Distinct patterns of seasonal Greenland glacier velocity
Moon, Twila; Joughin, Ian; Smith, Ben; van den Broeke, Michiel R; van de Berg, Willem Jan; Noël, Brice; Usher, Mika
2014-01-01
Predicting Greenland Ice Sheet mass loss due to ice dynamics requires a complete understanding of spatiotemporal velocity fluctuations and related control mechanisms. We present a 5 year record of seasonal velocity measurements for 55 marine-terminating glaciers distributed around the ice sheet margin, along with ice-front position and runoff data sets for each glacier. Among glaciers with substantial speed variations, we find three distinct seasonal velocity patterns. One pattern indicates relatively high glacier sensitivity to ice-front position. The other two patterns are more prevalent and appear to be meltwater controlled. These patterns reveal differences in which some subglacial systems likely transition seasonally from inefficient, distributed hydrologic networks to efficient, channelized drainage, while others do not. The difference may be determined by meltwater availability, which in some regions may be influenced by perennial firn aquifers. Our results highlight the need to understand subglacial meltwater availability on an ice sheet-wide scale to predict future dynamic changes. Key Points First multi-region seasonal velocity measurements show regional differences Seasonal velocity fluctuations on most glaciers appear meltwater controlled Seasonal development of efficient subglacial drainage geographically divided PMID:25821275
Icing research tunnel rotating bar calibration measurement system
NASA Technical Reports Server (NTRS)
Gibson, Theresa L.; Dearmon, John M.
1993-01-01
In order to measure icing patterns across a test section of the Icing Research Tunnel, an automated rotating bar measurement system was developed at the NASA Lewis Research Center. In comparison with the previously used manual measurement system, this system provides a number of improvements: increased accuracy and repeatability, increased number of data points, reduced tunnel operating time, and improved documentation. The automated system uses a linear variable differential transformer (LVDT) to measure ice accretion. This instrument is driven along the bar by means of an intelligent stepper motor which also controls data recording. This paper describes the rotating bar calibration measurement system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Damao; Wang, Zhien; Heymsfield, Andrew J.
Measurement of ice number concentration in clouds is important but still challenging. Stratiform mixed-phase clouds (SMCs) provide a simple scenario for retrieving ice number concentration from remote sensing measurements. The simple ice generation and growth pattern in SMCs offers opportunities to use cloud radar reflectivity (Ze) measurements and other cloud properties to infer ice number concentration quantitatively. To understand the strong temperature dependency of ice habit and growth rate quantitatively, we develop a 1-D ice growth model to calculate the ice diffusional growth along its falling trajectory in SMCs. The radar reflectivity and fall velocity profiles of ice crystals calculatedmore » from the 1-D ice growth model are evaluated with the Atmospheric Radiation Measurements (ARM) Climate Research Facility (ACRF) ground-based high vertical resolution radar measurements. Combining Ze measurements and 1-D ice growth model simulations, we develop a method to retrieve the ice number concentrations in SMCs at given cloud top temperature (CTT) and liquid water path (LWP). The retrieved ice concentrations in SMCs are evaluated with in situ measurements and with a three-dimensional cloud-resolving model simulation with a bin microphysical scheme. These comparisons show that the retrieved ice number concentrations are within an uncertainty of a factor of 2, statistically.« less
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Clemente-Colon, P.; Rigor, I. G.; Hall, D. K.; Neumann, G.
2011-01-01
The seafloor has a profound role in Arctic sea ice formation and seasonal evolution. Ocean bathymetry controls the distribution and mixing of warm and cold waters, which may originate from different sources, thereby dictating the pattern of sea ice on the ocean surface. Sea ice dynamics, forced by surface winds, are also guided by seafloor features in preferential directions. Here, satellite mapping of sea ice together with buoy measurements are used to reveal the bathymetric control on sea ice growth and dynamics. Bathymetric effects on sea ice formation are clearly observed in the conformation between sea ice patterns and bathymetric characteristics in the peripheral seas. Beyond local features, bathymetric control appears over extensive ice-prone regions across the Arctic Ocean. The large-scale conformation between bathymetry and patterns of different synoptic sea ice classes, including seasonal and perennial sea ice, is identified. An implication of the bathymetric influence is that the maximum extent of the total sea ice cover is relatively stable, as observed by scatterometer data in the decade of the 2000s, while the minimum ice extent has decreased drastically. Because of the geologic control, the sea ice cover can expand only as far as it reaches the seashore, the continental shelf break, or other pronounced bathymetric features in the peripheral seas. Since the seafloor does not change significantly for decades or centuries, sea ice patterns can be recurrent around certain bathymetric features, which, once identified, may help improve short-term forecast and seasonal outlook of the sea ice cover. Moreover, the seafloor can indirectly influence cloud cover by its control on sea ice distribution, which differentially modulates the latent heat flux through ice covered and open water areas.
Munkler, Caspar; Resnyak, Anna; Zimmermann, Sonja; Tuong, Tan D.; Gierlinger, Notburga; Müller, Thomas; Livingston, David P.; Neuner, Gilbert
2017-01-01
Abstract Bud primordia of Picea abies, despite a frozen shoot, stay ice free down to −50 °C by a mechanism termed supercooling whose biophysical and biochemical requirements are poorly understood. Bud architecture was assessed by 3D—reconstruction, supercooling and freezing patterns by infrared video thermography, freeze dehydration and extraorgan freezing by water potential measurements, and cell‐specific chemical patterns by Raman microscopy and mass spectrometry imaging. A bowl‐like ice barrier tissue insulates primordia from entrance by intrinsic ice. Water repellent and densely packed bud scales prevent extrinsic ice penetration. At −18 °C, break‐down of supercooling was triggered by intrinsic ice nucleators whereas the ice barrier remained active. Temperature‐dependent freeze dehydration (−0.1 MPa K−1) caused accumulation of extraorgan ice masses that by rupture of the shoot, pith tissue are accommodated in large voids. The barrier tissue has exceptionally pectin‐rich cell walls and intercellular spaces, and the cell lumina were lined or filled with proteins, especially near the primordium. Primordial cells close to the barrier accumulate di, tri and tetrasaccharides. Bud architecture efficiently prevents ice penetration, but ice nucleators become active inside the primordium below a temperature threshold. Biochemical patterns indicate a complex cellular interplay enabling supercooling and the necessity for cell‐specific biochemical analysis. PMID:28960368
The mass balance of the ice plain of Ice Stream B and Crary Ice Rise
NASA Technical Reports Server (NTRS)
Bindschadler, Robert
1993-01-01
The region in the mouth of Ice Stream B (the ice plain) and that in the vicinity of Crary Ice Rise are experiencing large and rapid changes. Based on velocity, ice thickness, and accumulation rate data, the patterns of net mass balance in these regions were calculated. Net mass balance, or the rate of ice thickness change, was calculated as the residual of all mass fluxes into and out of subregions (or boxes). Net mass balance provides a measure of the state of health of the ice sheet and clues to the current dynamics.
NASA Astrophysics Data System (ADS)
Wilson, T. J.; Konfal, S. A.; Bevis, M. G.; Spada, G.; Melini, D.; Barletta, V. R.; Kendrick, E. C.; Saddler, D.; Smalley, R., Jr.; Dalziel, I. W. D.; Willis, M. J.
2016-12-01
Crustal motions measured by GPS provide a unique proxy record of ice mass change, due to the elastic and viscoelastic response of the earth to removal of ice loads. The ANET/POLENET array of bedrock GPS sites spans much of the Antarctic interior, encompassing regions where glacial isostatic adjustment (GIA) models predict large crustal displacements due to LGM ice loss and including coastal West Antarctica where major modern ice mass loss is documented. To isolate the long-term GIA component of measured crustal motions, we computed and removed elastic displacements due to recent ice mass change. We used the annually resolved ice mass balance data from Martín-Español et al. (2016) derived from a statistical inversion of satellite altimetry, gravimetry, and elastic-corrected GPS data for the period 2003-2013. The Regional Elastic Rebound Calculator (REAR) [Melini et al., 2015] was used to compute elastic vertical and horizontal surface displacements. Uplift due to elastic rebound is substantial in West Antarctica, very minimal in East Antarctica, and variable across the Weddell Embayment. The ANET GPS-derived crustal motion patterns ascribed to non-elastic GIA are spatially complex and differ significantly in magnitude from model predictions. We present a systematic comparison of measured and predicted velocities within different sectors of Antarctica, in order to examine spatial patterns relative to modern ice mass changes, ice history model uncertainties, and lateral variations in earth properties. In the Weddell Embayment region most vertical velocities are lower than uplift predicted by GIA models. Several sites in the southernmost Transantarctic Mountains and the Whitmore Mountains, where small ice mass increase occurs, have vertical uplift significantly exceeding GIA model predictions. There is an intriguing spatial correlation of these fast-moving sites with a low-velocity anomaly in the upper mantle documented by analysis of teleseismic Rayleigh waves by Heeszel et al. (2016). Significant non-elastic GIA velocities occur in the Amundsen Sea Embayment sector, with high uplift flanked by subsiding regions. This pattern can be modeled as a viscoelastic response to ice loss on decadal-centennial time scales in a region with weak upper mantle, consistent with seismic results in the region.
Barrow, Matthew S; Williams, P Rhodri; Chan, Hoi-Houng; Dore, John C; Bellissent-Funel, Marie-Claire
2012-10-14
High-speed photographic studies and neutron diffraction measurements have been made of water under tension in a Berthelot tube. Liquid water was cooled below the normal ice-nucleation temperature and was in a doubly-metastable state prior to a collapse of the liquid state. This transition was accompanied by an exothermic heat release corresponding with the rapid production of a solid phase nucleated by cavitation. Photographic techniques have been used to observe the phase transition over short time scales in which a solidification front is observed to propagate through the sample. Significantly, other images at a shorter time interval reveal the prior formation of cavitation bubbles at the beginning of the process. The ice-nucleation process is explained in terms of a mechanism involving hydrodynamically-induced changes in tension in supercooled water in the near vicinity of an expanding cavitation bubble. Previous explanations have attributed the nucleation of the solid phase to the production of high positive pressures. Corresponding results are presented which show the initial neutron diffraction pattern after ice-nucleation. The observed pattern does not exhibit the usual crystalline pattern of hexagonal ice [I(h)] that is formed under ambient conditions, but indicates the presence of other ice forms. The composite features can be attributed to a mixture of amorphous ice, ice-I(h)/I(c) and the high-pressure form, ice-III, and the diffraction pattern continues to evolve over a time period of about an hour.
NASA Astrophysics Data System (ADS)
Cohen, Lana; Hudson, Stephen R.; Walden, Von P.; Graham, Robert M.; Granskog, Mats A.
2017-07-01
Atmospheric measurements were made over Arctic sea ice north of Svalbard from winter to early summer (January-June) 2015 during the Norwegian Young Sea Ice (N-ICE2015) expedition. These measurements, which are available publicly, represent a comprehensive meteorological data set covering the seasonal transition in the Arctic Basin over the new, thinner sea ice regime. Winter was characterized by a succession of storms that produced short-lived (less than 48 h) temperature increases of 20 to 30 K at the surface. These storms were driven by the hemispheric scale circulation pattern with a large meridional component of the polar jet stream steering North Atlantic storms into the high Arctic. Nonstorm periods during winter were characterized by strong surface temperature inversions due to strong radiative cooling ("radiatively clear state"). The strength and depth of these inversions were similar to those during the Surface Heat Budget of the Arctic Ocean (SHEBA) campaign. In contrast, atmospheric profiles during the "opaquely cloudy state" were different to those from SHEBA due to differences in the synoptic conditions and location within the ice pack. Storm events observed during spring/summer were the result of synoptic systems located in the Barents Sea and the Arctic Basin rather than passing directly over N-ICE2015. These synoptic systems were driven by a large-scale circulation pattern typical of recent years, with an Arctic Dipole pattern developing during June. Surface temperatures became near-constant 0°C on 1 June marking the beginning of summer. Atmospheric profiles during the spring and early summer show persistent lifted temperature and moisture inversions that are indicative of clouds and cloud processes.
Circumpolar patterns of ground-fast lake ice and landscape development
NASA Astrophysics Data System (ADS)
Bartsch, Annett; Pointner, Georg; Leibmann, Marina; Dvornikov, Yuri; Khomutov, Artem
2017-04-01
Shallow lakes in the Arctic are often associated with thermokarst processes which are characteristic for permafrost environments. They partially or completely freeze-up during winter time what can be observed from space using Synthetic Aperture Radar (SAR) data. Spatial patterns of ground-fast and floating ice relate to geomorphological and hydrological processes, but no circumpolar account of this phenomenon is currently available due to challenges when dealing with the varying observation geometry typical for SAR. An approach using ENVISAT ASAR Wide Swath data (approximately 120 m resolution) has been developed supported by bathymetric measurements in Siberia and eventually applied across the entire Arctic for late winter 2008. In total about 2 Million lake objects have been analyzed considering the boundaries of the Last Glacial Maximum, permafrost zones and soil organic carbon content. Distinct patterns of ground-fast lake ice fraction can be found across the Arctic. Clusters of variable fractions of ground-fast ice occur especially in Yedoma regions of Eastern Siberia and Alaska. This reflects the nature of thaw lake dynamics. Analyses of lake depth measurements from several sites (Alaskan North Slope, Richards Island in Canada, Yamal Peninsula and Lena Delta) suggest that the used method yields the potential to utilize ground-fast lake ice information over larger areas with respect to landscape development, but results need to be treated with care, specifically for larger lakes and along river courses. A combination of general lake features and ground-fast ice fraction may lead to an advanced understanding of landscape patterns and development. Ground-fast ice fraction information may support to some extent the identification of landscape units, for example areas of adjacent lakes with similar patterns (terraces) or areas with mixed ground-fast fractions which indicate different lake development stages. This work was supported by the Austrian Science Fund under Grant [I 1401] and the Russian Foundation for Basic Research Grant 13-05-91001-ANF-a (Joint Russian-Austrian project COLD-Yamal).
Nock, Charles A.; Lecigne, Bastien; Taugourdeau, Olivier; Greene, David F.; Dauzat, Jean; Delagrange, Sylvain; Messier, Christian
2016-01-01
Background and Aims Despite a longstanding interest in variation in tree species vulnerability to ice storm damage, quantitative analyses of the influence of crown structure on within-crown variation in ice accretion are rare. In particular, the effect of prior interception by higher branches on lower branch accumulation remains unstudied. The aim of this study was to test the hypothesis that intra-crown ice accretion can be predicted by a measure of the degree of sheltering by neighbouring branches. Methods Freezing rain was artificially applied to Acer platanoides L., and in situ branch-ice thickness was measured directly and from LiDAR point clouds. Two models of freezing rain interception were developed: ‘IceCube’, which uses point clouds to relate ice accretion to a voxel-based index (sheltering factor; SF) of the sheltering effect of branch elements above a measurement point; and ‘IceTree’, a simulation model for in silico evaluation of the interception pattern of freezing rain in virtual tree crowns. Key Results Intra-crown radial ice accretion varied strongly, declining from the tips to the bases of branches and from the top to the base of the crown. SF for branches varied strongly within the crown, and differences among branches were consistent for a range of model parameters. Intra-crown variation in ice accretion on branches was related to SF (R2 = 0·46), with in silico results from IceTree supporting empirical relationships from IceCube. Conclusions Empirical results and simulations confirmed a key role for crown architecture in determining intra-crown patterns of ice accretion. As suspected, the concentration of freezing rain droplets is attenuated by passage through the upper crown, and thus higher branches accumulate more ice than lower branches. This is the first step in developing a model that can provide a quantitative basis for investigating intra-crown and inter-specific variation in freezing rain damage. PMID:27107412
Airborne Spectral Measurements of Surface-Atmosphere Anisotropy for Arctic Sea Ice and Tundra
NASA Technical Reports Server (NTRS)
Arnold, G. Thomas; Tsay, Si-Chee; King, Michael D.; Li, Jason Y.; Soulen, Peter F.
1999-01-01
Angular distributions of spectral reflectance for four common arctic surfaces: snow-covered sea ice, melt-season sea ice, snow-covered tundra, and tundra shortly after snowmelt were measured using an aircraft based, high angular resolution (1-degree) multispectral radiometer. Results indicate bidirectional reflectance is higher for snow-covered sea ice than melt-season sea ice at all wavelengths between 0.47 and 2.3 pm, with the difference increasing with wavelength. Bidirectional reflectance of snow-covered tundra is higher than for snow-free tundra for measurements less than 1.64 pm, with the difference decreasing with wavelength. Bidirectional reflectance patterns of all measured surfaces show maximum reflectance in the forward scattering direction of the principal plane, with identifiable specular reflection for the melt-season sea ice and snow-free tundra cases. The snow-free tundra had the most significant backscatter, and the melt-season sea ice the least. For sea ice, bidirectional reflectance changes due to snowmelt were more significant than differences among the different types of melt-season sea ice. Also the spectral-hemispherical (plane) albedo of each measured arctic surface was computed. Comparing measured nadir reflectance to albedo for sea ice and snow-covered tundra shows albedo underestimated 5-40%, with the largest bias at wavelengths beyond 1 pm. For snow-free tundra, nadir reflectance underestimates plane albedo by about 30-50%.
Modern Uplift of the Transantarctic Mountains: Preliminary Results of an Autonomous GPS Array
NASA Technical Reports Server (NTRS)
Raymond, C. A.; Heflin, M. B.; Ivins, E. R.; James, T. S.
1998-01-01
An autonomous GPS array is being implemented in the Transantarctic Mountains, sponsored by NSF and NASA, for the purpose of measuring uplift resulting from post-glacial rebound (PGR). The rebound of the solid earth due to unloading of ice since the Last Glacial Maximum is expected to dominate the measured uplift for most of West Antarctica, dwarfing the signals due to present-day ice sheet mass balance changes and tectonic motion, as long as mantle viscosity is greater than about 10(exp 20) Pa-s. Predicted uplift patterns have been calculated for a range of model scenarios, which illustrate how the uplift pattern might distinguish between different-sized ice sheets and deglaciation histories as represented by the competing models. The scenarios considered by James and Ivins (1998) include ICE-3G, CLIMAP and a variation of the CLIMAP model by Denton et al. For these models, peak uplift rates occur in the Transantarctic Mountains, and differences between models is often large there. Thus, the Transantarctic Mountains are an ideal place to obtain uplift measurements to constrain deglaciation models.
Patterned basal seismicity shows sub-ice stream bedforms
NASA Astrophysics Data System (ADS)
Barcheck, C. G.; Tulaczyk, S. M.; Schwartz, S. Y.
2017-12-01
Patterns in seismicity emanating from the bottom of fast-moving ice streams and glaciers may indicate localized patches of higher basal resistance— sometimes called 'sticky spots', or otherwise varying basal properties. These seismogenic basal areas resist an unknown portion of the total driving stress of the Whillans Ice Plain (WIP), in West Antarctica, but may play an important role in the WIP stick-slip cycle and ice stream slowdown. To better understand the mechanism and importance of basal seismicity beneath the WIP, we analyze seismic data collected by a small aperture (< 3km) network of 8 surface and 5 borehole seismometers installed in the main central sticky spot of the WIP. We use a network beamforming technique to detect and roughly locate thousands of small (magnitude < 0), local basal micro-earthquakes in Dec 2014, and we compare the resulting map of seismicity to ice bottom depth measured by airborne radar. The number of basal earthquakes per area within the network is spatially heterogeneous, but a pattern of two 400m wide streaks of high seismicity rates is evident, with >50-500 earthquakes detected per 50x50m grid cell in 2 weeks. These seismically active streaks are elongated approximately in the ice flow direction with a spacing of 750m. Independent airborne radar measurements of ice bottom depth from Jan 2013 show a low-amplitude ( 5m) undulation in the basal topography superposed on a regional gradient in ice bottom depth. The flow-perpendicular wavelength of these low-amplitude undulations is comparable to the spacing of the high seismicity bands, and the streaks of high seismicity intersect local lows in the undulating basal topography. We interpret these seismic and radar observations as showing seismically active sub-ice stream bedforms that are low amplitude and elongated in the direction of ice flow, comparable to the morphology of mega scale glacial lineations (MSGLs), with high basal seismicity rates observed in the MSGL troughs. These results have implications for understanding the formation mechanism of MSGLS and well as understanding the interplay between basal topographic roughness, spatially varying basal till and hydrologic properties, basal resistance to fast ice flow, and ice stream stick-slip.
Nock, Charles A; Lecigne, Bastien; Taugourdeau, Olivier; Greene, David F; Dauzat, Jean; Delagrange, Sylvain; Messier, Christian
2016-06-01
Despite a longstanding interest in variation in tree species vulnerability to ice storm damage, quantitative analyses of the influence of crown structure on within-crown variation in ice accretion are rare. In particular, the effect of prior interception by higher branches on lower branch accumulation remains unstudied. The aim of this study was to test the hypothesis that intra-crown ice accretion can be predicted by a measure of the degree of sheltering by neighbouring branches. Freezing rain was artificially applied to Acer platanoides L., and in situ branch-ice thickness was measured directly and from LiDAR point clouds. Two models of freezing rain interception were developed: 'IceCube', which uses point clouds to relate ice accretion to a voxel-based index (sheltering factor; SF) of the sheltering effect of branch elements above a measurement point; and 'IceTree', a simulation model for in silico evaluation of the interception pattern of freezing rain in virtual tree crowns. Intra-crown radial ice accretion varied strongly, declining from the tips to the bases of branches and from the top to the base of the crown. SF for branches varied strongly within the crown, and differences among branches were consistent for a range of model parameters. Intra-crown variation in ice accretion on branches was related to SF (R(2) = 0·46), with in silico results from IceTree supporting empirical relationships from IceCube. Empirical results and simulations confirmed a key role for crown architecture in determining intra-crown patterns of ice accretion. As suspected, the concentration of freezing rain droplets is attenuated by passage through the upper crown, and thus higher branches accumulate more ice than lower branches. This is the first step in developing a model that can provide a quantitative basis for investigating intra-crown and inter-specific variation in freezing rain damage. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Foster, J. L.
1980-01-01
The LANDSAT observations during the winters of 1977, 1978 and 1979, which were unusually cold in the northeastern U.S. and in the Chesapeake Bay area, were evaluated. Abnormal atmospheric circulation patterns displaced cold polar air to the south, and as a result, the Chesapeake Bay experienced much greater than normal icing conditions during these 3 years. The LANDSAT observations of the Chesapeake Bay area during these winters demonstrate the satellite's capabilities to monitor ice growth and melt, to detect ice motions, and to measure ice extent.
NASA Astrophysics Data System (ADS)
Ahmadi, B.; Kiani, S.; Irannezhad, M.; Ronkanen, A. K.; Kløve, B.; Moradkhani, H.
2016-12-01
In cold climate regions, ice roads are engineered as temporary winter transportation routes on the frozen seas, lakes and rivers. The ice road season parameters (start, end and length) are principally dependent on the thickness of ice, which is naturally controlled by temperature in terms of freezing (FDDs) and thawing (TDDs) degree-days. It has been shown that the variations in FDDs and TDDs are influenced by large-scale atmospheric circulation patterns (ACPs). Therefore, this study aims at understanding the role of ACPs in variability and trends in the seasonality of Oulu-Hailuoto ice road in northern Finland during 1974-2009. The Mann-Kendall nonparametric trend test determined significant shortening in the length of ice road season over the study period of 1974-2009, which can be attributed to later start and earlier end days. In the study area, the maximum ice thickness of the Baltic Sea also showed significant declines over time. Such sea ice thinning can be associated with the wintertime temperature warming manifested by the decreasing trend found in the cumulative FDD during October-January in the water year (September-August). The increased cumulative TDD during February-April also reflects warmer climate in spring, which has resulted in the earlier end day of the ice road season. Measuring the Spearman's rank correlation identified the Arctic Oscillation as the most significant ACP influencing variations in the cumulative FDD, and accordingly in the ice thickness and the start day. However, the cumulative TDD during February-April shows significant positive correlation with the East Atlantic (EA) pattern, which appears to control the end day of the Oulu-Hailuoto ice road season.
Soil Water Content Sensors as a Method of Measuring Ice Depth
NASA Astrophysics Data System (ADS)
Whitaker, E.; Reed, D. E.; Desai, A. R.
2015-12-01
Lake ice depth provides important information about local and regional climate change, weather patterns, and recreational safety, as well as impacting in situ ecology and carbon cycling. However, it is challenging to measure ice depth continuously from a remote location, as existing methods are too large, expensive, and/or time-intensive. Therefore, we present a novel application that reduces the size and cost issues by using soil water content reflectometer sensors. Analysis of sensors deployed in an environmental chamber using a scale model of a lake demonstrated their value as accurate measures of the change in ice depth over any time period, through measurement of the liquid-to-solid phase change. A robust correlation exists between volumetric water content in time as a function of environmental temperature. This relationship allows us to convert volumetric water content into ice depth. An array of these sensors will be placed in Lake Mendota, Madison, Wisconsin in winter 2015-2016, to create a temporally high-resolution ice depth record, which will be used for ecological or climatological studies while also being transmitted to the public to increase recreational safety.
Marginal Ice Zone Processes Observed from Unmanned Aerial Systems
NASA Astrophysics Data System (ADS)
Zappa, C. J.
2015-12-01
Recent years have seen extreme changes in the Arctic. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Furthermore, MIZ play a central role in setting the air-sea CO2 balance making them a critical component of the global carbon cycle. Incomplete understanding of how the sea-ice modulates gas fluxes renders it difficult to estimate the carbon budget in MIZ. Here, we investigate the turbulent mechanisms driving mixing and gas exchange in leads, polynyas and in the presence of ice floes using both field and laboratory measurements. Measurements from unmanned aerial systems (UAS) in the marginal ice zone were made during 2 experiments: 1) North of Oliktok Point AK in the Beaufort Sea were made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013 and 2) Fram Strait and Greenland Sea northwest of Ny-Ålesund, Svalbard, Norway during the Air-Sea-Ice Physics and Biogeochemistry Experiment (ASIPBEX) April - May 2015. We developed a number of new payloads that include: i) hyperspectral imaging spectrometers to measure VNIR (400-1000 nm) and NIR (900-1700 nm) spectral radiance; ii) net longwave and net shortwave radiation for ice-ocean albedo studies; iii) air-sea-ice turbulent fluxes as well as wave height, ice freeboard, and surface roughness with a LIDAR; and iv) drone-deployed micro-drifters (DDµD) deployed from the UAS that telemeter temperature, pressure, and RH as it descends through the atmosphere and temperature and salinity of the upper meter of the ocean once it lands on the ocean's surface. Visible and IR imagery of melting ice floes clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as an intricate circulation and mixing pattern that depends on the surface current, wind speed, and near-surface vertical temperature/salinity structure. Individual ice floes develop turbulent wakes as they drift and cause transient mixing of an influx of colder surface (fresh) melt water. We capture a melting and mixing event that explains the changing pattern observed in skin SST and is substantiated using laboratory experiments.
NASA Technical Reports Server (NTRS)
Potapczuk, Mark G.; Berkowitz, Brian M.
1989-01-01
An investigation of the ice accretion pattern and performance characteristics of a multi-element airfoil was undertaken in the NASA Lewis 6- by 9-Foot Icing Research Tunnel. Several configurations of main airfoil, slat, and flaps were employed to examine the effects of ice accretion and provide further experimental information for code validation purposes. The text matrix consisted of glaze, rime, and mixed icing conditions. Airflow and icing cloud conditions were set to correspond to those typical of the operating environment anticipated tor a commercial transport vehicle. Results obtained included ice profile tracings, photographs of the ice accretions, and force balance measurements obtained both during the accretion process and in a post-accretion evaluation over a range of angles of attack. The tracings and photographs indicated significant accretions on the slat leading edge, in gaps between slat or flaps and the main wing, on the flap leading-edge surfaces, and on flap lower surfaces. Force measurments indicate the possibility of severe performance degradation, especially near C sub Lmax, for both light and heavy ice accretion and performance analysis codes presently in use. The LEWICE code was used to evaluate the ice accretion shape developed during one of the rime ice tests. The actual ice shape was then evaluated, using a Navier-Strokes code, for changes in performance characteristics. These predicted results were compared to the measured results and indicate very good agreement.
Detection and Analysis of Complex Patterns of Ice Dynamics in Antarctica from ICESat Laser Altimetry
NASA Astrophysics Data System (ADS)
Babonis, Gregory Scott
There remains much uncertainty in estimating the amount of Antarctic ice mass change, its dynamic component, and its spatial and temporal patterns. This work remedies the limitations of previous studies by generating the first detailed reconstruction of total and dynamic ice thickness and mass changes across Antarctica, from ICESat satellite altimetry observations in 2003-2009 using the Surface Elevation Reconstruction and Change Detection (SERAC) method. Ice sheet thickness changes are calculated with quantified error estimates for each time when ICESat flew over a ground-track crossover region, at approximately 110,000 locations across the Antarctic Ice Sheet. The time series are partitioned into changes due to surficial processes and ice dynamics. The new results markedly improve the spatial and temporal resolution of surface elevation, volume, and mass change rates for the AIS, and can be sampled at annual temporal resolutions. The results indicate a complex spatiotemporal pattern of dynamic mass loss in Antarctica, especially along individual outlet glaciers, and allow for the quantification of the annual contribution of Antarctic ice loss to sea level rise. Over 5000 individual locations exhibit either strong dynamic ice thickness change patterns, accounting for approximately 500 unique spatial clusters that identify regions likely influenced by subglacial hydrology. The spatial distribution and temporal behavior of these regions reveal the complexity and short-time scale variability in the subglacial hydrological system. From the 500 unique spatial clusters, over 370 represent newly identified, and not previously published, potential subglacial water bodies indicating an active subglacial hydrological system over a much larger region than previously observed. These numerous new observations of dynamic changes provide more than simply a larger set of data. Examination of both regional and local scale dynamic change patterns across Antarctica shows newly discovered connections between the geology and ice sheet dynamics of Antarctica, particularly along the boundary between East and West Antarctica in the Pagano Shear Zone. Additionally, increased dynamic activity is shown to concentrate in regions of Antarctica most likely to experience catastrophic failure and collapse in the future. Further quantification of mass and volume changes demonstrates that the methods described within allow for a true reconciliation between different satellite methods of measuring ice sheet mass and volume balance, and show that Antarctica is losing enough mass between 2003 and 2009 to raise global sea levels 0.1 mm/yr during that time. Additionally, analysis of local patterns of dynamic ice thickness changes shows that there is continued or increased ice loss, since before the ICESat mission period, in many of the coastal sectors of Antarctica.
Radar attenuation and temperature within the Greenland Ice Sheet
MacGregor, Joseph A; Li, Jilu; Paden, John D; Catania, Ginny A; Clow, Gary D.; Fahnestock, Mark A; Gogineni, Prasad S.; Grimm, Robert E.; Morlighem, Mathieu; Nandi, Soumyaroop; Seroussi, Helene; Stillman, David E
2015-01-01
The flow of ice is temperature-dependent, but direct measurements of englacial temperature are sparse. The dielectric attenuation of radio waves through ice is also temperature-dependent, and radar sounding of ice sheets is sensitive to this attenuation. Here we estimate depth-averaged radar-attenuation rates within the Greenland Ice Sheet from airborne radar-sounding data and its associated radiostratigraphy. Using existing empirical relationships between temperature, chemistry, and radar attenuation, we then infer the depth-averaged englacial temperature. The dated radiostratigraphy permits a correction for the confounding effect of spatially varying ice chemistry. Where radar transects intersect boreholes, radar-inferred temperature is consistently higher than that measured directly. We attribute this discrepancy to the poorly recognized frequency dependence of the radar-attenuation rate and correct for this effect empirically, resulting in a robust relationship between radar-inferred and borehole-measured depth-averaged temperature. Radar-inferred englacial temperature is often lower than modern surface temperature and that of a steady state ice-sheet model, particularly in southern Greenland. This pattern suggests that past changes in surface boundary conditions (temperature and accumulation rate) affect the ice sheet's present temperature structure over a much larger area than previously recognized. This radar-inferred temperature structure provides a new constraint for thermomechanical models of the Greenland Ice Sheet.
NASA Astrophysics Data System (ADS)
Nichman, Leonid; Järvinen, Emma; Dorsey, James; Connolly, Paul; Duplissy, Jonathan; Fuchs, Claudia; Ignatius, Karoliina; Sengupta, Kamalika; Stratmann, Frank; Möhler, Ottmar; Schnaiter, Martin; Gallagher, Martin
2017-09-01
Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at European Organisation for Nuclear Research (CERN). The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and subsaturated ice conditions and for initial temperatures of -30, -40 and -50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the optical observations of small ice particles in deep convection and in situ cirrus simulations. Ice crystal asphericity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition) were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL) measurements and image roundness captured by the 3View Cloud Particle Imager (3V-CPI). Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering Intensity Measurements for the Optical detectioN of icE (SIMONE) and single particle scattering properties were measured by the CASPOL. We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have difficulties of producing reliable ice fraction if small aspherical ice particles are present, and all of the instruments cannot separate perfectly spherical ice particles from supercooled droplets. Correlation analysis of bulk averaged path depolarisation measurements and single particle measurements of these clouds showed higher R2 values at high concentrations and small diameters, but these results require further confirmation. We find that none of these instruments were able to determine unambiguously the phase of the small particles. These results have implications for the interpretation of atmospheric measurements and parametrisations for modelling, particularly for low particle number concentration clouds.
Subannual layer variability in Greenland firn cores
NASA Astrophysics Data System (ADS)
Kjær, Helle Astrid; Vallelonga, Paul; Vinther, Bo; Winstrup, Mai; Simonsen, Marius; Maffezzoli, Niccoló; Jensen, Camilla Marie
2017-04-01
Ice cores are used to infer information about the past and modern techniques allow for high resolution (< cm) continuous flow analysis (CFA) of the ice. Such analysis is often used to inform on annual layers to constrain dating of ice cores, but can also be extended to provide information on sub-annual deposition patterns. In this study we use available high resolution data from multiple shallow cores around Greenland to investigate the seasonality and trends in the most often continuously measured components sodium, insoluble dust, calcium, ammonium and conductivity (or acidity) from 1800 AD to today. We evaluate the similarities and differences between the records and discuss the causes from different sources and transport to deposition and post-deposition effects over differences in measurement set up. Further we add to the array of cores already published with measurements from the newly drilled ReCAP ice core from a coastal ice cap in eastern Greenland and from a shallow core drilled at the high accumulation site at the Greenland South Dome.
NASA Astrophysics Data System (ADS)
Klein, E. S.; Nolan, M.; McConnell, J.; Sigl, M.; Cherry, J.; Young, J.; Welker, J. M.
2016-01-01
We explored modern precipitation and ice core isotope ratios to better understand both modern and paleo climate in the Arctic. Paleoclimate reconstructions require an understanding of how modern synoptic climate influences proxies used in those reconstructions, such as water isotopes. Therefore we measured periodic precipitation samples at Toolik Lake Field Station (Toolik) in the northern foothills of the Brooks Range in the Alaskan Arctic to determine δ18O and δ2H. We applied this multi-decadal local precipitation δ18O/temperature regression to ∼65 years of McCall Glacier (also in the Brooks Range) ice core isotope measurements and found an increase in reconstructed temperatures over the late-20th and early-21st centuries. We also show that the McCall Glacier δ18O isotope record is negatively correlated with the winter bidecadal North Pacific Index (NPI) climate oscillation. McCall Glacier deuterium excess (d-excess, δ2H - 8*δ18O) values display a bidecadal periodicity coherent with the NPI and suggest shifts from more southwestern Bering Sea moisture sources with less sea ice (lower d-excess values) to more northern Arctic Ocean moisture sources with more sea ice (higher d-excess values). Northern ice covered Arctic Ocean McCall Glacier moisture sources are associated with weak Aleutian Low (AL) circulation patterns and the southern moisture sources with strong AL patterns. Ice core d-excess values significantly decrease over the record, coincident with warmer temperatures and a significant reduction in Alaska sea ice concentration, which suggests that ice free northern ocean waters are increasingly serving as terrestrial precipitation moisture sources; a concept recently proposed by modeling studies and also present in Greenland ice core d-excess values during previous transitions to warm periods. This study also shows the efficacy and importance of using ice cores from Arctic valley glaciers in paleoclimate reconstructions.
Unusually loud ambient noise in tidewater glacier fjords: a signal of ice melt
Pettit, Erin C.; Lee, Kevin M.; Brann, Joel P.; Nystuen, Jeffrey A.; Wilson, Preston S.; O'Neel, Shad
2015-01-01
In glacierized fjords, the ice-ocean boundary is a physically and biologically dynamic environment that is sensitive to both glacier flow and ocean circulation. Ocean ambient noise offers insight into processes and change at the ice-ocean boundary. Here we characterize fjord ambient noise and show that the average noise levels are louder than nearly all measured natural oceanic environments (significantly louder than sea ice and non-glacierized fjords). Icy Bay, Alaska has an annual average sound pressure level of 120 dB (re 1 μPa) with a broad peak between 1000 and 3000 Hz. Bubble formation in the water column as glacier ice melts is the noise source, with variability driven by fjord circulation patterns. Measurements from two additional fjords, in Alaska and Antarctica, support that this unusually loud ambient noise in Icy Bay is representative of glacierized fjords. These high noise levels likely alter the behavior of marine mammals.
Ice shelf thickness change from 2010 to 2017
NASA Astrophysics Data System (ADS)
Hogg, A.; Shepherd, A.; Gilbert, L.; Muir, A. S.
2017-12-01
Floating ice shelves fringe 74 % of Antarctica's coastline, providing a direct link between the ice sheet and the surrounding oceans. Over the last 25 years, ice shelves have retreated, thinned, and collapsed catastrophically. While change in the mass of floating ice shelves has only a modest steric impact on the rate of sea-level rise, their loss can affect the mass balance of the grounded ice-sheet by influencing the rate of ice flow inland, due to the buttressing effect. Here we use CryoSat-2 altimetry data to map the detailed pattern of ice shelf thickness change in Antarctica. We exploit the dense spatial sampling and repeat coverage provided by the CryoSat-2 synthetic aperture radar interferometric mode (SARIn) to investigate data acquired between 2010 to the present day. We find that ice shelf thinning rates can exhibit large fluctuations over short time periods, and that the improved spatial resolution of CryoSat-2 enables us to resolve the spatial pattern of thinning with ever greater detail in Antarctica. In the Amundsen Sea, ice shelves at the terminus of the Pine Island and Thwaites glaciers have thinned at rates in excess of 5 meters per year for more than two decades. We observe the highest rates of basal melting near to the ice sheet grounding line, reinforcing the importance of high resolution datasets. On the Antarctic Peninsula, in contrast to the 3.8 m per decade of thinning observed since 1992, we measure an increase in the surface elevation of the Larsen-C Ice-Shelf during the CryoSat-2 period.
NASA Astrophysics Data System (ADS)
Medley, B.; Kurtz, N. T.; Brunt, K. M.
2015-12-01
The large ice shelves surrounding the Antarctic continent buttress inland ice, limiting the grounded ice-sheet flow. Many, but not all, of the thick ice shelves located along the Amundsen-Bellingshausen Seas are experiencing rapid thinning due to enhanced basal melting driven by the intrusion of warm circumpolar deep water. Determination of their mass balance provides an indicator as to the future of the shelves buttressing capability; however, measurements of surface accumulation are few, limiting the precision of the mass balance estimates. Here, we present new radar-derived measurements of snow accumulation primarily over the Getz and Abbott Ice Shelves, as well as the Dotson and Crosson, which have been the focus of several of NASA's Operation IceBridge airborne surveys between 2009 and 2014. Specifically, we use the Center for Remote Sensing of Ice Sheets (CReSIS) snow radar to map the near-surface (< 30 m) internal stratigraphy to measure snow accumulation. Due to the complexities of the local topography (e.g., ice rises and rumples) and their relative proximity to the ocean, the spatial pattern of accumulation can be equally varied. Therefore, atmospheric models might not be able to reproduce these small-scale features because of their limited spatial resolution. To evaluate whether this is the case over these narrow shelves, we will compare the radar-derived accumulation rates with those from atmospheric models.
ICESat's Laser Measurements of Polar Ice, Atmosphere, Ocean, and Land
NASA Technical Reports Server (NTRS)
Zwally, H. J.; Schutz, B.; Abdalati, W.; Abshire, J.; Bentley, C.; Brenner, A.; Bufton, J.; Dezio, J.; Hancock, D.; Harding, D.;
2001-01-01
The Ice, Cloud and Land Elevation Satellite (ICESat) mission will measure changes in elevation of the Greenland and Antarctic ice sheets as part of NASA's Earth Observing System (EOS) of satellites. Time-series of elevation changes will enable determination of the present-day mass balance of the ice sheets, study of associations between observed ice changes and polar climate, and estimation of the present and future contributions of the ice sheets to global sea level rise. Other scientific objectives of ICESat include: global measurements of cloud heights and the vertical structure of clouds and aerosols; precise measurements of land topography and vegetation canopy heights; and measurements of sea ice roughness, sea ice thickness, ocean surface elevations, and surface reflectivity. The Geoscience Laser Altimeter System (GLAS) on ICESat has a 1064 nm laser channel for surface altimetry and dense cloud heights and a 532 nm lidar channel for the vertical distribution of clouds and aerosols. The accuracy of surface ranging is 10 cm, averaged over 60 m diameter laser footprints spaced at 172 m along-track. The orbital altitude will be around 600 km at an inclination of 94 deg with a 183-day repeat pattern. The onboard GPS receiver will enable radial orbit determinations to better than 5 cm, and star-trackers will enable footprints to be located to 6 m horizontally. The spacecraft attitude will be controlled to point the laser beam to within +/- 35 m of reference surface tracks at high latitudes. ICESat is designed to operate for 3 to 5 years and should be followed by successive missions to measure ice changes for at least 15 years.
On the Formation of Rifts in Ice Shelves
NASA Astrophysics Data System (ADS)
Sayag, R.; Worster, G.
2017-12-01
Ice calving accounts for significant part in the mass loss of present ice sheets. Several processes could lead to calving, among them is the formation of rifts near the fronts of ice shelves. Here we combine laboratory-scale experiments of ice sheets together with theoretical modeling to investigate the formation of rifts in ice shelves. We model the deformation of ice with a thin viscous film that is driven axisymmetrically by buoyancy. When the viscous fluid intrudes a bath of an inviscid fluid that represents the ocean, the circular symmetry of the front breaks up into a set of tongues with a characteristic wavelength that coarsens over time, a pattern that is reminiscent of ice rifts. Theoretically, we model the formation of rifts as a hydrodynamic instability of powerlaw fluid. Our model demonstrates the formation of rifts and the coarsening of the characteristic wavelength, and predicts coarsening transition times that are consistent with our experimental measurements.
Aircraft Surveys of the Beaufort Sea Seasonal Ice Zone
NASA Astrophysics Data System (ADS)
Morison, J.
2016-02-01
The Seasonal Ice Zone Reconnaissance Surveys (SIZRS) is a program of repeated ocean, ice, and atmospheric measurements across the Beaufort-Chukchi sea seasonal sea ice zone (SIZ) utilizing US Coast Guard Arctic Domain Awareness (ADA) flights of opportunity. The SIZ is the region between maximum winter sea ice extent and minimum summer sea ice extent. As such, it contains the full range of positions of the marginal ice zone (MIZ) where sea ice interacts with open water. The increasing size and changing air-ice-ocean properties of the SIZ are central to recent reductions in Arctic sea ice extent. The changes in the interplay among the atmosphere, ice, and ocean require a systematic SIZ observational effort of coordinated atmosphere, ice, and ocean observations covering up to interannual time-scales, Therefore, every year beginning in late Spring and continuing to early Fall, SIZRS makes monthly flights across the Beaufort Sea SIZ aboard Coast Guard C-130H aircraft from USCG Air Station Kodiak dropping Aircraft eXpendable CTDs (AXCTD) and Aircraft eXpendable Current Profilers (AXCP) for profiles of ocean temperature, salinity and shear, dropsondes for atmospheric temperature, humidity, and velocity profiles, and buoys for atmosphere and upper ocean time series. Enroute measurements include IR imaging, radiometer and lidar measurements of the sea surface and cloud tops. SIZRS also cooperates with the International Arctic Buoy Program for buoy deployments and with the NOAA Earth System Research Laboratory atmospheric chemistry sampling program on board the aircraft. Since 2012, SIZRS has found that even as SIZ extent, ice character, and atmospheric forcing varies year-to-year, the pattern of ocean freshening and radiative warming south of the ice edge is consistent. The experimental approach, observations and extensions to other projects will be discussed.
NASA Astrophysics Data System (ADS)
Neumann, Thomas; Markus, Thorsten; Smith, Benjamin; Kwok, Ron
2017-04-01
Understanding the causes and magnitudes of changes in the cryosphere remains a priority for Earth science research. Over the past decade, NASA's and ESA's Earth-observing satellites have documented a decrease in both the areal extent and thickness of Arctic sea ice, and an ongoing loss of grounded ice from the Greenland and Antarctic ice sheets. Understanding the pace and mechanisms of these changes requires long-term observations of ice-sheet mass, sea-ice thickness, and sea-ice extent. NASA's ICESat-2 mission is the next-generation space-borne laser altimeter mission and will use three pairs of beams, each pair separated by about 3 km across-track with a pair spacing of 90 m. The spot size is 17 m with an along-track sampling interval of 0.7 m. This measurement concept is a result of the lessons learned from the original ICESat mission. The multi-beam approach is critical for removing the effects of ice sheet surface slope from the elevation change measurements of most interest. For sea ice, the dense spatial sampling (eliminating along-track gaps) and the small footprint size are especially useful for sea surface height measurements in the, often narrow, leads needed for sea ice freeboard and ice thickness retrievals. Currently, algorithms are being developed to calculate ice sheet elevation change and sea ice freeboard from ICESat-2 data. The orbits of ICESat-2 and Cryosat-2 both converge at 88 degrees of latitude, though the orbit altitude differences result in different ground track patterns between the two missions. This presentation will present an overview of algorithm approaches and how ICESat-2 and Cryosat-2 data may augment each other.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Catrin M.; Cassano, John J.; Cassano, Elizabeth N.
Possible linkages between Arctic sea ice loss and midlatitude weather are strongly debated in the literature. We analyze a coupled model simulation to assess the possibility of Arctic ice variability forcing a midlatitude response, ensuring consistency between atmosphere, ocean, and ice components. We work with weekly running mean daily sensible heat fluxes with the self-organizing map technique to identify Arctic sensible heat flux anomaly patterns and the associated atmospheric response, without the need of metrics to define the Arctic forcing or measure the midlatitude response. We find that low-level warm anomalies during autumn can build planetary wave patterns that propagatemore » downstream into the midlatitudes, creating robust surface cold anomalies in the eastern United States.« less
Regional Patterns of Stress Transfer in the Ablation Zone of the Western Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Andrews, L. C.; Hoffman, M. J.; Neumann, T.; Catania, G. A.; Luethi, M. P.; Hawley, R. L.
2016-12-01
Current understanding of the subglacial system indicates that the seasonal evolution of ice flow is strongly controlled by the gradual upstream progression of an inefficient - efficient transition within the subglacial hydrologic system followed by the reduction of melt and a downstream collapse of the efficient system. Using a spatiotemporally dense network of GPS-derived surface velocities from the Pâkitsoq Region of the western Greenland Ice Sheet, we find that this pattern of subglacial development is complicated by heterogeneous bed topography, resulting in complex patterns of ice flow. Following low elevation melt onset, early melt season strain rate anomalies are dominated by regional extension, which then gives way to spatially expansive compression. However, once daily minimum ice velocities fall below the observed winter background velocities, an alternating spatial pattern of extension and compression prevails. This pattern of strain rate anomalies is correlated with changing basal topography and differences in the magnitude of diurnal surface ice speeds. Along subglacial ridges, diurnal variability in ice speed is large, suggestive of a mature, efficient subglacial system. In regions of subglacial lows, diurnal variability in ice velocity is relatively low, likely associated with a less developed efficient subglacial system. The observed pattern suggests that borehole observations and modeling results demonstrating the importance of longitudinal stress transfer at a single field location are likely widely applicable in our study area and other regions of the Greenland Ice Sheet with highly variable bed topography. Further, the complex pattern of ice flow and evidence of spatially extensive longitudinal stress transfer add to the body of work indicating that the bed character plays an important role in the development of the subglacial system; closely matching diurnal ice velocity patterns with subglacial models may be difficult without coupling these models to high order ice flow models.
Distinct ice patterns on solid surfaces with various wettabilities
Liu, Jie; Zhu, Chongqin; Liu, Kai; Jiang, Ying; Song, Yanlin; Francisco, Joseph S.; Zeng, Xiao Cheng; Wang, Jianjun
2017-01-01
No relationship has been established between surface wettability and ice growth patterns, although ice often forms on top of solid surfaces. Here, we report experimental observations obtained using a process specially designed to avoid the influence of nucleation and describe the wettability-dependent ice morphology on solid surfaces under atmospheric conditions and the discovery of two growth modes of ice crystals: along-surface and off-surface growth modes. Using atomistic molecular dynamics simulation analysis, we show that these distinct ice growth phenomena are attributable to the presence (or absence) of bilayer ice on solid surfaces with different wettability; that is, the formation of bilayer ice on hydrophilic surface can dictate the along-surface growth mode due to the structural match between the bilayer hexagonal ice and the basal face of hexagonal ice (ice Ih), thereby promoting rapid growth of nonbasal faces along the hydrophilic surface. The dramatically different growth patterns of ice on solid surfaces are of crucial relevance to ice repellency surfaces. PMID:29073045
Distinct ice patterns on solid surfaces with various wettabilities.
Liu, Jie; Zhu, Chongqin; Liu, Kai; Jiang, Ying; Song, Yanlin; Francisco, Joseph S; Zeng, Xiao Cheng; Wang, Jianjun
2017-10-24
No relationship has been established between surface wettability and ice growth patterns, although ice often forms on top of solid surfaces. Here, we report experimental observations obtained using a process specially designed to avoid the influence of nucleation and describe the wettability-dependent ice morphology on solid surfaces under atmospheric conditions and the discovery of two growth modes of ice crystals: along-surface and off-surface growth modes. Using atomistic molecular dynamics simulation analysis, we show that these distinct ice growth phenomena are attributable to the presence (or absence) of bilayer ice on solid surfaces with different wettability; that is, the formation of bilayer ice on hydrophilic surface can dictate the along-surface growth mode due to the structural match between the bilayer hexagonal ice and the basal face of hexagonal ice (ice I h ), thereby promoting rapid growth of nonbasal faces along the hydrophilic surface. The dramatically different growth patterns of ice on solid surfaces are of crucial relevance to ice repellency surfaces. Published under the PNAS license.
Evaluation of Arctic Sea Ice Thickness Simulated by AOMIP Models
NASA Technical Reports Server (NTRS)
Johnson, Mark; Proshutinsky, Andrey; Aksenov, Yevgeny; Nguyen, An T.; Lindsay, Ron; Haas, Christian; Zhang, Jinlun; Diansky, Nimolay; Kwok, Ron; Maslowski, Wieslaw;
2011-01-01
We compare results from six AOMIP model simulations with estimates of sea ice thickness obtained from ICESat, moored and submarine-based upward looking sensors, airborne electromagnetic measurements and drill holes. Our goal is to find patterns of model performance to guide model improvement. The satellite data is pan-arctic from 2004-2008, ice-draft data is from moored instruments in Fram Strait, the Greenland Sea and the Beaufort Sea from 1992-2008 and from submarines from 1975-2000. The drill hole data are from the Laptev and East Siberian marginal seas from 1982-1986 and from coastal stations from 1998-2009. While there are important caveats when comparing modeled results with measurements from different platforms and time periods such as these, the models agree well with moored ULS data. In general, the AOMIP models underestimate the thickness of measured ice thicker than about 2 m and overestimate thickness of ice thinner than 2 m. The simulated results are poor over the fast ice and marginal seas of the Siberian shelves. Averaging over all observational data sets, the better correlations and smaller differences from observed thickness are from the ECCO2 and UW models.
The 2012 Arctic Field Season of the NRL Sea-Ice Measurement Program
NASA Astrophysics Data System (ADS)
Gardner, J. M.; Brozena, J. M.; Hagen, R. A.; Liang, R.; Ball, D.
2012-12-01
The U.S. Naval Research Laboratory (NRL) is beginning a five year study of the changing Arctic with a particular focus on ice thickness and distribution variability with the intent of optimizing state-of-the-art computer models which are currently used to predict sea ice changes. An important part of our study is to calibrate/validate CryoSat2 ice thickness data prior to its incorporation into new ice forecast models. NRL Code 7420 collected coincident data with the CryoSat2 satellite in both 2011 and 2012 using a LiDAR (Riegl Q560) to measure combined snow and ice thickness and a 10 GHz pulse-limited precision radar altimeter to measure sea-ice freeboard. These measurements were coordinated with the Seasonal Ice Zone Observing Network (SIZONet) group who conducted surface based ice thickness surveys using a Geonics EM-31 along hunter trails on the landfast ice near Barrow as well as on drifting ice offshore during helicopter landings. On two sorties, a twin otter carrying the NRL LiDAR and radar altimeter flew in tandem with the helicopter carrying the EM-31 to achieve synchronous data acquisition. Data from these flights are shown here along with a digital elevation map. The LiDAR and radar altimeter were also flown on grid patterns over the ice that were synchronous with 5 Cryosat2 satellite passes. These grids were intended to cover roughly 10 km long segments of Cryosat2 tracks with widths similar to the footprint of the satellite (~2 km). Reduction of these grids is challenging because of ice drift which can be many hundreds of meters over the 1-2 hours collection period of each grid. Relocation of the individual scanning LiDAR tracks is done by means of tie-points observed in the overlapping swaths. Data from these grids are shown here and will be used to examine the relationship of the tracked satellite waveform data to the actual surface across the footprint.
NASA Technical Reports Server (NTRS)
Massom, Robert A.; Worby, Anthony; Lytle, Victoria; Markus, Thorsten; Allison, Ian; Scambos, Theodore; Enomoto, Hiroyuki; Tateyama, Kazutaka; Haran, Terence; Comiso, Josefino C.;
2006-01-01
Preliminary results are presented from the first validation of geophysical data products (ice concentration, snow thickness on sea ice (h(sub s) and ice temperature (T(sub i))fr om the NASA EOS Aqua AMSR-E sensor, in East Antarctica (in September-October 2003). The challenge of collecting sufficient measurements with which to validate the coarse-resolution AMSR-E data products adequately was addressed by means of a hierarchical approach, using detailed in situ measurements, digital aerial photography and other satellite data. Initial results from a circumnavigation of the experimental site indicate that, at least under cold conditions with a dry snow cover, there is a reasonably close agreement between satellite- and aerial-photo-derived ice concentrations, i.e. 97.2+/-.6% for NT2 and 96.5+/-2.5% for BBA algorithms vs 94.3% for the aerial photos. In general, the AMSR-E concentration represents a slight overestimate of the actual concentration, with the largest discrepancies occurring in regions containing a relatively high proportion of thin ice. The AMSR-E concentrations from the NT2 and BBA algorithms are similar on average, although differences of up to 5% occur in places, again related to thin-ice distribution. The AMSR-E ice temperature (T(sub i)) product agrees with coincident surface measurements to approximately 0.5 C in the limited dataset analyzed. Regarding snow thickness, the AMSR h(sub s) retrieval is a significant underestimate compared to in situ measurements weighted by the percentage of thin ice (and open water) present. For the case study analyzed, the underestimate was 46% for the overall average, but 23% compared to smooth-ice measurements. The spatial distribution of the AMSR-E h(sub s) product follows an expected and consistent spatial pattern, suggesting that the observed difference may be an offset (at least under freezing conditions). Areas of discrepancy are identified, and the need for future work using the more extensive dataset is highlighted.
Revisiting static and dynamic spin-ice correlations in Ho2Ti2O7 with neutron scattering
NASA Astrophysics Data System (ADS)
Clancy, J. P.; Ruff, J. P. C.; Dunsiger, S. R.; Zhao, Y.; Dabkowska, H. A.; Gardner, J. S.; Qiu, Y.; Copley, J. R. D.; Jenkins, T.; Gaulin, B. D.
2009-01-01
Elastic and inelastic neutron-scattering studies have been carried out on the pyrochlore magnet Ho2Ti2O7 . Measurements in zero applied magnetic field show that the disordered spin-ice ground state of Ho2Ti2O7 is characterized by a pattern of rectangular diffuse elastic scattering within the [HHL] plane of reciprocal space, which closely resembles the zone-boundary scattering seen in its sister compound Dy2Ti2O7 . Well-defined peaks in the zone-boundary scattering develop only within the spin-ice ground state below ˜2K . In contrast, the overall diffuse-scattering pattern evolves on a much higher-temperature scale of ˜17K . The diffuse scattering at small wave vectors below [001] is found to vanish on going to Q=0 , an explicit signature of expectations for dipolar spin ice. Very high energy-resolution inelastic measurements reveal that the spin-ice ground state below ˜2K is also characterized by a transition from dynamic to static spin correlations on the time scale of 10-9s . Measurements in a magnetic field applied along the [11¯0] direction in zero-field-cooled conditions show that the system can be broken up into orthogonal sets of polarized α chains along [11¯0] and quasi-one-dimensional β chains along [110]. Three-dimensional correlations between β chains are shown to be very sensitive to the precise alignment of the [11¯0] externally applied magnetic field.
Simulation of an Ice Giant-style Dynamo
NASA Astrophysics Data System (ADS)
Soderlund, K. M.; Aurnou, J. M.
2010-12-01
The Ice Giants, Uranus and Neptune, are unique in the solar system. These planets are the only known bodies to have multipolar magnetic fields where the quadrupole and octopole components have strengths comparable to or greater than that of the dipole. Cloud layer observations show that the planets also have zonal (east-west) flows that are fundamentally different from the banded winds of Jupiter and Saturn. The surface winds are characterized by strong retrograde equatorial jets that are flanked on either side by prograde jets at high latitudes. Thermal emission measurements of Neptune show that the surface energy flux pattern peaks in the equatorial and polar regions with minima at mid-latitudes. (The measurements for Uranus cannot adequately resolve the emission pattern.) The winds and magnetic fields are thought to be the result of convection in the planetary interior, which will also affect the heat flux pattern. Typically, it is implicitly assumed that the zonal winds are generated in a shallow layer, separate from the dynamo generation region. However, if the magnetic fields are driven near the surface, a single region can simultaneously generate both the zonal flows and the magnetic fields. Here, we present a novel numerical model of an Ice Giant-style dynamo to investigate this possibility. An order unity convective Rossby number (ratio of buoyancy to Coriolis forces) has been chosen because retrograde equatorial jets tend to occur in spherical shells when the effects of rotation are relatively weak. Our modeling results qualitatively reproduce all of the structural features of the global dynamical observations. Thus, a self-consistent model can generate magnetic field, zonal flow, and thermal emission patterns that agree with those of Uranus and Neptune. This model, then, leads us to hypothesize that the Ice Giants' zonal flows and magnetic fields are generated via dynamically coupled deep convection processes.
Patterns of variability in steady- and non steady-state Ross Ice Shelf flow
NASA Astrophysics Data System (ADS)
Campbell, A. J.; Hulbe, C. L.; Scambos, T. A.; Klinger, M. J.; Lee, C. K.
2016-12-01
Ice shelves are gateways through which climate change can be transmitted from the ocean or atmosphere to a grounded ice sheet. It is thus important to separate patterns of ice shelf change driven internally (from the ice sheet) and patterns driven externally (by the ocean or atmosphere) so that modern observations can be viewed in an appropriate context. Here, we focus on the Ross Ice Shelf (RIS), a major component of the West Antarctic Ice Sheet system and a feature known to experience variable ice flux from tributary ice streams and glaciers, for example, ice stream stagnation and glacier surges. We perturb a model of the Ross Ice Shelf with periodic influx variations, ice rise and ice plain grounding events, and iceberg calving in order to generate transients in the ice shelf flow and thickness. Characteristic patterns associated with those perturbations are identified using empirical orthogonal functions (EOFs). The leading EOFs reveal shelf-wide pattern of response to local perturbations that can be interpreted in terms of coupled mass and momentum balance. For example, speed changes on Byrd Glacier cause both thinning and thickening in a broad region that extends to Roosevelt Island. We calculate decay times at various locations for various perturbations and find that mutli-decadal to century time scales are typical. Unique identification of responses to particular forcings may thus be difficlult to achieve and flow divergence cannot be assumed to be constant when interpreting observed changes in ice thickness. In reality, perturbations to the ice shelf do not occur individually, rather the ice shelf contains a history of boundary perturbations. To explore the degree individual perturbations are seperable from their ensemble, EOFs from individual events are combined in pairs and compared against experiments with the same periodic perturbations pairs. Residuals between these EOFs reveal the degree interaction between between disctinct perturbations.
Heat Transfer Measurements on Surfaces with Natural Ice Castings and Modeled Roughness
NASA Technical Reports Server (NTRS)
Breuer, Kenneth S.; Torres, Benjamin E.; Orr, D. J.; Hansman, R. John
1997-01-01
An experimental method is described to measure and compare the convective heat transfer coefficient of natural and simulated ice accretion roughness and to provide a rational means for determining accretion-related enhanced heat transfer coefficients. The natural ice accretion roughness was a sample casting made from accretions at the NASA Lewis Icing Research Tunnel (IRT). One of these castings was modeled using a Spectral Estimation Technique (SET) to produce three roughness elements patterns that simulate the actual accretion. All four samples were tested in a flat-plate boundary layer at angle of attack in a "dry" wind tunnel test. The convective heat transfer coefficient was measured using infrared thermography. It is shown that, dispite some problems in the current data set, the method does show considerable promise in determining roughness-induced heat transfer coefficients, and that, in addition to the roughness height and spacing in the flow direction, the concentration and spacing of elements in the spanwise direction are important parameters.
Atmospheric Science Data Center
2013-04-16
article title: Waves on White: Ice or Clouds? View Larger ... like a wavy cloud pattern was actually a wavy pattern on the ice surface. One of MISR's cloud classification products, the Angular Signature ...
Antarctic glacier-tongue velocities from Landsat images: First results
Lucchitta, Baerbel K.; Mullins, K.F.; Allison, A.L.; Ferrigno, Jane G.
1993-01-01
We measured the velocities of six glacier tongues and a few tongues within ice shelves distributed around the Antarctic coastline by determining the displacement of crevasse patterns seen on sequential Landsat images. The velocities range from less than 0.2 km a−1 for East Antarctic ice-shelf tongues to more than 2.5 km a−1 for the Thwaites Glacier Tongue. All glacier tongues show increases in velocity toward their distal margins. In general, the tongues of glaciers draining the West Antarctic ice sheet have moved significantly faster than those in East Antarctica. This observation may be significant in light of the hypothesized possible disintegration of the West Antarctic ice sheet.
Trends in ice formation at Lake Neusiedl since 1931 and large-scale oscillation patterns
NASA Astrophysics Data System (ADS)
Soja, Anna-Maria; Maracek, Karl; Soja, Gerhard
2013-04-01
Ice formation at Lake Neusiedl (Neusiedler See, Fertitó), a shallow steppe lake (area 320 km2, mean depth 1.2 m) at the border of Austria/Hungary, is of ecological and economic importance. Ice sailing and skating help to keep a touristic off-season alive. Reed harvest to maintain the ecological function of the reed belt (178 km2) is facilitated when lake surface is frozen. Changes in ice formation were analysed in the frame of the EULAKES-project (European Lakes under Environmental Stressors, www.eulakes.eu), financed by the Central Europe Programme of the EU. Data records of ice-on, ice duration and ice-off at Lake Neusiedl starting with the year 1931, and air temperature (nearby monitoring station Eisenstadt - Sopron (HISTALP database and ZAMG)) were used to investigate nearly 80 winters. Additionally, influences of 8 teleconnection patterns, i.e. the Atlantic Multidecadal Oscillation (AMO), the East Atlantic pattern (EAP), the East Atlantic/West Russia pattern (EA/WR), the Eastern Mediterranean Pattern (EMP), the Mediterranean Oscillation (MO) for Algiers and Cairo, and for Israel and Gibraltar, resp., the North Atlantic Oscillation (NAO) and the Scandinavia pattern (SCA) were assessed. Ice cover of Lake Neusiedl showed a high variability between the years (mean duration 71±27 days). Significant trends for later ice-on (p=0.02), shorter ice duration (p=0.07) and earlier ice-off (p=0.02) for the period 1931-2011 were found by regression analysis and trend analysis tests. On an average, freezing of Lake Neusiedl started 2 days later per decade and ice melting began 2 days earlier per decade. Close relationships between mean air temperature and ice formation could be found: ice-on showed a dependency on summer (R=+0.28) and autumn air temperatures (R=+0.51), ice duration and ice off was related to autumn (R=-0.36 and -0.24), winter (R=-0.73 and -0.61) and concurrent spring air temperatures (R=-0.44). Increases of air temperature by 1° C caused an 8.4 days later timing of ice-on, a decrease of ice duration by 11.0 days and a 5.8 days earlier ice-off. The sensitivity of ice duration and ice-off to rising air temperatures was increasing at Lake Neusiedl. This effect of warming could not be verified for the timing of ice-on. Ice-on at Lake Neusiedl showed a significant relation to EAP (yearly index; R=0.33). Ice duration and ice-off were influenced significantly by the winter indices of MO for Algiers and Cairo (R=-0.48 and -0.45), NAO (R=-0.42 and -0.37), and EAP (R=-0.31 and -0.48).
Basal melt rates of Filchner Ice Shelf, Antarctica
NASA Astrophysics Data System (ADS)
Humbert, A.; Nicholls, K. W.; Corr, H. F. J.; Steinhage, D.; Stewart, C.; Zeising, O.
2017-12-01
Thinning of ice shelves around Antarctica has been found to be partly driven by an increase in basal melt as a result of warmer waters entering the sub-ice shelf cavity. In-situ observations of basal melt rate are, however, sparse. A new robust and efficient phase sensitive radio echo sounder (pRES) allows to measure change in ice thickness and vertical strain at high accuracy, so that the contribution of basal melt to the change in thickness can be estimated. As modeling studies suggest that the cavity beneath Filchner Ice Shelf, Antarctica, might be prone to intrusion of warm water pulses within this century, we wished to derive a baseline dataset and an understanding of its present day spatial variability. Here we present results from pRES measurements over two field seasons, 2015/16-16/17, comprising 86 datasets over the southern Filchner Ice Shelf, covering an area of about 6500km2. The maximum melt rate is only slightly more than 1m/a, but the spatial distribution exhibits a complex pattern. For the purpose of testing variability of basal melt rates on small spatial scales, we performed 26 measurements over distances of about 1km, and show that the melt rates do not vary by more than 0.25m/a.
NASA Astrophysics Data System (ADS)
Crasemann, Berit; Handorf, Dörthe; Jaiser, Ralf; Dethloff, Klaus; Nakamura, Tetsu; Ukita, Jinro; Yamazaki, Koji
2017-12-01
In the framework of atmospheric circulation regimes, we study whether the recent Arctic sea ice loss and Arctic Amplification are associated with changes in the frequency of occurrence of preferred atmospheric circulation patterns during the extended winter season from December to March. To determine regimes we applied a cluster analysis to sea-level pressure fields from reanalysis data and output from an atmospheric general circulation model. The specific set up of the two analyzed model simulations for low and high ice conditions allows for attributing differences between the simulations to the prescribed sea ice changes only. The reanalysis data revealed two circulation patterns that occur more frequently for low Arctic sea ice conditions: a Scandinavian blocking in December and January and a negative North Atlantic Oscillation pattern in February and March. An analysis of related patterns of synoptic-scale activity and 2 m temperatures provides a synoptic interpretation of the corresponding large-scale regimes. The regimes that occur more frequently for low sea ice conditions are resembled reasonably well by the model simulations. Based on those results we conclude that the detected changes in the frequency of occurrence of large-scale circulation patterns can be associated with changes in Arctic sea ice conditions.
NASA Astrophysics Data System (ADS)
Matrai, P. A.; Williams, C. R.; Rauschenberg, C. D.
2012-12-01
Autonomous, sea ice-tethered buoys ("O-Buoys") are being deployed across the Arctic sea ice for long-term atmospheric measurements, with several O-Buoys having been deployed within the Hudson Bay, Beaufort Sea, and the North Pole. These buoys provide in-situ measurements of ozone, CO_{2} and BrO, as well as meteorological parameters, over the frozen ocean. O-Buoys were designed to transmit daily data over a period of 2 years while deployed in sea ice, as part of automated ice-drifting stations. Due to the logistical challenges of measurements over the Arctic Ocean region, most long term,in-situ observations of atmospheric chemistry have been made at coastal sites or islands near the coast, leaving large spatial and temporal gaps that O-Buoys can overcome. The significant uncertainty that remains in our understanding of the temporal and spatial variability in these parameters as well as the magnitude and/or frequency of long (CO_{2}) and short (ozone depletion) patterns can be overcome. Advances in floatation, communications, power management, and sensor hardware have been made to the original design to overcome the challenges of diminished Arctic sea ice which have resulted in our longest deployments into the summer so far.
In Situ Observational Constraints on GIA in Antarctica
NASA Astrophysics Data System (ADS)
Wilson, T. J.; Bevis, M. G.; Kendrick, E. C.; Konfal, S.; Dalziel, I. W.; Smalley, R.; Willis, M. J.; Wiens, D. A.; Heeszel, D. S.
2012-12-01
Geodetic and seismologic data sets have been acquired across a significant portion of Antarctica through deployment of autonomous, remote instrumentation by the Antarctic Network (ANET) project of the Polar Earth Observing Network (POLENET). Continuous GPS measurements of bedrock crustal motions are yielding a synoptic picture of vertical and horizontal crustal motion patterns from the Transantarctic Mountains to the Ellsworth-Whitmore Mountains and Marie Byrd Land regions. Vertical motion patterns are broadly compatible with predictions from current GIA models, but the magnitudes of the vertical motions are substantially lower than predicted. Slower rates of uplift due to GIA can be attributed to factors including errors in ice history, a superposed solid earth response to modern ice mass change, and/or the influence of laterally varying earth properties on the GIA response. Patterns of horizontal motions measured by ANET show that the role of laterally varying earth rheology is extremely important in Antarctica. Crustal motion vectors are closely aligned and document motion from East toward West Antarctica, in contradiction to ice sheet reconstructions placing maximum LGM ice mass loss in West Antarctica and GIA models that predict motions in the opposite direction. When compared to earth structure mapped by seismology, the horizontal crustal motions are consistently near-perpendicular to the very strong gradient in crust and mantle properties, perhaps the first confirmation of predictions from modeling studies that horizontal motions can be deflected or even reversed where such a lateral earth property exists. Accurate GIA models for Antarctica clearly require a laterally-varying earth model and tuning based on these new GPS and seismological constraints.
NASA Astrophysics Data System (ADS)
Kanevskiy, Mikhail; Shur, Yuri; Jorgenson, Torre; Brown, Dana R. N.; Moskalenko, Nataliya; Brown, Jerry; Walker, Donald A.; Raynolds, Martha K.; Buchhorn, Marcel
2017-11-01
Widespread degradation of ice wedges has been observed during the last decades in numerous areas within the continuous permafrost zone of Eurasia and North America. To study ice-wedge degradation, we performed field investigations at Prudhoe Bay and Barrow in northern Alaska during 2011-2016. In each study area, a 250-m transect was established with plots representing different stages of ice-wedge degradation/stabilization. Field work included surveying ground- and water-surface elevations, thaw-depth measurements, permafrost coring, vegetation sampling, and ground-based LiDAR scanning. We described cryostratigraphy of frozen soils and stable isotope composition, analyzed environmental characteristics associated with ice-wedge degradation and stabilization, evaluated the vulnerability and resilience of ice wedges to climate change and disturbances, and developed new conceptual models of ice-wedge dynamics that identify the main factors affecting ice-wedge degradation and stabilization and the main stages of this quasi-cyclic process. We found significant differences in the patterns of ice-wedge degradation and stabilization between the two areas, and the patterns were more complex than those previously described because of the interactions of changing topography, water redistribution, and vegetation/soil responses that can interrupt or reinforce degradation. Degradation of ice wedges is usually triggered by an increase in the active-layer thickness during exceptionally warm and wet summers or as a result of flooding or disturbance. Vulnerability of ice wedges to thermokarst is controlled by the thickness of the intermediate layer of the upper permafrost, which overlies ice wedges and protects them from thawing. In the continuous permafrost zone, degradation of ice wedges rarely leads to their complete melting; and in most cases wedges eventually stabilize and can then resume growing, indicating a somewhat cyclic and reversible process. Stabilization of ice wedges after their partial degradation makes them better protected than before degradation because the intermediate layer is usually 2 to 3 times thicker on top of stabilized ice wedges than on top of initial ice wedges in undisturbed conditions. As a result, the likelihood of formation of large thaw lakes in the continuous permafrost zone triggered by ice-wedge degradation alone is very low.
Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds
NASA Astrophysics Data System (ADS)
Schnaiter, Martin; Järvinen, Emma; Vochezer, Paul; Abdelmonem, Ahmed; Wagner, Robert; Jourdan, Olivier; Mioche, Guillaume; Shcherbakov, Valery N.; Schmitt, Carl G.; Tricoli, Ugo; Ulanowski, Zbigniew; Heymsfield, Andrew J.
2016-04-01
This study reports on the origin of small-scale ice crystal complexity and its influence on the angular light scattering properties of cirrus clouds. Cloud simulation experiments were conducted at the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber of the Karlsruhe Institute of Technology (KIT). A new experimental procedure was applied to grow and sublimate ice particles at defined super- and subsaturated ice conditions and for temperatures in the -40 to -60 °C range. The experiments were performed for ice clouds generated via homogeneous and heterogeneous initial nucleation. Small-scale ice crystal complexity was deduced from measurements of spatially resolved single particle light scattering patterns by the latest version of the Small Ice Detector (SID-3). It was found that a high crystal complexity dominates the microphysics of the simulated clouds and the degree of this complexity is dependent on the available water vapor during the crystal growth. Indications were found that the small-scale crystal complexity is influenced by unfrozen H2SO4 / H2O residuals in the case of homogeneous initial ice nucleation. Angular light scattering functions of the simulated ice clouds were measured by the two currently available airborne polar nephelometers: the polar nephelometer (PN) probe of Laboratoire de Métérologie et Physique (LaMP) and the Particle Habit Imaging and Polar Scattering (PHIPS-HALO) probe of KIT. The measured scattering functions are featureless and flat in the side and backward scattering directions. It was found that these functions have a rather low sensitivity to the small-scale crystal complexity for ice clouds that were grown under typical atmospheric conditions. These results have implications for the microphysical properties of cirrus clouds and for the radiative transfer through these clouds.
Measured and Modelled Tidal Circulation Under Ice Covered Van Mijenforden
NASA Astrophysics Data System (ADS)
Nilsen, F.
The observation and model area Van Mijenfjorden is situated at the west coast of Spits- bergen. An area of 533 km2 makes it the second largest fjord on Spitsbergen and the distance from the head to the mouth of the fjord is approximately 70 km. An 8.5km long and 1km wide island, Akseløya, is lying across the fjord mouth and blocking exchanges between the fjord and the coastal water masses outside. The sound Aksel- sundet on the northern side of the island is 1km wide and has a sill at 34m depth. On the southern side an islet, Mariaholmen, is between two sounds that are 200m wide and 2m deep, and 500m wide and 12m deep. Strong tidal currents exist in these sounds. Van Mijenfjorden has special ice conditions in that Akseløya almost closes the fjord, and comparatively little ice comes in from west. On the other hand, there are periods with fast ice in the fjord inside Akseløya longer than in other places, as the sea waves have little chance to break up fast ice here, or delay ice formation in autumn/winter. Van Mijenfjorden is often separated into two basins by a sill at 30m depth. The inner basin is typical 5km wide and has a maximum depth of 80m, while the outer basin is on average 10 km wide and has a maximum depth of 115m. Hydrographic measurements have been conducted since 1958 and up to the present. Through the last decade, The University Courses on Svalbard (UNIS) has used this fjord as a laboratory for their student excursions, in connection to courses in air-ice- ocean interaction and master programs, and build up an oceanographic data base. In this work, focus is put on the wintertime situation and the circulation under an ice covered fjord. Measurements show a mean cyclonic circulation pattern in the outer basin with tidal oscillation (mainly M2) superposed on this mean vector. A three- dimensional sigma layered numerical model called Bergen Ocean Model (BOM) was used to simulate the circulation in Van Mijenfjorden with only tidal forcing. The four most pronounced tidal components were used to force the model area outside Ak- seløya. The calculated cyclonic circulation pattern fits the measurements, proving that the fjord circulation is controlled by tides in periods when the ice cover shade the fjord water masses from direct wind forcing.
Physical properties of the WAIS Divide ice core
Fitzpatrick, Joan J.; Voigt, Donald E.; Fegyveresi, John M.; Stevens, Nathan T.; Spencer, Matthew K.; Cole-Dai, Jihong; Alley, Richard B.; Jardine, Gabriella E.; Cravens, Eric; Wilen, Lawrence A.; Fudge, T. J.; McConnell, Joseph R.
2014-01-01
The WAIS (West Antarctic Ice Sheet) Divide deep ice core was recently completed to a total depth of 3405 m, ending ∼50 m above the bed. Investigation of the visual stratigraphy and grain characteristics indicates that the ice column at the drilling location is undisturbed by any large-scale overturning or discontinuity. The climate record developed from this core is therefore likely to be continuous and robust. Measured grain-growth rates, recrystallization characteristics, and grain-size response at climate transitions fit within current understanding. Significant impurity control on grain size is indicated from correlation analysis between impurity loading and grain size. Bubble-number densities and bubble sizes and shapes are presented through the full extent of the bubbly ice. Where bubble elongation is observed, the direction of elongation is preferentially parallel to the trace of the basal (0001) plane. Preferred crystallographic orientation of grains is present in the shallowest samples measured, and increases with depth, progressing to a vertical-girdle pattern that tightens to a vertical single-maximum fabric. This single-maximum fabric switches into multiple maxima as the grain size increases rapidly in the deepest, warmest ice. A strong dependence of the fabric on the impurity-mediated grain size is apparent in the deepest samples.
Genetic profiling links changing sea-ice to shifting beluga whale migration patterns
Mahoney, Andrew R.; Suydam, Robert; Quakenbush, Lori; Whiting, Alex; Lowry, Lloyd; Harwood, Lois
2016-01-01
There is increasing concern over how Arctic fauna will adapt to climate related changes in sea-ice. We used long-term sighting and genetic data on beluga whales (Delphinapterus leucas) in conjunction with multi-decadal patterns of sea-ice in the Pacific Arctic to investigate the influence of sea-ice on spring migration and summer residency patterns. Substantial variations in sea-ice conditions were detected across seasons, years and sub-regions, revealing ice–ocean dynamics more complex than Arctic-wide trends suggest. This variation contrasted with a highly consistent pattern of migration and residency by several populations, indicating that belugas can accommodate widely varying sea-ice conditions to perpetuate philopatry to coastal migration destinations. However, a number of anomalous migration and residency events were detected and coincided with anomalous ice years, and in one case with an increase in killer whale (Orcinus orca) sightings and reported predation on beluga whales. The behavioural shifts were likely driven by changing sea-ice and associated changes in resource dispersion and predation risk. Continued reductions in sea-ice may result in increased predation at key aggregation areas and shifts in beluga whale behaviour with implications for population viability, ecosystem structure and the subsistence cultures that rely on them.
Atmospheric forcing of sea ice leads in the Beaufort Sea
NASA Astrophysics Data System (ADS)
Lewis, B. J.; Hutchings, J.; Mahoney, A. R.; Shapiro, L. H.
2016-12-01
Leads in sea ice play an important role in the polar marine environment where they allow heat and moisture transfer between the oceans and atmosphere and act as travel pathways for both marine mammals and ships. Examining AVHRR thermal imagery of the Beaufort Sea, collected between 1994 and 2010, sea ice leads appear in repeating patterns and locations (Eicken et al 2005). The leads, resolved by AVHRR, are at least 250m wide (Mahoney et al 2012), thus the patterns described are for lead systems that extend up to hundreds of kilometers across the Beaufort Sea. We describe how these patterns are associated with the location of weather systems relative to the coastline. Mean sea level pressure and 10m wind fields from ECMWF ERA-Interim reanalysis are used to identify if particular lead patterns can be uniquely forecast based on the location of weather systems. Ice drift data from the NSIDC's Polar Pathfinder Daily 25km EASE-Grid Sea Ice Motion Vectors indicates the role shear along leads has on the motion of ice in the Beaufort Gyre. Lead formation is driven by 4 main factors: (i) coastal features such as promontories and islands influence the origin of leads by concentrating stresses within the ice pack; (ii) direction of the wind forcing on the ice pack determines the type of fracture, (iii) the location of the anticyclone (or cyclone) center determines the length of the fracture for certain patterns; and (iv) duration of weather conditions affects the width of the ice fracture zones. Movement of the ice pack on the leeward side of leads originating at promontories and islands increases, creating shear zones that control ice transport along the Alaska coast in winter. . Understanding how atmospheric conditions influence the large-scale motion of the ice pack is needed to design models that predict variability of the gyre and export of multi-year ice to lower latitudes.
NASA Astrophysics Data System (ADS)
Putniņš, Artūrs; Henriksen, Mona
2017-05-01
More than 17 000 landforms from detailed LiDAR data sets have been mapped in the Gausdal Vestfjell area, south-central Norway. The spatial distribution and relationships between the identified subglacial bedforms, mainly streamlined landforms and ribbed moraine ridges, have provided new insight on the glacial dynamics and the sequence of glacial events during the last glaciation. This established evolution of the Late Weichselian ice flow pattern at this inner region of the Fennoscandian Ice Sheet is stepwise where a topography independent ice flow (Phase I) are followed by a regional (Phase II) before a strongly channelized, topography driven ice flow (Phase III). The latter phase is divided into several substages where the flow sets are becoming increasingly confined into the valleys, likely separated by colder, less active ice before down-melting of ice took place. A migrating ice divide and lowering of the ice surface seems to be the main reasons for these changes in ice flow pattern. Formation of ribbed moraine can occur both when the ice flow slows down and speeds up, forming respectively broad fields and elongated belts of ribbed moraines.
Marine resources. [coastal processes, ice, oceanography, and living marine resources
NASA Technical Reports Server (NTRS)
Tilton, E. L., III
1974-01-01
Techniques have been developed for defining coastal circulation patterns using sediment as a natural tracer, allowing the formulation of new circulation concepts in some geographical areas and, in general, a better capability for defining the seasonal characteristics of coastal circulation. An analytical technique for measurement of absolute water depth based upon the ratios of two MSS channels has been developed. Suspended sediment has found wide use as a tracer, but a few investigators have reported limited success in measuring the type and amount of sediment quantitatively from ERTS-1 digital data. Significant progress has been made in developing techniques for using ERTS-1 data to locate, identify, and monitor sea and lake ice. Ice features greater than 70 meters in width can be detected, and both arctic and antarctic icebergs have been identified. In the application area of living marine resources, the use of ERTS-1 image-density patterns as a potential indicator of fish school location has been demonstrated for one coastal commercial resource, menhaden. ERTS-1 data have been used to locate ocean current boundaries using ERTS-1 image-density enhancement, and some techniques are under development for measurement of suspended particle concentration and chlorophyll concentration. The interrelationship of water color and surface characteristics (sea state) are also being studied to improve spectral and spatial interpretive techniques.
Mechanisms resulting in accreted ice roughness
NASA Technical Reports Server (NTRS)
Bilanin, Alan J.; Chua, Kiat
1992-01-01
Icing tests conducted on rotating cylinders in the BF Goodrich's Icing Research Facility indicate that a regular, deterministic, icing roughness pattern is typical. The roughness pattern is similar to kernels of corn on a cob for cylinders of diameter typical of a cob. An analysis is undertaken to determine the mechanisms which result in this roughness to ascertain surface scale and amplitude of roughness. Since roughness and the resulting augmentation of the convected heat transfer coefficient has been determined to most strongly control the accreted ice in ice prediction codes, the ability to predict a priori, location, amplitude and surface scale of roughness would greatly augment the capabilities of current ice accretion models.
Hall, D.K.; Williams, R.S.; Barton, J.S.; Sigurdsson, O.; Smith, L.C.; Garvin, J.B.
2000-01-01
Dynamic surficial changes and changes in the position of the firn line and the areal extent of Hofsjökull ice cap, Iceland, were studied through analysis of a time series (1973–98) of synthetic-aperture radar (SAR) and Landsat data. A digital elevation model of Hofsjökull, which was constructed using SAR interferometry, was used to plot the SAR backscatter coefficient (σ°) vs elevation and air temperature along transects across the ice cap. Seasonal and daily σ° patterns are caused by freezing or thawing of the ice-cap surface, and abrupt changes in σ° are noted when the air temperature ranges from ∼−5° to 0°C. Late-summer 1997 σ° (SAR) and reflectance (Landsat) boundaries agree and appear to be coincident with the firn line and a SAR σ° boundary that can be seen in the January 1998 SAR image. In January 1994 through 1998, the elevation of this σ° boundary on the ice capwas quite stable, ranging from 1000 to 1300 m, while the equilibrium-line altitude, as measured on the ground, varied considerably. Thus the equilibrium line may be obscured by firn from previous years. Techniques are established to measure long-term changes in the elevation of the firn line and changes in the position of the ice margin.
A physical model of ice sheet response to changes in subglacial hydrology
NASA Astrophysics Data System (ADS)
Andrews, L. C.; Catania, G. A.; Buttles, J. L.; Andrews, A.; Markowski, M.
2010-12-01
Using a physical ice sheet model, we investigate the degree to which motion is controlled by local loss of basal traction versus longitudinal coupling during diurnal, seasonal, and event-type water pulses. Our model can be used to reproduce the spatial pattern and magnitude of ice surface displacements and can aid in the interpretation of ground-based GPS measurements, as it eliminates many of the complicating factors influencing surface velocity measurements. This model consists of a 3 x 1.5 meter plastic box with a grid of holes on the bed used to inject water directly between the interface of the box and a silicone polymer. Water flow is visualized using a colored dye. The polymer response to perturbations in water flow is measured by tracking surface markers through a series of overhead images. We report on a suite of experiments that explore the relationship between water discharge, basal traction, and surface displacements and compare our results to ground-based GPS measurements from a transect in western Greenland.
Controls on subglacial patterns and depositional environments in western Ireland
NASA Astrophysics Data System (ADS)
Knight, J.
2009-12-01
In western Ireland, Late Devensian ice flow dynamics and resultant patterns of landforms and sediments reflect the interplay between internal (glaciological) forcing and external forcing by rapid climate changes centred on the adjacent Atlantic Ocean. This interplay can be best demonstrated where ice from climatically-sensitive mountain source regions flowed into surrounding lowlands, such as the Connemara region of west County Galway, western Ireland. Here, a semi-independent ice cap was present over the Twelve Bens mountains, and interacted with ice from the much larger regional ice sheet from central Ireland. Landform and sediment patterns in the flat lowland region (c. 100 km2 below 30 m asl) to the south of the Twelve Bens reflect elements of this ice interaction. In detail, landform and sediment distributions here are highly complex with marked spatial differences in patterns of sediment availability. Across much of the region, sculpted bedrock forms (whaleback and bedrock drumlin ridges, roches mountonnées, striae) reflect subglacial abrasion across the underlying igneous and metamorphic bedrock that forms a relatively flat and lake-dominated landscape. Glacigenic sediments are found only at or around ice-retreat margins, and within isolated bedrock valleys. Here, diamicton drumlins are relatively uncommon but yet must represent depositional conditions that are not reflected elsewhere in this ice sheet sector where subglacial sediments are generally absent. This paper explores the interrelationship between local and regional ice flows through their impact on spatial patterns of glacial landforms and sediments. The paper presents field data on the characteristics of bedrock forms (erosional) and diamicton drumlins (depositional). Subglacial sediments are described from drumlin outcrops at key sites around Connemara, which helps in the understanding of the evolution of the subglacial environment in response to ice interactions from different source regions.
Aslam, Shazia N; Strauss, Jan; Thomas, David N; Mock, Thomas; Underwood, Graham J C
2018-05-01
Diatoms are significant primary producers in sea ice, an ephemeral habitat with steep vertical gradients of temperature and salinity characterizing the ice matrix environment. To cope with the variable and challenging conditions, sea ice diatoms produce polysaccharide-rich extracellular polymeric substances (EPS) that play important roles in adhesion, cell protection, ligand binding and as organic carbon sources. Significant differences in EPS concentrations and chemical composition corresponding to temperature and salinity gradients were present in sea ice from the Weddell Sea and Eastern Antarctic regions of the Southern Ocean. To reconstruct the first metabolic pathway for EPS production in diatoms, we exposed Fragilariopsis cylindrus, a key bi-polar diatom species, to simulated sea ice formation. Transcriptome profiling under varying conditions of EPS production identified a significant number of genes and divergent alleles. Their complex differential expression patterns under simulated sea ice formation was aligned with physiological and biochemical properties of the cells, and with field measurements of sea ice EPS characteristics. Thus, the molecular complexity of the EPS pathway suggests metabolic plasticity in F. cylindrus is required to cope with the challenging conditions of the highly variable and extreme sea ice habitat.
Sensing the bed-rock movement due to ice unloading from space using InSAR time-series
NASA Astrophysics Data System (ADS)
Zhao, W.; Amelung, F.; Dixon, T. H.; Wdowinski, S.
