Science.gov

Sample records for measure nuclear ground-state

  1. Ground-state nuclear-moment measurement of neutron-rich sulfur isotopes

    NASA Astrophysics Data System (ADS)

    Ohtomo, Yuichi; Ichikawa, Yuichi; Shirai, Hazuki; Ueno, Hideki; Ishibashi, Youko; Suzuki, Takahiro; Furukawa, Takeshi; Yoshimi, Akihiro; Abe, Yasushi; Asahi, Koichiro; Daugasu, J. M.; Fujita, Tomomi; Hayasaka, Miki; Imamura, Kei; Kishi, Shota; Kojima, Shuichiro; Nagae, Daisuke; Nakao, Aiko; Sagayama, Tsubasa; Sakamoto, Yu; Sato, Tomoya

    2014-09-01

    Recently the erosion of N = 28 shell gap has been suggested from several spectroscopic experimental data on neutron-rich nuclei. In particular, 43S isotope is of much interest since shape coexistence is expected to occur which provides key information to understand the evolution of shell gaps far from the stability. The isomeric state of 43S at 320 keV is suggested to have a shape close to sphericity with spin-parity of 7/2, but both the spin-parity and deformed parameter of the ground-state have not been determined directly. In order to investigate mechanisms leading to such an anomalous nuclear structure, we aim at measuring the ground-state nuclear-moment for 41,43S. As the first step, the measurement of μ moment of 41S was performed using the technique of β-NMR method at the RIPS facility at RIKEN. In the presentation, the result of this work will be reported.

  2. Compilation of directly measured nuclear spins of ground states and long-lived isomers

    SciTech Connect

    MacDonald, Allison; Karamy, Babak; Setoodehnia, Kiana; Singh, Balraj

    2013-02-15

    A compilation of the nuclear spins of ground and isomeric states measured by direct methods is presented. The first compilation of direct measurements of nuclear spins and moments was published in 1976 (G. H. Fuller, J. Phys. Chem. Ref. Data 5, 835, (1976)) with literature covered up to 1974. To our knowledge, the present work is the first such compilation since then. It is anticipated that the area of direct spin measurement will continue to expand using the state-of-the-art radioactive ion-beam and laser techniques. Literature cutoff date for the present compilation is February 2013. It is intended that the present compilation will be kept updated in a timely manner.

  3. Ground state energy fluctuations in the nuclear shell model

    NASA Astrophysics Data System (ADS)

    Velázquez, Víctor; Hirsch, Jorge G.; Frank, Alejandro; Barea, José; Zuker, Andrés P.

    2005-05-01

    Statistical fluctuations of the nuclear ground state energies are estimated using shell model calculations in which particles in the valence shells interact through well-defined forces, and are coupled to an upper shell governed by random 2-body interactions. Induced ground-state energy fluctuations are found to be one order of magnitude smaller than those previously associated with chaotic components, in close agreement with independent perturbative estimates based on the spreading widths of excited states.

  4. Nuclear Magnetic Moment of the {sup 57}Cu Ground State

    SciTech Connect

    Minamisono, K.; Mertzimekis, T.J.; Pereira, J.; Mantica, P.F.; Pinter, J.S.; Stoker, J.B.; Tomlin, B.E.; Weerasiri, R.R.; Davies, A.D.; Hass, M.; Rogers, W.F.

    2006-03-17

    The nuclear magnetic moment of the ground state of {sup 57}Cu(I{sup {pi}}=3/2{sup -},T{sub 1/2}=196.3 ms) has been measured to be vertical bar {mu}({sup 57}Cu) vertical bar =(2.00{+-}0.05){mu}{sub N} using the {beta}-NMR technique. Together with the known magnetic moment of the mirror partner {sup 57}Ni, the spin expectation value was extracted as <{sigma}{sigma}{sub z}>=-0.78{+-}0.13. This is the heaviest isospin T=1/2 mirror pair above the {sup 40}Ca region for which both ground state magnetic moments have been determined. The discrepancy between the present results and shell-model calculations in the full fp shell giving {mu}({sup 57}Cu){approx}2.4{mu}{sub N} and <{sigma}{sigma}{sub z}>{approx}0.5 implies significant shell breaking at {sup 56}Ni with the neutron number N=28.

  5. Nuclear ground-state masses and deformations: FRDM(2012)

    DOE PAGES

    Moller, P.; Sierk, A. J.; Ichikawa, T.; ...

    2016-03-25

    Here, we tabulate the atomic mass excesses and binding energies, ground-state shell-plus-pairing corrections, ground-state microscopic corrections, and nuclear ground-state deformations of 9318 nuclei ranging from 16O to A=339. The calculations are based on the finite-range droplet macroscopic and the folded-Yukawa single-particle microscopic nuclear-structure models, which are completely specified. Relative to our FRDM(1992) mass table in Möller et al. (1995), the results are obtained in the same model, but with considerably improved treatment of deformation and fewer of the approximations that were necessary earlier, due to limitations in computer power. The more accurate execution of the model and the more extensivemore » and more accurate experimental mass data base now available allow us to determine one additional macroscopic-model parameter, the density-symmetry coefficient LL, which was not varied in the previous calculation, but set to zero. Because we now realize that the FRDM is inaccurate for some highly deformed shapes occurring in fission, because some effects are derived in terms of perturbations around a sphere, we only adjust its macroscopic parameters to ground-state masses.« less

  6. Nuclear ground-state masses and deformations: FRDM(2012)

    SciTech Connect

    Moller, P.; Sierk, A. J.; Ichikawa, T.; Sagawa, H.

    2016-03-25

    Here, we tabulate the atomic mass excesses and binding energies, ground-state shell-plus-pairing corrections, ground-state microscopic corrections, and nuclear ground-state deformations of 9318 nuclei ranging from 16O to A=339. The calculations are based on the finite-range droplet macroscopic and the folded-Yukawa single-particle microscopic nuclear-structure models, which are completely specified. Relative to our FRDM(1992) mass table in Möller et al. (1995), the results are obtained in the same model, but with considerably improved treatment of deformation and fewer of the approximations that were necessary earlier, due to limitations in computer power. The more accurate execution of the model and the more extensive and more accurate experimental mass data base now available allow us to determine one additional macroscopic-model parameter, the density-symmetry coefficient LL, which was not varied in the previous calculation, but set to zero. Because we now realize that the FRDM is inaccurate for some highly deformed shapes occurring in fission, because some effects are derived in terms of perturbations around a sphere, we only adjust its macroscopic parameters to ground-state masses.

  7. Nuclear ground-state masses and deformations: FRDM(2012)

    NASA Astrophysics Data System (ADS)

    Möller, P.; Sierk, A. J.; Ichikawa, T.; Sagawa, H.

    2016-05-01

    We tabulate the atomic mass excesses and binding energies, ground-state shell-plus-pairing corrections, ground-state microscopic corrections, and nuclear ground-state deformations of 9318 nuclei ranging from 16O to A = 339. The calculations are based on the finite-range droplet macroscopic and the folded-Yukawa single-particle microscopic nuclear-structure models, which are completely specified. Relative to our FRDM(1992) mass table in Möller et al. (1995), the results are obtained in the same model, but with considerably improved treatment of deformation and fewer of the approximations that were necessary earlier, due to limitations in computer power. The more accurate execution of the model and the more extensive and more accurate experimental mass data base now available allow us to determine one additional macroscopic-model parameter, the density-symmetry coefficient L, which was not varied in the previous calculation, but set to zero. Because we now realize that the FRDM is inaccurate for some highly deformed shapes occurring in fission, because some effects are derived in terms of perturbations around a sphere, we only adjust its macroscopic parameters to ground-state masses.

  8. Table of experimental nuclear ground state charge radii: An update

    SciTech Connect

    Angeli, I.; Marinova, K.P.

    2013-01-15

    The present table contains experimental root-mean-square (rms) nuclear charge radii R obtained by combined analysis of two types of experimental data: (i) radii changes determined from optical and, to a lesser extent, K{sub α} X-ray isotope shifts and (ii) absolute radii measured by muonic spectra and electronic scattering experiments. The table combines the results of two working groups, using respectively two different methods of evaluation, published in ADNDT earlier. It presents an updated set of rms charge radii for 909 isotopes of 92 elements from {sub 1}H to {sub 96}Cm together, when available, with the radii changes from optical isotope shifts. Compared with the last published tables of R-values from 2004 (799 ground states), many new data are added due to progress recently achieved by laser spectroscopy up to early 2011. The radii changes in isotopic chains for He, Li, Be, Ne, Sc, Mn, Y, Nb, Bi have been first obtained in the last years and several isotopic sequences have been recently extended to regions far off stability, (e.g., Ar, Mo, Sn, Te, Pb, Po)

  9. Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance

    PubMed Central

    Li, Zhaokai; Yung, Man-Hong; Chen, Hongwei; Lu, Dawei; Whitfield, James D.; Peng, Xinhua; Aspuru-Guzik, Alán; Du, Jiangfeng

    2011-01-01

    Quantum ground-state problems are computationally hard problems for general many-body Hamiltonians; there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial wavefunction approximating the ground state is available, as often happens for many problems in physics and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by means of the phase estimation algorithm (PEA). We performed an experimental realization of this idea by implementing a variational-wavefunction approach to solve the ground-state problem of the Heisenberg spin model with an NMR quantum simulator. Our iterative phase estimation procedure yields a high accuracy for the eigenenergies (to the 10−5 decimal digit). The ground-state fidelity was distilled to be more than 80%, and the singlet-to-triplet switching near the critical field is reliably captured. This result shows that quantum simulators can better leverage classical trial wave functions than classical computers PMID:22355607

  10. NEW GROUND-STATE MEASUREMENTS OF ETHYL CYANIDE

    SciTech Connect

    Brauer, Carolyn S.; Pearson, John C.; Drouin, Brian J.; Yu, Shanshan

    2009-09-01

    The spectrum of ethyl cyanide, or propionitrile (CH{sub 3}CH{sub 2}CN), has been repeatedly observed in the interstellar medium with large column densities and surprisingly high temperatures in hot core sources. The construction of new, more sensitive, observatories accessing higher frequencies such as Herschel, ALMA, and SOFIA have made it important to extend the laboratory data for ethyl cyanide to coincide with the capabilities of the new instruments. We report extensions of the laboratory measurements of the rotational spectrum of ethyl cyanide in its ground vibrational state to 1.6 THz. A global analysis of the ground state, which includes all of the previous data and 3356 newly assigned transitions, has been fitted to within experimental error to J = 132, K = 36, using both Watson A-reduced and Watson S-reduced Hamiltonians.

  11. Centrifugal stretching from lifetime measurements in the 170Hf ground state band

    NASA Astrophysics Data System (ADS)

    Smith, M. K.; Werner, V.; Terry, J. R.; Pietralla, N.; Petkov, P.; Berant, Z.; Casperson, R. J.; Heinz, A.; Henning, G.; Lüttke, R.; Qian, J.; Shoraka, B.; Rainovski, G.; Williams, E.; Winkler, R.

    2013-04-01

    Centrifugal stretching in the deformed rare-earth nucleus 170Hf is investigated using high-precision lifetime measurements, performed with the New Yale Plunger Device at Wright Nuclear Structure Laboratory, Yale University. Excited states were populated in the fusion-evaporation reaction 124Sn(50Ti,4n)170Hf at a beam energy of 195 MeV. Recoil distance doppler shift data were recorded for the ground state band through the J=16+ level. The measured B(E2) values and transition quadrupole moments improve on existing data and show increasing β deformation in the ground state band of 170Hf. The results are compared to descriptions by a rigid rotor and by the confined β-soft rotor model.

  12. Systematic study of α preformation probability of nuclear isomeric and ground states

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Dong; Wu, Xi-Jun; Zheng, Bo; Xiang, Dong; Guo, Ping; Li, Xiao-Hua

    2017-01-01

    In this paper, based on the two-potential approach combining with the isospin dependent nuclear potential, we systematically compare the α preformation probabilities of odd-A nuclei between nuclear isomeric states and ground states. The results indicate that during the process of α particle preforming, the low lying nuclear isomeric states are similar to ground states. Meanwhile, in the framework of single nucleon energy level structure, we find that for nuclei with nucleon number below the magic numbers, the α preformation probabilities of high-spin states seem to be larger than low ones. For nuclei with nucleon number above the magic numbers, the α preformation probabilities of isomeric states are larger than those of ground states. Supported by National Natural Science Foundation of China (11205083), Construct Program of Key Discipline in Hunan Province, Research Foundation of Education Bureau of Hunan Province, China (15A159), Natural Science Foundation of Hunan Province, China (2015JJ3103, 2015JJ2123), Innovation Group of Nuclear and Particle Physics in USC, Hunan Provincial Innovation Foundation for Postgraduate (CX2015B398)

  13. Electron momentum spectroscopy of dimethyl ether taking account of nuclear dynamics in the electronic ground state

    SciTech Connect

    Morini, Filippo; Deleuze, Michael Simon; Watanabe, Noboru; Kojima, Masataka; Takahashi, Masahiko

    2015-10-07

    The influence of nuclear dynamics in the electronic ground state on the (e,2e) momentum profiles of dimethyl ether has been analyzed using the harmonic analytical quantum mechanical and Born-Oppenheimer molecular dynamics approaches. In spite of fundamental methodological differences, results obtained with both approaches consistently demonstrate that molecular vibrations in the electronic ground state have a most appreciable influence on the momentum profiles associated to the 2b{sub 1}, 6a{sub 1}, 4b{sub 2}, and 1a{sub 2} orbitals. Taking this influence into account considerably improves the agreement between theoretical and newly obtained experimental momentum profiles, with improved statistical accuracy. Both approaches point out in particular the most appreciable role which is played by a few specific molecular vibrations of A{sub 1}, B{sub 1}, and B{sub 2} symmetries, which correspond to C–H stretching and H–C–H bending modes. In line with the Herzberg-Teller principle, the influence of these molecular vibrations on the computed momentum profiles can be unraveled from considerations on the symmetry characteristics of orbitals and their energy spacing.

  14. Electron momentum spectroscopy of dimethyl ether taking account of nuclear dynamics in the electronic ground state.

    PubMed

    Morini, Filippo; Watanabe, Noboru; Kojima, Masataka; Deleuze, Michael Simon; Takahashi, Masahiko

    2015-10-07

    The influence of nuclear dynamics in the electronic ground state on the (e,2e) momentum profiles of dimethyl ether has been analyzed using the harmonic analytical quantum mechanical and Born-Oppenheimer molecular dynamics approaches. In spite of fundamental methodological differences, results obtained with both approaches consistently demonstrate that molecular vibrations in the electronic ground state have a most appreciable influence on the momentum profiles associated to the 2b1, 6a1, 4b2, and 1a2 orbitals. Taking this influence into account considerably improves the agreement between theoretical and newly obtained experimental momentum profiles, with improved statistical accuracy. Both approaches point out in particular the most appreciable role which is played by a few specific molecular vibrations of A1, B1, and B2 symmetries, which correspond to C-H stretching and H-C-H bending modes. In line with the Herzberg-Teller principle, the influence of these molecular vibrations on the computed momentum profiles can be unraveled from considerations on the symmetry characteristics of orbitals and their energy spacing.

  15. An upper limit to ground state energy fluctuations in nuclear masses

    SciTech Connect

    Hirsch, Jorge G.; Frank, Alejandro; Barea, Jose; Velazquez, Victor; Isacker, Piet van; Zuker, Andres P.

    2007-02-12

    Shell model calculations are employed to estimate un upper limit of statistical fluctuations in the nuclear ground state energies. In order to mimic the presence of quantum chaos associated with neutron resonances at energies between 6 to 10 MeV, calculations include random interactions in the upper shells. The upper bound for the energy fluctuations at mid-shell is shown to have the form {sigma}(A) {approx_equal} 20A-1.34 MeV. This estimate is consistent with the mass errors found in large shell model calculations along the N=126 line, and with local mass error estimated using the Garvey-Kelson relations, all being smaller than 100 keV.

  16. An upper limit of ground-state energy fluctuations in nuclear masses

    NASA Astrophysics Data System (ADS)

    Hirsch, Jorge G.; Velázquez, Víctor; Frank, Alejandro; Barea, José; Van Isacker, Piet; Zuker, Andrés P.

    2006-07-01

    Shell model calculations are employed to estimate an upper limit of statistical fluctuations in the nuclear ground-state energies. In order to mimic the presence of quantum chaos associated with neutron resonances at energies between 6 and 10 MeV, calculations include random interactions in the upper shells. The upper bound for the energy fluctuations at mid-shell is shown to have the form σ(A)ap20 A-1.34 MeV. This estimate is consistent with the mass errors found in large-shell model calculations along the N=126 line, and with local mass error estimated using the Garvey-Kelson relations, all being smaller than 100 keV. It agrees in both size and functional form with the fluctuations deduced independently from second-order perturbation theory.

  17. An upper limit to ground state energy fluctuations in nuclear masses

    NASA Astrophysics Data System (ADS)

    Hirsch, Jorge G.; Velázquez, Víctor; Frank, Alejandro; Barea, José; Van Isacker, Piet; Zuker, Andrés P.

    2007-02-01

    Shell model calculations are employed to estimate un upper limit of statistical fluctuations in the nuclear ground state energies. In order to mimic the presence of quantum chaos associated with neutron resonances at energies between 6 to 10 MeV, calculations include random interactions in the upper shells. The upper bound for the energy fluctuations at mid-shell is shown to have the form σ(A) ≈ 20A-1.34 MeV. This estimate is consistent with the mass errors found in large shell model calculations along the N=126 line, and with local mass error estimated using the Garvey-Kelson relations, all being smaller than 100 keV.

  18. Measurement of rubidium ground-state hyperfine transition frequency using atomic fountains

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Yuri B.; Szymaniec, Krzysztof; Edris, Soliman

    2015-08-01

    The results of precision measurements of the 87Rb ground-state hyperfine transition frequency, which were conducted at NPL from 2009 to 2013, are reported. The resulting frequency, measured using NPL’s Cs and Rb atomic frequency standards, demonstrates reasonable agreement with the most recent measurements reported by LNE-SYRTE.

  19. Wave-function frozen-density embedding: Approximate analytical nuclear ground-state gradients.

    PubMed

    Heuser, Johannes; Höfener, Sebastian

    2016-05-05

    We report the derivation of approximate analytical nuclear ground-state uncoupled frozen density embedding (FDEu) gradients for the resolution of identity (RI) variant of the second-order approximate coupled cluster singles and doubles (RICC2) as well as density functional theory (DFT), and an efficient implementation thereof in the KOALA program. In order to guarantee a computationally efficient treatment, those gradient terms are neglected which would require the exchange of orbital information. This approach allows for geometry optimizations of single molecules surrounded by numerous molecules with fixed nuclei at RICC2-in-RICC2, RICC2-in-DFT, and DFT-in-DFT FDE level of theory using a dispersion correction, required due to the DFT-based treatment of the interaction in FDE theory. Accuracy and applicability are assessed by the example of two case studies: (a) the Watson-Crick pair adenine-thymine, for which the optimized structures exhibit a maximum error of about 0.08 Å for our best scheme compared to supermolecular reference calculations, (b) carbon monoxide on a magnesium oxide surface model, for which the error amount up to 0.1 Å for our best scheme. Efficiency is demonstrated by successively including environment molecules and comparing to an optimized conventional supermolecular implementation, showing that the method is able to outperform conventional RICC2 schemes already with a rather small number of environment molecules, gaining significant speed up in computation time. © 2016 Wiley Periodicals, Inc.

  20. Measurement of the ground-state asymmetry parameter for the decay of sup 29 P

    SciTech Connect

    Masson, G.S.

    1988-01-01

    The ground state asymmetry parameter, A{sub gs}, was measured for the decay of polarized {sup 29}P. From A{sub gs} and the published value for ft{sub 1/2}, the decay's Fermi and Gamow-Teller strengths were deduced. Polarized {sup 29}P was produced by bombarding {sup 28}Si with 3.0 MeV vector polarized deuterons. A free standing wafer of pure natural abundance silicon crystal served as both target and host for the {sup 29}P. The target was heated to 140{degree}C and placed in a 1.0mT magnetic field to lengthen the polarization relaxation time. Positrons emitted in the decay were recorded by two detector telescopes placed at 0{degree}C and 180{degree} relative to the sample's polarization axis. A NaI detector, placed at 90{degree} was used to record gammas in coincidence with positrons, making it possible to simultaneously measure the asymmetries for both the ground state and excited state branches. The ground state asymmetry parameter, A{sub gs}, was deduced from these two asymmetries. The vector coupling constant, calculated form the measured Fermi strength, agrees with the predictions of CVC and with the accepted value for the Cabibbo angle. The measured Gamow-Teller strength agrees with recent calculations by Brown and Wildenthal, and disagree with earlier results of Azuelos and Kitching.

  1. Ground state proton radioactivity from 121Pr: when was this exotic nuclear decay mode first discovered?

    PubMed

    Robinson, A P; Woods, P J; Seweryniak, D; Davids, C N; Carpenter, M P; Hecht, A A; Peterson, D; Sinha, S; Walters, W B; Zhu, S

    2005-07-15

    Ground-state proton radioactivity has been identified from 121Pr. A transition with a proton energy of E(p)=882(10) keV [Q(p)=900(10) keV] and half-life t(1/2)=10(+6)(-3) ms has been observed and is assigned to the decay of a highly prolate deformed 3/2(+) or 3/2(-) Nilsson state. The present result is found to be incompatible with a previously reported observation of ground-state proton radioactivity from 121Pr, which would have represented the discovery of this phenomenon.

  2. Hartree-Fock many-body perturbation theory for nuclear ground-states

    NASA Astrophysics Data System (ADS)

    Tichai, Alexander; Langhammer, Joachim; Binder, Sven; Roth, Robert

    2016-05-01

    We investigate the order-by-order convergence behavior of many-body perturbation theory (MBPT) as a simple and efficient tool to approximate the ground-state energy of closed-shell nuclei. To address the convergence properties directly, we explore perturbative corrections up to 30th order and highlight the role of the partitioning for convergence. The use of a simple Hartree-Fock solution for the unperturbed basis leads to a convergent MBPT series for soft interactions, in contrast to the divergent MBPT series obtained with a harmonic oscillator basis. For larger model spaces and heavier nuclei, where a direct high-order MBPT calculation is not feasible, we perform third-order calculations and compare to advanced ab initio coupled-cluster results for the same interactions and model spaces. We demonstrate that third-order MBPT provides ground-state energies for nuclei up into the tin isotopic chain in excellent agreement with the best available coupled-cluster calculations at a fraction of the computational cost.

  3. Method and basis set dependence of anharmonic ground state nuclear wave functions and zero-point energies: application to SSSH.

    PubMed

    Kolmann, Stephen J; Jordan, Meredith J T

    2010-02-07

    One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol(-1) at the CCSD(T)/6-31G* level of theory, has a 4 kJ mol(-1) dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol(-1) lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol(-1) lower in energy at the CCSD(T)/6-31G* level of theory. Ideally, for sub-kJ mol(-1) thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.

  4. Nuclear orientation of 144Pm in the electronic singlet ground state system PrIn 3

    NASA Astrophysics Data System (ADS)

    Vermeulen, G. A.; Greidanus, F. J. A. M.; Hunik, R.; Huiskamp, W. J.

    1980-04-01

    The gamma-ray anisotropy of 144Pm in the Van Vleck paramagnet PrIn 3 is investigated both theoretically and experimentally. A simple model, which accounts for the essential experimental features is proposed. The purpose of this model is to extract the exchange interaction between the Pm ion and its nearest Pr neighbours and the crystal field splitting of the Pm ions. Both, the Pr and Pm ions have non-magnetic ground states in which magnetism is induced by external magnetic fields. Therefore, the interaction between the external magnetic field and the Pm nuclei is enhanced. We find an enhancement factor, к = 220. This enhancement is mainly induced by exchange interactions and for fields larger than 0.5 T there are already strong non-linear effects.

  5. Measurements of the ground-state polarizabilities of Cs, Rb, and K using atom interferometry

    NASA Astrophysics Data System (ADS)

    Gregoire, Maxwell D.; Hromada, Ivan; Holmgren, William F.; Trubko, Raisa; Cronin, Alexander D.

    2015-11-01

    We measured the ground-state static electric-dipole polarizabilities of Cs, Rb, and K atoms using a three-nanograting Mach-Zehnder atom beam interferometer. Our measurements provide benchmark tests for atomic structure calculations and thus test the underlying theory used to interpret atomic parity-nonconservation experiments. We measured αCs=4 π ɛ0×59.39 (9 ) Å3,αRb=4 π ɛ0×47.39 (8 ) Å3 , and αK=4 π ɛ0×42.93 (7 ) Å3 . In atomic units, these measurements are αCs=401.2 (7 ) ,αRb=320.1 (6 ) , and αK=290.0 (5 ) . We report ratios of polarizabilities αCs/αRb=1.2532 (10 ) ,αCs/αK=1.3834 (9 ) , and αRb/αK=1.1040 (9 ) with smaller fractional uncertainty because the systematic errors for individual measurements are largely correlated. Since Cs atom beams have short de Broglie wavelengths, we developed measurement methods that do not require resolved atom diffraction. Specifically, we used phase choppers to measure atomic beam velocity distributions, and we used electric field gradients to give the atom interference pattern a phase shift that depends on atomic polarizability.

  6. Ground-state entropy of Potts antiferromagnets: Bounds, series, and Monte Carlo measurements

    NASA Astrophysics Data System (ADS)

    Shrock, Robert; Tsai, Shan-Ho

    1997-09-01

    We report several results concerning W(Λ,q)=exp(S0/kB), the exponent of the ground-state entropy of the Potts antiferromagnet on a lattice Λ. First, we improve our previous rigorous lower bound on W(hc,q) for the honeycomb (hc) lattice and find that it is extremely accurate; it agrees to the first 11 terms with the large-q series for W(hc,q). Second, we investigate the heteropolygonal Archimedean 4.82 lattice, derive a rigorous lower bound, on W(4.82,q), and calculate the large-q series for this function to O(y12) where y=1/(q-1). Remarkably, these agree exactly to all 13 terms calculated. We also report Monte Carlo measurements, and find that these are very close to our lower bound and series. Third, we study the effect of non-nearest-neighbor couplings, focusing on the square lattice with next-nearest-neighbor bonds.

  7. Quantitative measurements of ground state atomic oxygen in atmospheric pressure surface micro-discharge array

    NASA Astrophysics Data System (ADS)

    Li, D.; Kong, M. G.; Britun, N.; Snyders, R.; Leys, C.; Nikiforov, A.

    2017-06-01

    The generation of atomic oxygen in an array of surface micro-discharge, working in atmospheric pressure He/O2 or Ar/O2 mixtures, is investigated. The absolute atomic oxygen density and its temporal and spatial dynamics are studied by means of two-photon absorption laser-induced fluorescence. A high density of atomic oxygen is detected in the He/O2 mixture with up to 10% O2 content in the feed gas, whereas the atomic oxygen concentration in the Ar/O2 mixture stays below the detection limit of 1013 cm-3. The measured O density near the electrode under the optimal conditions in He/1.75% O2 gas is 4.26  ×  1015 cm-3. The existence of the ground state O (2p 4 3 P) species has been proven in the discharge at a distance up to 12 mm away from the electrodes. Dissociative reactions of the singlet O2 with O3 and deep vacuum ultraviolet radiation, including the radiation of excimer \\text{He}2\\ast , are proposed to be responsible for O (2p 4 3 P) production in the far afterglow. A capability of the surface micro-discharge array delivering atomic oxygen to long distances over a large area is considered very interesting for various biomedical applications.

  8. Ground-state atomic polarization relaxation-time measurement of Rb filled hypocycloidal core-shaped Kagome HC-PCF

    NASA Astrophysics Data System (ADS)

    Bradley, T. D.; Ilinova, E.; McFerran, J. J.; Jouin, J.; Debord, B.; Alharbi, M.; Thomas, P.; Gérôme, F.; Benabid, F.

    2016-09-01

    We report on the measurement of ground-state atomic polarization relaxation time of Rb vapor confined in five different hypocycloidal core-shape Kagome hollow-core photonic crystal fibers made with uncoated silica glass. We are able to distinguish between wall-collision and transit-time effects in an optical waveguide and deduce the contribution of the atom’s dwell time at the core wall surface. In contrast with conventional macroscopic atomic cell configuration, and in agreement with Monte Carlo simulations, the measured relaxation times were found to be at least one order of magnitude longer than the limit set by atom-wall collisional from thermal atoms. This extended relaxation time is explained by the combination of a stronger contribution of the slow atoms in the atomic polarization build-up, and of the relatively significant contribution of dwell time to the relaxation process of the ground state polarization.

  9. Nuclear electromagnetic moments of the ground states of148Pm and210Bi calculated with phenomenological wave functions derived from analyses of β-decay experiments

    NASA Astrophysics Data System (ADS)

    Rosso, O. A.; Szybisz, L.

    1983-10-01

    The magnetic dipole and electric quadrupole moments of the ground states of148Pm and210Bi are evaluated with phenomenological wave functions derived from β-decay studies published in previous works. It is found that these wave functions account satisfactorily for the experimental data of both nuclear moments of the210Bi ground state. In the case of148Pm, while the calculated value of the electric quadrupole moment is not inconsistent with the experimental data, a strong disagreement between theory and experiment is found for the magnetic dipole moment. We attribute this failure to the use of a too small configuration space for the expansion of the nuclear wave function of148Pm.

  10. Measurement of longitudinal and transverse spin relaxation rates using the ground-state Hanle effect

    SciTech Connect

    Castagna, N.; Weis, A.

    2011-11-15

    We present a theoretical and experimental study of the resonant circularly-polarized-light-induced Hanle effect in the ground state of Cs vapor atoms in a paraffin-coated cell. The effect manifests itself as a narrow resonance (centered at B=0) in the dependence of the optical transmission coefficient of the vapor on the magnitude of an external magnetic field B(vector sign). We develop a theoretical model that yields an algebraic expression for the shape of these resonances for arbitrary field orientations and arbitrary angular momenta of the states coupled by the exciting light, provided that the light power is kept sufficiently small. An experimental procedure for assessing the range of validity of the model is given. Experiments were carried out on the laser-driven Cs D{sub 1} transition both in longitudinal and transverse field geometries, and the observed line shapes of the corresponding bright and dark resonances give an excellent confirmation of the model predictions. The method is applied for determining the intrinsic longitudinal and transverse relaxation rates of the vector magnetization in the vapor and their dependence on light power.

  11. Ground state bromine atom density measurements by two-photon absorption laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Sirse, N.; Foucher, M.; Chabert, P.; Booth, J.-P.

    2014-12-01

    Ground state bromine atom detection by two-photon absorption laser-induced fluorescence (TALIF) is demonstrated. The (4p5) {^2Po3/2} bromine atoms are excited by two-photon absorption at 252.594 nm to the (5p) {^4So3/2} state and detected by 635.25 nm fluorescence to the (5s) 4P5/2 state. The atoms are generated in a radio-frequency inductively-coupled plasma in pure HBr. The excitation laser also causes some photodissociation of HBr molecules, but this can be minimized by not focussing the laser beam, still giving adequate signal levels. We determined the natural lifetime of the emitting (5p) {^4So3/2} state, τf^Br*=30.9 +/- 1.4 ns and the rate constant for quenching of this state by collision with HBr molecules, k_HBrQ = 1.02 +/- 0.07× 10-15 m3 s-1 .

  12. Measurement of longitudinal and transverse spin relaxation rates using the ground-state Hanle effect

    NASA Astrophysics Data System (ADS)

    Castagna, N.; Weis, A.

    2011-11-01

    We present a theoretical and experimental study of the resonant circularly-polarized-light-induced Hanle effect in the ground state of Cs vapor atoms in a paraffin-coated cell. The effect manifests itself as a narrow resonance (centered at B=0) in the dependence of the optical transmission coefficient of the vapor on the magnitude of an external magnetic field B⃗. We develop a theoretical model that yields an algebraic expression for the shape of these resonances for arbitrary field orientations and arbitrary angular momenta of the states coupled by the exciting light, provided that the light power is kept sufficiently small. An experimental procedure for assessing the range of validity of the model is given. Experiments were carried out on the laser-driven Cs D1 transition both in longitudinal and transverse field geometries, and the observed line shapes of the corresponding bright and dark resonances give an excellent confirmation of the model predictions. The method is applied for determining the intrinsic longitudinal and transverse relaxation rates of the vector magnetization in the vapor and their dependence on light power.

  13. Precision measurements of proton emission from the ground states of {sup 156}Ta and {sup 160}Re

    SciTech Connect

    Darby, I. G.; Page, R. D.; Joss, D. T.; Bianco, L.; Grahn, T.; Judson, D. S.; Simpson, J.; Eeckhaudt, S.; Greenlees, P. T.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Leppaenen, A.-P.; Nyman, M.; Rahkila, P.; Saren, J.; Scholey, C.; Steer, A. N.

    2011-06-15

    The decays of the {pi}d{sub 3/2} ground states of {sup 156}Ta and {sup 160}Re have been studied in detail using the GREAT spectrometer. More than 7000 {sup 160}Re nuclei were produced in reactions of 290- and 300-MeV {sup 58}Ni ions with an isotopically enriched {sup 106}Cd target and separated in flight using the RITU separator. The proton and {alpha} decays of the {pi}d{sub 3/2} level were confirmed and the half-life and branching ratios of this state were determined with improved precision to be t{sub 1/2}=611{+-}7 {mu}s and b{sub p}=89{+-}1% and b{sub {alpha}=}11{+-}1%, respectively. The {alpha}-decay branch populated the ground state of {sup 156}Ta, allowing improved values for the proton-decay energy and half-life to be obtained (E{sub p}=1011{+-}5 keV; t{sub 1/2}=106{+-}4 ms). The {beta} decay of this level was identified for the first time and a branching ratio of b{sub {beta}=}29{+-}3% was deduced. The spectroscopic factors deduced from these measurements are compared with predictions.

  14. High-Accuracy Measurement of the Blackbody Radiation Frequency Shift of the Ground-State Hyperfine Transition in Cs133

    NASA Astrophysics Data System (ADS)

    Jefferts, S. R.; Heavner, T. P.; Parker, T. E.; Shirley, J. H.; Donley, E. A.; Ashby, N.; Levi, F.; Calonico, D.; Costanzo, G. A.

    2014-02-01

    We report a high-accuracy direct measurement of the blackbody radiation shift of the Cs133 ground-state hyperfine transition. This frequency shift is one of the largest systematic frequency biases encountered in realizing the current definition of the International System of Units (SI) second. Uncertainty in the blackbody radiation frequency shift correction has led to its being the focus of intense theoretical effort by a variety of research groups. Our experimental measurement of the shift used three primary frequency standards operating at different temperatures. We achieved an uncertainty a factor of five smaller than the previous best direct measurement. These results tend to validate the claimed accuracy of the recently calculated values.

  15. Quantum-limited mechanical resonator measurement and back-action cooling to near the quantum ground state

    NASA Astrophysics Data System (ADS)

    Rocheleau, Tristan Orion

    For decades, quantum mechanics has been a hugely successful theory for understanding the microscopic world. Despite its seemingly non-physical predictions, such as superposition or cat states, the accuracy of the theory has been verified time and again for microscopic systems composed of single atoms or other quantum particles. Up till now, however, our understanding of how and if these quantum predictions scale to larger systems closer to our everyday perceptions, where we do not see quantum "weirdness", is an open question. One platform to pursue observation of quantum effects in a system composed of large ensembles of atoms rather than single particles is that of nanomechanical resonators. Several schemes have been proposed to observe quantum effects in these systems, eg [1],[41], but a common feature is the requirement that the mechanical resonator be at or near its quantum ground state, which has proved challenging to achieve. In this dissertation, a novel mechanical motion readout scheme using superconducting resonators is presented and shown to allow near quantum limited detection. In any strong measurement of a system, quantum mechanics dictates that the measurement will inherently produce some "back-action" on the measured system. It will be shown that for the measurement system presented, back-action forces can additionally be used to cool a single mode of a mechanical resonator to near its quantum ground state, with the lowest observed occupation factor at 3.8 +/- 1.3 quanta. This is a low enough occupation level that the nanoresonator is in its ground state statistically 21% of the time and opens up the possibility of preforming further quantum experiments. The system investigated in this dissertation is composed of a nanoscale mechanical resonator capacitively coupled to a superconducting coplanar waveguide resonator. The resonators were nanofabricated on a silicon substrate and cooled to low temperature in a dilution refrigerator system. Applying

  16. High-accuracy measurement of the 87Rb ground-state hyperfine splitting in an atomic fountain

    NASA Astrophysics Data System (ADS)

    Bize, S.; Sortais, Y.; Santos, M. S.; Mandache, C.; Clairon, A.; Salomon, C.

    1999-03-01

    We describe the operation of a laser-cooled rubidium 87Rb frequency standard. We present a new measurement of the 87Rb hyperfine frequency with a 1.3 × 10-14 relative accuracy, by comparison with a Cs fountain primary standard. The measured 87Rb ground-state hyperfine splitting is ν87 = 6 834 682 610.90429(9) Hz. This value differs from previously published values (see Essen L., Hope E. G. and Sutcliffe D., Nature 189 1961 298; Penselin S., Moran T., Cohen W. and Wscinkler G., Phys. Rev. 127 1962 524; Arditi M. and Cerez P. IEEE Trans. Instrum. Meas. IM-21 1972 391) by about 2 - 3 Hz and is 104 times more accurate. Because of the low collisional shift in 87Rb, future improvements may lead to a stability of 1 × 10-14τ-1/2 and a relative accuracy in the 10-17 range.

  17. Measurements of copper ground-state and metastable level population densities in a copper-chloride laser

    NASA Technical Reports Server (NTRS)

    Nerheim, N. M.

    1977-01-01

    The population densities of both the ground and the 2D(5/2) metastable states of copper atoms in a double-pulsed copper-chloride laser are correlated with laser energy as a function of time after the dissociation current pulse. Time-resolved density variations of the ground and excited copper atoms were derived from measurements of optical absorption at 324.7 and 510.6 nm, respectively, over a wide range of operating conditions in laser tubes with diameters of 4 to 40 mm. The minimum delay between the two current pulses at which lasing was observed is shown to be a function of the initial density and subsequent decay of the metastable state. Similarly, the maximum delay is shown to be a function of the initial density and decay of the ground state.

  18. Nuclear magnetic moments of the ground states of sup 124 I, sup 126 I, and sup 130 I

    SciTech Connect

    Ohya, S.; Yamazaki, T.; Harasawa, T.; Katsurayama, M.; Mutsuro, N. ); Muto, S.; Heiguchi, K. )

    1992-01-01

    The nuclear magnetic moments of {sup 124}I, {sup 126}I, and {sup 130}I have been measured by the techniques of low-temperature nuclear orientation and nuclear magnetic resonance on oriented nuclei. The magnetic hyperfine splitting frequency {vert bar}{ital g}{mu}{sub {ital N}BHF}/{ital h}{vert bar} for {sup 124}I{ital Fe} was determined to be 630.2(2) MHz from a field-shift analysis of the measured resonances at the external field of 0.1, 0.2, 0.4, 0.6, and 0.8 T. The resonances for {sup 126}I{ital Fe} and {sup 130}I{ital Fe} were observed in an external magnetic field of 0.2 T at {nu}({sup 126}I{ital Fe})=627.7(2) MHz and {nu}({sup 130}I{ital Fe})=585.7(2) MHz, respectively. Using the recalculated hyperfine field of {ital B}{sub HF}({sup 131}I{ital Fe})=114.50(5) T, the magnetic moments were deduced: {vert bar}{mu}({sup 124}I,2{sup {minus}}){vert bar}=1.444(4){mu}{sub {ital N}}, {vert bar}{mu}({sup 126}I,2{sup {minus}}){vert bar}=1.436(5){mu}{sub {ital N}}, and {vert bar}{mu}({sup 130}I,5{sup +}){vert bar}=3.349(7){mu}{sub {ital N}}. The present value of the magnetic moment of {sup 124}I is very different from the value of 1.14(8){mu}{sub {ital N}} reported previously. The measured values of the magnetic moments are discussed using Lande formula.

  19. Towards measuring the ground state hyperfine splitting of antihydrogen - a progress report

    NASA Astrophysics Data System (ADS)

    Sauerzopf, C.; Capon, A. A.; Diermaier, M.; Dupré, P.; Higashi, Y.; Kaga, C.; Kolbinger, B.; Leali, M.; Lehner, S.; Rizzini, E. Lodi; Malbrunot, C.; Mascagna, V.; Massiczek, O.; Murtagh, D. J.; Nagata, Y.; Radics, B.; Simon, M. C.; Suzuki, K.; Tajima, M.; Ulmer, S.; Vamosi, S.; Gorp, S. van; Zmeskal, J.; Breuker, H.; Higaki, H.; Kanai, Y.; Kuroda, N.; Matsuda, Y.; Venturelli, L.; Widmann, E.; Yamazaki, Y.

    2016-12-01

    We report the successful commissioning and testing of a dedicated field-ioniser chamber for measuring principal quantum number distributions in antihydrogen as part of the ASACUSA hyperfine spectroscopy apparatus. The new chamber is combined with a beam normalisation detector that consists of plastic scintillators and a retractable passivated implanted planar silicon (PIPS) detector.

  20. Toward the measurement of the hyperfine splitting in the ground state of muonic hydrogen

    NASA Astrophysics Data System (ADS)

    Bakalov, Dimitar; Adamczak, Andrzej; Stoilov, Mihail; Vacchi, Andrea

    2015-08-01

    The recent Lamb shift experiment at PSI and the controversy about proton size revived the interest in measuring the hyperfine splitting in muonic hydrogen and extracting the proton Zemach radius. The efficiency of the experimental method depends on the energy dependence of the muon transfer rate to higher-Z gases in the near epithermal energy range. As long as the available experimental data only give the average transfer rate in the whole epithermal range, and the detailed theoretical calculations have not yet been verified, an experiment has been started for the measurement of the transfer rate in thermalized gas target at different temperatures and extracting from the data an estimate of the transfer rate for arbitrary energies. We outline the underlying mathematical method and estimate its accuracy.

  1. Annihilation detector for an in-beam spectroscopy apparatus to measure the ground state hyperfine splitting of antihydrogen

    NASA Astrophysics Data System (ADS)

    Sauerzopf, Clemens; Capon, Aaron A.; Diermaier, Martin; Fleck, Markus; Kolbinger, Bernadette; Malbrunot, Chloé; Massiczek, Oswald; Simon, Martin C.; Vamosi, Stefan; Zmeskal, Johann; Widmann, Eberhard

    2017-02-01

    The matter-antimatter asymmetry observed in the universe today still lacks a quantitative explanation. One possible mechanism that could contribute to the observed imbalance is a violation of the combined Charge-, Parity- and Time symmetries (CPT). A test of CPT symmetry using anti-atoms is being carried out by the ASACUSA-CUSP collaboration at the CERN Antiproton Decelerator using a low temperature beam of antihydrogen-the most simple atomic system built only of antiparticles. While hydrogen is the most abundant element in the universe, antihydrogen is produced in very small quantities in a laboratory framework. A detector for in-beam measurements of the ground state hyperfine structure of antihydrogen has to be able to detect very low signal rates within high background. To fulfil this challenging task, a two layer barrel hodoscope detector was developed. It is built of plastic scintillators with double sided readout via Silicon Photomultipliers (SiPMs). The SiPM readout is done using novel, compact and cost efficient electronics that incorporate power supply, amplifier and discriminator on a single board. This contribution will evaluate the performance of the new hodoscope detector.

  2. Susceptibility measurements in PrxLa1-xInAg2 with Γ3 doublet ground state

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Nakamura, Y.; Morodomi, H.; Hasuo, T.; Inagaki, Y.; Kawae, T.; Suzuki, Hs; Mito, M.; Kitai, T.

    2012-12-01

    We have measured the susceptibility and magnetization of PrxLa1-xInAg2 at Pr concentrations x=1 and 0.1 down to T ~ 0.5 K by SQUID magnetometer with a home-made 3He insert. The susceptibility above T = 15 K is well reproduced by the crystal-electric-field level scheme with a non-Kramers Γ3 doublet in the ground state for each concentration, while that below T = 15 K shows a non-Fermi-liquid (NFL) behavior with — ln T-dependence at low magnetic field. With increasing magnetic field, — ln T-dependence is suppressed and —T1-2-dependence appears at H = 7 T The magnetization at T = 0.5 K increases with increasing magnetic fields up to H = 7 T, indicating that the increase of the susceptibility does not come from impurity ions. These results suggest that the quadrupolar Kondo effect is responsible for NFL behavior of the susceptibility.

  3. Direct observation of electronic and nuclear ground state splitting in external magnetic field by inelastic neutron scattering on oxidized ferrocene and ferrocene containing polymers

    NASA Astrophysics Data System (ADS)

    Appel, Markus; Frick, Bernhard; Elbert, Johannes; Gallei, Markus; Stühn, Bernd

    2015-01-01

    The quantum mechanical splitting of states by interaction of a magnetic moment with an external magnetic field is well known, e.g., as Zeeman effect in optical transitions, and is also often seen in magnetic neutron scattering. We report excitations observed in inelastic neutron spectroscopy on the redox-responsive polymer poly(vinylferrocene). They are interpreted as splitting of the electronic ground state in the organometallic ferrocene units attached to the polymer chain where a magnetic moment is created by oxidation. In a second experiment using high resolution neutron backscattering spectroscopy we observe the hyperfine splitting, i.e., interaction of nuclear magnetic moments with external magnetic fields leading to sub-μeV excitations observable in incoherent neutron spin-flip scattering on hydrogen and vanadium nuclei.

  4. Measurement of the ground-state distributions in bistable mechanically interlocked molecules using slow scan rate cyclic voltammetry.

    PubMed

    Fahrenbach, Albert C; Barnes, Jonathan C; Li, Hao; Benítez, Diego; Basuray, Ashish N; Fang, Lei; Sue, Chi-Hau; Barin, Gokhan; Dey, Sanjeev K; Goddard, William A; Stoddart, J Fraser

    2011-12-20

    In donor-acceptor mechanically interlocked molecules that exhibit bistability, the relative populations of the translational isomers--present, for example, in a bistable [2]rotaxane, as well as in a couple of bistable [2]catenanes of the donor-acceptor vintage--can be elucidated by slow scan rate cyclic voltammetry. The practice of transitioning from a fast scan rate regime to a slow one permits the measurement of an intermediate redox couple that is a function of the equilibrium that exists between the two translational isomers in the case of all three mechanically interlocked molecules investigated. These intermediate redox potentials can be used to calculate the ground-state distribution constants, K. Whereas, (i) in the case of the bistable [2]rotaxane, composed of a dumbbell component containing π-electron-rich tetrathiafulvalene and dioxynaphthalene recognition sites for the ring component (namely, a tetracationic cyclophane, containing two π-electron-deficient bipyridinium units), a value for K of 10 ± 2 is calculated, (ii) in the case of the two bistable [2]catenanes--one containing a crown ether with tetrathiafulvalene and dioxynaphthalene recognition sites for the tetracationic cyclophane, and the other, tetrathiafulvalene and butadiyne recognition sites--the values for K are orders (one and three, respectively) of magnitude greater. This observation, which has also been probed by theoretical calculations, supports the hypothesis that the extra stability of one translational isomer over the other is because of the influence of the enforced side-on donor-acceptor interactions brought about by both π-electron-rich recognition sites being part of a macrocyclic polyether.

  5. Probing the ground state and zero-field cooled exchange bias by magnetoresistance measurement in Mn50Ni41Sn9 ribbon

    NASA Astrophysics Data System (ADS)

    Chen, Jiyun; Tu, Ruikang; Fang, Xiaoting; Gu, Quanchao; Zhou, Yanying; Cui, Rongjing; Han, Zhida; Zhang, Lei; Fang, Yong; Qian, Bin; Zhang, Chengliang; Jiang, Xuefan

    2017-03-01

    Recently, a new type of exchange bias (EB) after zero-field cooling has attracted considerable interest mainly in bulk magnetic competing systems. Here, we use a detailed magnetotransport investigation to probe the ground state and zero-field cooled EB (ZEB) in Mn50Ni41Sn9 ribbon. Both ZEB and field cooled EB were detected in magnetoresistance results consistent with magnetic measurement. A pure spin-glass ground state is proposed based on parabolic shape of low-field magnetoresistance combined with AC magnetization, memory effect. The appearance of ZEB is attributed to the field-induced nucleation and growth of ferromagnetic domains in the spin glass matrix forming unidirectional anisotropy at the interface.

  6. Direct rate constant measurements for the reaction of ground-state atomic oxygen with ethylene, 244-1052 K

    SciTech Connect

    Klemm, R.B.; Nesbitt, F.L.; Skolnik, E.G.; Lee, J.H.; Smalley, J.F.

    1987-03-12

    The rate constant for the reaction of ground-state atomic oxygen with ethylene was determined by using two techniques: flash photolysis-resonance fluorescence (FP-RF, 244-1052 K) and discharge flow-resonance fluorescence (DF-RF, 298-1017 K). Kinetic complications due to the presence of molecular oxygen in the FP-RF experiments at high temperatures (T > 800 K) were overcome by using NO as the photolytic source of the O atoms. The rate constant, k/sub 1/ (T), derived in this study exhibits extreme non-Arrhenius behavior, but it can be successfully fit to the sum of exponentials expression, 244-1052 K, k/sub 1/(T) = (1.02 +/- 0.06) x 10/sup -11/ exp(-753 +/- 17 K/T) + (2.75 +/- 0.26) x 10/sup -10/ exp(-4220 +/- 550 K/T), in units of cm/sup 3/ molecule/sup -1/ s/sup -1/. Additionally, a fit of the results of this work to a simple transition-state theory expression and the comparison of these results with those of other workers are discussed.

  7. Ground-state electromagnetic moments of calcium isotopes

    NASA Astrophysics Data System (ADS)

    Ruiz, R. F. Garcia; Bissell, M. L.; Blaum, K.; Frömmgen, N.; Hammen, M.; Holt, J. D.; Kowalska, M.; Kreim, K.; Menéndez, J.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Nowacki, F.; Papuga, J.; Poves, A.; Schwenk, A.; Simonis, J.; Yordanov, D. T.

    2015-04-01

    Background: The neutron-rich calcium isotopes have gained particular interest as evidence of closed-shell structures has recently been found in two exotic nuclei, at N =32 and N =34 . Additionally, the study of such neutron-rich systems has revealed new aspects of nuclear forces, in particular regarding the role of three-nucleon forces. Purpose: We study the electromagnetic properties of Ca isotopes around the neutron number N =32 . Methods: High-resolution bunched-beam collinear laser spectroscopy was used to measure the optical hyperfine spectra of the Ca-5143 isotopes. Results: The ground-state magnetic moments of Ca,5149 and quadrupole moments of Ca 47 ,49 ,51 were measured for the first time, and the 51Ca ground-state spin I = 3 /2 was determined in a model-independent way. Our experimental results are compared with state-of-the-art shell-model calculations using both phenomenological interactions and microscopic interactions derived from chiral effective field theory. Conclusions: The results for the ground-state moments of neutron-rich isotopes are in excellent agreement with predictions of interactions derived from chiral effective field theory including three-nucleon forces. Lighter isotopes illustrate the presence of particle-hole excitations of the 40Ca core in their ground state. Our results provide a critical test of modern nuclear theories, and give direct answer to the evolution of ground-state electromagnetic properties in the Ca isotopic chain across three doubly closed-shell configurations at N =20 , 28, 32 of this unique system.

  8. Carrier-concentration dependence of the pseudogap ground state of superconducting Bi₂Sr(₂-x)La(x)CuO(₆+δ) revealed by ⁶³,⁶⁵Cu-nuclear magnetic resonance in very high magnetic fields.

    PubMed

    Kawasaki, Shinji; Lin, Chengtian; Kuhns, Philip L; Reyes, Arneil P; Zheng, Guo-qing

    2010-09-24

    We report the results of the Knight shift by ⁶³,⁶⁵Cu-NMR measurements on single-layered copper-oxide Bi₂Sr(₂-x)La(x)CuO(₆+δ) conducted under very high magnetic fields up to 44 T. The magnetic field suppresses superconductivity completely, and the pseudogap ground state is revealed. The ⁶³Cu-NMR Knight shift shows that there remains a finite density of states at the Fermi level in the zero-temperature limit, which indicates that the pseudogap ground state is a metallic state with a finite volume of Fermi surface. The residual density of states in the pseudogap ground state decreases with decreasing doping (increasing x) but remains quite large even at the vicinity of the magnetically ordered phase of x ≥ 0.8, which suggests that the density of states plunges to zero upon approaching the Mott insulating phase.

  9. Ground state in κ -(BEDT-TTF)2Hg(SCN)2Br studied by Raman Spectroscopy and Heat Capacity measurements

    NASA Astrophysics Data System (ADS)

    Hassan, N.; Turunova, S. A.; Zhilyaeva, E. I.; Lyubovskaya, R. N.; Drichko, N.

    Quasi-two-dimensional organic conductor κ -(BEDT-TTF)2Hg(SCN)2Br is a Mott insulator (Tc ~ 100 K) on a triangular lattice which makes it a potential spin liquid candidate. To elucidate its magnetic ground state we study heat capacity and Raman response of single crystals of this material. Our low temperature heat capacity measurements suggest a presence of a linear term in the temperature dependence, which might indicate the existence of gapless spinons. Vibrational Raman response indicates a presence of charge order fluctuations in the insulating state. The low-frequency Raman response is discussed in terms of fluctuations of ``paired electron crystal'' state. The work at IQM was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Material Sciences and Engineering, under Grant No. DEFG02-08ER46544.

  10. Lifetime measurements of the first 2+ states in 104,106Zr: Evolution of ground-state deformations

    DOE PAGES

    Browne, F.; Bruce, A. M.; Sumikama, T.; ...

    2015-09-25

    In this study, the first fast-timing measurements from nuclides produced via the in-flight fission mechanism are reported. The lifetimes of the first 2+ states in 104,106Zr nuclei have been measured via β-delayed γ-ray timing of stopped radioactive isotope beams. An improved precision for the lifetime of the 2+1 in 104Zr was obtained, τ(2+1) = 2.90+25–20, as well as a first measurement of the 2+1 state in 106Zr, τ(2+1) = 2.60+20–15 ns, with corresponding reduced transition probabilities.

  11. Measurement of Charge Transfer Rate Coefficient Between Ground-State N(2+) Ion and He at Electron-Volt Energies

    NASA Technical Reports Server (NTRS)

    Fang, Z.; Kwong, Victor H. S.

    1997-01-01

    The charge transfer rate coefficient for the reaction N(2+)(2p(sup 2)P(sup 0)) + He yields products is measured by recording the time dependence of the N(2+) ions stored in an ion trap. A cylindrical radio-frequency ion trap was used to store N(2+) ions produced by laser ablation of a solid titanium nitride target. The decay of the ion signals was analyzed by single exponential least-squares fits to the data. The measured rate coefficient is 8.67(0.76) x 10(exp -11)sq cm/s. The N(2+) ions were at a mean energy of 2.7 eV while He gas was at room temperature, corresponding to an equivalent temperature of 3.9 x 10(exp 3) K. The measured value is in good agreement with a recent calculation.

  12. Superconducting ground state of quasi-one-dimensional K2Cr3As3 investigated using μ SR measurements

    NASA Astrophysics Data System (ADS)

    Adroja, D. T.; Bhattacharyya, A.; Telling, M.; Feng, Yu.; Smidman, M.; Pan, B.; Zhao, J.; Hillier, A. D.; Pratt, F. L.; Strydom, A. M.

    2015-10-01

    The superconducting state of the newly discovered superconductor K2Cr3As3 , with a quasi-one-dimensional crystal structure (Tc˜6 K) , is investigated using magnetization and muon-spin relaxation or rotation (μ SR ) measurements. Our analysis shows that the temperature dependence of the superfluid density obtained from transverse-field μ SR measurements fits either to an isotropic s -wave character for the superconducting gap or to a d -wave model with line nodes. Furthermore, the goodness-of-fit (χ2) values indicate that our data fit better to the d -wave model (χ2˜1 ) than the s -wave model (χ2˜1.38 ). Therefore our μ SR analysis is more consistent with having line nodes than being fully gapped, which is in agreement with the results of the penetration depth measured using a tunnel diode oscillator technique. Our zero-field μ SR measurements do reveal very weak evidence of the spontaneous appearance of an internal magnetic field below the transition temperature, which might indicate that the superconducting state is not conventional. This observation suggests that the electrons are paired via unconventional channels such as spin fluctuations, as proposed on the basis of theoretical models of K2Cr3As3 . Furthermore, from our transverse-field μ SR study the magnetic penetration depth λL, superconducting carrier density ns, and effective-mass enhancement m* have been estimated to be λL(0 ) =432 (4 ) nm, ns=2.7 ×1027carriers/m3 , and m*=1.75 me , respectively.

  13. Precision measurement of the 1{ital S} ground-state Lamb shift in atomic hydrogen and deuterium by frequency comparison

    SciTech Connect

    Weitz, M.; Huber, A.; Schmidt-Kaler, F.; Leibfried, D.; Vassen, W.; Zimmermann, C.; Pachucki, K.; Haensch, T.W.; Julien, L.; Biraben, F.

    1995-10-01

    We have measured the hydrogen and deuterium 1{ital S} Lamb shift by direct optical frequency comparison of the 1{ital S}-2{ital S} and 2{ital S}-4{ital S}/4{ital D} two-photon transitions. Our result of 8172.874(60) MHz for the 1{ital S} Lamb shift in hydrogen is in agreement with the theoretical value of 8172.802(40) MHz. For the 1{ital S} Lamb shift in deuterium, we obtain a value of 8183.807(78) MHz, from which we derive a deuteron matter radium of 1.945(28) fm. The precision of our value for the 1{ital S} Lamb shift has surpassed that of radio frequency measurements of the 2{ital S}-2{ital P} Lamb shift. By comparison with a recent absolute measurement of the hydrogen 1{ital S}-2{ital S} transition frequency, we deduce a value for the Rydberg constant {ital R}{sub {infinity}}=109 737.315 684 9(30) cm{sup {minus}1}.

  14. Comparing resolved-sideband cooling and measurement-based feedback cooling on an equal footing: Analytical results in the regime of ground-state cooling

    NASA Astrophysics Data System (ADS)

    Jacobs, Kurt; Nurdin, Hendra I.; Strauch, Frederick W.; James, Matthew

    2015-04-01

    We show that in the regime of ground-state cooling, simple expressions can be derived for the performance of resolved-sideband cooling—an example of coherent feedback control—and optimal linear measurement-based feedback cooling for a harmonic oscillator. These results are valid to leading order in the small parameters that define this regime. They provide insight into the origins of the limitations of coherent and measurement-based feedback for linear systems, and the relationship between them. These limitations are not fundamental bounds imposed by quantum mechanics, but are due to the fact that both cooling methods are restricted to use only a linear interaction with the resonator. We compare the performance of the two methods on an equal footing—that is, for the same interaction strength—and confirm that coherent feedback is able to make much better use of the linear interaction than measurement-based feedback. We find that this performance gap is caused not by the back-action noise of the measurement but by the projection noise. We also obtain simple expressions for the maximal cooling that can be obtained by both methods in this regime, optimized over the interaction strength.

  15. Investigations of the ground-state hyperfine atomic structure and beta decay measurement prospects of 21Na with improved laser trapping techniques

    SciTech Connect

    Rowe, Mary Anderson

    1999-05-01

    This thesis describes an experiment in which a neutral atom laser trap loaded with radioactive 21Na was improved and then used for measurements. The sodium isotope (half-life=22 sec) is produced on line at the 88 in. cyclotron at Lawrence Berkeley National Laboratory. The author developed an effective magnesium oxide target system which is crucial to deliver a substantive beam of 21Na to the experiment. Efficient manipulation of the 21Na beam with lasers allowed 30,000 atoms to be contained in a magneto-optical trap. Using the cold trapped atoms, the author measured to high precision the hyperfine splitting of the atomic ground state of 21Na. She measured the 3S1/2(F=1,m=0)-3S1/2(F=2,m=0) atomic level splitting of 21Na to be 1,906,471,870±200 Hz. Additionally, she achieved initial detection of beta decay from the trap and evaluated the prospects of precision beta decay correlation studies with trapped atoms.

  16. Ground state of hypernuclei

    SciTech Connect

    Pieper, S.C.; Usmani, A.; Usmani, Q.N.

    1995-08-01

    The cluster variational Monte Carlo calculation of nuclei was adapted for hypernuclei such as {sub {Lambda}}{sup 17}O, {sub {Lambda}}{sup 16}, {sub {Lambda}}{sup 12}C. In this calculation we use the same realistic nuclear Hamiltonians that we use for normal nuclei with the addition of phenomenological N{Lambda} and NN{Lambda} potentials such as those studied previously by Bodmer and Usmani. The wave function is also of the same form as in normal nuclei with additional N{Lambda} and NN{Lambda} non-central correlations. The development work for these calculations was done principally by A. Usmani and Q.N. Usmani at Jamia Millia. Final production calculations were done on the NERSC computers. During the summer of 1994, an article describing this work was written while S.C. Pieper was a visitor at Trieste, Italy, where A. Usmani is a postdoctoral research fellow.

  17. Reduction in the uncertainty of the neutron-capture cross section of 210Bi: Impact of a precise multipolarity measurement of the 2- → 1- main ground-state transition

    NASA Astrophysics Data System (ADS)

    Cieplicka-Oryńczak, Natalia; Leoni, Silvia; Fornal, Bogdan; Bazzacco, Dino; Blanc, Aurelien; Bocchi, Giovanni; Bottoni, Simone; de France, Gilles; Jentschel, Michael; Köster, Ulli; Mutti, Paolo; Simpson, Gary; Soldner, Torsten; Szpak, Bartłomiej; Ur, Calin; Urban, Waldemar

    2017-09-01

    The mixing ratio of the main 320-keV, M1 + E2 ground-state γ transition in 210Bi has been more precisely quantified, allowing a significant reduction in the uncertainty of measurements of the neutron-capture cross section to the ground state of 210Bi from 25% to 0.9%. Accurate values for neutron-capture cross sections to both the ground and long-lived 9- isomeric state at 271 keV in 210Bi are of particular importance as Pb-Bi finds increased usage in Accelerator Driven Systems.

