Science.gov

Sample records for measure road profiles

  1. Estimation of road profile variability from measured vehicle responses

    NASA Astrophysics Data System (ADS)

    Fauriat, W.; Mattrand, C.; Gayton, N.; Beakou, A.; Cembrzynski, T.

    2016-05-01

    When assessing the statistical variability of fatigue loads acting throughout the life of a vehicle, the question of the variability of road roughness naturally arises, as both quantities are strongly related. For car manufacturers, gathering information on the environment in which vehicles evolve is a long and costly but necessary process to adapt their products to durability requirements. In the present paper, a data processing algorithm is proposed in order to estimate the road profiles covered by a given vehicle, from the dynamic responses measured on this vehicle. The algorithm based on Kalman filtering theory aims at solving a so-called inverse problem, in a stochastic framework. It is validated using experimental data obtained from simulations and real measurements. The proposed method is subsequently applied to extract valuable statistical information on road roughness from an existing load characterisation campaign carried out by Renault within one of its markets.

  2. Smooth connection method of segment test data in road surface profile measurement

    NASA Astrophysics Data System (ADS)

    Duan, Hu-Ming; Ma, Ying; Shi, Feng; Zhang, Kai-Bin; Xie, Fei

    2011-12-01

    It's reviewed that the measurement system of road surface profile and the calculation method of segment road test data have been introduced. Because of there are sudden vertical steps at the connection points of segment data which will influence the application of road surface data in automotive engineering. So a new smooth connection method of segment test data is proposed which revised the sudden vertical steps connection by the Signal Local Baseline Adjustment (SLBA) method. Besides, there is an actual example which mentioned the detailed process of the smooth connection of segment test data by the SLBA method and the adjusting results at these connection points. The application and calculation results show that the SLBA method is simple and has achieved obvious effect in smooth connection of the segment road test data. The method of SLBA can be widely applied to segment road surface data processing or the long period vibration signal processing.

  3. Smooth connection method of segment test data in road surface profile measurement

    NASA Astrophysics Data System (ADS)

    Duan, Hu-Ming; Ma, Ying; Shi, Feng; Zhang, Kai-Bin; Xie, Fei

    2012-01-01

    It's reviewed that the measurement system of road surface profile and the calculation method of segment road test data have been introduced. Because of there are sudden vertical steps at the connection points of segment data which will influence the application of road surface data in automotive engineering. So a new smooth connection method of segment test data is proposed which revised the sudden vertical steps connection by the Signal Local Baseline Adjustment (SLBA) method. Besides, there is an actual example which mentioned the detailed process of the smooth connection of segment test data by the SLBA method and the adjusting results at these connection points. The application and calculation results show that the SLBA method is simple and has achieved obvious effect in smooth connection of the segment road test data. The method of SLBA can be widely applied to segment road surface data processing or the long period vibration signal processing.

  4. Classification of road surface profiles

    SciTech Connect

    Rouillard, V.; Bruscella, B.; Sek, M.

    2000-02-01

    This paper introduces a universal classification methodology for discretely sampled sealed bituminous road profile data for the study of shock and vibrations related to the road transportation process. Data representative of a wide variety of Victorian (Australia) road profiles were used to develop a universal classification methodology with special attention to their non-Gaussian and nonstationary properties. This resulted in the design of computer software to automatically detect and extract transient events from the road spatial acceleration data as well as to identify segments of the constant RMS level enabling transients to be analyzed separately from the underlying road process. Nine universal classification parameters are introduced to describe road profile spatial acceleration based on the statistical characteristics of the transient amplitude and stationary RMS segments. Results from this study are aimed at the areas of road transport simulation as well as road surface characterization.

  5. On-road measurements of pollutant concentration profiles inside Yangkou tunnel, Qingdao, China.

    PubMed

    Cong, Xiao Chun; Qu, Jing Hua; Yang, Guo Shu

    2016-10-18

    To obtain physical properties of pollutant concentrations encountered by vehicle commuters during travelling Yangkou tunnel (7.76 km) of Qingdao City, particle concentration measurements are accompanied by the measurements of gaseous species (CO and CO2). The field campaigns are on-road conducted from April 26 to September 23, 2014. Results demonstrate that the mean particle number concentrations observed within the tunnel at the normal traffic volume are 1.15 × 10(5) and 1.24 × 10(5) particles cm(-3) for the southbound and northbound trip, respectively. Furthermore, the significance level of traffic volume to particle number concentration is analyzed by multivariate regression model. And a high correlation between pollutant concentrations and traffic intensity has been demonstrated. Consequently, the fuel-based emission factors of pollutants inside the tunnel are calculated and the personal exposures are derived. In addition, the profile of particle number concentration exhibits distinct dilution features between the exit of northbound bore and the exit of southbound bore. The explanation is attributed to the different long uphill trip within the tunnel. Results in this study offer meaningful understanding to explore the nature of pollutants within long tunnels.

  6. Use of speed profile as surrogate measure: Effect of traffic calming devices on crosstown road safety performance.

    PubMed

    Moreno, Ana Tsui; García, Alfredo

    2013-12-01

    Urban road safety management is usually characterized by the lack of sufficient, good quality crash data and low budgets to obtain it even though many traffic accidents occur there. For example, 54 percent of road crashes in Spain take place in urban areas, and 10 percent of urban fatal crashes occur on crosstown roads, which are rural roads that traverse small communities. Traffic calming measures (TCMs) are often implemented on these parts of rural roads that traverse small communities in order to reduce both the frequency and severity of crashes by lowering speeds, but evaluation of their effectiveness has been limited. The objective of this study was to develop a methodology using continuous speed profiles to evaluate the safety effectiveness of TCMs on crosstown roads as part of an integrated system in the absence of historical data. Given the strong relationship between speed and crash experience, safety performance can be related to speed. Consequently, speed can be used indirectly as a surrogate safety measure in the absence of crash and speed data. Two indexes were defined in this study as surrogate safety measures based on the continuous speed profile: Ra and Ea. Ra represents the absolute accumulated speed variations relative to the average speed and is inversely related to accumulated speed uniformity; and Ea represents the accumulated speed variations above the speed limit and is directly related to accumulated speeding. Naturalistic data were collected using GPS trackers for 12 scenarios with different TCM spacings. Then, the indexes were applied to individual observed speed profiles (individual analysis) as well as the operating speed profile (global analysis). The values obtained from individual and global analysis were statistically different. Spacing lower than 110m, which was found optimal from previous research, did not allow drivers to modify their speeds as the accumulated speed uniformity was quite similar regardless of the average operating

  7. Physiological profiles of elite off-road and road cyclists.

    PubMed

    Wilber, R L; Zawadzki, K M; Kearney, J T; Shannon, M P; Disalvo, D

    1997-08-01

    There are minimal scientific data describing international caliber off-road cyclists (mountain bikers), particularly as they compare physiologically with international caliber road cyclists. Elite female (N = 10) and male (N = 10) athletes representing the United States National Off-Road Bicycle Association (NORBA) Cross-Country Team were compared with elite female (N = 10) and male (N = 10) athletes representing the United States Cycling Federation (USCF) National Road Team. Submaximal and maximal exercise responses were evaluated during the "championship" phase of the training year when athletes were in peak condition. All physiological tests were conducted at 1860 m. Among the female athletes, physiological responses at lactate threshold (LT) and during maximal exercise (MAX) were similar between NORBA and USCF cyclists with two exceptions: 1) USCF cyclists demonstrated a significantly greater (P < 0.05) absolute (16%) and relative (10%) maximal aerobic power, and 2) MAX heart rate was significantly higher (P < 0.05) for the USCF athletes (6%). Among the male athletes, physiological responses at LT and MAX were similar between NORBA and USCF cyclists with two exceptions: 1) USCF cyclists produced significantly greater (P < 0.05) absolute (18%) and relative (16%) power at LT, and 2) USCF cyclists produced significantly greater (P < 0.05) absolute (12%) and relative (10%) power at MAX. These data suggest that, in general, elite off-road cyclists possess physiological profiles that are similar to elite road cyclists.

  8. Driver behaviour profiles for road safety analysis.

    PubMed

    Ellison, Adrian B; Greaves, Stephen P; Bliemer, Michiel C J

    2015-03-01

    Driver behaviour is a contributing factor in over 90 percent of road crashes. As a consequence, there is significant benefit in identifying drivers who engage in unsafe driving practices. Driver behaviour profiles (DBPs) are introduced here as an approach for evaluating driver behaviour as a function of the risk of a casualty crash. They employ data collected using global positioning system (GPS) devices, supplemented with spatiotemporal information. These profiles are comprised of common risk scores that can be used to compare drivers between each other and across time and space. The paper details the development of these DBPs and demonstrates their use as an input into modelling the factors that influence driver behaviour. The results show that even having controlled for the influence of the road environment, these factors remain the strongest predictors of driver behaviour suggesting different spatiotemporal environments elicit a variety of psychological responses in drivers. The approach and outcomes will be of interest to insurance companies in enhancing the risk-profiling of drivers with on-road driving and government through assessing the impacts of behaviour-change interventions.

  9. New geometric design consistency model based on operating speed profiles for road safety evaluation.

    PubMed

    Camacho-Torregrosa, Francisco J; Pérez-Zuriaga, Ana M; Campoy-Ungría, J Manuel; García-García, Alfredo

    2013-12-01

    To assist in the on-going effort to reduce road fatalities as much as possible, this paper presents a new methodology to evaluate road safety in both the design and redesign stages of two-lane rural highways. This methodology is based on the analysis of road geometric design consistency, a value which will be a surrogate measure of the safety level of the two-lane rural road segment. The consistency model presented in this paper is based on the consideration of continuous operating speed profiles. The models used for their construction were obtained by using an innovative GPS-data collection method that is based on continuous operating speed profiles recorded from individual drivers. This new methodology allowed the researchers to observe the actual behavior of drivers and to develop more accurate operating speed models than was previously possible with spot-speed data collection, thereby enabling a more accurate approximation to the real phenomenon and thus a better consistency measurement. Operating speed profiles were built for 33 Spanish two-lane rural road segments, and several consistency measurements based on the global and local operating speed were checked. The final consistency model takes into account not only the global dispersion of the operating speed, but also some indexes that consider both local speed decelerations and speeds over posted speeds as well. For the development of the consistency model, the crash frequency for each study site was considered, which allowed estimating the number of crashes on a road segment by means of the calculation of its geometric design consistency. Consequently, the presented consistency evaluation method is a promising innovative tool that can be used as a surrogate measure to estimate the safety of a road segment.

  10. Road analysis: a tool for cost-effective rehabilitation measures for Finnish roads

    NASA Astrophysics Data System (ADS)

    Roimela, Petri; Salmenkaita, Seppo; Maijala, Pekka; Saarenketo, Timo

    2000-04-01

    Public funding for road network maintenance has decreased 30% during the last few years in Finland. Reduced resources, together with the current rehabilitation strategies, will in the long term result in increasing deterioration of the Finnish road network. For this reason road rehabilitation funding should be focused more specifically on those roads and road sections requiring measures and these measures should be optimized to ensure that only the specific problem structure will be repaired. Roadscanners Oy, in cooperation with the Finnish National Road Administration (Finnra), has developed a new and effective Road Analysis technique to survey the condition of roads and road networks. Road Analysis is based on the integrated analysis of the measured data collected from the road under survey. The basic survey methods used in Road Analysis include Ground Penetrating Data (GPR), falling weight deflectometer (FWD), roughness and rutting measurements, pavement distress mapping and GPS-positioning, as well as reference drilling based on preliminary GPR data analysis. The collected road survey data is processed, interpreted, analyzed and classified using Road Doctor software, specifically developed for this purpose. GPR measurements in road analysis are carried out using a 400 MHz ground-coupled antenna and a 1.0 GHz horn antenna. Horn antenna data is used to measure the thickness of the pavement and base course layers, as well as to evaluate their quality based on their dielectric properties. The 400 MHz ground-coupled data is used to estimate the thickness of the pavement structure and embankment. Ground-coupled antenna data is used for subgrade quality estimations and in evaluating the causes of subgrade- related frost defects. GPR data also provides important location information about special structures, such as steel reinforcements, cables and pipelines. Road Analysis includes a classification of the critical elements affecting the lifetime of the road: (1

  11. Vehicular emission factors and chemical profile of Particulate Matter measured in two road tunnels in the Metropolitan Area of Sao Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Nogueira, T.; Miranda, R. M.; Dominutti, P. A.; Hetem, I. G.; Fornaro, A.; Andrade, M.

    2013-12-01

    The main source of air pollution in the Metropolitan Area of São Paulo (MASP), Brazil, is vehicle exhaust. In this study, trace-element concentrations inside and outside of two traffic tunnels in the MASP are shown. The experiments were conducted in May and July 2011, respectively, in the Jânio Quadros (JQT) and Rodoanel (RAT) road tunnels, both located in MASP. The JQT carries mainly light-duty vehicles (LDV), whereas the RAT carries LDVs and heavy-duty vehicles (HDV). Hourly carbon dioxide, carbon monoxide, nitrogen oxides and sulfur dioxide were measured during the sampling campaign. Particulate matter (PM2.5 and PM2.5-10) samples were collected 6-h (daytime) and 12-h (overnight), employing gravimetric analysis to quantify PM mass concentration; reflectance to quantify black carbon (BC) concentrations and X-ray fluorescence to characterize elemental composition. Mean concentrations for PM2.5 and BC inside the JQT were 41(×11), and 19(×9) μg/m3, respectively. In the RAT mean concentrations were 175(×61), and 140(×78) μg/m3, for PM2.5 and BC, respectively. Emission Factors (EFs) for PM2.5, PM2.5-10, BC and trace metal (Na to Pb) from mobile sources operating under real-world conditions were determined using these traffic tunnels in the MASP as experimental set-up. LDV emission factors were 45 × 18 mg/km, 39 × 17 mg/km, 306 × 121 μg/km, 108 × 46 μg/km, 742 × 453 μg/km, 624 × 261 μg/km, and 33 × 15 μg/km, for PM2.5, BC, Na, P, S, Cu, and Pb, respectively. HDV emission factors were 326 × 119 mg/km, 231 × 98 mg/km, 446 × 218 μg/km, 384 × 143 μg/km, 4618 × 1878 μg/km, 44 × 18 μg/km, and 46 × 20 μg/km, for PM2.5, BC, Na, P, S, Cu, and Pb, respectively. In general, the mean contribution of HDVs to the emissions of fine particles was from 1.4 to 7.3 times higher than that of LDVs. In addition, the data show a significant reduction in the EFs values when compared with data obtained in the last campaign held in the MASP in 2004. The reduction

  12. Vertical and horizontal profiles of airborne particulate matter near major roads in Macao, China

    NASA Astrophysics Data System (ADS)

    Wu, Ye; Hao, Jiming; Fu, Lixin; Wang, Zhishi; Tang, Uwa

    Vertical profiles, horizontal profiles and size distribution of airborne particulate matter were measured near major roads in Macao using DustTrak and TEOM monitors. A significant decrease in the concentrations of PM 10, PM 2.5 and PM 1, as the height above the ground increases from 2 to 79 m, was found. At the height of 79 m, the concentrations of PM 10, PM 2.5 and PM 1, decrease to about 60%, 62% and 80% of the maximum occurring at 2 m above the ground, respectively. However, the horizontal profiles near another major road revealed there was no significant trend of decrease in concentrations of particulate matter as the distance from the road increases. Over the total measured distance (0-228 m), the maximum decreases of PM 10, PM 2.5 and PM 1 are only 7%, 9% and 10%, of the maximum occurring at 2 m from the road, respectively. The daytime averaged PM 2.5 and PM 1 contribute 66-67% and 51-60%, respectively, of the total PM 10 mass after the particle readings by DustTrak were recalibrated by TEOM. It showed that fine particles and submicrometer particles contributed a major part of PM 10 at the roadside in Macao, which is most likely attributed to the combinations of local sources including exhausted particulate matter from vehicles and resuspended fine dust, and secondary particles (sulfate, nitrate and ammonium) of regional scales.

  13. A statistical model for road surface friction forecasting applying optical road weather measurements

    NASA Astrophysics Data System (ADS)

    Hippi, M.; Juga, I.; Nurmi, P.

