and Triton: Interactions Between Volatiles and Dynamics

    NASA Astrophysics Data System (ADS)

    Rubincam, D. P.

    2001-01-01

    Volatiles moving across the surfaces of Pluto and Triton can give rise to interesting dynamical consequences. Conversely, measurement of dynamical states can help constrain the movement of volatiles and interior structure of both bodies. Polar wander may theoretically occur on both Triton and Pluto. Triton's obliquity is low, so that the equatorial regions receive more insolation than the poles. Hence there is a tendency for nitrogen ice to sublime at the equator and condense at the poles, creating polar caps. If the nitrogen supply is large enough, then these caps could move in approximately 105 years the global equivalent of 200 m of ice to the poles. At this point the equatorial moment of inertia becomes larger than the moment of inertia measured about the rotation axis, so that Triton overbalances and becomes dynamically unstable. The satellite then undergoes polar wander, restoring stability when the new equator contains the excess matter. Hence the pole may be continually wandering. Neptune raises a permanent tidal bulge on Triton, so that the satellite's surface is elongated like a football, with the long axis pointing at Neptune. This is expected to be the axis about which the pole wanders. Volatile migration would resurface the satellite to some depth and wandering would disturb leading side/trailing side crater statistics. Additional information is contained in the original extended abstract.

  8. Ice sheet radar altimetry

    NASA Technical Reports Server (NTRS)

    Zwally, J.

    1988-01-01

    The surface topography of the Greenland and Antarctic ice sheets between 72 degrees north and south was mapped using radar altimetry data from the U.S. Navy GEOSAT. The glaciological objectives of this activity were to study the dynamics of the ice flow, changes in the position of floating ice-shelf fronts, and ultimately to measure temporal changes in ice surface elevation indicative of ice sheet mass balance.

  9. Electric characteristics of a surface barrier discharge with a plasma induction electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alemskii, I. N.; Lelevkin, V. M.; Tokarev, A. V.

    2006-07-15

    Static and dynamic current-voltage and charge-voltage characteristics of a surface barrier discharge with a plasma induction electrode have been investigated experimentally. The dependences of the discharge current on both the gas pressure in the induction electrode tube and the winding pitch of the corona electrode, as well as of the discharge power efficiency on the applied voltage, have been measured.

  10. Overstory structure and surface cover dynamics in the decade following the Hayman Fire, Colorado

    Treesearch

    Paula J. Fornwalt; Camille S. Stevens-Rumann; Byron J. Collins

    2018-01-01

    The 2002 Hayman Fire burned with mixed-severity across a 400-ha dry conifer study site in Colorado, USA, where overstory tree and surface cover attributes had been recently measured on 20 0.1-ha permanent plots. We remeasured these plots repeatedly during the first post-fire decade to examine how the attributes changed through time and whether changes were influenced...

  11. Measuring Light Reflectance of BGO Crystal Surfaces

    NASA Astrophysics Data System (ADS)

    Janecek, Martin; Moses, William W.

    2008-10-01

    A scintillating crystal's surface reflectance has to be well understood in order to accurately predict and optimize the crystal's light collection through Monte Carlo simulations. In this paper, we measure the inner surface reflectance properties for BGO. The measurements include BGO crystals with a mechanically polished surface, rough-cut surface, and chemically etched surface, and with various reflectors attached, both air-coupled and with coupling compound. The measurements are performed with a laser aimed at the center of a hemispherical shaped BGO crystal. The hemispherical shape eliminates any non-perpendicular angles for light entering and exiting the crystal. The reflected light is collected with an array of photodiodes. The laser can be set at an arbitrary angle, and the photodiode array is rotated to fully cover 2pi of solid angle. The current produced in the photodiodes is readout with a digital multimeter connected through a multiplexer. The two rows of photodiodes achieve 5-degree by 4-degree resolution, and the current measurement has a dynamic range of 105:1. The acquired data was not described by the commonly assumed linear combination of specular and diffuse (Lambertian) distributions, except for a very few surfaces. Surface roughness proved to be the most important parameter when choosing crystal setup. The reflector choice was of less importance and of almost no consequence for rough-cut surfaces. Pure specular reflection distribution for all incidence angles was measured for polished surfaces with VM2000 film, while the most Lambertian distribution for any surface finish was measured for titanium dioxide paint. The distributions acquired in this paper will be used to create more accurate Monte Carlo models for light reflection distribution within BGO crystals.

  12. Modeling Water Redistribution in a Near-Surface Arid Soil

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Ghezzehei, T. A.; Berli, M.; Dijkema, J.; Koonce, J.

    2017-12-01

    Desert soils cover about one third of the Earth's land surface and play an important role in the ecology and hydrology of arid environments. Despite their large extend, relatively little is known about their near-surface (top centimeters to meter) water dynamics. Recent studies by Koonce (2016) and Dijkema et al. (2017) shed light on the water dynamics of near-surface arid soil but also revealed some of the challenges to simulate the water redistribution in arid soils. The goal of this study was to improve water redistribution simulations in near-surface arid soils by employing more advanced hydraulic conductivity functions. Expanding on the work by Dijkema et al. (2017), we used a HYDRUS-1D model with different hydraulic conductivity functions to simulate water redistribution within the soil as a function of precipitation, evaporation and drainage. Model calculations were compared with measured data from the SEPHAS weighing lysimeters in Boulder City, NV. Preliminary results indicate that water redistribution simulations of near-surface arid soils can be improved by using hydraulic conductivity functions that can capture capillary, film and vapor flow, like for example the Peter-Durner-Iden (PDI) model.

  13. NASA's Space Lidar Measurements of Earth and Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Abshire, James B.

    2010-01-01

    A lidar instrument on a spacecraft was first used to measure planetary surface height and topography on the Apollo 15 mission to the Moon in 1971, The lidar was based around a flashlamp-pumped ruby laser, and the Apollo 15-17 missions used them to make a few thousand measurements of lunar surface height from orbit. With the advent of diode pumped lasers in the late 1980s, the lifetime, efficiency, resolution and mass of lasers and space lidar all improved dramatically. These advances were utilized in NASA space missions to map the shape and surface topography of Mars with > 600 million measurements, demonstrate initial space measurements of the Earth's topography, and measured the detailed shape of asteroid. NASA's ICESat mission in Earth orbit just completed its polar ice measurement mission with almost 2 billion measurements of the Earth's surface and atmosphere, and demonstrated measurements to Antarctica and Greenland with a height resolution of a few em. Space missions presently in cruise phase and in operation include those to Mercury and a topographic mapping mission of the Moon. Orbital lidar also have been used in experiments to demonstrate laser ranging over planetary distances, including laser pulse transmission from Earth to Mars orbit. Based on the demonstrated value of the measurements, lidar is now the preferred measurement approach for many new scientific space missions. Some missions planned by NASA include a planetary mission to measure the shape and dynamics of Europa, and several Earth orbiting missions to continue monitoring ice sheet heights, measure vegetation heights, assess atmospheric CO2 concentrations, and to map the Earth surface topographic heights with 5 m spatial resolution. This presentation will give an overview of history, ongoing work, and plans for using space lidar for measurements of the surfaces of the Earth and planets.

  14. River Runoff Estimates on the Basis of Satellite-Derived Surface Currents and Water Levels

    NASA Astrophysics Data System (ADS)

    Gruenler, S.; Romeiser, R.; Stammer, D.

    2007-12-01

    One promising technique for river runoff estimates from space is the retrieval of surface currents on the basis of synthetic aperture radar along-track interferometry (ATI). The German satellite TerraSAR-X, which was launched in June 2007, permits current measurements by ATI in an experimental mode of operation. Based on numerical simulations, we present first findings of a research project in which the potential of satellite measurements of various parameters with different temporal and spatial sampling characteristics is evaluated and a dedicated data synthesis system for river discharge estimates is developed. We address the achievable accuracy and limitations of such estimates for different local flow conditions at selected test sites. High-resolution three- dimensional current fields in the Elbe river (Germany) from a numerical model of the German Federal Waterways Engineering and Research Institute (BAW) are used as reference data set and input for simulations of a variety of possible measuring and data interpretation strategies to be evaluated. For example, runoff estimates on the basis of measured surface current fields and river widths from TerraSAR-X and water levels from radar altimetry are simulated. Despite the simplicity of some of the applied methods, the results provide quite comprehensive pictures of the Elbe river runoff dynamics. Although the satellite-based river runoff estimates exhibit a lower accuracy in comparison to traditional gauge measurements, the proposed measuring strategies are quite promising for the monitoring of river discharge dynamics in regions where only sparse in-situ measurements are available. We discuss the applicability to a number of major rivers around the world.

  15. Fluid Dynamic Mechanisms and Interactions within Separated Flows.

    DTIC Science & Technology

    1986-07-01

    Vol. 42, Series E, No., pp. 197, pp. 387-39S. b5-bD, March N95, 18. Warpinski , N. R., and Chow, W. L., "Base Pres- 27. Chow, W. L., "Base Pressure of a...lied Rocket/Plume Fluid Dynamic Interactions, Vol. Mechanics, Vol. 46, No. 3, Sept. 197. 1, Base Flows, Fluid Dynamic Lab Report 63-101, 19. Warpinski ...34Surface Pressure Measurements ’" Warpinski , N. R. and Chow, W. L., "Base Pressure Associated on a Boattailed Projectile Shape at Transonic Speeds," ARBRL

  16. Reduced-gravity Testing of The Huygens Probe Ssp Tiltmeter and Hasi Accelerometer Sensors and Their Role In Reconstruction of The Probe Descent Dynamics

    NASA Astrophysics Data System (ADS)

    Ghafoor, N.; Zarnecki, J.

    When the ESA Huygens Probe arrives at Titan in 2005, measurements taken during and after the descent through the atmosphere are likely to revolutionise our under- standing of SaturnSs most enigmatic moon. The accurate atmospheric profiling of Titan from these measurements will require knowledge of the probe descent trajectory and in some cases attitude history, whilst certain atmospheric information (e.g. wind speeds) may be inferred directly from the probe dynamics during descent. Two of the instruments identified as contributing valuable information for the reconstruction of the probeSs parachute descent dynamics are the Surface Science Package Tilt sensor (SSP-TIL) and the Huygens Atmospheric Structure Instrument servo accelerometer (HASI-ACC). This presentation provides an overview of these sensors and their static calibration before describing an investigation into their real-life dynamic performance under simulated Titan-gravity conditions via a low-cost parabolic flight opportunity. The combined use of SSP-TIL and HASI-ACC in characterising the aircraft dynam- ics is also demonstrated and some important challenges are highlighted. Results from some simple spin tests are also presented. Finally, having validated the performance of the sensors under simulated Titan conditions, estimates are made as to the output of SSP-TIL and HASI-ACC under a variety of probe dynamics, ranging from verti- cal descent with spin to a simple 3 degree-of-freedom parachute descent model with horizontal gusting. It is shown how careful consideration must be given to the instru- mentsS principles of operation in each case, and also the impact of the sampling rates and resolutions as selected for the Huygens mission. The presentation concludes with a discussion of ongoing work on more advanced descent modelling and surface dy- namics modelling, and also of a proposal for the testing of the sensors on a sea-surface.

  17. Dynamic interactions between glacier and glacial lake in the Bhutan Himalaya

    NASA Astrophysics Data System (ADS)

    Tsutaki, S.; Fujita, K.; Yamaguchi, S.; Sakai, A.; Nuimura, T.; Komori, J.; Takenaka, S.; Tshering, P.

    2012-04-01

    A number of supraglacial lakes formed on the termini of debris-covered glaciers in the Bhutan Himalaya as a result of glacier retreat due to climate change. The terminal part of the lake-terminating glaciers flow faster than that of the land-terminating glaciers because the basal ice motion is enhanced by high subglacial water pressure generated by lake water. Increased ice flux caused by the accelerated glacier flow could be dissipated through the calving process which reduced the glacier thickness. It is important to understand the interaction between lake formation and glacier dynamics. Although glacier flow velocity has been measured by remote-sensing analysis in several regions of the Himalayas, glacier thinning rates have not been observed by neither in-situ nor remote-sensing approaches. The lack of field data raises limitation to interpretations for glacier dynamics. We investigate the influence of the presence/absence of glacial lakes on glacier dynamics and changes in surface elevation. We study two debris-covered glaciers in the Lunana region, the Bhutan Himalaya. Thorthormi Glacier is a land-terminating glacier with some supraglacial lakes while Lugge Glacier is a lake-terminating glaciers. We surveyed the surface elevation of debris-covered areas of the two glaciers in 2004 and 2011 by a differential GPS. Change in surface elevation of the lake-terminating Lugge Glacier (-5.4--2.4 m yr-1) was much more negative than that of the land-terminating Thorthormi Glacier (-3.3-0.6 m yr-1). Surface flow speed of the Thorthormi Glacier measured during 2002-2004 was faster in the upper reaches (~90 m yr-1) and reduced toward the downstream (40 m yr-1). In contrast, the surface flow speed at the Lugge Glacier measured in the same periods was 40-55 m yr-1 and the greatest at the lower most part. Observed spatial distribution of surface flow velocity at both glaciers were evaluated by a two-dimensional numerical flow model. Calculated emergence velocities are 1.9-18.8 m yr-1 at the Thorthormi Glacier while -12.0-2.7 m yr-1 at the Lugge Glacier. This result suggests that decreasing in flow velocity towards the terminus in the Thorthormi Glacier causes compressive flow. It suggests that the compressive flow of the Thorthormi Glacier counterbalanced surface melting, resulting in inhibition of the surface lowering. In contrast, the extensional flow of the Lugge Glacier accelerated the surface lowering. Speed up of glacier terminus induced extensional flow regime causes the thinning of ice and increase in basal motion, which will lead to further flow acceleration. Such positive feedbacks have been found over the ice streams in the polar ice sheets. In this study we showed the observational evidences, in which the similar feedbacks make contrast the terminus behaviors of glaciers in the Bhutan Himalaya. If the supraglacial lake on Thorthormi Glacier expanded, the surface lowering may be accelerated in the future.

  18. Design of a mobile hydrological data measurement system

    NASA Astrophysics Data System (ADS)

    Liu, Yunping; Wang, Tianmiao; Dai, Fenfen

    2017-06-01

    The current hydrological data acquisition is mainly used in the instrument measurement. Instrument measurement equipment is mainly fixed in a certain water area and the device is easy to be lost. In view of a series of problems, the dynamic measurement system is established by the method of unmanned surface vessel and embedded technology, which can realize any positions measurement of a lake. This method has many advantages, such as mobile convenience, saving money and so on.