2014-12-01
Ice-sheets in the Arctic region are retreating rapidly since late 1990s. Typical ice loss rates are 0.5 - 1 m/yr at the Canadian Arctic Archipelago, ~ 1 m/yr at the Icelandic ice sheets, and several meters per year at the edge of Greenland ice sheet. Such load decreasing causes measurable (several millimeter per year) deformation of the Earth's crust from Synthetic Aperture Radar Interferometry (InSAR). Using small baseline time-series analysis, this signal is retrieved after noises such as orbit error, atmospheric delay and DEM error being removed. We present results from Vatnajokull ice cap, Petermann glacier and Barnes ice cap using ERS, Envisat and TerraSAR-X data. Up to 2 cm/yr relative radar line-of-sight displacement is detected. The pattern of deformation matches the shape of ice sheet very well. The result in Iceland was used to develop a new model for the ice mass balance estimation from 1995 to 2010. Other applications of this kind of technique include validation of ICESat or GRACE based ice sheet model, Earth's rheology (Young's modulus, viscosity and so on). Moreover, we find a narrow (~ 1km) uplift zone close to the periglacial area of Petermann glacier which may due to a special rheology under the ice stream.
Short-term velocity measurements at Columbia Glacier, Alaska; August-September 1984
Vaughn, B.H.; Raymond, C.F.; Rasmussen, Lowell A.; Miller, D.S.; Michaelson, C.A.; Meier, M.F.; Krimmel, R.M.; Fountain, A.G.; Dunlap, W.W.; Brown, C.S.
1985-01-01
Ice velocity data are presented for the lower reach of Columbia Glacier, Alaska. The data span a 29 day period and contain 1,072 angle sightings from two survey stations to 22 markers placed on the ice surface, and 1,621 laser measurements of the distance to one of those markers (number 11) from another station. These short-interval observations were made to investigate the dynamics of the glacier and to provide input to models for estimation of future retreat and iceberg discharge. The mean ice velocity (at marker number 11) was approximately 9 m/day and ranged from 8 to < 15 m/day. The data set includes a well defined 2-day, 50% velocity increase and a clear pattern of velocity fluctuations of about 5% with approximately diurnal and semiurnal periods. (Author 's abstract)
Change and Variability in East Antarctic Sea Ice Seasonality, 1979/80–2009/10
Massom, Robert; Reid, Philip; Stammerjohn, Sharon; Raymond, Ben; Fraser, Alexander; Ushio, Shuki
2013-01-01
Recent analyses have shown that significant changes have occurred in patterns of sea ice seasonality in West Antarctica since 1979, with wide-ranging climatic, biological and biogeochemical consequences. Here, we provide the first detailed report on long-term change and variability in annual timings of sea ice advance, retreat and resultant ice season duration in East Antarctica. These were calculated from satellite-derived ice concentration data for the period 1979/80 to 2009/10. The pattern of change in sea ice seasonality off East Antarctica comprises mixed signals on regional to local scales, with pockets of strongly positive and negative trends occurring in near juxtaposition in certain regions e.g., Prydz Bay. This pattern strongly reflects change and variability in different elements of the marine “icescape”, including fast ice, polynyas and the marginal ice zone. A trend towards shorter sea-ice duration (of 1 to 3 days per annum) occurs in fairly isolated pockets in the outer pack from∼95–110°E, and in various near-coastal areas that include an area of particularly strong and persistent change near Australia's Davis Station and between the Amery and West Ice Shelves. These areas are largely associated with coastal polynyas that are important as sites of enhanced sea ice production/melt. Areas of positive trend in ice season duration are more extensive, and include an extensive zone from 160–170°E (i.e., the western Ross Sea sector) and the near-coastal zone between 40–100°E. The East Antarctic pattern is considerably more complex than the well-documented trends in West Antarctica e.g., in the Antarctic Peninsula-Bellingshausen Sea and western Ross Sea sectors. PMID:23705008
Change and variability in East antarctic sea ice seasonality, 1979/80-2009/10.
Massom, Robert; Reid, Philip; Stammerjohn, Sharon; Raymond, Ben; Fraser, Alexander; Ushio, Shuki
2013-01-01
Recent analyses have shown that significant changes have occurred in patterns of sea ice seasonality in West Antarctica since 1979, with wide-ranging climatic, biological and biogeochemical consequences. Here, we provide the first detailed report on long-term change and variability in annual timings of sea ice advance, retreat and resultant ice season duration in East Antarctica. These were calculated from satellite-derived ice concentration data for the period 1979/80 to 2009/10. The pattern of change in sea ice seasonality off East Antarctica comprises mixed signals on regional to local scales, with pockets of strongly positive and negative trends occurring in near juxtaposition in certain regions e.g., Prydz Bay. This pattern strongly reflects change and variability in different elements of the marine "icescape", including fast ice, polynyas and the marginal ice zone. A trend towards shorter sea-ice duration (of 1 to 3 days per annum) occurs in fairly isolated pockets in the outer pack from∼95-110°E, and in various near-coastal areas that include an area of particularly strong and persistent change near Australia's Davis Station and between the Amery and West Ice Shelves. These areas are largely associated with coastal polynyas that are important as sites of enhanced sea ice production/melt. Areas of positive trend in ice season duration are more extensive, and include an extensive zone from 160-170°E (i.e., the western Ross Sea sector) and the near-coastal zone between 40-100°E. The East Antarctic pattern is considerably more complex than the well-documented trends in West Antarctica e.g., in the Antarctic Peninsula-Bellingshausen Sea and western Ross Sea sectors.
Classification and Feature Selection Algorithms for Modeling Ice Storm Climatology
NASA Astrophysics Data System (ADS)
Swaminathan, R.; Sridharan, M.; Hayhoe, K.; Dobbie, G.
2015-12-01
Ice storms account for billions of dollars of winter storm loss across the continental US and Canada. In the future, increasing concentration of human populations in areas vulnerable to ice storms such as the northeastern US will only exacerbate the impacts of these extreme events on infrastructure and society. Quantifying the potential impacts of global climate change on ice storm prevalence and frequency is challenging, as ice storm climatology is driven by complex and incompletely defined atmospheric processes, processes that are in turn influenced by a changing climate. This makes the underlying atmospheric and computational modeling of ice storm climatology a formidable task. We propose a novel computational framework that uses sophisticated stochastic classification and feature selection algorithms to model ice storm climatology and quantify storm occurrences from both reanalysis and global climate model outputs. The framework is based on an objective identification of ice storm events by key variables derived from vertical profiles of temperature, humidity and geopotential height. Historical ice storm records are used to identify days with synoptic-scale upper air and surface conditions associated with ice storms. Evaluation using NARR reanalysis and historical ice storm records corresponding to the northeastern US demonstrates that an objective computational model with standard performance measures, with a relatively high degree of accuracy, identify ice storm events based on upper-air circulation patterns and provide insights into the relationships between key climate variables associated with ice storms.
NASA Astrophysics Data System (ADS)
Buizert, Christo; Petrenko, Vasilii V.; Kavanaugh, Jeffrey L.; Cuffey, Kurt M.; Lifton, Nathaniel A.; Brook, Edward J.; Severinghaus, Jeffrey P.
2012-06-01
Radiocarbon measurements at ice margin sites and blue ice areas can potentially be used for ice dating, ablation rate estimates and paleoclimatic reconstructions. Part of the measured signal comes from in situ cosmogenic 14C production in ice, and this component must be well understood before useful information can be extracted from 14C data. We combine cosmic ray scaling and production estimates with a two-dimensional ice flow line model to study cosmogenic 14C production at Taylor Glacier, Antarctica. We find (1) that 14C production through thermal neutron capture by nitrogen in air bubbles is negligible; (2) that including ice flow patterns caused by basal topography can lead to a surface 14C activity that differs by up to 25% from the activity calculated using an ablation-only approximation, which is used in all prior work; and (3) that at high ablation margin sites, solar modulation of the cosmic ray flux may change the strength of the dominant spallogenic production by up to 10%. As part of this effort we model two-dimensional ice flow along the central flow line of Taylor Glacier. We present two methods for parameterizing vertical strain rates, and assess which method is more reliable for Taylor Glacier. Finally, we present a sensitivity study from which we conclude that uncertainties in published cosmogenic production rates are the largest source of potential error. The results presented here can inform ongoing and future 14C and ice flow studies at ice margin sites, including important paleoclimatic applications such as the reconstruction of paleoatmospheric 14C content of methane.
1988 Macelwane Medal to Douglas R. MacAyeal
NASA Astrophysics Data System (ADS)
Thomas, Robert H.; MacAyeal, Douglas R.
Doug MacAyeal is one of the foremost scientists working on ice sheet glaciology. He has focused attention on problems that are critical to ice sheet response to climate change and has developed a powerful capability to develop realistic theoretical models of phenomena of which he has first-hand experience.I met Doug 12 years ago at the University of Maine, where I was seeking a graduate assistant to work with me, measuring patterns of ice deformation in order to investigate the role of the Ross Ice Shelf in regulating ice discharge from the Antarctic ice sheet. I had only recently arrived in Maine, and I have to confess that I expected little more than to find an eager, strong young chap to help out with the field work. I expected to rely on my own meager resources to interpret the data that we would acquire. But instead, the first student I interviewed was Doug—a highly qualified physics graduate from Brown University. He had already developed a catastrophe model of paleoclimate in which global ice cover played a key role. It need hardly be said that I interviewed no others.
The presence of clathrates in comet 67P/Churyumov-Gerasimenko
Luspay-Kuti, Adrienn; Mousis, Olivier; Hässig, Myrtha; Fuselier, Stephen A.; Lunine, Jonathan I.; Marty, Bernard; Mandt, Kathleen E.; Wurz, Peter; Rubin, Martin
2016-01-01
Cometary nuclei are considered to most closely reflect the composition of the building blocks of our solar system. As such, comets carry important information about the prevalent conditions in the solar nebula before and after planet formation. Recent measurements of the time variation of major and minor volatile species in the coma of the Jupiter family comet 67P/Churyumov-Gerasimenko (67P) by the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instrument onboard Rosetta provide insight into the possible origin of this comet. The observed outgassing pattern indicates that the nucleus of 67P contains crystalline ice, clathrates, and other ices. The observed outgassing is not consistent with gas release from an amorphous ice phase with trapped volatile gases. If the building blocks of 67P were formed from crystalline ices and clathrates, then 67P would have agglomerated from ices that were condensed and altered in the protosolar nebula closer to the Sun instead of more pristine ices originating from the interstellar medium or the outskirts of the disc, where amorphous ice may dominate. PMID:27152351
The presence of clathrates in comet 67P/Churyumov-Gerasimenko.
Luspay-Kuti, Adrienn; Mousis, Olivier; Hässig, Myrtha; Fuselier, Stephen A; Lunine, Jonathan I; Marty, Bernard; Mandt, Kathleen E; Wurz, Peter; Rubin, Martin
2016-04-01
Cometary nuclei are considered to most closely reflect the composition of the building blocks of our solar system. As such, comets carry important information about the prevalent conditions in the solar nebula before and after planet formation. Recent measurements of the time variation of major and minor volatile species in the coma of the Jupiter family comet 67P/Churyumov-Gerasimenko (67P) by the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instrument onboard Rosetta provide insight into the possible origin of this comet. The observed outgassing pattern indicates that the nucleus of 67P contains crystalline ice, clathrates, and other ices. The observed outgassing is not consistent with gas release from an amorphous ice phase with trapped volatile gases. If the building blocks of 67P were formed from crystalline ices and clathrates, then 67P would have agglomerated from ices that were condensed and altered in the protosolar nebula closer to the Sun instead of more pristine ices originating from the interstellar medium or the outskirts of the disc, where amorphous ice may dominate.
A review of the physics of ice surface friction and the development of ice skating.
Formenti, Federico
2014-01-01
Our walking and running movement patterns require friction between shoes and ground. The surface of ice is characterised by low friction in several naturally occurring conditions, and compromises our typical locomotion pattern. Ice skates take advantage of this slippery nature of ice; the first ice skates were made more than 4000 years ago, and afforded the development of a very efficient form of human locomotion. This review presents an overview of the physics of ice surface friction, and discusses the most relevant factors that can influence ice skates' dynamic friction coefficient. It also presents the main stages in the development of ice skating, describes the associated implications for exercise physiology, and shows the extent to which ice skating performance improved through history. This article illustrates how technical and materials' development, together with empirical understanding of muscle biomechanics and energetics, led to one of the fastest forms of human powered locomotion.
NASA Astrophysics Data System (ADS)
Bartholomaus, T. C.; Larsen, C. F.; O'Neel, S.; West, M. E.
2012-12-01
When a glacier terminus recedes, not only does the glacier lose the ice between the former and present terminus, but the terminal reach of the glacier can steepen, causing ice flow out of the glacier interior increases. The increased flow will continue, thinning the glacier, until the glacier geometry and ice flow reach a new equilibrium. Yahtse Glacier is an advancing tidewater glacier on the Gulf of Alaska coast. To better understand the controls on its terminus position, we use a suite of seismic, geodetic and oceanographic data. Both calving and submarine melt contribute to frontal ablation, however, at Yahtse Glacier the ice is too fractured to support undercutting below the water line, nor does a persistent submarine toe develop. Thus the terminus retreats as fast as subaerial calving occurs. Previous work at Yahtse Glacier demonstrated that locally recorded seismic events between 1 and 5 Hz are predominantly the result of subaerial iceberg calving. Therefore, we use seismicity as a proxy for the frontal ablation rate. We measure the near-terminus glacier velocity with oblique photogrammetry, calibrated with ~10 day intervals of surveyed ice velocity. These methods reveal an annually-averaged terminus velocity of 6.9 km/yr. The frontal ablation rate and the terminus ice velocity are nearly in phase and reach maximum values twice per year: in the spring and fall. Integrating the difference between frontal ablation rate and terminus ice velocity reveals a pattern of terminus positions with a single annual cycle, quite similar to that which we observe in the field. GPS measurements 10 km from the terminus indicate that ice velocities peak in May and decrease through the summer. Oceanographic measurements show that near-shore surface water temperatures in the Gulf of Alaska are greatest in the fall. We suggest that the spring peak in terminus velocity is set by higher rates of ice delivery from up-glacier; calving rate increases in a compensatory way, to nearly match the ice velocity. In the fall, ice melt increases terminus undercutting, leading to increased subaerial iceberg calving. Near-terminus ice velocity experiences a compensatory response. Thus the oceanographic and up-glacier ice flux trade off control of the terminus seasonally.
Cherry, Seth G; Derocher, Andrew E; Thiemann, Gregory W; Lunn, Nicholas J
2013-07-01
Understanding how seasonal environmental conditions affect the timing and distribution of synchronized animal movement patterns is a central issue in animal ecology. Migration, a behavioural adaptation to seasonal environmental fluctuations, is a fundamental part of the life history of numerous species. However, global climate change can alter the spatiotemporal distribution of resources and thus affect the seasonal movement patterns of migratory animals. We examined sea ice dynamics relative to migration patterns and seasonal geographical fidelity of an Arctic marine predator, the polar bear (Ursus maritimus). Polar bear movement patterns were quantified using satellite-linked telemetry data collected from collars deployed between 1991-1997 and 2004-2009. We showed that specific sea ice characteristics can predict the timing of seasonal polar bear migration on and off terrestrial refugia. In addition, fidelity to specific onshore regions during the ice-free period was predicted by the spatial pattern of sea ice break-up but not by the timing of break-up. The timing of migration showed a trend towards earlier arrival of polar bears on shore and later departure from land, which has been driven by climate-induced declines in the availability of sea ice. Changes to the timing of migration have resulted in polar bears spending progressively longer periods of time on land without access to sea ice and their marine mammal prey. The links between increased atmospheric temperatures, sea ice dynamics, and the migratory behaviour of an ice-dependent species emphasizes the importance of quantifying and monitoring relationships between migratory wildlife and environmental cues that may be altered by climate change. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Identification of Organics in Ice Grains from Enceladus
NASA Astrophysics Data System (ADS)
Khawaja, N.; Postberg, F.; Reviol, R.; Nölle, L.; Klenner, F.; Srama, R.
2015-12-01
The Cosmic Dust Analyzer (CDA) aboard the Cassini spacecraft performs in-situ measurements of the chemical composition of icy dust grains impinging onto the target surface. The instrument recorded cationic Time-of-Flight (ToF) mass spectra of organic-bearing ice grains emitted from Enceladus at different impact velocities causing different molecular fragmentation patterns [1,2]. Here we present a detailed analysis of these spectra (Type-2) to identify the composition of organic material embedded in Enceladus ice grains. The organic compounds display a great compositional diversity, which indicates varying contributions of several organic species. The spectra analysis is supported by a large-scale laboratory ground campaign yielding a library of analogue spectra for organic material embedded in a water ice matrix. To mimic the identified pattern of cationic fragments in organic enriched spectra we use a laboratory setup: Infrared Free Liquid MALDI ToF Mass Spectrometer (IR-FL-MALDI-ToF-MS). An infrared laser is used to disperse a liquid micro-beam of a water-solution to get cationic fragments. The laser energy is adjusted to simulate different impact velocities of ice particles on CDA [3]. So far we have identified characteristic fragment patterns of at least three classes of organic molecules: (i) aromatic species, (ii) amines, and (iii) carbonyl group species. (i) ice grains containing aromatic species are identified by a series of characteristic aromatic fragment cations (ii) ice grains containing amines are identified by a pronounced ammonium cation and (iii) ice grains containing carbonyl compounds are specified by a characteristic acylium cation in conjunction with certain others mass lines. Besides aromatic, amine and carbonyl species, Type-2 spectra also show contributions from other, yet un-specified, organic species. Typically, fragment cations of aromatic compounds are stable at impact velocities up-to 15km/s whereas cations of amines and carbonyl species are stable at velocities below 8km/s. Work is in progress to quantify concentrations of the identified species and to assign yet un-specified organic mass lines in Type 2 spectra. Ref: [1]Postberg et al., Icarus-193,2008. [2]Postberg et al., Nature-459,2009. [3]Beinsen, A., University of Göttingen, Dissertation (2011).
NASA Astrophysics Data System (ADS)
Stroeve, J. C.
2014-12-01
The last four decades have seen a remarkable decline in the spatial extent of the Arctic sea ice cover, presenting both challenges and opportunities to Arctic residents, government agencies and industry. After the record low extent in September 2007 effort has increased to improve seasonal, decadal-scale and longer-term predictions of the sea ice cover. Coupled global climate models (GCMs) consistently project that if greenhouse gas concentrations continue to rise, the eventual outcome will be a complete loss of the multiyear ice cover. However, confidence in these projections depends o HoHoweon the models ability to reproduce features of the present-day climate. Comparison between models participating in the World Climate Research Programme Coupled Model Intercomparison Project Phase 5 (CMIP5) and observations of sea ice extent and thickness show that (1) historical trends from 85% of the model ensemble members remain smaller than observed, and (2) spatial patterns of sea ice thickness are poorly represented in most models. Part of the explanation lies with a failure of models to represent details of the mean atmospheric circulation pattern that governs the transport and spatial distribution of sea ice. These results raise concerns regarding the ability of CMIP5 models to realistically represent the processes driving the decline of Arctic sea ice and to project the timing of when a seasonally ice-free Arctic may be realized. On shorter time-scales, seasonal sea ice prediction has been challenged to predict the sea ice extent from Arctic conditions a few months to a year in advance. Efforts such as the Sea Ice Outlook (SIO) project, originally organized through the Study of Environmental Change (SEARCH) and now managed by the Sea Ice Prediction Network project (SIPN) synthesize predictions of the September sea ice extent based on a variety of approaches, including heuristic, statistical and dynamical modeling. Analysis of SIO contributions reveals that when the September sea ice extent is near the long-term trend, contributions tend to be accurate. Years when the observed extent departs from the trend have proven harder to predict. Predictability skill does not appear to be more accurate for dynamical models over statistical ones, nor is there a measurable improvement in skill as the summer progresses.
NASA Astrophysics Data System (ADS)
Xiong, C.; Shi, J.; Wang, T.
2017-12-01
Snow and ice is very sensitive to the climate change. Rising air temperature will cause the snowmelt time change. In contrast, the change in snow state will have feedback on climate through snow albedo. The snow melt timing is also correlated with the associated runoff. Ice phenology describes the seasonal cycle of lake ice cover and includes freeze-up and breakup periods and ice cover duration, which is an important weather and climate indicator. It is also important for lake-atmosphere interactions and hydrological and ecological processes. The enhanced resolution (up to 3.125 km) passive microwave data is used to estimate the snowmelt pattern and lake ice phenology on and around Tibetan Plateau. The enhanced resolution makes the estimation of snowmelt and lake ice phenology in more spatial detail compared to previous 25 km gridded passive microwave data. New algorithm based on smooth filters and change point detection was developed to estimate the snowmelt and lake ice freeze-up and break-up timing. Spatial and temporal pattern of snowmelt and lake ice phonology are estimated. This study provides an objective evidence of climate change impact on the cryospheric system on Tibetan Plateau. The results show significant earlier snowmelt and lake ice break-up in some regions.
Ice shelf basal melt rates around Antarctica from simulations and observations
NASA Astrophysics Data System (ADS)
Schodlok, M. P.; Menemenlis, D.; Rignot, E. J.
2016-02-01
We introduce an explicit representation of Antarctic ice shelf cavities in the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) ocean retrospective analysis; and compare resulting basal melt rates and patterns to independent estimates from satellite observations. Two simulations are carried out: the first is based on the original ECCO2 vertical discretization; the second has higher vertical resolution particularly at the depth range of ice shelf cavities. The original ECCO2 vertical discretization produces higher than observed melt rates and leads to a misrepresentation of Southern Ocean water mass properties and transports. In general, thicker levels at the base of the ice shelves lead to increased melting because of their larger heat capacity. This strengthens horizontal gradients and circulation within and outside the cavities and, in turn, warm water transports from the shelf break to the ice shelves. The simulation with more vertical levels produces basal melt rates (1735 ± 164 Gt/a) and patterns that are in better agreement with observations. Thinner levels in the sub-ice-shelf cavities improve the representation of a fresh/cold layer at the ice shelf base and of warm/salty water near the bottom, leading to a sharper pycnocline and reduced vertical mixing underneath the ice shelf. Improved water column properties lead to more accurate melt rates and patterns, especially for melt/freeze patterns under large cold-water ice shelves. At the 18 km grid spacing of the ECCO2 model configuration, the smaller, warm-water ice shelves cannot be properly represented, with higher than observed melt rates in both simulations.
Raymond, Méliane R; Wharton, David A
2016-07-01
A few species of nematodes can survive extensive intracellular freezing throughout all their tissues, an event that is usually thought to be fatal to cells. How are they able to survive in this remarkable way? The pattern and distribution of ice formed, after freezing at -10°C, can be observed using freeze substitution and transmission electron microscopy, which preserves the former position of ice as white spaces. We compared the pattern and distribution of ice formed in a nematode that survives intracellular freezing well (Panagrolaimus sp. DAW1), one that survives poorly (Panagrellus redivivus) and one with intermediate levels of survival (Plectus murrayi). We also examined Panagrolaimus sp. in which the survival of freezing had been compromised by starvation. Levels of survival were as expected and the use of vital dyes indicated cellular damage in those that survived poorly (starved Panagrolaimus sp. and P. murrayi). In fed Panagrolaimus sp. the intracellular ice spaces were small and uniform, whereas in P. redivivus and starved Panagrolaimus sp. there were some large spaces that may be causing cellular damage. The pattern and distribution of ice formed was different in P. murrayi, with a greater number of individuals having no ice or only small intracellular ice spaces. Control of the size of the ice formed is thus important for the survival of intracellular freezing in nematodes. © 2016. Published by The Company of Biologists Ltd.
A 19-year radar altimeter elevation change time-series of the East and West Antarctic ice sheets
NASA Astrophysics Data System (ADS)
Sundal, A. V.; Shepherd, A.; Wingham, D.; Muir, A.; Mcmillan, M.; Galin, N.
2012-12-01
We present 19 years of continuous radar altimeter observations of the East and West Antarctic ice sheets acquired by the ERS-1, ERS-2, and ENVISAT satellites between May 1992 and September 2010. Time-series of surface elevation change were developed at 39,375 crossing points of the satellite orbit ground tracks using the method of dual cycle crossovers (Zwally et al., 1989; Wingham et al., 1998). In total, 46.5 million individual measurements were included in the analysis, encompassing 74 and 76 % of the East and West Antarctic ice sheet, respectively. The satellites were cross-calibrated by calculating differences between elevation changes occurring during periods of mission overlap. We use the merged time-series to explore spatial and temporal patterns of elevation change and to characterise and quantify the signals of Antarctic ice sheet imbalance. References: Wingham, D., Ridout, A., Scharroo, R., Arthern, R. & Shum, C.K. (1998): Antarctic elevation change from 1992 to 1996. Science, 282, 456-458. Zwally, H. J., Brenner, A. C., Major, J. A., Bindschadler, R. A. & Marsh, J. G. (1989): Growth of Greenland ice-sheet - measurements. Science, 246, 1587-1589.
Observed and Modeled Trends in Southern Ocean Sea Ice
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
2003-01-01
Conceptual models and global climate model (GCM) simulations have both indicated the likelihood of an enhanced sensitivity to climate change in the polar regions, derived from the positive feedbacks brought about by the polar abundance of snow and ice surfaces. Some models further indicate that the changes in the polar regions can have a significant impact globally. For instance, 37% of the temperature sensitivity to a doubling of atmospheric CO2 in simulations with the GCM of the Goddard Institute for Space Studies (GISS) is attributable exclusively to inclusion of sea ice variations in the model calculations. Both sea ice thickness and sea ice extent decrease markedly in the doubled CO, case, thereby allowing the ice feedbacks to occur. Stand-alone sea ice models have shown Southern Ocean hemispherically averaged winter ice-edge retreats of 1.4 deg latitude for each 1 K increase in atmospheric temperatures. Observations, however, show a much more varied Southern Ocean ice cover, both spatially and temporally, than many of the modeled expectations. In fact, the satellite passive-microwave record of Southern Ocean sea ice since late 1978 has revealed overall increases rather than decreases in ice extents, with ice extent trends on the order of 11,000 sq km/year. When broken down spatially, the positive trends are strongest in the Ross Sea, while the trends are negative in the Bellingshausen/Amundsen Seas. Greater spatial detail can be obtained by examining trends in the length of the sea ice season, and those trends show a coherent picture of shortening sea ice seasons throughout almost the entire Bellingshausen and Amundsen Seas to the west of the Antarctic Peninsula and in the far western Weddell Sea immediately to the east of the Peninsula, with lengthening sea ice seasons around much of the rest of the continent. This pattern corresponds well with the spatial pattern of temperature trends, as the Peninsula region is the one region in the Antarctic with a strong record of temperature increases. Still, although the patterns of the temperature and ice changes match fairly well, there is a substantial ways to go before these patterns are understood (and can be modeled) in the full context of global change.
Dynamics of the global meridional ice flow of Europa's icy shell
NASA Astrophysics Data System (ADS)
Ashkenazy, Yosef; Sayag, Roiy; Tziperman, Eli
2018-01-01
Europa is one of the most probable places in the solar system to find extra-terrestrial life1,2, motivating the study of its deep ( 100 km) ocean3-6 and thick icy shell3,7-11. The chaotic terrain patterns on Europa's surface12-15 have been associated with vertical convective motions within the ice8,10. Horizontal gradients of ice thickness16,17 are expected due to the large equator-to-pole gradient of surface temperature and can drive a global horizontal ice flow, yet such a flow and its observable implications have not been studied. We present a global ice flow model for Europa composed of warm, soft ice flowing beneath a cold brittle rigid ice crust3. The model is coupled to an underlying (diffusive) ocean and includes the effect of tidal heating and convection within the ice. We show that Europa's ice can flow meridionally due to pressure gradients associated with equator-to-pole ice thickness differences, which can be up to a few km and can be reduced both by ice flow and due to ocean heat transport. The ice thickness and meridional flow direction depend on whether the ice convects or not; multiple (convecting and non-convecting) equilibria are found. Measurements of the ice thickness and surface temperature from future Europa missions18,19 can be used with our model to deduce whether Europa's icy shell convects and to constrain the effectiveness of ocean heat transport.
Prospecting for Martian Ice from Orbit
NASA Technical Reports Server (NTRS)
Kanner, L. C.; Bell, M. S.; Allen, C. C.
2003-01-01
Recent data from the Gamma-Ray Spectrometer (GRS) on Mars Odyssey indicate the presence of a hydrogen-rich layer tens of centimeters thick in high latitudes on Mars. This hydrogen-rich layer correlates to previously determined regions of ice stability. It has been suggested that the subsurface hydrogen is ice and constitutes 35 plus or minus 15% by weight near the north and south polar regions. This study constrains the location of subsurface ice deposits on the scale of kilometers or smaller by combining GRS data with surface features indicative of subsurface ice. The most recognizable terrestrial geomorphic indicators of subsurface ice, formed in permafrost and periglacial environments, include thermokarst pits, pingos, pseudocraters and patterned ground. Patterned ground features have geometric forms such as circles, polygons, stripes and nets. This study focuses on the polygonal form of patterned ground, selected for its discernable shape and subsurface implications. Polygonal features are typically demarcated by troughs, beneath which grow vertical ice-wedges. Ice-wedges form in thermal contraction cracks in ice-rich soil and grow with annual freezing and thawing events repeated over tens of years. Ice wedges exist below the depth of seasonal freeze-thaw. Terrestrial ice wedges can be several meters deep and polygons can be tens of meters apart, and, on rare occasions, up to 1 km. The crack spacing of terrestrial polygons is typically 3 to 10 times the crack depth.
Predicted and measured transmission and diffraction by a metallic mesh coating
NASA Astrophysics Data System (ADS)
Halman, Jennifer I.; Ramsey, Keith A.; Thomas, Michael; Griffin, Andrew
2009-05-01
Metallic mesh coatings are used on visible and infrared windows and domes to provide shielding from electromagnetic interference (EMI) and as heaters to de-fog or de-ice windows or domes. The periodic metallic mesh structures that provide the EMI shielding and/or resistive electrical paths for the heating elements create a diffraction pattern when optical or infrared beams are incident on the coated windows. Over the years several different mesh geometries have been used to try to reduce the effects of diffraction. We have fabricated several different mesh patterns on small coupons of BK-7 and measured the transmitted power and the diffraction patterns of each one using a CW 1064 nm laser. In this paper we will present some predictions and measurements of the diffraction patterns of several different mesh patterns.
Retreat of the Southwest Labrador Sector of the Laurentide Ice Sheet During the Last Termination
NASA Astrophysics Data System (ADS)
Lowell, T. V.; Kelly, M. A.; Fisher, T. G.; Barnett, P. J.; Howley, J. A.; Zimmerman, S. R. H.
2016-12-01
Large ice sheets are suspected to have played a major role in forcing the transitions from glacial to interglacial conditions, known as terminations. To improve the understanding of the role of the Laurentide Ice Sheet in the last termination, we present a chronology of ice sheet recession from just subsequent to end of the Last Glacial Maximum (LGM) to the early Holocene. We focus on the retreat of the southwest Labrador Sector of the ice sheet in northern Minnesota and adjacent Ontario. Multiple moraines in this region mark an overall pattern of ice recession interrupted by stillstands and/or minor readvances. Radiocarbon and 10Be ages from 50 sites along this 400 km-long transect indicate that the oldest moraine complex, the Vermillion moraine, formed at 17.0 ka. Subsequently, the ice margin retreated with minor standstills until the Dog Lake moraine was deposited between 12.7 and 12.3 ka. Recession from the Dog Lake moraine began by 12.3 ka the ice margin receded 150 km to the north-northeast by 10.7 ka. In general, the radiocarbon and 10Be ages define a pattern of near-continuous ice sheet retreat. Deposition of the Vermillion and Dog Lake moraines occurred at the beginning of Heinrich stadials 1 ( 17.5-14.5 ka) and 0 ( 12.9-11.7 ka), respectively, but ice recession occurred throughout the remainder of these stadials. This pattern is different from climate conditions registered by Greenland ice cores which show cold conditions from the end of the LGM until the Bølling warming at 14.5 ka, and throughout the Younger Dryas ( 12.9-11.7 ka). We suggest that the pattern of ice sheet recession is more similar to mountain glaciers in the southern mid-latitudes and tropics, and that Heinrich stadials may have been characterized by warming at least in the summertime that influenced near global ice recession.
NASA Technical Reports Server (NTRS)
Zwally, H. Jay
2004-01-01
NASA's Ice, Cloud and Land Elevation Satellite (ICESat) has been measuring elevations of the Antarctic ice sheet and sea-ice freeboard elevations with unprecedented accuracy. Since February 20,2003, data has been acquired during three periods of laser operation varying from 36 to 54 days, which is less than the continuous operation of 3 to 5 years planned for the mission. The primary purpose of ICESat is to measure time-series of ice-sheet elevation changes for determination of the present-day mass balance of the ice sheets, study of associations between observed ice changes and polar climate, and estimation of the present and future contributions of the ice sheets to global sea level rise. ICESat data will continue to be acquired for approximately 33 days periods at 3 to 6 month intervals with the second of ICESat's three lasers, and eventually with the third laser. The laser footprints are about 70 m on the surface and are spaced at 172 m along-track. The on-board GPS receiver enables radial orbit determinations to an accuracy better than 5 cm. The orbital altitude is around 600 km at an inclination of 94 degrees with a 8-day repeat pattern for the calibration and validation period, followed by a 91 -day repeat period for the rest of the mission. The expected range precision of single footprint measurements was 10 cm, but the actual range precision of the data has been shown to be much better at 2 to 3 cm. The star-tracking attitude-determination system should enable footprints to be located to 6 m horizontally when attitude calibrations are completed. With the present attitude calibration, the elevation accuracy over the ice sheets ranges from about 30 cm over the low-slope areas to about 80 cm over areas with slopes of 1 to 2 degrees, which is much better than radar altimetry. After the first period of data collection, the spacecraft attitude was controlled to point the laser beam to within 50 m of reference surface tracks over the ice sheets. Detection of ice elevation changes over select areas of the ice sheet is demonstrated with using both crossover analysis and precise-repeat track analysis. Sea ice freeboard-height distributions over the Antarctic sea pack are derived over distances of 50 km and converted into maps of average freeboard thickness and sea-ice thickness.
NASA Astrophysics Data System (ADS)
Jamieson, Stewart; Roberts, Dave; Rea, Brice; Lane, Timothy; Vieli, Andreas; Cofaigh, Colm Ó.
2014-05-01
We aim to understand what controlled the retreat pattern of the Uummannaq Ice Stream (UIS) during the last deglaciation. Evidence for the pattern of retreat is found in both the marine and terrestrial realms, but because the evidence is temporally and spatially discontinuous, it is challenging to coherently reconstruct both grounding-line retreat and ice-surface thinning such that they are in agreement. Marine stratigraphic and geophysical evidence indicates that the ice stream was grounded close to the continental shelf edge at the Last Glacial Maximum, and retreated rapidly and nonlinearly after 14.8 ka. Cosmogenic nuclide exposure dating on Ubekendt Island at the convergence zone of multiple feeder ice streams show that the ice surface thinned progressively and that the island became ice-free by ca. 12.4 ka. The ice stream then collapsed over the next 1-1.6 kyrs and the ice stream separated into a series of distinct inland arms. In the northernmost Rinks system, there is a 'staircase' of evidence showing ice surface thinning over time, but it is unclear where the grounding line was located during this phase of thinning. Furthermore, it is currently unclear what controlled the nonlinear retreat pattern identified in the Uummannaq system. We develop a numerical model of ice-stream retreat using the marine geophysical data and measurements of sediment strength on the continental shelf to control the boundary conditions. The model has the capability to dynamically and robustly simulate grounding line-retreat behaviour over millennial timescales. We simulate the retreat of the UIS grounding line into the northernmost Rinks system in response to enhanced ocean warming, rising sea level and warming climate. We compare the simulated dynamic behaviour of the UIS against the geomorphological and cosmogenic exposure evidence for ice surface thinning onshore and against dated marine grounding line positions. Our model results enable us to match grounding-line positions in the marine trough to distinct onshore ice-surface heights, and therefore provide a 2-dimensional reconstruction of the geometry of the UIS as it retreated after the LGM. We find that the nonlinearity in retreat rate is conditioned by the locations of vertical and lateral constrictions in the Uummannaq/Rink trough which provide temporary pinning points for the grounding line. When the grounding line retreats rapidly between pinning points, the ice surface thins rapidly inland. When the grounding line is pinned, thinning of the ice surface becomes much slower in locations corresponding to the deposition of moraines. We suggest that the slowdowns in retreat identified in the marine domain are therefore reflected by the generation of moraines in the terrestrial domain. Finally, we generate hypotheses about the timing of marine grounding-line retreat based upon the published terrestrial cosmogenic exposure ages.
Turbulent dispersion of the icing cloud from spray nozzles used in icing tunnels
NASA Technical Reports Server (NTRS)
Marek, C. J.; Olsen, W. A., Jr.
1986-01-01
To correctly simulate flight in natural icing conditions, the turbulence in an icing simulator must be as low as possible. But some turbulence is required to mix the droplets from the spray nozzles and achieve an icing cloud of uniform liquid water content. The goal for any spray system is to obtain the widest possible spray cloud with the lowest possible turbulence in the test section of a icing tunnel. This investigation reports the measurement of turbulence and the three-dimensional spread of the cloud from a single spray nozzle. The task was to determine how the air turbulence and cloud width are affected by spray bars of quite different drag coefficients, by changes in the turbulence upstream of the spray, the droplet size, and the atomizing air. An ice accretion grid, located 6.3 m downstream of the single spray nozzle, was used to measure cloud spread. Both the spray bar and the grid were located in the constant velocity test section. Three spray bar shapes were tested: the short blunt spray bar used in the NASA Lewis Icing Research Tunnel, a thin 14.6 cm chord airfoil, and a 53 cm chord NACA 0012 airfoil. At the low airspeed (56 km/hr) the ice accretion pattern was axisymmetric and was not affected by the shape of the spray bar. At the high airspeed (169 km/hr) the spread was 30 percent smaller than at the low airspeed. For the widest cloud the spray bars should be located as far upstream in the low velocity plenum of the icing tunnel. Good comparison is obtained between the cloud spread data and predicitons from a two-dimensional cloud mixing computer code using the two equation turbulence (k epsilon g) model.
Determination of Interannual to Decadal Changes in Ice Sheet Mass Balance from Satellite Altimetry
NASA Technical Reports Server (NTRS)
Zwally, H. Jay; Busalacchi, Antonioa J. (Technical Monitor)
2001-01-01
A major uncertainty in predicting sea level rise is the sensitivity of ice sheet mass balance to climate change, as well as the uncertainty in present mass balance. Since the annual water exchange is about 8 mm of global sea level equivalent, the +/- 25% uncertainty in current mass balance corresponds to +/- 2 mm/yr in sea level change. Furthermore, estimates of the sensitivity of the mass balance to temperature change range from perhaps as much as - 10% to + 10% per K. Although the overall ice mass balance and seasonal and inter-annual variations can be derived from time-series of ice surface elevations from satellite altimetry, satellite radar altimeters have been limited in spatial coverage and elevation accuracy. Nevertheless, new data analysis shows mixed patterns of ice elevation increases and decreases that are significant in terms of regional-scale mass balances. In addition, observed seasonal and interannual variations in elevation demonstrate the potential for relating the variability in mass balance to changes in precipitation, temperature, and melting. From 2001, NASA's ICESat laser altimeter mission will provide significantly better elevation accuracy and spatial coverage to 86 deg latitude and to the margins of the ice sheets. During 3 to 5 years of ICESat-1 operation, an estimate of the overall ice sheet mass balance and sea level contribution will be obtained. The importance of continued ice monitoring after the first ICESat is illustrated by the variability in the area of Greenland surface melt observed over 17-years and its correlation with temperature. In addition, measurement of ice sheet changes, along with measurements of sea level change by a series of ocean altimeters, should enable direct detection of ice level and global sea level correlations.
Multispectral imaging contributions to global land ice measurements from space
Kargel, J.S.; Abrams, M.J.; Bishop, M.P.; Bush, A.; Hamilton, G.; Jiskoot, H.; Kääb, Andreas; Kieffer, H.H.; Lee, E.M.; Paul, F.; Rau, F.; Raup, B.; Shroder, J.F.; Soltesz, D.; Stainforth, D.; Stearns, L.; Wessels, R.
2005-01-01
Global Land Ice Measurements from Space (GLIMS) is an international consortium established to acquire satellite images of the world's glaciers, analyse them for glacier extent and changes, and assess change data for causes and implications for people and the environment. Although GLIMS is making use of multiple remote-sensing systems, ASTER (Advanced Spaceborne Thermal Emission and reflection Radiometer) is optimized for many needed observations, including mapping of glacier boundaries and material facies, and tracking of surface dynamics, such as flow vector fields and supraglacial lake development. Software development by GLIMS is geared toward mapping clean-ice and debris-covered glaciers; terrain classification emphasizing snow, ice, water, and admixtures of ice with rock debris; multitemporal change analysis; visualization of images and derived data; and interpretation and archiving of derived data. A global glacier database has been designed at the National Snow and Ice Data Center (NSIDC, Boulder, Colorado); parameters are compatible with and expanded from those of the World Glacier Inventory (WGI). These technology efforts are summarized here, but will be presented in detail elsewhere. Our presentation here pertains to one broad question: How can ASTER and other satellite multispectral data be used to map, monitor, and characterize the state and dynamics of glaciers and to understand their responses to 20th and 21st century climate change? Our sampled results are not yet glaciologically or climatically representative. Our early results, while indicating complexity, are generally consistent with the glaciology community's conclusion that climate change is spurring glacier responses around the world (mainly retreat). Whether individual glaciers are advancing or retreating, the aggregate average of glacier change must be climatic in origin, as nonclimatic variations average out. We have discerned regional spatial patterns in glaciological response behavior; these patterns are best attributed to climate-change variability and to regional differences in glacier size and response times. In many cases, glacier length changes under-represent the magnitude of glacier ablation, because thinning (sometimes without immediate length changes) is also important. An expanded systematic, uniform analysis of many more glaciers is needed to isolate the glacier response components due to climatic and nonclimatic perturbations, to produce quantitative measures of regional variation in glacier changes, and to predict future regional glacier trends relevant to water resources, glaciological hazards, and global sea level. This comprehensive assessment (to be completed in stages) is expected to lend a critically needed filter to identify successful climate models that explain recent glacier changes and change patterns (and hence, are apt to describe future changes) and to eliminate unsuccessful models. ?? 2005 Elsevier Inc. All rights reserved.
Earth and Aurora Observations taken by the Expedition 39 Crew
2014-04-14
ISS039-E-11773 (14 April 2014) --- Photographed with a camera equipped with an 80mm lens from the International Space Station, patterns of sea ice in the Sea of Okhotsk reveal the dynamics of ocean currents that could otherwise only be seen in sunglint. In this Expedition 39 photo, one can see nearly 1,000 kilometers (600 miles) of the East Sakhalin Current, which is carrying winter ice south toward Japan’s Hokkaido Island. The current is marked by the narrow corridor of dense ice that hugs the coast of Russia’s Sakhalin Island. As it approaches Hokkaido, the ice patterns show a series of eddies and swirls. The East Sakhalin Current wanes in summer when the Soya Current begins to enter the Sea of Okhotsk. This inrush of summer water starts in April and, according to NASA scientists, probably expresses itself in this image as ice pattern to the east above Hokkaido. The Sakhalin current turns east and transports ice toward the Kuril Island chain. Some ice can spill through gaps in the islands, where it is swept southwest by the Kuril Current (lower right).
Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics
Csatho, Beata M.; Schenk, Anton F.; van der Veen, Cornelis J.; Babonis, Gregory; Duncan, Kyle; Rezvanbehbahani, Soroush; van den Broeke, Michiel R.; Simonsen, Sebastian B.; Nagarajan, Sudhagar; van Angelen, Jan H.
2014-01-01
We present a new record of ice thickness change, reconstructed at nearly 100,000 sites on the Greenland Ice Sheet (GrIS) from laser altimetry measurements spanning the period 1993–2012, partitioned into changes due to surface mass balance (SMB) and ice dynamics. We estimate a mean annual GrIS mass loss of 243 ± 18 Gt⋅y−1, equivalent to 0.68 mm⋅y−1 sea level rise (SLR) for 2003–2009. Dynamic thinning contributed 48%, with the largest rates occurring in 2004–2006, followed by a gradual decrease balanced by accelerating SMB loss. The spatial pattern of dynamic mass loss changed over this time as dynamic thinning rapidly decreased in southeast Greenland but slowly increased in the southwest, north, and northeast regions. Most outlet glaciers have been thinning during the last two decades, interrupted by episodes of decreasing thinning or even thickening. Dynamics of the major outlet glaciers dominated the mass loss from larger drainage basins, and simultaneous changes over distances up to 500 km are detected, indicating climate control. However, the intricate spatiotemporal pattern of dynamic thickness change suggests that, regardless of the forcing responsible for initial glacier acceleration and thinning, the response of individual glaciers is modulated by local conditions. Recent projections of dynamic contributions from the entire GrIS to SLR have been based on the extrapolation of four major outlet glaciers. Considering the observed complexity, we question how well these four glaciers represent all of Greenland’s outlet glaciers. PMID:25512537
Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics.
Csatho, Beata M; Schenk, Anton F; van der Veen, Cornelis J; Babonis, Gregory; Duncan, Kyle; Rezvanbehbahani, Soroush; van den Broeke, Michiel R; Simonsen, Sebastian B; Nagarajan, Sudhagar; van Angelen, Jan H
2014-12-30
We present a new record of ice thickness change, reconstructed at nearly 100,000 sites on the Greenland Ice Sheet (GrIS) from laser altimetry measurements spanning the period 1993-2012, partitioned into changes due to surface mass balance (SMB) and ice dynamics. We estimate a mean annual GrIS mass loss of 243 ± 18 Gt ⋅ y(-1), equivalent to 0.68 mm ⋅ y(-1) sea level rise (SLR) for 2003-2009. Dynamic thinning contributed 48%, with the largest rates occurring in 2004-2006, followed by a gradual decrease balanced by accelerating SMB loss. The spatial pattern of dynamic mass loss changed over this time as dynamic thinning rapidly decreased in southeast Greenland but slowly increased in the southwest, north, and northeast regions. Most outlet glaciers have been thinning during the last two decades, interrupted by episodes of decreasing thinning or even thickening. Dynamics of the major outlet glaciers dominated the mass loss from larger drainage basins, and simultaneous changes over distances up to 500 km are detected, indicating climate control. However, the intricate spatiotemporal pattern of dynamic thickness change suggests that, regardless of the forcing responsible for initial glacier acceleration and thinning, the response of individual glaciers is modulated by local conditions. Recent projections of dynamic contributions from the entire GrIS to SLR have been based on the extrapolation of four major outlet glaciers. Considering the observed complexity, we question how well these four glaciers represent all of Greenland's outlet glaciers.
Intercellular ice propagation: experimental evidence for ice growth through membrane pores.
Acker, J P; Elliott, J A; McGann, L E
2001-01-01
Propagation of intracellular ice between cells significantly increases the prevalence of intracellular ice in confluent monolayers and tissues. It has been proposed that gap junctions facilitate ice propagation between cells. This study develops an equation for capillary freezing-point depression to determine the effect of temperature on the equilibrium radius of an ice crystal sufficiently small to grow through gap junctions. Convection cryomicroscopy and video image analysis were used to examine the incidence and pattern of intracellular ice formation (IIF) in the confluent monolayers of cell lines that do (MDCK) and do not (V-79W) form gap junctions. The effect of gap junctions on intracellular ice propagation was strongly temperature-dependent. For cells with gap junctions, IIF occurred in a directed wave-like pattern in 100% of the cells below -3 degrees C. At temperatures above -3 degrees C, there was a marked drop in the incidence of IIF, with isolated individual cells initially freezing randomly throughout the sample. This random pattern of IIF was also observed in the V-79W monolayers and in MDCK monolayers treated to prevent gap junction formation. The significant change in the low temperature behavior of confluent MDCK monolayers at -3 degrees C is likely the result of the inhibition of gap junction-facilitated ice propagation, and supports the theory that gap junctions facilitate ice nucleation between cells. PMID:11509353
NASA Astrophysics Data System (ADS)
Denfeld, B. A.; Wallin, M.; Sahlee, E.; Sobek, S.; Kokic, J.; Chmiel, H.; Weyhenmeyer, G. A.
2014-12-01
Global carbon dioxide (CO2) emission estimates from inland waters include emissions at ice melt that are based on simple assumptions rather than evidence. To account for CO2 accumulation below ice and potential emissions into the atmosphere at ice melt we combined continuous CO2 concentrations with spatial CO2 sampling in an ice-covered small boreal lake. From early ice cover to ice melt, our continuous surface water CO2 concentration measurements at 2 m depth showed a temporal development in four distinct phases: In early winter, CO2 accumulated continuously below ice, most likely due to biological in-lake and catchment inputs. Thereafter, in late winter, CO2 concentrations remained rather constant below ice, as catchment inputs were minimized and vertical mixing of hypolimnetic water was cut off. As ice melt began, surface water CO2 concentrations were rapidly changing, showing two distinct peaks, the first one reflecting horizontal mixing of CO2 from surface and catchment waters, the second one reflecting deep water mixing. We detected that 83% of the CO2 accumulated in the water during ice cover left the lake at ice melt which corresponded to one third of the total CO2 storage. Our results imply that CO2 emissions at ice melt must be accurately integrated into annual CO2 emission estimates from inland waters. If up-scaling approaches assume that CO2 accumulates linearly under ice and at ice melt all CO2 accumulated during ice cover period leaves the lake again, present estimates may overestimate CO2 emissions from small ice covered lakes. Likewise, neglecting CO2 spring outbursts will result in an underestimation of CO2 emissions from small ice covered lakes.
Synoptic versus regional causes of icing on wind turbines at an exposed wind farm site in Germany
NASA Astrophysics Data System (ADS)
Weissinger, Maximilian; Strauss, Lukas; Serafin, Stefano; Dorninger, Manfred; Burchhart, Thomas; Fink, Martin
2017-04-01
Ice accretion on wind turbine blades can lead to significant power production loss or even permanent structural damage on the turbine. With the ongoing construction of wind farms at sites with increased icing potential in cold climates, accurate icing predictions are needed to optimise power plant operation. To this end, the frequency of occurrence and the causes of meteorological icing need to be better understood. The project ICE CONTROL, an Austrian research initiative, aims to improve icing forecasts through measurements, probabilistic forecasting, and verification of icing on wind turbine blades. The project focuses on a wind farm site near Ellern, Germany, located on the Hunsrück, a hilly terrain rising above the surrounding plain by 200-300 metres. Production data from the last three winters show that icing events tend to occur more often at the wind turbines on top of the highest hills. The present study aims to investigate historical cases of wind turbine icing and their meteorological causes at the Ellern wind farm. The data available consists of a three-year period (2013-2016) of operational data from the Ellern wind farm as well as meteorological measurements at nearby stations operated by the German Weather Service (DWD). In addition, radiosondes and weather charts are taken into account. The main objective of this work is, first, to link the local and regional weather conditions to larger-scale weather patterns and prevailing air masses, and second, to determine the types of icing (in-cloud vs. freezing precipation). Results show that in most icing cases the cloud base height was below the hub height while the temperature was just below the freezing point. Precipitation was absent in most cases. This suggests that most of the observed icing events were due to in-cloud icing. Icing conditions occurred often (but not exclusively) under specific synoptic-scale weather conditions, such as north-westerly flow advecting maritime polar air masses to Central Europe. In other cases, icing events were favoured by the development of low-level thermal inversions during weak south-easterly flow conditions.
NASA Astrophysics Data System (ADS)
Dehecq, A.; Gardner, A. S.; Gourmelen, N.
2016-12-01
High Mountain Asia (HMA) glaciers play a key role in the hydrology of the region, impacting water resources. Studies focusing on HMA glaciers reveal contrasting patterns of change with rapid rates of retreat in Himalayas and near balance condition in the Karakorum, Pamir and Kunlun. Glaciers dynamics is a key variable to understand their future evolution and sensitivity to changes in atmospheric forcing. Several studies based on field measurements and remote sensing data have shown consistent slow-down of land terminating glaciers in response to ice thinning. While highly insightful, these studies have relied on the analysis of glacier velocities over small regions and/or a limited number of glaciers. Here we analyze changes in ice velocities for thousands of glaciers in HMA from optical satellite images. Applying feature-tracking algorithms to the entire Landsat 7 (SLC-ON) and 8 archives, we generated surface velocity fields over 90% of the HMA with an uncertainty of the order of 4 m/yr. The change in velocities over the last 15 years will be analyzed with reference to regional glacier elevation changes and topographic characteristics. We show that the first-order temporal evolution of glacier flow mirrors the pattern of glacier elevation changes. We observe a general decrease of ice velocity in regions of known ice mass loss, and a more complex patterns consisting of mixed acceleration and decrease of ice velocity in regions that are experiencing near-equilibrium conditions and exhibit surging behavior. To provide long-term context we analyze Landsat 4/5 to construct sparse historic velocities and Hexagon KH-9 mapping camera imagery to reconstruct historic elevations dating back as early as the 1970'. However, the older imagery is sparse due to limited downlink locations and bandwidth. In addition, sensor geometry and pointing knowledge are crude in comparison to modern imagery, imagery is often saturated (featureless) over bright snow and ice surface, and many images suffer from banding artifacts.
Remote sensing of ocean color in the Arctic
NASA Technical Reports Server (NTRS)
Maynard, N. G.
1988-01-01
The main objectives of the research are: to increase the understanding of biological production (and carbon fluxes) along the ice edge, in frontal regions, and in open water areas of the Arctic and the physical factors controlling that production through the use of satellite and aircraft remote sensing techniques; and to develop relationships between measured radiances from the Multichannel Aircraft Radiometer System (MARS) and the bio-optical properties of the water in the Arctic and adjacent seas. Several recent Coastal Zone Color Scanner (CZCS) studies in the Arctic have shown that, despite constraints imposed by cloud cover, satellite ocean color is a useful means of studying mesoscale physical and biological oceanographic phenomena at high latitudes. The imagery has provided detailed information on ice edge and frontal processes such as spring breakup and retreat of the ice edge, influence of ice on ice effects of stratification on phytoplankton production, river sediment transport, effects of spring runoff, water mass boundaries, circulation patterns, and eddy formation in Icelandic waters and in the Greenland, Barents, Norwegian, and Bering Seas.
Chan, P.; Halfar, J.; Adey, W.; Hetzinger, S.; Zack, T.; Moore, G.W.K.; Wortmann, U. G.; Williams, B.; Hou, A.
2017-01-01
Accelerated warming and melting of Arctic sea-ice has been associated with significant increases in phytoplankton productivity in recent years. Here, utilizing a multiproxy approach, we reconstruct an annually resolved record of Labrador Sea productivity related to sea-ice variability in Labrador, Canada that extends well into the Little Ice Age (LIA; 1646 AD). Barium-to-calcium ratios (Ba/Ca) and carbon isotopes (δ13C) measured in long-lived coralline algae demonstrate significant correlations to both observational and proxy records of sea-ice variability, and show persistent patterns of co-variability broadly consistent with the timing and phasing of the Atlantic Multidecadal Oscillation (AMO). Results indicate reduced productivity in the Subarctic Northwest Atlantic associated with AMO cool phases during the LIA, followed by a step-wise increase from 1910 to present levels—unprecedented in the last 363 years. Increasing phytoplankton productivity is expected to fundamentally alter marine ecosystems as warming and freshening is projected to intensify over the coming century. PMID:28569839
Arctic Sea Ice Basal Melt Onset Variability and Associated Ocean Surface Heating
NASA Astrophysics Data System (ADS)
Merrick, R. A.; Hutchings, J. K.
2015-12-01
The interannual and regional variability in Arctic sea ice melt has previously been characterized only in terms of surface melting. A focus on the variability in the onset of basal melt is additionally required to understand Arctic melt patterns. Monitoring basal melt provides a glimpse into the importance of ocean heating to sea ice melt. This warming is predominantly through seawater exposure due to lead opening and the associated solar warming at the ocean's surface. We present the temporal variability in basal melt onset observed by ice mass balance buoys throughout the Arctic Ocean since 2003, providing a different perspective than the satellite microwave data used to measure the onset of surface melt. We found that melt onset varies greatly, even for buoys deployed within 100km of each other. Therefore large volumes of data are necessary to accurately estimate the variability of basal melt onset. Once the variability of basal melt onset has been identified, we can investigate how this range has been changing as a response to atmospheric and oceanic warming, changes in ice morphology as well as the intensification of the ice albedo feedback.
Interactions between Antarctic sea ice and large-scale atmospheric modes in CMIP5 models
NASA Astrophysics Data System (ADS)
Schroeter, Serena; Hobbs, Will; Bindoff, Nathaniel L.
2017-03-01
The response of Antarctic sea ice to large-scale patterns of atmospheric variability varies according to sea ice sector and season. In this study, interannual atmosphere-sea ice interactions were explored using observations and reanalysis data, and compared with simulated interactions by models in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Simulated relationships between atmospheric variability and sea ice variability generally reproduced the observed relationships, though more closely during the season of sea ice advance than the season of sea ice retreat. Atmospheric influence on sea ice is known to be strongest during advance, and it appears that models are able to capture the dominance of the atmosphere during advance. Simulations of ocean-atmosphere-sea ice interactions during retreat, however, require further investigation. A large proportion of model ensemble members overestimated the relative importance of the Southern Annular Mode (SAM) compared with other modes of high southern latitude climate, while the influence of tropical forcing was underestimated. This result emerged particularly strongly during the season of sea ice retreat. The zonal patterns of the SAM in many models and its exaggerated influence on sea ice overwhelm the comparatively underestimated meridional influence, suggesting that simulated sea ice variability would become more zonally symmetric as a result. Across the seasons of sea ice advance and retreat, three of the five sectors did not reveal a strong relationship with a pattern of large-scale atmospheric variability in one or both seasons, indicating that sea ice in these sectors may be influenced more strongly by atmospheric variability unexplained by the major atmospheric modes, or by heat exchange in the ocean.
NASA Astrophysics Data System (ADS)
Cho, K. H.; Chang, E. C.
2017-12-01
In this study, we performed sensitivity experiments by utilizing the Global/Regional Integrated Model system with different conditions of the sea ice concentration over the Kara-Barents (KB) Sea in autumn, which can affect winter temperature variability over East Asia. Prescribed sea ice conditions are 1) climatological autumn sea ice concentration obtained from 1982 to 2016, 2) reduced autumn sea ice concentration by 50% of the climatology, and 3) increased autumn sea ice concentration by 50% of climatology. Differently prescribed sea ice concentration changes surface albedo, which affects surface heat fluxes and near-surface air temperature. The reduced (increased) sea ice concentration over the KB sea increases (decreases) near-surface air temperature that leads the lower (higher) sea level pressure in autumn. These patterns are maintained from autumn to winter season. Furthermore, it is shown that the different sea ice concentration over the KB sea has remote effects on the sea level pressure patterns over the East Asian region. The lower (higher) sea level pressure over the KB sea by the locally decreased (increased) ice concentration is related to the higher (lower) pressure pattern over the Siberian region, which induces strengthened (weakened) cold advection over the East Asian region. From these sensitivity experiments it is clarified that the decreased (increased) sea ice concentration over the KB sea in autumn can lead the colder (warmer) surface air temperature over East Asia in winter.
Grounding line processes on the Totten Glacier
NASA Astrophysics Data System (ADS)
Cook, S.; Watson, C. S.; Galton-Fenzi, B.; Peters, L. E.; Coleman, R.
2017-12-01
The Totten Glacier has been an area of recent interest due to its large drainage basin, much of which is grounded below sea level and has a history of large scale grounding line movement. Reports that warm water reaches the sub-ice shelf cavity have led to speculation that it could be vulnerable to future grounding line retreat. Over the Antarctic summer 2016/17 an array of 6 GPS and autonomous phase-sensitive radar (ApRES) units were deployed in the grounding zone of the Totten Glacier. These instruments measure changes in ice velocity and thickness which can be used to investigate both ice dynamics across the grounding line, and the interaction between ice and ocean in the subglacial cavity. Basal melt rates calculated from the ApRES units on floating ice range from 1 to 17 m/a. These values are significantly lower than previous estimates of basal melt rate produced by ocean modelling of the subglacial cavity. Meanwhile, GPS-derived velocity and elevation on the surface of the ice show a strong tidal signal, as does the vertical strain rate within the ice derived from internal layering from the ApRES instruments. These results demonstrate the significance of the complex grounding pattern of the Totten Glacier. The presence of re-grounding points has significant implications for the dynamics of the glacier and the ocean circulation within the subglacial cavity. We discuss what can be learned from our in situ measurements, and how they can be used to improve models of the glacier's future behaviour.
NASA Astrophysics Data System (ADS)
Ballinger, Thomas J.; Hanna, Edward; Hall, Richard J.; Miller, Jeffrey; Ribergaard, Mads H.; Høyer, Jacob L.
2018-01-01
Variations in sea ice freeze onset and regional sea surface temperatures (SSTs) in Baffin Bay and Greenland Sea are linked to autumn surface air temperatures (SATs) around coastal Greenland through 500 hPa blocking patterns, 1979-2014. We find strong, statistically significant correlations between Baffin Bay freeze onset and SSTs and SATs across the western and southernmost coastal areas, while weaker and fewer significant correlations are found between eastern SATs, SSTs, and freeze periods observed in the neighboring Greenland Sea. Autumn Greenland Blocking Index values and the incidence of meridional circulation patterns have increased over the modern sea ice monitoring era. Increased anticyclonic blocking patterns promote poleward transport of warm air from lower latitudes and local warm air advection onshore from ocean-atmosphere sensible heat exchange through ice-free or thin ice-covered seas bordering the coastal stations. Temperature composites by years of extreme late freeze conditions, occurring since 2006 in Baffin Bay, reveal positive monthly SAT departures that often exceed 1 standard deviation from the 1981-2010 climate normal over coastal areas that exhibit a similar spatial pattern as the peak correlations.
The influence of basal-ice debris on patterns and rates of glacial erosion
NASA Astrophysics Data System (ADS)
Ugelvig, Sofie V.; Egholm, David L.
2018-05-01
Glaciers have played a key role for shaping much of Earth's high topography during the cold periods of the Late Cenozoic. However, despite of their distinct influence on landscapes, the mechanisms of glacial erosion, and the properties that determine their rate of operation, are still poorly understood. Theoretical models of subglacial erosion generally highlight the influence of basal sliding in setting the pace of erosion, but they also point to a strong influence of other subglacial properties, such as effective bed pressure and basal-ice debris concentration. The latter properties are, however, not easily measured in existing glaciers, and hence their influence cannot readily be confirmed by observations. In order to better connect theoretical models for erosion to measurable properties in glaciers, we used computational landscape evolution experiments to study the expected influence of basal-ice debris concentration for subglacial abrasion at the scale of glaciers. The computational experiments couple the two erosion processes of quarrying and abrasion, and furthermore integrate the flow of ice and transport of debris within the ice, thus allowing for the study of dynamic feedbacks between subglacial erosion and systematic glacier-scale variations in basal-ice debris concentration. The experiments explored several physics-based models for glacial erosion, in combination with different models for basal sliding to elucidate the relationship between sliding speed, erosion rate and basal-ice debris concentration. The results demonstrate how differences in debris concentration can explain large variations in measured rates. The experiments also provide a simple explanation for the observed dependence of glacier-averaged rate of erosion on glacier size: that large glacier uplands feed more debris into their lower-elevation parts, thereby strengthening their erosive power.
NASA Astrophysics Data System (ADS)
Popp, T. J.; White, J. W. C.; Gkinis, V.; Vinther, B. M.; Johnsen, S. J.
2012-04-01
In 1989 Willi Dansgaard and others, using the DYE3 ice core, showed that the abrupt termination of the Younger Dryas expressed in water stable isotope ratios and deuterium excess was completed in less than 50 years. A few years later, using the GISP2 ice core, Richard Alley and others proposed that snow accumulation at the site doubled in as little as 1-3 years across the same climate transition at the end of the Younger Dryas. Over the next two decades, in large part due to such observations from Greenland ice cores, a paradigm of linked, abrupt changes in the North Atlantic region has been developed around North Atlantic deep water formation, North Atlantic sea ice extent, and widespread atmospheric circulation changes occurring repeatedly during the last glacial period in response to changing freshwater fluxes to the region, or perhaps other causes. More recently, with the NGRIP ice core, using a suite of high resolution proxy data, and in particular deuterium excess, it was observed again that certain features in the climate system can switch modes from one year to the next, while other proxies can take from decades to centuries to completely switch modes. Thus, an event seen in the proxy records such as the abrupt end of the Younger Dryas (or other interstadial events) may comprise multiple climatic or oceanic responses with different relative timing and duration which potentially follow a predictable sequence of events, in some cases separated by only a few years. Today, the search continues for these emerging patterns through isotopic and other highly resolvable proxy data series from ice cores. With the recent completion of the drilling at NEEM, many abrupt transitions have now been measured in detail over a geographic transect with drilling sites spanning from DYE3 in Southern Greenland, GISP2 in the central summit region, and up to NGRIP and NEEM in the far north. The anatomy of abrupt climate transitions can therefore be examined both spatially and temporally, where obtaining the highest possible temporal resolution is desirable to resolve patterns. A new method for measuring water stable isotope ratios has been developed during the NEEM project that allows us to measure a carefully controlled fraction of a continuously melted ice core section which is evaporated directly into Cavity Ring Down Laser Spectrometer in the Near-Infrared spectrum. In such a system the resolution can be maximized (and characterized) largely as a function of both the melt rate and minimizing subsequent mixing in the gas phase during analysis. These new detailed water isotope series from the NEEM ice core are examined with respect to the corresponding series from new and previously available series from the other ice cores. The emerging picture indicates that abrupt climate changes have both a temporal and geographic anatomy that can change from one event to the next in how they are recorded across Greenland. Together with modeling and chemical impurity data, these patterns we detect in the water stable isotope series will provide clues and constraints to the timing and origin of oceanic and atmospheric changes that make up an abrupt climate change.
Complex Greenland outlet glacier flow captured
Aschwanden, Andy; Fahnestock, Mark A.; Truffer, Martin
2016-01-01
The Greenland Ice Sheet is losing mass at an accelerating rate due to increased surface melt and flow acceleration in outlet glaciers. Quantifying future dynamic contributions to sea level requires accurate portrayal of outlet glaciers in ice sheet simulations, but to date poor knowledge of subglacial topography and limited model resolution have prevented reproduction of complex spatial patterns of outlet flow. Here we combine a high-resolution ice-sheet model coupled to uniformly applied models of subglacial hydrology and basal sliding, and a new subglacial topography data set to simulate the flow of the Greenland Ice Sheet. Flow patterns of many outlet glaciers are well captured, illustrating fundamental commonalities in outlet glacier flow and highlighting the importance of efforts to map subglacial topography. Success in reproducing present day flow patterns shows the potential for prognostic modelling of ice sheets without the need for spatially varying parameters with uncertain time evolution. PMID:26830316
Oceanographic influences on the sea ice cover in the Sea of Okhotsk
NASA Technical Reports Server (NTRS)
Gratz, A. J.; Parkinson, C. L.
1981-01-01
Sea ice conditions in the Sea of Okhotsk, as determined by satellite images from the electrically scanning microwave radiometer on board Nimbus 5, were analyzed in conjunction with the known oceanography. In particular, the sea ice coverage was compared with the bottom bathymetry and the surface currents, water temperatures, and salinity. It is found that ice forms first in cold, shallow, low salinity waters. Once formed, the ice seems to drift in a direction approximating the Okhotsk-Kuril current system. Two basic patterns of ice edge positioning which persist for significant periods were identified as a rectangular structure and a wedge structure. Each of these is strongly correlated with the bathymetry of the region and with the known current system, suggesting that convective depth and ocean currents play an important role in determining ice patterns.
NASA Astrophysics Data System (ADS)
Alley, K. E.; Scambos, T.; Anderson, R. S.; Rajaram, H.; Pope, A.; Haran, T.
2017-12-01
Strain rates are fundamental measures of ice flow used in a wide variety of glaciological applications including investigations of bed properties, calculations of basal mass balance on ice shelves, application to Glen's flow law, and many other studies. However, despite their extensive application, strain rates are calculated using widely varying methods and length scales, and the calculation details are often not specified. In this study, we compare the results of nominal and logarithmic strain-rate calculations based on a satellite-derived velocity field of the Antarctic ice sheet generated from Landsat 8 satellite data. Our comparison highlights the differences between the two commonly used approaches in the glaciological literature. We evaluate the errors introduced by each code and their impacts on the results. We also demonstrate the importance of choosing and specifying a length scale over which strain-rate calculations are made, which can have large local impacts on other derived quantities such as basal mass balance on ice shelves. We present strain-rate data products calculated using an approximate viscous length-scale with satellite observations of ice velocity for the Antarctic continent. Finally, we explore the applications of comprehensive strain-rate maps to future ice shelf studies, including investigations of ice fracture, calving patterns, and stability analyses.
NASA Astrophysics Data System (ADS)
Grima, C.; Koch, I.; Greenbaum, J. S.; Soderlund, K. M.; Blankenship, D. D.; Young, D. A.; Fitzsimons, S.
2017-12-01
The McMurdo ice shelves (northern and southern MIS), adjacent to the eponymous station and the Ross Ice Shelf, Antarctica, are known for large gradients in surface snow accumulation and snow/ice impurities. Marine ice accretion and melting are important contributors to MIS's mass balance. Due to erosive winds, the southern MIS (SMIS) shows a locally negative surface mass balance. Thus, marine ice once accreted at the ice shelf base crops out at the surface. However, the exact processes that exert primary control on SMIS mass balance have remained elusive. Radar statistical reconnaissance (RSR) is a recent technique that has been used to characterize the surface properties of the Earth's cryosphere, Mars, and Titan from the stochastic character of energy scattered by the surface. Here, we apply RSR to map the surface density and roughness of the SMIS and extend the technique to derive the basal reflectance and scattering coefficients of the ice-ocean interface. We use an airborne radar survey grid acquired over the SMIS in the 2014-2015 austral summer by the University of Texas Institute for Geophysics with the High Capability Radar Sounder (HiCARS2; 60-MHz center frequency and 15-MHz bandwidth). The RSR-derived snow density values and patterns agree with directly -measured ice shelf surface accumulation rates. We also compare the composition of SMIS ice surface samples to test the ability of RSR to discriminate ices with varying dielectric properties (e.g., marine versus meteoric ice) and hypothesize relationships between the RSR-derived basal reflectance/scattered coefficients and accretion or melting at the ice-ocean interface. This improved knowledge of air-ice and ice-ocean boundaries provides a new perspective on the processes governing SMIS surface and basal mass balance.
The Subglacial Drainage Patterns of Devon Island, Canada
NASA Astrophysics Data System (ADS)
Grau Galofre, A.; Jellinek, M.; Osinski, G. R.
2016-12-01
Meltwater drainage patterns incised underneath ice masses can appear strikingly similar to fluvially dissected landscapes. We introduce a landscape evolution model to describe the longitudinal profiles of subglacial meltwater channels (tunnel valleys).We propose a way to identify them from topography data and imagery on the basis of the vertical scale of undulations compared to the total elevation gain. We test the model with field data from tunnel valleys exposed in Devon Island, NU, Canada. We use field measurements of longitudinal profiles, photogrammetry and 3D LIDAR to establish a quantitative comparison of tunnel valleys and fluvial channels. Tunnel valleys are oriented parallel to former ice flow lines and are characterized by undulating longitudinal profiles. We use these features to identify quantitatively tunnel valleys in central Devon Island (figure 1). We ground truth our observations with imagery of tunnel valleys appearing at the edges of the actively retreating ice cap. Longitudinal profiles show undulations with amplitudes up to 14m over a total elevation gain of 20m and with wavelengths comparable to the channel width. These "overdeepenings" are not observed in any fluvial channels in the area and are consistent with expectations of flow driven by variations in ice thickness. Our identification scheme rigorously distinguishes fluvial and subglacial dissected landscapes.
Belanger, P.E.
1982-01-01
Faunal, floral and sedimentological properties of Norwegian Sea core V27-86 were examined in order to reconstruct the paleo-oceanographic history of this region. Downcore variations in the relative abundance of three microfossil groups and several sediment properties exhibit three different climate response patterns (CRP). Each pattern is judged to represent the response of a different part of the climate system. The covariance patterns among coccoliths, henthic foraminifera, and other properties suggest that the Norwegian Sea has been ice-free and productive during the present interhlacial. the penultimate interglacial (isotopic-stage se) and at least partially ice-free during an intermediate climatic regime (stages sa-d). A maximum change in these measures occurs at the boundary between isotopic stage 5a (an intermediate climatic regime)and isotopic stage 4 (a glacial climatic regime). In contrast, planktic foraminiferal assemblages and oxygen isotope measurements on planktic foraminifera show a major change at the end of stage 5e (the penultimate interglacial). The contrasting behavior of these two sets of observations is explained by a model which postulates a low-salinity surface layer 115,000 to 75,000 years ago (stages 5a-d).
Simple rules govern the patterns of Arctic sea ice melt ponds
NASA Astrophysics Data System (ADS)
Popovic, P.; Cael, B. B.; Abbot, D. S.; Silber, M.
2017-12-01
Climate change, amplified in the far north, has led to a rapid sea ice decline in recent years. Melt ponds that form on the surface of Arctic sea ice in the summer significantly lower the ice albedo, thereby accelerating ice melt. Pond geometry controls the details of this crucial feedback. However, currently it is unclear how to model this intricate geometry. Here we show that an extremely simple model of voids surrounding randomly sized and placed overlapping circles reproduces the essential features of pond patterns. The model has only two parameters, circle scale and the fraction of the surface covered by voids, and we choose them by comparing the model to pond images. Using these parameters the void model robustly reproduces all of the examined pond features such as the ponds' area-perimeter relationship and the area-abundance relationship over nearly 7 orders of magnitude. By analyzing airborne photographs of sea ice, we also find that the typical pond scale is surprisingly constant across different years, regions, and ice types. These results demonstrate that the geometric and abundance patterns of Arctic melt ponds can be simply described, and can guide future models of Arctic melt ponds to improve predictions of how sea ice will respond to Arctic warming.
2006-01-24
ISS012-E-15918 (24 Jan. 2006) --- Belle Isle and a portion of Newfoundland, Canada are featured in this image photographed by an Expedition 12 crew member on the International Space Station. Belle Isle (center) is surrounded by sea ice in this recent winter view. Belle Isle lies in the strait between the Island of Newfoundland and Labrador (the mainland portion of Canadas province of Newfoundland). Small islands along the coast of Labrador appear in the top left corner. In this key location Belle Isle lies on the shortest shipping lanes between the Great Lakes and Europe, and also on the main north-south shipping route to Hudson Bay and the Northwest Territories. Snow and ice in this recent winter view obliterate the dozens of glacier-scoured lakes that dot the surface of the island. The single community of Belle Isle Landing on the southeast tip is equally hard to see. Ice patterns also show that the island lies at the meeting point of two sea currents. The Labrador Current flows from the northwest (top left), and a smaller current, driven by dominant westerly winds, flows from the southwest (lower left) out of the narrow Belle Isle Strait (out of frame lower left). Flow lines in sea ice indicate the sense of movement of the ice. Ice floes embedded in the Labrador Current appear in the upper part of the image as a relatively open pattern. Sea ice with a denser pattern enters from the lower left corner, banking against the west side of Belle Isle. Tendrils flow around capes at either end of the island, with an ice-free shadow on the opposite, downstream side. Eddies (center) in the ice patterns show where the currents interact, north and west of the island.
NASA Astrophysics Data System (ADS)
Datta, R.; Tedesco, M.; Agosta, C.; Fettweis, X.; Kuipers Munneke, P.; van den Broeke, M. R.
2017-12-01
Surface melting has been implicated in the collapse of Antarctic Peninsula ice shelves, most dramatically in the Larsen A (1995) and Larsen B (2002) ice shelves. In July of this year, a rift in the remaining Larsen C ice shelf broke away one of the largest icebergs ever recorded. Ice-shelf retreat is likely related to strong atmospheric warming in this area, by means of hydrofracturing and possibly by the warming atmosphere itself. According the hydrofracture mechanism, meltwater produced during anomalously warm summers infiltrates and deepens pre-existent crevasses, leading to the eventual break-up of the ice shelf. In addition to region-wide warming, melting in the East Antarctic Peninsula can be caused by frequent intrusions of westerly foehn winds. The remaining Larsen C ice shelf, as well as glaciers previously feeding to the former Larsen B ice shelf, are therefore vulnerable to both (a) the atmospheric circulation patterns that influence foehn wind frequency and intensity and (b) regional interannual temperature trends. We discuss spatial patterns of meltwater production in the northeast basin of the Antarctic Peninsula as modeled by the Modèle Atmosphérique Régionale (MAR) at a 10km resolution between 2001 and 2014. The timeseries associated with these patterns are used to identify interannual changes in the frequency of foehn-induced melt, and compare foehn-induced melting to melt associated with regional warming. Melt occurrence in MAR is evaluated against multiple satellite datasets and near-surface automatic weather station data from three sites. Finally, we discuss the seasonal depth to which meltwater percolates into the snowpack (as modeled by MAR) because of the potential influence of meltwater on both warming and densification of the ice shelf.
The NRL 2011 Airborne Sea-Ice Thickness Campaign
NASA Astrophysics Data System (ADS)
Brozena, J. M.; Gardner, J. M.; Liang, R.; Ball, D.; Richter-Menge, J.
2011-12-01
In March of 2011, the US Naval Research Laboratory (NRL) performed a study focused on the estimation of sea-ice thickness from airborne radar, laser and photogrammetric sensors. The study was funded by ONR to take advantage of the Navy's ICEX2011 ice-camp /submarine exercise, and to serve as a lead-in year for NRL's five year basic research program on the measurement and modeling of sea-ice scheduled to take place from 2012-2017. Researchers from the Army Cold Regions Research and Engineering Laboratory (CRREL) and NRL worked with the Navy Arctic Submarine Lab (ASL) to emplace a 9 km-long ground-truth line near the ice-camp (see Richter-Menge et al., this session) along which ice and snow thickness were directly measured. Additionally, US Navy submarines collected ice draft measurements under the groundtruth line. Repeat passes directly over the ground-truth line were flown and a grid surrounding the line was also flown to collect altimeter, LiDAR and Photogrammetry data. Five CRYOSAT-2 satellite tracks were underflown, as well, coincident with satellite passage. Estimates of sea ice thickness are calculated assuming local hydrostatic balance, and require the densities of water, ice and snow, snow depth, and freeboard (defined as the elevation of sea ice, plus accumulated snow, above local sea level). Snow thickness is estimated from the difference between LiDAR and radar altimeter profiles, the latter of which is assumed to penetrate any snow cover. The concepts we used to estimate ice thickness are similar to those employed in NASA ICEBRIDGE sea-ice thickness estimation. Airborne sensors used for our experiment were a Reigl Q-560 scanning topographic LiDAR, a pulse-limited (2 nS), 10 GHz radar altimeter and an Applanix DSS-439 digital photogrammetric camera (for lead identification). Flights were conducted on a Twin Otter aircraft from Pt. Barrow, AK, and averaged ~ 5 hours in duration. It is challenging to directly compare results from the swath LiDAR with the pulse-limited radar altimeter that has a footprint that varies from a few meters to a few tens of meters depending on altitude and roughness of the reflective surface. Intercalibration of the two instruments was accomplished at leads in the ice and by multiple over-flights of four radar corner-cubes set ~ 2 m above the snow along the ground-truth line. Direct comparison of successive flights of the ground-truth line to flights done in a grid pattern over and adjacent to the line was complicated by the ~ 20-30 m drift of the ice-floe between successive flight-lines. This rapid ice movement required the laser and radar data be translated into an ice-fixed, rather than a geographic reference frame. This was facilitated by geodetic GPS receiver measurements at the ice-camp and Pt. Barrow. The NRL data set, in combination with the ground-truth line and submarine upward-looking sonar data, will aid in understanding the error budgets of our systems, the ICEBRIDGE airborne measurements (also flown over the ground-truth line), and the CRYOSAT-2 data over a wide range of ice types.
Pre-Partum Diet of Adult Female Bearded Seals in Years of Contrasting Ice Conditions
Hindell, Mark A.; Lydersen, Christian; Hop, Haakon; Kovacs, Kit M.
2012-01-01
Changing patterns of sea-ice distribution and extent have measurable effects on polar marine systems. Beyond the obvious impacts of key-habitat loss, it is unclear how such changes will influence ice-associated marine mammals in part because of the logistical difficulties of studying foraging behaviour or other aspects of the ecology of large, mobile animals at sea during the polar winter. This study investigated the diet of pregnant bearded seals (Erignathus barbatus) during three spring breeding periods (2005, 2006 and 2007) with markedly contrasting ice conditions in Svalbard using stable isotopes (δ13C and δ15N) measured in whiskers collected from their newborn pups. The δ15N values in the whiskers of individual seals ranged from 11.95 to 17.45 ‰, spanning almost 2 full trophic levels. Some seals were clearly dietary specialists, despite the species being characterised overall as a generalist predator. This may buffer bearded seal populations from the changes in prey distributions lower in the marine food web which seems to accompany continued changes in temperature and ice cover. Comparisons with isotopic signatures of known prey, suggested that benthic gastropods and decapods were the most common prey. Bayesian isotopic mixing models indicated that diet varied considerably among years. In the year with most fast-ice (2005), the seals had the greatest proportion of pelagic fish and lowest benthic invertebrate content, and during the year with the least ice (2006), the seals ate more benthic invertebrates and less pelagic fish. This suggests that the seals fed further offshore in years with greater ice cover, but moved in to the fjords when ice-cover was minimal, giving them access to different types of prey. Long-term trends of sea ice decline, earlier ice melt, and increased water temperatures in the Arctic are likely to have ecosystem-wide effects, including impacts on the forage bases of pagophilic seals. PMID:22693616
Pre-partum diet of adult female bearded seals in years of contrasting ice conditions.
Hindell, Mark A; Lydersen, Christian; Hop, Haakon; Kovacs, Kit M
2012-01-01
Changing patterns of sea-ice distribution and extent have measurable effects on polar marine systems. Beyond the obvious impacts of key-habitat loss, it is unclear how such changes will influence ice-associated marine mammals in part because of the logistical difficulties of studying foraging behaviour or other aspects of the ecology of large, mobile animals at sea during the polar winter. This study investigated the diet of pregnant bearded seals (Erignathus barbatus) during three spring breeding periods (2005, 2006 and 2007) with markedly contrasting ice conditions in Svalbard using stable isotopes (δ(13)C and δ(15)N) measured in whiskers collected from their newborn pups. The δ(15)N values in the whiskers of individual seals ranged from 11.95 to 17.45 ‰, spanning almost 2 full trophic levels. Some seals were clearly dietary specialists, despite the species being characterised overall as a generalist predator. This may buffer bearded seal populations from the changes in prey distributions lower in the marine food web which seems to accompany continued changes in temperature and ice cover. Comparisons with isotopic signatures of known prey, suggested that benthic gastropods and decapods were the most common prey. Bayesian isotopic mixing models indicated that diet varied considerably among years. In the year with most fast-ice (2005), the seals had the greatest proportion of pelagic fish and lowest benthic invertebrate content, and during the year with the least ice (2006), the seals ate more benthic invertebrates and less pelagic fish. This suggests that the seals fed further offshore in years with greater ice cover, but moved in to the fjords when ice-cover was minimal, giving them access to different types of prey. Long-term trends of sea ice decline, earlier ice melt, and increased water temperatures in the Arctic are likely to have ecosystem-wide effects, including impacts on the forage bases of pagophilic seals.
NASA Technical Reports Server (NTRS)
Campbell, W. J.; Chang, T. C.; Fowler, M. G.; Gloersen, P.; Kuhn, P. M.; Ramseier, R. O.; Ross, D. B.; Stambach, G.; Webster, W. J., Jr.; Wilheit, T. T.
1974-01-01
The atmospheric circulation which occurred during the Bering Sea Experiment, 15 February to 10 March 1973, in and around the experiment area is analyzed and related to the macroscale morphology and dynamics of the sea ice cover. The ice cover was very complex in structure, being made up of five ice types, and underwent strong dynamic activity. Synoptic analyses show that an optimum variety of weather situations occurred during the experiment: an initial strong anticyclonic period (6 days), followed by a period of strong cyclonic activity (6 days), followed by weak anticyclonic activity (3 days), and finally a period of weak cyclonic activity (4 days). The data of the mesoscale test areas observed on the four sea ice option flights, and ship weather, and drift data give a detailed description of mesoscale ice dynamics which correlates well with the macroscale view: anticyclonic activity advects the ice southward with strong ice divergence and a regular lead and polynya pattern; cyclonic activity advects the ice northward with ice convergence, or slight divergence, and a random lead and polynya pattern.
Holocene Activity of the Quelccaya Ice Cap: A Working Model
NASA Astrophysics Data System (ADS)
Lowell, T. V.; Smith, C. A.; Kelly, M. A.; Stroup, J. S.
2012-12-01
The patterns and magnitudes of past climate change in the topics are still under discussion. We contribute here by reporting on patterns of glacier length changes of the largest glacier in the tropics, Quelccaya Ice Cap (~13.9°S, 70.9°W, summit at 5645 m). This ice cap has several local domes that may have different patterns of length changes because of differing elevations of the domes (high to the north, lower to the south). Prior work (Mark et al. 2003, Abbott et al., 2004; Thompson et al., 2005; Buffen, et al., 2009), new radiocarbon ages, and stratigraphic and geomorphic relationships are used to determine the general pattern of length changes for the outlets from this ice cap. We exploit geomorphic relationships and present new radiocarbon ages on interpreted stratigraphic sections to determine the pattern of length changes for this ice cap. Ice retreated during late glacial times (Rodbell and Seltzer, 2000; Kelly et al., in press). By 11,400 yr BP it had reached a position ~1.2 km beyond its present (2000 AD) extent. While length during the early Holocene is problematic, present evidence permits, but does not prove, extents of 0.5 to 1.0 km down-valley from the present margin. Between 6400 and 4400 yr BP the ice cap was smaller than present, but it advanced multiple times during the late Holocene. Lengths of up to 1 km beyond present were achieved at 3400 yr BP and ~500 yr BP. Additionally, the ice advanced to 0.8 km beyond its present margin at 1600 yr BP. Because these glaciers were temperate, we take these lengths to represent primarily changes in temperature. This may suggest that lowering insolation values in the northern hemisphere during the Holocene provide a first order control on tropical temperatures. Alternatively, it may be that major reorganization of the topical circulation belts about 5000 yr BP yields two configurations of the QIC and hence Holocene temperatures - one at the present ice margin and and the second about 1 km beyond the present ice margin. In either case, the pulsating glacier lengths indicate a dynamic Holocene climate.
Last Glacial-Interglacial Transition ice dynamics in the Wicklow Mountains, Ireland
NASA Astrophysics Data System (ADS)
Knight, Lauren; Boston, Clare; Lovell, Harold; Pepin, Nick
2017-04-01
Understanding of the extent and dynamics of former ice masses in the Wicklow Mountains, Ireland, during the Last Glacial-Interglacial Transition (LGIT; 15-10 ka BP) is currently unresolved. Whilst it is acknowledged that the region hosted a local ice cap within the larger British-Irish Ice Sheet at the Last Glacial Maximum (LGM; 27 ka BP), there has been little consideration of ice cap disintegration to a topographically constrained ice mass during the LGIT. This research has produced the first regional glacial geomorphological map, through remote sensing (aerial photograph and digital terrain model interrogation) and field mapping. This has allowed both the style and extent of mountain glaciation and ice recession dynamics during the LGIT to be established. This geomorphological mapping has highlighted that evidence for local glaciation in the Wicklow Mountains is more extensive than previously recognised, and that small icefields and associated outlet valley glaciers existed during the LGIT following disintegration of the Wicklow Ice Cap. A relative chronology based on morphostratigraphic principles is developed, which indicates complex patterns of ice mass oscillation characterised by periods of both sustained retreat and minor readvance. Variations in the pattern of recession across the Wicklow Mountains are evident and appear to be influenced, in part, by topographic controls (e.g. slope, aspect, glacier hypsometry). In summary, this research establishes a relative chronology of glacial events in the region during the LGIT and presents constraints on ice mass extent, dynamics and retreat patterns, offering an insight into small ice mass behaviour in a warming climate.
1983-08-01
34.-0 " -4 to -0 ) i ’ to-0 - 0-1J :x0. tf1 0 0 * *4-0 0- - C -4- - t)0o U 4- fa -- Etot 0 In 00)- r 4- a..- - D 4- 0 41 0 --- 0). S- E4JaW 4) 4- CJ - ea... valves ). Figure B2. Icing patterns, copolymer-coated surface left, uncoated right, continuous sheet. 17 Figure B3. Icing pattern, copolymer-coated
Characterizing Intracellular Ice Formation of Lymphoblasts Using Low-Temperature Raman Spectroscopy.
Yu, Guanglin; Yap, Yan Rou; Pollock, Kathryn; Hubel, Allison
2017-06-20
Raman microspectroscopy was used to quantify freezing response of cells to various cooling rates and solution compositions. The distribution pattern of cytochrome c in individual cells was used as a measure of cell viability in the frozen state and this metric agreed well with the population-averaged viability and trypan blue staining experiments. Raman imaging of cells demonstrated that intracellular ice formation (IIF) was common and did not necessarily result in cell death. The amount of intracellular ice as well as ice crystal size played a role in determining whether or not ice inside the cell was a lethal event. Intracellular ice crystals were colocated to the sections of cell membrane in close proximity to extracellular ice. Increasing the distance between extracellular ice and cell membrane decreased the incidence of IIF. Reducing the effective stiffness of the cell membrane by disrupting the actin cytoskeleton using cytochalasin D increased the amount of IIF. Strong intracellular osmotic gradients were observed when IIF was present. These observations support the hypothesis that interactions between the cell membrane and extracellular ice result in IIF. Raman spectromicroscopy provides a powerful tool for observing IIF and understanding its role in cell death during freezing, and enables the development, to our knowledge, of new and improved cell preservation protocols. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Spatial Analysis of Great Lakes Regional Icing Cloud Liquid Water Content
NASA Technical Reports Server (NTRS)
Ryerson, Charles C.; Koenig, George G.; Melloh, Rae A.; Meese, Debra A.; Reehorst, Andrew L.; Miller, Dean R.