  18. Cavity optomechanics -- beyond the ground state

    NASA Astrophysics Data System (ADS)

    Meystre, Pierre

    2011-05-01

    The coupling of coherent optical systems to micromechanical devices, combined with breakthroughs in nanofabrication and in ultracold science, has opened up the exciting new field of cavity optomechanics. Cooling of the vibrational motion of a broad range on oscillating cantilevers and mirrors near their ground state has been demonstrated, and the ground state of at least one such system has now been reached. Cavity optomechanics offers much promise in addressing fundamental physics questions and in applications such as the detection of feeble forces and fields, or the coherent control of AMO systems and of nanoscale electromechanical devices. However, these applications require taking cavity optomechanics ``beyond the ground state.'' This includes the generation and detection of squeezed and other non-classical states, the transfer of squeezing between electromagnetic fields and motional quadratures, and the development of measurement schemes for the characterization of nanomechanical structures. The talk will present recent ``beyond ground state'' developments in cavity optomechanics. We will show how the magnetic coupling between a mechanical membrane and a BEC - or between a mechanical tuning fork and a nanoscale cantilever - permits to control and monitor the center-of-mass position of the mechanical system, and will comment on the measurement back-action on the membrane motion. We will also discuss of state transfer between optical and microwave fields and micromechanical devices. Work done in collaboration with Dan Goldbaum, Greg Phelps, Keith Schwab, Swati Singh, Steve Steinke, Mehmet Tesgin, and Mukund Vengallatore and supported by ARO, DARPA, NSF, and ONR.

  19. Ground states of holographic superconductors

    SciTech Connect

    Gubser, Steven S.; Nellore, Abhinav

    2009-11-15

    We investigate the ground states of the Abelian Higgs model in AdS{sub 4} with various choices of parameters, and with no deformations in the ultraviolet other than a chemical potential for the electric charge under the Abelian gauge field. For W-shaped potentials with symmetry-breaking minima, an analysis of infrared asymptotics suggests that the ground state has emergent conformal symmetry in the infrared when the charge of the complex scalar is large enough. But when this charge is too small, the likeliest ground state has Lifshitz-like scaling in the infrared. For positive mass quadratic potentials, Lifshitz-like scaling is the only possible infrared behavior for constant nonzero values of the scalar. The approach to Lifshitz-like scaling is shown in many cases to be oscillatory.

  20. Ground-state Dirac monopole

    SciTech Connect

    Ruokokoski, E.; Moettoenen, M.

    2011-12-15

    We show theoretically that a monopole defect, analogous to the Dirac magnetic monopole, may exist as the ground state of a dilute spin-1 Bose-Einstein condensate. The ground-state monopole is not attached to a single semi-infinite Dirac string but forms a point where the circulation of a single vortex line is reversed. Furthermore, the three-dimensional dynamics of this monopole defect is studied after the magnetic field pinning the monopole is removed and the emergence of antimonopoles is observed. Our scheme is realizable with the current experimental facilities.

  1. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet

    DOE PAGES

    Fu, Mingxuan; Imai, Takahashi; Han, Tian -Heng; ...

    2015-11-06

    Here, the kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu3(OH)6Cl2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χkagome, deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with themore » magnetic field dependence of χkagome that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.« less

  2. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet

    SciTech Connect

    Fu, M.; Imai, T.; Han, T. -H.; Lee, Y. S.

    2015-11-05

    The kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu3(OH)6Cl2], which is known to exhibit a spinon continuum in the spin excitation spectrum.We demonstrated that the intrinsic local spin susceptibility ckagome, deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with the magnetic field dependence of ckagome that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.

  3. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet.

    PubMed

    Fu, Mingxuan; Imai, Takashi; Han, Tian-Heng; Lee, Young S

    2015-11-06

    The kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu3(OH)6Cl2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χ(kagome), deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with the magnetic field dependence of χ(kagome) that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.

  4. Ground-state spins and moments of {sup 72,74,76,78}Ga nuclei

    SciTech Connect

    Mane, E.; Cheal, B.; Billowes, J.; Charlwood, F. C.; Bissell, M. L.; Neyens, G.; Rajabali, M. M.; Vingerhoets, P.; Blaum, K.; Schug, M.; Yordanov, D. T.; Flanagan, K. T.; Forest, D. H.; Geppert, Ch.; Noertershaeuser, W.; Kowalska, M.; Krieger, A.; Kraemer, J.; Neugart, R.; Zakova, M.

    2011-08-15

    Laser spectroscopy was performed on the {sup 72,74,76,78}Ga isotopes at On-Line Isotope Mass Separator (ISOLDE) facility, CERN. Ground-state nuclear spins and moments were extracted from the measured hyperfine spectra. The results are compared to shell-model calculations, which provide a detailed probe of the nuclear wave function. The spin is established from the shape of the hyperfine structure and the parity inferred from a comparison of shell-model calculations with the measured nuclear moments. The ground states of {sup 76,78}Ga are both assigned a spin and parity of I{sup {pi}=}2{sup -}, while {sup 74}Ga is tentatively assigned as I{sup {pi}=}3{sup -}. For {sup 72}Ga, the results are consistent with the previous I=3 assignment.

  5. Moving Toward the Ground State.

    PubMed

    Kumar, Ishan; Ivanova, Natalia

    2015-10-01

    Transferring mouse ESCs to a media supplemented with Mek and Gsk3β inhibitors (2i) provokes marked transcriptional and epigenetic changes, embodying a shift toward ground-state pluripotency. In this issue of Cell Stem Cell, Kolodziejczyk et al. (2015) examine population structures of ESCs while Galonska et al. (2015) unravel the mechanisms underlying regulatory network rewiring during 2i-mediated reprogramming. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. On the ground state of Yang-Mills theory

    SciTech Connect

    Bakry, Ahmed S.; Leinweber, Derek B.; Williams, Anthony G.

    2011-08-15

    Highlights: > The ground state overlap for sets of meson potential trial states is measured. > Non-uniform gluonic distributions are probed via Wilson loop operator. > The locally UV-regulated flux-tube operators can optimize the ground state overlap. - Abstract: We investigate the overlap of the ground state meson potential with sets of mesonic-trial wave functions corresponding to different gluonic distributions. We probe the transverse structure of the flux tube through the creation of non-uniform smearing profiles for the string of glue connecting two color sources in Wilson loop operator. The non-uniformly UV-regulated flux-tube operators are found to optimize the overlap with the ground state and display interesting features in the ground state overlap.

  7. Analysis of ground state in random bipartite matching

    NASA Astrophysics Data System (ADS)

    Shi, Gui-Yuan; Kong, Yi-Xiu; Liao, Hao; Zhang, Yi-Cheng

    2016-02-01

    Bipartite matching problems emerge in many human social phenomena. In this paper, we study the ground state of the Gale-Shapley model, which is the most popular bipartite matching model. We apply the Kuhn-Munkres algorithm to compute the numerical ground state of the model. For the first time, we obtain the number of blocking pairs which is a measure of the system instability. We also show that the number of blocking pairs formed by each person follows a geometric distribution. Furthermore, we study how the connectivity in the bipartite matching problems influences the instability of the ground state.

  8. Centrifugal stretching along the ground state band of Hf168

    NASA Astrophysics Data System (ADS)

    Costin, A.; Reese, M.; Ai, H.; Casten, R. F.; Dusling, K.; Fitzpatrick, C. R.; Gürdal, G.; Heinz, A.; McCutchan, E. A.; Meyer, D. A.; Möller, O.; Petkov, P.; Pietralla, N.; Qian, J.; Rainovski, G.; Werner, V.

    2009-02-01

    The lifetimes of the Jπ=4+, 6+, 8+, and 10+ levels along the ground state band in Hf168 were measured by means of the recoil distance Doppler shift (RDDS) method using the New Yale Plunger Device (NYPD) and the SPEEDY detection array at Wright Nuclear Structure Laboratory of Yale University. Excited states in Hf168 were populated using the Sn124(Ti48,4n) fusion evaporation reaction. The new lifetime values are sufficiently precise to clearly prove the increase of quadrupole deformation as a function of angular momentum in the deformed nucleus Hf168. The data agree with the predictions from the geometrical confined β-soft (CBS) rotor model that involves centrifugal stretching in a soft potential.

  9. Ground state of high-density matter

    NASA Technical Reports Server (NTRS)

    Copeland, ED; Kolb, Edward W.; Lee, Kimyeong

    1988-01-01

    It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.

  10. Nuclear Spin Orientation Dependence of Magnetoconductance: A New Method for Measuring the Spin of Charged Excitations in the QHE

    SciTech Connect

    Bowers, C.R.; Reno, J.L.; Simmons, J.A.; Vitkalov, S.A.

    1998-12-01

    A new method for measuring the spin of the electrically charged ground state excitations m the Q$j~j quantum Hall effect ia proposed and demonstmted for the tirst time in GaAs/AIGaAs nndtiquantum wells. The method is &sed on the nuclear spin orientation dependence of" the 2D dc conductivity y in the quantum Hall regime due to the nuclear hyperfine interaction. As a demonstration of this method the spin of the electrically charged excitations of the ground state is determined at filling factor v = 1.

  11. Ensemble Theory for Stealthy Hyperuniform Disordered Ground States

    NASA Astrophysics Data System (ADS)

    Torquato, Salvatore

    Disordered hyperuniform many-particle systems have been receiving recent attention because they are distinguishable exotic states of matter poised between a crystal and liquid that are endowed with novel thermodynamic and physical properties. It has been shown numerically that systems of particles interacting with ``stealthy'' bounded, long-ranged pair potentials (similar to Friedel oscillations) have classical ground states that are, counterintuitively, disordered, hyperuniform and highly degenerate. The task of formulating an ensemble theory that yields analytical predictions for the structural characteristics and other properties of stealthy degenerate ground states in d-dimensional Euclidean space is highly nontrivial because the dimensionality of the configuration space depends on the number density and there is a multitude of ways of sampling the ground-state manifold, each with its own probability measure for finding a particular ground-state configuration. A new type of statistical-mechanical theory had to be invented to characterize these exotic states of matter. I report on some initial progress that we have made in this direction. We show that stealthy disordered ground states behave like ''pseudo''-equilibrium hard-sphere systems in Fourier space. Our theoretical predictions for the structure and thermodynamic properties of the stealthy disordered ground states and associated excited states are in excellent agreement with computer simulations across dimensions.

  12. Ground state occupation probabilities of neutrinoless double beta decay candidates

    NASA Astrophysics Data System (ADS)

    Kotila, Jenni; Barea, Jose

    2015-10-01

    A better understanding of nuclear structure can offer important constraints on the calculation of 0 νββ nuclear matrix elements. A simple way to consider differences between initial and final states of neutrinoless double beta decay candidates is to look at the ground state occupation probabilities of initial and final nuclei. As is well known, microscopic interacting boson model (IBM-2) has found to be very useful in the description of detailed aspects of nuclear structure. In this talk I will present results for ground state occupation probabilities obtained using IBM-2 for several interesting candidates of 0 νββ -decay. Comparison with recent experimental results is also made. This work was supported Academy of Finland (Project 266437) and Chilean Ministry of Education (Fondecyt Grant No. 1150564),

  13. High-precision quadrupole moment reveals significant intruder component in 20 13 33Al ground state

    NASA Astrophysics Data System (ADS)

    Heylen, H.; De Rydt, M.; Neyens, G.; Bissell, M. L.; Caceres, L.; Chevrier, R.; Daugas, J. M.; Ichikawa, Y.; Ishibashi, Y.; Kamalou, O.; Mertzimekis, T. J.; Morel, P.; Papuga, J.; Poves, A.; Rajabali, M. M.; Stödel, C.; Thomas, J. C.; Ueno, H.; Utsuno, Y.; Yoshida, N.; Yoshimi, A.

    2016-09-01

    The electric quadrupole moment of the 20 13 33Al ground state, located at the border of the island of inversion, was obtained using continuous-beam β -detected nuclear quadrupole resonance (β -NQR). From the measured quadrupole coupling constant νQ=2.31 (4 ) MHz in an α -Al2O3 crystal, a precise value for the electric quadrupole moment is extracted: 33Al>Qs 141 (3 ) mb. A comparison with large-scale shell model calculations shows that 33Al has at least 50% intruder configurations in the ground state wave function, favoring the excitation of two neutrons across the N =20 shell gap. 33Al therefore clearly marks the gradual transition north of the deformed Na and Mg nuclei towards the normal Z ≥14 isotopes.

  14. Ground-state properties of neutron-rich Mg isotopes

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Minomo, K.; Shimada, M.; Tagami, S.; Kimura, M.; Takechi, M.; Fukuda, M.; Nishimura, D.; Suzuki, T.; Matsumoto, T.; Shimizu, Y. R.; Yahiro, M.

    2014-04-01

    We analyze recently measured total reaction cross sections for 24-38Mg isotopes incident on 12C targets at 240 MeV/nucleon by using the folding model and antisymmetrized molecular dynamics (AMD). The folding model well reproduces the measured reaction cross sections, when the projectile densities are evaluated by the deformed Woods-Saxon (def-WS) model with AMD deformation. Matter radii of 24-38Mg are then deduced from the measured reaction cross sections by fine tuning the parameters of the def-WS model. The deduced matter radii are largely enhanced by nuclear deformation. Fully microscopic AMD calculations with no free parameter well reproduce the deduced matter radii for 24-36Mg, but still considerably underestimate them for 37,38Mg. The large matter radii suggest that 37,38Mg are candidates for deformed halo nucleus. AMD also reproduces other existing measured ground-state properties (spin parity, total binding energy, and one-neutron separation energy) of Mg isotopes. Neutron-number (N) dependence of deformation parameter is predicted by AMD. Large deformation is seen from 31Mg with N =19 to a drip-line nucleus 40Mg with N =28, indicating that both the N =20 and 28 magicities disappear. N dependence of neutron skin thickness is also predicted by AMD.

  15. Nuclear Enterprise Performance Measurement

    DTIC Science & Technology

    2011-03-01

    Scheduling Effectiveness and Deferred Discrepancy rate show the management’s ability to efficiently use human and material resources while...assigned personnel is a good gauge of the utilization of human resources , the effectiveness of the unit’s training program and it’s ability to...training throughput is an important measure of a unit’s training quality and management oversight of human resources . Certification training can take

  16. Ground states for nonuniform periodic Ising chains.

    PubMed

    Martínez-Garcilazo, J P; Ramírez, C

    2015-04-01

    We generalize Morita's works [J. Phys. A 7, 289 (1974); J. Phys. A 7, 1613 (1974)] on ground states of Ising chains, for chains with a periodic structure and different spins, to any interaction order. The main assumption is translational invariance. The length of the irreducible blocks is a multiple of the period of the chain. If there is parity invariance, it restricts the length in general only in the diatomic case. There are degenerated states and under certain circumstances there could be nonregular ground states. We illustrate the results and give the ground state diagrams in several cases.

  17. Lifetime Measurement of the 229Th nuclear isomer

    NASA Astrophysics Data System (ADS)

    Seiferle, Benedict; von der Wense, Lars; Thirolf, Peter G.

    2017-01-01

    The first excited isomeric state of 229Th possesses the lowest energy among all known excited nuclear states. The expected energy is accessible with today's laser technology and in principle allows for a direct optical laser excitation of the nucleus. The isomer decays via three channels to its ground state (internal conversion, γ decay, and bound internal conversion), whose strengths depend on the charge state of Thm229 . We report on the measurement of the internal-conversion decay half-life of neutral Thm229 . A half-life of 7 ±1 μ s has been measured, which is in the range of theoretical predictions and, based on the theoretically expected lifetime of ≈1 04 s of the photonic decay channel, gives further support for an internal conversion coefficient of ≈1 09, thus constraining the strength of a radiative branch in the presence of internal conversion.

  18. Variational Wave Functions and Their Overlap with the Ground State

    SciTech Connect

    Mora, Christophe; Waintal, Xavier

    2007-07-20

    An intrinsic measure of the quality of a variational wave function is given by its overlap with the ground state of the system. We derive a general formula to compute this overlap when quantum dynamics in imaginary time is accessible. The overlap is simply related to the area under the E({tau}) curve, i.e., the energy as a function of imaginary time. This has important applications to, for example, quantum Monte Carlo simulations where the overlap becomes as a simple by-product of routine simulations. As a result, we find that the practical definition of a good variational wave function for quantum Monte Carlo simulations, i.e., fast convergence to the ground state, is equivalent to a good overlap with the actual ground state of the system.

  19. Probing quantum frustrated systems via factorization of the ground state.

    PubMed

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2010-05-21

    The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physical problems such as stochastic gene expression and the stability of long-period modulated structures.

  20. Triplet (S = 1) Ground State Aminyl Diradical

    SciTech Connect

    Rajca, Andrzej; Shiraishi, Kouichi; Pink, Maren; Rajca, Suchada

    2008-04-02

    Aminyl diradical, which is stable in solution at low temperatures, is prepared. EPR spectra and SQUID magnetometry indicate that the diradical is planar and it possesses triplet ground state, with strong ferromagnetic coupling.

  1. On the ground state of metallic hydrogen

    NASA Technical Reports Server (NTRS)

    Chakravarty, S.; Ashcroft, N. W.

    1978-01-01

    A proposed liquid ground state of metallic hydrogen at zero temperature is explored and a variational upper bound to the ground state energy is calculated. The possibility that the metallic hydrogen is a liquid around the metastable point (rs = 1.64) cannot be ruled out. This conclusion crucially hinges on the contribution to the energy arising from the third order in the electron-proton interaction which is shown here to be more significant in the liquid phase than in crystals.

  2. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet

    SciTech Connect

    Fu, Mingxuan; Imai, Takahashi; Han, Tian -Heng; Lee, Young S.

    2015-11-06

    Here, the kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu3(OH)6Cl2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χkagome, deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with the magnetic field dependence of χkagome that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.

  3. Field Biogeochemical Measurements in Support of Remote Sensing Signatures and Characterization of Permafrost Terrain: Integrated Technologies for Delineating Permafrost and Ground-State Conditions

    DTIC Science & Technology

    2015-03-01

    factors drive soil redox conditions, in particular anaerobic processes. Typically, soil Eh fluctuates between −300 and 900 mV; and soils below 300...We could infer from the redox measurements whether a site was predomi- nantly aerobic or anaerobic . This is especially important in Alaskan wet- land...Thomann, S. Perakis, and H. Loescher. 2011. Amplification and dampening of soil respiration by changes in temperature variability. Biogeosciences 8:951

  4. Measurement of the excited-state transverse hyperfine coupling in NV centers via dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Poggiali, F.; Cappellaro, P.; Fabbri, N.

    2017-05-01

    Precise knowledge of a quantum system's Hamiltonian is a critical pre-requisite for its use in many quantum information technologies. Here, we report a method for the precise characterization of the nonsecular part of the excited-state Hamiltonian of an electronic-nuclear spin system in diamond. The method relies on the investigation of the dynamic nuclear polarization mediated by the electronic spin, which is currently exploited as a primary tool for initializing nuclear qubits and performing enhanced nuclear magnetic resonance. By measuring the temporal evolution of the population of the ground-state hyperfine levels of a nitrogen-vacancy center, we obtain the first direct estimation of the excited-state transverse hyperfine coupling between its electronic and nitrogen nuclear spin. Our method could also be applied to other electron-nuclear spin systems, such as those related to defects in silicon carbide.

  5. Ensemble Theory for Stealthy Hyperuniform Disordered Ground States

    NASA Astrophysics Data System (ADS)

    Torquato, S.; Zhang, G.; Stillinger, F. H.

    2015-04-01

    It has been shown numerically that systems of particles interacting with isotropic "stealthy" bounded long-ranged pair potentials (similar to Friedel oscillations) have classical ground states that are (counterintuitively) disordered, hyperuniform, and highly degenerate. Disordered hyperuniform systems have received attention recently because they are distinguishable exotic states of matter poised between a crystal and liquid that are endowed with novel thermodynamic and physical properties. The task of formulating an ensemble theory that yields analytical predictions for the structural characteristics and other properties of stealthy degenerate ground states in d -dimensional Euclidean space Rd is highly nontrivial because the dimensionality of the configuration space depends on the number density ρ and there is a multitude of ways of sampling the ground-state manifold, each with its own probability measure for finding a particular ground-state configuration. The purpose of this paper is to take some initial steps in this direction. Specifically, we derive general exact relations for thermodynamic properties (energy, pressure, and isothermal compressibility) that apply to any ground-state ensemble as a function of ρ in any d , and we show how disordered degenerate ground states arise as part of the ground-state manifold. We also derive exact integral conditions that both the pair correlation function g2(r ) and structure factor S (k ) must obey for any d . We then specialize our results to the canonical ensemble (in the zero-temperature limit) by exploiting an ansatz that stealthy states behave remarkably like "pseudo"-equilibrium hard-sphere systems in Fourier space. Our theoretical predictions for g2(r ) and S (k ) are in excellent agreement with computer simulations across the first three space dimensions. These results are used to obtain order metrics, local number variance, and nearest-neighbor functions across dimensions. We also derive accurate analytical

  6. Ground-State Proton Transfer Kinetics in Green Fluorescent Protein

    PubMed Central

    2015-01-01

    Proton transfer plays an important role in the optical properties of green fluorescent protein (GFP). While much is known about excited-state proton transfer reactions (ESPT) in GFP occurring on ultrafast time scales, comparatively little is understood about the factors governing the rates and pathways of ground-state proton transfer. We have utilized a specific isotopic labeling strategy in combination with one-dimensional 13C nuclear magnetic resonance (NMR) spectroscopy to install and monitor a 13C directly adjacent to the GFP chromophore ionization site. The chemical shift of this probe is highly sensitive to the protonation state of the chromophore, and the resulting spectra reflect the thermodynamics and kinetics of the proton transfer in the NMR line shapes. This information is complemented by time-resolved NMR, fluorescence correlation spectroscopy, and steady-state absorbance and fluorescence measurements to provide a picture of chromophore ionization reactions spanning a wide time domain. Our findings indicate that proton transfer in GFP is described well by a two-site model in which the chromophore is energetically coupled to a secondary site, likely the terminal proton acceptor of ESPT, Glu222. Additionally, experiments on a selection of GFP circular permutants suggest an important role played by the structural dynamics of the seventh β-strand in gating proton transfer from bulk solution to the buried chromophore. PMID:25184668

  7. Global Calculations of Ground-State Axial Shape Asymmetry of Nuclei

    SciTech Connect

    Moeller, Peter; Bengtsson, Ragnar; Carlsson, B. Gillis; Olivius, Peter; Ichikawa, Takatoshi

    2006-10-20

    Important insight into the symmetry properties of the nuclear ground-state (gs) shape is obtained from the characteristics of low-lying collective energy-level spectra. In the 1950s, experimental and theoretical studies showed that in the gs many nuclei are spheroidal in shape rather than spherical. Later, a hexadecapole component of the gs shape was identified. In the 1970-1995 time frame, a consensus that reflection symmetry of the gs shape was broken for some nuclei emerged. Here we present the first calculation across the nuclear chart of axial symmetry breaking in the nuclear gs. We show that we fulfill a necessary condition: Where we calculate axial symmetry breaking, characteristic gamma bands are observed experimentally. Moreover, we find that, for those nuclei where axial asymmetry is found, a systematic deviation between calculated and measured masses is removed.

  8. The ground state of molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Jennings, D. E.; Brault, J. W.

    1983-12-01

    The v = 0-0 quadrupole spectrum of H2 has been recorded using a 0.005-cm-1 resolution Fourier transform spectrometer. The rotational lines S(1) through S(5) are observable in the spectra, in the region 587 to 1447 cm-1. The spectral position for S(0) was also obtained from its v = 1-0 ground-state combination difference. The high accuracy of the H2 measurements has permitted a determination of four rotational constants. These are (in cm-1) B0 = 59.33455(6); D0 = 0.045682(4); H0 = 4.854(12) × 10-5 L0 = -5.41(12) × 10-8. The hydrogen line positions will facilitate studies of structure and dynamics in astrophysical objects exhibiting infrared H2 spectra. The absolute accuracy of frequency calibration over wide spectral ranges was verified using 10-μm CO2 and 3.39-μm CH4 laser frequencies. Standard frequencies for 5-μm CO were found to be high by 12 MHz (3.9 × 10-4 cm-1).

  9. Fresh nuclear fuel measurements at Ukrainian nuclear power plants

    SciTech Connect

    Kuzminski, Jozef; Ewing, Tom; Dickman, Debbie; Gavrilyuk, Victor; Drapey, Sergey; Kirischuk, Vladimir; Strilchuk, Nikolay

    2009-01-01

    In 2005, the Provisions on Nuclear Material Measurement System was enacted in Ukraine as an important regulatory driver to support international obligations in nuclear safeguards and nonproliferation. It defines key provisions and requirements for material measurement and measurement control programs to ensure the quality and reliability of measurement data within the framework of the State MC&A System. Implementing the Provisions requires establishing a number of measurement techniques for both fresh and spent nuclear fuel for various types of Ukrainian reactors. Our first efforts focused on measurements of fresh nuclear fuel from a WWR-1000 power reactor.

  10. Macroscopic Superpositions as Quantum Ground States

    NASA Astrophysics Data System (ADS)

    Dakić, Borivoje; Radonjić, Milan

    2017-09-01

    We study the question of what kind of a macroscopic superposition can(not) naturally exist as a ground state of some gapped local many-body Hamiltonian. We derive an upper bound on the energy gap of an arbitrary physical Hamiltonian provided that its ground state is a superposition of two well-distinguishable macroscopic "semiclassical" states. For a large class of macroscopic superposition states we show that the gap vanishes in the macroscopic limit. This in turn shows that preparation of such states by simple cooling to the ground state is not experimentally feasible and requires a different strategy. Our approach is very general and can be used to rule out a variety of quantum states, some of which do not even exhibit macroscopic quantum properties. Moreover, our methods and results can be used for addressing quantum marginal related problems.

  11. Ground states for nonuniform periodic Ising chains

    NASA Astrophysics Data System (ADS)

    Martínez-Garcilazo, J. P.; Ramírez, C.

    2015-04-01

    We generalize Morita's works [J. Phys. A 7, 289 (1974), 10.1088/0305-4470/7/2/014; J. Phys. A 7, 1613 (1974), 10.1088/0305-4470/7/13/015] on ground states of Ising chains, for chains with a periodic structure and different spins, to any interaction order. The main assumption is translational invariance. The length of the irreducible blocks is a multiple of the period of the chain. If there is parity invariance, it restricts the length in general only in the diatomic case. There are degenerated states and under certain circumstances there could be nonregular ground states. We illustrate the results and give the ground state diagrams in several cases.

  12. Numerical Evaluation of 2D Ground States

    NASA Astrophysics Data System (ADS)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  13. Experimental determination of an I{sup {pi}=}2{sup -} ground state in {sup 72,74}Cu

    SciTech Connect

    Flanagan, K. T.; Vingerhoets, P.; Bissell, M. L.; De Rydt, M.; Neyens, G.; Blaum, K.; Schug, M.; Yordanov, D. T.; Brown, B. A.; Cheal, B.; Mane, E.; Forest, D. H.; Geppert, Ch.; Honma, M.; Kowalska, M.; Kraemer, J.; Krieger, A.; Neugart, R.; Noertershaeuser, W.; Stroke, H. H.

    2010-10-15

    This article reports on the ground-state spin and moments measured in {sup 72,74}Cu using collinear laser spectroscopy at the CERN On-Line Isotope Mass Separator (ISOLDE) facility. From the measured hyperfine coefficients, the nuclear observables {mu}({sup 72}Cu)=-1.3472(10){mu}{sub N}, {mu}({sup 74}Cu)=-1.068(3){mu}{sub N}, Q({sup 72}Cu)=+8(2) efm{sup 2}, Q({sup 74}Cu)=+26(3) efm{sup 2}, I({sup 72}Cu)=2, and I({sup 74}Cu)=2 have been determined. Through a comparison of the measured magnetic moments with different models, the negative moment reveals a strong {pi}f{sub 5/2} x {nu}g{sub 9/2} component in the ground-state wave function. Consequently, a negative parity has been assigned to the ground states of {sup 72,74}Cu. Large-scale shell-model calculations illustrate the strong sensitivity of the nuclear moments to configuration mixing and to the effective interaction employed.

  14. Mimicking time evolution within a quantum ground state: Ground-state quantum computation, cloning, and teleportation

    SciTech Connect

    Mizel, Ari

    2004-07-01

    Ground-state quantum computers mimic quantum-mechanical time evolution within the amplitudes of a time-independent quantum state. We explore the principles that constrain this mimicking. A no-cloning argument is found to impose strong restrictions. It is shown, however, that there is flexibility that can be exploited using quantum teleportation methods to improve ground-state quantum computer design.

  15. Room temperature skyrmion ground state stabilized through interlayer exchange coupling

    SciTech Connect

    Chen, Gong Schmid, Andreas K.; Mascaraque, Arantzazu; N'Diaye, Alpha T.

    2015-06-15

    Possible magnetic skyrmion device applications motivate the search for structures that extend the stability of skyrmion spin textures to ambient temperature. Here, we demonstrate an experimental approach to stabilize a room temperature skyrmion ground state in chiral magnetic films via exchange coupling across non-magnetic spacer layers. Using spin polarized low-energy electron microscopy to measure all three Cartesian components of the magnetization vector, we image the spin textures in Fe/Ni films. We show how tuning the thickness of a copper spacer layer between chiral Fe/Ni films and perpendicularly magnetized Ni layers permits stabilization of a chiral stripe phase, a skyrmion phase, and a single domain phase. This strategy to stabilize skyrmion ground states can be extended to other magnetic thin film systems and may be useful for designing skyrmion based spintronics devices.

  16. Trapping cold ground state argon atoms.

    PubMed

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  17. Individual Atoms in their Quantum Ground State

    NASA Astrophysics Data System (ADS)

    Schwartz, Eyal; Sompet, Pimonpan; Fung, Yin Hsien; Andersen, Mikkel F.

    2016-05-01

    An ultimate control of pure quantum states is an excellent platform for various quantum science and engineering. In this work, we perform quantum manipulation of individual Rubidium atoms in a tightly focus optical tweezer in order to cool them into their vibrational ground state via Raman sideband cooling. Our experimental scheme involves a combination of Raman sideband transitions and optical pumping of the atoms that couples two magnetic field sublevels indifferent to magnetic noise thus providing a much longer atomic coherence time compared to previous cooling schemes. By installing most of the atoms in their ground state, we managed to achieve two-dimensional cooling on the way to create a full nil entropy quantum state of single atoms and single molecules. We acknowledge the Marsden Fund, CORE and DWC for their support.

  18. Ground state structures in ferrofluid monolayers.

    PubMed

    Prokopieva, Taisia A; Danilov, Victor A; Kantorovich, Sofia S; Holm, Christian

    2009-09-01

    A combination of analytical calculations and Monte Carlo simulations is used to find the ground state structures in monodisperse ferrofluid monolayers. Taking into account the magnetic dipole-dipole interaction between all particles in the system we observe different topological structures that are likely to exist at low temperatures. The most energetically favored structures we find are rings, embedded rings, and rings side by side, and we are able to derive analytical expressions for the total energy of these structures. A detailed analysis of embedded rings and rings side by side shows that the interring interactions are negligible. We furthermore find that a single ideal ring is the ground state structure for a ferrofluid monolayer. We compared our theoretical predictions to the results of simulated annealing data and found them to be in excellent agreement.

  19. Electronic ground state of Ni2+

    NASA Astrophysics Data System (ADS)

    Zamudio-Bayer, V.; Lindblad, R.; Bülow, C.; Leistner, G.; Terasaki, A.; v. Issendorff, B.; Lau, J. T.

    2016-11-01

    The 9/2 4Φ ground state of the Ni2+ diatomic molecular cation is determined experimentally from temperature and magnetic-field-dependent x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap, where an electronic and rotational temperature of 7.4 ±0.2 K was reached by buffer gas cooling of the molecular ion. The contribution of the spin dipole operator to the x-ray magnetic circular dichroism spin sum rule amounts to 7 Tz =0.17 ± 0.06 μB per atom, approximately 11% of the spin magnetic moment. We find that, in general, homonuclear diatomic molecular cations of 3d transition metals seem to adopt maximum spin magnetic moments in their electronic ground states.

  20. Ground state energy of large polaron systems

    SciTech Connect

    Benguria, Rafael D.; Frank, Rupert L.; Lieb, Elliott H.

    2015-02-15

    The last unsolved problem about the many-polaron system, in the Pekar–Tomasevich approximation, is the case of bosons with the electron-electron Coulomb repulsion of strength exactly 1 (the “neutral case”). We prove that the ground state energy, for large N, goes exactly as −N{sup 7/5}, and we give upper and lower bounds on the asymptotic coefficient that agree to within a factor of 2{sup 2/5}.

  1. Available energy and ground states of collisionless plasmas

    NASA Astrophysics Data System (ADS)

    Helander, Per

    2017-08-01

    The energy budget of a collisionless plasma subject to electrostatic fluctuations is considered, and the excess of thermal energy over the minimum accessible to it under various constraints that limit the possible forms of plasma motion is calculated. This excess measures how much thermal energy is `available' for conversion into plasma instabilities, and therefore constitutes a nonlinear measure of plasma stability. A distribution function with zero available energy defines a `ground state' in the sense that its energy cannot decrease by any linear or nonlinear plasma motion. In a Vlasov plasma with small density and temperature fluctuations, the available energy is proportional to the mean square of these quantities, and exceeds the corresponding energy in ideal or resistive magnetohydrodynamics. If the first or second adiabatic invariant is conserved, ground states generally have inhomogeneous density and temperature. Magnetically confined plasmas are usually not in any ground state, but certain types of stellarator plasmas are so with respect to fluctuations that conserve both these adiabatic invariants, making the plasma linearly and nonlinearly stable to such fluctuations. Similar stability properties can also be enjoyed by plasmas confined by a dipole magnetic field.

  2. Ground state searches in fcc intermetallics

    SciTech Connect

    Wolverton, C.; de Fontaine, D.; Ceder, G.; Dreysse, H.

    1991-12-01

    A cluster expansion is used to predict the fcc ground states, i.e., the stable phases at zero Kelvin as a function of composition, for alloy systems. The intermetallic structures are not assumed, but derived regorously by minimizing the configurational energy subject to linear constraints. This ground state search includes pair and multiplet interactions which spatially extend to fourth nearest neighbor. A large number of these concentration-independent interactions are computed by the method of direct configurational averaging using a linearized-muffin-tin orbital Hamiltonian cast into tight binding form (TB-LMTO). The interactions, derived without the use of any adjustable or experimentally obtained parameters, are compared to those calculated via the generalized perturbation method extention of the coherent potential approximation within the context of a KKR Hamiltonian (KKR-CPA-GPM). Agreement with the KKR-CPA-GPM results is quite excellent, as is the comparison of the ground state results with the fcc-based portions of the experimentally-determined phase diagrams under consideration.

  3. Ground state searches in fcc intermetallics

    SciTech Connect

    Wolverton, C.; de Fontaine, D. ); Ceder, G. ); Dreysse, H. . Lab. de Physique du Solide)

    1991-12-01

    A cluster expansion is used to predict the fcc ground states, i.e., the stable phases at zero Kelvin as a function of composition, for alloy systems. The intermetallic structures are not assumed, but derived regorously by minimizing the configurational energy subject to linear constraints. This ground state search includes pair and multiplet interactions which spatially extend to fourth nearest neighbor. A large number of these concentration-independent interactions are computed by the method of direct configurational averaging using a linearized-muffin-tin orbital Hamiltonian cast into tight binding form (TB-LMTO). The interactions, derived without the use of any adjustable or experimentally obtained parameters, are compared to those calculated via the generalized perturbation method extention of the coherent potential approximation within the context of a KKR Hamiltonian (KKR-CPA-GPM). Agreement with the KKR-CPA-GPM results is quite excellent, as is the comparison of the ground state results with the fcc-based portions of the experimentally-determined phase diagrams under consideration.

  4. Coupled cluster calculation for ground state properties of closed-shell nuclei and single hole states.

    NASA Astrophysics Data System (ADS)

    Mihaila, Bogdan; Heisenberg, Jochen

    2000-04-01

    We continue the investigations of ground state properties of closed-shell nuclei using the Argonne v18 realistic NN potential, together with the Urbana IX three-nucleon interaction. The ground state wave function is used to calculate the charge form factor and charge density. Starting with the ground state wave function of the closed-shell nucleus, we use the equation of motion technique to calculate the ground state and excited states of a neighboring nucleus. We then generate the corresponding magnetic form factor. We correct for distortions due to the interaction between the electron probe and the nuclear Coulomb field using the DWBA picture. We compare our results with the available experimental data. Even though our presentation will focus mainly on the ^16O and ^15N nuclei, results for other nuclei in the p and s-d shell will also be presented.

  5. Molecular spectroscopy for producing ultracold ground-state NaRb molecules

    NASA Astrophysics Data System (ADS)

    Wang, Dajun; Guo, Mingyang; Zhu, Bing; Lu, Bo; Ye, Xin; Wang, Fudong; Vexiau, Romain; Bouloufa-Maafa, Nadia; Quéméner, Goulven; Dulieu, Olivier

    2016-05-01

    Recently, we have successfully created an ultracold sample of absolute ground-state NaRb molecules by two-photon Raman transfer of weakly bound Feshbach molecules. Here we will present the detailed spectroscopic investigations on both the excited and the rovibrational ground states for finding the two-photon path. For the excited state, we focus on the A1Σ+ /b3 Π singlet and triplet admixture. We discovered an anomalously strong coupling between the Ω =0+ and 0- components which renders efficient population transfer possible. In the ground state, the pure nuclear hyperfine levels have been clearly resolved, which allows us to create molecules in the absolute ground state directly with Raman transfer. This work is jointly supported by Agence Nationale de la Recherche (#ANR-13- IS04-0004-01) and Hong Kong Research Grant Council (#A-CUHK403/13) through the COPOMOL project.

  6. Triaxiality near the 110Ru ground state from Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Doherty, D. T.; Allmond, J. M.; Janssens, R. V. F.; Korten, W.; Zhu, S.; Zielińska, M.; Radford, D. C.; Ayangeakaa, A. D.; Bucher, B.; Batchelder, J. C.; Beausang, C. W.; Campbell, C.; Carpenter, M. P.; Cline, D.; Crawford, H. L.; David, H. M.; Delaroche, J. P.; Dickerson, C.; Fallon, P.; Galindo-Uribarri, A.; Kondev, F. G.; Harker, J. L.; Hayes, A. B.; Hendricks, M.; Humby, P.; Girod, M.; Gross, C. J.; Klintefjord, M.; Kolos, K.; Lane, G. J.; Lauritsen, T.; Libert, J.; Macchiavelli, A. O.; Napiorkowski, P. J.; Padilla-Rodal, E.; Pardo, R. C.; Reviol, W.; Sarantites, D. G.; Savard, G.; Seweryniak, D.; Srebrny, J.; Varner, R.; Vondrasek, R.; Wiens, A.; Wilson, E.; Wood, J. L.; Wu, C. Y.

    2017-03-01

    A multi-step Coulomb excitation measurement with the GRETINA and CHICO2 detector arrays was carried out with a 430-MeV beam of the neutron-rich 110Ru (t1/2 = 12 s) isotope produced at the CARIBU facility. This represents the first successful measurement following the post-acceleration of an unstable isotope of a refractory element. The reduced transition probabilities obtained for levels near the ground state provide strong evidence for a triaxial shape; a conclusion confirmed by comparisons with the results of beyond-mean-field and triaxial rotor model calculations.

  7. Triaxiality near the 110Ru ground state from Coulomb excitation

    DOE PAGES

    Doherty, D. T.; Allmond, James M.; Janssens, R. V. F.; ...

    2017-01-20

    A multi-step Coulomb excitation measurement with the GRETINA and CHICO2 detector arrays was carried out with a 430-MeV beam of the neutron-rich 110Ru (t1/2 = 12 s) isotope produced at the CARIBU facility. This represents the first successful measurement following the post-acceleration of an unstable isotope of a refractory element. The reduced transition probabilities obtained for levels near the ground state provide strong evidence for a triaxial shape; a conclusion confirmed by comparisons with the results of beyond-mean-field and triaxial rotor model calculations.

  8. Spatial competition of the ground states in 1111 iron pnictides

    NASA Astrophysics Data System (ADS)

    Lang, G.; Veyrat, L.; Gräfe, U.; Hammerath, F.; Paar, D.; Behr, G.; Wurmehl, S.; Grafe, H.-J.

    2016-07-01

    Using nuclear quadrupole resonance, the phase diagram of 1111 R FeAsO1 -xFx (R =La , Ce, Sm) iron pnictides is constructed as a function of the local charge distribution in the paramagnetic state, which features low-doping-like (LD-like) and high-doping-like (HD-like) regions. Compounds based on magnetic rare earths (Ce, Sm) display a unified behavior, and comparison with La-based compounds reveals the detrimental role of static iron 3 d magnetism on superconductivity, as well as a qualitatively different evolution of the latter at high doping. It is found that the LD-like regions fully account for the orthorhombicity of the system, and are thus the origin of any static iron magnetism. Orthorhombicity and static magnetism are not hindered by superconductivity but limited by dilution effects, in agreement with two-dimensional (2D) (respectively three-dimensional) nearest-neighbor square lattice site percolation when the rare earth is nonmagnetic (respectively magnetic). The LD-like regions are not intrinsically supportive of superconductivity, contrary to the HD-like regions, as evidenced by the well-defined Uemura relation between the superconducting transition temperature and the superfluid density when accounting for the proximity effect. This leads us to propose a complete description of the interplay of ground states in 1111 pnictides, where nanoscopic regions compete to establish the ground state through suppression of superconductivity by static magnetism, and extension of superconductivity by proximity effect.

  9. Ground-state structures of Hafnium clusters

    SciTech Connect

    Ng, Wei Chun; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    Hafnium (Hf) is a very large tetra-valence d-block element which is able to form relatively long covalent bond. Researchers are interested to search for substitution to silicon in the semi-conductor industry. We attempt to obtain the ground-state structures of small Hf clusters at both empirical and density-functional theory (DFT) levels. For calculations at the empirical level, charge-optimized many-body functional potential (COMB) is used. The lowest-energy structures are obtained via a novel global-minimum search algorithm known as parallel tempering Monte-Carlo Basin-Hopping and Genetic Algorithm (PTMBHGA). The virtue of using COMB potential for Hf cluster calculation lies in the fact that by including the charge optimization at the valence shells, we can encourage the formation of proper bond hybridization, and thus getting the correct bond order. The obtained structures are further optimized using DFT to ensure a close proximity to the ground-state.

  10. Nuclear data measurement activities at CIAE

    NASA Astrophysics Data System (ADS)

    Ruan, Xichao; Jiang, Liyang; Yang, Yi; Liu, Shilong; Nie, Yangbo; Wang, Zhaohui; Chen, Xiongjun; Yu, Weixiang; Ge, Zhigang

    2017-09-01

    China Institute of Atomic Energy (CIAE) is one of the most important bases for nuclear data measurement in China. In this paper, the nuclear data measurement activities at CIAE in recent years are presented. The secondary neutron emission DX and DDX measurement, the integral experiment for nuclear data benchmarking, the excitation function measurement, the neutron induced fission yields measurement and the gamma production yields measurement carried out in recent years are introduced. Furthermore, the progress of some new facilities and proposed plans (e.g. A Gamma ray Total Absorption Facility (GTAF) for (n,γ) reaction cross section measurement, A 3He detector array for (n,2n) reaction cross section measurement, the back streaming white neutron beam for nuclear data measurement at China Spallation Neutron Source (CSNS)) are also presented.

  11. Centrifugal stretching along the ground state band of {sup 168}Hf

    SciTech Connect

    Costin, A.; Pietralla, N.; Reese, M.; Moeller, O.; Ai, H.; Casten, R. F.; Heinz, A.; McCutchan, E. A.; Meyer, D. A.; Qian, J.; Werner, V.; Dusling, K.; Fitzpatrick, C. R.; Guerdal, G.; Petkov, P.; Rainovski, G.

    2009-02-15

    The lifetimes of the J{sup {pi}}=4{sup +}, 6{sup +}, 8{sup +}, and 10{sup +} levels along the ground state band in {sup 168}Hf were measured by means of the recoil distance Doppler shift (RDDS) method using the New Yale Plunger Device (NYPD) and the SPEEDY detection array at Wright Nuclear Structure Laboratory of Yale University. Excited states in {sup 168}Hf were populated using the {sup 124}Sn({sup 48}Ti,4n) fusion evaporation reaction. The new lifetime values are sufficiently precise to clearly prove the increase of quadrupole deformation as a function of angular momentum in the deformed nucleus {sup 168}Hf. The data agree with the predictions from the geometrical confined {beta}-soft (CBS) rotor model that involves centrifugal stretching in a soft potential.

  12. Photoabsorption by ground-state alkali-metal atoms.

    NASA Technical Reports Server (NTRS)

    Weisheit, J. C.

    1972-01-01

    Principal-series oscillator strengths and ground-state photoionization cross sections are computed for sodium, potassium, rubidium, and cesium. The degree of polarization of the photoelectrons is also predicted for each atom. The core-polarization correction to the dipole transition moment is included in all of the calculations, and the spin-orbit perturbation of valence-p-electron orbitals is included in the calculations of the Rb and Cs oscillator strengths and of all the photoionization cross sections. The results are compared with recent measurements.

  13. First Observation of Ground State Dineutron Decay: Be16

    NASA Astrophysics Data System (ADS)

    Spyrou, A.; Kohley, Z.; Baumann, T.; Bazin, D.; Brown, B. A.; Christian, G.; Deyoung, P. A.; Finck, J. E.; Frank, N.; Lunderberg, E.; Mosby, S.; Peters, W. A.; Schiller, A.; Smith, J. K.; Snyder, J.; Strongman, M. J.; Thoennessen, M.; Volya, A.

    2012-03-01

    We report on the first observation of dineutron emission in the decay of Be16. A single-proton knockout reaction from a 53MeV/u B17 beam was used to populate the ground state of Be16. Be16 is bound with respect to the emission of one neutron and unbound to two-neutron emission. The dineutron character of the decay is evidenced by a small emission angle between the two neutrons. The two-neutron separation energy of Be16 was measured to be 1.35(10) MeV, in good agreement with shell model calculations, using standard interactions for this mass region.

  14. Ground-state correlations within a nonperturbative approach

    NASA Astrophysics Data System (ADS)

    De Gregorio, G.; Herko, J.; Knapp, F.; Lo Iudice, N.; Veselý, P.

    2017-02-01

    The contribution of the two-phonon configurations to the ground state of 4He and 16O is evaluated nonperturbatively using a Hartree-Fock basis within an equation-of-motion phonon method using a nucleon-nucleon optimized chiral potential. Convergence properties of energies and root-mean-square radii versus the harmonic oscillator frequency and space dimensions are investigated. The comparison with the second-order perturbation theory calculations shows that the higher-order terms have an appreciable repulsive effect and yield too-small binding energies and nuclear radii. It is argued that four-phonon configurations, through their strong coupling to two phonons, may provide most of the attractive contribution necessary for filling the gap between theoretical and experimental quantities. Possible strategies for accomplishing such a challenging task are discussed.

  15. Thermodynamic ground states of platinum metal nitrides

    SciTech Connect

    Aberg, D; Sadigh, B; Crowhurst, J; Goncharov, A

    2007-10-09

    We have systematically studied the thermodynamic stabilities of various phases of the nitrides of the platinum metal elements using density functional theory. We show that for the nitrides of Rh, Pd, Ir and Pt two new crystal structures, in which the metal ions occupy simple tetragonal lattice sites, have lower formation enthalpies at ambient conditions than any previously proposed structures. The region of stability can extend up to 17 GPa for PtN{sub 2}. Furthermore, we show that according to calculations using the local density approximation, these new compounds are also thermodynamically stable at ambient pressure and thus may be the ground state phases for these materials. We further discuss the fact that the local density and generalized gradient approximations predict different values of the absolute formation enthalpies as well different relative stabilities between simple tetragonal and the pyrite or marcasite structures.

  16. Ground-state energies of simple metals

    NASA Technical Reports Server (NTRS)

    Hammerberg, J.; Ashcroft, N. W.

    1974-01-01

    A structural expansion for the static ground-state energy of a simple metal is derived. Two methods are presented, one an approach based on single-particle band structure which treats the electron gas as a nonlinear dielectric, the other a more general many-particle analysis using finite-temperature perturbation theory. The two methods are compared, and it is shown in detail how band-structure effects, Fermi-surface distortions, and chemical-potential shifts affect the total energy. These are of special interest in corrections to the total energy beyond third order in the electron-ion interaction and hence to systems where differences in energies for various crystal structures are exceptionally small. Preliminary calculations using these methods for the zero-temperature thermodynamic functions of atomic hydrogen are reported.

  17. Neutron nuclear data measurements for criticality safety

    NASA Astrophysics Data System (ADS)

    Guber, Klaus; Paradela, Carlos; Heyse, Jan; Kopecky, Stefan; Schillebeeckx, Peter; Siegler, Peter

    2017-09-01

    To support the US Department of Energy Nuclear Criticality Safety Program, neutron-induced cross section experiments were performed at the Geel Electron Linear Accelerator of the Joint Research Center Site Geel, European Union. Neutron capture and transmission measurements were carried out using metallic natural cerium and vanadium samples. Together with existing data, the measured data will be used for a new evaluation and will be submitted with covariances to the ENDF/B nuclear data library.

  18. Tuning the Ground State Symmetry of Acetylenyl Radicals

    PubMed Central

    2015-01-01

    The lowest excited state of the acetylenyl radical, HCC, is a 2Π state, only 0.46 eV above the ground state, 2Σ+. The promotion of an electron from a π bond pair to a singly occupied σ hybrid orbital is all that is involved, and so we set out to tune those orbital energies, and with them the relative energetics of 2Π and 2Σ+ states. A strategy of varying ligand electronegativity, employed in a previous study on substituted carbynes, RC, was useful, but proved more difficult to apply for substituted acetylenyl radicals, RCC. However, π-donor/acceptor substitution is effective in modifying the state energies. We are able to design molecules with 2Π ground states (NaOCC, H2NCC (2A″), HCSi, FCSi, etc.) and vary the 2Σ+–2Π energy gap over a 4 eV range. We find an inconsistency between bond order and bond dissociation energy measures of the bond strength in the Si-containing molecules; we provide an explanation through an analysis of the relevant potential energy curves. PMID:27162981

  19. Two different ground states in K-intercalated polyacenes

    NASA Astrophysics Data System (ADS)

    Phan, Quynh T. N.; Heguri, Satoshi; Tamura, Hiroyuki; Nakano, Takehito; Nozue, Yasuo; Tanigaki, Katsumi

    2016-02-01

    The electronic states of potassium- (K-) intercalated zigzag-type polycyclic aromatic (PLA) hydrocarbon [polyacene PLAs] Kx(PLAs ) are studied for a series of the four smallest molecules: naphthalene (NN), anthracene (AN), tetracene (TN), and pentacene (PN), focusing on their 1:1 stoichiometric phases. Clear experimental differences are identified between the first group [K1(NN ) and K1(AN ) ] and the second group [K1(TN ) and K1(PN ) ] by magnetic, vibrational, and optical measurements. The first group is categorized as a Mott insulator with an antiferromagnetic ground state with energy of ˜10 meV, whereas the second group is classified as a band insulator via dimer formation due to the spin Peierls instability. In the latter system, the first thermally accessible triplet states are located far apart from the singlet ground states and are not detected by electron spin-resonance spectroscopy until 300 K being very different from what is observed for the hole-doped PN reported earlier. The results give a new systematic understanding on the electronic states of electron-doped PLAs sensitive to the energetic balance among on-site Coulomb repulsion, bandwidth, and the Peierls instability.

  20. Ground state energy of N Frenkel excitons

    NASA Astrophysics Data System (ADS)

    Pogosov, W.; Combescot, M.

    2009-03-01

    By using the composite many-body theory for Frenkel excitons we have recently developed, we here derive the ground state energy of N Frenkel excitons in the Born approximation through the Hamiltonian mean value in a state made of N identical Q = 0 excitons. While this quantity reads as a density expansion in the case of Wannier excitons, due to many-body effects induced by fermion exchanges between N composite particles, we show that the Hamiltonian mean value for N Frenkel excitons only contains a first order term in density, just as for elementary bosons. Such a simple result comes from a subtle balance, difficult to guess a priori, between fermion exchanges for two or more Frenkel excitons appearing in Coulomb term and the ones appearing in the N exciton normalization factor - the cancellation being exact within terms in 1/Ns where Ns is the number of atomic sites in the sample. This result could make us naively believe that, due to the tight binding approximation on which Frenkel excitons are based, these excitons are just bare elementary bosons while their composite nature definitely appears at various stages in the precise calculation of the Hamiltonian mean value.

  1. Magnetic ground state of FeSe

    PubMed Central

    Wang, Qisi; Shen, Yao; Pan, Bingying; Zhang, Xiaowen; Ikeuchi, K.; Iida, K.; Christianson, A. D.; Walker, H. C.; Adroja, D. T.; Abdel-Hafiez, M.; Chen, Xiaojia; Chareev, D. A.; Vasiliev, A. N.; Zhao, Jun

    2016-01-01

    Elucidating the nature of the magnetism of a high-temperature superconductor is crucial for establishing its pairing mechanism. The parent compounds of the cuprate and iron-pnictide superconductors exhibit Néel and stripe magnetic order, respectively. However, FeSe, the structurally simplest iron-based superconductor, shows nematic order (Ts=90 K), but not magnetic order in the parent phase, and its magnetic ground state is intensely debated. Here we report inelastic neutron-scattering experiments that reveal both stripe and Néel spin fluctuations over a wide energy range at 110 K. On entering the nematic phase, a substantial amount of spectral weight is transferred from the Néel to the stripe spin fluctuations. Moreover, the total fluctuating magnetic moment of FeSe is ∼60% larger than that in the iron pnictide BaFe2As2. Our results suggest that FeSe is a novel S=1 nematic quantum-disordered paramagnet interpolating between the Néel and stripe magnetic instabilities. PMID:27431986

  2. Magnetic ground state of FeSe.

    PubMed

    Wang, Qisi; Shen, Yao; Pan, Bingying; Zhang, Xiaowen; Ikeuchi, K; Iida, K; Christianson, A D; Walker, H C; Adroja, D T; Abdel-Hafiez, M; Chen, Xiaojia; Chareev, D A; Vasiliev, A N; Zhao, Jun

    2016-07-19

    Elucidating the nature of the magnetism of a high-temperature superconductor is crucial for establishing its pairing mechanism. The parent compounds of the cuprate and iron-pnictide superconductors exhibit Néel and stripe magnetic order, respectively. However, FeSe, the structurally simplest iron-based superconductor, shows nematic order (Ts=90 K), but not magnetic order in the parent phase, and its magnetic ground state is intensely debated. Here we report inelastic neutron-scattering experiments that reveal both stripe and Néel spin fluctuations over a wide energy range at 110 K. On entering the nematic phase, a substantial amount of spectral weight is transferred from the Néel to the stripe spin fluctuations. Moreover, the total fluctuating magnetic moment of FeSe is ∼60% larger than that in the iron pnictide BaFe2As2. Our results suggest that FeSe is a novel S=1 nematic quantum-disordered paramagnet interpolating between the Néel and stripe magnetic instabilities.

  3. Neutrino ground state in a dense star

    SciTech Connect

    Kiers, K.; Tytgat, M.H. |

    1998-05-01

    It has recently been argued that long range forces due to the exchange of massless neutrinos give rise to a very large self-energy in a dense, finite-ranged, weakly charged medium. Such an effect, if real, would destabilize a neutron star. To address this issue we have studied the related problem of a massless neutrino field in the presence of an external, static electroweak potential of finite range. To be precise, we have computed to one loop the exact vacuum energy for the case of a spherical square well potential of depth {alpha} and radius R. For small wells, the vacuum energy is reliably determined by a perturbative expansion in the external potential. For large wells, however, the perturbative expansion breaks down. A manifestation of this breakdown is that the vacuum carries a non-zero neutrino charge. The energy and neutrino charge of the ground state are, to a good approximation for large wells, those of a neutrino condensate with chemical potential {mu}={alpha}. Our results demonstrate explicitly that long-range forces due to the exchange of massless neutrinos do not threaten the stability of neutron stars. {copyright} {ital 1998} {ital The American Physical Society}

  4. On the Stable Ground State of Mackinawite

    NASA Astrophysics Data System (ADS)

    Kwon, K.; Refson, K.; Sposito, G.

    2009-12-01

    Mackinawite is a layer type iron monosulfide (FeS) with stacked sheets of edge-sharing FeS4 tetrahedra. An important player in iron and sulfur cycles, mackinawite is one of the first-formed metastable iron sulfides in anoxic environments, transforming into greigite (Fe3S4) and pyrite (FeS2) minerals or elemental sulfur (S0) and iron (Fe0) depending on redox conditions. Mackinawite also affects the mobility and oxidation states of toxic metals such as As, Hg, and Se. The mineral, typically found as a nanoparticle, has been characterized experimentally. Its fundamental conducting and magnetic properties, however, are still controversial; e.g., whether mackinawite is metallic and whether it has magnetic order. Mackinawite is believed to be metallic and without magnetic ordering down at 4 K based on Mössbauer spectroscopy studies. We examined these two issues by applying plane-wave density functional theory (DFT) to FeS geometry optimization under different magnetic orderings. We found that antiferromagnetic ordering among the Fe atoms is the stable ground state of mackinawite. In this presentation, we shall discuss this result and how it relates to previous experimental work.

  5. Strangeness in the baryon ground states

    NASA Astrophysics Data System (ADS)

    Semke, A.; Lutz, M. F. M.

    2012-10-01

    We compute the strangeness content of the baryon octet and decuplet states based on an analysis of recent lattice simulations of the BMW, PACS, LHPC and HSC groups for the pion-mass dependence of the baryon masses. Our results rely on the relativistic chiral Lagrangian and large-Nc sum rule estimates of the counter terms relevant for the baryon masses at N3LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. A simultaneous description of the lattice results of the BMW, LHPC, PACS and HSC groups is achieved. From a global fit we determine the axial coupling constants F ≃ 0.45 and D ≃ 0.80 in agreement with their values extracted from semi-leptonic decays of the baryons. Moreover, various flavor symmetric limits of baron octet and decuplet masses as obtained by the QCDSF-UKQCD group are recovered. We predict the pion- and strangeness sigma terms and the pion-mass dependence of the octet and decuplet ground states at different strange quark masses.

  6. Mass-spectrometric measurements for nuclear safeguards

    SciTech Connect

    Carter, J.A.; Smith, D.H.; Walker, R.L.

    1982-01-01

    The need of an on-site inspection device to provide isotopic ratio measurements led to the development of a quadrupole mass spectrometer mounted in a van. This mobile laboratory has the ability, through the use of the resin bead technique, to acquire, prepare, and analyze samples of interest to nuclear safeguards. Precision of the measurements is about 1 to 2%.

  7. Advanced nuclear measurements LDRD -- Sensitivity analysis

    SciTech Connect

    Dreicer, J.S.

    1999-02-01

    This component of the Advanced Nuclear Measurements LDRD-PD has focused on the analysis and methodologies to quantify and characterize existing inventories of weapons and commercial fissile materials, as well as to, anticipate future forms and quantities to fissile materials. Historically, domestic safeguards had been applied to either pure uniform homogeneous material or to well characterized materials. The future is different simplistically, measurement challenges will be associated with the materials recovered from dismantled nuclear weapons in the US and Russia subject to disposition, the residues and wastes left over from the weapons production process, and from the existing and growing inventory of materials in commercial/civilian programs. Nuclear measurement issues for the fissile materials coming from these sources are associated with homogeneity, purity, and matrix effects. Specifically, these difficult-to-measure fissile materials are heterogeneous, impure, and embedded in highly shielding non-uniform matrices. Currently, each of these effects creates problems for radiation-based assay and it is impossible to measure material that has a combination of all these effects. Nuclear materials control and measurement is a dynamic problem requiring a predictive capability. This component has been tasked with helping select which future problems are the most important to target, during the last year accomplishments include: characterization of weapons waste fissile materials, identification of measurement problem areas, defining instrument requirements, and characterization of commercial fissile materials. A discussion of accomplishments in each of these areas is presented.

  8. Triaxiality of the ground states in the 174W

    NASA Astrophysics Data System (ADS)

    Ya, Tu; Chen, Y. S.; Liu, L.; Gao, Z. C.

    2016-05-01

    We have performed calculations for the ground states in 174W by using the projected total energy surface (PTES) calculations. Both the ground state (g.s.) band and its γ band reproduce the experimental data. Further discussion about the triaxiality in 174W has been made by transition quardrupole moment (Qt) and comparing between the PTES and TRS methods.

  9. Tuning the magnetic ground state of a triangular lattice system

    SciTech Connect

    Garlea, Vasile O; Savici, Andrei T; Jin, Rongying

    2011-01-01

    The anisotropic triangular lattice of the crednerite system Cu(Mn$_{1-x}$Cu$_{x}$)O$_{2}$ is used as a basic model for studying the influence of spin disorder on the ground state properties of a two-dimensional frustrated antiferromagnet. Neutron diffraction measurements show that the undoped phase (x=0) undergoes a transition to antiferromagnetic long-range order that is stabilized by a frustration-relieving structural distortion. Small deviation from the stoichiometric composition alters the magnetoelastic characteristics and reduces the effective dimensionality of the magnetic lattice. Upon increasing the doping level, the interlayer coupling changes from antiferromagnetic to ferromagnetic, while the structural distortion is fully suppressed. Concomitantly, the long-range magnetic order is gradually transformed into a two-dimensional order.

  10. First resonant tunneling via a light-hole ground state

    NASA Astrophysics Data System (ADS)

    Lampin, J. F.; Mollot, F.