  19. Investigating carbon flux variability in subtropical peat soils of the Everglades using hydrogeophysical methods

    NASA Astrophysics Data System (ADS)

    Comas, Xavier; Wright, William

    2014-08-01

    The spatial and temporal variability in accumulation and release of greenhouse gases (mainly methane and carbon dioxide) to the atmosphere from peat soils remains very uncertain. The use of near-surface geophysical methods such as ground penetrating radar (GPR) has proven useful during the last decade to expand scales of measurement as related to in situ gas distribution and dynamics beyond traditional methods (i.e., gas chambers). However, this approach has focused exclusively on boreal peatlands, while no studies in subtropical systems like the Everglades using these techniques exist. In this paper GPR is combined with gas traps, time-lapse cameras, gas chromatography, and surface deformation measurements to explore biogenic gas dynamics (mainly gas buildup and release) in two locations in the Everglades. Similar to previous studies in northern peatlands, our data in the Everglades show a statistically significant correlation between the following: (1) GPR-estimated gas content and gas fluxes, (2) GPR-estimated gas content and surface deformation, and (3) atmospheric pressure and both GPR-estimated gas content and gas flux. From these results several gas-releasing events ranging between 33.8 and 718.8 mg CH4 m-2 d-1 were detected as identified by the following: (1) decreases in GPR-estimated gas content within the peat matrix, (2) increases in gas fluxes captured by gas traps and time-lapse cameras, and (3) decreases in surface deformation. Furthermore, gas-releasing events corresponded to periods of high atmospheric pressure. Changes in gas accumulation and release were attributed to differences in seasonality and peat soil type between sites. These results suggest that biogenic gas releases in the Everglades are spatially and temporarily variable. For example, flux events measured at hourly scales were up to threefold larger when compared to daily fluxes, therefore suggesting that flux measurements decline when averaged over longer time spans. This research therefore questions what the appropriate spatial and temporal scale of measurement is necessary to properly capture the dynamics of biogenic gas release in subtropical peat soils.

  20. MGS Radio Science Measurements of Atmospheric Dynamics on Mars

    NASA Astrophysics Data System (ADS)

    Hinson, D. P.

    2001-12-01

    The Sun-synchronous, polar orbit of Mars Global Surveyor (MGS) provides frequent opportunities for radio occultation sounding of the neutral atmosphere. The basic result of each experiment is a profile of pressure and temperature versus planetocentric radius and geopotential. More than 4000 profiles were obtained during the 687-day mapping phase of the mission, and additional observations are underway. These measurements allow detailed characterization of planetary-scale dynamics, including stationary planetary (or Rossby) waves and transient waves produced by instability. For example, both types of dynamics were observed near 67° S during midwinter of the southern hemisphere (Ls=134° --160° ). Planetary waves are the most prominent dynamical feature in this subset of data. At zonal wave number s=1, both the temperature and geopotential fields tilt westward with increasing height, as expected for vertically-propagating planetary waves forced at the surface. The wave-2 structure is more nearly barotropic. The amplitude in geopotential height at Ls=150° increases from ~200 m near the surface to ~700 m at 10 Pa. The corresponding meridional wind speed increases from ~5 m s-1 near the surface to ~20 m s-1 at 10 Pa. Traveling ``baroclinic'' waves also appear intermittently during this interval. The dominant mode has a period of ~2 sols, s=3, and a peak amplitude of ~7 K at 300 Pa. Stong zonal variations in eddy amplitude signal the presence of a possible ``storm zone'' at 150° --330° E longitude. This talk will include other examples of these phenomena as well as comparisons with computer simulations by a Martian general circulation model (MGCM).

  1. Steady Method for the Analysis of Evaporation Dynamics.

    PubMed

    Günay, A Alperen; Sett, Soumyadip; Oh, Junho; Miljkovic, Nenad

    2017-10-31

    Droplet evaporation is an important phenomenon governing many man-made and natural processes. Characterizing the rate of evaporation with high accuracy has attracted the attention of numerous scientists over the past century. Traditionally, researchers have studied evaporation by observing the change in the droplet size in a given time interval. However, the transient nature coupled with the significant mass-transfer-governed gas dynamics occurring at the droplet three-phase contact line makes the classical method crude. Furthermore, the intricate balance played by the internal and external flows, evaporation kinetics, thermocapillarity, binary-mixture dynamics, curvature, and moving contact lines makes the decoupling of these processes impossible with classical transient methods. Here, we present a method to measure the rate of evaporation of spatially and temporally steady droplets. By utilizing a piezoelectric dispenser to feed microscale droplets (R ≈ 9 μm) to a larger evaporating droplet at a prescribed frequency, we can both create variable-sized droplets on any surface and study their evaporation rate by modulating the piezoelectric droplet addition frequency. Using our steady technique, we studied water evaporation of droplets having base radii ranging from 20 to 250 μm on surfaces of different functionalities (45° ≤ θ a,app ≤ 162°, where θ a,app is the apparent advancing contact angle). We benchmarked our technique with the classical unsteady method, showing an improvement of 140% in evaporation rate measurement accuracy. Our work not only characterizes the evaporation dynamics on functional surfaces but also provides an experimental platform to finally enable the decoupling of the complex physics governing the ubiquitous droplet evaporation process.

  2. Ultrafast Optical Microscopy of Single Monolayer Molybdenum Disulfide Flakes

    DOE PAGES

    Seo, Minah; Yamaguchi, Hisato; Mohite, Aditya D.; ...

    2016-02-15

    We performed ultrafast optical microscopy on single flakes of atomically thin CVD-grown molybdenum disulfide, using non-degenerate femtosecond pump-probe spectroscopy to excite and probe carriers above and below the indirect and direct band gaps. These measurements reveal the influence of layer thickness on carrier dynamics when probing near the band gap. Furthermore, fluence-dependent measurements indicate that carrier relaxation is primarily influenced by surface-related defect and trap states after above-bandgap photoexcitation. Furthermore, the ability to probe femtosecond carrier dynamics in individual flakes can thus give much insight into light-matter interactions in these two-dimensional nanosystems.

  3. Low-speed Aerodynamic Investigations of a Hybrid Wing Body Configuration

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.; Gatlin, Gregory M.; Jenkins, Luther N.; Murphy, Patrick C.; Carter, Melissa B.

    2014-01-01

    Two low-speed static wind tunnel tests and a water tunnel static and dynamic forced-motion test have been conducted on a hybrid wing-body (HWB) twinjet configuration. These tests, in addition to computational fluid dynamics (CFD) analysis, have provided a comprehensive dataset of the low-speed aerodynamic characteristics of this nonproprietary configuration. In addition to force and moment measurements, the tests included surface pressures, flow visualization, and off-body particle image velocimetry measurements. This paper will summarize the results of these tests and highlight the data that is available for code comparison or additional analysis.

  4. The inaccuracy of surface-measured model-derived tibiofemoral kinematics

    PubMed Central

    Li, Kang; Zheng, Liying; Tashman, Scott; Zhang, Xudong

    2014-01-01

    This study assessed the accuracy of surface-measured OpenSim-derived tibiofemoral kinematics in functional activities. Ten subjects with unilateral, isolated grade II PCL deficiency performed level running and stair ascent. A dynamic stereo radiography (DSX) system and a Vicon motion capture system simultaneously measured their knee or lower extremity movement. Surface marker motion data from the Vicon system were used to create subject-specific models in OpenSim and derive the tibiofemoral kinematics. The surface-measured model-derived tibiofemoral kinematics in all 6 degrees of freedom (DOFs) were then compared with those measured by the DSX as the benchmarks. The differences between surface- and DSX-measured tibiofemoral kinematics were found to be substantial: the overall mean (±SD) RMS differences during running were 9.1±3.2°, 2.0 ± 1.2°, 6.4 ± 4.5° for the flexion-extension, abduction-adduction, and internal-external rotations, and 7.1± 3.2mm, 8.8± 3.7mm, and 1.9± 1.2mm for anterior-posterior, proximal-distal, and medial-lateral translations. The differences were more pronounced in the relatively higher speed running than in stair ascent. It was also found that surface-based measures significantly underestimated the mean as well as inter-subject variability of the differences between PCL-injured and intact knees in abduction-adduction, internal-external rotation, and anterior-posterior translation. PMID:22964018

  5. Oceanic biogeochemical controls on global dynamics of persistent organic pollutants.

    PubMed

    Dachs, Jordi; Lohmann, Rainer; Ockenden, Wendy A; Méjanelle, Laurence; Eisenreich, Steven J; Jones, Kevin C

    2002-10-15

    Understanding and quantifying the global dynamics and sinks of persistent organic pollutants (POPs) is important to assess their environmental impact and fate. Air-surface exchange processes, where temperature plays a central role in controlling volatilization and deposition, are of key importance in controlling global POP dynamics. The present study is an assessment of the role of oceanic biogeochemical processes, notably phytoplankton uptake and vertical fluxes of particles, on the global dynamics of POPs. Field measurements of atmospheric polychlorinated biphenyls (PCBs), polychlorinated dibenzodioxins (PCDDs), and furans (PCDFs) are combined with remote sensing estimations of oceanic temperature, wind speed, and chlorophyll, to model the interactions between air-water exchange, phytoplankton uptake, and export of organic matter and POPs out of the mixed surface ocean layer. Deposition is enhanced in the mid-high latitudes and is driven by sinking marine particulate matter, rather than by a cold condensation effect. However, the relative contribution of the biological pump is a function of the physical-chemical properties of POPs. It is concluded that oceanic biogeochemical processes play a critical role in controlling the global dynamics and the ultimate sink of POPs.

  6. Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts

    DOE PAGES

    Zugic, Branko; Wang, Lucun; Heine, Christian; ...

    2016-12-19

    Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver–gold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity. Advanced in situ electron microscopy and X-ray photoelectron spectroscopy are used to demonstrate that major restructuring and compositional changesmore » occur along the path to catalytic function for selective alcohol oxidation. Transient kinetic measurements correlate the restructuring to three types of oxygen on the surface. The direct influence of changes in surface silver concentration and restructuring at the nanoscale on oxidation activity is demonstrated. Finally, our results demonstrate that characterization of these dynamic changes is necessary to unlock the full potential of bimetallic catalytic materials.« less

  7. Accretion Dynamics on Wet Granular Materials

    NASA Astrophysics Data System (ADS)

    Saingier, Guillaume; Sauret, Alban; Jop, Pierre

    2017-05-01

    Wet granular aggregates are common precursors of construction materials, food, and health care products. The physical mechanisms involved in the mixing of dry grains with a wet substrate are not well understood and difficult to control. Here, we study experimentally the accretion of dry grains on a wet granular substrate by measuring the growth dynamics of the wet aggregate. We show that this aggregate is fully saturated and its cohesion is ensured by the capillary depression at the air-liquid interface. The growth dynamics is controlled by the liquid fraction at the surface of the aggregate and exhibits two regimes. In the viscous regime, the growth dynamics is limited by the capillary-driven flow of liquid through the granular packing to the surface of the aggregate. In the capture regime, the capture probability depends on the availability of the liquid at the saturated interface, which is controlled by the hydrostatic depression in the material. We propose a model that rationalizes our observations and captures both dynamics based on the evolution of the capture probability with the hydrostatic depression.

  8. Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zugic, Branko; Wang, Lucun; Heine, Christian

    Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver–gold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity. Advanced in situ electron microscopy and X-ray photoelectron spectroscopy are used to demonstrate that major restructuring and compositional changesmore » occur along the path to catalytic function for selective alcohol oxidation. Transient kinetic measurements correlate the restructuring to three types of oxygen on the surface. The direct influence of changes in surface silver concentration and restructuring at the nanoscale on oxidation activity is demonstrated. Finally, our results demonstrate that characterization of these dynamic changes is necessary to unlock the full potential of bimetallic catalytic materials.« less

  9. Dynamics and Novel Mechanisms of SN2 Reactions on ab Initio Analytical Potential Energy Surfaces.

    PubMed

    Szabó, István; Czakó, Gábor

    2017-11-30

    We describe a novel theoretical approach to the bimolecular nucleophilic substitution (S N 2) reactions that is based on analytical potential energy surfaces (PESs) obtained by fitting a few tens of thousands high-level ab initio energy points. These PESs allow computing millions of quasi-classical trajectories thereby providing unprecedented statistical accuracy for S N 2 reactions, as well as performing high-dimensional quantum dynamics computations. We developed full-dimensional ab initio PESs for the F - + CH 3 Y [Y = F, Cl, I] systems, which describe the direct and indirect, complex-forming Walden-inversion, the frontside attack, and the new double-inversion pathways as well as the proton-transfer channels. Reaction dynamics simulations on the new PESs revealed (a) a novel double-inversion S N 2 mechanism, (b) frontside complex formation, (c) the dynamics of proton transfer, (d) vibrational and rotational mode specificity, (e) mode-specific product vibrational distributions, (f) agreement between classical and quantum dynamics, (g) good agreement with measured scattering angle and product internal energy distributions, and (h) significant leaving group effect in accord with experiments.

  10. Understanding Particulate Matter Dynamics in the San Joaquin Valley during DISCOVER-AQ, 2013

    NASA Astrophysics Data System (ADS)

    Prabhakar, G.; Zhang, X.; Kim, H.; Parworth, C.; Pusede, S. E.; Wooldridge, P. J.; Cohen, R. C.; Zhang, Q.; Cappa, C. D.

    2015-12-01

    Air quality in the California San Joaquin Valley (SJV) during winter continues to be the worst in the state, failing EPA's 24-hour standard for particulate matter. Despite our improved understanding of the sources of particulate matter (PM) in the valley, air-quality models are unable to predict PM concentrations accurately. We aim to characterize periods of high particulate matter concentrations in the San Joaquin Valley based on ground and airborne measurements of aerosols and gaseous pollutants, during the DISCOVER-AQ campaign, 2013. A highly instrumented aircraft flew across the SJV making three transects in a repeatable pattern, with vertical spirals over select locations. The aircraft measurements were complemented by ground measurements at these locations, with extensive chemically-speciated measurements at a ground "supersite" at Fresno. Hence, the campaign provided a comprehensive three-dimensional view of the particulate and gaseous pollutants around the valley. The vertical profiles over the different sites indicate significant variability in the concentrations and vertical distribution of PM around the valley, which are most likely driven by differences in the combined effects of emissions, chemistry and boundary layer dynamics at each site. The observations suggest that nighttime PM is dominated by surface emissions of PM from residential fuel combustion, while early morning PM is strongly influenced by mixing of low-level, above-surface, nitrate-rich layers formed from dark chemistry overnight to the surface.

  11. Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching.