2003-01-01
Abstract Clustering of cloud microphysical conditions, such as liquid water content (LWC) and drop size, can affect the rate and shape of ice accretion and the airworthiness of aircraft. Clustering may also degrade the accuracy of cloud LWC measurements from radars and microwave radiometers being developed by the government for remotely mapping icing conditions ahead of aircraft in flight. This paper evaluates spatial clustering of LWC in icing clouds using measurements collected during NASA research flights in the Great Lakes region. We used graphical and analytical approaches to describe clustering. The analytical approach involves determining the average size of clusters and computing a clustering intensity parameter. We analyzed flight data composed of 1-s-frequency LWC measurements for 12 periods ranging from 17.4 minutes (73 km) to 45.3 minutes (190 km) in duration. Graphically some flight segments showed evidence of consistency with regard to clustering patterns. Cluster intensity varied from 0.06, indicating little clustering, to a high of 2.42. Cluster lengths ranged from 0.1 minutes (0.6 km) to 4.1 minutes (17.3 km). Additional analyses will allow us to determine if clustering climatologies can be developed to characterize cluster conditions by region, time period, or weather condition. Introduction
Erosion patterns produced by the paleo Haizishan ice cap, SE Tibetan Plateau
NASA Astrophysics Data System (ADS)
Fu, P.; Stroeven, A. P.; Harbor, J.; Hättestrand, C.; Heyman, J.; Caffee, M. W.
2017-12-01
Erosion is a primary driver of landscape evolution, topographic relief production, geochemical cycles, and climate change. Combining in situ 10Be and 26Al exposure age dating, geomorphological mapping, and field investigations, we examine glacial erosion patterns of the almost 4,000 km2 paleo Haizishan ice cap on the southeastern Tibetan Plateau. Our results show that ice caps on the low relief Haizishan Plateau produced a zonal pattern of landscape modification. In locations where apparent exposure ages on bedrock are consistent with the last deglaciation, complete resetting of the cosmogenic exposure age clock indicates glacial erosion of at least a few meters. However, older apparent exposure ages on bedrock in areas known to have been covered by the paleo ice cap during the Last Glacial Maximum indicate inheritance and thus limited glacial erosion. Inferred surface exposure ages from cosmogenic depth profiles through two saprolites vary from resetting and thus saprolite profile truncation to nuclide inheritance indicating limited erosion. Finally, significant nuclide inheritance in river sand samples from basins on the scoured plateau surface also indicate limited glacial erosion during the last glaciation. Hence, for the first time, our study shows clear evidence of preservation under non-erosive ice on the Tibetan Plateau. As patterns of glacial erosion intensity are largely driven by the basal thermal regime, our results confirm earlier inferences from geomorphology for a concentric basal thermal pattern for the paleo Haizishan ice cap during the LGM.
Ice shelf fracture parameterization in an ice sheet model
NASA Astrophysics Data System (ADS)
Sun, Sainan; Cornford, Stephen L.; Moore, John C.; Gladstone, Rupert; Zhao, Liyun
2017-11-01
Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM) to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ˜ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor) fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.
Development and applications of a radar-attenuation model for polar ice sheets
NASA Astrophysics Data System (ADS)
MacGregor, Joseph A.
Modern ice sheets are currently responding to significant climatic forcings and undergoing ice-dynamics changes that are not yet well understood. Ice-penetrating radar surveys are often used to infer their basal condition (e.g., is the bed wet or dry?) and internal properties. However, such inferences typically require a model of the electromagnetic attenuation through the ice sheet. Here I first develop and test a radar-attenuation model that is based on a synthesis of existing laboratory measurements of the dielectric properties of ice. This synthesis shows that radar attenuation in polar ice has a strong non-linear temperature dependence and a weaker linear dependence on the concentrations of acid and sea-salt chloride. This model was tested at Siple Dome, West Antarctica, using ice-core-chemistry and borehole-temperature data, and the model agreed well with an existing radar-attenuation measurement. I then use this model to investigate the nature of radar detection of accreted ice over Lake Vostok, East Antarctica. My analysis of ice-core and radar data found that the observed reflection is likely due to a fabric contrast near the boundary between the dirty and clean accreted ices. This reflection mechanism is also consistent with the spatial pattern of detection of the reflection. In anticipation of the requirements of a thermomechanical ice-sheet model to predict the spatial variation of attenuation over Lake Vostok, I develop an accumulation-rate map for the Lake Vostok region using radar data, a steady-state flow-band model, and inverse methods. I found that accumulation rates there are not inversely correlated with surface elevation, that there is a broad maximum above the lake's northwestern corner, and a minimum above most of its eastern shoreline. Finally, I investigate the spatial variability of attenuation in an ice sheet, using the flowline that crosses through the Vostok ice core as an example. I use radar layers and ice-velocity and temperature outputs from an ice-sheet model to estimate the spatial variation of attenuation using a series of progressively more complex models. I found that an attenuation-rate model that uses non-uniform ice temperatures and radar layers to rescale impurity-conentration profiles can satisfactorily capture most of the spatial variability of attenuation.
Ultrasonic emissions during ice nucleation and propagation in plant xylem.
Charrier, Guillaume; Pramsohler, Manuel; Charra-Vaskou, Katline; Saudreau, Marc; Améglio, Thierry; Neuner, Gilbert; Mayr, Stefan
2015-08-01
Ultrasonic acoustic emission analysis enables nondestructive monitoring of damage in dehydrating or freezing plant xylem. We studied acoustic emissions (AE) in freezing stems during ice nucleation and propagation, by combining acoustic and infrared thermography techniques and controlling the ice nucleation point. Ultrasonic activity in freezing samples of Picea abies showed two distinct phases: the first on ice nucleation and propagation (up to 50 AE s(-1) ; reversely proportional to the distance to ice nucleation point), and the second (up to 2.5 AE s(-1) ) after dissipation of the exothermal heat. Identical patterns were observed in other conifer and angiosperm species. The complex AE patterns are explained by the low water potential of ice at the ice-liquid interface, which induced numerous and strong signals. Ice propagation velocities were estimated via AE (during the first phase) and infrared thermography. Acoustic activity ceased before the second phase probably because the exothermal heating and the volume expansion of ice caused decreasing tensions. Results indicate cavitation events at the ice front leading to AE. Ultrasonic emission analysis enabled new insights into the complex process of xylem freezing and might be used to monitor ice propagation in natura. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
NASA Technical Reports Server (NTRS)
Evans, Cynthia A.; Helfert, Michael R.; Helms, David R.
1992-01-01
Earth photography from the Space Shuttle is used to examine the ice cover on Lake Baikal and correlate the patterns of weakened and melting ice with known hydrothermal areas in the Siberian lake. Particular zones of melted and broken ice may be surface expressions of elevated heat flow in Lake Baikal. The possibility is explored that hydrothermal vents can introduce local convective upwelling and disrupt a stable water column to the extent that the melt zones which are observed in the lake's ice cover are produced. A heat flow map and photographs of the lake are overlaid to compare specific areas of thinned or broken ice with the hot spots. The regions of known hydrothermal activity and high heat flow correlate extremely well with circular regions of thinned ice, and zones of broken and recrystallized ice. Local and regional climate data and other sources of warm water, such as river inlets, are considered.
AB-stacked square-like bilayer ice in graphene nanocapillaries.
Zhu, YinBo; Wang, FengChao; Bai, Jaeil; Zeng, Xiao Cheng; Wu, HengAn
2016-08-10
Water, when constrained between two graphene sheets and under ultrahigh pressure, can manifest dramatic differences from its bulk counterparts such as the van der Waals pressure induced water-to-ice transformation, known as the metastability limit of two-dimensional (2D) liquid. Here, we present result of a new crystalline structure of bilayer ice with the AB-stacking order, observed from molecular dynamics simulations of constrained water. This AB-stacked bilayer ice (BL-ABI) is transformed from the puckered monolayer square-like ice (pMSI) under higher lateral pressure in the graphene nanocapillary at ambient temperature. BL-ABI is a proton-ordered ice with square-like pattern. The transition from pMSI to BL-ABI is through crystal-to-amorphous-to-crystal pathway with notable hysteresis-loop in the potential energy during the compression/decompression process, reflecting the compression/tensile limit of the 2D monolayer/bilayer ice. In a superheating process, the BL-ABI transforms into the AB-stacked bilayer amorphous ice with the square-like pattern.
Bargagli, R
2016-11-01
Mercury in the Antarctic troposphere has a distinct chemistry and challenging long-term measurements are needed for a better understanding of the atmospheric Hg reactions with oxidants and the exchanges of the various mercury forms among air-snow-sea and biota. Antarctic mosses and lichens are reliable biomonitors of airborne metals and in short time they can give useful information about Hg deposition patterns. Data summarized in this review show that although atmospheric Hg concentrations in the Southern Hemisphere are lower than those in the Northern Hemisphere, Antarctic cryptogams accumulate Hg at levels in the same range or higher than those observed for related cryptogam species in the Arctic, suggesting an enhanced deposition of bioavailable Hg in Antarctic coastal ice-free areas. In agreement with the newest findings in the literature, the Hg bioaccumulation in mosses and lichens from a nunatak particularly exposed to strong katabatic winds can be taken as evidence for a Hg contribution to coastal ecosystems by air masses from the Antarctic plateau. Human activities on the continent are mostly concentrated in coastal ice-free areas, and the deposition in these areas of Hg from the marine environment, the plateau and anthropogenic sources raises concern. The use of Antarctic cryptogams as biomonitors will be very useful to map Hg deposition patterns in costal ice-free areas and will contribute to a better understanding of Hg cycling in Antarctica and its environmental fate in terrestrial ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Barber, D. G.; Ehn, J. K.; Pućko, M.; Rysgaard, S.; Deming, J. W.; Bowman, J. S.; Papakyriakou, T.; Galley, R. J.; Søgaard, D. H.
2014-10-01
Ongoing changes in Arctic sea ice are increasing the spatial and temporal range of young sea ice types over which frost flowers can occur, yet the significance of frost flowers to ocean-sea ice-atmosphere exchange processes remains poorly understood. Frost flowers form when moisture from seawater becomes available to a cold atmosphere and surface winds are low, allowing for supersaturation of the near-surface boundary layer. Ice grown in a pond cut in young ice at the mouth of Young Sound, NE Greenland, in March 2012, showed that expanding frost flower clusters began forming as soon as the ice formed. The new ice and frost flowers dramatically changed the radiative and thermal environment. The frost flowers were about 5°C colder than the brine surface, with an approximately linear temperature gradient from their base to their upper tips. Salinity and δ18O values indicated that frost flowers primarily originated from the surface brine skim. Ikaite crystals were observed to form within an hour in both frost flowers and the thin pond ice. Average ikaite concentrations were 1013 µmol kg-1 in frost flowers and 1061 µmol kg-1 in the surface slush layer. Chamber flux measurements confirmed an efflux of CO2 at the brine-wetted sea ice surface, in line with expectations from the brine chemistry. Bacteria concentrations generally increased with salinity in frost flowers and the surface slush layer. Bacterial densities and taxa indicated that a selective process occurred at the ice surface and confirmed the general pattern of primary oceanic origin versus negligible atmospheric deposition.
Organochlorine compounds in ice melt water from Italian Alpine rivers.
Villa, Sara; Negrelli, Christian; Finizio, Antonio; Flora, Onelio; Vighi, Marco
2006-01-01
Organochlorine chemicals (OCs) (dichlorodiphenyltrichloroethanes, hexachlorocyclohexanes, and hexachlorobenzene) were measured in ice melt water from five glaciers in the Italian Alps. Even though the data collected may not be sufficient for a precise description of persistent organic pollutant release patterns from glacier melting, they have, however, highlighted the potential for surface water contamination. Concentrations were of the same order of magnitude in all glacial streams, indicating comparable contamination levels in different glaciers of the alpine region. OC levels in nonglacial springs sampled in the same areas are usually lower. Even if differences during the melting season (from spring to autumn) have been identified, a regular seasonal pattern in OC concentrations was not observed. Risk for the aquatic environment is excluded through direct water exposure, but it is likely to occur through biomagnification and secondary poisoning exposure.
NASA Astrophysics Data System (ADS)
Person, Mark; McIntosh, Jennifer; Bense, Victor; Remenda, V. H.
2007-09-01
While the geomorphic consequences of Pleistocene megafloods have been known for some time, it has been only in the past 2 decades that hydrogeologists and glaciologists alike have begun to appreciate the important impact that ice sheet-aquifer interactions have had in controlling subsurface flow patterns, recharge rates, and the distribution of fresh water in confined aquifer systems across North America. In this paper, we document the numerous lines of geochemical, isotopic, and geomechanical evidence of ice sheet hydrogeology across North America. We also review the mechanical, thermal, and hydrologic processes that control subsurface fluid migration beneath ice sheets. Finite element models of subsurface fluid flow, permafrost formation, and ice sheet loading are presented to investigate the coupled nature of transport processes during glaciation/deglaciation. These indicate that recharge rates as high as 10 times modern values occurred as the Laurentide Ice Sheet overran the margins of sedimentary basins. The effects of ice sheet loading and permafrost formation result in complex transient flow patterns within aquifers and confining units alike. Using geochemical and environmental isotopic data, we estimate that the volume of glacial meltwater emplaced at the margins of sedimentary basins overrun by the Laurentide Ice Sheet totals about 3.7 × 104 km3, which is about 0.2% of the volume of the Laurentide Ice Sheet. Subglacial infiltration estimates based on continental-scale hydrologic models are even higher (5-10% of meltwater generated). These studies in sum call into question the widely held notion that groundwater flow patterns within confined aquifer systems are controlled primarily by the water table configuration during the Pleistocene. Rather, groundwater flow patterns were likely much more complex and transient in nature than has previously been thought. Because Pleistocene recharge rates are believed to be highly variable, these studies have profound implications for water resource managers charged with determining sustainable pumping rates from confined aquifers that host ice sheet meltwater.
NASA Astrophysics Data System (ADS)
Csatho, B. M.; Schenk, A. F.; Babonis, G. S.; van den Broeke, M. R.; Kuipers Munneke, P.; van der Veen, C. J.; Khan, S. A.; Porter, D. F.
2016-12-01
This study presents a new, comprehensive reconstruction of Greenland Ice Sheet elevation changes, generated using the Surface Elevation And Change detection (SERAC) approach. 35-year long elevation-change time series (1980-2015) were obtained at more than 150,000 locations from observations acquired by NASA's airborne and spaceborne laser altimeters (ATM, LVIS, ICESat), PROMICE laser altimetry data (2007-2011) and a DEM covering the ice sheet margin derived from stereo aerial photographs (1970s-80s). After removing the effect of Glacial Isostatic Adjustment (GIA) and the elastic crustal response to changes in ice loading, the time series were partitioned into changes due to surface processes and ice dynamics and then converted into mass change histories. Using gridded products, we examined ice sheet elevation, and mass change patterns, and compared them with other estimates at different scales from individual outlet glaciers through large drainage basins, on to the entire ice sheet. Both the SERAC time series and the grids derived from these time series revealed significant spatial and temporal variations of dynamic mass loss and widespread intermittent thinning, indicating the complexity of ice sheet response to climate forcing. To investigate the regional and local controls of ice dynamics, we examined thickness change time series near outlet glacier grounding lines. Changes on most outlet glaciers were consistent with one or more episodes of dynamic thinning that propagates upstream from the glacier terminus. The spatial pattern of the onset, duration, and termination of these dynamic thinning events suggest a regional control, such as warming ocean and air temperatures. However, the intricate spatiotemporal pattern of dynamic thickness change suggests that, regardless of the forcing responsible for initial glacier acceleration and thinning, the response of individual glaciers is modulated by local conditions. We use statistical methods, such as principal component analysis and multivariate regression to analyze the dynamic ice-thickness change time series derived by SERAC and to investigate the primary forcings and controls on outlet glacier changes.
78 FR 15669 - Marine Mammals: Alaska Harbor Seal Habitats
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-12
... that ship presence could be altering population birth/death rates, which are difficult to measure. A... Alaska are now experiencing high rates of ice loss due to climate change, which is likely to further... Inlet, Glacier Bay, found that vessel presence altered seal haulout patterns by increasing the rate of...
Mehrabani, Homayun; Ray, Neil; Tse, Kyle
2014-01-01
Growth of ice on surfaces poses a challenge for both organisms and for devices that come into contact with liquids below the freezing point. Resistance of some organisms to ice formation and growth, either in subtidal environments (e.g., Antarctic anchor ice), or in environments with moisture and cold air (e.g., plants, intertidal) begs examination of how this is accomplished. Several factors may be important in promoting or mitigating ice formation. As a start, here we examine the effect of surface texture alone. We tested four candidate surfaces, inspired by hard-shelled marine invertebrates and constructed using a three-dimensional printing process. We examined sub-polar marine organisms to develop sample textures and screened them for ice formation and accretion in submerged conditions using previous methods for comparison to data for Antarctic organisms. The sub-polar organisms tested were all found to form ice readily. We also screened artificial 3-D printed samples using the same previous methods, and developed a new test to examine ice formation from surface droplets as might be encountered in environments with moist, cold air. Despite limitations inherent to our techniques, it appears surface texture plays only a small role in delaying the onset of ice formation: a stripe feature (corresponding to patterning found on valves of blue mussels, Mytilus edulis, or on the spines of the Antarctic sea urchin Sterechinus neumayeri) slowed ice formation an average of 25% compared to a grid feature (corresponding to patterning found on sub-polar butterclams, Saxidomas nuttalli). The geometric dimensions of the features have only a small (∼6%) effect on ice formation. Surface texture affects ice formation, but does not explain by itself the large variation in ice formation and species-specific ice resistance observed in other work. This suggests future examination of other factors, such as material elastic properties and surface coatings, and their interaction with surface pattern. PMID:25279268
Sea Ice Flows, Sea of Okhotsk, CIS
1991-05-06
STS039-84-29AL (28 April-6 May 1991) --- This nearly vertical photograph of the North Atlantic, taken outside of the sunglint pattern, illustrates the extreme contrast between highly reflective ice, having a large percentage of between-crystal air space, and the low-reflectance water, which absorbs most of the light that propagates into it from the air. The ice drifts along with the surface currents and wind and may therefore be used as a natural Langranian* tracer. Photographs such as this, taken several times over the course of a mission, may be used to investigate near-surface circulation in high-latitude oceans. *A Langranian tracer is anything that can be tracked as it drifts along with the water, as opposed to staying in one position and measuring how fast the water goes by.
Historic Storminess Changes in North Atlantic Region
NASA Astrophysics Data System (ADS)
Dawson, A. G.; Elliott, L.; Noone, S.; Hickey, K.; Foster, I.; Wadhams, P.; Mayewski, P.
2001-05-01
Reconstructed patterns of historic storminess (1870-1990 AD) for North Atlantic region as indicated by measurements from selected stations in Iceland, Faeroes, Scotland and Ireland show clear links with the climate "seesaw" winters first described by Van Loon and Rogers. The stormiest winters appear to have occurred during periods when measured Greenland air temperatures at Jacobshavn and reconstructed air temperatures from the Summit ice core site have been exceptionally low and when air temperature across northern Europe have been well above average. Maxima and minima of recorded winter storms for the various stations are also in agreement with the Sodium chronology from GISP2 that points to increased sea salt precipitation on Greenland ice at Summit during Greenland "below" periods of the climate seesaw.
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
1992-01-01
Recently it was reported that sea ice extents in the Northern Hemisphere showed a very slight but statistically significant decrease over the 8.8-year period of the Nimbus 7 scanning multichannel microwave radiometer (SMMR) data set. In this paper the same SMMR data are used to reveal spatial patterns in increasing and decreasing sea ice coverage. Specifically, the length of the ice season is mapped for each full year of the SMMR data set (1979-1986), and the trends over the 8 years in these ice season lengths are also mapped. These trends show considerable spatial coherence, with a shortening in the sea ice season apparent in much of the eastern hemisphere of the north polar ice cover, particularly in the Sea of Okhotsk, the Barents Sea, and the Kara Sea, and a lengthening of the sea ice season apparent in much of the western hemisphere of the north polar ice cover, particularly in Davis Strait, the Labrador Sea, and the Beaufort Sea.
NASA Astrophysics Data System (ADS)
Studinger, M.; Brunt, K. M.; Casey, K.; Medley, B.; Neumann, T.; Manizade, S.; Linkswiler, M. A.
2015-12-01
In order to produce a cross-calibrated long-term record of ice-surface elevation change for input into ice sheet models and mass balance studies it is necessary to "link the measurements made by airborne laser altimeters, satellite measurements of ICESat, ICESat-2, and CryoSat-2" [IceBridge Level 1 Science Requirements, 2012] and determine the biases and the spatial variations between radar altimeters and laser altimeters using different wavelengths. The convergence zones of all ICESat tracks (86°S) and all ICESat-2 and CryoSat-2 tracks (88°S) are in regions of relatively low accumulation, making them ideal for satellite altimetry calibration. In preparation for ICESat-2 validation, the IceBridge and ICESat-2 science teams have designed IceBridge data acquisitions around 86°S and 88°S. Several aspects need to be considered when comparing and combining elevation measurements from different radar and laser altimeters, including: a) foot print size and spatial sampling pattern; b) accuracy and precision of each data sets; c) varying signal penetration into the snow; and d) changes in geodetic reference frames over time, such as the International Terrestrial Reference Frame (ITRF). The presentation will focus on the analysis of several IceBridge flights around 86 and 88°S with the LVIS and ATM airborne laser altimeters and will evaluate the accuracy and precision of these data sets. To properly interpret the observed elevation change (dh/dt) as mass change, however, the various processes that control surface elevation fluctuations must be quantified and therefore future work will quantify the spatial variability in snow accumulation rates pole-ward of 86°S and in particular around 88°S. Our goal is to develop a cross-validated multi-sensor time series of surface elevation change pole-ward of 86°S that, in combination with measured accumulation rates, will support ICESat-2 calibration and validation and ice sheet mass balance studies.
A numerical simulation of the flow in the diffuser of the NASA Lewis icing research tunnel
NASA Technical Reports Server (NTRS)
Addy, Harold E., Jr.; Keith, Theo G., Jr.
1990-01-01
The flow in the diffuser section of the Icing Research Tunnel at the NASA Lewis Research Center is numerically investigated. To accomplish this, an existing computer code is utilized. The code, known as PARC3D, is based on the Beam-Warming algorithm applied to the strong conservation law form of the complete Navier-Stokes equations. The first portion of the paper consists of a brief description of the diffuser and its current flow characteristics. A brief discussion of the code work follows. Predicted velocity patterns are then compared with the measured values.
Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland
NASA Astrophysics Data System (ADS)
Overeem, I.; Hudson, B. D.; Syvitski, J. P. M.; Mikkelsen, A. B.; Hasholt, B.; van den Broeke, M. R.; Noël, B. P. Y.; Morlighem, M.
2017-11-01
Limited measurements along Greenland's remote coastline hamper quantification of the sediment and associated nutrients draining the Greenland ice sheet, despite the potential influence of river-transported suspended sediment on phytoplankton blooms and carbon sequestration. Here we calibrate satellite imagery to estimate suspended sediment concentration for 160 proglacial rivers across Greenland. Combining these suspended sediment reconstructions with numerical calculations of meltwater runoff, we quantify the amount and spatial pattern of sediment export from the ice sheet. We find that, although runoff from Greenland represents only 1.1% of the Earth's freshwater flux, the Greenland ice sheet produces approximately 8% of the modern fluvial export of suspended sediment to the global ocean. Sediment loads are highly variable between rivers, consistent with observed differences in ice dynamics and thus with control by glacial erosion. Rivers that originate from deeply incised, fast-moving glacial tongues form distinct sediment-export hotspots: just 15% of Greenland's rivers transport 80% of the total sediment load of the ice sheet. We conclude that future acceleration of melt and ice sheet flow may increase sediment delivery from Greenland to its fjords and the nearby ocean.
Reduced body size and cub recruitment in polar bears associated with sea ice decline.
Rode, Karyn D; Amstrup, Steven C; Regehr, Eric V
2010-04-01
Rates of reproduction and survival are dependent upon adequate body size and condition of individuals. Declines in size and condition have provided early indicators of population decline in polar bears (Ursus maritimus) near the southern extreme of their range. We tested whether patterns in body size, condition, and cub recruitment of polar bears in the southern Beaufort Sea of Alaska were related to the availability of preferred sea ice habitats and whether these measures and habitat availability exhibited trends over time, between 1982 and 2006. The mean skull size and body length of all polar bears over three years of age declined over time, corresponding with long-term declines in the spatial and temporal availability of sea ice habitat. Body size of young, growing bears declined over time and was smaller after years when sea ice availability was reduced. Reduced litter mass and numbers of yearlings per female following years with lower availability of optimal sea ice habitat, suggest reduced reproductive output and juvenile survival. These results, based on analysis of a long-term data set, suggest that declining sea ice is associated with nutritional limitations that reduced body size and reproduction in this population.
Reduced body size and cub recruitment in polar bears associated with sea ice decline
Rode, Karyn D.; Amstrup, Steven C.; Regehr, Eric V.
2010-01-01
Rates of reproduction and survival are dependent upon adequate body size and condition of individuals. Declines in size and condition have provided early indicators of population decline in polar bears (Ursus maritimus) near the southern extreme of their range. We tested whether patterns in body size, condition, and cub recruitment of polar bears in the southern Beaufort Sea of Alaska were related to the availability of preferred sea ice habitats and whether these measures and habitat availability exhibited trends over time, between 1982 and 2006. The mean skull size and body length of all polar bears over three years of age declined over time, corresponding with long‐term declines in the spatial and temporal availability of sea ice habitat. Body size of young, growing bears declined over time and was smaller after years when sea ice availability was reduced. Reduced litter mass and numbers of yearlings per female following years with lower availability of optimal sea ice habitat, suggest reduced reproductive output and juvenile survival. These results, based on analysis of a long‐term data set, suggest that declining sea ice is associated with nutritional limitations that reduced body size and reproduction in this population.
A Novel Ice Storm Experiment for Evaluating the Ecological Impacts of These Extreme Weather Events
NASA Astrophysics Data System (ADS)
Driscoll, C. T.; Campbell, J. L.; Rustad, L.; Fahey, T.; Fahey, R. T.; Garlick, S.; Groffman, P.; Hawley, G. J.; Schaberg, P. G.
2017-12-01
Ice storms are among the most destructive natural disturbances in some regions of the world, and are an example of an extreme weather event that can profoundly disrupt ecosystem function. Despite potential dire consequences of ice storms on ecosystems and society, we are poorly positioned to predict responses because severe ice storms are infrequent and understudied. Since it is difficult to determine when and where ice storms will occur, most previous research has consisted of ad hoc attempts to characterize impacts in the wake of major icing events. To evaluate ice storm effects in a more controlled manner, we conducted a novel ice storm manipulation experiment at the Hubbard Brook Experimental Forest in New Hampshire. Water was sprayed above the forest canopy in sub-freezing conditions to simulate a glaze ice event. Treatments included replicate plots that received three levels of radial ice thickness (6, 13, and 19 mm) and reference plots that were not sprayed. Additionally, two of the mid-level treatment plots received ice applications in back-to-back years to evaluate effects associated with ice storm frequency. Measures of the forest canopy, including hemispherical photography, photosynthetically active radiation, and ground-based LiDAR, indicated that the ice loads clearly damaged vegetation and opened up the canopy, allowing more light to penetrate. These changes in the canopy were reflected in measurements of fine and coarse woody debris that were commensurate with the level of icing. Soil respiration declined in the most heavily damaged plots, which we attribute to changes in root activity. Although soil solution nitrogen showed clear seasonal patterns, there was no treatment response. These results differ from the severe regional natural ice storm of 1998, which caused large leaching losses of nitrate in soil solutions and stream water during the growing season after the event, due to lack of uptake by damaged vegetation. It is not yet clear why there is a discrepancy between the results from our experiment and the natural ice storm, even though the levels of damage were comparable. It is possible that large declines in N supply observed over the last two decades have resulted in a tightening of the nitrogen cycle. Quantification of additional pools and fluxes (especially foliar N) should provide further insight.
GIA Modeling with 3D Rheology and Recent Ice Thickness Changes in Polar Regions
NASA Astrophysics Data System (ADS)
Van Der Wal, W.; Wu, P. P.
2012-12-01
Models for Glacial Isostatic Adjustment (GIA) mainly focus on the response of the solid Earth to ice thickness changes on the scale of thousands of years. However, some of the fastest vertical movement in former glaciated regions is due to changes in ice thickness that occurred within the last 1,000 years. Similar studies for the polar regions are limited, possibly due to a lack of knowledge on past ice sheet thicknesses there. Still, predictions of uplift rate and mass change due to recent ice thickness changes need to improve in order to provide accurate estimates of current mass loss. In order to obtain a measurable response to variations in ice thickness in the last 1,000 years, viscosity in the lithosphere or top of the upper mantle needs to be lower than the mantle viscosity values in conventional GIA models. In the absence of reliable models for recent ice thickness changes we aim to bracket the predicted uplift rates and gravity rates for such changes by assuming simplified past ice growth and melt patterns. Instead of adding a low-viscous layer in the mantle a priori, creep parameters are based on information from experimental constraints, seismology and heatflow measurements. Thus the model includes viscosity varying in space and time. The simulations are performed on a finite element model of a spherical, self-gravitating, incompressible Earth using the commercial software Abaqus. 3D composite rheology is implemented based on temperature fields from heatflow measurements or seismic velocity anomalies. The lithospheric thickness does not need to be specified as the effective elastic thickness is determined by the local effective viscosity. ICE-5G is used as ice loading history while ice changes during and around the Little Ice Age in Greenland are assumed to take place near the coast. A 3D composite rheology has been shown to match historic sea levels well, but uplift rates are somewhat underestimated. With the GIA models that best match uplift rates in Fennoscandia and North America we find that ice thickness increase during the Little Ice Age in Greenland can make up a significant part of the mass change signal observed by the GRACE satellites (locally up to 10%). 3D non-linear rheology models introduce variation of up to 30% of the maximum signal observed with GRACE, compared to about 20% for conventional GIA models with 1D viscosity.
Stress and deformation characteristics of sea ice in a high resolution numerical sea ice model.
NASA Astrophysics Data System (ADS)
Heorton, Harry; Feltham, Daniel; Tsamados, Michel
2017-04-01
The drift and deformation of sea ice floating on the polar oceans is due to the applied wind and ocean currents. The deformations of sea ice over ocean basin length scales have observable patterns; cracks and leads in satellite images and within the velocity fields generated from floe tracking. In a climate sea ice model the deformation of sea ice over ocean basin length scales is modelled using a rheology that represents the relationship between stresses and deformation within the sea ice cover. Here we investigate the link between observable deformation characteristics and the underlying internal sea ice stresses and force balance using the Los Alamos numerical sea ice climate model. In order to mimic laboratory experiments on the deformation of small cubes of sea ice we have developed an idealised square domain that tests the model response at spatial resolutions of up to 500m. We use the Elastic Anisotropic Plastic and Elastic Viscous Plastic rheologies, comparing their stability over varying resolutions and time scales. Sea ice within the domain is forced by idealised winds in order to compare the confinement of wind stresses and internal sea ice stresses. We document the characteristic deformation patterns of convergent, divergent and rotating stress states.
NASA Astrophysics Data System (ADS)
Morris, Richard M.; Mair, Douglas W. F.; Nienow, Peter W.; Bell, Christina; Burgess, David O.; Wright, Andrew P.
2014-09-01
Understanding the controls on the amount of surface meltwater that refreezes, rather than becoming runoff, over polar ice masses is necessary for modeling their surface mass balance and ultimately for predicting their future contributions to global sea level change. We present a modified version of a physically based model that includes an energy balance routine and explicit calculation of near-surface meltwater refreezing capacity, to simulate the evolution of near-surface density and temperature profiles across Devon Ice Cap in Arctic Canada. Uniquely, our model is initiated and calibrated using high spatial resolution measurements of snow and firn densities across almost the entire elevation range of the ice cap for the summer of 2004 and subsequently validated with the same type of measurements obtained during the very different meteorological conditions of summer 2006. The model captures the spatial variability across the transect in bulk snowpack properties although it slightly underestimates the flow of meltwater into the firn of previous years. The percentage of meltwater that becomes runoff is similar in both years; however, the spatial pattern of this melt-runoff relationship is different in the 2 years. The model is found to be insensitive to variation in the depth of impermeable layers within the firn but is very sensitive to variation in air temperature, since the refreezing capacity of firn decreases with increasing temperature. We highlight that the sensitivity of the ice cap's surface mass balance to air temperature is itself dependent on air temperature.
NASA Astrophysics Data System (ADS)
Schneider, David P.; Deser, Clara
2018-06-01
Recent work suggests that natural variability has played a significant role in the increase of Antarctic sea ice extent during 1979-2013. The ice extent has responded strongly to atmospheric circulation changes, including a deepened Amundsen Sea Low (ASL), which in part has been driven by tropical variability. Nonetheless, this increase has occurred in the context of externally forced climate change, and it has been difficult to reconcile observed and modeled Antarctic sea ice trends. To understand observed-model disparities, this work defines the internally driven and radiatively forced patterns of Antarctic sea ice change and exposes potential model biases using results from two sets of historical experiments of a coupled climate model compared with observations. One ensemble is constrained only by external factors such as greenhouse gases and stratospheric ozone, while the other explicitly accounts for the influence of tropical variability by specifying observed SST anomalies in the eastern tropical Pacific. The latter experiment reproduces the deepening of the ASL, which drives an increase in regional ice extent due to enhanced ice motion and sea surface cooling. However, the overall sea ice trend in every ensemble member of both experiments is characterized by ice loss and is dominated by the forced pattern, as given by the ensemble-mean of the first experiment. This pervasive ice loss is associated with a strong warming of the ocean mixed layer, suggesting that the ocean model does not locally store or export anomalous heat efficiently enough to maintain a surface environment conducive to sea ice expansion. The pervasive upper-ocean warming, not seen in observations, likely reflects ocean mean-state biases.
NASA Astrophysics Data System (ADS)
Schneider, David P.; Deser, Clara
2017-09-01
Recent work suggests that natural variability has played a significant role in the increase of Antarctic sea ice extent during 1979-2013. The ice extent has responded strongly to atmospheric circulation changes, including a deepened Amundsen Sea Low (ASL), which in part has been driven by tropical variability. Nonetheless, this increase has occurred in the context of externally forced climate change, and it has been difficult to reconcile observed and modeled Antarctic sea ice trends. To understand observed-model disparities, this work defines the internally driven and radiatively forced patterns of Antarctic sea ice change and exposes potential model biases using results from two sets of historical experiments of a coupled climate model compared with observations. One ensemble is constrained only by external factors such as greenhouse gases and stratospheric ozone, while the other explicitly accounts for the influence of tropical variability by specifying observed SST anomalies in the eastern tropical Pacific. The latter experiment reproduces the deepening of the ASL, which drives an increase in regional ice extent due to enhanced ice motion and sea surface cooling. However, the overall sea ice trend in every ensemble member of both experiments is characterized by ice loss and is dominated by the forced pattern, as given by the ensemble-mean of the first experiment. This pervasive ice loss is associated with a strong warming of the ocean mixed layer, suggesting that the ocean model does not locally store or export anomalous heat efficiently enough to maintain a surface environment conducive to sea ice expansion. The pervasive upper-ocean warming, not seen in observations, likely reflects ocean mean-state biases.
NASA Astrophysics Data System (ADS)
Noël, Brice; van de Berg, Willem Jan; Melchior van Wessem, J.; van Meijgaard, Erik; van As, Dirk; Lenaerts, Jan T. M.; Lhermitte, Stef; Kuipers Munneke, Peter; Smeets, C. J. P. Paul; van Ulft, Lambertus H.; van de Wal, Roderik S. W.; van den Broeke, Michiel R.
2018-03-01
We evaluate modelled Greenland ice sheet (GrIS) near-surface climate, surface energy balance (SEB) and surface mass balance (SMB) from the updated regional climate model RACMO2 (1958-2016). The new model version, referred to as RACMO2.3p2, incorporates updated glacier outlines, topography and ice albedo fields. Parameters in the cloud scheme governing the conversion of cloud condensate into precipitation have been tuned to correct inland snowfall underestimation: snow properties are modified to reduce drifting snow and melt production in the ice sheet percolation zone. The ice albedo prescribed in the updated model is lower at the ice sheet margins, increasing ice melt locally. RACMO2.3p2 shows good agreement compared to in situ meteorological data and point SEB/SMB measurements, and better resolves the spatial patterns and temporal variability of SMB compared with the previous model version, notably in the north-east, south-east and along the K-transect in south-western Greenland. This new model version provides updated, high-resolution gridded fields of the GrIS present-day climate and SMB, and will be used for projections of the GrIS climate and SMB in response to a future climate scenario in a forthcoming study.
Hegedüs, Ramón; Akesson, Susanne; Horváth, Gábor
2007-01-01
The foggy sky above a white ice-cover and a dark water surface (permanent polynya or temporary lead) is white and dark gray, phenomena called the 'ice-sky' and the 'water-sky,' respectively. Captains of icebreaker ships used to search for not-directly-visible open waters remotely on the basis of the water sky. Animals depending on open waters in the Arctic region may also detect not-directly-visible waters from a distance by means of the water sky. Since the polarization of ice-skies and water-skies has not, to our knowledge, been studied before, we measured the polarization patterns of water-skies above polynyas in the arctic ice-cover during the Beringia 2005 Swedish polar research expedition to the North Pole region. We show that there are statistically significant differences in the angle of polarization between the water-sky and the ice-sky. This polarization phenomenon could help biological and man-made sensors to detect open waters not directly visible from a distance. However, the threshold of polarization-based detection would be rather low, because the degree of linear polarization of light radiated by water-skies and ice-skies is not higher than 10%.
NASA Astrophysics Data System (ADS)
Fridlind, A. M.; Avramov, A.; Ackerman, A. S.; Alpert, P. A.; Knopf, D. A.; DeMott, P. J.; Brooks, S. D.; Glen, A.
2015-12-01
It has been argued on the basis of some laboratory data sets, observed mixed-phase cloud systems, and numerical modeling studies that weakly active or slowly consumed ice forming nuclei (IFN) may be important to natural cloud systems. It has also been argued on the basis of field measurements that ice nucleation under mixed-phase conditions appears to occur predominantly via a liquid-phase mechanism, requiring the presence of liquid droplets prior to substantial ice nucleation. Here we analyze the response of quasi-Lagrangian large-eddy simulations of mixed-phase cloud layers to IFN operating via a liquid-phase mode using assumptions that result in either slow or rapid depletion of IFN from the cloudy boundary layer. Using several generalized case studies that do not exhibit riming or drizzle, based loosely on field campaign data, we vary environmental conditions such that the cloud-top temperature trend varies. One objective of this work is to identify differing patterns in ice formation intensity that may be distinguishable from ground-based or satellite platforms.
The influence of the hydrologic cycle on the extent of sea ice with climatic implications
NASA Technical Reports Server (NTRS)
Dean, Kenneson G.; Stringer, William J.; Searcy, Craig
1993-01-01
Multi-temporal satellite images, field observations, and field measurements were used to investigate the mechanisms by which sea ice melts offshore from the Mackenzie River delta. Advanced Very High Resolution Radiometer (AVHRR) satellite data recorded in 1986 were analyzed. The satellite data were geometrically corrected and radiometrically calibrated so that albedo and temperature values could be extracted. The investigation revealed that sea ice melted approximately 2 weeks earlier offshore from the Mackenzie River delta than along coasts where river discharge is minimal or non-existent. There is significant intra-delta variability in the timing and patterns of ice melt. An estimation of energy flux indicates that 30 percent more of the visible wavelength energy and 25 percent more of the near-infrared wavelength energy is absorbed by water offshore of the delta compared to coastal areas with minimal river discharge. The analysis also revealed that the removal of sea ice involves the following: over-ice-flooding along the coast offshore from river delta channels; under-ice flow of 'warm' river water; melting and calving of the fast ice; and, the formation of a bight in the pack ice edge. Two stages in the melting of sea ice were identified: (1) an early stage where heat is supplied to overflows largely by solar radiation, and (2) a later stage where heat is supplied by river discharge in addition to solar radiation. A simple thermodynamic model of the thaw process in the fast ice zone was developed and parameterized based on events recorded by the satellite images. The model treats river discharge as the source of sensible heat at the base of the ice cover. The results of a series of sensitivity tests to assess the influence of river discharge on the near shore ice are presented.
Forecasting Future Sea Ice Conditions: A Lagrangian Approach
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Forecasting Future Sea Ice Conditions: A Lagrangian ...GCMs participating in IPCC AR5 agree with observed source region patterns from the satellite- derived dataset. 4- Compare Lagrangian ice... Lagrangian sea-ice back trajectories to estimate thermodynamic and dynamic (advection) ice loss. APPROACH We use a Lagrangian trajectory model to
NASA Astrophysics Data System (ADS)
Scherler, D.; Egholm, D. L.
2017-12-01
Debris-covered glaciers are widespread in the Himalaya and other steep mountain ranges. They testify to active erosion of ice-free bedrock hillslopes that tower above valley glaciers, sometimes more than a kilometer high. It is well known that supraglacial debris cover significantly reduces surface ablation rates and thereby influences glacial mass balances and runoff. However, the dynamic evolution of debris cover along with climatic and topographic changes is poorly understood. Here, we present ice-free hillslope erosion rates derived from 10Be concentrations in the ablation-dominated medial moraine of the Chhota Shigri Glacier, Indian Himalaya. We combine our empirical, field-based approach with a numerical model of frost-related sediment production and glacial debris transport to (1) assess patterns of ice-free hillslope erosion that are permissible with observed patterns of debris cover, and (2) explore the coupled response of glaciers and ice-free hillslopes to climatic changes. Measured 10Be concentrations increase downglacier from 3×104 to 6×104 atoms (g quartz) -1, yielding hillslope erosion rates of 1.3-0.6 mm yr-1. The accumulation of 10Be during debris residence on the ice surface can only account for a small fraction (<20%) of the downglacier increase. Other potential explanations include (1) heterogeneous source areas with different average productions rates, and (2) homogeneous source areas but temporally variable erosion rates. We used the 10Be-derived hillslope erosion rates to define debris supply rates from ice-free bedrock hillslopes in the numerical ice and landscape evolution model iSOSIA. Based on available mass balance and ice thickness data, the calibrated model reproduces the medial moraine of the Chhota Shogri Glacier quite well, although uncertainties exist due to the transient disequilibrium of the glacier, i.e., the current debris cover was fed into the glacier during the Little Ice Age (LIA), and thus under different boundary conditions. We currently perform transient experiments during warming and cooling periods for testing models of frost-related and temperature-sensitive debris production, and for assessing the coupled sensitivity of hillslopes and glaciers to climate change.
Northeast Coast, Hokkaido, Japan
1992-04-02
The northeast coast of Hokkaido and Kunashir Island, Japan (44.0N, 143.0E) are seen bordered by drifting sea ice. The sea ice has formed a complex pattern of eddies in response to surface water currents and winds. Photos of this kind aid researchers in describing local ocean current patterns and the effects of wind speed and direction on the drift of surface material, such as ice floes or oil. Kunashir is the southernmost of the Kuril Islands.
Artificial Bone and Teeth through Controlled Ice Growth in Colloidal Suspensions
NASA Astrophysics Data System (ADS)
Tomsia, Antoni P.; Saiz, Eduardo; Deville, Sylvain
2007-06-01
The formation of regular patterns is a common feature of many solidification processes involving cast materials. We describe here how regular patterns can be obtained in porous alumina and hydroxyapatite (HAP) by controlling the freezing of ceramic slurries followed by subsequent ice sublimation and sintering, leading to multilayered porous ceramic structures with homogeneous and well-defined architecture. These porous materials can be infiltrated with a second phase of choice to yield biomimetic nacre-like composites with improved mechanical properties, which could be used for artificial bone and teeth applications. Proper control of the solidification patterns provides powerful means of control over the final functional properties. We discuss the relationships between the experimental results, ice growth fundamentals, the physics of ice and the interaction between inert particles and the solidification front during directional freezing.
Artificial Bone and Teeth through Controlled Ice Growth in Colloidal Suspensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomsia, Antoni P.; Saiz, Eduardo; Deville, Sylvain
2007-06-14
The formation of regular patterns is a common feature of many solidification processes involving cast materials. We describe here how regular patterns can be obtained in porous alumina and hydroxyapatite (HAP) by controlling the freezing of ceramic slurries followed by subsequent ice sublimation and sintering, leading to multilayered porous ceramic structures with homogeneous and well-defined architecture. These porous materials can be infiltrated with a second phase of choice to yield biomimetic nacre-like composites with improved mechanical properties, which could be used for artificial bone and teeth applications. Proper control of the solidification patterns provides powerful means of control over themore » final functional properties. We discuss the relationships between the experimental results, ice growth fundamentals, the physics of ice and the interaction between inert particles and the solidification front during directional freezing.« less
Geodetic mass balance measurements on debris and clean-ice tropical glaciers in Ecuador
NASA Astrophysics Data System (ADS)
La Frenierre, J.; Decker, C. R.; Jordan, E.; Wigmore, O.; Hodge, B. E.; Niederriter, C.; Michels, A.
2017-12-01
Glaciers are recognized as highly sensitive indicators of climate change in high altitude, low latitude environments. In the tropical Andes, various analyses of glacier surface area change have helped illuminate the manifestation of climate change in this region, however, information about actual glacier mass balance behavior is much more limited given the relatively small glaciers, difficult access, poor weather, and/or limited local resources common here. Several new technologies, including aerial and terrestrial LIDAR and structure-from-motion photogrammetry using small unmanned aerial vehicles (UAVs), make mass balance measurements using geodetic approaches increasingly feasible in remote mountain locations, which can both further our understanding of changing climatic conditions, and improve our ability to evaluate the downstream hydrologic impacts of ice loss. At Volcán Chimborazo, Ecuador, these new technologies, combined with a unique, 5-meter resolution digital elevation model derived from 1997 aerial imagery, make possible an analysis of the magnitude and spatial patterns of mass balance behavior over the past two decades. Here, we evaluate ice loss between 1997 and 2017 at the tongues of two adjacent glaciers, one debris-covered and detached from its accumulation area (Reschreiter Glacier), and one debris-free and intact (Hans Meyer Glacier). Additionally, we incorporate data from 2012 and 2013 terrestrial LIDAR surveys to evaluate the behavior of the Reschreiter at a finer temporal resolution. We find that on the Hans Meyer, the mean surface deflation rate since 1997 at the present-day tongue has been nearly 3 m yr-1, while on the lower-elevation Reschreiter, the mean deflation rate has been approximately 1 m yr-1. However, the processes by which debris-covered ice becomes exposed results in highly heterogeneous patterns of ice loss, with some areas experiencing surface deflation rates approaching 15 m yr-1 when energy absorption is unimpeded.
NASA Astrophysics Data System (ADS)
Labrousse, S.; Sallee, J. B.; Fraser, A. D.; Massom, R. A.; Reid, P.; Sumner, M.; Guinet, C.; Harcourt, R.; Bailleul, F.; Hindell, M.; Charrassin, J. B.
2016-02-01
Investigating ecological relationships between top predators and their environment is essential to understand the response of marine ecosystems to climate variability. Specifically, variability and changes in sea ice, which is known as an important habitat for marine ecosystems, presents complex patterns in East Antarctic. The impact for ecosystems of such changes of their habitat is however still unknown. Acting as an ecological double-edged sword, sea ice can impede access to marine resources while harboring a rich ecosystem during winter. Here, we investigated which type of sea ice habitat is used by male and female southern elephant seals during winter and examine if and how the spatio-temporal variability of sea ice concentration (SIC) influence their foraging strategies. We also examined over a 10 years time-series the impact of SIC and sea ice advance anomaly on foraging activity. To do this, we studied 46 individuals equipped with Satellite linked data recorders between 2004 and 2014, undertaking post-moult trips in winter from Kerguelen to the peri-Antarctic shelf. The general patterns of sea ice use by males and females are clearly distinct; while females tended to follow the sea ice edge as it extended northward, males remained on the continental shelf. Female foraging activity was higher in late autumn in the outer part of the pack ice in concentrated SIC and spatially stable. They remained in areas of variable SIC over time and low persistence. The seal hunting time, a proxy of foraging activity inferred from the diving behaviour, was much higher during earlier advance of sea ice over female time-series. The females were possibly taking advantage of the ice algal autumn bloom sustaining krill and an under ice ecosystem without being trapped in sea ice. Males foraging activity increased when they remained deep inside sea ice over the shelf using variable SIC in time and space, presumably in polynyas or flaw leads between fast and pack ice. This strategy probably gave them access to zones of enhanced resources in early spring such as polynyas, the Antarctic Slope Front, or the Antarctic shelf while avoiding the constraint of sea ice. Over years, males foraging activity were not affected by anomalies of sea ice advance, however negative SIC anomalies were profitable allowing them to use remote areas within sea ice.
Upper-Tropospheric Cloud Ice from IceCube
NASA Astrophysics Data System (ADS)
Wu, D. L.
2017-12-01
Cloud ice plays important roles in Earth's energy budget and cloud-precipitation processes. Knowledge of global cloud ice and its properties is critical for understanding and quantifying its roles in Earth's atmospheric system. It remains a great challenge to measure these variables accurately from space. Submillimeter (submm) wave remote sensing has capability of penetrating clouds and measuring ice mass and microphysical properties. In particular, the 883-GHz frequency is a highest spectral window in microwave frequencies that can be used to fill a sensitivity gap between thermal infrared (IR) and mm-wave sensors in current spaceborne cloud ice observations. IceCube is a cubesat spaceflight demonstration of 883-GHz radiometer technology. Its primary objective is to raise the technology readiness level (TRL) of 883-GHz cloud radiometer for future Earth science missions. By flying a commercial receiver on a 3U cubesat, IceCube is able to achieve fast-track maturation of space technology, by completing its development, integration and testing in 2.5 years. IceCube was successfully delivered to ISS in April 2017 and jettisoned from the International Space Station (ISS) in May 2017. The IceCube cloud-ice radiometer (ICIR) has been acquiring data since the jettison on a daytime-only operation. IceCube adopted a simple design without payload mechanism. It makes maximum utilization of solar power by spinning the spacecraft continuously about the Sun vector at a rate of 1.2° per second. As a result, the ICIR is operated under the limited resources (8.6 W without heater) and largely-varying (18°C-28°C) thermal environments. The spinning cubesat also allows ICIR to have periodical views between the Earth (atmosphere and clouds) and cold space (calibration), from which the first 883-GHz cloud map is obtained. The 883-GHz cloud radiance, sensitive to ice particle scattering, is proportional to cloud ice amount above 10 km. The ICIR cloud map acquired during June 20-July 2, 2017 shows a clear distribution of the inter-tropical convergence zone (ITCZ), as well as the classic Gill-model pattern over the Western Pacific and Indian monsoon regions. Like the ISS, the coverage of ICIR observations is limited to low-to-mid latitudes. More science results and IceCube experiments with the cubesat operation will be discussed.
Shen, Dayong; Liu, Yuling; Huang, Shengli
2012-01-01
The estimation of ice/snow accumulation is of great significance in quantifying the mass balance of ice sheets and variation in water resources. Improving the accuracy and reducing uncertainty has been a challenge for the estimation of annual accumulation over the Greenland ice sheet. In this study, we kriged and analyzed the spatial pattern of accumulation based on an observation data series including 315 points used in a recent research, plus 101 ice cores and snow pits and newly compiled 23 coastal weather station data. The estimated annual accumulation over the Greenland ice sheet is 31.2 g cm−2 yr−1, with a standard error of 0.9 g cm−2 yr−1. The main differences between the improved map developed in this study and the recently published accumulation maps are in the coastal areas, especially southeast and southwest regions. The analysis of accumulations versus elevation reveals the distribution patterns of accumulation over the Greenland ice sheet.
Meteorological Drivers of West Antarctic Ice Sheet and Ice Shelf Surface Melt
NASA Astrophysics Data System (ADS)
Scott, R. C.; Nicolas, J. P.; Bromwich, D. H.; Norris, J. R.; Lubin, D.
2017-12-01
We identify synoptic patterns and surface energy balance components driving warming and surface melting on the West Antarctic Ice Sheet (WAIS) and ice shelves using reanalysis and satellite remote sensing data from 1973-present. We have developed a synoptic climatology of atmospheric circulation patterns during the summer melt season using k-means cluster and composite analysis of daily 700-mb geopotential height and near-surface air temperature and wind fields from the ECMWF ERA-Interim reanalysis. Surface melt occurrence is detected in satellite passive microwave brightness temperature observations (K-band, horizontal polarization) beginning with the NASA Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR) and continuing with its more familiar descendants SMMR, SSM/I and SSMIS. To diagnose synoptic precursors and physical processes driving surface melt we combine the circulation climatology and multi-decadal records of cloud cover with surface radiative fluxes from the Extended AVHRR Polar Pathfinder (APP-x) project. We identify three distinct modes of regional summer West Antarctic warming since 1979 involving anomalous ridging over West Antarctica (WA) and the Amundsen Sea (AS). During the 1970s, ESMR data reveal four extensive melt events on the Ross Sea sector of the WAIS also linked to AS blocking. We therefore define an Amundsen Sea Blocking Index (ASBI). The ASBI and synoptic circulation pattern occurrence frequencies are correlated with the tropical Pacific (ENSO) and high latitude Southern Annular Mode (SAM) indices and the West Antarctic melt index. Surface melt in WA is favored by enhanced downwelling infrared and turbulent sensible heat fluxes associated with intrusions of warm, moist marine air. Consistent with recent findings from the Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE), marine advection to the Ross sector is favored by El Niño conditions in the tropical Pacific and a negative SAM. We also find that El Niño-related blocking favors warming and melting on the marine-based ice streams draining from Wilkes Basin, East Antarctica.
NASA Astrophysics Data System (ADS)
Arndt, Stefanie; Willmes, Sascha; Dierking, Wolfgang; Nicolaus, Marcel
2016-04-01
The better understanding of temporal variability and regional distribution of surface melt on Antarctic sea ice is crucial for the understanding of atmosphere-ocean interactions and the determination of mass and energy budgets of sea ice. Since large regions of Antarctic sea ice are covered with snow during most of the year, observed inter-annual and regional variations of surface melt mainly represents melt processes in the snow. It is therefore important to understand the mechanisms that drive snowmelt, both at different times of the year and in different regions around Antarctica. In this study we combine two approaches for observing both surface and volume snowmelt by means of passive microwave satellite data. The former is achieved by measuring diurnal differences of the brightness temperature TB at 37 GHz, the latter by analyzing the ratio TB(19GHz)/TB(37GHz). Moreover, we use both melt onset proxies to divide the Antarctic sea ice cover into characteristic surface melt patterns from 1988/89 to 2014/15. Our results indicate four characteristic melt types. On average, 43% of the ice-covered ocean shows diurnal freeze-thaw cycles in the surface snow layer, resulting in temporary melt (Type A), less than 1% shows continuous snowmelt throughout the snowpack, resulting in strong melt over a period of several days (Type B), 19% shows Type A and B taking place consecutively (Type C), and for 37% no melt is observed at all (Type D). Continuous melt is primarily observed in the outflow of the Weddell Gyre and in the northern Ross Sea, usually 20 days after the onset of temporary melt. Considering the entire data set, snowmelt processes and onset do not show significant temporal trends. Instead, areas of increasing (decreasing) sea-ice extent have longer (shorter) periods of continuous snowmelt.
Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855-2005)
Benson, Barbara J.; Magnuson, John J.; Jensen, Olaf P.; Card, Virginia M.; Hodgkins, Glenn; Korhonen, Johanna; Livingstone, David M.; Stewart, Kenton M.; Weyhenmeyer, Gesa A.; Granin, Nick G.
2012-01-01
Often extreme events, more than changes in mean conditions, have the greatest impact on the environment and human well-being. Here we examine changes in the occurrence of extremes in the timing of the annual formation and disappearance of lake ice in the Northern Hemisphere. Both changes in the mean condition and in variability around the mean condition can alter the probability of extreme events. Using long-term ice phenology data covering two periods 1855–6 to 2004–5 and 1905–6 to 2004–5 for a total of 75 lakes, we examined patterns in long-term trends and variability in the context of understanding the occurrence of extreme events. We also examined patterns in trends for a 30-year subset (1975–6 to 2004–5) of the 100-year data set. Trends for ice variables in the recent 30-year period were steeper than those in the 100- and 150-year periods, and trends in the 150-year period were steeper than in the 100-year period. Ranges of rates of change (days per decade) among time periods based on linear regression were 0.3−1.6 later for freeze, 0.5−1.9 earlier for breakup, and 0.7−4.3 shorter for duration. Mostly, standard deviation did not change, or it decreased in the 150-year and 100-year periods. During the recent 50-year period, standard deviation calculated in 10-year windows increased for all ice measures. For the 150-year and 100-year periods changes in the mean ice dates rather than changes in variability most strongly influenced the significant increases in the frequency of extreme lake ice events associated with warmer conditions and decreases in the frequency of extreme events associated with cooler conditions.
High-energy, high-fat lifestyle challenges an Arctic apex predator, the polar bear.
Pagano, A M; Durner, G M; Rode, K D; Atwood, T C; Atkinson, S N; Peacock, E; Costa, D P; Owen, M A; Williams, T M
2018-02-02
Regional declines in polar bear ( Ursus maritimus ) populations have been attributed to changing sea ice conditions, but with limited information on the causative mechanisms. By simultaneously measuring field metabolic rates, daily activity patterns, body condition, and foraging success of polar bears moving on the spring sea ice, we found that high metabolic rates (1.6 times greater than previously assumed) coupled with low intake of fat-rich marine mammal prey resulted in an energy deficit for more than half of the bears examined. Activity and movement on the sea ice strongly influenced metabolic demands. Consequently, increases in mobility resulting from ongoing and forecasted declines in and fragmentation of sea ice are likely to increase energy demands and may be an important factor explaining observed declines in body condition and survival. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Astrophysics Data System (ADS)
Lifton, N. A.; Newall, J. C.; Fredin, O.; Glasser, N. F.; Fabel, D.; Rogozhina, I.; Bernales, J.; Prange, M.; Sams, S.; Eisen, O.; Hättestrand, C.; Harbor, J.; Stroeven, A. P.
2017-12-01
Numerical ice sheet models constrained by theory and refined by comparisons with observational data are a central component of work to address the interactions between the cryosphere and changing climate, at a wide range of scales. Such models are tested and refined by comparing model predictions of past ice geometries with field-based reconstructions from geological, geomorphological, and ice core data. However, on the East Antarctic Ice sheet, there are few empirical data with which to reconstruct changes in ice sheet geometry in the Dronning Maud Land (DML) region. In addition, there is poor control on the regional climate history of the ice sheet margin, because ice core locations, where detailed reconstructions of climate history exist, are located on high inland domes. This leaves numerical models of regional glaciation history in this near-coastal area largely unconstrained. MAGIC-DML is an ongoing Swedish-US-Norwegian-German-UK collaboration with a focus on improving ice sheet models by combining advances in numerical modeling with filling critical data gaps that exist in our knowledge of the timing and pattern of ice surface changes on the western Dronning Maud Land margin. A combination of geomorphological mapping using remote sensing data, field investigations, cosmogenic nuclide surface exposure dating, and numerical ice-sheet modeling are being used in an iterative manner to produce a comprehensive reconstruction of the glacial history of western Dronning Maud Land. We will present an overview of the project, as well as field observations and preliminary in situ cosmogenic nuclide measurements from the 2016/17 expedition.
Antiferroquadrupolar correlations in the quantum spin ice candidate Pr2Zr2O7
NASA Astrophysics Data System (ADS)
Petit, S.; Lhotel, E.; Guitteny, S.; Florea, O.; Robert, J.; Bonville, P.; Mirebeau, I.; Ollivier, J.; Mutka, H.; Ressouche, E.; Decorse, C.; Ciomaga Hatnean, M.; Balakrishnan, G.
2016-10-01
We present an experimental study of the quantum spin ice candidate pyrochlore compound Pr2Zr2O7 by means of magnetization measurements, specific heat, and neutron scattering up to 12 T and down to 60 mK. When the field is applied along the [111 ] and [1 1 ¯0 ] directions, k =0 field-induced structures settle in. We find that the ordered moment rises slowly, even at very low temperature, in agreement with macroscopic magnetization. Interestingly, for H ∥[1 1 ¯0 ] , the ordered moment appears on the so-called α chains only. The spin excitation spectrum is essentially inelastic and consists in a broad flat mode centered at about 0.4 meV with a magnetic structure factor which resembles the spin ice pattern. For H ∥[1 1 ¯0 ] (at least up to 2.5 T), we find that a well-defined mode forms from this broad response, whose energy increases with H , in the same way as the temperature of the specific-heat anomaly. We finally discuss these results in the light of mean field calculations and propose an interpretation where quadrupolar interactions play a major role, overcoming the magnetic exchange. In this picture, the spin ice pattern appears shifted up to finite energy because of those interactions. We then propose a range of acceptable parameters for Pr2Zr2O7 that allow to reproduce several experimental features observed under field. With these parameters, the actual ground state of this material would be an antiferroquadrupolar liquid with spin-ice-like excitations.
NASA Astrophysics Data System (ADS)
Falk, U.; Braun, M.; Sala, H.; Menz, G.
2012-04-01
The Antarctic Peninsula is amongst the fastest warming places on Earth and further temperature increase is to be expected. It has undergone rapid environmental changes in the past decades. Exceptional rates of surface air temperature increases (2.5K in 50 years) are concurrent with retreating glacier fronts, an increase in melt areas, surface lowering and rapid retreat, break-up and disintegration of ice shelves. The South Shetland Islands are located on the northern tip of the Peninsula and are especially vulnerable to climate change due to their maritime climate. For King George Island we have compiled a unique data set comprising direct measurements of evaporation and sensible heat flux by eddy covariance on the Warszawa Icefield for the austral summers November 2010 to March 2011 and January to February 2012 in combination with a fully equipped automated weather station measuring long- and short-wave radiation components, profiles of temperature, humidity and wind velocities as well as glacier ice temperatures in profile. The combination with the eddy covariance data allows for analysis of variability and seasonality of surface energy balance components on a glacier for an entire year. Repeat measurements of surface lowering at different locations on King George Island are used for analysis of multi-sensor satellite data to identify melt patterns and bare ice areas during summer. In combination with long-term time series of weather data, these data give indication of the sensitivity of the inland ice cap to the ongoing changes. This research is part of the ESF project IMCOAST funded by BMBF. Field work was carried out at the Dallmann laboratory (Jubany, King George Island) in cooperation of the Instituto Antartico Argentino (Argentina) and the Alfred-Wegener Institute (German).
Sampling supraglacial debris thickness using terrestrial photogrammetry
NASA Astrophysics Data System (ADS)
Nicholson, Lindsey; Mertes, Jordan
2017-04-01
The melt rate of debris-covered ice differs to that of clean ice primarily as a function of debris thickness. The spatial distribution of supraglacial debris thickness must therefore be known in order to understand how it is likely to impact glacier behaviour, and meltwater contribution to local hydrological resources and global sea level rise. However, practical means of determining debris cover thickness remain elusive. In this study we explore the utility of terrestrial photogrammetry to produce high resolution, scaled and texturized digital terrain models of debris cover exposures above ice cliffs as a means of quantifying and characterizing debris thickness. Two Nikon D5000 DSLRs with Tamron 100mm lenses were used to photograph a sample area of the Ngozumpa glacier in the Khumbu Himal of Nepal in April 2016. A Structure from Motion workflow using Agisoft Photoscan software was used to generate a surface models with <10cm resolution. A Trimble Geo7X differential GPS with Zephyr antenna, along with a local base station, was used to precisely measure marked ground control points to scale the photogrammetric surface model. Measurements of debris thickness along the exposed cliffline were made from this scaled model, assuming that the ice surface at the debris-ice boundary is horizontal, and these data are compared to 50 manual point measurements along the same clifftops. We conclude that sufficiently high resolution photogrammetry, with precise scaling information, provides a useful means to determine debris thickness at clifftop exposures. The resolution of the possible measurements depends on image resolution, the accuracy of the ground control points and the computational capacity to generate centimetre scale surface models. Application of such techniques to sufficiently high resolution imagery from UAV-borne cameras may offer a powerful means of determining debris thickness distribution patterns over debris covered glacier termini.
Injury Patterns and Outcomes of Ice-Fishing in the United States
Thiels, Cornelius A.; Hernandez, Matthew C.; Zielinski, Martin D.; Aho, Johnathon M.
2016-01-01
Introduction Fishing is a common pastime. In the developed world, it is commonly performed as a recreational activity. We aim to determine injury patterns and outcomes among patients injured while ice fishing. Methods Data on initial emergency department visits from the National Electronic Injury Surveillance System-All Injury Program (NEISS-AIP) from 2009-2014 were analyzed. All patients with fishing related injuries were included. Primary endpoint was rate of admission or transfer. Secondary endpoints were defined a priori anatomical injury categories and patients were assigned into groups. Descriptive and power analysis was performed between patients with ice-fishing and traditional fishing related injuries. Results We identified 8220 patients who sustained fishing related injuries, of which n=85 (1%) involved ice fishing. Ice fishing injuries occurred primarily in males (88%) with a mean age of 39.4 years ± 17.5 (std dev). The most common injuries related to ice fishing were: orthopedic/musculoskeletal (46%), minor trauma (37%), and major trauma (6%). Hot thermal injuries (burns) were the fourth most common type of ice-fishing injury (5%) but rarely occurred in warmer fishing months (<1%, p=0.004). Cold thermal injuries (1%) and hypothermia (0%) were rare among ice-fishing injuries and immersion/drowning occurred in 5% of cases. The rate of admission/transfer was significantly greater in ice-fishing (11%) than the traditional fishing patients 3%, p<0.001), power was 89.7%. Conclusion Ice fishing is associated with more severe injury patterns and more thermal injuries and immersion injuries than traditional fishing. Providers and participants should be aware of the potential risks and benefits and counseled appropriately. PMID:27117462
Injury patterns and outcomes of ice-fishing in the United States.
Thiels, Cornelius A; Hernandez, Matthew C; Zielinski, Martin D; Aho, Johnathon M
2016-07-01
Fishing is a common pastime. In the developed world, it is commonly performed as a recreational activity. We aim to determine injury patterns and outcomes among patients injured while ice fishing. Data on initial emergency department visits from the National Electronic Injury Surveillance System-All Injury Program (NEISS-AIP) from 2009-2014 were analyzed. All patients with fishing related injuries were included. Primary endpoint was rate of admission or transfer. Secondary endpoints were defined a priori anatomical injury categories and patients were assigned into groups. Descriptive and power analysis was performed between patients with ice-fishing and traditional fishing related injuries. We identified 8220 patients who sustained fishing related injuries, of which n=85 (1%) involved ice fishing. Ice fishing injuries occurred primarily in males (88%) with a mean age of 39.4years ±17.5 (std dev). The most common injuries related to ice fishing were: orthopedic/musculoskeletal (46%), minor trauma (37%), and major trauma (6%). Hot thermal injuries (burns) were the fourth most common type of ice-fishing injury (5%) but rarely occurred in warmer fishing months (<1%, P=.004). Cold thermal injuries (1%) and hypothermia (0%) were rare among ice-fishing injuries and immersion/drowning occurred in 5% of cases. The rate of admission/transfer was significantly greater in ice-fishing (11%) than the traditional fishing patients 3%, (P<.001), power was 90%. Ice fishing is associated with more severe injury patterns and more thermal injuries and immersion injuries than traditional fishing. Providers and participants should be aware of the potential risks and benefits and counseled appropriately. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ruan, Z.; Yan, S.; Liu, G.; Guo, H.; LV, M.
2016-12-01
Glacier dynamic parameters, such as velocity fields and motion patterns, play a crucial role in the estimation of ice mass balance variations and in the monitoring of glacier-related hazards. Characterized by being independent of cloud cover and solar illumination, synthetic aperture radar (SAR) at long wavelength has provided an invaluable way to measure mountain glacier motion. Compared with optical imagery and in-situ surveys, it has been successfully exploited to detect glacier motion in many previous studies, usually with pixel-tracking (PT), differential interferometric SAR (D-InSAR) and multi-aperture interferometry (MAI) methods. However, the reliability of the extracted glacier velocities heavily depends on complex terrain topography and diverse glacial motion types. D-InSAR and MAI techniques are prone to fail in the case of mountain glaciers because of the steep terrain and their narrow sizes. PT method is considered to be the alternative way, although it is subject to a low accuracy.We propose an integrated strategy based on comprehensive utilization of the phase information (D-InSAR and MAI) and intensity information (PT) of SAR images, which is used to yield an accurate and detailed ice motion pattern for the typical glaciers in the West Kunlun Mountains, China, by fully exploiting the SAR imagery. In order to avoid the error introduced by the motion decomposition operation, the derived ice motion is presented in the SAR imaging dimension composed of the along-track and slant-range directions. The Shuttle Radar Topographic Mission (SRTM) digital elevation model (DEM) at 3 arc-sec resolution is employed to remove and compensate for the topography-related signal in the D-InSAR, MAI, and PT methods. Compared with the traditional SAR-based methods, the proposed approach can determine the ice motion over a widely varying range of ice velocities with a relatively high accuracy. Its capability is proved by the detailed ice displacement pattern with the average accuracy of 0.2 m covering the entire glacier surface, which shows a maximum ice movement of 4.9 m over 46 days. Therefore, the integrated approach could present us with a novel way to comprehensively and accurately understand glacier dynamics by overcoming the incoherence phenomenon, and has great potential for glaciology study.
Local response of a glacier to annual filling and drainage of an ice-marginal lake
Walder, J.S.; Trabant, D.C.; Cunico, M.; Fountain, A.G.; Anderson, S.P.; Anderson, R. Scott; Malm, A.
2006-01-01
Ice-marginal Hidden Creek Lake, Alaska, USA, outbursts annually over the course of 2-3 days. As the lake fills, survey targets on the surface of the 'ice dam' (the glacier adjacent to the lake) move obliquely to the ice margin and rise substantially. As the lake drains, ice motion speeds up, becomes nearly perpendicular to the face of the ice dam, and the ice surface drops. Vertical movement of the ice dam probably reflects growth and decay of a wedge of water beneath the ice dam, in line with established ideas about jo??kulhlaup mechanics. However, the distribution of vertical ice movement, with a narrow (50-100 m wide) zone where the uplift rate decreases by 90%, cannot be explained by invoking flexure of the ice dam in a fashion analogous to tidal flexure of a floating glacier tongue or ice shelf. Rather, the zone of large uplift-rate gradient is a fault zone: ice-dam deformation is dominated by movement along high-angle faults that cut the ice dam through its entire thickness, with the sense of fault slip reversing as the lake drains. Survey targets spanning the zone of steep uplift gradient move relative to one another in a nearly reversible fashion as the lake fills and drains. The horizontal strain rate also undergoes a reversal across this zone, being compressional as the lake fills, but extensional as the lake drains. Frictional resistance to fault-block motion probably accounts for the fact that lake level falls measurably before the onset of accelerated horizontal motion and vertical downdrop. As the overall fault pattern is the same from year to year, even though ice is lost by calving, the faults must be regularly regenerated, probably by linkage of surface and bottom crevasses as ice is advected toward the lake basin.
NASA Astrophysics Data System (ADS)
Wohlleben, Trudy M. H.
Canadian High Arctic terrestrial ice masses and the polar atmosphere evolve codependently, and interactions between the two systems can lead to feedbacks, positive and negative. The two primary positive cryosphere-atmosphere feedbacks are: (1) The snow/ice-albedo feedback (where area changes in snow and/or ice cause changes in surface albedo and surface air temperatures, leading to further area changes in snow/ice); and (2) The elevation - mass balance feedback (where thickness changes in terrestrial ice masses cause changes to atmospheric circulation and precipitation patterns, leading to further ice thickness changes). In this thesis, numerical experiments are performed to: (1) quantify the magnitudes of the two feedbacks for chosen Canadian High Arctic terrestrial ice masses; and (2) to examine the direct and indirect consequences of surface air temperature changes upon englacial temperatures with implications for ice flow, mass flux divergence, and topographic evolution. Model results show that: (a) for John Evans Glacier, Ellesmere Island, the magnitude of the terrestrial snow/ice-albedo feedback can locally exceed that of sea ice on less than decadal timescales, with implications for glacier response times to climate perturbations; (b) although historical air temperature changes might be the direct cause of measured englacial temperature anomalies in various glacier and ice cap accumulation zones, they can also be the indirect cause of their enhanced diffusive loss; (c) while the direct result of past air temperature changes has been to cool the interior of John Evans Glacier, and its bed, the indirect result has been to create and maintain warm (pressure melting point) basal temperatures in the ablation zone; and (d) for Devon Ice Cap, observed mass gains in the northwest sector of the ice cap would be smaller without orographic precipitation and the mass balance---elevation feedback, supporting the hypothesis that this feedback is playing a role in the evolution of the ice cap.
NASA Astrophysics Data System (ADS)
Stössel, Achim; von Storch, Jin-Song; Notz, Dirk; Haak, Helmuth; Gerdes, Rüdiger
2018-03-01
This study is on high-frequency temporal variability (HFV) and meso-scale spatial variability (MSV) of winter sea-ice drift in the Southern Ocean simulated with a global high-resolution (0.1°) sea ice-ocean model. Hourly model output is used to distinguish MSV characteristics via patterns of mean kinetic energy (MKE) and turbulent kinetic energy (TKE) of ice drift, surface currents, and wind stress, and HFV characteristics via time series of raw variables and correlations. We find that (1) along the ice edge, the MSV of ice drift coincides with that of surface currents, in particular such due to ocean eddies; (2) along the coast, the MKE of ice drift is substantially larger than its TKE and coincides with the MKE of wind stress; (3) in the interior of the ice pack, the TKE of ice drift is larger than its MKE, mostly following the TKE pattern of wind stress; (4) the HFV of ice drift is dominated by weather events, and, in the absence of tidal currents, locally and to a much smaller degree by inertial oscillations; (5) along the ice edge, the curl of the ice drift is highly correlated with that of surface currents, mostly reflecting the impact of ocean eddies. Where ocean eddies occur and the ice is relatively thin, ice velocity is characterized by enhanced relative vorticity, largely matching that of surface currents. Along the ice edge, ocean eddies produce distinct ice filaments, the realism of which is largely confirmed by high-resolution satellite passive-microwave data.
NASA Astrophysics Data System (ADS)
Fastook, James L.; Head, James W.
2014-02-01
Concentric crater fill (CCF) occurs in the interior of impact craters in mid- to high latitudes on Mars and is interpreted to have formed by glacial ice flow and debris covering. We use the characteristics and orientation of deposits comprising CCF, the thickness of pedestal deposits in mid- to high-latitude pedestal craters (Pd), the volumes of the current polar caps, and information about regional slopes and ice rheology to address questions about (1) the maximum thickness of regional ice deposits during the Late Amazonian, (2) the likelihood that these deposits flowed regionally, (3) the geological regions and features most likely to induce ice-flow, and (4) the locations and environments in which ice is likely to have been sequestered up to the present. We find that regional ice flow under Late Amazonian climate conditions requires ice thicknesses exceeding many hundreds of meters for slopes typical of the vast majority of the surface of Mars, a thickness for the mid-latitudes that is well in excess of the total volume available from polar ice reservoirs. This indicates that although conditions for mid- to high-latitude glaciation may have persisted for tens to hundreds of millions of years, the process is “supply limited”, with a steady state reached when the polar ice cap water ice supply becomes exhausted. Impact craters are by far the most abundant landform with associated slopes (interior wall and exterior rim) sufficiently high to induce glacial ice flow under Late Amazonian climate conditions, and topographic slope data show that Amazonian impact craters have been clearly modified, undergoing crater interior slope reduction and floor shallowing. We show that these trends are the predictable response of ice deposition and preferential accumulation and retention in mid- to high-latitude crater interiors during episodes of enhanced spin-axis obliquity. We demonstrate that flow from a single episode of an inter-crater terrain layer comparable to Pedestal Crater deposit thicknesses (~50 m) cannot fill the craters in a time period compatible with the interpreted formation times of the Pedestal Crater mantled ice layers. We use a representative obliquity solution to drive an ice flow model and show that a cyclical pattern of multiply recurring layers can both fill the craters with a significant volume of ice, as well as transport debris from the crater walls out into the central regions of the craters. The cyclical pattern of waxing and waning mantling layers results in a rippled pattern of surface debris extending out into the crater interiors that would manifest itself as an observable concentric pattern, comparable in appearance to concentric crater fill. In this scenario, the formation of mantling sublimation till layers seals the accumulating ice and sequesters it from significant temperature variations at diurnal, annual and spin-axis/orbital cycle time scales, to produce ancient ice records preserved today below CCF crater floors. Lack of meltwater features associated with concentric crater fill provides evidence that the Late Amazonian climate did not exceed the melting temperature in the mid- to high-latitudes for any significant period of time. Continued sequestration of ice with time in CCF and related deposits (lobate debris aprons and lineated valley fill) further reduces the already supply-limited polar ice sources, suggesting that there has been a declining reservoir of available ice with each ensuing glacial period. Together, these deposits represent a candidate library of climate chemistry and global change dating from the Late Amazonian, and a non-polar water resource for future exploration.
The Metastable Persistence of Vapor-Deposited Amorphous Ice at Anomalously High Temperatures
NASA Technical Reports Server (NTRS)
Blake, David F.; Jenniskens, Peter; DeVincenzi, Donald L. (Technical Monitor)
1995-01-01
Studies of the gas release, vaporization behavior and infrared (IR) spectral properties of amorphous and crystalline water ice have direct application to cometary and planetary outgassing phenomena and contribute to an understanding of the physical properties of astrophysical ices. Several investigators report anomalous phenomena related to the warming of vapor-deposited astrophysical ice analogs. However gas release, ice volatilization and IR spectral features are secondary or tertiary manifestations of ice structure or morphology. These observations are useful in mimicking the bulk physical and chemical phenomena taking place in cometary and other extraterrestrial ices but do not directly reveal the structural changes which are their root cause. The phenomenological interpretation of spectral and gas release data is probably the cause of somewhat contradictory explanations invoked to account for differences in water ice behavior in similar temperature regimes. It is the microstructure, micromorphology and microchemical heterogeneity of astrophysical ices which must be characterized if the mechanisms underlying the observed phenomena are to be understood. We have been using a modified Transmission Electron Microscope to characterize the structure of vapor-deposited astrophysical ice analogs as a function of their deposition, temperature history and composition. For the present experiments, pure water vapor is deposited at high vacuum onto a 15 K amorphous carbon film inside an Hitachi H-500H TEM. The resulting ice film (approx. 0.05 micrometers thick) is warmed at the rate of 1 K per minute and diffraction patterns are collected at 1 K intervals. These patterns are converted into radial intensity distributions which are calibrated using patterns of crystalline gold deposited on a small part of the carbon substrate. The small intensity contributed by the amorphous substrate is removed by background subtraction. The proportions of amorphous and crystalline material in each pattern are determined by subtracting a percentage of crystalline component relative to amorphous and pure crystalline endmembers. Vapor-deposited water ice undergoes two amorphous to amorphous structural transformations in the temperature range 15-130 K with important astrophysical implications. The onset of cubic crystallization occurs at 142-160 K (at 1K per minute heating rates) during which the 220 and 311 diffraction maxima appear and 0.1 micrometer crystallites can be seen in bright field images. This transition is time dependent.
NASA Astrophysics Data System (ADS)
Muckenhuber, Stefan; Sandven, Stein
2017-04-01
An open-source sea ice drift algorithm for Sentinel-1 SAR imagery is introduced based on the combination of feature-tracking and pattern-matching. A computational efficient feature-tracking algorithm produces an initial drift estimate and limits the search area for the pattern-matching, that provides small to medium scale drift adjustments and normalised cross correlation values as quality measure. The algorithm is designed to utilise the respective advantages of the two approaches and allows drift calculation at user defined locations. The pre-processing of the Sentinel-1 data has been optimised to retrieve a feature distribution that depends less on SAR backscatter peak values. A recommended parameter set for the algorithm has been found using a representative image pair over Fram Strait and 350 manually derived drift vectors as validation. Applying the algorithm with this parameter setting, sea ice drift retrieval with a vector spacing of 8 km on Sentinel-1 images covering 400 km x 400 km, takes less than 3.5 minutes on a standard 2.7 GHz processor with 8 GB memory. For validation, buoy GPS data, collected in 2015 between 15th January and 22nd April and covering an area from 81° N to 83.5° N and 12° E to 27° E, have been compared to calculated drift results from 261 corresponding Sentinel-1 image pairs. We found a logarithmic distribution of the error with a peak at 300 m. All software requirements necessary for applying the presented sea ice drift algorithm are open-source to ensure free implementation and easy distribution.
NASA Astrophysics Data System (ADS)
Mahoney, A. R.; Kasper, J.; Winsor, P.
2015-12-01
Highly complex patterns of ice motion and deformation were captured by fifteen satellite-telemetered GPS buoys (known as Ice Trackers) deployed near Barrow, Alaska, in spring 2015. Two pentagonal clusters of buoys were deployed on pack ice by helicopter in the Beaufort Sea between 20 and 80 km offshore. During deployment, ice motion in the study region was effectively zero, but two days later the buoys captured a rapid transport event in which multiyear ice from the Beaufort Sea was flushed into the Chukchi Sea. During this event, westward ice motion began in the Chukchi Sea and propagated eastward. This created new openings in the ice and led to rapid elongation of the clusters as the westernmost buoys accelerated away from their neighbors to the east. The buoys tracked ice velocities of over 1.5 ms-1, with fastest motion occurring closest to the coast indicating strong current shear. Three days later, ice motion reversed and the two clusters became intermingled, rendering divergence calculations based on the area enclosed by clusters invalid. The data show no detectable difference in velocity between first year and multiyear ice floes, but Lagrangian timeseries of SAR imagery centered on each buoy show that first year ice underwent significant small-scale deformation during the event. The five remaining buoys were deployed by local residents on prominent ridges embedded in the landfast ice within 16 km of Barrow in order to track the fate of such features after they detached from the coast. Break-up of the landfast ice took place over a period of several days and, although the buoys each initially followed a similar eastward trajectory around Point Barrow into the Beaufort Sea, they rapidly dispersed over an area more than 50 km across. With rapid environmental and socio-economic change in the Arctic, understanding the complexity of nearshore ice motion is increasingly important for predict future changes in the ice and the tracking ice-related hazards contaminants entrained in the ice. This work demonstrates the ability of low-cost easily-deployable Ice Trackers to generate to generate data of both scientific and operational value.
Channelized melting drives thinning under Dotson ice shelf, Western Antarctic Ice Sheet
NASA Astrophysics Data System (ADS)
Gourmelen, N.; Goldberg, D.; Snow, K.; Henley, S. F.; Bingham, R. G.; Kimura, S.; Hogg, A.; Shepherd, A.; Mouginot, J.; Lenaerts, J.; Ligtenberg, S.; Van De Berg, W. J.
2017-12-01
The majority of meteoric ice that forms in West Antarctica leaves the ice sheet through floating ice shelves, many of which have been thinning substantially over the last 25 years. A significant proportion of ice-shelf thinning has been driven by submarine melting facilitated by increased access of relatively warm (>0.6oC) modified Circumpolar Deep Water to sub-shelf cavities. Ice shelves play a significant role in stabilising the ice sheet from runaway retreat and regulating its contribution to sea level change. Ice-shelf melting has also been implicated in sustaining high primary productivity in Antarctica's coastal seas. However, these processes vary regionally and are not fully understood. Under some ice shelves, concentrated melting leads to the formation of inverted channels. These channels guide buoyant melt-laden outflow, which can lead to localised melting of the sea ice cover. The channels may also potentially lead to heightened crevassing, which in turn affects ice-shelf stability. Meanwhile, numerical studies suggest that buttressing loss is sensitive to the location of ice removal within an ice-shelf. Thus it is important that we observe spatial patterns, as well as magnitudes, of ice-shelf thinning, in order to improve understanding of the ocean drivers of thinning and of their impacts on ice-shelf stability. Here we show from high-resolution altimetry measurements acquired between 2010 to 2016 that Dotson Ice Shelf, West Antarctica, thins in response to basal melting focussed along a single 5 km-wide and 60 km-long channel extending from the ice shelf's grounding zone to its calving front. The coupled effect of geostrophic circulation and ice-shelf topography leads to the observed concentration of basal melting. Analysis of previous datasets suggests that this process has been ongoing for at least the last 25 years. If focused thinning continues at present rates, the channel would melt through within 40-50 years, almost two centuries before it is projected from the average thinning rate. Our findings provide evidence of basal melt-driven sub-ice shelf channel formation and its potential for accelerating the weakening of ice shelves.
Observations of Pronounced Greenland Ice Sheet Firn Warming and Implications for Runoff Production
NASA Technical Reports Server (NTRS)
Polashenski, Chris; Courville, Zoe; Benson, Carl; Wagner, Anna; Chen, Justin; Wong, Gifford; Hawley, Robert; Hall, Dorothy
2014-01-01
Field measurements of shallow borehole temperatures in firn across the northern Greenland ice sheet are collected during May 2013. Sites first measured in 19521955 are revisited, showing long-term trends in firn temperature. Results indicate a pattern of substantial firn warming (up to +5.7C) at midlevel elevations (1400-2500 m) and little temperature change at high elevations (2500 m). We find that latent heat transport into the firn due to meltwater percolation drives the observed warming. Modeling shows that heat is stored at depth for several years, and energy delivered from consecutive melt events accumulates in the firn. The observed warming is likely not yet in equilibrium with recent melt production rates but captures the progression of sites in the percolation facies toward net runoff production.
Precipitation Impacts of a Shrinking Arctic Sea Ice Cover
NASA Astrophysics Data System (ADS)
Stroeve, J. C.; Frei, A.; Gong, G.; Ghatak, D.; Robinson, D. A.; Kindig, D.
2009-12-01
Since the beginning of the modern satellite record in October 1978, the extent of Arctic sea ice has declined in all months, with the strongest downward trend at the end of the melt season in September. Recently the September trends have accelerated. Through 2001, the extent of September sea ice was decreasing at a rate of -7 per cent per decade. By 2006, the rate of decrease had risen to -8.9 per cent per decade. In September 2007, Arctic sea ice extent fell to its lowest level recorded, 23 per cent below the previous record set in 2005, boosting the downward trend to -10.7 per cent per decade. Ice extent in September 2008 was the second lowest in the satellite record. Including 2008, the trend in September sea ice extent stands at -11.8 percent per decade. Compared to the 1970s, September ice extent has retreated by 40 per cent. Summer 2009 looks to repeat the anomalously low ice conditions that characterized the last couple of years. Scientists have long expected that a shrinking Arctic sea ice cover will lead to strong warming of the overlying atmosphere, and as a result, affect atmospheric circulation and precipitation patterns. Recent results show clear evidence of Arctic warming linked to declining ice extent, yet observational evidence for responses of atmospheric circulation and precipitation patterns is just beginning to emerge. Rising air temperatures should lead to an increase in the moisture holding capacity of the atmosphere, with the potential to impact autumn precipitation. Although climate models predict a hemispheric wide decrease in snow cover as atmospheric concentrations of GHGs increase, increased precipitation, particular in autumn and winter may result as the Arctic transitions towards a seasonally ice free state. In this study we use atmospheric reanalysis data and a cyclone tracking algorithm to investigate the influence of recent extreme ice loss years on precipitation patterns in the Arctic and the Northern Hemisphere. Results show enhanced cyclone associated precipitation in autumn over Siberia for anomalously low ice years compared with anomalously high ice years along with a strengthening of the North Atlantic Storm track.
Variability of Basal Melt Beneath the Pine Island Glacier Ice Shelf, West Antarctica
NASA Technical Reports Server (NTRS)
Bindschadler, Robert; Vaughan, David G.; Vornberger, Patricia
2011-01-01
Observations from satellite and airborne platforms are combined with model calculations to infer the nature and efficiency of basal melting of the Pine Island Glacier ice shelf, West Antarctica, by ocean waters. Satellite imagery shows surface features that suggest ice-shelf-wide changes to the ocean s influence on the ice shelf as the grounding line retreated. Longitudinal profiles of ice surface and bottom elevations are analyzed to reveal a spatially dependent pattern of basal melt with an annual melt flux of 40.5 Gt/a. One profile captures a persistent set of surface waves that correlates with quasi-annual variations of atmospheric forcing of Amundsen Sea circulation patterns, establishing a direct connection between atmospheric variability and sub-ice-shelf melting. Ice surface troughs are hydrostatically compensated by ice-bottom voids up to 150m deep. Voids form dynamically at the grounding line, triggered by enhanced melting when warmer-than-average water arrives. Subsequent enlargement of the voids is thermally inefficient (4% or less) compared with an overall melting efficiency beneath the ice shelf of 22%. Residual warm water is believed to cause three persistent polynyas at the ice-shelf front seen in Landsat imagery. Landsat thermal imagery confirms the occurrence of warm water at the same locations.
Influence of aeolian activities on the distribution of microbial abundance in glacier ice
NASA Astrophysics Data System (ADS)
Chen, Y.; Li, X.-K.; Si, J.; Wu, G.-J.; Tian, L.-D.; Xiang, S.-R.