    1998-07-01

    We report the demonstration of resonant tunneling of light-holes through an AlAs/GaAs 0.7P 0.3 double-barrier heterostructure. The tensile strain in the quantum well reverses the order of the light- and heavy-hole levels, the first light-hole level becoming the ground state. The I( V) characteristics are measured at different temperatures and compared to those of a standard AlAs/GaAs unstrained structure. The peak current density of the first light-hole resonance and its peak-to-valley current ratio are enhanced. They reach 28 A/cm 2 and 3.4 : 1 at 15 K. A negative differential resistance is observed up to 250 K.

  11. Is the ground state of Yang-Mills theory Coulombic?

    SciTech Connect

    Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; McMullan, D.; Lutz, W.

    2008-08-01

    We study trial states modelling the heavy quark-antiquark ground state in SU(2) Yang-Mills theory. A state describing the flux tube between quarks as a thin string of glue is found to be a poor description of the continuum ground state; the infinitesimal thickness of the string leads to UV artifacts which suppress the overlap with the ground state. Contrastingly, a state which surrounds the quarks with non-Abelian Coulomb fields is found to have a good overlap with the ground state for all charge separations. In fact, the overlap increases as the lattice regulator is removed. This opens up the possibility that the Coulomb state is the true ground state in the continuum limit.

  12. Ground state atomic oxygen in high-power impulse magnetron sputtering: a quantitative study

    NASA Astrophysics Data System (ADS)

    Britun, Nikolay; Belosludtsev, Alexandr; Silva, Tiago; Snyders, Rony

    2017-02-01

    The ground state density of oxygen atoms in reactive high-power impulse magnetron sputtering discharges has been studied quantitatively. Both time-resolved and space-resolved measurements were conducted. The measurements were performed using two-photon absorption laser-induced fluorescence (TALIF), and calibrated by optical emission actinometry with multiple Ar emission lines. The results clarify the dynamics of the O ground state atoms in the discharge afterglow significantly, including their propagation and fast decay after the plasma pulse, as well as the influence of gas pressure, O2 admixture, etc.

  13. Search for the 73Ga ground-state doublet splitting in the β decay of 73Zn

    NASA Astrophysics Data System (ADS)

    Vedia, V.; Paziy, V.; Fraile, L. M.; Mach, H.; Walters, W. B.; Aprahamian, A.; Bernards, C.; Briz, J. A.; Bucher, B.; Chiara, C. J.; Dlouhý, Z.; Gheorghe, I.; GhiÅ£ǎ, D.; Hoff, P.; Jolie, J.; Köster, U.; Kurcewicz, W.; Licǎ, R.; Mǎrginean, N.; Mǎrginean, R.; Olaizola, B.; Régis, J.-M.; Rudigier, M.; Sava, T.; Simpson, G. S.; Stǎnoiu, M.; Stroe, L.

    2017-09-01

    The existence of two close-lying nuclear states in 73Ga has recently been experimentally determined: a 1 /2- spin-parity for the ground state was measured in a laser spectroscopy experiment, while a Jπ=3 /2- level was observed in transfer reactions. This scenario is supported by Coulomb excitation studies, which set a limit for the energy splitting of 0.8 keV. In this work, we report on the study of the excited structure of 73Ga populated in the β decay of 73Zn produced at ISOLDE, CERN. Using β -gated, γ -ray singles, and γ -γ coincidences, we have searched for energy differences to try to delimit the ground-state energy splitting, providing a more stringent energy difference limit. Three new half-lives of excited states in 73Ga have been measured using the fast-timing method with LaBr3(Ce) detectors. From our study, we help clarify the excited structure of 73Ga and we extend the existing 73Zn decay to 73Ga with 8 new energy levels and 35 γ transitions. We observe a 195-keV transition consistent with a γ ray de-exciting a short-lived state in the β -decay parent 73Zn.

  14. Dissociative recombination of the ground state of N2(+)

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.

    1991-01-01

    Large-scale calculations of the dissociative recombination cross sections and rates for the v = 0 level of the N2(+) ground state are reported, and the important role played by vibrationally excited Rydberg states lying both below and above the v = 0 level of the ion is demonstrated. The large-scale electronic wave function calculations were done using triple zeta plus polarization nuclear-centered-valence Gaussian basis sets. The electronic widths were obtained using smaller wave functions, and the cross sections were calculated on the basis of the multichannel quantum defect theory. The DR rate is calculated at 1.6 x 10 to the -7th x (Te/300) to the -0.37 cu cm/sec for Te in the range of 100 to 1000 K, and is found to be in excellent agreement with prior microwave afterglow experiments but in disagreement with recent merged beam results. It is inferred that the dominant mechanism for DR imparts sufficient energy to the product atoms to allow for escape from the Martian atmosphere.

  15. Studies on the ground state entropy of the Potts antiferromagnet

    NASA Astrophysics Data System (ADS)

    Tsai, Shan-Ho

    This dissertation reports recent results on the ground state degeneracy of the q-state antiferromagnetic Potts model. This model has a deep connection with graph theory in mathematics since the zero-temperature partition function of this model on a given lattice, or more generally on a graph G, is equal to the chromatic polynomial P(G, q), which expresses the number of ways of coloring the n vertices of a graph G using at most q colors such that no two adjacent vertices have the same color. The ground state degeneracy per site of the Potts antiferromagnet is given by W(\\{ G\\}, q) = limsb{n->infty}P(G, q)sp{1/n} (where \\{ G\\} denotes the limit as n-> infty of the family of n-vertex graphs of type G). Exact solutions for this problem are known in only very few special cases. We have obtained rigorous upper and lower bounds, large-q series expansions and Monte Carlo measurements of the ground state degeneracy W(Lambda,\\ q) of the antiferromagnetic Potts model on a number of two dimensional lattices. These bounds are shown to be very restrictive. In particular, the lower bounds coincide with many terms of the respective large-q series expansion and are very good approximations to the exact functions. Although q is an integer parameter in the definition of the initial model, it is instructive to generalize it to complex variable. We study the analytic structure of the function W(\\{ G\\}, q) in the complex q plane. We determine the exact locus {cal B} where W(\\{G\\}, q) is nonanalytic for a number of families of graphs G. We calculate chromatic polynomials on strip graphs of varying widths as a way of obtaining information on the two dimensional limit. For this purpose, we construct generating functions, which provide both the asymptotic limiting function W(\\{ G\\}, q) as well as chromatic polynomials for finite length strips. Exact calculation is presented for a number of families of strip graphs. Effects of different types of boundary conditions are examined

  16. Ground states of stealthy hyperuniform potentials: I. Entropically favored configurations.

    PubMed

    Zhang, G; Stillinger, F H; Torquato, S

    2015-08-01

    Systems of particles interacting with "stealthy" pair potentials have been shown to possess infinitely degenerate disordered hyperuniform classical ground states with novel physical properties. Previous attempts to sample the infinitely degenerate ground states used energy minimization techniques, introducing algorithmic dependence that is artificial in nature. Recently, an ensemble theory of stealthy hyperuniform ground states was formulated to predict the structure and thermodynamics that was shown to be in excellent agreement with corresponding computer simulation results in the canonical ensemble (in the zero-temperature limit). In this paper, we provide details and justifications of the simulation procedure, which involves performing molecular dynamics simulations at sufficiently low temperatures and minimizing the energy of the snapshots for both the high-density disordered regime, where the theory applies, as well as lower densities. We also use numerical simulations to extend our study to the lower-density regime. We report results for the pair correlation functions, structure factors, and Voronoi cell statistics. In the high-density regime, we verify the theoretical ansatz that stealthy disordered ground states behave like "pseudo" disordered equilibrium hard-sphere systems in Fourier space. The pair statistics obey certain exact integral conditions with very high accuracy. These results show that as the density decreases from the high-density limit, the disordered ground states in the canonical ensemble are characterized by an increasing degree of short-range order and eventually the system undergoes a phase transition to crystalline ground states. In the crystalline regime (low densities), there exist aperiodic structures that are part of the ground-state manifold but yet are not entropically favored. We also provide numerical evidence suggesting that different forms of stealthy pair potentials produce the same ground-state ensemble in the zero

  17. Magnetic ground state of an individual Fe2+ ion in strained semiconductor nanostructure

    NASA Astrophysics Data System (ADS)

    Smoleński, T.; Kazimierczuk, T.; Kobak, J.; Goryca, M.; Golnik, A.; Kossacki, P.; Pacuski, W.

    2016-01-01

    Single impurities with nonzero spin and multiple ground states offer a degree of freedom that can be utilized to store the quantum information. However, Fe2+ dopant is known for having a single nondegenerate ground state in the bulk host semiconductors and thus is of little use for spintronic applications. Here we show that the well-established picture of Fe2+ spin configuration can be modified by subjecting the Fe2+ ion to high strain, for example, produced by lattice mismatched epitaxial nanostructures. Our analysis reveals that high strain induces qualitative change in the ion energy spectrum and results in nearly doubly degenerate ground state with spin projection Sz=+/-2. We provide an experimental proof of this concept using a new system: a strained epitaxial quantum dot containing individual Fe2+ ion. Magnetic character of the Fe2+ ground state in a CdSe/ZnSe dot is revealed in photoluminescence experiments by exploiting a coupling between a confined exciton and the single-iron impurity. We also demonstrate that the Fe2+ spin can be oriented by spin-polarized excitons, which opens a possibility of using it as an optically controllable two-level system free of nuclear spin fluctuations.

  18. Magnetic ground state of an individual Fe2+ ion in strained semiconductor nanostructure

    PubMed Central

    Smoleński, T.; Kazimierczuk, T.; Kobak, J.; Goryca, M.; Golnik, A.; Kossacki, P.; Pacuski, W.

    2016-01-01

    Single impurities with nonzero spin and multiple ground states offer a degree of freedom that can be utilized to store the quantum information. However, Fe2+ dopant is known for having a single nondegenerate ground state in the bulk host semiconductors and thus is of little use for spintronic applications. Here we show that the well-established picture of Fe2+ spin configuration can be modified by subjecting the Fe2+ ion to high strain, for example, produced by lattice mismatched epitaxial nanostructures. Our analysis reveals that high strain induces qualitative change in the ion energy spectrum and results in nearly doubly degenerate ground state with spin projection Sz=±2. We provide an experimental proof of this concept using a new system: a strained epitaxial quantum dot containing individual Fe2+ ion. Magnetic character of the Fe2+ ground state in a CdSe/ZnSe dot is revealed in photoluminescence experiments by exploiting a coupling between a confined exciton and the single-iron impurity. We also demonstrate that the Fe2+ spin can be oriented by spin-polarized excitons, which opens a possibility of using it as an optically controllable two-level system free of nuclear spin fluctuations. PMID:26818580

  19. Half-life determination of the ground state decay of ¹¹¹Ag.

    PubMed

    Collins, S M; Harms, A V; Regan, P H

    2016-02-01

    The radioactive decay half-life of the β(-)-emitter (111)Ag has been measured using decay transitions identified using a high purity germanium γ-ray spectrometer. The time series of measurements of the net peak areas of the 96.8 keV, 245.4 keV and 342.1 keV γ-ray emissions following the β(-) decay of (111)Ag were made over approximately 23 days, i.e. ~3 half-life periods. The measured half-life of the ground state decay of (111)Ag was determined as 7.423 (13) days which is consistent with the Evaluated Nuclear Structure Data File (ENSDF) recommended half-life of 7.45 (1) days at k=2. Utilising all available experimental half-life values, a revised recommended half-life of 7.452 (12) days has been determined. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  20. Ground-state and pairing-vibrational bands with equal quadrupole collectivity in 124Xe

    DOE PAGES

    Radich, A. J.; Garrett, P. E.; Allmond, J. M.; ...

    2015-04-01

    The nuclear structure of 124Xe has been investigated via measurements of the β+/EC decay of 124Cs with the 8π γ-ray spectrometer at the TRIUMF-ISAC facility. The data collected have enabled branching ratio measurements of weak, low-energy transitions from highly excited states, and the 2+ → 0+ in-band transitions have been observed. Combining these results with those from a previous Coulomb excitation study,more » $$B(E2; 2^+_3 → 0^+_2)$$ = 78(13) W.u. and $$B(E2; 2^+_4 → 0^+_3)$$ = 53(12) W.u. were determined. The $$0^+_3$$ state, in particular, is interpreted as the main fragment of the proton-pairing vibrational band identified in a previous 122Te(3He,n)124Xe measurement, and has quadrupole collectivity equal to, within uncertainty, that of the ground-state band.« less

  1. Measuring the Fr Weak Nuclear Charge by Observing a Linear Stark Shift with Small Atomic Samples

    SciTech Connect

    Bouchiat, Marie-Anne

    2008-03-28

    We study the chirality of ground-state alkali atoms in E and B fields, dressed with a circularly-polarized beam near-detuned (< or approx. )1 GHz) from an E-field-assisted forbidden transition such as 7S-8S in Fr. We predict parity violating energy shifts of their sublevels, linear in E and the weak nuclear charge Q{sub W}. A dressing beam of 10 kW/cm{sup 2} at 506 nm produces a shift of {approx}100 {mu}Hz at E=100 V/cm, B > or approx. 50 mG which should be observable with {approx}10{sup 4} Fr atoms confined in an optical dipole trap. We discuss optimal conditions, parameter reversals, and a calibration procedure to measure Q{sub W}.

  2. Short-range correlations in the magnetic ground state of Na4 Ir3 O8

    NASA Astrophysics Data System (ADS)

    Dally, Rebecca; Hogan, Tom; Amato, Alex; Luetkens, Hubertus; Baines, Chris; Rodriguez-Rivera, Jose; Graf, Michael; Wilson, Stephen

    2015-03-01

    The magnetic ground state of the candidate three-dimensional quantum spin liquid Na4 Ir3O8 has been studied through bulk magnetization, muon spin relaxation and neutron scattering measurements. Na4 Ir3O8 possesses a unique hyper-Kagome lattice of Ir moments that is potentially accompanied by a novel realization of Heisenberg-Kitaev exchange. This fact combined with the absence of previously reported magnetic ordering has led to its candidacy as a three-dimensional quantum spin liquid. Our combined experimental data show that a short-range, frozen, ground state comprised of quasi-static moments develops in this material below a characteristic temperature TF = 6 K , persisting down until at least 20 mK. The expected dynamical ground state of a quantum spin liquid was not observed but rather an inhomogeneous quasi-static spin state that survives with persistent long timescale fluctuations.

  3. Spin-Orbit Coupling Controlled J =3 /2 Electronic Ground State in 5 d3 Oxides

    NASA Astrophysics Data System (ADS)

    Taylor, A. E.; Calder, S.; Morrow, R.; Feng, H. L.; Upton, M. H.; Lumsden, M. D.; Yamaura, K.; Woodward, P. M.; Christianson, A. D.

    2017-05-01

    Entanglement of spin and orbital degrees of freedom drives the formation of novel quantum and topological physical states. Here we report resonant inelastic x-ray scattering measurements of the transition metal oxides Ca3 LiOsO6 and Ba2 YOsO6 , which reveals a dramatic spitting of the t2 g manifold. We invoke an intermediate coupling approach that incorporates both spin-orbit coupling and electron-electron interactions on an even footing and reveal that the ground state of 5 d3-based compounds, which has remained elusive in previously applied models, is a novel spin-orbit entangled J =3 /2 electronic ground state. This work reveals the hidden diversity of spin-orbit controlled ground states in 5 d systems and introduces a new arena in the search for spin-orbit controlled phases of matter.

  4. Charge ordered normal ground state and its interplay with superconductivity in the underdoped cuprates

    NASA Astrophysics Data System (ADS)

    Sebastian, Suchitra

    2015-03-01

    Over the last few years, evidence has gradually built for a charge ordered normal ground state in the underdoped region of the cuprate high temperature superconductors. I will address the electronic structure of the normal ground state of the underdoped cuprates as accessed by quantum oscillations, and relate it to complementary measurements by other experimental techniques. The interplay of the charge ordered ground state with the antinodal gapped pseudogap state, and overarching magnetic and superconducting correlations will be further explored. This work was performed in collaboration with N. Harrison, G. G. Lonzarich, B. J. Ramshaw, B. S. Tan, P. A. Goddard, F. F. Balakirev, C. H. Mielke, R. Liang, D. A. Bonn, and W. N. Hardy

  5. Ground-state properties of 5H from the 6He(d ,3He)5H reaction

    NASA Astrophysics Data System (ADS)

    Wuosmaa, A. H.; Bedoor, S.; Brown, K. W.; Buhro, W. W.; Chajecki, Z.; Charity, R. J.; Lynch, W. G.; Manfredi, J.; Marley, S. T.; McNeel, D. G.; Newton, A. S.; Shetty, D. V.; Showalter, R. H.; Sobotka, L. G.; Tsang, M. B.; Winkelbauer, J. R.; Wiringa, R. B.

    2017-01-01

    We have studied the ground state of the unbound, very neutron-rich isotope of hydrogen 5H, using the 6He(d ,3He )5H reaction in inverse kinematics at a bombarding energy of E (6He)=55 A MeV. The present results suggest a ground-state resonance energy ER=2.4 ±0.3 MeV above the 3H +2 n threshold, with an intrinsic width of Γ =5.3 ±0.4 MeV in the 5H system. Both the resonance energy and width are higher than those reported in some, but not all previous studies of 5H. The previously unreported 6He(d ,t )g.s.5He reaction is observed in the same measurement, providing a check on the understanding of the response of the apparatus. The data are compared to expectations from direct two-neutron and dineutron decay. The possibility of excited states of 5H populated in this reaction is discussed using different calculations of the 6He→5H +p spectroscopic overlaps from shell-model and ab initio nuclear-structure calculations.

  6. Approximating the ground state of gapped quantum spin systems

    SciTech Connect

    Michalakis, Spyridon; Hamza, Eman; Nachtergaele, Bruno; Sims, Robert

    2009-01-01

    We consider quantum spin systems defined on finite sets V equipped with a metric. In typical examples, V is a large, but finite subset of Z{sup d}. For finite range Hamiltonians with uniformly bounded interaction terms and a unique, gapped ground state, we demonstrate a locality property of the corresponding ground state projector. In such systems, this ground state projector can be approximated by the product of observables with quantifiable supports. In fact, given any subset {chi} {contained_in} V the ground state projector can be approximated by the product of two projections, one supported on {chi} and one supported on {chi}{sup c}, and a bounded observable supported on a boundary region in such a way that as the boundary region increases, the approximation becomes better. Such an approximation was useful in proving an area law in one dimension, and this result corresponds to a multi-dimensional analogue.

  7. Ground states of the spin-1 Bose-Hubbard model.

    PubMed

    Katsura, Hosho; Tasaki, Hal

    2013-03-29

    We prove basic theorems about the ground states of the S=1 Bose-Hubbard model. The results are quite universal and depend only on the coefficient U2 of the spin-dependent interaction. We show that the ground state exhibits saturated ferromagnetism if U2<0, is spin-singlet if U2>0, and exhibits "SU(3)-ferromagnetism" if U2=0, and completely determine the degeneracy in each region.

  8. Theory of ground state factorization in quantum cooperative systems.

    PubMed

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2008-05-16

    We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows us to determine rigorously the existence, location, and exact form of separable ground states in a large variety of, generally nonexactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range.

  9. Ground-state properties of the periodic Anderson model

    NASA Technical Reports Server (NTRS)

    Blankenbecler, R.; Fulco, J. R.; Gill, W.; Scalapino, D. J.

    1987-01-01

    The ground-state energy, hybridization matrix element, local moment, and spin-density correlations of a one-dimensional, finite-chain, periodic, symmetric Anderson model are obtained by numerical simulations and compared with perturbation theory and strong-coupling results. It is found that the local f-electron spins are compensated by correlation with other f-electrons as well as band electrons leading to a nonmagnetic ground state.

  10. Holdup measurement for nuclear fuel manufacturing plants

    SciTech Connect

    Zucker, M.S.; Degen, M.; Cohen, I.; Gody, A.; Summers, R.; Bisset, P.; Shaub, E.; Holody, D.

    1981-07-13

    The assay of nuclear material holdup in fuel manufacturing plants is a laborious but often necessary part of completing the material balance. A range of instruments, standards, and a methodology for assaying holdup has been developed. The objectives of holdup measurement are ascertaining the amount, distribution, and how firmly fixed the SNM is. The purposes are reconciliation of material unbalance during or after a manufacturing campaign or plant decommissioning, to decide security requirements, or whether further recovery efforts are justified.

  11. Ground state configurations in two-mode quantum Rabi models

    NASA Astrophysics Data System (ADS)

    Chilingaryan, Suren; Rodríguez-Lara, B. M.

    We study two models describing a single two-level system coupled to two boson field modes in either a parallel or orthogonal configuration. Both models may be feasible for experimental realization through Raman adiabatic driving in cavity QED. We study their ground state configurations; that is, we find the quantum precursors of the corresponding semi-classical phase transitions. We found that the ground state configurations of both models present the same critical coupling as the quantum Rabi model. Around this critical coupling, the ground state goes from the so-called normal configuration with no excitation, the qubit in the ground state and the fields in the quantum vacuum state, to a ground state with excitations, the qubit in a superposition of ground and excited state, while the fields are not in the vacuum anymore, for the first model. The second model shows a more complex ground state configuration landscape where we find the normal configuration mentioned above, two single-mode configurations, where just one of the fields and the qubit are excited, and a dual-mode configuration, where both fields and the qubit are excited. S A Chilingaryan acknowledges financial support from CONACYT.

  12. Ground State Destabilization by Anionic Nucleophiles Contributes to the Activity of Phosphoryl Transfer Enzymes

    PubMed Central

    Andrews, Logan D.; Fenn, Tim D.; Herschlag, Daniel

    2013-01-01

    Enzymes stabilize transition states of reactions while limiting binding to ground states, as is generally required for any catalyst. Alkaline Phosphatase (AP) and other nonspecific phosphatases are some of Nature's most impressive catalysts, achieving preferential transition state over ground state stabilization of more than 1022-fold while utilizing interactions with only the five atoms attached to the transferred phosphorus. We tested a model that AP achieves a portion of this preference by destabilizing ground state binding via charge repulsion between the anionic active site nucleophile, Ser102, and the negatively charged phosphate monoester substrate. Removal of the Ser102 alkoxide by mutation to glycine or alanine increases the observed Pi affinity by orders of magnitude at pH 8.0. To allow precise and quantitative comparisons, the ionic form of bound Pi was determined from pH dependencies of the binding of Pi and tungstate, a Pi analog lacking titratable protons over the pH range of 5–11, and from the 31P chemical shift of bound Pi. The results show that the Pi trianion binds with an exceptionally strong femtomolar affinity in the absence of Ser102, show that its binding is destabilized by ≥108-fold by the Ser102 alkoxide, and provide direct evidence for ground state destabilization. Comparisons of X-ray crystal structures of AP with and without Ser102 reveal the same active site and Pi binding geometry upon removal of Ser102, suggesting that the destabilization does not result from a major structural rearrangement upon mutation of Ser102. Analogous Pi binding measurements with a protein tyrosine phosphatase suggest the generality of this ground state destabilization mechanism. Our results have uncovered an important contribution of anionic nucleophiles to phosphoryl transfer catalysis via ground state electrostatic destabilization and an enormous capacity of the AP active site for specific and strong recognition of the phosphoryl group in the transition

  13. Antimatter Advances Include Trapped Antihydrogen in Its Ground State

    NASA Astrophysics Data System (ADS)

    Richerme, Phil

    2012-06-01

    Three recent advances in antimatter physics show significant progress towards precision tests of fundamental symmetries. The first and primary focus of this talk is ATRAP's observation of five simultaneously trapped antihydrogen atoms per trial, confined for long enough to ensure that they are in their ground state.ootnotetextG. Gabrielse et al. (ATRAP Collaboration). Phys. Rev. Lett. 108, 113002 (2012). Large numbers of simultaneously trapped atoms are crucial if laser cooling and spectroscopy of antihydrogen at high levels of precision are to be achieved. Fundamental to this result is the careful control and characterization of the geometry and temperature of the large-number antiproton and positron plasmas from which antihydrogen is formed, along with enhanced event detection and cosmic ray background rejection techniques. A second advance, by the ALPHA collaboration, is a demonstration that smaller numbers of simultaneously trapped antihydrogen atoms can be ejected from a magnetic trap when microwaves flip the spin of the atoms.ootnotetextC. Amole et al. (ALPHA Collaboration). Nature 483, 439 (2012). A third advance is a direct measurement of the proton magnetic moment to 2.5 parts per million using a technique that can be directly applied to an antiprotonootnotetextJ. DiSciacca and G. Gabrielse. Phys. Rev. Lett. 108, 153001 (2012). to improve the precision with which the antiproton magnetic moment is measured by a factor of 1000.

  14. Enhancement of Vibronic and Ground-State Vibrational Coherences in 2D Spectra of Photosynthetic Complexes

    PubMed Central

    Chenu, Aurélia; Christensson, Niklas; Kauffmann, Harald F.; Mančal, Tomáš

    2013-01-01

    A vibronic-exciton model is applied to investigate the recently proposed mechanism of enhancement of coherent oscillations due to mixing of electronic and nuclear degrees of freedom. We study a dimer system to elucidate the role of resonance coupling, site energies, vibrational frequency and energy disorder in the enhancement of vibronic-exciton and ground-state vibrational coherences, and to identify regimes where this enhancement is significant. For a heterodimer representing two coupled bachteriochloropylls of the FMO complex, long-lived vibronic coherences are found to be generated only when the frequency of the mode is in the vicinity of the electronic energy difference. Although the vibronic-exciton coherences exhibit a larger initial amplitude compared to the ground-state vibrational coherences, we conclude that, due to the dephasing of the former, both type of coherences have a similar magnitude at longer population time. PMID:23778355

  15. Intruder configurations in the ground state of 30Ne

    NASA Astrophysics Data System (ADS)

    Liu, H. N.; Lee, J.; Doornenbal, P.; Scheit, H.; Takeuchi, S.; Aoi, N.; Li, K. A.; Matsushita, M.; Steppenbeck, D.; Wang, H.; Baba, H.; Ideguchi, E.; Kobayashi, N.; Kondo, Y.; Lee, G.; Michimasa, S.; Motobayashi, T.; Poves, A.; Sakurai, H.; Takechi, M.; Togano, Y.; Tostevin, J. A.; Utsuno, Y.

    2017-04-01

    We report on the first detailed study of intruder configurations in the ground state of 30Ne by means of the 12C(30Ne, 29Ne+γ)X one-neutron knockout reaction at 228 MeV/nucleon. Using a combined analysis of individual parallel momentum distributions and partial cross sections we find: (a) comparable p- and d-wave removal strength to 29Ne final states with excitation energies below 200 keV, and (b) significant p-wave removal strength to the 620 keV state of 29Ne, and (c) no evidence for f-wave intruder strength leading to bound 29Ne final states. The SDPF-U-MIX shell model calculation in the sd- pf model space provides a better overall agreement with the measured energy levels of 29Ne and the fp-intruder amplitudes in 30Ne than the SDPF-M prediction, suggesting that the refinement of the sd- pf cross shell interaction and extension of the model space to include the 2p1/2 and 1f5/2 levels are important for understanding the island of inversion.

  16. Quench of a symmetry-broken ground state

    NASA Astrophysics Data System (ADS)

    Giampaolo, S. M.; Zonzo, G.

    2017-01-01

    We analyze the problem of how different ground states associated with the same set of Hamiltonian parameters evolve after a sudden quench. To realize our analysis we define a quantitative approach to the local distinguishability between different ground states of a magnetically ordered phase in terms of the trace distance between the reduced density matrices obtained by projecting two ground states in the same subset. Before the quench, regardless of the particular choice of subset, any system in a magnetically ordered phase is characterized by ground states that are locally distinguishable. On the other hand, after the quench, the maximum distinguishability shows an exponential decay in time. Hence, in the limit of very long times, all the information about the particular initial ground state is lost even if the systems are integrable. We prove our claims in the framework of the magnetically ordered phases that characterize both the X Y and the N -cluster Ising models. The fact that we find similar behavior in models within different classes of symmetry makes us confident about the generality of our results.

  17. Measuring Nuclear Effects with MINERvA

    NASA Astrophysics Data System (ADS)

    Fiorentini, G.; Minerva Collaboration

    2011-04-01

    MINERνA (Main INjector Experiment for ν-A) is a neutrino scattering experiment in the 1-10 GeV energy range in the NuMI high-intensity neutrino beam at the Fermi National Accelerator Laboratory. MINERνA is now taking data and it was designed to measure neutrino-nucleus cross sections on a variety of different materials (C, Fe, Pb, He, H2O) allowing the study of nuclear effects and the A-dependence in neutrino interactions. This talk will present the current status in the analysis of inclusive charge current events in the iron, lead, and plastic targets.

  18. Ground-state configuration of neutron-rich 35Al via Coulomb breakup

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Datta, Ushasi; Aumann, T.; Beceiro-Novo, S.; Boretzky, K.; Caesar, C.; Carlson, B. V.; Catford, W. N.; Chartier, M.; Cortina-Gil, D.; De Angelis, G.; Fernandez, P. Diaz; Emling, H.; Ershova, O.; Fraile, L. M.; Geissel, H.; Gonzalez-Diaz, D.; Johansson, H.; Jonson, B.; Kalantar-Nayestanaki, N.; Kröll, T.; Krücken, R.; Langer, C.; Le Bleis, T.; Leifels, Y.; Marganiec, J.; Münzenberg, G.; Najafi, M. A.; Nilsson, T.; Nociforo, C.; Panin, V.; Plag, R.; Rahaman, A.; Reifarth, R.; Ricciardi, M. V.; Rigollet, C.; Rossi, D.; Scheidenberger, C.; Scheit, H.; Simon, H.; Taylor, J. T.; Togano, Y.; Typel, S.; Utsuno, Y.; Wagner, A.; Wamers, F.; Weick, H.; Winfield, J. S.

    2017-09-01

    The ground-state configuration of 35Al has been studied via Coulomb dissociation (CD) using the LAND-FRS setup (GSI, Darmstadt) at a relativistic energy of ˜403 MeV/nucleon. The measured inclusive differential CD cross section for 35Al, integrated up to 5.0 MeV relative energy between the 34Al core and the neutron using a Pb target, is 78(13) mb. The exclusive measured CD cross section that populates various excited states of 34Al is 29(7) mb. The differential CD cross section of 35Al→34Al+n has been interpreted in the light of a direct breakup model, and it suggests that the possible ground-state spin and parity of 35Al could be, tentatively, 1 /2+ or 3 /2+ or 5 /2+ . The valence neutrons, in the ground state of 35Al, may occupy a combination of either l =3 ,0 or l =1 ,2 orbitals coupled with the 34Al core in the ground and isomeric state(s), respectively. This hints of a particle-hole configuration of the neutron across the magic shell gaps at N =20 ,28 which suggests narrowing the magic shell gap. If the 5 /2+ is the ground-state spin-parity of 35Al as suggested in the literature, then the major ground-state configuration of 35Al is a combination of 34Al(g.s.;4-) ⊗νp3/2 and 34Al(isomer;1+) ⊗νd3/2 states. The result from this experiment has been compared with that from a previous knockout measurement and a calculation using the SDPF-M interaction.

  19. Cross section measurements via residual nuclear decays: Analysis methods

    SciTech Connect

    Zhou Fengqun; Gao Lei; Li Kuohu; Song Yueli; Zhang Fang; Kong Xiangzhong; Luo Junhua

    2009-11-15

    We develop an approach to calculating the pure cross section of the ground state of artificial radioactive nuclides that subtracts the effect of an excited state on the ground state. We apply a formalism to obtaining pure cross sections by subtracting the effect of excited states in the reactions {sup 122}Te(n,2n){sup 121}Te{sup g} and {sup 128}Te(n,2n){sup 127}Te{sup g}, induced by neutrons of about 14 MeV. The cross sections are measured by an activation relative to the {sup 93}Nb(n,2n){sup 92}Nb{sup m} reaction and are compared with results that take into account the effect of the excited state. Measurements are carried out by {gamma} detection using a coaxial high-purity germanium (HPGe) detector. As samples, spectroscopically pure Te powder is used. The fast neutrons are produced by the {sup 3}H(d,n){sup 4}He reaction. The neutron energies in these measurements are determined using the method of cross-section ratios between the {sup 90}Zr(n,2n){sup 89}Zr{sup m+g} and {sup 93}Nb(n,2n){sup 92}Nb{sup m} reactions.

  20. An accurate optical technique for measuring the nuclear polarisation of 3He gas

    NASA Astrophysics Data System (ADS)

    Talbot, C.; Batz, M.; Nacher, P.-J.; Tastevin, G.

    2011-06-01

    In the metastability exchange optical pumping cells of our on-site production unit and of our other experimental set-ups, we use a light absorption technique to measure the 3He nuclear polarisation. It involves weak probe beams at 1083 nm, that are either perpendicular or parallel to the magnetic field and cell axis, with suitable light polarisations. When metastability exchange collisions control the populations of the sublevels in the 23S state, absolute values of the 3He ground state nuclear polarisation are directly inferred from the ratio of the absorption rates measured for these probe beams. Our report focuses on the transverse detection scheme for which this ratio, measured at low magnetic field for σ and π light polarisations, hardly depends on gas pressure or the presence of an intense pump beam. This technique has been systematically tested both in pure 3He and isotopic mixtures and it is routinely used for accurate control of the optical pumping efficiency as well as for calibration of the NMR system.

  1. Magnetostriction-driven ground-state stabilization in 2H perovskites

    DOE PAGES

    Porter, D. G.; Senn, M. S.; Khalyavin, D. D.; ...

    2016-10-04

    In this paper, the magnetic ground state of Sr3ARuO6, with A =(Li,Na), is studied using neutron diffraction, resonant x-ray scattering, and laboratory characterization measurements of high-quality crystals. Combining these results allows us to observe the onset of long-range magnetic order and distinguish the symmetrically allowed magnetic models, identifying in-plane antiferromagnetic moments and a small ferromagnetic component along the c axis. While the existence of magnetic domains masks the particular in-plane direction of the moments, it has been possible to elucidate the ground state using symmetry considerations. We find that due to the lack of local anisotropy, antisymmetric exchange interactions controlmore » the magnetic order, first through structural distortions that couple to in-plane antiferromagnetic moments and second through a high-order magnetoelastic coupling that lifts the degeneracy of the in-plane moments. Finally, the symmetry considerations used to rationalize the magnetic ground state are very general and will apply to many systems in this family, such as Ca3ARuO6, with A = (Li,Na), and Ca3LiOsO6 whose magnetic ground states are still not completely understood.« less

  2. Magnetostriction-driven ground-state stabilization in 2H perovskites

    NASA Astrophysics Data System (ADS)

    Porter, D. G.; Senn, M. S.; Khalyavin, D. D.; Cortese, A.; Waterfield-Price, N.; Radaelli, P. G.; Manuel, P.; zur-Loye, H.-C.; Mazzoli, C.; Bombardi, A.

    2016-10-01

    The magnetic ground state of Sr3A RuO6 , with A =(Li ,Na ) , is studied using neutron diffraction, resonant x-ray scattering, and laboratory characterization measurements of high-quality crystals. Combining these results allows us to observe the onset of long-range magnetic order and distinguish the symmetrically allowed magnetic models, identifying in-plane antiferromagnetic moments and a small ferromagnetic component along the c axis. While the existence of magnetic domains masks the particular in-plane direction of the moments, it has been possible to elucidate the ground state using symmetry considerations. We find that due to the lack of local anisotropy, antisymmetric exchange interactions control the magnetic order, first through structural distortions that couple to in-plane antiferromagnetic moments and second through a high-order magnetoelastic coupling that lifts the degeneracy of the in-plane moments. The symmetry considerations used to rationalize the magnetic ground state are very general and will apply to many systems in this family, such as Ca3A RuO6 , with A =(Li ,Na ) , and Ca3LiOsO6 whose magnetic ground states are still not completely understood.

  3. Magnetostriction-driven ground-state stabilization in 2H perovskites

    SciTech Connect

    Porter, D. G.; Senn, M. S.; Khalyavin, D. D.; Cortese, A.; Waterfield-Price, N.; Radaelli, P. G.; Manuel, P.; zur-Loye, H. -C.; Mazzoli, C.; Bombardi, A.

    2016-10-04

    In this paper, the magnetic ground state of Sr3ARuO6, with A =(Li,Na), is studied using neutron diffraction, resonant x-ray scattering, and laboratory characterization measurements of high-quality crystals. Combining these results allows us to observe the onset of long-range magnetic order and distinguish the symmetrically allowed magnetic models, identifying in-plane antiferromagnetic moments and a small ferromagnetic component along the c axis. While the existence of magnetic domains masks the particular in-plane direction of the moments, it has been possible to elucidate the ground state using symmetry considerations. We find that due to the lack of local anisotropy, antisymmetric exchange interactions control the magnetic order, first through structural distortions that couple to in-plane antiferromagnetic moments and second through a high-order magnetoelastic coupling that lifts the degeneracy of the in-plane moments. Finally, the symmetry considerations used to rationalize the magnetic ground state are very general and will apply to many systems in this family, such as Ca3ARuO6, with A = (Li,Na), and Ca3LiOsO6 whose magnetic ground states are still not completely understood.

  4. Polarization memory in the nonpolar magnetic ground state of multiferroic CuFeO2

    NASA Astrophysics Data System (ADS)

    Beilsten-Edmands, J.; Magorrian, S. J.; Foronda, F. R.; Prabhakaran, D.; Radaelli, P. G.; Johnson, R. D.

    2016-10-01

    We investigate polarization memory effects in single-crystal CuFeO2, which has a magnetically induced ferroelectric phase at low temperatures and applied B fields between 7.5 and 13 T. Following electrical poling of the ferroelectric phase, we find that the nonpolar collinear antiferromagnetic ground state at B =0 T retains a strong memory of the polarization magnitude and direction, such that upon reentering the ferroelectric phase a net polarization of comparable magnitude to the initial polarization is recovered in the absence of external bias. This memory effect is very robust: in pulsed-magnetic-field measurements, several pulses into the ferroelectric phase with reverse bias are required to switch the polarization direction, with significant switching only seen after the system is driven out of the ferroelectric phase and ground state either magnetically (by application of B >13 T) or thermally. The memory effect is also largely insensitive to the magnetoelastic domain composition, since no change in the memory effect is observed for a sample driven into a single-domain state by application of stress in the [1 1 ¯0 ] direction. On the basis of Monte Carlo simulations of the ground-state spin configurations, we propose that the memory effect is due to the existence of helical domain walls within the nonpolar collinear antiferromagnetic ground state, which would retain the helicity of the polar phase for certain magnetothermal histories.

  5. Estimation of beryllium ground state energy by Monte Carlo simulation

    SciTech Connect

    Kabir, K. M. Ariful; Halder, Amal

    2015-05-15

    Quantum Monte Carlo method represent a powerful and broadly applicable computational tool for finding very accurate solution of the stationary Schrödinger equation for atoms, molecules, solids and a variety of model systems. Using variational Monte Carlo method we have calculated the ground state energy of the Beryllium atom. Our calculation are based on using a modified four parameters trial wave function which leads to good result comparing with the few parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron locations to estimate the ground state energy of Beryllium. Our calculation gives good estimation for the ground state energy of the Beryllium atom comparing with the corresponding exact data.

  6. Ground-state geometric quantum computing in superconducting systems

    SciTech Connect

    Solinas, P.; Moettoenen, M.

    2010-11-15

    We present a theoretical proposal for the implementation of geometric quantum computing based on a Hamiltonian which has a doubly degenerate ground state. Thus the system which is steered adiabatically, remains in the ground-state. The proposed physical implementation relies on a superconducting circuit composed of three SQUIDs and two superconducting islands with the charge states encoding the logical states. We obtain a universal set of single-qubit gates and implement a nontrivial two-qubit gate exploiting the mutual inductance between two neighboring circuits, allowing us to realize a fully geometric ground-state quantum computing. The introduced paradigm for the implementation of geometric quantum computing is expected to be robust against environmental effects.

  7. The Yukawa potential: ground state energy and critical screening

    NASA Astrophysics Data System (ADS)

    Edwards, James P.; Gerber, Urs; Schubert, Christian; Trejo, Maria A.; Weber, Axel

    2017-08-01

    We study the ground state energy and the critical screening parameter of the Yukawa potential in nonrelativistic quantum mechanics. After a short review of the existing literature on these quantities, we apply fifth-order perturbation theory to the calculation of the ground state energy, using the exact solutions of the Coulomb potential together with a cutoff on the principal number summations. We also perform a variational calculation of the ground state energy using a Coulomb-like radial wave function and the exact solution of the corresponding minimization condition. For not too large values of the screening parameter, close agreement is found between the perturbative and variational results. For the critical screening parameter, we devise a novel method that permits us to determine it to 10 digits. This is the most precise calculation of this quantity to date, and allows us to resolve some discrepancies between previous results.

  8. Improved fair sampling of ground states in Ising spin glasses

    NASA Astrophysics Data System (ADS)

    Katzgraber, Helmut G.; Zhu, Zheng; Ochoa, Andrew J.

    2015-03-01

    Verifying that an optimization approach can sample all solutions that minimize a Hamiltonian is a stringent test for any newly-developed algorithm. While most solvers easily compute the minimum of a cost function for small to moderate input sizes, equiprobable sampling of all ground-state configurations (within Poissonian fluctuations) is much harder to obtain. Most notably, methods such as transverse-field quantum annealing fail in passing this test for certain highly-degenerate problems. Here we present an attempt to sample ground states for Ising spin glasses based on a combination of low-temperature parallel tempering Monte Carlo combined with the cluster algorithm by Houdayer. Because the latter is rejection free and obeys details balance, the ground-state manifold is efficiently sampled. We illustrate the approach for Ising spin glasses on the D-Wave Two quantum annealer topology, known as the Chimera graph, as well as two-dimensional Ising spin glasses.

  9. Magnetic field induced lattice ground states from holography

    NASA Astrophysics Data System (ADS)

    Bu, Yan-Yan; Erdmenger, Johanna; Shock, Jonathan P.; Strydom, Migael

    2013-03-01

    We study the holographic field theory dual of a probe SU(2) Yang-Mills field in a background (4 + 1)-dimensional asymptotically Anti-de Sitter space. We find a new ground state when a magnetic component of the gauge field is larger than a critical value. The ground state forms a triangular Abrikosov lattice in the spatial directions perpendicular to the magnetic field. The lattice is composed of superconducting vortices induced by the condensation of a charged vector operator. We perform this calculation both at finite temperature and at zero temperature with a hard wall cutoff dual to a confining gauge theory. The study of this state may be of relevance to both holographic condensed matter models as well as to heavy ion physics. The results shown here provide support for the proposal that such a ground state may be found in the QCD vacuum when a large magnetic field is present.

  10. Ferromagnetic Ground States in Face-Centered Cubic Hubbard Clusters

    PubMed Central

    Souza, T. X. R.; Macedo, C. A.

    2016-01-01

    In this study, the ground state energies of face-centered cubic Hubbard clusters are analyzed using the Lanczos method. Examination of the ground state energy as a function of the number of particle per site n showed an energy minimum for face-centered cubic structures. This energy minimum decreased in n with increasing coulombic interaction parameter U. We found that the ground state energy had a minimum at n = 0.6, when U = 3W, where W denotes the non-interacting energy bandwidth and the face-centered cubic structure was ferromagnetic. These results, when compared with the properties of nickel, shows strong similarity with other finite temperature analyses in the literature and supports the Hirsh’s conjecture that the interatomic direct exchange interaction dominates in driving the system into a ferromagnetic phase. PMID:27583653

  11. Highly Entangled Ground States in Tripartite Qubit Systems

    NASA Astrophysics Data System (ADS)

    Röthlisberger, Beat; Lehmann, Jörg; Saraga, D. S.; Traber, Philipp; Loss, Daniel

    2008-03-01

    We investigate the creation of highly entangled ground states in a system of three exchange-coupled qubits arranged in a ring geometry. Suitable magnetic field configurations yielding approximate Greenberger-Horne-Zeilinger and exact W ground states are identified. The entanglement in the system is studied at finite temperature in terms of the mixed-state tangle τ. By generalizing a conjugate gradient optimization algorithm originally developed to evaluate the entanglement of formation, we demonstrate that τ can be calculated efficiently and with high precision. We identify the parameter regime for which the equilibrium entanglement of the tripartite system reaches its maximum.

  12. Antibonding ground state of adatom molecules in bulk Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Marques, Y.; Obispo, A. E.; Ricco, L. S.; de Souza, M.; Shelykh, I. A.; Seridonio, A. C.

    2017-07-01

    The ground state of the diatomic molecules in nature is inevitably bonding, and its first excited state is antibonding. We demonstrate theoretically that, for a pair of distant adatoms placed buried in three-dimensional-Dirac semimetals, this natural order of the states can be reversed and an antibonding ground state occurs at the lowest energy of the so-called bound states in the continuum. We propose an experimental protocol with the use of a scanning tunneling microscope tip to visualize the topographic map of the local density of states on the surface of the system to reveal the emerging physics.

  13. Homogeneous binary trees as ground states of quantum critical Hamiltonians

    NASA Astrophysics Data System (ADS)

    Silvi, P.; Giovannetti, V.; Montangero, S.; Rizzi, M.; Cirac, J. I.; Fazio, R.

    2010-06-01

    Many-body states whose wave functions admit a representation in terms of a uniform binary-tree tensor decomposition are shown to obey power-law two-body correlation functions. Any such state can be associated with the ground state of a translationally invariant Hamiltonian which, depending on the dimension of the systems sites, involves at most couplings between third-neighboring sites. Under general conditions it is shown that they describe unfrustrated systems which admit an exponentially large degeneracy of the ground state.

  14. From local to global ground states in Ising spin glasses

    NASA Astrophysics Data System (ADS)

    Zintchenko, Ilia; Hastings, Matthew B.; Troyer, Matthias

    2015-01-01

    We consider whether it is possible to find ground states of frustrated spin systems by solving them locally. Using spin glass physics and Imry-Ma arguments in addition to numerical benchmarks we quantify the power of such local solution methods and show that for the average low-dimensional spin glass problem outside the spin glass phase the exact ground state can be found in polynomial time. In the second part we present a heuristic, general-purpose hierarchical approach which for spin glasses on chimera graphs and lattices in two and three dimensions outperforms, to our knowledge, any other solver currently around, with significantly better scaling performance than simulated annealing.

  15. A Remark on the Ground State Energy of Bosonic Atoms

    NASA Astrophysics Data System (ADS)

    Hogreve, H.

    2011-08-01

    Monotonicity properties of the ground state energy of bosonic atoms as established in a recent paper by M.K.H. Kiessling [J. Stat. Phys. 139:1063 (2009)] are studied. Symmetry and scaling arguments lead to a more direct proof of a slightly stronger result of this monotonicity and the behavior of the ground state energy as a function of the number of bosonic electrons. Furthermore, invoking appropriate lower and upper bounds on two-electron systems, the stability of the bosonics He- ion is rigorously demonstrated.

  16. Ground state microstructure of a ferrofluid thin layer

    SciTech Connect

    Prokopieva, T. A.; Danilov, V. A.; Kantorovich, S. S.

    2011-09-15

    Using a fine weave of theoretical analysis and computer simulations, we found various aggregates of magnetic single-domain nanoparticles, which can form in a quasi-two-dimensional (q2D) ferrofluid layer at low temperatures. Our theoretical investigation allowed us to obtain exact expressions and their asymptotes for the energies of each configuration. Thus, for ferrofluid q2D layers it proved possible to identify the ground states as a function of the particle number, size, and other system parameters. Our suggested approach can be used for the investigation of ground state structures in systems with more complex interparticle interactions.

  17. Ground states of the SU(N) Heisenberg model.

    PubMed

    Kawashima, Naoki; Tanabe, Yuta

    2007-02-02

    The SU(N) Heisenberg model with various single-row representations is investigated by quantum Monte Carlo simulations. While the zero-temperature phase boundary agrees qualitatively with the theoretical predictions based on the 1/N expansion, some unexpected features are also observed. For N> or =5 with the fundamental representation, for example, it is suggested that the ground states possess exact or approximate U(1) degeneracy. In addition, for the representation of Young tableau with more than one column, the ground state shows no valence-bond-solid order even at N greater than the threshold value.

  18. Toward Triplet Ground State NaLi Molecules

    NASA Astrophysics Data System (ADS)

    Ebadi, Sepehr; Jamison, Alan; Rvachov, Timur; Jing, Li; Son, Hyungmok; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2016-05-01

    The NaLi molecule is expected to have a long lifetime in the triplet ground-state due to its fermionic nature, large rotational constant, and weak spin-orbit coupling. The triplet state has both electric and magnetic dipole moments, affording unique opportunities in quantum simulation and ultracold chemistry. We have mapped the excited state NaLi triplet potential by means of photoassociation spectroscopy. We report on this and our further progress toward the creation of the triplet ground-state molecules using STIRAP. NSF, ARO-MURI, Samsung, NSERC.

  19. Ground state destabilization from a positioned general base in the ketosteroid isomerase active site.

    PubMed

    Ruben, Eliza A; Schwans, Jason P; Sonnett, Matthew; Natarajan, Aditya; Gonzalez, Ana; Tsai, Yingssu; Herschlag, Daniel

    2013-02-12

    We compared the binding affinities of ground state analogues for bacterial ketosteroid isomerase (KSI) with a wild-type anionic Asp general base and with uncharged Asn and Ala in the general base position to provide a measure of potential ground state destabilization that could arise from the close juxtaposition of the anionic Asp and hydrophobic steroid in the reaction's Michaelis complex. The analogue binding affinity increased ~1 order of magnitude for the Asp38Asn mutation and ~2 orders of magnitude for the Asp38Ala mutation, relative to the affinity with Asp38, for KSI from two sources. The increased level of binding suggests that the abutment of a charged general base and a hydrophobic steroid is modestly destabilizing, relative to a standard state in water, and that this destabilization is relieved in the transition state and intermediate in which the charge on the general base has been neutralized because of proton abstraction. Stronger binding also arose from mutation of Pro39, the residue adjacent to the Asp general base, consistent with an ability of the Asp general base to now reorient to avoid the destabilizing interaction. Consistent with this model, the Pro mutants reduced or eliminated the increased level of binding upon replacement of Asp38 with Asn or Ala. These results, supported by additional structural observations, suggest that ground state destabilization from the negatively charged Asp38 general base provides a modest contribution to KSI catalysis. They also provide a clear illustration of the well-recognized concept that enzymes evolve for catalytic function and not, in general, to maximize ground state binding. This ground state destabilization mechanism may be common to the many enzymes with anionic side chains that deprotonate carbon acids.

  20. Evolution of nuclear shapes in odd-mass yttrium and niobium isotopes from lifetime measurements following fission reactions

    NASA Astrophysics Data System (ADS)

    Hagen, T. W.; Görgen, A.; Korten, W.; Grente, L.; Salsac, M.-D.; Farget, F.; Ragnarsson, I.; Braunroth, T.; Bruyneel, B.; Celikovic, I.; Clément, E.; de France, G.; Delaune, O.; Dewald, A.; Dijon, A.; Hackstein, M.; Jacquot, B.; Litzinger, J.; Ljungvall, J.; Louchart, C.; Michelagnoli, C.; Napoli, D. R.; Recchia, F.; Rother, W.; Sahin, E.; Siem, S.; Sulignano, B.; Theisen, Ch.; Valiente-Dobon, J. J.

    2017-03-01

    Lifetimes of excited states in 99Y,101Y,101Nb,103Nb, and 105Nb were measured in an experiment using the recoil distance Doppler shift method at GANIL (Grand Accélérateur National d'Ions Lourds). The neutron-rich nuclei were produced in fission reactions between a 238U beam and a 9Be target. Prompt γ rays were measured with the EXOGAM array and correlated with fission fragments that were identified in mass and atomic number with the VAMOS++ spectrometer. The measured lifetimes, together with branching ratios, provide B (M 1 ) and B (E 2 ) values for the strongly coupled rotational bands built on the [422 ] 5 /2+ ground state in the Y and Nb nuclei with neutron number N ≥60 . The comparison of the experimental results with triaxial particle-rotor calculations provides information about the evolution of the nuclear shape in this mass region.

  1. Quantum mechanical ground state of hydrogen obtained from classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Cole, Daniel C.; Zou, Yi

    2003-10-01

    The behavior of a classical charged point particle under the influence of only a Coulombic binding potential and classical electromagnetic zero-point radiation, is shown to agree closely with the probability density distribution of Schrödinger's wave equation for the ground state of hydrogen. These results again raise the possibility that the main tenets of stochastic electrodynamics (SED) are correct.

  2. Ground states of the massless Derezinski-Gerard model

    SciTech Connect

    Ohkubo, Atsushi

    2009-11-15

    We consider the massless Derezinski-Gerard model introduced by Derezinski and Gerard in 1999. We give a sufficient condition for the existence of a ground state of the massless Derezinski-Gerard model without the assumption that the Hamiltonian of particles has compact resolvent.

  3. The wave function for the ground state of H

    NASA Astrophysics Data System (ADS)

    Fontenelle, Marcia T.; Gallas, Jason A. C.; Gallas, Marcia R.

    1986-10-01

    The ground-state energy of H(-) is investigated using a variational function proposed by Wu and Tsai (1985). Contrary to the conclusions of Wu and Tsai, it is found that the Wu and Tsai function produces results comparable with a previous calculation of Williamson (1942). Furthermore, the explicit formulas given in the present paper can easily be applied to the helium isoelectronic series.

  4. Advantages of Unfair Quantum Ground-State Sampling.

    PubMed

    Zhang, Brian Hu; Wagenbreth, Gene; Martin-Mayor, Victor; Hen, Itay

    2017-04-21

    The debate around the potential superiority of quantum annealers over their classical counterparts has been ongoing since the inception of the field. Recent technological breakthroughs, which have led to the manufacture of experimental prototypes of quantum annealing optimizers with sizes approaching the practical regime, have reignited this discussion. However, the demonstration of quantum annealing speedups remains to this day an elusive albeit coveted goal. We examine the power of quantum annealers to provide a different type of quantum enhancement of practical relevance, namely, their ability to serve as useful samplers from the ground-state manifolds of combinatorial optimization problems. We study, both numerically by simulating stoquastic and non-stoquastic quantum annealing processes, and experimentally, using a prototypical quantum annealing processor, the ability of quantum annealers to sample the ground-states of spin glasses differently than thermal samplers. We demonstrate that (i) quantum annealers sample the ground-state manifolds of spin glasses very differently than thermal optimizers (ii) the nature of the quantum fluctuations driving the annealing process has a decisive effect on the final distribution, and (iii) the experimental quantum annealer samples ground-state manifolds significantly differently than thermal and ideal quantum annealers. We illustrate how quantum annealers may serve as powerful tools when complementing standard sampling algorithms.

  5. Tuning ground states and excitations in complex electronic materials

    SciTech Connect

    Bishop, A.R.

    1996-09-01

    Modern electronic materials are characterized by a great variety of broken-symmetry ground states and excitations. Their control requires understanding and tuning underlying driving forces of spin-charge-lattice coupling, critical to macroscopic properties and applications. We report representative model calculations which demonstrate some of the richness of the phenomena and the challenges for successful microscopic modeling.

  6. Geochemical Controls on Nuclear Magnetic Resonance Measurements

    SciTech Connect

    Knight, Rosemary; Prasad, Manika; Keating, Kristina

    2003-11-11

    OAK-B135 Our research objectives are to determine, through an extensive set of laboratory experiments, the effect of the specific mineralogic form of iron and the effect of the distribution of iron on proton nuclear magnetic resonance (NMR) relaxation mechanisms. In the first nine months of this project, we have refined the experimental procedures to be used in the acquisition of the laboratory NMR data; have ordered, and conducted preliminary measurements on, the sand samples to be used in the experimental work; and have revised and completed the theoretical model to use in this project. Over the next year, our focus will be on completing the first phase of the experimental work where the form and distribution of the iron in the sands in varied.

  7. Nuclear Resonance Fluorescence Measurements of High Explosives

    SciTech Connect

    Caggiano, Joseph A.; Warren, Glen A.; Korbly, Steve; Hasty, R.; Klimenko, A.; Park, William H.

    2007-12-31

    Pacific Northwest National Laboratory and Passport Systems have collaborated to perform Nuclear Resonance Fluorescence experiments using several high quality high-explosive simulant samples. These measurements were conducted to determine the feasibility of finding and characterizing high explosive material by NRF interrogation. Electron beams of 5.1, 5.3, 8, and 10 MeV were used to produce bremsstrahlung photon beams, which irradiated the samples. The gamma-ray spectra were collected using high-purity germanium detectors. Nitrogen-to-carbon ratios of the high-explosive simulants were extracted from the 5.1 and 5.3 MeV data and compare favorably with accepted values. Analysis of the 8 and 10 MeV data is in progress; preliminary isotopic comparisons within the samples are consistent with the expected results.

  8. A shielded measurement system for irradiated nuclear fuel measurements

    SciTech Connect

    Mosby, W.R.; Aumeier, S.E.; Klann, R.T.

    1999-07-01

    The US Department of Energy (DOE) is driving a transition toward dry storage of irradiated nuclear fuel (INF), toward characterization of INF for final disposition, and toward resumption of measurement-based material control and accountability (MC and A) efforts for INF. For these reasons, the ability to efficiently acquire radiological measurements of INF in a dry environment is important. The DOE has recently developed a guidance document proposing MC and A requirements for INF. The intent of this document is to encourage the direct measurement of INF on inventory within DOE. The guidance document reinforces and clarifies existing material safeguards requirements as they pertain to INF. Validation of nuclear material contents of non-self-protecting INF must be accomplished by direct measurement, application of validated burnup codes using qualified initial fissile content, burnup data, and age or by other valid means. The fuel units must remain intact with readable identification numbers. INF may be subject to periodic inventories with visual item accountability checks. Quantitative measurements may provide greater assurance of the integrity of INF inventories at a lower cost and with less personnel exposure than visual item accountability checks. Currently, several different approaches are used to measure the radiological attributes of INF. Although these systems are useful for a wide variety of applications, there is currently no relatively inexpensive measurement system that is readily deployable for INF measurements for materials located in dry storage. The authors present the conceptual design of a shielded measurement system (SMS) that could be used for this purpose. The SMS consists of a shielded enclosure designed to house a collection of measurement systems to allow measurements on spent fuel outside of a hot cell. The phase 1 SMS will contain {sup 3}He detectors and ionization chambers to allow for gross neutron and gamma-ray measurements. The phase 2

  9. Two-loop self-energy for the ground state of medium-Z hydrogenlike ions

    SciTech Connect

    Yerokhin, V. A.

    2009-10-15

    The two-loop self-energy correction to the ground-state Lamb shift is calculated for hydrogenlike ions with the nuclear charge Z=10-30 without any expansion in the binding field of the nucleus. A calculational technique is reported for treatment of Feynman diagrams in the mixed coordinate-momentum representation, which yields significant improvement in numerical accuracy as compared to previous results. An extrapolation of the all-order numerical data yields a result for the higher-order remainder function for hydrogen. The previously reported disagreement between the all-order and the perturbative approaches is reduced to the marginal agreement.

  10. Hyperfine structure of the ground state in muonic-lithium ions

    SciTech Connect

    Martynenko, A. P. Ulybin, A. A.

    2016-03-15

    Small intervals of the hyperfine structure of the ground state in the muonic-lithium ions (μe{sub 3}{sup 6,7}Li){sup +} were calculated by perturbation theory in the fine-structure constant and in the electronto- muon mass ratio. Vacuum-polarization, recoil, and nuclear-structure effects and electron vertex corrections were taken into account. The values obtained for the small hyperfine-splitting intervals can be used in a comparison with future experimental data and in tests of quantum electrodynamics.

  11. Calculation of the ground state properties of even-even Sn isotopes

    SciTech Connect

    Aytekin, H. Baldik, R.; Tel, E.

    2010-06-15

    We investigate the ground-state properties of even-even Sn isotopes using the Skyrme-Hartree-Fock (SHF) and Skyrme-Hartree-Fock-Bogolyubov (SHFB) methods with SKM* and SLy4 force parameters. We focus on isotopes of even-even Sn because these isotopes are vital to the structural studies of unstable nuclei taking place at the electron radioactive-ion collider at RIKEN. In the present paper, we calculate the binding energies per particle, the rms nuclear charge radii, the rms nuclear proton density radii, and the rms nuclear neutron density radii, for even-even Sn isotopes, using the SHF and SHFB methods. We compare our results with experimental data and with the results of relativistic mean-field theory. Notably, we fit our calculated binding energies per particle to experimental results, using the aforementioned SHF methods with SKM* and SLy4 parameters

  12. Realization of ground-state artificial skyrmion lattices at room temperature

    PubMed Central

    Gilbert, Dustin A.; Maranville, Brian B.; Balk, Andrew L.; Kirby, Brian J.; Fischer, Peter; Pierce, Daniel T.; Unguris, John; Borchers, Julie A.; Liu, Kai

    2015-01-01

    The topological nature of magnetic skyrmions leads to extraordinary properties that provide new insights into fundamental problems of magnetism and exciting potentials for novel magnetic technologies. Prerequisite are systems exhibiting skyrmion lattices at ambient conditions, which have been elusive so far. Here, we demonstrate the realization of artificial Bloch skyrmion lattices over extended areas in their ground state at room temperature by patterning asymmetric magnetic nanodots with controlled circularity on an underlayer with perpendicular magnetic anisotropy (PMA). Polarity is controlled by a tailored magnetic field sequence and demonstrated in magnetometry measurements. The vortex structure is imprinted from the dots into the interfacial region of the underlayer via suppression of the PMA by a critical ion-irradiation step. The imprinted skyrmion lattices are identified directly with polarized neutron reflectometry and confirmed by magnetoresistance measurements. Our results demonstrate an exciting platform to explore room-temperature ground-state skyrmion lattices. PMID:26446515

  13. Ground state and intrinsic susceptibility of the kagome antiferromagnet vesignieite as seen by 51V NMR

    NASA Astrophysics Data System (ADS)

    Quilliam, J. A.; Bert, F.; Colman, R. H.; Boldrin, D.; Wills, A. S.; Mendels, P.