    PubMed Central

    Sund, S E; Axelrod, D

    2000-01-01

    Although reversible chemistry is crucial to dynamical processes in living cells, relatively little is known about relevant chemical kinetic rates in vivo. Total internal reflection/fluorescence recovery after photobleaching (TIR/FRAP), an established technique previously demonstrated to measure reversible biomolecular kinetic rates at surfaces in vitro, is extended here to measure reversible biomolecular kinetic rates of actin at the cytofacial (subplasma membrane) surface of living cells. For the first time, spatial imaging (with a charge-coupled device camera) is used in conjunction with TIR/FRAP. TIR/FRAP imaging produces both spatial maps of kinetic parameters (off-rates and mobile fractions) and estimates of kinetic correlation distances, cell-wide kinetic gradients, and dependences of kinetic parameters on initial fluorescence intensity. For microinjected rhodamine actin in living cultured smooth muscle (BC3H1) cells, the unbinding rate at or near the cytofacial surface of the plasma membrane (averaged over the entire cell) is measured at 0.032 +/- 0.007 s(-1). The corresponding rate for actin marked by microinjected rhodamine phalloidin is very similar, 0.033 +/- 0.013 s(-1), suggesting that TIR/FRAP is reporting the dynamics of entire filaments or protofilaments. For submembrane fluorescence-marked actin, the intensity, off-rate, and mobile fraction show a positive correlation over a characteristic distance of 1-3 microm and a negative correlation over larger distances greater than approximately 7-14 microm. Furthermore, the kinetic parameters display a statistically significant cell-wide gradient, with the cell having a "fast" and "slow" end with respect to actin kinetics. PMID:10969025

  12. Dynamic Measurement of Low Contact Angles by Optical Microscopy.

    PubMed

    Campbell, James M; Christenson, Hugo K

    2018-05-16

    Precise measurement of contact angles is an important challenge in surface science, in the design and characterization of materials and in many crystallization experiments. Here we present a novel technique for measuring the contact angles of droplets between about 2° and 30°, with the lowest experimental uncertainty at the lower end of this range, typically ±0.1°. The lensing effect of a droplet interface produces the appearance of bright circles in low-aperture light, whose diameter is related to the contact angle. The technique requires no specialized equipment beyond an ordinary optical microscope, and may be used to study the dynamic evolution of the contact angle in situ during an experiment.

  13. Flash Lamp Integrating Sphere Technique for Measuring the Dynamic Reflectance of Shocked Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Gerald; La Lone, Brandon; Veeser, Lynn

    2013-07-08

    Accurate reflectance (R) measurements of metals undergoing shock wave compression can benefit high pressure research in several ways. For example, pressure dependent reflectance measurements can be used to deduce electronic band structure, and discrete changes with pressure or temperature may indicate the occurrence of a phase boundary. Additionally, knowledge of the wavelength dependent emissivity (1 -R, for opaque samples) of the metal surface is essential for accurate pyrometric temperature measurement because the radiance is a function of both the temperature and emissivity. We have developed a method for measuring dynamic reflectance in the visible and near IR spectral regions withmore » nanosecond response time and less than 1.5% uncertainty. The method utilizes an integrating sphere fitted with a xenon flash-lamp illumination source. Because of the integrating sphere, the measurements are insensitive to changes in surface curvature or tilt. The in-situ high brightness of the flash-lamp exceeds the sample’s thermal radiance and also enables the use of solid state detectors for recording the reflectance signals with minimal noise. Using the method, we have examined the dynamic reflectance of gallium and tin subjected to shock compression from high explosives. The results suggest significant reflectance changes across phase boundaries for both metals. We have also used the method to determine the spectral emissivity of shock compressed tin at the interface between tin and a LiF window. The results were used to perform emissivity corrections to previous pyrometry data and obtain shock temperatures of the tin/LiF interface with uncertainties of less than 2%.« less

  14. Ground-based Remote Sensing for Quantifying Subsurface and Surface Co-variability to Scale Arctic Ecosystem Functioning

    NASA Astrophysics Data System (ADS)

    Oktem, R.; Wainwright, H. M.; Curtis, J. B.; Dafflon, B.; Peterson, J.; Ulrich, C.; Hubbard, S. S.; Torn, M. S.

    2016-12-01

    Predicting carbon cycling in Arctic requires quantifying tightly coupled surface and subsurface processes including permafrost, hydrology, vegetation and soil biogeochemistry. The challenge has been a lack of means to remotely sense key ecosystem properties in high resolution and over large areas. A particular challenge has been characterizing soil properties that are known to be highly heterogeneous. In this study, we exploit tightly-coupled above/belowground ecosystem functioning (e.g., the correlations among soil moisture, vegetation and carbon fluxes) to estimate subsurface and other key properties over large areas. To test this concept, we have installed a ground-based remote sensing platform - a track-mounted tram system - along a 70 m transect in the ice-wedge polygonal tundra near Barrow, Alaska. The tram carries a suite of near-surface remote sensing sensors, including sonic depth, thermal IR, NDVI and multispectral sensors. Joint analysis with multiple ground-based measurements (soil temperature, active layer soil moisture, and carbon fluxes) was performed to quantify correlations and the dynamics of above/belowground processes at unprecedented resolution, both temporally and spatially. We analyzed the datasets with particular focus on correlating key subsurface and ecosystem properties with surface properties that can be measured by satellite/airborne remote sensing over a large area. Our results provided several new insights about system behavior and also opens the door for new characterization approaches. We documented that: (1) soil temperature (at >5 cm depth; critical for permafrost thaw) was decoupled from soil surface temperature and was influenced strongly by soil moisture, (2) NDVI and greenness index were highly correlated with both soil moisture and gross primary productivity (based on chamber flux data), and (3) surface deformation (which can be measured by InSAR) was a good proxy for thaw depth dynamics at non-inundated locations.

  15. In Situ Missions For Investigation of the Climate, Geology and Evolution of Venus

    NASA Astrophysics Data System (ADS)

    Grinspoon, David

    2017-10-01

    In situ Exploration of Venus has been recommended by the Decadal Study of the National Research Council. Many high priority measurements, addressing outstanding first-order, fundamental questions about current processes and evolution of Venus can only be made from in situ platforms such as entry probes, balloons or landers. These include: measuring noble gases and their isotopes to constrain origin and evolution; measuring stable isotopes to constrain the history of water and other volatiles; measuring trace gas profiles and sulfur compounds for chemical cycles and surface-atmosphere interactions, constraining the coupling of radiation, dynamics and chemistry, making visible and infrared descent images, and measuring surface and sub-surface composition. Such measurements will allow us deepen our understanding of the origin and evolution of Venus in the context of the terrestrial planets and extrasolar planets, to determine the level and style of current geological activity and to characterize the divergent climate evolution of Venus and Earth and extend our knowledge of the limits of habitability on hot terrestrial planets.

  16. Microvolume protein concentration determination using the NanoDrop 2000c spectrophotometer.

    PubMed

    Desjardins, Philippe; Hansen, Joel B; Allen, Michael

    2009-11-04

    Traditional spectrophotometry requires placing samples into cuvettes or capillaries. This is often impractical due to the limited sample volumes often used for protein analysis. The Thermo Scientific NanoDrop 2000c Spectrophotometer solves this issue with an innovative sample retention system that holds microvolume samples between two measurement surfaces using the surface tension properties of liquids, enabling the quantification of samples in volumes as low as 0.5-2 microL. The elimination of cuvettes or capillaries allows real time changes in path length, which reduces the measurement time while greatly increasing the dynamic range of protein concentrations that can be measured. The need for dilutions is also eliminated, and preparations for sample quantification are relatively easy as the measurement surfaces can be simply wiped with laboratory wipe. This video article presents modifications to traditional protein concentration determination methods for quantification of microvolume amounts of protein using A280 absorbance readings or the BCA colorimetric assay.

  17. Tip induced mechanical deformation of epitaxial graphene grown on reconstructed 6H-SiC(0001) surface during scanning tunneling and atomic force microscopy studies.

    PubMed

    Meza, José Antonio Morán; Lubin, Christophe; Thoyer, François; Cousty, Jacques

    2015-01-26

    The structural and mechanical properties of an epitaxial graphene (EG) monolayer thermally grown on top of a 6H-SiC(0001) surface were studied by combined dynamic scanning tunneling microscopy (STM) and frequency modulation atomic force microscopy (FM-AFM). Experimental STM, dynamic STM and AFM images of EG on 6H-SiC(0001) show a lattice with a 1.9 nm period corresponding to the (6 × 6) quasi-cell of the SiC surface. The corrugation amplitude of this (6 × 6) quasi-cell, measured from AFM topographies, increases with the setpoint value of the frequency shift Δf (15-20 Hz, repulsive interaction). Excitation variations map obtained simultaneously with the AFM topography shows that larger dissipation values are measured in between the topographical bumps of the (6 × 6) quasi-cell. These results demonstrate that the AFM tip deforms the graphene monolayer. During recording in dynamic STM mode, a frequency shift (Δf) map is obtained in which Δf values range from 41 to 47 Hz (repulsive interaction). As a result, we deduced that the STM tip, also, provokes local mechanical distortions of the graphene monolayer. The origin of these tip-induced distortions is discussed in terms of electronic and mechanical properties of EG on 6H-SiC(0001).

  18. Using Transmural Regularization and Dynamic Modeling for Non-Invasive Cardiac Potential Imaging of Endocardial Pacing with Imprecise Thoracic Geometry

    PubMed Central

    Erem, Burak; Coll-Font, Jaume; Orellana, Ramon Martinez; Štóvíček, Petr; Brooks, Dana H.

    2014-01-01

    Cardiac electrical imaging from body surface potential measurements is increasingly being seen as a technology with the potential for use in the clinic, for example for pre-procedure planning or during-treatment guidance for ventricular arrhythmia ablation procedures. However several important impediments to widespread adoption of this technology remain to be effectively overcome. Here we address two of these impediments: the difficulty of reconstructing electric potentials on the inner (endocardial) as well as outer (epicardial) surfaces of the ventricles, and the need for full anatomical imaging of the subject’s thorax to build an accurate subject-specific geometry. We introduce two new features in our reconstruction algorithm: a non-linear low-order dynamic parameterization derived from the measured body surface signals, and a technique to jointly regularize both surfaces. With these methodological innovations in combination, it is possible to reconstruct endocardial activation from clinically acquired measurements with an imprecise thorax geometry. In particular we test the method using body surface potentials acquired from three subjects during clinical procedures where the subjects’ hearts were paced on their endocardia using a catheter device. Our geometric models were constructed using a set of CT scans limited in axial extent to the immediate region near the heart. The catheter system provides a reference location to which we compare our results. We compare our estimates of pacing site localization, in terms of both accuracy and stability, to those reported in a recent clinical publication [1], where a full set of CT scans were available and only epicardial potentials were reconstructed. PMID:24595345

  19. Sea surface determination from space: The GSFC geoid

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.; Mcgoogan, J.; Marsh, J.; Lerch, F. J.

    1975-01-01

    The determination of the sea surface/geoid and its relative variation were investigated and results of the altimeter experiment on Skylab to test the geoid are discussed. The spaceborne altimeter on Skylab revealed that the sea surface of the world's oceans can be measured with an accuracy in the meter range. Surface variations are discussed as they relate to those computed from satellite orbital dynamics and ground based gravity data. The GSFC geoid was constructed from about 400,000 satellite tracking data (range, range rate, angles) and about 20,000 ground gravity observations. One of the last experiments on Skylab was to measure and/or test this geoid over almost one orbit. It was found that the computed water surface deviates between 5 to 20 m from the measured one. Further outlined are the influence of orbital errors on the sea surface, and numerical examples are given based upon real tracking data. Orbital height error estimates were computed for geodetic type satellites and are found to be in the order of 0.2 to 5 meters.

  20. A study of surface dosimetry for breast cancer radiotherapy treatments using Gafchromic EBT2 film

    PubMed Central

    Hill, Robin F.; Whitaker, May; Kim, Jung‐Ha; Kuncic, Zdenka

    2012-01-01

    The present study quantified surface doses on several rectangular phantom setups and on curved surface phantoms for a 6 MV photon field using the Attix parallel‐plate chamber and Gafchromic EBT2 film. For the rectangular phantom setups, the surface doses on a homogenous water equivalent phantom and a water equivalent phantom with 60 mm thick lung equivalent material were measured. The measurement on the homogenous phantom setup showed consistency in surface and near‐surface doses between an open field and enhanced dynamic wedge (EDW) fields, whereas physical wedged fields showed small differences. Surface dose measurements made using the EBT2 film showed good agreement with results of the Attix chamber and results obtained in previous studies which used other dosimeters within the measurement uncertainty of 3.3%. The surface dose measurements on the phantom setup with lung equivalent material showed a small increase without bolus and up to 6.9% increase with bolus simulating the increase of chest wall thickness. Surface doses on the cylindrical CT phantom and customized Perspex chest phantom were measured using the EBT2 film with and without bolus. The results indicate the important role of the presence of bolus if the clinical target volume (CTV) is quite close to the surface. Measurements on the cylindrical phantom suggest that surface doses at the oblique positions of 60° and 90° are mainly caused by the lateral scatter from the material inside the phantom. In the case of a single tangential irradiation onto Perspex chest phantom, the distribution of the surface dose with and without bolus materials showed opposing inclination patterns, whereas the dose distribution for two opposed tangential fields gave symmetric dose distribution. This study also demonstrates the suitability of Gafchromic EBT2 film for surface dose measurements in megavoltage photon beams. PACS number: 87.53.Bn PMID:22584169

  1. Detection of non-absorbing charge dynamics via refractive index change in dye-sensitized solar cells.

    PubMed

    Kuwahara, Shota; Hata, Hiroaki; Taya, Soichiro; Maeda, Naotaka; Shen, Qing; Toyoda, Taro; Katayama, Kenji

    2013-04-28

    The carrier dynamics in dye-sensitized solar cells was investigated by using the transient grating, in addition to the transient absorption method and transient photocurrent method on the order of microseconds to seconds. The signals for the same sample were obtained under a short-circuit condition to compare the carrier dynamics via refractive index change with the transient photocurrent measurement. Optically silent carrier dynamics by transient absorption have been successfully observed via a refractive index change. The corresponding signal components were originated from the charge dynamics at the solid/liquid interface, especially on the liquid side; rearrangement or diffusion motion of charged redox species occurred when the injected electrons were trapped at the TiO2 surface and when the electron-electrolyte recombination occurred at the interface. The assignments were confirmed from the dependence on the viscosity of the solvent and the presence of 4-tert-butyl pyridine. As the viscosity of the solvent increased, the rearrangement and the motion of the charged redox species were delayed. Since the rearrangement dynamics was changed by the presence of 4-tert-butyl pyridine, it affected not only the TiO2 surface but also the redox species close to the interface.

  2. Inverting dynamic force microscopy: From signals to time-resolved interaction forces

    PubMed Central

    Stark, Martin; Stark, Robert W.; Heckl, Wolfgang M.; Guckenberger, Reinhard

    2002-01-01

    Transient forces between nanoscale objects on surfaces govern friction, viscous flow, and plastic deformation, occur during manipulation of matter, or mediate the local wetting behavior of thin films. To resolve transient forces on the (sub) microsecond time and nanometer length scale, dynamic atomic force microscopy (AFM) offers largely unexploited potential. Full spectral analysis of the AFM signal completes dynamic AFM. Inverting the signal formation process, we measure the time course of the force effective at the sensing tip. This approach yields rich insight into processes at the tip and dispenses with a priori assumptions about the interaction, as it relies solely on measured data. Force measurements on silicon under ambient conditions demonstrate the distinct signature of the interaction and reveal that peak forces exceeding 200 nN are applied to the sample in a typical imaging situation. These forces are 2 orders of magnitude higher than those in covalent bonds. PMID:12070341

  3. PREFACE: Dynamics of low-dimensional systems Dynamics of low-dimensional systems

    NASA Astrophysics Data System (ADS)

    Bernasconi, M.; Miret-Artés, S.; Toennies, J. P.