2014-10-01
Microorganisms are continuously blown onto the glacier snow, and thus the glacial depth profiles provide excellent archives of microbial communities and climatic and environmental changes. However, it is uncertain about how aeolian processes that cause climatic changes control the distribution of microorganisms in the glacier ice. In the present study, microbial density, stable isotopic ratios, 18O / 16O in the precipitation, and mineral particle concentrations along the glacial depth profiles were collected from ice cores from the Muztag Ata glacier and the Dunde ice cap. The ice core data showed that microbial abundance was often, but not always associated with high concentrations of particles. Results also revealed clear seasonal patterning with high microbial abundance occurring in both the cooling autumn and warming spring-summer seasons. Microbial comparisons among the neighbouring glaciers display a heterogeneous spatial pattern, with the highest microbial cell density in the glaciers lying adjacent to the central Asian deserts and lowest microbial density in the southwestern margin of the Tibetan Plateau. In conclusion, microbial data of the glaciers indicates the aeolian deposits of microorganisms in the glacier ice and that the spatial patterns of microorgansisms are related to differences in sources of microbial flux and intensity of aeolian activities in the current regions. The results strongly support our hypothesis of aeolian activities being the main agents controlling microbial load in the glacier ice.
NASA Astrophysics Data System (ADS)
Cerrone, Dario; Fusco, Giannetta; Simmonds, Ian; Aulicino, Giuseppe; Budillon, Giorgio
2017-04-01
A composite dataset (comprising geopotential height, sea surface temperature, zonal and meridional surface winds, precipitation, cloud cover, surface air temperature, latent plus sensible heat fluxes , and sea ice concentration) has been investigated with the aim of revealing the dominant timescales of variability from 1982 to 2013. Three covarying climate signals associated with variations in the sea ice distribution around Antarctica have been detected through the application of the Multiple-Taper Method with Singular Value Decomposition (MTM-SVD). Features of the established patterns of variation over the Southern Hemisphere (SH) extratropics have been identified in each of these three climate signals in the form of coupled or individual oscillations. The climate patterns considered here are the Southern Annular Mode (SAM), the Pacific-South America (PSA) teleconnection, the Semi-Annual Oscillation (SAO) and Zonal Wavenumber-3 (ZW3) mode. It is shown that most of the sea ice temporal variance is concentrated at the quasi-triennial scale resulting from the constructive superposition of the PSA and ZW3 patterns. In addition the combination of the SAM and SAO patterns is found to promote the interannual sea ice variations underlying a general change in the Southern Ocean atmospheric and oceanic circulations. These two modes of variability are also found consistent with the occurrence of the SAM+/PSA- or SAM-/PSA+ combinations, which could have favored the cooling of the sub-Antarctic and important changes in the Antarctic sea ice distribution since 2000.
Antarctic ice-sheet loss driven by basal melting of ice shelves.
Pritchard, H D; Ligtenberg, S R M; Fricker, H A; Vaughan, D G; van den Broeke, M R; Padman, L
2012-04-25
Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating ice shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of ice-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic ice-sheet mass balance, and hence global sea level, on annual to decadal timescales.
NASA Astrophysics Data System (ADS)
Trujillo, E.; Giometto, M. G.; Leonard, K. C.; Maksym, T. L.; Meneveau, C. V.; Parlange, M. B.; Lehning, M.
2014-12-01
Sea ice-atmosphere interactions are major drivers of patterns of sea ice drift and deformations in the Polar regions, and affect snow erosion and deposition at the surface. Here, we combine analyses of sea ice surface topography at very high-resolutions (1-10 cm), and Large Eddy Simulations (LES) to study surface drag and snow erosion and deposition patterns from process scales to floe scales (1 cm - 100 m). The snow/ice elevations were obtained using a Terrestrial Laser Scanner during the SIPEX II (Sea Ice Physics and Ecosystem eXperiment II) research voyage to East Antarctica (September-November 2012). LES are performed on a regular domain adopting a mixed pseudo-spectral/finite difference spatial discretization. A scale-dependent dynamic subgrid-scale model based on Lagrangian time averaging is adopted to determine the eddy-viscosity in the bulk of the flow. Effects of larger-scale features of the surface on wind flows (those features that can be resolved in the LES) are accounted for through an immersed boundary method. Conversely, drag forces caused by subgrid-scale features of the surface should be accounted for through a parameterization. However, the effective aerodynamic roughness parameter z0 for snow/ice is not known. Hence, a novel dynamic approach is utilized, in which z0 is determined using the constraint that the total momentum flux (drag) must be independent on grid-filter scale. We focus on three ice floe surfaces. The first of these surfaces (October 6, 2012) is used to test the performance of the model, validate the algorithm, and study the spatial distributed fields of resolved and modeled stress components. The following two surfaces, scanned at the same location before and after a snow storm event (October 20/23, 2012), are used to propose an application to study how spatially resolved mean flow and turbulence relates to observed patterns of snow erosion and deposition. We show how erosion and deposition patterns are correlated with the computed stresses, with modeled stresses having higher explanatory power. Deposition is mainly occurring in wake regions of specific ridges that strongly affect wind flow patterns. These larger ridges also lock in place elongated streaks of relatively high speeds with axes along the stream-wise direction, and which are largely responsible for the observed erosion.
NASA Astrophysics Data System (ADS)
Koziol, Conrad P.; Arnold, Neil
2018-03-01
Surface runoff at the margin of the Greenland Ice Sheet (GrIS) drains to the ice-sheet bed, leading to enhanced summer ice flow. Ice velocities show a pattern of early summer acceleration followed by mid-summer deceleration due to evolution of the subglacial hydrology system in response to meltwater forcing. Modelling the integrated hydrological-ice dynamics system to reproduce measured velocities at the ice margin remains a key challenge for validating the present understanding of the system and constraining the impact of increasing surface runoff rates on dynamic ice mass loss from the GrIS. Here we show that a multi-component model incorporating supraglacial, subglacial, and ice dynamic components applied to a land-terminating catchment in western Greenland produces modelled velocities which are in reasonable agreement with those observed in GPS records for three melt seasons of varying melt intensities. This provides numerical support for the hypothesis that the subglacial system develops analogously to alpine glaciers and supports recent model formulations capturing the transition between distributed and channelized states. The model shows the growth of efficient conduit-based drainage up-glacier from the ice sheet margin, which develops more extensively, and further inland, as melt intensity increases. This suggests current trends of decadal-timescale slowdown of ice velocities in the ablation zone may continue in the near future. The model results also show a strong scaling between average summer velocities and melt season intensity, particularly in the upper ablation area. Assuming winter velocities are not impacted by channelization, our model suggests an upper bound of a 25 % increase in annual surface velocities as surface melt increases to 4 × present levels.
Ice matrix in reconfigurable microfluidic systems
NASA Astrophysics Data System (ADS)
Bossi, A. M.; Vareijka, M.; Piletska, E. V.; Turner, A. P. F.; Meglinski, I.; Piletsky, S. A.
2013-07-01
Microfluidic devices find many applications in biotechnologies. Here, we introduce a flexible and biocompatible microfluidic ice-based platform with tunable parameters and configuration of microfluidic patterns that can be changed multiple times during experiments. Freezing and melting of cavities, channels and complex relief structures created and maintained in the bulk of ice by continuous scanning of an infrared laser beam are used as a valve action in microfluidic systems. We demonstrate that pre-concentration of samples and transport of ions and dyes through the open channels created can be achieved in ice microfluidic patterns by IR laser-assisted zone melting. The proposed approach can be useful for performing separation and sensing processes in flexible reconfigurable microfluidic devices.
NASA Technical Reports Server (NTRS)
2006-01-01
A delicate pattern, like that of a spider web, appears on top of the Mars residual polar cap, after the seasonal carbon-dioxide ice slab has disappeared. Next spring, these will likely mark the sites of vents when the carbon-dioxide ice cap returns. This Mars Global Surveyor, Mars Orbiter Camera image is about 3-kilometers wide (2-miles).Miettinen, M K; Björkroth, K J; Korkeala, H J
1999-02-18
One dominating strain of serotype 1/2b was found when serotyping and pulsed-field gel electrophoresis (PFGE) patterns were used for the characterization of 41 Listeria monocytogenes isolates originating from an ice cream plant. Samples were taken from the production environment, equipment and ice cream during the years 1990-1997. Serotyping divided the isolates into two serovars, 1/2b and 4b. Three rare-cutting enzymes (ApaI, AscI and SmaI) were used in the creation of PFGE patterns. AscI resulted in the best restriction enzyme digestion patterns (REDPs) for visual comparison. Eight different AscI REDPs were obtained, whereas ApaI produced six and SmaI seven banding patterns. When one-band differences are taken into account, 12 different PFGE types were distinguished based on information obtained with all three enzymes. The dominant PFGE type was found to have persisted in the ice cream plant for seven years. Improved and precisely targeted cleaning and disinfection practices combined with structural changes making for easier cleaning of the packaging machine, resulted in eradication of L. monocytogenes from this plant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samluk, Jesse P.; Geiger, Cathleen A.; Weiss, Chester J.
In this article we explore simulated responses of electromagnetic (EM) signals relative to in situ field surveys and quantify the effects that different values of conductivity in sea ice have on the EM fields. We compute EM responses of ice types with a three-dimensional (3-D) finite-volume discretization of Maxwell's equations and present 2-D sliced visualizations of their associated EM fields at discrete frequencies. Several interesting observations result: First, since the simulator computes the fields everywhere, each gridcell acts as a receiver within the model volume, and captures the complete, coupled interactions between air, snow, sea ice and sea water asmore » a function of their conductivity; second, visualizations demonstrate how 1-D approximations near deformed ice features are violated. But the most important new finding is that changes in conductivity affect EM field response by modifying the magnitude and spatial patterns (i.e. footprint size and shape) of current density and magnetic fields. These effects are demonstrated through a visual feature we define as 'null lines'. Null line shape is affected by changes in conductivity near material boundaries as well as transmitter location. Our results encourage the use of null lines as a planning tool for better ground-truth field measurements near deformed ice types.« less
Samluk, Jesse P.; Geiger, Cathleen A.; Weiss, Chester J.; ...
2015-10-01
In this article we explore simulated responses of electromagnetic (EM) signals relative to in situ field surveys and quantify the effects that different values of conductivity in sea ice have on the EM fields. We compute EM responses of ice types with a three-dimensional (3-D) finite-volume discretization of Maxwell's equations and present 2-D sliced visualizations of their associated EM fields at discrete frequencies. Several interesting observations result: First, since the simulator computes the fields everywhere, each gridcell acts as a receiver within the model volume, and captures the complete, coupled interactions between air, snow, sea ice and sea water asmore » a function of their conductivity; second, visualizations demonstrate how 1-D approximations near deformed ice features are violated. But the most important new finding is that changes in conductivity affect EM field response by modifying the magnitude and spatial patterns (i.e. footprint size and shape) of current density and magnetic fields. These effects are demonstrated through a visual feature we define as 'null lines'. Null line shape is affected by changes in conductivity near material boundaries as well as transmitter location. Our results encourage the use of null lines as a planning tool for better ground-truth field measurements near deformed ice types.« less
NASA Astrophysics Data System (ADS)
O'Shea, Sebastian; Choularton, Tom; Flynn, Michael; Bower, Keith; Gallagher, Martin; Fleming, Zoe; Listowski, Constantino; Kirchgaessner, Amelie; Ladkin, Russell; Lachlan-Cope, Tom; Crosier, Jonathan
2017-04-01
Few direct measurements have been made of Antarctic aerosol and cloud properties. As a result, a number of studies have suggested they are poorly represented within weather/climate models. This has important consequences for predictions of the mass balance of the Antarctic ice sheet and both weather patterns in the region and worldwide. In situ measurements of cloud and aerosol properties were collected over the Antarctic Peninsula, coastal continent and Weddell Sea during intensive observation periods in 2010, 2011 and 2015. Airborne measurements were collected using British Antarctic Survey's instrumented Twin Otter research aircraft for all 3 campaigns and additional ground based measurements were made at Halley's Clean Air Sector Laboratory in 2015. This presentation will focus on the aerosol measurements from these intensive observation periods. The aerosol in the region was found to have strong vertical gradients and to be hygroscopic in nature. The hygroscopicity parameter, κ had a mean value during the 2015 campaign of 0.69, which is consistent with other remote marine locations that are dominated by sea spray emissions. Aerosol properties will be investigated in terms of their air mass history. The relative contribution of emissions from the Antarctic Continent, sea ice and Sea/Ocean regions will be examined. The ice nucleating properties of the aerosol will also be discussed.
Mapping surface temperature variability on a debris-covered glacier with an unmanned aerial vehicle
NASA Astrophysics Data System (ADS)
Kraaijenbrink, P. D. A.; Litt, M.; Shea, J. M.; Treichler, D.; Koch, I.; Immerzeel, W.
2016-12-01
Debris-covered glacier tongues cover about 12% of the glacier surface in high mountain Asia and much of the melt water is generated from those glaciers. A thin layer of supraglacial debris enhances ice melt by lowering the albedo, while thicker debris insulates the ice and reduces melt. Data on debris thickness is therefore an important input for energy balance modelling of these glaciers. Thermal infrared remote sensing can be used to estimate the debris thickness by using an inverse relation between debris surface temperature and thickness. To date this has only been performed using coarse spaceborne thermal imagery, which cannot reveal small scale variation in debris thickness and its influence on the heterogeneous melt patterns on debris-covered glaciers. We deployed an unmanned aerial vehicle mounted with a thermal infrared sensor over the debris-covered Lirung Glacier in Nepal three times in May 2016 to reveal the spatial and temporal variability of surface temperature in high detail. The UAV survey matched a Landsat 8 overpass to be able to make a comparison with spaceborne thermal imagery. The UAV-acquired data is processed using Structure from Motion photogrammetry and georeferenced using DGPS-measured ground control points. Different surface types were distinguished by using data acquired by an additional optical UAV survey in order to correct for differences in surface emissivity. In situ temperature measurements and incoming solar radiation data are used to calibrate the temperature calculations. Debris thicknesses derived are validated by thickness measurements of a ground penetrating radar. Preliminary analysis reveals a spatially highly heterogeneous pattern of surface temperature over Lirung Glacier with a range in temperature of over 40 K. At dawn the debris is relatively cold and its temperature is influenced strongly by the ice underneath. Exposed to the high solar radiation at the high altitude the debris layer heats up very rapidly as sunrise progresses, and the influence of ice on debris surface temperature reduces considerably. Many patterns are revealed that cannot be detected from the Landsat data, both on small spatial and temporal scales. The high detail the UAV-borne thermal imagery provides in time and space has great potential in the research of debris cover and its characteristics.
NASA Astrophysics Data System (ADS)
Lu, Q.; Amelung, F.; Wdowinski, S.
2017-12-01
The Greenland ice sheet is rapidly shrinking with the fastest retreat and thinning occurring at the ice sheet margin and near the outlet glaciers. The changes of the ice mass cause an elastic response of the bedrock. Theoretically, ice mass loss during the summer melting season is associated with bedrock uplift, whereas increasing ice mass during the winter months is associated with bedrock subsidence. Here we examine the annual changes of the vertical displacements measured at 37 GPS stations and compare the results with Greenland drainage basins' gravity from GRACE. We use both Fourier Series (FS) analysis and Cubic Smoothing Spline (CSS) method to estimate the phases and amplitudes of seasonal variations. Both methods show significant differences seasonal behaviors in southern and northern Greenland. The average amplitude of bedrock displacements (3.29±0.02mm) in south Greenland is about 2 times larger than the north (1.65±0.02mm). The phase of bedrock maximum uplift (November) is considerably consistent with the time of minimum ice mass load in south Greenland (October). However, the phase of bedrock maximum uplift in north Greenland (February) is 4 months later than the minimum ice mass load in north Greenland basins (October). In addition, we present ground deformation near several famous glaciers in Greenland such as Petermann glacier and Jakobshavn glacier. We process InSAR data from TerraSAR-X and Sentinel satellite, based on small baseline interferograms. We observed rapid deglaciation-induced uplift and seasonal variations on naked bedrock near the glacier ice margin.
Sea ice type dynamics in the Arctic based on Sentinel-1 Data
NASA Astrophysics Data System (ADS)
Babiker, Mohamed; Korosov, Anton; Park, Jeong-Won
2017-04-01
Sea ice observation from satellites has been carried out for more than four decades and is one of the most important applications of EO data in operational monitoring as well as in climate change studies. Several sensors and retrieval methods have been developed and successfully utilized to measure sea ice area, concentration, drift, type, thickness, etc [e.g. Breivik et al., 2009]. Today operational sea ice monitoring and analysis is fully dependent on use of satellite data. However, new and improved satellite systems, such as multi-polarisation Synthetic Apperture Radar (SAR), require further studies to develop more advanced and automated sea ice monitoring methods. In addition, the unprecedented volume of data available from recently launched Sentinel missions provides both challenges and opportunities for studying sea ice dynamics. In this study we investigate sea ice type dynamics in the Fram strait based on Sentinel-1 A, B SAR data. Series of images for the winter season are classified into 4 ice types (young ice, first year ice, multiyear ice and leads) using the new algorithm developed by us for sea ice classification, which is based on segmentation, GLCM calculation, Haralick texture feature extraction, unsupervised and supervised classifications and Support Vector Machine (SVM) [Zakhvatkina et al., 2016; Korosov et al., 2016]. This algorithm is further improved by applying thermal and scalloping noise removal [Park et al. 2016]. Sea ice drift is retrieved from the same series of Sentinel-1 images using the newly developed algorithm based on combination of feature tracking and pattern matching [Mukenhuber et al., 2016]. Time series of these two products (sea ice type and sea ice drift) are combined in order to study sea ice deformation processes at small scales. Zones of sea ice convergence and divergence identified from sea ice drift are compared with ridges and leads identified from texture features. That allows more specific interpretation of SAR imagery and more accurate automatic classification. In addition, the map of four ice types calculated using the texture features from one SAR image is propagated forward using the sea ice drift vectors. The propagated ice type is compared with ice type derived from the next image. The comparison identifies changes in ice type which occurred during drift and allows to reduce uncertainties in sea ice type calculation.
NASA Astrophysics Data System (ADS)
Lodge, Robert W. D.; Lescinsky, David T.
2009-09-01
Cooling lava commonly develop polygonal joints that form equant hexagonal columns. Such fractures are formed by thermal contraction resulting in an isotropic tensional stress regime. However, certain linear cooling fracture patterns observed at some lava-ice contacts do not appear to fit the model for formation of cooling fractures and columns because of their preferred orientations. These fracture types include sheet-like (ladder-like rectangular fracture pattern), intermediate (pseudo-aligned individual column-bounding fractures), and pseudopillow (straight to arcuate fractures with perpendicular secondary fractures caused by water infiltration) fractures that form the edges of multiple columns along a single linear fracture. Despite the relatively common occurrence of these types of fractures at lava-ice contacts, their significance and mode of formation have not been fully explored. This study investigates the stress regimes responsible for producing these unique fractures and their significance for interpreting cooling histories at lava-ice contacts. Data was collected at Kokostick Butte dacite flow at South Sister, OR, and Mazama Ridge andesite flow at Mount Rainier, WA. Both of these lava flows have been interpreted as being emplaced into contact with ice and linear fracture types have been observed on their ice-contacted margins. Two different mechanisms are proposed for the formation of linear fracture networks. One possible mechanism for the formation of linear fracture patterns is marginal bulging. Melting of confining ice walls will create voids into which flowing lava can deform resulting in margin-parallel tension causing margin-perpendicular fractures. If viewed from the ice-wall, these fractures would be steeply dipping, linear fractures. Another possible mechanism for the formation of linear fracture types is gravitational settling. Pure shear during compression and settling can result in a tensional environment with similar consequences as marginal inflation. In addition to this, horizontally propagating cooling fractures will be directly influenced by viscous strain caused by the settling of the flow. This would cause preferential opening of fractures horizontally, resulting in vertically oriented fractures. It is important to note that the proposed model for the formation of linear fractures is dependent on contact with and confinement by glacial ice. The influence of flow or movement on cooling fracture patterns has not been extensively discussed in previous modeling of cooling fractures. Rapid cooling of lava by the interaction with water and ice will increase the ability to the capture and preserve perturbations in the stress regime.
Patterns of sediment accumulation in the tidal marshes of Maine
Wood, M.E.; Kelley, J.T.; Belknap, D.F.
1989-01-01
One year's measurements of surficial sedimentation rates (1986-1987) for 26 Maine marsh sites were made over marker horizons of brick dust. Observed sediment accumulation rates, from 0 to 13 mm yr-1, were compared with marsh morphology, local relative sea-level rise rate, mean tidal range, and ice rafting activity. Marshes with four different morphologies (back-barrier, fluvial, bluff-toe, and transitional) showed distinctly different sediment accumulation rates. In general, back-barrier marshes had the highest accumulation rates and blufftoe marshes had the lowest rates, with intermediate values for transitional and fluvial marshes. No causal relationship between modern marsh sediment accumulation rate and relative sea-level rise rate (from tide gauge records) was observed. Marsh accretionary balance (sediment accumulation rate minus relative sea-level rise rate) did not correlate with mean tidal range for this meso- to macro-tidal area. Estimates of ice-rafted debris on marsh sites ranged from 0% to >100% of measured surficial sedimentation rates, indicating that ice transport of sediment may make a significant contribution to surficial sedimentation on Maine salt marshes. ?? 1989 Estuarine Research Federation.
Changes of Arctic Marine Glaciers and Ice Caps from CryoSat Swath Altimetry
NASA Astrophysics Data System (ADS)
Tepes, P.; Gourmelen, N.; Weissgerber, F.; Escorihuela, M. J.; Wuite, J.; Nagler, T.; Foresta, L.; Brockley, D.; Baker, S.; Roca, M.; Shepherd, A.; Plummer, S.
2017-12-01
Glaciers and ice caps (GICs) are major contributors to the current budget of global mean sea level change. Ice losses from GICs are expected to increase over the next century and beyond (Gardner et al., 2011), particularly in the Arctic where mean annual surface temperatures have recently been increasing twice as fast as the global average (Screen and Simmonds, 2010). Investigating cryospheric changes over GICs from space-based observations has proven to be challenging due in large part to the limited spatial and temporal resolution of present day observation techniques compared to the relatively small size and the steep and complex terrain that often define GICs. As a result, not much is known about modern changes in ice mass in most of these smaller glaciated regions of the Arctic (Moholdt et al., 2012; Carr et al., 2014). Radar altimetry is well suited to monitoring elevation changes over land ice due to its all-weather year-round capability of observing ice surfaces. Since 2010, the Synthetic Interferometric Radar Altimeter (SIRAL) on board the European Space Agency (ESA) radar altimetry CryoSat (CS) mission has been collecting ice elevation measurements over GICs. Data from the CS-SARIn mode have been used to infer high resolution elevation and elevation change rates using "swath processing" (Hawley et al., 2009; Gray et al., 2013; Christie et al., 2016; Foresta et al., 2016; Smith et al., 2016). Together with a denser ground track interspacing of the CS mission, swath processing provides measurements at unprecedented spatial coverage and resolution, enabling the study of key processes that underlie current changes of GICs in the Arctic. In this study, we use CS swath observations to identify patterns of change of marine versus land-terminating glaciers across the Arctic. We generate maps of ice elevation change rates and present estimates of volumetric changes for GICs outside of Greenland. We then compare marine versus land terminating glaciers in terms of their relative contribution to changes in sea level since 2010.
Arctic Ocean sea ice drift origin derived from artificial radionuclides.
Cámara-Mor, P; Masqué, P; Garcia-Orellana, J; Cochran, J K; Mas, J L; Chamizo, E; Hanfland, C
2010-07-15
Since the 1950s, nuclear weapon testing and releases from the nuclear industry have introduced anthropogenic radionuclides into the sea, and in many instances their ultimate fate are the bottom sediments. The Arctic Ocean is one of the most polluted in this respect, because, in addition to global fallout, it is impacted by regional fallout from nuclear weapon testing, and indirectly by releases from nuclear reprocessing facilities and nuclear accidents. Sea-ice formed in the shallow continental shelves incorporate sediments with variable concentrations of anthropogenic radionuclides that are transported through the Arctic Ocean and are finally released in the melting areas. In this work, we present the results of anthropogenic radionuclide analyses of sea-ice sediments (SIS) collected on five cruises from different Arctic regions and combine them with a database including prior measurements of these radionuclides in SIS. The distribution of (137)Cs and (239,240)Pu activities and the (240)Pu/(239)Pu atom ratio in SIS showed geographical differences, in agreement with the two main sea ice drift patterns derived from the mean field of sea-ice motion, the Transpolar Drift and Beaufort Gyre, with the Fram Strait as the main ablation area. A direct comparison of data measured in SIS samples against those reported for the potential source regions permits identification of the regions from which sea ice incorporates sediments. The (240)Pu/(239)Pu atom ratio in SIS may be used to discern the origin of sea ice from the Kara-Laptev Sea and the Alaskan shelf. However, if the (240)Pu/(239)Pu atom ratio is similar to global fallout, it does not provide a unique diagnostic indicator of the source area, and in such cases, the source of SIS can be constrained with a combination of the (137)Cs and (239,240)Pu activities. Therefore, these anthropogenic radionuclides can be used in many instances to determine the geographical source area of sea-ice. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kreyscher, Martin; Harder, Markus; Lemke, Peter; Flato, Gregory M.
2000-05-01
A hierarchy of sea ice rheologies is evaluated on the basis of a comprehensive set of observational data. The investigations are part of the Sea Ice Model Intercomparison Project (SIMIP). Four different sea ice rheology schemes are compared: a viscous-plastic rheology, a cavitating-fluid model, a compressible Newtonian fluid, and a simple free drift approach with velocity correction. The same grid, land boundaries, and forcing fields are applied to all models. As verification data, there are (1) ice thickness data from upward looking sonars (ULS), (2) ice concentration data from the passive microwave radiometers SMMR and SSM/I, (3) daily buoy drift data obtained by the International Arctic Buoy Program (IABP), and (4) satellite-derived ice drift fields based on the 85 GHz channel of SSM/I. All models are optimized individually with respect to mean drift speed and daily drift speed statistics. The impact of ice strength on the ice cover is best revealed by the spatial pattern of ice thickness, ice drift on different timescales, daily drift speed statistics, and the drift velocities in Fram Strait. Overall, the viscous-plastic rheology yields the most realistic simulation. In contrast, the results of the very simple free-drift model with velocity correction clearly show large errors in simulated ice drift as well as in ice thicknesses and ice export through Fram Strait compared to observation. The compressible Newtonian fluid cannot prevent excessive ice thickness buildup in the central Arctic and overestimates the internal forces in Fram Strait. Because of the lack of shear strength, the cavitating-fluid model shows marked differences to the statistics of observed ice drift and the observed spatial pattern of ice thickness. Comparison of required computer resources demonstrates that the additional cost for the viscous-plastic sea ice rheology is minor compared with the atmospheric and oceanic model components in global climate simulations.
Arctic and subarctic environmental analyses utilizing ERTS-1 imagery
NASA Technical Reports Server (NTRS)
Anderson, D. M. (Principal Investigator); Mckim, H. L.; Gatto, L. W.; Haugen, R. K.; Crowder, W. K.; Slaughter, C. W.; Marlar, T. L.
1974-01-01
The author has identified the following significant results. ERTS-1 imagery provides a means of distinguishing and monitoring estuarine surface water circulation patterns and changes in the relative sediment load of discharging rivers on a regional basis. Physical boundaries mapped from ERTS-1 imagery in combination with ground truth obtained from existing small scale maps and other sources resulted in improved and more detailed maps of permafrost terrain and vegetation for the same area. Snowpack cover within a research watershed has been analyzed and compared to ground data. Large river icings along the proposed Alaska pipeline route from Prudhoe Bay to the Brooks Range have been monitored. Sea ice deformation and drift northeast of Point Barrow, Alaska have been measured during a four day period in March and shore-fast ice accumulation and ablation along the west coast of Alaska have been mapped for the spring and early summer seasons.
Constraining astrophysical neutrino flavor composition from leptonic unitarity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xun-Jie; He, Hong-Jian; Rodejohann, Werner, E-mail: xunjie.xu@gmail.com, E-mail: hjhe@tsinghua.edu.cn, E-mail: werner.rodejohann@mpi-hd.mpg.de
2014-12-01
The recent IceCube observation of ultra-high-energy astrophysical neutrinos has begun the era of neutrino astronomy. In this work, using the unitarity of leptonic mixing matrix, we derive nontrivial unitarity constraints on the flavor composition of astrophysical neutrinos detected by IceCube. Applying leptonic unitarity triangles, we deduce these unitarity bounds from geometrical conditions, such as triangular inequalities. These new bounds generally hold for three flavor neutrinos, and are independent of any experimental input or the pattern of lepton mixing. We apply our unitarity bounds to derive general constraints on the flavor compositions for three types of astrophysical neutrino sources (and theirmore » general mixture), and compare them with the IceCube measurements. Furthermore, we prove that for any sources without ν{sub τ} neutrinos, a detected ν{sub μ} flux ratio < 1/4 will require the initial flavor composition with more ν{sub e} neutrinos than ν{sub μ} neutrinos.« less
Calcium absorption from fortified ice cream formulations compared with calcium absorption from milk.
van der Hee, Regine M; Miret, Silvia; Slettenaar, Marieke; Duchateau, Guus S M J E; Rietveld, Anton G; Wilkinson, Joy E; Quail, Patricia J; Berry, Mark J; Dainty, Jack R; Teucher, Birgit; Fairweather-Tait, Susan J
2009-05-01
Optimal bone mass in early adulthood is achieved through appropriate diet and lifestyle, thereby protecting against osteoporosis and risk of bone fracture in later life. Calcium and vitamin D are essential to build adequate bones, but calcium intakes of many population groups do not meet dietary reference values. In addition, changes in dietary patterns are exacerbating the problem, thereby emphasizing the important role of calcium-rich food products. We have designed a calcium-fortified ice cream formulation that is lower in fat than regular ice cream and could provide a useful source of additional dietary calcium. Calcium absorption from two different ice cream formulations was determined in young adults and compared with milk. Sixteen healthy volunteers (25 to 45 years of age), recruited from the general public of The Netherlands, participated in a randomized, reference-controlled, double-blind cross-over study in which two test products and milk were consumed with a light standard breakfast on three separate occasions: a standard portion of ice cream (60 g) fortified with milk minerals and containing a low level (3%) of butter fat, ice cream (60 g) fortified with milk minerals and containing a typical level (9%) of coconut oil, and reduced-fat milk (1.7% milk fat) (200 mL). Calcium absorption was measured by the dual-label stable isotope technique. Effects on calcium absorption were evaluated by analysis of variance. Fractional absorption of calcium from the 3% butterfat ice cream, 9% coconut oil ice cream, and milk was 26%+/-8%, 28%+/-5%, and 31%+/-9%, respectively, and did not differ significantly (P=0.159). Results indicate that calcium bioavailability in the two calcium-fortified ice cream formulations used in this study is as high as milk, indicating that ice cream may be a good vehicle for delivery of calcium.
Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice.
Moore, Christopher W; Obrist, Daniel; Steffen, Alexandra; Staebler, Ralf M; Douglas, Thomas A; Richter, Andreas; Nghiem, Son V
2014-02-06
The ongoing regime shift of Arctic sea ice from perennial to seasonal ice is associated with more dynamic patterns of opening and closing sea-ice leads (large transient channels of open water in the ice), which may affect atmospheric and biogeochemical cycles in the Arctic. Mercury and ozone are rapidly removed from the atmospheric boundary layer during depletion events in the Arctic, caused by destruction of ozone along with oxidation of gaseous elemental mercury (Hg(0)) to oxidized mercury (Hg(II)) in the atmosphere and its subsequent deposition to snow and ice. Ozone depletion events can change the oxidative capacity of the air by affecting atmospheric hydroxyl radical chemistry, whereas atmospheric mercury depletion events can increase the deposition of mercury to the Arctic, some of which can enter ecosystems during snowmelt. Here we present near-surface measurements of atmospheric mercury and ozone from two Arctic field campaigns near Barrow, Alaska. We find that coastal depletion events are directly linked to sea-ice dynamics. A consolidated ice cover facilitates the depletion of Hg(0) and ozone, but these immediately recover to near-background concentrations in the upwind presence of open sea-ice leads. We attribute the rapid recoveries of Hg(0) and ozone to lead-initiated shallow convection in the stable Arctic boundary layer, which mixes Hg(0) and ozone from undepleted air masses aloft. This convective forcing provides additional Hg(0) to the surface layer at a time of active depletion chemistry, where it is subject to renewed oxidation. Future work will need to establish the degree to which large-scale changes in sea-ice dynamics across the Arctic alter ozone chemistry and mercury deposition in fragile Arctic ecosystems.
NASA Astrophysics Data System (ADS)
Fučkar, Neven-Stjepan; Guemas, Virginie; Massonnet, François; Doblas-Reyes, Francisco
2015-04-01
Over the modern observational era, the northern hemisphere sea ice concentration, age and thickness have experienced a sharp long-term decline superimposed with strong internal variability. Hence, there is a crucial need to identify robust patterns of Arctic sea ice variability on interannual timescales and disentangle them from the long-term trend in noisy datasets. The principal component analysis (PCA) is a versatile and broadly used method for the study of climate variability. However, the PCA has several limiting aspects because it assumes that all modes of variability have symmetry between positive and negative phases, and suppresses nonlinearities by using a linear covariance matrix. Clustering methods offer an alternative set of dimension reduction tools that are more robust and capable of taking into account possible nonlinear characteristics of a climate field. Cluster analysis aggregates data into groups or clusters based on their distance, to simultaneously minimize the distance between data points in a given cluster and maximize the distance between the centers of the clusters. We extract modes of Arctic interannual sea-ice variability with nonhierarchical K-means cluster analysis and investigate the mechanisms leading to these modes. Our focus is on the sea ice thickness (SIT) as the base variable for clustering because SIT holds most of the climate memory for variability and predictability on interannual timescales. We primarily use global reconstructions of sea ice fields with a state-of-the-art ocean-sea-ice model, but we also verify the robustness of determined clusters in other Arctic sea ice datasets. Applied cluster analysis over the 1958-2013 period shows that the optimal number of detrended SIT clusters is K=3. Determined SIT cluster patterns and their time series of occurrence are rather similar between different seasons and months. Two opposite thermodynamic modes are characterized with prevailing negative or positive SIT anomalies over the Arctic basin. The intermediate mode, with negative anomalies centered on the East Siberian shelf and positive anomalies along the North American side of the basin, has predominately dynamic characteristics. The associated sea ice concentration (SIC) clusters vary more between different seasons and months, but the SIC patterns are physically framed by the SIT cluster patterns.
Identifying deformation mechanisms in the NEEM ice core using EBSD measurements
NASA Astrophysics Data System (ADS)
Kuiper, Ernst-Jan; Weikusat, Ilka; Drury, Martyn R.; Pennock, Gill M.; de Winter, Matthijs D. A.
2015-04-01
Deformation of ice in continental sized ice sheets determines the flow behavior of ice towards the sea. Basal dislocation glide is assumed to be the dominant deformation mechanism in the creep deformation of natural ice, but non-basal glide is active as well. Knowledge of what types of deformation mechanisms are active in polar ice is critical in predicting the response of ice sheets in future warmer climates and its contribution to sea level rise, because the activity of deformation mechanisms depends critically on deformation conditions (such as temperature) as well as on the material properties (such as grain size). One of the methods to study the deformation mechanisms in natural materials is Electron Backscattered Diffraction (EBSD). We obtained ca. 50 EBSD maps of five different depths from a Greenlandic ice core (NEEM). The step size varied between 8 and 25 micron depending on the size of the deformation features. The size of the maps varied from 2000 to 10000 grid point. Indexing rates were up to 95%, partially by saving and reanalyzing the EBSP patterns. With this method we can characterize subgrain boundaries and determine the lattice rotation configurations of each individual subgrain. Combining these observations with arrangement/geometry of subgrain boundaries the dislocation types can be determined, which form these boundaries. Three main types of subgrain boundaries have been recognized in Antarctic (EDML) ice core¹². Here, we present the first results obtained from EBSD measurements performed on the NEEM ice core samples from the last glacial period, focusing on the relevance of dislocation activity of the possible slip systems. Preliminary results show that all three subgrain types, recognized in the EDML core, occur in the NEEM samples. In addition to the classical boundaries made up of basal dislocations, subgrain boundaries made of non-basal dislocations are also common. ¹Weikusat, I.; de Winter, D. A. M.; Pennock, G. M.; Hayles, M.; Schneijdenberg, C. T. W. M. Drury, M. R. Cryogenic EBSD on ice: preserving a stable surface in a low pressure SEM. J. Microsc., 2010, doi: 10.1111/j.1365-2818.2010.03471.x ²Weikusat, I.; Miyamoto, A.; Faria, S. H.; Kipfstuhl, S.; Azuma, N.; Hondoh. T. Subgrain boundaries in Antarctic ice quantified by X-ray Laue diffraction. J. of Glaciol., 2011, 57, 85-94
NASA Astrophysics Data System (ADS)
Li, Linghan; McClean, Julie L.; Miller, Arthur J.; Eisenman, Ian; Hendershott, Myrl C.; Papadopoulos, Caroline A.
2014-12-01
The seasonal cycle of sea ice variability in the Bering Sea, together with the thermodynamic and dynamic processes that control it, are examined in a fine resolution (1/10°) global coupled ocean/sea-ice model configured in the Community Earth System Model (CESM) framework. The ocean/sea-ice model consists of the Los Alamos National Laboratory Parallel Ocean Program (POP) and the Los Alamos Sea Ice Model (CICE). The model was forced with time-varying reanalysis atmospheric forcing for the time period 1970-1989. This study focuses on the time period 1980-1989. The simulated seasonal-mean fields of sea ice concentration strongly resemble satellite-derived observations, as quantified by root-mean-square errors and pattern correlation coefficients. The sea ice energy budget reveals that the seasonal thermodynamic ice volume changes are dominated by the surface energy flux between the atmosphere and the ice in the northern region and by heat flux from the ocean to the ice along the southern ice edge, especially on the western side. The sea ice force balance analysis shows that sea ice motion is largely associated with wind stress. The force due to divergence of the internal ice stress tensor is large near the land boundaries in the north, and it is small in the central and southern ice-covered region. During winter, which dominates the annual mean, it is found that the simulated sea ice was mainly formed in the northern Bering Sea, with the maximum ice growth rate occurring along the coast due to cold air from northerly winds and ice motion away from the coast. South of St Lawrence Island, winds drive the model sea ice southwestward from the north to the southwestern part of the ice-covered region. Along the ice edge in the western Bering Sea, model sea ice is melted by warm ocean water, which is carried by the simulated Bering Slope Current flowing to the northwest, resulting in the S-shaped asymmetric ice edge. In spring and fall, similar thermodynamic and dynamic patterns occur in the model, but with typically smaller magnitudes and with season-specific geographical and directional differences.
NASA Astrophysics Data System (ADS)
Bonsell, Christina; Dunton, Kenneth H.
2018-03-01
This study synthesizes a multidecadal dataset of annual growth of the Arctic endemic kelp Laminaria solidungula and corresponding measurements of in situ benthic irradiance from Stefansson Sound in the central Beaufort Sea. We incorporate long-term data on sea ice concentration (National Sea Ice Data Center) and wind (National Weather Service) to assess how ice extent and summer wind dynamics affect the benthic light environment and annual kelp production. We find evidence of significant changes in sea ice extent in Stefansson Sound, with an extension of the ice-free season by approximately 17 days since 1979. Although kelp elongation at 5-7 m depths varies significantly among sites and years (3.8-49.8 cm yr-1), there is no evidence for increased production with either earlier ice break-up or a longer summer ice-free period. This is explained by very low light transmittance to the benthos during the summer season (mean daily percent surface irradiance ± SD: 1.7 ± 3.6 to 4.5 ± 6.6, depending on depth, with light attenuation values ranging from 0.5 to 0.8 m-1), resulting in minimal potential for kelp production on most days. Additionally, on month-long timescales (35 days) in the ice-free summer, benthic light levels are negatively related to wind speed. The frequent, wind-driven resuspension of sediments following ice break-up significantly reduce light to the seabed, effectively nullifying the benefits of an increased ice-free season on annual kelp growth. Instead, benthic light and primary production may depend substantially on the 1-3 week period surrounding ice break-up when intermediate sea ice concentrations reduce wind-driven sediment resuspension. These results suggest that both benthic and water column primary production along the inner shelf of Arctic marginal seas may decrease, not increase, with reductions in sea ice extent.
NASA Astrophysics Data System (ADS)
Chu, T.; Lindenschmidt, K. E.
2016-12-01
Monitoring river ice cover dynamics during the course of winter is necessary to comprehend possible negative effects of ice on anthropogenic systems and natural ecosystems to provide a basis to develop mitigation measures. Due to their large scale and limited accessibility to most places along river banks, especially in northern regions, remote sensing techniques are a suitable approach for monitoring river ice regimes. Additionally, determining the vertical displacements of ice covers due to changes in flow provides an indication of vulnerable areas to initial cracking and breakup of the ice cover. Such information is paramount when deciding on suitable locations for winter road crossing along rivers. A number of RADARSAT-2 (RS-2) beam modes (i.e. Wide Fine, Wide Ultra-Fine, Wide Fine Quad Polarization and Spotlight) and D-InSAR methods were examined in this research to characterize slant range and vertical displacement of ice covers along the Slave River in the Northwest Territories, Canada. Our results demonstrate that the RS-2 Spotlight beam mode, processed by the Multiple Aperture InSAR (MAI) method, outperformed other beam modes and conventional InSAR when characterizing spatio-temporal patterns of ice surface fluctuations. For example, the MAI based Spotlight differential interferogram derived from the January and February 2016 images of the Slave River Delta resulted in a slant range displacement of the ice surface between -3.3 and +3.6 cm (vertical displacement between -4.3 and +4.8 cm), due to the changes in river flow and river ice morphology between the two acquisition dates. It is difficult to monitor the ice movement in early and late winter periods due to the loss of phase coherence and error in phase unwrapping. These findings are consistent with our river ice hydraulic modelling and visual interpretation of the river ice processes under different hydrometeorological conditions and river ice morphology. An extension of this study is planned to incorporate the results of ice cover displacement (rise/drop) to locate areas of initial breakup in an ice jam forecasting system. Keywords: D-InSAR, Mutiple Aperture Radar InSAR (MAI), river ice displacement, RADARSAT-2
NASA Astrophysics Data System (ADS)
Toyota, T.; Kimura, N.
2017-12-01
Sea ice rheology which relates sea ice stress to the large-scale deformation of the ice cover has been a big issue to numerical sea ice modelling. At present the treatment of internal stress within sea ice area is based mostly on the rheology formulated by Hibler (1979), where the whole sea ice area behaves like an isotropic and plastic matter under the ordinary stress with the yield curve given by an ellipse with an aspect ratio (e) of 2, irrespective of sea ice area and horizontal resolution of the model. However, this formulation was initially developed to reproduce the seasonal variation of the perennial ice in the Arctic Ocean. As for its applicability to the seasonal ice zones (SIZ), where various types of sea ice are present, it still needs validation from observational data. In this study, the validity of this rheology was examined for the Sea of Okhotsk ice, typical of the SIZ, based on the AMSR-derived ice drift pattern in comparison with the result obtained for the Beaufort Sea. To examine the dependence on a horizontal scale, the coastal radar data operated near the Hokkaido coast, Japan, were also used. Ice drift pattern was obtained by a maximum cross-correlation method with grid spacings of 37.5 km from the 89 GHz brightness temperature of AMSR-E for the entire Sea of Okhotsk and the Beaufort Sea and 1.3 km from the coastal radar for the near-shore Sea of Okhotsk. The validity of this rheology was investigated from a standpoint of work rate done by deformation field, following the theory of Rothrock (1975). In analysis, the relative rates of convergence were compared between theory and observation to check the shape of yield curve, and the strain ellipse at each grid cell was estimated to see the horizontal variation of deformation field. The result shows that the ellipse of e=1.7-2.0 as the yield curve represents the observed relative conversion rates well for all the ice areas. Since this result corresponds with the yield criterion by Tresca and Von Mises for a 2D plastic matter, it suggests the validity and applicability of this rheology to the SIZ to some extent. However, it was also noted that the variation of the deformation field in the Sea of Okhotsk is much larger than in the Beaufort Sea, which indicates the need for the careful treatment of grid size in the model.
NASA Astrophysics Data System (ADS)
He, Shengping; Gao, Yongqi; Furevik, Tore; Wang, Huijun; Li, Fei
2018-01-01
In contrast to previous studies that have tended to focus on the influence of the total Arctic sea-ice cover on the East Asian summer tripole rainfall pattern, the present study identifies the Barents Sea as the key region where the June sea-ice variability exerts the most significant impacts on the East Asian August tripole rainfall pattern, and explores the teleconnection mechanisms involved. The results reveal that a reduction in June sea ice excites anomalous upward air motion due to strong near-surface thermal forcing, which further triggers a meridional overturning wave-like pattern extending to midlatitudes. Anomalous downward motion therefore forms over the Caspian Sea, which in turn induces zonally oriented overturning circulation along the subtropical jet stream, exhibiting the east-west Rossby wave train known as the Silk Road pattern. It is suggested that the Bonin high, a subtropical anticyclone predominant near South Korea, shows a significant anomaly due to the eastward extension of the Silk Road pattern to East Asia. As a possible descending branch of the Hadley cell, the Bonin high anomaly ultimately triggers a meridional overturning, establishing the Pacific-Japan pattern. This in turn induces an anomalous anticyclone and cyclone pair over East Asia, and a tripole vertical convection anomaly meridionally oriented over East Asia. Consequently, a tripole rainfall anomaly pattern is observed over East Asia. Results from numerical experiments using version 5 of the Community Atmosphere Model support the interpretation of this chain of events.
NASA Astrophysics Data System (ADS)
He, S.; Gao, Y.; Furevik, T.; Huijun, W.; Li, F.
2017-12-01
In contrast to previous studies that have tended to focus on the influence of the total Arctic sea-ice cover on the East Asian summer tripole rainfall pattern, the present study identifies the Barents Sea as the key region where the June sea-ice variability exerts the most significant impacts on the East Asian August tripole rainfall pattern, and explores the teleconnection mechanisms involved. The results reveal that a reduction in June sea ice excites anomalous upward air motion due to strong near-surface thermal forcing, which further triggers a meridional overturning wave-like pattern extending to midlatitudes. Anomalous downward motion therefore forms over the Caspian Sea, which in turn induces zonally oriented overturning circulation along the subtropical jet stream, exhibiting the east-west Rossby wave train known as the Silk Road pattern. It is suggested that the Bonin high, a subtropical anticyclone predominant near South Korea, shows a significant anomaly due to the eastward extension of the Silk Road pattern to East Asia. As a possible descending branch of the Hadley cell, the Bonin high anomaly ultimately triggers a meridional overturning, establishing the Pacific-Japan pattern. This in turn induces an anomalous anticyclone and cyclone pair over East Asia, and a tripole vertical convection anomaly meridionally oriented over East Asia. Consequently, a tripole rainfall anomaly pattern is observed over East Asia. Results from numerical experiments using version 5 of the Community Atmosphere Model support the interpretation of this chain of events.
Sea ice-induced cold air advection as a mechanism controlling tundra primary productivity
NASA Astrophysics Data System (ADS)
Macias-Fauria, M.; Karlsen, S. R.
2015-12-01
The recent sharp decline in Arctic sea ice extent, concentration, and volume leaves urgent questions regarding its effects on ecological processes. Changes in tundra productivity have been associated with sea ice dynamics on the basis that most tundra ecosystems lay close to the sea. Although some studies have addressed the potential effect of sea ice decline on the primary productivity of terrestrial arctic ecosystems (Bhatt et al., 2010), a clear picture of the mechanisms and patterns linking both processes remains elusive. We hypothesised that sea ice might influence tundra productivity through 1) cold air advection during the growing season (direct/weather effect) or 2) changes in regional climate induced by changes in sea ice (indirect/climate effect). We present a test on the direct/weather effect hypothesis: that is, tundra productivity is coupled with sea ice when sea ice remains close enough from land vegetation during the growing season for cold air advection to limit temperatures locally. We employed weekly MODIS-derived Normalised Difference Vegetation Index (as a proxy for primary productivity) and sea ice data at a spatial resolution of 232m for the period 2000-2014 (included), covering the Svalbard Archipelago. Our results suggest that sea ice-induced cold air advection is a likely mechanism to explain patterns of NDVI trends and heterogeneous spatial dynamics in the Svalbard archipelago. The mechanism offers the potential to explain sea ice/tundra productivity dynamics in other Arctic areas.
Microorganisms Trapped Within Permafrost Ice In The Fox Permafrost Tunnel, Alaska
NASA Astrophysics Data System (ADS)
Katayama, T.; Tanaka, M.; Douglas, T. A.; Cai, Y.; Tomita, F.; Asano, K.; Fukuda, M.
2008-12-01
Several different types of massive ice are common in permafrost. Ice wedges are easily recognized by their shape and foliated structure. They grow syngenetically or epigenetically as a result of repeated cycles of frost cracking followed by the infiltration of snow, melt water, soil or other material into the open frost cracks. Material incorporated into ice wedges becomes frozen and preserved. Pool ice, another massive ice type, is formed by the freezing of water resting on top of frozen thermokarst sediment or melting wedges and is not foliated. The Fox Permafrost Tunnel in Fairbanks was excavated within the discontinuous permafrost zone of central Alaska and it contains permafrost, ice wedges, and pool ice preserved at roughly -3°C. We collected samples from five ice wedges and three pool ice structures in the Fox Permafrost Tunnel. If the microorganisms were incorporated into the ice during its formation, a community analysis of the microorganisms could elucidate the environment in which the ice was formed. Organic material from sediments in the tunnel was radiocarbon-dated between 14,000 and 30,000 years BP. However, it is still not clear when the ice wedges were formed or subsequently deformed because they are only partially exposed and their upper surfaces are above the tunnel walls. The objectives of our study were to determine the biogeochemical conditions during massive ice formation and to analyze the microbial community within the ices by incubation-based and DNA-based analyses. The geochemical profile and the PCR-DGGE band patterns of bacteria among five ice wedge and 3 portions of pool ice samples were markedly different. The DGGE band patterns of fungi were simple with a few bands of fungi or yeast. The dominant bands of ice wedge and pool ice samples were affiliated with the genus Geomyces and Doratomyces, respectively. Phylogenetic analysis using rRNA gene ITS regions indicated isolates of Geomyces spp. from different ice wedges were affiliated with different clusters. The enumeration of fungal colonies among the ice wedge and pool ice samples were also different. These results demonstrate that different massive ice structures had different microbial and geochemical environments or backgrounds when they were formed.
Development of a novel nanoscratch technique for quantitative measurement of ice adhesion strength
NASA Astrophysics Data System (ADS)
Loho, T.; Dickinson, M.
2018-04-01
The mechanism for the way that ice adheres to surfaces is still not well understood. Currently there is no standard method to quantitatively measure how ice adheres to surfaces which makes ice surface studies difficult to compare. A novel quantitative lateral force adhesion measurement at the micro-nano scale for ice was created which shears micro-nano sized ice droplets (less than 3 μm in diameter and 100nm in height) using a nanoindenter. By using small ice droplets, the variables associated with bulk ice measurements were minimised which increased data repeatability compared to bulk testing. The technique provided post- testing surface scans to confirm that the ice had been removed and that measurements were of ice adhesion strength. Results show that the ice adhesion strength of a material is greatly affected by the nano-scale surface roughness of the material with rougher surfaces having higher ice adhesion strength.
Aquarius Whole Range Calibration: Celestial Sky, Ocean, and Land Targets
NASA Technical Reports Server (NTRS)
Dinnat, Emmanuel P.; Le Vine, David M.; Bindlish, Rajat; Piepmeier, Jeffrey R.; Brown, Shannon T.
2014-01-01
Aquarius is a spaceborne instrument that uses L-band radiometers to monitor sea surface salinity globally. Other applications of its data over land and the cryosphere are being developed. Combining its measurements with existing and upcoming L-band sensors will allow for long term studies. For that purpose, the radiometers calibration is critical. Aquarius measurements are currently calibrated over the oceans. They have been found too cold at the low end (celestial sky) of the brightness temperature scale, and too warm at the warm end (land and ice). We assess the impact of the antenna pattern model on the biases and propose a correction. We re-calibrate Aquarius measurements using the corrected antenna pattern and measurements over the Sky and oceans. The performances of the new calibration are evaluated using measurements over well instrument land sites.
Recent lake ice-out phenology within and among lake districts of Alaska, U.S.A.
Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido
2013-01-01
The timing of ice-out in high latitudes is a fundamental threshold for lake ecosystems and an indicator of climate change. In lake-rich regions, the loss of ice cover also plays a key role in landscape and climatic processes. Thus, there is a need to understand lake ice phenology at multiple scales. In this study, we observed ice-out timing on 55 large lakes in 11 lake districts across Alaska from 2007 to 2012 using satellite imagery. Sensor networks in two lake districts validated satellite observations and provided comparison with smaller lakes. Over this 6 yr period, the mean lake ice-out for all lakes was 27 May and ranged from 07 May in Kenai to 06 July in Arctic Coastal Plain lake districts with relatively low inter-annual variability. Approximately 80% of the variation in ice-out timing was explained by the date of 0°C air temperature isotherm and lake area. Shoreline irregularity, watershed area, and river connectivity explained additional variation in some districts. Coherence in ice-out timing within the lakes of each district was consistently strong over this 6 yr period, ranging from r-values of 0.5 to 0.9. Inter-district analysis of coherence also showed synchronous ice-out patterns with the exception of the two arctic coastal districts where ice-out occurs later (June–July) and climatology is sea-ice influenced. These patterns of lake ice phenology provide a spatially extensive baseline describing short-term temporal variability, which will help decipher longer term trends in ice phenology and aid in representing the role of lake ice in land and climate models in northern landscapes.
NASA Astrophysics Data System (ADS)
Graham, Felicity S.; Morlighem, Mathieu; Warner, Roland C.; Treverrow, Adam
2018-03-01
The microstructure of polycrystalline ice evolves under prolonged deformation, leading to anisotropic patterns of crystal orientations. The response of this material to applied stresses is not adequately described by the ice flow relation most commonly used in large-scale ice sheet models - the Glen flow relation. We present a preliminary assessment of the implementation in the Ice Sheet System Model (ISSM) of a computationally efficient, empirical, scalar, constitutive relation which addresses the influence of the dynamically steady-state flow-compatible induced anisotropic crystal orientation patterns that develop when ice is subjected to the same stress regime for a prolonged period - sometimes termed tertiary flow. We call this the ESTAR flow relation. The effect on ice flow dynamics is investigated by comparing idealised simulations using ESTAR and Glen flow relations, where we include in the latter an overall flow enhancement factor. For an idealised embayed ice shelf, the Glen flow relation overestimates velocities by up to 17 % when using an enhancement factor equivalent to the maximum value prescribed in the ESTAR relation. Importantly, no single Glen enhancement factor can accurately capture the spatial variations in flow across the ice shelf generated by the ESTAR flow relation. For flow line studies of idealised grounded flow over varying topography or variable basal friction - both scenarios dominated at depth by bed-parallel shear - the differences between simulated velocities using ESTAR and Glen flow relations depend on the value of the enhancement factor used to calibrate the Glen flow relation. These results demonstrate the importance of describing the deformation of anisotropic ice in a physically realistic manner, and have implications for simulations of ice sheet evolution used to reconstruct paleo-ice sheet extent and predict future ice sheet contributions to sea level.
Wang, Zhong Fu; Zhang, Lan Hui; Wang, Yi Bo; He, Chan Sheng
2016-11-18
Evapotranspiration (ET) is an important component of water cycle, but its measurement in high altitude mountainous region is quite difficult, resulting in the poor understanding of the temporal and spatial variations of actual ET in high altitude mountainous region. In this paper, a weighing lysimeter was used to measure the hourly ET in a grassland in the Pailugou basin in the upper reach of the Heihe River, Northwest China. Based on the measured data, diurnal variations of grassland ET over different periods were analyzed. Results indicated that snow and ice sublimation appeared during the freezing period, with a very different diurnal variation pattern compared with other three periods. During the period without sunshine, the amount of snow and ice sublimation was nearly constant. When the highest global radiation and lowest relative humidity appeared in the same period, the amount of snow and ice sublimation increased a little. The early growth period was a period when snow and ice started to melt, during which snowmelt evaporation and soil evaporation occurred at the same time. The growth period had the highest ET rate. Due to continuous rainfall events, maximum and minimum ET values appeared at the same hour. ET in the late growth period mainly came from soil evaporation, producing 3 peaks in diurnal variation, which was different from only one peak in both the early growth period and the growth period.
First Results from UAS Deployed Ocean Sensor Systems during the 2013 MIZOPEX Campaign
NASA Astrophysics Data System (ADS)
Palo, S. E.; Weibel, D.; Lawrence, D.; LoDolce, G.; Bradley, A. C.; Adler, J.; Maslanik, J. A.; Walker, G.
2013-12-01
The Marginal Ice Zone Observations and Processes Experiment (MIZOPEX), is an Arctic field campaign which occurred during summer 2013. The goals of the project are to understand how warming of the marginal ice zone affects sea ice melt and if this warming has been over or underestimated by satellite measurements. To achieve these goals calibrated physical measurements, both remote and in-situ, of the marginal ice zone over scales of square kilometers with a resolution of square meters is required. This will be accomplished with a suite of unmanned aerial vehicles (UAVs) equipped with both remote sensing and in-situ instruments, air deployed microbuoys, and ship deployed buoys. In this talk we will present details about the air deployed microbouys (ADMB) and self-deployed surface sondes (SDSS) developed at the University of Colorado. Both the ADMB and SDSS share a common measurement suite with the capability to measure water temperature at three distinct depths and provide position information via GPS. The ADMB is 90 grams, 1.3 inches in diameter, 4.25 inches long and is designed for deployment from the InSitu ScanEagle platform. The designed and experimentally verified operational lifetime is 10 days, however this can be extended with additional batteries.. While the ADMB are deployed from the ScanEagle, the SDSS are vectorable and can be remotely and precisely positioned. Lab performance results, calibration results and initial results from the ADMB and SDSS that were deployed during the MIZOPEX mission will be presented. These results include day-in-the-life tests, antenna pattern analysis, range tests, temperature measurement accuracy and initial scientific results from the campaign.
NASA Astrophysics Data System (ADS)
Csatho, B. M.; Larour, E. Y.; Schenk, A. F.; Schlegel, N.; Duncan, K.
2015-12-01
We present a new, complete ice thickness change reconstruction of the NE sector of the Greenland Ice Sheet for 1978-2014, partitioned into changes due to surface processes and ice dynamics. Elevation changes are computed from all available stereoscopic DEMs, and laser altimetry data (ICESat, ATM, LVIS). Surface Mass Balance and firn-compaction estimates are from RACMO2.3. Originating nearly at the divide of the Greenland Ice Sheet (GrIS), the dynamically active North East Ice Stream (NEGIS) is capable of rapidly transmitting ice-marginal forcing far inland. Thus, NEGIS provides a possible mechanism for a rapid drawdown of ice from the ice sheet interior as marginal warming, thinning and retreat continues. Our altimetry record shows accelerating dynamic thinning of Zachariæ Isstrom, initially limited to the deepest part of the fjord near the calving front (1978-2000) and then extending at least 75 km inland. At the same time, changes over the Nioghalvfjerdsfjorden (N79) Glacier are negligible. We also detect localized large dynamic changes at higher elevations on the ice sheet. These thickness changes, often occurring at the onset of fast flow, could indicate rapid variations of basal lubrication due to rerouting of subglacial drainage. We investigate the possible causes of the observed spatiotemporal pattern of ice sheet elevation changes using the Ice Sheet System Model (ISSM). This work build on our previous studies examining the sensitivity of ice flow within the Northeast Greenland Ice Stream (NEGIS) to key fields, including ice viscosity, basal drag. We assimilate the new altimetry record into ISSM to improve the reconstruction of basal friction and ice viscosity. Finally, airborne geophysical (gravity, magnetic) and ice-penetrating radar data is examined to identify the potential geologic controls on the ice thickness change pattern. Our study provides the first comprehensive reconstruction of ice thickness changes for the entire NEGIS drainage basin during the last 40 years. Through the use of ISSM, we examine possible mechanism explaining the observed changes. The improved understanding gained through this research will contribute better projections of future ice loss from this most vulnerable region of the GrIS.
Small scale variability of snow properties on Antarctic sea ice
NASA Astrophysics Data System (ADS)
Wever, Nander; Leonard, Katherine; Paul, Stephan; Jacobi, Hans-Werner; Proksch, Martin; Lehning, Michael
2016-04-01
Snow on sea ice plays an important role in air-ice-sea interactions, as snow accumulation may for example increase the albedo. Snow is also able to smooth the ice surface, thereby reducing the surface roughness, while at the same time it may generate new roughness elements by interactions with the wind. Snow density is a key property in many processes, for example by influencing the thermal conductivity of the snow layer, radiative transfer inside the snow as well as the effects of aerodynamic forcing on the snowpack. By comparing snow density and grain size from snow pits and snow micro penetrometer (SMP) measurements, highly resolved density and grain size profiles were acquired during two subsequent cruises of the RV Polarstern in the Weddell Sea, Antarctica, between June and October 2013. During the first cruise, SMP measurements were done along two approximately 40 m transects with a horizontal resolution of approximately 30 cm. During the second cruise, one transect was made with approximately 7.5 m resolution over a distance of 500 m. Average snow densities are about 300 kg/m3, but the analysis also reveals a high spatial variability in snow density on sea ice in both horizontal and vertical direction, ranging from roughly 180 to 360 kg/m3. This variability is expressed by coherent snow structures over several meters. On the first cruise, the measurements were accompanied by terrestrial laser scanning (TLS) on an area of 50x50 m2. The comparison with the TLS data indicates that the spatial variability is exhibiting similar spatial patterns as deviations in surface topology. This suggests a strong influence from surface processes, for example wind, on the temporal development of density or grain size profiles. The fundamental relationship between variations in snow properties, surface roughness and changes therein as investigated in this study is interpreted with respect to large-scale ice movement and the mass balance.
NASA Astrophysics Data System (ADS)
Howat, I. M.; Tulaczyk, S.; Mac Gregor, K.; Joughin, I.
2001-12-01
As part of the effort to build quantitative models of glacial erosion and sedimentation, it is particularly important to construct scaled relations between erosion, transport, and sedimentation rates and appropriate glaciological variables (e.g., ice velocity). Recent acquisition of bed topography and ice velocity data for the marine West Antarctic Ice Sheet (WAIS)[Joughin et al., 1999; Lythe et al., in press] provides an unprecedented opportunity to investigate continental-scale patterns of glacial erosion and their relationship to the ice velocity field. Utilizing this data, we construct a map of estimated long-term erosion rates beneath the WAIS. In order to calculate long-term erosion rates from the available data, we assume that: (1) the ice sheet has been present for ~5 mill. years, (2) the initial topography beneath the WAIS was that of a typical ( ~200 m.b.s.l.) continental shelf, and (3) the present topography is near local isostatic equilibrium (Airy type). The map of long-term erosion rates constructed in this fashion shows an intriguing pattern of relatively high rates (of the order of 0.1 mm/yr) concentrated beneath modern ice stream tributaries (ice velocity ~100 m/yr), but much lower erosion rates (of the order of 0.01 mm/yr) beneath both the modern fast-moving ice streams ( ~400 m/yr.) and the slow-moving parts of the ice sheet ( ~10 m/yr). This lack of clear correlation between the estimated erosion rates and ice velocity is somewhat unexpected given that both observational and theoretical studies have shown that bedrock erosion rates beneath mountain glaciers can often be calculated by multiplying the basal sliding velocity by a constant (typically of the order of ~10^-4)(Humphrey and Raymond, 1993 and Mac Gregor et al., 2000). We obtain an improved match between estimated erosion rates and bed topography by calculating erosion rates using horizontal gradients within the ice velocity field rather than the magnitude of ice velocity, as consistent with the steady state deforming till model of Cuffey and Alley (1997). Therefore, we hypothesize that the erosional system beneath the WAIS, which has overridden a thick layer of erodible, Tertiary marine sediments (Studinger et al., in press), is 'transport limited' and that the horizontal gradients in ice velocity and till flux have the predominant control over spatial patterns of subglacial erosion and deposition rates. In contrast, past studies of erosional systems have concentrated on mountain glaciers that derive their debris through erosion of hard bedrock. In those cases, the erosional system may be 'production limited' because erosion rates scale with dissipation of gravitational energy, represented by the velocity-times-constant equation. Thus, this concept of a 'transport limited' system represents a deviation from past thinking regarding the dynamics of bed erosion, and may be unique to marine-based ice sheets. Using this concept as a base, we will construct more accurately parameterized models to better define the relationship between the dynamics of ice streams and the character of the sub glacial bed.
NASA Astrophysics Data System (ADS)
Studinger, M.; Medley, B.; Manizade, S.; Linkswiler, M. A.
2016-12-01
Repeat airborne laser altimetry measurements can provide large-scale field observations to better quantify spatial and temporal variability of surface processes contributing to seasonal elevation change and therefore surface mass balance. As part of NASA's Operation IceBridge the Airborne Topographic Mapper (ATM) laser altimeter measured the surface elevation of the Greenland Ice Sheet during spring (March - May) and fall (September - October) of 2015. Comparison of the two surveys reveals a general trend of thinning for outlet glaciers and for the ice sheet in a manner related to elevation and latitude. In contrast, some thickening is observed on the west (but not on the east) side of the ice divide above 2200 m elevation in the southern half, below latitude 69°N.The observed magnitude and spatial patterns of the summer melt signal can be utilized as input into ice sheet models and for validating reanalysis of regional climate models such as RACMO and MAR. We use seasonal anomalies in MERRA-2 climate fields (temperature, precipitation) to understand the observed spatial signal in seasonal change. Aside from surface elevation change, runoff from meltwater pooling in supraglacial lakes and meltwater channels accounts for at least half of the total mass loss. The ability of the ATM laser altimeters to image glacial hydrological features in 3-D and determine the depth of supraglacial lakes could be used for process studies and for quantifying melt processes over large scales. The 1-meter footprint diameter of ATM laser on the surface, together with a high shot density, allows for the production of large-scale, high-resolution, geodetic quality DEMs (50 x 50 cm) suitable for fine-scale glacial hydrology research and as input to hydrological models quantifying runoff.
Population substructure and space use of Foxe Basin polar bears.
Sahanatien, Vicki; Peacock, Elizabeth; Derocher, Andrew E
2015-07-01
Climate change has been identified as a major driver of habitat change, particularly for sea ice-dependent species such as the polar bear (Ursus maritimus). Population structure and space use of polar bears have been challenging to quantify because of their circumpolar distribution and tendency to range over large areas. Knowledge of movement patterns, home range, and habitat is needed for conservation and management. This is the first study to examine the spatial ecology of polar bears in the Foxe Basin management unit of Nunavut, Canada. Foxe Basin is in the mid-Arctic, part of the seasonal sea ice ecoregion and it is being negatively affected by climate change. Our objectives were to examine intrapopulation spatial structure, to determine movement patterns, and to consider how polar bear movements may respond to changing sea ice habitat conditions. Hierarchical and fuzzy cluster analyses were used to assess intrapopulation spatial structure of geographic position system satellite-collared female polar bears. Seasonal and annual movement metrics (home range, movement rates, time on ice) and home-range fidelity (static and dynamic overlap) were compared to examine the influence of regional sea ice on movements. The polar bears were distributed in three spatial clusters, and there were differences in the movement metrics between clusters that may reflect sea ice habitat conditions. Within the clusters, bears moved independently of each other. Annual and seasonal home-range fidelity was observed, and the bears used two movement patterns: on-ice range residency and annual migration. We predict that home-range fidelity may decline as the spatial and temporal predictability of sea ice changes. These new findings also provide baseline information for managing and monitoring this polar bear population.
Microfabric and Structures in Glacial Ice
NASA Astrophysics Data System (ADS)
Monz, M.; Hudleston, P. J.
2017-12-01
Similar to rocks in active orogens, glacial ice develops both structures and fabrics that reflect deformation. Crystallographic preferred orientation (CPO), associated with mechanical anisotropy, develops as ice deforms, and as in rock, directly reflects the conditions and mechanisms of deformation and influences the overall strength. This project aims to better constrain the rheologic properties of natural ice through microstructural analysis and to establish the relationship of microfabric to macroscale structures. The focus is on enigmatic fabric patterns found in coarse grained, "warm" (T > -10oC) ice deep in ice sheets and in valley glaciers. Deformation mechanisms that produce such patterns are poorly understood. Detailed mapping of surface structures, including bedding, foliation, and blue bands (bubble-free veins of ice), was done in the ablation zone of Storglaciären, a polythermal valley glacier in northern Sweden. Microstructural studies on samples from a transect across the ablation zone were carried out in a cold room. Crystal size was too large for use of electron backscattered diffraction to determine CPO, therefore a Rigsby universal stage, designed specifically for ice, was used. In thick and thin sections, recrystallized grains are locally variable in both size (1mm-7cm in one thin section) and shape and clearly reflect recrystallization involving highly mobile grain boundaries. Larger crystals are often branching, and appear multiple times throughout one thin section. There is a clear shape preferred orientation that is generally parallel with foliation defined by bubble alignment and concentration. Locally, there appears to be an inverse correlation between bubble concentration and smoothness of grain boundaries. Fabric in samples that have undergone prolonged shear display roughly symmetrical multimaxima patterns centered around the pole to foliation. The angular distances between maxima suggest a possible twin relationship that may have developed from a preexisting single-maximum fabric.
NASA Technical Reports Server (NTRS)
Gerber, H.; DeMott, P. J.; Rogers, D. C.
1995-01-01
The aircraft microphysics probe, PVM-100A, was tested in the Colorado State University dynamic cloud chamber to establish its ability to measure ice water content (IWC), PSA, and Re in ice clouds. Its response was compared to other means of measuring those ice-cloud parameters that included using FSSP-100 and 230-X 1-D optical probes for ice-crystal concentrations, a film-loop microscope for ice-crystal habits and dimensions, and an in-situ microscope for determining ice-crystal orientation. Intercomparisons were made in ice clouds containing ice crystals ranging in size from about 10 microns to 150 microns diameter, and ice crystals with plate, columnar, dendritic, and spherical shapes. It was not possible to determine conclusively that the PVM accurately measures IWC, PSA, and Re of ice crystals, because heat from the PVM evaporated in part the crystals in its vicinity in the chamber thus affecting its measurements. Similarities in the operating principle of the FSSP and PVM, and a comparison between Re measured by both instruments, suggest, however, that the PVM can make those measurements. The resolution limit of the PVM for IWC measurements was found to be on the order of 0.001 g/cubic m. Algorithms for correcting IWC measured by FSSP and PVM were developed.
NASA Astrophysics Data System (ADS)
Hill, V. J.; Steele, M.; Light, B.
2016-02-01
As part of the Arctic Observing Network, a new ice-tethered buoy has been developed for monitoring the role of sunlight in regulating ocean temperature, phytoplankton growth, and carbon cycling. A 20 or 50 m string (depending on local bathymetry) supports sensors both within and below the ice for the hourly measurement of downwelling irradiance, temperature, Chlorophyll a, light backscattering, and dissolved organic material (DOM). Two buoys were deployed in March 2014 and two in March 2015. Because the buoys are engineered to survive melting out of first year ice, they have successfully provided complete seasonal records of water column warming, phytoplankton abundance and photo-oxidation patterns in the Pacific Arctic Region. The data collected will be used to determine whether reduced ice extent and thinner ice are driving increases in under ice warming, accelerating bottom ice ablation, increasing available photosynthetic radiation to support large under ice blooms, and to quantify photo-oxidation of the DOM pool. Observations so far have revealed strong under ice daily warming as high as ±0.5 °C driven by local solar radiation. Water column absorption was dominated by colored dissolved organic material which served to trap solar radiation in the upper water column. Chlorophyll concentrations observed in June and July indicated high phytoplankton abundance beneath the ice. Light intensity at this time was not sufficient to support growth rates high enough to produce the 8 to 10 mg m-3 of chlorophyll observed. We hypothesize that phytoplankton were advected under the ice from the ice edge. However, once there phytoplankton were able to sustain low growth rates leading to nutrient limitation before open water status was reached. Strong daily cycles of photo-oxidation have also been observed in the late summer that indicate the fast cycling of highly labile DOM in the open waters of the Pacific Arctic Region.
Centuries of intense surface melt on Larsen C Ice Shelf
NASA Astrophysics Data System (ADS)
Bevan, Suzanne L.; Luckman, Adrian; Hubbard, Bryn; Kulessa, Bernd; Ashmore, David; Kuipers Munneke, Peter; O'Leary, Martin; Booth, Adam; Sevestre, Heidi; McGrath, Daniel
2017-12-01
Following a southward progression of ice-shelf disintegration along the Antarctic Peninsula (AP), Larsen C Ice Shelf (LCIS) has become the focus of ongoing investigation regarding its future stability. The ice shelf experiences surface melt and commonly features surface meltwater ponds. Here, we use a flow-line model and a firn density model (FDM) to date and interpret observations of melt-affected ice layers found within five 90 m boreholes distributed across the ice shelf. We find that units of ice within the boreholes, which have densities exceeding those expected under normal dry compaction metamorphism, correspond to two climatic warm periods within the last 300 years on the Antarctic Peninsula. The more recent warm period, from the 1960s onwards, has generated distinct sections of dense ice measured in two boreholes in Cabinet Inlet, which is close to the Antarctic Peninsula mountains - a region affected by föhn winds. Previous work has classified these layers as refrozen pond ice, requiring large quantities of mobile liquid water to form. Our flow-line model shows that, whilst preconditioning of the snow began in the late 1960s, it was probably not until the early 1990s that the modern period of ponding began. The earlier warm period occurred during the 18th century and resulted in two additional sections of anomalously dense ice deep within the boreholes. The first, at 61 m in one of our Cabinet Inlet boreholes, consists of ice characteristic of refrozen ponds and must have formed in an area currently featuring ponding. The second, at 69 m in a mid-shelf borehole, formed at the same time on the edge of the pond area. Further south, the boreholes sample ice that is of an equivalent age but which does not exhibit the same degree of melt influence. This west-east and north-south gradient in the past melt distribution resembles current spatial patterns of surface melt intensity.
Fabrication of micro-patterned aluminum surfaces for low ice adhesion strength
NASA Astrophysics Data System (ADS)
Jeon, Jaehyeon; Jang, Hanmin; Chang, Jinho; Lee, Kwan-Soo; Kim, Dong Rip
2018-05-01
We report a fabrication method to obtain a low-ice-adhesion aluminum surface by surface texturing using solution etching and subsequent thin-film coating. Specifically, the textured surface has microstructures of a low aspect ratio, that is, with a much smaller height than width. Such microstructures can effectively reduce ice-adhesion strengths by sliding the ice during detachment. Because our method is based on solution etching, it can be applied to curved surfaces with complex shapes for uniformly constructing the morphology of a low-ice-adhesion aluminum surface. Finally, the low-ice-adhesion aluminum surface reduces the ice-adhesion strengths by up to 95%.
An Expanded Analysis of Nitrogen Ice Convection in Sputnik Planum
NASA Astrophysics Data System (ADS)
Umurhan, Orkan M.; Lyra, Wladimir; Wong, Teresa; McKinnon, William B.; Nimmo, Francis; Howard, Alan D.; Moore, Jeffrey M.; Binzel, Richard; White, Oliver; Stern, S. Alan; Ennico, Kimberly; Olkin, Catherine B.; Weaver, Harold A.; Young, Leslie; New Horizons Geology and Geophysics Science Team
2016-10-01
The New Horizons close-encounter flyby of Pluto revealed 20-35 km scale ovoid patterns on the informally named Sputnik Planum. These features have been recently interpreted and shown to arise from the action of solid-state convection of (predominantly) nitrogen ice driven by Pluto's geothermal gradient. One of the major uncertainties in the convection physics centers on the temperature and grain-size dependency of nitrogen ice rheology, which has strong implications for the overturn times of the convecting ice. Assuming nitrogen ice in Sputnik Planum rests on a passive water ice bedrock that conducts Pluto's interior heat flux, and, given the uncertainty of the grain-size distribution of the nitrogen ice in Sputnik Planum, we examine a suite of two-dimensional convection models that take into account the thermal contact between the nitrogen ice layer and the conducting water-ice bedrock for a given emergent geothermal flux. We find for nitrogen ice layers several km deep, the emerging convection efficiently cools the nitrogen-ice water-ice bedrock interface resulting in temperature differences across the convecting layer of 10-20 K (at most) regardless of layer depth. For grain sizes ranging from 0.01 mm to 5 mm the resulting horizontal size to depth ratios of the emerging convection patterns go from 4:1 up to 6:1, suggesting that the nitrogen ice layer in Sputnik Planum may be anywhere between 3.5 and 8 km deep. Such depths are consistent with Sputnik Planum being a large impact basin (in a relative sense) analogous to Hellas on Mars. In this grain-size range we also find, (i) the calculated cell overturn times are anywhere from 1e4 to 5e5 yrs and, (ii) there is a distinct transition from steady state to time dependent convection.
Past ice-sheet behaviour: retreat scenarios and changing controls in the Ross Sea, Antarctica
NASA Astrophysics Data System (ADS)
Halberstadt, Anna Ruth W.; Simkins, Lauren M.; Greenwood, Sarah L.; Anderson, John B.
2016-05-01
Studying the history of ice-sheet behaviour in the Ross Sea, Antarctica's largest drainage basin can improve our understanding of patterns and controls on marine-based ice-sheet dynamics and provide constraints for numerical ice-sheet models. Newly collected high-resolution multibeam bathymetry data, combined with two decades of legacy multibeam and seismic data, are used to map glacial landforms and reconstruct palaeo ice-sheet drainage. During the Last Glacial Maximum, grounded ice reached the continental shelf edge in the eastern but not western Ross Sea. Recessional geomorphic features in the western Ross Sea indicate virtually continuous back-stepping of the ice-sheet grounding line. In the eastern Ross Sea, well-preserved linear features and a lack of small-scale recessional landforms signify rapid lift-off of grounded ice from the bed. Physiography exerted a first-order control on regional ice behaviour, while sea floor geology played an important subsidiary role. Previously published deglacial scenarios for Ross Sea are based on low-spatial-resolution marine data or terrestrial observations; however, this study uses high-resolution basin-wide geomorphology to constrain grounding-line retreat on the continental shelf. Our analysis of retreat patterns suggests that (1) retreat from the western Ross Sea was complex due to strong physiographic controls on ice-sheet drainage; (2) retreat was asynchronous across the Ross Sea and between troughs; (3) the eastern Ross Sea largely deglaciated prior to the western Ross Sea following the formation of a large grounding-line embayment over Whales Deep; and (4) our glacial geomorphic reconstruction converges with recent numerical models that call for significant and complex East Antarctic ice sheet and West Antarctic ice sheet contributions to the ice flow in the Ross Sea.
NASA Astrophysics Data System (ADS)
Jawak, S. D.; Luis, A. J.
2017-12-01
Estimating mass loss of the Antarctic ice sheet caused by iceberg calving is a challenging job. Antarctica is surrounded by a variety of large, medium and small sized ice shelves, glacier tongues and coastal areas without offshore floating ice masses. It is possible to monitor surface structures on the continental ice and the ice shelves as well as calved icebergs using NASA-ISRO synthetic aperture radar (NISAR) satellite images in future. The NISAR, which is planned to be launched in 2020, can be used as an all-weather and all-season system to classify the coastline of Antarctica to map patterns of surface structures close to the calving front. Additionally, classifying patterns and density of surface structures distributed over the ice shelves and ice tongues can be a challenging research where NISAR can be of a great advantage. So this work explores use of NISAR to map surface structures visible on ice shelves which can provide advisories to field teams. The ice shelf fronts has been categorized into various classes based on surface structures relative to the calving front within a 30 km-wide seaward strip. The resulting map of the classified calving fronts around Antarctica and their description would provide a detailed representation of crevasse formation and dominant iceberg in the southern ocean which pose a threat to navigation of Antarctic bound ships.
NASA Astrophysics Data System (ADS)
Snow, T.; Shepherd, B.; Abdalati, W.; Scambos, T. A.
2016-12-01
Dynamic processes at marine-terminating outlet glaciers are responsible for over one-third of Greenland Ice Sheet (GIS) mass loss. Enhanced intrusion of warm ocean waters at the termini of these glaciers has contributed to elevated rates of ice thinning and terminus retreat over the last two decades. In situ oceanographic measurements and modeling studies show that basal melting of glaciers and subglacial discharge can cause buoyant plumes of water to rise to the fjord surface and influence fjord circulation characteristics. The temperature of these surface waters holds clues about ice-ocean interactions and small-scale circulation features along the glacier terminus that could contribute to outlet glacier mass loss, but the magnitude and duration of temperature variability remains uncertain. Satellite remote sensing has proven very effectiver for acquiring sea surface temperatuer (SST) data from these remote regions on a long-term, consistent basis and shows promise for identifying temperature anomalies at the ice front. However, these data sets have not been widely utilized to date. Here, we use satellite-derived sea surface temperatures to identify fjord surface outflow characteristics from 2000 to present at the Petermann Glacier, which drains 4% of the GIS and is experiencing 80% of its mass loss from basal melt. We find a general SST warming trend that coincides with early sea ice breakup and precedes two major calving events and ice speedup that began in 2010. Persistent SST anomalies along the terminus provide evidence of warm outflow that is consistent with buoyant plume model predictions. However, the anomalies are not evident early in the time series, suggesting that ocean inflow and ice-ocean interactions have experienced a regime shift since 2000. Our results provide valuable insight into fjord circulation patterns and the forcing mechanisms that contribute to terminus retreat. Comparing our results to ongoing modeling experiments, time series from other outlet glaciers, and coincident in situ measurements, will help to further explain the physical processes occurring at the ice-ocean boundary and provide useful insights into the changes taking place at other GIS marine-terminating outlet glaciers.
NASA Astrophysics Data System (ADS)
Greenwood, Sarah L.; Clark, Chris D.
2009-12-01
The ice sheet that once covered Ireland has a long history of investigation. Much prior work focussed on localised evidence-based reconstructions and ice-marginal dynamics and chronologies, with less attention paid to an ice sheet wide view of the first order properties of the ice sheet: centres of mass, ice divide structure, ice flow geometry and behaviour and changes thereof. In this paper we focus on the latter aspect and use our new, countrywide glacial geomorphological mapping of the Irish landscape (>39 000 landforms), and our analysis of the palaeo-glaciological significance of observed landform assemblages (article Part 1), to build an ice sheet reconstruction yielding these fundamental ice sheet properties. We present a seven stage model of ice sheet evolution, from initiation to demise, in the form of palaeo-geographic maps. An early incursion of ice from Scotland likely coalesced with local ice caps and spread in a south-westerly direction 200 km across Ireland. A semi-independent Irish Ice Sheet was then established during ice sheet growth, with a branching ice divide structure whose main axis migrated up to 140 km from the west coast towards the east. Ice stream systems converging on Donegal Bay in the west and funnelling through the North Channel and Irish Sea Basin in the east emerge as major flow components of the maximum stages of glaciation. Ice cover is reconstructed as extending to the continental shelf break. The Irish Ice Sheet became autonomous (i.e. separate from the British Ice Sheet) during deglaciation and fragmented into multiple ice masses, each decaying towards the west. Final sites of demise were likely over the mountains of Donegal, Leitrim and Connemara. Patterns of growth and decay of the ice sheet are shown to be radically different: asynchronous and asymmetric in both spatial and temporal domains. We implicate collapse of the ice stream system in the North Channel - Irish Sea Basin in driving such asymmetry, since rapid collapse would sever the ties between the British and Irish Ice Sheets and drive flow configuration changes in response. Enhanced calving and flow acceleration in response to rising relative sea level is speculated to have undermined the integrity of the ice stream system, precipitating its collapse and driving the reconstructed pattern of ice sheet evolution.
NASA Technical Reports Server (NTRS)
Nghiem, Son V.; Rigor, Ignatius G.; Richter, Andreas; Burrows, John P.; Shepson, Paul B.; Bottenheim, Jan; Barber, David G.; Steffen, Alexandra; Latonas, Jeff; Wang, Feiyue;
2012-01-01
Recent drastic reduction of the older perennial sea ice in the Arctic Ocean has resulted in a vast expansion of younger and saltier seasonal sea ice. This increase in the salinity of the overall ice cover could impact tropospheric chemical processes. Springtime perennial ice extent in 2008 and 2009 broke the half-century record minimum in 2007 by about one million km2. In both years seasonal ice was dominant across the Beaufort Sea extending to the Amundsen Gulf, where significant field and satellite observations of sea ice, temperature, and atmospheric chemicals have been made. Measurements at the site of the Canadian Coast Guard Ship Amundsen ice breaker in the Amundsen Gulf showed events of increased bromine monoxide (BrO), coupled with decreases of ozone (O3) and gaseous elemental mercury (GEM), during cold periods in March 2008. The timing of the main event of BrO, O3, and GEM changes was found to be consistent with BrO observed by satellites over an extensive area around the site. Furthermore, satellite sensors detected a doubling of atmospheric BrO in a vortex associated with a spiral rising air pattern. In spring 2009, excessive and widespread bromine explosions occurred in the same region while the regional air temperature was low and the extent of perennial ice was significantly reduced compared to the case in 2008. Using satellite observations together with a Rising-Air-Parcel model, we discover a topographic control on BrO distribution such that the Alaskan North Slope and the Canadian Shield region were exposed to elevated BrO, whereas the surrounding mountains isolated the Alaskan interior from bromine intrusion.
Sea ice dynamics across the Mid-Pleistocene transition in the Bering Sea.
Detlef, H; Belt, S T; Sosdian, S M; Smik, L; Lear, C H; Hall, I R; Cabedo-Sanz, P; Husum, K; Kender, S
2018-03-05
Sea ice and associated feedback mechanisms play an important role for both long- and short-term climate change. Our ability to predict future sea ice extent, however, hinges on a greater understanding of past sea ice dynamics. Here we investigate sea ice changes in the eastern Bering Sea prior to, across, and after the Mid-Pleistocene transition (MPT). The sea ice record, based on the Arctic sea ice biomarker IP 25 and related open water proxies from the International Ocean Discovery Program Site U1343, shows a substantial increase in sea ice extent across the MPT. The occurrence of late-glacial/deglacial sea ice maxima are consistent with sea ice/land ice hysteresis and land-glacier retreat via the temperature-precipitation feedback. We also identify interactions of sea ice with phytoplankton growth and ocean circulation patterns, which have important implications for glacial North Pacific Intermediate Water formation and potentially North Pacific abyssal carbon storage.
NASA Astrophysics Data System (ADS)
Kim, J.; Yu, J.; Wang, L.; Liu, H.
2017-12-01
Changes in Antarctic ice sheet are caused by various reasons such as changes in Holocene climate, precipitation, and ocean temperature. Such issues of changes in ice sheet has been mainly focused on the Antarctic peninsula, and it is known that ice retreat of the area is caused by changes in atmospheric and ocean temperatures. For the case of West Antarctica, ice front change research is relatively rarely conducted except the Pine island glacier area. This study has monitored ice front changes of West Antarctica and compared the patterns with the changes in brightness temperature based on remote sensing techniques. We used 2000 Radarsat-1 and 2008 Rasarsat-2 SAR data to delineate coastlines of whole West Antarctica based on the locally thresholding adaptive algorithm. The delineated coast lines are analyzed to figure out ice front change patterns between the duration. The variations in brightness temperature for the same duration are calculated based on Defense Meteorological Satellite Program (DMSP)'s Special Sensor Microwave/Images-Special Sensor Microwave Imager/Sounder (SSM/I-SSMIS) passive microwave data. The results show ice front of West Antarctica shows advancing trend except the pine island glacier area. The brightness temperature had decreasing trend during the study period. It infers that changes in ice front and brightness temperature of West Antarctica have considerable relationships. It is expected that a long term monitoring of the relationship would contribute understanding ice dynamics of West Antarctica significantly.
Convection from Hemispherical and Conical Model Ice Roughness Elements in Stagnation Region Flows
NASA Technical Reports Server (NTRS)
Hughes, Michael T.; Shannon, Timothy A.; McClain, Stephen T.; Vargas, Mario; Broeren, Andy
2016-01-01
To improve ice accretion prediction codes, more data regarding ice roughness and its effects on convective heat transfer are required. The Vertical Icing Studies Tunnel (VIST) at NASA Glenn Research was used to model realistic ice roughness in the stagnation region of a NACA 0012 airfoil. In the VIST, a test plate representing the leading 2% chord of the airfoil was subjected to flows of 7.62 m/s (25 ft/s), 12.19 m/s (40 ft/s), and 16.76 m/s (55 ft/s). The test plate was fitted with multiple surfaces or sets of roughness panels, each with a different representation of ice roughness. The sets of roughness panels were constructed using two element distribution patterns that were created based on a laser scan of an iced airfoil acquired in the Icing Research Tunnel at NASA Glenn. For both roughness patterns, surfaces were constructed using plastic hemispherical elements, plastic conical elements, and aluminum conical elements. Infrared surface thermometry data from tests run in the VIST were used to calculate area averaged heat transfer coefficient values. The values from the roughness surfaces were compared to the smooth control surface, showing convective enhancement as high as 400% in some cases. The data gathered during this study will ultimately be used to improve the physical modeling in LEWICE or other ice accretion codes and produce predictions of in-flight ice accretion on aircraft surfaces with greater confidence.
Reorganization of Ice Sheet Flow Patterns in Arctic Canada Prior to the Mid-Pleistocene Transition
NASA Astrophysics Data System (ADS)
Refsnider, K. A.; Miller, G. H.