    2009-09-01

    Road surface friction is defined as the grip between car tyre and underlying surface. Poor friction often plays a crucial role in wintertime car accidents. Friction can decrease dramatically during snowfall or when wet road surface temperature falls below zero. Even a thin layer of ice or snow can decrease friction substantially increasing the risk of accidents. Many studies have shown that road surface temperature, road conditions and friction can fluctuate dramatically within short distances under specific weather situations. Friction or grip can be improved with road maintenance activities like salting and gritting. Salting will melt the ice or snow layer, whereas gritting will improve the grip. Salting is effective only above -5C temperatures. Light snowfall together with low temperatures can result in very slippery driving conditions. Finnish Road Administration's observing network covers c. 500 road weather stations in Finland. Almost 100 of them are equipped with optical sensors (in winter 2008-2009). The number of optical sensors has increased remarkably during past few years. The optical measuring devices are Vaisala DSC111 sensors which measure the depth of water, snow and ice on the road surface and also produce an estimate of the state of road and prevailing friction. Observation data from road weather stations with optical sensors were collected from winter 2007/08, and a couple of representative (from a weather perspective) stations were selected for detailed statistical analysis. The purpose of the study was to find a statistical relationship between the observed values and, especially, the correlation between friction and other road weather parameters. Consequently, a model based on linear regression was developed. With the model friction being the dependent variable, the independent variables having highest correlations were the composite of ice and snow (water content) on the road, and the road surface temperature. In the case of a wet road

  14. Measuring Road Network Vulnerability with Sensitivity Analysis

    PubMed Central

    Jun-qiang, Leng; Long-hai, Yang; Liu, Wei-yi; Zhao, Lin

    2017-01-01

    This paper focuses on the development of a method for road network vulnerability analysis, from the perspective of capacity degradation, which seeks to identify the critical infrastructures in the road network and the operational performance of the whole traffic system. This research involves defining the traffic utility index and modeling vulnerability of road segment, route, OD (Origin Destination) pair and road network. Meanwhile, sensitivity analysis method is utilized to calculate the change of traffic utility index due to capacity degradation. This method, compared to traditional traffic assignment, can improve calculation efficiency and make the application of vulnerability analysis to large actual road network possible. Finally, all the above models and calculation method is applied to actual road network evaluation to verify its efficiency and utility. This approach can be used as a decision-supporting tool for evaluating the performance of road network and identifying critical infrastructures in transportation planning and management, especially in the resource allocation for mitigation and recovery. PMID:28125706

  15. Profiles in Measurement.

    ERIC Educational Resources Information Center

    Ludlow, Larry H.; Wright, Benjamin Drake; Linacre, John Michael; Webster, Linda; Andrich, David

    1998-01-01

    Four of the articles in this section profile major figures in measurement: (1) Sir Francis Galton (Larry Ludlow); (2) Georg Rasch (Benjamin Wright); (3) Benjamin Wright (John Michael Linacre); and (4) David Andrich (Linda Webster). The fifth article, by David Andrich, presents insights gained into the Rasch model. (SLD)

  16. Adaptive super-twisting observer for estimation of random road excitation profile in automotive suspension systems.

    PubMed

    Rath, J J; Veluvolu, K C; Defoort, M

    2014-01-01

    The estimation of road excitation profile is important for evaluation of vehicle stability and vehicle suspension performance for autonomous vehicle control systems. In this work, the nonlinear dynamics of the active automotive system that is excited by the unknown road excitation profile are considered for modeling. To address the issue of estimation of road profile, we develop an adaptive supertwisting observer for state and unknown road profile estimation. Under Lipschitz conditions for the nonlinear functions, the convergence of the estimation error is proven. Simulation results with Ford Fiesta MK2 demonstrate the effectiveness of the proposed observer for state and unknown input estimation for nonlinear active suspension system.

  17. Adaptive Super-Twisting Observer for Estimation of Random Road Excitation Profile in Automotive Suspension Systems

    PubMed Central

    Rath, J. J.; Veluvolu, K. C.; Defoort, M.

    2014-01-01

    The estimation of road excitation profile is important for evaluation of vehicle stability and vehicle suspension performance for autonomous vehicle control systems. In this work, the nonlinear dynamics of the active automotive system that is excited by the unknown road excitation profile are considered for modeling. To address the issue of estimation of road profile, we develop an adaptive supertwisting observer for state and unknown road profile estimation. Under Lipschitz conditions for the nonlinear functions, the convergence of the estimation error is proven. Simulation results with Ford Fiesta MK2 demonstrate the effectiveness of the proposed observer for state and unknown input estimation for nonlinear active suspension system. PMID:24683321

  18. Road dust emission profiles and levels from paved road in Mediterranean and central European cities

    NASA Astrophysics Data System (ADS)

    Amato, F.; Furger, M.; Pandolfi, M.; Querol, X.; Alastuey, A.; Bukowiecki, N.; Gehrig, R.; Richard, A.; Prevot, A. S. H.; Baltensperger, U.

    2009-04-01

    The burden of road dust re-suspension on urban air quality varies depending on several local factors such as precipitation rate, vehicle fleets and state of pavement. In Mediterranean cities emissions from traffic re-suspension can be comparable or even higher than direct exhaust emissions while in central Europe precipitation helps in maintaining street cleaning, reducing re-suspension. Receptor models are useful tools to estimate the contribution of urban re-suspension to PM. Target factor analysis and chemical mass balance can be successfully applied but a key task for the application of the aforementioned models is obtaining valid emission profiles for road dust re-suspended by traffic re-suspension. In this study two different campaigns were carried out in Zurich (February 2008) and Barcelona (June 2007) in order to estimate the load and chemical properties of road dust in two dissimilar urban environments. To this aim 7 and 9 locations were selected in Zurich (CH) and Barcelona (E) city centers respectively. Samplings were performed by means of a field re-suspension chamber, collecting into filters the PM10 fraction of deposited materials from one square meter of active traffic lanes (Amato et al., 2009). The sampling sites selected for this study had different traffic loads (from background to major roads) allowing to evaluate the impact of traffic to the levels of pollutants, especially those from brake wear such as Sb, Cu, Zn, Ba, and Fe among others. In Zurich the levels of deposited PM10 (0.2-1.3 mg/m2) were lower than in Barcelona (3.7-23.1 mg/m2) where levels were mainly controlled by the dust handling at kerbside works and uncovered transport by trucks. Such dust accretion, favoured by the lack of rain, increases re-suspension. This process is likely to be the main cause of the high atmospheric mineral matter in the urban background of Barcelona (31%), rather than in Zurich (10%) where PM10 mass is dominated by secondary inorganic aerosols (37%) and

  19. Generating strain signals under consideration of road surface profiles

    NASA Astrophysics Data System (ADS)

    Putra, T. E.; Abdullah, S.; Schramm, D.; Nuawi, M. Z.; Bruckmann, T.

    2015-08-01

    The current study aimed to develop the mechanism for generating strain signal utilising computer-based simulation. The strain data, caused by the acceleration, were undertaken from a fatigue data acquisition involving car movements. Using a mathematical model, the measured strain signals yielded to acceleration data used to describe the bumpiness of road surfaces. The acceleration signals were considered as an external disturbance on generating strain signals. Based on this comparison, both the actual and simulated strain data have similar pattern. The results are expected to provide new knowledge to generate a strain signal via a simulation.

  20. Effects of road mortality and mitigation measures on amphibian populations.

    PubMed

    Beebee, Trevor J C

    2013-08-01

    Road mortality is a widely recognized but rarely quantified threat to the viability of amphibian populations. The global extent of the problem is substantial and factors affecting the number of animals killed on highways include life-history traits and landscape features. Secondary effects include genetic isolation due to roads acting as barriers to migration. Long-term effects of roads on population dynamics are often severe and mitigation methods include volunteer rescues and under-road tunnels. Despite the development of methods that reduce road kill in specific locations, especially under-road tunnels and culverts, there is scant evidence that such measures will protect populations over the long term. There also seems little likelihood that funding will be forthcoming to ameliorate the problem at the scale necessary to prevent further population declines.

  1. On-road particulate emission measurement

    NASA Astrophysics Data System (ADS)

    Mazzoleni, Claudio

    Particulate matter (PM) suspended in the atmosphere has harmful health effects, contributes to visibility impairment, and affects atmospheric radiative transfer, thereby contributing to global change. Vehicles contribute substantially to the ambient PM concentration in urban areas, yet the fraction of ambient PM originating from vehicle emissions is poorly characterized because suitable measurement methods have not been available. This dissertation describes the development and the use of a new vehicle emission remote sensing system (VERSS) for the on-road measurement of PM emission factors for vehicles. The PM VERSS measures PM by ultraviolet backscattering and transmission. PM backscattering and transmission mass efficiencies have been calculated from Mie theory based on an homogeneous spherical model for gasoline particles and on a two-layers, spherical model for diesel particles. The VERSS was used in a large-scale study in Las Vegas, NV. A commercial gaseous VERSS was used for the measurement of gaseous emission factors (i.e., carbon monoxide, hydrocarbons, and nitrogen oxide). Speed and acceleration were also measured for each vehicle. A video image of each vehicle's rear license plate was acquired and license plate numbers were matched with the Clark County department of motor vehicle database to retrieve vehicle information such as model year, vehicle weight category and engine ignition type. PM VERSS has precisely estimated PM fleet average emission factors and clearly shown the dependence of PM emission factors on vehicle model year. Under mostly hot-stabilized operation, diesel vehicle PM emission factors are about 25 times higher than those of gasoline vehicles. Furthermore, the fleet frequency distributions of PM emission factors are highly skewed, meaning that most of the fleet emission factor is accounted for by a small portion of the fleet. The PM VERSS can measure PM emission factors for these high emitting vehicles on an individual basis. PM

  2. Measurement of automobile exhaust emissions under realistic road conditions

    SciTech Connect

    Staab, J.; Schurmann, D.

    1987-01-01

    An exhaust gas measurement system for on-board use has been developed, which enables the direct and continuous determination of the exhaust mass emissions in vehicles on the road. Such measurements under realistic traffic conditions are a valuable supplement to measurements taken on test benches, the latter, however, still being necessary. In the last two years numerous test runs were undertaken. The reliability of the on-board system could be demonstrated and a very informative view of the exhaust emissions behavior of a vehicle on the road was obtained from the test results.

  3. Road salt emissions: A comparison of measurements and modelling using the NORTRIP road dust emission model

    NASA Astrophysics Data System (ADS)

    Denby, B. R.; Ketzel, M.; Ellermann, T.; Stojiljkovic, A.; Kupiainen, K.; Niemi, J. V.; Norman, M.; Johansson, C.; Gustafsson, M.; Blomqvist, G.; Janhäll, S.; Sundvor, I.

    2016-09-01

    De-icing of road surfaces is necessary in many countries during winter to improve vehicle traction. Large amounts of salt, most often sodium chloride, are applied every year. Most of this salt is removed through drainage or traffic spray processes but a certain amount may be suspended, after drying of the road surface, into the air and will contribute to the concentration of particulate matter. Though some measurements of salt concentrations are available near roads, the link between road maintenance salting activities and observed concentrations of salt in ambient air is yet to be quantified. In this study the NORTRIP road dust emission model, which estimates the emissions of both dust and salt from the road surface, is applied at five sites in four Nordic countries for ten separate winter periods where daily mean ambient air measurements of salt concentrations are available. The model is capable of reproducing many of the salt emission episodes, both in time and intensity, but also fails on other occasions. The observed mean concentration of salt in PM10, over all ten datasets, is 4.2 μg/m3 and the modelled mean is 2.8 μg/m3, giving a fractional bias of -0.38. The RMSE of the mean concentrations, over all 10 datasets, is 2.9 μg/m3 with an average R2 of 0.28. The mean concentration of salt is similar to the mean exhaust contribution during the winter periods of 2.6 μg/m3. The contribution of salt to the kerbside winter mean PM10 concentration is estimated to increase by 4.1 ± 3.4 μg/m3 for every kg/m2 of salt applied on the road surface during the winter season. Additional sensitivity studies showed that the accurate logging of salt applications is a prerequisite for predicting salt emissions, as well as good quality data on precipitation. It also highlights the need for more simultaneous measurements of salt loading together with ambient air concentrations to help improve model parameterisations of salt and moisture removal processes.

  4. Closed-loop snowplow applicator control using road condition measurements

    NASA Astrophysics Data System (ADS)

    Erdogan, Gurkan; Alexander, Lee; Rajamani, Rajesh

    2011-04-01

    Closed-loop control of a snowplow applicator, based on direct measurement of the road surface condition, is a valuable technology for the optimisation of winter road maintenance costs and for the protection of the environment from the negative impacts of excessive usage of de-icing chemicals. To this end, a novel friction measurement wheel is designed to provide a continuous measurement of road friction coefficient, which is, in turn, utilised to control the applicator automatically on a snowplow. It is desired that the automated snowplow applicator deploy de-icing materials right from the beginning of any slippery surface detected by the friction wheel, meaning that no portion of the slippery road surface should be left untreated behind, as the snowplow travels over it at a reasonably high speed. This paper describes the developed wheel-based measurement system, the friction estimation algorithm and the expected performance of the closed-loop applicator system. Conventional and zero velocity applicators are introduced and their hardware time delays are measured in addition to the time delay of the friction estimation algorithm. The overall performance of the closed-loop applicator control system is shown to be reliable at typical snowplowing speeds if the zero velocity applicator is used.

  5. Preliminary results for model identification in characterizing 2-D topographic road profiles

    NASA Astrophysics Data System (ADS)

    Kern, Joshua V.; Ferris, John B.

    2006-05-01

    Load data representing severe customer usage is needed throughout a chassis development program; the majority of these chassis loads originate with the excitation from the road. These chassis loads are increasingly derived from vehicle simulations. Simulating a vehicle traversing long roads is simply impractical, however, and a greatly reduced set of characteristic roads must be found. In order to characterize a road, certain modeling assumptions must be made. Several models have been proposed making various assumptions about the properties that road profiles possess. The literature in this field is reviewed before focusing on two modeling assumptions of particular interest: the stationarity of the signal (homogeneity of the road) and the corresponding interval over which previous data points are correlated to the current data point. In this work, 2-D topographic road profiles are considered to be signals that are realizations of a stochastic process. The objective of this work is to investigate the stationarity assumption and the interval of influence for several carefully controlled sections of highway pavement in the United States. Two statistical techniques are used in analyzing these data: the autocorrelation and the partial autocorrelation. It is shown that the road profile signals in their original form are not stationary and have an extremely long interval of influence on the order of 25m. By differencing the data, however, it is often possible to generate stationary residuals and a very short interval of influence on the order of 250mm. By examining the autocorrelation and the partial autocorrelation, various versions of ARIMA models appear to be appropriate for further modeling. Implications to modeling the signals as Markov Chains are also discussed. In this way, roads can be characterized by the model architecture and the particular parameterization of the model. Any synthetic road realized from a particular model represents all profiles in this set

  6. Fuel economy measurement road test procedure. SAE standard

    SciTech Connect

    1995-06-01

    This SAE Standard incorporates driving cycles that produce fuel consumption data relating to urban, suburban, and interstate driving patterns and is intended to be used to determine the relative fuel economy among vehicles and driving patterns under warmed-up conditions on test tracks, suitable roads, or chassis dynamometers. The cycle forms the basis of a cold-start test procedure described in SAE J1256. This document provides uniform testing procedures for measuring the fuel economy of light duty vehicles (motor vehicles designed primarily for transportation of persons or property and rated at 4,500 kg (10,000 lb) or less) on suitable roads.

  7. Measuring Electrical Current: The Roads Not Taken

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2011-05-01

    Recently I wrote about the standard Weston meter movement1,2 that is at the heart of all modern analogue current measurements. Now I will discuss other techniques used to measure electric current that, despite being based on valid physical principles, are largely lost in technological history.

  8. Measuring Electrical Current: The Roads Not Taken

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2011-01-01

    Recently I wrote about the standard Weston meter movement, that is at the heart of all modern analogue current measurements. Now I will discuss other techniques used to measure electric current that, despite being based on valid physical principles, are largely lost in technological history.

  9. Measurement of whole tire profile

    NASA Astrophysics Data System (ADS)

    Yang, Yongyue; Jiao, Wenguang

    2010-08-01

    In this paper, a precision measuring device is developed for obtaining characteristic curve of tire profile and its geometric parameters. It consists of a laser displacement measurement unit, a closed-loop precision two-dimensional coordinate table, a step motor control system and a fast data acquisition and analysis system. Based on the laser trigonometry, a data map of tire profile and coordinate values of all points can be obtained through corresponding data transformation. This device has a compact structure, a convenient control, a simple hardware circuit design and a high measurement precision. Experimental results indicate that measurement precision can meet the customer accuracy requirement of +/-0.02 mm.