    2011-11-01

    The intrinsic magnetic susceptibility and local magnetization of the near-kagome quantum magnet vesignieite, Cu3BaV2O8(OH)2, are presented as measured using 51V NMR. The NMR line shift gives an accurate measurement of the intrinsic susceptibility of the kagome sites which closely resembles that of the quantum spin liquid herbertsmithite [A. Olariu , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.100.087202 100, 087202 (2008)]. It is therefore surprising that, at TC≃9 K, a transition to a heterogeneous ground state is observed. A gradual wipeout of half the NMR intensity indicates a slowly fluctuating spin liquid component, and a detailed analysis of the linewidth reveals the onset of static magnetism at the remaining half of the sites. It is proposed that this transition and unusual ground state originate from a nearby quantum critical point induced by the Dzyaloshinskii-Moriya interaction.

  14. Non-Gaussian ground-state deformations near a black-hole singularity

    NASA Astrophysics Data System (ADS)

    Hofmann, Stefan; Schneider, Marc

    2017-03-01

    The singularity theorem by Hawking and Penrose qualifies Schwarzschild black holes as geodesic incomplete space-times. Albeit this is a mathematically rigorous statement, it requires an operational framework that allows us to probe the spacelike singularity via a measurement process. Any such framework necessarily has to be based on quantum theory. As a consequence, the notion of classical completeness needs to be adapted to situations where the only adequate description is in terms of quantum fields in dynamical space-times. It is shown that Schwarzschild black holes turn out to be complete when probed by self-interacting quantum fields in the ground state and in excited states. The measure for populating quantum fields on hypersurfaces in the vicinity of the black-hole singularity goes to zero towards the singularity. This statement is robust under non-Gaussian deformations of and excitations relative to the ground state. The physical relevance of different completeness concepts for black holes is discussed.

  15. Realization of ground-state artificial skyrmion lattices at room temperature

    SciTech Connect

    Gilbert, Dustin A.; Maranville, Brian B.; Balk, Andrew L.; Kirby, Brian J.; Fischer, Peter; Pierce, Daniel T.; Unguris, John; Borchers, Julie A.; Liu, Kai

    2015-10-08

    We report that the topological nature of magnetic skyrmions leads to extraordinary properties that provide new insights into fundamental problems of magnetism and exciting potentials for novel magnetic technologies. Prerequisite are systems exhibiting skyrmion lattices at ambient conditions, which have been elusive so far. We demonstrate the realization of artificial Bloch skyrmion lattices over extended areas in their ground state at room temperature by patterning asymmetric magnetic nanodots with controlled circularity on an underlayer with perpendicular magnetic anisotropy (PMA). Polarity is controlled by a tailored magnetic field sequence and demonstrated in magnetometry measurements. The vortex structure is imprinted from the dots into the interfacial region of the underlayer via suppression of the PMA by a critical ion-irradiation step. In conclusion, the imprinted skyrmion lattices are identified directly with polarized neutron reflectometry and confirmed by magnetoresistance measurements. Our results demonstrate an exciting platform to explore room-temperature ground-state skyrmion lattices.

  16. Realization of ground-state artificial skyrmion lattices at room temperature.

    PubMed

    Gilbert, Dustin A; Maranville, Brian B; Balk, Andrew L; Kirby, Brian J; Fischer, Peter; Pierce, Daniel T; Unguris, John; Borchers, Julie A; Liu, Kai

    2015-10-08

    The topological nature of magnetic skyrmions leads to extraordinary properties that provide new insights into fundamental problems of magnetism and exciting potentials for novel magnetic technologies. Prerequisite are systems exhibiting skyrmion lattices at ambient conditions, which have been elusive so far. Here, we demonstrate the realization of artificial Bloch skyrmion lattices over extended areas in their ground state at room temperature by patterning asymmetric magnetic nanodots with controlled circularity on an underlayer with perpendicular magnetic anisotropy (PMA). Polarity is controlled by a tailored magnetic field sequence and demonstrated in magnetometry measurements. The vortex structure is imprinted from the dots into the interfacial region of the underlayer via suppression of the PMA by a critical ion-irradiation step. The imprinted skyrmion lattices are identified directly with polarized neutron reflectometry and confirmed by magnetoresistance measurements. Our results demonstrate an exciting platform to explore room-temperature ground-state skyrmion lattices.

  17. Realization of ground-state artificial skyrmion lattices at room temperature

    DOE PAGES

    Gilbert, Dustin A.; Maranville, Brian B.; Balk, Andrew L.; ...

    2015-10-08

    We report that the topological nature of magnetic skyrmions leads to extraordinary properties that provide new insights into fundamental problems of magnetism and exciting potentials for novel magnetic technologies. Prerequisite are systems exhibiting skyrmion lattices at ambient conditions, which have been elusive so far. We demonstrate the realization of artificial Bloch skyrmion lattices over extended areas in their ground state at room temperature by patterning asymmetric magnetic nanodots with controlled circularity on an underlayer with perpendicular magnetic anisotropy (PMA). Polarity is controlled by a tailored magnetic field sequence and demonstrated in magnetometry measurements. The vortex structure is imprinted from themore » dots into the interfacial region of the underlayer via suppression of the PMA by a critical ion-irradiation step. In conclusion, the imprinted skyrmion lattices are identified directly with polarized neutron reflectometry and confirmed by magnetoresistance measurements. Our results demonstrate an exciting platform to explore room-temperature ground-state skyrmion lattices.« less

  18. Nonlinear Ultrasonic Measurements in Nuclear Reactor Environments

    NASA Astrophysics Data System (ADS)

    Reinhardt, Brian T.

    Several Department of Energy Office of Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development (FCRD), Advanced Reactor Concepts (ARC), Light Water Reactor Sustainability, and Next Generation Nuclear Power Plants (NGNP), are investigating new fuels, materials, and inspection paradigms for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials during irradiation. In DOE-NE's FCRD program, ultrasonic based technology was identified as a key approach that should be pursued to obtain the high-fidelity, high-accuracy data required to characterize the behavior and performance of new candidate fuels and structural materials during irradiation testing. The radiation, high temperatures, and pressure can limit the available tools and characterization methods. In this thesis, two ultrasonic characterization techniques will be explored. The first, finite amplitude wave propagation has been demonstrated to be sensitive to microstructural material property changes. It is a strong candidate to determine fuel evolution; however, it has not been demonstrated for in-situ reactor applications. In this thesis, finite amplitude wave propagation will be used to measure the microstructural evolution in Al-6061. This is the first demonstration of finite amplitude wave propagation at temperatures in excess of 200 °C and during an irradiation test. Second, a method based on contact nonlinear acoustic theory will be developed to identify compressed cracks. Compressed cracks are typically transparent to ultrasonic wave propagation; however, by measuring harmonic content developed during finite amplitude wave propagation, it is shown that even compressed cracks can be characterized. Lastly, piezoelectric transducers capable of making these measurements are developed. Specifically, three piezoelectric sensors (Bismuth Titanate, Aluminum Nitride, and Zinc Oxide) are tested in the Massachusetts

  19. Ground state spontaneous fission half-lives from thorium to fermium

    SciTech Connect

    Holden, N.E.

    1988-01-01

    Measurements of the half-lives for spontaneous fission of the nuclidic ground states of elements from thorium to fermium have been compiled and evaluated. Recommended values are presented. An attempt has been made to distinguish between spontaneous fission and heavy ion emission. Spontaneously fissioning isomers have not been considered here. The difference between even-even nuclides and odd-even, even-odd and odd-odd nuclides are discussed. 3 tabs.

  20. Nuclear Mass Measurement and Evaluation Relevant to Astrophysics

    NASA Astrophysics Data System (ADS)

    Wang, Meng

    Nuclear mass data are crucial input for the astrophysics models. Thanks to the developments of radioactive nuclear beam facilities and novel mass spectrometers, the experimental knowledge of nuclear masses has been continuously expanding to the exotic nuclei far from the stability which play a critical role in astrophysics. The recent progress and future perspective of mass measurement relevant to astrophysics will be discussed. By evaluating all available experimental data from nuclear reactions, radioactive decays and direct mass measurements, the Atomic Mass Evaluation (AME) serve the research community with reliable source for comprehensive information related to the nuclear masses. The next AME version is envisioned to be published at the end of 2016.

  1. Strong-coupling corrections to ground-state properties of a superfluid Fermi gas

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyuki; van Wyk, Pieter; Hanai, Ryo; Kagamihara, Daichi; Inotani, Daisuke; Horikoshi, Munekazu; Ohashi, Yoji

    2017-04-01

    We theoretically present an economical and convenient way to study ground-state properties of a strongly interacting superfluid Fermi gas. Our strategy is that complicated strong-coupling calculations are used only to evaluate quantum fluctuation corrections to the chemical potential μ . Then, without any further strong-coupling calculations, we calculate the compressibility, sound velocity, internal energy, pressure, and Tan's contact, from the calculated μ without loss of accuracy, by using exact thermodynamic identities. Using a recent precise measurement of μ in a superfluid 6Li Fermi gas, we show that an extended T -matrix approximation (ETMA) is suitable for our purpose, especially in the BCS-unitary regime, where our results indicate that many-body corrections are dominated by superfluid fluctuations. Since precise determinations of physical quantities are not always easy in cold Fermi gas physics, our approach would greatly reduce experimental and theoretical efforts toward the understanding of ground-state properties of this strongly interacting Fermi system.

  2. Solvent dependence of ultrafast ground state recovery of the triphenylmethane dyes, brilliant green and malachite green

    NASA Astrophysics Data System (ADS)

    Nagasawa, Yutaka; Ando, Yoshito; Okada, Tadashi

    1999-10-01

    We have studied femtosecond ground state recovery dynamics of the triphenylmethane dyes brilliant green (BG) and malachite green (MG) by pump-probe spectroscopy at the center wavelength of 635 nm with a time resolution of 33 fs. The ultrafast recovery of the ground state bleach was highly nonexponential and depended on the solvent viscosity, although all time constants were shorter than the solvation times obtained from other measurements. We observed a plateau or a rise component in the signal, which indicates an intermediate state. The rise time showed a viscosity dependence, even in the ultrafast time domain. It should be noted that the decay times were always longer for BG than MG, while the rise time did not show a solute dependence. The torsional motion of the amino-substituted phenyl group may be involved in the ultrafast process to the intermediate state, but lack of a solute dependence indicates that only a small conformational change is involved.

  3. Quantum electrodynamics in strong electric fields: the ground-state Lamb shift in hydrogenlike uranium.

    PubMed

    Gumberidze, A; Stöhlker, Th; Banaś, D; Beckert, K; Beller, P; Beyer, H F; Bosch, F; Hagmann, S; Kozhuharov, C; Liesen, D; Nolden, F; Ma, X; Mokler, P H; Steck, M; Sierpowski, D; Tashenov, S

    2005-06-10

    X-ray spectra following radiative recombination of free electrons with bare uranium ions (U92+) were measured at the electron cooler of the ESR storage ring. The most intense lines observed in the spectra can be attributed to the characteristic Lyman ground-state transitions and to the recombination of free electrons into the K shell of the ions. Our experiment was carried out by utilizing the deceleration technique which leads to a considerable reduction of the uncertainties associated with Doppler corrections. This, in combination with the 0 degree observation geometry, allowed us to determine the ground-state Lamb shift in hydrogenlike uranium (U91+) from the observed x-ray lines with an accuracy of 1%. The present result is about 3 times more precise than the most accurate value available up to now and provides the most stringent test of bound-state quantum electrodynamics for one-electron systems in the strong-field regime.

  4. Creation of Ultracold 87Rb 133Cs Molecules in the Rovibrational Ground State

    NASA Astrophysics Data System (ADS)

    Molony, Peter K.; Gregory, Philip D.; Ji, Zhonghua; Lu, Bo; Köppinger, Michael P.; Le Sueur, C. Ruth; Blackley, Caroline L.; Hutson, Jeremy M.; Cornish, Simon L.

    2014-12-01

    We report the creation of a sample of over 1000 ultracold 87Rb 133Cs molecules in the lowest rovibrational ground state, from an atomic mixture of 87Rb and 133Cs, by magnetoassociation on an interspecies Feshbach resonance followed by stimulated Raman adiabatic passage (STIRAP). We measure the binding energy of the RbCs molecule to be h c ×3811.576 (1 ) cm-1 and the |v''=0 ,J''=0 ⟩ to |v''=0 ,J''=2 ⟩ splitting to be h ×2940.09 (6 ) MHz . Stark spectroscopy of the rovibrational ground state yields an electric dipole moment of 1.225(3)(8) D, where the values in parentheses are the statistical and systematic uncertainties, respectively. We can access a space-fixed dipole moment of 0.355(2)(4) D, which is substantially higher than in previous work.

  5. Creation of ultracold ^{87}Rb^{133}Cs molecules in the rovibrational ground state.

    PubMed

    Molony, Peter K; Gregory, Philip D; Ji, Zhonghua; Lu, Bo; Köppinger, Michael P; Le Sueur, C Ruth; Blackley, Caroline L; Hutson, Jeremy M; Cornish, Simon L

    2014-12-19

    We report the creation of a sample of over 1000 ultracold ^{87}Rb^{133}Cs molecules in the lowest rovibrational ground state, from an atomic mixture of ^{87}Rb and ^{133}Cs, by magnetoassociation on an interspecies Feshbach resonance followed by stimulated Raman adiabatic passage (STIRAP). We measure the binding energy of the RbCs molecule to be hc×3811.576(1)  cm^{-1} and the |v^{''}=0,J^{''}=0⟩ to |v^{''}=0,J^{''}=2⟩ splitting to be h×2940.09(6)  MHz. Stark spectroscopy of the rovibrational ground state yields an electric dipole moment of 1.225(3)(8) D, where the values in parentheses are the statistical and systematic uncertainties, respectively. We can access a space-fixed dipole moment of 0.355(2)(4) D, which is substantially higher than in previous work.

  6. Feasibility study of measuring the 229Th nuclear isomer transition with 233U-doped crystals

    NASA Astrophysics Data System (ADS)

    Stellmer, Simon; Schreitl, Matthias; Kazakov, Georgy A.; Sterba, Johannes H.; Schumm, Thorsten

    2016-07-01

    We propose a simple approach to measure the energy of the few-eV isomeric state in 229Th. To this end, 233U nuclei are doped into VUV-transparent crystals, where they undergo α decay into 229Th, and, with a probability of 2%, populate the isomeric state. These Thm229 nuclei may decay into the nuclear ground state under emission of the sought-after VUV γ ray, whose wavelength can be determined with a spectrometer. Based on measurements of the optical transmission of 238U:CaF2 crystals in the VUV range, we expect a signal at least two orders of magnitude larger compared to current schemes using surface implantation of recoil nuclei. The signal background is dominated by Cherenkov radiation induced by β decays of the thorium decay chain. We estimate that, even if the isomer undergoes radiative de-excitation with a probability of only 0.1%, the VUV γ ray can be detected within a reasonable measurement time.

  7. Ground-state structures of atomic metallic hydrogen.

    PubMed

    McMahon, Jeffrey M; Ceperley, David M

    2011-04-22

    Ab initio random structure searching using density functional theory is used to determine the ground-state structures of atomic metallic hydrogen from 500 GPa to 5 TPa. Including proton zero-point motion within the harmonic approximation, we estimate that molecular hydrogen dissociates into a monatomic body-centered tetragonal structure near 500 GPa (r(s)=1.23) that remains stable to 1 TPa (r(s)=1.11). At higher pressures, hydrogen stabilizes in an …ABCABC… planar structure that is similar to the ground state of lithium, but with a different stacking sequence. With increasing pressure, this structure compresses to the face-centered cubic lattice near 3.5 TPa (r(s)=0.92).

  8. Ground State Energy of the Low Density Hubbard Model

    NASA Astrophysics Data System (ADS)

    Seiringer, Robert; Yin, Jun

    2008-06-01

    We derive a lower bound on the ground state energy of the Hubbard model for given value of the total spin. In combination with the upper bound derived previously by Giuliani (J. Math. Phys. 48:023302, [2007]), our result proves that in the low density limit the leading order correction compared to the ground state energy of a non-interacting lattice Fermi gas is given by 8 π a ϱ u ϱ d , where ϱ u( d) denotes the density of the spin-up (down) particles, and a is the scattering length of the contact interaction potential. This result extends previous work on the corresponding continuum model to the lattice case.

  9. The valence-fluctuating ground state of plutonium.

    PubMed

    Janoschek, Marc; Das, Pinaki; Chakrabarti, Bismayan; Abernathy, Douglas L; Lumsden, Mark D; Lawrence, John M; Thompson, Joe D; Lander, Gerard H; Mitchell, Jeremy N; Richmond, Scott; Ramos, Mike; Trouw, Frans; Zhu, Jian-Xin; Haule, Kristjan; Kotliar, Gabriel; Bauer, Eric D

    2015-07-01

    A central issue in material science is to obtain understanding of the electronic correlations that control complex materials. Such electronic correlations frequently arise because of the competition of localized and itinerant electronic degrees of freedom. Although the respective limits of well-localized or entirely itinerant ground states are well understood, the intermediate regime that controls the functional properties of complex materials continues to challenge theoretical understanding. We have used neutron spectroscopy to investigate plutonium, which is a prototypical material at the brink between bonding and nonbonding configurations. Our study reveals that the ground state of plutonium is governed by valence fluctuations, that is, a quantum mechanical superposition of localized and itinerant electronic configurations as recently predicted by dynamical mean field theory. Our results not only resolve the long-standing controversy between experiment and theory on plutonium's magnetism but also suggest an improved understanding of the effects of such electronic dichotomy in complex materials.

  10. Eliminating zebrafish pbx proteins reveals a hindbrain ground state.

    PubMed

    Waskiewicz, Andrew Jan; Rikhof, Holly A; Moens, Cecilia B

    2002-11-01

    The vertebrate hindbrain is divided into serially homologous segments, the rhombomeres (r). Pbx and Hox proteins are hypothesized to form heterodimeric, DNA binding transcription complexes which specify rhombomere identities. Here, we show that eliminating zebrafish Lzr/Pbx4 and Pbx2 function prevents hindbrain segmentation and causes a wholesale anterior homeotic transformation of r2-r6, to r1 identity. We demonstrate that Pbx proteins interact with Hox paralog group 1 proteins to specify segment identities broadly within the hindbrain, and that this process involves the Pbx:Hox-1-dependent induction of Fgf signals in r4. We propose that in the absence of Pbx function, r2-r6 acquire a homogeneous ground state identity, that of r1, and that Pbx proteins, functioning primarily with their Hox partners, function to modify this ground state identity during normal hindbrain development.

  11. Quantum quenches in the thermodynamic limit. II. Initial ground states.

    PubMed

    Rigol, Marcos

    2014-09-01

    A numerical linked-cluster algorithm was recently introduced to study quantum quenches in the thermodynamic limit starting from thermal initial states [M. Rigol, Phys. Rev. Lett. 112, 170601 (2014)]. Here, we tailor that algorithm to quenches starting from ground states. In particular, we study quenches from the ground state of the antiferromagnetic Ising model to the XXZ chain. Our results for spin correlations are shown to be in excellent agreement with recent analytical calculations based on the quench action method. We also show that they are different from the correlations in thermal equilibrium, which confirms the expectation that thermalization does not occur in general in integrable models even if they cannot be mapped to noninteracting ones.

  12. The valence-fluctuating ground state of plutonium

    SciTech Connect

    Janoschek, Marc; Das, Pinaki; Chakrabarti, Bismayan; Abernathy, Douglas L.; Lumsden, Mark D.; Lawrence, John M.; Thompson, Joe D.; Lander, Gerard H.; Mitchell, Jeremy N.; Richmond, Scott; Ramos, Mike; Trouw, Frans; Zhu, Jian -Xin; Haule, Kristjan; Kotliar, Gabriel; Bauer, Eric D.

    2015-07-10

    A central issue in material science is to obtain understanding of the electronic correlations that control complex materials. Such electronic correlations frequently arise because of the competition of localized and itinerant electronic degrees of freedom. Although the respective limits of well-localized or entirely itinerant ground states are well understood, the intermediate regime that controls the functional properties of complex materials continues to challenge theoretical understanding. We have used neutron spectroscopy to investigate plutonium, which is a prototypical material at the brink between bonding and nonbonding configurations. In addition, our study reveals that the ground state of plutonium is governed by valence fluctuations, that is, a quantum mechanical superposition of localized and itinerant electronic configurations as recently predicted by dynamical mean field theory. Our results not only resolve the long-standing controversy between experiment and theory on plutonium’s magnetism but also suggest an improved understanding of the effects of such electronic dichotomy in complex materials.

  13. Coherent Control of Ground State NaK Molecules

    NASA Astrophysics Data System (ADS)

    Yan, Zoe; Park, Jee Woo; Loh, Huanqian; Will, Sebastian; Zwierlein, Martin

    2016-05-01

    Ultracold dipolar molecules exhibit anisotropic, tunable, long-range interactions, making them attractive for the study of novel states of matter and quantum information processing. We demonstrate the creation and control of 23 Na40 K molecules in their rovibronic and hyperfine ground state. By applying microwaves, we drive coherent Rabi oscillations of spin-polarized molecules between the rotational ground state (J=0) and J=1. The control afforded by microwave manipulation allows us to pursue engineered dipolar interactions via microwave dressing. By driving a two-photon transition, we are also able to observe Ramsey fringes between different J=0 hyperfine states, with coherence times as long as 0.5s. The realization of long coherence times between different molecular states is crucial for applications in quantum information processing. NSF, AFOSR- MURI, Alfred P. Sloan Foundation, DARPA-OLE

  14. Ground-State Phase Diagram of S = 1 Diamond Chains

    NASA Astrophysics Data System (ADS)

    Hida, Kazuo; Takano, Ken'ichi

    2017-03-01

    We investigate the ground-state phase diagram of a spin-1 diamond chain. Owing to a series of conservation laws, any eigenstate of this system can be expressed using the eigenstates of finite odd-length chains or infinite chains with spins 1 and 2. The ground state undergoes quantum phase transitions with varying λ, a parameter that controls frustration. Exact upper and lower bounds for the phase boundaries between these phases are obtained. The phase boundaries are determined numerically in the region not explored in a previous work [Takano et al., J. Phys.: Condens. Matter 8, 6405 (1996)].

  15. Monte Carlo Ground State Energy for Trapped Boson Systems

    NASA Astrophysics Data System (ADS)

    Rudd, Ethan; Mehta, N. P.

    2012-06-01

    Diffusion Monte Carlo (DMC) and Green's Function Monte Carlo (GFMC) algorithms were implemented to obtain numerical approximations for the ground state energies of systems of bosons in a harmonic trap potential. Gaussian pairwise particle interactions of the form V0e^-|ri-rj|^2/r0^2 were implemented in the DMC code. These results were verified for small values of V0 via a first-order perturbation theory approximation for which the N-particle matrix element evaluated to N2 V0(1 + 1/r0^2)^3/2. By obtaining the scattering length from the 2-body potential in the perturbative regime (V0φ 1), ground state energy results were compared to modern renormalized models by P.R. Johnson et. al, New J. Phys. 11, 093022 (2009).

  16. The valence-fluctuating ground state of plutonium

    PubMed Central

    Janoschek, Marc; Das, Pinaki; Chakrabarti, Bismayan; Abernathy, Douglas L.; Lumsden, Mark D.; Lawrence, John M.; Thompson, Joe D.; Lander, Gerard H.; Mitchell, Jeremy N.; Richmond, Scott; Ramos, Mike; Trouw, Frans; Zhu, Jian-Xin; Haule, Kristjan; Kotliar, Gabriel; Bauer, Eric D.

    2015-01-01

    A central issue in material science is to obtain understanding of the electronic correlations that control complex materials. Such electronic correlations frequently arise because of the competition of localized and itinerant electronic degrees of freedom. Although the respective limits of well-localized or entirely itinerant ground states are well understood, the intermediate regime that controls the functional properties of complex materials continues to challenge theoretical understanding. We have used neutron spectroscopy to investigate plutonium, which is a prototypical material at the brink between bonding and nonbonding configurations. Our study reveals that the ground state of plutonium is governed by valence fluctuations, that is, a quantum mechanical superposition of localized and itinerant electronic configurations as recently predicted by dynamical mean field theory. Our results not only resolve the long-standing controversy between experiment and theory on plutonium’s magnetism but also suggest an improved understanding of the effects of such electronic dichotomy in complex materials. PMID:26601219

  17. Simulation of the hydrogen ground state in stochastic electrodynamics

    NASA Astrophysics Data System (ADS)

    Nieuwenhuizen, Theo M.; Liska, Matthew T. P.

    2015-10-01

    Stochastic electrodynamics is a classical theory which assumes that the physical vacuum consists of classical stochastic fields with average energy \\frac{1}{2}{{\\hslash }}ω in each mode, i.e., the zero-point Planck spectrum. While this classical theory explains many quantum phenomena related to harmonic oscillator problems, hard results on nonlinear systems are still lacking. In this work the hydrogen ground state is studied by numerically solving the Abraham-Lorentz equation in the dipole approximation. First the stochastic Gaussian field is represented by a sum over Gaussian frequency components, next the dynamics is solved numerically using OpenCL. The approach improves on work by Cole and Zou 2003 by treating the full 3d problem and reaching longer simulation times. The results are compared with a conjecture for the ground state phase space density. Though short time results suggest a trend towards confirmation, in all attempted modellings the atom ionises at longer times.

  18. Dissociation energy of the ground state of NaH

    NASA Astrophysics Data System (ADS)

    Huang, Hsien-Yu; Lu, Tsai-Lien; Whang, Thou-Jen; Chang, Yung-Yung; Tsai, Chin-Chun

    2010-07-01

    The dissociation energy of the ground state of NaH was determined by analyzing the observed near dissociation rovibrational levels. These levels were reached by stimulated emission pumping and fluorescence depletion spectroscopy. A total of 114 rovibrational levels in the ranges 9≤v″≤21 and 1≤J″≤14 were assigned to the X Σ1+ state of NaH. The highest vibrational level observed was only about 40 cm-1 from the dissociation limit in the ground state. One quasibound state, above the dissociation limit and confined by the centrifugal barrier, was observed. Determining the vibrational quantum number at dissociation vD from the highest four vibrational levels yielded the dissociation energy De=15 815±5 cm-1. Based on new observations and available data, a set of Dunham coefficients and the rotationless Rydberg-Klein-Rees curve were constructed. The effective potential curve and the quasibound states were discussed.

  19. Ground state nonuniversality in the random-field Ising model

    SciTech Connect

    Duxbury, P. M.; Meinke, J. H.

    2001-09-01

    Two attractive and often used ideas, namely, universality and the concept of a zero-temperature fixed point, are violated in the infinite-range random-field Ising model. In the ground state we show that the exponents can depend continuously on the disorder and so are nonuniversal. However, we also show that at finite temperature the thermal order-parameter exponent 1/2 is restored so that temperature is a relevant variable. Broader implications of these results are discussed.

  20. Electronic and ground state properties of ThTe

    SciTech Connect

    Bhardwaj, Purvee Singh, Sadhna

    2016-05-06

    The electronic properties of ThTe in cesium chloride (CsCl, B2) structure are investigated in the present paper. To study the ground state properties of thorium chalcogenide, the first principle calculations have been calculated. The bulk properties, including lattice constant, bulk modulus and its pressure derivative are obtained. The calculated equilibrium structural parameters are in good agreement with the available experimental and theoretical results.

  1. Correlation between ground state and orbital anisotropy in heavy fermion materials

    DOE PAGES

    Willers, Thomas; Strigari, Fabio; Hu, Zhiwei; ...

    2015-02-09

    The interplay of structural, orbital, charge, and spin degrees of freedom is at the heart of many emergent phenomena, including superconductivity. We find that unraveling the underlying forces of such novel phases is a great challenge because it not only requires understanding each of these degrees of freedom, it also involves accounting for the interplay between them. Cerium-based heavy fermion compounds are an ideal playground for investigating these interdependencies, and we present evidence for a correlation between orbital anisotropy and the ground states in a representative family of materials. We have measured the 4f crystal-electric field ground-state wave functions ofmore » the strongly correlated materials CeRh1₋xIrxIn5 with great accuracy using linear polarization-dependent soft X-ray absorption spectroscopy. These measurements show that these wave functions correlate with the ground-state properties of the substitution series, which covers long-range antiferromagnetic order, unconventional superconductivity, and coexistence of these two states.« less

  2. Correlation between ground state and orbital anisotropy in heavy fermion materials

    SciTech Connect

    Willers, Thomas; Strigari, Fabio; Hu, Zhiwei; Sessi, Violetta; Brookes, Nicholas B.; Bauer, Eric D.; Sarrao, John L.; Thompson, J. D.; Tanaka, Arata; Wirth, Steffen; Tjeng, Liu Hao; Severing, Andrea

    2015-02-09

    The interplay of structural, orbital, charge, and spin degrees of freedom is at the heart of many emergent phenomena, including superconductivity. We find that unraveling the underlying forces of such novel phases is a great challenge because it not only requires understanding each of these degrees of freedom, it also involves accounting for the interplay between them. Cerium-based heavy fermion compounds are an ideal playground for investigating these interdependencies, and we present evidence for a correlation between orbital anisotropy and the ground states in a representative family of materials. We have measured the 4f crystal-electric field ground-state wave functions of the strongly correlated materials CeRh1₋xIrxIn5 with great accuracy using linear polarization-dependent soft X-ray absorption spectroscopy. These measurements show that these wave functions correlate with the ground-state properties of the substitution series, which covers long-range antiferromagnetic order, unconventional superconductivity, and coexistence of these two states.

  3. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    SciTech Connect

    Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu; Gaurav, Abhishek; Jyotsna, Shubhra; Sheet, Goutam; Singh, Chandan K.; Kabir, Mukul; Thakur, Gohil S.; Haque, Zeba; Gupta, L. C.; Ganguli, Ashok K.

    2016-06-13

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number of measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.

  4. Correlation between ground state and orbital anisotropy in heavy fermion materials.

    PubMed

    Willers, Thomas; Strigari, Fabio; Hu, Zhiwei; Sessi, Violetta; Brookes, Nicholas B; Bauer, Eric D; Sarrao, John L; Thompson, J D; Tanaka, Arata; Wirth, Steffen; Tjeng, Liu Hao; Severing, Andrea

    2015-02-24

    The interplay of structural, orbital, charge, and spin degrees of freedom is at the heart of many emergent phenomena, including superconductivity. Unraveling the underlying forces of such novel phases is a great challenge because it not only requires understanding each of these degrees of freedom, it also involves accounting for the interplay between them. Cerium-based heavy fermion compounds are an ideal playground for investigating these interdependencies, and we present evidence for a correlation between orbital anisotropy and the ground states in a representative family of materials. We have measured the 4f crystal-electric field ground-state wave functions of the strongly correlated materials CeRh1-xIrxIn5 with great accuracy using linear polarization-dependent soft X-ray absorption spectroscopy. These measurements show that these wave functions correlate with the ground-state properties of the substitution series, which covers long-range antiferromagnetic order, unconventional superconductivity, and coexistence of these two states.

  5. The Fair in Unfair Quantum Ground-state Sampling

    NASA Astrophysics Data System (ADS)

    Hen, I.; Martin-Mayor, V.; Zhang, B.

    2016-12-01

    The debate around the potential superiority of quantum annealers over their classical counterparts has been ongoing since the inception of the field by Kadowaki and Nishimori close to two decades ago. Recent technological advancements in the field, which have led to the manufacture of experimental prototypes of quantum annealing optimizers with sizes approaching the practical regime have reignited this discussion. However, the demonstration of quantum annealing speedups remains to this day an elusive albeit coveted goal. Here, we examine the power of quantum annealers to provide quantum enhancements when used as samplers from distributions of bit configurations rather than as ground state optimizers. We study, both numerically by simulating stoquastic and as non-stoquastic quantum annealing processes, and experimentally using the D-Wave Two putative quantum annealing optimizer, the ability of quantum annealers to sample the ground state manifolds of spin glasses -- a type of problems that appears in diverse areas of science and technology such has circuit fault detection, verification & validation, graph isomorphism and more. We show that quantum annealers sample the ground state manifolds of spin glasses potentially very differently than classical algorithms, and may potentially serve as a powerful tool in complementing traditional approaches.

  6. Alternative ground states enable pathway switching in biological electron transfer

    SciTech Connect

    Abriata, Luciano A.; Alvarez-Paggi, Damian; Ledesma, Gabirela N.; Blackburn, Ninian J.; Vila, Alejandro J.; Murgida, Daniel H.

    2012-10-10

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. In conclusion, these findings suggest a unique role for alternative or “invisible” electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein–protein interactions and membrane potential may optimize and regulate electron–proton energy transduction.

  7. Ground state magnetic response of two coupled dodecahedra

    NASA Astrophysics Data System (ADS)

    Konstantinidis, N. P.

    2016-01-01

    The antiferromagnetic Heisenberg model on the dodecahedron possesses a number of ground state magnetization discontinuities in a field at the classical and quantum level, even though it lacks magnetic anisotropy. Here the model is considered for two dodecahedra coupled antiferromagnetically along one of their faces, as a first step to determine the magnetic response of collections of fullerene molecules. The magnetic response is determined from the competition among the intra-, interdodecahedral exchange and magnetic field energies. At the classical level the discontinuities of the isolated dodecahedron are renormalized by the interdodecahedral coupling, while new ones show up, with the maximum number of ground state discontinuities being six for a specific range of the coupling. In the full quantum limit where the individual spin magnitude s=\\frac{1}{2} , there are two ground state discontinuities originating in the single discontinuity of the isolated dodecahedron, and another one due to the intermolecular coupling, generating a total of three discontinuities which come one right after the other. These results show that the magnetic response of more than one dodecahedra interacting together is quite richer than the one of a single dodecahedron.

  8. Ground state magnetic response of two coupled dodecahedra.

    PubMed

    Konstantinidis, N P

    2016-01-13

    The antiferromagnetic Heisenberg model on the dodecahedron possesses a number of ground state magnetization discontinuities in a field at the classical and quantum level, even though it lacks magnetic anisotropy. Here the model is considered for two dodecahedra coupled antiferromagnetically along one of their faces, as a first step to determine the magnetic response of collections of fullerene molecules. The magnetic response is determined from the competition among the intra-, interdodecahedral exchange and magnetic field energies. At the classical level the discontinuities of the isolated dodecahedron are renormalized by the interdodecahedral coupling, while new ones show up, with the maximum number of ground state discontinuities being six for a specific range of the coupling. In the full quantum limit where the individual spin magnitude [Formula: see text], there are two ground state discontinuities originating in the single discontinuity of the isolated dodecahedron, and another one due to the intermolecular coupling, generating a total of three discontinuities which come one right after the other. These results show that the magnetic response of more than one dodecahedra interacting together is quite richer than the one of a single dodecahedron.

  9. Alternative ground states enable pathway switching in biological electron transfer

    DOE PAGES

    Abriata, Luciano A.; Alvarez-Paggi, Damian; Ledesma, Gabirela N.; ...

    2012-10-10

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronicmore » wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. In conclusion, these findings suggest a unique role for alternative or “invisible” electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein–protein interactions and membrane potential may optimize and regulate electron–proton energy transduction.« less

  10. Alternative ground states enable pathway switching in biological electron transfer

    PubMed Central

    Abriata, Luciano A.; Álvarez-Paggi, Damián; Ledesma, Gabriela N.; Blackburn, Ninian J.; Vila, Alejandro J.; Murgida, Daniel H.

    2012-01-01

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. These findings suggest a unique role for alternative or “invisible” electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein–protein interactions and membrane potential may optimize and regulate electron–proton energy transduction. PMID:23054836

  11. Alternative ground states enable pathway switching in biological electron transfer.

    PubMed

    Abriata, Luciano A; Álvarez-Paggi, Damián; Ledesma, Gabriela N; Blackburn, Ninian J; Vila, Alejandro J; Murgida, Daniel H

    2012-10-23

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant Cu(A) redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. These findings suggest a unique role for alternative or "invisible" electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein-protein interactions and membrane potential may optimize and regulate electron-proton energy transduction.

  12. Efficient determination of alloy ground-state structures

    NASA Astrophysics Data System (ADS)

    Seko, Atsuto; Shitara, Kazuki; Tanaka, Isao

    2014-11-01

    We propose an efficient approach to accurately finding the ground-state structures in alloys based on the cluster expansion method. In this approach, a small number of candidate ground-state structures are obtained without any information regarding the energy. To generate the candidates, we employ the convex hull constructed from the correlation functions of all possible structures by using an efficient algorithm. This approach is applicable to not only simple lattices, but also complex lattices. First, we evaluate the convex hulls for binary alloys with four types of simple lattice. Then we discuss the structures on the vertices. To examine the accuracy of this approach, we perform a set of density functional theory calculations and the cluster expansion for the Ag-Au alloy and compare the formation energies of the vertex structures with those of all possible structures. As applications, the ground-state structures of the intermetallic compounds CuAu, CuAg, CuPd, AuAg, AuPd, AgPd, MoTa, MoW, and TaW are similarly evaluated. Finally, the energy distribution is obtained for different cation arrangements in the MgAl2O4 spinel, for which long-range interactions are essential for the accurate description of its energetics.

  13. Periodic Striped Ground States in Ising Models with Competing Interactions

    NASA Astrophysics Data System (ADS)

    Giuliani, Alessandro; Seiringer, Robert

    2016-11-01

    We consider Ising models in two and three dimensions, with short range ferromagnetic and long range, power-law decaying, antiferromagnetic interactions. We let J be the ratio between the strength of the ferromagnetic to antiferromagnetic interactions. The competition between these two kinds of interactions induces the system to form domains of minus spins in a background of plus spins, or vice versa. If the decay exponent p of the long range interaction is larger than d + 1, with d the space dimension, this happens for all values of J smaller than a critical value J c ( p), beyond which the ground state is homogeneous. In this paper, we give a characterization of the infinite volume ground states of the system, for p > 2 d and J in a left neighborhood of J c ( p). In particular, we prove that the quasi-one-dimensional states consisting of infinite stripes ( d = 2) or slabs ( d = 3), all of the same optimal width and orientation, and alternating magnetization, are infinite volume ground states. Our proof is based on localization bounds combined with reflection positivity.

  14. Speed of Markovian relaxation toward the ground state

    SciTech Connect

    Vogl, Malte; Schaller, Gernot; Brandes, Tobias

    2010-01-15

    For sufficiently low reservoir temperatures, it is known that open quantum systems subject to decoherent interactions with the reservoir relax toward their ground state in the weak coupling limit. Within the framework of quantum master equations, this is formalized by the Born-Markov-secular (BMS) approximation, where one obtains the system Gibbs state with the reservoir temperature as a stationary state. When the solution to some problem is encoded in the (isolated) ground state of a system Hamiltonian, decoherence can therefore be exploited for computation. The computational complexity is then given by the scaling of the relaxation time with the system size n. We study the relaxation behavior for local and nonlocal Hamiltonians that are coupled dissipatively with local and nonlocal operators to a bosonic bath in thermal equilibrium. We find that relaxation is generally more efficient when coherences of the density matrix in the system energy eigenbasis are taken into account. In addition, the relaxation speed strongly depends on the matrix elements of the coupling operators between initial state and ground state. We show that Dicke superradiance is a special case of our relaxation models and can thus be understood as a coherence-assisted relaxation speedup.

  15. Condensed ground states of frustrated Bose-Hubbard models

    SciTech Connect

    Moeller, G.; Cooper, N. R.

    2010-12-15

    We study theoretically the ground states of two-dimensional Bose-Hubbard models which are frustrated by gauge fields. Motivated by recent proposals for the implementation of optically induced gauge potentials, we focus on the situation in which the imposed gauge fields give rise to a pattern of staggered fluxes of magnitude {alpha} and alternating in sign along one of the principal axes. For {alpha}=1/2 this model is equivalent to the case of uniform flux per plaquette n{sub {phi}=}1/2, which, in the hard-core limit, realizes the 'fully frustrated' spin-1/2 XY model. We show that the mean-field ground states of this frustrated Bose-Hubbard model typically break translational symmetry. Given the presence of both a non-zero superfluid fraction and translational symmetry breaking, these phases are supersolid. We introduce a general numerical technique to detect broken symmetry condensates in exact diagonalization studies. Using this technique we show that, for all cases studied, the ground state of the Bose-Hubbard model with staggered flux {alpha} is condensed, and we obtain quantitative determinations of the condensate fraction. We discuss the experimental consequences of our results. In particular, we explain the meaning of gauge invariance in ultracold-atom systems subject to optically induced gauge potentials and show how the ability to imprint phase patterns prior to expansion can allow very useful additional information to be extracted from expansion images.

  16. Variable energy, high flux, ground-state atomic oxygen source

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Orient, Otto J. (Inventor)

    1987-01-01

    A variable energy, high flux atomic oxygen source is described which is comprised of a means for producing a high density beam of molecules which will emit O(-) ions when bombarded with electrons; a means of producing a high current stream of electrons at a low energy level passing through the high density beam of molecules to produce a combined stream of electrons and O(-) ions; means for accelerating the combined stream to a desired energy level; means for producing an intense magnetic field to confine the electrons and O(-) ions; means for directing a multiple pass laser beam through the combined stream to strip off the excess electrons from a plurality of the O(-) ions to produce ground-state O atoms within the combined stream; electrostatic deflection means for deflecting the path of the O(-) ions and the electrons in the combined stream; and, means for stopping the O(-) ions and the electrons and for allowing only the ground-state O atoms to continue as the source of the atoms of interest. The method and apparatus are also adaptable for producing other ground-state atoms and/or molecules.

  17. Striped spin liquid crystal ground state instability of kagome antiferromagnets.

    PubMed

    Clark, Bryan K; Kinder, Jesse M; Neuscamman, Eric; Chan, Garnet Kin-Lic; Lawler, Michael J

    2013-11-01

    The Dirac spin liquid ground state of the spin 1/2 Heisenberg kagome antiferromagnet has potential instabilities. This has been suggested as the reason why it does not emerge as the ground state in large-scale numerical calculations. However, previous attempts to observe these instabilities have failed. We report on the discovery of a projected BCS state with lower energy than the projected Dirac spin liquid state which provides new insight into the stability of the ground state of the kagome antiferromagnet. The new state has three remarkable features. First, it breaks spatial symmetry in an unusual way that may leave spinons deconfined along one direction. Second, it breaks the U(1) gauge symmetry down to Z(2). Third, it has the spatial symmetry of a previously proposed "monopole" suggesting that it is an instability of the Dirac spin liquid. The state described herein also shares a remarkable similarity to the distortion of the kagome lattice observed at low Zn concentrations in Zn-paratacamite and in recently grown single crystals of volborthite suggesting it may already be realized in these materials.

  18. Fifty years of nuclear fission: Nuclear data and measurements series

    SciTech Connect

    Lynn, J.E.

    1989-06-01

    This report is the written version of a colloquium first presented at Argonne National Laboratory in January 1989. The paper begins with an historical preamble about the events leading to the discovery of nuclear fission. This leads naturally to an account of early results and understanding of the fission phenomena. Some of the key concepts in the development of fission theory are then discussed. The main theme of this discussion is the topography of the fission barrier, in which the interplay of the liquid-drop model and nucleon shell effects lead to a wide range of fascinating phenomena encompassing metastable isomers, intermediate-structure effects in fission cross-sections, and large changes in fission product properties. It is shown how study of these changing effects and theoretical calculations of the potential energy of the deformed nucleus have led to broad qualitative understanding of the nature of the fission process. 54 refs., 35 figs.

  19. Two-photon pathway to ultracold ground state molecules of 23Na40K

    NASA Astrophysics Data System (ADS)

    Park, Jee Woo; Will, Sebastian A.; Zwierlein, Martin W.

    2015-07-01

    We report on high-resolution spectroscopy of ultracold fermionic 23Na40K Feshbach molecules, and identify a two-photon pathway to the rovibrational singlet ground state via a resonantly mixed B1Π ˜ c3Σ+intermediate state. Photoassociation in a 23Na-40K atomic mixture and one-photon spectroscopy on 23Na40K Feshbach molecules reveal about 20 vibrational levels of the electronically excited c3Σ+state. Two of these levels are found to be strongly perturbed by nearby B1Π levels via spin-orbit coupling, resulting in additional lines of dominant singlet character in the perturbed complex {{{B}}}1\\Pi | v=4> ˜ {{{c}}}3{Σ }+| v=25> , or of resonantly mixed character in {{{B}}}1\\Pi | v=12> ˜ {{{c}}}3{Σ }+| v=35> . The dominantly singlet level is used to locate the absolute rovibrational singlet ground state {{{X}}}1{Σ }+| v=0,J=0> via Autler-Townes spectroscopy. We demonstrate coherent two-photon coupling via dark state spectroscopy between the predominantly triplet Feshbach molecular state and the singlet ground state. Its binding energy is measured to be 5212.0447(1) cm-1, a thousand-fold improvement in accuracy compared to previous determinations. In their absolute singlet ground state, 23Na40K molecules are chemically stable under binary collisions and possess a large electric dipole moment of 2.72 Debye. Our work thus paves the way towards the creation of strongly dipolar Fermi gases of NaK molecules.

  20. An Investigation for Ground State Features of Some Structural Fusion Materials

    NASA Astrophysics Data System (ADS)

    Aytekin, H.; Tel, E.; Baldik, R.; Aydin, A.

    2011-02-01

    Environmental concerns associated with fossil fuels are creating increased interest in alternative non-fossil energy sources. Nuclear fusion can be one of the most attractive sources of energy from the viewpoint of safety and minimal environmental impact. When considered in all energy systems, the requirements for performance of structural materials in a fusion reactor first wall, blanket or diverter, are arguably more demanding or difficult than for other energy system. The development of fusion materials for the safety of fusion power systems and understanding nuclear properties is important. In this paper, ground state properties for some structural fusion materials as 27Al, 51V, 52Cr, 55Mn, and 56Fe are investigated using Skyrme-Hartree-Fock method. The obtained results have been discussed and compared with the available experimental data.

  1. Systematics of ground state multiplets of atomic nuclei in the delta-interaction approach

    SciTech Connect

    Imasheva, L. T.; Ishkhanov, B. S.; Stepanov, M. E.; Tretyakova, T. Yu.

    2015-12-15

    Pairing forces between nucleons in an atomic nucleus strongly influence its structure. One of the manifestations of pair interaction is the ground state multiplet (GSM) formation in the spectrum of low-lying excited states of even–even nuclei. The value of GSM splitting is determined by the value of pair interaction of nucleons; for each isotope, it can be estimated on the basis of experimental nuclear masses. The quality of this estimate is characterized by the degree of reproduction of GSM levels in the nucleus. The GSM systematics in even–even nuclei with a pair of identical nucleons in addition to the filled nuclear core is considered on the basis of delta interaction.

  2. Development of Nuclear Emulsion for Fast Neutron Measurement

    NASA Astrophysics Data System (ADS)

    Machii, Shogo; Kuwabara, Kenichi; Morishima, Kunihiro

    Nuclear emulsion is high sensitive photographic film used for detection of three-dimensional trajectory of charged particles. Energy resolution of nuclear emulsion is 21% (12%) FWHM against neutron energy of 2.8 MeV (4.9 MeV). Nuclear emulsion has high gamma ray rejection power. For now, at least 2×104 gamma rays/cm2, no increase of as a background for neutron measurement when scan using automatic nuclear emulsion read out system HTS. This value suggests that it is applicable even under high gamma ray environment, such as nuclear fusion reactor.

  3. Using the ground state of an antiferromagnetic spin-1 atomic condensate for Heisenberg-limited metrology

    NASA Astrophysics Data System (ADS)

    Wu, Ling-Na; You, L.

    2016-03-01

    We show that the ground state of a spin-1 atomic condensate with antiferromagnetic interactions constitutes a useful resource for quantum metrology upon approaching the Heisenberg limit. Unlike a ferromagnetic condensate state where individual atomic spins are aligned in the same direction, the antiferromagnetic ground-state condensate is a condensate of spin-singlet atom pairs. The inherent correlation between paired atoms allows for parameter estimation at precisions beyond the standard quantum limit (SQL) for uncorrelated atoms. The degree of improvement over the SQL is measured by the scaled quantum Fisher information (QFI), whose dependence on the ratio of linear Zeeman shift p to spin-dependent atomic interaction c is studied. At a typical value of p =0.4 c , which corresponds to a magnetic field of 28.6 μ G for c =50 h Hz (for 23Na atom condensate in the F =1 state at a typical density of ˜1014cm-3 ), the scaled QFI can reach ˜0.48 N , which approaches the limit of 0.5 N for the twin-Fock state |N/2 > +|N/2 > - . Our work encourages experimental efforts to reach the ground state of an antiferromagnetic condensate at a extremely low magnetic field.

  4. The ground state of a spin-1 anti-ferromagnetic atomic condensate for Heisenberg limited metrology

    NASA Astrophysics Data System (ADS)

    Wu, Ling-Na; You, Li

    2016-05-01

    The ground state of a spin-1 atomic condensate with anti-ferromagnetic interaction can be applied to quantum metrology approaching the Heisenberg limit. Unlike a ferromagnetic condensate state where individual atomic spins are aligned in the same direction, atoms in an anti-ferromagnetic ground state condensate exist as spin singlet pairs, whose inherent correlation promises metrological precisions beyond the standard quantum limit (SQL) for uncorrelated atoms. The degree of improvement over the SQL is measured by quantum Fisher information (QFI), whose dependence on the ratio of linear Zeeman shift p to spin-dependent atomic interaction c is studied. At a typical value of p = 0 . 4 c corresponding to a magnetic field of 28 . 6 μ G with c = h × 50 Hz (for 23 Na atom condensate in the F = 1 state at a typical density of ~1014cm-3), the scaled QFI can reach ~ 0 . 48 N , which is close to the limits of N for NooN state, or 0 . 5 N for twin-Fock state. We hope our work will stimulate experimental efforts towards reaching the anti-ferromagnetic condensate ground state at extremely low magnetic fields.

  5. Ground state of the easy-axis rare-earth kagome langasite Pr3Ga5SiO14.

    PubMed

    Zorko, A; Bert, F; Mendels, P; Marty, K; Bordet, P

    2010-02-05

    We report muon spin relaxation and {69,71}Ga nuclear quadrupolar resonance local-probe investigations of the kagome compound Pr3Ga5SiO14. Small quasistatic random internal fields develop below 40 K and persist down to our base temperature of 21 mK. They originate from hyperfine-enhanced 141Pr nuclear magnetism which requires a nonmagnetic Pr3+ crystal-field (CF) ground state. In addition, we observe a broad maximum of the relaxation rate at approximately 10 K which we attribute to the population of the first excited magnetic CF level. Our results yield a Van Vleck paramagnet picture, at variance with the formerly proposed spin-liquid ground state.

  6. The Measurement of Nuclear War Attitudes: Methods and Concerns.

    ERIC Educational Resources Information Center

    Mayton, Daniel M., II

    Measures of adults' attitudes toward nuclear war are briefly discussed, and Mayton's Modified World Affairs Questionnaire (MWAQ) is described. The 23-item MWAQ was developed from Novak and Lerner's World Affairs Questionnaire, a nuclear war attitude measure by Mayton and Delamater, and related interview items by Jeffries. When the MWAQ was…

  7. The Measurement of Nuclear War Attitudes: Methods and Concerns.

    ERIC Educational Resources Information Center

    Mayton, Daniel M., II

    Measures of adults' attitudes toward nuclear war are briefly discussed, and Mayton's Modified World Affairs Questionnaire (MWAQ) is described. The 23-item MWAQ was developed from Novak and Lerner's World Affairs Questionnaire, a nuclear war attitude measure by Mayton and Delamater, and related interview items by Jeffries. When the MWAQ was…

  8. Ground-state and pairing-vibrational bands with equal quadrupole collectivity in 124Xe

    SciTech Connect

    Radich, A. J.; Garrett, P. E.; Allmond, J. M.; Andreoiu, C.; Ball, G. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Demand, G. A.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Hackman, G.; Hadinia, B.; Jigmeddorj, B.; Laffoley, A. T.; Leach, K. G.; Michetti-Wilson, J.; Orce, J. N.; Rajabali, M. M.; Rand, E. T.; Starosta, K.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wang, Z. M.; Wood, J. L.; Wong, J.; Williams, S. J.; Yates, S. W.

    2015-04-01

    The nuclear structure of 124Xe has been investigated via measurements of the β+/EC decay of 124Cs with the 8π γ-ray spectrometer at the TRIUMF-ISAC facility. The data collected have enabled branching ratio measurements of weak, low-energy transitions from highly excited states, and the 2+ → 0+ in-band transitions have been observed. Combining these results with those from a previous Coulomb excitation study, $B(E2; 2^+_3 → 0^+_2)$ = 78(13) W.u. and $B(E2; 2^+_4 → 0^+_3)$ = 53(12) W.u. were determined. The $0^+_3$ state, in particular, is interpreted as the main fragment of the proton-pairing vibrational band identified in a previous 122Te(3He,n)124Xe measurement, and has quadrupole collectivity equal to, within uncertainty, that of the ground-state band.

  9. Nuclear recoil measurements with the ARIS experiment

    NASA Astrophysics Data System (ADS)

    Fan, Alden; ARIS Collaboration

    2017-01-01

    As direct dark matter searches become increasingly sensitive, it is important to fully characterize the target of the search. The goal of the Argon Recoil Ionization and Scintillation (ARIS) experiment is to quantify information related to the scintillation and ionization energy scale, quenching factor, ion recombination probability, and scintillation time response of nuclear recoils, as expected from WIMPs, in liquid argon. A time projection chamber with an active mass of 0.5 kg of liquid argon and capable of full 3D position reconstruction was exposed to an inverse kinematic neutron beam at the Institut de Physique Nucleaire d'Orsay in France. A scan of nuclear recoil energies was performed through coincidence with a set of neutron detectors to quantify properties of nuclear recoils in liquid argon at various electric fields. The difference in ionization and scintillation response with differing recoil track angle to the electric field was also studied. The preliminary results of the experiment will be presented.

  10. Klf4 reverts developmentally programmed restriction of ground state pluripotency

    PubMed Central

    Guo, Ge; Yang, Jian; Nichols, Jennifer; Hall, John Simon; Eyres, Isobel; Mansfield, William; Smith, Austin

    2009-01-01

    Summary Mouse embryonic stem (ES) cells derived from pluripotent early epiblast contribute functionally differentiated progeny to all foetal lineages of chimaeras. By contrast, epistem cell (EpiSC) lines from post-implantation epithelialised epiblast are unable to colonise the embryo even though they express the core pluripotency genes Oct4, Sox2 and Nanog. We examined interconversion between these two cell types. ES cells can readily become EpiSCs in response to growth factor cues. By contrast, EpiSCs do not change into ES cells. We exploited PiggyBac transposition to introduce a single reprogramming factor, Klf4, into EpiSCs. No effect was apparent in EpiSC culture conditions, but in ground state ES cell conditions a fraction of cells formed undifferentiated colonies. These EpiSC-derived induced pluripotent stem (Epi-iPS) cells activated expression of ES cell-specific transcripts including endogenous Klf4, and downregulated markers of lineage specification. X chromosome silencing in female cells, a feature of the EpiSC state, was erased in Epi-iPS cells. They produced high-contribution chimaeras that yielded germline transmission. These properties were maintained after Cre-mediated deletion of the Klf4 transgene, formally demonstrating complete and stable reprogramming of developmental phenotype. Thus, re-expression of Klf4 in an appropriate environment can regenerate the naïve ground state from EpiSCs. Reprogramming is dependent on suppression of extrinsic growth factor stimuli and proceeds to completion in less than 1% of cells. This substantiates the argument that EpiSCs are developmentally, epigenetically and functionally differentiated from ES cells. However, because a single transgene is the minimum requirement to attain the ground state, EpiSCs offer an attractive opportunity for screening for unknown components of the reprogramming process. PMID:19224983

  11. Two-electron photoionization of ground-state lithium

    SciTech Connect

    Kheifets, A. S.; Fursa, D. V.; Bray, I.

    2009-12-15

    We apply the convergent close-coupling (CCC) formalism to single-photon two-electron ionization of the lithium atom in its ground state. We treat this reaction as single-electron photon absorption followed by inelastic scattering of the photoelectron on a heliumlike Li{sup +} ion. The latter scattering process can be described accurately within the CCC formalism. We obtain integrated cross sections of single photoionization leading to the ground and various excited states of the Li{sup +} ion as well as double photoionization extending continuously from the threshold to the asymptotic limit of infinite photon energy. Comparison with available experimental and theoretical data validates the CCC model.

  12. Ground state of a resonantly interacting Bose gas

    SciTech Connect

    Diederix, J. M.; Heijst, T. C. F. van; Stoof, H. T. C.

    2011-09-15

    We show that a two-channel mean-field theory for a Bose gas near a Feshbach resonance allows for an analytic computation of the chemical potential, and therefore the universal constant {beta}, at unitarity. To improve on this mean-field theory, which physically neglects condensate depletion, we study a variational Jastrow ansatz for the ground-state wave function and use the hypernetted-chain approximation to minimize the energy for all positive values of the scattering length. We also show that other important physical quantities such as Tan's contact and the condensate fraction can be directly obtained from this approach.

  13. Tetraphenylhexaazaanthracenes: 16π Weakly Antiaromatic Species with Singlet Ground States.

    PubMed

    Constantinides, Christos P; Zissimou, Georgia A; Berezin, Andrey A; Ioannou, Theodosia A; Manoli, Maria; Tsokkou, Demetra; Theodorou, Eleni; Hayes, Sophia C; Koutentis, Panayiotis A

    2015-08-21

    Tetraphenylhexaazaanthracene, TPHA-1, is a fluorescent zwitterionic biscyanine with a closed-shell singlet ground state. TPHA-1 overcomes its weak 16π antiaromaticity by partitioning its π system into 6π positive and 10π negative cyanines. The synthesis of TPHA-1 is low yielding and accompanied by two analogous TPHA isomers: the deep red, non-charge-separated, quinoidal TPHA-2, and the deep green TPHA-3 that partitions into two equal but oppositely charged 8π cyanines. The three TPHA isomers are compared.

  14. Lee-Yang Polynomials and Ground States of Spin Systems

    NASA Astrophysics Data System (ADS)

    Slawny, Joseph

    2014-08-01

    We obtain two kinds of results on the region in the space of the interactions of lattice systems where the Lee-Yang property holds (LY domain). First we show that the LY domain is related to interactions with exactly two ground states. Then we give a description of the full LY domain of an extended "plaquette model" analyzed by Lebowitz and Ruelle (Commun Math Phys 304:711-722, 2011). This allows us to prove a permanence property of the system, which we conjecture to hold in general.

  15. Computational schemes for the ground-state pair density.

    PubMed

    Higuchi, K; Higuchi, M

    2009-02-11

    We reconfirm the performance of the initial scheme for calculating the ground-state pair density (Higuchi and Higuchi 2007 Physica B 387 117, 2008 Phys. Rev. B 78 125101) by using the alternative approximation of the correlating kinetic energy functional. It is shown that about 20% of the correlation energy can be reproduced by the initial scheme, irrespective of the approximate form of the correlating kinetic energy functional. On the basis of the initial scheme, various kinds of schemes that go beyond the initial one can be developed. We illustrate two kinds of computational schemes.

  16. The ground state of the Frenkel-Kontorova model

    NASA Astrophysics Data System (ADS)

    Babushkin, A. Yu.; Abkaryan, A. K.; Dobronets, B. S.; Krasikov, V. S.; Filonov, A. N.

    2016-09-01

    The continual approximation of the ground state of the discrete Frenkel-Kontorova model is tested using a symmetric algorithm of numerical simulation. A "kaleidoscope effect" is found, which means that the curves representing the dependences of the relative extension of an N-atom chain vary periodically with increasing N. Stairs of structural transitions for N ≫ 1 are analyzed by the channel selection method with the approximation N = ∞. Images of commensurable and incommensurable structures are constructed. The commensurable-incommensurable phase transitions are stepwise.

  17. Ground-state fidelity and bipartite entanglement in the Bose-Hubbard model.

    PubMed

    Buonsante, P; Vezzani, A

    2007-03-16

    We analyze the quantum phase transition in the Bose-Hubbard model borrowing two tools from quantum-information theory, i.e., the ground-state fidelity and entanglement measures. We consider systems at unitary filling comprising up to 50 sites and show for the first time that a finite-size scaling analysis of these quantities provides excellent estimates for the quantum critical point. We conclude that fidelity is particularly suited for revealing a quantum phase transition and pinning down the critical point thereof, while the success of entanglement measures depends on the mechanisms governing the transition.

  18. Static Properties and Stark Effect of the Ground State of the HD Molecular Ion

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Drachman, Richard J.

    1999-01-01

    We have calculated static properties of the ground state of the HD(+) ion and its lowest-lying P-state without making use of the Born-Oppenheimer approximation, as was done in the case of H2(+) and D2(+) [Phys. Rev. A 58, 2787 (1998)]. The ion is treated as a three-body system whose ground state is spherically symmetric. The wavefunction is of generalized Hylleraas type, but it is necessary to include high powers of the internuclear distance to localize the nuclear motion. We obtain good values of the energies of the ground S-state and lowest P-state and compare them with earlier calculations. Expectation values are obtained for various operators, the Fermi contact parameters, and the permanent quadrupole moment. The cusp conditions are also calculated. The polarizability was then calculated using second-order perturbation theory with intermediate P pseudostates. Since the nuclei in HD(+) are not of equal mass there is dipole coupling between the lowest two rotational states, which are almost degenerate. This situation is carefully analyzed, and the Stark shift is calculated variationally as a function of the applied electric field.