2010-12-01
The Foxe sector of the Laurentide Ice Sheet (LIS) experienced a complex and dynamic interplay between cold-based, non-erosive ice on uplands, fast-moving outlet glaciers that carved deep fiords through the Arctic Cordillera, and even more erosive ice streams that occupied larger straits and sounds, transporting ice from the Foxe Dome to calving margins in Baffin Bay and the Labrador Sea. The high topography of Baffin Island forms a broad barrier to the flow of ice to these calving margins and gradually has been dissected since the onset of Northern Hemisphere glaciation. However, evidence for the evolution of LIS erosion and basal thermal regime patterns during successive glaciations is poorly preserved in the geologic record. We use a new approach utilizing published till geochemistry and cosmogenic radionuclide (CRN) data to constrain the development of the fiorded coastline and the distribution of cold-based ice across central Baffin Island in both spatial and temporal domains over many glacial-interglacial cycles. The combination of till geochemistry data, which is used to characterize till weathering, and modeled CRN burial-exposure histories provides strong evidence for a shift in basal thermal regimes across the interior plateaux of Baffin Island between 1.9 and 1.2 Ma. While it may be coincidence that this time interval abuts the onset of the mid-Pleistocene transition (MPT), it has been hypothesized that changes in subglacial conditions were potentially an important mechanism in altering LIS dynamics across the MPT. Prior to this time, ice was likely wet-based and erosive across the majority of the Baffin Island interior, but by 1.9-1.2 Ma, some parts of the landscape became perpetually covered by cold-based ice during glaciations, a pattern that persisted through the last glacial cycle. The modern fiord system also must have developed by this time, and preferential channeling of ice flow into major fiords may have been sufficient to effectively shut off ice flow across the landscape between outlet glaciers. These results imply that there was a major shift in the basal thermal regime across the northeastern LIS, and the subsequent expansion of cold-based ice and the concentration of ice flow in fewer outlet systems across this region may help explain the cause of the MPT from 41- to 100-kyr glacial cycles.
NASA Astrophysics Data System (ADS)
Bertler, Nancy A. N.; Conway, Howard; Dahl-Jensen, Dorthe; Emanuelsson, Daniel B.; Winstrup, Mai; Vallelonga, Paul T.; Lee, James E.; Brook, Ed J.; Severinghaus, Jeffrey P.; Fudge, Taylor J.; Keller, Elizabeth D.; Baisden, W. Troy; Hindmarsh, Richard C. A.; Neff, Peter D.; Blunier, Thomas; Edwards, Ross; Mayewski, Paul A.; Kipfstuhl, Sepp; Buizert, Christo; Canessa, Silvia; Dadic, Ruzica; Kjær, Helle A.; Kurbatov, Andrei; Zhang, Dongqi; Waddington, Edwin D.; Baccolo, Giovanni; Beers, Thomas; Brightley, Hannah J.; Carter, Lionel; Clemens-Sewall, David; Ciobanu, Viorela G.; Delmonte, Barbara; Eling, Lukas; Ellis, Aja; Ganesh, Shruthi; Golledge, Nicholas R.; Haines, Skylar; Handley, Michael; Hawley, Robert L.; Hogan, Chad M.; Johnson, Katelyn M.; Korotkikh, Elena; Lowry, Daniel P.; Mandeno, Darcy; McKay, Robert M.; Menking, James A.; Naish, Timothy R.; Noerling, Caroline; Ollive, Agathe; Orsi, Anaïs; Proemse, Bernadette C.; Pyne, Alexander R.; Pyne, Rebecca L.; Renwick, James; Scherer, Reed P.; Semper, Stefanie; Simonsen, Marius; Sneed, Sharon B.; Steig, Eric J.; Tuohy, Andrea; Ulayottil Venugopal, Abhijith; Valero-Delgado, Fernando; Venkatesh, Janani; Wang, Feitang; Wang, Shimeng; Winski, Dominic A.; Winton, V. Holly L.; Whiteford, Arran; Xiao, Cunde; Yang, Jiao; Zhang, Xin
2018-02-01
High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually dated ice core record from the eastern Ross Sea, named the Roosevelt Island Climate Evolution (RICE) ice core. Comparison of this record with climate reanalysis data for the 1979-2012 interval shows that RICE reliably captures temperature and snow precipitation variability in the region. Trends over the past 2700 years in RICE are shown to be distinct from those in West Antarctica and the western Ross Sea captured by other ice cores. For most of this interval, the eastern Ross Sea was warming (or showing isotopic enrichment for other reasons), with increased snow accumulation and perhaps decreased sea ice concentration. However, West Antarctica cooled and the western Ross Sea showed no significant isotope temperature trend. This pattern here is referred to as the Ross Sea Dipole. Notably, during the Little Ice Age, West Antarctica and the western Ross Sea experienced colder than average temperatures, while the eastern Ross Sea underwent a period of warming or increased isotopic enrichment. From the 17th century onwards, this dipole relationship changed. All three regions show current warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea but increasing in the western Ross Sea. We interpret this pattern as reflecting an increase in sea ice in the eastern Ross Sea with perhaps the establishment of a modern Roosevelt Island polynya as a local moisture source for RICE.
Forecast of Antarctic Sea Ice and Meteorological Fields
NASA Astrophysics Data System (ADS)
Barreira, S.; Orquera, F.
2017-12-01
Since 2001, we have been forecasting the climatic fields of the Antarctic sea ice (SI) and surface air temperature, surface pressure and precipitation anomalies for the Southern Hemisphere at the Meteorological Department of the Argentine Naval Hydrographic Service with different techniques that have evolved with the years. Forecast is based on the results of Principal Components Analysis applied to SI series (S-Mode) that gives patterns of temporal series with validity areas (these series are important to determine which areas in Antarctica will have positive or negative SI anomalies based on what happen in the atmosphere) and, on the other hand, to SI fields (T-Mode) that give us the form of the SI fields anomalies based on a classification of 16 patterns. Each T-Mode pattern has unique atmospheric fields associated to them. Therefore, it is possible to forecast whichever atmosphere variable we decide for the Southern Hemisphere. When the forecast is obtained, each pattern has a probability of occurrence and sometimes it is necessary to compose more than one of them to obtain the final result. S-Mode and T-Mode are monthly updated with new data, for that reason the forecasts improved with the increase of cases since 2001. We used the Monthly Polar Gridded Sea Ice Concentrations database derived from satellite information generated by NASA Team algorithm provided monthly by the National Snow and Ice Data Center of USA that begins in November 1978. Recently, we have been experimenting with multilayer Perceptron (neuronal network) with supervised learning and a back-propagation algorithm to improve the forecast. The Perceptron is the most common Artificial Neural Network topology dedicated to image pattern recognition. It was implemented through the use of temperature and pressure anomalies field images that were associated with a the different sea ice anomaly patterns. The variables analyzed included only composites of surface air temperature and pressure anomalies to simplify the density of input data and avoid a non-converging solution. Sea ice and atmospheric variables forecast can be checked every month at our web page http://www.hidro.gob.ar/smara/sb/sb.asp and at World Meteorological web page (Global Cryosphere Watch) http://globalcryospherewatch.org/state_of_cryo/seaice/.
Evolving force balance at Columbia Glacier, Alaska, during its rapid retreat
O'Neel, S.; Pfeffer, W.T.; Krimmel, R.; Meier, M.
2005-01-01
Changes in driving and resistive stresses play an essential role in governing the buoyancy forces that are important controls on the speed and irreversibility of tidewater glacier retreats. We describe changes in geometry, velocity, and strain rate and present a top-down force balance analysis performed over the lower reach of Columbia Glacier. Our analysis uses new measurements and estimates of basal topography and photogrammetric surface velocity measurements made between 1977 and 2001, while assuming depth-independent strain. Sensitivity tests show that the method is robust and insensitive to small changes in the calculation parameters. Spatial distributions of ice speed show little correspondence with driving stress. Instead, spatial patterns of ice speed exhibit a nonlinear correspondence with basal drag. Primary resistance to flow comes from basal drag, but lateral drag becomes increasingly more important throughout the retreat, which may account for observed increases in speed. Maximum basal drag is always located in a prominent constriction located ~12 km upstream from the preretreat terminus. Once the terminus retreated into deep water off the terminal moraine marking the modern maximum extent, the upstream location of this maximum basal drag helped to promote thinning and decrease effective pressure in the lower region by limiting replenishing ice flow from upstream. An increase in both ice velocity and calving resulted, initiating what appears to be an irreversible retreat. Copyright 2005 by the American Geophysical Union.
Extreme cyclone events in the Arctic during wintertime: Variability and Trends
NASA Astrophysics Data System (ADS)
Rinke, Annette; Maturilli, Marion; Graham, Robert; Matthes, Heidrun; Handorf, Doerthe; Cohen, Lana; Hudson, Stephen; Moore, John
2017-04-01
Extreme cyclone events are of significant interest as they can transport much heat, moisture, and momentum poleward. Associated impacts are warming and sea-ice breakup. Recently, several examples of such extreme weather events occurred in winter (e.g. during the N-ICE2015 campaign north of Svalbard and the Frank North Atlantic storm during the end of December 2015). With Arctic amplification and associated reduced sea-ice cover and warmer sea surface temperatures, the occurrence of extreme cyclones events could be a plausible scenario. We calculate the spatial patterns, and changes and trends of the number of extreme cyclone events in the Arctic based on ERA-Interim six-hourly sea level pressure (SLP) data for winter (November-February) 1979-2015. Further, we analyze the SLP data from the Ny Alesund station for the same 37 year period. We define an extreme cyclone event by a extreme low central pressure (SLP below 985 hPa, which is the 5th percentile of the Ny Alesund/N-ICE2015 SLP data) and a deepening of at least 6 hPa/6 hours. Areas of highest frequency of occurrence of extreme cyclones are south/southeast of Greenland (corresponding to the Islandic low), between Norway and Svalbard and in the Barents/Kara Seas. The time series of the number of occurrence of extreme cyclone events for Ny Alesund/N-ICE show considerable interannual variability. The trend is not consistent through the winter, but we detect an increase in early winter and a slight decrease in late winter. The former is due to the increased occurrence of longer events at the expense of short events. Furthermore, the difference patterns of the frequency of events for months following the September with high and low Arctic sea-ice extent ("Low minus high sea ice") conforms with the change patterns of extreme cyclones numbers (frequency of events "2000-2015 minus 1979-1994") and with the trend patterns. This indicates that the changes in extreme cyclone occurrence in early winter are associated with sea-ice changes (regional feedback). In contrast, different mechanisms via large-scale circulation changes/teleconnections seem to play a role in late winter.
NASA Astrophysics Data System (ADS)
Dammann, D. O.; Eicken, H.; Meyer, F. J.; Mahoney, A. R.
2016-12-01
Arctic landfast sea ice provides important services to people, including coastal communities and industry, as well as key marine biota. In many regions of the Arctic, the use of landfast sea ice by all stakeholders is increasingly limited by reduced stability of the ice cover, which results in more deformation and rougher ice conditions as well as reduced extent and an increased likelihood of detachment from the shore. Here, we use Synthetic Aperture Radar Interferometry (InSAR) to provide stakeholder-relevant data on key constraints for sea ice use, in particular ice stability and morphology, which are difficult to assess using conventional SAR. InSAR has the capability to detect small-scale landfast ice displacements, which are linked to important coastal hazards, including the formation of cracks, ungrounding of ice pressure ridges, and catastrophic breakout events. While InSAR has previously been used to identify the extent of landfast ice and regions of deformation within, quantitative analysis of small-scale ice motion has yet to be thoroughly validated and its potential remains largely underutilized in sea ice science. Using TanDEM-X interferometry, we derive surface displacements of landfast ice within Elson Lagoon near Barrow, Alaska, which we validate using in-situ DGPS data. We then apply an inverse model to estimate rates and patterns of shorefast ice deformation in other regions of landfast ice using interferograms generated with long-temporal baseline L-band ALOS-1 PALSAR-1 data. The model is able to correctly identify deformation modes and proxies for the associated relative internal elastic stress. The derived potential for fractures corresponds well with large-scale sea ice patterns and local in-situ observations. The utility of InSAR to quantify sea ice roughness has also been explored using TanDEM-X bistatic interferometry, which eliminates the effects of temporal changes in the ice cover. The InSAR-derived DEM shows good correlation with a high-resolution Structure from Motion DEM and laser surveys collected during a field campaign utilizing unmanned aircraft.
NASA Astrophysics Data System (ADS)
Vincent, C.; Ramanathan, A.; Wagnon, P.; Dobhal, D. P.; Linda, A.; Berthier, E.; Sharma, P.; Arnaud, Y.; Azam, M. F.; Jose, P. G.; Gardelle, J.
2012-09-01
The volume change of Chhota Shigri Glacier (India, 32° N) between 1988 and 2010 has been determined using in-situ geodetic measurements. This glacier has experienced only a slight mass loss over the last 22 yr (-3.8 ± 1.8 m w.e.). Using satellite digital elevation models (DEM) differencing and field measurements, we measure a negative mass balance (MB) between 1999 and 2011 (-4.7 ± 1.8 m w.e.). Thus, we deduce a positive MB between 1988 and 1999 (+1.0 ± 2.5 m w.e.). Furthermore, satellite DEM differencing reveals a good correspondence between the MB of Chhota Shigri Glacier and the MB of an over 2000 km2 glaciarized area in the Lahaul and Spiti region during 1999-2011. We conclude that there has been no large ice wastage in this region over the last 22 yr, ice mass loss being limited to the last decade. This contrasts to the most recent compilation of MB data in the Himalayan range that indicates ice wastage since 1975, accelerating after 1990. For the rest of western Himalaya, available observations of glacier MBs are too sparse and discontinuous to provide a clear and relevant regional pattern of glacier volume change over the last two decades.
In situ observations of a high-pressure phase of H2O ice
Chou, I.-Ming; Blank, J.G.; Goncharov, A.F.; Mao, Ho-kwang; Hemley, R.J.
1998-01-01
A previously unknown solid phase of H2O has been identified by its peculiar growth patterns, distinct pressure-temperature melting relations, and vibrational Raman spectra. Morphologies of ice crystals and their pressure-temperature melting relations were directly observed in a hydrothermal diamond-anvil cell for H2O bulk densities between 1203 and 1257 kilograms per cubic meter at temperatures between -10??and 50??C. Under these conditions, four different ice forms were observed to melt: two stable phases, ice V and ice VI, and two metastable phases, ice IV and the new ice phase. The Raman spectra and crystal morphology are consistent with a disordered anisotropic structure with some similarities to ice VI.
The principles of cryostratigraphy
NASA Astrophysics Data System (ADS)
French, Hugh; Shur, Yuri
2010-08-01
Cryostratigraphy adopts concepts from both Russian geocryology and modern sedimentology. Structures formed by the amount and distribution of ice within sediment and rock are termed cryostructures. Typically, layered cryostructures are indicative of syngenetic permafrost while reticulate and irregular cryostructures are indicative of epigenetic permafrost. 'Cryofacies' can be defined according to patterns of sediment characterized by distinct ice lenses and layers, volumetric ice content and ice-crystal size. Cryofacies can be subdivided according to cryostructure. Where a number of cryofacies form a distinctive cryostratigraphic unit, these are termed a 'cryofacies assemblage'. The recognition, if present, of (i) thaw unconformities, (ii) other ice bodies such as vein ice (ice wedges), aggradational ice and thermokarst-cave ('pool') ice, and (iii) ice, sand and gravelly pseudomorphs is also important in determining the nature of the freezing process, the conditions under which frozen sediment accumulates, and the history of permafrost.
Measurements of sea ice mass redistribution during ice deformation event in Arctic winter
NASA Astrophysics Data System (ADS)
Itkin, P.; Spreen, G.; King, J.; Rösel, A.; Skourup, H.; Munk Hvidegaard, S.; Wilkinson, J.; Oikkonen, A.; Granskog, M. A.; Gerland, S.
2016-12-01
Sea-ice growth during high winter is governed by ice dynamics. The highest growth rates are found in leads that open under divergent conditions, where exposure to the cold atmosphere promotes thermodynamic growth. Additionally ice thickens dynamically, where convergence causes rafting and ridging. We present a local study of sea-ice growth and mass redistribution between two consecutive airborne measurements, on 19 and 24 April 2015, during the N-ICE2015 expedition in the area north of Svalbard. Between the two overflights an ice deformation event was observed. Airborne laser scanner (ALS) measurements revisited the same sea-ice area of approximately 3x3 km. By identifying the sea surface within the ALS measurements as a reference the sea ice plus snow freeboard was obtained with a spatial resolution of 5 m. By assuming isostatic equilibrium of level floes, the freeboard heights can be converted to ice thickness. The snow depth is estimated from in-situ measurements. Sea ice thickness measurements were made in the same area as the ALS measurements by electromagnetic sounding from a helicopter (HEM), and with a ground-based device (EM31), which allows for cross-validation of the sea-ice thickness estimated from all 3 procedures. Comparison of the ALS snow freeboard distributions between the first and second overflight shows a decrease in the thin ice classes and an increase of the thick ice classes. While there was no observable snowfall and a very low sea-ice growth of older level ice during this period, an autonomous buoy array deployed in the surroundings of the area measured by the ALS shows first divergence followed by convergence associated with shear. To quantify and link the sea ice deformation with the associated sea-ice thickness change and mass redistribution we identify over 100 virtual buoys in the ALS data from both overflights. We triangulate the area between the buoys and calculate the strain rates and freeboard change for each individual triangle. From the freeboard change we calculate the sea ice volume change. Our results show exemplary sea-ice mass redistribution caused by sea ice dynamics during winter conditions in the Arctic, which can be used to estimate sea-ice growth due to deformation processes in a wider region, and ultimately to distinguish between thermodynamic and dynamic ice growth processes.
NASA Astrophysics Data System (ADS)
Morén, Björn M.; Petter Sejrup, Hans; Hjelstuen, Berit O.; Haflidason, Haflidi; Schäuble, Cathrina; Borge, Marianne
2014-05-01
The Norwegian Channel Ice Stream repeatedly drained large part of the Fennoscandian Ice Sheet through Mid and Late Pleistocene glacial stages. During parts of Marine Isotope Stages 2 and 3, glacial ice from Fennoscandia and the British Isles coalesced in the central North Sea and the Norwegian Channel Ice Stream reached the shelf edge on multiple occasions. Through the last decades a large amount of acoustic and sediment core data have been collected from the Norwegian Channel, providing a good background for studies focussing on stability- and development-controlling parameters for marine-based ice streams, the retreat rate of the Norwegian Channel Ice Stream, and the behaviour of the Fennoscandian Ice Sheet. Further, this improved understanding can be used to develop more accurate numerical climate models and models which can be used to model ice-sheet behaviour of the past as well as the future. This study presents new acoustic records and data from sediment cores which contribute to a better understanding of the retreat pattern and the retreat rate of the last ice stream that occupied the Norwegian Channel. From bathymetric and TOPAS seismic data, mega-scale glacial lineations, grounding-zone wedges, and end moraines have been mapped, thereby allowing us to reconstruct the pro- and subglacial conditions at the time of the creation of these landforms. It is concluded that the whole Norwegian Channel was deglaciated in just over 1 000 years and that for most of this time the ice margin was located at positions reflected by depositional grounding-zone wedges. Further work will explore the influence of channel shape and feeding of ice from western Norwegian fjords on this retreat pattern through numerical modelling.
Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years
NASA Astrophysics Data System (ADS)
Gardner, Alex S.; Moholdt, Geir; Scambos, Ted; Fahnstock, Mark; Ligtenberg, Stefan; van den Broeke, Michiel; Nilsson, Johan
2018-02-01
Ice discharge from large ice sheets plays a direct role in determining rates of sea-level rise. We map present-day Antarctic-wide surface velocities using Landsat 7 and 8 imagery spanning 2013-2015 and compare to earlier estimates derived from synthetic aperture radar, revealing heterogeneous changes in ice flow since ˜ 2008. The new mapping provides complete coastal and inland coverage of ice velocity north of 82.4° S with a mean error of < 10 m yr-1, resulting from multiple overlapping image pairs acquired during the daylight period. Using an optimized flux gate, ice discharge from Antarctica is 1929 ± 40 Gigatons per year (Gt yr-1) in 2015, an increase of 36 ± 15 Gt yr-1 from the time of the radar mapping. Flow accelerations across the grounding lines of West Antarctica's Amundsen Sea Embayment, Getz Ice Shelf and Marguerite Bay on the western Antarctic Peninsula, account for 88 % of this increase. In contrast, glaciers draining the East Antarctic Ice Sheet have been remarkably constant over the period of observation. Including modeled rates of snow accumulation and basal melt, the Antarctic ice sheet lost ice at an average rate of 183 ± 94 Gt yr-1 between 2008 and 2015. The modest increase in ice discharge over the past 7 years is contrasted by high rates of ice sheet mass loss and distinct spatial patters of elevation lowering. The West Antarctic Ice Sheet is experiencing high rates of mass loss and displays distinct patterns of elevation lowering that point to a dynamic imbalance. We find modest increase in ice discharge over the past 7 years, which suggests that the recent pattern of mass loss in Antarctica is part of a longer-term phase of enhanced glacier flow initiated in the decades leading up to the first continent-wide radar mapping of ice flow.
Progress on wave-ice interactions: satellite observations and model parameterizations
NASA Astrophysics Data System (ADS)
Ardhuin, Fabrice; Boutin, Guillaume; Dumont, Dany; Stopa, Justin; Girard-Ardhuin, Fanny; Accensi, Mickael
2017-04-01
In the open ocean, numerical wave models have their largest errors near sea ice, and, until recently, virtually no wave data was available in the sea ice to. Further, wave-ice interaction processes may play an important role in the Earth system. In particular, waves may break up an ice layer into floes, with significant impact on air-sea fluxes. With thinner Arctic ice, this process may contribut to the growing similarity between Arctic and Antarctic sea ice. In return, the ice has a strong damping impact on the waves that is highly variable and not understood. Here we report progress on parameterizations of waves interacting with a single ice layer, as implemented in the WAVEWATCH III model (WW3 Development Group, 2016), and based on few in situ observations, but extensive data derived from Synthetic Aperture Radars (SARs). Our parameterizations combine three processes. First a parameterization for the energy-conserving scattering of waves by ice floes (assuming isotropic back-scatter), which has very little effect on dominant waves of periods larger than 7 s, consistent with the observed narrow directional spectra and short travel times. Second, we implemented a basal friction below the ice layer (Stopa et al. The Cryosphere, 2016). Third, we use a secondary creep associated with ice flexure (Cole et al. 1998) adapted to random waves. These three processes (scattering, friction and creep) are strongly dependent on the maximum floe size. We have thus included an estimation of the potential floe size based on an ice flexure failure estimation adapted from Williams et al. (2013). This combination of dissipation and scattering is tested against measured patterns of wave height and directional spreading, and evidence of ice break-up, all obtained from SAR imagery (Ardhuin et al. 2017), and some in situ data (Collins et al. 2015). The combination of creep and friction is required to reproduce a strong reduction in wave attenuation in broken ice as observed by Collins et al. (2015). Ongoing developments include the coupling of WAVEWATCH III to the NEMO-LIM3 and NEMO-CICE models using the OASIS3-MCT communicator. This coupled system will provide a meaningful memory of the ice floe sizes, as the ice is advected. It will also make possible the investigation of feedback processes on the ice.
Loss of sea ice in the Arctic.
Perovich, Donald K; Richter-Menge, Jacqueline A
2009-01-01
The Arctic sea ice cover is in decline. The areal extent of the ice cover has been decreasing for the past few decades at an accelerating rate. Evidence also points to a decrease in sea ice thickness and a reduction in the amount of thicker perennial sea ice. A general global warming trend has made the ice cover more vulnerable to natural fluctuations in atmospheric and oceanic forcing. The observed reduction in Arctic sea ice is a consequence of both thermodynamic and dynamic processes, including such factors as preconditioning of the ice cover, overall warming trends, changes in cloud coverage, shifts in atmospheric circulation patterns, increased export of older ice out of the Arctic, advection of ocean heat from the Pacific and North Atlantic, enhanced solar heating of the ocean, and the ice-albedo feedback. The diminishing Arctic sea ice is creating social, political, economic, and ecological challenges.
Regional variations in the stability and diffusion of water-ice in the Martian regolith
NASA Technical Reports Server (NTRS)
Mellon, Michael T.; Jakosky, Bruce M.
1992-01-01
Geologic evidence suggests subsurface water-ice has played an important role in the formation of Martian landforms. Forms of mass-wasting such as debris aprons and flow patterns on valley floors suggest creep deformation of ice-laden soil, while thermokarst and chaotic terrain suggest once extensive deposits of ground ice that were later removed. The global distribution of ice-related morphology was mapped. The mapping showed regional variation, in both latitude and longitude, in the distribution of debris aprons, concentric fill craters, and 'softened' crater profiles.
Direct micropatterning of polymer materials by ice mold
NASA Astrophysics Data System (ADS)
Yu, Xinhong; Xing, Rubo; Luan, Shifang; Wang, Zhe; Han, Yanchun
2006-10-01
Micropatterning of functional polymer materials by micromolding in capillaries (MIMIC) with ice mold is reported in this paper. Ice mold was selected due to its thaw or sublimation. Thus, the mold can be easily removed. Furthermore, the polymer solution did not react with, swell, or adhere to the ice mold, so the method is suitable for many kinds of materials (such as P3HT, PMMA Alq 3/PVK, PEDOT: PSS, PS, P2VP, etc.). Freestanding polymer microstructures, binary polymer pattern, and microchannels have been fabricated by the use of ice mold freely.
Optical detection and characterization of ice crystals in LACIS
NASA Astrophysics Data System (ADS)
Kiselev, Alexei; Clauß, Tina; Niedermeier, Dennis; Hartmann, Susan; Wex, Heike; Stratmann, Frank
2010-05-01
Tropospheric ice and mixed phase clouds are an integral part of the earth system and their microphysical and radiative properties are strongly coupled e.g. through the complexities of the ice nucleation process. Therefore the investigation of influences of different aerosol particles which act as ice nuclei (IN) on the freezing behaviour of cloud droplets is important and still poses unresolved questions. The Leipzig Aerosol and Cloud Interaction Simulator (LACIS) is used to investigate the IN activity of different natural and artificial aerosol particles (mineral dust, soot etc.) in heterogeneous freezing processes (immersion or deposition freezing). A critical part of LACIS is the particle detection system allowing for size-resolved counting of activated seed particles and discrimination between ice crystals and water droplets. Recently, two instruments have been developed to provide these measurements at the LACIS facility. The Thermally-stabilized Optical Particle Spectrometer (TOPS) is measuring the particle size based on the intensity of light scattered by individual particles into a near-forward (15° to 45°) direction. Two symmetrical forward scattering channels allow for optical determination of the sensing volume, thus reducing the coincidence counting error and the edge zone effect. The backscatter channel (162° to 176°) equipped with a rotatable cross polarizer allows for establishing the change in linear polarization state of the scattered light. The backscatter elevation angle is limited so that the linear depolarization of light scattered by spherical particles of arbitrary size is zero. Any detectable signal in the depolarization channel can be therefore attributed to non-spherical particles (ice crystals). With consideration of the signal in the backscatter channel the separate counting of water drops and ice particle is possible. The Leipzig Ice Scattering Apparatus (LISA) is a modified version of the Small Ice Detector (SID3), developed at the Science and Technology Research Institute at the University of Hertfordshire, UK. The SID instruments have been developed primarily as wing-mounted systems for airborne studies of cloud ice particles. SID3 records the forward scattered light pattern with high angular resolution using an intensified CCD (780 by 582 pixels) at a rate of 20 images per second. In addition to the SID3 capabilities, LISA is able to measure the circular depolarization ratio in the range of scattering angles from 166° to 172°. Whereas particle size, shape and orientation are characterized by the angular distribution of forward-scattered light, the measured value of the circular depolarization can be used to validate the existing theoretical models of light scattering by irregular particles (RTDF, GSVM, T-Matrix, DDA). The first measurements done at the LACIS facility have demonstrated a promising sensitivity of LISA's depolarization channel to the shape of ice crystals. Results showed an increase of the mean circular depolarization ratio from 1.5 (characteristic for the liquid water droplets above 3 µm) to 2.5 for the "just frozen" almost-spherical droplets in the same size range. The presentation will describe details of instruments set up and present some exemplary results from experiments carried out at LACIS and AIDA (KIT) facilities.
NASA Astrophysics Data System (ADS)
Campbell, Adam J.; Hulbe, Christina L.; Lee, Choon-Ki
2018-01-01
As time series observations of Antarctic change proliferate, it is imperative that mathematical frameworks through which they are understood keep pace. Here we present a new method of interpreting remotely sensed change using spatial statistics and apply it to the specific case of thickness change on the Ross Ice Shelf. First, a numerical model of ice shelf flow is used together with empirical orthogonal function analysis to generate characteristic patterns of response to specific forcings. Because they are continuous and scalable in space and time, the patterns allow short duration observations to be placed in a longer time series context. Second, focusing only on changes that are statistically significant, the synthetic response surfaces are used to extract magnitude and timing of past events from the observational data. Slowdown of Kamb and Whillans Ice Streams is clearly detectable in remotely sensed thickness change. Moreover, those past events will continue to drive thinning into the future.
Configuration of Pluto's Volatile Ices
NASA Astrophysics Data System (ADS)
Grundy, William M.; Binzel, R. P.; Cook, J. C.; Cruikshank, D. P.; Dalle Ore, C. M.; Earle, A. M.; Ennico, K.; Jennings, D. E.; Howett, C. J. A.; Linscott, I. R.; Lunsford, A. W.; Olkin, C. B.; Parker, A. H.; Parker, J. Wm; Protopapa, S.; Reuter, D. C.; Singer, K. N.; Spencer, J. R.; Stern, S. A.; Tsang, C. C. C.; Verbiscer, A. J.; Weaver, H. A.; Young, L. A.; Berry, K.; Buie, M. W.; Stansberry, J. A.
2015-11-01
We report on near-infrared remote sensing by New Horizons' Ralph instrument (Reuter et al. 2008, Space Sci. Rev. 140, 129-154) of Pluto's N2, CO, and CH4 ices. These especially volatile ices are mobile even at Pluto's cryogenic surface temperatures. Sunlight reflected from these ices becomes imprinted with their characteristic spectral absorption bands. The detailed appearance of these absorption features depends on many aspects of local composition, thermodynamic state, and texture. Multiple-scattering radiative transfer models are used to retrieve quantitative information about these properties and to map how they vary across Pluto's surface. Using parameter maps derived from New Horizons observations, we investigate the striking regional differences in the abundances and scattering properties of Pluto's volatile ices. Comparing these spatial patterns with the underlying geology provides valuable constraints on processes actively modifying the planet's surface, over a variety of spatial scales ranging from global latitudinal patterns to more regional and local processes within and around the feature informally known as Sputnik Planum. This work was supported by the NASA New Horizons Project.
Mauger, Florence; Kernaleguen, Magali; Lallemand, Céline; Kristensen, Vessela N; Deleuze, Jean-François; Tost, Jörg
2018-05-01
The detection of specific DNA methylation patterns bears great promise as biomarker for personalized management of cancer patients. Co-amplification at lower denaturation temperature-PCR (COLD-PCR) assays are sensitive methods, but have previously only been able to analyze loss of DNA methylation. Enhanced (E)-ice-COLD-PCR reactions starting from 2 ng of bisulfite-converted DNA were developed to analyze methylation patterns in two promoters with locked nucleic acid (LNA) probes blocking amplification of unmethylated CpGs. The enrichment of methylated molecules was compared to quantitative (q)PCR and quantified using serial dilutions. E-ice-COLD-PCR allowed the multiplexed enrichment and quantification of methylated DNA. Assays were validated in primary breast cancer specimens and circulating cell-free DNA from cancer patients. E-ice-COLD-PCR could prove a useful tool in the context of DNA methylation analysis for personalized medicine.
NASA Technical Reports Server (NTRS)
Mikkelsen, K. L.; Mcknight, R. C.; Ranaudo, R. J.; Perkins, P. J., Jr.
1985-01-01
Aircraft icing flight research was performed in natural icing conditions. A data base consisting of icing cloud measurements, ice shapes, and aerodynamic measurements is being developed. During research icing encounters the icing cloud was continuously measured. After the encounter, the ice accretion shapes on the wing were documented with a stereo camera system. The increase in wing section drag was measured with a wake survey probe. The overall aircraft performance loss in terms of lift and drag coefficient changes was obtained by steady level speed/power measurements. Selective deicing of the airframe components was performed to determine their contributions to the total drag increase. Engine out capability in terms of power available was analyzed for the iced aircraft. It was shown that the stereo photography system can be used to document ice shapes in flight and that the wake survey probe can measure increases in wing section drag caused by ice. On one flight, the wing section drag coefficient (c sub d) increased approximately 120 percent over the uniced baseline at an aircraft angle of attack of 6 deg. On another flight, the aircraft darg coefficient (c sub d) increased by 75 percent over the uniced baseline at an aircraft lift coefficient (C sub d) of 0.5.
NASA Technical Reports Server (NTRS)
Mikkelsen, K. L.; Mcknight, R. C.; Ranaudo, R. J.; Perkins, P. J., Jr.
1985-01-01
Aircraft icing flight research was performed in natural icing conditions. A data base consisting of icing cloud measurements, ice shapes, and aerodynamic measurements is being developed. During research icing encounters the icing cloud was continuously measured. After the encounter, the ice accretion shapes on the wing were documented with a stereo camera system. The increase in wing section drag was measured with a wake survey probe. The overall aircraft performance loss in terms of lift and drag coefficient changes were obtained by steady level speed/power measurements. Selective deicing of the airframe components was performed to determine their contributions to the total drag increase. Engine out capability in terms of power available was analyzed for the iced aircraft. It was shown that the stereo photography system can be used to document ice shapes in flight and that the wake survey probe can measure increases in wing section drag caused by ice. On one flight, the wing section drag coefficient (c sub d) increased approximately 120 percent over the uniced baseline at an aircraft angle of attack of 6 deg. On another flight, the aircraft drag coefficient (c sub d) increased by 75 percent over the uniced baseline at an aircraft lift coefficient (c sub d) of 0.5.
Dykstra, Joseph H; Hill, Holly M; Miller, Michael G; Cheatham, Christopher C; Michael, Timothy J; Baker, Robert J
2009-01-01
Context: Many researchers have investigated the effectiveness of different types of cold application, including cold whirlpools, ice packs, and chemical packs. However, few have investigated the effectiveness of different types of ice used in ice packs, even though ice is one of the most common forms of cold application. Objective: To evaluate and compare the cooling effectiveness of ice packs made with cubed, crushed, and wetted ice on intramuscular and skin surface temperatures. Design: Repeated-measures counterbalanced design. Setting: Human performance research laboratory. Patients or Other Participants: Twelve healthy participants (6 men, 6 women) with no history of musculoskeletal disease and no known preexisting inflammatory conditions or recent orthopaedic injuries to the lower extremities. Intervention(s): Ice packs made with cubed, crushed, or wetted ice were applied to a standardized area on the posterior aspect of the right gastrocnemius for 20 minutes. Each participant was given separate ice pack treatments, with at least 4 days between treatment sessions. Main Outcome Measure(s): Cutaneous and intramuscular (2 cm plus one-half skinfold measurement) temperatures of the right gastrocnemius were measured every 30 seconds during a 20-minute baseline period, a 20-minute treatment period, and a 120-minute recovery period. Results: Differences were observed among all treatments. Compared with the crushed-ice treatment, the cubed-ice and wetted-ice treatments produced lower surface and intramuscular temperatures. Wetted ice produced the greatest overall temperature change during treatment and recovery, and crushed ice produced the smallest change. Conclusions: As administered in our protocol, wetted ice was superior to cubed or crushed ice at reducing surface temperatures, whereas both cubed ice and wetted ice were superior to crushed ice at reducing intramuscular temperatures. PMID:19295957
A Linkage of Recent Arctic Summer Sea Ice and Snowfall Variability of Japan
NASA Astrophysics Data System (ADS)
Iwamoto, K.; Honda, M.; Ukita, J.
2014-12-01
In spite of its mid-latitude location, Japan has a markedly high amount of snowfall, which owes much to the presence of cold air-break from Siberia and thus depends on the strength of the Siberian high and the Aleutian low. With this background this study examines the relationship between interannual variability and spatial patterns of snowfall in Japan with large-scale atmospheric and sea ice variations. The lag regression map of the winter snowfall in Japan on the time series of the Arctic SIE from the preceding summer shows a seesaw pattern in the snowfall, suggesting an Arctic teleconnection to regional weather. From the EOF analyses conducted on the snowfall distribution in Japan, we identify two modes with physical significance. The NH SIC and SLP regressed on PC1 show a sea ice reduction in the Barents and Kara Seas and anomalous strength of the Siberia high as discussed in Honda et al. (2009) and other studies, which support the above notion that the snowfall variability of Japan is influenced by Arctic sea ice conditions. Another mode is related to the AO/NAO and the hemispheric scale double sea-ice seesaw centered over the sub-Arctic region: one between the Labrador and Nordic Seas in the Atlantic and the other between the Okhotsk and Bering Seas from the Pacific as discussed in Ukita et al. (2007). Together, observations point to a significant role of the sea-ice in determining mid-latitude regional climate and weather patterns.
Ice thickness measurements and volume estimates for glaciers in Norway
NASA Astrophysics Data System (ADS)
Andreassen, Liss M.; Huss, Matthias; Melvold, Kjetil; Elvehøy, Hallgeir; Winsvold, Solveig H.
2014-05-01
Whereas glacier areas in many mountain regions around the world now are well surveyed using optical satellite sensors and available in digital inventories, measurements of ice thickness are sparse in comparison and a global dataset does not exist. Since the 1980s ice thickness measurements have been carried out by ground penetrating radar on many glaciers in Norway, often as part of contract work for hydropower companies with the aim to calculate hydrological divides of ice caps. Measurements have been conducted on numerous glaciers, covering the largest ice caps as well as a few smaller mountain glaciers. However, so far no ice volume estimate for Norway has been derived from these measurements. Here, we give an overview of ice thickness measurements in Norway, and use a distributed model to interpolate and extrapolate the data to provide an ice volume estimate of all glaciers in Norway. We also compare the results to various volume-area/thickness-scaling approaches using values from the literature as well as scaling constants we obtained from ice thickness measurements in Norway. Glacier outlines from a Landsat-derived inventory from 1999-2006 together with a national digital elevation model were used as input data for the ice volume calculations. The inventory covers all glaciers in mainland Norway and consists of 2534 glaciers (3143 glacier units) covering an area of 2692 km2 ± 81 km2. To calculate the ice thickness distribution of glaciers in Norway we used a distributed model which estimates surface mass balance distribution, calculates the volumetric balance flux and converts it into thickness using the flow law for ice. We calibrated this model with ice thickness data for Norway, mainly by adjusting the mass balance gradient. Model results generally agree well with the measured values, however, larger deviations were found for some glaciers. The total ice volume of Norway was estimated to be 275 km3 ± 30 km3. From the ice thickness data set we selected glacier units or entire ice caps with sufficient data to interpolate mean ice thickness. Scaling constants c and γ were fitted by least square regression for totally 86 glacier units and 8 ice caps. The ice volume results from scaling were sensitive to how the glaciers are divided and scaling applied to glaciers divided into glacier units gave best results. Scaling laws for ice caps did not work well, as the mean thickness of the ice caps varies less than their areas and the sample of ice caps with sufficient measurement coverage was small. Calculated ice volumes range from 280 to 305 km3, much higher than values obtained from the literature (134-184 km3). As measurements are biased towards outlets from the largest and thickest ice caps, more measurements are needed for a better estimate of the present ice volume of the smaller glaciers.
NASA Astrophysics Data System (ADS)
Dühnforth, M.; Anderson, R. S.; Colgan, W.
2012-04-01
The long-term pattern of glacial erosion in alpine valleys leads to characteristic longitudinal valley profiles. While landscape evolution models commonly take glacier sliding velocity to be the dominant control on erosion, the influence of spatial and temporal variations in glacier ice temperature on the efficiency of erosion over long timescales (>1 Ma) remains largely unexplored. Yet, the thermal field of a glacier can strongly influence the pattern of sliding. Temperate glaciers, with basal temperatures at the pressure melting point (PMP), slide whenever and wherever the glacial hydrology produces high water pressures. In contrast, in polythermal glaciers, erosion efficiency is strongly linked to basal ice temperature; when and where basal ice temperatures are below the PMP sliding, and hence erosion, are limited. We present results from numerical models in which we explore the influence of variations in glacier ice temperature on long-term glacial erosion processes in alpine valleys. These simulations are motivated by the persistent appeal of geomorphologists to polar glacial conditions to explain sites of unusually low glacial erosion rates. We employ a transient 1D (flowline) ice flow model that numerically solves the continuity equation for ice, and includes a depth-averaged approximation for longitudinal coupling stress. We prescribe separate winter and summer surface mass balance profiles: a capped elevation-dependent snowfall pattern in winter, and we capture both daily and seasonal oscillations in ablation using a positive degree day algorithm in summer. The steady-state ice temperature within the glacier is calculated using the conventional 2D (cross-sectional) heat equation (i.e. diffusion, advection and production terms) at a prescribed interval. The ice temperature model uses the surface temperature at the end of each melt season as the surface boundary condition, and a prescribed geothermal gradient as the basal boundary condition. Basal sliding is limited to sites where the basal ice is at the PMP. Glacial erosion rate is parameterized as a function of sliding velocity, which in turn depends upon a flotation fraction that is parameterized to account for annual variations in the glacial hydrologic system. We explore the long-term glacial erosion pattern when the landscape is subjected to different rock uplift rates, and to climates ranging from continental to maritime. Of specific interest to us are conditions that favor polythermal glaciers in which the basal ice at high elevations becomes cold. In such cases, rock uplift can outpace limited glacial erosion, allowing high peaks to escape from the "glacial buzzsaw" while basal ice at lower elevations remains at the PMP, allowing sliding and erosion. These simulations also allow a more formal assessment of the conditions under which cold basal ice can be invoked to explain low glacial erosion rates, and the conditions under which variations in rock erodibility may instead be invoked as the major control on erosion.
Chen, Yong; Li, Xiang-Kai; Si, Jing; Wu, Guang-Jian; Tian, Li-De; Xiang, Shu-Rong
2016-01-01
In this study, six bacterial community structures were analyzed from the Dunde ice core (9.5-m-long) using 16S rRNA gene cloning library technology. Compared to the Muztagata mountain ice core (37-m-long), the Dunde ice core has different dominant community structures, with five genus-related groups Blastococcus sp./Propionibacterium, Cryobacterium-related., Flavobacterium sp., Pedobacter sp., and Polaromas sp. that are frequently found in the six tested ice layers from 1990 to 2000. Live and total microbial density patterns were examined and related to the dynamics of physical-chemical parameters, mineral particle concentrations, and stable isotopic ratios in the precipitations collected from both Muztagata and Dunde ice cores. The Muztagata ice core revealed seasonal response patterns for both live and total cell density, with high cell density occurring in the warming spring and summer months indicated by the proxy value of the stable isotopic ratios. Seasonal analysis of live cell density for the Dunde ice core was not successful due to the limitations of sampling resolution. Both ice cores showed that the cell density peaks were frequently associated with high concentrations of particles. A comparison of microbial communities in the Dunde and Muztagata glaciers showed that similar taxonomic members exist in the related ice cores, but the composition of the prevalent genus-related groups is largely different between the two geographically different glaciers. This indicates that the micro-biogeography associated with geographic differences was mainly influenced by a few dominant taxonomic groups. PMID:27847503
NASA Astrophysics Data System (ADS)
Rack, Wolfgang; Haas, Christian; Langhorne, Pat J.
2013-11-01
We present airborne measurements to investigate the thickness of the western McMurdo Ice Shelf in the western Ross Sea, Antarctica. Because of basal accretion of marine ice and brine intrusions conventional radar systems are limited in detecting the ice thickness in this area. In November 2009, we used a helicopter-borne laser and electromagnetic induction sounder (EM bird) to measure several thickness and freeboard profiles across the ice shelf. The maximum electromagnetically detectable ice thickness was about 55 m. Assuming hydrostatic equilibrium, the simultaneous measurement of ice freeboard and thickness was used to derive bulk ice densities ranging from 800 to 975 kg m-3. Densities higher than those of pure ice can be largely explained by the abundance of sediments accumulated at the surface and present within the ice shelf, and are likely to a smaller extent related to the overestimation of ice thickness by the electromagnetic induction measurement related to the presence of a subice platelet layer. The equivalent thickness of debris at a density of 2800 kg m-3 is found to be up to about 2 m thick. A subice platelet layer below the ice shelf, similar to what is observed in front of the ice shelf below the sea ice, is likely to exist in areas of highest thickness. The thickness and density distribution reflects a picture of areas of basal freezing and supercooled Ice Shelf Water emerging from below the central ice shelf cavity into McMurdo Sound.
Automated Laser-Light Scattering measurements of Impurities, Bubbles, and Imperfections in Ice Cores
NASA Astrophysics Data System (ADS)
Stolz, M. R.; Ram, M.
2004-12-01
Laser- light scattering (LLS) on polar ice, or on polar ice meltwater, is an accepted method for measuring the concentration of water insoluble aerosol deposits (dust) in the ice. LLS on polar ice can also be used to measure water soluble aerosols, as well as imperfections (air bubbles and cavities) in the ice. LLS was originally proposed by Hammer (1977a, b) as a method for measuring the dust concentration in polar ice meltwater. Ram et al. (1995) later advanced the method and applied it to solid ice, measuring the dust concentration profile along the deep, bubble-free sections of the Greenland Ice Sheet Projetct 2 (GISP2) ice core (Ram et al., 1995, 2000) from central Greenland. In this paper, we will put previous empirical findings (Ram et al., 1995, 2000) on a theoretical footing, and extend the usability of LLS on ice into the realm of the non-transparent, bubbly polar ice. For LLS on clear, bubble-free polar ice, we studied numerically the scattering of light by soluble and insoluble (dust) aerosol particles embedded in the ice to complement previous experimental studies (Ram et al., 2000). For air bubbles in polar ice, we calculated the effects of multiple light scattering using Mie theory and Monte Carlo simulations, and found a method for determining the bubble number size and concentration using LLS on bubbly ice. We also demonstrated that LLS can be used on bubbly ice to measure annual layers rapidly in an objective manner. Hammer, C. U. (1977a), Dating of Greenland ice cores by microparticle concentration analyses., in International Symposium on Isotopes and Impurities in Snow and Ice, pp. 297-301, IAHS publ. no. 118. Hammer, C. U. (1977b), Dust studies on Greenland ice cores, in International Symposium on Isotopes and Impurities in Snow and Ice, pp. 365-370, IAHS publ. no. 118. Ram, M., M. Illing, P. Weber, G. Koenig, and M. Kaplan (1995), Polar ice stratigraphy from laser-light scattering: Scattering from ice, Geophys. Res. Lett., 22(24), 3525-3527. Ram, M., J. Donarummo, M. R. Stolz, and G. Koenig (2000), Calibration of laser-light scattering measurements of dust concentration for Wisconsinan GISP2 ice using instrumental neutron activation analysis of aluminum: Results and discussion, J. Geophys. Res., 105(D20), 24,731--24,738.
Hacker, Jürgen; Ladinig, Ursula; Wagner, Johanna; Neuner, Gilbert
2011-01-01
Freezing patterns in the high alpine cushion plants Saxifraga bryoides, Saxifraga caesia, Saxifraga moschata and Silene acaulis were studied by infrared thermography at three reproductive stages (bud, anthesis, fruit development). The single reproductive shoots of a cushion froze independently in all four species at every reproductive stage. Ice formation caused lethal damage to the respective inflorescence. After ice nucleation, which occurred mainly in the stalk or the base of the reproductive shoot, ice propagated throughout that entire shoot, but not into neighboring shoots. However, anatomical ice barriers within cushions were not detected. The naturally occurring temperature gradient within the cushion appeared to interrupt ice propagation thermally. Consequently, every reproductive shoot needed an autonomous ice nucleation event to initiate freezing. Ice nucleation was not only influenced by minimum temperatures but also by the duration of exposure. At moderate subzero exposure temperatures (−4.3 to −7.7 °C) the number of frozen inflorescences increased exponentially. Due to efficient supercooling, single reproductive shoots remained unfrozen down to −17.4 °C (cooling rate 6 K h−1). Hence, the observed freezing pattern may be advantageous for frost survival of individual inflorescences and reproductive success of high alpine cushion plants, when during episodic summer frosts damage can be avoided by supercooling. PMID:21151351
Bayesian inference of ice thickness from remote-sensing data
NASA Astrophysics Data System (ADS)
Werder, Mauro A.; Huss, Matthias
2017-04-01
Knowledge about ice thickness and volume is indispensable for studying ice dynamics, future sea-level rise due to glacier melt or their contribution to regional hydrology. Accurate measurements of glacier thickness require on-site work, usually employing radar techniques. However, these field measurements are time consuming, expensive and sometime downright impossible. Conversely, measurements of the ice surface, namely elevation and flow velocity, are becoming available world-wide through remote sensing. The model of Farinotti et al. (2009) calculates ice thicknesses based on a mass conservation approach paired with shallow ice physics using estimates of the surface mass balance. The presented work applies a Bayesian inference approach to estimate the parameters of a modified version of this forward model by fitting it to both measurements of surface flow speed and of ice thickness. The inverse model outputs ice thickness as well the distribution of the error. We fit the model to ten test glaciers and ice caps and quantify the improvements of thickness estimates through the usage of surface ice flow measurements.
Cosmic ray spectrum, composition, and anisotropy measured with IceCube
NASA Astrophysics Data System (ADS)
Tamburro, Alessio
2014-04-01
Analysis of cosmic ray surface data collected with the IceTop array of Cherenkov detectors at the South Pole provides an accurate measurement of the cosmic ray spectrum and its features in the "knee" region up to energies of about 1 EeV. IceTop is part of the IceCube Observatory that includes a deep-ice cubic kilometer detector that registers signals of penetrating muons and other particles. Surface and in-ice signals detected in coincidence provide clear insights into the nuclear composition of cosmic rays. IceCube already measured an increase of the average primary mass as a function of energy. We present preliminary results on both IceTop-only and coincident events analysis. Furthermore, we review the recent measurement of the cosmic ray anisotropy with IceCube.
The defective nature of ice Ic and its implications for atmospheric science
NASA Astrophysics Data System (ADS)
Kuhs, W. F.; Hansen, T. C.
2009-04-01
The possible atmospheric implication of ice Ic (cubic ice) has already been suggested some time ago in the context of snow crystal formation [1]. New findings from air-borne measurements in cirrus clouds and contrails have put ice Ic into the focus of interest to understand the so-called "supersaturation puzzle" [2,3,4,5]. Our recent microstructural work on ice Ic [6,7] appears to be highly relevant in this context. We have found that ice Ic is characterized by a complex stacking fault pattern, which changes as a function of temperature as well as time. Indeed, from our own [8] and other group's work [9] one knows that (in contrast to earlier believe) ice Ic can form up to temperatures at least as high as 240K - thus in the relevant range for cirrus clouds. We have good preliminary evidence that the "cubicity" (which can be related to stacking fault probabilities) as well as the particle size of ice Ic are the relevant parameters for this correlation. The "cubicity" of stacking faulty ice Ic (established by diffraction) correlates nicely with the increased supersaturation at decreasing temperatures observed in cirrus clouds and contrails, a fact, which may be considered as further evidence for the presence of ice Ic. Moreover, the stacking faults lead to kinks in the outer shapes of the minute ice Ic crystals as seen by cryo scanning electron microscopy (cryo-SEM); these defective sites are likely to play some role in heterogeneous reactions in the atmosphere. The cryo-SEM work suggests that stacking-faulty ice Ic has many more active centres for such reactions than the usually considered thermodynamically stable form, ice Ih. [1] T Kobayashi & T Kuroda (1987) Snow Crystals. In: Morphology of Crystals (ed. I Sunagawa), Terra Scientific Publishing, Tokyo, pp.649-743. [2] DM Murphy (2003) Dehydration in cold clouds is enhanced by a transition from from cubic to hexagonal ice. Geophys.Res.Lett.,30, 2230, doi:10.1029/2003GL018566. [3] RS Gao & 19 other authors (2004) Evidence that nitric acid increases relative humidity in low-temperature cirrus clouds. Science 303, 516-520. [4] T Peter, C Marcolli, P Spaichinger, T Corti, MC Baker & T Koop (2006) When dry air is too humid. Science 314, 1399-1402. [5] JE Shilling, MA Tolbert, OB Toon, EJ Jensen, BJ Murray & AK Bertram (2006) Measurements of the vapor pressure of cubic ice and their implications for atmospheric ice clouds. Geophys.Res.Lett. 33, 026671. [6] TC Hansen, MM Koza & WF Kuhs (2008) Formation and annealing of cubic ice: I Modelling of stacking faults. J.Phys.Cond.Matt. 20, 285104. [7] TC Hansen, MM Koza, P Lindner & WF Kuhs (2008) Formation and annealing of cubic ice: II. Kinetic study. J.Phys.Cond.Matt. 20, 285105. [8] WF Kuhs, G Genov, DK Staykova & AN Salamatin (2004) Ice perfection and the onset of anomalous preservation of gas hydrates. Phys.Chem.Chem.Phys. 6, 4917-4920. [9] BJ Murray, DA Knopf & AK Bertram (2005) The formation of cubic ice under conditions relevant to Earth's atmosphere. Nature 434, 292-205.
Geosphere - Cryosphere Interactions in the Saint Elias orogen, Alaska and Yukon (Invited)
NASA Astrophysics Data System (ADS)
Bruhn, R. L.; Sauber, J. M.; Forster, R. R.; Cotton, M. M.
2009-12-01
North America's largest alpine and piedmont glaciers occur in the Saint Elias orogen, where microplate collision together with the transition from transform faulting to subduction along the North American plate boundary, create extreme topographic relief, unusually high annual precipitation by orographic lift, and crustal displacements induced by both tectonic and glacio-isostatic deformation. Lithosphere-scale structure dominates the spatial pattern of glaciation; the piedmont Bering and Agassiz-Malaspina glaciers lay along deeply eroded troughs where reverse faults rise from the underlying Aleutian megathrust. The alpine Seward and Bagley Ice Valley glaciers flow along an early Tertiary plate boundary that has been reactivated by reverse faulting, and also by dextral shearing at the NW end of the Fairweather transform fault. Folding above a crustal-scale fault ramp near Icy Bay localizes orographic uplift of air masses, creating alpine glaciers that spill off the highlands into large ice falls, and rapidly dissect evolving structure by erosion. The rate and orientation of ice surface velocities, and the location of crevassing and folding partly reflect changes in basal topography of the glaciers caused by differential erosion of strata, and juxtaposition of variably oriented structures across faults. The effects of basal topography on ice flow are investigated using remote sensing measurements and analog models of glacier flow over uneven topography. Deformation of the ice in turn affects englacial hydrology and sub-ice fluvial systems, potentially impacting ice mass balance, on-set of surging, and loci of glacier quakes. The glaciers impact tectonics by localizing uplift and exhumation within the orogen, and modulating tectonic stress fields as ice masses wax and wane. This is particularly evident in crustal seismicity rates at annual to decadal time scales, while stratigraphy of coastal terraces record both earthquake deformation and glacial isostasy over millennia.
NASA Technical Reports Server (NTRS)
Kirby, Mark S.; Hansman, R. John
1988-01-01
Real-time measurements of ice growth during artificial and natural icing conditions were conducted using an ultrasonic pulse-echo technique. This technique allows ice thickness to be measured with an accuracy of + or - 0.5 mm; in addition, the ultrasonic signal characteristics may be used to detect the presence of liquid on the ice surface and hence discern wet and dry ice growth behavior. Ice growth was measured on the stagnation line of a cylinder exposed to artificial icing conditions in the NASA Lewis Icing Research Tunnel (IRT), and similarly for a cylinder exposed in flight to natural icing conditions. Ice thickness was observed to increase approximately linearly with exposure time during the initial icing period. The ice accretion rate was found to vary with cloud temperature during wet ice growth, and liquid runback from the stagnation region was inferred. A steady-state energy balance model for the icing surface was used to compare heat transfer characteristics for IRT and natural icing conditions. Ultrasonic measurements of wet and dry ice growth observed in the IRT and in flight were compared with icing regimes predicted by a series of heat transfer coefficients. The heat transfer magnitude was generally inferred to be higher for the IRT than for the natural icing conditions encountered in flight. An apparent variation in the heat transfer magnitude was also observed for flights conducted through different natural icing-cloud formations.
Lindstrom, J.W.; Hubert, W.A.
2004-01-01
Habitat use and movements of 25 adult cutthroat trout Oncorhynchus clarkii and 25 adult brook trout Salvelinus fontinalis from fall through winter 2002-2003 were assessed by means of radiotelemetry in a 7-km reach of a Rocky Mountains foothills stream. Temporal dynamics of winter habitat conditions were evaluated by regularly measuring the features of 30 pools and 5 beaver Castor canadensis ponds in the study reach. Groundwater inputs at three locations raised mean daily water temperatures in the stream channel during winter to 0.2-0.6??C and kept at least 250 m of the downstream channel free of ice, but the lack of surface ice further downstream led to the occurrence of frazil ice and anchor ice in pools and unstable habitat conditions for trout. Pools in segments that were not affected by groundwater inputs and beaver ponds tended to be stable and snow accumulated on the surface ice. Pools throughout the study reach tended to become more stable as snow accumulated. Both cutthroat trout and brook trout selected beaver ponds as winter progressed but tended to use lateral scour pools in proportion to their availability. Tagged fish not in beaver ponds selected lateral scour pools that were deeper than average and stable during winter. Movement frequencies by tagged fish decreased from fall through winter, but some individuals of both species moved during winter. Ice processes affected both the habitat use and movement patterns of cutthroat trout and brook trout in this foothills stream.
Brassard, J D; Sarkar, D K; Perron, J; Audibert-Hayet, A; Melot, D
2015-06-01
Thin films of zinc have been deposited on steel substrates by electrodeposition process and further functionalized with ultra-thin films of commercial silicone rubber, in order to obtain superhydrophobic properties. Morphological feature, by scanning electron microscope (SEM), shows that the electrodeposited zinc films are composed of micro-nano rough patterns. Furthermore, chemical compositions of these films have been analyzed by X-ray diffraction (XRD) and infra-red (IRRAS). An optimum electrodeposition condition, based on electrical potential and deposition time, has been obtained which provides superhydrophobic properties with a water contact angle of 155±1°. The corrosion resistance properties, in artificial seawater, of the superhydrophobic zinc coated steel are found to be superior to bare steel. Similarly, the measured ice adhesion strength on superhydrophobic surfaces, using the centrifugal adhesion test (CAT), is found to be 6.3 times lower as compared to bare steel. This coating has promising applications in offshore environment, to mitigate corrosion and reduce ice adhesion. Copyright © 2014 Elsevier Inc. All rights reserved.
Mars and earth - Comparison of cold-climate features
NASA Technical Reports Server (NTRS)
Lucchitta, B. K.
1981-01-01
On earth, glacial and periglacial features are common in areas of cold climate. On Mars, the temperature of the present-day surface is appropriate for permafrost, and the presence of water is suspected from data relating to the outgassing of the planet, from remote-sensing measurements over the polar caps and elsewhere on the Martian surface, and from recognition of fluvial morphological features such as channels. These observations and the possibility that ice could be in equilibrium with the high latitudes north and south of + or - 40 deg latitude suggest that glacial and periglacial features should exist on the planet. Morphological studies based mainly on Viking pictures indicate many features that can be attributed to the action of ice. Among these features are extensive talus aprons; debris avalanches; flows that resemble glaciers or rock glaciers; ridges that look like moraines; various types of patterned ground, scalloped scarps, and chaotically collapsed terrain that could be attributed to thermokarst processes; and landforms that may reflect the interaction of volcanism and ice.
Glacial History of the NE Antarctic Peninsula over centennial to millennial timescales
NASA Astrophysics Data System (ADS)
Davies, B. J.; Glasser, N. F.; Hambrey, M.; Carrivick, J.; Smellie, J.
2010-12-01
A detailed glacier inventory of 232 glaciers was undertaken of the northeast Antarctic Peninsula and James Ross Island for the first time. Glacier inventories provide representative, detailed and natural indications of the impacts of climate change. Documenting the continued response of ice shelf feeder glaciers after the collapse of the Prince Gustav Ice Shelf in 1997 is especially important for predicting future glacier behaviour in this region. James Ross Island has a relatively long history of glacier observations, and offers a unique opportunity to assess the ongoing impacts of a changing climate in a very sensitive part of the global system. This work classified and mapped the glaciers of James Ross Island and the northern Antarctic Peninsula for the first time, documenting change in extent and behaviour in 1988, 2001 and 2009, and characterising glacier response to ice shelf collapse. Glacier altitude, aspect, area, slope and rate of recession were among the indices' measured. James Ross Island is approximately 78% ice-covered, with ice-free terrain exhibiting characteristic permafrost and thermokarst landforms, including rock glaciers and ice-cored moraine. The island is dominated by the cold-based Mount Haddington Ice Cap, which feeds numerous polythermal elongate tidewater valley glaciers. The tidewater glaciers typically form extensive medial, lateral and terminal moraines. Initial inventory results show that ice-shelf feeder tidewater glaciers on the APIS have stabilised since the 1997 collapse of the Prince Gustav Ice Shelf, although recession continues. Of the non-ice-shelf tidewater glaciers, glacier recession has accelerated in the decade since 2001. Land-based valley glacier retreat has accelerated post 2001, in line with continued atmospheric warming. Climate relationships can be determined from altitude-aspect relationships, with glaciers on the drier eastern side of James Ross Island retreating fastest. Glacier mass balances are strongly influenced by glacier hypsometry, aspect, and slope, resulting in asymmetric retreat patterns.
Evaluation of CryoSat-2 SARIn vs. SAR Arctic Sea Ice Freeboard
NASA Astrophysics Data System (ADS)
Di Bella, A.; Skourup, H.; Forsberg, R.
2017-12-01
Earth climate is a complex system which behaviour is dictated by the interaction among many components. Sea ice, one of these fundamental components, interacts directly with the oceans and the atmosphere playing an important role in defining heat exchange processes and, thus, impacting weather patterns on a global scale. Sea ice thickness estimates have notably improved in the last couple of decades, however, the uncertainty of such estimates is still significant. For the past 7 years, the ESA CryoSat-2 (CS2) mission has provided a unique opportunity to observe polar regions due to its extended coverage up to 88° N/S. The SIRAL radar altimeter on board CS2 enables the sea ice community to estimate sea ice thickness by measuring the sea ice freeboard. Studies by Armitage and Davidson [2014] and Di Bella et al. [submitted] showed that the interferometric capabilities of SIRAL can be used to retrieve an increased number of valid sea surface heights in sea ice covered regions and thus reduce the random uncertainty of the estimated freeboards, especially in areas with a sparse lead distribution. This study focuses on the comparison between sea ice freeboard estimates obtained by processing L1B SARIn data inside the Wingham box - an area in the Arctic Ocean where SIRAL has acquired SARIn data for 4 years - and those obtained by processing L1B SAR data in the area surrounding the box. This comparison evaluates CS2 performance on Arctic sea ice from a statistical perspective by analysing the continuity of freeboard estimates in areas where SIRAL switches between SAR and SARIn acquisition modes. Data collected during the Operation IceBridge and CryoVEx field campaigns are included in the study as an additional validation. Besides investigating the possibility of including the phase information from SIRAL in currently available freeboard estimates, this results provide valuable information for a possible SARIn CryoSat follow-on mission.
Calcium Absorption from Fortified Ice Cream Formulations Compared with Calcium Absorption from Milk
van der Hee, Regine M.; Miret, Silvia; Slettenaar, Marieke; Duchateau, Guus S.M.J.E.; Rietveld, Anton G.; Wilkinson, Joy E.; Quail, Patricia J.; Berry, Mark J.; Dainty, Jack R.; Teucher, Birgit; Fairweather-Tait, Susan J.
2009-01-01
Objective Optimal bone mass in early adulthood is achieved through appropriate diet and lifestyle, thereby protecting against osteoporosis and risk of bone fracture in later life. Calcium and vitamin D are essential to build adequate bones, but calcium intakes of many population groups do not meet dietary reference values. In addition, changes in dietary patterns are exacerbating the problem, thereby emphasizing the important role of calcium-rich food products. We have designed a calcium-fortified ice cream formulation that is lower in fat than regular ice cream and could provide a useful source of additional dietary calcium. Calcium absorption from two different ice cream formulations was determined in young adults and compared with milk. Subjects/setting Sixteen healthy volunteers (25 to 45 years of age), recruited from the general public of The Netherlands, participated in a randomized, reference-controlled, double-blind cross-over study in which two test products and milk were consumed with a light standard breakfast on three separate occasions: a standard portion of ice cream (60 g) fortified with milk minerals and containing a low level (3%) of butter fat, ice cream (60 g) fortified with milk minerals and containing a typical level (9%) of coconut oil, and reduced-fat milk (1.7% milk fat) (200 mL). Calcium absorption was measured by the dual-label stable isotope technique. Statistical analysis Effects on calcium absorption were evaluated by analysis of variance. Results Fractional absorption of calcium from the 3% butterfat ice cream, 9% coconut oil ice cream, and milk was 26%±8%, 28%±5%, and 31%±9%, respectively, and did not differ significantly (P=0.159). Conclusions Results indicate that calcium bioavailability in the two calcium-fortified ice cream formulations used in this study is as high as milk, indicating that ice cream may be a good vehicle for delivery of calcium. PMID:19394469
Summers with low Arctic sea ice linked to persistence of spring atmospheric circulation patterns
NASA Astrophysics Data System (ADS)
Kapsch, Marie-Luise; Skific, Natasa; Graversen, Rune G.; Tjernström, Michael; Francis, Jennifer A.
2018-05-01
The declining trend of Arctic September sea ice constitutes a significant change in the Arctic climate system. Large year-to-year variations are superimposed on this sea-ice trend, with the largest variability observed in the eastern Arctic Ocean. Knowledge of the processes important for this variability may lead to an improved understanding of seasonal and long-term changes. Previous studies suggest that transport of heat and moisture into the Arctic during spring enhances downward surface longwave radiation, thereby controlling the annual melt onset, setting the stage for the September ice minimum. In agreement with these studies, we find that years with a low September sea-ice concentration (SIC) are characterized by more persistent periods in spring with enhanced energy flux to the surface in forms of net longwave radiation plus turbulent fluxes, compared to years with a high SIC. Two main atmospheric circulation patterns related to these episodes are identified: one resembles the so-called Arctic dipole anomaly that promotes transport of heat and moisture from the North Pacific, whereas the other is characterized by negative geopotential height anomalies over the Arctic, favoring cyclonic flow from Siberia and the Kara Sea into the eastern Arctic Ocean. However, differences between years with low and high September SIC appear not to be due to different spring circulation patterns; instead it is the persistence and intensity of processes associated with these patterns that distinguish the two groups of anomalous years: Years with low September SIC feature episodes that are consistently stronger and more persistent than years with high SIC.
Invariant polar bear habitat selection during a period of sea ice loss
Wilson, Ryan R.; Regehr, Eric V.; Rode, Karyn D.; St Martin, Michelle
2016-01-01
Climate change is expected to alter many species' habitat. A species' ability to adjust to these changes is partially determined by their ability to adjust habitat selection preferences to new environmental conditions. Sea ice loss has forced polar bears (Ursus maritimus) to spend longer periods annually over less productive waters, which may be a primary driver of population declines. A negative population response to greater time spent over less productive water implies, however, that prey are not also shifting their space use in response to sea ice loss. We show that polar bear habitat selection in the Chukchi Sea has not changed between periods before and after significant sea ice loss, leading to a 75% reduction of highly selected habitat in summer. Summer was the only period with loss of highly selected habitat, supporting the contention that summer will be a critical period for polar bears as sea ice loss continues. Our results indicate that bears are either unable to shift selection patterns to reflect new prey use patterns or that there has not been a shift towards polar basin waters becoming more productive for prey. Continued sea ice loss is likely to further reduce habitat with population-level consequences for polar bears.
Three-Dimensional Microstructure of Biological Tissues during Freezing and Thawing
NASA Astrophysics Data System (ADS)
Ishiguro, Hiroshi; Horimizu, Takashi; Kataori, Akinobu; Kajigaya, Hiroshi
Three-dimensional behavior of ice crystals and cells during the freezing and thawing of biological tissues was investigated microscopically in real time by using a confocal laser scanning microscope(CLSM) and a fluorescent dye, acridine orange (AO). Fresh tender meat (2nd pectoral muscles) of chicken was stained with the AO in physiological saline to distinguish ice crystals and cells by their different colors, and then frozen and thawed under two different thermal protocols: a) slow-cooling and rapid-warming and b) rapid-cooling and rapid-warming. The CLSM noninvasively produced optical tomograms of the tissues to clarify the pattern of freezing, morphology of ice crystals in the tissues, and the interaction between ice crystals and cells. Also, the tissues were morphologically investigated by pathological means after the freezing and thawing. Typical freezing pattern during the slow-cooling was extracellular-freezing, and those during the rapid-cooling were extracellular-freezing and intracellular freezing with a lot of fine ice crystals in the cells. Cracks caused by the extracellular and intracellular ice crystals remained in the muscle tissues after the thawing. The results obtained by using the CLSM/dye method were consistent with pathologically morphological changes in the tissues through freezing and thawing.
NASA Astrophysics Data System (ADS)
Velez Gonzalez, Jose A.
The development of preferred crystal orientation fabrics (COF) within the ice column can have a strong influence on the flow behavior of an ice sheet or glacier. Typically, COF information comes from ice cores. Observations of anisotropic seismic wave propagation and backscatter variation as a function of antenna orientation in GPR measurements have been proposed as methods to detect COF. For this investigation I evaluate the effectiveness of the GPR and seismic methods to detect COF by conducting a seismic and GPR experiment at the North Greenland Eemian Ice Drilling facility (NEEM) ice core location, where COF data is available. The seismic experiment was conducted 6.5 km North West of the NEEM facility and consisted of three multi-offset seismic gathers. The results of the anisotropy analysis conducted at NEEM yielded mean c-axes distributed over a conical region of I angle of 30 to 32 degrees. No internal ice reflectors were imaged. Direct COF measurements collected in the ice core are in agreement with the results from the seismic anisotropy analysis. The GPR experiment covered an area of 100 km2 and consisted of parallel, perpendicular, oblique and circular (radius: 35 m) acquisition patterns. Results show evidence for COF for the entire 100 km2 area. Furthermore, for the first time it was possible to image three different COF (random, disk and single maxima) and their respective transition zones. The interpretation of the GPR experiment showed a strong correlation with the ice core measurements. Glacier basal drag is also an important, and difficult to predict, property that influences glacier flow. For this investigation I re-processed a 10 km-long high-resolution reflection seismic line at Jakobshavn Isbrae, Greenland, using an iterative velocity determination approach for optimizing sub-glacier imaging. The resultant line imaged a sub-glacier sediment layer ranging in thickness between 35 and 200 meters. I interpret three distinct seismic facies based on the geometry of the reflectors as a basal till layer, accreted sediments and re-worked till. The basal till and accreted sediments vary in thickness between 4 and 93 meters and are thought to be water-saturated actively-deforming sub-glacier sediments. A polarity reversal observed at one location along the ice-sediment interface suggests the presence of water saturated sediments or water ponding 2-4 m thick spanning approximately 240 m across. Using information from the seismic line (bed geometry, ice thickness, till thickness) as well as information available for the area of study (ice surface elevation and ice flow velocity) we evaluate the effect of sub-glacier sediment viscosity on the basal drag using a linearly viscous model and the assumption of a deforming bed. Basal drag values estimated for the study area fall within the range of physically acceptable values. However, the analysis revealed that the assumption of a deforming bed might not be compatible for the area of study given the presence of water at the ice/bed interface.
NASA Technical Reports Server (NTRS)
Perovich, D.; Gerland, S.; Hendricks, S.; Meier, Walter N.; Nicolaus, M.; Richter-Menge, J.; Tschudi, M.
2013-01-01
During 2013, Arctic sea ice extent remained well below normal, but the September 2013 minimum extent was substantially higher than the record-breaking minimum in 2012. Nonetheless, the minimum was still much lower than normal and the long-term trend Arctic September extent is -13.7 per decade relative to the 1981-2010 average. The less extreme conditions this year compared to 2012 were due to cooler temperatures and wind patterns that favored retention of ice through the summer. Sea ice thickness and volume remained near record-low levels, though indications are of slightly thicker ice compared to the record low of 2012.
2017-01-24
NASA Mars Reconnaissance Orbiter spies a layer of dry ice covering Mars south polar layer. In the spring, gas created from heating of the dry ice escapes through ruptures in the overlying seasonal ice, entraining material from the ground below. The gas erodes channels in the surface, generally exploiting weaker material. The ground likely started as polygonal patterned ground (common in water-ice-rich surfaces), and then escaping gas widened the channels. Fans of dark material are bits of the surface carried onto the top of the seasonal ice layer and deposited in a direction determined by local winds. http://photojournal.jpl.nasa.gov/catalog/PIA11706
State of Arctic Sea Ice North of Svalbard during N-ICE2015
NASA Astrophysics Data System (ADS)
Rösel, Anja; King, Jennifer; Gerland, Sebastian
2016-04-01
The N-ICE2015 cruise, led by the Norwegian Polar Institute, was a drift experiment with the research vessel R/V Lance from January to June 2015, where the ship started the drift North of Svalbard at 83°14.45' N, 21°31.41' E. The drift was repeated as soon as the vessel drifted free. Altogether, 4 ice stations where installed and the complex ocean-sea ice-atmosphere system was studied with an interdisciplinary Approach. During the N-ICE2015 cruise, extensive ice thickness and snow depth measurements were performed during both, winter and summer conditions. Total ice and snow thickness was measured with ground-based and airborne electromagnetic instruments; snow depth was measured with a GPS snow depth probe. Additionally, ice mass balance and snow buoys were deployed. Snow and ice thickness measurements were performed on repeated transects to quantify the ice growth or loss as well as the snow accumulation and melt rate. Additionally, we collected independent values on surveys to determine the general ice thickness distribution. Average snow depths of 32 cm on first year ice, and 52 cm on multi-year ice were measured in January, the mean snow depth on all ice types even increased until end of March to 49 cm. The average total ice and snow thickness in winter conditions was 1.92 m. During winter we found a small growth rate on multi-year ice of about 15 cm in 2 months, due to above-average snow depths and some extraordinary storm events that came along with mild temperatures. In contrast thereto, we also were able to study new ice formation and thin ice on newly formed leads. In summer conditions an enormous melt rate, mainly driven by a warm Atlantic water inflow in the marginal ice zone, was observed during two ice stations with melt rates of up to 20 cm per 24 hours. To reinforce the local measurements around the ship and to confirm their significance on a larger scale, we compare them to airborne thickness measurements and classified SAR-satellite scenes. The here presented data set is important for understanding the ocean-ice-atmosphere interactions, for calculating energy fluxes, and biogeochemical processes.
Formation of cycloidal features on Europa.
Hoppa, G V; Tufts, B R; Greenberg, R; Geissler, P E
1999-09-17
Cycloidal patterns are widely distributed on the surface of Jupiter's moon Europa. Tensile cracks may have developed such a pattern in response to diurnal variations in tidal stress in Europa's outer ice shell. When the tensile strength of the ice is reached, a crack may occur. Propagating cracks would move across an ever-changing stress field, following a curving path to a place and time where the tensile stress was insufficient to continue the propagation. A few hours later, when the stress at the end of the crack again exceeded the strength, propagation would continue in a new direction. Thus, one arcuate segment of the cycloidal chain would be produced during each day on Europa. For this model to work, the tensile strength of Europa's ice crust must be less than 40 kilopascals, and there must be a thick fluid layer below the ice to allow sufficient tidal amplitude.
Ice Accretions and Icing Effects for Modern Airfoils
NASA Technical Reports Server (NTRS)
Addy, Harold E., Jr.
2000-01-01
Icing tests were conducted to document ice shapes formed on three different two-dimensional airfoils and to study the effects of the accreted ice on aerodynamic performance. The models tested were representative of airfoil designs in current use for each of the commercial transport, business jet, and general aviation categories of aircraft. The models were subjected to a range of icing conditions in an icing wind tunnel. The conditions were selected primarily from the Federal Aviation Administration's Federal Aviation Regulations 25 Appendix C atmospheric icing conditions. A few large droplet icing conditions were included. To verify the aerodynamic performance measurements, molds were made of selected ice shapes formed in the icing tunnel. Castings of the ice were made from the molds and placed on a model in a dry, low-turbulence wind tunnel where precision aerodynamic performance measurements were made. Documentation of all the ice shapes and the aerodynamic performance measurements made during the icing tunnel tests is included in this report. Results from the dry, low-turbulence wind tunnel tests are also presented.
Aizen, V.B.; Aizen, E.M.; Melack, J.M.; Kreutz, K.J.; Cecil, L.D.
2004-01-01
Glacioclimatological research in the central Tien Shan was performed in the summers of 1998 and 1999 on the South Inilchek Glacier at 5100-5460 m. A 14.36 m firn-ice core and snow samples were collected and used for stratigraphic, isotopic, and chemical analyses. The firn-ice core and snow records were related to snow pit measurements at an event scale and to meteorological data and synoptic indices of atmospheric circulation at annual and seasonal scales. Linear relationships between the seasonal air temperature and seasonal isotopic composition in accumulated precipitation were established. Changes in the ??18O air temperature relationship, in major ion concentration and in the ratios between chemical species, were used to identify different sources of moisture and investigate changes in atmospheric circulation patterns. Precipitation over the central Tien Shan is characterized by the lowest ionic content among the Tien Shan glaciers and indicates its mainly marine origin. In seasons of minimum precipitation, autumn and winter, water vapor was derived from the and and semiarid regions in central Eurasia and contributed annual maximal solute content to snow accumulation in Tien Shan. The lowest content of major ions was observed in spring and summer layers, which represent maximum seasonal accumulation when moisture originates over the Atlantic Ocean and Mediterranean and Black Seas. Copyright 2004 by the American Geophysical Union.
Local Effects of Ice Floes on Skin Sea Surface Temperature in the Marginal Ice Zone from UAVs
NASA Astrophysics Data System (ADS)
Zappa, C. J.; Brown, S.; Emery, W. J.; Adler, J.; Wick, G. A.; Steele, M.; Palo, S. E.; Walker, G.; Maslanik, J. A.
2013-12-01
Recent years have seen extreme changes in the Arctic. Particularly striking are changes within the Pacific sector of the Arctic Ocean, and especially in the seas north of the Alaskan coast. These areas have experienced record warming, reduced sea ice extent, and loss of ice in areas that had been ice-covered throughout human memory. Even the oldest and thickest ice types have failed to survive through the summer melt period in areas such as the Beaufort Sea and Canada Basin, and fundamental changes in ocean conditions such as earlier phytoplankton blooms may be underway. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Airborne remote sensing, in particular InfraRed (IR), offers a unique opportunity to observe physical processes at sea-ice margins. It permits monitoring the ice extent and coverage, as well as the ice and ocean temperature variability. It can also be used for derivation of surface flow field allowing investigation of turbulence and mixing at the ice-ocean interface. Here, we present measurements of visible and IR imagery of melting ice floes in the marginal ice zone north of Oliktok Point AK in the Beaufort Sea made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013. The visible and IR imagery were taken from the unmanned airborne vehicle (UAV) ScanEagle. The visible imagery clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as a intricate circulation and mixing pattern that depends on the surface current, wind speed, and near-surface vertical temperature/salinity structure. Individual ice floes develop turbulent wakes as they drift and cause transient mixing of an influx of colder surface (fresh) melt water. The upstream side of the ice floe shows the coldest skin SST, and downstream the skin SST is mixed within the turbulent wake over 10s of meters. We compare the structure of circulation and mixing of the influx of cold skin SST driven by surface currents and wind. In-situ temperature measurements provide the context for the vertical structure of the mixing and its impact on the skin SST. Furthermore, comparisons to satellite-derived sea surface temperature of the region are presented. The accuracy of satellite derived SST products and how well the observed skin SSTs represent ocean bulk temperatures in polar regions is not well understood, due in part to lack of observations. Estimated error in the polar seas is relatively high at up to 0.4 deg. C compared to less than 0.2 deg. C for other areas. The goal of these and future analyses of the MIZOPEX data set is to elucidate a basic question that is significant for the entire Earth system. Have these regions passed a tipping point, such that they are now essentially acting as sub-Arctic seas where ice disappears in summer, or instead whether the changes are transient, with the potential for the ice pack to recover?
NASA Technical Reports Server (NTRS)
Harding, David; Dabney, Philip; Valett, Susan; Yu, Anthony; Vasilyev, Aleksey; Kelly, April
2011-01-01
The ICESat-2 mission will continue NASA's spaceflight laser altimeter measurements of ice sheets, sea ice and vegetation using a new measurement approach: micropulse, single photon ranging at 532 nm. Differential penetration of green laser energy into snow, ice and water could introduce errors in sea ice freeboard determination used for estimation of ice thickness. Laser pulse scattering from these surface types, and resulting range biasing due to pulse broadening, is assessed using SIMPL airborne data acquired over icecovered Lake Erie. SIMPL acquires polarimetric lidar measurements at 1064 and 532 nm using the micropulse, single photon ranging measurement approach.
Arctic sea ice is an important temporal sink and means of transport for microplastic.
Peeken, Ilka; Primpke, Sebastian; Beyer, Birte; Gütermann, Julia; Katlein, Christian; Krumpen, Thomas; Bergmann, Melanie; Hehemann, Laura; Gerdts, Gunnar
2018-04-24
Microplastics (MP) are recognized as a growing environmental hazard and have been identified as far as the remote Polar Regions, with particularly high concentrations of microplastics in sea ice. Little is known regarding the horizontal variability of MP within sea ice and how the underlying water body affects MP composition during sea ice growth. Here we show that sea ice MP has no uniform polymer composition and that, depending on the growth region and drift paths of the sea ice, unique MP patterns can be observed in different sea ice horizons. Thus even in remote regions such as the Arctic Ocean, certain MP indicate the presence of localized sources. Increasing exploitation of Arctic resources will likely lead to a higher MP load in the Arctic sea ice and will enhance the release of MP in the areas of strong seasonal sea ice melt and the outflow gateways.
Electromagnetic properties of ice coated surfaces
NASA Technical Reports Server (NTRS)
Dominek, A.; Walton, E.; Wang, N.; Beard, L.
1989-01-01
The electromagnetic scattering from ice coated structures is examined. The influence of ice is shown from a measurement standpoint and related to a simple analytical model. A hardware system for the realistic measurement of ice coated structures is also being developed to use in an existing NASA Lewis icing tunnel. Presently, initial measurements have been performed with a simulated tunnel to aid in the development.
Body and blubber relationships in antarctic pack ice seals: implications for blubber depth patterns.
Castellini, M A; Trumble, S J; Mau, T L; Yochem, P K; Stewart, B S; Koski, M A
2009-01-01
Morphometrics and blubber depths from all four high Antarctic seals (Weddell, Ross, crabeater, and leopard) were obtained during a midsummer research cruise in the Ross Sea as the physiological ecology component of the U.S. Antarctic Pack Ice Seals project. These data are the only in vivo measurements of all four species from the same location and time of year and focused on variances in morphometrics and blubber depth related to species, sex, and age. By controlling for location and season, this cross-species design provided the means to differentiate how blubber mass might be influenced in these groups. We measured both absolute blubber depth and ratio of blubber depth to body core diameter. We found that adult and younger animals showed differences in blubber depth, but male versus female seals did not show differences within any given species. However, when compared across species, the ratio of blubber ring depth to body core diameter suggests that adult Weddell seals differ in their use of blubber compared with the other three species. We propose that this difference in blubber pattern is most likely related to Weddell nutritional requirements during the breeding season having a greater influence on blubber depth than thermal requirements when compared with the other three species.
Holocene deceleration of the Greenland Ice Sheet.
MacGregor, Joseph A; Colgan, William T; Fahnestock, Mark A; Morlighem, Mathieu; Catania, Ginny A; Paden, John D; Gogineni, S Prasad
2016-02-05
Recent peripheral thinning of the Greenland Ice Sheet is partly offset by interior thickening and is overprinted on its poorly constrained Holocene evolution. On the basis of the ice sheet's radiostratigraphy, ice flow in its interior is slower now than the average speed over the past nine millennia. Generally higher Holocene accumulation rates relative to modern estimates can only partially explain this millennial-scale deceleration. The ice sheet's dynamic response to the decreasing proportion of softer ice from the last glacial period and the deglacial collapse of the ice bridge across Nares Strait also contributed to this pattern. Thus, recent interior thickening of the Greenland Ice Sheet is partly an ongoing dynamic response to the last deglaciation that is large enough to affect interpretation of its mass balance from altimetry. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Hermanowski, P.; Piotrowski, J. A.
2017-12-01
Evacuation of glacial meltwater through the substratum is an important agent modulating the ice/bed interface processes. The amount of meltwater production, subglacial water pressure, flow patterns and fluxes all affect the strength of basal coupling and thus impact the ice-sheet dynamics. Despite much research into the subglacial processes of past ice sheets which controlled sediment transport and the formation of specific landforms, our understanding of the ice/bed interface remains fragmentary. In this study we numerically simulated, using finite difference and finite element codes, groundwater flow pattern and fluxes during an ice advance in the Stargard Drumlin Field, NW Poland to examine the potential influence of groundwater drainage on the landforming processes. The results are combined with sedimentological observations of the internal composition of the drumlins to validate the outcome of the numerical model. Our numerical experiments of groundwater flow suggest a highly time-dependent response of the subglacial hydrogeological system to the advancing ice margin. This is manifested as diversified areas of downward- and upward-oriented groundwater flows whereby the drumlin field area experienced primarily groundwater discharge towards the ice sole. The investigated drumlins are composed of (i) mainly massive till with thin stringers of meltwater sand, and (ii) sorted sediments carrying ductile deformations. The model results and sedimentological observations suggest a high subglacial pore-water pressure in the drumlin field area, which contributed to sediment deformation intervening with areas of basal decoupling and enhanced basal sliding.
UAV Applications for Thermodynamic Profiling:Emphasis on Ice Fog Visibility
NASA Astrophysics Data System (ADS)
Gultepe, Ismail; Heymsfield, Andrew; Fernando, Joseph; hoch, sebastian; pardyjack, Eric; Boudala, faisal; Ware, Randolph
2017-04-01
Ice fog often occurs over the Arctic, in cold climates, and near mountainous regions about 30% of time when temperatures (T) drop to -10°C or below. Ice fog affects aviation operations, transportation, and local climate. Ice Nucleation (IN) and radiative cooling play an important role by controlling the intensity of ice fog conditions. Ice fog can also occur at T above -10°C, but close to 0°C it mainly occurs due to freezing of supercooled droplets that contain an IN. To better document ice fog conditions, observations from ice fog events of the Indirect and Semi-Direct Aerosol effects on Climate (ISDAC) project (Barrow, Alaska), Fog Remote Sensing And Modeling (FRAM) project (Yellowknife, Northwest Territories), and the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) project (Heber City, Utah), were analyzed. Difficulties in measuring small ice fog particles at low temperatures and low-level research aircraft flying restrictions prevent observations from aircraft within the atmospheric boundary layer. However, Unmanned Aerial Vehicles (UAVs) can be operated safely to measure IN number concentration, Relative Humidity with respect to ice (RHi), T, horizontal wind speed (Uh) and direction, visibility, and possibly even measuring ice crystal spectra below about 500 micron, to provide a method for future research of ice fog. In this study, thermodynamic profiling was conducted using a Radiometrics Microwave Radiometer (PMWR) and Vaisala CL51 ceilometer to describe vertical spatial and temporal development of ice fog conditions. Overall, ice fog characteristics and its thermodynamic environment will be presented using both ground-based and airborne platforms such as a UAV with new sensors. Some examples of measurements from the UAV and a DMT GCIP (Droplet Measurement Technologies Ground Cloud Imaging Probe), and challenges related to both ice fog measurements and visibility parameterization will also be presented.
Spatial and temporal patterns of sea ice variations in Vilkitsky strait, Russian High Arctic
NASA Astrophysics Data System (ADS)
Ci, T.; Cheng, X.; Hui, F.
2013-12-01
The Arctic Ocean has been greatly affected by climate change. Future predications show an even more drastic reduction of the ice cap which will open new areas for the exploration of natural resources and maritime transportation.Shipping through the Arctic Ocean via the Northern Sea Route (NSR) could save about 40% of the sailing distance from Asia (Yokohama) to Europe (Rotterdam) compared to the traditional route via the Suez Canal. Vilkitsky strait is the narrowest and northest portion of the Northern Sea Route with heaviest traffic between the Taimyr Peninsular and the Severnaya Zemlya archipelago. The preliminary results of sea ice variations are presented by using moderate-resolution imaging spectro radiometer(MODIS) data with 250-m resolution in the Vilkitsky strait during 2009-2012. Temporally, the first rupture on sea ice in Vilkitsky strait usually comes up in April and sea ice completely break into pieces in early June. The strait would be ice-free between August and late September. The frequency of ice floes grows while temperature falls down in October. There are always one or two months suitable for transport. Spatially, Sea ice on Laptev sea side breaks earlier than that of Kara sea side while sea ice in central of strait breaks earlier than in shoreside. The phenomena are directly related with the direction of sea wind and ocean current. In summmary, study on Spatial and temporal patterns in this area is significant for the NSR. An additional research issue to be tackled is to seeking the trends of ice-free duration in the context of global warming. Envisat ASAR data will also be used in this study.
NASA Technical Reports Server (NTRS)
Hoge, Frank E.; Wright, C. Wayne; Swift, Robert N.; Yungel, James K.
1989-01-01
The concurrent active-passive measurement capabilities of the NASA Airborne Oceanographic Lidar have been used to (1) discriminate between ice and water in a large ice field within the Greenland Sea and (2) achieve the detection and measurement of chlorophyll-in-water by laser-induced and water-Raman-normalized pigment fluorescence. Passive upwelled radiances from sea ice are significantly stronger than those from the neighboring water, even when the optical receiver field-of-view is only partially filled with ice. Thus, weaker passive upwelled radiances, together with concurrently acquired laser-induced spectra, can rather confidently be assigned to the intervening water column. The laser-induced spectrum can then be processed using previously established methods to measure the chlorophyll-in-water concentration. Significant phytoplankton patchiness and elevated chlorophyll concentrations were found within the waters of the melting ice compared to ice-free regions just outside the ice field.