    2012-03-01

    With the development of techniques for high-resolution inelastic helium atom scattering (HAS), electron scattering (EELS) and neutron spin echo spectroscopy, it has become possible, within approximately the last thirty years, to measure the dispersion curves of surface phonons in insulators, semiconductors and metals. In recent years, the advent of new experimental techniques such as 3He spin-echo spectroscopy, scanning inelastic electron tunnel spectroscopy, inelastic x-ray scattering spectroscopy and inelastic photoemission have extended surface phonon spectroscopy to a variety of systems. These include ultra-thin metal films, adsorbates at surface and elementary processes where surface phonons play an important role. Other important directions have been actively pursued in the past decade: the dynamics of stepped surfaces and clusters grown on metal surfaces, due to their relevance in many dynamical and chemical processes at surfaces, including heterogeneous catalysis; clusters; diffusion etc. The role of surface effects in these processes has been conjectured since the early days of surface dynamics, although only now is the availability of ab initio approaches providing those conjectures with a microscopic basis. Last but not least, the investigation of non-adiabatic effects, originating for instance from the hybridization (avoided crossing) of the surface phonons branches with the quasi 1D electron-hole excitation branch, is also a challenging new direction. Furthermore, other elementary oscillations such as surface plasmons are being actively investigated. The aforementioned experimental breakthroughs have been accompanied by advances in the theoretical study of atom-surface interaction. In particular, in the past decade first principles calculations based on density functional perturbation theory have boosted the theoretical study of the dynamics of low-dimensional systems. Phonon dispersion relations of clean surfaces, the dynamics of adsorbates, and the vibrational spectra of clusters and carbon-based nanostructures, just to name a few of the low-dimensional systems addressed in this special issue, can be both accurately computed from first principles and measured experimentally. Even less computationally demanding semi-empirical simulations based on tight-binding or continuum models play a crucial role in assessing, for instance, the interplay between morphology, defects and the elastic properties of low-dimensional systems. The impressive amount of work and progress achieved in the past decade within the general theory and spectroscopy of the dynamics of low-dimensional systems is marked by several relevant trends that are exemplified by the contributions gathered together in this special issue. They span a wide spectrum of experimental and theoretical methods applied to the study of the dynamical properties of low-dimensional systems and new emerging phenomena at the nanoscale, such as the peculiar optical properties of ring shaped quantum dots, plasmon dynamics in metallic nanoclusters and the relaxation dynamics of nanomagnets. This issue is dedicated to our esteemed colleague Giorgio Benedek on the occasion of his 70th birthday. It collects together a number of papers written by authors from all over the world with a recognized reputation in the above mentioned fields where Giorgio Benedek has made important and fundamental contributions. Dynamics of low-dimensional systems contents Narratives Giorgio Benedek: an extraordinary universal scientist M Bernasconi, S Miret-Artés and J P Toennies Helium and carbon: two friends for life Giorgio Benedek Special Issue Papers Temperature dependence in atom-surface scattering Eli Pollak and J R Manson Density functional study of the decomposition pathways of SiH3 and GeH3 at the Si(100) and Ge(100) surfaces M Ceriotti, F Montalenti and M Bernasconi Comparative study of vibrations in submonolayer structures of potassium on Pt(111) G G Rusina, S V Eremeev, S D Borisova and E V Chulkov Surface phonons on Pb(111) I Yu Sklyadneva, R Heid, K-P Bohnen, P M Echenique and E V Chulkov Using evidence from nanocavities to assess the vibrational properties of external surfaces G F Cerofolini, F Corni, S Frabboni, G Ottaviani, E Romano, R Tonini and D Narducci Magnetic properties and relaxation dynamics of a frustrated Ni7 molecular nanomagnet E Garlatti, S Carretta, M Affronte, E C Sañudo, G Amoretti and P Santini A theoretical study of rotational and translational diffusion dynamics of molecules with a six-fold point symmetry adsorbed on a hexagonal lattice by neutron scattering I Calvo-Almazán, S Miret-Artés and P Fouquet Vibrational dynamics and surface structure of Bi(111) from helium atom scattering measurements M Mayrhofer-Reinhartshuber, A Tamtögl, P Kraus, K H Rieder and W E Ernst Double and triple ionization of silver clusters by electron impactAvik Halder, Anthony Liang, Chunrong Yin and Vitaly V Kresin Scattering of O2 from a graphite surface W W Hayes, Junepyo Oh, Takahiro Kondo, Keitaro Arakawa, Yoshihiko Saito, Junji Nakamura and J R Manson Zero-phonon lines of systems with different dimensions and unconventional vibronic interactions V Hizhnyakov A kinetic Monte Carlo approach to investigate antibiotic translocation through bacterial porins Matteo Ceccarelli, Attilio V Vargiu and Paolo Ruggerone Quantum Zeno and anti-Zeno effects in surface diffusion of interacting adsorbates H C Peñate-Rodrìguez, R Martìnez-Casado, G Rojas-Lorenzo, A S Sanz and S Miret-Artés Weakly bound finite systems: (4He)N-Rb2(3Σu), clustering structures from a quantum Monte Carlo approach D López-Durán, R Rodrìguez-Cantano, T González-Lezana, G Delgado-Barrio, P Villarreal, E Yurtsever and F A Gianturco Multiphonon atom-surface scattering from corrugated surfaces: derivation of the inelastic scattering spectrum for diffraction statesBranko Gumhalter Probing the non-pairwise interactions between CO molecules moving on a Cu(111) surfacePepijn R Kole, Holly Hedgeland, Andrew P Jardine, William Allison, John Ellis and Gil Alexandrowicz Fast emission dynamics in droplet epitaxy GaAs ring-disk nanostructures integrated on SiL Cavigli, S Bietti, M Abbarchi, C Somaschini, A Vinattieri, M Gurioli, A Fedorov, G Isella, E Grilli and S Sanguinetti Assessing the composition of hetero-epitaxial islands via morphological analysis: an analytical model matching GeSi/Si(001) dataR Gatti, F Pezzoli, F Boioli, F Montalenti and Leo Miglio Carbon sp chains in graphene nanoholesIvano E Castelli, Nicola Ferri, Giovanni Onida and Nicola Manini Elastic fields and moduli in defected grapheneRiccardo Dettori, Emiliano Cadelano and Luciano Colombo Tuning the plasmon energy of palladium-hydrogen systems by varying the hydrogen concentrationV M Silkin, R Dìez Muiño, I P Chernov, E V Chulkov and P M Echenique Plasmon tsunamis on metallic nanoclustersA A Lucas and M Sunjic Ab initio characterization of graphene nanoribbons and their polymer precursorsRengin Peköz, Xinliang Feng and Davide Donadio First-principles phonon calculations of Fe4+ impurity in SrTiO3E Blokhin, E A Kotomin and J Maier Phonon dispersion of quasi-freestanding graphene on Pt(111)Antonio Politano, Antonio Raimondo Marino and Gennaro Chiarello Vibrations of Au13 and FeAu12 nanoparticles and the limits of the Debye temperature conceptGhazal Shafai, Marisol Alcántara Ortigoza and Talat S Rahman Triple quantum dots as charge rectifiers M Busl and G Platero

  4. Characterization of the dynamics of surface stabilized ferroelectric liquid crystal under electric field by full optical snapshot matrix Mueller polarimeter

    NASA Astrophysics Data System (ADS)

    Silva, Vinicius N. H.; Babilotte, Philippe; Rivet, Sylvain; Dubreuil, Mathieu; Le Jeune, Bernard; Dupont, Laurent

    2012-12-01

    We investigated the layer dynamics of a conventional surface-stabilized ferroelectric liquid crystal (SSFLC) using a full-optical snapshot Mueller matrix polarimeter (SMMP) based on wavelength polarization coding. Time-resolved polarimetric measurements were performed with different SSFLC samples, and a strong correlation between the polarimetric parameters and the SSFLC under electric field at different exposure times was found. It has been shown that the SMMP polarimeter is able to determine the evolution of the trajectory of the liquid crystal director between the two addressed states, the reversible motion of the smectic layer while switching, as well as the irreversible transition from chevron to bookshelf texture.

  5. Dependence of the residual surface resistance of superconducting radio frequency cavities on the cooling dynamics around T c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanenko, A.; Grassellino, A.; Melnychuk, O.

    We report a strong effect of the cooling dynamics throughmore » $$T_\\mathrm{c}$$ on the amount of trapped external magnetic flux in superconducting niobium cavities. The effect is similar for fine grain and single crystal niobium and all surface treatments including electropolishing with and without 120$$^\\circ$$C baking and nitrogen doping. Direct magnetic field measurements on the cavity walls show that the effect stems from changes in the flux trapping efficiency: slow cooling leads to almost complete flux trapping and higher residual resistance while fast cooling leads to the much more efficient flux expulsion and lower residual resistance.« less

  6. Urban-Dome GHG Monitoring: Challenges and Perspectives from the INFLUX Project

    NASA Astrophysics Data System (ADS)

    Whetstone, J.; Shepson, P. B.; Davis, K. J.; Sweeney, C.; Gurney, K. R.; Miles, N. L.; Richardson, S.; Lauvaux, T.; Razlivanov, I.; Zhou, Y.; Song, Y.; Turnbull, J. C.; Karion, A.; Cambaliza, M. L.; Callahan, W.; Novakovskaia, E.; Crosson, E.; Rella, C.; Possolo, A.

    2012-04-01

    Quantification of carbon dynamics in urban areas using advanced and diverse observing systems enables the development of measurable, reportable, and verifiable (MRV) mitigation strategies as suggested in the Bali Action Plan, agreed upon at the 13th Conference of the Parties of the UNFCCC (COP 13, 2007). The National Institute of Standards and Technology (NIST), supports the Indianapolis Flux Experiment (INFLUX). INFLUX is focused on demonstrating the utility of dense, surface-based observing networks coupled with aircraft-based measurements, advanced atmospheric boundary layer observation and modeling to determine GHG emission source location and strength in urban areas. The ability to correctly model transport and mixing in the atmospheric boundary layer (ABL), responsible for carrying GHGs from their source to the point of measurement, is essential. The observing system design, using multiple instruments and observing methods, is intended to provide multi-scale measurements as a basis for mimicking the complex and evolving dynamics of a city. To better understand such a dynamic system, and incorporate this into models, reliable representations of horizontal and vertical transport, as well as ABL height, GHG mixing ratio measurements are planned for 11 tower locations, 2 are currently in operation with the remaining 9 planned for operational status in early to mid-2012. These observations are complimented by aircraft flights that measure mixing ratio as well as ABL parameters. Although measurements of ABL mixing heights and dynamics are presently only available intermittently, limiting efforts to evaluate ABL model performance and the uncertainties of GHG flux estimates, expansion of them is planned for the near future. INFLUX will significantly benefit from continuous, high resolution measurements of mixing depth, wind speed and direction, turbulence profiles in the boundary layer, as well as measurements of surface energy balance, momentum flux, and short and long wave radiation fluxes. NIST is working with partner institutions to develop the measurement science and measurement tools needed to improve the accuracy and comparability of surface-based measurement approaches for MRV purposes. The current project phase is focused on determination of emission source location with a spatial resolution of approximately 1 km2 and of sources strength to within 20% uncertainty, in part for comparison to inventories. Additionally, the demonstration of a robust, dense observing network methodology will provide a means to characterize urban GHG domes and provides a calibration method for remote sensing measurements whether taken by on-orbit, terrestrial, or airborne observations. The Indianapolis Flux experiment is the initial research effort to demonstrate this approach to emissions verification. Lessons learned in INFLUX are expected to be extensible to other urban and regional settings, suggesting further research to be conducted for areas having significantly different terrain and meteorology.

  7. Effect of surface fields on the dynamic resistance of planar HgCdTe mid-wavelength infrared photodiodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Kai; Wang, Xi; Zhang, Peng

    2015-05-28

    This work investigates the effect of surface fields on the dynamic resistance of a planar HgCdTe mid-wavelength infrared photodiode from both theoretical and experimental aspects, considering a gated n-on-p diode with the surface potential of its p-region modulated. Theoretical models of the surface leakage current are developed, where the surface tunnelling current in the case of accumulation is expressed by modifying the formulation of bulk tunnelling currents, and the surface channel current for strong inversion is simulated with a transmission line method. Experimental data from the fabricated devices show a flat-band voltage of V{sub FB}=−5.7 V by capacitance-voltage measurement, and thenmore » the physical parameters for bulk properties are determined from the resistance-voltage characteristics of the diode working at a flat-band gate voltage. With proper values of the modeling parameters such as surface trap density and channel electron mobility, the theoretical R{sub 0}A product and corresponding dark current calculated from the proposed model as functions of the gate voltage V{sub g} demonstrate good consistency with the measured values. The R{sub 0}A product remarkably degenerates when V{sub g} is far below or above V{sub FB} because of the surface tunnelling current or channel current, respectively; and it attains the maximum value of 5.7×10{sup 7} Ω · cm{sup 2} around the transition between surface depletion and weak inversion when V{sub g}≈−4 V, which might result from reduced generation-recombination current.« less

  8. Development of the 15 meter diameter hoop column antenna

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The building of a deployable 15-meter engineering model of the 100 meter antenna based on the point-design of an earlier task of this contract, complete with an RF-capable surface is described. The 15 meter diameter was selected so that the model could be tested in existing manufacturing, near-field RF, thermal vacuum, and structural dynamics facilities. The antenna was designed with four offset paraboloidal reflector surfaces with a focal length of 366.85 in and a primary surface accuracy goal of .069 in rms. Surface adjustment capability was provided by manually resetting the length of 96 surface control cords which emanated from the lower column extremity. A detailed description of the 15-meter Hoop/Column Antenna, major subassemblies, and a history of its fabrication, assembly, deployment testing, and verification measurements are given. The deviation for one aperture surface (except the outboard extremity) was measured after adjustments in follow-on tests at the Martin Marietta Near-field Facility to be .061 in; thus the primary surface goal was achieved.