  19. Rationalization of the solvation effects on the AtO+ ground-state change.

    PubMed

    Ayed, Tahra; Réal, Florent; Montavon, Gilles; Galland, Nicolas

    2013-09-12

    (211)At radionuclide is of considerable interest as a radiotherapeutic agent for targeted alpha therapy in nuclear medicine, but major obstacles remain because the basic chemistry of astatine (At) is not well understood. The AtO(+) cationic form might be currently used for (211)At-labeling protocols in aqueous solution and has proved to readily react with inorganic/organic ligands. But AtO(+) reactivity must be hindered at first glance by spin restriction quantum rules: the ground state of the free cation has a dominant triplet character. Investigating AtO(+) clustered with an increasing number of water molecules and using various flavors of relativistic quantum methods, we found that AtO(+) adopts in solution a Kramers restricted closed-shell configuration resembling a scalar-relativistic singlet. The ground-state change was traced back to strong interactions, namely, attractive electrostatic interactions and charge transfer, with water molecules of the first solvation shell that lift up the degeneracy of the frontier π* molecular orbitals (MOs). This peculiarity brings an alternative explanation to the highly variable reproducibility reported for some astatine reactions: depending on the production protocols (with distillation in gas-phase or "wet chemistry" extraction), (211)At may or may not readily react.

  20. Experimental Demonstration of the Dependence of the First Hyperpolarizability of Donor-Acceptor Substituted Polyenes on the Ground-State Polarization and Bond Length Alternation

    NASA Technical Reports Server (NTRS)

    Bourhill, G.; Bredas, J-L.; Cheng, L-T.; Marder, S. R.; Meyers, F.; Perry, J. W.; Tiemann, B. G.

    1993-01-01

    The dependence of the product of the first hyperpolarizability, beta, and the ground-state dipole moment, mu, for a series of donor-acceptor polyenes with a large range of ground-state polarization, was measured in a variety of solvents by electric field induced second harmonic generation. The observed behavior of mu times beta as a function of ground-state polarization agrees well with theoretical predictions. In particular, as a function of increasing polarization, mu times beta was found to first increase, peak in a positive sense, decrease, pass through zero, become large and negative, and eventually peak in a negative sense.

  1. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers

    SciTech Connect

    Sivadas, Nikhil; Daniels, Matthew W.; Swendsen, Robert H.; Okamoto, Satoshi; Xiao, Di

    2015-06-16

    Layered transition-metal trichalcogenides with the chemical formula ABX3 have attracted recent interest as potential candidates for two-dimensional magnets. Using first-principles calculations within density functional theory, we investigate the magnetic ground states of monolayers of Mn- and Cr-based semiconducting trichalcogenides.We show that the second and third nearest-neighbor exchange interactions (J2 and J3) between magnetic ions, which have been largely overlooked in previous theoretical studies, are crucial in determining the magnetic ground state. Specifically, we find that monolayer CrSiTe3 is an antiferromagnet with a zigzag spin texture due to significant contribution from J3, whereas CrGeTe3 is a ferromagnet with a Curie temperature of 106 K. Monolayers of Mn compounds (MnPS3 and MnPSe3) always show antiferromagnetic N eel order. We identify the physical origin of various exchange interactions, and demonstrate that strain can be an effective knob for tuning the magnetic properties. Possible magnetic ordering in the bulk is also discussed. In conclusion, our study suggests that ABX3 can be a promising platform to explore two-dimensional magnetic phenomena.

  2. Ground states of fermionic lattice Hamiltonians with permutation symmetry

    NASA Astrophysics Data System (ADS)

    Kraus, Christina V.; Lewenstein, Maciej; Cirac, J. Ignacio

    2013-08-01

    We study the ground states of lattice Hamiltonians that are invariant under permutations, in the limit where the number of lattice sites N→∞. For spin systems, these are product states, a fact that follows directly from the quantum de Finetti theorem. For fermionic systems, however, the problem is very different, since mode operators acting on different sites do not commute, but anticommute. We construct a family of fermionic states, F, from which such ground states can be easily computed. They are characterized by few parameters whose number only depends on M, the number of modes per lattice site. We also give an explicit construction for M=1,2. In the first case, F is contained in the set of Gaussian states, whereas in the second it is not. Inspired by that construction, we build a set of fermionic variational wave functions, and apply it to the Fermi-Hubbard model in two spatial dimensions, obtaining results that go beyond the generalized Hartree-Fock theory.

  3. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers

    DOE PAGES

    Sivadas, Nikhil; Daniels, Matthew W.; Swendsen, Robert H.; ...

    2015-06-16

    Layered transition-metal trichalcogenides with the chemical formula ABX3 have attracted recent interest as potential candidates for two-dimensional magnets. Using first-principles calculations within density functional theory, we investigate the magnetic ground states of monolayers of Mn- and Cr-based semiconducting trichalcogenides.We show that the second and third nearest-neighbor exchange interactions (J2 and J3) between magnetic ions, which have been largely overlooked in previous theoretical studies, are crucial in determining the magnetic ground state. Specifically, we find that monolayer CrSiTe3 is an antiferromagnet with a zigzag spin texture due to significant contribution from J3, whereas CrGeTe3 is a ferromagnet with a Curie temperaturemore » of 106 K. Monolayers of Mn compounds (MnPS3 and MnPSe3) always show antiferromagnetic N eel order. We identify the physical origin of various exchange interactions, and demonstrate that strain can be an effective knob for tuning the magnetic properties. Possible magnetic ordering in the bulk is also discussed. In conclusion, our study suggests that ABX3 can be a promising platform to explore two-dimensional magnetic phenomena.« less

  4. DNA-DNA interaction beyond the ground state

    NASA Astrophysics Data System (ADS)

    Lee, D. J.; Wynveen, A.; Kornyshev, A. A.

    2004-11-01

    The electrostatic interaction potential between DNA duplexes in solution is a basis for the statistical mechanics of columnar DNA assemblies. It may also play an important role in recombination of homologous genes. We develop a theory of this interaction that includes thermal torsional fluctuations of DNA using field-theoretical methods and Monte Carlo simulations. The theory extends and rationalizes the earlier suggested variational approach which was developed in the context of a ground state theory of interaction of nonhomologous duplexes. It shows that the heuristic variational theory is equivalent to the Hartree self-consistent field approximation. By comparison of the Hartree approximation with an exact solution based on the QM analogy of path integrals, as well as Monte Carlo simulations, we show that this easily analytically-tractable approximation works very well in most cases. Thermal fluctuations do not remove the ability of DNA molecules to attract each other at favorable azimuthal conformations, neither do they wash out the possibility of electrostatic “snap-shot” recognition of homologous sequences, considered earlier on the basis of ground state calculations. At short distances DNA molecules undergo a “torsional alignment transition,” which is first order for nonhomologous DNA and weaker order for homologous sequences.

  5. Ground state energies from converging and diverging power series expansions

    NASA Astrophysics Data System (ADS)

    Lisowski, C.; Norris, S.; Pelphrey, R.; Stefanovich, E.; Su, Q.; Grobe, R.

    2016-10-01

    It is often assumed that bound states of quantum mechanical systems are intrinsically non-perturbative in nature and therefore any power series expansion methods should be inapplicable to predict the energies for attractive potentials. However, if the spatial domain of the Schrödinger Hamiltonian for attractive one-dimensional potentials is confined to a finite length L, the usual Rayleigh-Schrödinger perturbation theory can converge rapidly and is perfectly accurate in the weak-binding region where the ground state's spatial extension is comparable to L. Once the binding strength is so strong that the ground state's extension is less than L, the power expansion becomes divergent, consistent with the expectation that bound states are non-perturbative. However, we propose a new truncated Borel-like summation technique that can recover the bound state energy from the diverging sum. We also show that perturbation theory becomes divergent in the vicinity of an avoided-level crossing. Here the same numerical summation technique can be applied to reproduce the energies from the diverging perturbative sums.

  6. On the nature of the oligoacene ground state

    NASA Astrophysics Data System (ADS)

    Hachmann, Johannes; Dorando, Jonathan; Aviles, Michael; Kin-Lic Chan, Garnet

    2007-03-01

    The nature of the oligoacene ground state - its spin, singlet-triplet gap, and diradical character as a function of chain-length - is a question of ongoing theoretical and experimental interest with notable technological implications. Previous computational studies have given inconclusive answers to this challenging electronic structure problem (see e.g. [1]). In the present study we exploit the capabilities of the local ab initio Density Matrix Renormalization Group (DMRG) [2], which allows the numerically exact (FCI) solution of the Schr"odinger equation in a chosen 1-particle basis and active space for quasi-one-dimensional systems. We compute the singlet-triplet gap from first principles as a function of system length ranging from naphthalene to tetradecacene, correlating the full π-space (i.e. up to 58 electrons in 58 orbitals) and converging the results to a few μEh accuracy [3]. In order to study the diradical nature of the oligoacene ground state we calculate expectation values over different diradical occupation and pair-correlation operators. Furthermore we study the natural orbitals and their occupation. [1] Bendikov, Duong, Starkey, Houk, Carter, Wudl, JACS 126 (2004), 7416. [2] Hachmann, Cardoen, Chan, JCP 125 (2006), 144101. [3] Hachmann, Dorando, Avil'es, Chan, in preparation.

  7. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Sivadas, Nikhil; Daniels, Matthew W.; Swendsen, Robert H.; Okamoto, Satoshi; Xiao, Di

    2015-06-01

    Layered transition-metal trichalcogenides with the chemical formula A B X3 have attracted recent interest as potential candidates for two-dimensional magnets. Using first-principles calculations within density functional theory, we investigate the magnetic ground states of monolayers of Mn- and Cr-based semiconducting trichalcogenides. We show that the second and third nearest-neighbor exchange interactions (J2 and J3) between magnetic ions, which have been largely overlooked in previous theoretical studies, are crucial in determining the magnetic ground state. Specifically, we find that monolayer CrSiTe3 is an antiferromagnet with a zigzag spin texture due to significant contribution from J3, whereas CrGeTe3 is a ferromagnet with a Curie temperature of 106 K. Monolayers of Mn compounds (MnPS3 and MnPSe3) always show antiferromagnetic Néel order. We identify the physical origin of various exchange interactions, and demonstrate that strain can be an effective knob for tuning the magnetic properties. Possible magnetic ordering in the bulk is also discussed. Our study suggests that A B X3 can be a promising platform to explore two-dimensional magnetic phenomena.

  8. The valence-fluctuating ground state of plutonium

    DOE PAGES

    Janoschek, Marc; Das, Pinaki; Chakrabarti, Bismayan; ...

    2015-07-10

    A central issue in material science is to obtain understanding of the electronic correlations that control complex materials. Such electronic correlations frequently arise because of the competition of localized and itinerant electronic degrees of freedom. Although the respective limits of well-localized or entirely itinerant ground states are well understood, the intermediate regime that controls the functional properties of complex materials continues to challenge theoretical understanding. We have used neutron spectroscopy to investigate plutonium, which is a prototypical material at the brink between bonding and nonbonding configurations. In addition, our study reveals that the ground state of plutonium is governed bymore » valence fluctuations, that is, a quantum mechanical superposition of localized and itinerant electronic configurations as recently predicted by dynamical mean field theory. Our results not only resolve the long-standing controversy between experiment and theory on plutonium’s magnetism but also suggest an improved understanding of the effects of such electronic dichotomy in complex materials.« less

  9. DNA-DNA interaction beyond the ground state.

    PubMed

    Lee, D J; Wynveen, A; Kornyshev, A A

    2004-11-01

    The electrostatic interaction potential between DNA duplexes in solution is a basis for the statistical mechanics of columnar DNA assemblies. It may also play an important role in recombination of homologous genes. We develop a theory of this interaction that includes thermal torsional fluctuations of DNA using field-theoretical methods and Monte Carlo simulations. The theory extends and rationalizes the earlier suggested variational approach which was developed in the context of a ground state theory of interaction of nonhomologous duplexes. It shows that the heuristic variational theory is equivalent to the Hartree self-consistent field approximation. By comparison of the Hartree approximation with an exact solution based on the QM analogy of path integrals, as well as Monte Carlo simulations, we show that this easily analytically-tractable approximation works very well in most cases. Thermal fluctuations do not remove the ability of DNA molecules to attract each other at favorable azimuthal conformations, neither do they wash out the possibility of electrostatic "snap-shot" recognition of homologous sequences, considered earlier on the basis of ground state calculations. At short distances DNA molecules undergo a "torsional alignment transition," which is first order for nonhomologous DNA and weaker order for homologous sequences.

  10. Au42: A possible ground-state noble metallic nanotube

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Ning, Hua; Ma, Qing-Min; Liu, Ying; Li, You-Cheng

    2008-10-01

    A large hollow tubelike Au42 is predicted as a new ground-state configuration based on the scalar relativistic density functional theory. The shape of this new Au42 cluster is similar to a (5,5) single-wall gold nanotube, the two ends of which are capped by half of a fullerenelike Au32. In the same way, a series of Aun (n =37,42,47,52,57,62,67,72,…, Δn =5) tubelike structures has been constructed. The highest occupied molecular orbital-lowest unoccupied molecular orbital gaps suggested a significant semiconductor-conductor alternation in n ɛ[32,47]. Similar to the predictions and speculation of Daedalus [D. E. H. Jones, New Sci. 32, 245 (1966); E. Osawa, Superaromaticity (Kagaku, Kyoto, 1970), Vol. 25, pp. 854-863; Z. Yoshida and E. Osawa, Aromaticity Chemical Monograph (Kagaku Dojin, Kyoto, Japan, 1971), Vol. 22, pp. 174-176; D. A. Bochvar and E. G. Gal'pern, Dokl. Akad. Nauk SSSR 209, 610 (1973)], here a large hollow ground-state gold nanotube was predicted theoretically.

  11. Au42: a possible ground-state noble metallic nanotube.

    PubMed

    Wang, Jing; Ning, Hua; Ma, Qing-Min; Liu, Ying; Li, You-Cheng

    2008-10-07

    A large hollow tubelike Au(42) is predicted as a new ground-state configuration based on the scalar relativistic density functional theory. The shape of this new Au(42) cluster is similar to a (5,5) single-wall gold nanotube, the two ends of which are capped by half of a fullerenelike Au(32). In the same way, a series of Au(n) (n = 37, 42, 47, 52, 57, 62, 67, 72, ..., Delta n = 5) tubelike structures has been constructed. The highest occupied molecular orbital-lowest unoccupied molecular orbital gaps suggested a significant semiconductor-conductor alternation in n is an element of [32,47]. Similar to the predictions and speculation of Daedalus [D. E. H. Jones, New Sci. 32, 245 (1966); E. Osawa, Superaromaticity (Kagaku, Kyoto, 1970), Vol. 25, pp. 854-863; Z. Yoshida and E. Osawa, Aromaticity Chemical Monograph (Kagaku Dojin, Kyoto, Japan, 1971), Vol. 22, pp. 174-176; D. A. Bochvar and E. G. Gal'pern, Dokl. Akad. Nauk SSSR 209, 610 (1973)], here a large hollow ground-state gold nanotube was predicted theoretically.

  12. A Measurement Control Program for Nuclear Material Accounting

    SciTech Connect

    Brouns, R. J.; Roberts, F. P.; Merrill, J. A.; Brown, W. B.

    1980-06-01

    A measurement control program for nuclear material accounting monitors and controls the quality of the measurements of special nuclear material that are involved in material balances. The quality is monitored by collecting data from which the current precision and accuracy of measurements can be evaluated. The quality is controlled by evaluations, reviews, and other administrative measures for control of selection or design of facilities. equipment and measurement methods and the training and qualification of personnel who perform SNM measurements. This report describes the most important elements of a program by which management can monitor and control measurement quality.

  13. Measuring Neutrino Oscillations with Nuclear Reactors

    SciTech Connect

    McKeown, R. D.

    2007-10-26

    Since the first direct observations of antineutrino events by Reines and Cowan in the 1950's, nuclear reactors have been an important tool in the study of neutrino properties. More recently, the study of neutrino oscillations has been a very active area of research. The pioneering observation of oscillations by the KamLAND experiment has provided crucial information on the neutrino mixing matrix. New experiments to study the remaining unknown mixing angle are currently under development. These recent studies and potential future developments will be discussed.

  14. Hadronization measurements in cold nuclear matter

    SciTech Connect

    Dupre, Raphael

    2015-05-01

    Hadronization is the non-perturbative process of QCD by which partons become hadrons. It has been studied at high energies through various processes, we focus here on the experiments of lepto-production of hadrons in cold nuclear matter. By studying the dependence of observables to the atomic number of the target, these experimentscan give information on the dynamic of the hadronization at the femtometer scale. In particular, we will present preliminary results from JLab Hall B (CLAS collaboration), which give unprecedented statistical precision. Then, we will present results of a phenomenological study showing how HERMES data can be described with pure energyloss models.

  15. Magnetic ground state and giant spontaneous exchange bias in Ni46Mn43In11 alloy

    NASA Astrophysics Data System (ADS)

    Ray, Mayukh K.; Maji, Bibekananda; Modak, M.; Banerjee, S.

    2017-05-01

    We report non-equilibrium dynamics and giant spontaneous exchange bias obtained in zero field cooled mode for Ni46Mn43In11 alloy. The dc magnetic measurements indicate a super spin glass type magnetic ground state in the system. This SSG state is formed when superparamagnetic domains are collectively frozen inside strong antiferromagnetic matrix at low temperature. The ZFCEB arises due to the development of strong superferromagnetic unidirectional anisotropy at the interface of SSG and AFM during the initial magnetization processes. The temperature variation of field cooled exchange bias and ZFCEB is almost similar whilst their field dependency is different. Possible reasons for observed behaviors are comprehensively discussed in this article.

  16. The magnetic structure on the ground state of the equilateral triangular spin tube

    NASA Astrophysics Data System (ADS)

    Matsui, Kazuki; Goto, Takayuki; Manaka, Hirotaka; Miura, Yoko

    2016-12-01

    The ground state of the frustrated equilateral triangular spin tube CsCrF4 is still hidden behind a veil though NMR spectrum broaden into 2 T at low temperature. In order to investigate the spin structure in an ordered state by 19F-NMR, we have determined the anisotropic hyperfine coupling tensors for each three fluorine sites in the paramagnetic state. The measurement field was raised up to 10 T to achieve highest resolution. The preliminary analysis using the obtained hyperfine tensors has shown that the archetypal 120°-type structure in ab-plane does not accord with the NMR spectra of ordered state.

  17. Towards photonic quantum simulation of ground states of frustrated Heisenberg spin systems.

    PubMed

    Ma, Xiao-song; Dakić, Borivoje; Kropatschek, Sebastian; Naylor, William; Chan, Yang-hao; Gong, Zhe-xuan; Duan, Lu-ming; Zeilinger, Anton; Walther, Philip

    2014-01-07

    Photonic quantum simulators are promising candidates for providing insight into other small- to medium-sized quantum systems. Recent experiments have shown that photonic quantum systems have the advantage to exploit quantum interference for the quantum simulation of the ground state of Heisenberg spin systems. Here we experimentally characterize this quantum interference at a tuneable beam splitter and further investigate the measurement-induced interactions of a simulated four-spin system by comparing the entanglement dynamics using pairwise concurrence. We also study theoretically a four-site square lattice with next-nearest neighbor interactions and a six-site checkerboard lattice, which might be in reach of current technology.

  18. Towards photonic quantum simulation of ground states of frustrated Heisenberg spin systems

    PubMed Central

    Ma, Xiao-song; Dakić, Borivoje; Kropatschek, Sebastian; Naylor, William; Chan, Yang-hao; Gong, Zhe-xuan; Duan, Lu-ming; Zeilinger, Anton; Walther, Philip

    2014-01-01

    Photonic quantum simulators are promising candidates for providing insight into other small- to medium-sized quantum systems. Recent experiments have shown that photonic quantum systems have the advantage to exploit quantum interference for the quantum simulation of the ground state of Heisenberg spin systems. Here we experimentally characterize this quantum interference at a tuneable beam splitter and further investigate the measurement-induced interactions of a simulated four-spin system by comparing the entanglement dynamics using pairwise concurrence. We also study theoretically a four-site square lattice with next-nearest neighbor interactions and a six-site checkerboard lattice, which might be in reach of current technology. PMID:24394808

  19. Excitations of {sup 1}P levels of zinc by electron impact on the ground state

    SciTech Connect

    Fursa, Dmitry V.; Bray, Igor; Panajotovic, R.; Sevic, D.; Pejcev, V.; Marinkovic, B.P.; Filipovic, D.M.

    2005-07-15

    We present results of a joint theoretical and experimental investigation of electron scattering from the 4s{sup 2} {sup 1}S ground state of zinc. The 4s4p {sup 1}P{sup o} and 4s5p {sup 1}P{sup o} differential cross sections were measured at scattering angles between 10 degree sign and 150 degree sign and electron-energies of 15, 20, 25, 40, and 60 eV. Corresponding convergent close-coupling calculations have been performed and are compared with experiment.

  20. On the Stability of Classical Orbits of the Hydrogen Ground State in Stochastic Electrodynamics

    NASA Astrophysics Data System (ADS)

    Nieuwenhuizen, Theodorus

    2016-04-01

    de la Pe\\~na 1980 and Puthoff 1987 show that circular orbits in the hydrogen problem of Stochastic Electrodynamics are stable. Though the Cole-Zou 2003 simulations support the stability, our recent numerics always lead to self-ionisation. Here the de la Pe\\~na-Puthoff argument is extended to elliptic orbits. For very eccentric orbits with energy close to zero and angular momentum below some not-small value, there is on the average a net gain in energy for each revolution, which explains the self-ionisation. Next, an $1/r^2$ potential is added, which could stem from a dipolar deformation of the nuclear charge by the electron at its moving position. This shape retains the analytical solvability. When it is enough repulsive, the ground state of this modified hydrogen problem is predicted to be stable. The same conclusions hold for positronium.

  1. A Laboratory Experiment on the Statistical Theory of Nuclear Reactions

    ERIC Educational Resources Information Center

    Loveland, Walter

    1971-01-01

    Describes an undergraduate laboratory experiment on the statistical theory of nuclear reactions. The experiment involves measuring the relative cross sections for formation of a nucleus in its meta stable excited state and its ground state by applying gamma-ray spectroscopy to an irradiated sample. Involves 3-4 hours of laboratory time plus…

  2. Charge transfer to ground-state ions produces free electrons

    NASA Astrophysics Data System (ADS)

    You, D.; Fukuzawa, H.; Sakakibara, Y.; Takanashi, T.; Ito, Y.; Maliyar, G. G.; Motomura, K.; Nagaya, K.; Nishiyama, T.; Asa, K.; Sato, Y.; Saito, N.; Oura, M.; Schöffler, M.; Kastirke, G.; Hergenhahn, U.; Stumpf, V.; Gokhberg, K.; Kuleff, A. I.; Cederbaum, L. S.; Ueda, K.

    2017-01-01

    Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment, for example, a liquid or a van der Waals bonded system, this process will be modified, and becomes part of a complex cascade of relaxation steps. Understanding these steps is important, as they determine the production of slow electrons and singly charged radicals, the most abundant products in radiation chemistry. In this communication, we present experimental evidence for a so-far unobserved, but potentially very important step in such relaxation cascades: Multiply charged ionic states after Auger decay may partially be neutralized by electron transfer, simultaneously evoking the creation of a low-energy free electron (electron transfer-mediated decay). This process is effective even after Auger decay into the dicationic ground state. In our experiment, we observe the decay of Ne2+ produced after Ne 1s photoionization in Ne-Kr mixed clusters.

  3. Ground states of partially connected binary neural networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1990-01-01

    Neural networks defined by outer products of vectors over (-1, 0, 1) are considered. Patterns over (-1, 0, 1) define by their outer products partially connected neural networks consisting of internally strongly connected, externally weakly connected subnetworks. Subpatterns over (-1, 1) define subnetworks, and their combinations that agree in the common bits define permissible words. It is shown that the permissible words are locally stable states of the network, provided that each of the subnetworks stores mutually orthogonal subwords, or, at most, two subwords. It is also shown that when each of the subnetworks stores two mutually orthogonal binary subwords at most, the permissible words, defined as the combinations of the subwords (one corresponding to each subnetwork), that agree in their common bits are the unique ground states of the associated energy function.

  4. Multichiral ground states in mesoscopic p -wave superconductors

    NASA Astrophysics Data System (ADS)

    Becerra, V. Fernández; Milošević, M. V.

    2016-11-01

    Using Ginzburg-Landau formalism, we investigate the effect of confinement on the ground state of mesoscopic chiral p -wave superconductors in the absence of magnetic field. We reveal stable multichiral states with domain walls separating the regions with different chiralities, as well as monochiral states with spontaneous currents flowing along the edges. We show that multichiral states can exhibit identifying signatures in the spatial profile of the magnetic field if those are not screened by edge currents in the case of strong confinement. Such magnetic detection of domain walls in topological superconductors can serve as long-sought evidence of broken time-reversal symmetry. Furthermore, when applying electric current to mesoscopic p -wave samples, we found a hysteretic behavior in the current-voltage characteristic that distinguishes states with and without domain walls, thereby providing another useful hallmark for indirect confirmation of chiral p -wave superconductivity.

  5. Ground state solutions for semilinear time-harmonic Maxwell equations

    NASA Astrophysics Data System (ADS)

    Tang, Xianhua; Qin, Dongdong

    2016-04-01

    This paper is concerned with the time-harmonic semilinear Maxwell equation: ∇ × (∇ × u) + λu = f(x, u) in Ω with the boundary condition ν × u = 0 on ∂Ω, where Ω ⊂ ℝ3 is a simply connected, smooth, bounded domain with connected boundary and ν : ∂Ω → ℝ3 is the exterior normal. Here ∇ × denotes the curl operator in ℝ3 and the boundary condition holds when Ω is surrounded by a perfect conductor. By using the generalized Nehari manifold method due to Szulkin and Weth [Handbook of Nonconvex Analysis and Applications (International Press, Somerville, 2010), pp. 597-632] and some new techniques, existence of ground state solutions for above equation is established under some generic conditions on f.

  6. Wilson operator algebras and ground states of coupled BF theories

    NASA Astrophysics Data System (ADS)

    Tiwari, Apoorv; Chen, Xiao; Ryu, Shinsei

    2017-06-01

    The multiflavor BF theories in (3+1) dimensions with cubic or quartic coupling are the simplest topological quantum field theories that can describe fractional braiding statistics between looplike topological excitations (three-loop or four-loop braiding statistics). In this paper, by canonically quantizing these theories, we study the algebra of Wilson loop and Wilson surface operators, and multiplets of ground states on the three-torus. In particular, by quantizing these coupled BF theories on the three-torus, we explicitly calculate the S and T matrices, which encode fractional braiding statistics and the topological spin of looplike excitations, respectively. In the coupled BF theories with cubic and quartic coupling, the Hopf link and Borromean ring of loop excitations, together with pointlike excitations, form composite particles.

  7. a New Phenomenological Formula for Ground-State Binding Energies

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, G.

    A phenomenological formula based on liquid drop model has been proposed for ground-state binding energies of nuclei. The effect due to bunching of single particle levels has been incorporated through a term resembling the one-body Hamiltonian. The effect of n-p interaction has been included through a function of valence nucleons. A total of 50 parameters has been used in the present calculation. The root mean square (r.m.s.) deviation for the binding energy values for 2140 nuclei comes out to be 0.376 MeV, and that for 1091 alpha decay energies is 0.284 MeV. The correspondence with the conventional liquid drop model is discussed.

  8. LABS problem and ground state spin glasses system

    NASA Astrophysics Data System (ADS)

    Leukhin, A. N.; Bezrodnyi, V. I.; Kozlova, Yu. A.

    2016-12-01

    In our work we demonstrate the new results of an exhaustive search for optimal binary sequences with minimum peak sidelobe (MPS) up to length N=85. The design problem for law autocorrelation binary sequences (LABS) is a notoriously difficult computational problem which is numbered as the problem number 005 in CSPLib. In statistical physics LABS problem can be interrepted as the energy of N iteracting Ising spins. This is a Bernasconi model. Due to this connection to physics we refer a binary sequence as one-dimensional spin lattice. At this assumption optimal binary sequences by merit factor (MF) criteria are the ground-state spin system without disorder which exhibits a glassy regime.

  9. Absence of Quantum Time Crystals in Ground States

    NASA Astrophysics Data System (ADS)

    Watanabe, Haruki; Oshikawa, Masaki

    2015-03-01

    In analogy with crystalline solids around us, Wilczek recently proposed the idea of ``time crystals'' as phases that spontaneously break the continuous time translation into a discrete subgroup. The proposal stimulated further studies and vigorous debates whether it can be realized in a physical system. However, a precise definition of the time crystal is needed to resolve the issue. Here we first present a definition of time crystals based on the time-dependent correlation functions of the order parameter. We then prove a no-go theorem that rules out the possibility of time crystals defined as such, in the ground state of a general Hamiltonian which consists of only short-range interactions.

  10. Cloning and variation of ground state intestinal stem cells.

    PubMed

    Wang, Xia; Yamamoto, Yusuke; Wilson, Lane H; Zhang, Ting; Howitt, Brooke E; Farrow, Melissa A; Kern, Florian; Ning, Gang; Hong, Yue; Khor, Chiea Chuen; Chevalier, Benoit; Bertrand, Denis; Wu, Lingyan; Nagarajan, Niranjan; Sylvester, Francisco A; Hyams, Jeffrey S; Devers, Thomas; Bronson, Roderick; Lacy, D Borden; Ho, Khek Yu; Crum, Christopher P; McKeon, Frank; Xian, Wa

    2015-06-11

    Stem cells of the gastrointestinal tract, pancreas, liver and other columnar epithelia collectively resist cloning in their elemental states. Here we demonstrate the cloning and propagation of highly clonogenic, 'ground state' stem cells of the human intestine and colon. We show that derived stem-cell pedigrees sustain limited copy number and sequence variation despite extensive serial passaging and display exquisitely precise, cell-autonomous commitment to epithelial differentiation consistent with their origins along the intestinal tract. This developmentally patterned and epigenetically maintained commitment of stem cells is likely to enforce the functional specificity of the adult intestinal tract. Using clonally derived colonic epithelia, we show that toxins A or B of the enteric pathogen Clostridium difficile recapitulate the salient features of pseudomembranous colitis. The stability of the epigenetic commitment programs of these stem cells, coupled with their unlimited replicative expansion and maintained clonogenicity, suggests certain advantages for their use in disease modelling and regenerative medicine.

  11. Calculation of electron scattering from the ground state of ytterbium

    SciTech Connect

    Bostock, Christopher J.; Fursa, Dmitry V.; Bray, Igor

    2011-05-15

    We report on the application of the convergent close-coupling method, in both relativistic and nonrelativistic formulations, to electron scattering from ytterbium. Angle-differential and integrated cross sections are presented for elastic scattering and excitation of the states (6s6p){sup 3}P{sub 0,1,2}, (6s6p){sup 1}P{sub 1}{sup o}, (6s7p){sup 1}P{sub 1}{sup o}, and (6s5d){sup 1}D{sub 2}{sup e} for a range of incident electron energies. We also present calculations of the total cross section, and angle-differential Stokes parameters for excitation of the (6s6p){sup 3}P{sub 1}{sup o} state from the ground state. A comparison is made with the relativistic distorted-wave method and experiments.

  12. Charge transfer to ground-state ions produces free electrons

    PubMed Central

    You, D.; Fukuzawa, H.; Sakakibara, Y.; Takanashi, T.; Ito, Y.; Maliyar, G. G.; Motomura, K.; Nagaya, K.; Nishiyama, T.; Asa, K.; Sato, Y.; Saito, N.; Oura, M.; Schöffler, M.; Kastirke, G.; Hergenhahn, U.; Stumpf, V.; Gokhberg, K.; Kuleff, A. I.; Cederbaum, L. S.; Ueda, K

    2017-01-01

    Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment, for example, a liquid or a van der Waals bonded system, this process will be modified, and becomes part of a complex cascade of relaxation steps. Understanding these steps is important, as they determine the production of slow electrons and singly charged radicals, the most abundant products in radiation chemistry. In this communication, we present experimental evidence for a so-far unobserved, but potentially very important step in such relaxation cascades: Multiply charged ionic states after Auger decay may partially be neutralized by electron transfer, simultaneously evoking the creation of a low-energy free electron (electron transfer-mediated decay). This process is effective even after Auger decay into the dicationic ground state. In our experiment, we observe the decay of Ne2+ produced after Ne 1s photoionization in Ne–Kr mixed clusters. PMID:28134238

  13. Propagation of nuclear data uncertainties for fusion power measurements

    NASA Astrophysics Data System (ADS)

    Sjöstrand, Henrik; Conroy, Sean; Helgesson, Petter; Hernandez, Solis Augusto; Koning, Arjan; Pomp, Stephan; Rochman, Dimitri

    2017-09-01

    Neutron measurements using neutron activation systems are an essential part of the diagnostic system at large fusion machines such as JET and ITER. Nuclear data is used to infer the neutron yield. Consequently, high-quality nuclear data is essential for the proper determination of the neutron yield and fusion power. However, uncertainties due to nuclear data are not fully taken into account in uncertainty analysis for neutron yield calibrations using activation foils. This paper investigates the neutron yield uncertainty due to nuclear data using the so-called Total Monte Carlo Method. The work is performed using a detailed MCNP model of the JET fusion machine; the uncertainties due to the cross-sections and angular distributions in JET structural materials, as well as the activation cross-sections in the activation foils, are analysed. It is found that a significant contribution to the neutron yield uncertainty can come from uncertainties in the nuclear data.

  14. Ground-state thermodynamics of bistable redox-active donor-acceptor mechanically interlocked molecules.

    PubMed

    Fahrenbach, Albert C; Bruns, Carson J; Cao, Dennis; Stoddart, J Fraser

    2012-09-18

    . Measuring the ground-state distribution constants of bistable MIMs presents its own set of challenges. While it is possible, in principle, to determine these constants using NMR and UV-vis spectroscopies, these methods lack the sensitivity to permit the determination of ratios of translational isomers greater than 10:1 with sufficient accuracy and precision. A simple application of the Nernst equation, in combination with variable scan-rate cyclic voltammetry, however, allows the direct measurement of ground-state distribution constants across a wide range (K(GS) = 10-10(4)) of values.

  15. Ground-state electronic structure of vanadium(III) trisoxalate in hydrated compounds.

    PubMed

    Kittilstved, Kevin R; Sorgho, Lilit Aboshyan; Amstutz, Nahid; Tregenna-Piggott, Philip L W; Hauser, Andreas

    2009-08-17

    The ground-state electronic structures of K3V(ox)3.3H2O, Na3V(ox)3.5H2O, and NaMgAl1-xVx(ox)3.9H2O (0 < x 1Gamma(t2g2) spin-forbidden electronic origins and inelastic neutron scattering measurements of the pseudo-octahedral [V(ox)3]3- complex anion below 30 K exhibit both axial and rhombic components to the zero-field-splittings (ZFSs). Analysis of the ground-state ZFS using the conventional S = 1 spin Hamiltonian reveals that the axial ZFS component changes sign from positive values for K3V(ox)3.3H2O (D approximately +5.3 cm-1) and Na3V(ox)3.5H2O (D approximately +7.2 cm-1) to negative values for NaMgAl1-xVx(ox)3.9H2O (D approximately -9.8 cm-1 for x = 0.013, and D approximately -12.7 cm-1 for x = 1) with an additional rhombic component, |E|, that varies between approximately 0.8 and approximately 2 cm-1. On the basis of existing crystallographic data, this phenomenon can be identified as due to variations in the axial and rhombic ligand fields resulting from outer-sphere H-bonding between crystalline water molecules and the oxalate ligands. Spectroscopic evidence of a crystallographic phase change is also observed for K3V(ox)3.3Y2O (Y = H or D) with three distinct lattice sites below 30 K, each with a unique ground-state electronic structure.

  16. Degenerate ground states and multiple bifurcations in a two-dimensional q-state quantum Potts model.

    PubMed

    Dai, Yan-Wei; Cho, Sam Young; Batchelor, Murray T; Zhou, Huan-Qiang

    2014-06-01

    We numerically investigate the two-dimensional q-state quantum Potts model on the infinite square lattice by using the infinite projected entangled-pair state (iPEPS) algorithm. We show that the quantum fidelity, defined as an overlap measurement between an arbitrary reference state and the iPEPS ground state of the system, can detect q-fold degenerate ground states for the Z_{q} broken-symmetry phase. Accordingly, a multiple bifurcation of the quantum ground-state fidelity is shown to occur as the transverse magnetic field varies from the symmetry phase to the broken-symmetry phase, which means that a multiple-bifurcation point corresponds to a critical point. A (dis)continuous behavior of quantum fidelity at phase transition points characterizes a (dis)continuous phase transition. Similar to the characteristic behavior of the quantum fidelity, the magnetizations, as order parameters, obtained from the degenerate ground states exhibit multiple bifurcation at critical points. Each order parameter is also explicitly demonstrated to transform under the Z_{q} subgroup of the symmetry group of the Hamiltonian. We find that the q-state quantum Potts model on the square lattice undergoes a discontinuous (first-order) phase transition for q=3 and q=4 and a continuous phase transition for q=2 (the two-dimensional quantum transverse Ising model).

  17. Nuclear-Spin Measurements of Quantum Hall Systems

    NASA Astrophysics Data System (ADS)

    Hirayama, Yoshiro

    Nuclear magnetic resonance (NMR) is widely used in the physical, chemical, and biological sciences. However, conventional NMR techniques based on induction-detection have drawbacks of low-sensitivity and the need of a relatively large sample. It is not suitable to investigate single or double layers (or their nanostructure), which is essential in studying quantum Hall (QH) effects. In this presentation, I discussed a resistively-detected technique to overcome the low-sensitivity limitation of conventional NMR and its application to QH systems. Resistively-detected nuclear-spin-based measurements rely on enhanced interactions between electron and nuclear spins at the degenerate point of different electron-spin states. For example, at the ν = 2/3 degenerate point in a AlGaAs/GaAs system,1-3 nuclear-spin polarization far beyond the thermal equilibrium is generated using current flow (dynamic nuclear-spin polarization). Moreover, nuclear-spin polarization can be detected as enhanced resistance, which is proportional to the magnetization, Mz, of nuclear spins.2 It should be stressed that the special states of ν = 2/3 are needed for dynamic nuclear-spin polarization and Mz detection, but we can apply NMR spectrum and nuclear-spin relaxation (T1 time) measurements for any state we want to estimate. These nuclear-spin-based measurements were successfully applied to characterize QH systems, especially their electron-spin features, using single and double layer systems where characteristics are controlled electrically by the gate biases. For a single layer, we could clarify skyrmion,2 spin-polarization of composite fermion,4 and enhanced spin-orbit interactions in a strongly asymmetric confinement.5 Exciting phases, like a canted antiferromagnetic phase, were studied in a double layer QH system with a total filling factor of 2 (Refs. 6, 7). The low-frequency mode was sensitively detected by monitoring T1, reflecting correlated electron spin features.7 The clear

  18. Measurements of nuclear spin dynamics by spin-noise spectroscopy

    SciTech Connect

    Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.; Zapasskii, V. S.; Kavokin, K. V.; Glazov, M. M.; Vladimirova, M.; Scalbert, D.; Cronenberger, S.; Lemaître, A.; Bloch, J.

    2015-06-15

    We exploit the potential of the spin noise spectroscopy (SNS) for studies of nuclear spin dynamics in n-GaAs. The SNS experiments were performed on bulk n-type GaAs layers embedded into a high-finesse microcavity at negative detuning. In our experiments, nuclear spin polarisation initially prepared by optical pumping is monitored in real time via a shift of the peak position in the electron spin noise spectrum. We demonstrate that this shift is a direct measure of the Overhauser field acting on the electron spin. The dynamics of nuclear spin is shown to be strongly dependent on the electron concentration.

  19. Measurements of nuclear spin dynamics by spin-noise spectroscopy

    NASA Astrophysics Data System (ADS)

    Ryzhov, I. I.; Poltavtsev, S. V.; Kavokin, K. V.; Glazov, M. M.; Kozlov, G. G.; Vladimirova, M.; Scalbert, D.; Cronenberger, S.; Kavokin, A. V.; Lemaître, A.; Bloch, J.; Zapasskii, V. S.

    2015-06-01

    We exploit the potential of the spin noise spectroscopy (SNS) for studies of nuclear spin dynamics in n-GaAs. The SNS experiments were performed on bulk n-type GaAs layers embedded into a high-finesse microcavity at negative detuning. In our experiments, nuclear spin polarisation initially prepared by optical pumping is monitored in real time via a shift of the peak position in the electron spin noise spectrum. We demonstrate that this shift is a direct measure of the Overhauser field acting on the electron spin. The dynamics of nuclear spin is shown to be strongly dependent on the electron concentration.

  20. Lifetime Measurements of Tagged Exotic- and Unbound Nuclear States

    SciTech Connect

    Cullen, D. M.

    2011-11-30

    A new Differential Plunger device for measuring pico-second lifetimes of Unbound Nuclear States (DPUNS) is being built at The University of Manchester. DPUNS has been designed to work with alpha-, beta- and isomer-tagging methods using the existing JUROGAM II--RITU--GREAT infrastructure at the University of Jyvaskyla, Finland. The importance of proton emission from nuclei is that it provides valuable nuclear-structure information as direct input to nuclear models beyond the drip line. New experimental data beyond the drip line can provide new extensions to these models especially with the possible coupling of weakly bound and unbound states to the continuum. The results of the first experiments to measure lifetimes of unbound nuclear states with this method was discussed along with possible future experiments which can be addressed with DPUNS using proton-, isomer- and alpha-tagging.

  1. Laboratory rotational ground state transitions of NH3D+ and CF+

    NASA Astrophysics Data System (ADS)

    Stoffels, A.; Kluge, L.; Schlemmer, S.; Brünken, S.

    2016-09-01

    Aims: This paper reports accurate laboratory frequencies of the rotational ground state transitions of two astronomically relevant molecular ions, NH3D+ and CF+. Methods: Spectra in the millimetre-wave band were recorded by the method of rotational state-selective attachment of He atoms to the molecular ions stored and cooled in a cryogenic ion trap held at 4 K. The lowest rotational transition in the A state (ortho state) of NH3D+ (JK = 10-00), and the two hyperfine components of the ground state transition of CF+ (J = 1-0) were measured with a relative precision better than 10-7. Results: For both target ions, the experimental transition frequencies agree with recent observations of the same lines in different astronomical environments. In the case of NH3D+ the high-accuracy laboratory measurements lend support to its tentative identification in the interstellar medium. For CF+ the experimentally determined hyperfine splitting confirms previous quantum-chemical calculations and the intrinsic spectroscopic nature of a double-peaked line profile observed in the J = 1-0 transition towards the Horsehead photon-dominated region (PDR).

  2. Determination of parameters of a nuclear reactor through noise measurements

    DOEpatents

    Cohn, C.E.

    1975-07-15

    A method of measuring parameters of a nuclear reactor by noise measurements is described. Noise signals are developed by the detectors placed in the reactor core. The polarity coincidence between the noise signals is used to develop quantities from which various parameters of the reactor can be calculated. (auth)

  3. Monitoring the Random Errors of Nuclear Material Measurements

    SciTech Connect

    ,

    1980-06-01

    Monitoring and controlling random errors is an important function of a measurement control program. This report describes the principal sources of random error in the common nuclear material measurement processes and the most important elements of a program for monitoring, evaluating and controlling the random error standard deviations of these processes.

  4. Negative ion photoelectron spectroscopy confirms the prediction that (CO)5 and (CO)6 each has a singlet ground state.

    PubMed

    Bao, Xiaoguang; Hrovat, David A; Borden, Weston Thatcher; Wang, Xue-Bin

    2013-03-20

    Cyclobutane-1,2,3,4-tetraone has been both predicted and found to have a triplet ground state, in which a b2g σ molecular orbital (MO) and an a2u π MO are each singly occupied. In contrast, (CO)5 and (CO)6 have each been predicted to have a singlet ground state. These predictions have been tested by generating the (CO)5(•-) and (CO)6(•-) radical anions in the gas phase, using electrospray vaporization of solutions of, respectively, the croconate (CO)5(2-) and rhodizonate (CO)6(2-) dianions. The negative ion photoelectron (NIPE) spectrum of the (CO)5(•-) radical anion gives an electron affinity of EA = 3.830 eV for formation of the singlet ground state of (CO)5. The triplet is found to be higher in energy by 0.850 eV (19.6 kcal/mol). The NIPE spectrum of the (CO)6(•-) radical anion gives EA = 3.785 eV for forming the singlet ground state of (CO)6, with the triplet state higher in energy by 0.915 eV (21.1 kcal/mol). (RO)CCSD(T)/aug-cc-pVTZ//(U)B3LYP/6-311+G(2df) calculations give EA values that are only approximately 1 kcal/mol lower than those measured and ΔE(ST) values that are 2-3 kcal/mol higher than those obtained from the NIPE spectra. Calculations of the Franck-Condon factors for transitions from the ground state of each radical anion, (CO)n(•-) to the lowest singlet and triplet states of the n = 4-6 neutrals, nicely reproduce all of the observed vibrational features in the low-binding energy regions of all three NIPE spectra. Thus, the calculations of both the energies and vibrational structures of the two lowest energy bands in each of the NIPE spectra support the interpretation of the spectra in terms of a singlet ground state for (CO)5 and (CO)6 but a triplet ground state for (CO)4.

  5. A dc amplifier for nuclear particle measurement

    NASA Technical Reports Server (NTRS)

    Macnee, A. B.; Masnari, N. A.

    1978-01-01

    A monolithic preamplifier-postamplifier combination has been developed for use with solid state particle detectors. The direct coupled amplifiers employ interdigitated n-channel JFET's, diodes, and diffused resistors. The circuits developed demonstrate the feasibility of matching the performance of existing discrete component designs. The fabrication procedures for the monolithic amplifier fabrication are presented and the results of measurements on a limited number of sample amplifiers are given.

  6. High resolution image measurements of nuclear tracks

    NASA Technical Reports Server (NTRS)

    Shirk, E. K.; Price, P. B.

    1980-01-01

    The striking clarity and high contrast of the mouths of tracks etched in CR-39 plastic detectors allow automatic measurement of track parameters to be made with simple image-recognition equipment. Using a commercially available Vidicon camera system with a microprocessor-controlled digitizer, resolution for normally incident C-12 and N-14 ions at 32 MeV/amu equivalent to a 14sigma separation of adjacent charges was demonstrated.

  7. Negative Ion Photoelectron Spectroscopy Confirms the Prediction that (CO)5 and (CO)6 Each Has a Singlet Ground State

    SciTech Connect

    Bao, Xiaoguang; Hrovat, David; Borden, Weston; Wang, Xue B.

    2013-03-20

    Cyclobutane-1,2,3,4-tetraone has been both predicted and found to have a triplet ground state, in which a b2g MO and an a2u MO is each singly occupied. In contrast, (CO)5 and (CO)6 have each been predicted to have a singlet ground state. This prediction has been tested by generating the (CO)5 - and (CO)6 - anions in the gas-phase by electrospray vaporization of solutions of, respectively, the croconate (CO)52- and rhodizonate (CO)62- dianions. The negative ion photoelectron (NIPE) spectra of the (CO)5•- radical anion give electron affinity (EA) = 3.830 eV and a singlet ground state for (CO)5, with the triplet higher in energy by 0.850 eV (19.6 kcal/mol). The NIPE spectra of the (CO)6•- radical anion give EA = 3.785 eV and a singlet ground state for (CO)6, with the triplet higher in energy by 0.915 eV (21.1 kcal/mol). (RO)CCSD(T)/aug-cc-pVTZ//(U)B3LYP/6-311+G(2df) calculations give EA values that are only ca. 1 kcal/mol lower than those measured and EST values that are only 2 - 3 kcal/mol higher than those obtained from the NIPE spectra. Thus, the calculations support the interpretations of the NIPE spectra and the finding, based on the spectra, that (CO)5 and (CO)6 both have a singlet ground state.

  8. Precision Measurement of Nuclear Electron Capture Decay

    NASA Astrophysics Data System (ADS)

    Koltick, David; Liu, Shih-Chieh; Wang, Haoyu; Heim, Jordan; Nistor, Jonathan

    2017-01-01

    The method of accurately measuring the radioactive decay constant of a isotope by measuring the decay rate as a function of time requires that both the detector and environment be stable over time periods comparable to the life-time of the isotope. In addition statistical accuracy requires initial counting rates be high but limited by the dead time capability of the data collection system and the detectors double-event resolving time. A High Purity Germanium (HPGe) spectrometer, sensitive to radiation from 3-KeV to over 3-MeV, has been built to measure radioactive decay constants to a level of 10-5 10-6 at a location only 6 meters from the core of the High Flux Isotope Reactor located at Oak Ridge National Laboratory. Such accuracy requires understanding of, background, signal-processing algorithms, and both the double and triple event pile-up in the observed spectrum. The approach taken is to fit the collected energy spectrum with invariant shapes, independent of event rate. By fixing the source-detector geometry and environmental conditions, the invariant shapes are (1) ideal energy spectrum without pile-up and background, (2) the ideal double event pile-up spectrum, (3) the ideal triple event pile-up spectrum, and (4) the stable background spectrum. A method is presented that finds these ideal shapes using the collected data in situ. Taking this approach the HPGe detector photopeak shape in the absence of background and pile-up is presented showing associated structure over a range of 7 orders of magnitude.

  9. Quantum Electrodynamics in Strong Electric Fields: The Ground-State Lamb Shift in Hydrogenlike Uranium

    SciTech Connect

    Gumberidze, A.; Stoehlker, Th.; Tashenov, S.; Banas, D.; Beckert, K.; Beller, P.; Beyer, H.F.; Bosch, F.; Hagmann, S.; Kozhuharov, C.; Liesen, D.; Nolden, F.; Mokler, P.H.; Steck, M.; Ma, X.; Sierpowski, D.

    2005-06-10

    X-ray spectra following radiative recombination of free electrons with bare uranium ions (U{sup 92+}) were measured at the electron cooler of the ESR storage ring. The most intense lines observed in the spectra can be attributed to the characteristic Lyman ground-state transitions and to the recombination of free electrons into the K shell of the ions. Our experiment was carried out by utilizing the deceleration technique which leads to a considerable reduction of the uncertainties associated with Doppler corrections. This, in combination with the 0 deg. observation geometry, allowed us to determine the ground-state Lamb shift in hydrogenlike uranium (U{sup 91+}) from the observed x-ray lines with an accuracy of 1%. The present result is about 3 times more precise than the most accurate value available up to now and provides the most stringent test of bound-state quantum electrodynamics for one-electron systems in the strong-field regime.

  10. Dynamics of a Ground-State Cooled Ion Colliding with Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Meir, Ziv; Sikorsky, Tomas; Ben-shlomi, Ruti; Akerman, Nitzan; Dallal, Yehonatan; Ozeri, Roee

    2016-12-01

    Ultracold atom-ion mixtures are gaining increasing interest due to their potential applications in ultracold and state-controlled chemistry, quantum computing, and many-body physics. Here, we studied the dynamics of a single ground-state cooled ion during few, to many, Langevin (spiraling) collisions with ultracold atoms. We measured the ion's energy distribution and observed a clear deviation from the Maxwell-Boltzmann distribution, characterized by an exponential tail, to a power-law distribution best described by a Tsallis function. Unlike previous experiments, the energy scale of atom-ion interactions is not determined by either the atomic cloud temperature or the ion's trap residual excess-micromotion energy. Instead, it is determined by the force the atom exerts on the ion during a collision which is then amplified by the trap dynamics. This effect is intrinsic to ion Paul traps and sets the lower bound of atom-ion steady-state interaction energy in these systems. Despite the fact that our system is eventually driven out of the ultracold regime, we are capable of studying quantum effects by limiting the interaction to the first collision when the ion is initialized in the ground state of the trap.

  11. Dynamics of a Ground-State Cooled Ion Colliding with Ultracold Atoms.

    PubMed

    Meir, Ziv; Sikorsky, Tomas; Ben-Shlomi, Ruti; Akerman, Nitzan; Dallal, Yehonatan; Ozeri, Roee

    2016-12-09

    Ultracold atom-ion mixtures are gaining increasing interest due to their potential applications in ultracold and state-controlled chemistry, quantum computing, and many-body physics. Here, we studied the dynamics of a single ground-state cooled ion during few, to many, Langevin (spiraling) collisions with ultracold atoms. We measured the ion's energy distribution and observed a clear deviation from the Maxwell-Boltzmann distribution, characterized by an exponential tail, to a power-law distribution best described by a Tsallis function. Unlike previous experiments, the energy scale of atom-ion interactions is not determined by either the atomic cloud temperature or the ion's trap residual excess-micromotion energy. Instead, it is determined by the force the atom exerts on the ion during a collision which is then amplified by the trap dynamics. This effect is intrinsic to ion Paul traps and sets the lower bound of atom-ion steady-state interaction energy in these systems. Despite the fact that our system is eventually driven out of the ultracold regime, we are capable of studying quantum effects by limiting the interaction to the first collision when the ion is initialized in the ground state of the trap.

  12. Quantum ground state effect on fluctuation rates in nano-patterned superconducting structures

    SciTech Connect

    Eftekharian, Amin; Jafari Salim, Amir; Atikian, Haig; Akhlaghi, Mohsen K.; Hamed Majedi, A.

    2013-12-09

    In this Letter, we present a theoretical model with experimental verifications to describe the abnormal behaviors of the measured fluctuation rates occurring in nano-patterned superconducting structures below the critical temperature. In the majority of previous works, it is common to describe the fluctuation rate by defining a fixed ground state or initial state level for the singularities (vortex or vortex-antivortex pairs), and then employing the well-known rate equations to calculate the liberation rates. Although this approach gives an acceptable qualitative picture, without utilizing free parameters, all the models have been inadequate in describing the temperature dependence of the rate for a fixed width or the width dependence of the rate for a fixed temperature. Here, we will show that by defining a current-controlled ground state level for both the vortex and vortex-antivortex liberation mechanisms, the dynamics of these singularities are described for a wide range of temperatures and widths. According to this study, for a typical strip width, not only is the vortex-antivortex liberation higher than the predicted rate, but also quantum tunneling is significant in certain conditions and can not be neglected.

  13. High-resolution absorption spectroscopy of the OH 2Π3/2 ground state line

    NASA Astrophysics Data System (ADS)

    Wiesemeyer, H.; Güsten, R.; Heyminck, S.; Jacobs, K.; Menten, K. M.; Neufeld, D. A.; Requena-Torres, M. A.; Stutzki, J.

    2012-06-01

    The chemical composition of the interstellar medium is determined by gas phase chemistry, assisted by grain surface reactions, and by shock chemistry. The aim of this study is to measure the abundance of the hydroxyl radical (OH) in diffuse spiral arm clouds as a contribution to our understanding of the underlying network of chemical reactions. Owing to their high critical density, the ground states of light hydrides provide a tool to directly estimate column densities by means of absorption spectroscopy against bright background sources. We observed onboard the SOFIA observatory the 2Π3/2, J = 5/2 ← 3/2 2.5 THz line of ground-state OH in the diffuse clouds of the Carina-Sagittarius spiral arm. OH column densities in the spiral arm clouds along the sightlines to W49N, W51 and G34.26+0.15 were found to be of the order of 1014 cm-2, which corresponds to a fractional abundance of 10-7 to 10-8, which is comparable to that of H2O. The absorption spectra of both species have similar velocity components, and the ratio of the derived H2O to OH column densities ranges from 0.3 to 1.0. In W49N we also detected the corresponding line of 18OH.

  14. Direct experimental evidence for a multiparticle-hole ground state configuration of deformed 33Mg

    NASA Astrophysics Data System (ADS)

    Datta, Ushasi; Rahaman, A.; Aumann, T.; Beceiro-Novo, S.; Boretzky, K.; Caesar, C.; Carlson, B. V.; Catford, W. N.; Chakraborty, S.; Chartier, M.; Cortina-Gil, D.; de Angelis, G.; Diaz Fernandez, P.; Emling, H.; Ershova, O.; Fraile, L. M.; Geissel, H.; Gonzalez-Diaz, D.; Jonson, B.; Johansson, H.; Kalantar-Nayestanaki, N.; Kröll, T.; Krücken, R.; Kurcewicz, J.; Langer, C.; Le Bleis, T.; Leifels, Y.; Marganiec, J.; Münzenberg, G.; Najafi, M. A.; Nilsson, T.; Nociforo, C.; Panin, V.; Paschalis, S.; Plag, R.; Reifarth, R.; Ricciardi, V.; Rossi, D.; Scheit, H.; Scheidenberger, C.; Simon, H.; Taylor, J. T.; Togano, Y.; Typel, S.; Volkov, V.; Wagner, A.; Wamers, F.; Weick, H.; Weigand, M.; Winfield, J. S.; Yakorev, D.; Zoric, M.

    2016-09-01

    The first direct experimental evidence of a multiparticle-hole ground state configuration of the neutron-rich 33Mg isotope has been obtained via intermediate energy (400 A MeV) Coulomb dissociation measurement. The major part ˜(70 ±13 )% of the cross section is observed to populate the excited states of 32Mg after the Coulomb breakup of 33Mg. The shapes of the differential Coulomb dissociation cross sections in coincidence with different core excited states favor that the valence neutron occupies both the s1 /2 and p3 /2 orbitals. These experimental findings suggest a significant reduction and merging of s d -p f shell gaps at N ˜20 and 28. The ground state configuration of 33Mg is predominantly a combination of 32Mg(3.0 ,3.5 MeV ;2-,1-) ⨂νs1/2 , 32Mg(2.5 MeV ;2+) ⨂νp3/2 , and 32Mg(0 ;0+) ⨂νp3/2 . The experimentally obtained quantitative spectroscopic information for the valence neutron occupation of the s and p orbitals, coupled with different core states, is in agreement with Monte Carlo shell model (MCSM) calculation using 3 MeV as the shell gap at N =20 .

  15. Ground-state properties and high-pressure behavior of plutonium dioxide: Density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Ping; Wang, Bao-Tian; Zhao, Xian-Geng

    2010-10-01

    Plutonium dioxide is of high technological importance in nuclear fuel cycle and is particularly crucial in long-term storage of Pu-based radioactive waste. Using first-principles density-functional theory, in this paper we systematically study the structural, electronic, mechanical, thermodynamic properties, and pressure-induced structural transition of PuO2 . To properly describe the strong correlation in Pu5f electrons, the local-density approximation (LDA)+U and the generalized gradient approximation+U theoretical formalisms have been employed. We optimize U parameter in calculating the total energy, lattice parameters, and bulk modulus at nonmagnetic, ferromagnetic, and antiferromagnetic configurations for both ground-state fluorite structure and high-pressure cotunnite structure. Best agreement with experiments is obtained by tuning the effective Hubbard parameter U at around 4 eV within LDA+U approach. After carefully testing the validity of the ground-state calculation, we further investigate the bonding nature, elastic constants, various moduli, Debye temperature, hardness, ideal tensile strength, and phonon dispersion for fluorite PuO2 . Some thermodynamic properties, e.g., Gibbs free energy, volume thermal expansion, and specific heat are also calculated. As for cotunnite phase, besides elastic constants, various moduli, and Debye temperature at 0 GPa, we have further presented our calculated electronic, structural, and magnetic properties for PuO2 under pressure up to 280 GPa. A metallic transition at around 133 GPa and an isostructural transition in pressure range of 75-133 GPa are predicted. Additionally, as an illustration on the valency trend and subsequent effect on the mechanical properties, the calculated results for other actinide metal dioxides ( ThO2 , UO2 , and NpO2 ) are also presented.

  16. Magnetic ground states in nanocuboids of cubic magnetocrystalline anisotropy

    NASA Astrophysics Data System (ADS)

    Bonilla, F. J.; Lacroix, L.-M.; Blon, T.

    2017-04-01

    Flower and easy-axis vortex states are well-known magnetic configurations that can be stabilized in small particles. However, <111> vortex (V<111>), i.e. a vortex state with its core axis along the hard-axis direction, has been recently evidenced as a stable configuration in Fe nanocubes of intermediate sizes in the flower/vortex transition. In this context, we present here extensive micromagnetic simulations to determine the different magnetic ground states in ferromagnetic nanocuboids exhibiting cubic magnetocrystalline anisotropy (MCA). Focusing our study in the single-domain/multidomain size range (10-50 nm), we showed that V<111> is only stable in nanocuboids exhibiting peculiar features, such as a specific size, shape and magnetic environment, contrarily to the classical flower and easy-axis vortex states. Thus, to track experimentally these V<111> states, one should focused on (i) nanocuboids exhibiting a nearly perfect cubic shape (size distorsion <12%) made of (ii) a material which combines a zero or positive MCA and a high saturation magnetization, such as Fe or FeCo; and (iii) a low magnetic field environment, V<111> being only observed in virgin or remanent states.

  17. Antiferromagnetic ground state in NpCoGe

    NASA Astrophysics Data System (ADS)

    Colineau, E.; Griveau, J.-C.; Eloirdi, R.; Gaczyński, P.; Khmelevskyi, S.; Shick, A. B.; Caciuffo, R.

    2014-03-01

    NpCoGe, the neptunium analog of the ferromagnetic superconductor UCoGe, has been investigated by dc magnetization, ac susceptibility, specific heat, electrical resistivity, Hall effect, 237Np Mössbauer spectroscopy, and local spin-density approximation (LSDA) calculations. NpCoGe exhibits an antiferromagnetic ground state with a Néel temperature TN≈13 K and an average ordered magnetic moment <μNp>=0.80μB. The magnetic phase diagram has been determined and shows that the antiferromagnetic structure is destroyed by the application of a magnetic field (≈3 T). The value of the isomer shift suggests a Np3+ charge state (configuration 5f4). A high Sommerfeld coefficient value for NpCoGe (170 mJ mol-1 K-2) is inferred from specific heat. LSDA calculations indicate strong magnetic anisotropy and easy magnetization along the c axis. Mössbauer data and calculated exchange interactions support the possible occurrence of an elliptical spin-spiral structure in NpCoGe. The comparison with NpRhGe and uranium analogs suggests the leading role of 5f-d hybridization, the rather delocalized character of 5f electrons in NpCoGe, and the possible proximity of NpRuGe or NpFeGe to a magnetic quantum critical point.