Nitrogen Dioxide in Indoor Ice Skating Facilities: An International Survey.
Brauer, Michael; Lee, Kiyoung; Spengler, John D; Salonen, Raimo O; Pennanen, Arto; Braathen, Ole Anders; Miskovic, Eva Mihalikova And Peter; Nozaki, Atsuo; Tsuzuki, Toshifumi; Rui-Jin, Song; Qing-Xiang, Yang Xu And Zeng; Drahonovska, Hana; Kjaergaard, Søren
1997-10-01
An international survey of nitrogen dioxide (NO 2 ) levels inside indoor ice skating facilities was conducted. One-week average NO 2 concentrations were measured inside and outside of 332 ice rinks located in nine countries. Each rink manager also completed a questionnaire describing the building, the resurfacing machines, and their use patterns. The (arithmetic) mean NO 2 level for all rinks in the study was 228 ppb, with a range of 1-2,680 ppb, based on a sample collected at breathing height and adjacent to the ice surface. The mean of the second indoor sample (collected at a spectator's area) was 221 ppb, with a range of 1-3,175 ppb. The ratio of the indoor to outdoor NO 2 concentrations was above 1 for 95% of the rinks sampled, indicating the presence of an indoor NO 2 source (mean indoor:outdoor ratio = 20). Estimates of short-term NO 2 concentrations indicated that as many as 40% of the sampled rinks would have exceeded the World Health Organization 1-hour guideline value of 213 ppb NO 2 for indoor air. Statistically significant associations were observed between NO 2 levels and the type of fuel used to power the resurfacer, the absence of a catalytic converter on a resurfacer, and the use of an ice edger. There were also indications that decreased use of mechanical ventilation, increased number of resurfacing operations per day, and smaller rink volumes were associated with increased NO 2 levels. In rinks where the main resurfacer was powered by propane, the NO 2 concentrations were higher than in those with gasoline-powered resurfacers, while the latter had NO 2 concentrations higher than in those using diesel. Rinks where the main resurfacer was electric had the lowest indoor NO 2 concentrations, similar to the levels measured outdoor.
Quantification of Ice Accretions for Icing Scaling Evaluations
NASA Technical Reports Server (NTRS)
Ruff, Gary A.; Anderson, David N.
2003-01-01
The comparison of ice accretion characteristics is an integral part of aircraft icing research. It is often necessary to compare an ice accretion obtained from a flight test or numerical simulation to one produced in an icing wind tunnel or for validation of an icing scaling method. Traditionally, this has been accomplished by overlaying two-dimensional tracings of ice accretion shapes. This paper addresses the basic question of how to compare ice accretions using more quantitative methods. For simplicity, geometric characteristics of the ice accretions are used for the comparison. One method evaluated is a direct comparison of the percent differences of the geometric measurements. The second method inputs these measurements into a fuzzy inference system to obtain a single measure of the goodness of the comparison. The procedures are demonstrated by comparing ice shapes obtained in the Icing Research Tunnel at NASA Glenn Research Center during recent icing scaling tests. The results demonstrate that this type of analysis is useful in quantifying the similarity of ice accretion shapes and that the procedures should be further developed by expanding the analysis to additional icing data sets.
Douglas J. Stevenson; Thomas B. Lynch; James M. Guldin
2013-01-01
Width reduction in growth rings in shortleaf pine (Pinus echinata Mill.) following glaze ice conditions produces a characteristic pattern dependent on live-crown ratio and extent of crown loss. Ring widths of 133 trees for 3 years preceding and 7 years following the December 2000 ice storm (Bragg and others 2002) in western Arkansas and eastern...
Seasonal Changes of Arctic Sea Ice Physical Properties Observed During N-ICE2015: An Overview
NASA Astrophysics Data System (ADS)
Gerland, S.; Spreen, G.; Granskog, M. A.; Divine, D.; Ehn, J. K.; Eltoft, T.; Gallet, J. C.; Haapala, J. J.; Hudson, S. R.; Hughes, N. E.; Itkin, P.; King, J.; Krumpen, T.; Kustov, V. Y.; Liston, G. E.; Mundy, C. J.; Nicolaus, M.; Pavlov, A.; Polashenski, C.; Provost, C.; Richter-Menge, J.; Rösel, A.; Sennechael, N.; Shestov, A.; Taskjelle, T.; Wilkinson, J.; Steen, H.
2015-12-01
Arctic sea ice is changing, and for improving the understanding of the cryosphere, data is needed to describe the status and processes controlling current seasonal sea ice growth, change and decay. We present preliminary results from in-situ observations on sea ice in the Arctic Basin north of Svalbard from January to June 2015. Over that time, the Norwegian research vessel «Lance» was moored to in total four ice floes, drifting with the sea ice and allowing an international group of scientists to conduct detailed research. Each drift lasted until the ship reached the marginal ice zone and ice started to break up, before moving further north and starting the next drift. The ship stayed within the area approximately 80°-83° N and 5°-25° E. While the expedition covered measurements in the atmosphere, the snow and sea ice system, and in the ocean, as well as biological studies, in this presentation we focus on physics of snow and sea ice. Different ice types could be investigated: young ice in refrozen leads, first year ice, and old ice. Snow surveys included regular snow pits with standardized measurements of physical properties and sampling. Snow and ice thickness were measured at stake fields, along transects with electromagnetics, and in drillholes. For quantifying ice physical properties and texture, ice cores were obtained regularly and analyzed. Optical properties of snow and ice were measured both with fixed installed radiometers, and from mobile systems, a sledge and an ROV. For six weeks, the surface topography was scanned with a ground LIDAR system. Spatial scales of surveys ranged from spot measurements to regional surveys from helicopter (ice thickness, photography) during two months of the expedition, and by means of an array of autonomous buoys in the region. Other regional information was obtained from SAR satellite imagery and from satellite based radar altimetry. The analysis of the data collected has started, and first results will be presented.
CO2 Jets and Wind Patterns on Mars
NASA Astrophysics Data System (ADS)
Hatcher, Chase; Aye, K.-Michael; Portyankina, Ganna
2017-10-01
In Martian winters, the poles get covered by a layer of transparent CO2 ice. In spring, sunlight causes substrate under the ice to heat up which sublimates CO2 under the ice. The accumulating gas eventually causes the ice above it to rupture and the CO2 and substrate mixture spews out like a geyser and settles back down on the surface. The shape, size, and alignment of the deposits on the surface as viewed by the HiRISE camera are related to physical processes like sublimation, weather, and wind on Mars. The jet deposits are identified by citizen scientists on a website called Planet Four. Users are shown sections of HiRISE images and asked to mark different surface features with different tools. The markings are averaged, filtered, and sorted to ensure that the data accurately represents the images. By analyzing trends in the change of different characteristics of these surface features over time, we conclude that different regions on Mars have different sublimation processes and different wind patterns. We also conclude that wind and weather patterns generally repeat from year to year, and that sediment deposits affect local weather as well.
NASA Astrophysics Data System (ADS)
Kochtubajda, Bohdan; Mooney, Curtis; Stewart, Ronald
2017-07-01
Freezing precipitation and ice pellet events on the Canadian Prairies and Arctic territories of Canada often lead to major disruptions to air and ground transportation, damage power grids and prevent arctic caribou and other animals from accessing the plants and lichen they depend on for survival. In a warming climate, these hazards and associated impacts will continue to happen, although their spatial and temporal characteristics may vary. In order to address these issues, the occurrence of freezing rain, freezing drizzle, and ice pellets from 1964 to 2005 is examined using hourly weather observations at 27 manned 24 h weather stations across the different climatic regions of the Prairie Provinces and Arctic Territories of Canada. Because of the enormous size of the area and its diverse climatic regions, many temporal and spatial differences in freezing precipitation and ice pellet characteristics occur. The 12 most widespread freezing rain events over the study area are associated with only two atmospheric patterns with one linked to strong warm advection between low and high pressure centres and the other pattern associated with chinooks occurring east of the Rocky Mountains. Given the annual patterns of freezing rain occurrence found in this study, it is proposed that a maximum of five regimes exist and three occur within the Prairies and Arctic.
Bimodal SLD Ice Accretion on a NACA 0012 Airfoil Model
NASA Technical Reports Server (NTRS)
Potapczuk, Mark; Tsao, Jen-Ching; King-Steen, Laura
2016-01-01
This presentation describes the results of ice accretion measurements on a NACA 0012 airfoil model, from the NASA Icing Research Tunnel, using an icing cloud composed of a bimodal distribution of Supercooled Large Droplets. The data consists of photographs, laser scans of the ice surface, and measurements of the mass of ice for each icing condition. The results of ice shapes accumulated as a result of exposure to an icing cloud with a bimodal droplet distribution were compared to the ice shapes resulting from an equivalent cloud composed of a droplet distribution with a standard bell curve shape.
NASA Astrophysics Data System (ADS)
Rack, Wolfgang; Haas, Christian; Langhorne, Pat; Leonard, Greg; Price, Dan; Barnsdale, Kelvin; Soltanzadeh, Iman
2014-05-01
Melting and freezing processes in the ice shelf cavities of the Ross and McMurdo Ice Shelves significantly influence the sea ice formation in McMurdo Sound. Between 2009 and 2013 we used a helicopter-borne laser and electromagnetic induction sounder (EM bird) to measure thickness and freeboard profiles across the ice shelf and the landfast sea ice, which was accompanied by extensive field validation, and coordinated with satellite altimeter overpasses. Using freeboard and thickness, the bulk density of all ice types was calculated assuming hydrostatic equilibrium. Significant density steps were detected between first-year and multi-year sea ice, with higher values for the younger sea ice. Values are overestimated in areas with abundance of sub-ice platelets because of overestimation in both ice thickness and freeboard. On the ice shelf, bulk ice densities were sometimes higher than that of pure ice, which can be explained by both the accretion of marine ice and glacial sediments. For thin ice, the freeboard to thickness conversion critically depends on the knowledge of snow properties. Our measurements allow tuning and validation of snow cover simulations using the Weather Research Forecasting (WRF) model. The simulated snowcover is used to calculate ice thickness from satellite derived freeboard. The results of our measurements, which are supported by the New Zealand Antarctic programme, draw a picture of how oceanographic processes influence the ice shelf morphology and sea ice formation in McMurdo Sound, and how satellite derived freeboard of ICESat and CryoSat together with information on snow cover can potentially capture the signature of these processes.
NASA Astrophysics Data System (ADS)
Lazeroms, Werner M. J.; Jenkins, Adrian; Hilmar Gudmundsson, G.; van de Wal, Roderik S. W.
2018-01-01
Basal melting below ice shelves is a major factor in mass loss from the Antarctic Ice Sheet, which can contribute significantly to possible future sea-level rise. Therefore, it is important to have an adequate description of the basal melt rates for use in ice-dynamical models. Most current ice models use rather simple parametrizations based on the local balance of heat between ice and ocean. In this work, however, we use a recently derived parametrization of the melt rates based on a buoyant meltwater plume travelling upward beneath an ice shelf. This plume parametrization combines a non-linear ocean temperature sensitivity with an inherent geometry dependence, which is mainly described by the grounding-line depth and the local slope of the ice-shelf base. For the first time, this type of parametrization is evaluated on a two-dimensional grid covering the entire Antarctic continent. In order to apply the essentially one-dimensional parametrization to realistic ice-shelf geometries, we present an algorithm that determines effective values for the grounding-line depth and basal slope in any point beneath an ice shelf. Furthermore, since detailed knowledge of temperatures and circulation patterns in the ice-shelf cavities is sparse or absent, we construct an effective ocean temperature field from observational data with the purpose of matching (area-averaged) melt rates from the model with observed present-day melt rates. Our results qualitatively replicate large-scale observed features in basal melt rates around Antarctica, not only in terms of average values, but also in terms of the spatial pattern, with high melt rates typically occurring near the grounding line. The plume parametrization and the effective temperature field presented here are therefore promising tools for future simulations of the Antarctic Ice Sheet requiring a more realistic oceanic forcing.
NASA Astrophysics Data System (ADS)
Long, X.; Zhao, S.; Feng, T.; Tie, X.; Li, G.
2017-12-01
China has undergone severe air pollution during wintertime as national industrialization and urbanization have been increasingly developed in the past three decades. It has been suggested that high emission and adverse weather patterns contribute to wintertime air pollution. Recent studies propose that climate change and Arctic sea ice loss likely lead to extreme haze events in winter. Here we use two reanalysis and observational datasets to present the trends of Siberian High (SH) intensity over Eurasia, and Arctic temperature and sea ice. The results show the Arctic region of Asia is becoming warming accompanied by a rapid decline of sea ice while Eurasia is cooling and SH intensity is gradually enhancing. Wind patterns induced by these changes cause straight westerly prevailing over Eurasia at the year of weak SH while strengthened northerly winds at the year of strong SH. Therefore, we utilize regional dynamical and chemical WRF-Chem model to determine the impact of SH intensity difference on wintertime air pollution in China. As a result, enhancing northerly winds at the year of strong SH rapidly dilute and transport air pollution, causing a decline of 50 - 400 µg m-3 PM2.5 concentrations relative to that at the year of weak SH. We also assess the impact of emission reduction to half the current level on air pollution. The results show that emission reduction by 50% has an equivalent impact as the variability of SH intensity. This suggests that climate change over Eurasia has largely offset the negative impact of emission on air pollution and it is urgently needed to take measures to mitigate air pollution. In view of current high emission scenario in China, it will be a long way to effectively mitigate, or ultimately prevent wintertime air pollution.
Measurement campaign for wind power potential in west Greenland
NASA Astrophysics Data System (ADS)
Rønnow Jakobsen, Kasper
2013-04-01
Experiences and results from a wind resource exploring campaign 2003- in west Greenland. Like many other countries, Greenland is trying to reduce its dependency of fossil fuel by implementing renewable energy. The main challenge is that the people live on the coast in scattered settlements, without power infrastructure. Based on this a wind power potential project was established in 2002, funded by the Greenlandic government and the Technical University of Denmark. We present results and experiences of the campaign. 1 Field campaign There were only a few climate stations in or close to settlements and due to their positioning and instrumentation, they were not usable for wind resource estimation. To establish met stations in Arctic areas with complex topography, there are some challenges to face; mast positioning in complex terrain, severe weather conditions, instrumentation, data handling, installation and maintenance budget. The terrain in the ice free and populated part, mainly consists of mountains of different heights and shapes, separated by deep fjords going from the ice cap to the sea. With a generally low wind resource the focus was on the most exposed positions close to the settlements. Data from the nearest existing climate stations was studied for background estimations of predominant wind directions and extreme wind speeds, and based on that the first 10m masts were erected in 2003. 2 Instruments The first installations used standard NRG systems with low cost NRG instruments. For most of the sites this low cost setup did a good job, but there were some problems with the first design, including instrument and boom strains. In subsequent years, the systems were updated several times to be able to operate in the extreme conditions. Different types of instruments, data logger and boom systems were tested to get better data quality and reliability. Today 11 stations with heights ranging from 10-50m are installed and equipped according to the IEC standard. During the first years, the influence of instrument icing was not considered, but recently one of the sites was equipped with an ice rate sensor and a heated ultrasonic anemometer to study the ice influence. 3 Results The predominant wind direction for most sites is away from the ice cap at the center of the continent, but for some coastal sites it is north or south. The north-south wind pattern is expected from the synoptic patterns and the barrier effect of the ice cap. The sites where the predominant wind direction is away from the inland ice are dominated by katabatic wind systems from the ice cap and form valley systems. These sites also seem to have the highest wind resource and will be studied further. A good example of the influence of katabatic and thermal wind systems can be seen in the measurement data from Sarfannguit and Nanortalik 66 and 60 degrees northern latitude respectively. In future work, these katabatic flows and their impact on the wind resource will be studied using mesoscale modelling and microscale downscaling.
Ocean Profile Measurements During the Seasonal Ice Zone Reconnaissance Surveys Ocean Profiles
2017-01-01
repeated ocean, ice, and atmospheric measurements across the Beaufort-Chukchi sea seasonal sea ice zone (SIZ) utilizing US Coast Guard Arctic Domain...contributing to the rapid decline in summer ice extent that has occurred in recent years. The SIZ is the region between maximum winter sea ice extent and...minimum summer sea ice extent. As such, it contains the full range of positions of the marginal ice zone (MIZ) where sea ice interacts with open water
NASA Astrophysics Data System (ADS)
Nilsson, Johan; Burgess, David
2014-05-01
The CryoSat mission was launched in 2010 to observe the Earth's cryosphere. In contrast to previous satellite radar altimeters, this mission is expected to monitor the elevation of small ice caps and glaciers, which according to the IPCC will be the largest contributor to 21st century sea level rise. To date the ESA CryoSat SARiN level-2 (L2) elevation product is not yet fully optimized for use over these types of glaciated regions, as its processed with a more universal algorithm. Thus the aim of this study is to demonstrate that with the use of improved processing CryoSat SARiN data can be used for more accurate topography mapping and elevation change detection for ice caps and glaciers. To demonstrate this, elevations and elevation changes over Barnes ice cap, located on Baffin Island in the Canadian Arctic, have been estimated from available data from the years 2010-2013. ESA's CryoSat level-1b (L1b) SARiN baseline "B" data product was used and processed in-house to estimate surface elevations. The resulting product is referred to as DTU-L2. The processing focused on improving the retracker, reducing phase noise and correcting phase ambiguities. The accuracy of the DTU-L2 and the ESA-L2 product was determined by comparing the measured elevations against NASA's IceBridge Airborne Topographic Mapper (ATM) elevations from May 2011. The resulting difference in accuracy was determined by comparing their associated errors. From the multi-temporal measurements spanning the period 2010-2013, elevation changes where estimated and compared to ICESat derived changes from 2003-2009. The result of the study shows good agreement between the NASA measured ATM elevations and the DTU-L2 data. It also shows that the pattern of elevation change is similar to that derived from ICESat data. The accuracy of the DTU-L2 estimated elevations is on average several factors higher compared to the ESA-L2 elevation product. These preliminary results demonstrates that CryoSat elevation data, using improved processing, can be used for accurate topographic mapping and elevation change detection on ice caps and glaciers. Future work would entail extending this processing to other regions of this type to support these results.
Simple Rules Govern the Patterns of Arctic Sea Ice Melt Ponds
NASA Astrophysics Data System (ADS)
Popović, Predrag; Cael, B. B.; Silber, Mary; Abbot, Dorian S.
2018-04-01
Climate change, amplified in the far north, has led to rapid sea ice decline in recent years. In the summer, melt ponds form on the surface of Arctic sea ice, significantly lowering the ice reflectivity (albedo) and thereby accelerating ice melt. Pond geometry controls the details of this crucial feedback; however, a reliable model of pond geometry does not currently exist. Here we show that a simple model of voids surrounding randomly sized and placed overlapping circles reproduces the essential features of pond patterns. The only two model parameters, characteristic circle radius and coverage fraction, are chosen by comparing, between the model and the aerial photographs of the ponds, two correlation functions which determine the typical pond size and their connectedness. Using these parameters, the void model robustly reproduces the ponds' area-perimeter and area-abundance relationships over more than 6 orders of magnitude. By analyzing the correlation functions of ponds on several dates, we also find that the pond scale and the connectedness are surprisingly constant across different years and ice types. Moreover, we find that ponds resemble percolation clusters near the percolation threshold. These results demonstrate that the geometry and abundance of Arctic melt ponds can be simply described, which can be exploited in future models of Arctic melt ponds that would improve predictions of the response of sea ice to Arctic warming.
Simple Rules Govern the Patterns of Arctic Sea Ice Melt Ponds.
Popović, Predrag; Cael, B B; Silber, Mary; Abbot, Dorian S
2018-04-06
Climate change, amplified in the far north, has led to rapid sea ice decline in recent years. In the summer, melt ponds form on the surface of Arctic sea ice, significantly lowering the ice reflectivity (albedo) and thereby accelerating ice melt. Pond geometry controls the details of this crucial feedback; however, a reliable model of pond geometry does not currently exist. Here we show that a simple model of voids surrounding randomly sized and placed overlapping circles reproduces the essential features of pond patterns. The only two model parameters, characteristic circle radius and coverage fraction, are chosen by comparing, between the model and the aerial photographs of the ponds, two correlation functions which determine the typical pond size and their connectedness. Using these parameters, the void model robustly reproduces the ponds' area-perimeter and area-abundance relationships over more than 6 orders of magnitude. By analyzing the correlation functions of ponds on several dates, we also find that the pond scale and the connectedness are surprisingly constant across different years and ice types. Moreover, we find that ponds resemble percolation clusters near the percolation threshold. These results demonstrate that the geometry and abundance of Arctic melt ponds can be simply described, which can be exploited in future models of Arctic melt ponds that would improve predictions of the response of sea ice to Arctic warming.
Supraglacial channel inception: Modeling and processes
NASA Astrophysics Data System (ADS)
Mantelli, E.; Camporeale, C.; Ridolfi, L.
2015-09-01
Supraglacial drainage systems play a key role in glacial hydrology. Nevertheless, physical processes leading to spatial organization in supraglacial networks are still an open issue. In the present work we thus address from a quantitative point of view the question of what is the physics leading to widely observed patterns made up of evenly spaced channels. To this aim, we set up a novel mathematical model describing a condition antecedent channel formation, i.e., the down-glacier flow of a distributed meltwater film. We then perform a linear stability analysis to assess whether the ice-water interface undergoes a morphological instability compatible with observed patterns. The instability is detected, its features depending on glacier surface slope, ice friction factor, and water as well as ice thermal conditions. By contrast, in our model channel spacing is solely hydrodynamically driven and relies on the interplay between pressure perturbations, flow depth response, and Reynolds stresses. Geometrical features of the predicted pattern are quantitatively consistent with available field data. The hydrodynamic origin of supraglacial channel morphogenesis suggests that alluvial patterns might share the same physical controls.
NASA Astrophysics Data System (ADS)
Falk, U.; Sala, H.; Braun, M.
2012-12-01
The Antarctic Peninsula is amongst the fastest warming places on Earth and further temperature increase is to be expected. It has undergone rapid environmental changes in the past decades. Exceptional rates of surface air temperature increases (2.5K in 50 years) are concurrent with retreating glacier fronts, an increase in melt areas, surface lowering and rapid retreat of glaciers, break-up and disintegration of ice shelves. The South Shetland Islands are located on the northern tip of the Antarctic Peninsula and are especially vulnerable to climate change due to their maritime climate. For King George Island we have compiled a unique data set comprising direct measurements of evaporation and sensible heat flux by eddy covariance on the Warszawa Icefield over 1.5 years from November 2010 to 2012 in combination with a fully equipped automated weather station measuring long- and short-wave radiation components, profiles of temperature, humidity and wind velocities as well as glacier ice temperatures. The combination with the eddy covariance data allows for analysis of variability and seasonality of surface energy balance components on a glacier for one and a half years. Repeat measurements of snow accumulation and surface lowering along transects on the glacier and at different locations on King George Island are used for analysis of multi-sensor satellite data to identify melt patterns and bare ice areas during summer within the source area of the ground measurements. In combination with long-term time series of weather data, these data give indication of the sensitivity of the ice cap to the ongoing changes. This research is part of the ESF project IMCOAST funded by BMBF. Field work was carried out at the Dallmann laboratory (Carlini station, King George Island/Isla 25 de Mayo) in cooperation of the Instituto Antartico Argentino (Argentina) and the Alfred-Wegener Institute of Marine and Polar Research (Germany).
Epidemic of fractures during a period of snow and ice: has anything changed 33 years on?
Al-Azzani, Waheeb; Adam Maliq Mak, Danial; Hodgson, Paul; Williams, Rhodri
2016-01-01
Objectives We reproduced a frequently cited study that was published in the British Medical Journal (BMJ) in 1981 assessing the extent of ‘snow-and-ice’ fractures during the winter period. Setting This study aims to provide an insight into how things have changed within the same emergency department (ED) by comparing the findings of the BMJ paper published 33 years ago with the present date. Participants As per the original study, all patients presenting to the ED with a radiological evidence of fracture during three different 4-day periods were included. The three 4-day periods included 4 days of snow-and-ice conditions and two control 4-day periods when snow and ice was not present; the first was 4 days within the same year, with a similar amount of sunshine hours, and the second was 4 days 1 calendar year later. Primary and secondary outcome measures To identify the frequency, distribution and pattern of fractures sustained in snow-and-ice conditions compared to control conditions as well as comparisons with the index study 33 years ago. Results A total of 293 patients with fractures were identified. Overall, there was a 2.20 (CI 1.7 to 3.0, p <0.01) increase in risk of fracture during snow-and-ice periods compared to control conditions. There was an increase (p <0.01) of fractures of the arm, forearm and wrist (RR 3.2 (CI 1.4 to 7.6) and 2.9 (CI 1.5 to 5.4) respectively). Conclusions While the relative risk was not of the magnitude 33 years ago, the overall number of patients presenting with a fracture during snow-and-ice conditions remains more than double compared to control conditions. This highlights the need for improved understanding of the impact of increased fracture burden on hospitals and more effective preventative measures. PMID:27630066
Evaluation of factors affecting ice forces at selected bridges in South Dakota
Niehus, Colin A.
2002-01-01
During 1998-2002, the U.S. Geological Survey, in cooperation with the South Dakota Department of Transportation (SDDOT), conducted a study to evaluate factors affecting ice forces at selected bridges in South Dakota. The focus of this ice-force evaluation was on maximum ice thickness and ice-crushing strength, which are the most important variables in the SDDOT bridge-design equations for ice forces in South Dakota. Six sites, the James River at Huron, the James River near Scotland, the White River near Oacoma/Presho, the Grand River at Little Eagle, the Oahe Reservoir near Mobridge, and the Lake Francis Case at the Platte-Winner Bridge, were selected for collection of ice-thickness and ice-crushing-strength data. Ice thickness was measured at the six sites from February 1999 until April 2001. This period is representative of the climate extremes of record in South Dakota because it included both one of the warmest and one of the coldest winters on record. The 2000 and 2001 winters were the 8th warmest and 11th coldest winters, respectively, on record at Sioux Falls, South Dakota, which was used to represent the climate at all bridges in South Dakota. Ice thickness measured at the James River sites at Huron and Scotland during 1999-2001 ranged from 0.7 to 2.3 feet and 0 to 1.7 feet, respectively, and ice thickness measured at the White River near Oacoma/Presho site during 2000-01 ranged from 0.1 to 1.5 feet. At the Grand River at Little Eagle site, ice thickness was measured at 1.2 feet in 1999, ranged from 0.5 to 1.2 feet in 2000, and ranged from 0.2 to 1.4 feet in 2001. Ice thickness measured at the Oahe Reservoir near Mobridge site ranged from 1.7 to 1.8 feet in 1999, 0.9 to 1.2 feet in 2000, and 0 to 2.2 feet in 2001. At the Lake Francis Case at the Platte-Winner Bridge site, ice thickness ranged from 1.2 to 1.8 feet in 2001. Historical ice-thickness data measured by the U.S. Geological Survey (USGS) at eight selected streamflow-gaging stations in South Dakota were compiled for 1970-97. The gaging stations included the Grand River at Little Eagle, the White River near Oacoma, the James River near Scotland, the James River near Yankton, the Vermillion River near Wakonda, the Vermillion River near Vermillion, the Big Sioux River near Brookings, and the Big Sioux River near Dell Rapids. Three ice-thickness-estimation equations that potentially could be used for bridge design in South Dakota were selected and included the Accumulative Freezing Degree Day (AFDD), Incremental Accumulative Freezing Degree Day (IAFDD), and Simplified Energy Budget (SEB) equations. These three equations were evaluated by comparing study-collected and historical ice-thickness measurements to equation-estimated ice thicknesses. Input data required by the equations either were collected or compiled for the study or were obtained from the National Weather Service (NWS). An analysis of the data indicated that the AFDD equation best estimated ice thickness in South Dakota using available data sources with an average variation about the measured value of about 0.4 foot. Maximum potential ice thickness was estimated using the AFDD equation at 19 NWS stations located throughout South Dakota. The 1979 winter (the coldest winter on record at Sioux Falls) was the winter used to estimate the maximum potential ice thickness. The estimated maximum potential ice thicknesses generally are largest in northeastern South Dakota at about 3 feet and are smallest in southwestern and south-central South Dakota at about 2 feet. From 1999 to 2001, ice-crushing strength was measured at the same six sites where ice thickness was measured. Ice-crushing-strength measurements were done both in the middle of the winter and near spring breakup. The maximum ice-crushing strengths were measured in the mid- to late winter before the spring thaw. Measured ice-crushing strengths were much smaller near spring breakup. Ice-crushing strength measured at the six sites
Measurement of spectral sea ice albedo at Qaanaaq fjord in northwest Greenland
NASA Astrophysics Data System (ADS)
Tanikawa, T.
2017-12-01
The spectral albedos of sea ice were measured at Qaanaaq fjord in northwest Greenland. Spectral measurements were conducted for sea ice covered with snow and sea ice without snow where snow was artificially removed around measurement point. Thickness of the sea ice was approximately 1.3 m with 5 cm of snow over the sea ice. The measurements show that the spectral albedos of the sea ice with snow were lower than those of natural pure snow especially in the visible regions though the spectral shapes were similar to each other. This is because the spectral albedos in the visible region have information of not only the snow but also the sea ice under the snow. The spectral albedos of the sea ice without the snow were approximately 0.4 - 0.5 in the visible region, 0.05-0.25 in the near-infrared region and almost constant of approximately 0.05 in the region of 1500 - 2500 nm. In the visible region, it would be due to multiple scattering by an air bubble within the sea ice. In contrast, in the near-infrared and shortwave infrared wavelengths, surface reflection at the sea ice surface would be dominant. Since a light absorption by the ice in these regions is relatively strong comparing to the visible region, the light could not be penetrated deeply within the sea ice, resulting that surface reflection based on Fresnel reflection would be dominant. In this presentation we also show the results of comparison between the radiative transfer calculation and spectral measurement data.
Past collapse and late Holocene reestablishment of the Petermann Ice Tongue, Northwest Greenland
NASA Astrophysics Data System (ADS)
Reilly, B. T.; Stoner, J. S.; Mix, A. C.; Jakobsson, M.; Jennings, A. E.; Walczak, M.; Dyke, L. M.
2017-12-01
Petermann Glacier, Northwest Greenland, has been a stable outlet glacier of the Greenland Ice Sheet on historical timescales. Yet, anomalous calving events in 2010 and 2012 and oceanographic studies over the last decade indicate that Petermann Glacier and its ice tongue are especially sensitive to ice-ocean interactions, leading many to speculate on its future stability. To place these observations in the context of a longer timeframe and better understand the sensitivity of Petermann Glacier to future climate change, a 2015 international and interdisciplinary expedition of the Icebreaker Oden collected a suite of sediment cores from Petermann Fjord, spanning the mid to late Holocene and forming a transect from beneath the modern ice tongue to the mouth of the fjord (25 - 80 km from the modern grounding line). We characterize the stratigraphy ( 5.5 - 6.5 m at piston core sites) using a combination of X-ray fluorescence (XRF) scanning geochemistry, computed tomography (CT) scanning, and particle-size specific magnetic measurements on these cores and nearby terrestrial samples. Age-depth modeling, based on radiocarbon dated benthic foraminifera, is in progress with reservoir age corrections assessed using paleomagnetic comparisons to regional and global records. We observe changes in the composition and spatial pattern of ice rafted debris (IRD) and sediment fabric that reveal a dynamic history. Following early Holocene deglaciation of the region, a paleo-ice tongue broke up and an extended period of seasonally open marine conditions ensued through the middle Holocene. This ice-tongue collapse was followed by a large increase in the relative abundance of Petermann sourced IRD of non-local granitic composition. This granitic IRD component steadily declined through the middle Holocene, reaching negligible contributions when the ice tongue was reestablished in the late Holocene. Regional paleoenvironmental studies suggest warmer oceanographic and atmospheric conditions around Northwest Greenland in the middle Holocene, offering an opportunity to study the sensitivity of one of Greenland's major outlet glaciers to environmental forcing.
In Situ Quantification of Experimental Ice Accretion on Tree Crowns Using Terrestrial Laser Scanning
Nock, Charles A.; Greene, David; Delagrange, Sylvain; Follett, Matt; Fournier, Richard; Messier, Christian
2013-01-01
In the eastern hardwood forests of North America ice storms are an important disturbance event. Ice storms strongly influence community dynamics as well as urban infrastructure via catastrophic branch failure; further, the severity and frequency of ice storms are likely to increase with climate change. However, despite a long-standing interest into the effects of freezing rain on forests, the process of ice accretion and thus ice loading on branches remains poorly understood. This is because a number of challenges have prevented in situ measurements of ice on branches, including: 1) accessing and measuring branches in tall canopies, 2) limitations to travel during and immediately after events, and 3) the unpredictability of ice storms. Here, utilizing a novel combination of outdoor experimental icing, manual measurements and terrestrial laser scanning (TLS), we perform the first in situ measurements of ice accretion on branches at differing heights in a tree crown and with increasing duration of exposure. We found that TLS can reproduce both branch and iced branch diameters with high fidelity, but some TLS instruments do not detect ice. Contrary to the expectations of ice accretion models, radial accretion varied sharply within tree crowns. Initially, radial ice accretion was similar throughout the crown, but after 6.5 hours of irrigation (second scanning) radial ice accretion was much greater on upper branches than on lower (∼factor of 3). The slope of the change in radial ice accretion along branches increased with duration of exposure and was significantly greater at the second scanning compared to the first. We conclude that outdoor icing experiments coupled with the use of TLS provide a robust basis for evaluation of models of ice accretion and breakage in tree crowns, facilitating estimation of the limiting breaking stress of branches by accurate measurements of ice loads. PMID:23741409
NASA Astrophysics Data System (ADS)
Wongpan, P.; Meiners, K. M.; Langhorne, P. J.; Heil, P.; Smith, I. J.; Leonard, G. H.; Massom, R. A.; Clementson, L. A.; Haskell, T. G.
2018-03-01
Fast ice is an important component of Antarctic coastal marine ecosystems, providing a prolific habitat for ice algal communities. This work examines the relationships between normalized difference indices (NDI) calculated from under-ice radiance measurements and sea ice algal biomass and snow thickness for Antarctic fast ice. While this technique has been calibrated to assess biomass in Arctic fast ice and pack ice, as well as Antarctic pack ice, relationships are currently lacking for Antarctic fast ice characterized by bottom ice algae communities with high algal biomass. We analyze measurements along transects at two contrasting Antarctic fast ice sites in terms of platelet ice presence: near and distant from an ice shelf, i.e., in McMurdo Sound and off Davis Station, respectively. Snow and ice thickness, and ice salinity and temperature measurements support our paired in situ optical and biological measurements. Analyses show that NDI wavelength pairs near the first chlorophyll a (chl a) absorption peak (≈440 nm) explain up to 70% of the total variability in algal biomass. Eighty-eight percent of snow thickness variability is explained using an NDI with a wavelength pair of 648 and 567 nm. Accounting for pigment packaging effects by including the ratio of chl a-specific absorption coefficients improved the NDI-based algal biomass estimation only slightly. Our new observation-based algorithms can be used to estimate Antarctic fast ice algal biomass and snow thickness noninvasively, for example, by using moored sensors (time series) or mapping their spatial distributions using underwater vehicles.
From the clouds to the ground - snow precipitation patterns vs. snow accumulation patterns
NASA Astrophysics Data System (ADS)
Gerber, Franziska; Besic, Nikola; Mott, Rebecca; Gabella, Marco; Germann, Urs; Bühler, Yves; Marty, Mauro; Berne, Alexis; Lehning, Michael
2017-04-01
Knowledge about snow distribution and snow accumulation patterns is important and valuable for different applications such as the prediction of seasonal water resources or avalanche forecasting. Furthermore, accumulated snow on the ground is an important ground truth for validating meteorological and climatological model predictions of precipitation in high mountains and polar regions. Snow accumulation patterns are determined by many different processes from ice crystal nucleation in clouds to snow redistribution by wind and avalanches. In between, snow precipitation undergoes different dynamical and microphysical processes, such as ice crystal growth, aggregation and riming, which determine the growth of individual particles and thereby influence the intensity and structure of the snowfall event. In alpine terrain the interaction of different processes and the topography (e.g. lifting condensation and low level cloud formation, which may result in a seeder-feeder effect) may lead to orographic enhancement of precipitation. Furthermore, the redistribution of snow particles in the air by wind results in preferential deposition of precipitation. Even though orographic enhancement is addressed in numerous studies, the relative importance of micro-physical and dynamically induced mechanisms on local snowfall amounts and especially snow accumulation patterns is hardly known. To better understand the relative importance of different processes on snow precipitation and accumulation we analyze snowfall and snow accumulation between January and March 2016 in Davos (Switzerland). We compare MeteoSwiss operational weather radar measurements on Weissfluhgipfel to a spatially continuous snow accumulation map derived from airborne digital sensing (ADS) snow height for the area of Dischma valley in the vicinity of the weather radar. Additionally, we include snow height measurements from automatic snow stations close to the weather radar. Large-scale radar snow accumulation patterns show a snowfall gradient consistent with the prevailing wind direction. Deriving snow accumulation based on radar data is challenging as the close-ground precipitation patters cannot be resolved by the radar due to shielding and ground clutter in highly complex terrain. Nonetheless, radar measurements show distinct patterns of snowfall and accumulation, which may be the result of orographic enhancement. Station-based snow accumulation measurements are in reasonable agreement with the estimated large-scale radar snow accumulation. The ADS-based snow accumulation maps feature much smaller scale snow accumulation patterns likely due to close-ground wind effects and snow redistribution on top of an altitudinal gradient. To evaluate microphysical processes and patterns influenced by the topography we run a hydrometeor classification on the radar data. The relative importance of topographically induced effects on snow accumulation patterns is investigated based on vertical cross sections of hydrometeor data and corresponding snow accumulation.
NASA Astrophysics Data System (ADS)
MacLean, B.; Blasco, S.; Bennett, R.; Lakeman, T.; Pieńkowski, A. J.; Furze, M. F. A.; Hughes Clarke, J.; Patton, E.
2017-03-01
Multibeam imagery and 3.5 kHz sub-bottom profiles acquired from CCGS Amundsen between 2003 and 2013 by ArcticNet and the Ocean Mapping Group at the University of New Brunswick provide information on seafloor features, geology, bathymetry and morphology in eastern Parry Channel and the adjoining large channels in the Canadian Arctic Archipelago. Together these include Peel Sound, Barrow Strait, Lancaster Sound, Wellington Channel, Prince Regent Inlet, Admiralty Inlet and Navy Board Inlet. Those data are in part complemented by high resolution single channel seismic reflection profiles acquired by the Geological Survey of Canada in the 1970s and 1980s and by sediment cores that provide chronological and depositional information. The occurrence and pattern of streamlined mega-scale ridge and groove lineations (MSGLs) indicate that these waterways were occupied by glacial ice streams in the past. Chronological information from marine and adjoining terrestrial areas suggests a long history of glacial events ranging in time from Early Pleistocene to Late Wisconsinan. Seafloor morphology and MSGL trends together with terrestrial ice flow patterns indicate that ice streams flowed into Barrow Strait from Peel Sound and Wellington Channel, and ice streams in Prince Regent, Admiralty and Navy Board inlets flowed northward into and eastward along Lancaster Sound. Recession of the ice stream westward along Parry Channel occurred ∼16 cal ka BP to 10.8 cal ka BP. Thick ice-contact sediments deposited by a late ice advance from Prince Regent Inlet constitute the seabed across a large area of western Lancaster Sound. Timing for that late ice advance appears to be bracketed between the 11.5 cal ka BP lift-off of the eastern Parry ice stream north of Prince Leopold Island and the ∼10.0 cal ka BP deglaciation of Prince Regent Inlet. Seafloor morphology and lineation trends suggest that ice delivered by the ice stream in Peel Sound was the westernmost tributary to the ice stream occupying Lancaster Sound during the late Wisconsinan glaciation. Bathymetric data and MSGLs indicate that the ice stream emanating from M'Clintock Channel flowed westward.
Development and test of a Microwave Ice Accretion Measurement Instrument (MIAMI)
NASA Technical Reports Server (NTRS)
Magenheim, B.; Rocks, J. K.
1982-01-01
The development of an ice accretion measurement instrument that is a highly sensitive, accurate, rugged and reliable microprocessor controlled device using low level microwave energy for non-instrusive real time measurement and recording of ice growth history, including ice thickness and accretion rate is discussed. Data is displayed and recorded digitally. New experimental data is presented, obtained with the instrument, which demonstrates its ability to measure ice growth on a two-dimensional airfoil. The device is suitable for aircraft icing protection. It may be mounted flush, non-intrusively, on any part of an aircraft skin including rotor blades and engine inlets.
Assessing the Extent of Influence Subglacial Hydrology Has on Dynamic Ice Sheet Behavior
NASA Astrophysics Data System (ADS)
Babonis, G. S.; Csatho, B. M.
2012-12-01
Numerous recent studies have done an excellent job capturing and quantifying the complex pattern of dynamic changes of the Greenland Ice Sheet (GrIS) over the past several decades. The timing of changes in ice velocities and mass balance indicate that the mechanisms controlling these behaviors, both external and internal, act over variable spatial and temporal regimes, can change in rapid and complex fashion, and have significant effect on ice sheet behavior as well as sea level rise. With roughly half of the estimated ice loss from the GrIS attributed to dynamic processes, these changes account for about 250 Gt/yr (2003-2008), equivalence to 0.6 mm/yr sea level rise. One of the primary influences of dynamic ice behavior is ice sheet hydrology, including the storage and transport of water from the supraglacial to subglacial environment, and the subsequent development of water transport pathways, thus demonstrating the need for further characterization of the subglacial environment. Enhanced dynamic flow of ice due to the influence of meltwater distribution on the subglacial environment has been reported, including In-SAR observations of large velocity increases over short periods of time, suggesting regions where dynamic changes are likely being caused by changes in hydrology. Additionally, building upon the 1993-2011 laser altimetry record, analyzed by our Surface Elevation Reconstruction And Change detection (SERAC) procedure, we have detected complex patterns of rapid thickening and thinning patterns over several outlet glaciers. This study presents a comprehensive investigation of hydrologic control on dynamic glacier behavior for several key sites in Greenland. We combine a high resolution surface digital elevation model (DEM) derived by fusing space- and airborne laser altimetry observations and SPIRIT SPOT DEMs, with a high resolution, hydrologically-corrected bedrock DEM derived from a combination of CResIS and Operation Icebridge ice penetrating radar data for generating potentiometric maps for each region of interest. Using these potentiometric maps, along with surficial DEMs, supra- and subglacial routing paths, as well as potential sites for discrete supraglacial hydrologic input sources are identified. Comparison of hydrologic drainage networks with the spatial distribution of recent rapid dynamic changes detected by altimetry allows for the assessment of the extent of influence that subglacial hydrology has on ice sheet behavior.
Role of the Polar Oceans in Global Climate
NASA Technical Reports Server (NTRS)
Rothrock, D. A.
2003-01-01
The project focused on ice-ocean model development and in particular on the assimilation of ice motion data and ice concentration data into both regional and global models. Many of the resulting publications below deal with improvements made in the physics treated by the model and the procedures for assimilating data. Several papers examine how the ability of the model to simulate the past behavior of the ice cover, especially to represent the ice thickness and ice deformation, is improved by data assimilation. A second aspect of the work involved interpretation of modeled behavior. Resulting papers treat the decline of arctic ice thickness over the last thirty years, and how that decline was caused by a slight warming of the near-surface atmosphere, and also how large variation in ice thickness are due to changes in wind patterns associated with a well- known oscillation of the atmospheric circulation. The research resulted in over 20 published papers on these topics.
STS-48 ESC Earth observation of ice pack, Antarctic Ice Shelf
NASA Technical Reports Server (NTRS)
1991-01-01
STS-48 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is of the breakup of pack ice along the periphery of the Antarctic Ice Shelf. Strong offshore winds, probably associated with katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filaments of sea ice, icebergs, bergy bits, and growlers to flow northward into the South Atlantic Ocean. These photos are used to study ocean wind, tide and current patterns. Similar views photographed during previous missions, when analyzed with these recent views may yield information about regional ice drift and breakup of ice packs. The image was captured using an electronic still camera (ESC), was stored on a removable hard disk or small optical disk, and was converted to a format suitable for downlink transmission. The ESC documentation was part of Development Test Objective (DTO) 648, Electronic Still Photography.
Accelerated West Antarctic ice mass loss continues to outpace East Antarctic gains
NASA Astrophysics Data System (ADS)
Harig, Christopher; Simons, Frederik J.
2015-04-01
While multiple data sources have confirmed that Antarctica is losing ice at an accelerating rate, different measurement techniques estimate the details of its geographically highly variable mass balance with different levels of accuracy, spatio-temporal resolution, and coverage. Some scope remains for methodological improvements using a single data type. In this study we report our progress in increasing the accuracy and spatial resolution of time-variable gravimetry from the Gravity Recovery and Climate Experiment (GRACE). We determine the geographic pattern of ice mass change in Antarctica between January 2003 and June 2014, accounting for glacio-isostatic adjustment (GIA) using the IJ05_R2 model. Expressing the unknown signal in a sparse Slepian basis constructed by optimization to prevent leakage out of the regions of interest, we use robust signal processing and statistical estimation methods. Applying those to the latest time series of monthly GRACE solutions we map Antarctica's mass loss in space and time as well as can be recovered from satellite gravity alone. Ignoring GIA model uncertainty, over the period 2003-2014, West Antarctica has been losing ice mass at a rate of - 121 ± 8 Gt /yr and has experienced large acceleration of ice mass losses along the Amundsen Sea coast of - 18 ± 5 Gt /yr2, doubling the mass loss rate in the past six years. The Antarctic Peninsula shows slightly accelerating ice mass loss, with larger accelerated losses in the southern half of the Peninsula. Ice mass gains due to snowfall in Dronning Maud Land have continued to add about half the amount of West Antarctica's loss back onto the continent over the last decade. We estimate the overall mass losses from Antarctica since January 2003 at - 92 ± 10 Gt /yr.
Marginal Ice Zone (MIZ) Program: Science and Experiment Plan
2012-10-01
decline and greatest loss in arctic summer ice (Shimada et al ., 2006 ). The Beaufort Sea lends its name to the Beaufort Gyre, the anti-cyclonic...which in turn influences regional atmospheric circulation patterns and temperature profiles, especially along the seasonal MIZ (Rinke et al ., 2006 ...coupling (Krinner et al ., 2010; Gerdes, 2006 ). Both for scientific and practical reasons, prediction of sea ice cover is particularly important as it
Invariant polar bear habitat selection during a period of sea ice loss.
Wilson, Ryan R; Regehr, Eric V; Rode, Karyn D; St Martin, Michelle
2016-08-17
Climate change is expected to alter many species' habitat. A species' ability to adjust to these changes is partially determined by their ability to adjust habitat selection preferences to new environmental conditions. Sea ice loss has forced polar bears (Ursus maritimus) to spend longer periods annually over less productive waters, which may be a primary driver of population declines. A negative population response to greater time spent over less productive water implies, however, that prey are not also shifting their space use in response to sea ice loss. We show that polar bear habitat selection in the Chukchi Sea has not changed between periods before and after significant sea ice loss, leading to a 75% reduction of highly selected habitat in summer. Summer was the only period with loss of highly selected habitat, supporting the contention that summer will be a critical period for polar bears as sea ice loss continues. Our results indicate that bears are either unable to shift selection patterns to reflect new prey use patterns or that there has not been a shift towards polar basin waters becoming more productive for prey. Continued sea ice loss is likely to further reduce habitat with population-level consequences for polar bears. © 2016 The Author(s).
On ice rifts and the stability of non-Newtonian extensional flows on a sphere
NASA Astrophysics Data System (ADS)
Sayag, Roiy
2017-11-01
Rifts that form at the fronts of floating ice shelves that spread into the ocean can trigger major calving events in the ice. The deformation of ice can be modeled as a thin viscous film driven by buoyancy. The front of such a viscous film that propagates over a flat surface with no-slip basal conditions is known to have stable axisymmetric solutions. In contrast, when the fluid propagates under free-slip conditions at the substrate, the front can become unstable to small perturbations if the fluid is sufficiently strain-rate softening. Consequently, the front will develop tongues with a characteristic wavelength that coarsens over time, a pattern that is reminiscent of ice rifts. Here we investigate the stability of a spherical sheet of power-law fluids under free-slip basal conditions. The fluid is discharged at constant flux and axisymmetrically with respect to the pole, and propagates towards the equator. The propagating front in such a situation may become unstable due to its failure to sustain large extensional forces, resulting in the formation of rifts. This study has implications to understanding the cause of patterns that are observed on shells of floating ice in a range of planetary objects, and whether open rifts that sustain life were feasible in snowball earth. Israel Science Foundation 1368/16.
Newly Formed Sea Ice in Arctic Leads Monitored by C- and L-Band SAR
NASA Astrophysics Data System (ADS)
Johansson, A. Malin; Brekke, Camilla; Spreen, Gunnar; King, Jennifer A.; Gerland, Sebastian
2016-08-01
We investigate the scattering entropy and co-polarization ratio for Arctic lead ice using C- and L-band synthetic aperture radar (SAR) satellite scenes. During the Norwegian Young sea ICE (N-ICE2015) cruise campaign overlapping SAR scenes, helicopter borne sea ice thickness measurements and photographs were collected. We can therefore relate the SAR signal to sea ice thickness measurements as well as photographs taken of the sea ice. We show that a combination of scattering and co-polarization ratio values can be used to distinguish young ice from open water and surrounding sea ice.
A laser-based ice shape profilometer for use in icing wind tunnels
NASA Technical Reports Server (NTRS)
Hovenac, Edward A.; Vargas, Mario
1995-01-01
A laser-based profilometer was developed to measure the thickness and shape of ice accretions on the leading edge of airfoils and other models in icing wind tunnels. The instrument is a hand held device that is connected to a desk top computer with a 10 meter cable. It projects a laser line onto an ice shape and used solid state cameras to detect the light scattered by the ice. The instrument corrects the image for camera angle distortions, displays an outline of the ice shape on the computer screen, saves the data on a disk, and can print a full scale drawing of the ice shape. The profilometer has undergone extensive testing in the laboratory and in the NASA Lewis Icing Research Tunnel. Results of the tests show very good agreement between profilometer measurements and known simulated ice shapes and fair agreement between profilometer measurements and hand tracing techniques.
NASA Astrophysics Data System (ADS)
Ladino, Luis A.; Korolev, Alexei; Heckman, Ivan; Wolde, Mengistu; Fridlind, Ann M.; Ackerman, Andrew S.
2017-02-01
Over the decades, the cloud physics community has debated the nature and role of aerosol particles in ice initiation. The present study shows that the measured concentration of ice crystals in tropical mesoscale convective systems exceeds the concentration of ice nucleating particles (INPs) by several orders of magnitude. The concentration of INPs was assessed from the measured aerosol particle concentration in the size range of 0.5 to 1 µm. The observations from this study suggest that primary ice crystals formed on INPs make only a minor contribution to the total concentration of ice crystals in tropical mesoscale convective systems. This is found by comparing the predicted INP number concentrations with in situ ice particle number concentrations. The obtained measurements suggest that ice multiplication is the likely explanation for the observed high concentrations of ice crystals in this type of convective system.
Ladino, Luis A.; Korolev, Alexei; Heckman, Ivan; Wolde, Mengistu; Fridlind, Ann M.; Ackerman, Andrew S.
2018-01-01
Over decades, the cloud physics community has debated the nature and role of aerosol particles in ice initiation. The present study shows that the measured concentration of ice crystals in tropical mesoscale convective systems exceeds the concentration of ice nucleating particles (INPs) by several orders of magnitude. The concentration of INPs was assessed from the measured aerosol particles concentration in the size range of 0.5 to 1 µm. The observations from this study suggest that primary ice crystals formed on INPs make only a minor contribution to the total concentration of ice crystals in tropical mesoscale convective systems. This is found by comparing the predicted INP number concentrations with in-situ ice particle number concentrations. The obtained measurements suggest that ice multiplication is the likely explanation for the observed high concentrations of ice crystals in this type of convective system. PMID:29551842
Brief Communication: Mapping river ice using drones and structure from motion
NASA Astrophysics Data System (ADS)
Alfredsen, Knut; Haas, Christian; Tuhtan, Jeffrey A.; Zinke, Peggy
2018-02-01
In cold climate regions, the formation and break-up of river ice is important for river morphology, winter water supply, and riparian and instream ecology as well as for hydraulic engineering. Data on river ice is therefore significant, both to understand river ice processes directly and to assess ice effects on other systems. Ice measurement is complicated due to difficult site access, the inherent complexity of ice formations, and the potential danger involved in carrying out on-ice measurements. Remote sensing methods are therefore highly useful, and data from satellite-based sensors and, increasingly, aerial and terrestrial imagery are currently applied. Access to low cost drone systems with quality cameras and structure from motion software opens up a new possibility for mapping complex ice formations. Through this method, a georeferenced surface model can be built and data on ice thickness, spatial distribution, and volume can be extracted without accessing the ice, and with considerably fewer measurement efforts compared to traditional surveying methods. A methodology applied to ice mapping is outlined here, and examples are shown of how to successfully derive quantitative data on ice processes.
NASA Technical Reports Server (NTRS)
Gray, Vernon H.
1958-01-01
An empirical relation has been obtained by which the change in drag coefficient caused by ice formations on an unswept NACA 65AO04 airfoil section can be determined from the following icing and operating conditions: icing time, airspeed, air total temperature, liquid-water content, cloud droplet impingement efficiencies, airfoil chord length, and angles of attack. The correlation was obtained by use of measured ice heights and ice angles. These measurements were obtained from a variety of ice formations, which were carefully photographed, cross-sectioned, and weighed. Ice weights increased at a constant rate with icing time in a rime icing condition and at progressively increasing rates in glaze icing conditions. Initial rates of ice collection agreed reasonably well with values predicted from droplet impingement data. Experimental droplet impingement rates obtained on this airfoil section agreed with previous theoretical calculations for angles of attack of 40 or less. Disagreement at higher angles of attack was attributed to flow separation from the upper surface of the experimental airfoil model.
Coupled macrospins: Mode dynamics in symmetric and asymmetric vertices
NASA Astrophysics Data System (ADS)
Bang, Wonbae; Jungfleisch, Matthias B.; Montoncello, Federico; Farmer, Barry W.; Lapa, Pavel N.; Hoffmann, Axel; Giovannini, Loris; De Long, Lance E.; Ketterson, John B.
2018-05-01
We report the microwave response of symmetric and asymmetric threefold clusters with nearly contacting segments that can serve as the node in a Kagome artificial spin ice lattice. The structures are patterned on a coplanar waveguide and consist of elongated and nearly-contacting ellipses with uniform thickness. Branches of the ferromagnetic resonance spectra display mode softening that correlates well with the calculations, whereas agreement between the measured and simulated static magnetization is more qualitative.
Coupled macrospins: Mode dynamics in symmetric and asymmetric vertices
Bang, Wonbae; Jungfleisch, Matthias B.; Montoncello, Federico; ...
2017-12-29
We report the microwave response of symmetric and asymmetric threefold clusters with nearly contacting segments that can serve as the node in a Kagome artificial spin ice lattice. The structures are patterned on a coplanar waveguide and consist of elongated and nearly-contacting ellipses with uniform thickness. Branches of the ferromagnetic resonance spectra display mode softening that correlates well with the calculations, whereas agreement between the measured and simulated static magnetization is more qualitative.
Signals from the south; humpback whales carry messages of Antarctic sea-ice ecosystem variability.
Bengtson Nash, Susan M; Castrillon, Juliana; Eisenmann, Pascale; Fry, Brian; Shuker, Jon D; Cropp, Roger A; Dawson, Amanda; Bignert, Anders; Bohlin-Nizzetto, Pernilla; Waugh, Courtney A; Polkinghorne, Bradley J; Dalle Luche, Greta; McLagan, David
2018-04-01
Southern hemisphere humpback whales (Megaptera novaeangliae) rely on summer prey abundance of Antarctic krill (Euphausia superba) to fuel one of the longest-known mammalian migrations on the planet. It is hypothesized that this species, already adapted to endure metabolic extremes, will be one of the first Antarctic consumers to show measurable physiological change in response to fluctuating prey availability in a changing climate; and as such, a powerful sentinel candidate for the Antarctic sea-ice ecosystem. Here, we targeted the sentinel parameters of humpback whale adiposity and diet, using novel, as well as established, chemical and biochemical markers, and assembled a time trend spanning 8 years. We show the synchronous, inter-annual oscillation of two measures of humpback whale adiposity with Southern Ocean environmental variables and climate indices. Furthermore, bulk stable isotope signatures provide clear indication of dietary compensation strategies, or a lower trophic level isotopic change, following years indicated as leaner years for the whales. The observed synchronicity of humpback whale adiposity and dietary markers, with climate patterns in the Southern Ocean, lends strength to the role of humpback whales as powerful Antarctic sea-ice ecosystem sentinels. The work carries significant potential to reform current ecosystem surveillance in the Antarctic region. © 2017 John Wiley & Sons Ltd.
Integrated Airborne and In-Situ Measurements over Land-Fast Ice near Barrow, AK
NASA Astrophysics Data System (ADS)
Brozena, J. M.; Gardner, J. M.; Liang, R.; Vermillion, M.; Ball, D.; Stoudt, C. A.; Geiger, C. A.; Woods, J. E.; Samluk, J.; Deliberty, T. L.
2013-12-01
During March of 2013, the Naval Research Laboratory, the University of Delaware and the US Naval Academy collected an integrated set of measurements over the largely floating, but land-fast ice near the coast of Barrow, AK. The purpose of the collection was to compare airborne remote sensing methods of collection to in-situ ground-truth measurements. Airborne measurements include scanning LiDAR (Riegl Q 680i), digital photogrammetry (Applanix DSS-439) and a short-pulse (~ 1 nsec) 10 GHz radar altimeter. The LiDAR measures total freeboard (ice + snow) referenced to leads in the ice. The radar measures approximate ice freeboard with the difference with the LiDAR providing an estimate of snow thickness. The freeboard measurements are aimed at estimating ice thickness via estimates of densities and isostasy. The photogrammetry was used to measure ice motion over free-floating sea-ice, but provided only a velocity calibration and general situational awareness over the land-fast ice. Ground measurements were collected along a transect, and included boreholes, snow-thickness (Magnaprobe), and ice thickness (EM31). Airborne data were collected on six overflights of this transect over a three week period. LiDAR swath widths ranged from 200-300m (depending on altitude) and encompassed three grounded ridges which remained essentially stationary over the collection period, that together with the shoreline, provided fixed reference points to compare the heights of the floating ice that varied with the tide (and to some extent the snow conditions). Sampling size or 'footprint' plays a critical role in the attempt to compare in-situ measurements with airborne (or satellite) measurements. Boreholes are point measurements and are difficult enough to obtain, that only a limited number are practical during a survey period. EM31 and Magnaprobe instrumentation allows collection of snow and ice thickness along one-dimensional profiles, and several adjacent profiles can be collected to approximate a two-dimensional swath, assuming that the spacing between profiles does not lead to unacceptable aliasing. For this project we collected two em31 profiles roughly 3-5m apart and two profiles of Magnaprobe snow thickness with separation varying from 1-20 m. The radar footprint is ~ 10-15m at our survey altitudes, and at least somewhat comparable. The LiDAR had a ground point spacing of ~25 cm and so easily encompassed the EM31, Magnaprobe and radar data. Measured snow thickness was minimal, averaging 9 cm on the date of the first collection and 12 cm on the second. Airborne radar data were compared to the LiDAR by applying a circular, weighted kernel to the LiDAR measurements surrounding the radar profile and commensurate in diameter to the radar footprint. Estimated snow thickness is then obtained from the difference of the radar and averaged LiDAR. Ice thickness was then calculated from the freeboard measurements and compared to the boreholes. Using these data sets we hope to address important questions such as: How can we improve co-registration between ground and airborne campaigns by taking advantage of land-fast ice as a non-moving ice field? How can we improve co-registration on drift ice by building from such activities? Is there spatial aliasing of sea ice at different resolutions and if so, what is the impact on sea ice volume and ice thickness distribution?
The heterogeneous ice shell thickness of Enceladus
NASA Astrophysics Data System (ADS)
Lucchetti, Alice; Pozzobon, Riccardo; Mazzarini, Francesco; Cremonese, Gabriele; Massironi, Matteo
2016-10-01
Saturn's moon Enceladus is the smallest Solar System body that presents an intense geologic activity on its surface. Plumes erupting from Enceladus' South Polar terrain (SPT) provide direct evidence of a reservoir of liquid below the surface. Previous analysis of gravity data determined that the ice shell above the liquid ocean must be 30-40 km thick from the South Pole up to 50° S latitude (Iess et al., 2014), however, understand the global or regional nature of the ocean beneath the ice crust is still challenging. To infer the thickness of the outer ice shell and prove the global extent of the ocean, we used the self-similar clustering method (Bonnet et al., 2001; Bour et al., 2002) to analyze the widespread fractures of the Enceladus's surface. The spatial distribution of fractures has been analyzed in terms of their self-similar clustering and a two-point correlation method was used to measure the fractal dimension of the fractures population (Mazzarini, 2004, 2010). A self-similar clustering of fractures is characterized by a correlation coefficient with a size range defined by a lower and upper cut-off, that represent a mechanical discontinuity and the thickness of the fractured icy crust, thus connected to the liquid reservoir. Hence, this method allowed us to estimate the icy shell thickness values in different regions of Enceladus from SPT up to northern regions.We mapped fractures in ESRI ArcGis environment in different regions of the satellite improving the recently published geological map (Crow-Willard and Pappalardo, 2015). On these regions we have taken into account the fractures, such as wide troughs and narrow troughs, located in well-defined geological units. Firstly, we analyzed the distribution of South Polar Region fracture patterns finding an ice shell thickness of ~ 31 km, in agreement with gravity measurements (Iess et al., 2014). Then, we applied the same approach to other four regions of the satellite inferring an increasing of the ice shell thickness from 31 to 70 km from the South Pole to northern regions. By these findings, we prove the global extent of the ocean underneath the ice crust of the satellite.
Ice Flow in the North East Greenland Ice Stream
NASA Technical Reports Server (NTRS)
Joughin, Ian; Kwok, Ron; Fahnestock, M.; MacAyeal, Doug
1999-01-01
Early observations with ERS-1 SAR image data revealed a large ice stream in North East Greenland (Fahnestock 1993). The ice stream has a number of the characteristics of the more closely studied ice streams in Antarctica, including its large size and gross geometry. The onset of rapid flow close to the ice divide and the evolution of its flow pattern, however, make this ice stream unique. These features can be seen in the balance velocities for the ice stream (Joughin 1997) and its outlets. The ice stream is identifiable for more than 700 km, making it much longer than any other flow feature in Greenland. Our research goals are to gain a greater understanding of the ice flow in the northeast Greenland ice stream and its outlet glaciers in order to assess their impact on the past, present, and future mass balance of the ice sheet. We will accomplish these goals using a combination of remotely sensed data and ice sheet models. We are using satellite radar interferometry data to produce a complete maps of velocity and topography over the entire ice stream. We are in the process of developing methods to use these data in conjunction with existing ice sheet models similar to those that have been used to improve understanding of the mechanics of flow in Antarctic ice streams.
NASA Astrophysics Data System (ADS)
Sippel, Christian; Koza, Michael M.; Hansen, Thomas C.; Kuhs, Werner F.
2010-05-01
The possible atmospheric implication of ice Ic (cubic ice) has already been suggested some time ago in the context of snow crystal formation [1]. New findings from air-borne measurements in cirrus clouds and contrails have put ice Ic into the focus of interest to understand the so-called "supersaturation puzzle" [2,3,4]. Our recent microstructural work on ice Ic [5,6] appears to be highly relevant in this context. We have found that ice Ic is characterized by a complex stacking fault pattern, which changes as a function of temperature as well as time. Indeed, from our own [7] and other group's work [8] one knows that (in contrast to earlier believe) ice Ic can form up to temperatures at least as high as 240K - thus in the relevant range for cirrus clouds. We have good preliminary evidence that the "cubicity" (which can be related to stacking fault probabilities) as well as the particle size of ice Ic are the relevant parameters for this correlation. The "cubicity" of stacking faulty ice Ic (established by diffraction) correlates nicely with the increased supersaturation at decreasing temperatures observed in cirrus clouds and contrails, a fact, which may be considered as further evidence for the presence of ice Ic. Recently, we have studied the time-dependency of the changes in both "cubicity" and particle size at various temperatures of relevance for cirrus clouds and contrails by in-situ neutron powder diffraction. The timescales over which changes occur (several to many hours) are similar to the life-time of cirrus clouds and contrails and suggest that the supersaturation situation may change within this time span in the natural environment too. Some accompanying results obtained by cryo-SEM (scanning electron microscopy) work will also be presented and suggest that stacking-faulty ice Ic has kinky surfaces providing many more active centres for heterogeneous reactions on the surface than in the usually assumed stable hexagonal form of ice Ih with its rather flat low-indexed crystal faces. [1] T Kobayashi & T Kuroda (1987) Snow Crystals. In: Morphology of Crystals (ed. I Sunagawa), Terra Scientific Publishing, Tokyo, pp.649-743. [2] RS Gao & 19 other authors (2004) Evidence that nitric acid increases relative humidity in low-temperature cirrus clouds. Science 303, 516-520. [3] T Peter, C Marcolli, P Spichtinger, T Corti, MC Baker & T Koop (2006) When dry air is too humid. Science 314, 1399-1402. [4] JE Shilling, MA Tolbert, OB Toon, EJ Jensen, BJ Murray & AK Bertram (2006) Measurements of the vapor pressure of cubic ice and their implications for atmospheric ice clouds. Geophys.Res.Lett. 33, 026671. [5] TC Hansen, MM Koza & WF Kuhs (2008) Formation and annealing of cubic ice: I Modelling of stacking faults. J.Phys.Cond.Matt. 20, 285104. [6] TC Hansen, MM Koza, P Lindner & WF Kuhs (2008) Formation and annealing of cubic ice: II. Kinetic study. J.Phys.Cond.Matt. 20, 285105. [7] WF Kuhs, G Genov, DK Staykova & AN Salamatin, T Hansen (2004) Ice perfection and the onset of anomalous preservation of gas hydrates. Phys.Chem.Chem.Phys. 6, 4917-4920. [8] BJ Murray, DA Knopf & AK Bertram (2005) The formation of cubic ice under conditions relevant to Earth's atmosphere. Nature 434, 292-205.
Fram Strait: Atmospheric Forcing of The Sea Ice Flux
NASA Astrophysics Data System (ADS)
Widell, K.; Østerhus, S.; Gammelsrød, T.
Measuring the magnitude and variability of the ice and freshwater flux through Fram Strait is an important element in understanding climate variability in the Arctic. Since the major part of the ice and freshwater that leaves the Arctic passes through Fram Strait, this passage can be considered a key area for estimating the net ice production in the Arctic Ocean. In 1990, the Norwegian Polar Institute (NPI) started a monitoring program in the strait, most years by means of two moorings with Upward Looking Sonars (ULS) measuring ice draft. From 1995 and on, these moorings were also equipped with Doppler Current Meters (DCM) to measure the ice velocity. These measurements give an opportunity to investigate the different forces affecting ice motion in the strait. Maximum correlation coefficient between atmospheric sea level pressure (from NCEP/NCAR reanalysed data) and southward ice velocity is found when using the cross strait pressure difference along 80N between 10W and 5E (R = 0.72) consider- ing monthly means. Subtracting current velocity at 50 m depth (also measured by the DCM) from ice velocity improves the correlation to R = 0.84. This gives insight in the relative importance of current and wind on the ice motion, and indicates that pressure data can be used to make fairly good estimates of the ice velocity in the strait. In combination with data on ice thickness and ice stream width, this result is used to calculate the ice volume transport. By making assumptions on the parameters in- volved, the time series is extended back to 1948, the start of the pressure record. This time series will be presented and compared to literature, and annual and seasonal vari- ation of the ice flux will be discussed.
Primary spectrum and composition with IceCube/IceTop
NASA Astrophysics Data System (ADS)
Gaisser, Thomas K.; IceCube Collaboration
2016-10-01
IceCube, with its surface array IceTop, detects three different components of extensive air showers: the total signal at the surface, GeV muons in the periphery of the showers and TeV muons in the deep array of IceCube. The spectrum is measured with high resolution from the knee to the ankle with IceTop. Composition and spectrum are extracted from events seen in coincidence by the surface array and the deep array of IceCube. The muon lateral distribution at the surface is obtained from the data and used to provide a measurement of the muon density at 600 meters from the shower core up to 30 PeV. Results are compared to measurements from other experiments to obtain an overview of the spectrum and composition over an extended range of energy. Consistency of the surface muon measurements with hadronic interaction models and with measurements at higher energy is discussed.
Temperature Distribution Measurement of The Wing Surface under Icing Conditions
NASA Astrophysics Data System (ADS)
Isokawa, Hiroshi; Miyazaki, Takeshi; Kimura, Shigeo; Sakaue, Hirotaka; Morita, Katsuaki; Japan Aerospace Exploration Agency Collaboration; Univ of Notre Dame Collaboration; Kanagawa Institute of Technology Collaboration; Univ of Electro-(UEC) Team, Comm
2016-11-01
De- or anti-icing system of an aircraft is necessary for a safe flight operation. Icing is a phenomenon which is caused by a collision of supercooled water frozen to an object. For the in-flight icing, it may cause a change in the wing cross section that causes stall, and in the worst case, the aircraft would fall. Therefore it is important to know the surface temperature of the wing for de- or anti-icing system. In aerospace field, temperature-sensitive paint (TSP) has been widely used for obtaining the surface temperature distribution on a testing article. The luminescent image from the TSP can be related to the temperature distribution. (TSP measurement system) In icing wind tunnel, we measured the surface temperature distribution of the wing model using the TSP measurement system. The effect of icing conditions on the TSP measurement system is discussed.
NASA Astrophysics Data System (ADS)
Broccoli, A. J.; Manabe, S.
1987-02-01
The contributions of expanded continental ice, reduced atmospheric CO2, and changes in land albedo to the maintenance of the climate of the last glacial maximum (LGM) are examined. A series of experiments is performed using an atmosphere-mixed layer ocean model in which these changes in boundary conditions are incorporated either singly or in combination. The model used has been shown to produce a reasonably realistic simulation of the reduced temperature of the LGM (Manabe and Broccoli 1985b). By comparing the results from pairs of experiments, the effects of each of these environmental changes can be determined. Expanded continental ice and reduced atmospheric CO2 are found to have a substantial impact on global mean temperature. The ice sheet effect is confined almost exclusively to the Northern Hemisphere, while lowered CO2 cools both hemispheres. Changes in land albedo over ice-free areas have only a minor thermal effect on a global basis. The reduction of CO2 content in the atmosphere is the primary contributor to the cooling of the Southern Hemisphere. The model sensitivity to both the ice sheet and CO2 effects is characterized by a high latitude amplification and a late autumn and early winter maximum. Substantial changes in Northern Hemisphere tropospheric circulation are found in response to LGM boundary conditions during winter. An amplified flow pattern and enhanced westerlies occur in the vicinity of the North American and Eurasian ice sheets. These alterations of the tropospheric circulation are primarily the result of the ice sheet effect, with reduced CO2 contributing only a slight amplification of the ice sheet-induced pattern.
NASA Astrophysics Data System (ADS)
Saenz, B. T.; Daly, K. L.; Kim, S.; Ainley, D. G.; Ballard, G.
2016-02-01
McMurdo Sound, Antarctica, represents a unique environment for study of trophic interactions, where a full complement of marine predators thrive. As part of a greater study of McMurdo Sound food web interactions, including ocean and ice physics, algal characterization, and predator behavior, macrozooplankton and fish were surveyed using bioacoustics and video using a specially-designed under-ice ROV. Acoustic returns from 82 under-ice surveys were divided into classes consisting of krill, silverfish, and weak scatters. Krill were scarce during surveys in late November, but increased in abundance in association with increasing chlorophyll a in December and early January when surveys ended. The greatest concentrations of krill were found near Ross Island in the eastern Sound, where southerly currents move high-productivity waters beneath the fast ice. Conversely, silverfish, especially schools of juveniles, were found in greater abundance toward the west where currents flow northward and platelet ice typically blocked light from surface waters. Silverfish were rare toward the end of the survey in late December/early January, but possibly had moved deeper than the acoustic instrument could detect. Overall, krill were less abundant and occurred deeper in the water column within 2 km of the fast ice edge, which was accessible by air-breathing predators, suggesting that predation pressure helped structure krill abundance or distribution. Acoustic returns from weak scatters, which included observed jellies, pteropods, detached ice algae and potentially other mesoplankton in high abundance such as copepods, also increased during the study period and co-occurred with chlorophyll a. The patterns of macrozooplankton and fish observed in McMurdo Sound raise important questions about source-sink dynamics, overwinter strategies of mid-trophic organisms, prey-predator dynamics, and sea-ice structuring of ecosystems.
Ice Climbing Festival in Sochi 2014 Winter Olympics: Medical Management and Injury Analysis.
Mashkovskiy, Evgeny; Beverly, James Marc; Stöcker, Urs; Bychkovskiy, Sergey
2016-03-01
Sports ice climbing (SIC) is developing rapidly as an independent sport with Olympic potentials. To date there has been no prior systematic evaluation of injury risks and injury patterns in a SIC-specific setting. This paper reports injury statistics collected during the Ice Climbing Festival, which was held during the XXII Winter Olympics in Sochi, Russia. More than 2500 amateur climbers and 53 professional athletes climbed during 16 days on a dry tooling lead-difficulty, and a 17-m vertical ice wall (grade M4/M5 or Union Internationale des Associations d'Alpinisme [UIAA] V+/VI-). The injury incidence rates were 0.82/100 in lead-difficulty and 0.83/100 in speed ice climbing with an overall incidence rate of 0.83/100. The injury risk in amateur climbers was 248 injuries per 1000 hours of sports activities. There were no major accidents or fatalities during the event. SIC could be graded I according to UIAA Fatality Risk Classification. Penetrating and superficial soft tissue injuries (cuts and bruises) were the most common. The anteromedial aspects of the thigh and knee were the most typical injury locations. The findings from this study provide an opportunity to compare injury patterns in SIC with what has previously been reported for traditional ice climbing. SIC has lower fatality risks, higher minor injury rates, and comparable injury severity to traditional ice climbing. The main limitation of our findings is that they were obtained on a population of amateur ice climbers with no previous experience. Further research should be performed to define injury risks in professional competitive ice climbers, and standard methodologies for reporting injuries should be considered. Copyright © 2016 Wilderness Medical Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Gong, Jie; Zeng, Xiping; Wu, Dong L.; Li, Xiaowen
2018-01-01
The diurnal variation of tropical ice clouds has been well observed and examined in terms of the occurring frequency and total mass but rarely from the viewpoint of ice microphysical parameters. It accounts for a large portion of uncertainties in evaluating ice clouds' role on global radiation and hydrological budgets. Owing to the advantage of precession orbit design and paired polarized observations at a high-frequency microwave band that is particularly sensitive to ice particle microphysical properties, 3 years of polarimetric difference (PD) measurements using the 166 GHz channel of Global Precipitation Measurement Microwave Imager (GPM-GMI) are compiled to reveal a strong diurnal cycle over tropical land (30°S-30°N) with peak amplitude varying up to 38%. Since the PD signal is dominantly determined by ice crystal size, shape, and orientation, the diurnal cycle observed by GMI can be used to infer changes in ice crystal properties. Moreover, PD change is found to lead the diurnal changes of ice cloud occurring frequency and total ice mass by about 2 h, which strongly implies that understanding ice microphysics is critical to predict, infer, and model ice cloud evolution and precipitation processes.
Modelling radiative transfer through ponded first-year Arctic sea ice with a plane-parallel model
NASA Astrophysics Data System (ADS)
Taskjelle, Torbjørn; Hudson, Stephen R.; Granskog, Mats A.; Hamre, Børge
2017-09-01
Under-ice irradiance measurements were done on ponded first-year pack ice along three transects during the ICE12 expedition north of Svalbard. Bulk transmittances (400-900 nm) were found to be on average 0.15-0.20 under bare ice, and 0.39-0.46 under ponded ice. Radiative transfer modelling was done with a plane-parallel model. While simulated transmittances deviate significantly from measured transmittances close to the edge of ponds, spatially averaged bulk transmittances agree well. That is, transect-average bulk transmittances, calculated using typical simulated transmittances for ponded and bare ice weighted by the fractional coverage of the two surface types, are in good agreement with the measured values. Radiative heating rates calculated from model output indicates that about 20 % of the incident solar energy is absorbed in bare ice, and 50 % in ponded ice (35 % in pond itself, 15 % in the underlying ice). This large difference is due to the highly scattering surface scattering layer (SSL) increasing the albedo of the bare ice.
High resolution sea ice modeling for the region of Baffin Bay and the Labrador Sea
NASA Astrophysics Data System (ADS)
Zakharov, I.; Prasad, S.; McGuire, P.
2016-12-01
A multi-category numerical sea ice model (CICE) with a data assimilation module was implemented to derive sea ice parameters in the region of Baffin Bay and the Labrador Sea with resolution higher than 10 km. The model derived ice parameters include concentration, ridge keel measurement, thickness and freeboard. The module for assimilation of ice concentration uses data from the Advance Microwave Scanning Radiometer (AMSR-E) and OSI SAF data. The sea surface temperature (SST) data from AMSRE-AVHRR and Operational SST and Sea Ice Analysis (OSTIA) system were used to correct the SST computed by a mixed layer slab ocean model that is used to determine the growth and melt of sea ice. The ice thickness parameter from the model was compared with the measurements from Soil Moisture Ocean Salinity - Microwave Imaging Radiometer using Aperture Synthesis (SMOS-MIRAS). The freeboard measures where compared with the Cryosat-2 measurements. A spatial root mean square error computed for freeboard measures was found to be within the uncertainty limits of the observation. The model was also used to estimate the correlation parameter between the ridge and the ridge keel measurements in the region of Makkovik Bank. Also, the level ice draft estimated from the model was in good agreement with the ice draft derived from the upward looking sonar (ULS) instrument deployed in the Makkovik bank. The model corrected with ice concentration and SST from remote sensing data demonstrated significant improvements in accuracy of the estimated ice parameters. The model can be used for operational forecast and climate research.
NASA Astrophysics Data System (ADS)
Zhang, Zhaoru; Uotila, Petteri; Stössel, Achim; Vihma, Timo; Liu, Hailong; Zhong, Yisen
2018-02-01
Variations of southern hemisphere (SH) climate variables are often linked to the southern annular mode (SAM) variability. We examined such linkage by seasons using state-of-the-art atmosphere and ocean/sea-ice reanalyses. The associated SAM related anomaly (SRA) fields of the climate variables, denoting anomalies corresponding to the same variation in SAM, are overall consistent across the reanalyses. Among the atmospheric products, 20CRV2 differs from ERA-interim and CFSR in the sea-level pressure SRAs over the Amundsen Sea, resulting in less warming over the Antarctic Peninsula. Among the ocean reanalyses, ORAP5 and C-GLORS exhibit the largest consistency. The major difference between them and the lower-resolution CFSR and SODA reanalyses is deeper penetration of anomalous meridional currents. Compared to the other ocean reanalyses, CFSR exhibits stronger and spatially more coherent surface-current SRAs, resulting in greater SRAs of sea-ice motion and ice thickness along the ice edges. The SRAs of sensible and total surface heat fluxes are reduced in CFSR due to ocean-atmosphere coupling. Significant sea-ice concentration SRAs are present on the west side of peninsulas along the east Antarctica coast in spring and winter, most notably in ORAP5 and C-GLORS, implying changes in new-ice production and shelf-water formation. Most atmosphere and ocean variables manifest an annular SRA pattern in summer and a non-annular pattern in the other seasons, with a wavenumber-3 structure strongest in autumn and weakest in summer. The wavenumber-3 structure should be related to the zonal wave three pattern of the SH circulation, the relation of which to SAM needs further exploration.
NASA Astrophysics Data System (ADS)
Lazzara, M. A.; Tsukernik, M.; Gorodetskaya, I.
2016-12-01
Recent studies confirmed that atmospheric rivers (ARs) reach the continent of Antarctica and thus influence the Antarctic accumulation patterns and the ice sheet mass balance (Gorodetskaya et al. 2014, GRL). Similar to mid-latitude ARs, Antarctic ARs are associated with a blocking pattern downstream of a cyclone, which allows channeling of moisture toward the continent. However, due to the extremely cold atmosphere, Antarctic ARs possess some unique features. First, the existence of an AR in high latitudes is always associated with warm advection. Second, in order for an AR to penetrate the continent, it needs to overcome strong low-level outflow winds - katabatic winds - coming from the interior of the continent. Thirdly, sea ice surrounding the Antarctic ice sheet introduces an additional "cold barrier" decreasing the tropospheric moisture holding capacity and promoting precipitation before reaching the ice sheet. We believe these factors contribute to the scarcity of AR events influencing the ice sheet surface mass balance. Nevertheless, their presence is clearly seen in the long-term record. In particular, anomalous accumulation in 2009 and 2011 in Dronning Maud Land in East Antarctica has been linked to atmospheric rivers. We performed a detailed investigation of several AR storm events from 2009 and 2011 using the Weather Research and Forecasting (WRF) model simulations. These simulations depicted the synoptic scale development of storms that led to an anomalous precipitation pattern in the East Antarctic. We investigated the role of the upper level vs. lower level forcing in the formation of the contributing storms. The moisture and temperature anomalies of each case are evaluated in the context of synoptic and large-scale atmospheric forcing. We also performed sensitivity studies to determine the role of sea ice in the development of these systems.
NASA Astrophysics Data System (ADS)
Tong, H.-J.; Ouyang, B.; Nikolovski, N.; Lienhard, D. M.; Pope, F. D.; Kalberer, M.
2015-03-01
In this paper we describe a newly designed cold electrodynamic balance(CEDB) system, built to study the evaporation kinetics and freezing properties of supercooled water droplets. The temperature of the CEDB chamber at the location of the levitated water droplet can be controlled in the range -40 to +40 °C, which is achieved using a combination of liquid nitrogen cooling and heating by positive temperature coefficient heaters. The measurement of liquid droplet radius is obtained by analysing the Mie elastic light scattering from a 532 nm laser. The Mie scattering signal was also used to characterise and distinguish droplet freezing events; liquid droplets produce a regular fringe pattern, whilst the pattern from frozen particles is irregular. The evaporation rate of singly levitated water droplets was calculated from time-resolved measurements of the radii of evaporating droplets and a clear trend of the evaporation rate on temperature was measured. The statistical freezing probabilities of aqueous pollen extracts (pollen washing water) are obtained in the temperature range -4.5 to -40 °C. It was found that that pollen washing water from water birch (Betula fontinalis occidentalis) pollen can act as ice nuclei in the immersion freezing mode at temperatures as warm as -22.45 (±0.65) °C. Furthermore it was found that the protein-rich component of the washing water was significantly more ice-active than the non-proteinaceous component.
NASA Astrophysics Data System (ADS)
Lanci, L.; Kent, D. V.
2007-12-01
Low temperature measurements of isothermal remanent magnetization (IRM) in Greenland ice spanning the last glacial and Holocene have shown that ice samples contain a measurable concentration of magnetic minerals which are part of the atmospheric aerosol. Assuming that the source materials do not change much with time, the concentration of magnetic minerals should be proportional to the measured concentration of dust in ice. We have indeed found a consistent linear relationship with the contents of dust. However, the linear relationship between low temperature ice magnetization vs. dust concentration has an offset, which when extrapolated to zero dust concentration would seemingly indicate that a significantly large magnetization corresponds to a null amount of dust in ice. Thermal relaxation experiments have shown that magnetic grains of nanometric size carry virtually all the uncorrelated magnetization. Magnetic measurements in Antarctic ice cores confirm the existence of a similar nanometric-size magnetic fraction, which also appear uncorrelated with measured aerosol concentration. The magnitude of the uncorrelated magnetization from Vostok is similar to that measured in NorthGRIP ice. Measurements of IRM at 250K suggest that the SP magnetic particles are in the size range of about 7-17 nm, which is compatible with the expected size of particles produced by ablation and subsequent condensation of meteorites in the atmosphere. The concentration of extraterrestrial material in NorthGRIP ice was estimated from the magnetic relaxation data based on a crude estimate of chondritic Ms. The resulting concentration of 0.78±0.22 ppb for Greenland is in good agreement with the outcome based on published iridium concentrations; a virtually identical concentration of 0.53±0.18 ppb has been measured in Vostok ice core.
NASA Astrophysics Data System (ADS)
Stroeven, Arjen P.; Hättestrand, Clas; Kleman, Johan; Heyman, Jakob; Fabel, Derek; Fredin, Ola; Goodfellow, Bradley W.; Harbor, Jonathan M.; Jansen, John D.; Olsen, Lars; Caffee, Marc W.; Fink, David; Lundqvist, Jan; Rosqvist, Gunhild C.; Strömberg, Bo; Jansson, Krister N.
2016-09-01
To provide a new reconstruction of the deglaciation of the Fennoscandian Ice Sheet, in the form of calendar-year time-slices, which are particularly useful for ice sheet modelling, we have compiled and synthesized published geomorphological data for eskers, ice-marginal formations, lineations, marginal meltwater channels, striae, ice-dammed lakes, and geochronological data from radiocarbon, varve, optically-stimulated luminescence, and cosmogenic nuclide dating. This is summarized as a deglaciation map of the Fennoscandian Ice Sheet with isochrons marking every 1000 years between 22 and 13 cal kyr BP and every hundred years between 11.6 and final ice decay after 9.7 cal kyr BP. Deglaciation patterns vary across the Fennoscandian Ice Sheet domain, reflecting differences in climatic and geomorphic settings as well as ice sheet basal thermal conditions and terrestrial versus marine margins. For example, the ice sheet margin in the high-precipitation coastal setting of the western sector responded sensitively to climatic variations leaving a detailed record of prominent moraines and other ice-marginal deposits in many fjords and coastal valleys. Retreat rates across the southern sector differed between slow retreat of the terrestrial margin in western and southern Sweden and rapid retreat of the calving ice margin in the Baltic Basin. Our reconstruction is consistent with much of the published research. However, the synthesis of a large amount of existing and new data support refined reconstructions in some areas. For example, the LGM extent of the ice sheet in northwestern Russia was located far east and it occurred at a later time than the rest of the ice sheet, at around 17-15 cal kyr BP. We also propose a slightly different chronology of moraine formation over southern Sweden based on improved correlations of moraine segments using new LiDAR data and tying the timing of moraine formation to Greenland ice core cold stages. Retreat rates vary by as much as an order of magnitude in different sectors of the ice sheet, with the lowest rates on the high-elevation and maritime Norwegian margin. Retreat rates compared to the climatic information provided by the Greenland ice core record show a general correspondence between retreat rate and climatic forcing, although a close match between retreat rate and climate is unlikely because of other controls, such as topography and marine versus terrestrial margins. Overall, the time slice reconstructions of Fennoscandian Ice Sheet deglaciation from 22 to 9.7 cal kyr BP provide an important dataset for understanding the contexts that underpin spatial and temporal patterns in retreat of the Fennoscandian Ice Sheet, and are an important resource for testing and refining ice sheet models.
A scheme for parameterizing ice cloud water content in general circulation models
NASA Technical Reports Server (NTRS)
Heymsfield, Andrew J.; Donner, Leo J.
1989-01-01
A method for specifying ice water content in GCMs is developed, based on theory and in-cloud measurements. A theoretical development of the conceptual precipitation model is given and the aircraft flights used to characterize the ice mass distribution in deep ice clouds is discussed. Ice water content values derived from the theoretical parameterization are compared with the measured values. The results demonstrate that a simple parameterization for atmospheric ice content can account for ice contents observed in several synoptic contexts.
Geothermal Heat Flux: Linking Deep Earth's Interior and the Dynamics of Large-Scale Ice Sheets
NASA Astrophysics Data System (ADS)
Rogozhina, Irina; Vaughan, Alan
2014-05-01
Regions covered by continental-scale ice sheets have the highest degree of uncertainty in composition and structure of the crust and lithospheric mantle, compounded by the poorest coverage on Earth of direct heat flow measurements. In addition to challenging conditions that make direct measurements and geological survey difficult Greenland and Antarctica are known to be geologically complex. Antarctica in particular is marked by two lithospherically distinct zones. In contrast to young and thin lithosphere of West Antarctica, East Antarctica is a collage of thick Precambrian fragments of Gondwana and earlier supercontinents. However, recent observations and modeling studies have detected large systems of subglacial lakes extending beneath much of the East Antarctic ice sheet base that have been linked to anomalously elevated heat flow. Outcrop samples from the rift margin with Australia (Prydz Bay) have revealed highly radiogenic Cambrian granite intrusives that are implicated in regional increase of crustal heat flux by a factor of two to three compared to the estimated continental background. Taken together, these indicate high variability of heat flow and properties of rocks across Antarctica. Similar conclusions have been made based on direct measurements and observations of the Greenland ice sheet. Airborne ice-penetrating radar and deep ice core projects show very high rates of basal melt for parts of the ice sheet in northern and central Greenland that have been explained by abnormally high heat flux. Archaean in age, the Greenland lithosphere was significantly reworked during the Early Proterozoic. In this region, the interpretation of independent geophysical data is complicated by Proterozoic and Phanerozoic collision zones, compounded by strong thermochemical effects of rifting along the western and eastern continental margins between 80 and 25 million years ago. In addition, high variability of heat flow and thermal lithosphere structure in central Greenland results from the remanent effects of an Early Cenozoic passage of the lithosphere above the Iceland mantle plume that is implicated in strong thermochemical erosion of the lithosphere and significant long-term effects on the present-day subglacial heat flow pattern and thermodynamic state of the Greenland ice sheet. These observations and our modeling results (Petrunin et al., 2013) show that the present-day thermal state of Greenland and Antarctic lithosphere cannot be well understood without taking into account a long-term tectonic history of these regions. The goal of the IceGeoHeat project is to combine existing independent geophysical data and innovative modeling approaches to comprehensively study the evolution and present state of the lithosphere in Greenland and Antarctica, and assess the role of geothermal heat flux in shaping the present-day ice sheet dynamics. This requires multiple collaborations involving experts across a range of disciplines. The project builds on the IceGeoHeat initiative formed in April 2012 and now including researchers from ten countries in the main core (MC) with expertise in numerical modeling and data assessment in geodynamics, geology, geothermics, cryosphere and (paleo-)climate. Petrunin, A., Rogozhina, I., Vaughan, A. P. M., Kukkonen, I. T., Kaban, M., Koulakov, I., Thomas, M. (2013): Heat flux variations beneath central Greenland's ice due to anomalously thin lithosphere. - Nature Geoscience, 6, 746-750.