  10. Studies of some measures to reduce road dust emissions from paved roads in Scandinavia

    NASA Astrophysics Data System (ADS)

    Norman, Michael; Johansson, Christer

    In this paper we present quantitative assessments of different measures to reduce the PM10 levels along streets in Scandinavian cities based on tests in Stockholm. The effect of the use of studded tyres on concentrations in a street canyon has been quantitatively assessed using monitoring data. A 10% decrease in the fraction of studded tyres was estimated to reduce the weekly average street canyon PM10 levels (due to local road abrasion) by about 10 μg m -3 if only daytime and dry street conditions were considered. These results are obtained by correlating the increase in PM10 levels during autumn with the increased use of studded tyres. Since the share of studded tyres is around 75% in Stockholm during wintertime, the peak springtime PM10 levels that occur during dry road conditions would be substantially lower if the use of studded tyres were regulated. Intense sweeping or washing of the pavements resulted in marginal reductions (<10%) and will have no important influence on the PM10 levels with the methodologies and working machineries tested here. Application of calcium magnesium acetate (CMA, Ice Away, as 25% water solution) on the road surface of a highway during dry conditions resulted in an average reduction of around 35% in the daily PM10 averages. The most efficient way to reduce PM10 levels in the long-term and for a large area is to reduce the use of studded tyres, while application of CMA may be efficient to reduce peak levels, which frequently occur during dry road conditions in spring.

  11. Dimensions of road safety problems and their measurement.

    PubMed

    Elvik, Rune

    2008-05-01

    This paper identifies nine characteristics of road safety problems that are all in principle amenable to numerical measurement. The nine characteristics identified are: 1. Magnitude 2. Severity 3. Externality 4. Inequity 5. Complexity 6. Spatial dispersion 7. Temporal stability 8. Perceived urgency 9. Amenability to treatment. The purpose of identifying these dimensions and of trying to measure them is to provide a basis for selecting problems for treatment by means of safety programmes. Selecting problems for treatment usually cannot be done on the basis of a single dimension, as it is the mix of characteristics that determine the prospects for successfully treating a problem. It is proposed that amenability to treatment is a function of complexity, perceived urgency and the availability of cost-effective treatments. Speed and speeding is used as an example of a road safety problem to illustrate how the various dimensions can be measured.

  12. Family climate for road safety: a new concept and measure.

    PubMed

    Taubman-Ben-Ari, Orit; Katz-Ben-Ami, Liat

    2013-05-01

    This research adapted the workplace concept of safety climate to the domain of safe driving, defining a new construct of "family climate for road safety". Four studies were conducted in Israel with the aim of developing and validating a multidimensional instrument to assess this construct among young drivers. Study 1 (n=632) focused on developing the Family Climate for Road Safety Scale (FCRSS), a self-report scale assessing the family climate by means of seven aspects of the parent-child relationship: Modeling, Feedback, Communication, Monitoring, Noncommitment, Messages, and Limits. Significant differences were found between young men and women on all factors. In addition, significant associations were found between the FCRSS factors on the one hand, and the reported frequency of risky driving and personal commitment to safety on the other. Studies 2-4 confirmed the factorial structure of the FCRSS and the reliability of its factors, adding to its criterion and convergent validity. Study 2 (n=178) yielded significant associations between the scale and young drivers' perception of their parents as involved, encouraging autonomy, and providing warmth; Study 3 (n=117) revealed significant associations between the scale and youngsters' reported proneness to take risks while driving, as well as significant associations between the factors and various dimensions of family functioning; and Study 4 (n=156) found associations between the FCRSS factors and both driving styles (risky, angry, anxious, careful) and family cohesion and adaptability. The discussion deals with the validity and utility of the concept of family climate for road safety and its measurement, addressing the practical implications for road safety.

  13. Measurement and dimension of road fatality in Brunei.

    PubMed

    Haque, Mohammed Ohidul

    2011-03-01

    In this article, we have investigated the pattern of road fatality in Brunei. It is seen from this analysis that road fatality in Brunei was one of the highest in the world in the early 1990s, but has been significantly reduced over the years, and is now one of the lowest in the world. Preliminary investigation shows that young male drivers are responsible for most road fatalities in Brunei. We have also fitted a linear regression model and found that road fatality is significantly positively related to people aged 18-24 years and new registered vehicles, both of which are expected to grow with the growth of population and economic development. Hence, road fatality in Brunei is also expected to grow unless additional effective road safety countermeasures are introduced and implemented to reduce road toll. Negative coefficient is observed for trend variable, indicating the reduction of road fatality due to the combined effects of improvements of vehicle safety, road design, medical facilities and road safety awareness among road user groups. However, short-term road fatality analysis based on monthly data indicates that the coefficient of the trend variable is positive, implying that in recent months road fatalities are increasing in Brunei, which is supported by media reports. We have compared Brunei's road fatality data with Australia, Singapore and Malaysia and found that Brunei's road fatality rate is lower than Singapore and Malaysia, but higher than Australia. This indicates that there are still opportunities to reduce road fatalities in Brunei if additional effective road safety strategies are implemented like in Australia without interfering in the economic and social development of Brunei.

  14. Statistical classification of road pavements using near field vehicle rolling noise measurements.

    PubMed

    Paulo, Joel Preto; Coelho, J L Bento; Figueiredo, Mário A T

    2010-10-01

    Low noise surfaces have been increasingly considered as a viable and cost-effective alternative to acoustical barriers. However, road planners and administrators frequently lack information on the correlation between the type of road surface and the resulting noise emission profile. To address this problem, a method to identify and classify different types of road pavements was developed, whereby near field road noise is analyzed using statistical learning methods. The vehicle rolling sound signal near the tires and close to the road surface was acquired by two microphones in a special arrangement which implements the Close-Proximity method. A set of features, characterizing the properties of the road pavement, was extracted from the corresponding sound profiles. A feature selection method was used to automatically select those that are most relevant in predicting the type of pavement, while reducing the computational cost. A set of different types of road pavement segments were tested and the performance of the classifier was evaluated. Results of pavement classification performed during a road journey are presented on a map, together with geographical data. This procedure leads to a considerable improvement in the quality of road pavement noise data, thereby increasing the accuracy of road traffic noise prediction models.

  15. On-road particle number measurements using a portable emission measurement system (PEMS)

    NASA Astrophysics Data System (ADS)

    Gallus, Jens; Kirchner, Ulf; Vogt, Rainer; Börensen, Christoph; Benter, Thorsten

    2016-01-01

    In this study the on-road particle number (PN) performance of a Euro-5 direct-injection (DI) gasoline passenger car was investigated. PN emissions were measured using the prototype of a portable emission measurement system (PEMS). PN PEMS correlations with chassis dynamometer tests show a good agreement with a chassis dynamometer set-up down to emissions in the range of 1·1010 #/km. Parallel on-line soot measurements by a photo acoustic soot sensor (PASS) were applied as independent measurement technique and indicate a good on-road performance for the PN-PEMS. PN-to-soot ratios were 1.3·1012 #/mg, which was comparable for both test cell and on-road measurements. During on-road trips different driving styles as well as different road types were investigated. Comparisons to the world harmonized light-duty test cycle (WLTC) 5.3 and to European field operational test (euroFOT) data indicate the PEMS trips to be representative for normal driving. Driving situations in varying traffic seem to be a major contributor to a high test-to-test variability of PN emissions. However, there is a trend to increasing PN emissions with more severe driving styles. A cold start effect is clearly visible for PN, especially at low ambient temperatures down to 8 °C.

  16. Factors affecting non-tailpipe aerosol particle emissions from paved roads: On-road measurements in Stockholm, Sweden

    NASA Astrophysics Data System (ADS)

    Hussein, Tareq; Johansson, Christer; Karlsson, Hans; Hansson, Hans-Christen

    A large fraction of urban PM 10 concentrations is due to non-exhaust traffic emissions. In this paper, a mobile measurement system has been used to quantify the relative importance of road particle emission and suspension of accumulated dust versus direct pavement wear, tire type (studded, friction, and summer), pavement type, and vehicle speed. Measurements were performed during May-September on selected roads with different pavements and traffic conditions in the Stockholm region. The highest particle mass concentrations were always observed behind the studded tire and the lowest were behind the summer tire; studded-to-summer ratios were 4.4-17.3 and studded-to-friction ratios were 2.0-6.4. This indicates that studded tires lead to higher emissions than friction and summer tires regardless to the asphalt type. By comparing with measurements in a road simulator, it could be estimated that the pavement wear due to the friction tires was 0.018-0.068 of the suspension of accumulated road dust. Likewise for studded tires road-wear was estimated to be 1.2-4.8 the suspension of accumulated dust. This indicates that wear due to friction tires is very small compared to the suspension of accumulated dust and that suspension due to studded tires may sometimes be as large as the wear of the road. But this will vary depending on, e.g. the amount of dust accumulated on the roads. An important dependence on vehicle speed was also observed. During May, the particle mass concentrations behind the studded tire at vehicle speed 100 km h -1 were about 10 times higher than that at 20 km h -1. The speed dependence was not so pronounced in September, which could be due to less accumulated dust on the roads. The particle number size distribution of the emissions due to road wear by studded tire was characterized by a clear increase in number concentrations of the coarse fraction of aerosol particles, with a geometric mean diameter between 3 and 5 μm. The size distribution of the

  17. SAGE II aerosol correlative observations - Profile measurements

    NASA Technical Reports Server (NTRS)

    Osborn, M. T.; Rosen, J. M.; Mccormick, M. P.; Wang, Pi-Huan; Livinfston, J. M.

    1989-01-01

    Profiles of the aerosol extinction measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II are compared with profiles from five correlative experiments between November 1984 and July 1986. The correlative profiles were derived from six-channel dustsonde measurements and two-wavelength lidar backscatter data. The correlation between the dustsonde- and lidar-derived measurements and the SAGE II data is good, validating the SAGE II lower stratospheric aerosol extinction measurements.

  18. On-road measurements of vehicle NO2/NOx emission ratios in Denver, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Wild, Robert J.; Dubé, William P.; Aikin, Kenneth C.; Eilerman, Scott J.; Neuman, J. Andrew; Peischl, Jeff; Ryerson, Thomas B.; Brown, Steven S.

    2017-01-01

    Nitrogen oxides (NOx = NO + NO2) emitted by on-road combustion engines are important contributors to tropospheric ozone production. The NOx fraction emitted as nitrogen dioxide (NO2) is usually presumed to be small but can affect ozone production and distribution, and this fraction is generally not reported in emissions inventories. We have developed an accurate method for determination of this primary NO2 emission and demonstrated it during measurement of on-road vehicle emission plumes from a mobile laboratory during July and August 2014 in the region between Denver and Greeley in Colorado. During a total of approximately 90 h of sampling from an instrumented mobile laboratory, we identified 1867 vehicle emission plumes, which were extracted using an algorithm that looks for rapid and large increases in measured NOx. We find a distribution of NO2/NOx emissions similar to a log-normal profile, with an average emission ratio of 0.053 ± 0.002 per sampled NOx plume. The average is not weighted by the total NOx emissions from sampled vehicles, which is not measured here, and so may not represent the NO2/NOx ratio of the total NOx emission if this ratio is a function of NOx itself. Although our current data set does not distinguish between different engine types (e.g., gasoline, light duty diesel and heavy duty diesel), the ratio is on the low end of recent reports of vehicle fleet NO2 to NOx emission ratios in Europe.

  19. Mobile system for on-road measurements of air pollutants

    NASA Astrophysics Data System (ADS)

    Katulski, Ryszard J.; Namieśnik, Jacek; Sadowski, Jarosław; Stefański, Jacek; Szymańska, Krystyna; Wardencki, Waldemar

    2010-04-01

    The paper presents a prototype of a mobile monitoring system for measuring the levels of the main traffic air pollutants (C6H6, NO2, NOx, CO, and CO2,) in cities. The novelty of the proposed system lies in the fact that it can be utilized to monitor emissions from urban traffic along roads and areas where traditional monitoring stations cannot be placed. In the proposed system, the monitoring device can be mounted on any moving vehicle (such as a car, bus, or truck) rather than be attached to a dedicated van, as most systems of this kind found in literature are. Analyzers used in this system are small portable structures that contain an electronic instrument to measure, record, and transmit relevant data on concentrations of the pollutants to a website. The model outcome for carbon monoxide obtained in functional tests in real conditions is also presented here. Data on temporal changes of carbon monoxide concentration are compared against meteorological parameters and speed of the vehicle. Spatial interpolation techniques are applied to obtain a nonplanar visualization of carbon monoxide and benzene concentrations in the main arteries of a city.

  20. Safety effects of low-cost engineering measures. An observational study in a Portuguese multilane road.

    PubMed

    Vieira Gomes, Sandra; Cardoso, João Lourenço

    2012-09-01

    Single carriageway multilane roads are not, in general, a very safe type of road, mainly because of the high number of seriously injured victims in head-on collisions, when compared with dual carriageway multilane roads, with a median barrier. In this paper the results of a study on the effect of the application of several low cost engineering measures, aimed at road infrastructure correction and road safety improvement on a multilane road (EN6), are presented. The study was developed by the National Laboratory of Civil Engineering (LNEC) for the Portuguese Road Administration and involved a comparison of selected aspects of motorized traffic behaviour (traffic volumes and speeds) measured in several sections of EN6, as well as monitoring of road safety developments in the same road. The applied low cost engineering measures allowed a reduction of 10% in the expected annual number of personal injury accidents and a 70% decrease in the expected annual number of head-on collisions; the expected annual frequency of accidents involving killed and seriously injured persons was reduced by 26%.

  1. The measurement of dry deposition and surface runoff to quantify urban road pollution in Taipei, Taiwan.

    PubMed

    Wang, Yunn-Jinn; Chen, Chi-Feng; Lin, Jen-Yang

    2013-10-16

    Pollutants deposited on road surfaces and distributed in the environment are a source of nonpoint pollution. Field data are traditionally hard to collect from roads because of constant traffic. In this study, in cooperation with the traffic administration, the dry deposition on and road runoff from urban roads was measured in Taipei City and New Taipei City, Taiwan. The results showed that the dry deposition is 2.01-5.14 g/m(2) · day and 78-87% of these solids are in the 75-300 µm size range. The heavy metals in the dry deposited particles are mainly Fe, Zn, and Na, with average concentrations of 34,978, 1,519 and 1,502 ppm, respectively. Elevated express roads show the highest heavy metal concentrations. Not only the number of vehicles, but also the speed of the traffic should be considered as factors that influence road pollution, as high speeds may accelerate vehicle wear and deposit more heavy metals on road surfaces. In addition to dry deposition, the runoff and water quality was analyzed every five minutes during the first two hours of storm events to capture the properties of the first flush road runoff. The sample mean concentration (SMC) from three roads demonstrated that the first flush runoff had a high pollution content, notably for suspended solid (SS), chemical oxygen demand (COD), oil and grease, Pb, and Zn. Regular sweeping and onsite water treatment facilities are suggested to minimize the pollution from urban roads.

  2. Trends in ozone profile measurements

    NASA Technical Reports Server (NTRS)

    Johnston, H.; Aikin, A.; Barnes, R.; Chandra, S.; Cunnold, D.; Deluisi, J.; Gille, J. C.; Hudson, R.; Mccormick, M. P.; Mcmaster, L.

    1989-01-01

    From an examination of the agreements and differences between different satellite instruments, it is difficult to believe that existing satellite instruments determine upper stratospheric ozone much better than 4 pct.; by extension, it probably would require at least a 4 pct. change to be reliably detected as a change. The best estimates of the vertical profiles of ozone change in the upper stratosphere between 1979 and 1986 are judged to be those given by the two SAGE satellite instruments. SAGE-2 minus SAGE-1 gives a much lower ozone reduction than that given by the archived Solar Backscatter UV data. The average SAGE profiles of ozone changes between 20 and 50 degs north and between 20 and 50 degs south are given. The SAGE-1 and SAGE-2 comparison gives an ozone reduction of about 4 pct. at 25 km over temperate latitudes. Five ground based Umkehr stations between 36 and 52 degs north, corrected for the effects of volcanic aerosols, report an ozone reduction between 1979 and 1987 at Umkehr layer 8 of 9 + or - 5 pct. The central estimate of upper stratospheric ozone reduction given by SAGE at 40 km is less than the central value estimated by the Umkehr method at layer 8.

  3. On the Road, Measuring the Miles per Applicant

    ERIC Educational Resources Information Center

    Hoover, Eric

    2008-01-01

    Most people in admissions have a road story. There are tales of wrong turns, lost suitcases, and days when they were just well-dressed ghosts, walking in and out of high schools where no students came to see them. These are the trials of admissions representatives who leave their campuses for several weeks each fall. They trek near and far to meet…

  4. On-Road Measurement of Vehichle VOC Emission Measurements During the 2003 Mexico City Metropolitan Area Field Campaign

    NASA Astrophysics Data System (ADS)

    Knighton, W. B.; Rogers, T.; Grimsrud, E.; Herndon, S.; Allwine, E.; Lamb, B.; Velasco, E.; Westberg, H.