  9. The Complicate Observations and Multi-Parameter Land Information Constructions on Allied Telemetry Experiment (COMPLICATE)

    PubMed Central

    Tian, Xin; Li, Zengyuan; Chen, Erxue; Liu, Qinhuo; Yan, Guangjian; Wang, Jindi; Niu, Zheng; Zhao, Shaojie; Li, Xin; Pang, Yong; Su, Zhongbo; van der Tol, Christiaan; Liu, Qingwang; Wu, Chaoyang; Xiao, Qing; Yang, Le; Mu, Xihan; Bo, Yanchen; Qu, Yonghua; Zhou, Hongmin; Gao, Shuai; Chai, Linna; Huang, Huaguo; Fan, Wenjie; Li, Shihua; Bai, Junhua; Jiang, Lingmei; Zhou, Ji

    2015-01-01

    The Complicate Observations and Multi-Parameter Land Information Constructions on Allied Telemetry Experiment (COMPLICATE) comprises a network of remote sensing experiments designed to enhance the dynamic analysis and modeling of remotely sensed information for complex land surfaces. Two types of experimental campaigns were established under the framework of COMPLICATE. The first was designed for continuous and elaborate experiments. The experimental strategy helps enhance our understanding of the radiative and scattering mechanisms of soil and vegetation and modeling of remotely sensed information for complex land surfaces. To validate the methodologies and models for dynamic analyses of remote sensing for complex land surfaces, the second campaign consisted of simultaneous satellite-borne, airborne, and ground-based experiments. During field campaigns, several continuous and intensive observations were obtained. Measurements were undertaken to answer key scientific issues, as follows: 1) Determine the characteristics of spatial heterogeneity and the radiative and scattering mechanisms of remote sensing on complex land surfaces. 2) Determine the mechanisms of spatial and temporal scale extensions for remote sensing on complex land surfaces. 3) Determine synergist inversion mechanisms for soil and vegetation parameters using multi-mode remote sensing on complex land surfaces. Here, we introduce the background, the objectives, the experimental designs, the observations and measurements, and the overall advances of COMPLICATE. As a result of the implementation of COMLICATE and for the next several years, we expect to contribute to quantitative remote sensing science and Earth observation techniques. PMID:26332035

  10. Quantitative force measurements in liquid using frequency modulation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Uchihashi, Takayuki; Higgins, Michael J.; Yasuda, Satoshi; Jarvis, Suzanne P.; Akita, Seiji; Nakayama, Yoshikazu; Sader, John E.

    2004-10-01

    The measurement of short-range forces with the atomic force microscope (AFM) typically requires implementation of dynamic techniques to maintain sensitivity and stability. While frequency modulation atomic force microscopy (FM-AFM) is used widely for high-resolution imaging and quantitative force measurements in vacuum, quantitative force measurements using FM-AFM in liquids have proven elusive. Here we demonstrate that the formalism derived for operation in vacuum can also be used in liquids, provided certain modifications are implemented. To facilitate comparison with previous measurements taken using surface forces apparatus, we choose a model system (octamethylcyclotetrasiloxane) that is known to exhibit short-ranged structural ordering when confined between two surfaces. Force measurements obtained are found to be in excellent agreement with previously reported results. This study therefore establishes FM-AFM as a powerful tool for the quantitative measurement of forces in liquid.

  11. Spatio-temporal image-based parametric water surface reconstruction: a novel methodology based on refraction

    NASA Astrophysics Data System (ADS)

    Engelen, L.; Creëlle, S.; Schindfessel, L.; De Mulder, T.

    2018-03-01

    This paper presents a low-cost and easy-to-implement image-based reconstruction technique for laboratory experiments, which results in a temporal description of the water surface topography. The distortion due to refraction of a known pattern, located below the water surface, is used to fit a low parameter surface model that describes the time-dependent and three-dimensional surface variation. Instead of finding the optimal water depth for characteristic points on the surface, the deformation of the entire pattern is compared to its original shape. This avoids the need for feature tracking adopted in similar techniques, which improves the robustness to suboptimal optical conditions and small-scale, high-frequency surface perturbations. Experimental validation, by comparison with water depth measurements using a level gauge and pressure sensor, proves sub-millimetre accuracy for smooth and steady surface shapes. Although such accuracy cannot be achieved in case of highly dynamic surface phenomena, the low-frequency and large-scale free surface oscillations can still be measured with a temporal and spatial resolution mostly limited by the available optical set-up. The technique is initially intended for periodic surface phenomena, but the results presented in this paper indicate that also irregular surface shapes can robustly be reconstructed. Therefore, the presented technique is a promising tool for other research applications that require non-intrusive, low-cost surface measurements while maintaining visual access to the water below the surface. The latter ensures that the suggested surface reconstruction is compatible with simultaneous image-based velocity measurements, enabling a detailed study of the flow.

  12. Dissimilar Kinetic Behavior of Electrically Manipulated Single- and Double-Stranded DNA Tethered to a Gold Surface

    PubMed Central

    Rant, Ulrich; Arinaga, Kenji; Tornow, Marc; Kim, Yong Woon; Netz, Roland R.; Fujita, Shozo; Yokoyama, Naoki; Abstreiter, Gerhard

    2006-01-01

    We report on the electrical manipulation of single- and double-stranded oligodeoxynucleotides that are end tethered to gold surfaces in electrolyte solution. The response to alternating repulsive and attractive electric surface fields is studied by time-resolved fluorescence measurements, revealing markedly distinct dynamics for the flexible single-stranded and stiff double-stranded DNA, respectively. Hydrodynamic simulations rationalize this finding and disclose two different kinetic mechanisms: stiff polymers undergo rotation around the anchoring pivot point; flexible polymers, on the other hand, are pulled onto the attracting surface segment by segment. PMID:16473909

  13. Dissimilar kinetic behavior of electrically manipulated single- and double-stranded DNA tethered to a gold surface.

    PubMed

    Rant, Ulrich; Arinaga, Kenji; Tornow, Marc; Kim, Yong Woon; Netz, Roland R; Fujita, Shozo; Yokoyama, Naoki; Abstreiter, Gerhard

    2006-05-15

    We report on the electrical manipulation of single- and double-stranded oligodeoxynucleotides that are end tethered to gold surfaces in electrolyte solution. The response to alternating repulsive and attractive electric surface fields is studied by time-resolved fluorescence measurements, revealing markedly distinct dynamics for the flexible single-stranded and stiff double-stranded DNA, respectively. Hydrodynamic simulations rationalize this finding and disclose two different kinetic mechanisms: stiff polymers undergo rotation around the anchoring pivot point; flexible polymers, on the other hand, are pulled onto the attracting surface segment by segment.

  14. First-principles study of the infrared spectra of the ice Ih (0001) surface

    DOE PAGES

    Pham, T. Anh; Huang, P.; Schwegler, E.; ...

    2012-08-22

    Here, we present a study of the infrared (IR) spectra of the (0001) deuterated ice surface based on first-principles molecular dynamics simulations. The computed spectra show a good agreement with available experimental IR measurements. We identified the bonding configurations associated with specific features in the spectra, allowing us to provide a detailed interpretation of IR signals. We computed the spectra of several proton ordered and disordered models of the (0001) surface of ice, and we found that IR spectra do not appear to be a sensitive probe of the microscopic arrangement of protons at ice surfaces.

  15. Metrological characterization methods for confocal chromatic line sensors and optical topography sensors

    NASA Astrophysics Data System (ADS)

    Seppä, Jeremias; Niemelä, Karri; Lassila, Antti

    2018-05-01

    The increasing use of chromatic confocal technology for, e.g. fast, in-line optical topography, and measuring thickness, roughness and profiles implies a need for the characterization of various aspects of the sensors. Single-point, line and matrix versions of chromatic confocal technology, encoding depth information into wavelength, have been developed. Of these, line sensors are particularly suitable for in-line process measurement. Metrological characterization and development of practical methods for calibration and checking is needed for new optical methods and devices. Compared to, e.g. tactile methods, optical topography measurement techniques have limitations related to light wavelength and coherence, optical properties of the sample including reflectivity, specularity, roughness and colour, and definition of optical versus mechanical surfaces. In this work, metrological characterization methods for optical line sensors were developed for scale magnification and linearity, sensitivity to sample properties, and dynamic characteristics. An accurate depth scale calibration method using a single prototype groove depth sample was developed for a line sensor and validated with laser-interferometric sample tracking, attaining (sub)micrometre level or better than 0.1% scale accuracy. Furthermore, the effect of different surfaces and materials on the measurement and depth scale was studied, in particular slope angle, specularity and colour. In addition, dynamic performance, noise, lateral scale and resolution were measured using the developed methods. In the case of the LCI1200 sensor used in this study, which has a 11.3 mm  ×  2.8 mm measurement range, the instrument depth scale was found to depend only minimally on sample colour, whereas measuring steeply sloped specular surfaces in the peripheral measurement area, in the worst case, caused a somewhat larger relative sample-dependent change (1%) in scale.

  16. Seismic characterization and dynamic site response of a municipal solid waste landfill in Bangalore, India.

    PubMed

    Anbazhagan, P; SivakumarBabu, G L; Lakshmikanthan, P; VivekAnand, K S

    2016-03-01

    Seismic design of landfills requires an understanding of the dynamic properties of municipal solid waste (MSW) and the dynamic site response of landfill waste during seismic events. The dynamic response of the Mavallipura landfill situated in Bangalore, India, is investigated using field measurements, laboratory studies and recorded ground motions from the intraplate region. The dynamic shear modulus values for the MSW were established on the basis of field measurements of shear wave velocities. Cyclic triaxial testing was performed on reconstituted MSW samples and the shear modulus reduction and damping characteristics of MSW were studied. Ten ground motions were selected based on regional seismicity and site response parameters have been obtained considering one-dimensional non-linear analysis in the DEEPSOIL program. The surface spectral response varied from 0.6 to 2 g and persisted only for a period of 1 s for most of the ground motions. The maximum peak ground acceleration (PGA) obtained was 0.5 g and the minimum and maximum amplifications are 1.35 and 4.05. Amplification of the base acceleration was observed at the top surface of the landfill underlined by a composite soil layer and bedrock for all ground motions. Dynamic seismic properties with amplification and site response parameters for MSW landfill in Bangalore, India, are presented in this paper. This study shows that MSW has less shear stiffness and more amplification due to loose filling and damping, which need to be accounted for seismic design of MSW landfills in India. © The Author(s) 2016.

  17. An experimental investigation on wind turbine aeromechanics and wake interferences among multiple wind turbines

    NASA Astrophysics Data System (ADS)

    Ozbay, Ahmet

    A comprehensive experimental study was conducted to investigate wind turbine aeromechanics and wake interferences among multiple wind turbines sited in onshore and offshore wind farms. The experiments were carried out in a large-scale Aerodynamic/Atmospheric Boundary Layer (AABL) Wind Tunnel available at Iowa State University. An array of scaled three-blade Horizontal Axial Wind Turbine (HAWT) models were placed in atmospheric boundary layer winds with different mean and turbulence characteristics to simulate the situations in onshore and offshore wind farms. The effects of the important design parameters for wind farm layout optimization, which include the mean and turbulence characteristics of the oncoming surface winds, the yaw angles of the turbines with respect to the oncoming surface winds, the array spacing and layout pattern, and the terrain topology of wind farms on the turbine performances (i.e., both power output and dynamic wind loadings) and the wake interferences among multiple wind turbines, were assessed in detail. The aeromechanic performance and near wake characteristics of a novel dual-rotor wind turbine (DRWT) design with co-rotating or counter-rotating configuration were also investigated, in comparison to a conventional single rotor wind turbine (SRWT). During the experiments, in addition to measuring dynamic wind loads (both forces and moments) and the power outputs of the scaled turbine models, a high-resolution Particle Image Velocity (PIV) system was used to conduct detailed flow field measurements (i.e., both free-run and phase-locked flow fields measurements) to reveal the transient behavior of the unsteady wake vortices and turbulent flow structures behind wind turbines and to quantify the characteristics of the wake interferences among the wind turbines sited in non-homogenous surface winds. A miniature cobra anemometer was also used to provide high-temporal-resolution data at points of interest to supplement the full field PIV measurement results. The detailed flow field measurements are correlated with the dynamic wind loads and power output measurements to elucidate underlying physics in order to gain further insight into the characteristics of the power generation performance, dynamic wind loads and wake interferences of the wind turbines for higher total power yield and better durability of the wind turbines sited in atmospheric boundary layer (ABL) winds.

  18. Effect of atmosphere on the surface tension and viscosity of molten LiNbO 3 measured using the surface laser-light scattering method

    NASA Astrophysics Data System (ADS)

    Nagasaka, Yuji; Kobayashi, Yusuke

    2007-09-01

    The surface tension and the viscosity of molten LiNbO 3 (LN) having the congruent composition have been measured simultaneously in a temperature range from 1537 to 1756 K under argon gas and dry-air atmospheres. The present measurement technique involves surface laser-light scattering (SLLS) that detects nanometer-order-amplitude surface waves usually regarded as ripplons excited by thermal fluctuations. This technique's non-invasive nature allows it to avoid the experimental difficulties of conventional techniques resulting from the insertion of an actuator in the melt. The results of surface tension measurement obtained under a dry-air atmosphere are about 5% smaller than those obtained under an argon atmosphere near the melting temperature, and the temperature dependence of the surface tension under a dry-air atmosphere is twice that under an argon atmosphere. The uncertainty of surface tension measurement is estimated to be ±2.6% under argon and ±1.9% under dry air. The temperature dependence of viscosity can be well correlated with the results of Arrhenius-type equations without any anomalous behavior near the melting point. The viscosities obtained under a dry-air atmosphere were slightly smaller than those obtained under an argon atmosphere. The uncertainty of viscosity measurement is estimated to be ±11.1% for argon and ±14.3% for dry air. Moreover, we observed the real-time dynamic behavior of the surface tension and the viscosity of molten LN in response to argon and dry-air atmospheres.

  19. Protein analysis by time-resolved measurements with an electro-switchable DNA chip

    PubMed Central

    Langer, Andreas; Hampel, Paul A.; Kaiser, Wolfgang; Knezevic, Jelena; Welte, Thomas; Villa, Valentina; Maruyama, Makiko; Svejda, Matej; Jähner, Simone; Fischer, Frank; Strasser, Ralf; Rant, Ulrich

    2013-01-01

    Measurements in stationary or mobile phases are fundamental principles in protein analysis. Although the immobilization of molecules on solid supports allows for the parallel analysis of interactions, properties like size or shape are usually inferred from the molecular mobility under the influence of external forces. However, as these principles are mutually exclusive, a comprehensive characterization of proteins usually involves a multi-step workflow. Here we show how these measurement modalities can be reconciled by tethering proteins to a surface via dynamically actuated nanolevers. Short DNA strands, which are switched by alternating electric fields, are employed as capture probes to bind target proteins. By swaying the proteins over nanometre amplitudes and comparing their motional dynamics to a theoretical model, the protein diameter can be quantified with Angström accuracy. Alterations in the tertiary protein structure (folding) and conformational changes are readily detected, and even post-translational modifications are revealed by time-resolved molecular dynamics measurements. PMID:23839273

  20. Dynamic ultrasonic contact detection using acoustic emissions.

    PubMed

    Turner, S L; Rabani, A; Axinte, D A; King, C W

    2014-03-01

    For a non-contact ultrasonic material removal process, the control of the standoff position can be crucial to process performance; particularly where the requirement is for a standoff of the order of <20 μm. The standoff distance relative to the surface to be machined can be set by first contacting the ultrasonic tool tip with the surface and then withdrawing the tool to the required position. Determination of this contact point in a dynamic system at ultrasonic frequencies (>20 kHz) is achieved by force measurement or by detection of acoustic emissions (AE). However, where detection of distance from a surface must be determined without contact taking place, an alternative method must be sought. In this paper, the effect of distance from contact of an ultrasonic tool is measured by detection of AE through the workpiece. At the point of contact, the amplitude of the signal at the fundamental frequency increases significantly, but the strength of the 2nd and 3rd harmonic signals increases more markedly. Closer examination of these harmonics shows that an increase in their intensities can be observed in the 10 μm prior to contact, providing a mechanism to detect near contact (<10 μm) without the need to first contact the surface in order to set a standoff. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Local Turbulence Suppression and Shear Flow Dynamics During qmin-Triggered Internal Transport Barriers on DIII-D

    NASA Astrophysics Data System (ADS)

    Shafer, M. W.; McKee, G. R.; Schlossberg, D. J.; Austin, M. E.; Burrell, K. H.