NASA Technical Reports Server (NTRS)
Wu, Xiao-Ping
1999-01-01
The response of the Greenland ice sheet to climate change could significantly alter sea level. The ice sheet was much thicker at the last glacial maximum. To gain insight into the global change process and the future trend, it is important to evaluate the ice mass variation as a function of time and space. The Gravity Recovery and Climate Experiment (GRACE) mission to fly in 2001 for 5 years will measure gravity changes associated with the current ice variation and the solid earth's response to past variations. Our objective is to assess the separability of different change sources, accuracy and resolution in the mass variation determination by the new gravity data and possible Global Positioning System (GPS) bedrock uplift measurements. We use a reference parameter state that follows a dynamic ice model for current mass variation and a variant of the Tushingham and Peltier ICE-3G deglaciation model for historical deglaciation. The current linear trend is also assumed to have started 5 kyr ago. The Earth model is fixed as preliminary reference Earth model (PREM) with four viscoelastic layers. A discrete Bayesian inverse algorithm is developed employing an isotropic Gaussian a priori covariance function over the ice sheet and time. We use data noise predicted by the University of Texas and JPL for major GRACE error sources. A 2 mm/yr uplift uncertainty is assumed for GPS occupation time of 5 years. We then carry out covariance analysis and inverse simulation using GRACE geoid coefficients up to degree 180 in conjunction with a number of GPS uplift rates. Present-day ice mass variation and historical deglaciation are solved simultaneously over 146 grids of roughly 110 km x 110 km and with 6 time increments of 3 kyr each, along with a common starting epoch of the current trend. For present-day ice thickness change, the covariance analysis using GRACE geoid data alone results in a root mean square (RMS) posterior root variance of 2.6 cm/yr, with fairly large a priori uncertainties in the parameters and a Gaussian correlation length of 350 km. Simulated inverse can successfully recover most features in the reference present-day change. The RMS difference between them over the grids is 2.8 cm/yr. The RMS difference becomes 1.1 cm/yr when both are averaged with a half Gaussian wavelength of 150 km. With a fixed Earth model, GRACE alone can separate the geoid signals due to past and current load fairly well. Shown are the reference geoid signatures of direct and elastic effects of the current trend, the viscoelastic effect of the same trend starting from 5 kyr ago, the Post Glacial Rebound (PGR), and the predicted GRACE geoid error. The difference between the reference and inverse modeled total viscoelastic signatures is also shown. Although past and current ice mass variations are allowed the same spatial scale, their geoid signals have different spatial patterns. GPS data can contribute to the ice mass determination as well. Additional information is contained in the original.
Ninagawa, Takako; Eguchi, Akemi; Kawamura, Yukio; Konishi, Tadashi; Narumi, Akira
2016-08-01
Intracellular ice crystal formation (IIF) causes several problems to cryopreservation, and it is the key to developing improved cryopreservation techniques that can ensure the long-term preservation of living tissues. Therefore, the ability to capture clear intracellular freezing images is important for understanding both the occurrence and the IIF behavior. The authors developed a new cryomicroscopic system that was equipped with a high-speed camera for this study and successfully used this to capture clearer images of the IIF process in the epidermal tissues of strawberry geranium (Saxifraga stolonifera Curtis) leaves. This system was then used to examine patterns in the location and formation of intracellular ice crystals and to evaluate the degree of cell deformation because of ice crystals inside the cell and the growing rate and grain size of intracellular ice crystals at various cooling rates. The results showed that an increase in cooling rate influenced the formation pattern of intracellular ice crystals but had less of an effect on their location. Moreover, it reduced the degree of supercooling at the onset of intracellular freezing and the degree of cell deformation; the characteristic grain size of intracellular ice crystals was also reduced, but the growing rate of intracellular ice crystals was increased. Thus, the high-speed camera images could expose these changes in IIF behaviors with an increase in the cooling rate, and these are believed to have been caused by an increase in the degree of supercooling. Copyright © 2016 Elsevier Inc. All rights reserved.
Feeding Frequency and appetite in Lean and Obese Prepubertal children
Mehra, Rinku; Tsalikian, Eva; Chenard, Catherine A.; Zimmerman, M. Bridget; Sivitz, William I.
2016-01-01
To determine the effect of feeding frequency on appetite in normal weight (NW) and obese (OB) prepubertal children, we carried out a prospective, randomized interventional study of 18 NW and 17 OB children ages 6–10. Children received three or five feedings in random order on separate days. Total calories, carbohydrate, protein, and fat composition on each day were equal. Two hours following the last feeding, children were offered ice cream ad lib. The major outcome variable was kilocalories ice cream consumed. A visual analog scale to assess fullness was also administered before consumption of ice cream. We observed that OB children consumed 73.0 ± 37.4 kcal more after five feedings than after three feedings whereas the NW children consumed 47.1 ± 27.8 kcal less. There was significant interaction between meal pattern and weight group indicating that this change in ice cream consumption differed significantly between groups (P = 0.014 by two-factor analysis). Ice cream intake/kg was less in OB compared to NW subjects (P = 0.012). Fullness ratings before ice cream did not differ by meal pattern or weight group. However, pre-ice cream fullness predicted ice cream intake in NW but not OB children. In summary, OB and NW children differed in appetite response to meal frequency. Our data suggest that: (i) satiety in OB children is related more to proximity of calories (larger supper) than to antecedent distribution of calories and; (ii) NW children may be more prone to restrict intake based on subjective fullness. PMID:20847731
NASA Astrophysics Data System (ADS)
Spencer, J. R.; Pearl, J. C.; Segura, M.; Cassini CIRS Team
2005-08-01
The Composite Infrared Spectrometer (CIRS) on the Cassini orbiter obtained extensive observations of Iapetus' thermal emission during the New Year 2005 flyby, with best 8 - 16 μ m spatial resolution of 35 km per pixel. Observed subsolar temperatures on the dark terrain reach nearly 130 K, much warmer than any other satellite surface in the Saturn system, due to the combination of low albedo and slow rotation. These high temperatures mean that, uniquely in the Saturn system, water ice sublimation rates are significant at low latitudes on Iapetus' dark side, and surface water ice is probably not stable there on geological timescales. This result is consistent with the lack of water ice at low latitudes on the dark terrain inferred from Cassini UVIS UV spectra (Hendrix et al., 2005 LPSC). Thermally-controlled migration of water ice may thus contribute to the curious shape of the light/dark boundary on Iapetus, with bright poles and dark terrain extending round the equator onto the trailing side. Impacts of Saturn-centric or prograde heliocentric material cannot alone explain this shape, as their impact flux depends only on distance from the apex of motion (though the impact distribution of Oort cloud comet dust may be consistent with the observed albedo pattern (Cook and Franklin 1970)). We model the ballistic migration of water ice across the surface of Iapetus, determining temperatures and sublimation rates assuming CIRS-constrained thermal inertia and a simple dependence of albedo on distance from the apex of motion. Water ice is lost rapidly from low latitudes on the dark leading side and accumulates near the poles, and is also lost, though more slowly, in equatorial regions near the sub-Saturn and anti-Saturn points. The resulting water ice distribution pattern matches the distribution of Iapetus' bright terrain remarkably well. Albedo modification by thermal migration can thus help to reconcile Iapetus' albedo patterns with albedo control by Saturn-centric or prograde heliocentric impactors.
Characterizing Englacial Attenuation and Grounding Zone Geometry Using Airborne Radar Sounding
NASA Astrophysics Data System (ADS)
Schroeder, D. M.; Grima, C.; Blankenship, D. D.
2014-12-01
The impact of warm ocean water on ice sheet retreat and stability is a one of the primary drivers and sources of uncertainty for the rate of global sea level rise. One critical but challenging observation required to understand and model this impact is the location and extent of grounding ice sheet zones. However, existing surface topography based techniques do not directly detect the location where ocean water reaches (or breaches) grounded ice at the bed, which can significantly affect ice sheet stability. The primary geophysical tool for directly observing the basal properties of ice sheets is airborne radar sounding. However, uncertainty in englacial attenuation from unknown ice temperature and chemistry can lead to erroneous interpretation of subglacial conditions from bed echo strengths alone . Recently developed analysis techniques for radar sounding data have overcome this challenge by taking advantage of information in the angular distribution of bed echo energy and joint modeling of radar returns and water routing. We have developed similar approaches to analyze the spatial pattern and character of echoes to address the problems of improved characterization of grounding zone geometry and englacial attenuation. The spatial signal of the transition from an ice-bed interface to an ice-ocean interface is an increase in bed echo strength. However, rapidly changing attenuation near the grounding zone prevents the unambiguous interpretation of this signal in typical echo strength profiles and violates the assumptions of existing empirical attenuation correction techniques. We present a technique that treat bed echoes as continuous signals to take advantage of along-profile ice thickness and echo strength variations to constrain the spatial pattern of attenuation and detect the grounding zone transition. The transition from an ice-bed interface to an ice-ocean interface will also result in a change in the processes that determine basal interface morphology (e.g. melt/freeze processes for floating ice vs. erosion/deformation processes for grounded ice). This morphology change will be expressed in the angular distribution and coherency of bed echo energy. We also present techniques that exploit this character of bed echoes to further improve the detection and characterization of grounding zones.
NASA Astrophysics Data System (ADS)
Asahi, H.; Nam, S. I.; Stein, R. H.; Mackensen, A.; Son, Y. J.
2017-12-01
The usability of planktic foraminiferal census data in Arctic paleoceanography is limited by the predominance of Neogloboquadrina pachyderma (sinistral). Though a potential usability of their morphological variation has been suggested by recent studies, its application is restricted to the central part of the Arctic Ocean. Here we present their regional distribution, using 80 surface sediment samples from the central and the western Arctic Ocean. Among seven morphological variations encountered, distinct presence of "large-sized" N. pachyderma morphotypes at the summer sea-ice edge in the western Arctic demonstrates its strong potential as sea-ice distribution indicator. Based on their regional patterns, we further developed planktic foraminifer (PF)-based transfer functions (TFs) to reconstruct summer surface-water temperature, salinity and sea-ice concentration in the western and central Arctic. The comparison of sea-ice reconstructions by PF-based TF to other pre-existed approaches showed their recognizable advantages/disadvantages: the PF-based approach in the nearby/within heavily ice-covered region, the dinocyst-based approach in the extensively seasonal ice retreat region, and the IP25-based approach with overall reflection over a wide range of sea-ice coverage, which is likely attributed to their (a) taphonomical information-loss, (b) different seasonal production patterns or combination of both. The application of these TFs on a sediment core from Northwind Ridge suggests general warming, freshening, and sea-ice reduction after 6.0 ka. This generally agrees with PF stable isotope records and sea-ice reconstructions from dinocyst-based TF at proximal locations, indicating that the sea-ice behavior at the Northwind Ridge is notably different from the IP25-based sea-ice reconstructions reported from elsewhere in the Arctic Ocean. Lack of regional coverage of PF-based reconstructions hampers further discussion whether the observed inconsistency is simply caused by different regional coverage of data and/or their different sensitivity yet. Thus, additional PF-census data with their isotope signatures from other cores from different ice regimes in the Arctic Ocean (e.g., Lomonosov Ridge and Mendeelev Ridge) will provide further discussion for such inconsisntency.
NASA Astrophysics Data System (ADS)
Reusch, D. B.
2016-12-01
Any analysis that wants to use a GCM-based scenario of future climate benefits from knowing how much uncertainty the GCM's inherent variability adds to the development of climate change predictions. This is extra relevant in the polar regions due to the potential of global impacts (e.g., sea level rise) from local (ice sheet) climate changes such as more frequent/intense surface melting. High-resolution, regional-scale models using GCMs for boundary/initial conditions in future scenarios inherit a measure of GCM-derived externally-driven uncertainty. We investigate these uncertainties for the Greenland ice sheet using the 30-member CESM1.0-CAM5-BGC Large Ensemble (CESMLE) for recent (1981-2000) and future (2081-2100, RCP 8.5) decades. Recent simulations are skill-tested against the ERA-Interim reanalysis and AWS observations with results informing future scenarios. We focus on key variables influencing surface melting through decadal climatologies, nonlinear analysis of variability with self-organizing maps (SOMs), regional-scale modeling (Polar WRF), and simple melt models. Relative to the ensemble average, spatially averaged climatological July temperature anomalies over a Greenland ice-sheet/ocean domain are mostly between +/- 0.2 °C. The spatial average hides larger local anomalies of up to +/- 2 °C. The ensemble average itself is 2 °C cooler than ERA-Interim. SOMs extend our diagnostics by providing a concise, objective summary of model variability as a set of generalized patterns. For CESMLE, the SOM patterns summarize the variability of multiple realizations of climate. Changes in pattern frequency by ensemble member show the influence of initial conditions. For example, basic statistical analysis of pattern frequency yields interquartile ranges of 2-4% for individual patterns across the ensemble. In climate terms, this tells us about climate state variability through the range of the ensemble, a potentially significant source of melt-prediction uncertainty. SOMs can also capture the different trajectories of climate due to intramodel variability over time. Polar WRF provides higher resolution regional modeling with improved, polar-centric model physics. Simple melt models allow us to characterize impacts of the upstream uncertainties on estimates of surface melting.
Development of a Capacitive Ice Sensor to Measure Ice Growth in Real Time
Zhi, Xiang; Cho, Hyo Chang; Wang, Bo; Ahn, Cheol Hee; Moon, Hyeong Soon; Go, Jeung Sang
2015-01-01
This paper presents the development of the capacitive sensor to measure the growth of ice on a fuel pipe surface in real time. The ice sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the ice formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the ice formation conditions. From the humidity, a water film is formed on the ice sensor, which results in an increase in capacitance. Ice nucleation occurs, followed by the rapid formation of frost ice that decreases the capacitance suddenly. The capacitance is saturated. The developed ice sensor explains the ice growth providing information about the icing temperature in real time. PMID:25808770
Development of a capacitive ice sensor to measure ice growth in real time.
Zhi, Xiang; Cho, Hyo Chang; Wang, Bo; Ahn, Cheol Hee; Moon, Hyeong Soon; Go, Jeung Sang
2015-03-19
This paper presents the development of the capacitive sensor to measure the growth of ice on a fuel pipe surface in real time. The ice sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the ice formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the ice formation conditions. From the humidity, a water film is formed on the ice sensor, which results in an increase in capacitance. Ice nucleation occurs, followed by the rapid formation of frost ice that decreases the capacitance suddenly. The capacitance is saturated. The developed ice sensor explains the ice growth providing information about the icing temperature in real time.
Impact of ice-shelf sediment content on the dynamics of plumes under melting ice shelves
NASA Astrophysics Data System (ADS)
Wells, A.
2015-12-01
When a floating ice shelf melts into an underlying warm salty ocean, the resulting fresh meltwater can rise in a buoyant Ice-Shelf-Water plume under the ice. In certain settings, ice flowing across the grounding line carries a basal layer of debris rich ice, entrained via basal freezing around till in the upstream ice sheet. Melting of this debris-laden ice from floating ice shelves provides a flux of dense sediment to the ocean, in addition to the release of fresh buoyant meltwater. This presentation considers the impact of the resulting suspended sediment on the dynamics of ice shelf water plumes, and identifies two key flow regimes depending on the sediment concentration frozen into the basal ice layer. For large sediment concentration, melting of the debris-laden ice shelf generates dense convectively unstable waters that drive convective overturning into the underlying ocean. For lower sediment concentration, the sediment initially remains suspended in a buoyant meltwater plume rising along the underside of the ice shelf, before slowly depositing into the underlying ocean. A theoretical plume model is used to evaluate the significance of the negatively buoyant sediment on circulation strength and the feedbacks on melting rate, along with the expected depositional patterns under the ice shelf.
Remote sensing as a research tool. [sea ice surveillance from aircraft and spacecraft
NASA Technical Reports Server (NTRS)
Carsey, F. D.; Zwally, H. J.
1986-01-01
The application of aircraft and spacecraft remote sensing techniques to sea ice surveillance is evaluated. The effects of ice in the air-sea-ice system are examined. The measurement principles and characteristics of remote sensing methods for aircraft and spacecraft surveillance of sea ice are described. Consideration is given to ambient visible light, IR, passive microwave, active microwave, and laser altimeter and sonar systems. The applications of these systems to sea ice surveillance are discussed and examples are provided. Particular attention is placed on the use of microwave data and the relation between ice thickness and sea ice interactions. It is noted that spacecraft and aircraft sensing techniques can successfully measure snow cover; ice thickness; ice type; ice concentration; ice velocity field; ocean temperature; surface wind vector field; and air, snow, and ice surface temperatures.
Balance of the West Antarctic Ice Sheet
NASA Technical Reports Server (NTRS)
2002-01-01
For several decades, measurements of the West Antarctic Ice Sheet showed it to be retreating rapidly. But new data derived from satellite-borne radar sensors show the ice sheet to be growing. Changing Antarctic ice sheets remains an area of high scientific interest, particularly in light of recent global warming concerns. These new findings are significant because scientists estimate that sea level would rise 5-6 meters (16-20 feet) if the ice sheet collapsed into the sea. Do these new measurements signal the end of the ice sheet's 10,000-year retreat? Or, are these new satellite data simply much more accurate than the sparse ice core and surface measurements that produced the previous estimates? Another possibility is that the ice accumulation may simply indicate that the ice sheet naturally expands and retreats in regular cycles. Cryologists will grapple with these questions, and many others, as they examine the new data. The image above depicts the region of West Antarctica where scientists measured ice speed. The fast-moving central ice streams are shown in red. Slower tributaries feeding the ice streams are shown in blue. Green areas depict slow-moving, stable areas. Thick black lines depict the areas that collect snowfall to feed their respective ice streams. Reference: Ian Joughin and Slawek Tulaczyk Science Jan 18 2002: 476-480. Image courtesy RADARSAT Antarctic Mapping Project
NASA Technical Reports Server (NTRS)
Delisle, G.; Hoefle, H. C.; Thierbach, R.; Schultz, L.
1986-01-01
A high concentration of meteorites were discovered on a blue ice field northeast of the Frontier Mountains. As a result of a systematic search, a total of 42 meteorites were recovered. The current glacial situation has evolved through various stages, which are discussed in relationship to the concentration of meteorites. Ice flow patterns are summarized. The chemical composition and terrestrial ages of the meteorites are discussed.
Rozhnov, V V; Platonov, N G; Naidenko, S V; Mordvintsev, I N; Ivanov, E A
2017-01-01
The polar bear movement trajectory in relation to onset date of the sea-ice break-up was studied in the coastal zone of the Taimyr Peninsula, eastern part of the Kara Sea, using as an example a female polar bear tagged by a radio collar with an Argos satellite transmitter. Analysis of the long-term pattern of ice melting and tracking, by means of satellite telemetry, of the female polar bear who followed the ice-edge outgoing in the north-eastern direction (in summer 2012) suggests that direction of the polar bear movement depends precisely on the direction of the sea-ice cover break-up.
NASA Technical Reports Server (NTRS)
Johnson, Mark; Proshuntinsky, Andrew; Aksenov, Yevgeny; Nguyen, An T.; Lindsay, Ron; Haas, Christian; Zhang, Jinlun; Diansky, Nikolay; Kwok, Ron; Maslowski, Wieslaw;
2012-01-01
Six Arctic Ocean Model Intercomparison Project model simulations are compared with estimates of sea ice thickness derived from pan-Arctic satellite freeboard measurements (2004-2008); airborne electromagnetic measurements (2001-2009); ice draft data from moored instruments in Fram Strait, the Greenland Sea, and the Beaufort Sea (1992-2008) and from submarines (1975-2000); and drill hole data from the Arctic basin, Laptev, and East Siberian marginal seas (1982-1986) and coastal stations (1998-2009). Despite an assessment of six models that differ in numerical methods, resolution, domain, forcing, and boundary conditions, the models generally overestimate the thickness of measured ice thinner than approximately 2 mand underestimate the thickness of ice measured thicker than about approximately 2m. In the regions of flat immobile landfast ice (shallow Siberian Seas with depths less than 25-30 m), the models generally overestimate both the total observed sea ice thickness and rates of September and October ice growth from observations by more than 4 times and more than one standard deviation, respectively. The models do not reproduce conditions of fast ice formation and growth. Instead, the modeled fast ice is replaced with pack ice which drifts, generating ridges of increasing ice thickness, in addition to thermodynamic ice growth. Considering all observational data sets, the better correlations and smaller differences from observations are from the Estimating the Circulation and Climate of the Ocean, Phase II and Pan-Arctic Ice Ocean Modeling and Assimilation System models.
Wachter, Gregor A; Papadopoulou, Anna; Muster, Christoph; Arthofer, Wolfgang; Knowles, L Lacey; Steiner, Florian M; Schlick-Steiner, Birgit C
2016-06-01
The Pleistocene climatic fluctuations had a huge impact on all life forms, and various hypotheses regarding the survival of organisms during glacial periods have been postulated. In the European Alps, evidence has been found in support of refugia outside the ice shield (massifs de refuge) acting as sources for postglacial recolonization of inner-Alpine areas. In contrast, evidence for survival on nunataks, ice-free areas above the glacier, remains scarce. Here, we combine multivariate genetic analyses with ecological niche models (ENMs) through multiple timescales to elucidate the history of Alpine Megabunus harvestmen throughout the ice ages, a genus that comprises eight high-altitude endemics. ENMs suggest two types of refugia throughout the last glacial maximum, inner-Alpine survival on nunataks for four species and peripheral refugia for further four species. In some geographic regions, the patterns of genetic variation are consistent with long-distance dispersal out of massifs de refuge, repeatedly coupled with geographic parthenogenesis. In other regions, long-term persistence in nunataks may dominate the patterns of genetic divergence. Overall, our results suggest that glacial cycles contributed to allopatric diversification in Alpine Megabunus, both within and at the margins of the ice shield. These findings exemplify the power of ENM projections coupled with genetic analyses to identify hypotheses about the position and the number of glacial refugia and thus to evaluate the role of Pleistocene glaciations in driving species-specific responses of recolonization or persistence that may have contributed to observed patterns of biodiversity. © 2016 John Wiley & Sons Ltd.
Marine Arctic Ecosystem Study (MARES) - An Integrated Approach to the Dynamics of the Beaufort Sea
NASA Astrophysics Data System (ADS)
Wiese, F. K.; Gryba, R.; Kelly, B. P.
2016-02-01
MARES is an integrated ecosystem research initiative coordinated and planned by the Bureau of Ocean Energy Management, the Office of Naval Research, the National Aeronautics and Space Administration, the U.S. Coast Guard, and Shell through the National Oceanographic Partnership Program. The overarching goal is to advance our knowledge of the structure and function of the Beaufort Sea marine ecosystem so as to link atmospheric and oceanic drivers to sea ice patterns and marine mammal distribution and availability to local subsistence communities. The study, funded in 2014, focuses on the marine ecosystem along the Beaufort Sea shelf from Barrow, Alaska to the Mackenzie River delta in Canada and is scheduled to include bio-physical moorings along the US-Canadian border, glider deployments packed with bio-physical sensors, tagging of whales and ice-associated seals with satellite CTD-Fluorometer tags, biophysical and chemical cruises including the measurement and characterization of hydrography, ice, nutrients, primary and secondary production, carbon budgets, benthic fauna, fish, as well as analysis of freshwater input and chemical loadings, and ecosystem modeling. This presentation will focus on preliminary results from the ice seal tagging that started in the summer of 2015 and describe some of the planning and possibilities for partnerships for the more comprehensive 2016 field season and beyond.
Local and Total Density Measurements in Ice Shapes
NASA Technical Reports Server (NTRS)
Vargas, Mario; Broughton, Howard; Sims, James J.; Bleeze, Brian; Gaines, Vatanna
2005-01-01
Preliminary measurements of local and total densities inside ice shapes were obtained from ice shapes grown in the NASA Glenn Research Tunnel for a range of glaze ice, rime ice, and mixed phase ice conditions on a NACA 0012 airfoil at 0 angle of attack. The ice shapes were removed from the airfoil and a slice of ice 3 mm thick was obtained using a microtome. The resulting samples were then x-rayed to obtain a micro-radiography, the film was digitized, and image processing techniques were used to extract the local and total density values.
Todd, Brian J.; Valentine, Page C.; Longva, Oddvar; Shaw, John
2007-01-01
The extent and behaviour of the southeast margin of the Laurentide Ice Sheet in Atlantic Canada is of significance in the study of Late Wisconsinan ice sheet-ocean interactions. Multibeam sonar imagery of subglacial, ice-marginal and glaciomarine landforms on German Bank, Scotian Shelf, provides evidence of the pattern of glacial-dynamic events in the eastern Gulf of Maine. Northwest-southeast trending drumlins and megaflutes dominate northern German Bank. On southern German Bank, megaflutes of thin glacial deposits create a distinct northwest-southeast grain. Lobate regional moraines (>10km long) are concave to the northwest, up-ice direction and strike southwest-northeast, normal to the direction of ice flow. Ubiquitous, overlying De Geer moraines (
Topography of Sputnik Planitia Basin on Pluto: What We Know and Don't Know
NASA Astrophysics Data System (ADS)
Schenk, P.; Beyer, R. A.; McKinnon, W. B.; Moore, J.; Spencer, J. R.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.
2017-12-01
Pluto's topography is complex and reflects a diversity of geologic processes throughout its history. The most dominant feature is the deep 1200-by-2000-km-wide topographic depression enclosing the Sputnik Planitia nitrogen-rich ice sheet. Centered in the encounter hemisphere this large basin is ideally suited for topographic analysis. Despite this, considerable effort is required to constrain the true depth of this giant feature due to the uncertainties in controlling MVIC line-scan images, our primary source for long-wavelength information. Here we will summarize the current state of knowledge of this feature, as processing continues. Current estimates are that the floor of the observed basin (i.e., the top of the ice sheet) is 2-2.5 km depressed below the mean elevation of the surface. There is a highly eroded annular raised arched-ridge surrounding most of the basin that rises up to 1 km above mean surface. The surface of most of the ice sheet appears to be remarkably level within the limits of measurement ( 125 m). Comparison to other similar-sized depressions on Mars and the Moon support the interpretation that this is a large ancient impact structure. The outer 20-40- km of the ice sheet can be either depressed or raised several hundred meters, with the depressed moat forming north of 30° latitude or so, the raised portions forming south of this and corresponding to areas where glacier-like flow of material from the elevated rim regions meets the ice sheet. This suggests that the equatorial areas are areas of net accumulation of ice and the areas to the north are net deflation or lateral flow. The ice sheet is also characterized by polygonal and ovoid `cells' diagnostic of convection. These have shading patterns consistent with cell centers being raised in elevation. Preliminary shape-from-shading measurements suggest elevations of 100-200 m, consistent with weak stereo observations, though much more work is required on all these topics. Interpolation of d/D statistics for smaller craters implies a minimum depth of the original basin floor of 10 km below the rim (assuming that low angle or low-impact-velocity effects do not produce an anomalous basin profile). Pending updates, this would imply a possible maximum thickness of the observed ice sheet of 6 km.
NASA Astrophysics Data System (ADS)
Emmert, Adrian; Kneisel, Christof
2017-04-01
Uertsch rockglacier (46.61° N, 9.84°E, ca. 2500m asl.) is a tongue-shaped 300m x 100m landform at the head of a small high mountain valley in the Eastern Swiss Alps. Located at the lower end of possible permafrost existence, the rockglacier shows indications of permafrost decay although borehole temperature measurements exhibit an at least partly occurrence of permanently frozen subsurface conditions. To delimit the extent of the frozen area and to characterize subsurface structures, we performed three adjacent 3-D Electrical Resistivity Imaging (ERI) surveys consisting of data from altogether 138 merged 2-D profiles, covering nearly the entire rockglacier by an investigation area of more than 2.5 ha. More than 47000 data points of Wenner-Schlumberger and Dipol-Dipol electrode arrays grant sufficient data coverage. Ground-truthing was achieved through borehole temperature measurements and multiple comparative ground-penetrating radar (GPR) and seismic refraction tomography (SRT) surveys. Results show that the rockglacier today lacks a consistent permafrost table and only shows a patchy permafrost distribution. Several structures differing in geometry and electric resistivity show a complex pattern of ice-rich, ice-poor and ice-free areas. We could identify glacial influence in the root zone of the rockglacier, where a 3200m2 perennial surface ice field is visible. In a downslope direction, a shallow layer of high resistivity values, which is limited to the shallow subsurface, follows the ice field and indicates a genesis by refreezing meltwater. The central part of the rockglacier also shows traces of glacial interaction by the occurrence of a several meters thick buried ice patch in the shallow subsurface at a marginal position. Next to this position, in an area where longitudinal surface ridges are exposed, modelled resistivity values indicate frozen conditions with relatively low ice content, limited to the shallow subsurface. We assume that these structures are likely connected to permafrost creep processes. The frontal part of the rockglacier is affected by a strong ridge-and-furrow topography with arcuate ridge structures. Frozen conditions within these structures indicate an increase of ice content by thickening through compressive flow. Our study reflects the complexity of landform evolution for Uertsch rockglacier, where glacial and periglacial processes occur in close proximity. This emphasize the value of comprehensive 3-D investigations to assess the geometry and characteristics of larger subsurface structures.
Insights into the development of drumlin formation using ground-penetrating radar
NASA Astrophysics Data System (ADS)
Woodard, J.; Zoet, L.; Iverson, N. R.; Benediktsson, Í. Ö.; Schomacker, A.; Finlayson, A.
2016-12-01
Drumlins form as the result of subglacial slip, but the exact mechanisms responsible for their formation remain enigmatic. Resolution of drumlin internal stratigraphy provides a means for constraining the formation processes of drumlins, and thus the basal mechanics that result in their formation. Traditional litho-stratigraphic techniques have provided great insight into the internal stratigraphy of drumlins but are inherently limited to areas of natural exposure. We report on the application of geophysical methods used to image the internal stratigraphy of drumlins over a much larger area than is possible through litho-stratigraphic logging. Using ground penetrating radar we investigated the internal stratigraphy of seven drumlins from a recently exposed active drumlin field in the forefield of Múlajökull, Iceland. Data were collected using 100 and 200 MHz antennas that had maximum penetration depths of 15 m and 7 m with 0.4 m and 0.2 m resolution, respectively. Echograms demonstrated distinct layering of the diamictites. From the surface to ca. 2 m depth, till layers generally conformed to the longitudinal surface topography of the drumlins. Upper till layers exhibit unconformities on the flanks of the drumlins, except on their distal lee sides where layers were conformable. Till layers at approximately 2 m depth paralleled the drumlin surface and truncated lower layers. Below ca. 2 m depth distinct till layers dipped obliquely to the surface in the down-ice direction. These stratigraphic patterns were apparent in all drumlins measured at Múlajökull. The stratigraphic pattern observed in the drumlins of the Múlajökull forefield indicate a combination of deposition and erosion. Deposition occurred predominantly on the lee side and near the central axis of the drumlin, whereas erosion occurred along the flanks and stoss side. These observations support results from traditional litho-stratigraphic logs recorded on the same drumlins. Our observations suggest that drumlins migrated down ice and were initiated by a heterogeneous relief pattern in the drumlin forefield prior to the initial ice advance. This conceptual model supports observations that drumlins gained relief and became more elongated with time under the ice.
Caltech water-ice dusty plasma: preliminary results
NASA Astrophysics Data System (ADS)
Bellan, Paul; Chai, Kilbyoung
2013-10-01
A water-ice dusty plasma laboratory experiment has begun operation at Caltech. As in Ref., a 1-5 watt parallel-plate 13.56 MHz rf discharge plasma has LN2-cooled electrodes that cool the neutral background gas to cryogenic temperatures. However, instead of creating water vapor by in-situ deuterium-oxygen bonding, here the neutral gas is argon and water vapor is added in a controlled fashion. Ice grains spontaneously form after a few seconds. Photography with a HeNe line filter of a sheet of HeNe laser light sheet illuminating a cross section of dust grains shows a large scale whorl pattern composed of concentric sub-whorls having wave-like spatially varying intensity. Each sub-whorl is composed of very evenly separated fine-scale stream-lines indicating that the ice grains move in self-organized lanes like automobiles on a multi-line highway. HeNe laser extinction together with an estimate of dust density from the intergrain spacing in photographs indicates a 5 micron nominal dust grain radius. HeNe laser diffraction patterns indicate the ice dust grains are large and ellipsoidal at low pressure (200 mT) but small and spheroidal at high pressure (>600 mT). Supported by USDOE.
Preparing and Analyzing Iced Airfoils
NASA Technical Reports Server (NTRS)
Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Cotton, Barbara J.; Choo, Yung K.; Coroneos, Rula M.; Pennline, James A.; Hackenberg, Anthony W.; Schilling, Herbert W.; Slater, John W.;
2004-01-01
SmaggIce version 1.2 is a computer program for preparing and analyzing iced airfoils. It includes interactive tools for (1) measuring ice-shape characteristics, (2) controlled smoothing of ice shapes, (3) curve discretization, (4) generation of artificial ice shapes, and (5) detection and correction of input errors. Measurements of ice shapes are essential for establishing relationships between characteristics of ice and effects of ice on airfoil performance. The shape-smoothing tool helps prepare ice shapes for use with already available grid-generation and computational-fluid-dynamics software for studying the aerodynamic effects of smoothed ice on airfoils. The artificial ice-shape generation tool supports parametric studies since ice-shape parameters can easily be controlled with the artificial ice. In such studies, artificial shapes generated by this program can supplement simulated ice obtained from icing research tunnels and real ice obtained from flight test under icing weather condition. SmaggIce also automatically detects geometry errors such as tangles or duplicate points in the boundary which may be introduced by digitization and provides tools to correct these. By use of interactive tools included in SmaggIce version 1.2, one can easily characterize ice shapes and prepare iced airfoils for grid generation and flow simulations.
Measuring the muon content of air showers with IceTop
NASA Astrophysics Data System (ADS)
Gonzalez, Javier G.
2015-08-01
IceTop, the surface component of the IceCube detector, has been used to measure the energy spectrum of cosmic ray primaries in the range between 1.58 PeV and 1.26 EeV. It can also be used to study the low energy muons in air showers by looking at large distances (> 300 m) from the shower axis. We will show the muon lateral distribution function at large lateral distances as measured with IceTop and discuss the implications of this measurement. We will also discuss the prospects for low energy muon studies with IceTop.
Estimation of composite hydraulic resistance in ice-covered alluvial streams
NASA Astrophysics Data System (ADS)
Ghareh Aghaji Zare, Soheil; Moore, Stephanie A.; Rennie, Colin D.; Seidou, Ousmane; Ahmari, Habib; Malenchak, Jarrod
2016-02-01
Formation, propagation, and recession of ice cover introduce a dynamic boundary layer to the top of rivers during northern winters. Ice cover affects water velocity magnitude and distribution, water level and consequently conveyance capacity of the river. In this research, total resistance, i.e., "composite resistance," is studied for a 4 month period including stable ice cover, breakup, and open water stages in Lower Nelson River (LNR), northern Manitoba, Canada. Flow and ice characteristics such as water velocity and depth and ice thickness and condition were measured continuously using acoustic techniques. An Acoustic Doppler Current Profiler (ADCP) and Shallow Water Ice Profiling Sonar (SWIPS) were installed simultaneously on a bottom mount and deployed for this purpose. Total resistance to the flow and boundary roughness are estimated using measured bulk hydraulic parameters. A novel method is developed to calculate composite resistance directly from measured under ice velocity profiles. The results of this method are compared to the measured total resistance and to the calculated composite resistance using formulae available in literature. The new technique is demonstrated to compare favorably to measured total resistance and to outperform previously available methods.
Mass Loss of Larsen B Tributary Glaciers (Antarctic Peninsula) Unabated Since 2002
NASA Technical Reports Server (NTRS)
Berthier, Etienne; Scambos, Ted; Shuman, Christopher A.
2012-01-01
Ice mass loss continues at a high rate among the large glacier tributaries of the Larsen B Ice Shelf following its disintegration in 2002. We evaluate recent mass loss by mapping elevation changes between 2006 and 201011 using differencing of digital elevation models (DEMs). The measurement accuracy of these elevation changes is confirmed by a null test, subtracting DEMs acquired within a few weeks. The overall 2006201011 mass loss rate (9.0 2.1 Gt a-1) is similar to the 2001022006 rate (8.8 1.6 Gt a-1), derived using DEM differencing and laser altimetry. This unchanged overall loss masks a varying pattern of thinning and ice loss for individual glacier basins. On Crane Glacier, the thinning pulse, initially greatest near the calving front, is now broadening and migrating upstream. The largest losses are now observed for the HektoriaGreen glacier basin, having increased by 33 since 2006. Our method has enabled us to resolve large residual uncertainties in the Larsen B sector and confirm its state of ongoing rapid mass loss.
Applications of ERTS-1 imagery to terrestrial and marine environmental analyses in Alaska
NASA Technical Reports Server (NTRS)
Anderson, D. M.; Mckim, H. L.; Crowder, W. K.; Haugen, R. K.; Gatto, L. W.; Marlar, T. L.
1974-01-01
ERTS-1 imagery provides a means of distinguishing and monitoring estuarine surface water circulation patterns and changes in the relative sediment load of discharging rivers on a regional basis. It also will aid local fishing industries by augmenting currently available hydrologic and navigation charts. The interpretation of geologic and vegetation features resulted in preparation of improved surficial geology, vegetation and permafrost terrain maps at a scale of 1:1 million utilizing ERTS-1 band 7 imagery. This information will be further utilized in a route and site selection study for the Nome to Kobuk Road in central Alaska. Large river icings along the proposed Alaska pipeline route have been monitored. Sea ice deformation and drift northeast of Point Barrow, Alaska has been measured and shorefast ice accumulation and ablation along the west coast of Alaska is being mapped for the spring and early summer seasons. These data will be used for route and site selection, regional environmental analysis, identification and inventory of natural resources, land use planning, and in land use regulation and management.
Ice fog and light snow measurements using a high resolution camera system
NASA Astrophysics Data System (ADS)
Kuhn, Thomas; Gultepe, Ismail
2016-04-01
In this presentation, measurements collected by the ice crystal imaging (ICI) probe employed during FRAM (Fog Remote Sensing and Modeling) project for the Winter of 2010-2011 in Yellowknife, NWT, Canada are analysed to study small ice crystal impact on aviation operations. Ice fog, diamond dust, and light snow form during cold weather conditions and they affect aviation operations through visibility and deposition over the surfaces. In addition, these events influence the local heat budget through radiative cooling. Prediction of these hydrometeors using models is difficult because of limited knowledge of the microphysical properties at the small size ranges. These phenomena need to be better represented in forecast and climate models and this can only be done using accurate measurements from ground-based instrumentation. Imaging of ice particles' properties can complement other in-situ measurements being collected routinely. The newly developed ICI probe, aimed at measuring ice fog and light snow particles, is presented here. The ICI probe samples ice particles through a vertical inlet, where a laser beam and photodetector detect ice crystals contained in the flow. The detected particles are then imaged with high optical resolution between 10 to 1000 micron size range. An illuminating LED flash and image capturing for measurements are triggered by the photodetector. The results suggested that the majority of ice particles during the two-month long campaign were small with sizes between 300 μm and 800 μm. During ice fog events, the size distribution measured had a lower mode diameter of 300 μm compared to the overall campaign average with mode at 500 μm. In this presentation, challenges and issues related to small ice crystals are described and their importance for aviation operations and climate change are discussed.
Disk and circumsolar radiances in the presence of ice clouds
Haapanala, Päivi; Räisänen, Petri; McFarquhar, Greg M.; ...
2017-06-12
The impact of ice clouds on solar disk and circumsolar radiances is investigated using a Monte Carlo radiative transfer model. The monochromatic direct and diffuse radiances are simulated at angles of 0 to 8° from the center of the sun. Input data for the model are derived from measurements conducted during the 2010 Small Particles in Cirrus (SPARTICUS) campaign together with state-of-the-art databases of optical properties of ice crystals and aerosols. For selected cases, the simulated radiances are compared with ground-based radiance measurements obtained by the Sun and Aureole Measurements (SAM) instrument. First, the sensitivity of the radiances to themore » ice cloud properties and aerosol optical thickness is addressed. The angular dependence of the disk and circumsolar radiances is found to be most sensitive to assumptions about ice crystal roughness (or, more generally, non-ideal features of ice crystals) and size distribution, with ice crystal habit playing a somewhat smaller role. Second, in comparisons with SAM data, the ice cloud optical thickness is adjusted for each case so that the simulated radiances agree closely (i.e., within 3 %) with the measured disk radiances. Circumsolar radiances at angles larger than ≈ 3° are systematically underestimated when assuming smooth ice crystals, whereas the agreement with the measurements is better when rough ice crystals are assumed. In conclusion, our results suggest that it may well be possible to infer the particle roughness directly from ground-based SAM measurements. In addition, the results show the necessity of correcting the ground-based measurements of direct radiation for the presence of diffuse radiation in the instrument's field of view, in particular in the presence of ice clouds.« less
Direct observations of ice seasonality reveal changes in climate over the past 320–570 years
Sharma, Sapna; Magnuson, John J.; Batt, Ryan D.; Winslow, Luke; Korhonen, Johanna; Yasuyuki Aono,
2016-01-01
Lake and river ice seasonality (dates of ice freeze and breakup) responds sensitively to climatic change and variability. We analyzed climate-related changes using direct human observations of ice freeze dates (1443–2014) for Lake Suwa, Japan, and of ice breakup dates (1693–2013) for Torne River, Finland. We found a rich array of changes in ice seasonality of two inland waters from geographically distant regions: namely a shift towards later ice formation for Suwa and earlier spring melt for Torne, increasing frequencies of years with warm extremes, changing inter-annual variability, waning of dominant inter-decadal quasi-periodic dynamics, and stronger correlations of ice seasonality with atmospheric CO2 concentration and air temperature after the start of the Industrial Revolution. Although local factors, including human population growth, land use change, and water management influence Suwa and Torne, the general patterns of ice seasonality are similar for both systems, suggesting that global processes including climate change and variability are driving the long-term changes in ice seasonality.
Direct observations of ice seasonality reveal changes in climate over the past 320–570 years
Sharma, Sapna; Magnuson, John J.; Batt, Ryan D.; Winslow, Luke A.; Korhonen, Johanna; Aono, Yasuyuki
2016-01-01
Lake and river ice seasonality (dates of ice freeze and breakup) responds sensitively to climatic change and variability. We analyzed climate-related changes using direct human observations of ice freeze dates (1443–2014) for Lake Suwa, Japan, and of ice breakup dates (1693–2013) for Torne River, Finland. We found a rich array of changes in ice seasonality of two inland waters from geographically distant regions: namely a shift towards later ice formation for Suwa and earlier spring melt for Torne, increasing frequencies of years with warm extremes, changing inter-annual variability, waning of dominant inter-decadal quasi-periodic dynamics, and stronger correlations of ice seasonality with atmospheric CO2 concentration and air temperature after the start of the Industrial Revolution. Although local factors, including human population growth, land use change, and water management influence Suwa and Torne, the general patterns of ice seasonality are similar for both systems, suggesting that global processes including climate change and variability are driving the long-term changes in ice seasonality. PMID:27113125
NASA Astrophysics Data System (ADS)
Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.; Hallberg, R.; Oppenheimer, M.
2012-06-01
Antarctic ice shelves interact closely with the ocean cavities beneath them, with ice shelf geometry influencing ocean cavity circulation, and heat from the ocean driving changes in the ice shelves, as well as the grounded ice streams that feed them. We present a new coupled model of an ice stream-ice shelf-ocean system that is used to study this interaction. The model is capable of representing a moving grounding line and dynamically responding ocean circulation within the ice shelf cavity. Idealized experiments designed to investigate the response of the coupled system to instantaneous increases in ocean temperature show ice-ocean system responses on multiple timescales. Melt rates and ice shelf basal slopes near the grounding line adjust in 1-2 years, and downstream advection of the resulting ice shelf thinning takes place on decadal timescales. Retreat of the grounding line and adjustment of grounded ice takes place on a much longer timescale, and the system takes several centuries to reach a new steady state. During this slow retreat, and in the absence of either an upward-or downward-sloping bed or long-term trends in ocean heat content, the ice shelf and melt rates maintain a characteristic pattern relative to the grounding line.
Statistical analysis of temperature data sampled at Station-M in the Norwegian Sea
NASA Astrophysics Data System (ADS)
Lorentzen, Torbjørn
2014-02-01
The paper analyzes sea temperature data sampled at Station-M in the Norwegian Sea. The data cover the period 1948-2010. The following questions are addressed: What type of stochastic process characterizes the temperature series? Are there any changes or patterns which indicate climate change? Are there any characteristics in the data which can be linked to the shrinking sea-ice in the Arctic area? Can the series be modeled consistently and applied in forecasting of the future sea temperature? The paper applies the following methods: Augmented Dickey-Fuller tests for testing of unit-root and stationarity, ARIMA-models in univariate modeling, cointegration and error-correcting models are applied in estimating short- and long-term dynamics of non-stationary series, Granger-causality tests in analyzing the interaction pattern between the deep and upper layer temperatures, and simultaneous equation systems are applied in forecasting future temperature. The paper shows that temperature at 2000 m Granger-causes temperature at 150 m, and that the 2000 m series can represent an important information carrier of the long-term development of the sea temperature in the geographical area. Descriptive statistics shows that the temperature level has been on a positive trend since the beginning of the 1980s which is also measured in most of the oceans in the North Atlantic. The analysis shows that the temperature series are cointegrated which means they share the same long-term stochastic trend and they do not diverge too far from each other. The measured long-term temperature increase is one of the factors that can explain the shrinking summer sea-ice in the Arctic region. The analysis shows that there is a significant negative correlation between the shrinking sea ice and the sea temperature at Station-M. The paper shows that the temperature forecasts are conditioned on the properties of the stochastic processes, causality pattern between the variables and specification of model, respectively. The estimated models forecast that temperature at 150 m is expected to increase by 0.018 °C per year, while deep water temperature at 2000 m is expected to increase between 0.0022 and 0.0024 °C per year.
Satellite Remote Sensing: Passive-Microwave Measurements of Sea Ice
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.; Zukor, Dorothy J. (Technical Monitor)
2001-01-01
Satellite passive-microwave measurements of sea ice have provided global or near-global sea ice data for most of the period since the launch of the Nimbus 5 satellite in December 1972, and have done so with horizontal resolutions on the order of 25-50 km and a frequency of every few days. These data have been used to calculate sea ice concentrations (percent areal coverages), sea ice extents, the length of the sea ice season, sea ice temperatures, and sea ice velocities, and to determine the timing of the seasonal onset of melt as well as aspects of the ice-type composition of the sea ice cover. In each case, the calculations are based on the microwave emission characteristics of sea ice and the important contrasts between the microwave emissions of sea ice and those of the surrounding liquid-water medium.
2017-08-21
It is spring in the Northern hemisphere when NASA's Mars Reconnaissance Orbiter took this image. Over the winter, snow and ice have inexorably covered the dunes. Unlike on Earth, this snow and ice is carbon dioxide, better known to us as dry ice. When the sun starts shining on it in the spring, the ice on the smooth surface of the dune cracks and escaping gas carries dark sand out from the dune below, often creating beautiful patterns. On the rough surface between the dunes, frost is trapped behind small sheltered ridges. https://photojournal.jpl.nasa.gov/catalog/PIA21882
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Evaluation of the effect of localized skin cooling on nasal airway volume by acoustic rhinometry.
Yamagiwa, M; Hilberg, O; Pedersen, O F; Lundqvist, G R
1990-04-01
Ten healthy subjects (four men and six women) were subjected to localized skin cooling by submersion for 5 min of both feet and, in another experiment, one hand and forearm into ice-cold water. Repeated measurements of nasal cavity volumes by a new method, acoustic rhinometry, showed characteristic patterns ranging from marked increases in volumes lasting the entire exposure period to transient monophasic or biphasic responses to no change at all. The pattern in individual subjects was reproducible with the two methods of cooling, and it could be characterized by five types when related to baseline measurements during the preexposure period. Because of large minute-to-minute variations, probably determined by local differences and fluctuations in blood flow in tissues through the nose, evaluation of induced changes in the nasal cavity volume cannot be based on single measurements as has frequently been done in the past by using rhinomanometry as the experimental method. The mechanisms behind the characteristic patterns in immediate human nasal response to local skin cooling challenge remains to be explored.
Compiling Techniques for East Antarctic Ice Velocity Mapping Based on Historical Optical Imagery
NASA Astrophysics Data System (ADS)
Li, X.; Li, R.; Qiao, G.; Cheng, Y.; Ye, W.; Gao, T.; Huang, Y.; Tian, Y.; Tong, X.
2018-05-01
Ice flow velocity over long time series in East Antarctica plays a vital role in estimating and predicting the mass balance of Antarctic Ice Sheet and its contribution to global sea level rise. However, there is no Antarctic ice velocity product with large space scale available showing the East Antarctic ice flow velocity pattern before the 1990s. We proposed three methods including parallax decomposition, grid-based NCC image matching, feature and gird-based image matching with constraints for estimation of surface velocity in East Antarctica based on ARGON KH-5 and LANDSAT imagery, showing the feasibility of using historical optical imagery to obtain Antarctic ice motion. Based on these previous studies, we presented a set of systematic method for developing ice surface velocity product for the entire East Antarctica from the 1960s to the 1980s in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.
Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering onmore » the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. Finally, the freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy.« less
Predicting September sea ice: Ensemble skill of the SEARCH Sea Ice Outlook 2008-2013
NASA Astrophysics Data System (ADS)
Stroeve, Julienne; Hamilton, Lawrence C.; Bitz, Cecilia M.; Blanchard-Wrigglesworth, Edward
2014-04-01
Since 2008, the Study of Environmental Arctic Change Sea Ice Outlook has solicited predictions of September sea-ice extent from the Arctic research community. Individuals and teams employ a variety of modeling, statistical, and heuristic approaches to make these predictions. Viewed as monthly ensembles each with one or two dozen individual predictions, they display a bimodal pattern of success. In years when observed ice extent is near its trend, the median predictions tend to be accurate. In years when the observed extent is anomalous, the median and most individual predictions are less accurate. Statistical analysis suggests that year-to-year variability, rather than methods, dominate the variation in ensemble prediction success. Furthermore, ensemble predictions do not improve as the season evolves. We consider the role of initial ice, atmosphere and ocean conditions, and summer storms and weather in contributing to the challenge of sea-ice prediction.
Seasonal to interannual Arctic sea ice predictability in current global climate models
NASA Astrophysics Data System (ADS)
Tietsche, S.; Day, J. J.; Guemas, V.; Hurlin, W. J.; Keeley, S. P. E.; Matei, D.; Msadek, R.; Collins, M.; Hawkins, E.
2014-02-01
We establish the first intermodel comparison of seasonal to interannual predictability of present-day Arctic climate by performing coordinated sets of idealized ensemble predictions with four state-of-the-art global climate models. For Arctic sea ice extent and volume, there is potential predictive skill for lead times of up to 3 years, and potential prediction errors have similar growth rates and magnitudes across the models. Spatial patterns of potential prediction errors differ substantially between the models, but some features are robust. Sea ice concentration errors are largest in the marginal ice zone, and in winter they are almost zero away from the ice edge. Sea ice thickness errors are amplified along the coasts of the Arctic Ocean, an effect that is dominated by sea ice advection. These results give an upper bound on the ability of current global climate models to predict important aspects of Arctic climate.
Assessing the accuracy of Greenland ice sheet ice ablation measurements by pressure transducer
NASA Astrophysics Data System (ADS)
Fausto, R. S.; van As, D.; Ahlstrøm, A. P.
2012-04-01
In the glaciological community there is a need for reliable mass balance measurements of glaciers and ice sheets, ranging from daily to yearly time scales. Here we present a method to measure ice ablation using a pressure transducer. The pressure transducer is drilled into the ice, en-closed in a hose filled with a liquid that is non-freezable at common Greenlandic temperatures. The pressure signal registered by the transducer is that of the vertical column of liquid over the sensor, which can be translated in depth knowing the density of the liquid. As the free-standing AWS moves down with the ablating surface and the hose melts out of the ice, an increasingly large part of the hose will lay flat on the ice surface, and the hydrostatic pressure from the vertical column of liquid in the hose will get smaller. This reduction in pressure provides us with the ablation rate. By measuring at (sub-) daily timescales this assembly is well-suited to monitor ice ablation in remote regions, with clear advantages over other well-established methods of measuring ice ablation in the field. The pressure transducer system has the potential to monitor ice ablation for several years without re-drilling and the system is suitable for high ablation areas. A routine to transform raw measurements into ablation values will also be presented, including a physically based method to remove air pressure variability from the signal. The pressure transducer time-series is compared to that recorded by a sonic ranger for the climatically hostile setting on the Greenland ice sheet.
Protozoan Bacterivory in the Ice and the Water Column of a Cold Temperate Lagoon.
Sime-Ngando; Demers; Juniper
1999-02-01
> Abstract Bacterial abundance and bacterivorous protist abundance and activity were examined in ice-brine and water column communities of a cold temperate Japanese lagoon (Saroma-Ko Lagoon, Hokkaido, 44 degreesN, 144 degreesE), during the late winter phase of ice community development (February-March 1992). Bacterial abundance averaged 6 and 1 x 10(5) cells ml-1 in the ice-brine and plankton samples, respectively, and generally decreased during the sampling period. Bacterivorous protists, identified based on direct observation of short-term (<1 h) ingested fluorescently labeled bacteria (FLB) in their food vacuoles, were largely dominated by flagellates, mainly cryothecomonad-type and chrysomonad-like cells and small dinoflagellates of the genus Gymnodinium. Bacterivorous ciliates included mainly the prostomatid Urotricha sp., the scuticociliates Uronema and Cyclidium, the choreotrichs Lohmaniella oviformis and Strobilidium, and the hypotrich Euplotes sp. Protist abundance averaged 4 x 10(3) and 8.1 cells ml-1 in the ice-brine and 0.3 x 10(3) and 1.2 cells ml-1 in the plankton, for flagellates and ciliates, respectively. In contrast to bacteria, the abundance of protists generally increased throughout the sampling period, indicating predator-prey interactions. Protistan bacterivory, measured from the rate of FLB disappearance over 24 h, averaged 36% (ice) and 24% (plankton) of bacterial standing stock and exhibited the same seasonal pattern as for protist abundance. The calculated specific clearance (range, 2-67 nl protozoa-1 h-1) and ingestion (<1-26 particles protozoa-1 h-1) rates were likely to be minimal estimates and grazing impact may have been higher on occasion. Indications for the dependence of "bacterivorous protists" on nonbacterial food items were also provided. Although alternative sources of bacterial loss are likely to be of importance, this study provides evidence for the potential of protozoan assemblages as bacterial grazers in both sea ice-brine biota and water column at the southern limit of sea ice in the northern hemisphere.
The role of synoptic weather variability in Greenland ice sheet dynamics
NASA Astrophysics Data System (ADS)
Walker, J. M.; Radic, V.
2017-12-01
Much of the large uncertainty in predictions of future global sea level rise is due to our limited understanding of Greenland ice sheet (GrIS) motion and its interactions with climate. Over the next century, climate models predict that the GrIS will experience not only gradual warming, but also changes in atmospheric circulation, hydrology, and weather, including a northward shift of the North Atlantic storm track, with greater frequency and intensity of rain storms over the GrIS. Recent studies of GrIS dynamics have focused on the effects of increased seasonal mean meltwater on ice velocities, finding only a modest impact due to compensation by subglacial drainage systems, but subglacial hydraulic theory indicates that variability on shorter timescales is also relevant: short-term surges in meltwater or rainfall can overload drainage systems at rates faster than they can adjust, leading to water pressure spikes and ice acceleration. If the magnitude or frequency of these transient ice accelerations increase substantially as synoptic weather patterns change over the next century, there could be a significant cumulative impact on seasonal mean ice velocities. However, this issue has not been addressed in the literature and represents a major source of uncertainty. In this study, we investigate the role of synoptic weather variability in GrIS dynamics, with the ultimate goal of evaluating the relationships between extreme weather events and ice sheet flow in different seasons and regions of the GrIS. As a first step, we apply the machine learning technique of self-organizing maps to atmospheric reanalysis data to categorize the predominant synoptic weather systems over the GrIS domain, evaluating atmospheric moisture transport and rainfall to assess the impacts of each weather system on GrIS surface hydrology. The preliminary results presented here will be used in conjunction with ice velocity satellite measurements in future work, to identify any correlations between seasonal mean GrIS velocities and the frequency or intensity of storms during the season.
Smith, Laurence C; Chu, Vena W; Yang, Kang; Gleason, Colin J; Pitcher, Lincoln H; Rennermalm, Asa K; Legleiter, Carl J; Behar, Alberto E; Overstreet, Brandon T; Moustafa, Samiah E; Tedesco, Marco; Forster, Richard R; LeWinter, Adam L; Finnegan, David C; Sheng, Yongwei; Balog, James
2015-01-27
Thermally incised meltwater channels that flow each summer across melt-prone surfaces of the Greenland ice sheet have received little direct study. We use high-resolution WorldView-1/2 satellite mapping and in situ measurements to characterize supraglacial water storage, drainage pattern, and discharge across 6,812 km(2) of southwest Greenland in July 2012, after a record melt event. Efficient surface drainage was routed through 523 high-order stream/river channel networks, all of which terminated in moulins before reaching the ice edge. Low surface water storage (3.6 ± 0.9 cm), negligible impoundment by supraglacial lakes or topographic depressions, and high discharge to moulins (2.54-2.81 cm⋅d(-1)) indicate that the surface drainage system conveyed its own storage volume every <2 d to the bed. Moulin discharges mapped inside ∼52% of the source ice watershed for Isortoq, a major proglacial river, totaled ∼41-98% of observed proglacial discharge, highlighting the importance of supraglacial river drainage to true outflow from the ice edge. However, Isortoq discharges tended lower than runoff simulations from the Modèle Atmosphérique Régional (MAR) regional climate model (0.056-0.112 km(3)⋅d(-1) vs. ∼0.103 km(3)⋅d(-1)), and when integrated over the melt season, totaled just 37-75% of MAR, suggesting nontrivial subglacial water storage even in this melt-prone region of the ice sheet. We conclude that (i) the interior surface of the ice sheet can be efficiently drained under optimal conditions, (ii) that digital elevation models alone cannot fully describe supraglacial drainage and its connection to subglacial systems, and (iii) that predicting outflow from climate models alone, without recognition of subglacial processes, may overestimate true meltwater export from the ice sheet to the ocean.
Smith, Laurence C.; Chu, Vena W.; Yang, Kang; Gleason, Colin J.; Pitcher, Lincoln H.; Rennermalm, Asa K.; Legleiter, Carl J.; Behar, Alberto E.; Overstreet, Brandon T.; Moustafa, Samiah E.; Tedesco, Marco; Forster, Richard R.; LeWinter, Adam L.; Finnegan, David C.; Sheng, Yongwei; Balog, James
2015-01-01
Thermally incised meltwater channels that flow each summer across melt-prone surfaces of the Greenland ice sheet have received little direct study. We use high-resolution WorldView-1/2 satellite mapping and in situ measurements to characterize supraglacial water storage, drainage pattern, and discharge across 6,812 km2 of southwest Greenland in July 2012, after a record melt event. Efficient surface drainage was routed through 523 high-order stream/river channel networks, all of which terminated in moulins before reaching the ice edge. Low surface water storage (3.6 ± 0.9 cm), negligible impoundment by supraglacial lakes or topographic depressions, and high discharge to moulins (2.54–2.81 cm⋅d−1) indicate that the surface drainage system conveyed its own storage volume every <2 d to the bed. Moulin discharges mapped inside ∼52% of the source ice watershed for Isortoq, a major proglacial river, totaled ∼41–98% of observed proglacial discharge, highlighting the importance of supraglacial river drainage to true outflow from the ice edge. However, Isortoq discharges tended lower than runoff simulations from the Modèle Atmosphérique Régional (MAR) regional climate model (0.056–0.112 km3⋅d−1 vs. ∼0.103 km3⋅d−1), and when integrated over the melt season, totaled just 37–75% of MAR, suggesting nontrivial subglacial water storage even in this melt-prone region of the ice sheet. We conclude that (i) the interior surface of the ice sheet can be efficiently drained under optimal conditions, (ii) that digital elevation models alone cannot fully describe supraglacial drainage and its connection to subglacial systems, and (iii) that predicting outflow from climate models alone, without recognition of subglacial processes, may overestimate true meltwater export from the ice sheet to the ocean. PMID:25583477
Methane and nitrous oxide in the ice core record.
Wolff, Eric; Spahni, Renato
2007-07-15
Polar ice cores contain, in trapped air bubbles, an archive of the concentrations of stable atmospheric gases. Of the major non-CO2 greenhouse gases, methane is measured quite routinely, while nitrous oxide is more challenging, with some artefacts occurring in the ice and so far limited interpretation. In the recent past, the ice cores provide the only direct measure of the changes that have occurred during the industrial period; they show that the current concentration of methane in the atmosphere is far outside the range experienced in the last 650,000 years; nitrous oxide is also elevated above its natural levels. There is controversy about whether changes in the pre-industrial Holocene are natural or anthropogenic in origin. Changes in wetland emissions are generally cited as the main cause of the large glacial-interglacial change in methane. However, changing sinks must also be considered, and the impact of possible newly described sources evaluated. Recent isotopic data appear to finally rule out any major impact of clathrate releases on methane at these time-scales. Any explanation must take into account that, at the rapid Dansgaard-Oeschger warmings of the last glacial period, methane rose by around half its glacial-interglacial range in only a few decades. The recent EPICA Dome C (Antarctica) record shows that methane tracked climate over the last 650,000 years, with lower methane concentrations in glacials than interglacials, and lower concentrations in cooler interglacials than in warmer ones. Nitrous oxide also shows Dansgaard-Oeschger and glacial-interglacial periodicity, but the pattern is less clear.
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Kong, J. A.; Hsu, C. C.; Ding, K. H.
1995-01-01
An experiment was carried out in January 1994 at the Geophysical Research Facility in the Cold Regions Research and Engineering Laboratory. To investigate effects on polarimetric scattering signatures of sea ice growth under diurnal temperature variations, an ice sheet was grown for 2.5 days for the thickness of 10 cm and a polarimetric radar operating at C-band was used to obtain backscattering data in conjunction with ice-characterization measurements. The ice sheet was grown in the late morning of January 19, 1994. The initial growth rate was slow due to high insolation and temperature. As the air temperature dropped during the night, the growth rate increased significantly. The air temperature changed drastically from about -10(deg)C to -35(deg)C between day and night. The temperature cycle was repeated during the next day and the growth rate varied in the same manner. The surface of the ice was partially covered by frost flowers and the areal coverage increased as the ice became thicker. Throughout the ice growth duration of 2.5 days, polarimetric backscatter data were collected at roughly every centimeter of ice growth. For each set of radar measurements of saline ice, a set of calibration measurements was carried out with trihedrial corner reflectors and a metallic sphere. Measured polarimetric backscattering coefficients of the ice sheet reveal a strong correlation between radar data and temperature variations. As the temperature increased (decreased), the backscatter increased (decreased) correspondingly. From the ice-characterization data, temperatures of the air, at the ice-air interface, and in the ice layer had the same variation trend. Another interesting experimental observation is that the salinity measured as a function of ice depth from a sample of 10-cm thich ice indicated that the salinity variations had a similar cycle as the temperature; i.e., the salinity profile recorded the history of the temperature variations. Characterization data of the ice sheet are used in a theoretical model for scattering from saline ice with frost cover to explain the observed polarimetric signatures.
NASA Astrophysics Data System (ADS)
Pozzoli, Luca; Dobricic, Srdan; Russo, Simone; Vignati, Elisabetta
2017-10-01
Winter warming and sea-ice retreat observed in the Arctic in the last decades may be related to changes of large-scale atmospheric circulation pattern, which may impact the transport of black carbon (BC) to the Arctic and its deposition on the sea ice, with possible feedbacks on the regional and global climate forcing. In this study we developed and applied a statistical algorithm, based on the maximum likelihood estimate approach, to determine how the changes of three large-scale weather patterns associated with increasing temperatures in winter and sea-ice retreat in the Arctic impact the transport of BC to the Arctic and its deposition. We found that two atmospheric patterns together determine a decreasing winter deposition trend of BC between 1980 and 2015 in the eastern Arctic while they increase BC deposition in the western Arctic. The increasing BC trend is mainly due to a pattern characterized by a high-pressure anomaly near Scandinavia favouring the transport in the lower troposphere of BC from Europe and North Atlantic directly into to the Arctic. Another pattern with a high-pressure anomaly over the Arctic and low-pressure anomaly over the North Atlantic Ocean has a smaller impact on BC deposition but determines an increasing BC atmospheric load over the entire Arctic Ocean with increasing BC concentrations in the upper troposphere. The results show that changes in atmospheric circulation due to polar atmospheric warming and reduced winter sea ice significantly impacted BC transport and deposition. The anthropogenic emission reductions applied in the last decades were, therefore, crucial to counterbalance the most likely trend of increasing BC pollution in the Arctic.
NASA Astrophysics Data System (ADS)
Shennan, Ian; Bradley, Sarah L.; Edwards, Robin
2018-05-01
The new sea-level database for Britain and Ireland contains >2100 data points from 86 regions and records relative sea-level (RSL) changes over the last 20 ka and across elevations ranging from ∼+40 to -55 m. It reveals radically different patterns of RSL as we move from regions near the centre of the Celtic ice sheet at the last glacial maximum to regions near and beyond the ice limits. Validated sea-level index points and limiting data show good agreement with the broad patterns of RSL change predicted by current glacial isostatic adjustment (GIA) models. The index points show no consistent pattern of synchronous coastal advance and retreat across different regions, ∼100-500 km scale, indicating that within-estuary processes, rather than decimetre- and centennial-scale oscillations in sea level, produce major controls on the temporal pattern of horizontal shifts in coastal sedimentary environments. Comparisons between the database and GIA model predictions for multiple regions provide potentially powerful constraints on various characteristics of global GIA models, including the magnitude of MWP1A, the final deglaciation of the Laurentide ice sheet and the continued melting of Antarctica after 7 ka BP.
NASA Astrophysics Data System (ADS)
Vogel, S. W.; Tulaczyk, S. M.; Carter, S.; Grunow, A.
2003-12-01
The West-Antarctic Ice Sheet (WAIS) is the second largest ice sheet in the world. Its dynamic is extensively studied due to the proposed threat of rapid disintegration and associated sea level rise (Mercer, 1971). Most of its ice drains through a few fast flowing (>100 m/yr) ice streams and outlet glaciers. Subglacial conditions in particular the distribution of basal water and the availability of subglacial sediment plays an important role for their location and extent. Subglacial geology in particular the distribution of sedimentary basin fill, providing material for a lubricating subglacial till layer, may pose a limit on the inland extent of the fast flowing ice stream. Subglacial volcanism and associated elevated geothermal heat fluxes may provide crucial subglacial melt water for ice stream lubrication. We have studied sediment from the base of the WAIS to elucidate questions about the existence of subglacial volcanism and to determine the provenance of the subglacial sediment. Within this study we measured clay mineralogy, sand petrography, magnetic and geochemical properties of subglacial and englacial sediment from different locations in the Ross Sea-catchment area of the WAIS. Our samples come from Whillans-, Kamb- and Bindschadler Ice Stream as well as from Siple Dome, Crary Ice Rise and Byrd Station. Most of our sediment samples represent samples of subglacial till, which in earlier studies have been characterized as reworked marine sediment of Cenozoic age. The englacial sediment samples come from basal ice. Our study so far has found no positive evidence for the existence of subglacial volcanism beneath the WAIS. The mineralogy as well as the REE-pattern of our samples correspond better with a crustal source for the sediment than Cenozoic basalts. The isotopic composition of our samples (Nd/Sm, Rb/Sr) show differences between individual ice streams locations as well as differences between different grain size fractions. TDM-ages range from ~900 Ma to 1800 Ma; ENd between -4 to -12 and 87Sr/86Sr ~0.715 to ~0.735. Our preliminary geochemical results so far point to rocks from outcrops in the upstream areas of the individual ice streams as provenance for their sediment (Horlick Mountains and Whitmore Mountains) with a possibly small East-Antarctic component.
Integrating Instrumental Data Provides the Full Science in 3D
NASA Astrophysics Data System (ADS)
Turrin, M.; Boghosian, A.; Bell, R. E.; Frearson, N.
2017-12-01
Looking at data sparks questions, discussion and insights. By integrating multiple data sets we deepen our understanding of how cryosphere processes operate. Field collected data provide measurements from multiple instruments supporting rapid insights. Icepod provides a platform focused on the integration of multiple instruments. Over the last three seasons, the ROSETTA-Ice project has deployed Icepod to comprehensively map the Ross Ice Shelf, Antarctica. This integrative data collection along with new methods of data visualization allows us to answer questions about ice shelf structure and evolution that arise during data processing and review. While data are vetted and archived in the field to confirm instruments are operating, upon return to the lab data are again reviewed for accuracy before full analysis. Recent review of shallow ice radar data from the Beardmore Glacier, an outlet glacier into the Ross Ice Shelf, presented an abrupt discontinuity in the ice surface. This sharp 8m surface elevation drop was originally interpreted as a processing error. Data were reexamined, integrating the simultaneously collected shallow and deep ice radar with lidar data. All the data sources showed the surface discontinuity, confirming the abrupt 8m drop in surface elevation. Examining high resolution WorldView satellite imagery revealed a persistent source for these elevation drops. The satellite imagery showed that this tear in the ice surface was only one piece of a larger pattern of "chatter marks" in ice that flows at a rate of 300 m/yr. The markings are buried over a distance of 30 km or after 100 years of travel down Beardmore Glacier towards the front of the Ross Ice Shelf. Using Icepod's lidar and cameras we map this chatter mark feature in 3D to reveal its full structure. We use digital elevation models from WorldView to map the other along flow chatter marks. In order to investigate the relationship between these surface features and basal crevasses, the deep ice radar enables a 3D model of the base of the ice shelf. Both the high resolution imagery and radar echograms along with a VR experience of our 3D models, allows viewers to fully explore the dataset and gain insight into the processes producing these features.
Active Microwave Remote Sensing Observations of Weddell Sea Ice
NASA Technical Reports Server (NTRS)
Drinkwater, Mark R.
1997-01-01
Since July 1991, the European Space Agency's ERS-1 and ERS-2 satellites have acquired radar data of the Weddell Sea, Antarctica. The Active Microwave Instrument on board ERS has two modes; SAR and Scatterometer. Two receiving stations enable direct downlink and recording of high bit-rate, high resolution SAR image data of this region. When not in an imaging mode, when direct SAR downlink is not possible, or when a receiving station is inoperable, the latter mode allows normalized radar cross-section data to be acquired. These low bit-rate ERS scatterometer data are tape recorded, downlinked and processed off-line. Recent advances in image generation from Scatterometer backscatter measurements enable complementary medium-scale resolution images to be made during periods when SAR images cannot be acquired. Together, these combined C-band microwave image data have for the first time enabled uninterrupted night and day coverage of the Weddell Sea region at both high (25 m) and medium-scale (-20 km) resolutions. C-band ERS-1 radar data are analyzed in conjunction with field data from two simultaneous field experiments in 1992. Satellite radar signature data are compared with shipborne radar data to extract a regional and seasonal signature database for recognition of ice types in the images. Performance of automated sea-ice tracking algorithms is tested on Antarctic data to evaluate their success. Examples demonstrate that both winter and summer ice can be effectively tracked. The kinematics of the main ice zones within the Weddell Sea are illustrated, together with the complementary time-dependencies in their radar signatures. Time-series of satellite images are used to illustrate the development of the Weddell Sea ice cover from its austral summer minimum (February) to its winter maximum (September). The combination of time-dependent microwave signatures and ice dynamics tracking enable various drift regimes to be defined which relate closely to the circulation of the sea ice in response to current and wind forcing and iceberg barriers. These are closely related to continental-shelf or central basin regimes, in which tidal forcing or barotropic circulation patterns appear to influence the sea-ice motion, respectively. These regimes provide valuable information about the regions of most prolific ice growth and influence of ice conditions upon air-sea-ice exchange processes in the Weddell Sea.
NASA Astrophysics Data System (ADS)
Carns, R.; Light, B.; Frey, K. E.
2016-12-01
First-year sea ice differs from multi-year sea ice in several ways that can influence its optical properties. It is thinner than multi-year ice, which tends to increase light transmission. Also, first-year ice retains higher brine volumes in comparison to more heavily drained multi-year ice, in isolated pockets and channels. During melt season, patterns of pond formation on first-year sea ice differ from those on multi-year ice. As first-year sea ice comprises an increasingly large fraction of Arctic sea ice, it becomes more important to understand how much sunlight reaches the ecosystems within the ice, and how those changing ecosystems can feed back into the transmission of light. Colored dissolved organic matter (CDOM) and chlorophyll within the ice can absorb light, heating the ice and reducing transmission to the ocean below. Light also encourages algal growth within the ice while degrading CDOM, creating complex feedbacks. We use radiative transfer models to determine the overall effect of colored dissolved organic matter on the light regime within sea ice, both on the overall amount of energy transmitted and on the spectral distribution of energy. Using models allows us to estimate the impact of varying CDOM levels on a wide range of sea ice types, improving our ability to respond to conditions in a rapidly changing Arctic and predict important phenomena such as algal blooms.
Earth Observation taken by the Expedition 19 crew
2009-04-23
ISS019-E-010556 (23 April 2009) --- A circle in thin ice in Lake Baikal, Russia is featured in this image photographed by an Expedition 19 crewmember on the International Space Station. Late in April 2009, astronauts aboard the station observed a strange circular area of thinned ice (dark in color, with a diameter of about 4.4 kilometers) in the southern end of Lake Baikal in southern Siberia. Lake Baikal is unique in many regards. It is the largest (by volume) and deepest (1,637 meters at the deepest point) fresh water lake on Earth and, as a World Heritage Site, is considered one of Russia?s environmental jewels. The lake?s long, thin and deep profile results from its location in the Baikal Rift valley in Siberia. According to scientists, it is also one of the world?s oldest lakes (25-30 million years old); it contains up to 7 kilometers of sediment deposited on the bottom, and is home to an amazing array of plants and animals, many being found only in Lake Baikal. The lake?s biodiversity includes fresh water seals and several species of fish that are not found elsewhere on Earth. Siberia is remote and cold; ice cover can persist into June. This detailed image shows a circle of thin ice, which is the focal point for ice break up in the very southern end of the lake. While the origin of the circles is unknown, the peculiar pattern suggests convection in the lake?s water column. Ice cover changes rapidly at this time of year. Within a day, the ice can melt almost completely, and then freeze again overnight. Throughout April, the circles are persistent ? they appear when ice cover forms, and then disappear as ice melts. The pattern and appearance suggests that the ice is quite thin.
Duration of the Arctic sea ice melt season: Regional and interannual variability, 1979-2001
Belchansky, G.I.; Douglas, David C.; Platonov, Nikita G.
2004-01-01
Melt onset dates, freeze onset dates, and melt season duration were estimated over Arctic sea ice, 1979–2001, using passive microwave satellite imagery and surface air temperature data. Sea ice melt duration for the entire Northern Hemisphere varied from a 104-day minimum in 1983 and 1996 to a 124-day maximum in 1989. Ranges in melt duration were highest in peripheral seas, numbering 32, 42, 44, and 51 days in the Laptev, Barents-Kara, East Siberian, and Chukchi Seas, respectively. In the Arctic Ocean, average melt duration varied from a 75-day minimum in 1987 to a 103-day maximum in 1989. On average, melt onset in annual ice began 10.6 days earlier than perennial ice, and freeze onset in perennial ice commenced 18.4 days earlier than annual ice. Average annual melt dates, freeze dates, and melt durations in annual ice were significantly correlated with seasonal strength of the Arctic Oscillation (AO). Following high-index AO winters (January–March), spring melt tended to be earlier and autumn freeze later, leading to longer melt season durations. The largest increases in melt duration were observed in the eastern Siberian Arctic, coincident with cyclonic low pressure and ice motion anomalies associated with high-index AO phases. Following a positive AO shift in 1989, mean annual melt duration increased 2–3 weeks in the northern East Siberian and Chukchi Seas. Decreasing correlations between consecutive-year maps of melt onset in annual ice during 1979–2001 indicated increasing spatial variability and unpredictability in melt distributions from one year to the next. Despite recent declines in the winter AO index, recent melt distributions did not show evidence of reestablishing spatial patterns similar to those observed during the 1979–88 low-index AO period. Recent freeze distributions have become increasingly similar to those observed during 1979–88, suggesting a recurrent spatial pattern of freeze chronology under low-index AO conditions.
NASA Technical Reports Server (NTRS)
Poinsatte, Philip E.; Vanfossen, G. James; Dewitt, Kenneth J.
1989-01-01
Local heat transfer coefficients were measured on a smooth and roughened NACA 0012 airfoil. Heat transfer measurements on the 0.533 m chord airfoil were made both in flight on the NASA Lewis Twin Otter Icing Research Aircraft and in the NASA Lewis Icing Research Tunnel (IRT). Roughness was obtained by the attachment of uniform 2 mm diameter hemispheres to the airfoil surface in 4 distinct patterns. Flight data were taken for the smooth and roughened airfoil at various Reynolds numbers based on chord in the range 1.24 to 2.50 x 10(exp 6) and at various angles of attack up to 4 deg. During these flight tests, the free stream velocity turbulence intensity was found to be very low (less than 0.1 percent). Wind tunnel data were acquired in the Reynolds number range 1.20 to 4.25 x 10(exp 6) and at angles of attack from -4 to 8 deg. The turbulence intensity in the IRT was 0.5 to 0.7 percent with the cloud generating sprays off. A direct comparison was made between the results obtained in flight and in the IRT. The higher level of turbulence in the IRT vs. flight had little effect on the heat transfer for the lower Reynolds numbers but caused a moderate increase in heat transfer at the high Reynolds numbers. Roughness generally increased the heat transfer.
Wing, Stephen R; Leichter, James J; Wing, Lucy C; Stokes, Dale; Genovese, Sal J; McMullin, Rebecca M; Shatova, Olya A
2018-04-28
Organic matter produced by the sea ice microbial community (SIMCo) is an important link between sea ice dynamics and secondary production in near-shore food webs of Antarctica. Sea ice conditions in McMurdo Sound were quantified from time series of MODIS satellite images for Sept. 1 through Feb. 28 of 2007-2015. A predictable sea ice persistence gradient along the length of the Sound and evidence for a distinct change in sea ice dynamics in 2011 were observed. We used stable isotope analysis (δ 13 C and δ 15 N) of SIMCo, suspended particulate organic matter (SPOM) and shallow water (10-20 m) macroinvertebrates to reveal patterns in trophic structure of, and incorporation of organic matter from SIMCo into, benthic communities at eight sites distributed along the sea ice persistence gradient. Mass-balance analysis revealed distinct trophic architecture among communities and large fluxes of SIMCo into the near-shore food web, with the estimates ranging from 2 to 84% of organic matter derived from SIMCo for individual species. Analysis of patterns in density, and biomass of macroinvertebrate communities among sites allowed us to model net incorporation of organic matter from SIMCo, in terms of biomass per unit area (g/m 2 ), into benthic communities. Here, organic matter derived from SIMCo supported 39 to 71 per cent of total biomass. Furthermore, for six species, we observed declines in contribution of SIMCo between years with persistent sea ice (2008-2009) and years with extensive sea ice breakout (2012-2015). Our data demonstrate the vital role of SIMCo in ecosystem function in Antarctica and strong linkages between sea ice dynamics and near-shore secondary productivity. These results have important implications for our understanding of how benthic communities will respond to changes in sea ice dynamics associated with climate change and highlight the important role of shallow water macroinvertebrate communities as sentinels of change for the Antarctic marine ecosystem. © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Opel, T.; Meyer, H.; Laepple, T.; Rehfeld, K.; Mollenhauer, G.; Alexander, D.; Murton, J.
2017-12-01
Arctic climate has experienced major changes over the past millennia that are yet not fully understood in terms of external and internal controls, spatial, temporal, and seasonal patterns. The interpretation of stable isotope data in permafrost ice wedges provides unique information on past winter climate, not or not sufficiently captured by other Arctic climate archives. Ice wedges grow in polygonal patterns owing to frost cracking of the frozen ground in winter and frost-crack filling mostly by snowmelt in spring. Their oxygen isotope values are indicative of temperatures in the cold period of the year (meteorological winter and spring). Recently, an ice-wedge record from the Lena River Delta suggested for the first time, that Siberian winter temperatures were warming throughout the Holocene, contradicting most other Arctic paleoclimate reconstructions. As this was based on a single record, the representativity and spatial extent of the reconstructed winter warming signal remained unclear. In this two-part contribution, we first present a new ice-wedge δ18O record from the Oyogos Yar mainland coast (Northeast Siberian Arctic) and then discuss more generally the paleoclimatic value of ice wedges. The new Oyogos Yar ice-wedge record is based on paired stable-isotope and radiocarbon-age data and spans the last two millennia. It confirms the long-term winter warming signal as well as the unprecedented temperature rise in the last decades. This demonstrates that winter warming over the last millennia is a coherent feature in the Northeastern Siberian Arctic, supporting the hypothesis of an insolation-driven seasonal Holocene temperature evolution followed by a strong warming most likely related to anthropogenic forcing. Considering additional ice-wedge data from the Siberian Laptev Sea region we discuss the paleoclimatic value of ice wedges as high-quality winter climate archive. We assess potentials and challenges of this so far rather understudied source of paleoclimate information that remains to be evaluated systematically. In addition, we outline priorities for future ice-wedge research in order to fully exploit the potential of ice wedges for paleoclimate reconstruction, including e.g. better process understanding, dating, and data-model comparison.
CLIMATE PATTERNS OF HABITABLE EXOPLANETS IN ECCENTRIC ORBITS AROUND M DWARFS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuwei; Hu, Yongyun; Tian, Feng, E-mail: yyhu@pku.edu.cn
2014-08-10
Previous studies show that synchronous rotating habitable exoplanets around M dwarfs should have an ''eyeball'' climate pattern—a limited region of open water on the day side and ice on the rest of the planet. However, exoplanets with nonzero eccentricities could have spin-orbit resonance states different from the synchronous rotation state. Here, we show that a striped-ball climate pattern, with a global belt of open water at low and middle latitudes and ice over both polar regions, should be common on habitable exoplanets in eccentric orbits around M dwarfs. We further show that these different climate patterns can be observed bymore » future exoplanet detection missions.« less
Optical properties of melting first-year Arctic sea ice
NASA Astrophysics Data System (ADS)
Light, Bonnie; Perovich, Donald K.; Webster, Melinda A.; Polashenski, Christopher; Dadic, Ruzica
2015-11-01
The albedo and transmittance of melting, first-year Arctic sea ice were measured during two cruises of the Impacts of Climate on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) project during the summers of 2010 and 2011. Spectral measurements were made for both bare and ponded ice types at a total of 19 ice stations in the Chukchi and Beaufort Seas. These data, along with irradiance profiles taken within boreholes, laboratory measurements of the optical properties of core samples, ice physical property observations, and radiative transfer model simulations are employed to describe representative optical properties for melting first-year Arctic sea ice. Ponded ice was found to transmit roughly 4.4 times more total energy into the ocean, relative to nearby bare ice. The ubiquitous surface-scattering layer and drained layer present on bare, melting sea ice are responsible for its relatively high albedo and relatively low transmittance. Light transmittance through ponded ice depends on the physical thickness of the ice and the magnitude of the scattering coefficient in the ice interior. Bare ice reflects nearly three-quarters of the incident sunlight, enhancing its resiliency to absorption by solar insolation. In contrast, ponded ice absorbs or transmits to the ocean more than three-quarters of the incident sunlight. Characterization of the heat balance of a summertime ice cover is largely dictated by its pond coverage, and light transmittance through ponded ice shows strong contrast between first-year and multiyear Arctic ice covers.
NASA Technical Reports Server (NTRS)
Lee, Choon-Ki; Han, Shin-Chan; Yu, Jaehyung; Scambos, Ted A.; Seo, Ki-Weon
2012-01-01
We present a novel method for estimating the surface horizontal velocity on ice shelves using laser altimetrydata from the Ice Cloud and land Elevation Satellite (ICESat; 20032009). The method matches undulations measured at crossover points between successive campaigns.
Radar Thickness Measurements over the Southern Part of the Greenland Ice Sheet
NASA Technical Reports Server (NTRS)
Chuah, Teong Sek; Gogineni, Siva Prasad; Allen, Christopher; Wohletz, Brad; Wong, Y. C.; Ng, P. Y.; Ajayi, E.
1996-01-01
We performed ice thickness measurements over the southern part of the Greenland ice sheet during June and July 1993. We used an airborne coherent radar depth sounder for these measurements. The radar was operated from a NASA P-3 aircraft equipped with GPS receivers. Radar data were collected in conjunction with laser altimeter and microwave altimeter measurements of ice surface elevation. This report provides radio echograms and thickness profiles from data collected during 1993.
Kawamura, Kenji; Abe-Ouchi, Ayako; Motoyama, Hideaki; Ageta, Yutaka; Aoki, Shuji; Azuma, Nobuhiko; Fujii, Yoshiyuki; Fujita, Koji; Fujita, Shuji; Fukui, Kotaro; Furukawa, Teruo; Furusaki, Atsushi; Goto-Azuma, Kumiko; Greve, Ralf; Hirabayashi, Motohiro; Hondoh, Takeo; Hori, Akira; Horikawa, Shinichiro; Horiuchi, Kazuho; Igarashi, Makoto; Iizuka, Yoshinori; Kameda, Takao; Kanda, Hiroshi; Kohno, Mika; Kuramoto, Takayuki; Matsushi, Yuki; Miyahara, Morihiro; Miyake, Takayuki; Miyamoto, Atsushi; Nagashima, Yasuo; Nakayama, Yoshiki; Nakazawa, Takakiyo; Nakazawa, Fumio; Nishio, Fumihiko; Obinata, Ichio; Ohgaito, Rumi; Oka, Akira; Okuno, Jun'ichi; Okuyama, Junichi; Oyabu, Ikumi; Parrenin, Frédéric; Pattyn, Frank; Saito, Fuyuki; Saito, Takashi; Saito, Takeshi; Sakurai, Toshimitsu; Sasa, Kimikazu; Seddik, Hakime; Shibata, Yasuyuki; Shinbori, Kunio; Suzuki, Keisuke; Suzuki, Toshitaka; Takahashi, Akiyoshi; Takahashi, Kunio; Takahashi, Shuhei; Takata, Morimasa; Tanaka, Yoichi; Uemura, Ryu; Watanabe, Genta; Watanabe, Okitsugu; Yamasaki, Tetsuhide; Yokoyama, Kotaro; Yoshimori, Masakazu; Yoshimoto, Takayasu
2017-02-01
Climatic variabilities on millennial and longer time scales with a bipolar seesaw pattern have been documented in paleoclimatic records, but their frequencies, relationships with mean climatic state, and mechanisms remain unclear. Understanding the processes and sensitivities that underlie these changes will underpin better understanding of the climate system and projections of its future change. We investigate the long-term characteristics of climatic variability using a new ice-core record from Dome Fuji, East Antarctica, combined with an existing long record from the Dome C ice core. Antarctic warming events over the past 720,000 years are most frequent when the Antarctic temperature is slightly below average on orbital time scales, equivalent to an intermediate climate during glacial periods, whereas interglacial and fully glaciated climates are unfavourable for a millennial-scale bipolar seesaw. Numerical experiments using a fully coupled atmosphere-ocean general circulation model with freshwater hosing in the northern North Atlantic showed that climate becomes most unstable in intermediate glacial conditions associated with large changes in sea ice and the Atlantic Meridional Overturning Circulation. Model sensitivity experiments suggest that the prerequisite for the most frequent climate instability with bipolar seesaw pattern during the late Pleistocene era is associated with reduced atmospheric CO 2 concentration via global cooling and sea ice formation in the North Atlantic, in addition to extended Northern Hemisphere ice sheets.