    2004-12-01

    In the spring of 2003 (April 1-May 5), a multinational team of experts conducted an intensive, five-week field campaign in the Mexico City Metropolitan Area (MCMA). The overall goal of this effort was to contribute to the understanding of the air quality problem in megacities. As part of the campaign the Aerodyne Mobile Laboratory was equipped with state-of-the-art analytical instruments and deployed for measuring a variety of vehicle emissions in real time including CO2, NO2, NH3, HCHO, VOC's and volatile (at 600 °C) aerosol. The on-road measurement of vehicle VOC emissions were performed using a commercial version of the IONICON PTR-MS modified to operate onboard the mobile lab platform. A summary of the PTR-MS results from these and supporting laboratory experiments will be presented and discussed. In particular, selected chase events will be presented to illustrate the utility of the PTR-MS technique for characterizing vehicle VOC emission profiles in real time. VOC emission profiles for different vehicle engine types which include gasoline, diesel and compressed natural gas will be discussed and compared to the measurements from other high time response instruments deployed on the Aerodyne mobile van.

  5. The PM10 fraction of road dust in the UK and India: Characterization, source profiles and oxidative potential.

    PubMed

    Pant, Pallavi; Baker, Stephen J; Shukla, Anuradha; Maikawa, Caitlin; Godri Pollitt, Krystal J; Harrison, Roy M

    2015-10-15

    Most studies of road dust composition have sampled a very wide range of particle sizes, but from the perspective of respiratory exposure to resuspended dusts, it is the PM10 fraction which is of most importance. The PM10 fraction of road dust samples was collected at two sites in Birmingham, UK (major highway and road tunnel) and one site in New Delhi, India. Dust loadings were found to be much higher for New Delhi compared to Birmingham, while concentrations of several species were much higher in the case of Birmingham. Detailed chemical source profiles were prepared for both cities and previously generated empirical factors for source attribution to brake wear, tyre wear, and crustal dust were successfully applied to the UK sites. However, 100% of the mass for the Indian site could not be accounted for using these factors. This study highlights the need for generation of local empirical estimation factors for non-exhaust vehicle emissions. A limited number of bulk road dust and brake pad samples were also characterized. Oxidative potential (OP) was also determined for a limited number of PM10 and bulk road dust samples, and Cu was found to be a factor significantly associated with OP in PM10 and bulk road dust.

  6. Compliant transducer measures artery profile

    NASA Technical Reports Server (NTRS)

    Feldstein, C.; Culler, V. H.; Crawford, D. W.; Spears, J. R.

    1981-01-01

    Instrument consisting of compliant fingers with attached semiconductor pickups measures inside contours of narrow vessels. Instrument, originally designed to monitor human arteries, is drawn through vessel to allow finges to follow contours. Lead wires transmit electrical signals to external processing equipment.

  7. Disturbance Measurements From Off-Road Vehicles on Seasonal Terrain

    DTIC Science & Technology

    2005-07-01

    ITAM), Issue 23, March 2004. Aitken, G.W. (1964) Ground temperature observations: Big Delta, Alaska. U.S. Army Cold Regions Research and Engineering...L.G. King, and L.W. Gatto (2001) Soil compaction and over-winter changes to tracked-vehicle ruts, Yakima Training Center, Washington . Journal of...Affleck Cold Regions Research and Engineering Laboratory U.S. Army Engineer Research and Development Center 72 Lyme Road Hanover, New Hampshire

  8. GPR measurements and estimation for road subgrade damage caused by neighboring train vibration load

    NASA Astrophysics Data System (ADS)

    Zhao, Yonghui; Lu, Gang; Ge, Shuangcheng

    2015-04-01

    Generally, road can be simplified as a three-layer structure, including subgrade, subbase and pavement. Subgrade is the native material underneath a constructed road. It is commonly compacted before the road construction, and sometimes stabilized by the addition of asphalt, lime or other modifiers. As the mainly supporting structure, subgrade damage would lead in pavement settlement, displacement and crack. Assessment and monitoring of the subgrade condition currently involves trial pitting and subgrade sampling. However there is a practical limit on spatial density at which trail pits and cores can be taken. Ground penetrating radar (GPR) has been widely used to characterize highway pavement profiling, concrete structure inspection and railroad track ballast estimation. GPR can improve the economics of road maintenance. Long-term train vibration load might seriously influence the stability of the subgrade of neighboring road. Pavement settlement and obvious cracks have been found at a municipal road cross-under a railway with culvert box method. GPR test was conducted to estimate the subgrade and soil within 2.0 m depth for the further road maintenance. Two survey lines were designed in each lane, and total 12 GPR sections have been implemented. Considering both the penetrating range and the resolution, a antenna with a 500 MHz central frequency was chosen for on-site GPR data collection. For data acquisition, we used the default operating environment and scanning parameters for the RAMAC system: 60kHz transmission rate, 50 ns time window, 1024 samples per scan and 0.1 m step-size. Continuous operation was used; the antenna was placed on the road surface and slowly moved along the road. The strong surrounding disturbance related to railroad and attachments, might decrease the reliability of interpretation results. Some routine process methods (including the background removing, filtering) have been applied to suppress the background noise. Additionally, attribute

  9. Characteristics of volatile organic compounds emission profiles from hot road bitumens.

    PubMed

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian

    2014-07-01

    A procedure for the investigation and comparison of volatile organic compounds (VOCs) emission profiles to the atmosphere from road bitumens with various degrees of oxidation is proposed. The procedure makes use of headspace analysis and gas chromatography with universal as well as selective detection, including gas chromatography-mass spectrometry (GC-MS). The studies revealed that so-called vacuum residue, which is the main component of the charge, contains variable VOC concentrations, from trace to relatively high ones, depending on the extent of thermal cracking in the boiler of the vacuum distillation column. The VOC content in the oxidation product, so-called oxidized paving bitumen, is similarly varied. There are major differences in VOC emission profiles between vacuum residue and oxidized bitumens undergoing thermal cracking. The VOC content in oxidized bitumens, which did not undergo thermal cracking, increases with the degree of oxidation of bitumens. The studies revealed that the total VOC content increases from about 120 ppm for the raw vacuum residue to about 1900 ppm for so-called bitumen 35/50. The amount of volatile sulfur compounds (VSCs) in the volatile fraction of fumes of oxidized bitumens increases with the degree of oxidation of bitumen and constitutes from 0.34% to 3.66% (w/w). The contribution of volatile nitrogen compounds (VNCs) to total VOC content remains constant for the investigated types of bitumens (from 0.16 to 0.28% (w/w) of total VOCs). The results of these studies can also find use during the selection of appropriate bitumen additives to minimize their malodorousness. The obtained data append the existing knowledge on VOC emission from oxidized bitumens. They should be included in reports on the environmental impact of facilities in which hot bitumen binders are used.

  10. Gender differences in road traffic injury rate using time travelled as a measure of exposure.

    PubMed

    Santamariña-Rubio, Elena; Pérez, Katherine; Olabarria, Marta; Novoa, Ana M

    2014-04-01

    There is no consensus on whether the risk of road traffic injury is higher among men or among women. Comparison between studies is difficult mainly due to the different exposure measures used to estimate the risk. The measures of exposure to the risk of road traffic injury should be people's mobility measures, but frequently authors use other measures such population or vehicles mobility. We compare road traffic injury risk in men and women, by age, mode of transport and severity, using the time people spend travelling as the exposure measure, in Catalonia for the period 2004-2008. This is a cross-sectional study including all residents aged over 3 years. The road traffic injury rate was calculated using the number of people injured, from the Register of Accidents and Victims of the National Traffic Authority as numerator, and the person-hours travelled, from the 2006 Daily Mobility Survey carried out by the Catalan regional government, as denominator. Sex and age specific rates by mode of transport and severity were calculated, and Poisson regression models were fitted. Among child pedestrians and young drivers, males present higher risk of slight and severe injury, and in the oldest groups women present higher risk. The death rate is always higher in men. There exists interaction between sex and age in road traffic injury risk. Therefore, injury risk is higher among men in some age groups, and among women in other groups, but these age groups vary depending on mode of transport and severity.

  11. Characterizations of LED road lighting for expressway by various on-site measurement and analysis methods

    NASA Astrophysics Data System (ADS)

    Hung, S. T.; Chen, C. H.; Hsu, S. W.; Wu, K. N.

    2016-09-01

    The LED luminaires are nowadays the mainstream of road lighting for the merit of durable, fast response, controllable, energy saving, and environmental friendly. For the evaluation of highway with LED lightings, we have recently developed on-site measurement of the photometric characteristics of lane and luminaire by luminance image, illuminance and spectral illuminance distribution which be evaluated as uniformity, colorimetry and glare parameters that were measured under the different height and spacing of the lampposts in the experimental field for expressway. We applied the image luminance measurement device to achieve the on-site and real time road lighting evaluation especially for the expressway. Some preliminary results were obtained from these experiments. These results will be applied to developing the standards and specification for road lighting in expressway.

  12. On-road remote sensing of diesel vehicle emissions measurement and emission factors estimation in Hong Kong

    NASA Astrophysics Data System (ADS)

    Chan, T. L.; Ning, Z.

    In the present study, the real world on-road diesel vehicle emissions of carbon monoxide (CO), hydrocarbons (HC) and nitric oxide (NO) were investigated at nine sites in Hong Kong. A regression analysis approach based on the measured vehicle emission data was used to estimate the on-road diesel vehicle emission factors of CO, HC and NO with respect to the effects of instantaneous vehicle speed and acceleration/deceleration profiles for local urban driving patterns. The results show that the diesel vehicle model years, engine sizes, vehicle types and driving patterns have a strong correlation with their emission factors. A comparison was made between the average diesel and petrol vehicle emissions factors in Hong Kong. The deviation of the average emission factors of aggregate diesel vehicles reflects the variability of local road condition, vehicle traffic fleet and volume, driving pattern, fuel composition and ambient condition etc. Finally, a unique database of the correlation of diesel vehicle emission factors (i.e., g km -1 and g l -1) on different model years and vehicle types for urban driving patterns in Hong Kong was established.

  13. On-road remote sensing of petrol vehicle emissions measurement and emission factors estimation in Hong Kong

    NASA Astrophysics Data System (ADS)

    Chan, T. L.; Ning, Z.; Leung, C. W.; Cheung, C. S.; Hung, W. T.; Dong, G.

    In the present study, the real world on-road petrol vehicle emissions of carbon monoxide (CO), hydrocarbons (HC) and nitric oxide (NO) were investigated at nine sites in Hong Kong. A regression analysis approach based on the measured petrol vehicle emission data was also used to estimate the on-road petrol vehicle emission factors of CO, HC and NO with respect to the effects of instantaneous vehicle speed and acceleration/deceleration profiles for local urban driving patterns. The results show that the petrol vehicle model years, engine sizes and driving patterns have a strong correlation on their emission factors. A comparison of average petrol vehicle emission factors in different engine sizes and European vehicle emission standards was also presented. The deviation of the average emission factors of aggregate petrol vehicle reflects on the variability of local road condition, vehicle traffic fleet and volume, driving pattern, fuel composition and ambient condition etc. Finally, a unique database of the correlation of petrol vehicle emission factors on different model years and engine sizes for urban driving patterns in Hong Kong was established.

  14. Apparatus for laser beam profile measurements

    DOEpatents

    Barnes, N.P.; Gettemy, D.J.

    1985-01-30

    Apparatus for measuring the spatial intensity profile of the output beam from a continuous-wave laser oscillator. The rapid and repetitive passing of a small aperture through the otherwise totally blocked output beam of the laser under investigation provides an easily interpretable, real-time measure of the intensity characteristics thereof when detected by a single detector and the signal generated thereby displayed on an oscilloscope synthronized to the motion of the aperture.

  15. On-road Emissions of Reactive Nitrogen through In-situ, Mobile Measurements

    NASA Astrophysics Data System (ADS)

    Sun, K.; Tao, L.; Pan, D.; Golston, L.; Miller, D. J.; Zondlo, M. A.

    2014-12-01

    Ammonia (NH3) is a key precursor to atmospheric fine particulate matter (PM2.5), with strong implications for regional air quality and global climate change. Existing atmospheric measurements suggest that urban traffic may provide significant amount of NH3. NH3 emissions in urban areas may cause greater impact on air quality and human health, because other aerosol tracers, like NO and NO2, are emitted by similar on-road sources. However, the on-road NH3 emission inventories are subject to significant uncertainties. A mobile platform is developed by mounting multiple portable (total power ~ 100 W, weight ~ 25 kg), high-resolution (10 Hz), open-path sensors on top of a passenger car. On-road NH3 emissions are quantified in the real-world driving conditions by synchronized NH3, CO, and CO2 measurements. The mobile platform has covered over 16,000 km in the US and China since 2013. The total on-road sampling time is over 300 hours. Major US metropolitan areas that have been sampled include LA, SF, Houston, Philadelphia, and Denver. Three Chinese megacities (Beijing, Baoding, and Shijiazhuang) were sampled in both 2013 and 2014. The average emission factors (grams of NH3 emitted per kilogram of fuel) range from 0.3 to 0.5 g/kg. Different methodologies were compared, including on-road emission ratios, tunnel measurements, and city-scale gradient measurements. These methodologies yielded the same emission factor for Houston (0.4±0.05 g/kg) within the sampling uncertainties and showed that multiple approaches are consistent with one another. The observed NH3 emission ratios indicate that National Emisison Inventory (NEI) underestimates on-road NH3 emissions by up to 50% in some major urban areas. On-road NH3 emission factors show higher values in both stop-and-go driving conditions and freeway speeds with a minimum near 70 km/h. This is consistent with another observation that the emission factors in urban traffic are generally larger than suburban traffic. Road gradient

  16. Measuring Algorithm for the Distance to a Preceding Vehicle on Curve Road Using On-Board Monocular Camera

    NASA Astrophysics Data System (ADS)

    Yu, Guizhen; Zhou, Bin; Wang, Yunpeng; Wun, Xinkai; Wang, Pengcheng

    2015-12-01

    Due to more severe challenges of traffic safety problems, the Advanced Driver Assistance Systems (ADAS) has received widespread attention. Measuring the distance to a preceding vehicle is important for ADAS. However, the existing algorithm focuses more on straight road sections than on curve measurements. In this paper, we present a novel measuring algorithm for the distance to a preceding vehicle on a curve road using on-board monocular camera. Firstly, the characteristics of driving on the curve road is analyzed and the recognition of the preceding vehicle road area is proposed. Then, the vehicle detection and distance measuring algorithms are investigated. We have verified these algorithms on real road driving. The experimental results show that this method proposed in the paper can detect the preceding vehicle on curve roads and accurately calculate the longitudinal distance and horizontal distance to the preceding vehicle.

  17. PM10 and PM2.5 chemical source profiles with optical attenuation and health risk indicators of paved and unpaved road dust in Bhopal, India.

    PubMed

    Samiksha, Shilpi; Sunder Raman, Ramya; Nirmalkar, Jayant; Kumar, Samresh; Sirvaiya, Rohit

    2017-03-01

    Size classified (PM10 and PM2.5) paved and unpaved road dust chemical source profiles, optical attenuation and potential health risk from exposure to these sources are reported in this study. A total of 45 samples from 9 paved road and 6 unpaved road sites located in and around Bhopal were re-suspended in the laboratory, collected onto filter substrates and subjected to a variety of chemical analyses. In general, road dust was enriched (compared to upper continental crustal abundance) in anthropogenic pollutants including Sb, Cu, Zn, Co, and Pb. Organic and elemental carbon (OC/EC) in PM10 and PM2.5 size fractions were 50-75% higher in paved road dust compared to their counterparts in unpaved road dust. Further, the results suggest that when it is not possible to include carbon fractions in source profiles, the inclusion of optical attenuation is likely to enhance the source resolution of receptor models. Additionally, profiles obtained in this study were not very similar to the US EPA SPECIATE composite profiles for PM10 and PM2.5, for both sources. Specifically, the mass fractions of Si, Fe, OC, and EC were most different between SPECIATE composite profiles and Bhopal composite profiles. An estimate of health indicators for Bhopal road dust revealed that although Cr was only marginally enriched, its inhalation may pose a health risk. The estimates of potential lifetime incremental cancer risk induced by the inhalation of Cr in paved and unpaved road dust (PM10 and PM2.5) for both adults and children were higher than the baseline values of acceptable risk. These results suggest that road dust Cr induced carcinogenic risk should be further investigated.