    2008-11-01

    Long-wavelength turbulence (kρi< 1) is locally suppressed simultaneously with a rapid but transient increase in local poloidal flow shear at the appearance of low-order rational qmin surfaces in negative central shear discharges. At these events, reductions in energy transport are observed and Internal Transport Barriers (ITBs) may form. Application of off-axis ECH slows the q-profile evolution and increases ρqmin, both of which enhance turbulence measurements using a new high-sensitivity large-area (8x,8) 2D BES array. The measured transient turbulence suppression is localized to the low-order rational surface (qmin= 2, 5/2, 3, etc.). Measured poloidal flow shear transiently exceeds the turbulence decorrelation rate, which is consistent with shear suppression. The localized suppression zone propagates radially outward, nearly coincident with the low-order surface.

  2. Polymer dynamics under cylindrical confinement featuring a locally repulsive surface: A quasielastic neutron scattering study

    DOE PAGES

    Krutyeva, M.; Pasini, S.; Monkenbusch, M.; ...

    2017-02-02

    We investigated the effect of intermediate cylindrical confinement with locally repulsive walls on the segmental and entanglement dynamics of a polymer melt by quasielastic neutron scattering. As a reference, we measured the corresponding polymer melt under identical conditions. The locally repulsive confinement was realized by hydrophilic anodic alumina nanopores with a diameter of 20 nm. The end-to-end distance of the hydrophobic infiltrated polyethylene-alt-propylene was close to this diameter. In the case of hard wall repulsion with negligible local attraction, several simulations predicted an acceleration of segmental dynamics close to the wall. Other than in attractive or neutral systems, where themore » segmental dynamics is slowed down, we found that the segmental dynamics in the nanopores is identical to the local mobility in the bulk. Even under very careful scrutiny, we could not find any acceleration of the surface-near segmental motion. On the larger time scale, the neutron spin-echo experiment showed that the Rouse relaxation was not altered by confinement effects. Moreover, the entanglement dynamics was not affected. Thus at moderate confinement conditions, facilitated by locally repulsive walls, the dynamics remains as in the bulk melt, a result that is not so clear from simulations.« less

  3. Helioseismology.

    ERIC Educational Resources Information Center

    Leibacher, John W.; And Others

    1985-01-01

    Helioseismology (similar to geophysicists' study of seismic waves) makes it possible to penetrate the sun's opaque brilliance by measuring surface oscillations. Their pattern and period hold clues to temperature, structure, composition, and dynamics of the sun's interior. Scientists have used data to build models (evolved mathematically) to…

  4. Measuring and Modeling Surface Sorption Dynamics of OPFRs in Stainless Steel Empty Chambers

    EPA Science Inventory

    Organophosphorus flame retardants (OPFRs) are produced and used widely as alternative additives in building materials and consumer products such as spray polyurethane foam (SPF), polyvinyl chloride flooring, electrical and electronic products, furniture, textile coatings, and pla...

  5. Automated delay estimation at signalized intersections : phase I concept and algorithm development.

    DOT National Transportation Integrated Search

    2011-07-01

    Currently there are several methods to measure the performance of surface streets, but their capabilities in dynamically estimating vehicle delay are limited. The objective of this research is to develop a method to automate traffic delay estimation ...

  6. Stability and dynamic of strain mediated adatom superlattices on Cu<111 >

    NASA Astrophysics Data System (ADS)

    Kappus, Wolfgang

    2013-03-01

    Substrate strain mediated adatom equilibrium density distributions have been calculated for Cu<111 > surfaces using two complementing methods. A hexagonal adatom superlattice in a coverage range up to 0.045 ML is derived for repulsive short range interactions. For zero short range interactions a hexagonal superstructure of adatom clusters is derived in a coverage range about 0.08 ML. Conditions for the stability of the superlattice against formation of dimers or clusters and degradation are analyzed using simple neighborhood models. Such models are also used to investigate the dynamic of adatoms within their superlattice neighborhood. Collective modes of adatom diffusion are proposed from the analogy with bulk lattice dynamics and methods for measurement are suggested. The recently put forward explanation of surface state mediated interactions for superstructures found in scanning tunneling microscopy experiments is put in question and strain mediated interactions are proposed as an alternative.

  7. Mean Dynamic Topography of the Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Farrell, Sinead Louise; Mcadoo, David C.; Laxon, Seymour W.; Zwally, H. Jay; Yi, Donghui; Ridout, Andy; Giles, Katherine

    2012-01-01

    ICESat and Envisat altimetry data provide measurements of the instantaneous sea surface height (SSH) across the Arctic Ocean, using lead and open water elevation within the sea ice pack. First, these data were used to derive two independent mean sea surface (MSS) models by stacking and averaging along-track SSH profiles gathered between 2003 and 2009. The ICESat and Envisat MSS data were combined to construct the high-resolution ICEn MSS. Second, we estimate the 5.5-year mean dynamic topography (MDT) of the Arctic Ocean by differencing the ICEn MSS with the new GOCO02S geoid model, derived from GRACE and GOCE gravity. Using these satellite-only data we map the major features of Arctic Ocean dynamical height that are consistent with in situ observations, including the topographical highs and lows of the Beaufort and Greenland Gyres, respectively. Smaller-scale MDT structures remain largely unresolved due to uncertainties in the geoid at short wavelengths.

  8. Damage Mechanisms and Controlled Crack Propagation in a Hot Pressed Silicon Nitride Ceramic. Ph.D. Thesis - Northwestern Univ., 1993

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony Martin

    1994-01-01

    The subcritical growth of cracks from pre-existing flaws in ceramics can severely affect the structural reliability of a material. The ability to directly observe subcritical crack growth and rigorously analyze its influence on fracture behavior is important for an accurate assessment of material performance. A Mode I fracture specimen and loading method has been developed which permits the observation of stable, subcritical crack extension in monolithic and toughened ceramics. The test specimen and procedure has demonstrated its ability to generate and stably propagate sharp, through-thickness cracks in brittle high modulus materials. Crack growth for an aluminum oxide ceramic was observed to be continuously stable throughout testing. Conversely, the fracture behavior of a silicon nitride ceramic exhibited crack growth as a series of subcritical extensions which are interrupted by dynamic propagation. Dynamic initiation and arrest fracture resistance measurements for the silicon nitride averaged 67 and 48 J/sq m, respectively. The dynamic initiation event was observed to be sudden and explosive. Increments of subcritical crack growth contributed to a 40 percent increase in fracture resistance before dynamic initiation. Subcritical crack growth visibly marked the fracture surface with an increase in surface roughness. Increments of subcritical crack growth loosen ceramic material near the fracture surface and the fracture debris is easily removed by a replication technique. Fracture debris is viewed as evidence that both crack bridging and subsurface microcracking may be some of the mechanisms contributing to the increase in fracture resistance. A Statistical Fracture Mechanics model specifically developed to address subcritical crack growth and fracture reliability is used together with a damaged zone of material at the crack tip to model experimental results. A Monte Carlo simulation of the actual experiments was used to establish a set of modeling input parameters. It was demonstrated that a single critical parameter does not characterize the conditions required for dynamic initiation. Experimental measurements for critical crack lengths, and the energy release rates exhibit significant scatter. The resulting output of the model produces good agreement with both the average values and scatter of experimental measurements.

  9. Probing equilibrium of molecular and deprotonated water on TiO 2 (110)

    DOE PAGES

    Wang, Zhi-Tao; Wang, Yang-Gang; Mu, Rentao; ...

    2017-02-06

    Understanding water structure and its deprotonation dynamics on oxide surfaces is key to understanding many physical and chemical processes. In this study, we directly measure the energy barriers associated with the protonation equilibrium of water on the prototypical oxide surface, rutile-TiO2(110) by a combination of a supersonic molecular beam, scanning tunneling microscopy, and ab initio molecular dynamics simulations. We show that long-range electrostatic fields emanating from the oxide lead to steering and reorientation of the molecules approaching the surface, activating the O-H bonds and inducing deprotonation. The incident energy dependent studies allow for a direct determination of the dissociation barrier.more » Temperature dependent imaging yields the reverse barrier and the equilibrium constant. Molecularly bound water is preferred by 0.035 eV over the surface-bound hydroxyls. The techniques developed in this work are readily extended to other systems where the understanding of bond-activation processes is critical.« less

  10. Ultrafast dynamics of an unoccupied surface resonance state in B i2T e2Se

    NASA Astrophysics Data System (ADS)

    Munisa, Nurmamat; Krasovskii, E. E.; Ishida, Y.; Sumida, K.; Chen, Jiahua; Yoshikawa, T.; Chulkov, E. V.; Kokh, K. A.; Tereshchenko, O. E.; Shin, S.; Kimura, Akio

    2018-03-01

    Electronic structure and electron dynamics in the ternary topological insulator B i2T e2Se are studied with time- and angle-resolved photoemission spectroscopy using optical pumping. An unoccupied surface resonance split off from the bulk conduction band previously indirectly observed in scanning tunneling measurements is spectroscopically identified. Furthermore, an unoccupied topological surface state (TSS) is found, which is serendipitously located at about 1.5 eV above the occupied TSS, thereby facilitating direct optical transitions between the two surface states at ℏ ω =1.5 eV in an n -type topological insulator. An appreciable nonequilibrium population of the bottom of the bulk conduction band is observed for longer than 15 ps after the pump pulse. This leads to a long recovery time of the lower TSS, which is constantly populated by the electrons coming from the bulk conduction band. Our results demonstrate B i2T e2Se to be an ideal platform for designing future optoelectronic devices based on topological insulators.

  11. Ultrafast Imaging of Chiral Surface Plasmon by Photoemission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Dai, Yanan; Dabrowski, Maciej; Petek, Hrvoje

    We employ Time-Resolved Photoemission Electron Microscopy (TR-PEEM) to study surface plasmon polariton (SPP) wave packet dynamics launched by tunable (VIS-UV) femtosecond pulses of various linear and circular polarizations. The plasmonic structures are micron size single-crystalline Ag islands grown in situ on Si surfaces and characterized by Low Energy Electron Microscopy (LEEM). The local fields of plasmonic modes enhance two and three photon photoemission (2PP and 3PP) at the regions of strong field enhancement. Imaging of the photoemission signal with PEEM electron optics thus images the plasmonic fields excited in the samples. The observed PEEM images with left and right circularly polarized light show chiral images, which is a consequence of the transverse spin momentum of surface plasmon. By changing incident light polarization, the plasmon interference pattern shifts with light ellipticity indicating a polarization dependent excitation phase of SPP. In addition, interferometric-time resolved measurements record the asymmetric SPP wave packet motion in order to characterize the dynamical properties of chiral SPP wave packets.

  12. Probing equilibrium of molecular and deprotonated water on TiO 2(110)

    DOE PAGES

    Wang, Zhi -Tao; Wang, Yang -Gang; Mu, Rentao; ...

    2017-02-06

    Understanding water structure and its deprotonation dynamics on oxide surfaces is key to understanding many physical and chemical processes. In this study, we directly measure the energy barriers associated with the protonation equilibrium of water on the prototypical oxide surface, rutile-TiO 2(110) by a combination of a supersonic molecular beam, scanning tunneling microscopy, and ab initio molecular dynamics simulations. We show that long-range electrostatic fields emanating from the oxide lead to steering and reorientation of the molecules approaching the surface, activating the O-H bonds and inducing deprotonation. The incident energy dependent studies allow for a direct determination of the dissociationmore » barrier. Temperature dependent imaging yields the reverse barrier and the equilibrium constant. Molecularly bound water is preferred by 0.035 eV over the surface-bound hydroxyls. In conclusion, the techniques developed in this work are readily extended to other systems where the understanding of bond-activation processes is critical.« less

  13. Dissipative structure in the photo-induced phase under steady light irradiation in the spin crossover complex.

    PubMed

    Nishihara, Taishi; Bousseksou, Azzdine; Tanaka, Koichiro

    2013-12-16

    We report the spatial and temporal dynamics of the photo-induced phase in the iron (II) spin crossover complex Fe(ptz)(6)(BF(4))(2) studied by image measurement under steady light irradiation and transient absorption measurement. The dynamic factors are derived from the spatial and temporal fluctuation of the image in the steady state under light irradiation between 65 and 100 K. The dynamic factors clearly indicate that the fluctuation has a resonant frequency that strongly depends on the temperature, and is proportional to the relaxation rate of the photo-induced phase. This oscillation of the speckle pattern under steady light irradiation is ascribed to the nonlinear interaction between the spin state and the lattice volume at the surface.

  14. Experimental validation of a numerical model predicting the charging characteristics of Teflon and Kapton under electron beam irradiation

    NASA Technical Reports Server (NTRS)

    Hazelton, R. C.; Yadlowsky, E. J.; Churchill, R. J.; Parker, L. W.; Sellers, B.

    1981-01-01

    The effect differential charging of spacecraft thermal control surfaces is assessed by studying the dynamics of the charging process. A program to experimentally validate a computer model of the charging process was established. Time resolved measurements of the surface potential were obtained for samples of Kapton and Teflon irradiated with a monoenergetic electron beam. Results indicate that the computer model and experimental measurements agree well and that for Teflon, secondary emission is the governing factor. Experimental data indicate that bulk conductivities play a significant role in the charging of Kapton.

  15. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    DOEpatents

    Brennan, T.M.; Hammons, B.E.; Tsao, J.Y.

    1992-12-15

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth. 3 figs.

  16. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    DOEpatents

    Brennan, Thomas M.; Hammons, B. Eugene; Tsao, Jeffrey Y.

    1992-01-01

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coulter, R.L.; Klazura, J.; Lesht, B.M.