  18. Tracking the embryonic stem cell transition from ground state pluripotency.

    PubMed

    Kalkan, Tüzer; Olova, Nelly; Roode, Mila; Mulas, Carla; Lee, Heather J; Nett, Isabelle; Marks, Hendrik; Walker, Rachael; Stunnenberg, Hendrik G; Lilley, Kathryn S; Nichols, Jennifer; Reik, Wolf; Bertone, Paul; Smith, Austin

    2017-04-01

    Mouse embryonic stem (ES) cells are locked into self-renewal by shielding from inductive cues. Release from this ground state in minimal conditions offers a system for delineating developmental progression from naïve pluripotency. Here, we examine the initial transition process. The ES cell population behaves asynchronously. We therefore exploited a short-half-life Rex1::GFP reporter to isolate cells either side of exit from naïve status. Extinction of ES cell identity in single cells is acute. It occurs only after near-complete elimination of naïve pluripotency factors, but precedes appearance of lineage specification markers. Cells newly departed from the ES cell state display features of early post-implantation epiblast and are distinct from primed epiblast. They also exhibit a genome-wide increase in DNA methylation, intermediate between early and late epiblast. These findings are consistent with the proposition that naïve cells transition to a distinct formative phase of pluripotency preparatory to lineage priming.

  19. Ground-state coding in partially connected neural networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1989-01-01

    Patterns over (-1,0,1) define, by their outer products, partially connected neural networks, consisting of internally strongly connected, externally weakly connected subnetworks. The connectivity patterns may have highly organized structures, such as lattices and fractal trees or nests. Subpatterns over (-1,1) define the subcodes stored in the subnetwork, that agree in their common bits. It is first shown that the code words are locally stable stares of the network, provided that each of the subcodes consists of mutually orthogonal words or of, at most, two words. Then it is shown that if each of the subcodes consists of two orthogonal words, the code words are the unique ground states (absolute minima) of the Hamiltonian associated with the network. The regions of attraction associated with the code words are shown to grow with the number of subnetworks sharing each of the neurons. Depending on the particular network architecture, the code sizes of partially connected networks can be vastly greater than those of fully connected ones and their error correction capabilities can be significantly greater than those of the disconnected subnetworks. The codes associated with lattice-structured and hierarchical networks are discussed in some detail.

  20. Ground-state valency and spin configuration of the nickelates.

    NASA Astrophysics Data System (ADS)

    Petit, Leon; Stocks, George M.; Egami, Takeshi; Szotek, Zdzislawa; Temmerman, Walter M.

    2006-03-01

    The ab initio self-interaction-corrected local-spin-density approximation is used to study the electronic structure of both stoichiometric and non-stoichiometric nickelates. From total energy considerations it emerges that, in their ground-state, both LiNiO2, and NaNiO2 are insulators, with the Ni ion in the Ni^3+ low spin state (t2g^6eg^1) configuration. We find that the substitution of Li/Na atoms by divalent impurities, drives an equivalent number of Ni ions in the NiO2 layers from the JT-active trivalent low-spin state to the divalent JT-inactive state. We propose that an experimental study on MgxNa1-xNiO2 might clarify the role of Ni^2+ impurities with respect to the vanishing of long range orbital ordering in Li1-xNi1+xO2. (Work sponsored by the Laboratory Directed Research and Development Program (LDRD) program of ORNL (LP, GMS, TE), and by the DOE-OS through the Offices of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering (LP, GMS, TE). Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the Department of Energy under Contract No. DE-AC05-00OR22725.)

  1. Tensor Forces and the Ground-State Structure of Nuclei

    SciTech Connect

    Rocco Schiavilla

    2007-03-01

    Two-nucleon momentum distributions are calculated for the ground states of nuclei with mass number A {le} 8, using accurate variational Monte Carlo wave functions derived from a realistic Hamiltonian with two- and three-nucleon potentials. The momentum distribution of 'np' pairs is found to be much larger than that of 'pp' pairs for values of the relative momentum in the range (300--600) MeV/c and vanishing total momentum. This large difference, more than an order of magnitude, is seen in all nuclei considered, and has a universal character originating from the tensor components present in any realistic nucleon-nucleon potential. The correlations induced by the tensor force strongly influence the structure of 'np' pairs, which are known to be predominantly in deuteron-like states, while they are ineffective for 'pp' pairs, which are mostly in {sup 1}S{sub 0} states. These features should be easily observable in two-nucleon knock-out processes, for example in A(e,e{prime} np) and A(e,e{prime} pp) reactions.

  2. Ground state of the universe in quantum cosmology

    NASA Astrophysics Data System (ADS)

    Gorobey, Natalia; Lukyanenko, Alexander

    2016-01-01

    We find a physical state of a closed universe with the minimal excitation of the universe expansion energy in quantum gravity. It is an analog of the vacuum state of the ordinary quantum field theory in the Minkowsky space, but in our approach an energy of space of a closed universe together with the energy of its matter content are minimized. This ground state is chosen among an enlarged set of physical states, compared with the ordinary covariant quantum gravity. In our approach, physical states are determined by weak constraints: quantum mechanical averages of gravitational constraint operators equal zero. As a result, they appear to be non-static in such a modification of quantum gravity. Quantum dynamics of the universe is described by Schrödinger equation with a cosmic time determined by weak gravitational constraints. In order to obtain the observed megascopic universe with the inflation stage just after its quantum beginning, a lot of the energy in the form of the inflaton scalar field condensate is prescribed to the initial state. Parameters of the initial state for a homogeneous model of the universe are calculated.

  3. New Ground-State Crystal Structure of Elemental Boron

    NASA Astrophysics Data System (ADS)

    An, Qi; Reddy, K. Madhav; Xie, Kelvin Y.; Hemker, Kevin J.; Goddard, William A.

    2016-08-01

    Elemental boron exhibits many polymorphs in nature based mostly on an icosahedral shell motif, involving stabilization of 13 strong multicenter intraicosahedral bonds. It is commonly accepted that the most thermodynamic stable structure of elemental boron at atmospheric pressure is the β rhombohedral boron (β -B ). Surprisingly, using high-resolution transmission electron microscopy, we found that pure boron powder contains grains of two different types, the previously identified β -B containing a number of randomly spaced twins and what appears to be a fully transformed twinlike structure. This fully transformed structure, denoted here as τ -B , is based on the C m c m orthorhombic space group. Quantum mechanics predicts that the newly identified τ -B structure is 13.8 meV /B more stable than β -B . The τ -B structure allows 6% more charge transfer from B57 units to nearby B12 units, making the net charge 6% closer to the ideal expected from Wade's rules. Thus, we predict the τ -B structure to be the ground state structure for elemental boron at atmospheric pressure.

  4. Continuous Vibrational Cooling of Ground State Rb2

    NASA Astrophysics Data System (ADS)

    Tallant, Jonathan; Marcassa, Luis

    2014-05-01

    The process of photoassociation generally results in a distribution of vibrational levels in the electronic ground state that is energetically close to the dissociation limit. Several schemes have appeared that aim to transfer the population from the higher vibrational levels to lower ones, especially the ground vibrational state. We demonstrate continuous production of vibrationally cooled Rb2 using optical pumping. The vibrationally cooled molecules are produced in three steps. First, we use a dedicated photoassociation laser to produce molecules in high vibrational levels of the X1Σg+ state. Second, a broadband fiber laser at 1071 nm is used to transfer the molecules to lower vibrational levels via optical pumping through the A1Σu+ state. This process transfers the molecules from vibrational levels around ν ~= 113 to a distribution of levels where ν < 35. The molecules may then be further cooled using a broadband superluminescent diode near 685 nm that has its frequency spectrum shaped. The resulting vibrational distributions are probed using resonance-enhanced multiphoton ionization with a pulsed dye laser near 670 nm. The results are presented and compared with theoretical simulations. This work was supported by Fapesp and INCT-IQ.

  5. Short-range interaction energy for ground state H2+

    NASA Astrophysics Data System (ADS)

    Battezzati, Michele; Magnasco, Valerio

    2006-12-01

    Two of the Hermitian eigenvalue equations resulting from the separation of the three-dimensional Schroedinger equation for H2+ in spheroidals are solved perturbatively for the ground state by expanding the action in positive powers of the internuclear distance R near the united atom He+. The dispersion relations between the separation constants A and Ee are seen to have rigorous analytic solutions, the third-order equation leading to an exact expansion for the inner determinantal equation up to R10. The explicit form for the expansion coefficients is determined up to n = 10, and is seen to contain up to the third power of (γ + ln 4R) logarithmic terms. Even if the general range of validity of the short-range Rn-expansion is expected to be smaller than the corresponding long-range R-n-expansion, it is important to stress that such higher expansion coefficients are calculated exactly for the first time. These formulae give extremely accurate numerical results up to R cong 0.3a0.

  6. Tunable ground states in helical p-wave Josephson junctions

    NASA Astrophysics Data System (ADS)

    Cheng, Qiang; Zhang, Kunhua; Yu, Dongyang; Chen, Chongju; Zhang, Yinhan; Jin, Biao

    2016-07-01

    We study new types of Josephson junctions composed of helical p-wave superconductors with {k}x\\hat{x}+/- {k}y\\hat{y} and {k}y\\hat{x}+/- {k}x\\hat{y}-pairing symmetries using quasi-classical Green’s functions with generalized Riccati parametrization. The junctions can host rich ground states: π phase, 0 + π phase, φ 0 phase and φ phase. The phase transition can be tuned by rotating the magnetization in the ferromagnetic interface. We present the phase diagrams in the parameter space formed by the orientation of the magnetization or by the magnitude of the interfacial potentials. The selection rules for the lowest order current which are responsible for the formation of the rich phases are summarized from the current-phase relations based on the numerical calculation. We construct a Ginzburg-Landau type of free energy for the junctions with d-vectors and the magnetization, which not only reveals the interaction forms of spin-triplet superconductivity and ferromagnetism, but can also directly lead to the selection rules. In addition, the energies of the Andreev bound states and the novel symmetries in the current-phase relations are also investigated. Our results are helpful both in the prediction of novel Josephson phases and in the design of quantum circuits.

  7. Recent measurements for hadrontherapy and space radiation: nuclear physics.

    PubMed

    Miller, J

    2001-01-01

    The particles and energies commonly used for hadron therapy overlap the low end of the charge and energy range of greatest interest for space radiation applications, Z=1-26 and approximately 100-1000 MeV/nucleon. It has been known for some time that the nuclear interactions of the incident ions must be taken into account both in treatment planning and in understanding and addressing the effects of galactic cosmic ray ions on humans in space. Until relatively recently, most of the studies of nuclear fragmentation and transport in matter were driven by the interests of the nuclear physics and later, the hadron therapy communities. However, the experimental and theoretical methods and the accelerator facilities developed for use in heavy ion nuclear physics are directly applicable to radiotherapy and space radiation studies. I will briefly review relevant data taken recently at various accelerators, and discuss the implications of the measurements for radiotherapy, radiobiology and space radiation research.

  8. Recent measurements for hadrontherapy and space radiation: nuclear physics

    NASA Technical Reports Server (NTRS)

    Miller, J.

    2001-01-01

    The particles and energies commonly used for hadron therapy overlap the low end of the charge and energy range of greatest interest for space radiation applications, Z=1-26 and approximately 100-1000 MeV/nucleon. It has been known for some time that the nuclear interactions of the incident ions must be taken into account both in treatment planning and in understanding and addressing the effects of galactic cosmic ray ions on humans in space. Until relatively recently, most of the studies of nuclear fragmentation and transport in matter were driven by the interests of the nuclear physics and later, the hadron therapy communities. However, the experimental and theoretical methods and the accelerator facilities developed for use in heavy ion nuclear physics are directly applicable to radiotherapy and space radiation studies. I will briefly review relevant data taken recently at various accelerators, and discuss the implications of the measurements for radiotherapy, radiobiology and space radiation research.

  9. Recent measurements for hadrontherapy and space radiation: nuclear physics

    NASA Technical Reports Server (NTRS)

    Miller, J.

    2001-01-01

    The particles and energies commonly used for hadron therapy overlap the low end of the charge and energy range of greatest interest for space radiation applications, Z=1-26 and approximately 100-1000 MeV/nucleon. It has been known for some time that the nuclear interactions of the incident ions must be taken into account both in treatment planning and in understanding and addressing the effects of galactic cosmic ray ions on humans in space. Until relatively recently, most of the studies of nuclear fragmentation and transport in matter were driven by the interests of the nuclear physics and later, the hadron therapy communities. However, the experimental and theoretical methods and the accelerator facilities developed for use in heavy ion nuclear physics are directly applicable to radiotherapy and space radiation studies. I will briefly review relevant data taken recently at various accelerators, and discuss the implications of the measurements for radiotherapy, radiobiology and space radiation research.

  10. Systematics of ground-state quadrupole moments of odd-A deformed nuclei determined with muonic M x rays

    SciTech Connect

    Tanaka, Y.; Steffen, R.M.; Shera, E.B.; Reuter, W.; Hoehn, M.V.; Zumbro, J.D.

    1984-05-01

    The ground-state quadrupole moments of /sup 151/Eu, /sup 153/Eu, /sup 159/Tb, /sup 163/Dy, /sup 167/Er, /sup 177/Hf, /sup 179/Hf, /sup 191/Ir, and /sup 193/Ir were determined by measuring the quadrupole hyperfine-splitting energies of muonic M x rays. The results are Q = 0.903(10) e b for /sup 151/Eu, Q = 2.412(21) e b for /sup 153/Eu, Q = 1.432(8) e b for /sup 159/Tb, Q = 2.648(21) e b for /sup 163/Dy, Q = 3.565(29) e b for /sup 167/Er, Q = 3.365(29) e b for /sup 177/Hf, Q = 3.793(33) e b for /sup 179/Hf, Q = 0.816(9) e b for /sup 191/Ir, and Q = 0.751(9) e b for /sup 193/Ir. The present quadrupole moments, compared with values obtained from electronic-atom hyperfine measurements, show that the Sternheimer correction factors used in the rare-earth electronic-atom analysis are unreliable. Systematics of deformation parameters ..beta../sub 2/ calculated from the present quadrupole moments for odd-A nuclei, and from B(E2) values of Coulomb excitation measurements for even-A nuclei, also indicate that the largest deformation change so far known exists between /sup 151/Eu and /sup 153/Eu. Except at the onset of nuclear deformation, the deformation parameters of the odd-A nuclei are quite consistent with those of the even-A neighbors.

  11. Ground-state splitting of ultrashallow thermal donors with negative central-cell corrections in silicon

    NASA Astrophysics Data System (ADS)

    Hara, Akito; Awano, Teruyoshi

    2017-06-01

    Ultrashallow thermal donors (USTDs), which consist of light element impurities such as carbon, hydrogen, and oxygen, have been found in Czochralski silicon (CZ Si) crystals. To the best of our knowledge, these are the shallowest hydrogen-like donors with negative central-cell corrections in Si. We observed the ground-state splitting of USTDs by far-infrared optical absorption at different temperatures. The upper ground-state levels are approximately 4 meV higher than the ground-state levels. This energy level splitting is also consistent with that obtained by thermal excitation from the ground state to the upper ground state. This is direct evidence that the wave function of the USTD ground state is made up of a linear combination of conduction band minimums.

  12. Measuring Nuclear Effects with MINERvA

    NASA Astrophysics Data System (ADS)

    Felix, Julian; Minerva Collaboration

    2011-04-01

    The MINERνA Detector (http://minerva.fnal.gov) (Main INjector ExpeRiment νA) is a high statistics experiment in a NuMI beamline at Fermilab. Its main goals are to measure the interactions neutrino (antineutrino)-Nucleus at low energies in order to improve neutrino oscillation studies and study the dynamics between neutrinos (antineutrino) and nucleons within nuclei. The detector is installed and collecting data. For calibration, the MINERνA collaboration created the MINERνA Test Beam experiment. This was designed, constructed and commissioned successfully. In Summer of 2010, it finished its first data run; analyses are in progress. This talk will report on the data that was taken and the suite of analyses that are underway. Fermilab Collaboration

  13. 78 FR 45573 - Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ... COMMISSION Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN-FIRE) AGENCY: Nuclear Regulatory Commission. ACTION: Notice of availability; request for public comment.../CR-7135, ``Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire...

  14. Ground-State SiO Maser Emission Toward Evolved Stars

    DTIC Science & Technology

    2006-05-31

    emulateapj v. 11/12/01 GROUND-STATE SIO MASER EMISSION TOWARD EVOLVED STARS D. A. BOBOLTZ U.S. Naval Observatory, 3450 Massachusetts Ave., NW...Accepted by the Astrophysical Journal 2004 February 20 ABSTRACT We have made the first unambiguous detection of vibrational ground-state maser emission ...observed. Ground-state thermal emission was detected for one of the stars, RX Boo, with a peak brightness temperature of 200 K. Comparing the v = 0 and

  15. Electromagnetic structure of few-nucleon ground states

    DOE PAGES

    Marcucci, Laura E.; Gross, Franz L.; Peña, M. T.; ...

    2016-01-08

    Experimental form factors of the hydrogen and helium isotopes, extracted from an up-to-date global analysis of cross sections and polarization observables measured in elastic electron scattering from these systems, are compared to predictions obtained in three different theoretical approaches: the first is based on realistic interactions and currents, including relativistic corrections (labeled as the conventional approach); the second relies on a chiral effective field theory description of the strong and electromagnetic interactions in nuclei (labeled ChiEFT); the third utilizes a fully relativistic treatment of nuclear dynamics as implemented in the covariant spectator theory (labeled CST). Furthermore, for momentum transfers belowmore » Q < 5 fm-1 there is satisfactory agreement between experimental data and theoretical results in all three approaches. Conversely, at Q > 5 fm-1, particularly in the case of the deuteron, a relativistic treatment of the dynamics, as is done in the CST, is necessary. The experimental data on the deuteron A structure function extend to Q ~ 12 fm-1, and the close agreement between these data and the CST results suggests that, even in this extreme kinematical regime, there is no evidence for new effects coming from quark and gluon degrees of freedom at short distances.« less

  16. Electromagnetic structure of few-nucleon ground states

    SciTech Connect

    Marcucci, Laura E.; Gross, Franz L.; Peña, M. T.; Piarulli, M.; Schiavilla, Rocco; Sick, Ingo; Stadler, Alfred; Orden, J. W. Van; Viviani, Michele

    2016-01-08

    Experimental form factors of the hydrogen and helium isotopes, extracted from an up-to-date global analysis of cross sections and polarization observables measured in elastic electron scattering from these systems, are compared to predictions obtained in three different theoretical approaches: the first is based on realistic interactions and currents, including relativistic corrections (labeled as the conventional approach); the second relies on a chiral effective field theory description of the strong and electromagnetic interactions in nuclei (labeled ChiEFT); the third utilizes a fully relativistic treatment of nuclear dynamics as implemented in the covariant spectator theory (labeled CST). Furthermore, for momentum transfers below Q < 5 fm-1 there is satisfactory agreement between experimental data and theoretical results in all three approaches. Conversely, at Q > 5 fm-1, particularly in the case of the deuteron, a relativistic treatment of the dynamics, as is done in the CST, is necessary. The experimental data on the deuteron A structure function extend to Q ~ 12 fm-1, and the close agreement between these data and the CST results suggests that, even in this extreme kinematical regime, there is no evidence for new effects coming from quark and gluon degrees of freedom at short distances.

  17. Lower bounds for the ground-state degeneracies of frustrated systems on fractal lattices

    PubMed

    Curado; Nobre

    2000-12-01

    The total number of ground states for nearest-neighbor-interaction Ising systems with frustrations, defined on hierarchical lattices, is investigated. A simple method is presented, which allows one to factorize the ground-state degeneracy, at a given hierarchy level n, in terms of contributions due to all hierarchy levels. Such a method may yield the exact ground-state degeneracy of uniformly frustrated systems, whereas it works as an approximation for randomly frustrated models. In the latter cases, it is demonstrated that such an approximation yields lower-bound estimates for the ground-state degeneracies.

  18. Liquid level measurement in high level nuclear waste slurries

    SciTech Connect

    Weeks, G.E.; Heckendorn, F.M.; Postles, R.L.

    1990-01-01

    Accurate liquid level measurement has been a difficult problem to solve for the Defense Waste Processing Facility (DWPF). The nuclear waste sludge tends to plug or degrade most commercially available liquid-level measurement sensors. A liquid-level measurement system that meets demanding accuracy requirements for the DWPF has been developed. The system uses a pneumatic 1:1 pressure repeater as a sensor and a computerized error correction system. 2 figs.

  19. Measurements of nitric oxide after a nuclear burst

    NASA Technical Reports Server (NTRS)

    Mcghan, M.; Shaw, A.; Megill, L. R.; Sedlacek, W.; Guthals, P. R.; Fowler, M. M.

    1981-01-01

    Measurements of ozone and nitric oxide in a nuclear cloud 7 days after the explosion are reported. No measurable increase above ambient density of either ozone or nitric oxide was found. Results from a chemistry model of the cloud do not agree with the measurement unless 'nonstandard' assumptions are made with regard to the operating chemical processes. A number of possible explanations of the results are discussed.

  20. The Isospin Admixture of The Ground State and The Properties of The Isobar Analog Resonances In Deformed Nuclei

    SciTech Connect

    Aygor, H. Ali; Maras, Ismail; Cakmak, Necla; Selam, Cevad

    2008-11-11

    Within quasiparticle random phase approximation (QRPA), Pyatov-Salamov method for the self-consistent determination of the isovector effective interaction strength parameter, restoring a broken isotopic symmetry for the nuclear part of the Hamiltonian, is used. The isospin admixtures in the ground state of the parent nucleus, and the isospin structure of the isobar analog resonance (IAR) state are investigated by including the pairing correlations between nucleons for {sup 72-80}Kr isotopes. Our results are compared with the spherical case and with other theoretical results.

  1. Observation of γ vibrations and alignments built on non-ground-state configurations in 156Dy

    NASA Astrophysics Data System (ADS)

    Majola, S. N. T.; Hartley, D. J.; Riedinger, L. L.; Sharpey-Schafer, J. F.; Allmond, J. M.; Beausang, C.; Carpenter, M. P.; Chiara, C. J.; Cooper, N.; Curien, D.; Gall, B. J. P.; Garrett, P. E.; Janssens, R. V. F.; Kondev, F. G.; Kulp, W. D.; Lauritsen, T.; McCutchan, E. A.; Miller, D.; Piot, J.; Redon, N.; Riley, M. A.; Simpson, J.; Stefanescu, I.; Werner, V.; Wang, X.; Wood, J. L.; Yu, C.-H.; Zhu, S.

    2015-03-01

    The exact nature of the lowest Kπ=2+ rotational bands in all deformed nuclei remains obscure. Traditionally they are assumed to be collective vibrations of the nuclear shape in the γ degree of freedom perpendicular to the nuclear symmetry axis. Very few such γ bands have been traced past the usual backbending rotational alignments of high-j nucleons. We have investigated the structure of positive-parity bands in the N =90 nucleus 156Dy , using the 148Nd(12C,4 n ) 156Dy reaction at 65 MeV, observing the resulting γ-ray transitions with the Gammasphere array. The even- and odd-spin members of the Kπ=2+ γ band are observed up to 32+ and 31+, respectively. This rotational band faithfully tracks the ground-state configuration to the highest spins. The members of a possible γ vibration built on the aligned yrast S band are observed up to spins 28+ and 27+. An even-spin positive-parity band, observed up to spin 24+, is a candidate for an aligned S band built on the seniority-zero configuration of the 02+ state at 676 keV. The crossing of this band with the 02+ band is at ℏ ωc=0.28 (1 ) MeV and is consistent with the configuration of the 02+ band not producing any blocking of the monopole pairing.

  2. Ground state in a half-doped manganite distinguished by neutron spectroscopy.

    PubMed

    Johnstone, G E; Perring, T G; Sikora, O; Prabhakaran, D; Boothroyd, A T

    2012-12-07

    We have measured the spin-wave spectrum of the half-doped bilayer manganite Pr(Ca,Sr)(2)Mn(2)O(7) in its spin, charge, and orbital ordered phase. The measurements, which extend throughout the Brillouin zone and cover the entire one-magnon spectrum, are compared critically with spin-wave calculations for different models of the electronic ground state. The data are described very well by the Goodenough model, which has weakly interacting ferromagnetic zig-zag chains in the CE-type arrangement. A model that allows ferromagnetic dimers to form within the zigzags is inconsistent with the data. The analysis conclusively rules out the strongly bound dimer (Zener polaron) model.

  3. Ground State in a Half-Doped Manganite Distinguished by Neutron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnstone, G. E.; Perring, T. G.; Sikora, O.; Prabhakaran, D.; Boothroyd, A. T.

    2012-12-01

    We have measured the spin-wave spectrum of the half-doped bilayer manganite Pr(Ca,Sr)2Mn2O7 in its spin, charge, and orbital ordered phase. The measurements, which extend throughout the Brillouin zone and cover the entire one-magnon spectrum, are compared critically with spin-wave calculations for different models of the electronic ground state. The data are described very well by the Goodenough model, which has weakly interacting ferromagnetic zig-zag chains in the CE-type arrangement. A model that allows ferromagnetic dimers to form within the zigzags is inconsistent with the data. The analysis conclusively rules out the strongly bound dimer (Zener polaron) model.

  4. First use of high-frequency intensity modulation of narrow-linewidth laser light and its application in determination of 206,205,204Fr ground-state properties.

    PubMed

    Voss, Annika; Pearson, Matthew R; Billowes, Jonathan; Buchinger, Fritz; Cheal, Bradley; Crawford, John E; Kwiatkowski, Anna A; Levy, C D Philip; Shelbaya, Olivier

    2013-09-20

    Collinear laser spectroscopy was performed on the nuclear ground states of the neutron-deficient isotopes (206,205,204)Fr. A new technique was developed to suppress hyperfine pumping in collinear laser spectroscopy of atoms. This involved high-frequency intensity modulation of narrow-linewidth laser light using fast-switching electro-optical modulators. The nuclear ground-state spins of (206,205,204)Fr were determined to be 3, 9/2, and 3, respectively. Both the changes in mean-squared charge radii and nuclear magnetic dipole moments indicate a departure from single-particle estimates.

  5. Using Nuclear Magnetic Resonance Spectroscopy for Measuring Ternary Phase Diagrams

    ERIC Educational Resources Information Center

    Woodworth, Jennifer K.; Terrance, Jacob C.; Hoffmann, Markus M.

    2006-01-01

    A laboratory experiment is presented for the upper-level undergraduate physical chemistry curriculum in which the ternary phase diagram of water, 1-propanol and n-heptane is measured using proton nuclear magnetic resonance (NMR) spectroscopy. The experiment builds upon basic concepts of NMR spectral analysis, typically taught in the undergraduate…

  6. Using Nuclear Magnetic Resonance Spectroscopy for Measuring Ternary Phase Diagrams

    ERIC Educational Resources Information Center

    Woodworth, Jennifer K.; Terrance, Jacob C.; Hoffmann, Markus M.

    2006-01-01

    A laboratory experiment is presented for the upper-level undergraduate physical chemistry curriculum in which the ternary phase diagram of water, 1-propanol and n-heptane is measured using proton nuclear magnetic resonance (NMR) spectroscopy. The experiment builds upon basic concepts of NMR spectral analysis, typically taught in the undergraduate…

  7. Nuclear resonance scattering measurement of human iron stores

    SciTech Connect

    Wielopolski, L.; Ancona, R.C.; Mossey, R.T.; Vaswani, A.N.; Cohn, S.H.

    1985-07-01

    Hepatic iron stores were measured noninvasively in 31 patients (thalassemia, hemodialysis, hemosiderosis, refractory anemia) with suspected iron overload, employing a nuclear resonance scattering (NRS) technique. The thalassemia patients were undergoing desferrioxamine chelation therapy during the NRS measurements. The hemodialysis patients were measured before chelation therapy. Iron levels measured by NRS were in general agreement with those determined in liver biopsies by atomic absorption spectroscopy. In addition, NRS measurements from the thorax of some of these patients suggest that this method may also prove useful for clinical assessment of cardiac iron.

  8. Nuclear Data Measurements for 21st Century Reactor Physics Applications

    SciTech Connect

    Rahmat Aryaeinejad; Jerald D. Cole; Mark W. Drigert; James K. Jewell; Christopher A. McGrath; David W. Nigg; Edward L. Reber

    2003-03-01

    The United States Department of Energy (DOE), Office of Nuclear Energy (NE) has embarked on a long-term program to significantly advance the science and technology of nuclear energy. This is in response to the overall national plan for accelerated development of domestic energy resources on several fronts, punctuated by recent dramatic events that have emphasized the need for the US to reduce its dependence on foreign petroleum supplies. Key aspects of the DOE-NE agenda are embodied in the Generation-IV (Gen-IV) advanced nuclear energy systems development program and in the Advanced Fuel Cycle (AFC) program. The planned efforts involve near-term and intermediate-term improvements in fuel utilization and recycling in current nuclear power reactor systems as well as the longer-term development of new nuclear energy systems that offer much improved fuel utilization and proliferation resistance, along with continued advances in operational safety. The success of the overall NE effort will depend not only on sophisticated system development and engineering, but also on the advances in the supporting sciences and technologies. Of these, one of the most important is the improvement of the relevant fundamental nuclear science data bases, especially the evaluated neutron interaction cross section files that serve as the foundation of all reactor system designs, operating strategies, and fuel cycle engineering activities. The new concepts for reactors and fuel cycles involve the use of transuranic nuclides that were previously of little interest, and where experimentally measured information is lacking. The current state of the cross section database for some of these nuclides is such that design computations for advanced fast-spectrum reactor systems and fuel cycles that incorporate such materials in significant quantities are meaningful only for approximate conceptual applications. No actual system could reliably be designed according to currently accepted standards, nor

  9. Improved lower bounds on the ground-state entropy of the antiferromagnetic Potts model.

    PubMed

    Chang, Shu-Chiuan; Shrock, Robert

    2015-05-01

    We present generalized methods for calculating lower bounds on the ground-state entropy per site, S(0), or equivalently, the ground-state degeneracy per site, W=e(S(0)/k(B)), of the antiferromagnetic Potts model. We use these methods to derive improved lower bounds on W for several lattices.

  10. Derivation of novel human ground state naive pluripotent stem cells.

    PubMed

    Gafni, Ohad; Weinberger, Leehee; Mansour, Abed AlFatah; Manor, Yair S; Chomsky, Elad; Ben-Yosef, Dalit; Kalma, Yael; Viukov, Sergey; Maza, Itay; Zviran, Asaf; Rais, Yoach; Shipony, Zohar; Mukamel, Zohar; Krupalnik, Vladislav; Zerbib, Mirie; Geula, Shay; Caspi, Inbal; Schneir, Dan; Shwartz, Tamar; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Benjamin, Sima; Amit, Ido; Tanay, Amos; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2013-12-12

    Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation

  11. A ground state depleted laser in neodymium doped yttrium orthosilicate

    SciTech Connect

    Beach, R.; Albrecht, G.; Solarz, R.; Krupke, W.; Comaskey, B.; Mitchell, S.; Brandle, C.; Berkstresser, G.

    1990-01-16

    A ground state depleted (GSD){sup 1,2} laser has been demonstrated in the form of a Q-switched oscillator operating at 912 nm. Using Nd{sup 3+} as the active ion and Y{sub 2}SiO{sub 5} as the host material, the laser transition is from the lowest lying stark level of the Nd{sup 3t}F{sub 3/2} level to a stark level 355 cm{sup {minus}1} above the lowest lying one in the {sup 4}I{sub 9/2} manifold. The necessity of depleting the ground {sup 4}I{sub 9/2} manifold is evident for this level scheme as transparency requires a 10% inversion. To achieve the high excitation levels required for the efficient operation of this laser, bleach wave pumping using an alexandrite laser at 745 nm has been employed. The existence of a large absorption feature at 810 nm also allows for the possibility of AlGaAs laser diode pumping. Using KNbO{sub 3}, noncritical phase matching is possible at 140{degree}C using d{sub 32} and has been demonstrated. The results of Q-switched laser performance and harmonic generation in KNbO{sub 3} will be presented. Orthosilicate can be grown in large boules of excellent optical quality using a Czochralski technique. Because of the relatively small 912 nm emission cross section of 2-3 {times} 10{sup {minus}20} cm{sup 2} (orientation dependent) fluences of 10-20 J/cm{sup 2} must be circulated in the laser cavity for the efficient extraction of stored energy. This necessitates very aggressive laser damage thresholds. Results from the Reptile laser damage facility at Lawrence Livermore National Laboratory (LLNL) will be presented showing Y{sub 2}SiO{sub 5} bulk and AR sol-gel coated surface damage thresholds of greater than 40 J/cm{sup 2} for 10 nsec, 10 Hz, 1.06 {mu} pulses. 16 refs., 18 figs., 6 tabs.

  12. Surveying Temperature and Density Measurements in Nuclear Calorimetry

    NASA Astrophysics Data System (ADS)

    Raciti, G.; Bassini, R.; Begemann-Blaich, M.; Fritz, S.; Groß, C.; Immè, G.; Iori, I.; Lynen, U.; Mahi, M.; Möhlenkamp, T.; Müller, W. F. J.; Ocker, B.; Odeh, T.; Pochodzalla, J.; Riccobene, G.; Romano, F. P.; Saija, A.; Schwarz, C.; Serfling, V.; Schnittker, M.; Schüttauf, A.; Seidel, W.; Sfienti, C.; Trautmann, W.; Trzclnski, A.; Verde, G.; Xi, Hongfei; Zwieglinski, B.

    2001-11-01

    An experimental investigation on thermodynamical observables characterizing the conditions of multifragmenting systems is reported. High granularity hodoscopes allowed simultaneous measurements of isotopic and emission temperatures. HBT interferometry with light charged particles allowed radii measurements. The disagreement between the two temperature measurements could be related to the space-time evolution of the fragmentation process as confirmed by density measurements. The slope temperatures derived from the target spectator decay fragment energy spectra suggest a dependence on the Fermi motion within the initial system. The dependence of the Nuclear Caloric Curve on the mass of the systems was probed.

  13. Electronic and structural ground state of heavy alkali metals at high pressure

    SciTech Connect

    Fabbris, G.; Lim, J.; Veiga, L. S. I.; Haskel, D.; Schilling, J. S.

    2015-02-17

    Here, alkali metals display unexpected properties at high pressure, including emergence of low symmetry crystal structures, that appear to occur due to enhanced electronic correlations among the otherwise nearly-free conduction electrons. We investigate the high pressure electronic and structural ground state of K, Rb, and Cs using x-ray absorption spectroscopy and x-ray diffraction measurements together with ab initio theoretical calculations. The sequence of phase transitions under pressure observed at low temperature is similar in all three heavy alkalis except for the absence of the oC84 phase in Cs. Both the experimental and theoretical results point to pressure-enhanced localization of the valence electrons characterized by pseudo-gap formation near the Fermi level and strong spd hybridization. Although the crystal structures predicted to host magnetic order in K are not observed, the localization process appears to drive these alkalis closer to a strongly correlated electron state.

  14. Electronic and structural ground state of heavy alkali metals at high pressure

    DOE PAGES

    Fabbris, G.; Lim, J.; Veiga, L. S. I.; ...

    2015-02-17

    Here, alkali metals display unexpected properties at high pressure, including emergence of low symmetry crystal structures, that appear to occur due to enhanced electronic correlations among the otherwise nearly-free conduction electrons. We investigate the high pressure electronic and structural ground state of K, Rb, and Cs using x-ray absorption spectroscopy and x-ray diffraction measurements together with ab initio theoretical calculations. The sequence of phase transitions under pressure observed at low temperature is similar in all three heavy alkalis except for the absence of the oC84 phase in Cs. Both the experimental and theoretical results point to pressure-enhanced localization of themore » valence electrons characterized by pseudo-gap formation near the Fermi level and strong spd hybridization. Although the crystal structures predicted to host magnetic order in K are not observed, the localization process appears to drive these alkalis closer to a strongly correlated electron state.« less

  15. Entanglement and the ground state of fermions trapped in optical lattices

    NASA Astrophysics Data System (ADS)

    Silva-Valencia, J.; Franco, R.; Figueira, M. S.

    2009-10-01

    Using White's density matrix renormalization group technique we calculate entanglement of fermions confined in a one-dimensional trap with an underlying lattice. The system is modeled using a repulsive Hubbard model plus a quadratic potential. Due to the confining potential, metallic and Mott-insulating domains coexist in the system. The entanglement is measured by the on-site entropy and the block entropy, and these quantities are calculated as a function of the local repulsion and the curvature of the trap. We found that local entropy decreases with the curvature for a fixed on-site repulsion. As a function of the on-site repulsion the local entropy first increases and then diminishes. Our most important goal is to show that local and block entropy are useful tools for characterization of the ground states of fermions trapped in optical lattices.

  16. Precision laser spectroscopy of the ground state hyperfine splitting of hydrogenlike 209Bi82+

    NASA Astrophysics Data System (ADS)

    Klaft, I.; Borneis, S.; Engel, T.; Fricke, B.; Grieser, R.; Huber, G.; Kühl, T.; Marx, D.; Neumann, R.; Schröder, S.; Seelig, P.; Völker, L.

    1994-10-01

    The first direct observation of a hyperfine splitting in the optical regime is reported. The wavelength of the M1 transition between the E=4 and F=5 hyperfine levels of the ground state of hydrogenlike 209Bi82+ was measured to be λ0=243.87(4) nm by detection of laser induced fluorescence at the heavy-ion storage ring ESR at GSL. In addition, the lifetime of the laser excited F=5 sublevel was determined to be τ0=0.351(16) ms. The method can be applied to a number of other nuclei, and should allow a novel test of ED corrections in the previously unexplored combination of strong magnetic and electric fields in highly charged ions.

  17. Polarization-dependent tuning of the Hanle effect in the ground state of Cs

    NASA Astrophysics Data System (ADS)

    Ravi, Harish; Bhattarai, Mangesh; Bharti, Vineet; Natarajan, Vasant

    2017-03-01

    We demonstrate that the Hanle effect can be tuned between magnetically induced absorption (MIA) and magnetically induced transmission (MIT) simply by changing the polarization of the input laser beam. The experiments are done using closed hyperfine transitions of the D2 line of 133Cs —F g = 3 → F e = 2 and F g = 4 → F e = 5. The former shows a transformation from MIT to MIA, while the latter shows the opposite behavior. A qualitative explanation based on optical pumping and coherences among the magnetic sublevels of the ground state is borne out by a detailed density-matrix calculation. To increase the coherence time, the experiments are done in a Cs vapor cell with paraffin coating on the walls. The observed linewidth is extremely narrow (∼ 0.1 mG) compared to previous work in this area, making this a promising technique for all kinds of precision measurements.

  18. A Stable Saddle-Shaped Polycyclic Hydrocarbon with an Open-Shell Singlet Ground State.

    PubMed

    Ma, Ji; Liu, Junzhi; Baumgarten, Martin; Fu, Yubin; Tan, Yuan-Zhi; Schellhammer, Karl Sebastian; Ortmann, Frank; Cuniberti, Gianaurelio; Komber, Hartmut; Berger, Reinhard; Müllen, Klaus; Feng, Xinliang

    2017-03-13

    Diindeno-fused bischrysene, a new diindeno-based polycyclic hydrocarbon (PH), was synthesized and characterized. It was elucidated in detailed experimental and theoretical studies that this cyclopenta-fused PH possesses an open-shell singlet biradical structure in the ground state and exhibits high stability under ambient conditions (t1/2 =39 days). The crystal structure unambiguously shows a novel saddle-shaped π-conjugated carbon skeleton due to the steric hindrance of the central cove-edged bischrysene unit. UV/Vis spectral measurements revealed that the title molecule has a very narrow optical energy gap of 0.92 eV, which is consistent with the electrochemical analysis and further supported by density functional theory (DFT) calculations.

  19. Is CE-type orbital order the true ground state for LaSr2Mn2O7?

    NASA Astrophysics Data System (ADS)

    Claus, Helmut; Li, Qing'an; Zheng, Hong; Gray, Kenneth; Kausen, Stine; Rosenkranz, Stephan; Osborn, Ray; Mitchell, John

    2006-03-01

    Previous scattering and conductivity data for La2-2xSr1+2xMn2O7 (x=0.5) indicate the CE phase, predicted by Goodenough 50 years ago, is only stable between ˜100 and 200 K and below ˜100 K an A-type antiferromagnet is the ground state. We present scattering, magnetization and transport evidence that the CE phase is the ground state, but only in a very narrow composition range, presumably at exactly x=0.5. The vitally important roles of crystal homogeneity and methodology of transport measurements will be demonstrated for this conclusion as well as for the field of layered manganites in general.

  20. Near ground state Raman sideband cooling of an ion in a hybrid radiofrequency-optical lattice trap

    NASA Astrophysics Data System (ADS)

    Bylinskii, Alexei; Karpa, Leon; Gangloff, Dorian; Cetina, Marko; Vuletic, Vladan

    2013-05-01

    We achieve near ground state cooling of an ion in a hybrid trap formed by a two-dimensional radio-frequency Paul trap and an optical lattice produced by a cavity in the axial dimension. We drive far-detuned lattice-assisted Raman transitions on the red vibrational sideband between the Zeeman sublevels of the 2S1/2 ground level of 174Yb+. The cooling cycle is completed by a close-detuned spontaneous Raman transition. Efficient Cooling in all three dimensions is achieved this way. Furthermore, spatially dependent AC Stark shifts induced by the lattice allow us to measure axial temperature via ion fluorescence, and we estimate the population of the lattice vibrational ground state to be above 50%. This work is an important step towards quantum information and quantum simulations with ions in hybrid traps and optical lattices. Army Research Office, National Science Foundation, National Science and Engineering Research Council of Canada, Alexander von Humboldt Foundation.

  1. Octa-Kagomé Lattice Compounds Showing Quantum Critical Behaviors: Spin Gap Ground State versus Antiferromagnetic Ordering.

    PubMed

    Tang, Yingying; Peng, Cheng; Guo, Wenbin; Wang, Jun-Feng; Su, Gang; He, Zhangzhen

    2017-09-29

    Search for a new geometrically frustrated lattice is a great challenge. Herein, we report on a successful synthesis of two new layered compounds BiOCu2(XO3)(SO4)(OH)·H2O [X = Te (1) and Se (2)] with a new type of geometrically frustrated lattice (i.e., the octa-kagomé lattice) between kagomé and star motifs. Magnetic measurements confirmed that 1 exhibits a spin gap ground state, while 2 possesses a typical antiferromagnetic ordering at low-temperature. Such different magnetic behaviors between two isostructural compounds are suggested to originate from a slightly structural modification induced by nonmagnetic XO3 anionic groups. Theoretical simulations suggest that the origin of gapped ground state in 1 may be due to the dimerization of Cu(2+) ions, while 2 may break the limiting of such dimerization, leading to an antiferromagnetic ordering.

  2. Local reversibility and entanglement structure of many-body ground states

    NASA Astrophysics Data System (ADS)

    Kuwahara, Tomotaka; Arad, Itai; Amico, Luigi; Vedral, Vlatko

    2017-03-01

    The low-temperature physics of quantum many-body systems is largely governed by the structure of their ground states. Minimizing the energy of local interactions, ground states often reflect strong properties of locality such as the area law for entanglement entropy and the exponential decay of correlations between spatially separated observables. Here, we present a novel characterization of quantum states, which we call ‘local reversibility’. It characterizes the type of operations that are needed to reverse the action of a general disturbance on the state. We prove that unique ground states of gapped local Hamiltonian are locally reversible. This way, we identify new universal features of many-body ground states, which cannot be derived from the aforementioned properties. We use local reversibility to distinguish between states enjoying microscopic and macroscopic quantum phenomena. To demonstrate the potential of our approach, we prove specific properties of ground states, which are relevant both to critical and non-critical theories.

  3. Nuclear fragmentation measurements for hadrontherapy and space radiation protection

    NASA Astrophysics Data System (ADS)

    De Napoli, M.; Agodi, C.; Battistoni, G.; Blancato, A. A.; Bondı, M.; Cappuzzello, F.; Carbone, D.; Cavallaro, M.; Cirrone, G. A. P.; Cuttone, G.; Giacoppo, F.; Morone, M. C.; Nicolosi, D.; Pandola, L.; Raciti, G.; Rapisarda, E.; Romano, F.; Sardina, D.; Scuderi, V.; Sfienti, C.; Tropea, S.

    2013-04-01

    Nuclear fragmentation measurements are necessary in hadrontherapy and space radiation protection, to predict the effects of the ion nuclear interactions within the human body. Nowadays, a very limited set of carbon fragmentation cross sections has been measured and in particular, to our knowledge, no double differential fragmentation cross sections at intermediate energies are available in literature. We have measured the double differential cross sections and the angular distributions of the secondary fragments produced in the 12C fragmentation at 62 AMeV on a thin carbon target. The experimental data have been also used to benchmark the prediction capability of the Geant4 Monte Carlo code at intermediate energies, where it was never tested before.

  4. Effect of collectivity on the nuclear level density

    NASA Astrophysics Data System (ADS)

    Roy, Pratap; Banerjee, K.; Gohil, M.; Bhattacharya, C.; Kundu, S.; Rana, T. K.; Ghosh, T. K.; Mukherjee, G.; Pandey, R.; Pai, H.; Srivastava, V.; Meena, J. K.; Banerjee, S. R.; Mukhopadhyay, S.; Pandit, D.; Pal, S.; Bhattacharya, S.

    2013-09-01

    Neutron evaporation spectra at backward angles from 201Tl*, 185Re*, and 169Tm* compound nuclei, having different ground-state deformations, have been measured at two excitation energies (E* ˜ 37 and 26 MeV). The values of the inverse level density parameter (k), extracted at these excitations using statistical model calculations, are observed to decrease substantially at the lower excitation energy (˜26 MeV) for nuclei having large ground-state deformation (residues of 185Re* and 169Tm*), whereas for near-spherical nuclei (residues of 201Tl*), the k value remains unchanged at the two energies. The decrease in k at the lower excitation energy for the deformed systems amounts to a relative increase in nuclear level density, indicating a collective enhancement. The present observation clearly establishes the existence of a strong correlation between collectivity and ground-state deformation.

  5. Creation of inverse population in the 229Th ground-state doublet by means of a narrowband laser

    NASA Astrophysics Data System (ADS)

    Tkalya, E. V.; Yatsenko, L. P.

    2013-10-01

    A new method for obtaining inverse population between quadrupole sublevels of the ground state 5/2+(0.0) and the isomeric state 3/2+(7.6 eV) of the 229Th nucleus in a dielectric crystal with a large band gap by means of an external source of VUV radiation is proposed. The method is based on an efficient depopulation of the upper sublevels of the ground state of 229Th by resonant photons from a narrowband laser or a broader tunable free electron laser. The sublevels of the isomeric state play the role of intermediate states. The proposed scheme of optical pumping (1) results in inverse population of nuclear sublevels without using extremely low temperatures, and (2) shows a new means of creating a gamma-ray laser of optical range at the nuclear transition in 229Th (a) in crystals with isovalent substitution of host ions (e.g. Si4+ ions in the SiO2 crystal replaced by the 229Th4+ ions) and (b) in crystals such as Na2ThF6, where the substitution is not necessary.

  6. Thermal measurements in the nuclear winter fire test

    SciTech Connect

    Schneider, M.E.; Keltner, N.R.; Kent, L.A.

    1989-01-01

    In March, 1987, a large open pool fire test was performed to provide test measurements to help define the thermal characteristics of large open pool fires and estimates of the smoke source term for the nuclear winter (global effects) scenario. This report will present the results of the thermal measurements as well as comparisons with previous test results. These measurements included flame temperatures, heat fluxes to a variety of calorimeters, and gas velocities in the lower flame regions. 13 refs., 76 figs., 7 tabs.

  7. Microwave Spectroscopy of Trans-Ethyl Methyl Ether in the Ground State

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kaori; Sakai, Yusuke; Tsunekawa, Shozo; Miyamoto, Taihei; Fujitake, Masaharu; Ohashi, Nobukimi

    2013-06-01

    The trans-ethyl methyl ether molecule (CH_3CH_2OCH_3) has two inequivalent methyl group internal rotors which corresponds to the two vibrational motions, ν_{28} and ν_{29}. Due to these internal rotations, a rotational transition could be split into maximum five components. The skeletal torsion (ν_{30}) is another low-lying state (ν_{30}) that interacts with the ν_{28} and ν_{29} modes. The microwave spectra of the trans-ethyl methyl ether molecule in the ν_{28} = 1, ν_{29} = 1, and ν_{30} = 1, 2 and 3 have been extensively studied by using Hougen's tunneling matrix formalism. The microwave spectroscopy in the ground state was studied by several groups. The splitting due to the ν_{28} mode (C-CH_3 internal rotation) is small in the ground state and was not fully resolved in most of the previous studied rotational transitions. In this paper, we report the results of the pulsed nozzle-jet Fourier transform microwave spectroscopy so as to measure the fully resolved spectra. The submillmeter wave spectroscopy was also carried out. Our analysis including the previously reported transitions would be useful for astronomical observations. K. Kobayashi, T. Matsui, N. Mori, S. Tsunekawa, and N. Ohashi J. Mol. Spectrosc. {269}, 242 2011. K. Kobayashi, T. Matsui, S. Tsunekawa, and N. Ohashi J. Mol. Spectrosc. {255}, 164 2009. K. Kobayashi, T. Matsui, N. Mori, S. Tsunekawa, and N. Ohashi J. Mol. Spectrosc.{251}, 301 2008. K. Kobayashi, K. Murata, S. Tsunekawa, and N. Ohashi Int. Symposium on Mol. Spectrosc., 65th Meeting TH15 2010.} M. Hayashi, and K. Kuwada J. Mol. Structure {28}, 147 1975. M. Hayashi, and M. Adachi J. Mol. Structure {78}, 53 1982. S. Tsunekawa, Y. Kinai, Y. Kondo, H. Odashima, and K. Takagi Molecules {8}, 103 2003. U. Fuchs, G. Winnewisser, P. Groner, F. C. De Lucia, and E. Herbst Astrophys. J. Suppl. {144}, 277 2003.

  8. A nuclear data approach for the Hubble constant measurements

    NASA Astrophysics Data System (ADS)

    Pritychenko, Boris

    2017-09-01

    An extraordinary number of Hubble constant measurements challenges physicists with selection of the best numerical value. The standard U.S. Nuclear Data Program (USNDP) codes and procedures have been applied to resolve this issue. The nuclear data approach has produced the most probable or recommended Hubble constant value of 67.2(69) (km/sec)/Mpc. This recommended value is based on the last 20 years of experimental research and includes contributions from different types of measurements. The present result implies (14.55 ± 1.51) × 109 years as a rough estimate for the age of the Universe. The complete list of recommended results is given and possible implications are discussed.

  9. A nuclear data approach for the Hubble constant measurements

    SciTech Connect

    Pritychenko, B.

    2015-06-09

    An extraordinary number of Hubble constant measurements challenges physicists with selection of the best numerical value. The standard U.S. Nuclear Data Program (USNDP) codes and procedures have been applied to resolve this issue. The nuclear data approach has produced the most probable or recommended Hubble constant value of 67.00(770) (km/sec)/Mpc. This recommended value is based on the last 25 years of experimental research and includes contributions from different types of measurements. The present result implies (14.6±1.7) x 109 years as a rough estimate for the age of the Universe. The complete list of recommended results is given and possible implications are discussed.

  10. Variational Calculation of the Ground State of Closed-Shell Nuclei Up to {ital A} = 40

    DOE PAGES

    Lonardoni, D.; Lovato, A.; Pieper, Steven C.; ...

    2017-08-31

    Variational calculations of ground-state properties of 4He, 16O and 40Ca are carried out employing realistic phenomenological two- and three-nucleon potentials. The trial wave function includes twoand three-body correlations acting on a product of single-particle determinants. Expectation values are evaluated with a cluster expansion for the spin-isospin dependent correlations considering up to five-body cluster terms. The optimal wave function is obtained by minimizing the energy expectation value over a set of up to 20 parameters by means of a nonlinear optimization library. We present results for the binding energy, charge radius, point density, single-nucleon momentum distribution, charge form factor, and Coulombmore » sum rule. We find that the employed three-nucleon interaction becomes repulsive for A ≥ 16. In 16O the inclusion of such a force provides a better description of the properties of the nucleus. In 40Ca instead, the repulsive behavior of the three-body interaction fails to reproduce experimental data for the charge radius and the charge form factor. We find that the high-momentum region of the momentum distributions, determined by the short-range terms of nuclear correlations, exhibit a universal behavior independent of the particular nucleus. The comparison of the Coulomb sum rules for 4He, 16O, and 40Ca reported in this work will help elucidate in-medium modifications of the nucleon form factors.« less

  11. Variational Calculation of the Ground State of Closed-Shell Nuclei Up to $A$ = 40

    DOE PAGES

    Lonardoni, Diego; Lovato, Alessandro; Pieper, Steven C.; ...

    2017-08-31

    Variational calculations of ground-state properties of 4He, 16O and 40Ca are carried out employing realistic phenomenological two- and three-nucleon potentials. The trial wave function includes twoand three-body correlations acting on a product of single-particle determinants. Expectation values are evaluated with a cluster expansion for the spin-isospin dependent correlations considering up to five-body cluster terms. The optimal wave function is obtained by minimizing the energy expectation value over a set of up to 20 parameters by means of a nonlinear optimization library. We present results for the binding energy, charge radius, point density, single-nucleon momentum distribution, charge form factor, and Coulombmore » sum rule. We find that the employed three-nucleon interaction becomes repulsive for A ≥ 16. In 16O the inclusion of such a force provides a better description of the properties of the nucleus. In 40Ca instead, the repulsive behavior of the three-body interaction fails to reproduce experimental data for the charge radius and the charge form factor. We find that the high-momentum region of the momentum distributions, determined by the short-range terms of nuclear correlations, exhibit a universal behavior independent of the particular nucleus. The comparison of the Coulomb sum rules for 4He, 16O, and 40Ca reported in this work will help elucidate in-medium modifications of the nucleon form factors.« less

  12. Variational calculation of the ground state of closed-shell nuclei up to A =40

    NASA Astrophysics Data System (ADS)

    Lonardoni, D.; Lovato, A.; Pieper, Steven C.; Wiringa, R. B.

    2017-08-01

    Variational calculations of ground-state properties of 4He,16O, and 40Ca are carried out employing realistic phenomenological two- and three-nucleon potentials. The trial wave function includes two- and three-body correlations acting on a product of single-particle determinants. Expectation values are evaluated with a cluster expansion for the spin-isospin dependent correlations considering up to five-body cluster terms. The optimal wave function is obtained by minimizing the energy expectation value over a set of up to 20 parameters by means of a nonlinear optimization library. We present results for the binding energy, charge radius, one- and two-body densities, single-nucleon momentum distribution, charge form factor, and Coulomb sum rule. We find that the employed three-nucleon interaction becomes repulsive for A ≥16 . In 16O the inclusion of such a force provides a better description of the properties of the nucleus. In 40Ca instead, the repulsive behavior of the three-body interaction fails to reproduce experimental data for the charge radius and the charge form factor. We find that the high-momentum region of the momentum distributions, determined by the short-range terms of nuclear correlations, exhibits a universal behavior independent of the particular nucleus. The comparison of the Coulomb sum rules for 4He,16O, and 40Ca reported in this work will help elucidate in-medium modifications of the nucleon form factors.

  13. Skyrme-Landau parameterization of effective interactions (I). Hartree-Fock ground states

    NASA Astrophysics Data System (ADS)

    Liu, Keh-Fei; Luo, Hongde; Ma, Zhongyu; Shen, Qingbiao; Moszkowski, S. A.

    1991-11-01

    An extended Skyrme-Landau interaction - SL1, which includes velocity-dependent three-body forces and a tensor force is developed. Unlike the effective interactions with density-dependent two-body forces, this form of the interaction yields, in finite nuclei, an anti-symmetric particle-particle interaction from the particle-hole interaction with the phonon-induced interaction included. The interaction parameters are determined by the better known Landau-Migdal parameters in nuclear matter and other physical quantities like the surface energy and the dipole sum rule. Due to the fact that sufficient degrees of freedom are introduced, previous problems with the high compression modulus K∞ and spin instability, which plagued the earlier Skyrme interactions are thus removed. We present results on the Hartree-Fock ground states of spherical nuclei : 16O, 40Ca, 48Ca, 90Zr and 208Pb. The fitted binding energies, the radii and the single-particle energies are all comparable to those of the earlier Skyrme interactions. Comparison with experiments is also made. The self-consistent RPA calculation of the electric and magnetic resonances, Fermi and Gamow-Teller transitions will be presented in the sequel of the present paper.

  14. Role of ground-state correlations in hypernuclear nonmesonic weak decay

    NASA Astrophysics Data System (ADS)

    Bauer, E.; Garbarino, G.

    2010-06-01

    The contribution of ground-state correlations (GSCs) to the nonmesonic weak decay of Λ12C and other medium to heavy hypernuclei is studied within a nuclear-matter formalism implemented in a local-density approximation. We adopt a weak transition potential including the exchange of the complete octets of pseudoscalar and vector mesons, as well as a residual strong interaction modeled on the Bonn potential. Leading GSC contributions, at first order in the residual strong interaction, are introduced on the same footing for all isospin channels of one- and two-nucleon induced decays. Together with fermion antisymmetrization, GSCs turn out to be important for an accurate determination of the decay widths. Besides opening the two-nucleon stimulated decay channels, for Λ12C GSCs are responsible for 14% of the rate Γ1 while increasing the Γn/Γp ratio by 4%. Our final results for Λ12C are ΓNM=0.98, Γn/Γp=0.34, and Γ2/ΓNM=0.26. The saturation property of ΓNM with increasing hypernuclear mass number is clearly observed. The agreement with data of our predictions for ΓNM, Γn/Γp, and Γ2 is rather good.

  15. Ground-state coordination of a catalytic metal to the scissile phosphate of a tertiary-stabilized Hammerhead ribozyme

    PubMed Central

    Ward, W. Luke; DeRose, Victoria J.

    2012-01-01

    Although the Hammerhead ribozyme (HHRz) has long been used as a model system in the field of ribozyme enzymology, several details of its mechanism are still not well understood. In particular, significant questions remain concerning the disposition and role of catalytic metals in the HHRz. Previous metal-rescue experiments using a “minimal” HHRz resulted in prediction of a catalytic metal that is bound in the A9/G10.1 site in the ground state of the reaction and that bridges to the scissile phosphate further along the reaction pathway. “Native” or extended HHRz constructs contain tertiary contacts that stabilize a more compact structure at moderate ionic strength. We performed Cd2+ rescue experiments on an extended HHRz from Schistosoma mansoni using stereo-pure scissile phosphorothioate-substituted substrates in order to determine whether a metal ion makes contact with the scissile phosphate in the ground state or further along the reaction coordinate. Inhibition in Ca2+/Mg2+ and rescue by thiophilic Cd2+ was specific for the Rp–S stereoisomer of the scissile phosphate. The affinity of the rescuing Cd2+, measured in two different ionic strength backgrounds, increased fourfold to 17-fold when the pro-Rp oxygen is replaced by sulfur. These data support a model in which the rescuing metal ion makes a ground-state interaction with the scissile phosphate in the native HHRz. The resulting model for Mg2+ activation in the HHRz places a metal ion in contact with the scissile phosphate, where it may provide ground-state electrostatic activation of the substrate. PMID:22124015

  16. Coupled-Cluster in Real Space I: CC2 Ground State Energies using Multi-Resolution Analysis.

    PubMed

    Kottmann, Jakob Siegfried; Bischoff, Florian Andreas

    2017-09-13

    A framework to calculate approximate coupled-cluster CC2 ground-state correlation energies in a multiresolution basis is derived and implemented into the MADNESS library. The CC2 working equations are rederived in first quantization which makes them suitable for real-space methods. The first-quantized equations can be interpreted diagrammatically using the usual diagrams from second quantization with adjusted interpretation rules. Singularities arising form the nuclear and electronic potentials are regularized by explicitly taking the nuclear and electronic cusps into account. The regularized three- and six-dimensional cluster functions are represented directly on a grid. The resulting equations are free of singularities and virtual orbitals, which results into a lower intrinsic scaling of N^3. Correlation energies close to the basis set limit are computed for small molecules. This work is the first step towards CC2 excitation energies in a multiresolution basis.

  17. Ionization energies and term energies of the ground states 1s22s of lithium-like systems

    NASA Astrophysics Data System (ADS)

    Li, Jin-Ying; Wang, Zhi-Wen

    2014-01-01

    We extend the Hamiltonian method of the full-core plus correlation (FCPC) by minimizing the expectation value to calculate the non-relativistic energies and the wave functions of 1s22s states for the lithium-like systems from Z = 41 to 50. The mass-polarization and the relativistic corrections including the kinetic-energy correction, the Darwin term, the electron—electron contact term, and the orbit—orbit interaction are calculated perturbatively as first-order correction. The contribution from quantum electrodynamic (QED) is also explored by using the effective nuclear charge formula. The ionization potential and term energies of the ground states 1s22s are derived and compared with other theoretical calculation results. It is shown that the FCPC methods are also effective for theoretical calculation of the ionic structure for high nuclear ion of lithium-like systems.

  18. Kinetically blocked stable heptazethrene and octazethrene: closed-shell or open-shell in the ground state?

    PubMed

    Li, Yuan; Heng, Wee-Kuan; Lee, Byung Sun; Aratani, Naoki; Zafra, José L; Bao, Nina; Lee, Richmond; Sung, Young Mo; Sun, Zhe; Huang, Kuo-Wei; Webster, Richard D; López Navarrete, Juan T; Kim, Dongho; Osuka, Atsuhiro; Casado, Juan; Ding, Jun; Wu, Jishan

    2012-09-12

    Polycyclic aromatic hydrocarbons with an open-shell singlet biradical ground state are of fundamental interest and have potential applications in materials science. However, the inherent high reactivity makes their synthesis and characterization very challenging. In this work, a convenient synthetic route was developed to synthesize two kinetically blocked heptazethrene (HZ-TIPS) and octazethrene (OZ-TIPS) compounds with good stability. Their ground-state electronic structures were systematically investigated by a combination of different experimental methods, including steady-state and transient absorption spectroscopy, variable temperature NMR, electron spin resonance (ESR), superconducting quantum interfering device (SQUID), FT Raman, and X-ray crystallographic analysis, assisted by unrestricted symmetry-broken density functional theory (DFT) calculations. All these demonstrated that the heptazethrene derivative HZ-TIPS has a closed-shell ground state while its octazethrene analogue OZ-TIPS with a smaller energy gap exists as an open-shell singlet biradical with a large measured biradical character (y = 0.56). Large two-photon absorption (TPA) cross sections (σ((2))) were determined for HZ-TIPS (σ((2))(max) = 920 GM at 1250 nm) and OZ-TIPS (σ((2))(max) = 1200 GM at 1250 nm). In addition, HZ-TIPS and OZ-TIPS show a closely stacked 1D polymer chain in single crystals.