  18. A quantitative approach to measure road network information based on edge diversity

    NASA Astrophysics Data System (ADS)

    Wu, Xun; Zhang, Hong; Lan, Tian; Cao, Weiwei; He, Jing

    2015-12-01

    The measure of map information has been one of the key issues in assessing cartographic quality and map generalization algorithms. It is also important for developing efficient approaches to transfer geospatial information. Road network is the most common linear object in real world. Approximately describe road network information will benefit road map generalization, navigation map production and urban planning. Most of current approaches focused on node diversities and supposed that all the edges are the same, which is inconsistent to real-life condition, and thus show limitations in measuring network information. As real-life traffic flow are directed and of different quantities, the original undirected vector road map was first converted to a directed topographic connectivity map. Then in consideration of preferential attachment in complex network study and rich-club phenomenon in social network, the from and to weights of each edge are assigned. The from weight of a given edge is defined as the connectivity of its end node to the sum of the connectivities of all the neighbors of the from nodes of the edge. After getting the from and to weights of each edge, edge information, node information and the whole network structure information entropies could be obtained based on information theory. The approach has been applied to several 1 square mile road network samples. Results show that information entropies based on edge diversities could successfully describe the structural differences of road networks. This approach is a complementarity to current map information measurements, and can be extended to measure other kinds of geographical objects.

  19. Experimental study designs to improve the evaluation of road mitigation measures for wildlife.

    PubMed

    Rytwinski, Trina; van der Ree, Rodney; Cunnington, Glenn M; Fahrig, Lenore; Findlay, C Scott; Houlahan, Jeff; Jaeger, Jochen A G; Soanes, Kylie; van der Grift, Edgar A

    2015-05-01

    An experimental approach to road mitigation that maximizes inferential power is essential to ensure that mitigation is both ecologically-effective and cost-effective. Here, we set out the need for and standards of using an experimental approach to road mitigation, in order to improve knowledge of the influence of mitigation measures on wildlife populations. We point out two key areas that need to be considered when conducting mitigation experiments. First, researchers need to get involved at the earliest stage of the road or mitigation project to ensure the necessary planning and funds are available for conducting a high quality experiment. Second, experimentation will generate new knowledge about the parameters that influence mitigation effectiveness, which ultimately allows better prediction for future road mitigation projects. We identify seven key questions about mitigation structures (i.e., wildlife crossing structures and fencing) that remain largely or entirely unanswered at the population-level: (1) Does a given crossing structure work? What type and size of crossing structures should we use? (2) How many crossing structures should we build? (3) Is it more effective to install a small number of large-sized crossing structures or a large number of small-sized crossing structures? (4) How much barrier fencing is needed for a given length of road? (5) Do we need funnel fencing to lead animals to crossing structures, and how long does such fencing have to be? (6) How should we manage/manipulate the environment in the area around the crossing structures and fencing? (7) Where should we place crossing structures and barrier fencing? We provide experimental approaches to answering each of them using example Before-After-Control-Impact (BACI) study designs for two stages in the road/mitigation project where researchers may become involved: (1) at the beginning of a road/mitigation project, and (2) after the mitigation has been constructed; highlighting real case

  20. Modelling road dust emission abatement measures using the NORTRIP model: Vehicle speed and studded tyre reduction

    NASA Astrophysics Data System (ADS)

    Norman, M.; Sundvor, I.; Denby, B. R.; Johansson, C.; Gustafsson, M.; Blomqvist, G.; Janhäll, S.

    2016-06-01

    Road dust emissions in Nordic countries still remain a significant contributor to PM10 concentrations mainly due to the use of studded tyres. A number of measures have been introduced in these countries in order to reduce road dust emissions. These include speed reductions, reductions in studded tyre use, dust binding and road cleaning. Implementation of such measures can be costly and some confidence in the impact of the measures is required to weigh the costs against the benefits. Modelling tools are thus required that can predict the impact of these measures. In this paper the NORTRIP road dust emission model is used to simulate real world abatement measures that have been carried out in Oslo and Stockholm. In Oslo both vehicle speed and studded tyre share reductions occurred over a period from 2004 to 2006 on a major arterial road, RV4. In Stockholm a studded tyre ban on Hornsgatan in 2010 saw a significant reduction in studded tyre share together with a reduction in traffic volume. The model is found to correctly simulate the impact of these measures on the PM10 concentrations when compared to available kerbside measurement data. Importantly meteorology can have a significant impact on the concentrations through both surface and dispersion conditions. The first year after the implementation of the speed reduction on RV4 was much drier than the previous year, resulting in higher mean concentrations than expected. The following year was much wetter with significant rain and snow fall leading to wet or frozen road surfaces for 83% of the four month study period. This significantly reduced the net PM10 concentrations, by 58%, compared to the expected values if meteorological conditions had been similar to the previous years. In the years following the studded tyre ban on Hornsgatan road wear production through studded tyres decreased by 72%, due to a combination of reduced traffic volume and reduced studded tyre share. However, after accounting for exhaust

  1. LASER PROFILE MEASUREMENTS OF AN H BEAM.

    SciTech Connect

    CONNOLLY,R.; CAMERON,P.; CUPOLO,J.; GRAU,M.; KESSELMAN,M.; LIAW,C.J.; SIKORA,R.

    2001-06-18

    A non-intercepting beam profile monitor for He beams is being developed at Brookhaven National Lab. An H{sup {minus}} ion has a first ionization potential of 0.75eV. Electrons can be removed from an H{sup {minus}} beam by passing light from a near-infrared laser through it. Experiments have been performed on the BNL linac to measure the transverse profile of a 750keV beam by using a Nd:YAG laser to photoneutralize narrow slices of the beam. The laser beam is scanned across the ion beam neutralizing the portion of the beam struck by the laser. The electrons are removed from the ion beam and the beam current notch is measured.

  2. Vehicle-based road dust emission measurement (III):. effect of speed, traffic volume, location, and season on PM 10 road dust emissions in the Treasure Valley, ID

    NASA Astrophysics Data System (ADS)

    Etyemezian, V.; Kuhns, H.; Gillies, J.; Chow, J.; Hendrickson, K.; McGown, M.; Pitchford, M.

    The testing re-entrained aerosol kinetic emissions from roads (TRAKER) road dust measurement system was used to survey more than 400 km of paved roads in southwestern Idaho during 3-week sampling campaigns in winter and summer, 2001. Each data point, consisting of a 1-s measurement of particle light scattering sampled behind the front tire, was associated with a link (section of road) in the traffic demand model network for the Treasure Valley, ID. Each link was in turn associated with a number of characteristics including posted speed limit, vehicle kilometers traveled (vkt), road class (local/residential, collector, arterial, and interstate), county, and land use (urban vs. rural). Overall, the TRAKER-based emission factors based on location, setting, season, and speed spanned a narrow range from 3.6 to 8.0 g/vkt. Emission factors were higher in winter compared to summer, higher in urban areas compared to rural, and lower for roads with fast travel speeds compared to slower roads. The inherent covariance between traffic volume and traffic speed obscured the assessment of the effect of traffic volume on emission potentials. Distance-based emission factors expressed in grams per kilometer traveled (g/vkt) for roads with low travel speeds (˜11 m/s residential roads) compared to those with high travel speeds (˜25 m/s interstates) were higher (5.2 vs. 3.0 g/vkt in summer and 5.9 vs. 4.9 g/vkt in winter). However, emission potentials which characterize the amount of suspendable material on a road were substantially higher on roads with low travel speeds (0.71 vs. 0.13 g/vkt/(m/s) in summer and 0.78 vs. 0.21 g/vkt/(m/s) in winter). This suggested that while high speed roads are much cleaner (factor of 5.4 in summer), on a vehicle kilometer traveled basis, emissions from high and low speed roads are of the same order. Emission inventories based on the TRAKER method, silt loadings obtained during the field study, and US EPA's AP-42 default values of silt loading were

  3. Characterization, Exposure Measurement and Control for Nanoscale Particles in Workplaces and on the Road

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Pui, David Y. H.

    2011-07-01

    The amount of engineered nanoparticles is increasing at a rapid rate and more concerns are being raised about the occupational health and safety of nanoparticles in the workplace, and implications of nanotechnology on the environment and living systems. At the same time, diesel engine emissions are one of the serious air pollution sources in urban area. Ultrafine particles on the road can result in harmful effects on the health of drivers and passengers. Research on characterization, exposure measurement and control is needed to address the environmental, health and safety issues of nanoscale particles. We present results of our studies on airborne particles in workplaces and on the road.

  4. Comparison of modeled traffic exposure zones using on-road air pollution measurements

    EPA Science Inventory

    Modeled traffic data were used to develop traffic exposure zones (TEZs) such as traffic delay, high volume, and transit routes in the Research Triangle area of North Carolina (USA). On-road air pollution measurements of nitrogen dioxide (NO2), carbon monoxide (CO), carbon dioxid...

  5. Near-road measurements for nitrogen dioxide and its association with traffic exposure zones

    EPA Science Inventory

    Near-road measurements for nitrogen dioxide (NO2) using passive air samplers were collected weekly in traffic exposure zones (TEZs) in the Research Triangle area of North Carolina (USA) during Fall 2014. Land use regression (LUR) analysis and pairwise comparisons of T...

  6. HEAVY DUTY DIESEL FINE PARTICULATE MATTER EMISSIONS: DEVELOPMENT AND APPLICATION OF ON-ROAD MEASUREMENT CAPABILITIES

    EPA Science Inventory

    The report discusses EPA's On-Road Diesel Emissions Characterization Facility, which has been collecting real-world gaseous emissions data for the past 6 years. It has recently undergone extensive modifications to enhance its particulate matter (PM) measurement capabilities, with...

  7. Investigation of the impact of low cost traffic engineering measures on road safety in urban areas.

    PubMed

    Yannis, George; Kondyli, Alexandra; Georgopoulou, Xenia

    2014-01-01

    This paper investigates the impact of low cost traffic engineering measures (LCTEMs) on the improvement of road safety in urban areas. A number of such measures were considered, such as speed humps, woonerfs, raised intersections and other traffic calming measures, which have been implemented on one-way, one-lane roads in the Municipality of Neo Psychiko in the Greater Athens Area. Data were analysed using the before-and-after safety analysis methodology with large control group. The selected control group comprised of two Municipalities in the Athens Greater Area, which present similar road network and land use characteristics with the area considered. The application of the methodology showed that the total number of crashes presented a statistically significant reduction, which can be possibly attributed to the introduction of LCTEMs. This reduction concerns passenger cars and single-vehicle crashes and is possibly due to the behavioural improvement of drivers of 25 years old or more. The results of this research are very useful for the identification of the appropriate low cost traffic engineering countermeasures for road safety problems in urban areas.

  8. BOREAS RSS-17 Dielectric Constant Profile Measurements

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); McDonald, Kyle C.; Zimmerman, Reiner; Way, JoBea

    2000-01-01

    The BOREAS RSS-17 team acquired and analyzed imaging radar data from the ESA's ERS-1 over a complete annual cycle at the BOREAS sites in Canada in 1994 to detect shifts in radar backscatter related to varying environmental conditions. This data set consists of dielectric constant profile measurements from selected trees at various BOREAS flux tower sites. The relative dielectric constant was measured at C-band (frequency = 5 GHz) as a function of depth into the trunk of three trees at each site, Measurements were made during April 1994 with an Applied Microwave Corporation field PDP fitted with a 0.358-cm (0.141-inch) diameter coaxial probe tip. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  9. Brief communication "Snow profile associated measurements (SPAM) - a new instrument for quick snow profile measurements"

    NASA Astrophysics Data System (ADS)

    Lahtinen, P.

    2011-06-01

    A new instrument concept (SPAM) for snow profile associated measurements is presented. The potential of the concept is demonstrated by presenting preliminary results obtained with the prototype instrument. With this concept it is possible to retrieve rapid snow profiles of e.g. light extinction, reflectance, temperature and snow layer structure with high vertical resolution. As a side-product, also snow depth is retrieved.

  10. Measurements of fusion product emission profiles in tokamaks

    SciTech Connect

    Strachan, J.D.; Heidbrink, W.W.; Hendel, H.W.; Lovberg, J.; Murphy, T.J.; Nieschmidt, E.B.; Tait, G.D.; Zweben, S.J.

    1986-11-01

    The techniques and results of fusion product emission profile measurements are reviewed. While neutron source strength profile measurements have been attempted by several methods, neutron scattering is a limitation to the results. Profile measurements using charged fusion products have recently provided an alternative since collimation is much easier for the charged particles.

  11. Tyre contact length on dry and wet road surfaces measured by three-axial accelerometer

    NASA Astrophysics Data System (ADS)

    Matilainen, Mika; Tuononen, Ari

    2015-02-01

    We determined the tyre contact length on dry and wet roads by measuring the accelerations of the inner liner with a three-axial accelerometer. The influence of the tyre pressure, driving velocity, and tread depth on the contact length was studied in both types of road surface conditions. On dry asphalt the contact length was almost constant, regardless of the driving velocity. On wet asphalt the presence of water could be detected even at low driving velocities (e.g. 20 km/h for a worn tyre) as the contact length began to decrease from that found in the dry asphalt situation. In addition to improving the performance of active safety systems and driver warning systems, the contact length information could be beneficial for classifying and studying the aquaplaning behaviour of tyres.

  12. Contractors Road Heavy Equipment Area SWMU 055 Corrective Measures Implementation Progress Report

    NASA Technical Reports Server (NTRS)

    Dorman, Lane

    2015-01-01

    This Corrective Measures Implementation (CMI) Progress Report, Revision 1, for Contractor's Road Heavy Equipment (CRHE) Area Solid Waste Management Unit (SWMU) Number 055 was prepared by Geosyntec Consultants (Geosyntec) for the National Aeronautics and Space Administration (NASA) under contract number NNK09CA02B, Delivery Order NNK09CA62D and Project Number PCN ENV-2324. This CMI Progress Report documents: (i) activities conducted as part of supplemental assessment activities completed from June 2009 through November 2014; (ii) Engineering Evaluation (EE) Advanced Data Packages (ADPs); and (iii) recommendations for future activities related to corrective measures at the Site.

  13. A control performance analysis for MacPherson active suspension system under bounce sine sweep road profile

    NASA Astrophysics Data System (ADS)

    Ismail, M. Fahezal; Sam, Yahaya Md.; Sudin, Shahdan; Aripin, M. Khairi

    2016-10-01

    This paper studies a control performance analysis for MacPherson active suspension system. The ride comfort quality is a very important specification for modern automotive suspension system. The Proportional Integral Sliding Mode Control-Evolutionary Strategy-Composite Nonlinear Feedback (PISMC-ES-CNF) controller is designed to solve the transient problem occurred in vertical acceleration of sprung mass. The control performance is tested by using PISMC-ES-CNF and compared with Sliding Mode Controller (SMC) and Composite Nonlinear Feedback (CNF) under Bounce Sine Sweep road profile. The ISO 2631-1, 1997 is a standard for vertical acceleration of sprung mass level and degree of comfort. The one way Analysis of Variance (ANOVA) and standard deviation have showed that the PISMC- ES-CNF controller compared with others controllers achieved the best control performance.

  14. Measurements and predictors of on-road ultrafine particle concentrations and associated pollutants in Los Angeles

    NASA Astrophysics Data System (ADS)

    Fruin, S.; Westerdahl, D.; Sax, T.; Sioutas, C.; Fine, P. M.

    Motor vehicles are the dominant source of oxides of nitrogen (NO x), particulate matter (PM), and certain air toxics (e.g., benzene, 1,3-butadiene) in urban areas. On roadways, motor vehicle-related pollutant concentrations are typically many times higher than ambient concentrations. Due to high air exchange rates typical of moving vehicles, this makes time spent in vehicles on roadways a major source of exposure. This paper presents on-road measurements for Los Angeles freeways and arterial roads taken from a zero-emission electric vehicle outfitted with real-time instruments. The objective was to characterize air pollutant concentrations on roadways and identify the factors associated with the highest concentrations. Our analysis demonstrated that on freeways, concentrations of ultrafine particles (UFPs), black carbon, nitric oxide, and PM-bound polycyclic aromatic hydrocarbons (PM-PAH) are generated primarily by diesel-powered vehicles, despite the relatively low fraction (˜6%) of diesel-powered vehicles on Los Angeles freeways. However, UFP concentrations on arterial roads appeared to be driven primarily by proximity to gasoline-powered vehicles undergoing hard accelerations. Concentrations were roughly one-third of those on freeways. By using a multiple regression model for the freeway measurements, we were able to explain 60-70% of the variability in concentrations of UFP, black carbon, nitric oxide, and PM-PAH using measures of diesel truck density and hour of day (as an indicator of wind speed). Freeway concentrations of these pollutants were also well correlated with readily available annual average daily truck counts, potentially allowing improved population exposure estimates for epidemiology studies. Based on these roadway measurements and average driving time, it appears that 33-45% of total UFP exposure for Los Angeles residents occurs due to time spent traveling in vehicles.