    The Argonne Boundary Layer Experiments (ABLE) facility, located in south central Kansas, east of Wichita, is devoted primarily to investigations of and within the planetary boundary layer (PBL), including the dynamics of the mixed layer during both day and night; effects of varying land use and landform; the interactive role of precipitation, runoff, and soil moisture; storm development; and energy budgets on scales of 10 to 100 km. With an expected lifetime of 10--15 years, the facility is well situated to observe the effects of gradual urbanization on PBL dynamics and structure as the Wichita urban area expands to themore » east and several small municipalities located within the study area expand. Combining the continuous measurements of ABLE with (1) ancillary continuous measurements of, for example, the Atmospheric Radiation Measurement (ARM) program and the Global Energy Water Cycle Experiment (GEWEX) programs and with (2) shorter, more intensive studies within ABLE, such as the Cooperative Atmosphere Surface Exchange Studies (CASES) Program, allows hypothesized features of urbanization, including heat island effects, precipitation enhancement, and modification of the surface energy budget partitioning, to be studied.« less

  18. Identification of the spatial location of deep trap states in AlGaN/GaN heterostructures by surface photovoltage spectroscopy

    NASA Astrophysics Data System (ADS)

    Jana, Dipankar; Porwal, S.; Sharma, T. K.

    2017-12-01

    Spatial and spectral origin of deep level defects in molecular beam epitaxy grown AlGaN/GaN heterostructures are investigated by using surface photovoltage spectroscopy (SPS) and pump-probe SPS techniques. A deep trap center ∼1 eV above the valence band is observed in SPS measurements which is correlated with the yellow luminescence feature in GaN. Capture of electrons and holes is resolved by performing temperature dependent SPS and pump-probe SPS measurements. It is found that the deep trap states are distributed throughout the sample while their dominance in SPS spectra depends on the density, occupation probability of deep trap states and the background electron density of GaN channel layer. Dynamics of deep trap states associated with GaN channel layer is investigated by performing frequency dependent photoluminescence (PL) and SPS measurements. A time constant of few millisecond is estimated for the deep defects which might limit the dynamic performance of AlGaN/GaN based devices.

  19. Dynamic recrystallization in friction surfaced austenitic stainless steel coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puli, Ramesh, E-mail: rameshpuli2000@gmail.com; Janaki Ram, G.D.

    2012-12-15

    Friction surfacing involves complex thermo-mechanical phenomena. In this study, the nature of dynamic recrystallization in friction surfaced austenitic stainless steel AISI 316L coatings was investigated using electron backscattered diffraction and transmission electron microscopy. The results show that the alloy 316L undergoes discontinuous dynamic recrystallization under conditions of moderate Zener-Hollomon parameter during friction surfacing. - Highlights: Black-Right-Pointing-Pointer Dynamic recrystallization in alloy 316L friction surfaced coatings is examined. Black-Right-Pointing-Pointer Friction surfacing leads to discontinuous dynamic recrystallization in alloy 316L. Black-Right-Pointing-Pointer Strain rates in friction surfacing exceed 400 s{sup -1}. Black-Right-Pointing-Pointer Estimated grain size matches well with experimental observations in 316L coatings.

  20. Quantitative analysis of a scar's pliability, perfusion and metrology

    NASA Astrophysics Data System (ADS)

    Gonzalez, Mariacarla; Sevilla, Nicole; Chue-Sang, Joseph; Ramella-Roman, Jessica C.

    2017-02-01

    The primary effect of scarring is the loss of function in the affected area. Scarring also leads to physical and psychological problems that could be devastating to the patient's life. Currently, scar assessment is highly subjective and physician dependent. The examination relies on the expertise of the physician to determine the characteristics of the scar by touch and visual examination using the Vancouver scar scale (VSS), which categorizes scars depending on pigmentation, pliability, height and vascularity. In order to establish diagnostic guidelines for scar formation, a quantitative, accurate assessment method needs to be developed. An instrument capable of measuring all categories was developed; three of the aforementioned parameters will be explored. In order to look at pliability, a durometer which measures the amount of resistance a surface exerts to prevent the permanent indentation of the surface is used due to its simplicity and quantitative output. To look at height and vascularity, a profilometry system that collects the location of the scar in three-dimensions and laser speckle imaging (LSI), which shows the dynamic changes in perfusion, respectively, are used. Gelatin phantoms were utilized to measure pliability. Finally, dynamic changes in skin perfusion of volunteers' forearms undergoing pressure cuff occlusion were measured, along with incisional scars.

  1. Measuring contact area in a sliding human finger-pad contact.

    PubMed

    Liu, X; Carré, M J; Zhang, Q; Lu, Z; Matcher, S J; Lewis, R

    2018-02-01

    The work outlined in this paper was aimed at achieving further understanding of skin frictional behaviour by investigating the contact area between human finger-pads and flat surfaces. Both the static and the dynamic contact areas (in macro- and micro-scales) were measured using various techniques, including ink printing, optical coherence tomography (OCT) and Digital Image Correlation (DIC). In the studies of the static measurements using ink printing, the experimental results showed that the apparent and the real contact area increased with load following a piecewise linear correlation function for a finger-pad in contact with paper sheets. Comparisons indicated that the OCT method is a reliable and effective method to investigate the real contact area of a finger-pad and allow micro-scale analysis. The apparent contact area (from the DIC measurements) was found to reduce with time in the transition from the static phase to the dynamic phase while the real area of contact (from OCT) increased. The results from this study enable the interaction between finger-pads and contact object surface to be better analysed, and hence improve the understanding of skin friction. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Photoelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. a.; Camata, R. P.

    2006-01-01

    The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much different from the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approx. 0.09-5 micrometer radii levitated in an electrodynamic balance and illuminated with ultraviolet radiation at 120-160 nm wavelengths. The measured yields are found to be substantially higher than the bulk values given in the literature and indicate a size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains.

  3. Phototelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. A.; Camata, R. P.; hide

    2005-01-01

    The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and the equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much higher than the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approximately 0.09 to 8 microns radii levitated in an electrodynamic balance and illuminated with W radiation at 120 to 160 nm wavelengths. The measured values and the size dependence of the yields are found to be substantially different from the bulk values given in the literature.

  4. A solid-state NMR study of the dynamics and interactions of phenylalanine rings in a statherin fragment bound to hydroxyapatite crystals.

    PubMed

    Gibson, James M; Popham, Jennifer M; Raghunathan, Vinodhkumar; Stayton, Patrick S; Drobny, Gary P

    2006-04-26

    Extracellular matrix proteins regulate hard tissue growth by acting as adhesion sites for cells, by triggering cell signaling pathways, and by directly regulating the primary and/or secondary crystallization of hydroxyapatite, the mineral component of bone and teeth. Despite the key role that these proteins play in the regulation of hard tissue growth in humans, the exact mechanism used by these proteins to recognize mineral surfaces is poorly understood. Interactions between mineral surfaces and proteins very likely involve specific contacts between the lattice and the protein side chains, so elucidation of the nature of interactions between protein side chains and their corresponding inorganic mineral surfaces will provide insight into the recognition and regulation of hard tissue growth. Isotropic chemical shifts, chemical shift anisotropies (CSAs), NMR line-width information, (13)C rotating frame relaxation measurements, as well as direct detection of correlations between (13)C spins on protein side chains and (31)P spins in the crystal surface with REDOR NMR show that, in the peptide fragment derived from the N-terminal 15 amino acids of salivary statherin (i.e., SN-15), the side chain of the phenylalanine nearest the C-terminus of the peptide (F14) is dynamically constrained and oriented near the surface, whereas the side chain of the phenylalanine located nearest to the peptide's N-terminus (F7) is more mobile and is oriented away from the hydroxyapatite surface. The relative dynamics and proximities of F7 and F14 to the surface together with prior data obtained for the side chain of SN-15's unique lysine (i.e., K6) were used to construct a new picture for the structure of the surface-bound peptide and its orientation to the crystal surface.

  5. Splashing Droplets

    NASA Technical Reports Server (NTRS)

    VanderWal, Randall L.; Kizito, John Patrick; Berger, Gordon M.; Iwan, J.; Alexander, D.; Tryggvason, Gretar

    2002-01-01

    Current data on droplet breakup is scarce for the sizes and velocities typical of practical applications such as in spray combustion processes and coating processes. While much more representative of practical applications, the small spatial scales and rapid time-scales prevent detailed measurement of the internal fluid dynamics and liquid property gradients produced by impinging upon surfaces. Realized through the extended spatial and temporal scales afforded by a microgravity environment, an improved understanding of drop breakup dynamics is sought to understand and ultimately control the impingement dynamics of droplets upon surfaces in practical situations. The primary objective of this research will be to mark the onset of different 'splashing modes' and to determine their temperature, pressure and angle dependence for impinging droplets representative of practical fluids. In addition, we are modeling the evolution of droplets that do not initially splash but rather undergo a 'fingering' evolution observed on the spreading fluid front and the transformation of these fingers into splashed products. An example of our experimental data is presented below. These images are of Isopar V impacting a mirror-polished surface. They were acquired using a high-speed camera at 1000 frames per second. They show the spreading of a single droplet after impact and ensuing finger instabilities. Normal gravity experimental data such as this will guide low gravity measurements in the 2.2 second drop tower and KC-135 aircraft as available. Presently we are in the process of comparing the experimental data of droplet shape evolution to numerical models, which can also capture the internal fluid dynamics and liquid property gradients such as produced by impingement upon a heated surface. To-date isothermal numerical data has been modeled using direct numerical simulations of representative splashing droplets. The data obtained so far indicates that the present model describes well the droplet wall interactions to a point in time just before splash. Additional information is included in the original extended abstract.

  6. Quantifying Subsurface Water and Heat Distribution and its Linkage with Landscape Properties in Terrestrial Environment using Hydro-Thermal-Geophysical Monitoring and Coupled Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Dafflon, B.; Tran, A. P.; Wainwright, H. M.; Hubbard, S. S.; Peterson, J.; Ulrich, C.; Williams, K. H.

    2015-12-01

    Quantifying water and heat fluxes in the subsurface is crucial for managing water resources and for understanding the terrestrial ecosystem where hydrological properties drive a variety of biogeochemical processes across a large range of spatial and temporal scales. Here, we present the development of an advanced monitoring strategy where hydro-thermal-geophysical datasets are continuously acquired and further involved in a novel inverse modeling framework to estimate the hydraulic and thermal parameter that control heat and water dynamics in the subsurface and further influence surface processes such as evapotranspiration and vegetation growth. The measured and estimated soil properties are also used to investigate co-interaction between subsurface and surface dynamics by using above-ground aerial imaging. The value of this approach is demonstrated at two different sites, one in the polygonal shaped Arctic tundra where water and heat dynamics have a strong impact on freeze-thaw processes, vegetation and biogeochemical processes, and one in a floodplain along the Colorado River where hydrological fluxes between compartments of the system (surface, vadose zone and groundwater) drive biogeochemical transformations. Results show that the developed strategy using geophysical, point-scale and aerial measurements is successful to delineate the spatial distribution of hydrostratigraphic units having distinct physicochemical properties, to monitor and quantify in high resolution water and heat distribution and its linkage with vegetation, geomorphology and weather conditions, and to estimate hydraulic and thermal parameters for enhanced predictions of water and heat fluxes as well as evapotranspiration. Further, in the Colorado floodplain, results document the potential presence of only periodic infiltration pulses as a key hot moment controlling soil hydro and biogeochemical functioning. In the arctic, results show the strong linkage between soil water content, thermal parameters, thaw layer thickness and vegetation distribution. Overall, results of these efforts demonstrate the value of coupling various datasets at high spatial and temporal resolution to improve predictive understanding of subsurface and surface dynamics.

  7. Dynamics and reactivity of trapped electrons on supported ice crystallites.

    PubMed

    Stähler, Julia; Gahl, Cornelius; Wolf, Martin

    2012-01-17

    The solvation dynamics and reactivity of localized excess electrons in aqueous environments have attracted great attention in many areas of physics, chemistry, and biology. This manifold attraction results from the importance of water as a solvent in nature as well as from the key role of low-energy electrons in many chemical reactions. One prominent example is the electron-induced dissociation of chlorofluorocarbons (CFCs). Low-energy electrons are also critical in the radiation chemistry that occurs in nuclear reactors. Excess electrons in an aqueous environment are localized and stabilized by the local rearrangement of the surrounding water dipoles. Such solvated or hydrated electrons are known to play an important role in systems such as biochemical reactions and atmospheric chemistry. Despite numerous studies over many years, little is known about the microscopic details of these electron-induced chemical processes, and interest in the fundamental processes involved in the reactivity of trapped electrons continues. In this Account, we present a surface science study of the dynamics and reactivity of such localized low-energy electrons at D(2)O crystallites that are supported by a Ru(001) single crystal metal surface. This approach enables us to investigate the generation and relaxation dynamics as well as dissociative electron attachment (DEA) reaction of excess electrons under well-defined conditions. They are generated by photoexcitation in the metal template and transferred to trapping sites at the vacuum interface of crystalline D(2)O islands. In these traps, the electrons are effectively decoupled from the electronic states of the metal template, leading to extraordinarily long excited state lifetimes on the order of minutes. Using these long-lived, low-energy electrons, we study the DEA to CFCl(3) that is coadsorbed at very low concentrations (∼10(12) cm(-2)). Using rate equations and direct measurement of the change of surface dipole moment, we estimated the electron surface density for DEA, yielding cross sections that are orders of magnitude higher than the electron density measured in the gas phase.

  8. Extending the Measurement Range of AN Optical Surface Profiler.

    NASA Astrophysics Data System (ADS)

    Cochran, Eugene Rowland, III

    This dissertation investigates a method for extending the measurement range of an optical surface profiling instrument. The instrument examined in these experiments is a computer -controlled phase-modulated interference microscope. Because of its ability to measure surfaces with a high degree of vertical resolution as well as excellent lateral resolution, this instrument is one of the most favorable candidates for determining the microtopography of optical surfaces. However, the data acquired by the instrument are restricted to a finite lateral and vertical range. To overcome this restriction, the feasibility of a new testing technique is explored. By overlapping a series of collinear profiles the limited field of view of this instrument can be increased and profiles that contain longer surface wavelengths can be examined. This dissertation also presents a method to augment both the vertical and horizontal dynamic range of the surface profiler by combining multiple subapertures and two-wavelength techniques. The theory, algorithms, error sources, and limitations encountered when concatenating a number of profiles are presented. In particular, the effects of accumulated piston and tilt errors on a measurement are explored. Some practical considerations for implementation and integration into an existing system are presented. Experimental findings and results of Monte Carlo simulations are also studied to explain the effects of random noise, lateral position errors, and defocus across the CCD array on measurement results. These results indicate the extent to which the field of view of the profiler may be augmented. A review of current methods of measuring surface topography is included, to provide for a more coherent text, along with a summary of pertinent measurement parameters for surface characterization. This work concludes with recommendations for future work that would make subaperture -testing techniques more reliable for measuring the microsurface structure of a material over an extended region.