  19. Ground-state phase-space structures of two-dimensional ±J spin glasses: A network approach.

    PubMed

    Cao, Xin; Wang, Feng; Han, Yilong

    2015-06-01

    We illustrate a complex-network approach to study the phase spaces of spin glasses. By mapping the whole ground-state phase spaces of two-dimensional Edwards-Anderson bimodal (±J) spin glasses exactly into networks for analysis, we discovered various phase-space properties. The Gaussian connectivity distribution of the phase-space networks demonstrates that both the number of free spins and the visiting frequency of all microstates follow the Gaussian distribution. The spectra of phase-space networks are Gaussian, which is proven to be exact when the system is infinitely large. The phase-space networks exhibit community structures. By coarse graining to the community level, we constructed a network representing the entropy landscape of the ground state and discovered its scale-free property. The phase-space networks exhibit fractal structures, as a result of the rugged entropy landscape. Moreover, we show that the connectivity distribution, community structures, and fractal structures change drastically at the ferromagnetic-to-glass phase transition. These quantitative measurements of the ground states provide new insight into the study of spin glasses. The phase-space networks of spin glasses share a number of common features with those of lattice gases and geometrically frustrated spin systems and form a new class of complex networks with unique topology.

  20. Nuclear astrophysics measurements with ELISSA at ELI-NP

    NASA Astrophysics Data System (ADS)

    Matei, C.; Balabanski, D. L.; Tesileanu, O.; Xu, Y.; La Cognata, M.; Spitaleri, C.

    2017-09-01

    ELISSA is a new silicon-strip detector array under development at the Extreme Light Infrastructure - Nuclear Physics facility in collaboration with INFN-LNS, Catania. ELI-NP will provide very intense, brilliant gamma beams, tunable from 200keV to 19.5MeV. Several reactions important for the astrophysical p-process, Big Bang Nucleosynthesis and supernova explosion have been selected for the first measurement campaigns starting in 2019.

  1. Method and apparatus for measuring nuclear magnetic properties

    DOEpatents

    Weitekamp, D.P.; Bielecki, A.; Zax, D.B.; Zilm, K.W.; Pines, A.

    1987-12-01

    A method for studying the chemical and structural characteristics of materials is disclosed. The method includes placement of a sample material in a high strength polarizing magnetic field to order the sample nuclei. The condition used to order the sample is then removed abruptly and the ordering of the sample allowed to evolve for a time interval. At the end of the time interval, the ordering of the sample is measured by conventional nuclear magnetic resonance techniques. 5 figs.

  2. Method and apparatus for measuring nuclear magnetic properties

    DOEpatents

    Weitekamp, Daniel P.; Bielecki, Anthony; Zax, David B.; Zilm, Kurt W.; Pines, Alexander

    1987-01-01

    A method for studying the chemical and structural characteristics of materials is disclosed. The method includes placement of a sample material in a high strength polarizing magnetic field to order the sample nucleii. The condition used to order the sample is then removed abruptly and the ordering of the sample allowed to evolve for a time interval. At the end of the time interval, the ordering of the sample is measured by conventional nuclear magnetic resonance techniques.

  3. Senate examines measures to improve nuclear safety following Japan disaster

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-03-01

    One year after Japan suffered a devastating magnitude 9.0 earthquake and the resulting tsunami and nuclear disaster, the U.S. Nuclear Regulatory Commission (NRC) has taken a number of measures to try to ensure that nuclear plants in the United States are safe from natural hazards. At a U.S. Senate hearing on 15 March, NRC chair Gregory Jaczko announced that the commission had issued three key orders and several requests for information on 12 March that plant licensees must follow, and that NRC also plans to take additional actions. However, the commission is not moving quickly enough in some areas, such as ensuring that all plants are safe from seismic hazards, including those in areas with low seismic activity, according to Jaczko's testimony before the Senate Committee on Environment and Public Works (EPW) and the Subcommittee on Clean Air and Nuclear Safety. The 12 March orders require licensees to have strategies to maintain or restore core cooling, containment, and spent-fuel pool cooling capabilities "following a beyond-design-basis extreme natural event" and have a reliable indication of the water level in spent-fuel storage pools.

  4. Ground-state characterizations of systems predicted to exhibit L11 or L13 crystal structures

    NASA Astrophysics Data System (ADS)

    Nelson, Lance J.; Hart, Gus L. W.; Curtarolo, Stefano

    2012-02-01

    Despite their geometric simplicity, the crystal structures L11 (CuPt) and L13 (CdPt3) do not appear as ground states experimentally, except in Cu-Pt. We investigate the possibility that these phases are ground states in other binary intermetallic systems, but overlooked experimentally. Via the synergy between high-throughput and cluster-expansion computational methods, we conduct a thorough search for systems that may exhibit these phases and calculate order-disorder transition temperatures when they are predicted. High-throughput calculations predict L11 ground states in the systems Ag-Pd, Ag-Pt, Cu-Pt, Pd-Pt, Li-Pd, Li-Pt, and L13 ground states in the systems Cd-Pt, Cu-Pt, Pd-Pt, Li-Pd, Li-Pt. Cluster expansions confirm the appearance of these ground states in some cases. In the other cases, cluster expansion predicts unsuspected derivative superstructures as ground states. The order-disorder transition temperatures for all L11/L13 ground states were found to be sufficiently high that their physical manifestation may be possible.

  5. The significant role of covalency in determining the ground state of cobalt phthalocyanines molecule

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Zhang, Linjuan; Hu, Zhiwei; Kuo, Changyang; Liu, Hengjie; Lin, Xiao; Wang, Yu; Pi, Tun-Wen; Wang, Jianqiang; Zhang, Shuo

    2016-03-01

    To shed some light on the metal 3d ground state configuration of cobalt phthalocyanines system, so far in debate, we present an investigation by X-ray absorption spectroscopy (XAS) at Co L2,3 edge and theoretical calculation. The density functional theory calculations reveal highly anisotropic covalent bond between central cobalt ion and nitrogen ligands, with the dominant σ donor accompanied by weak π-back acceptor interaction. Our combined experimental and theoretical study on the Co-L2,3 XAS spectra demonstrate a robust ground state of 2A1g symmetry that is built from 73% 3d7 character and 27% 3 d 8 L ¯ ( L ¯ denotes a ligand hole) components, as the first excited-state with 2Eg symmetry lies about 158 meV higher in energy. The effect of anisotropic and isotropic covalency on the ground state was also calculated and the results indicate that the ground state with 2A1g symmetry is robust in a large range of anisotropic covalent strength while a transition of ground state from 2A1g to 2Eg configuration when isotropic covalent strength increases to a certain extent. Here, we address a significant anisotropic covalent effect of short Co(II)-N bond on the ground state and suggest that it should be taken into account in determining the ground state of analogous cobalt complexes.

  6. Exact ground states of large two-dimensional planar Ising spin glasses

    NASA Astrophysics Data System (ADS)

    Pardella, G.; Liers, F.

    2008-11-01

    Studying spin-glass physics through analyzing their ground-state properties has a long history. Although there exist polynomial-time algorithms for the two-dimensional planar case, where the problem of finding ground states is transformed to a minimum-weight perfect matching problem, the reachable system sizes have been limited both by the needed CPU time and by memory requirements. In this work, we present an algorithm for the calculation of exact ground states for two-dimensional Ising spin glasses with free boundary conditions in at least one direction. The algorithmic foundations of the method date back to the work of Kasteleyn from the 1960s for computing the complete partition function of the Ising model. Using Kasteleyn cities, we calculate exact ground states for huge two-dimensional planar Ising spin-glass lattices (up to 30002 spins) within reasonable time. According to our knowledge, these are the largest sizes currently available. Kasteleyn cities were recently also used by Thomas and Middleton in the context of extended ground states on the torus. Moreover, they show that the method can also be used for computing ground states of planar graphs. Furthermore, we point out that the correctness of heuristically computed ground states can easily be verified. Finally, we evaluate the solution quality of heuristic variants of the L. Bieche approach.

  7. Matrix elements for the ground-state to ground-state 2{nu}{beta}{sup -}{beta}{sup -} decay of Te isotopes in a hybrid model

    SciTech Connect

    Bes, D. R.; Civitarese, O.

    2010-01-15

    Theoretical matrix elements, for the ground-state to ground-state two-neutrino double-{beta}-decay mode (2{nu}{beta}{sup -}{beta}{sup -}gs->gs) of {sup 128,130}Te isotopes, are calculated within a formalism that describes interactions between neutrons in a superfluid phase and protons in a normal phase. The elementary degrees of freedom of the model are proton-pair modes and pairs of protons and quasineutrons. The calculation is basically a parameter-free one, because all relevant parameters are fixed from the phenomenology. A comparison with the available experimental data is presented.

  8. Problems in detection and measurement in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Aysun Ugur, Fatma

    2015-07-01

    Nuclear Medicine studies are performed with a variety of types of radiation measurement instruments, depending on the kind of radiation source that is being measured and the type of information sought. For example, some instruments are designed for in vitro measurements on blood samples, urine specimens, and so forth. Others are designed for in vivo measurements of radioactivity in patients. All these instruments have special design characteristics to optimize them for their specific tasks, as described in this study; however, some considerations of design characteristics and performance limitations are common to all of them. An important consideration for any radiation measurement instrument is its detection efficiency. Maximum detection efficiency is desirable because one thus obtains maximum information with a minimum amount of radioactivity. Also important are instrument's counting rate limitations. There are finite counting rate limits for all counting and imaging instruments used in nuclear medicine, above which accurate results are obtained because of data losses and other data distortions. Non penetrating radiations, such as ß particles, have special detection and measurement problems. In this study, some of these general considerations have been discussed.

  9. Off-diagonal long-range order (ODLRO) and ground state properties of liquid helium

    SciTech Connect

    Rodriguez-Gomez, J.R.

    1983-01-01

    An independent calculation of the condensate fraction and the ground state energy of liquid helium is given. The Froehlich ansatz for the second reduced density matrix in conjunction with the ODLORO hypothesis for liquid helium below the critical temperature is used. Froehlich's ansatz is shown to be consistent with numerical calculations of the ground state properties of liquid helium. The ground state energy was -5.10/sup 0/K, close to the experimental value. The condensate fraction turned out to be about 10% which is within the margin of error of recent neutron scattering experiments and agrees with other theoretical calculations.

  10. Ground state properties of superheavy nuclei with Z=117 and Z=119

    SciTech Connect

    Ren Zhongzhou; Chen Dinghan; Xu Chang

    2006-11-02

    We review the current studies on the ground-state properties of superheavy nuclei. It is shown that there is shape coexistence for the ground state of many superheavy nuclei from different models and many superheavy nuclei are deformed. This can lead to the existence of isomers in superheavy region and it plays an important role for the stability of superheavy nuclei. Some new results on Z=117 and Z=119 isotopes are presented. The agreement between theoretical results and experimental data clearly demonstrates the validity of theoretical models for the ground-state properties of superheavy nuclei.

  11. A molecular-field approximation for quantum crystals. Ph.D. Thesis; [considering ground state properties

    NASA Technical Reports Server (NTRS)

    Danilowicz, R.

    1973-01-01

    Ground-state properties of quantum crystals have received considerable attention from both theorists and experimentalists. The theoretical results have varied widely with the Monte Carlo calculations being the most successful. The molecular field approximation yields ground-state properties which agree closely with the Monte Carlo results. This approach evaluates the dynamical behavior of each pair of molecules in the molecular field of the other N-2 molecules. In addition to predicting ground-state properties that agree well with experiment, this approach yields data on the relative importance of interactions of different nearest neighbor pairs.

  12. Degenerated ground-states in a spin chain with pair interactions: a characterization by symbolic dynamics

    NASA Astrophysics Data System (ADS)

    Corona, L. A.; Salgado-García, R.

    2016-12-01

    In this paper we study a class of one-dimensional spin chain having a highly degenerated set of ground-state configurations. The model consists of spin chain having infinite-range pair interactions with a given structure. We show that the set of ground-state configurations of such a model can be fully characterized by means of symbolic dynamics. Particularly we found that the set ground-state configurations define what in symbolic dynamics is called sofic shift space. Finally we prove that this system has a non-vanishing residual entropy (the topological entropy of the shift space), which can be exactly calculated.

  13. Indirect measurement of nuclear reactions of astrophysical interest

    SciTech Connect

    Liu, W. P.; Li, Z. H.; Bai, X. X.; Wang, Y. B.; Guo, B.; Lian, G.; Su, J.; Zeng, S.; Wang, B. X.; Yan, S. Q.; Li, Y. J.; Li, E. T.; Jin, S. J.

    2010-05-12

    Systematic indirect measurements of nuclear astrophysical reactions using the unstable ion beam facility GIRAFFE in CIAE were performed. We have measured the angular distributions of transfer reactions, such as {sup 8}Li(d,p){sup 9}Li, {sup 8}Li(d,n){sup 9}Be and {sup 8}Li(p,d){sup 7}Li in inverse kinematics, and derived the astrophysical S-factors or reaction rates for {sup 8}Li(n,gamma){sup 9}Li and {sup 8}Li(p,gamma){sup 9}Be by using asymptotic normalization coefficient (ANC) or spectroscopic factor methods.

  14. Configuration space Faddeev calculations. I. Triton ground state properties

    NASA Astrophysics Data System (ADS)

    Payne, G. L.; Friar, J. L.; Gibson, B. F.; Afnan, I. R.

    1980-08-01

    The formulation of Faddeev-type equations in configuration space is discussed. Numerical solutions are obtained using splines and the method of orthogonal collocation. Triton observables and wave-function probabilities are calculated for s-wave NN interaction models of Malfliet and Tjon and the tensor force model of Reid. Comparison with previously published triton results is made; our full five-channel results for the Reid soft-core potential are in excellent agreement with those obtained by Afnan and Birrell using separable expansion methods. NUCLEAR STRUCTURE 3H, Faddeev calculations configuration space.

  15. Measurement and Characterization of Nuclear Material at Idaho National Laboratory

    SciTech Connect

    J. L. Dolan; M. Flaska; S. A. Pozzi; D. L. Chichester

    2009-07-01

    A measurement plan and preliminary Monte Carlo simulations are presented for the investigation of well-defined mixed-oxide fuel pins. Measurement analysis including pulse-height distributions and time-dependent cross-correlation functions will be performed separately for neutrons and gamma rays. The utilization of Monte Carlo particle transport codes, specifically MCNP-PoliMi, is discussed in conjunction with the anticipated measurements. Four EJ-309 liquid scintillation detectors with an accurate pulse timing and digital, offline, optimized pulse-shape discrimination method will be used to prove the dependency of pulse-height distributions, cross-correlation functions, and material multiplicities upon fuel pin composition, fuel pin quantity, and detector geometry. The objective of the measurements and simulations is to identify novel methods for describing mixed-oxide fuel samples by relating measured quantities to fuel characteristics such as criticality, mass quantity, and material composition. This research has applications in nuclear safeguards and nonproliferation.

  16. Temperature measuring analysis of the nuclear reactor fuel assembly

    SciTech Connect

    Urban, F. E-mail: zdenko.zavodny@stuba.sk; Kučák, L. E-mail: zdenko.zavodny@stuba.sk; Bereznai, J. E-mail: zdenko.zavodny@stuba.sk; Závodný, Z. E-mail: zdenko.zavodny@stuba.sk; Muškát, P. E-mail: zdenko.zavodny@stuba.sk

    2014-08-06

    Study was based on rapid changes of measured temperature values from the thermocouple in the VVER 440 nuclear reactor fuel assembly. Task was to determine origin of fluctuations of the temperature values by experiments on physical model of the fuel assembly. During an experiment, heated water was circulating in the system and cold water inlet through central tube to record sensitivity of the temperature sensor. Two positions of the sensor was used. First, just above the central tube in the physical model fuel assembly axis and second at the position of the thermocouple in the VVER 440 nuclear reactor fuel assembly. Dependency of the temperature values on time are presented in the diagram form in the paper.

  17. Ground-state energies and charge radii of medium-mass nuclei in the unitary-model-operator approach

    NASA Astrophysics Data System (ADS)

    Miyagi, Takayuki; Abe, Takashi; Okamoto, Ryoji; Otsuka, Takaharu

    2014-09-01

    In nuclear structure theory, one of the most fundamental problems is to understand the nuclear structure based on nuclear forces. This attempt has been enabled due to the progress of the computational power and nuclear many-body approaches. However, it is difficult to apply the first-principle methods to medium-mass region, because calculations demand the huge model space as increasing the number of nucleons. The unitary-model-operator approach (UMOA) is one of the methods which can be applied to medium-mass nuclei. The essential point of the UMOA is to construct the effective Hamiltonian which does not induce the two-particle-two-hole excitations. A many-body problem is reduced to the two-body subsystem problem in an entire many-body system with the two-body effective interaction and one-body potential determined self-consistently. In this presentation, we will report the numerical results of ground-state energies and charge radii of 16O, 40Ca, and 56Ni in the UMOA, and discuss the saturation property by comparing our results with those in the other many-body methods and also experimental data. In nuclear structure theory, one of the most fundamental problems is to understand the nuclear structure based on nuclear forces. This attempt has been enabled due to the progress of the computational power and nuclear many-body approaches. However, it is difficult to apply the first-principle methods to medium-mass region, because calculations demand the huge model space as increasing the number of nucleons. The unitary-model-operator approach (UMOA) is one of the methods which can be applied to medium-mass nuclei. The essential point of the UMOA is to construct the effective Hamiltonian which does not induce the two-particle-two-hole excitations. A many-body problem is reduced to the two-body subsystem problem in an entire many-body system with the two-body effective interaction and one-body potential determined self-consistently. In this presentation, we will report the

  18. Tuning ground states of bis(triarylamine) dications: from a closed-shell singlet to a diradicaloid with an excited triplet state.

    PubMed

    Su, Yuanting; Wang, Xingyong; Zheng, Xin; Zhang, Zaichao; Song, You; Sui, Yunxia; Li, Yizhi; Wang, Xinping

    2014-03-10

    Three bis(triarylamine) dications were isolated by using weakly coordinating anions. Their electronic structures in the ground state were investigated by various experiments in conjunction with theoretical calculations. The ground-state electronic structures of these species were tunable by substituent effects, with two of them as closed-shell singlets and one of them as an open-shell singlet in the solid state. The excited state of the latter is thermally accessible, indicated by EPR and SQUID measurements. The work provides a new and stable diradicaloid structure motif with an excited triplet sate.

  19. Charged fusion product loss measurements using nuclear activation

    SciTech Connect

    Bonheure, G.; Hult, M.; Gonzalez de Orduna, R.; Wieslander, E.; Arnold, D.; Dombrowski, H.; Laubenstein, M.; Murari, A.; Collaboration: JET-EFDA Contributors

    2010-10-15

    In ITER, {alpha} particle loss measurements will be required in order to understand the alpha particle physics. Techniques capable of operating in a fusion reactor environment need further development. Recent experimental studies on JET demonstrated the potential of nuclear activation to measure the flux of escaping MeV ions. New results from MeV ion induced activation of metallic, ceramic, and crystal samples placed near the plasma edge are reported. Activation products were measured as function of orientation with respect to the magnetic field as well as function of the distance to the plasma. Sample activity was measured using ultralow-level gamma-ray spectrometry. Distribution of 14.68 MeV fusion proton induced activation products is strongly anisotropic in agreement with simulations and falls off sharply with increasing distance to the plasma. Prospects for using the technique in ITER are discussed.

  20. Trojan Horse technique to measure nuclear astrophysics rearrangement reactions

    NASA Astrophysics Data System (ADS)

    Spitaleri, Claudio

    2013-03-01

    The knowledge of nucleosynthesis and of energy production in stars requires an increasingly precise measurement of nuclear fusion reactions at the Gamow energy. Because of the Coulomb barrier reaction cross sections in astrophysics cannot be accessed directly at ultra -low energies, unless very favorable conditions are met. Moreover, the energies characterizing nuclear processes in several astrophysical contexts are so low that the presence of atomic electrons must be taken into account. Theoretical extrapolations of available data are then needed to derive astrophysical S(E)-factors. To overcome these experimental difficulties the Trojan Horse Method (THM) has been introduced. The method provides a valid alternative path to measure unscreened low-energy cross sections of reactions between charged particles, and to retrieve information on the electron screening potential when ultra-low energy direct measurements are available. While the theory has been discussed in detail in some theoretical works, present in the scientific literature, also in relation to different types of excitation functions (e.g. non-resonant and resonant), work on detailed methodology used to extract the events to be considered for the bare nucleus cross section measurements is still on going. In this work we will present some critical points in the application of THM that deserve to be discussed in more detail.

  1. Ground-state properties of hcp helium-4 on the basis of a cell model

    NASA Technical Reports Server (NTRS)

    Jacobi, N.; Zmuidzinas, J. S.

    1977-01-01

    A simple cell model is used to compute the ground-state energy and the volume-pressure relation for hcp He-4, in good agreement with experiments and with more sophisticated quantum mechanical calculations.

  2. Analytic models for the density of a ground-state spinor condensate

    NASA Astrophysics Data System (ADS)

    Gautam, Sandeep; Adhikari, S. K.

    2015-08-01

    We demonstrate that the ground state of a trapped spin-1 and spin-2 spinor ferromagnetic Bose-Einstein condensate (BEC) can be well approximated by a single decoupled Gross-Pitaevskii (GP) equation. Useful analytic models for the ground-state densities of ferromagnetic BECs are obtained from the Thomas-Fermi approximation (TFA) to this decoupled equation. Similarly, for the ground states of spin-1 antiferromagnetic and spin-2 antiferromagnetic and cyclic BECs, some of the spin-component densities are zero, which reduces the coupled GP equation to a simple reduced form. Analytic models for ground-state densities are also obtained for antiferromagnetic and cyclic BECs from the TFA to the respective reduced GP equations. The analytic densities are illustrated and compared with the full numerical solution of the GP equation with realistic experimental parameters.

  3. Coherent structures in the ground state of the quantum Frenkel-Kontorova model

    SciTech Connect

    Berman, G.P.; Bulgakov, E.N. Kirensky Institute of Physics, Research Educational Center for Nonlinear Processes at Krasnoyarsk Technical University, Theoretical Department at Krasnoyarsk State University, 660036, Krasnoyarsk ); Campbell, D.K. )

    1994-03-15

    We study the quantum ground state of the Frenkel-Kontorova model in the strongly nonlinear'' regime in which in the corresponding classical limit the coordinates of the atoms are distributed on Cantori.'' We identify (many) quasidegenerate configurations that contribute to the quantum ground state. When the characteristic quantum and classical energy scales are roughly equal (the intermediate'' quantum regime), we find, consistent with earlier numerical studies, that the standard map'' determining the coordinates in the classical ground state is renormalized to an effective sawtooth'' map, which determines the expectation values of the coordinates in the quantum ground state. We also discuss the dynamics of the model and estimate the characteristic time for various quantum tunneling effects.

  4. Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains

    NASA Technical Reports Server (NTRS)

    Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy

    1989-01-01

    A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.

  5. Study on the ground states of a square-lattice polymer by using exhaustive enumeration

    NASA Astrophysics Data System (ADS)

    Lee, Jae Hwan; Lee, Julian; Kim, Seung-Yeon

    2016-11-01

    We exhaustively enumerate the ground-state conformations of polymers with attractive nearest-neighbor interactions on a square lattice. We find that when the ground-state number is considered as a function of the chain length, local minima appear at magic lengths. However, the ground-state entropy per monomer does not vanish in the thermodynamic limit when an extrapolation is performed with the magic-length data, implying that the number of ground-state conformations grows exponentially. We also study the entropy difference between the ground and the first-excited states. The entropy difference per monomer diverges in the thermodynamic limit, indicating that the zero-tail of the specific heat is modified in the thermodynamic limit.

  6. Ground-state properties of hcp helium-4 on the basis of a cell model

    NASA Technical Reports Server (NTRS)

    Jacobi, N.; Zmuidzinas, J. S.

    1977-01-01

    A simple cell model is used to compute the ground-state energy and the volume-pressure relation for hcp He-4, in good agreement with experiments and with more sophisticated quantum mechanical calculations.

  7. The Ground State of Monolayer Graphene in a Strong Magnetic Field

    PubMed Central

    Wu, Lian-Ao; Guidry, Mike

    2016-01-01

    Experiments indicate that the ground state of graphene in a strong magnetic field exhibits spontaneous breaking of SU(4) symmetry. However, the nature of the corresponding emergent state is unclear because existing theoretical methods approximate the broken-symmetry solutions, yielding nearly-degenerate candidate ground states having different emergent orders. Resolving this ambiguity in the nature of the strong-field ground state is highly desirable, given the importance of graphene for both fundamental physics and technical applications. We have discovered a new SO(8) symmetry that recovers standard graphene SU(4) quantum Hall physics, but predicts two new broken-SU(4) phases and new properties for potential ground states. Our solutions are analytical; thus we capture the essential physics of spontaneously-broken SU(4) states in a powerful yet solvable model useful both in correlating existing data and in suggesting new experiments. PMID:26927477

  8. Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains

    NASA Technical Reports Server (NTRS)

    Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy

    1989-01-01

    A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.

  9. No-go theorem for ground state cooling given initial system-thermal bath factorization.

    PubMed

    Wu, Lian-Ao; Segal, Dvira; Brumer, Paul

    2013-01-01

    Ground-state cooling and pure state preparation of a small object that is embedded in a thermal environment is an important challenge and a highly desirable quantum technology. This paper proves, with two different methods, that a fundamental constraint on the cooling dynamic implies that it is impossible to cool, via a unitary system-bath quantum evolution, a system that is embedded in a thermal environment down to its ground state, if the initial state is a factorized product of system and bath states. The latter is a crucial but artificial assumption included in numerous tools that treat system-bath dynamics, such as master equation approaches and Kraus operator based methods. Adopting these approaches to address ground state and even approximate ground state cooling dynamics should therefore be done with caution, considering the fundamental theorem exposed in this work.

  10. Ground-state information geometry and quantum criticality in an inhomogeneous spin model

    NASA Astrophysics Data System (ADS)

    Ma, Yu-Quan

    2015-09-01

    We investigate the ground-state Riemannian metric and the cyclic quantum distance of an inhomogeneous quantum spin-1/2 chain in a transverse field. This model can be diagonalized by using a general canonical transformation to the fermionic Hamiltonian mapped from the spin system. The ground-state Riemannian metric is derived exactly on a parameter manifold ring S1, which is introduced by performing a gauge transformation to the spin Hamiltonian through a twist operator. The cyclic ground-state quantum distance and the second derivative of the ground-state energy are studied in different exchange coupling parameter regions. Particularly, we show that, in the case of exchange coupling parameter Ja = Jb, the quantum ferromagnetic phase can be characterized by an invariant quantum distance and this distance will decay to zero rapidly in the paramagnetic phase. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404023 and 11347131).

  11. Neutron-Diffraction Evidence for the Ferrimagnetic Ground State of a Molecule-Based Magnet with Weakly Coupled Sublattices

    SciTech Connect

    Fishman, Randy Scott; Campo, Javier; Vos, Thomas E.; Miller, Joel S.

    2012-01-01

    The diruthenium compound [Ru2(O2CMe)4]3[Cr(CN)6] contains two weakly coupled, ferrimag- netically ordered sublattices occupying the same volume. The magnetic field Hc 800 Oe required to align the two sublattice moments is proportional to the antiferromagnetic dipolar interaction Kc B Hc 5 10 3 meV between sublattices. Powder neutron-diffraction measurements on a deuterated sample reveal that the sublattice moments are restricted by the anisotropy of the diruthenium paddle-wheel complexes to the cubic diagonals. Those measurements also suggest that the quantum corrections to the ground state are significant.

  12. Methods for determining the polarisability of the fine structure levels in the ground state of the thulium atom

    NASA Astrophysics Data System (ADS)

    Golovizin, A. A.; Kalganova, E. S.; Sukachev, D. D.; Vishnyakova, G. A.; Tregubov, D. O.; Khabarova, K. Yu.; Sorokin, V. N.; Kolachevsky, N. N.

    2017-06-01

    We have calculated the scalar and tensor parts of the polarisabilities of the fine-structure sublevels J = 7/2 and 5/2 of the thulium atom ground state. The static polarisabilities are in a good agreement with the values known from the literature. We also present experimental techniques for measuring the dynamic scalar polarisabilities of these levels at a wavelength of 532 nm. The measured values agree with our calculations within the errors. The results of this work can be used for designing an optical frequency standard based on laser-cooled thulium atoms.

  13. Competing magnetic ground states in non-superconducting Ba(Fe1-xCrx)2As2

    SciTech Connect

    Marty, Karol J; Christianson, Andrew D; Wang, Cuihuan; Matsuda, Masaaki; Cao, Huibo; VanBebber, L. H.; Zaretsky, Jerel L.; Singh, David J; Sefat, A. S.; Lumsden, Mark D

    2011-01-01

    We present neutron diffraction measurements on single-crystal samples of nonsuperconducting Ba(Fe{sub 1-x}Cr{sub x}){sub 2}As{sub 2} as a function of Cr doping for 0 x 0.47. The average spin-density-wave moment is independent of concentration for x 0.2 and decreases rapidly for x 0.3. For concentrations in excess of 30% chromium, we find a new competing magnetic phase consistent with G-type antiferromagnetism which rapidly becomes the dominant magnetic ground state. Strong magnetism is observed for all concentrations measured, naturally explaining the absence of superconductivity in the Cr-doped materials.

  14. Hartree-Fock-Bogoliubov calculation of ground state properties of even-even and odd Mo and Ru isotopes

    NASA Astrophysics Data System (ADS)

    El Bassem, Y.; Oulne, M.

    2017-01-01

    In a previous work (El Bassem and Oulne (2015) [20]), hereafter referred to as paper I, we have investigated the ground-state properties of Nd, Ce and Sm isotopes within Hartree-Fock-Bogoliubov method with SLy5 Skyrme force in which the pairing strength has been generalized with a new proposed formula. However, that formula is more appropriate for the region of Nd. In this work, we have studied the ground-state properties of both even-even and odd Mo and Ru isotopes. For this, we have used Hartree-Fock-Bogoliubov method with SLy4 Skyrme force, and a new formula of the pairing strength which is more accurate for this region of nuclei. The results have been compared with available experimental data, the results of Hartree-Fock-Bogoliubov calculations based on the D1S Gogny effective nucleon-nucleon interaction and predictions of some nuclear models such as Finite Range Droplet Model (FRDM) and Relativistic Mean Field (RMF) theory.

  15. Multipolarity of the 2-→1- , ground-state transition in 210Bi via multivariable angular correlation analysis

    NASA Astrophysics Data System (ADS)

    Cieplicka-Oryńczak, N.; Szpak, B.; Leoni, S.; Fornal, B.; Bazzacco, D.; Blanc, A.; Bocchi, G.; Bottoni, S.; de France, G.; Jentschel, M.; Köster, U.; Mutti, P.; Simpson, G.; Soldner, T.; Ur, C.; Urban, W.

    2016-07-01

    The multipolarity of the main transition leading to the ground state in 210Bi was investigated using the angular correlations of γ rays. The analyzed γ -coincidence data were obtained from the 209Bi(n ,γ )210Bi experiment performed at Institut Laue-Langevin Grenoble at the PF1B cold-neutron facility. The EXILL (EXOGAM at the ILL) multidetector array, consisting of 16 high-purity germanium detectors, was used to detect γ transitions. The mixing ratio of the 320-keV γ ray was defined by minimizing a multivariable χΣ2 function constructed from the coefficients of angular correlation functions for seven pairs of strong transitions in 210Bi. As a result, the almost pure M 1 multipolarity of the 320-keV γ ray was obtained, with an E 2 admixture of less than 0.6% only (95% confidence limit). Based on this multipolarity the neutron-capture cross section leading to the ground state in 210Bi, that decays in turn to radiotoxic 210Po, was determined to be within the limits 21.3(9) and 21.5(9) mb. This result is important for nuclear reactor applications.

  16. A new accurate ground-state potential energy surface of ethylene and predictions for rotational and vibrational energy levels.

    PubMed

    Delahaye, Thibault; Nikitin, Andrei; Rey, Michaël; Szalay, Péter G; Tyuterev, Vladimir G

    2014-09-14

    In this paper we report a new ground state potential energy surface for ethylene (ethene) C2H4 obtained from extended ab initio calculations. The coupled-cluster approach with the perturbative inclusion of the connected triple excitations CCSD(T) and correlation consistent polarized valence basis set cc-pVQZ was employed for computations of electronic ground state energies. The fit of the surface included 82,542 nuclear configurations using sixth order expansion in curvilinear symmetry-adapted coordinates involving 2236 parameters. A good convergence for variationally computed vibrational levels of the C2H4 molecule was obtained with a RMS(Obs.-Calc.) deviation of 2.7 cm(-1) for fundamental bands centers and 5.9 cm(-1) for vibrational bands up to 7800 cm(-1). Large scale vibrational and rotational calculations for (12)C2H4, (13)C2H4, and (12)C2D4 isotopologues were performed using this new surface. Energy levels for J = 20 up to 6000 cm(-1) are in a good agreement with observations. This represents a considerable improvement with respect to available global predictions of vibrational levels of (13)C2H4 and (12)C2D4 and rovibrational levels of (12)C2H4.

  17. Expectation values of single-particle operators in the random phase approximation ground state.

    PubMed

    Kosov, D S

    2017-02-07

    We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived a practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments for a set of representative molecules.

  18. Ground state properties of solid and liquid spin-aligned atomic hydrogen

    NASA Technical Reports Server (NTRS)

    Danilowicz, R. L.; Dugan, J. V., Jr.; Etters, R. D.

    1976-01-01

    Calculations of the ground state energy in the solid phase were performed with the aid of a variational approach. The Morse potential form of the atomic triple potential computed by Kolos and Wolniewicz (1965) was employed for the calculations. The ground state energies of both the liquid and solid phases of spin-aligned atomic hydrogen around the volume of the transition are presented in a graph.

  19. The impact of bonded interactions on the ground-state geometries of a small flexible polymer

    NASA Astrophysics Data System (ADS)

    Koci, Tomas; Qi, Kai; Bachmann, Michael

    2016-10-01

    Bonded interactions in coarse-grained models of elastic polymers are commonly represented by the finitely extensible nonlinear elastic (FENE) potential. In this study, we perform parallel multicanonical Monte Carlo simulations to examine the impact of an additional Lennard-Jones term in the bonded potential on the geometry of ground-state structures of a short polymer. Employing microcanonical inflection point analysis and conformational analysis, we construct a hyper-phase diagram and identify ground-state structures with two distinct geometries.

  20. Expectation values of single-particle operators in the random phase approximation ground state

    NASA Astrophysics Data System (ADS)

    Kosov, D. S.

    2017-02-01

    We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived a practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments for a set of representative molecules.

  1. Measuring the Nuclear Levels in 19Ne using GODDESS

    NASA Astrophysics Data System (ADS)

    Hall, Matthew; Experiment 1488 Collaboration Collaboration

    2016-09-01

    A direct way to test nova explosion models is to observe gamma rays created in the decay of radioactive isotopes produced in the nova. One such isotope, 18F, is believed to be the main source of observable 511-keV gamma rays. The main destruction mechanism of 18F is thought to be the 18F(p,α)15O reaction, and the uncertainty in the reaction rate is attributed to uncertainties in the energies, spins, and parities of the nuclear levels in 19Ne above the proton threshold. A 3He beam was used at Argonne National Lab in an effort to understand the levels in 19Ne via the 19F(3He,t)19Ne reaction. Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies (GODDESS) was used to measure gamma rays from the decay of 19Ne in coincidence with the reaction tritons. Preliminary data from the experiment will be presented. This research was supported by the National Science Foundation, the US DOE Office of Nuclear Physics and the National Nuclear Security Administration.

  2. Ground-State Phases of Anisotropic Mixed Diamond Chains with Spins 1 and 1/2

    NASA Astrophysics Data System (ADS)

    Hida, Kazuo

    2014-11-01

    The ground-state phases of anisotropic mixed diamond chains with spins 1 and 1/2 are investigated. Both single-site and exchange anisotropies are considered. We find the phases consisting of an array of uncorrelated spin-1 clusters separated by singlet dimers. Except in the simplest case where the cluster consists of a single S = 1 spin, this type of ground state breaks the translational symmetry spontaneously. Although the mechanism leading to this type of ground state is the same as that in the isotropic case, it is nonmagnetic or paramagnetic depending on the competition between two types of anisotropy. We also find the Néel, period-doubled Néel, Haldane, and large-D phases, where the ground state is a single spin cluster of infinite size equivalent to the spin-1 Heisenberg chain with alternating anisotropies. The ground-state phase diagrams are determined for typical sets of parameters by numerical analysis. In various limiting cases, the ground-state phase diagrams are determined analytically. The low-temperature behaviors of magnetic susceptibility and entropy are investigated to distinguish each phase by observable quantities. The relationship of the present model with the anisotropic rung-alternating ladder with spin-1/2 is also discussed.

  3. Ground states of the Ising model on an anisotropic triangular lattice: stripes and zigzags.

    PubMed

    Dublenych, Yu I

    2013-10-09

    A complete solution of the ground-state problem for the Ising model on an anisotropic triangular lattice with the nearest-neighbor interactions in a magnetic field is presented. It is shown that this problem can be reduced to the ground-state problem for an infinite chain with the interactions up to the second neighbors. In addition to the known ground-state structures (which correspond to full-dimensional regions in the parameter space of the model), new structures are found (at the boundaries of these regions), in particular, zigzagging stripes similar to those observed experimentally in colloidal monolayers. Though the number of parameters is relatively large (four), all the ground-state structures of the model are constructed and analyzed and therefore the paper can be considered as an example of a complete solution of a ground-state problem for classical spin or lattice-gas models. The paper can also help to verify the correctness of some results obtained previously by other authors and concerning the ground states of the model under consideration.

  4. Diamagnetic correction to the {sup 9}Be{sup +} ground-state hyperfine constant

    SciTech Connect

    Shiga, N.; Itano, W. M.; Bollinger, J. J.

    2011-07-15

    We report an experimental determination of the diamagnetic correction to the {sup 9}Be{sup +} ground state hyperfine constant A. We measured A = -625 008 837.371(11) Hz at a magnetic field B of 4.4609 T. Comparison with previous results, obtained at lower values of B (0.68 T and 0.82 T), yields the diamagnetic shift coefficient k = 2.63(18)x10{sup -11} T{sup -2}, where A(B)=A{sub 0}(1+kB{sup 2}). The zero-field hyperfine constant A{sub 0} is determined to be -625 008 837.044(12) Hz. The g-factor ratio g{sub I}{sup '}/g{sub J} is determined to be 2.134 779 852 7(10)x10{sup -4}, which is equal to the value measured at lower B to within experimental error. Upper limits are placed on some other corrections to the Breit-Rabi formula. The measured value of k agrees with theoretical estimates.

  5. Decamethylytterbocene Complexes of Bipyridines and Diazabutadienes: Multiconfigurational Ground States and Open-Shell Singlet Formation

    SciTech Connect

    Booth, Corwin H.; Walter, Marc D.; Kazhdan, Daniel; Hu, Yung-Jin; Lukens, Wayne W.; Bauer, Eric D.; Maron, Laurent; Eisenstein, Odile; Andersen, Richard A.

    2009-04-22

    Partial ytterbium f-orbital occupancy (i.e., intermediate valence) and open-shell singlet formation are established for a variety of bipyridine and diazabutadiene adducts with decamethylytterbocene, (C5Me5)2Yb, abbreviated as Cp*2Yb. Data used to support this claim include ytterbium valence measurements using Yb LIII-edge X-ray absorption near-edge structure spectroscopy, magnetic susceptibility, and complete active space self-consistent field (CASSCF) multiconfigurational calculations, as well as structural measurements compared to density functional theory calculations. The CASSCF calculations indicate that the intermediate valence is the result of a multiconfigurational ground-state wave function that has both an open-shell singlet f13(?*)1, where pi* is the lowest unoccupied molecular orbital of the bipyridine or dpiazabutadiene ligands, and a closed-shell singlet f14 component. A number of other competing theories for the unusual magnetism in these materials are ruled out by the lack of temperature dependence of the measured intermediate valence. These results have implications for understanding chemical bonding not only in organolanthanide complexes but also for f-element chemistry in general, as well as understanding magnetic interactions in nanoparticles and devices.

  6. Nuclear Technology Series. Course 11: Radiation Detection and Measurement.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  7. Nuclear Technology Series. Course 11: Radiation Detection and Measurement.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  8. XUV frequency-comb metrology on the ground state of helium

    SciTech Connect

    Kandula, Dominik Z.; Gohle, Christoph; Pinkert, Tjeerd J.; Ubachs, Wim; Eikema, Kjeld S. E.

    2011-12-15

    The operation of a frequency comb at extreme ultraviolet (xuv) wavelengths based on pairwise amplification and nonlinear upconversion to the 15th harmonic of pulses from a frequency-comb laser in the near-infrared range is reported. It is experimentally demonstrated that the resulting spectrum at 51 nm is fully phase coherent and can be applied to precision metrology. The pulses are used in a scheme of direct-frequency-comb excitation of helium atoms from the ground state to the 1s4p and 1s5p {sup 1} P{sub 1} states. Laser ionization by auxiliary 1064 nm pulses is used to detect the excited-state population, resulting in a cosine-like signal as a function of the repetition rate of the frequency comb with a modulation contrast of up to 55%. Analysis of the visibility of this comb structure, thereby using the helium atom as a precision phase ruler, yields an estimated timing jitter between the two upconverted-comb laser pulses of 50 attoseconds, which is equivalent to a phase jitter of 0.38 (6) cycles in the xuv at 51 nm. This sets a quantitative figure of merit for the operation of the xuv comb and indicates that extension to even shorter wavelengths should be feasible. The helium metrology investigation results in transition frequencies of 5 740 806 993 (10) and 5 814 248 672 (6) MHz for excitation of the 1s4p and 1s5p {sup 1} P{sub 1} states, respectively. This constitutes an important frequency measurement in the xuv, attaining high accuracy in this windowless part of the electromagnetic spectrum. From the measured transition frequencies an eight-fold-improved {sup 4}He ionization energy of 5 945 204 212 (6) MHz is derived. Also, a new value for the {sup 4}He ground-state Lamb shift is found of 41 247 (6) MHz. This experimental value is in agreement with recent theoretical calculations up to order m{alpha}{sup 6} and m{sup 2}/M{alpha}{sup 5}, but with a six-times-higher precision, therewith providing a stringent test of quantum electrodynamics in bound two

  9. Trends in Ground-State Entropies for Transition Metal Based Hydrogen Atom Transfer Reactions

    SciTech Connect

    Mader, Elizabeth A.; Manner, Virginia W.; Markle, Todd F.; Wu, Adam; Franz, James A.; Mayer, James M.

    2009-03-10

    Reported herein are thermochemical studies of hydrogen atom transfer (HAT) reactions involving transition metal H-atom donors MIILH and oxyl radicals. [FeII(H2bip)3]2+, [FeII(H2bim)3]2+, [CoII(H2bim)3]2+ and RuII(acac)2(py-imH) [H2bip = 2,2’-bi-1,4,5,6-tetrahydro¬pyrimidine, H2bim = 2,2’-bi-imidazoline, acac = 2,4-pentandionato, py-imH = 2-(2’-pyridyl)¬imidazole)] each react with TEMPO (2,2,6,6-tetramethyl-1-piperidinoxyl) or tBu3PhO• (2,4,6-tri-tert-butylphenoxyl) to give the deprotonated, oxidized metal complex MIIIL, and TEMPOH or tBu3PhOH. Solution equilibrium measurements for the reactions of Co and Fe complexes with TEMPO show a large, negative ground-state entropy for hydrogen atom transfer: ΔSºHAT = -30 ± 2 cal mol-1 K-1 for the two iron complexes and -41 ± 2 cal mol-1 K-1 for [CoII(H2bim)3]2+. The ΔSºHAT for TEMPO + RuII(acac)2(py-imH) is much closer to zero, 4.9 ± 1.1 cal mol-1 K-1. Calorimetric measurements quantitatively confirm the enthalpy of reaction for [FeII(H2bip)3]2+ + TEMPO, thus also confirming ΔSºHAT. Calorimetry on TEMPOH + tBu3PhO• gives ΔHºHAT = 11.2 ± 0.5 kcal mol-1 which matches the enthalpy predicted from the difference in literature solution BDEs. An evaluation of the literature BDEs of both TEMPOH and tBu3PhOH is briefly presented and new estimates are included on the relative enthalpy of solvation for tBu3PhO• vs. tBu3PhOH. The primary contributor to the large magnitude of the ground-state entropy |ΔSºHAT| for the metal complexes is vibrational entropy, ΔSºvib. The common assumption that ΔSºHAT ≈ 0 for HAT reactions, developed for organic and small gas phase molecules, does not hold for transition metal based HAT reactions. The trend in magnitude of |ΔSºHAT| for reactions with TEMPO, RuII(acac)2(py-imH) << [FeII(H2bip)3]2+ = [FeII(H2bim)3]2+ < [CoII(H2bim)3]2+, is surprisingly well predicted by the trends for electron transfer half-reaction entropies, ΔSºET, in aprotic solvents. ΔSºET and

  10. Superallowed nuclear beta decay: Precision measurements for basic physics

    SciTech Connect

    Hardy, J. C.

    2012-11-20

    For 60 years, superallowed 0{sup +}{yields}0{sup +} nuclear beta decay has been used to probe the weak interaction, currently verifying the conservation of the vector current (CVC) to high precision ({+-}0.01%) and anchoring the most demanding available test of the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix ({+-}0.06%), a fundamental pillar of the electroweak standard model. Each superallowed transition is characterized by its ft-value, a result obtained from three measured quantities: the total decay energy of the transition, its branching ratio, and the half-life of the parent state. Today's data set is composed of some 150 independent measurements of 13 separate superallowed transitions covering a wide range of parent nuclei from {sup 10}C to {sup 74}Rb. Excellent consistency among the average results for all 13 transitions - a prediction of CVC - also confirms the validity of the small transition-dependent theoretical corrections that have been applied to account for isospin symmetry breaking. With CVC consistency established, the value of the vector coupling constant, G{sub V}, has been extracted from the data and used to determine the top left element of the CKM matrix, V{sub ud}. With this result the top-row unitarity test of the CKM matrix yields the value 0.99995(61), a result that sets a tight limit on possible new physics beyond the standard model. To have any impact on these fundamental weak-interaction tests, any measurement must be made with a precision of 0.1% or better - a substantial experimental challenge well beyond the requirements of most nuclear physics measurements. I overview the current state of the field and outline some of the requirements that need to be met by experimentalists if they aim to make measurements with this high level of precision.

  11. Superallowed nuclear beta decay: Precision measurements for basic physics

    NASA Astrophysics Data System (ADS)

    Hardy, J. C.

    2012-11-01

    For 60 years, superallowed 0+→0+ nuclear beta decay has been used to probe the weak interaction, currently verifying the conservation of the vector current (CVC) to high precision (±0.01%) and anchoring the most demanding available test of the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix (±0.06%), a fundamental pillar of the electroweak standard model. Each superallowed transition is characterized by its ft-value, a result obtained from three measured quantities: the total decay energy of the transition, its branching ratio, and the half-life of the parent state. Today's data set is composed of some 150 independent measurements of 13 separate superallowed transitions covering a wide range of parent nuclei from 10C to 74Rb. Excellent consistency among the average results for all 13 transitions - a prediction of CVC - also confirms the validity of the small transition-dependent theoretical corrections that have been applied to account for isospin symmetry breaking. With CVC consistency established, the value of the vector coupling constant, GV, has been extracted from the data and used to determine the top left element of the CKM matrix, Vud. With this result the top-row unitarity test of the CKM matrix yields the value 0.99995(61), a result that sets a tight limit on possible new physics beyond the standard model. To have any impact on these fundamental weak-interaction tests, any measurement must be made with a precision of 0.1% or better - a substantial experimental challenge well beyond the requirements of most nuclear physics measurements. I overview the current state of the field and outline some of the requirements that need to be met by experimentalists if they aim to make measurements with this high level of precision.

  12. Decamethylytterbocene complexes of bipyridines and diazabutadines: multiconfigurational ground states and open-shell singlet formation

    SciTech Connect

    Bauer, Eric D; Booth, C H; Walter, M D; Kazhdan, D; Hu, Y - J; Lukens, Wayne; Maron, Laurent; Eisentein, Odile; Anderson, Richard

    2009-01-01

    Partial ytterbium f-orbital occupancy (i.e. intermediate valence) and open-shell singlet Draft 12/formation are established for a variety of bipyridine and diazabutadiene adducts to decamethylytterbocene, (C{sub 5}Me{sub 5}){sub 2}Yb or Cp*{sub 2}Yb. Data used to support this claim includes ytterbium valence measurements using Yb Lm-edge x-ray absorption near-edge structure (XANES) spectroscopy, magnetic susceptibility and Complete Active Space Self-Consistent Field (CASSCF) multi configurational calculations, as well as structural measurements compared to density-functional theory (DFT) calculations. The CASSCF calculations indicate that the intermediate valence is the result of a multiconfigurational ground state wave function that has both an open-shell singlet f{sup 13} and a closed-shell singlet f{sup 14} component. A number of other competing theories for the unusual magnetism in these materials are ruled out by the presence of intermediate valence and its lack of any significant temperature dependence. These results have implications for understanding chemical bonding not only in organolanthanide complexes, but also for organometallic chemistry in general, as well as understanding magnetic interactions in nanopartic1es and devices.

  13. Evidence of spontaneous vortex ground state in an iron-based ferromagnetic superconductor

    NASA Astrophysics Data System (ADS)

    Jiao, Wen-He; Tao, Qian; Ren, Zhi; Liu, Yi; Cao, Guang-Han

    2017-09-01

    Spontaneous vortex phase (SVP) is an exotic quantum matter in which quantized superconducting vortices form in the absence of external magnetic field. Although being predicted theoretically nearly 40 years ago, its rigorous experimental verification still appears to be lacking. Here we present low-field magnetic measurements on single crystals of the iron-based ferromagnetic superconductor Eu(Fe0.91Rh0.09)2As2 which undergoes a superconducting transition at Tsc = 19.6 K followed by a magnetic transition at Tm = 16.8 K. We observe a characteristic first-order transition from a Meissner state within Tm < T < Tsc to an SVP below Tm, under a magnetic field approaching zero. Additional isothermal magnetization and ac magnetic susceptibility measurements at T ≪Tsc confirm that the system is intrinsically in a spontaneous-vortex ground state. The unambiguous demonstration of SVP in the title material lays a solid foundation for future imaging and spectroscopic studies on this intriguing quantum matter.

  14. Gapped two-body hamiltonian whose unique ground state is universal for one-way quantum computation.

    PubMed

    Chen, Xie; Zeng, Bei; Gu, Zheng-Cheng; Yoshida, Beni; Chuang, Isaac L

    2009-06-05

    Many-body entangled quantum states studied in condensed matter physics can be primary resources for quantum information, allowing any quantum computation to be realized using measurements alone, on the state. Such a universal state would be remarkably valuable, if only it were thermodynamically stable and experimentally accessible, by virtue of being the unique ground state of a physically reasonable Hamiltonian made of two-body, nearest-neighbor interactions. We introduce such a state, composed of six-state particles on a hexagonal lattice, and describe a general method for analyzing its properties based on its projected entangled pair state representation.

  15. Permanent Electron Electric Dipole Moment Search in the X^3Δ_1 Ground State of Tungsten Carbide Molecules

    NASA Astrophysics Data System (ADS)

    Lee, Jeongwon; Chen, Jinhai; Leanhardt, Aaron

    2011-06-01

    We are developing an experiment to search for the permanent electric dipole moment (EDM) of the electron using the valence electrons in the X^3Δ_1 ground state of Tungsten Carbide (WC) molecules. Currently, we are detecting the molecules by Laser Induced Fluorescence spectroscopy at ˜75cm downstream of a pulsed ablation beam source. We have a detection rate of ˜10 182W12C molecules/second in X^3Δ_1, v"=0, J"=1 state with geometric detection efficiency of 0.004. A continuous WC molecular beam is under development. Additionally, preliminary measurements of the 183W12C hyperfine structure will be presented.

  16. Electron Impact Excitation of Xenon from the Ground State and the Metastable State to the 5p57p Levels

    NASA Astrophysics Data System (ADS)

    Chen, Zhan-Bin; Dong, Chen-Zhong; Xie, Lu-You; Jiang, Jun

    2014-03-01

    Electron impact excitation cross sections from the ground state and the lowest metastable state 5p56s J = 2 to the excited states of the 5p57p configuration of xenon are calculated systematically using the fully relativistic distorted wave method. Special attention is paid to the configuration interaction effects in the wave-function expansion of target states. The results are in good agreement with the recent experimental data by Jung et al. [Phys. Rev. A 80 (2009) 062708] over the measured energy range. These accurate theoretical results can be used in the modeling and diagnosis of plasmas containing xenon.

  17. Indirect measurements of nuclear astrophysics reactions at CIAE

    SciTech Connect

    Liu Weiping; Li Zhihong; Bai Xixiang; Wang Youbao; Lian Gang; Guo Bing; Zeng Sheng; Yan Shengquan; Wang Baoxiang; Su Jun; Shu Nengchuan; Chen Yongshou

    2006-11-02

    This paper described the nuclear astrophysical studies using the unstable ion beam facility GIRAFFE, by indirect measurements. We measured the angular distributions for some single proton or neutron transfer reactions, such as 7Be(d,n)8B, 11C(d,n)12N, 8Li(d,n)9Be, 8Li(d,p)9Li and 13N(d,n)14O in inverse kinematics, and derived the astrophysical S-factors or reaction rates of 7Be(p,{gamma})8B, 11C(p,{gamma})12N, 8Li(n,{gamma})9Li, 13N(p,{gamma})14O by asymptotic normalization coefficient, spectroscopic factor, and R-matrix approach at astrophysically relevant energies.

  18. OPPORTUNITIES TO CONSTRAIN ASTROPHYSICAL REACTION RATES FOR THE s-PROCESS VIA DETERMINATION OF THE GROUND-STATE CROSS-SECTIONS

    SciTech Connect

    Rauscher, T.; Mohr, P.; Dillmann, I.; Plag, R.

    2011-09-10

    Modern models of s-process nucleosynthesis in stars require stellar reaction rates of high precision. Most neutron-capture cross-sections in the s-process have been measured, and for an increasing number of reactions the required precision is achieved. This does not necessarily mean, however, that the stellar rates are constrained equally well, because only the capture of the ground state of a target is measured in the laboratory. Captures of excited states can contribute considerably to stellar rates that are already at typical s-process temperatures. We show that the ground-state contribution X to a stellar rate is the relevant measure to identify reactions that are or could be well constrained by experiments and apply it to (n,{gamma}) reactions in the s-process. We further show that the maximum possible reduction in uncertainty of a rate via determination of the ground-state cross-section is given directly by X. An error analysis of X is presented, and it is found that X is a robust measure with mostly small uncertainties. Several specific examples (neutron capture of {sup 79}Se, {sup 95}Zr, {sup 121}Sn, {sup 187}Os, and {sup 193}Pt) are discussed in detail. The ground-state contributions for a set of 412 neutron-capture reactions around the s-process path are presented in a table. This allows identification of reactions that may be better constrained by experiments and that cannot be constrained solely by measuring ground-state cross-sections (and thus require supplementary studies). General trends and implications are discussed.

  19. Electron density dynamics in the electronic ground state: motion along the Kekulé mode of benzene.

    PubMed

    Schild, Axel; Choudhary, Deepanshu; Sambre, Vaibhav D; Paulus, Beate

    2012-11-26

    If the Born-Oppenheimer approximation is invoked for the description of chemical reactions, the electron density rearranges following the motion of the nuclei. Even though this approach is central to theoretical chemistry, the explicit time dependence of the electron density is rarely studied, especially if the nuclei are treated quantum mechanically. In this article, we model the motion of benzene along the Kekulé vibrational coordinate to simulate the nuclear dynamics and electron density dynamics in the electronic ground state. Details of the change of core, valence, and π electrons are determined and analyzed. We show how the pictures anticipated by drawing Lewis structures of the rearrangement correlate with the time-dependent quantum description of the process.

  20. Ground-state and excited-state structures of tungsten-benzylidyne complexes.

    PubMed

    Lovaasen, Benjamin M; Lockard, Jenny V; Cohen, Brian W; Yang, Shujiang; Zhang, Xiaoyi; Simpson, Cheslan K; Chen, Lin X; Hopkins, Michael D

    2012-05-21

    The molecular structure of the tungsten-benzylidyne complex trans-W(≡CPh)(dppe)(2)Cl (1; dppe = 1,2-bis(diphenylphosphino)ethane) in the singlet (d(xy))(2) ground state and luminescent triplet (d(xy))(1)(π*(WCPh))(1) excited state (1*) has been studied using X-ray transient absorption spectroscopy, X-ray crystallography, and density functional theory (DFT) calculations. Molecular-orbital considerations suggest that the W-C and W-P bond lengths should increase in the excited state because of the reduction of the formal W-C bond order and decrease in W→P π-backbonding, respectively, between 1 and 1*. This latter conclusion is supported by comparisons among the W-P bond lengths obtained from the X-ray crystal structures of 1, (d(xy))(1)-configured 1(+), and (d(xy))(2) [W(CPh)(dppe)(2)(NCMe)](+) (2(+)). X-ray transient absorption spectroscopic measurements of the excited-state structure of 1* reveal that the W-C bond length is the same (within experimental error) as that determined by X-ray crystallography for the ground state 1, while the average W-P/W-Cl distance increases by 0.04 Å in the excited state. The small excited-state elongation of the W-C bond relative to the M-E distortions found for M(≡E)L(n) (E = O, N) compounds with analogous (d(xy))(1)(π*(ME))(1) excited states is due to the π conjugation within the WCPh unit, which lessens the local W-C π-antibonding character of the π*(WCPh) lowest unoccupied molecular orbital (LUMO). These conclusions are supported by DFT calculations on 1 and 1*. The similar core bond distances of 1, 1(+), and 1* indicates that the inner-sphere reorganization energy associated with ground- and excited-state electron-transfer reactions is small.

  1. Ground-state and excited-state structures of tungsten-benzylidyne complexes

    SciTech Connect

    Lovaasen, B. M.; Lockard, J. V.; Cohen, B. W.; Yang, S.; Zhang, X.; Simpson, C. K.; Chen, L. X.; Hopkins, M. D.

    2012-01-01

    The molecular structure of the tungsten-benzylidyne complex trans-W({triple_bond}CPh)(dppe){sub 2}Cl (1; dppe = 1,2-bis(diphenylphosphino)ethane) in the singlet (d{sub xy}){sup 2} ground state and luminescent triplet (d{sub xy}){sup 1}({pi}*(WCPh)){sup 1} excited state (1*) has been studied using X-ray transient absorption spectroscopy, X-ray crystallography, and density functional theory (DFT) calculations. Molecular-orbital considerations suggest that the W-C and W-P bond lengths should increase in the excited state because of the reduction of the formal W-C bond order and decrease in W {yields} P {pi}-backbonding, respectively, between 1 and 1*. This latter conclusion is supported by comparisons among the W-P bond lengths obtained from the X-ray crystal structures of 1, (d{sub xy}){sup 1}-configured 1{sup +}, and (d{sub xy}){sup 2} [W(CPh)(dppe){sub 2}(NCMe)]{sup +} (2{sup +}). X-ray transient absorption spectroscopic measurements of the excited-state structure of 1* reveal that the W-C bond length is the same (within experimental error) as that determined by X-ray crystallography for the ground state 1, while the average W-P/W-Cl distance increases by 0.04 {angstrom} in the excited state. The small excited-state elongation of the W-C bond relative to the M-E distortions found for M({triple_bond}E)L{sub n} (E = O, N) compounds with analogous (d{sub xy}){sup 1}({pi}*(ME)){sup 1} excited states is due to the {pi} conjugation within the WCPh unit, which lessens the local W-C {pi}-antibonding character of the {pi}*(WCPh) lowest unoccupied molecular orbital (LUMO). These conclusions are supported by DFT calculations on 1 and 1*. The similar core bond distances of 1, 1{sup +}, and 1* indicates that the inner-sphere reorganization energy associated with ground- and excited-state electron-transfer reactions is small.

  2. Electronic ground state OH(X) radical in a low-temperature atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Fuh, Che A.; Clark, Shane M.; Wu, Wei; Wang, Chuji

    2016-10-01

    The wide applicability of atmospheric pressure plasma jets in biomedicine stems from the presence of reactive nitrogen and oxygen species generated in these plasma jets. Knowing the absolute concentration of these reactive species is of utmost importance as it is critical, along with the particle flux obtained from the plasma feed gas flow rate to ensure that the correct dosage is applied during applications. In this study, we investigate and report the ground state OH(X) number density acquired using cavity ringdown spectroscopy, along the propagation axis (z-axis) of a cold atmospheric pressure helium plasma plume. The jet was generated by a repetitively pulsed mono-polar square wave of duration 1 μs running at a frequency of 9.9 kHz. The voltage supplied was 6.5 kV with the helium flow rate fixed at 3.6 standard liters per minute. The rotational and vibrational temperatures are simulated from the second positive system of nitrogen, N 2(C3πu-B3πg) , with the rotational temperature being spatially constant at 300 K along the propagation axis of the atmospheric pressure plasma jet while the vibrational temperature is 3620 K at the beginning of the plume and is observed to decrease downstream. The OH(A) emission intensity obtained via optical emission spectroscopy was observed to decrease downstream of the plasma jet. The OH(X) number density along the propagation axis was initially 2.2 × 1013 molecules cm-3 before increasing to a peak value of 2.4 × 1013 molecules cm-3, from which the number density was observed to decrease to 2.2 × 1013 molecules cm-3 downstream of the plasma jet. The total OH(A, X) in the plasma jet remained relatively constant along the propagation axis of the plasma jet before falling off at the tip of the jet. The increase in vibrational temperature downstream and the simultaneous measurements of both the excited state OH(A) and the ground state OH(X) reported in this study provide insights into the formation and consumption of this

  3. Conserved prosegment residues stabilize a late-stage folding transition state of pepsin independently of ground states.