  15. Simultaneous measurements of on-road/in-vehicle nanoparticles and NOx while driving: Actual situations, passenger exposure and secondary formations.

    PubMed

    Yamada, Hiroyuki; Hayashi, Rumiko; Tonokura, Kenichi

    2016-09-01

    Simultaneous measurements of on-road and in-vehicle NO and NO2 levels, particle number concentrations (PNCs), and particles size distributions were performed while driving using a test vehicle equipped with real-time sensors. The results obtained on regional roads showed that heavy-duty vehicles in traffic seem to have a major impact on on-road air quality. Measurements on highways that included a 10km tunnel and a 2km uphill section of road indicated that sub-50nm particles have different features from the other species because of their higher volatility. The other species showed quite high on-road concentrations in the tunnel. In-vehicle conditions were made similar to the on-road ones by setting the air conditioning (AC) mode to the fresh air mode. The in-vehicle NO2 concentration in the tunnel was over 0.50ppmV, which is almost five times higher than the 1-hour ambient air quality standard proposed by the World Health Organization (WHO). In sections other than the tunnel, the in-vehicle NO2 concentration was almost the same as the 1-hour WHO standard. Higher on-road NO2/NOx ratios than those of exhaust gases and different behavior of sub-50nm particles from other species suggested that NO2 and sub-50nm particles were mainly due to secondary products formed by atmospheric reactions.

  16. Time-resolved measurements of equilibrium profiles in MST

    NASA Astrophysics Data System (ADS)

    Deng, B. H.; Brower, D. L.; Ding, W. X.; Yates, T. F.; Anderson, J. K.; Caspary, K.; McCollam, K. J.; Prager, S. C.; Reusch, J. A.; Sarff, J. S.; Craig, D.

    2007-11-01

    Based on the high-speed, three-wave, far-infrared polarimeter-interferometer measurement of Bpol profiles and external coil measurements of Btave and Btw, a new method is developed to derive Btor and other equilibrium profiles (J// and q) with high time resolution. Using Faraday's law, the inductive electric field (E//) profile is also deduced from the temporal derivatives of the time-resolved magnetic field profiles. The derived B(0) values have excellent agreement with direct measurements using a Motional Stark Effect (MSE) diagnostic. Evolution of equilibrium profiles during single sawtooth events in MST, both the slow linear ramp and crash phases, are presented. Profile scaling with plasma current Ip and reversal parameter F is also explored. MHD stability is tested from the spatial gradients of the J// and q profiles, and correlation with fluctuation mode amplitude is investigated. Future improvements to equilibrium reconstruction are expected by measuring Btor(r,t) directly via Cotton-Mouton interferometry.

  17. Assessment of Continuous Resistivity Profiling for the Characterization of Paved Roads

    NASA Astrophysics Data System (ADS)

    Chouteau, M.; Vallieres, S.; Miralles, M.

    2004-05-01

    We have assessed the continuous resistivity profiling method using towed arrays as a diagnostic NDT method for the evaluation of pavements. Whether the pavement consists of a sequence of asphalt, concrete slab and subgrade layer (rigid pavement) or a layer of asphalt overlying a subgrade and grade base layers (flexible pavement) defects within those different layers can cause pavement deterioration that must be identified. We first examine the response of the method to the various problems using numerical modeling. It is shown that with an optimally designed system the method allows the determination of the thickness and the location of cracks in the asphalt cover. It is also sensitive to the presence of cracks, internal defects and chloride ions (de-icing salt) within the concrete slab below. For reinforced concrete it is possible to estimate the concrete resistivity related directly to its composition (quality) and the thickness of the top coating over the level of rebars. A low resistivity of concrete will usually be diagnostic of advanced stage of rebar corrosion and delamination could occur. However it is shown that the rebars cause current channeling and the depth of investigation is limited then to the depth of the first row of rebars. Finally heterogeneities within the foundation reflecting subsidence, bad drainage, frost-defrost cycles or cavities can be mapped. The optimal design is based on a system with 10 to 20 receiver dipoles and one transmitter dipole (first or last of the array) with a dipole length typically of 10 cm that can be used in equatorial or in-line mode. Static resistivity measurements have been carried out at the laboratory scale over concrete slabs built to verify results obtained from the numerical modeling. Observed data fit very well the modeled data and validate the overall conclusions. Tests have been performed in December 2003 in some selected streets (6 visited, 3 re-visited) of Montreal using a CORIM system (Iris Instruments

  18. A Simple Permittivity Calibration Method for GPR-Based Road Pavement Measurements

    NASA Astrophysics Data System (ADS)

    Eskelinen, Pekka

    2016-09-01

    Cylindrical resonator principle can be used in GPR asphalt quality measurement calibration. This method relies on ordinary drill core samples that are regularly taken from measured road sections, but now only analyzed for dimensions, density and sometimes chemically. If such a drill sample is covered with proper conductive surfaces, a cylindrical cavity resonator is formed. The baseline of the GPR permittivity recordings can so be found by measuring the resonance behaviour of this covered sample, which can later still be used for those traditional analyses. A clear benefit is the resonator's 1-2 GHz frequency range which equals that of common commercial GPR systems. Example results and reference readings from known dielectric material are shown. The obtained uncertainty in this case study is 0.02 units of permittivity, when measuring the same sample repeatedly.

  19. Laser-triangulation device for in-line measurement of road texture at medium and high speed

    NASA Astrophysics Data System (ADS)

    Cigada, Alfredo; Mancosu, Federico; Manzoni, Stefano; Zappa, Emanuele

    2010-10-01

    The knowledge of the friction coefficient between road and tyres is a very precious information to implement vehicle active control, especially considering the optimisation of the braking action. One of the most important parameters able to influence such a coefficient is the road texture (microtexture and macrotexture). Although different methods are now available to perform reliable texture measurements, no well-established techniques currently exist for measuring the pavement texture at medium-high speed with real time data analysis during the usual vehicle operations. This paper presents a method, based on two identical industrial laser-triangulation displacement transducers, allowing to get real time reliable road micro and macrotexture measurements during standard vehicle operations, even at medium and high speed. The presence of two transducers also allows to estimate the instantaneous vehicle speed, which is needed to obtain the road texture from the sensor time-histories. This means that the presented system can be considered as a stand-alone device able to give as an output the road texture (micro and macro) and also the vehicle speed without any other input. The paper also underlines the advantages of this method and its drawbacks. The method reliability is evidenced by some real time outdoor tests on the different road surfaces of the Pirelli test track and at different vehicle speeds.

  20. Characteristics of On-road Diesel Vehicles: Black Carbon Emissions in Chinese Cities Based on Portable Emissions Measurement.

    PubMed

    Zheng, Xuan; Wu, Ye; Jiang, Jingkun; Zhang, Shaojun; Liu, Huan; Song, Shaojie; Li, Zhenhua; Fan, Xiaoxiao; Fu, Lixin; Hao, Jiming

    2015-11-17

    Black carbon (BC) emissions from heavy-duty diesel vehicles (HDDVs) are rarely continuously measured using portable emission measurement systems (PEMSs). In this study, we utilize a PEMS to obtain real-world BC emission profiles for 25 HDDVs in China. The average fuel-based BC emissions of HDDVs certified according to Euro II, III, IV, and V standards are 2224 ± 251, 612 ± 740, 453 ± 584, and 152 ± 3 mg kg(-1), respectively. Notably, HDDVs adopting mechanical pump engines had significantly higher BC emissions than those equipped with electronic injection engines. Applying the useful features of PEMSs, we can relate instantaneous BC emissions to driving conditions using an operating mode binning methodology, and the average emission rates for Euro II to Euro IV diesel trucks can be constructed. From a macroscopic perspective, we observe that average speed is a significant factor affecting BC emissions and is well correlated with distance-based emissions (R(2) = 0.71). Therefore, the average fuel-based and distance-based BC emissions on congested roads are 40 and 125% higher than those on freeways. These results should be taken into consideration in future emission inventory studies.

  1. Development of molecular marker source profiles for emissions from on-road gasoline and diesel vehicle fleets.

    PubMed

    Lough, Glynis C; Christensen, Charles G; Schauer, James J; Tortorelli, James; Mani, Erin; Lawson, Douglas R; Clark, Nigel N; Gabele, Peter A

    2007-10-01

    As part of the Gasoline/Diesel PM Split Study, relatively large fleets of gasoline vehicles and diesel vehicles were tested on a chassis dynamometer to develop chemical source profiles for source attribution of atmospheric particulate matter in California's South Coast Air Basin. Gasoline vehicles were tested in cold-start and warm-start conditions, and diesel vehicles were tested through several driving cycles. Tailpipe emissions of particulate matter were analyzed for organic tracer compounds, including hopanes, steranes, and polycyclic aromatic hydrocarbons. Large intervehicle variation was seen in emission rate and composition, and results were averaged to examine the impacts of vehicle ages, weight classes, and driving cycles on the variation. Average profiles, weighted by mass emission rate, had much lower uncertainty than that associated with intervehicle variation. Mass emission rates and elemental carbon/organic carbon (EC/OC) ratios for gasoline vehicle age classes were influenced most by use of cold-start or warm-start driving cycle (factor of 2-7). Individual smoker vehicles had a large range of mass and EC/OC (factors of 40 and 625, respectively). Gasoline vehicle age averages, data on vehicle ages and miles traveled in the area, and several assumptions about smoker contributions were used to create emissions profiles representative of on-road vehicle fleets in the Los Angeles area in 2001. In the representative gasoline fleet profiles, variation was further reduced, with cold-start or warm-start and the representation of smoker vehicles making a difference of approximately a factor of two in mass emission rate and EC/OC. Diesel vehicle profiles were created on the basis of vehicle age, weight class, and driving cycle. Mass emission rate and EC/OC for diesel averages were influenced by vehicle age (factor of 2-5), weight class (factor of 2-7), and driving cycle (factor of 10-20). Absolute and relative emissions of molecular marker compounds showed

  2. Measuring discharge with ADCPs: Inferences from synthetic velocity profiles

    USGS Publications Warehouse

    Rehmann, C.R.; Mueller, D.S.; Oberg, K.A.

    2009-01-01

    Synthetic velocity profiles are used to determine guidelines for sampling discharge with acoustic Doppler current profilers (ADCPs). The analysis allows the effects of instrument characteristics, sampling parameters, and properties of the flow to be studied systematically. For mid-section measurements, the averaging time required for a single profile measurement always exceeded the 40 s usually recommended for velocity measurements, and it increased with increasing sample interval and increasing time scale of the large eddies. Similarly, simulations of transect measurements show that discharge error decreases as the number of large eddies sampled increases. The simulations allow sampling criteria that account for the physics of the flow to be developed. ?? 2009 ASCE.

  3. Carbon Dioxide and Methane Measurement on Urban Roads in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Xu, J.; Hu, N.; Lee, X.

    2015-12-01

    In recent years, cities have become more and more reliant on natural gas as a main source of clean energy to reduce air pollution. One unintended consequence, however, is increase in CH4 emissions which contribute to global warming. In Nanjing, the capital city of Jiangsu Province in the Yangtze River Delta, China, almost all taxis and about 30 percent buses are now powered by natural gas, and an increasing number of trucks are switching to natural gas as energy source. However, CH4 emissions from road vehicles have so far been ignored by the Intergovernmental Panel on Climate Change (IPCC) inventory method. In this study, we determined the CH4:CO2 emissions ratio for taxi and other vehicles, using the atmospheric CH4 and CO2 concentrations measured on three main streets in the city of Nanjing. The CH4:CO2 emissions ratio for all vehicles was 0.0088 mol mol-1 on average, a little higher than the ratio measured at the city scale (0.0079 mol mol-1). But the ratio for taxi was much high, with a mean and a median value of 0.014 and 0.0094 mol mol-1, respectively, and a maximum of 0.070 mol mol-1. This atmospheric estimate of the CH4:CO2 emissions ratio for vehicles is in broad agreement with measurement on board of vehicles observing directly tailpipe emission found in the literature. Omission of on road vehicle emission is likely one reason for the 67.3% underestimation Nanjing's methane emissions using the IPCC method (Shen et al. 2014. Advances in Atmospheric Sciences, 31: 1343-1352).

  4. EPA GHG certification of medium- and heavy-duty vehicles: Development of road grade profiles representative of US controlled access highways

    DOE PAGES

    Wood, Eric; Duran, Adam; Kelly, Kenneth

    2016-09-27

    In collaboration with the U.S. Environmental Protection Agency and the U.S. Department of Energy, the National Renewable Energy Laboratory has conducted a national analysis of road grade characteristics experienced by U.S. medium- and heavy-duty trucks on controlled access highways. These characteristics have been developed using TomTom's commercially available street map and road grade database. Using the TomTom national road grade database, national statistics on road grade and hill distances were generated for the U.S. network of controlled access highways. These statistical distributions were then weighted using data provided by the U.S. Environmental Protection Agency for activity of medium- and heavy-dutymore » trucks on controlled access highways. Here, the national activity-weighted road grade and hill distance distributions were then used as targets for development of a handful of sample grade profiles potentially to be used in the U.S. Environmental Protection Agency's Greenhouse Gas Emissions Model certification tool as well as in dynamometer testing of medium- and heavy-duty vehicles and their powertrains.« less

  5. EPA GHG certification of medium- and heavy-duty vehicles: Development of road grade profiles representative of US controlled access highways

    SciTech Connect

    Wood, Eric; Duran, Adam; Kelly, Kenneth

    2016-09-27

    In collaboration with the U.S. Environmental Protection Agency and the U.S. Department of Energy, the National Renewable Energy Laboratory has conducted a national analysis of road grade characteristics experienced by U.S. medium- and heavy-duty trucks on controlled access highways. These characteristics have been developed using TomTom's commercially available street map and road grade database. Using the TomTom national road grade database, national statistics on road grade and hill distances were generated for the U.S. network of controlled access highways. These statistical distributions were then weighted using data provided by the U.S. Environmental Protection Agency for activity of medium- and heavy-duty trucks on controlled access highways. Here, the national activity-weighted road grade and hill distance distributions were then used as targets for development of a handful of sample grade profiles potentially to be used in the U.S. Environmental Protection Agency's Greenhouse Gas Emissions Model certification tool as well as in dynamometer testing of medium- and heavy-duty vehicles and their powertrains.

  6. Beliefs and behaviours relevant to the road safety effects of profile lane-marking.

    PubMed

    Hatfield, Julie; Murphy, Susanne; Job, R F Soames

    2008-11-01

    Audio-tactile lane-marking (ATLM) is designed to alert inattentive drivers when they deviate from their lane, and appears to reduce crashes. Research into cognitive-behavioural mechanisms underlying, or possibly undermining, the efficacy of ATLM, is limited. We surveyed 775 randomly selected drivers (42% female, up to 75+ years) regarding the profile line-marking (PLM) employed in Australia (and in some European countries). Respondents perceived advantages of PLM in terms of lane-keeping and visibility. Respondents reported avoiding edge-line PLM, so that it may result in driving too close to untreated centre-line. Findings generally allayed concerns, on the basis of risk homeostasis theory, that PLM may increase risky driving. Perceived efficacy of PLM was not associated with increased drink-driving or speeding, but was associated with increased driving while fatigued. Findings suggest that the efficacy of PLM may be increased by employing PLM on both edge- and centre-lines, by exaggerating the audio-tactile effects of PLM that cause drivers to avoid it, and by discouraging the belief that it is safe to drive while fatigued when PLM is present.

  7. A surface-profile measuring system for synchrotron radiation mirrors

    SciTech Connect

    Sato, S. ); Higashi, Y. ); Haya, S.; Otsuka, M.; Yamamoto, H. )

    1992-01-01

    The optical head for a new surface-profile measuring system was constructed on the basis of the Twyman--Green interferometer with heterodyne phase detection method. Stability in optical path difference (OPD) was within 2 nm for a fixed point under the well shielded condition. The measured OPD map at the null fringe condition shows the possibility for direct or segment measurement method of aspheric and/or large size mirrors in SR optics. Based on experiments, a new surface-profile measuring system by phase measurement interferometry and segment method is designed. Designed features of the system are briefly reported.