  9. Drop impact on liquid film: dynamics of interfacial gas layer

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoyu; Saha, Abhishek; Law, Chung K.; Sun, Chao

    2016-11-01

    Drop impacting liquid film is commonly observed in many processes including inkjet printing and thermal sprays. Owing to the resistance from the interfacial gas layer trapped between the drop and film surface, impact may not always result in coalescence; and as such investigating the behavior of the interfacial gas layer is important to understand the transition between bouncing and merging outcomes. The gas layer is, however, not easily optically accessible due to its microscopic scale and curved interfaces. We report the measurement of this critical gas layer thickness between two liquid surfaces using high-speed color interferometry capable of measuring micron and submicron thicknesses. The complete gas layer dynamics for the bouncing cases can be divided into two stages: the approaching stage when the drop squeezes the gas layer at the beginning of the impact, and the rebounding stage when the drop retracts and rebounds from the liquid film. The approaching stage is found to be similar across wide range of conditions studied. However, for the rebounding stage, with increase of liquid film thickness, the evolution of gas layer changes dramatically, displaying a non-monotonic behavior. Such dynamics is analyzed in lights of various competing timescales.

  10. SU-F-T-307: Peripheral Dose Comparison Between Static and Dynamic Jaw Tracking On a High Definition MLC System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Andujar, A; Cheung, J; Chuang, C

    Purpose: To investigate the effect of dynamic and static jaw tracking on patient peripheral doses. Materials and Methods: A patient plan with a large sacral metastasis (volume 800cm3, prescription 600cGyx5) was selected for this study. The plan was created using 2-field RapidArc with jaw tracking enabled (Eclipse, V11.0.31). These fields were then exported and edited in MATLAB with static jaw positions using the control point with the largest field size for each respective arc, but preserving the optimized leaf sequences for delivery. These fields were imported back into Eclipse for dose calculation and comparison and copied to a Rando phantommore » for delivery analysis. Points were chosen in the phantom at depth and on the phantom surface at locations outside the primary radiation field, at distances of 12cm, 20cm, and 30cm from the isocenter. Measurements were acquired with OSLDs placed at these positions in the phantom with both the dynamic and static jaw deliveries for comparison. Surface measurements included an additional 1cm bolus over the OSLDs to ensure electron equilibrium. Results: The static jaw deliveries resulted in cumulative jaw-defined field sizes of 17.3% and 17.4% greater area than the dynamic jaw deliveries for each arc. The static jaw plan resulted in very small differences in calculated dose in the treatment planning system ranging from 0–16cGy. The measured dose differences were larger than calculated, but the differences in absolute dose were small. The measured dose differences at depth (surface) between the two deliveries showed an increase for the static jaw delivery of 2.2%(11.4%), 15.6%(20.0%), and 12.7%(12.7%) for distances of 12cm, 20cm, and 30cm, respectively. Eclipse calculates a difference of 0–3.1% for all of these points. The largest absolute dose difference between all points was 6.2cGy. Conclusion: While we demonstrated larger than expected differences in peripheral dose, the absolute dose differences were small.« less

  11. Simultaneous droplet impingement dynamics and heat transfer on nano-structured surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Jian; Graber, Christof; Liburdy, James

    This study examines the hydrodynamics and temperature characteristics of distilled deionized water droplets impinging on smooth and nano-structured surfaces using high speed (HS) and infrared (IR) imaging at We = 23.6 and Re = 1593, both based on initial drop impingement parameters. Results for a smooth and nano-structured surface for a range of surface temperatures are compared. Droplet impact velocity, transient spreading diameter and dynamic contact angle are measured. The near surface average droplet fluid temperatures are evaluated for conditions of evaporative cooling and boiling. Also included are surface temperature results using a gold layered IR opaque surface on silicon.more » Four stages of the impingement process are identified: impact, boiling, near constant surface diameter evaporation, and final dry-out. For the boiling conditions there is initial nucleation followed by severe boiling, then near constant diameter evaporation resulting in shrinking of the droplet height. When a critical contact angle is reached during evaporation the droplet rapidly retracts to a smaller diameter reducing the contact area with the surface. This continues as a sequence of retractions until final dry out. The basic trends are the same for all surfaces, but the nano-structured surface has a lower dissipated energy during impact and enhances the heat transfer for evaporative cooling with a 20% shorter time to achieve final dry out. (author)« less

  12. Structural phase transitions and time-resolved dynamics of solid-supported interfacial methanol observed by reflection electron diffraction

    NASA Astrophysics Data System (ADS)

    Yang, Ding-Shyue; He, Xing; Wu, Chengyi

    Due to their large scattering cross sections with matter, electrons are suitable for contactless probing of solid-supported surface assemblies, especially in a reflection geometry. Direct visualization of assembly structures through electron diffraction further enables studies of ultrafast structural dynamics through the pump-probe scheme as well as discoveries of hidden phase changes in equilibrium that have been obscure in spectroscopic measurements. In this presentation, we report our first observation of unique two-stage transformations of interfacial methanol on smooth hydrophobic surfaces. The finding may reconcile the inconsistent previous reports of the crystallization temperature using various indirect methods. Dynamically, energy transfer across a solid-molecule interface following photoexcitation of the substrate is found to be highly dependent on the structure of interfacial methanol. If it is only 2-dimensionally ordered, as the film thickness increases, a prolonged time in the decrease of diffraction intensity is seen, signifying an inefficient vibrational coupling in the surface normal direction. Implications of the dynamics results and an outlook of interfacial studies using time-resolved and averaged electron diffraction will be discussed. We gratefully acknowledge the support from the R. A. Welch Foundation (Grant No. E-1860), the Donors of the American Chemical Society Petroleum Research Fund (ACS-PRF), and the University of Houston.

  13. Observation of Wood's anomalies on surface gravity waves propagating on a channel.

    PubMed

    Schmessane, Andrea

    2016-09-01

    I report on experiments demonstrating the appearance of Wood's anomalies in surface gravity waves propagating along a channel with a submerged obstacle. Space-time measurements of surface gravity waves allow one to compute the stationary complex field of the wave and the amplitude growth of localized and propagative modes over all the entire channel, including the scattering region. This allows one to access the near and far field dynamics, which constitute a new and complementary way of observation of mode resonances of the incoming wave displaying Wood's anomalies. Transmission coefficient, dispersion relations and normalized wave energy of the incoming wave and the excited mode are measured and found to be in good agreement with theoretical predictions.

  14. A retractable electron emitter for the creation of unperturbed pure electron plasmas.

    PubMed

    Berkery, John W; Pedersen, Thomas Sunn; Sampedro, Luis

    2007-01-01

    A retractable electron emitter has been constructed for the creation of unperturbed pure electron plasmas on magnetic surfaces in the Columbia Non-neutral Torus stellarator. The previous method of electron emission using emitters mounted on stationary rods limited the confinement time to 20 ms. A pneumatically driven system that can retract from the magnetic axis to the last closed flux surface in less than 20 ms while filling the surfaces with electrons was designed. The motion of the retractable emitter was modeled with a system of dynamical equations. The measured position versus time of the emitter agrees well with the model and the fastest axis-to-edge retraction was measured to be 20 ms with 40 psig helium gas driving the pneumatic piston.

  15. Anomalous X-Ray yields under surface wave resonance during reflection high energy electron diffraction and adatom site determination

    PubMed

    Yamanaka; Ino

    2000-05-08

    In L x-ray emissions from a Si(111)-sqrt[3]xsqrt[3]-In surface induced by electron beam irradiation were measured as functions of the incident glancing angle. Under surface wave resonance conditions, anomalous x-ray intensities were clearly observed. Using dynamical calculations, these intensities are well explained as changes in density of the electron wave field at adatom positions. From these intensities, the adatom site was analyzed, and it was found that the T4 model is better than the H3 model.

  16. Multi-Faceted Geophysical Analysis of a Mountain Watershed in the Snowy Range, WY: from Airborne Electromagnetics to NMR

    NASA Astrophysics Data System (ADS)

    Armstrong, R. S.; Holbrook, W. S.; Flinchum, B. A.; Provart, M.; Carr, B. J.; Auken, E.; Pedersen, J. B.

    2014-12-01

    Surface/groundwater interactions are an important, but poorly understood, facet of mountain hydrology. We utilize ground electrical resistivity data as a key tool for mapping groundwater pathways and aquifers. However, surface resistivity profiling is limited in both spatial extent and depth, especially in mountainous headwater environments because of inaccessibility and terrain. Because this important groundwater recharge environment is poorly understood, WyCEHG has focused efforts to increase knowledge about the dynamics and location of groundwater recharge. Currently, traditional hydrologic measurements estimate that only 10% of annual snowmelt enters the groundwater system while the rest is immediately available to surface flow. The Wyoming Center for Environmental Hydrology and Geophysics (WyCEHG) collected a 40 sq. km survey of helicopter transient electromagnetic (HTEM) and aeromagnetic data during the fall of 2013 as the first step in a "top down" geophysical characterization of a mountainous headwater catchment in the Snowy Range, Wyoming. Furthermore, mountain springs in the Snowy Range suggests that the "groundwatershed" acts as both a sink and source to surface watersheds. HTEM data show horizontal electrical conductors at depth, which are currently interpreted as fluid-filled subsurface fractures. Because these fractures eventually connect to the surface, they could be geophysical evidence of connectivity between the watershed and "groundwatershed." However, current HTEM inversion techniques assume a layered homogenous subsurface model, which directly contradicts two characteristics of the Snowy Range: the subvertical bedding of the Cheyenne Belt and heterogeneous distribution of surface water. Ground electrical resistivity surveys and surface nuclear magnetic resonance (NMR) measurements collected during the summer of 2014 target these anomalies to determine their validity and further understand the complicated dynamic of surface and groundwater flow.

  17. Effects of Dimethyl Sulfoxide on Surface Water near Phospholipid Bilayers.

    PubMed

    Lee, Yuno; Pincus, Philip A; Hyeon, Changbong

    2016-12-06

    Despite much effort to probe the properties of dimethyl sulfoxide (DMSO) solution, the effects of DMSO on water, especially near plasma membrane surfaces, still remain elusive. By performing molecular dynamics simulations at varying DMSO concentrations (X DMSO ), we study how DMSO affects structural and dynamical properties of water in the vicinity of phospholipid bilayers. As proposed by a number of experiments, our simulations confirm that DMSO induces dehydration from bilayer surfaces and disrupts the H-bond structure of water. However, DMSO-enhanced water diffusivity at solvent-bilayer interfaces, an intriguing discovery reported by a spin-label measurement, is not confirmed in our simulations. To resolve this discrepancy, we examine the location of the spin label (Tempo) relative to the solvent-bilayer interface. In accord with the evidence in the literature, our simulations, which explicitly model Tempo-phosphatidylcholine, find that the Tempo moiety is equilibrated at ∼8-10 Å below the bilayer surface. Furthermore, the DMSO-enhanced surface-water diffusion is confirmed only when water diffusion is analyzed around the Tempo moiety that is immersed below the bilayer surface, which implies that the experimentally detected signal of water using Tempo stems from the interior of bilayers, not from the interface. Our analysis finds that the increase of water diffusion below the bilayer surface is coupled to the increase of area per lipid with an increasing X DMSO (≲10mol%). Underscoring the hydrophobic nature of the Tempo moiety, our study calls for careful re-evaluation of the use of Tempo in measurements on lipid bilayer surfaces. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Surface water hydrology and the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Smith, L. C.; Yang, K.; Pitcher, L. H.; Overstreet, B. T.; Chu, V. W.; Rennermalm, A. K.; Cooper, M. G.; Gleason, C. J.; Ryan, J.; Hubbard, A.; Tedesco, M.; Behar, A.

    2016-12-01

    Mass loss from the Greenland Ice Sheet now exceeds 260 Gt/year, raising global sea level by >0.7 mm annually. Approximately two-thirds of this total mass loss is now driven by negative ice sheet surface mass balance (SMB), attributed mainly to production and runoff of meltwater from the ice sheet surface. This new dominance of runoff as a driver of GrIS total mass loss will likely persist owing to anticipated further increases in surface melting, reduced meltwater storage in firn, and the waning importance of dynamical mass losses (ice calving) as the ice sheets retreat from their marine-terminating margins. It also creates the need and opportunity for integrative research pairing traditional surface water hydrology approaches with glaciology. As one example, we present a way to measure supraglacial "runoff" (i.e. specific discharge) at the supraglacial catchment scale ( 101-102 km2), using in situ measurements of supraglacial river discharge and high-resolution satellite/drone mapping of upstream catchment area. This approach, which is standard in terrestrial hydrology but novel for ice sheet science, enables independent verification and improvement of modeled SMB runoff estimates used to project sea level rise. Furthermore, because current SMB models do not consider the role of fluvial watershed processes operating on the ice surface, inclusion of even a simple surface routing model materially improves simulations of runoff delivered to moulins, the critical pathways for meltwater entry into the ice sheet. Incorporating principles of surface water hydrology and fluvial geomorphology and into glaciological models will thus aid estimates of Greenland meltwater runoff to the global ocean as well as connections to subglacial hydrology and ice sheet dynamics.

  19. Surface segregation in a binary mixture of ionic liquids: Comparison between high-resolution RBS measurements and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Nakajima, Kaoru; Nakanishi, Shunto; Chval, Zdeněk; Lísal, Martin; Kimura, Kenji

    2016-11-01

    Surface structure of equimolar mixture of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C2C1Im][Tf2N]) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2C1Im][BF4]) is studied using high-resolution Rutherford backscattering spectroscopy (HRBS) and molecular dynamics (MD) simulations. Both HRBS and MD simulations show enrichment of [Tf2N] in the first molecular layer although the degree of enrichment observed by HRBS is more pronounced than that predicted by the MD simulation. In the subsurface region, MD simulation shows a small depletion of [Tf2N] while HRBS shows a small enrichment here. This discrepancy is partially attributed to the artifact of the MD simulations. Since the number of each ion is fixed in a finite-size simulation box, surface enrichment of particular ion results in its artificial depletion in the subsurface region.

  20. Capillary-induced crack healing between surfaces of nanoscale roughness.

    PubMed

    Soylemez, Emrecan; de Boer, Maarten P

    2014-10-07

    Capillary forces are important in nature (granular materials, insect locomotion) and in technology (disk drives, adhesion). Although well studied in equilibrium state, the dynamics of capillary formation merit further investigation. Here, we show that microcantilever crack healing experiments are a viable experimental technique for investigating the influence of capillary nucleation on crack healing between rough surfaces. The average crack healing velocity, v̅, between clean hydrophilic polycrystalline silicon surfaces of nanoscale roughness is measured. A plot of v̅ versus energy release rate, G, reveals log-linear behavior, while the slope |d[log(v̅)]/dG| decreases with increasing relative humidity. A simplified interface model that accounts for the nucleation time of water bridges by an activated process is developed to gain insight into the crack healing trends. This methodology enables us to gain insight into capillary bridge dynamics, with a goal of attaining a predictive capability for this important microelectromechanical systems (MEMS) reliability failure mechanism.

Top