    PubMed

    Dee, Derek R; Horimoto, Yasumi; Yada, Rickey Y

    2014-01-01

    The native folding of certain zymogen-derived enzymes is completely dependent upon a prosegment domain to stabilize the folding transition state, thereby catalyzing the folding reaction. Generally little is known about how the prosegment accomplishes this task. It was previously shown that the prosegment catalyzes a late-stage folding transition between a stable misfolded state and the native state of pepsin. In this study, the contributions of specific prosegment residues to catalyzing pepsin folding were investigated by introducing individual Ala substitutions and measuring the effects on the bimolecular folding reaction between the prosegment peptide and pepsin. The effects of mutations on the free energies of the individual misfolded and native ground states and the transition state were compared using measurements of prosegment-pepsin binding and folding kinetics. Five out of the seven prosegment residues examined yielded relatively large kinetic effects and minimal ground state perturbations upon mutation, findings which indicate that these residues form strengthened and/or non-native contacts in the transition state. These five residues are semi- to strictly conserved, while only a non-conserved residue had no kinetic effect. One conserved residue was shown to form native structure in the transition state. These results indicated that the prosegment, which is only 44 residues long, has evolved a high density of contacts that preferentially stabilize the folding transition state over the ground states. It is postulated that the prosegment forms extensive non-native contacts during the process of catalyzing correct inter- and intra-domain contacts during the final stages of folding. These results have implications for understanding the folding of multi-domain proteins and for the evolution of prosegment-catalyzed folding.

  4. Conserved Prosegment Residues Stabilize a Late-Stage Folding Transition State of Pepsin Independently of Ground States

    PubMed Central

    Dee, Derek R.; Horimoto, Yasumi; Yada, Rickey Y.

    2014-01-01

    The native folding of certain zymogen-derived enzymes is completely dependent upon a prosegment domain to stabilize the folding transition state, thereby catalyzing the folding reaction. Generally little is known about how the prosegment accomplishes this task. It was previously shown that the prosegment catalyzes a late-stage folding transition between a stable misfolded state and the native state of pepsin. In this study, the contributions of specific prosegment residues to catalyzing pepsin folding were investigated by introducing individual Ala substitutions and measuring the effects on the bimolecular folding reaction between the prosegment peptide and pepsin. The effects of mutations on the free energies of the individual misfolded and native ground states and the transition state were compared using measurements of prosegment-pepsin binding and folding kinetics. Five out of the seven prosegment residues examined yielded relatively large kinetic effects and minimal ground state perturbations upon mutation, findings which indicate that these residues form strengthened and/or non-native contacts in the transition state. These five residues are semi- to strictly conserved, while only a non-conserved residue had no kinetic effect. One conserved residue was shown to form native structure in the transition state. These results indicated that the prosegment, which is only 44 residues long, has evolved a high density of contacts that preferentially stabilize the folding transition state over the ground states. It is postulated that the prosegment forms extensive non-native contacts during the process of catalyzing correct inter- and intra-domain contacts during the final stages of folding. These results have implications for understanding the folding of multi-domain proteins and for the evolution of prosegment-catalyzed folding. PMID:24983988

  5. MicroRaman measurements for nuclear fuel reprocessing applications

    DOE PAGES

    Casella, Amanda; Lines, Amanda; Nelson, Gilbert; ...

    2016-12-01

    Treatment and reuse of used nuclear fuel is a key component in closing the nuclear fuel cycle. Solvent extraction reprocessing methods that have been developed contain various steps tailored to the separation of specific radionuclides, which are highly dependent upon solution properties. The instrumentation used to monitor these processes must be robust, require little or no maintenance, and be able to withstand harsh environments such as high radiation fields and aggressive chemical matrices. Our group has been investigating the use of optical spectroscopy for the on-line monitoring of actinides, lanthanides, and acid strength within fuel reprocessing streams. This paper willmore » focus on the development and application of a new MicroRaman probe for on-line real-time monitoring of the U(VI)/nitrate ion/nitric acid in solutions relevant to used nuclear fuel reprocessing. Previous research has successfully demonstrated the applicability on the macroscopic scale, using sample probes requiring larger solution volumes. In an effort to minimize waste and reduce dose to personnel, we have modified this technique to allow measurement at the microfluidic scale using a Raman microprobe. Under the current sampling environment, Raman samples typically require upwards of 10 mL and larger. Using the new sampling system, we can sample volumes at 10 μL or less, which is a scale reduction of over 1,000 fold in sample size. Finally, this paper will summarize our current work in this area including: comparisons between the macroscopic and microscopic probes for detection limits, optimized channel focusing, and application in a flow cell with varying levels of HNO3, and UO2(NO3)2.« less

  6. MicroRaman measurements for nuclear fuel reprocessing applications

    SciTech Connect

    Casella, Amanda; Lines, Amanda; Nelson, Gilbert; Bello, Job; Bryan, Samuel

    2016-12-01

    Treatment and reuse of used nuclear fuel is a key component in closing the nuclear fuel cycle. Solvent extraction reprocessing methods that have been developed contain various steps tailored to the separation of specific radionuclides, which are highly dependent upon solution properties. The instrumentation used to monitor these processes must be robust, require little or no maintenance, and be able to withstand harsh environments such as high radiation fields and aggressive chemical matrices. Our group has been investigating the use of optical spectroscopy for the on-line monitoring of actinides, lanthanides, and acid strength within fuel reprocessing streams. This paper will focus on the development and application of a new MicroRaman probe for on-line real-time monitoring of the U(VI)/nitrate ion/nitric acid in solutions relevant to used nuclear fuel reprocessing. Previous research has successfully demonstrated the applicability on the macroscopic scale, using sample probes requiring larger solution volumes. In an effort to minimize waste and reduce dose to personnel, we have modified this technique to allow measurement at the microfluidic scale using a Raman microprobe. Under the current sampling environment, Raman samples typically require upwards of 10 mL and larger. Using the new sampling system, we can sample volumes at 10 μL or less, which is a scale reduction of over 1,000 fold in sample size. Finally, this paper will summarize our current work in this area including: comparisons between the macroscopic and microscopic probes for detection limits, optimized channel focusing, and application in a flow cell with varying levels of HNO3, and UO2(NO3)2.

  7. MicroRaman Measurements for Nuclear Fuel Reprocessing Applications

    SciTech Connect

    Casella, Amanda; Lines, Amanda; Nelson, Gilbert; Bello, Job; Bryan, Samuel

    2016-01-01

    Treatment and reuse of used nuclear fuel is a key component in closing the nuclear fuel cycle. Solvent extraction reprocessing methods that have been developed contain various steps tailored to the separation of specific radionuclides, which are highly dependent upon solution properties. The instrumentation used to monitor these processes must be robust, require little or no maintenance, and be able to withstand harsh environments such as high radiation fields and aggressive chemical matrices. Our group has been investigating the use of optical spectroscopy for the on-line monitoring of actinides, lanthanides, and acid strength within fuel reprocessing streams. This paper will focus on the development and application of a new MicroRaman probe for on-line real-time monitoring of the U(VI)/nitrate ion/nitric acid in solutions relevant to used nuclear fuel reprocessing. Previous research has successfully demonstrated the applicability on the macroscopic scale, using sample probes requiring larger solution volumes. In an effort to minimize waste and reduce dose to personnel, we have modified this technique to allow measurement at the microfluidic scale using a Raman microprobe. Under the current sampling environment, Raman samples typically require upwards of 10 mL and larger. Using the new sampling system, we can sample volumes at 10 μL or less, which is a scale reduction of over 1,000 fold in sample size. This paper will summarize our current work in this area including: comparisons between the macroscopic and microscopic probes for detection limits, optimized channel focusing, and application in a flow cell with varying levels of HNO3, and UO2(NO3)2.

  8. 78 FR 55765 - Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... COMMISSION Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN-FIRE) AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG/CR, reopening of comment period... Measures for Nuclear Power Plant Fire Protection (CARMEN-FIRE).'' In response to comments from members...

  9. Evolution of ground state nuclear shapes in tungsten nuclei in terms of interacting boson model

    NASA Astrophysics Data System (ADS)

    Khalaf, A. M.; El-Shal, A. O.; Taha, M. M.; El-Sayed, M. A.

    2016-03-01

    The tungsten nuclei 180-190W are investigated within the framework of the interacting boson model using an intrinsic coherent state formalism. The Hamiltonian operator contains only multipole operators of the subalgebra associated with the dynamical symmetries SU(3) and O(6). The study includes the behavior of potential energy surfaces (BES's) and critical points in the space of the model parameters to declare the geometric character of the tungsten isotopic chain. Some selected energy levels and reduced E2 transition probabilities B(E2) for each nucleus are calculated to adjust the model parameters by using a computer code PH INT and simulated computer fitting programme to fit the experimental data with the IBM calculation by minimizing the root mean square deviations. The 180-190W isotopes lies in shape transition SU(3)-O(6) region of the IBM such that the lighter isotopes comes very clare to the SU(3) limit, while the behavior ones tend to be near the γ-unstable O(6) limit.

  10. Ground state of underdoped cuprates in vicinity of superconductor-to-insulator transition

    SciTech Connect

    Wu, Jie; Bollinger, Anthony T.; Sun, Yujie; Božović, Ivan

    2016-08-15

    When an insulating underdoped cuprate is doped beyond a critical concentration (xc), high-temperature superconductivity emerges. We have synthesized a series of La2–xSrxCuO4 (LSCO) samples using the combinatorial spread technique that allows us to traverse the superconductor-to-insulator transition (SIT) in extremely fine doping steps, Δx≈0.00008. We have measured the Hall resistivity (ρH) as a function of temperature down to 300 mK in magnetic fields up to 9 T. At very low temperatures, ρH shows an erratic behavior, jumps and fluctuations exceeding 100%, hysteresis, and memory effects, indicating that the insulating ground state is a charge-cluster glass (CCG). Furthermore, based on the phase diagram depicted in our experiment, we propose a unified picture to account for the anomalous electric transport in the vicinity of the SIT, suggesting that the CCG is in fact a disordered and glassy version of the charge density wave.

  11. Chiral heliconical ground state of nanoscale pitch in a nematic liquid crystal of achiral molecular dimers

    PubMed Central

    Chen, Dong; Porada, Jan H.; Hooper, Justin B.; Klittnick, Arthur; Shen, Yongqiang; Tuchband, Michael R.; Korblova, Eva; Bedrov, Dmitry; Walba, David M.; Glaser, Matthew A.; Maclennan, Joseph E.; Clark, Noel A.

    2013-01-01

    Freeze-fracture transmission electron microscopy study of the nanoscale structure of the so-called “twist–bend” nematic phase of the cyanobiphenyl (CB) dimer molecule CB(CH2)7CB reveals stripe-textured fracture planes that indicate fluid layers periodically arrayed in the bulk with a spacing of d ∼ 8.3 nm. Fluidity and a rigorously maintained spacing result in long-range-ordered 3D focal conic domains. Absence of a lamellar X-ray reflection at wavevector q ∼ 2π/d or its harmonics in synchrotron-based scattering experiments indicates that this periodic structure is achieved with no detectable associated modulation of the electron density, and thus has nematic rather than smectic molecular ordering. A search for periodic ordering with d ∼ in CB(CH2)7CB using atomistic molecular dynamic computer simulation yields an equilibrium heliconical ground state, exhibiting nematic twist and bend, of the sort first proposed by Meyer, and envisioned in systems of bent molecules by Dozov and Memmer. We measure the director cone angle to be θTB ∼ 25° and the full pitch of the director helix to be pTB ∼ 8.3 nm, a very small value indicating the strong coupling of molecular bend to director bend. PMID:24006362

  12. Ground state of underdoped cuprates in vicinity of superconductor-to-insulator transition

    SciTech Connect

    Wu, Jie; Bollinger, Anthony T.; Sun, Yujie; Božović, Ivan

    2016-08-15

    When an insulating underdoped cuprate is doped beyond a critical concentration (xc), high-temperature superconductivity emerges. We have synthesized a series of La2–xSrxCuO4 (LSCO) samples using the combinatorial spread technique that allows us to traverse the superconductor-to-insulator transition (SIT) in extremely fine doping steps, Δx≈0.00008. We have measured the Hall resistivity (ρH) as a function of temperature down to 300 mK in magnetic fields up to 9 T. At very low temperatures, ρH shows an erratic behavior, jumps and fluctuations exceeding 100%, hysteresis, and memory effects, indicating that the insulating ground state is a charge-cluster glass (CCG). Furthermore, based on the phase diagram depicted in our experiment, we propose a unified picture to account for the anomalous electric transport in the vicinity of the SIT, suggesting that the CCG is in fact a disordered and glassy version of the charge density wave.

  13. Chiral heliconical ground state of nanoscale pitch in a nematic liquid crystal of achiral molecular dimers.

    PubMed

    Chen, Dong; Porada, Jan H; Hooper, Justin B; Klittnick, Arthur; Shen, Yongqiang; Tuchband, Michael R; Korblova, Eva; Bedrov, Dmitry; Walba, David M; Glaser, Matthew A; Maclennan, Joseph E; Clark, Noel A

    2013-10-01

    Freeze-fracture transmission electron microscopy study of the nanoscale structure of the so-called "twist-bend" nematic phase of the cyanobiphenyl (CB) dimer molecule CB(CH2)7CB reveals stripe-textured fracture planes that indicate fluid layers periodically arrayed in the bulk with a spacing of d ~ 8.3 nm. Fluidity and a rigorously maintained spacing result in long-range-ordered 3D focal conic domains. Absence of a lamellar X-ray reflection at wavevector q ~ 2π/d or its harmonics in synchrotron-based scattering experiments indicates that this periodic structure is achieved with no detectable associated modulation of the electron density, and thus has nematic rather than smectic molecular ordering. A search for periodic ordering with d ~ in CB(CH2)7CB using atomistic molecular dynamic computer simulation yields an equilibrium heliconical ground state, exhibiting nematic twist and bend, of the sort first proposed by Meyer, and envisioned in systems of bent molecules by Dozov and Memmer. We measure the director cone angle to be θ(TB) ~ 25° and the full pitch of the director helix to be p(TB) ~ 8.3 nm, a very small value indicating the strong coupling of molecular bend to director bend.

  14. FeCr2S4 in magnetic fields: possible evidence for a multiferroic ground state

    PubMed Central

    Bertinshaw, J.; Ulrich, C.; Günther, A.; Schrettle, F.; Wohlauer, M.; Krohns, S.; Reehuis, M.; Studer, A. J.; Avdeev, M.; Quach, D. V.; Groza, J. R.; Tsurkan, V.; Loidl, A.; Deisenhofer, J.

    2014-01-01

    We report on neutron diffraction, thermal expansion, magnetostriction, dielectric, and specific heat measurements on polycrystalline FeCr2S4 in external magnetic fields. The ferrimagnetic ordering temperatures TC ≈ 170 K and the transition at TOO ≈ 10 K, which has been associated with orbital ordering, are only weakly shifted in magnetic fields up to 9 T. The cubic lattice parameter is found to decrease when entering the state below TOO. The magnetic moments of the Cr- and Fe-ions are reduced from the spin-only values throughout the magnetically ordered regime, but approach the spin-only values for fields >5.5 T. Thermal expansion in magnetic fields and magnetostriction experiments indicate a contraction of the sample below about 60 K. Below TOO this contraction is followed by a moderate expansion of the sample for fields larger than ~4.5 T. The transition at TOO is accompanied by an anomaly in the dielectric constant. The dielectric constant depends on both the strength and orientation of the external magnetic field with respect to the applied electric field for T < TOO. A linear correlation of the magnetic-field-induced change of the dielectric constant and the magnetic-field dependent magnetization is observed. This behaviour is consistent with the existence of a ferroelectric polarization and a multiferroic ground state below 10 K. PMID:25123960

  15. FeCr₂S₄ in magnetic fields: possible evidence for a multiferroic ground state.

    PubMed

    Bertinshaw, J; Ulrich, C; Günther, A; Schrettle, F; Wohlauer, M; Krohns, S; Reehuis, M; Studer, A J; Avdeev, M; Quach, D V; Groza, J R; Tsurkan, V; Loidl, A; Deisenhofer, J

    2014-08-15

    We report on neutron diffraction, thermal expansion, magnetostriction, dielectric, and specific heat measurements on polycrystalline FeCr2S4 in external magnetic fields. The ferrimagnetic ordering temperatures TC ≈ 170 K and the transition at TOO ≈ 10 K, which has been associated with orbital ordering, are only weakly shifted in magnetic fields up to 9 T. The cubic lattice parameter is found to decrease when entering the state below TOO. The magnetic moments of the Cr- and Fe-ions are reduced from the spin-only values throughout the magnetically ordered regime, but approach the spin-only values for fields >5.5 T. Thermal expansion in magnetic fields and magnetostriction experiments indicate a contraction of the sample below about 60 K. Below TOO this contraction is followed by a moderate expansion of the sample for fields larger than ~4.5 T. The transition at TOO is accompanied by an anomaly in the dielectric constant. The dielectric constant depends on both the strength and orientation of the external magnetic field with respect to the applied electric field for T < TOO. A linear correlation of the magnetic-field-induced change of the dielectric constant and the magnetic-field dependent magnetization is observed. This behaviour is consistent with the existence of a ferroelectric polarization and a multiferroic ground state below 10 K.

  16. Ground state of underdoped cuprates in vicinity of superconductor-to-insulator transition

    DOE PAGES

    Wu, Jie; Bollinger, Anthony T.; Sun, Yujie; ...

    2016-08-15

    When an insulating underdoped cuprate is doped beyond a critical concentration (xc), high-temperature superconductivity emerges. We have synthesized a series of La2–xSrxCuO4 (LSCO) samples using the combinatorial spread technique that allows us to traverse the superconductor-to-insulator transition (SIT) in extremely fine doping steps, Δx≈0.00008. We have measured the Hall resistivity (ρH) as a function of temperature down to 300 mK in magnetic fields up to 9 T. At very low temperatures, ρH shows an erratic behavior, jumps and fluctuations exceeding 100%, hysteresis, and memory effects, indicating that the insulating ground state is a charge-cluster glass (CCG). Furthermore, based on themore » phase diagram depicted in our experiment, we propose a unified picture to account for the anomalous electric transport in the vicinity of the SIT, suggesting that the CCG is in fact a disordered and glassy version of the charge density wave.« less

  17. Updated compilations of electron scattering from ground-state, noble gas atoms

    NASA Astrophysics Data System (ADS)

    Biagi, S. F.

    2011-10-01

    An updated analysis of the cross sections for electron scattering from ground state atoms for noble gases in the energy range from thermalto 10 MeV is outlined. The work was driven by the necessity tounderstand the Penning transfers and light emission in detectors of high energy particles and dark matter. The published experimental data for electron scattering up to 2010 have been used in the analysis. Recent, theoretically improved cross sections have been used in the important threshold region for both the singlet and triplet states. Experimental or theoretical oscillator strengths and BEF scaling have been used above the resonance region for the singlet states. The number of excitation levels considered (typically about 40) is chosen so that the sum of the oscillator strengths for the considered levels is within a few percent of the theoretical sum rule. The resulting total cross sections are within a few percent of the measured values, and the calculated Fano factors are consistent with available data. These data are now available on the LXCat website. This work is part of the RD51 collaboration at CERN.

  18. Exponentially Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians

    NASA Astrophysics Data System (ADS)

    Mandrà, Salvatore; Zhu, Zheng; Katzgraber, Helmut G.

    2017-02-01

    We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated with a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009), 10.1088/1367-2630/11/7/073021]. These results suggest that more complex driving Hamiltonians are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.

  19. Stability of the ground state of a harmonic oscillator in a monochromatic wave.

    PubMed

    Berman, Gennady P.; James, Daniel F. V.; Kamenev, Dmitry I.

    2001-09-01

    The stability of the ground state of a harmonic oscillator in a monochromatic wave is studied. This model describes, in particular, the dynamics of a cold ion in a linear ion trap, interacting with two laser fields with close frequencies. The stability of the "classical ground state"-the vicinity of the point (x=0,p=0)-is analyzed analytically and numerically. For the quantum case, a method for studying a stability of the quantum ground state is developed, based on the quasienergy representation. It is demonstrated that stability of the ground state may be substantially improved by increasing the resonance number, l, where l=Omega/omega+delta, Omega and omega are, respectively, the wave frequency and the oscillator frequency, l=1,2, em leader, mid R:deltamid R:<1; or by detuning the system from exact resonance, so that delta not equal 0. The influence of a large-amplitude wave (in the presence of chaos) on the stability of the ground state is analyzed for different parameters of the model in both the quantum and classical cases. (c) 2001 American Institute of Physics.

  20. Towards Chemically Stable Fermionic Ground State Molecules with Strong Dipolar Interactions

    NASA Astrophysics Data System (ADS)

    Will, Sebastian; Park, Jee; Wu, Cheng-Hsun; Schloss, Jennifer; Zwierlein, Martin

    2013-05-01

    Quantum gases with dipolar interactions will open new avenues for the creation of novel quantum many-body systems with intriguing properties, ranging from crystalline over magnetic to topological phases. A promising route for the experimental realization of dipolar quantum gases is the formation of fermionic ground-state molecules with a large electric dipole moment, giving rise to long-range anisotropic interactions. With our experiment we work towards the realization of fermionic ground state molecules of 23Na40K. The NaK ground state molecule is chemically stable and possesses a large induced electric dipole moment of 2.72 Debye. In pioneering studies, we have created nearly degenerate samples of weakly bound 23Na40K Feshbach molecules. With a long lifetime and a significant admixture of the electronic spin singlet state, the Feshbach molecules are an ideal starting point to reach the singlet rovibrational ground state with a two-photon STIRAP transfer. Aiming for an efficient transfer path, we have performed spectroscopic studies on excited and ground state molecular potentials of 23Na40K and will report on our current progress. This work was supported by the NSF, AFOSR-MURI and -PECASE, ARO-MURI, ONR YIP, DARPA YFA, a grant from the Army Research Office with funding from the DARPA OLE program and the David and Lucille Packard Foundation.

  1. Two-Photon Pathway to Ultracold Fermionic Ground State Molecules of NaK

    NASA Astrophysics Data System (ADS)

    Park, Jee Woo; Schloss, Jennifer; Yan, Zoe; Loh, Huanqian; Will, Sebastian; Zwierlein, Martin

    2015-05-01

    Interactions beyond the simple contact interaction open up a new paradigm in the field of ultracold quantum gases. Fermionic ground state molecules with strong dipolar interactions serve as an ideal system to explore the rich physics of dipolar quantum gases with intriguing phenomena such as supersolidity and emergence of topological phases. Fermionic 23Na40K molecules are particularly well suited for this purpose. In their absolute ground state, these molecules are chemically stable and posses a large electric dipole moment of 2.72 Debye. In this talk, we report on a two-photon pathway to transfer loosely bound 23Na40K Feshbach molecules to the absolute ground state. We conducted high-resolution one- and two-photon spectroscopy of ultracold 23Na40K Feshbach molecules, and identified a pathway to the rovibrational singlet ground state via a resonantly mixed B1 Π ~c3Σ+ intermediate state. This pathway is used in our experiment to transfer loosely bound Feshbach molecules to the absolute ground state with high efficiency. Our work thus paves the way towards the creation of a strongly dipolar Fermi gas of chemically stable molecules.

  2. Exact ground states and topological order in interacting Kitaev/Majorana chains

    NASA Astrophysics Data System (ADS)

    Katsura, Hosho; Schuricht, Dirk; Takahashi, Masahiro

    2015-09-01

    We study a system of interacting spinless fermions in one dimension that, in the absence of interactions, reduces to the Kitaev chain [Kitaev, Phys. Usp. 44, 131 (2001), 10.1070/1063-7869/44/10S/S29]. In the noninteracting case, a signal of topological order appears as zero-energy modes localized near the edges. We show that the exact ground states can be obtained analytically even in the presence of nearest-neighbor repulsive interactions when the on-site (chemical) potential is tuned to a particular function of the other parameters. As with the noninteracting case, the obtained ground states are twofold degenerate and differ in fermionic parity. We prove the uniqueness of the obtained ground states and show that they can be continuously deformed to the ground states of the noninteracting Kitaev chain without gap closing. We also demonstrate explicitly that there exists a set of operators each of which maps one of the ground states to the other with opposite fermionic parity. These operators can be thought of as an interacting generalization of Majorana edge zero modes.

  3. Number-conserving interacting fermion models with exact topological superconducting ground states

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyuan; Xu, Youjiang; Pu, Han; Hazzard, Kaden R. A.

    2017-09-01

    We present a method to construct number-conserving Hamiltonians whose ground states exactly reproduce an arbitrarily chosen BCS-type mean-field state. Such parent Hamiltonians can be constructed not only for the usual s -wave BCS state, but also for more exotic states of this form, including the ground states of Kitaev wires and two-dimensional topological superconductors. This method leads to infinite families of locally interacting fermion models with exact topological superconducting ground states. After explaining the general technique, we apply this method to construct two specific classes of models. The first one is a one-dimensional double wire lattice model with Majorana-like degenerate ground states. The second one is a two-dimensional px+i py superconducting model, where we also obtain analytic expressions for topologically degenerate ground states in the presence of vortices. Our models may provide a deeper conceptual understanding of how Majorana zero modes could emerge in condensed matter systems, as well as inspire novel routes to realize them in experiment.

  4. Exponentially Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians.

    PubMed

    Mandrà, Salvatore; Zhu, Zheng; Katzgraber, Helmut G

    2017-02-17

    We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated with a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009)NJOPFM1367-263010.1088/1367-2630/11/7/073021]. These results suggest that more complex driving Hamiltonians are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.

  5. Like (CO)4, Do (CS)4 and (CSe)4 have a triplet ground state?

    PubMed

    Bao, Xiaoguang; Hrovat, David A; Borden, Weston Thatcher

    2013-04-26

    Cyclobutane-1,2,3,4-tetraone, (CO)4, was computationally predicted and, subsequently, experimentally confirmed to have a triplet ground state, in which a b2g σ MO and an a2u π MO were each singly occupied. In contrast, the (U)CCSD(T) calculations reported herein found that cyclobutane-1,2,3,4-tetrathione, (CS)4, and cyclobutane-1,2,3,4-tetraselenone, (CSe)4, both had singlet ground states, in which the b2g σ MO was doubly occupied and the a2u π MO was empty. Our calculations showed that both the longer C=X distances and smaller coefficients on the carbon atoms in the b2g and a2u MOs of (CS)4 and (CSe)4 contributed to the difference between the ground states of these two molecules and the ground state of (CO)4. An experimental test of the prediction of a singlet ground state for (CS)4 is proposed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Interactions Between Ground-State Nitrogen Atoms and Molecules

    NASA Technical Reports Server (NTRS)

    Vanderslice, Joseph T.; Mason, Edward A.; Lippincott, Ellis R.

    1959-01-01

    Potential-energy curves for nitrogen atom (N-N) interactions corresponding to the X (1)Sigma(sup +, sub g), A (3)Sigma(sup +, sub u), (5)Sigma(sup +, sub g), (7)Sigma(sup +, sub u), B (3) Pi(sub g), C (3)(Pi(su u)and a (1)Pi(sub g) states of the nitrogen molecule N2 as well as curves for the atom-molecules (N-N2) and molecule-molecule (N2-N2) interactions have been calculated. All calculations have been based as nearly as possible on experimental data, including spectroscopically determined vibrational energy levels, scattering cross sections of atomic beams in gases, and measured vibrational relaxation times. In cases where experimental data were not available, approximate quantum-mechanical calculations have been made. Results obtained by these various methods are remarkably consistent with one another and are believed to have good accuracy.

  7. From ground state to fission fragments: A complex, multi-dimensional multi-path problem

    SciTech Connect

    Moeller, P.; Nix, J.R.; Swiatecki, W.J.

    1992-03-01

    Experimental results on the fission properties of nuclei close to {sup 264}Fm show sudden and large changes with a change of only one or two neutrons or protons. The nucleus {sup 258}Fm, for instance, undergoes symmetric fission with a half-life of about 0.4 ms and a kinetic-energy distribution peaked at about 235 MeV whereas {sup 256}Fm undergoes asymmetric fission with a half-life of about 3 h and a kinetic-energy distribution peaked at about 200 MeV. Qualitatively, these sudden changes have been postulated to be due to the emergence of fragment shells in symmetric-fission products close to {sup 132}Sn. Here we present a quantitative calculation that shows where high-kinetic-energy symmetric fusion occurs and why it is associated with a sudden and large decrease in fission half-lives. We base our study on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. We use the three-quadratic-surface parameterization to generate the shapes for which the potential-energy surfaces are calculated. The use of this parameterization and the use of the finite-range macroscopic model allows for the study of two touching spheres and similar shapes. Since these shapes are thought to correspond to the scission shapes for the high-kinetic-energy events it is of crucial importance that a continuous sequence of shapes leading from the nuclear ground state to these configurations can be studied within the framework of the model. We present the results of the calculations in terms of potential-energy surfaces and fission half-lives for heavy even nuclei. The surfaces are displayed in the form of contour diagrams as functions of two moments of the shape. They clearly show the appearance of a second fission valley, which leads to scission configurations close to tow touching spheres, for fissioning systems in the vicinity of {sup 264}Fm.

  8. From ground state to fission fragments: A complex, multi-dimensional multi-path problem

    SciTech Connect

    Moeller, P. ); Nix, J.R. ); Swiatecki, W.J. )

    1992-01-01

    Experimental results on the fission properties of nuclei close to {sup 264}Fm show sudden and large changes with a change of only one or two neutrons or protons. The nucleus {sup 258}Fm, for instance, undergoes symmetric fission with a half-life of about 0.4 ms and a kinetic-energy distribution peaked at about 235 MeV whereas {sup 256}Fm undergoes asymmetric fission with a half-life of about 3 h and a kinetic-energy distribution peaked at about 200 MeV. Qualitatively, these sudden changes have been postulated to be due to the emergence of fragment shells in symmetric-fission products close to {sup 132}Sn. Here we present a quantitative calculation that shows where high-kinetic-energy symmetric fusion occurs and why it is associated with a sudden and large decrease in fission half-lives. We base our study on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. We use the three-quadratic-surface parameterization to generate the shapes for which the potential-energy surfaces are calculated. The use of this parameterization and the use of the finite-range macroscopic model allows for the study of two touching spheres and similar shapes. Since these shapes are thought to correspond to the scission shapes for the high-kinetic-energy events it is of crucial importance that a continuous sequence of shapes leading from the nuclear ground state to these configurations can be studied within the framework of the model. We present the results of the calculations in terms of potential-energy surfaces and fission half-lives for heavy even nuclei. The surfaces are displayed in the form of contour diagrams as functions of two moments of the shape. They clearly show the appearance of a second fission valley, which leads to scission configurations close to tow touching spheres, for fissioning systems in the vicinity of {sup 264}Fm.

  9. Measurement of Vud with 0+→0+ nuclear beta decays

    NASA Astrophysics Data System (ADS)

    Hardy, J. C.; Towner, I. S.

    2013-10-01

    Results from superallowed 0+→0+ nuclear beta decays today provide the best value for Vud, with an uncertainty of ±0.02%. Some 150 independent measurements of 13 separate superallowed transitions covering a wide range of parent nuclei from 10C to 74Rb constitute a very robust data set. Excellent consistency among the average results for all 13 transitions - an expected consequence of the conservation of vector current (CVC) - also confirms the validity of the small transition-dependent theoretical corrections that have been applied to account for isospin-symmetry breaking. With CVC consistency established, the value of the vector coupling constant, GV, has been extracted from the data and used to determine |Vud| = 0.97425 (22).

  10. Nuclear radiation-warning detector that measures impedance

    DOEpatents

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  11. Measurement of doses to the extremities of nuclear medicine staff

    NASA Astrophysics Data System (ADS)

    Shousha, Hany A.; Farag, Hamed; Hassan, Ramadan A.

    2010-01-01

    Medical uses of ionizing radiation now represent>95% of all man-made radiation exposure, and is the largest single radiation source after natural background radiation. Therefore, it is important to quantify the amount of radiation received by occupational individuals to optimize the working conditions for staff, and further, to compare doses in different departments to ensure compatibility with the recommended standards. For some groups working with unsealed sources in nuclear medicine units, the hands are more heavily exposed to ionizing radiation than the rest of the body. A personal dosimetry service runs extensively in Egypt. But doses to extremities have not been measured to a wide extent. The purpose of this study was to investigate the equivalent radiation doses to the fingers for five different nuclear medicine staff occupational groups for which heavy irradiation of the hands was suspected. Finger doses were measured for (1) nuclear medicine physicians, (2) technologists, (3) nurses and (4) physicists. The fifth group contains three technicians handling 131I, while the others handled 99mTc. Each staff member working with the radioactive material wore two thermoluminescent dosimeters (TLDs) during the whole testing period, which lasted from 1 to 4 weeks. Staff performed their work on a regular basis throughout the month, and mean annual doses were calculated for these groups. Results showed that the mean equivalent doses to the fingers of technologist, nurse and physicist groups were 30.24±14.5, 30.37±17.5 and 16.3±7.7 μSv/GBq, respectively. Equivalent doses for the physicians could not be calculated per unit of activity because they did not handle the radiopharmaceuticals directly. Their doses were reported in millisieverts (mSv) that accumulated in one week. Similarly, the dose to the fingers of individuals in Group 5 was estimated to be 126.13±38.2 μSv/GBq. The maximum average finger dose, in this study, was noted in the technologists who handled

  12. Slow ground state molecules from matrix isolation sublimation

    NASA Astrophysics Data System (ADS)

    Oliveira, A. N.; Sacramento, R. L.; Alves, B. X.; Silva, B. A.; Wolff, W.; Cesar, C. L.

    2014-12-01

    We describe the generation and properties of a cryogenic beam of 7Li2 dimers from sublimation of a neon matrix where lithium atoms have been implanted via laser ablation of solid precursors of metallic lithium or lithium hydride (LiH). Different sublimation regimes lead to pulsed molecular beams with different temperatures, densities and forward velocities. With laser absorption spectroscopy these parameters were measured using the molecular 7Li2 (R) transitions A1Σ u+(v\\prime =4,J\\prime =J\\prime\\prime +1) ≤ftarrow X 1Σ g+(v\\prime\\prime =0,J\\prime\\prime =0,1,3). In a typical regime, sublimating a matrix at 16 K, translational temperatures of 6-8 K with a drift velocity of 130 m s-1 in a free expanding pulsed beam with molecular density of 109 cm-3, averaged along the laser axis, were observed. Rotational temperatures around 5-7 K were obtained. In recent experiments we were able to monitor the atomic Li signal—in the D2 line—concomitantly with the molecular signal in order to compare them as a function of the number of ablation pulses. Based on the data and a simple model, we discuss the possibility that a fraction of these molecules are being formed in the matrix, by mating atoms from different ablation pulses, which would open up the way to formation of other more interesting and difficult molecules to be studied at low temperatures. Such a source of cryogenic molecules have possible applications encompassing fundamental physics tests, quantum information studies, cold collisions, chemistry, and trapping.

  13. Superconducting calorimetric alpha particle sensors for nuclear nonproliferation applications

    SciTech Connect

    Horansky, Robert D.; Ullom, Joel N.; Beall, James A.; Hilton, Gene C.; Irwin, Kent D.; Dry, Donald E.; Hastings, Elizabeth P.; Lamont, Stephen P.; Rudy, Clifford R.; Rabin, Michael W.

    2008-09-22

    Identification of trace nuclear materials is usually accomplished by alpha spectrometry. Current detectors cannot distinguish critical elements and isotopes. We have developed a detector called a microcalorimeter, which achieves a resolution of 1.06 keV for 5.3 MeV alphas, the highest resolving power of any energy dispersive measurement. With this exquisite resolution, we can unambiguously identify the {sup 240}Pu/{sup 239}Pu ratio in Pu, a critical measurement for ascertaining the intended use of nuclear material. Furthermore, we have made a direct measurement of the {sup 209}Po ground state decay.

  14. Fragile singlet ground-state magnetism in the pyrochlore osmates R2Os2O7 ( R=Y and Ho)

    DOE PAGES

    Zhao, Z. Y.; Calder, S.; Aczel, A. A.; ...

    2016-04-25

    The singlet ground state magnetism in pyrochlore osmates Y2Os2O7 and Ho2Os2O7 is studied by DC and AC susceptibility, specific heat, and neutron powder diffraction measurements. Despite the expected non-magnetic singlet in the strong spin-orbit coupling (SOC) limit for Os4+ (5d4), Y2Os2O7 exhibits a spin-glass (SG) ground state below 4 K with weak magnetism, suggesting possible proximity to a quantum phase transition between the non-magnetic state in the strong SOC limit and the magnetic state in the strong superexchange limit. Ho2Os2O7 has the same structural distortion as occurs in Y2Os2O7. However, the Os sublattice in Ho2Os2O7 shows long- range magnetic orderingmore » below 36 K. We find that the sharp difference of the magnetic ground state between Y2Os2O7 and Ho2Os2O7 signals the singlet ground state magnetism in R2 Os2 O7 is fragile and can be disturbed by the weak 4f—5d interactions.« less

  15. Evidence for a low-temperature magnetic ground state in double-perovskite iridates with I r5 +(5 d4) ions

    NASA Astrophysics Data System (ADS)

    Terzic, J.; Zheng, H.; Ye, Feng; Zhao, H. D.; Schlottmann, P.; De Long, L. E.; Yuan, S. J.; Cao, G.

    2017-08-01

    We report an unusual magnetic ground state in single-crystal, double-perovskite B a2YIr O6 and Sr-doped B a2YIr O6 with I r5 +(5 d4) ions. Long-range magnetic order below 1.7 K is confirmed by dc magnetization, ac magnetic susceptibility, and heat-capacity measurements. The observed magnetic order is extraordinarily delicate and cannot be explained in terms of either a low-spin S =1 state, or a singlet Jeff=0 state imposed by the spin-orbit interactions (SOI). Alternatively, the magnetic ground state appears consistent with a SOI that competes with comparable Hund's rule coupling and inherently large electron hopping, which cannot stabilize the singlet Jeff=0 ground state. However, this picture is controversial, and conflicting magnetic behavior for these materials is reported in both experimental and theoretical studies, which highlights the intricate interplay of interactions that determine the ground state of materials with strong SOI.

  16. Exact many-electron ground states on the diamond Hubbard chain

    NASA Astrophysics Data System (ADS)

    Gulacsi, Zsolt; Kampf, Arno; Vollhardt, Dieter

    2008-03-01

    Exact ground states of interacting electrons on the diamond Hubbard chain in a magnetic field are constructed which exhibit a wide range of properties such as flat-band ferromagnetism, correlation induced metallic, half-metallic, or insulating behavior [1]. The properties of these ground states can be tuned by changing the magnetic flux, local potentials, or electron density.The results show that the studied simple one-dimensional structure displays remarkably complex physical properties. The virtue of tuning different ground states through external parameters points to new possibilities for the design of electronic devices which can switch between insulating or conducting and nonmagnetic or (fully or partially spin polarized) ferromagnetic states, open new routes for the design of spin-valve devices and gate induced ferromagnetism. [1] Z. Gulacsi, A. Kampf, D. Vollhardt, Phys. Rev. Lett. 99, 026404(2007).

  17. Van der Waals potential and vibrational energy levels of the ground state radon dimer

    NASA Astrophysics Data System (ADS)

    Sheng, Xiaowei; Qian, Shifeng; Hu, Fengfei

    2017-08-01

    In the present paper, the ground state van der Waals potential of the Radon dimer is described by the Tang-Toennies potential model, which requires five essential parameters. Among them, the two dispersion coefficients C6 and C8 are estimated from the well determined dispersion coefficients C6 and C8 of Xe2. C10 is estimated by using the approximation equation that C6C10/C82 has an average value of 1.221 for all the rare gas dimers. With these estimated dispersion coefficients and the well determined well depth De and Re the Born-Mayer parameters A and b are derived. Then the vibrational energy levels of the ground state radon dimer are calculated. 40 vibrational energy levels are observed in the ground state of Rn2 dimer. The last vibrational energy level is bound by only 0.0012 cm-1.

  18. Explaining the Temperature Dependence of Spirilloxanthin’s S* Signal by an Inhomogeneous Ground State Model

    PubMed Central

    2013-01-01

    We investigate the nature of the S* excited state in carotenoids by performing a series of pump–probe experiments with sub-20 fs time resolution on spirilloxanthin in a polymethyl-methacrylate matrix varying the sample temperature. Following photoexcitation, we observe sub-200 fs internal conversion of the bright S2 state into the lower-lying S1 and S* states, which in turn relax to the ground state on a picosecond time scale. Upon cooling down the sample to 77 K, we observe a systematic decrease of the S*/S1 ratio. This result can be explained by assuming two thermally populated ground state isomers. The higher lying one generates the S* state, which can then be effectively frozen out by cooling. These findings are supported by quantum chemical modeling and provide strong evidence for the existence and importance of ground state isomers in the photophysics of carotenoids. PMID:23577754

  19. Ground State Properties of the 1/2 Flux Harper Hamiltonian

    NASA Astrophysics Data System (ADS)

    Kennedy, Colin; Burton, William Cody; Chung, Woo Chang; Ketterle, Wolfgang

    2015-05-01

    The Harper Hamiltonian describes the motion of charged particles in an applied magnetic field - the spectrum of which exhibits the famed Hofstadter's butterfly. Recent advances in driven optical lattices have made great strides in simulating nontrivial Hamiltonians, such as the Harper model, in the time-averaged sense. We report on the realization of the ground state of bosons in the Harper Hamiltonian for 1/2 flux per plaquette utilizing a tilted two-dimensional lattice with laser assisted tunneling. We detail progress in studying various ground state properties of the 1/2 flux Harper Hamiltonian including ground state degeneracies, gauge-dependent observables, effects of micromotion, adiabatic loading schemes, and emergence and decay of coherence. Additionally, we describe prospects for flux rectification using a period-tripled superlattice and generalizations to three dimensions. MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Department of Physics, Massachusetts Institute of Technology.

  20. Fermionic Ground State Molecules NaK with Strong Dipolar Interactions

    NASA Astrophysics Data System (ADS)

    Park, Jee Woo; Schloss, Jennifer; Yan, Zoe; Loh, Huanqian; Will, Sebastian; Zwierlein, Martin

    2015-05-01

    23 Na40K is a fermionic molecule that is especially well suited for this purpose. In the rovibrational ground state, NaK molecules are chemically stable and possess a large electric dipole moment of 2.72 Debye. The poster will report on our progress at MIT that recently led us to the creation of the first dipolar ground state molecules of NaK, covering the formation of Feshbach molecules, spectroscopic investigation of the molecular structure of NaK as well as the successful coherent two-photon transfer of NaK to the absolute ground state. These advances bring the exploration of novel states of matter in strongly dipolar quantum matter within experimental reach.

  1. Broken vertex symmetry and finite zero-point entropy in the artificial square ice ground state

    SciTech Connect

    Gliga, Sebastian; Kákay, Attila; Heyderman, Laura J.; Hertel, Riccardo; Heinonen, Olle G.

    2015-08-26

    In this paper, we study degeneracy and entropy in the ground state of artificial square ice. In theoretical models, individual nanomagnets are typically treated as single spins with only two degrees of freedom, leading to a twofold degenerate ground state with intensive entropy and thus no zero-point entropy. Here, we show that the internal degrees of freedom of the nanostructures can result, through edge bending of the magnetization and breaking of local magnetic symmetry at the vertices, in a transition to a highly degenerate ground state with finite zero-point entropy, similar to that of the pyrochlore spin ices. Finally, we find that these additional degrees of freedom have observable consequences in the resonant spectrum of the lattice, and predict the occurrence of edge “melting” above a critical temperature at which the magnetic symmetry is restored.

  2. Broken vertex symmetry and finite zero-point entropy in the artificial square ice ground state

    DOE PAGES

    Gliga, Sebastian; Kákay, Attila; Heyderman, Laura J.; ...

    2015-08-26

    In this paper, we study degeneracy and entropy in the ground state of artificial square ice. In theoretical models, individual nanomagnets are typically treated as single spins with only two degrees of freedom, leading to a twofold degenerate ground state with intensive entropy and thus no zero-point entropy. Here, we show that the internal degrees of freedom of the nanostructures can result, through edge bending of the magnetization and breaking of local magnetic symmetry at the vertices, in a transition to a highly degenerate ground state with finite zero-point entropy, similar to that of the pyrochlore spin ices. Finally, wemore » find that these additional degrees of freedom have observable consequences in the resonant spectrum of the lattice, and predict the occurrence of edge “melting” above a critical temperature at which the magnetic symmetry is restored.« less

  3. Trajectory approach to the Schrödinger–Langevin equation with linear dissipation for ground states

    SciTech Connect

    Chou, Chia-Chun

    2015-11-15

    The Schrödinger–Langevin equation with linear dissipation is integrated by propagating an ensemble of Bohmian trajectories for the ground state of quantum systems. Substituting the wave function expressed in terms of the complex action into the Schrödinger–Langevin equation yields the complex quantum Hamilton–Jacobi equation with linear dissipation. We transform this equation into the arbitrary Lagrangian–Eulerian version with the grid velocity matching the flow velocity of the probability fluid. The resulting equation is simultaneously integrated with the trajectory guidance equation. Then, the computational method is applied to the harmonic oscillator, the double well potential, and the ground vibrational state of methyl iodide. The excellent agreement between the computational and the exact results for the ground state energies and wave functions shows that this study provides a synthetic trajectory approach to the ground state of quantum systems.

  4. Antibonding hole ground state in InAs quantum dot molecules

    SciTech Connect

    Planelles, Josep

    2015-01-22

    Using four-band k⋅p Hamiltonians, we study how strain and position-dependent effective masses influence hole tunneling in vertically coupled InAs/GaAs quantum dots. Strain reduces the tunneling and hence the critical interdot distance required for the ground state to change from bonding to antibonding. Variable mass has the opposite effect and a rough compensation leaves little affected the critical bonding-to-antibonding ground state crossover. An alternative implementation of the magnetic field in the envelope function Hamiltonian is given which retrieves the experimental denial of possible after growth reversible magnetically induced bonding-to-antibonding ground state transition, predicted by the widely used Luttinger-Kohn Hamiltonian.

  5. Uniqueness of Positive Ground State Solutions of the Logarithmic Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    Troy, William C.

    2016-12-01

    We prove the uniqueness of positive ground state solutions of the problem { {{d2u}/{dr2}} + {{n-1}/{r}}{du/dr}} + u ln(|u|) = 0}, {u(r) > 0 forall r ≥ 0}, and {(u(r),u'(r)) to (0, 0)} as {r to ∞}. This equation is derived from the logarithmic Schrödinger equation {iψt = {Δ} ψ + u ln (|u|2)}, and also from the classical equation {{{partial u}/{partial t}} = {Δ} u +u (|u|^{p-1}) -u}. For each {n ≥ 1}, a positive ground state solution is { u0(r) = exp (-{r^2/4} + {n/2}), 0 ≤ r < ∞}. We combine {u0(r)} with energy estimates and associated Ricatti equation estimates to prove that, for each {n in [1, 9 ]}, {u0(r)} is the only positive ground state. We also investigate the stability of {u0(r)}. Several open problems are stated.

  6. Ground state of the hydrogen molecule in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Kravchenko, Yu. P.; Liberman, M. A.

    1997-10-01

    The ground state of a hydrogen molecule in magnetic fields is investigated using a fully numerical Hartree-Fock approach. We found that between 4.2×104 T and 3×106 T the ground state is 3Σ+u with very weak interaction between atoms. In this field region the hydrogen can form a superfluid phase, predicted earlier [Korolev and Liberman, Phys. Rev. Lett. 72, 270 (1994)]; the state 3Πu is metastable and may be responsible for the unknown excitonic line observed by Timofeev and Chernenko [JETP Lett. 61, 617 (1995)]. For magnetic fields stronger than 3×106 T the ground state is the tightly bound 3Πu.

  7. Learning Approach on the Ground State Energy Calculation of Helium Atom

    SciTech Connect

    Shah, Syed Naseem Hussain

    2010-07-28

    This research investigated the role of learning approach on the ground state energy calculation of Helium atom in improving the concepts of science teachers at university level. As the exact solution of several particles is not possible here we used approximation methods. Using this method one can understand easily the calculation of ground state energy of any given function. Variation Method is one of the most useful approximation methods in estimating the energy eigen values of the ground state and the first few excited states of a system, which we only have a qualitative idea about the wave function.The objective of this approach is to introduce and involve university teacher in new research, to improve their class room practices and to enable teachers to foster critical thinking in students.

  8. Nuclear Resonance Fluorescence to Measure Plutonium Mass in Spent Nuclear Fuel

    SciTech Connect

    Ludewigt, Bernhard A; Quiter, Brian J.; Ambers, Scott D.

    2011-01-14

    The Next Generation Safeguard Initiative (NGSI) of the U.S Department of Energy is supporting a multi-lab/university collaboration to quantify the plutonium (Pu) mass in spent nuclear fuel (SNF) assemblies and to detect the diversion of pins with non-destructive assay (NDA) methods. The following 14 NDA techniques are being studied: Delayed Neutrons, Differential Die-Away, Differential Die-Away Self-Interrogation, Lead Slowing Down Spectrometer, Neutron Multiplicity, Passive Neutron Albedo Reactivity, Total Neutron (Gross Neutron), X-Ray Fluorescence, {sup 252}Cf Interrogation with Prompt Neutron Detection, Delayed Gamma, Nuclear Resonance Fluorescence, Passive Prompt Gamma, Self-integration Neutron Resonance Densitometry, and Neutron Resonance Transmission Analysis. Understanding and maturity of the techniques vary greatly, ranging from decades old, well-understood methods to new approaches. Nuclear Resonance Fluorescence (NRF) is a technique that had not previously been studied for SNF assay or similar applications. Since NRF generates isotope-specific signals, the promise and appeal of the technique lies in its potential to directly measure the amount of a specific isotope in an SNF assay target. The objectives of this study were to design and model suitable NRF measurement methods, to quantify capabilities and corresponding instrumentation requirements, and to evaluate prospects and the potential of NRF for SNF assay. The main challenge of the technique is to achieve the sensitivity and precision, i.e., to accumulate sufficient counting statistics, required for quantifying the mass of Pu isotopes in SNF assemblies. Systematic errors, considered a lesser problem for a direct measurement and only briefly discussed in this report, need to be evaluated for specific instrument designs in the future. Also, since the technical capability of using NRF to measure Pu in SNF has not been established, this report does not directly address issues such as cost, size

  9. Ground-state properties of 4He and 16O extrapolated from lattice QCD with pionless EFT

    NASA Astrophysics Data System (ADS)

    Contessi, L.; Lovato, A.; Pederiva, F.; Roggero, A.; Kirscher, J.; van Kolck, U.

    2017-09-01

    We extend the prediction range of Pionless Effective Field Theory with an analysis of the ground state of 16O in leading order. To renormalize the theory, we use as input both experimental data and lattice QCD predictions of nuclear observables, which probe the sensitivity of nuclei to increased quark masses. The nuclear many-body Schrödinger equation is solved with the Auxiliary Field Diffusion Monte Carlo method. For the first time in a nuclear quantum Monte Carlo calculation, a linear optimization procedure, which allows us to devise an accurate trial wave function with a large number of variational parameters, is adopted. The method yields a binding energy of 4He which is in good agreement with experiment at physical pion mass and with lattice calculations at larger pion masses. At leading order we do not find any evidence of a 16O state which is stable against breakup into four 4He, although higher-order terms could bind 16O.

  10. Nanoscale measurements of proton tracks using fluorescent nuclear track detectors

    SciTech Connect

    Sawakuchi, Gabriel O. Sahoo, Narayan; Ferreira, Felisberto A.; McFadden, Conor H.; Hallacy, Timothy M.; Granville, Dal A.; Akselrod, Mark S.

    2016-05-15

    Purpose: The authors describe a method in which fluorescence nuclear track detectors (FNTDs), novel track detectors with nanoscale spatial resolution, are used to determine the linear energy transfer (LET) of individual proton tracks from proton therapy beams by allowing visualization and 3D reconstruction of such tracks. Methods: FNTDs were exposed to proton therapy beams with nominal energies ranging from 100 to 250 MeV. Proton track images were then recorded by confocal microscopy of the FNTDs. Proton tracks in the FNTD images were fit by using a Gaussian function to extract fluorescence amplitudes. Histograms of fluorescence amplitudes were then compared with LET spectra. Results: The authors successfully used FNTDs to register individual proton tracks from high-energy proton therapy beams, allowing reconstruction of 3D images of proton tracks along with delta rays. The track amplitudes from FNTDs could be used to parameterize LET spectra, allowing the LET of individual proton tracks from therapeutic proton beams to be determined. Conclusions: FNTDs can be used to directly visualize proton tracks and their delta rays at the nanoscale level. Because the track intensities in the FNTDs correlate with LET, they could be used further to measure LET of individual proton tracks. This method may be useful for measuring nanoscale radiation quantities and for measuring the LET of individual proton tracks in radiation biology experiments.

  11. In-Pile Thermal Conductivity Measurement Method for Nuclear Fuels

    SciTech Connect

    Joy L. Rempe; Brandon Fox; Heng Ban; Joshua E. Daw; Darrell L. Knudson; Keith G. Condie

    2009-08-01

    Thermophysical properties of advanced nuclear fuels and materials during irradiation must be known prior to their use in existing, advanced, or next generation reactors. Thermal conductivity is one of the most important properties for predicting fuel and material performance. A joint Utah State University (USU) / Idaho National Laboratory (INL) project, which is being conducted with assistance from the Institute for Energy Technology at the Norway Halden Reactor Project, is investigating in-pile fuel thermal conductivity measurement methods. This paper focuses on one of these methods – a multiple thermocouple method. This two-thermocouple method uses a surrogate fuel rod with Joule heating to simulate volumetric heat generation to gain insights about in-pile detection of thermal conductivity. Preliminary results indicated that this method can measure thermal conductivity over a specific temperature range. This paper reports the thermal conductivity values obtained by this technique and compares these values with thermal property data obtained from standard thermal property measurement techniques available at INL’s High Test Temperature Laboratory. Experimental results and material properties data are also compared to finite element analysis results.

  12. Ground states of stealthy hyperuniform potentials. II. Stacked-slider phases.

    PubMed

    Zhang, G; Stillinger, F H; Torquato, S

    2015-08-01

    Stealthy potentials, a family of long-range isotropic pair potentials, produce infinitely degenerate disordered ground states at high densities and crystalline ground states at low densities in d-dimensional Euclidean space R^{d}. In the previous paper in this series, we numerically studied the entropically favored ground states in the canonical ensemble in the zero-temperature limit across the first three Euclidean space dimensions. In this paper, we investigate using both numerical and theoretical techniques metastable stacked-slider phases, which are part of the ground-state manifold of stealthy potentials at densities in which crystal ground states are favored entropically. Our numerical results enable us to devise analytical models of this phase in two, three, and higher dimensions. Utilizing this model, we estimated the size of the feasible region in configuration space of the stacked-slider phase, finding it to be smaller than that of crystal structures in the infinite-system-size limit, which is consistent with our recent previous work. In two dimensions, we also determine exact expressions for the pair correlation function and structure factor of the analytical model of stacked-slider phases and analyze the connectedness of the ground-state manifold of stealthy potentials in this density regime. We demonstrate that stacked-slider phases are distinguishable states of matter; they are nonperiodic, statistically anisotropic structures that possess long-range orientational order but have zero shear modulus. We outline some possible future avenues of research to elucidate our understanding of this unusual phase of matter.

  13. Ground state of Ho atoms on Pt(111) metal surfaces: Implications for magnetism

    NASA Astrophysics Data System (ADS)

    Karbowiak, M.; Rudowicz, C.

    2016-05-01

    We investigated the ground state of Ho atoms adsorbed on the Pt(111) surface, for which conflicting results exist. The density functional theory (DFT) calculations yielded the Ho ground state as | Jz=±8 > . Interpretation of x-ray absorption spectroscopy and x-ray magnetic circular dichroism spectra and the magnetization curves indicated the ground state as | Jz=±6 > . Superposition model is employed to predict the crystal-field (CF) parameters based on the structural data for the system Ho/Pt(111) obtained from the DFT modeling. Simultaneous diagonalization of the free-ion (HFI) and the trigonal CF Hamiltonian (HCF) within the whole configuration 4 f10 of H o3 + ion was performed. The role of the trigonal CF terms, neglected in the pure uniaxial CF model used previously for interpretation of experimental spectra, is found significant, whereas the sixth-rank CF terms may be neglected in agreement with the DFT predictions. The results provide substantial support for the experimental designation of the | Jz=±6 > ground state, albeit with subtle difference due to admixture of other | Jz> states, but run against the DFT-based designation of the | Jz=±8 > ground state. A subtle splitting of the ground energy level with the state (predominantly), | Jz=±6 > is predicted. This paper provides better insight into the single-ion magnetic behavior of the Ho/Pt(111) system by helping to resolve the controversy concerning the Ho ground state. Experimental techniques with greater resolution powers are suggested for direct confirmation of this splitting and C3 v symmetry experienced by the Ho atom.

  14. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    NASA Astrophysics Data System (ADS)

    Borges, L. H. C.; Barone, F. A.

    2016-02-01

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schrödinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector.

  15. Dimerized ground state in the one-dimensional spin-1 boson Hubbard model

    SciTech Connect

    Apaja, Vesa; Syljuaasen, Olav F.

    2006-09-15

    We have investigated the one-dimensional spin-1 boson Hubbard model with antiferromagnetic interactions using quantum Monte Carlo methods. We obtain the shapes of the two lowest Mott lobes and show that the ground state within the lowest Mott lobe is dimerized. The results presented here are relevant for optically trapped antiferromagnetic spin-1 bosons. An experimental signature of the dimerized ground state is modulated Bragg peaks in the noise distribution of the atomic cloud obtained after switching off the trap. These Bragg peaks are located at wave vectors corresponding to half-integer multiples of the reciprocal wave vector of the optical lattice.

  16. Simulation of the Hydrogen Ground State in Stochastic Electrodynamics-2: Inclusion of Relativistic Corrections

    NASA Astrophysics Data System (ADS)

    Nieuwenhuizen, Theodorus M.; Liska, Matthew T. P.

    2015-10-01

    In a recent paper the authors studied numerically the hydrogen ground state in stochastic electrodynamics (SED) within the the non-relativistic approximation. In quantum theory the leading non-relativistic corrections to the ground state energy dominate the Lamb shift related to the photon cloud that should cause the quantum-like behaviour of SED. The present work takes these corrections into account in the numerical modelling. It is found that they have little effect; the self-ionisation that occurs without them remains present. It is speculated that the point-charge approximation for the electron is the cause of the failure.

  17. Projected shell model study of ground state bands in 171-175Tm

    NASA Astrophysics Data System (ADS)

    Slathia, B.; Devi, R.; Khosa, S. K.

    2016-10-01

    The ground state bands of thulium isotopes with mass numbers (A), ranging from 171 to 175, have been investigated in the framework of the projected shell model. The theoretical results for the energy levels of ground state bands were found to be in reasonable agreement with the observed values. Predictably, E2 transition probabilities have got predicted vis-a-vis transitions with non-availability of experimental values. The E2 transition probability values have been observed to follow the same trend as seen in 171Tm.

  18. On stability of ground states for finite crystals in the Schrödinger-Poisson model

    NASA Astrophysics Data System (ADS)

    Komech, A.; Kopylova, E.

    2017-03-01

    We consider the Schrödinger-Poisson-Newton equations for finite crystals under periodic boundary conditions with one ion per cell of a lattice. The electrons are described by one-particle Schrödinger equation. Our main results are (i) the global dynamics with moving ions and (ii) the orbital stability of periodic ground state under a novel Jellium and Wiener-type conditions on the ion charge density. Under the Jellium condition, both ionic and electronic charge densities for the ground state are uniform.

  19. Ground state cooling of a nanomechanical resonator in the nonresolved regime via quantum interference.

    PubMed

    Xia, Keyu; Evers, Jörg

    2009-11-27

    Ground state cooling of a nanomechanical resonator coupled to a superconducting flux qubit is discussed. By inducing quantum interference to cancel unwanted heating excitations, ground state cooling becomes possible in the nonresolved regime. The qubit is modeled as a three-level system in Lambda configuration, and the driving fluxes are applied such that the qubit absorption spectrum exhibits electromagnetically induced transparency, thereby canceling the unwanted excitations. As our scheme allows the application of strong cooling fields, fast and efficient cooling can be achieved.

  20. On the Ground-State Energy and Local Pressure of an Inhomogeneous Bose Gas

    NASA Astrophysics Data System (ADS)

    Bobrov, V. B.; Trigger, S. A.

    2017-01-01

    The exact expression for the average kinetic energy of an inhomogeneous Bose gas in the ground state is obtained as a functional of the inhomogeneous density of the Bose-Einstein condensate. The result is based on existence of the off-diagonal long-range order in the single-particle density matrix for systems with a Bose-Einstein condensate. This makes it possible to avoid the use of anomalous averages. On this basis, the explicit expressions for the ground-state energy and the local pressure of an inhomogeneous Bose gas are derived within the self-consistent Hartree-Fock approximation.