  8. On-road and wind-tunnel measurement of motorcycle helmet noise.

    PubMed

    Kennedy, J; Carley, M; Walker, I; Holt, N

    2013-09-01

    The noise source mechanisms involved in motorcycling include various aerodynamic sources and engine noise. The problem of noise source identification requires extensive data acquisition of a type and level that have not previously been applied. Data acquisition on track and on road are problematic due to rider safety constraints and the portability of appropriate instrumentation. One way to address this problem is the use of data from wind tunnel tests. The validity of these measurements for noise source identification must first be demonstrated. In order to achieve this extensive wind tunnel tests have been conducted and compared with the results from on-track measurements. Sound pressure levels as a function of speed were compared between on track and wind tunnel tests and were found to be comparable. Spectral conditioning techniques were applied to separate engine and wind tunnel noise from aerodynamic noise and showed that the aerodynamic components were equivalent in both cases. The spectral conditioning of on-track data showed that the contribution of engine noise to the overall noise is a function of speed and is more significant than had previously been thought. These procedures form a basis for accurate experimental measurements of motorcycle noise.

  9. Evaluation of mobile emissions contributions to Mexico City's emissions inventory using on-road and cross-road emission measurements and ambient data

    NASA Astrophysics Data System (ADS)

    Zavala, M.; Herndon, S. C.; Wood, E. C.; Onasch, T. B.; Knighton, W. B.; Marr, L. C.; Kolb, C. E.; Molina, L. T.

    2009-09-01

    Mobile emissions represent a significant fraction of the total anthropogenic emissions burden in the Mexico City Metropolitan Area (MCMA) and, therefore, it is crucial to use top-down techniques informed by on-road exhaust measurements to evaluate and improve traditional bottom-up official emissions inventory (EI) for the city. We present the measurements of on-road fleet-average emission factors obtained using the Aerodyne mobile laboratory in the MCMA in March 2006 as part of the MILAGRO/MCMA-2006 field campaign. A comparison of our on-road emission measurements with those obtained in 2003 using essentially the same measurement techniques and analysis methods indicates that, in the three year span, NO emission factors remain within the measured variability ranges whereas emission factors of aldehydes and aromatics species were reduced for all sampled driving conditions. We use a top-down fuel-based approach to evaluate the mobile emissions from the gasoline fleet estimated in the bottom-up official 2006 MCMA mobile sources. Within the range of measurement uncertainties, we found probable slight overpredictions of mean EI estimates on the order of 20-28% for CO and 14-20% for NO. However, we identify a probable EI discrepancy of VOC mobile emissions between 1.4 and 1.9; although estimated benzene and toluene mobile emissions in the inventory seem to be well within the uncertainties of the corresponding emissions estimates. Aldehydes mobile emissions in the inventory, however, seem to be underpredicted by factors of 3 for HCHO and 2 for CH3CHO. Our on-road measurement-based estimate of annual emissions of organic mass from PM1 particles suggests a severe underprediction (larger than a factor of 4) of PM2.5 mobile emissions in the inventory. Analyses of ambient CO, NOx and CO/NOx concentration trends in the MCMA indicate that the early morning ambient CO/NOx ratio has decreased at a rate of about 1.9 ppm/ppm/year over the last two decades due to reductions in CO

  10. Evaluation of mobile emissions contributions to Mexico City's emissions inventory using on-road and cross-road emission measurements and ambient data

    NASA Astrophysics Data System (ADS)

    Zavala, M.; Herndon, S. C.; Wood, E. C.; Onasch, T. B.; Knighton, W. B.; Kolb, C. E.; Molina, L. T.

    2009-03-01

    Mobile emissions represent a significant fraction of the total anthropogenic emissions burden in the Mexico City Metropolitan Area (MCMA) and, therefore, it is crucial to use top-down techniques informed by on-road exhaust measurements to evaluate and improve traditional bottom-up official emissions inventory (EI) for the city. We present the measurements of on-road fleet-average emission factors obtained using the Aerodyne mobile laboratory in the MCMA in March 2006 as part of the MILAGRO/MCMA-2006 field campaign. A comparison of our on-road emission measurements with those obtained in 2003 using essentially the same measurement techniques and analysis methods indicates that, in the three year span, NO emission factors remain within the measured variability ranges whereas emission factors of aldehydes and aromatics species were reduced for all sampled driving conditions. We use a top-down fuel-based approach to evaluate the mobile emissions from the gasoline fleet estimated in the bottom-up official 2006 MCMA mobile sources. Within the range of measurement uncertainties, we found probable slight overpredictions of mean EI estimates on the order of 20-28% for CO and 14-20% for NO. However, we identify a probable EI underprediction of VOC mobile emissions between 1.4 and 1.9; although estimated benzene and toluene mobile emissions in the inventory seem to be well within the uncertainties of the corresponding emissions estimates. Aldehydes mobile emissions in the inventory, however, seem to be under predicted by factors of 3 for HCHO and 2 for CH3CHO. Our on-road measurement based estimate of annual emissions of organic mass from PM1 particles suggests a severe underprediction (larger than a factor of 4) of PM2.5 mobile emissions in the inventory. Analyses of ambient CO, NOx and CO/NOx concentration trends in the MCMA indicate that the early morning ambient CO/NOx ratio has decreased at a rate of about 1.9 ppm/ppm/year over the last two decades and that the decrease

  11. Influence of tyre-road contact model on vehicle vibration response

    NASA Astrophysics Data System (ADS)

    Múčka, Peter; Gagnon, Louis

    2015-09-01

    The influence of the tyre-road contact model on the simulated vertical vibration response was analysed. Three contact models were compared: tyre-road point contact model, moving averaged profile and tyre-enveloping model. In total, 1600 real asphalt concrete and Portland cement concrete longitudinal road profiles were processed. The linear planar model of automobile with 12 degrees of freedom (DOF) was used. Five vibration responses as the measures of ride comfort, ride safety and dynamic load of cargo were investigated. The results were calculated as a function of vibration response, vehicle velocity, road quality and road surface type. The marked differences in the dynamic tyre forces and the negligible differences in the ride comfort quantities were observed among the tyre-road contact models. The seat acceleration response for three contact models and 331 DOF multibody model of the truck semi-trailer was compared with the measured response for a known profile of test section.

  12. Extended time-to-collision measures for road traffic safety assessment.

    PubMed

    Minderhoud, M M; Bovy, P H

    2001-01-01

    This article describes two new safety indicators based on the time-to-collision notion suitable for comparative road traffic safety analyses. Such safety indicators can be applied in the comparison of a do-nothing case with an adapted situation, e.g. the introduction of intelligent driver support systems. In contrast to the classical time-to-collision value, measured at a cross section, the improved safety indicators use vehicle trajectories collected over a specific time horizon for a certain roadway segment to calculate the overall safety indicator value. Vehicle-specific indicator values as well as safety-critical probabilities can easily be determined from the developed safety measures. Application of the derived safety indicators is demonstrated for the assessment of the potential safety impacts of driver support systems from which it appears that some Autonomous Intelligent Cruise Control (AICC) designs are more safety-critical than the reference case without these systems. It is suggested that the indicator threshold value to be applied in the safety assessment has to be adapted when advanced AICC-systems with safe characteristics are introduced.

  13. Profile measurement taken with liquid-crystal gratings.

    PubMed

    Kakunai, S; Sakamoto, T; Iwata, K

    1999-05-01

    Profile measurement taken with liquid-crystal gratings and a phase-shifting technique is proposed, and its effectiveness is verified by experiment. The surface profile is obtained by measurement of the phase distributions of the sinusoidal gratings deformed by an object's surface. The liquid-crystal grating gives an accurate phase shift, an arbitrary projection pitch, and a constant surface brightness compared with conventional gratings such as a laser interference fringe grating and a Ronchi grating. Therefore a flexible measuring system may be developed with it. Two gratings with different pitches are used to measure an object with large steps. A two-color projection system can be used to produce such gratings simultaneously. Locally varying reflectivity on a surface can also be compensated by adjustment of the color component of the projected grating with a liquid-crystal grating. Thus the contrast in the projected grating can be made uniform, and a good profile measurement can be accomplished.

  14. New radiosonde techniques to measure radiation profiles through the atmosphere

    NASA Astrophysics Data System (ADS)

    Kräuchi, Andreas; Philipona, Rolf; Romanens, Gonzague; Levrat, Gilbert

    2013-04-01

    Solar and thermal radiation fluxes are usually measured at Earth's surface and at the top of the atmosphere. Here we show radiosonde techniques that allow measuring radiation flux profiles and the radiation budget from the Earth's surface to above 30 km in the stratosphere. During two-hour flights solar shortwave and thermal longwave irradiance, downward and upward, is measured with four individual sensors at one-second resolution, along with standard PTU radiosonde profiles. Daytime and nighttime shortwave and longwave radiation measurements, and 24 hours surface measurements, allow determining radiation budget- and total net radiation profiles through the atmosphere. We use a double balloon technique to prevent pendulum motion during the ascent and to keep the sonde as horizontal as possible. New techniques using auto controlled airplanes are now investigated to retrieve the sonde after release at a certain altitude and to land it if possible at the launch station.

  15. Removing Traffic Emissions from CO2 Time Series Measured at a Tall Tower Using on-Road Measurements and WRF-Stilt Transport Modeling

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Rella, C.; Goeckede, M.; Hanson, C. V.; Yang, Z.; Law, B. E.

    2014-12-01

    In recent years, measurements of atmospheric carbon dioxide with high precision and accuracy have become increasingly important for climate change research, in particular to inform terrestrial biosphere models. Anthropogenic carbon dioxide emissions from fossil fuel burning have long been recognized to contribute a significant portion of the carbon dioxide in the atmosphere. Here, we present an approach to remove the traffic related carbon dioxide emissions from mole fractions measured at a tall tower by using the corresponding carbon monoxide measurements in combination with footprint analyses and transport modeling. This technique improves the suitability of the CO2 data to be used in inverse modeling approaches of atmosphere-biosphere exchange that do not account for non-biotic portions of CO2. In our study region in Oregon, road traffic emissions are the biggest source of anthropogenic carbon dioxide and carbon monoxide. A three-day mobile campaign covering 1700 km of roads in northwestern Oregon was performed during summer of 2012 using a laser-based Cavity Ring Down Spectrometer. The mobile measurements incorporated different roads including main highways, urban streets, and back-roads, largely within the typical footprint of a tall CO2 observation tower in Oregon's Willamette Valley. For the first time, traffic related CO:CO2 emission ratios were measured directly at the sources during an on-road campaign under a variety of different driving conditions. An average emission ratio of 7.43 (±1.80) ppb CO per ppm CO2 was obtained for the study region and applied to separate the traffic related portion of CO2 from the mole fraction time series. The road traffic related portion of the CO2 mole fractions measured at the tower site reached maximum values from 9.8 to 12 ppm, depending on the height above the surface, during summer 2012.

  16. Method and apparatus for measuring irradiated fuel profiles

    DOEpatents

    Lee, David M.

    1982-01-01

    A new apparatus is used to substantially instantaneously obtain a profile of an object, for example a spent fuel assembly, which profile (when normalized) has unexpectedly been found to be substantially identical to the normalized profile of the burnup monitor Cs-137 obtained with a germanium detector. That profile can be used without normalization in a new method of identifying and monitoring in order to determine for example whether any of the fuel has been removed. Alternatively, two other new methods involve calibrating that profile so as to obtain a determination of fuel burnup (which is important for complying with safeguards requirements, for utilizing fuel to an optimal extent, and for storing spent fuel in a minimal amount of space). Using either of these two methods of determining burnup, one can reduce the required measurement time significantly (by more than an order of magnitude) over existing methods, yet retain equal or only slightly reduced accuracy.

  17. Density measurements of road overlays samples with nuclear gauges and a Step Frequency Radar

    NASA Astrophysics Data System (ADS)

    Fauchard, C.; Li, B.; Kadi, M.

    2012-04-01

    density measured by nuclear gauges. Nevertheless, the dimensions of slabs limit the results to a small surface compared to the nuclear results and improvements are needed to adapt the method to cylindrical cores samples. These two drawbacks are not encountered on roads and we currently carry out some experiments for in-place density measurement with the Step Frequency Radar. Fauchard C., Li B., Mazari B., "Estimation of compaction of bituminous mixtures at microwave frequencies", NDTCE'09, Nantes, France, Juillet 2009

  18. An autonomous profiler for near surface temperature measurements

    NASA Astrophysics Data System (ADS)

    Ward, Brian; Minnett, Peter J.

    This paper describes the profiling instrument SkinDeEP (Skin Depth Experimental Profiler), which measures the temperature of the water column from a depth of about 6 meters to the surface with high resolution thermometers. The instrument operates in an autonomous mode as it has the capability to change buoyancy by inflating a neoprene bladder attached to the body of the profiler. Measurements are recorded only during the ascending phase of the profile so as to minimize disturbances at the surface. Results from deployment of the profiler show strong temperature gradients within the bulk waters under conditions of high insolation. These data were compared to the skin temperatures as measured by the M-AERI (Marine—Atmospheric Emitted Radiance Interferometer), a high accuracy infrared spectroradiometer. The corresponding bulk-skin temperature differences, ΔT, were shown to have strong dependence on the depth of the bulk measurement during the daytime with low wind speeds, but at higher wind speeds, the depth dependence vanishes. One set of profiles under nighttime conditions is also presented, showing the presence of overturning and thus a heterogeneous temperature structure within the bulk.

  19. A New Rapid Method for Measuring the Vertical Head Profile.

    PubMed

    Keller, Carl

    2017-03-01

    This study describes a new technique for measuring the head profile in a geologic formation. The technique provides rapid, low cost information on the depth of water-producing zones and aquitards in heterogeneous aquifers, yielding estimates of hydraulic heads in each zone while identifying any potential for cross contamination between zones. The measurements can be performed in a typical borehole in just a few hours. The procedure uses both the continuous transmissivity profile obtained by the installation (eversion) of a flexible borehole liner into an open borehole and the subsequent removal (inversion) of the same liner from the borehole. The method is possible because of the continuous transmissivity profile (T profile described by Keller et al. 2014) obtained by measuring the rate of liner eversion under a constant driving head. The hydraulic heads of producing zones are measured using the reverse head profile (RHP) method (patent no. 9,008,971) based on a stepwise inversion of the borehole liner. As each interval of the borehole is uncovered by inversion of the liner, the head beneath the liner is allowed to equilibrate to a steady-state value. The individual hydraulic heads contributing to each measurement are calculated using the measured transmissivity for each zone. Application of the RHP method to a sedimentary bedrock borehole in New Jersey verified that it reproduced the head distribution obtained the same day in the same borehole instrumented with a multilevel sampling system.

  20. Road grade quantification based on global positioning system data obtained from real-world vehicle fuel use and emissions measurements

    NASA Astrophysics Data System (ADS)

    Yazdani Boroujeni, Behdad; Frey, H. Christopher

    2014-03-01

    Real-world vehicle fuel use and emission rates depend on engine load, which is quantified in terms of Vehicle Specific Power (VSP). VSP depends on vehicle speed, acceleration, and road grade. There is not a standard method for measuring road grade from a moving vehicle. A method for quantifying grade is evaluated based on statistical analysis of multiple runs using low cost consumer grade Global Positioning System (GPS) receivers with in-built Barometric Altimeter (GPS/BA). The average grade precision is ±0.71, ±0.46, and ±0.31 percentage points, for sample sizes of 9, 18, and 36 GPS/BA runs, respectively, among 2213 individual 0.08 km road segments. In addition, 4 sets of repeated measurements were performed on the same routes using a high cost, high accuracy Differential GPS (DGPS). Both sets of GPS-based grade estimates compared well with those derived from LIght Detection And Ranging (LIDAR) data. GPS/BA and DGPS grade estimates were similar, except for high magnitude grades of 8-10 percent for which DGPS estimates are more accurate. DGPS is more sensitive to loss of signal; thus, a hybrid approach for substituting GPS/BA data for missing DGPS data at specific locations along a route is demonstrated. The local and overall effects of road grade on fuel use and emission rates are investigated for an example light duty gasoline vehicle.

  1. Compact Instrument for Measuring Profile of a Light Beam

    NASA Technical Reports Server (NTRS)

    Papanyan, Valeri

    2004-01-01

    The beamviewer is an optical device designed to be attached to a charge-coupled-device (CCD) image detector for measuring the spatial distribution of intensity of a beam of light (the beam profile ) at a designated plane intersecting the beam. The beamviewer-and-CCD combination is particularly well suited for measuring the radiant- power profile (for a steady beam) or the radiant-energy profile (for a pulsed beam) impinging on the input face or emerging from the output face of a bundle of optical fibers. The beamviewer and-CCD combination could also be used as a general laboratory instrument for profiling light beams, including beams emerging through small holes and laser beams in free space.