Kawamura, Kenji; Abe-Ouchi, Ayako; Motoyama, Hideaki; Ageta, Yutaka; Aoki, Shuji; Azuma, Nobuhiko; Fujii, Yoshiyuki; Fujita, Koji; Fujita, Shuji; Fukui, Kotaro; Furukawa, Teruo; Furusaki, Atsushi; Goto-Azuma, Kumiko; Greve, Ralf; Hirabayashi, Motohiro; Hondoh, Takeo; Hori, Akira; Horikawa, Shinichiro; Horiuchi, Kazuho; Igarashi, Makoto; Iizuka, Yoshinori; Kameda, Takao; Kanda, Hiroshi; Kohno, Mika; Kuramoto, Takayuki; Matsushi, Yuki; Miyahara, Morihiro; Miyake, Takayuki; Miyamoto, Atsushi; Nagashima, Yasuo; Nakayama, Yoshiki; Nakazawa, Takakiyo; Nakazawa, Fumio; Nishio, Fumihiko; Obinata, Ichio; Ohgaito, Rumi; Oka, Akira; Okuno, Jun’ichi; Okuyama, Junichi; Oyabu, Ikumi; Parrenin, Frédéric; Pattyn, Frank; Saito, Fuyuki; Saito, Takashi; Saito, Takeshi; Sakurai, Toshimitsu; Sasa, Kimikazu; Seddik, Hakime; Shibata, Yasuyuki; Shinbori, Kunio; Suzuki, Keisuke; Suzuki, Toshitaka; Takahashi, Akiyoshi; Takahashi, Kunio; Takahashi, Shuhei; Takata, Morimasa; Tanaka, Yoichi; Uemura, Ryu; Watanabe, Genta; Watanabe, Okitsugu; Yamasaki, Tetsuhide; Yokoyama, Kotaro; Yoshimori, Masakazu; Yoshimoto, Takayasu
2017-01-01
Climatic variabilities on millennial and longer time scales with a bipolar seesaw pattern have been documented in paleoclimatic records, but their frequencies, relationships with mean climatic state, and mechanisms remain unclear. Understanding the processes and sensitivities that underlie these changes will underpin better understanding of the climate system and projections of its future change. We investigate the long-term characteristics of climatic variability using a new ice-core record from Dome Fuji, East Antarctica, combined with an existing long record from the Dome C ice core. Antarctic warming events over the past 720,000 years are most frequent when the Antarctic temperature is slightly below average on orbital time scales, equivalent to an intermediate climate during glacial periods, whereas interglacial and fully glaciated climates are unfavourable for a millennial-scale bipolar seesaw. Numerical experiments using a fully coupled atmosphere-ocean general circulation model with freshwater hosing in the northern North Atlantic showed that climate becomes most unstable in intermediate glacial conditions associated with large changes in sea ice and the Atlantic Meridional Overturning Circulation. Model sensitivity experiments suggest that the prerequisite for the most frequent climate instability with bipolar seesaw pattern during the late Pleistocene era is associated with reduced atmospheric CO2 concentration via global cooling and sea ice formation in the North Atlantic, in addition to extended Northern Hemisphere ice sheets. PMID:28246631
NASA Astrophysics Data System (ADS)
China, Swarup; Alpert, Peter A.; Zhang, Bo; Schum, Simeon; Dzepina, Katja; Wright, Kendra; Owen, R. Chris; Fialho, Paulo; Mazzoleni, Lynn R.; Mazzoleni, Claudio; Knopf, Daniel A.
2017-03-01
Long-range transported free tropospheric particles can play a significant role on heterogeneous ice nucleation. Using optical and electron microscopy we examine the physicochemical characteristics of ice nucleating particles (INPs). Particles were collected on substrates from the free troposphere at the remote Pico Mountain Observatory in the Azores Islands, after long-range transport and aging over the Atlantic Ocean. We investigate four specific events to study the ice formation potential by the collected particles with different ages and transport patterns. We use single-particle analysis, as well as bulk analysis to characterize particle populations. Both analyses show substantial differences in particle composition between samples from the four events; in addition, single-particle microscopy analysis indicates that most particles are coated by organic material. The identified INPs contained mixtures of dust, aged sea salt and soot, and organic material acquired either at the source or during transport. The temperature and relative humidity (RH) at which ice formed, varied only by 5% between samples, despite differences in particle composition, sources, and transport patterns. We hypothesize that this small variation in the onset RH may be due to the coating material on the particles. This study underscores and motivates the need to further investigate how long-range transported and atmospherically aged free tropospheric particles impact ice cloud formation.
China, Swarup; Alpert, Peter A.; Zhang, Bo; ...
2017-02-27
Long-range transported free tropospheric particles can play a significant role on heterogeneous ice nucleation. Using optical and electron microscopy we examine the physicochemical characteristics of ice nucleating particles (INPs). Particles were collected on substrates from the free troposphere at the remote Pico Mountain Observatory in the Azores Islands, after long-range transport and aging over the Atlantic Ocean. We investigate four specific events to study the ice formation potential by the collected particles with different ages and transport patterns. We use single-particle analysis, as well as bulk analysis to characterize particle populations. Both analyses show substantial differences in particle composition betweenmore » samples from the four events; in addition, single-particle microscopy analysis indicates that most particles are coated by organic material. The identified INPs contained mixtures of dust, aged sea salt and soot, and organic material acquired either at the source or during transport. The temperature and relative humidity ( RH) at which ice formed, varied only by 5% between samples, despite differences in particle composition, sources, and transport patterns. We hypothesize that this small variation in the onset RH may be due to the coating material on the particles. Finally, this study underscores and motivates the need to further investigate how long-range transported and atmospherically aged free tropospheric particles impact ice cloud formation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
China, Swarup; Alpert, Peter A.; Zhang, Bo
Long-range transported free tropospheric particles can play a significant role on heterogeneous ice nucleation. Using optical and electron microscopy we examine the physicochemical characteristics of ice nucleating particles (INPs). Particles were collected on substrates from the free troposphere at the remote Pico Mountain Observatory in the Azores Islands, after long-range transport and aging over the Atlantic Ocean. We investigate four specific events to study the ice formation potential by the collected particles with different ages and transport patterns. We use single-particle analysis, as well as bulk analysis to characterize particle populations. Both analyses show substantial differences in particle composition betweenmore » samples from the four events; in addition, single-particle microscopy analysis indicates that most particles are coated by organic material. The identified INPs contained mixtures of dust, aged sea salt and soot, and organic material acquired either at the source or during transport. The temperature and relative humidity ( RH) at which ice formed, varied only by 5% between samples, despite differences in particle composition, sources, and transport patterns. We hypothesize that this small variation in the onset RH may be due to the coating material on the particles. Finally, this study underscores and motivates the need to further investigate how long-range transported and atmospherically aged free tropospheric particles impact ice cloud formation.« less
Sea-ice thickness from field measurements in the northwestern Barents Sea
NASA Astrophysics Data System (ADS)
King, Jennifer; Spreen, Gunnar; Gerland, Sebastian; Haas, Christian; Hendricks, Stefan; Kaleschke, Lars; Wang, Caixin
2017-02-01
The Barents Sea is one of the fastest changing regions of the Arctic, and has experienced the strongest decline in winter-time sea-ice area in the Arctic, at -23±4% decade-1. Sea-ice thickness in the Barents Sea is not well studied. We present two previously unpublished helicopter-borne electromagnetic (HEM) ice thickness measurements from the northwestern Barents Sea acquired in March 2003 and 2014. The HEM data are compared to ice thickness calculated from ice draft measured by ULS deployed between 1994 and 1996. These data show that ice thickness varies greatly from year to year; influenced by the thermodynamic and dynamic processes that govern local formation vs long-range advection. In a year with a large inflow of sea-ice from the Arctic Basin, the Barents Sea ice cover is dominated by thick multiyear ice; as was the case in 2003 and 1995. In a year with an ice cover that was mainly grown in situ, the ice will be thin and mechanically unstable; as was the case in 2014. The HEM data allow us to explore the spatial and temporal variability in ice thickness. In 2003 the dominant ice class was more than 2 years old; and modal sea-ice thickness varied regionally from 0.6 to 1.4 m, with the thinner ice being either first-year ice, or multiyear ice which had come into contact with warm Atlantic water. In 2014 the ice cover was predominantly locally grown ice less than 1 month old (regional modes of 0.5-0.8 m). These two situations represent two extremes of a range of possible ice thickness distributions that can present very different conditions for shipping traffic; or have a different impact on heat transport from ocean to atmosphere.
Aircraft measurements of microwave emission from Arctic Sea ice
Wilheit, T.; Nordberg, W.; Blinn, J.; Campbell, W.; Edgerton, A.
1971-01-01
Measurements of the microwave emission from Arctic Sea ice were made with aircraft at 8 wavelengths ranging from 0.510 to 2.81 cm. The expected contrast in emissivities between ice and water was observed at all wavelengths. Distributions of sea ice and open water were mapped from altitudes up to 11 km in the presence of dense cloud cover. Different forms of ice also exhibited strong contrasts in emissivity. Emissivity differences of up to 0.2 were observed between two types of ice at the 0.811-cm wavelength. The higher emissivity ice type is tentatively identified as having been formed more recently than the lower emissivity ice. ?? 1971.
Aircraft measurements of microwave emission from Arctic Sea Ice
NASA Technical Reports Server (NTRS)
Wilheit, T. T.; Blinn, J.; Campbell, W. J.; Edgerton, A. T.; Nordberg, W.
1971-01-01
Measurements of the microwave emission from Arctic Sea ice were made with aircraft at 8 wavelengths ranging from 0.510 cm to 2.81 cm. The expected contrast in emissivities between ice and water was observed at all wavelengths. Distributions of sea ice and open water were mapped from altitudes up to 11 km in the presence of dense cloud cover. Different forms of ice also exhibited strong contrasts in emissivity. Emissivity differences of up to 0.2 were observed between two types of ice at 0.811 cm wavelength. The higher emissivity ice type is tentatively identified as having been formed more recently than the lower emissivity ice.
Microwave remote sensing of sea ice in the AIDJEX Main Experiment
Campbell, W.J.; Wayenberg, J.; Ramseyer, J.B.; Ramseier, R.O.; Vant, M.R.; Weaver, R.; Redmond, A.; Arsenaul, L.; Gloersen, P.; Zwally, H.J.; Wilheit, T.T.; Chang, T.C.; Hall, D.; Gray, L.; Meeks, D.C.; Bryan, M.L.; Barath, F.T.; Elachi, C.; Leberl, F.; Farr, Tom
1978-01-01
During the AIDJEX Main Experiment, April 1975 through May 1976, a comprehensive microwave sensing program was performed on the sea ice of the Beaufort Sea. Surface and aircraft measurements were obtained during all seasons using a wide variety of active and passive microwave sensors. The surface program obtained passive microwave measurements of various ice types using four antennas mounted on a tracked vehicle. In three test regions, each with an area of approximately 1.5 ?? 104 m2, detailed ice crystallographic, dielectric properties, and brightness temperatures of first-year, multiyear, and first-year/multiyear mixtures were measured. A NASA aircraft obtained passive microwave measurements of the entire area of the AIDJEX manned station array (triangle) during each of 18 flights. This verified the earlier reported ability to distinguish first-year and multiyear ice types and concentration and gave new information on ways to observe ice mixtures and thin ice types. The active microwave measurements from aircraft included those from an X- and L-band radar and from a scatterometer. The former is used to study a wide variety of ice features and to estimate deformations, while both are equally usable to observe ice types. With the present data, only the scatterometer can be used to distinguish positively multiyear from first-year and various types of thin ice. This is best done using coupled active and passive microwave sensing. ?? 1978 D. Reidel Publishing Company.
Ice-nucleating bacteria control the order and dynamics of interfacial water
Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.; ...
2016-04-22
Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering onmore » the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. Finally, the freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy.« less
Structural incorporation of MgCl2 into ice VII at room temperature
NASA Astrophysics Data System (ADS)
Watanabe, Mao; Komatsu, Kazuki; Noritake, Fumiya; Kagi, Hiroyuki
2017-05-01
Raman spectra and X-ray diffraction patterns were obtained from 1:100 and 1:200 \\text{MgCl}2:\\text{H}2\\text{O} solutions (in molar ratio) at pressures up to 6 GPa using diamond anvil cells (DACs) and compared with those of pure water. The O-H stretching band from ice VII crystallized from the 1:200 solution was approximately 10 cm-1 higher than that of pure ice VII. The phase boundaries between ice VII and VIII crystallized from the MgCl2 solutions at 4 GPa were 2 K lower than those of pure ice VII and VIII. These observations indicate that ice VII incorporates MgCl2 into its structure. The unit cell volumes of ice VII crystallized from pure water and the two solutions coincided with each other within the experimental error, and salt incorporation was not detectable from the cell volume. Possible configurations of ion substitution and excess volume of ice VIII were simulated on the basis of density functional theory (DFT) calculations.
Ice-nucleating bacteria control the order and dynamics of interfacial water
Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.; Fischer, Sean A.; Pfaendtner, Jim; Backus, Ellen H. G.; Nagata, Yuki; Fröhlich-Nowoisky, Janine; Schmüser, Lars; Mauri, Sergio; Scheel, Jan F.; Knopf, Daniel A.; Pöschl, Ulrich; Bonn, Mischa; Weidner, Tobias
2016-01-01
Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering on the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice-active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. The freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy. PMID:27152346
Modelling the long-term evolution of worst-case Arctic oil spills.
Blanken, Hauke; Tremblay, Louis Bruno; Gaskin, Susan; Slavin, Alexander
2017-03-15
We present worst-case assessments of contamination in sea ice and surface waters resulting from hypothetical well blowout oil spills at ten sites in the Arctic Ocean basin. Spill extents are estimated by considering Eulerian passive tracers in the surface ocean of the MITgcm (a hydrostatic, coupled ice-ocean model). Oil in sea ice, and contamination resulting from melting of oiled ice, is tracked using an offline Lagrangian scheme. Spills are initialized on November 1st 1980-2010 and tracked for one year. An average spill was transported 1100km and potentially affected 1.1 million km 2 . The direction and magnitude of simulated oil trajectories are consistent with known large-scale current and sea ice circulation patterns, and trajectories frequently cross international boundaries. The simulated trajectories of oil in sea ice match observed ice drift trajectories well. During the winter oil transport by drifting sea ice is more significant than transport with surface currents. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kurtz, Nathan T.; Markus, Thorsten; Cavalieri, Donald J.; Sparling, Lynn C.; Krabill, William B.; Gasiewski, Albin J.; Sonntag, John G.
2009-01-01
Combinations of sea ice freeboard and snow depth measurements from satellite data have the potential to provide a means to derive global sea ice thickness values. However, large differences in spatial coverage and resolution between the measurements lead to uncertainties when combining the data. High resolution airborne laser altimeter retrievals of snow-ice freeboard and passive microwave retrievals of snow depth taken in March 2006 provide insight into the spatial variability of these quantities as well as optimal methods for combining high resolution satellite altimeter measurements with low resolution snow depth data. The aircraft measurements show a relationship between freeboard and snow depth for thin ice allowing the development of a method for estimating sea ice thickness from satellite laser altimetry data at their full spatial resolution. This method is used to estimate snow and ice thicknesses for the Arctic basin through the combination of freeboard data from ICESat, snow depth data over first-year ice from AMSR-E, and snow depth over multiyear ice from climatological data. Due to the non-linear dependence of heat flux on ice thickness, the impact on heat flux calculations when maintaining the full resolution of the ICESat data for ice thickness estimates is explored for typical winter conditions. Calculations of the basin-wide mean heat flux and ice growth rate using snow and ice thickness values at the 70 m spatial resolution of ICESat are found to be approximately one-third higher than those calculated from 25 km mean ice thickness values.
NASA Astrophysics Data System (ADS)
Gong, J.; Zeng, X.; Wu, D. L.; Li, X.
2017-12-01
Diurnal variation of tropical ice cloud has been well observed and examined in terms of the area of coverage, occurring frequency, and total mass, but rarely on ice microphysical parameters (habit, size, orientation, etc.) because of lack of direct measurements of ice microphysics on a high temporal and spatial resolutions. This accounts for a great portion of the uncertainty in evaluating ice cloud's role on global radiation and hydrological budgets. The design of Global Precipitation Measurement (GPM) mission's procession orbit gives us an unprecedented opportunity to study the diurnal variation of ice microphysics on the global scale for the first time. Dominated by cloud ice scattering, high-frequency microwave polarimetric difference (PD, namely the brightness temperature difference between vertically- and horizontally-polarized paired channel measurements) from the GPM Microwave Imager (GMI) has been proven by our previous study to be very valuable to infer cloud ice microphysical properties. Using one year of PD measurements at 166 GHz, we found that cloud PD exhibits a strong diurnal cycle in the tropics (25S-25N). The peak PD amplitude varies as much as 35% over land, compared to only 6% over ocean. The diurnal cycle of the peak PD value is strongly anti-correlated with local ice cloud occurring frequency and the total ice mass with a leading period of 3 hours for the maximum correlation. The observed PD diurnal cycle can be explained by the change of ice crystal axial ratio. Using a radiative transfer model, we can simulate the observed 166 GHz PD-brightness temperature curve as well as its diurnal variation using different axial ratio values, which can be caused by the diurnal variation of ice microphysical properties including particle size, percentage of horizontally-aligned non-spherical particles, and ice habit. The leading of the change of PD ahead of ice cloud mass and occurring frequency implies the important role microphysics play in the formation and dissipation processes of ice clouds and frozen precipitations.
How robust is the atmospheric circulation response to Arctic sea-ice loss in isolation?
NASA Astrophysics Data System (ADS)
Kushner, P. J.; Hay, S. E.; Blackport, R.; McCusker, K. E.; Oudar, T.
2017-12-01
It is now apparent that active dynamical coupling between the ocean and atmosphere determines a good deal of how Arctic sea-ice loss changes the large-scale atmospheric circulation. In coupled ocean-atmosphere models, Arctic sea-ice loss indirectly induces a 'mini' global warming and circulation changes that extend into the tropics and the Southern Hemisphere. Ocean-atmosphere coupling also amplifies by about 50% Arctic free-tropospheric warming arising from sea-ice loss (Deser et al. 2015, 2016). The mechanisms at work and how to separate the response to sea-ice loss from the rest of the global warming process remain poorly understood. Different studies have used distinctive numerical approaches and coupled ocean-atmosphere models to address this problem. We put these studies on comparable footing using pattern scaling (Blackport and Kushner 2017) to separately estimate the part of the circulation response that scales with sea-ice loss in the absence of low-latitude warming from the part that scales with low-latitude warming in the absence of sea-ice loss. We consider well-sampled simulations from three different coupled ocean-atmosphere models (CESM1, CanESM2, CNRM-CM5), in which greenhouse warming and sea-ice loss are driven in different ways (sea ice albedo reduction/transient RCP8.5 forcing for CESM1, nudged sea ice/CO2 doubling for CanESM2, heat-flux forcing/constant RCP8.5-derived forcing for CNRM-CM5). Across these different simulations, surprisingly robust influences of Arctic sea-ice loss on atmospheric circulation can be diagnosed using pattern scaling. For boreal winter, the isolated sea-ice loss effect acts to increase warming in the North American Sub-Arctic, decrease warming of the Eurasian continent, enhance precipitation over the west coast of North America, and strengthen the Aleutian Low and the Siberian High. We will also discuss how Arctic free tropospheric warming might be enhanced via midlatitude ocean surface warming induced by sea-ice loss. Less robust is the part of the response that scales with low-latitude warming, which, depending on the model, can reinforce or cancel the response to sea-ice loss. The extent to which a "tug of war" exists between tropical and high-latitude influences on the general circulation might thus be model dependent.
The Last Arctic Sea Ice Refuge
NASA Astrophysics Data System (ADS)
Pfirman, S. L.; Tremblay, B.; Newton, R.; Fowler, C.
2010-12-01
Summer sea ice may persist along the northern flank of Canada and Greenland for decades longer than the rest of the Arctic, raising the possibility of a naturally formed refugium for ice-associated species. Observations and models indicate that some ice in this region forms locally, while some is transported to the area by winds and ocean currents. Depending on future changes in melt patterns and sea ice transport rates, both the central Arctic and Siberian shelf seas may be sources of ice to the region. An international system of monitoring and management of the sea ice refuge, along with the ice source regions, has the potential to maintain viable habitat for ice-associated species, including polar bears, for decades into the future. Issues to consider in developing a strategy include: + the likely duration and extent of summer sea ice in this region based on observations, models and paleoenvironmental information + the extent and characteristics of the “ice shed” contributing sea ice to the refuge, including its dynamics, physical and biological characteristics as well as potential for contamination from local or long-range sources + likely assemblages of ice-associated species and their habitats + potential stressors such as transportation, tourism, resource extraction, contamination + policy, governance, and development issues including management strategies that could maintain the viability of the refuge.
NASA Technical Reports Server (NTRS)
Connor, Laurence; Farrell, Sinead; McAdoo, David; Krabill, William; Laxon, Seymour; Richter-Menge, Jacqueline; Markus, Thorsten
2010-01-01
The past few years have seen the emergence of satellite altimetry as valuable tool for taking quantitative sea ice monitoring beyond the traditional surface extent measurements and into estimates of sea ice thickness and volume, parameters that arc fundamental to improved understanding of polar dynamics and climate modeling. Several studies have now demonstrated the use of both microwave (ERS, Envisat/RA-2) and laser (ICESat/GLAS) satellite altimeters for determining sea ice thickness. The complexity of polar environments, however, continues to make sea ice thickness determination a complicated remote sensing task and validation studies remain essential for successful monitoring of sea ice hy satellites. One such validation effort, the Arctic Aircraft Altimeter (AAA) campaign of2006. included underflights of Envisat and ICESat north of the Canadian Archipelago using NASA's P-3 aircraft. This campaign compared Envisat and ICESat sea ice elevation measurements with high-resolution airborne elevation measurements, revealing the impact of refrozen leads on radar altimetry and ice drift on laser altimetry. Continuing this research and validation effort, the Canada Basin Sea Ice Thickness (CBSIT) experiment was completed in April 2009. CBSIT was conducted by NOAA. and NASA as part of NASA's Operation Ice Bridge, a gap-filling mission intended to supplement sea and land ice monitoring until the launch of NASA's ICESat-2 mission. CBIST was flown on the NASA P-3, which was equipped with a scanning laser altimeter, a Ku-band snow radar, and un updated nadir looking photo-imaging system. The CB5IT campaign consisted of two flights: an under flight of Envisat along a 1000 km track similar to that flown in 2006, and a flight through the Nares Strait up to the Lincoln Sea that included an overflight of the Danish GreenArc Ice Camp off the coast of northern Greenland. We present an examination of data collected during this campaign, comparing airborne laser altimeter measurements with (1) Envisat RA-2 returns retracked optimally for sea ice and (2) in situ measurements of sea ice thickness and snow depth gathered from ice camp surveys. Particular attention is given to lead identification and classification using the continuous photo-imaging system along the Envisat underflight as well as the performance of the snow radar over the ice camp survey lines.
Ice Fog and Light Snow Measurements Using a High-Resolution Camera System
NASA Astrophysics Data System (ADS)
Kuhn, Thomas; Gultepe, Ismail
2016-09-01
Ice fog, diamond dust, and light snow usually form over extremely cold weather conditions, and they affect both visibility and Earth's radiative energy budget. Prediction of these hydrometeors using models is difficult because of limited knowledge of the microphysical properties at the small size ranges due to measurement issues. These phenomena need to be better represented in forecast and climate models; therefore, in addition to remote sensing accurate measurements using ground-based instrumentation are required. An imaging instrument, aimed at measuring ice fog and light snow particles, has been built and is presented here. The ice crystal imaging (ICI) probe samples ice particles into a vertical, tapered inlet with an inlet flow rate of 11 L min-1. A laser beam across the vertical air flow containing the ice crystals allows for their detection by a photodetector collecting the scattered light. Detected particles are then imaged with high optical resolution. An illuminating LED flash and image capturing are triggered by the photodetector. In this work, ICI measurements collected during the fog remote sensing and modeling (FRAM) project, which took place during Winter of 2010-2011 in Yellowknife, NWT, Canada, are summarized and challenges related to measuring small ice particles are described. The majority of ice particles during the 2-month-long campaign had sizes between 300 and 800 μm. During ice fog events the size distribution measured had a lower mode diameter of 300 μm compared to the overall campaign average with mode at 500 μm.
Radar image interpretation techniques applied to sea ice geophysical problems
NASA Technical Reports Server (NTRS)
Carsey, F. D.
1983-01-01
The geophysical science problems in the sea ice area which at present concern understanding the ice budget, where ice is formed, how thick it grows and where it melts, and the processes which control the interaction of air-sea and ice at the ice margins is discussed. The science problems relate to basic questions of sea ice: how much is there, thickness, drift rate, production rate, determination of the morphology of the ice margin, storms feeling for the ice, storms and influence at the margin to alter the pack, and ocean response to a storm at the margin. Some of these questions are descriptive and some require complex modeling of interactions between the ice, the ocean, the atmosphere and the radiation fields. All involve measurements of the character of the ice pack, and SAR plays a significant role in the measurements.
Return of warm conditions in the southeastern Bering Sea: Physics to fluorescence
Duffy-Anderson, J. T.; Eisner, L. B.; Farley, E. V.; Heintz, R. A.; Mordy, C. W.
2017-01-01
From 2007 to 2013, the southeastern Bering Sea was dominated by extensive sea ice and below-average ocean temperatures. In 2014 there was a shift to reduced sea ice on the southern shelf and above-average ocean temperatures. These conditions continued in 2015 and 2016. During these three years, the spring bloom at mooring site M4 (57.9°N, 168.9°W) occurred primarily in May, which is typical of years without sea ice. At mooring site M2 (56.9°N, 164.1°W) the spring bloom occurred earlier especially in 2016. Higher chlorophyll fluorescence was observed at M4 than at M2. In addition, these three warm years continued the pattern near St. Matthew Island of high concentrations (>1 μM) of nitrite occurring during summer in warm years. Historically, the dominant parameters controlling sea-ice extent are winds and air temperature, with the persistence of frigid, northerly winds in winter and spring resulting in extensive ice. After mid-March 2014 and 2016 there were no cold northerly or northeasterly winds. Cold northerly winds persisted into mid-April in 2015, but did not result in extensive sea ice south of 58°N. The apparent mechanism that helped limit ice on the southeastern shelf was the strong advection of warm water from the Gulf of Alaska through Unimak Pass. This pattern has been uncommon, occurring in only one other year (2003) in a 37-year record of estimated transport through Unimak Pass. During years with no sea ice on the southern shelf (e.g. 2001–2005, 2014–2016), the depth-averaged temperature there was correlated to the previous summers ocean temperature. PMID:28957386
Comparison of Blackbody Sources for Low-Temperature IR Calibration
NASA Astrophysics Data System (ADS)
Ljungblad, S.; Holmsten, M.; Josefson, L. E.; Klason, P.
2015-12-01
Radiation thermometers are traditionally mostly used in high-temperature applications. They are, however, becoming more common in different applications at room temperature or below, in applications such as monitoring frozen food and evaluating heat leakage in buildings. To measure temperature accurately with a pyrometer, calibration is essential. A problem with traditional, commercially available, blackbody sources is that ice is often formed on the surface when measuring temperatures below 0°C. This is due to the humidity of the surrounding air and, as ice does not have the same emissivity as the blackbody source, it biases the measurements. An alternative to a traditional blackbody source has been tested by SP Technical Research Institute of Sweden. The objective is to find a cost-efficient method of calibrating pyrometers by comparison at the level of accuracy required for the intended use. A disc-shaped blackbody with a surface pyramid pattern is placed in a climatic chamber with an opening for field of view of the pyrometer. The temperature of the climatic chamber is measured with two platinum resistance thermometers in the air in the vicinity of the disc. As a rule, frost will form only if the deposition surface is colder than the surrounding air, and, as this is not the case when the air of the climatic chamber is cooled, there should be no frost or ice formed on the blackbody surface. To test the disc-shaped blackbody source, a blackbody cavity immersed in a conventional stirred liquid bath was used as a reference blackbody source. Two different pyrometers were calibrated by comparison using the two different blackbody sources, and the results were compared. The results of the measurements show that the disc works as intended and is suitable as a blackbody radiation source.
Ice Roughness in Short Duration SLD Icing Events
NASA Technical Reports Server (NTRS)
McClain, Stephen T.; Reed, Dana; Vargas, Mario; Kreeger, Richard E.; Tsao, Jen-Ching
2014-01-01
Ice accretion codes depend on models of roughness parameters to account for the enhanced heat transfer during the ice accretion process. While mitigating supercooled large droplet (SLD or Appendix O) icing is a significant concern for manufacturers seeking future vehicle certification due to the pending regulation, historical ice roughness studies have been performed using Appendix C icing clouds which exhibit mean volumetric diameters (MVD) much smaller than SLD clouds. Further, the historical studies of roughness focused on extracting parametric representations of ice roughness using multiple images of roughness elements. In this study, the ice roughness developed on a 21-in. NACA 0012 at 0deg angle of attack exposed to short duration SLD icing events was measured in the Icing Research Tunnel at the NASA Glenn Research Center. The MVD's used in the study ranged from 100 micrometer to 200 micrometers, in a 67 m/s flow, with liquid water contents of either 0.6 gm/cubic meters or 0.75 gm/cubic meters. The ice surfaces were measured using a Romer Absolute Arm laser scanning system. The roughness associated with each surface point cloud was measured using the two-dimensional self-organizing map approach developed by McClain and Kreeger (2013) resulting in statistical descriptions of the ice roughness.
NASA Astrophysics Data System (ADS)
Brisbourne, A.; Smith, A.; Kendall, J. M.; Baird, A. F.; Martin, C.; Kingslake, J.
2017-12-01
The grounding history of ice rises (grounded area of independent flow regime within a floating ice shelf) can be used to constrain large scale ice sheet history: ice fabric, resulting from the preferred orientation of ice crystals due to the stress regime, can be used to infer this grounding history. With the aim of measuring the present day ice fabric at Korff Ice Rise, West Antarctica, a multi-azimuth wide-angle seismic experiment was undertaken. Three wide-angle common-midpoint gathers were acquired centred on the apex of the ice rise, at azimuths of 60 degrees to one another, to measure variation in seismic properties with offset and azimuth. Both vertical and horizontal receivers were used to record P and S arrivals including converted phases. Measurements of the variation with offset and azimuth of seismic traveltimes, seismic attenuation and shear wave splitting have been used to quantify seismic anisotropy in the ice column. The observations cannot be reproduced using an isotropic ice column model. Anisotropic ray tracing has been used to test likely models of ice fabric by comparison with the data. A model with a weak girdle fabric overlying a strong cluster fabric provides the best fit to the observations. Fabric of this nature is consistent with Korff Ice Rise having been stable for the order of 10,000 years without any ungrounding or significant change in the ice flow configuration across the ice rise for this period. This observation has significant implications for the ice sheet history of the Weddell Sea sector.
NASA Astrophysics Data System (ADS)
Fuentes-Franco, Ramon; Koenigk, Torben
2017-04-01
Recently, an observational study has shown that sea ice variations in Barents Sea seem to be important for the sign of the following winter NAO (Koenigk et al. 2016). It has also been found that amplitude and extension of the Sea Level Pressure (SLP) patterns are modulated by Greenland and Labrador Seas ice areas. Therefore, Earth System Models participating in the PRIMAVERA Project are used to study the impact of resolution in ocean models in reproducing the previously mentioned observed correlation patterns between Sea Ice Concentration (SIC) and the SLP. When using ensembles of high ocean resolution (0.25 degrees) and low ocean resolution (1 degree) simulations, we found that the correlation sign between sea ice concentration over the Central Arctic, the Barents/Kara Seas and the Northern Hemisphere is similar to observations in the higher ocean resolution ensemble, although the amplitude is underestimated. In contrast, the low resolution ensemble shows opposite correlation patterns compared to observations. In general, high ocean resolution simulations show more similar results to observations than the low resolution simulations. Similarly, in order to study the mentioned observed SIC-SLP relationship reported by Koenigk et al (2016), we analyzed the impact of the use of pre-industrial and historical external forcing in the simulations. When using same forcing ensembles, we found that the correlation sign between SIC and SLP does not show a systematic behavior dependent on the use of different external forcing (pre-industrial or present day) as it does when using different ocean resolutions.
The Little Ice Age and Solar Activity
NASA Astrophysics Data System (ADS)
Velasco Herrera, Victor Manuel; Leal Silva, C. M. Carmen; Velasco Herrera, Graciela
We analyze the ice winter severity index on the Baltic region since 1501-1995. We found that the variability of this index is modulated among other factors by the secular solar activity. The little ice ages that have appeared in the North Hemisphere occurred during periods of low solar activity. Seemingly our star is experiencing a new quiet stage compared with Maunder or Dalton minimum, this is important because it is estimated that even small changes in weather can represent a great impact in ice index. These results are relevant since ice is a very important element in the climate system of the Baltic region and it can affect directly or indirectly many of the oceanographic, climatic, eco-logical, economical and cultural patterns.
Comparison of radar backscatter from Antarctic and Arctic sea ice
NASA Technical Reports Server (NTRS)
Hosseinmostafa, R.; Lytle, V.
1992-01-01
Two ship-based step-frequency radars, one at C-band (5.3 GHz) and one at Ku-band (13.9 GHz), measured backscatter from ice in the Weddell Sea. Most of the backscatter data were from first-year (FY) and second-year (SY) ice at the ice stations where the ship was stationary and detailed snow and ice characterizations were performed. The presence of a slush layer at the snow-ice interface masks the distinction between FY and SY ice in the Weddell Sea, whereas in the Arctic the separation is quite distinct. The effect of snow-covered ice on backscattering coefficients (sigma0) from the Weddell Sea region indicates that surface scattering is the dominant factor. Measured sigma0 values were compared with Kirchhoff and regression-analysis models. The Weibull power-density function was used to fit the measured backscattering coefficients at 45 deg.
Ice Growth Measurements from Image Data to Support Ice Crystal and Mixed-Phase Accretion Testing
NASA Technical Reports Server (NTRS)
Struk, Peter M.; Lynch, Christopher J.
2012-01-01
This paper describes the imaging techniques as well as the analysis methods used to measure the ice thickness and growth rate in support of ice-crystal icing tests performed at the National Research Council of Canada (NRC) Research Altitude Test Facility (RATFac). A detailed description of the camera setup, which involves both still and video cameras, as well as the analysis methods using the NASA Spotlight software, are presented. Two cases, one from two different test entries, showing significant ice growth are analyzed in detail describing the ice thickness and growth rate which is generally linear. Estimates of the bias uncertainty are presented for all measurements. Finally some of the challenges related to the imaging and analysis methods are discussed as well as methods used to overcome them.
Ice Growth Measurements from Image Data to Support Ice-Crystal and Mixed-Phase Accretion Testing
NASA Technical Reports Server (NTRS)
Struk, Peter, M; Lynch, Christopher, J.
2012-01-01
This paper describes the imaging techniques as well as the analysis methods used to measure the ice thickness and growth rate in support of ice-crystal icing tests performed at the National Research Council of Canada (NRC) Research Altitude Test Facility (RATFac). A detailed description of the camera setup, which involves both still and video cameras, as well as the analysis methods using the NASA Spotlight software, are presented. Two cases, one from two different test entries, showing significant ice growth are analyzed in detail describing the ice thickness and growth rate which is generally linear. Estimates of the bias uncertainty are presented for all measurements. Finally some of the challenges related to the imaging and analysis methods are discussed as well as methods used to overcome them.
Road icing forecasting and detecting system
NASA Astrophysics Data System (ADS)
Xu, Hongke; Zheng, Jinnan; Li, Peiqi; Wang, Qiucai
2017-05-01
Regard for the facts that the low accuracy and low real-time of the artificial observation to determine the road icing condition, and it is difficult to forecast icing situation, according to the main factors influencing the road-icing, and the electrical characteristics reflected by the pavement ice layer, this paper presents an innovative system, that is, ice-forecasting of the highway's dangerous section. The system bases on road surface water salinity measurements and pavement temperature measurement to calculate the freezing point of water and temperature change trend, and then predicts the occurrence time of road icing; using capacitance measurements to verdict the road surface is frozen or not; This paper expounds the method of using single chip microcomputer as the core of the control system and described the business process of the system.
Comparison of AltiKa and CryoSat-2 Elevation and Elevation Rates over the Amundsen Sea Sector
NASA Astrophysics Data System (ADS)
Otosaka, I.; Shepherd, A.; Hogg, A.
2017-12-01
Altimeters have been successfully used for more than two decades to observe changes in the ice sheet surface and to estimate the contribution of ice sheets to sea level rise. The Satellite for Argos and AltiKa (SARAL) was launched in February 2013 as a joint mission between the French space agency (CNES) and the Indian Space Research Organisation (ISRO). While the altimeters previously launched into space are operating at Ku-band (13.6 GHz), the altimeter on board SARAL, AltiKa, is the first instrument to operate at Ka-band (36.8 GHz). The higher frequency of AltiKa is expected to lead to reduced penetration of the radar signal into the snowpack, compared to Ku-band. A comparison of ice sheet elevation measurements recorded at the two frequencies may therefore provide useful information on surface and its scattering properties. In this study, we compare elevation and elevation rates recorded by AltiKa and CryoSat-2 between March 2013 and April 2017 over the Amundsen Sea Sector (ASS), one of the most rapidly changing sectors of West Antarctica. Elevation and elevation rates are computed within 5 km grid cells using a plane fit method, taking into account the contributions of topography and fluctuations in elevation and backscatter. The drifting orbit and imaging modes of CryoSat-2 result in 78,7 % sampling of the study area, whereas AltiKa samples 39,7 % due to its sparser orbit pattern and due to loss of signal in steeply sloping coastal margins. Over the study period, the root mean square difference between elevation and elevation change recorded at Ka-band and Ku-band were 40.3 m and 0.54 m/yr, respectively. While the broad spatial pattern of elevation change is well resolved by both satellites, data gaps along the Getz coastline may be partly responsible for the lower elevation change rate observed at Ka-band. We also compared CryoSat-2 and AltiKa to coincident airborne data from NASA's Operation IceBridge (OIB). The mean difference of elevation rate between space borne data and IceBridge data are respectively -0.09 m/yr and -0.08 m/yr at Ka and Ku band, highlighting the good capability of both CryoSat-2 and AltiKa to accurately map ice sheet elevation change.
Sustained High Basal Motion of the Greenland Ice Sheet Revealed by Borehole Deformation
NASA Technical Reports Server (NTRS)
Ryser, Claudia; Luthi, Martin P.; Andrews, Lauren C.; Hoffman, Matthew, J.; Catania, Ginny A.; Hawley, Robert L.; Neumann, Thomas A.; Kristensen, Steen S.
2014-01-01
Ice deformation and basal motion characterize the dynamical behavior of the Greenland ice sheet (GrIS). We evaluate the contribution of basal motion from ice deformation measurements in boreholes drilled to the bed at two sites in the western marginal zone of the GrIS. We find a sustained high amount of basal motion contribution to surface velocity of 44-73 percent in winter, and up to 90 percent in summer. Measured ice deformation rates show an unexpected variation with depth that can be explained with the help of an ice-flow model as a consequence of stress transfer from slippery to sticky areas. This effect necessitates the use of high-order ice-flow models, not only in regions of fast-flowing ice streams but in all temperate-based areas of the GrIS. The agreement between modeled and measured deformation rates confirms that the recommended values of the temperature-dependent flow rate factor A are a good choice for ice-sheet models.
Stability of the accumulation pattern around Dome C over the last glacial cycle
NASA Astrophysics Data System (ADS)
Cavitte, Marie; Parrenin, Frédéric; Ritz, Catherine; Blankenship, Donald; Young, Duncan; Frezzotti, Massimo; Roberts, Jason; van Ommen, Tas
2017-04-01
The "Candidate A" region, just to the south of Dome C, is one of the climate community's targets for retrieving "old ice", aiming for an ice core bottom age of 1.5 million-years. The region lies along the divide that separates the Byrd and Totten glacier catchments, and thus its position could be sensitive to differential behavior of those two systems. In the winter of 15/16, the University of Texas at Austin Institute for Geophysics (UTIG) collected a detailed airborne radar survey known as OIA (Old Ice A) (Young et al., in review). Seventeen internal radar reflections are mapped through this survey, encompassing both sides of the divide, spanning the last three glacial cycles, from 38 ka and 366 kyrs. Dates are obtained where the internal reflections intersect the EPICA Dome C ice core and the AICC20112 age-depth chronology can be transferred to each individual reflection. These internal reflections are easily traced in the OIA survey for several reasons: (1) Candidate A is a region of relatively stable ice, close to the ice divide, so very little horizontal flow has occurred and the radar reflections exhibit near-horizontal stratigraphy, (2) the gridded geometry of the survey design implies a high number of crossovers which allow regular checks on the accuracy of the reflection mapping, and supports the isochronal character of the reflections. Older airborne UTIG radar surveys in the region augment the dataset to provide constraints further away from the divide, and the same set of isochrones are traced throughout (previously published in Cavitte et al., 2016). We use a 1D inverse model (Parrenin et al., in prep) to reconstruct the patterns of paleo-accumulation through time all the way back to the penultimate interglacial (127 kyr). To do this, we first fit the isochrones' geometries and ages to invert for the steady-state accumulation rate, the basal melting rate and the p exponent in the Lliboutry flow formulation. We then reconstruct paleo-accumulation rates between each pair of isochrones by fitting the isochrone geometries exactly. Each "layer" therefore provides a map of the paleo-accumulation rate pattern for the time interval represented by the layer. We observe that the large-scale pattern of paleo-accumulation through the last 127 kyr has been consistent with today's: higher rates of accumulation to the NW of Dome C (i.e. nearer the coast) and lower rates with distance from the coast towards the SE. On smaller scales, we observe local accumulation highs, which correlate with local ice surface slope anomalies (usually reduced slopes) and remain stationary through time. We suggest that the stationary character of the paleo accumulation patterns, both regionally and locally, point to a relative stability of the ice sheet's surface geometry all the way back to the penultimate interglacial. This would imply a stable dome position throughout, and perhaps a balanced grounding line influence from the Byrd and Totten catchments.
Nonlinear dynamics of ice-wedge networks and resulting sensitivity to severe cooling events.
Plug, L J; Werner, B T
2002-06-27
Patterns of subsurface wedges of ice that form along cooling-induced tension fractures, expressed at the ground surface by ridges or troughs spaced 10 30 m apart, are ubiquitous in polar lowlands. Fossilized ice wedges, which are widespread at lower latitudes, have been used to infer the duration and mean temperature of cold periods within Proterozoic and Quaternary climates, and recent climate trends have been inferred from fracture frequency in active ice wedges. Here we present simulations from a numerical model for the evolution of ice-wedge networks over a range of climate scenarios, based on the interactions between thermal tensile stress, fracture and ice wedges. We find that short-lived periods of severe cooling permanently alter the spacing between ice wedges as well as their fracture frequency. This affects the rate at which the widths of ice wedges increase as well as the network's response to subsequent climate change. We conclude that wedge spacing and width in ice-wedge networks mainly reflect infrequent episodes of rapidly falling ground temperatures rather than mean conditions.
Moreau, Ludovic; Lachaud, Cédric; Théry, Romain; Predoi, Mihai V; Marsan, David; Larose, Eric; Weiss, Jérôme; Montagnat, Maurine
2017-11-01
The decline of Arctic sea ice extent is one of the most spectacular signatures of global warming, and studies converge to show that this decline has been accelerating over the last four decades, with a rate that is not reproduced by climate models. To improve these models, relying on comprehensive and accurate field data is essential. While sea ice extent and concentration are accurately monitored from microwave imagery, an accurate measure of its thickness is still lacking. Moreover, measuring observables related to the mechanical behavior of the ice (such as Young's modulus, Poisson's ratio, etc.) could provide better insights in the understanding of sea ice decline, by completing current knowledge so far acquired mostly from radar and sonar data. This paper aims at demonstrating on the laboratory scale that these can all be estimated simultaneously by measuring seismic waves guided in the ice layer. The experiment consisted of leaving a water tank in a cold room in order to grow an ice layer at its surface. While its thickness was increasing, ultrasonic guided waves were generated with a piezoelectric source, and measurements were subsequently inverted to infer the thickness and mechanical properties of the ice with very good accuracy.
NASA Astrophysics Data System (ADS)
Neumann, T.; Markus, T.; Csatho, B. M.; Martino, A. J.
2013-12-01
NASA's Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) is the next-generation orbiting laser altimeter, following the ICESat mission, which operated between 2003 and 2009. Its primary aim is to monitor sea-ice thickness and ice sheet elevation change at scales from outlet glaciers to the entire ice sheet, and enable global assessment of vegetation canopy height as established by ICESat. ICESat-2 is now in Phase C (Design and Development). It is scheduled to launch in 2016 on a Delta II rocket from Vandenberg Air Force Base in California. ICESat-2 will carry the Advanced Topographic Laser Altimeter System (ATLAS) and collect data to a latitudinal limit of 88 degrees. In contrast to Geoscience Laser Altimeter System (GLAS) on ICESat, ATLAS employs a 6-beam micro-pulse laser photon-counting approach. It uses a high repetition rate (10 kHz; resulting in 70 cm footprint spacing on the ground along the direction of travel) low-power laser in conjunction with single-photon sensitive detectors to measure ranges using 532 nm (green) laser light. In the polar regions, the 91-day repeat orbit pattern with a roughly monthly sub-cycle is designed to monitor seasonal and interannual variations of Greenland and Antarctic ice sheet elevations and monthly sea ice thickness changes. Dense ground-tracks over the rest of the globe achieved through a systematic sequence of off-nadir pointing (resulting in < 2 km ground-track spacing at the equator after two years) will enable measurements of land topography and vegetation canopy heights, allowing estimates of biomass and carbon in above-ground vegetation. While the ICESat-2 mission was optimized for cryospheric science, elevation measurements will be collected over land and oceans as well as histograms of backscatter from the atmosphere. These observations will provide a wealth of opportunities in addition to the primary science objectives, ranging from the retrieval of cloud properties, to river stages, to snow cover, to land use changes and ocean surface topography and more. This presentation will provide an overview and status of the ICESat-2 mission, elaborate on its expected elevation precision and accuracy, and present simulated ICESat-2 data based on an airborne ICESat-2 simulator - the Multiple Altimeter Beam Experimental Lidar (MABEL).
Properties of Urea-Doped Ice in the CRREL Test Basin,
1983-03-01
thickness versus initial ice thickness at start of warm-up ................ 7 9. Thin sections of urea-doped ice...following section ) on the mechanical properties of the tank, essential for achieving an ice sheet of uni- the model ice was investigated. In particular...Figure 1. elastic foundation: Measurements ~i 7 A 1 f 2 Temperature As mentioned in the preceding section , water and temperature was measured with a 1/50
Study on Latent Heat of Fusion of Ice in Aqueous Solutions
NASA Astrophysics Data System (ADS)
Kumano, Hiroyuki; Asaoka, Tatsunori; Saito, Akio; Okawa, Seiji
In this study, latent heat of fusion of ice in aqueous solutions was measured to understand latent heat of fusion of ice slurries. Propylene glycol, ethylene glycol, ethanol, NaCl and NaNO3 solutions were examined as the aqueous solutions. In the measurement, pure ice was put into the solution, and the temperature variation of the solution due to the melting of the ice was measured. Then, the effective latent heat of fusion was calculated from energy balance equation. When ice melts in solution, the concentration of the solution varies due to the melting of the ice, and dilution heat must be considered. Therefore, the latent heat of fusion of ice in aqueous solutions was predicted by considering the effects of dilution and freezing-point depression. The latent heat of fusion was also measured by differential scanning calorimetry(DSC) to compare the results obtained from the experiments with that obtained by DSC. As the result, it was found that the effective latent heat of fusion of ice decreased with the increase of the concentration of solution, and the effective latent heat of fusion was calculated from latent heat of fusion of pure ice and the effects of freezing-point depression and the dilution heat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haapanala, Päivi; Räisänen, Petri; McFarquhar, Greg M.
The impact of ice clouds on solar disk and circumsolar radiances is investigated using a Monte Carlo radiative transfer model. The monochromatic direct and diffuse radiances are simulated at angles of 0 to 8° from the center of the sun. Input data for the model are derived from measurements conducted during the 2010 Small Particles in Cirrus (SPARTICUS) campaign together with state-of-the-art databases of optical properties of ice crystals and aerosols. For selected cases, the simulated radiances are compared with ground-based radiance measurements obtained by the Sun and Aureole Measurements (SAM) instrument. First, the sensitivity of the radiances to themore » ice cloud properties and aerosol optical thickness is addressed. The angular dependence of the disk and circumsolar radiances is found to be most sensitive to assumptions about ice crystal roughness (or, more generally, non-ideal features of ice crystals) and size distribution, with ice crystal habit playing a somewhat smaller role. Second, in comparisons with SAM data, the ice cloud optical thickness is adjusted for each case so that the simulated radiances agree closely (i.e., within 3 %) with the measured disk radiances. Circumsolar radiances at angles larger than ≈ 3° are systematically underestimated when assuming smooth ice crystals, whereas the agreement with the measurements is better when rough ice crystals are assumed. In conclusion, our results suggest that it may well be possible to infer the particle roughness directly from ground-based SAM measurements. In addition, the results show the necessity of correcting the ground-based measurements of direct radiation for the presence of diffuse radiation in the instrument's field of view, in particular in the presence of ice clouds.« less
C-Band Backscatter Measurements of Winter Sea-Ice in the Weddell Sea, Antarctica
NASA Technical Reports Server (NTRS)
Drinkwater, M. R.; Hosseinmostafa, R.; Gogineni, P.
1995-01-01
During the 1992 Winter Weddell Gyre Study, a C-band scatterometer was used from the German ice-breaker R/V Polarstern to obtain detailed shipborne measurement scans of Antarctic sea-ice. The frequency-modulated continuous-wave (FM-CW) radar operated at 4-3 GHz and acquired like- (VV) and cross polarization (HV) data at a variety of incidence angles (10-75 deg). Calibrated backscatter data were recorded for several ice types as the icebreaker crossed the Weddell Sea and detailed measurements were made of corresponding snow and sea-ice characteristics at each measurement site, together with meteorological information, radiation budget and oceanographic data. The primary scattering contributions under cold winter conditions arise from the air/snow and snow/ice interfaces. Observations indicate so e similarities with Arctic sea-ice scattering signatures, although the main difference is generally lower mean backscattering coefficients in the Weddell Sea. This is due to the younger mean ice age and thickness, and correspondingly higher mean salinities. In particular, smooth white ice found in 1992 in divergent areas within the Weddell Gyre ice pack was generally extremely smooth and undeformed. Comparisons of field scatterometer data with calibrated 20-26 deg incidence ERS-1 radar image data show close correspondence, and indicate that rough Antarctic first-year and older second-year ice forms do not produce as distinctively different scattering signatures as observed in the Arctic. Thick deformed first-year and second-year ice on the other hand are clearly discriminated from younger undeformed ice. thereby allowing successful separation of thick and thin ice. Time-series data also indicate that C-band is sensitive to changes in snow and ice conditions resulting from atmospheric and oceanographic forcing and the local heat flux environment. Variations of several dB in 45 deg incidence backscatter occur in response to a combination of thermally-regulated parameters including sea-ice brine volume, snow and ice complex dielectric properties, and snow physical properties.
SUCCESS Evidence for Cirrus Cloud Ice Nucleation Mechanisms
NASA Technical Reports Server (NTRS)
Jensen, Eric; Gore, Warren J. Y. (Technical Monitor)
1997-01-01
During the SUCCESS mission, several measurements were made which should improve our understanding of ice nucleation processes in cirrus clouds. Temperature and water vapor concentration were made with a variety of instruments on the NASA DC-8. These observations should provide accurate upper tropospheric humidities. In particular, we will evaluate what humidities are required for ice nucleation. Preliminary results suggest that substantial supersaturations frequently exist in the upper troposphere. The leading-edge region of wave-clouds (where ice nucleation occurs) was sampled extensively at temperatures near -40 and -60C. These observations should give precise information about conditions required for ice nucleation. In addition, we will relate the observed aerosol composition and size distributions to the ice formation observed to evaluate the role of soot or mineral particles on ice nucleation. As an alternative technique for determining what particles act as ice nuclei, numerous samples of aerosols inside ice crystals were taken. In some cases, large numbers of aerosols were detected in each crystal, indicating that efficient scavenging occurred. Analysis of aerosols in ice crystals when only one particle per crystal was detected should help with the ice nucleation issue. Direct measurements of the ice nucleating activity of ambient aerosols drawn into airborne cloud chambers were also made. Finally, measurements of aerosols and ice crystals in contrails should indicate whether aircraft exhaust soot particles are effective ice nuclei.
Greenland uplift and regional sea level changes from ICESat observations and GIA modelling
NASA Astrophysics Data System (ADS)
Spada, G.; Ruggieri, G.; Sørensen, L. S.; Nielsen, K.; Melini, D.; Colleoni, F.
2012-06-01
We study the implications of a recently published mass balance of the Greenland ice sheet (GrIS), derived from repeated surface elevation measurements from NASA's ice cloud and land elevation satellite (ICESat) for the time period between 2003 and 2008. To characterize the effects of this new, high-resolution GrIS mass balance, we study the time-variations of various geophysical quantities in response to the current mass loss. They include vertical uplift and subsidence, geoid height variations, global patterns of sea level change (or fingerprints), and regional sea level variations along the coasts of Greenland. Long-wavelength uplifts and gravity variations in response to current or past ice thickness variations are obtained solving the sea level equation, which accounts for both the elastic and the viscoelastic components of deformation. To capture the short-wavelength components of vertical uplift in response to current ice mass loss, which is not resolved by satellite gravity observations, we have specifically developed a high-resolution regional elastic rebound (ER) model. The elastic component of vertical uplift is combined with estimates of the viscoelastic displacement fields associated with the process of glacial-isostatic adjustment (GIA), according to a set of published ice chronologies and associated mantle rheological profiles. We compare the sensitivity of global positioning system (GPS) observations along the coasts of Greenland to the ongoing ER and GIA. In notable contrast with past reports, we show that vertical velocities obtained by GPS data from five stations with sufficiently long records and from one tide gauge at the GrIS margins can be reconciled with model predictions based on the ICE-5G deglaciation model and the ER associated with the new ICESat-derived mass balance.
On Organic Material in E Ring Ice Grains
NASA Astrophysics Data System (ADS)
Postberg, F.; Khawaja, N.; Reviol, R.; Nölle, L.; Klenner, F.; Hsu, H. W.; Horanyi, M.
2015-12-01
Pure water ice dominates the composition of the micron and sub-micron sized dust particles in Saturn's E-ring, a ring constantly replenished by active ice jets of the moon Enceladus [1]. Details about the composition of this tenuous, optically thin ring can only be constrained by in situ measurements. The Cosmic Dust Analyzer (CDA) onboard Cassini investigates the composition of these grains by cationic time-of-flight mass spectra of individual ice grains hitting the instruments target surface. From these spectra three compositional types of E ring ice grains have been identified previously [2,3]: Type-1: Almost pure water, Type-2: Enriched in organics, and Type-3: Enriched in salt. Unlike Type-1 and 3, organic-enriched Type-2 spectra have not yet been investigated in depth. Here we report the first detailed compositional analysis of this type. The spectra analysis is supported by a large-scale laboratory ground campaign yielding a library of analogue spectra for organic material embedded in a water ice matrix. In contrast to Type 1 and 3, Type-2 spectra display a great compositional diversity, which indicates varying contributions of several organic species. So far we have identified characteristic fragment patterns of at least three classes of organic compounds: aromatic species, amines, and carbonyl group species. Work is in progress to quantify concentrations of the identified species and to assign yet un-specified organic mass lines in Type 2 spectra. Due to the dynamical evolution of the orbital elements of E ring grains a large fraction collides with the icy moons embedded in the E ring. Therefore, the organic components identified by CDA can accumulate on the surfaces of these bodies over time. Ref: :[1]Kempf et al., Icarus-206, 2010. [2]Postberg et al., Nature-459, 2009. [3]Postberg et al., Icarus-193, 2008.
NASA Astrophysics Data System (ADS)
Ross, Robin M.; Quetin, Langdon B.; Martinson, Douglas G.; Iannuzzi, Rich A.; Stammerjohn, Sharon E.; Smith, Raymond C.
2008-09-01
Variability in the temporal-spatial distribution and abundance of zooplankton was documented each summer on the Palmer Long-Term Ecological Research (LTER) grid west of the Antarctic Peninsula between Anvers and Adelaide Islands during a 12-yr time series. Oblique tows to 120 m with a 2×2 m fixed-frame net were made at about 50 stations each January/February between 1993 and 2004. The numerically dominant macro- and mesozooplanktonic species >2 mm included three species of euphausiids ( Euphausia superba, Antarctic krill; Thysanoëssa macrura; Euphausia crystallorophias, ice krill), a shelled pteropod ( Limacina helicina), and a salp ( Salpa thompsoni). Life cycles, life spans, and habitat varied among these species. Abundance data from each year were allocated to 100 km by 20 km (alongshore by on/offshore) grid cells centered on cardinal transect lines and stations within the Palmer LTER grid. The long-term mean or climatology and means for each year were used to calculate annual anomalies across the grid. Principal components analysis (PCA) was used to analyze for patterns and trends in the temporal-spatial variability of the five species. Questions included whether there are groups of species with similar patterns, and whether population cycles, species interactions or seasonal sea-ice parameters were correlated with detected patterns. Patterns in the climatology were distinct, and matched those of physical parameters. Common features included higher abundance in the north than in the south, independent of the cross-shelf gradients, and cross-shelf gradients with higher abundance either inshore ( E. crystallorophias) or offshore ( S. thompsoni). Anomalies revealed either cycles in the population, as episodic recruitment in Antarctic krill, or changes in anomaly pattern between the first and second half of the sampling period. The 1998 year, which coincided with a rapid change from a negative to a positive phase in the SOI, emerged as a year with either significant anomalies or that marked a change in anomaly patterns for different species. PCA analysis showed that the pattern of cumulative variance with increasing number of modes was distinctly different for shorter-lived versus longer-lived species; the first mode accounted for nearly 50% of the variance in the shorter-lived species and less than 25% in the longer-lived species. This suggested that the mechanisms driving variability in the temporal-spatial distribution of the shorter-lived, more oceanic species were less complex and more direct than those for the longer-lived euphausiids. Evidence from both the anomaly plots and the trend analysis suggested that salps have been more consistently present across the shelf from 1999 to present, and that the range of L. helicina has been expanding. With shorter life spans, these two species can respond more quickly to the increasing heat content on the shelf in this region. The cross-correlation analysis illustrated the negative correlation between salps and ice retreat and the number of ice days, and the positive correlation between the presence of ice krill and the day of ice retreat. These results suggest that for these species, several environmental controls on distribution and abundance were linked to seasonal sea-ice dynamics.
NASA Technical Reports Server (NTRS)
Lucchitta, B. K.
1984-01-01
Polygonal-fracture patterns on the martian surface were discovered on Viking Orbiter images. The polygons are 2-20 km in diameter, much larger than those of known patterned ground on Earth. New observations show, however, that polygons exist on Mars that have diameters similar to those of ice-wedge polygons on Earth (generally a few meters to more than 100 m). Various explanations for the origin of these crustal features are examined; seasonal desiccation and thermal-contraction cracking in ice-rich ground. It is difficult to ascertain whether the polygons are forming today or are relics from the past. The crispness of some crack suggests a recent origin. On the other hand the absence of upturned edges (indicating actively forming ice wedges), the locally disintegrating ground, and a few possible superposed rayed craters indicate that the polygons are not forming at the present.
Glacier dynamics of the Pamir-Karakoram-Himalaya region over the last 40 years
NASA Astrophysics Data System (ADS)
Gourmelen, N.; Dehecq, A.; Trouvé, E.
2014-12-01
Climate warming over the 20th century has caused drastic changes in mountain glaciers globally, and of the Himalayan glaciers in particular. The stakes are high; glaciers and ice caps are the largest contributor to the increase in the mass of the world's oceans, and the Himalayas play a key role in the hydrology of the region, impacting on the economy, food safety and flood risk. Partial monitoring of the Himalayan glaciers has revealed a mixed picture; while many of the Himalayan glaciers are retreating, in some cases locally stable or advancing glaciers in this region have also been observed. But recent controversies have highlighted the need to understand the glaciers dynamic and its relationship with climate change in the region. Earth Observation provides a mean for global and long-term monitoring of mountain glaciers' dynamics. In the frame of the Dragon program, a partnership between the European Space Agency (ESA) and the Chinese Center for Earth Observation (NRSCC), we begun a monitoring program aimed at quantifying multidecadal changes in glaciers' flow at the scale of the entire Himalayas and Karakoram from a 40 years' archive of Earth Observation. Ultimately, the provision of a global and time-sensitive glaciers velocity product will help to understand the evolution of the Himalayan glaciers in lights of glaciological (e.g. presence of debris-cover, surges, proglacial lakes) and climatic conditions. Here we present a region-wide analysis of annual and seasonnal glacier flow velocity covering the Pamir-Karakoram-Himalaya region obtained from the analysis of the entire archive of Landsat data. Over 90% of the ice-covered regions, as defined by the Randolph Glacier Inventory, are measured, with precision on the retrieved velocity of the order of 2 m/yr. We show that the first order temporal evolution of glacier flow mirrors the pattern of glacier mass balance. We observe a general decrease of ice velocity in regions of known ice mass loss, and a more complex patterns consisting of mixed acceleration and decrease of ice velocity in regions that are known to be affected by stable mass balance and surge-like behavior.
Microphysical and Optical Properties of Saharan Dust Measured during the ICE-D Aircraft Campaign
NASA Astrophysics Data System (ADS)
Ryder, Claire; Marenco, Franco; Brooke, Jennifer; Cotton, Richard; Taylor, Jonathan
2017-04-01
During August 2015, the UK FAAM BAe146 research aircraft was stationed in Cape Verde off the coast of West Africa. Measurements of Saharan dust, and ice and liquid water clouds, were taken for the ICE-D (Ice in Clouds Experiment - Dust) project - a multidisciplinary project aimed at further understanding aerosol-cloud interactions. Six flights formed part of a sub-project, AER-D, solely focussing on measurements of Saharan dust within the African dust plume. Dust loadings observed during these flights varied (aerosol optical depths of 0.2 to 1.3), as did the vertical structure of the dust, the size distributions and the optical properties. The BAe146 was fully equipped to measure size distributions covering aerosol accumulation, coarse and giant modes. Initial results of size distribution and optical properties of dust from the AER-D flights will be presented, showing that a substantial coarse mode was present, in agreement with previous airborne measurements. Optical properties of dust relating to the measured size distributions will also be presented.
Antarctic Sea Ice-Atmosphere Interactions: A Self-organizing Map-based Perspective
NASA Astrophysics Data System (ADS)
Reusch, D. B.
2005-12-01
Interactions between the ocean, sea ice and the atmosphere are a significant component of the dynamic nature of the Earth's climate system. Self-organizing maps (SOMs), an analysis tool from the field of artificial neural networks, have been used to study variability in Antarctic sea ice extent and the West Antarctic atmospheric circulation, plus the relationship and interactions between these two systems. Self-organizing maps enable unsupervised classification of large, multivariate/multidimensional data sets, e.g., time series of the atmospheric circulation or sea-ice extent, into a fixed number of distinct generalized states or modes, organized spatially as a two-dimensional grid, that are representative of the input data. When applied to atmospheric data, the analysis yields a nonlinear classification of the continuum of atmospheric conditions. In contrast to principal component analysis, SOMs do not force orthogonality or require subjective rotations to produce interpretable patterns. Twenty four years (1973-96) of monthly sea ice extent data (10 deg longitude bands; Simmonds and Jacka, 1995) were analyzed with a 30-node SOM. The resulting set of generalized patterns concisely captures the spatial and temporal variability in this data. An example of the former is variability in the longitudinal region of greatest extent. The SOM patterns readily show that there are multiple spatial patterns corresponding to "greatest extent conditions". Temporal variability is examined by creating frequency maps (i.e., which patterns occur most often) by month. With the annual cycle still in the data, the monthly frequency maps show a cycle moving from least extent, through expansion to greatest extent and back through retreat. When plotted in "SOM space", month-to-month transitions occur at different rates of change, suggesting that there is variability in the rate of change in extent at different times of the year, e.g., retreat in January is faster than November. Twenty five years (1977-2001) of monthly 500 mb temperature and pressure data (from the ECMWF 40-year reanalysis, ERA-40) from a region centered on the Antarctic Peninsula were analyzed independently for a separate SOMs-based study. Dominant SOM temperature patterns include the expected summer warmth and winter cold, plus "dipoles" of warm Atlantic (Pacific) and cold Pacific (Atlantic) sectors (with corresponding pressure patterns). Temporally, there is the expected annual progression from warmth, through cooling and back to warmth, with no particularly predominant patterns in many of the monthly frequency maps when the full record is used. Stratifying by high/low values of the Southern Oscillation Index (SOI) suggests that the spatial patterns of cooling and warming may be related to conditions in the tropical Pacific: in a low SOI year (1987), cooling and warming both begin in the Atlantic sector, with the opposite true in a high SOI year (1989). Further study of this aspect is planned. In addition to direct comparisons of the SOM analysis results from each study, a joint SOM analysis will be done on the combined data sets, exploiting the flexibility and power of this technique. We anticipate additional useful insights into the joint variability and relationships between Antarctic sea ice and the overlying atmosphere through this expanded analysis.
Denny, Mark; Dorgan, Kelly M; Evangelista, Dennis; Hettinger, Annaliese; Leichter, James; Ruder, Warren C; Tuval, Idan
2011-10-01
Sea ice typically forms at the ocean's surface, but given a source of supercooled water, an unusual form of ice--anchor ice--can grow on objects in the water column or at the seafloor. For several decades, ecologists have considered anchor ice to be an important agent of disturbance in the shallow-water benthic communities of McMurdo Sound, Antarctica, and potentially elsewhere in polar seas. Divers have documented anchor ice in the McMurdo communities, and its presence coincides with reduced abundance of the sponge Homaxinella balfourensis, which provides habitat for a diverse assemblage of benthic organisms. However, the mechanism of this disturbance has not been explored. Here we show interspecific differences in anchor-ice formation and propagation characteristics for Antarctic benthic organisms. The sponges H. balfourensis and Suberites caminatus show increased incidence of formation and accelerated spread of ice crystals compared to urchins and sea stars. Anchor ice also forms readily on sediments, from which it can grow and adhere to organisms. Our results are consistent with, and provide a potential first step toward, an explanation for disturbance patterns observed in shallow polar benthic communities. Interspecific differences in ice formation raise questions about how surface tissue characteristics such as surface area, rugosity, and mucus coating affect ice formation on invertebrates.
The far reach of ice-shelf thinning in Antarctica
NASA Astrophysics Data System (ADS)
Reese, R.; Gudmundsson, G. H.; Levermann, A.; Winkelmann, R.
2018-01-01
Floating ice shelves, which fringe most of Antarctica's coastline, regulate ice flow into the Southern Ocean1-3. Their thinning4-7 or disintegration8,9 can cause upstream acceleration of grounded ice and raise global sea levels. So far the effect has not been quantified in a comprehensive and spatially explicit manner. Here, using a finite-element model, we diagnose the immediate, continent-wide flux response to different spatial patterns of ice-shelf mass loss. We show that highly localized ice-shelf thinning can reach across the entire shelf and accelerate ice flow in regions far from the initial perturbation. As an example, this `tele-buttressing' enhances outflow from Bindschadler Ice Stream in response to thinning near Ross Island more than 900 km away. We further find that the integrated flux response across all grounding lines is highly dependent on the location of imposed changes: the strongest response is caused not only near ice streams and ice rises, but also by thinning, for instance, well-within the Filchner-Ronne and Ross Ice Shelves. The most critical regions in all major ice shelves are often located in regions easily accessible to the intrusion of warm ocean waters10-12, stressing Antarctica's vulnerability to changes in its surrounding ocean.
Development of 3D Ice Accretion Measurement Method
NASA Technical Reports Server (NTRS)
Lee, Sam; Broeren, Andy P.; Addy, Harold E., Jr.; Sills, Robert; Pifer, Ellen M.
2012-01-01
Icing wind tunnels are designed to simulate in-flight icing environments. The chief product of such facilities is the ice accretion that forms on various test articles. Documentation of the resulting ice accretion key piece of data in icing-wind-tunnel tests. Number of currently used options for documenting ice accretion in icing-wind-tunnel testing.
Classification of Baltic Sea ice types by airborne multifrequency microwave radiometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurvonen, L.; Hallikainen, M.
An airborne multifrequency radiometer (24, 34, 48, and 94 GHz, vertical polarization) was used to investigate the behavior of the brightness temperature of different sea ice types in the Gulf of Bothnia (Baltic Sea). The measurements and the main results of the analysis are presented. The measurements were made in dry and wet conditions (air temperature above and below 0 C). The angle of incidence was 45{degree} in all measurements. The following topics are evaluated: (a) frequency dependency of the brightness temperature of different ice types, (b) the capability of the multifrequency radiometer to classify ice types for winter navigationmore » purposes, and (c) the optimum measurement frequencies for mapping sea ice. The weather conditions had a significant impact on the radiometric signatures of some ice types (snow-covered compact pack ice and frost-covered new ice); the impact was the highest at 94 GHz. In all cases the overall classification accuracy was around 90% (the kappa coefficient was from 0.86 to 0.96) when the optimum channel combination (24/34 GHz and 94 GHz) was used.« less
Insolation-driven 100 kyr glacial cycles and millennial climate change
NASA Astrophysics Data System (ADS)
Abe-Ouchi, A.; Saito, F.; Kawamura, K.; Raymo, M. E.; Okuno, J.; Takahashi, K.; Blatter, H.
2013-12-01
The waxing and waning of Northern Hemisphere ice sheets over the past one million years is dominated by an approximately 100-kyr periodicity and a sawtooth pattern (gradual growth and fast termination). Milankovitch theory proposes that summer insolation at high northern latitudes drives the glacial cycles, and statistical tests demonstrated that the glacial cycles are indeed linked to eccentricity, obliquity and precession cycles. However, insolation alone cannot explain the strong 100 kyr cycle which presumably arises through internal climatic feedbacks. Prior work with conceptual models, for example, showed that glacial terminations are associated with the build-up of Northern Hemisphere 'excess ice', but the physical mechanisms of 100-kyr cycle at work remain unclear. Here, using comprehensive climate and ice sheet models, we show that the ~100-kyr periodicity is explained by insolation and internal feedback amongst the climate, ice sheet and lithosphere/asthenosphere system (reference). We found that equilibrium states of ice sheets exhibit hysteresis responses to summer insolation, and that the shape and position of the hysteresis loop play a key role in determining the periodicities of glacial cycles. The hysteresis loop of the North American ice sheet is such that, after its inception, the ice sheet mass balance remains mostly positive or neutral through several precession cycles whose amplitude decreases towards an eccentricity minimum. The larger the ice sheet grows and extends towards lower latitudes, the smaller is the insolation required to turn the mass balance to negative. Therefore, once the large ice sheet is established, only a moderate increase in insolation can trigger a negative mass balance, leading to a complete retreat within several thousand years, due to the delayed isostatic rebound. The effect of ocean circulation and millennial scale climate change are not playing the dominant role for determing the 100kyr cycle, but are effective for modifying the speed and geographical pattern of the waxing and waning of the Northern Hemisphere ice sheets and their melt water. (reference of the basic results: Abe-Ouchi et al, 2013, Insolation-driven 100,000 year glacial cycles and hysteresis of ice-sheet volume, Nature, 500, 190-193.)
Cronin, Thomas M.
2016-01-01
Climate change (including climate variability) refers to regional or global changes in mean climate state or in patterns of climate variability over decades to millions of years often identified using statistical methods and sometimes referred to as changes in long-term weather conditions (IPCC, 2012). Climate is influenced by changes in continent-ocean configurations due to plate tectonic processes, variations in Earth’s orbit, axial tilt and precession, atmospheric greenhouse gas (GHG) concentrations, solar variability, volcanism, internal variability resulting from interactions between the atmosphere, oceans and ice (glaciers, small ice caps, ice sheets, and sea ice), and anthropogenic activities such as greenhouse gas emissions and land use and their effects on carbon cycling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulkarni, Gourihar R.; Zhang, Kai; Zhao, Chun
Changes in the ice nucleation characteristics of atmospherically relevant mineral dust particles due to nitric acid coating are not well understood. Further, the atmospheric implications of dust coating on ice-cloud properties under different assumptions of primary ice nucleation mechanisms are unknown. We investigated ice nucleation ability of Arizona test dust, illite, K-feldspar and quartz as a function of temperature (-25 to -30°C) and relative humidity with respect to water (75 to 110%). Particles were size selected at 250 nm and transported (bare or coated) to the ice nucleation chamber to determine the fraction of particles nucleating ice at various temperaturemore » and water saturation conditions. All dust nucleated ice at water-subsaturated conditions, but the coated particles showed a reduction in their ice nucleation ability compared to bare particles. However, at water-supersaturated conditions, we observed that bare and coated particles had nearly similar ice nucleation characteristics. X-ray diffraction patterns indicated that structural properties of bare dust particles modified after acid treatment. We found that lattice parameters were slightly different, but crystallite sizes of the coated particles were reduced compared to bare particles. Next, single-column model results show that simulated ice crystal number concentrations mostly depends upon fraction of particles that are coated, primary ice nucleation mechanisms, and the competition between ice nucleation mechanisms to nucleate ice. In general, we observed that coating modify the ice-cloud properties and the picture of ice and mixed-phase cloud evolution is complex when different primary ice nucleation mechanisms are competing for fixed water vapor mass.« less
NASA Astrophysics Data System (ADS)
Le Meur, Emmanuel; Magand, Olivier; Arnaud, Laurent; Fily, Michel; Frezzotti, Massimo; Cavitte, Marie; Mulvaney, Robert; Urbini, Stefano
2018-05-01
Results from ground-penetrating radar (GPR) measurements and shallow ice cores carried out during a scientific traverse between Dome Concordia (DC) and Vostok stations are presented in order to infer both spatial and temporal characteristics of snow accumulation over the East Antarctic Plateau. Spatially continuous accumulation rates along the traverse are computed from the identification of three equally spaced radar reflections spanning about the last 600 years. Accurate dating of these internal reflection horizons (IRHs) is obtained from a depth-age relationship derived from volcanic horizons and bomb testing fallouts on a DC ice core and shows a very good consistency when tested against extra ice cores drilled along the radar profile. Accumulation rates are then inferred by accounting for density profiles down to each IRH. For the latter purpose, a careful error analysis showed that using a single and more accurate density profile along a DC core provided more reliable results than trying to include the potential spatial variability in density from extra (but less accurate) ice cores distributed along the profile. The most striking feature is an accumulation pattern that remains constant through time with persistent gradients such as a marked decrease from 26 mm w.e. yr-1 at DC to 20 mm w.e. yr-1 at the south-west end of the profile over the last 234 years on average (with a similar decrease from 25 to 19 mm w.e. yr-1 over the last 592 years). As for the time dependency, despite an overall consistency with similar measurements carried out along the main East Antarctic divides, interpreting possible trends remains difficult. Indeed, error bars in our measurements are still too large to unambiguously infer an apparent time increase in accumulation rate. For the proposed absolute values, maximum margins of error are in the range 4 mm w.e. yr-1 (last 234 years) to 2 mm w.e. yr-1 (last 592 years), a decrease with depth mainly resulting from the time-averaging when computing accumulation rates.
The SPectrometer for Ice Nuclei (SPIN): An instrument to investigate ice nucleation
Garimella, Sarvesh; Kristensen, Thomas Bjerring; Ignatius, Karolina; ...
2016-07-06
The SPectrometer for Ice Nuclei (SPIN) is a commercially available ice nucleating particle (INP) counter manufactured by Droplet Measurement Technologies in Boulder, CO. The SPIN is a continuous flow diffusion chamber with parallel plate geometry based on the Zurich Ice Nucleation Chamber and the Portable Ice Nucleation Chamber. This study presents a standard description for using the SPIN instrument and also highlights methods to analyze measurements in more advanced ways. It characterizes and describes the behavior of the SPIN chamber, reports data from laboratory measurements, and quantifies uncertainties associated with the measurements. Experiments with ammonium sulfate are used to investigatemore » homogeneous freezing of deliquesced haze droplets and droplet breakthrough. Experiments with kaolinite, NX illite, and silver iodide are used to investigate heterogeneous ice nucleation. SPIN nucleation results are compared to those from the literature. A machine learning approach for analyzing depolarization data from the SPIN optical particle counter is also presented (as an advanced use). Altogether, we report that the SPIN is able to reproduce previous INP counter measurements.« less
Snow on Sea Ice Workshop - An Icy Meeting of the Minds: Modelers and Measurers
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Snow on Sea Ice Workshop - An Icy Meeting of the Minds...workshop was to promote more seamless and better integration between measurements and modeling of snow on sea ice , thereby improving our predictive...capabilities for sea ice . OBJECTIVES The key objective was to improve the ability of modelers and measurers work together closely. To that end, we
Measuring the sea ice floe size distribution
NASA Technical Reports Server (NTRS)
Rothrock, D. A.; Thorndike, A. S.
1984-01-01
The sea ice covering the Arctic Ocean is broken into distinct pieces,called floes. In the summer, these floes, which have diameters ranging up to 100 km, are separated from each other by a region of open water. In the winter, floes still exist, but they are less easily identified. An understanding of the geometry of the ice pack is of interest for a number of practical applications associated with transportation in ice-covered seas and with the design of offshore structures intended to survive in the presence of ice. The present investigation has the objective to clarify ideas about floe sizes and to propose techniques for measuring them. Measurements are presented with the primary aim to illustrate points of technique or approach. A preliminary discussion of the floe size distribution of sea ice is devoted to questions of definition and of measurement.
NASA Technical Reports Server (NTRS)
Weinstein, Leonard M. (Inventor)
1988-01-01
An ice detector is provided for the determination of the thickness of ice on the outer surface on an object (e.g., aircraft) independently of temperature or the composition of the ice. First capacitive gauge, second capacitive gauge, and temperature gauge are embedded in embedding material located within a hollowed out portion of the outer surface. This embedding material is flush with the outer surface to prevent undesirable drag. The first capacitive gauge, second capacitive gauge, and the temperature gauge are respectively connected to first capacitive measuring circuit, second capacitive measuring circuit, and temperature measuring circuit. The geometry of the first and second capacitive gauges is such that the ratio of the voltage outputs of the first and second capacitance measuring circuits is proportional to the thickness of ice, regardless of ice temperature or composition. This ratio is determined by offset and dividing circuit.
Water - The key to global change. [of weather and climate
NASA Technical Reports Server (NTRS)
Soffen, Gerald A.
1988-01-01
The role of water in processes of global change is discussed. The importance of water in global warming, the loss of biological diversity, the activity of the El Nino southern oscillation, and the melting of polar ice are examined. Plans for a mission to measure tropical rainfall using a two frequency radar, a visible/IR radiometer and a passive microwave radiometer are noted. The way in which global change is affected by changes in patterns of available water is considered.
Holocene ice marginal fluctuations of the Qassimiut lobe in South Greenland
Larsen, Nicolaj K.; Find, Jesper; Kristensen, Anders; Bjørk, Anders A.; Kjeldsen, Kristian K.; Odgaard, Bent V.; Olsen, Jesper; Kjær, Kurt H.
2016-01-01
Knowledge about the Holocene evolution of the Greenland ice sheet (GrIS) is important to put the recent observations of ice loss into a longer-term perspective. In this study, we use six new threshold lake records supplemented with two existing lake records to reconstruct the Holocene ice marginal fluctuations of the Qassimiut lobe (QL) – one of the most dynamic parts of the GrIS in South Greenland. Times when the ice margin was close to present extent are characterized by clastic input from the glacier meltwater, whereas periods when the ice margin was behind its present day extent comprise organic-rich sediments. We find that the overall pattern suggests that the central part of the ice lobe in low-lying areas experienced the most prolonged ice retreat from ~9–0.4 cal. ka BP, whereas the more distal parts of the ice lobe at higher elevation re-advanced and remained close to the present extent during the Neoglacial between ~4.4 and 1.8 cal. ka BP. These results demonstrate that the QL was primarily driven by Holocene climate changes, but also emphasises the role of local topography on the ice marginal fluctuations. PMID:26940998
International Workshop on Comparing Ice Nucleation Measuring Systems 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cziczo, Daniel
The relationship of ambient aerosol particles to the formation of ice-containing clouds is one of the largest uncertainties in understanding the Earth’s climate. The uncertainty is due to several poorly understood processes and measurements including, but not limited to: (1) the microphysics of how particles nucleate ice, (2) the number of ice forming particles as a function of atmospheric properties such as temperature and relative humidity, (3) the atmospheric distribution of ice forming particles and (4) the role of anthropogenic activities in producing or changing the behavior of ice forming particles. The ways in which ice forming particles can impactmore » climate is also multi-faceted. More ice forming particles can lead to clouds with more ice crystals and different optical properties than clouds with less ice forming particles. More effective ice forming particles can lead to ice at higher temperature and/or lower saturation, resulting in clouds at lower altitude or latitude which also changes the Earth’s radiative balance. Ice nucleation also initiates most of the Earth’s precipitation, even in the mid- and low-latitudes, since cloud-top temperatures are often below freezing. The limited measurements and lack of understanding directly translates to restrictions in our ability to model atmospheric ice formation and project changes into the future. The importance of ice nucleation research is further exemplified by Figure 1 which shows the publications per decade and citations per year on the topic of ice nucleation [DeMott et al., 2011]. After a lull at the end of the last century, there has been a dramatic increase in both publications and citations related to ice nucleation; this directly corresponds to the importance of ice nucleation on the Earth’s climate and the uncertainty in this area noted by the Solomon [2007].« less
On the Ice Nucleation Spectrum
NASA Technical Reports Server (NTRS)
Barahona, D.
2012-01-01
This work presents a novel formulation of the ice nucleation spectrum, i.e. the function relating the ice crystal concentration to cloud formation conditions and aerosol properties. The new formulation is physically-based and explicitly accounts for the dependency of the ice crystal concentration on temperature, supersaturation, cooling rate, and particle size, surface area and composition. This is achieved by introducing the concepts of ice nucleation coefficient (the number of ice germs present in a particle) and nucleation probability dispersion function (the distribution of ice nucleation coefficients within the aerosol population). The new formulation is used to generate ice nucleation parameterizations for the homogeneous freezing of cloud droplets and the heterogeneous deposition ice nucleation on dust and soot ice nuclei. For homogeneous freezing, it was found that by increasing the dispersion in the droplet volume distribution the fraction of supercooled droplets in the population increases. For heterogeneous ice nucleation the new formulation consistently describes singular and stochastic behavior within a single framework. Using a fundamentally stochastic approach, both cooling rate independence and constancy of the ice nucleation fraction over time, features typically associated with singular behavior, were reproduced. Analysis of the temporal dependency of the ice nucleation spectrum suggested that experimental methods that measure the ice nucleation fraction over few seconds would tend to underestimate the ice nuclei concentration. It is shown that inferring the aerosol heterogeneous ice nucleation properties from measurements of the onset supersaturation and temperature may carry significant error as the variability in ice nucleation properties within the aerosol population is not accounted for. This work provides a simple and rigorous ice nucleation framework where theoretical predictions, laboratory measurements and field campaign data can be reconciled, and that is suitable for application in atmospheric modeling studies.
NASA Astrophysics Data System (ADS)
Farrington, Robert; Connolly, Paul J.; Lloyd, Gary; Bower, Keith N.; Flynn, Michael J.; Gallagher, Martin W.; Field, Paul R.; Dearden, Chris; Choularton, Thomas W.; Hoyle, Chris
2016-04-01
At temperatures between -35°C and 0°C, the presence of insoluble aerosols acting as ice nuclei (IN) is the only way in which ice can nucleate under atmospheric conditions. Previous field and laboratory campaigns have suggested that mineral dust present in the atmosphere act as IN at temperatures warmer than -35°C (e.g. Sassen et al. 2003); however, the cause of ice nucleation at temperatures greater than -10°C is less certain. In-situ measurements of aerosol properties and cloud micro-physical processes are required to drive the improvement of aerosol-cloud processes in numerical models. As part of the Ice NUcleation Process Investigation and Quantification (INUPIAQ) project, two field campaigns were conducted in the winters of 2013 and 2014 (Lloyd et al. 2014). Both campaigns included measurements of cloud micro-physical properties at the summit of Jungfraujoch in Switzerland (3580m asl), using cloud probes, including the Two-Dimensional Stereo Hydrometeor Spectrometer (2D-S), the Cloud Particle Imager 3V (CPI-3V) and the Cloud Aerosol Spectrometer with Depolarization (CAS-DPOL). The first two of these probes measured significantly higher ice number concentrations than those observed in clouds at similar altitudes from aircraft. In this contribution, we assess the source of the high ice number concentrations observed by comparing in-situ measurements at Jungfraujoch with WRF simulations applied to the region around Jungfraujoch. During the 2014 field campaign the model simulations regularly simulated ice particle concentrations that were 3 orders of magnitude per litre less than the observed ice number concentration, even taking into account the aerosol properties measured upwind. WRF was used to investigate a number of potential sources of the high ice crystal concentrations, including: an increased ice nucleating particle (INP) concentration, secondary ice multiplication and the advection of surface ice or snow crystals into the clouds. It was found that the influence of these processes on the ice particle concentrations could not explain the observations. We also assessed whether the inclusion of a surface flux of hoar crystals into the WRF model could account for the increased ice concentrations in the orographic clouds found at Jungfraujoch. By including a simple parameterisation based on the surface wind speed, the inclusion of the surface crystal flux provided good agreement with the measurements at Jungfraujoch. A summary of these results will be presented at the meeting. References Lloyd, G., et al., 2015. The origins of ice crystals measured in mixed-phase clouds at the high-alpine site Jungfraujoch. Atmos. Chem. Phys., 15, 12953-12969. Sassen, K., et al., 2003. Saharan dust storms and indirect aerosol effects on clouds: Crystal-face results. Geophys. Res. Lett., 30, 1633-1636.
Can we Relate Basal Ice Mechanics to Seismic Observations of the Bed?
NASA Astrophysics Data System (ADS)
Kyrke-Smith, T.; Gudmundsson, G. H.; Farrell, P. E.
2017-12-01
We compare results from two different methods of quanitfying basal ice conditions, by investigating correlations between seismically-derived estimates of basal acoustic impedance and basal slipperiness values obtained from a surface-to-bed inversion of a Stokes ice flow model. Using high-resolution measurements taken along several seismic profiles on Pine Island Glacier (PIG), we find no correlation between acoustic impedance and retrieved basal slipperiness wihtin each individual profile. However, there is a correlation when comparing averaged values across each distinct profile. Nevertheless, there is no clear way of incorporating seismic measurements of bed properties on ice streams into ice flow models. We conclude that more theoretical work needs done before constraints on mechanical conditions at the ice-bed interface from acoustic impedance measurements can be of direct use to ice sheet models.
Warm Arctic-cold Siberia: comparing the recent and the early 20th-century Arctic warmings
NASA Astrophysics Data System (ADS)
Wegmann, Martin; Orsolini, Yvan; Zolina, Olga
2018-02-01
The Warm Arctic-cold Siberia surface temperature pattern during recent boreal winter is suggested to be triggered by the ongoing decrease of Arctic autumn sea ice concentration and has been observed together with an increase in mid-latitude extreme events and a meridionalization of tropospheric circulation. However, the exact mechanism behind this dipole temperature pattern is still under debate, since model experiments with reduced sea ice show conflicting results. We use the early twentieth-century Arctic warming (ETCAW) as a case study to investigate the link between September sea ice in the Barents-Kara Sea (BKS) and the Siberian temperature evolution. Analyzing a variety of long-term climate reanalyses, we find that the overall winter temperature and heat flux trend occurs with the reduction of September BKS sea ice. Tropospheric conditions show a strengthened atmospheric blocking over the BKS, strengthening the advection of cold air from the Arctic to central Siberia on its eastern flank, together with a reduction of warm air advection by the westerlies. This setup is valid for both the ETCAW and the current Arctic warming period.
Light scattering by nonspherical particles: Remote sensing and climatic implications
NASA Astrophysics Data System (ADS)
Liou, K. N.; Takano, Y.
Calculations of the scattering and adsorption properties of ice crystals and aerosols, which are usually nonspherical, require specific methodologies. There is no unique theoretical solution for the scattering by nonspherical particles. Practically, all the numerical solutions for the scattering of nonspherical particles, including the exact wave equation approach, integral equation method, and discrete-dipole approximation, are applicable only to size parameters less than about 20. Thus, these methods are useful for the study of radiation problems involving nonspherical aerosols and small ice crystals in the thermal infrared wavelengths. The geometric optics approximation has been used to evaluate the scattering, absorption and polarization properties of hexagonal ice crystals whose sizes are much larger than the incident wavelength. This approximation is generally valid for hexagonal ice crystals with size parameters larger than about 30. From existing laboratory data and theoretical results, we illustrate that nonspherical particles absorb less and have a smaller asymmetry factor than the equal-projected area/volume spherical counterparts. In particular, we show that hexagonal ice crystals exhibit numerous halo and arc features that cannot be obtained from spherical particles; and that ice crystals scatter more light in the 60° to 140° scattering angle regions than the spherical counterparts. Satellite remote sensing of the optical depth and height of cirrus clouds using visible and IR channels must use appropriate phase functions for ice crystals. Use of an equivalent sphere model would lead to a significant overestimation and underestimation of the cirrus optical depth and height, respectively. Interpretation of the measurements for polarization reflected from sunlight involving cirrus clouds cannot be made without an appropriate ice crystal model. Large deviations exist for the polarization patterns between spheres and hexagonal ice crystals. Interpretation of lidar backscattering and depolarization signals must also utilize the scattering characteristics of hexagonal ice crystals. Equivalent spherical models substantially underestimate the broadband solar albedos of ice crystal clouds because of stronger forward scattering and larger absorption by spherical particles than hexagonal ice crystals. We illustrate that the net cloud radiative forcing at the top of the atmosphere involving most cirrus clouds is positive, implying that the IR greenhouse effect outweighs the solar albedo effect. If the radiative properties of equivalent spheres are used, a significant increase in cloud radiative forcing occurs. Using a one-dimensional cloud and climate model, we further demonstrate that there is sufficient model sensitivity, in terms of temperature increase, to the use of ice crystal models in radiation calculations.