  2. Measuring of Traction and Speed Characteristics as Well as of Fuel Economy of a Car in Road Conditions

    NASA Astrophysics Data System (ADS)

    Krivtsov, Sergey N.; Syrbakov, Andrey P.; Korchuganova, Marina A.

    2016-08-01

    This article is devoted to the identification of traction and speed characteristics as well as of fuel economy of motor vehicles in road conditions. Among common variants of measuring of the above stated values, the preference was given to the immediate gaining of factors by means of a computer-aided measuring system. There is a theoretical justification given to the suggested approach as well as methods and results allowing to provide a practically sufficient solution accuracy of the problem.

  3. Edge profile measurements using Thomson scattering on the KSTAR tokamak

    SciTech Connect

    Lee, J. H. Ko, W. H.; Oh, S.; Lee, W. R.; Kim, K. P.; Lee, K. D.; Jeon, Y. M.; Yoon, S. W.; Cho, K. W.; Narihara, K.; Yamada, I.; Yasuhara, R.; Hatae, T.; Yatsuka, E.; Ono, T.; Hong, J. H.

    2014-11-15

    In the KSTAR Tokamak, a “Tangential Thomson Scattering” (TTS) diagnostic system has been designed and installed to measure electron density and temperature profiles. In the edge system, TTS has 12 optical fiber bundles to measure the edge profiles with 10–15 mm spatial resolution. These 12 optical fibers and their spatial resolution are not enough to measure the pedestal width with a high accuracy but allow observations of L-H transition or H-L transitions at the edge. For these measurements, the prototype ITER edge Thomson Nd:YAG laser system manufactured by JAEA in Japan is installed. In this paper, the KSTAR TTS system is briefly described and some TTS edge profiles are presented and compared against the KSTAR Charge Exchange Spectroscopy and other diagnostics. The future upgrade plan of the system is also discussed in this paper.

  4. Lower atmospheric temperature profile measurements using a Raman lidar

    NASA Technical Reports Server (NTRS)

    Melfi, S. H.; Whiteman, D.

    1986-01-01

    A Raman lidar system was used to measure the temperature profile of the upper troposphere and lower stratosphere. The system consists of a tripled Nd-YAG laser and a 1.5 meter diameter telescope. Two photomultipliers are used at the output of the telescope to allow for measurements at both the laser wavelength and at the Raman shifted wavelength due to atmospheric nitrogen. The signal from the photomultipliers is recorded as photon counts in 1 microsec bins. The results of a number of laser shots are summed together to provide atmospheric returns which have acceptable signal to noise characteristics. Measurements of the Raman nitrogen return were acquired up to an altitude in excess of 20 km. Temperature profiles were retrieved from the attenuation corrected Raman nitrogen return assuming the atmosphere to be in hydrostatic equilibrium and using the ideal gas law. Retrieved temperature profiles are shown compared with independent temperature measurements.

  5. Differential absorption lidar measurements of atmospheric temperature and pressure profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. L.

    1981-01-01

    The theory and methodology of using differential absorption lidar techniques for the remote measurement of atmospheric pressure profiles, surface pressure, and temperature profiles from ground, air, and space-based platforms are presented. Pressure measurements are effected by means of high resolution measurement of absorption at the edges of the oxygen A band lines where absorption is pressure dependent due to collisional line broadening. Temperature is assessed using measurements of the absorption at the center of the oxygen A band line originating from a quantum state with high ground state energy. The population of the state is temperature dependent, allowing determination of the temperature through the Boltzmann term. The results of simulations of the techniques using Voigt profile and variational analysis are reported for ground-based, airborne, and Shuttle-based systems. Accuracies in the 0.5-1.0 K and 0.1-0.3% range are projected.

  6. A new method for comparing and matching snow profiles, application for profiles measured by penetrometers

    NASA Astrophysics Data System (ADS)

    Hagenmuller, Pascal; Pilloix, Thibault

    2016-05-01

    Hardness has long been recognized as a good predictor of snow mechanical properties and therefore as an indicator of snowpack stability at the measured point. Portable digital penetrometers enable the amassing of a large number of snow stratigraphic hardness profiles. Numerous probings can be performed to assess the snowpack spatial variability and to compensate for measurement errors. On a decameter scale, continuous internal layers are typically present in the snowpack. The variability in stratigraphic features observed in the measurement set mainly originates from the measured variations in internal layer thickness due to either a real heterogeneity in the snowpack or to errors in depth measurement. For the purpose of real time analysis of snowpack stability, a great amount of data collected by digital penetrometers must be quickly synthesized into a characterization representative of the test site. This paper presents a method with which to match and combine several hardness profiles by automatically adjusting their layer thicknesses. The objectives are to synthesize the information collected by several profiles into one representative profile of the measurement set, disentangle information about hardness and depth variabilities, and quantitatively compare hardness profiles measured by different penetrometers. The method was tested by using co-located hardness profiles measured with three different penetrometers --- the snow micropenetrometer (SMP), the Avatech SP1 and the ramsonde --- during the winter 2014-2015 at two sites in the French Alps. When applied to the SMP profiles of both sites, the method reveals a low spatial variability of hardness properties, which is usually masked by depth variations. The developed algorithm is further used to evaluate the new portable penetrometer SP1. The hardness measured with this instrument is shown to be in good agreement with the SMP measurements, but errors in the recovered depth are notable, with a standard

  7. Acoustic temperature profile measurement technique for large combustion chambers

    NASA Technical Reports Server (NTRS)

    Venkateshan, S. P.; Shakkottai, P.; Kwack, E. Y.; Back, L. H.

    1989-01-01

    Measurement of times of flight of sound waves can be used to determine temperatures in a gas. This paper describes a system, based on this principle, that is capable of giving the temperature profile in a nonisothermal gas volume, for example, prevalent in a large furnace. The apparatus is simple, rugged, accurate, and capable of being automated for process control applications. It is basically an acoustic waveguide where the outside temperature profile is transferred to a chosen gas contained inside the guide.

  8. The Priority of Road Rehabilitation in Karanganyar Regency Using IRI Estimation from Roadroid

    NASA Astrophysics Data System (ADS)

    Achmadi, F.; Suprapto, M.; Setyawan, A.

    2017-02-01

    The IRI (International Roughness Index) is a road roughness index commonly obtained from measured longitudinal road profiles. This is one of the functional performance a surface of road pavement. Therefore, needs to be done evaluation and monitoring periodically to getting priority of road rehabilitation right on target. The IRI standard has commonly been used worldwide for evaluating road system. The Roadroid is an application to measure road quality with a website to view road quality. It is designed for Android smartphones, so we can easily measure and monitor the road and also use the camera for GPS-tagged photo. By using the built-in vibration sensor in smartphones, it is possible to collect IRI value which can be an indicator road conditions. This study attempts to explain the priority of road rehabilitation in Karanganyar Regency. The location of the study focused on a collector street (primary, secondary and locally road). The result of IRI estimation will be combined with other aspects that influences; land use, policy, the connectivity of road and traffic average daily. Based on IRI estimation using Roadroid, the road conditions in Karanganyar Regency can be described 59,60% were good (IRI<4,5) 21,30% fair (4,512).

  9. Absolute beam emittance measurements at RHIC using ionization profile monitors

    SciTech Connect

    Minty, M.; Connolly, R; Liu, C.; Summers, T.; Tepikian, S.

    2014-08-15

    In the past, comparisons between emittance measurements obtained using ionization profile monitors, Vernier scans (using as input the measured rates from the zero degree counters, or ZDCs), the polarimeters and the Schottky detectors evidenced significant variations of up to 100%. In this report we present studies of the RHIC ionization profile monitors (IPMs). After identifying and correcting for two systematic instrumental errors in the beam size measurements, we present experimental results showing that the remaining dominant error in beam emittance measurements at RHIC using the IPMs was imprecise knowledge of the local beta functions. After removal of the systematic errors and implementation of measured beta functions, precise emittance measurements result. Also, consistency between the emittances measured by the IPMs and those derived from the ZDCs was demonstrated.

  10. Characteristics of typical non-road machinery emissions in China by using portable emission measurement system.

    PubMed

    Fu, Mingliang; Ge, Yunshan; Tan, Jianwei; Zeng, Tao; Liang, Bin

    2012-10-15

    Non-road machinery, especially construction equipment could be an important pollutant source of the deterioration in air quality in Chinese urban areas due to its large quantity and to the absence of stringent emission requirements. In this study, emission tests were performed on 12 excavators and 8 wheel loaders by using portable emission measurement system (PEMS) to determine their emission characteristics. The typical operating modes were categorized as idling mode, moving mode and working mode. Compared with those during idling and moving modes, the average time-based emission factors during working mode of HC were 2.61 and 1.27 times higher, NO(x) were 3.66 and 1.36 times higher, and PM were 4.05 and 1.95 times higher, respectively. Under all conditions, categories of the measured emissions increased with the rise in engine power. Compared with those of Stage I emission standard equipment, gaseous emissions and PM emitted from Stage II emission standard equipment were lower. The results indicated that, from Stage I to Stage II, the average reductions of HC, NO(x) and PM were 56%, 37% and 29% for the working mode, respectively. Those results also demonstrated the effectiveness of emission control regulation and the improvement of emission control technology. The data and tests show that the longer the accumulated working hours, the higher HC and NO(x) average fuel-based emission factors are. The emissions measured from the construction vehicles employed in this study were higher than the data collected in previous studies, which shows that it is critical for the government to put into effect more stringent emission regulations to further improve the air quality in Chinese urban areas.

  11. Dust dynamics in off-road vehicle trails: Measurements on 16 arid soil types, Nevada, USA.

    PubMed

    Goossens, Dirk; Buck, Brenda

    2009-08-01

    Soil analyses and measurements with the Portable In Situ Wind Erosion Laboratory (PI-SWERL) were conducted on 16 soil types in an area heavily affected by off-road vehicle (ORV) driving. Measurements were performed in ORV trails as well as on undisturbed terrain to investigate how ORV driving affects the vulnerability of a soil to emit PM10 (particles<10microm), during the driving as well as during episodes of wind erosion. Particular attention is paid to how the creation of a new trail affects those properties of the topsoil that determine its capability to emit PM10. Also, recommendations are given for adequate management of ORV-designed areas. The type of surface (sand, silt, gravel, drainage) is a key factor with respect to dust emission in an ORV trail. Trails in sand, defined in this study as the grain size fraction 63-2000microm, show higher deflation thresholds (the critical wind condition at which wind erosion starts) than the surrounding undisturbed soil. Trails in silt (2-63microm) and in drainages, on the other hand, have lower deflation thresholds than undisturbed soil. The increase in PM10 emission resulting from the creation of a new ORV trail is much higher for surfaces with silt than for surfaces with sand. Also, the creation of a new trail in silt decreases the supply limitation in the top layer: the capacity of the reservoir of emission-available PM10 increases. For sand the situation is reversed: the supply limitation increases, and the capacity of the PM10 reservoir decreases. Finally, ORV trails are characterized by a progressive coarsening of the top layer with time, but the speed of coarsening is much lower in trails in silt than in trails in sand or in drainages. The results of this study suggest that, to minimize emissions of PM10, new ORV fields should preferably be designed on sandy terrain rather than in silt areas or in drainages.

  12. Multichannel detectors for profile measurements in clinical proton fields

    SciTech Connect

    Nichiporov, Dmitri; Solberg, Keith; Hsi Wen; Wolanski, Mark; Mascia, Anthony; Farr, Jonathan; Schreuder, Andries

    2007-07-15

    Two beam profile measurement detectors have been developed at Indiana University Cyclotron Facility to address the need for a tool to efficiently verify dose distributions created with active methods of clinical proton beam delivery. The multipad ionization chamber (MPIC) has 128 ionization chambers arranged in one plane and is designed to measure lateral profiles in fields up to 38 cm in diameter. The MPIC pads have a 5 mm pitch for fields up to 20 cm in diameter and a 7 mm pitch for larger fields, providing the accuracy of field size determination about 0.5 mm. The multilayer ionization chamber (MLIC) detector contains 122 small-volume ionization chambers stacked at a 1.82 mm step (water-equivalent) for depth-dose profile measurements. The MLIC detector can measure profiles up to 20 cm in depth, and determine the 80% distal dose fall-off with about 0.1 mm precision. Both detectors can be connected to the same set of electronics modules, which comprise the detectors' data acquisition system. The detectors have been tested in clinical proton fields produced with active methods of beam delivery such as uniform scanning and energy stacking. This article describes detector performance tests and discusses their results. The test results indicate that the MPIC and MLIC detectors can be used for dosimetric characterization of clinical proton fields. The detectors offer significant time savings during measurements in actively delivered beams compared with traditional measurements using a water phantom.

  13. Determination of precipitation profiles from airborne passive microwave radiometric measurements

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Hakkarinen, Ida M.; Pierce, Harold F.; Weinman, James A.

    1991-01-01

    This study presents the first quantitative retrievals of vertical profiles of precipitation derived from multispectral passive microwave radiometry. Measurements of microwave brightness temperature (Tb) obtained by a NASA high-altitude research aircraft are related to profiles of rainfall rate through a multichannel piecewise-linear statistical regression procedure. Statistics for Tb are obtained from a set of cloud radiative models representing a wide variety of convective, stratiform, and anvil structures. The retrieval scheme itself determines which cloud model best fits the observed meteorological conditions. Retrieved rainfall rate profiles are converted to equivalent radar reflectivity for comparison with observed reflectivities from a ground-based research radar. Results for two case studies, a stratiform rain situation and an intense convective thunderstorm, show that the radiometrically derived profiles capture the major features of the observed vertical structure of hydrometer density.

  14. Thirty Stage Annular Centrifugal Contactor Thermal Profile Measurements

    SciTech Connect

    David H. Meikrantz; Troy G. Garn; Jack D. Law

    2010-02-01

    A thirty stage 5 cm annular centrifugal contactor cascade has been assembled and tested to obtain thermal profiles during both ambient and heated input conditions of operation. Thermocouples were installed on every stage as well as feed inputs and Real-time data was taken during experiments lasting from two to eight hours at total flow rates of 0.5 to 1.4 liters per minute. Ambient temperature profile results show that only a small amount of heat is generated by the mechanical energy of the contactors. Steady state temperature profiles mimic the ambient temperature of the lab but are higher toward the middle of the cascade. Heated inlet solutions gave temperature profiles with smaller temperature gradients, more driven by the temperature of the inlet solutions than ambient lab temperature. Temperature effects of solution mixing, even at rotor speeds of 4000 rpm, were not measurable.

  15. Use of polarimetry to measure the current profile in MTX

    SciTech Connect

    Nevins, W.M.; Hooper, E.B.; Bernstein, I.B.

    1987-07-14

    It is possible in principle to measure the poloidal magnetic field profile, and hence, the profile of the plasma current measuring the change in the polarization of a sequence of microwave beams that pass through the plasma. Actual measurements of the plasma current profile would be very interesting in connection with Lower-Hybrid (or EC) current drive experiments since this would provide direct information on modification of the current profile by the application of rf power. A microwave polarimetry diagnostic on MTX as part of the microwave interferometer is being considered. This diagnostic would be constructed in collaboration with Neville Luhmann and Tony Peebles at UCLA. The diagnostic would utilize the multicord far-infrared interferometer which is designed to operate at a base wavelength of 0.185 mm. This paper reviews the understanding of the physics issues raised by this diagnostic, concurring with Luhmann and Peebles' conclusion that the polarimetry measurements would be easier at longer wavelengths. An increase of only a factor of 2 in the wavelength would make a substantial difference since the signal to be measured goes as lambda/sup 4/. Hence, in this paper operation at longer wavelengths (0.337 mm and 0.447 mm) in addition to operation at 0.119 and 0.185 mm will be considered.

  16. Pellet ablation and temperature profile measurements in TFTR

    SciTech Connect

    Owens, D.K.; Schmidt, G.L.; Cavallo, A.; Grek, B.; Hulse, R.; Johnson, D.; Mansfield, D.; McNeill, D.; Park, H.; Taylor, G.

    1988-01-01

    Single and multiple deuterium pellets have been injected into a variety of TFTR plasmas, including ohmically heated plasmas with wide range of electron temperatures, neutral beam heated plasmas at several NBI powers and high T/sub e/, post NBI plasmas. Pellet penetration into these plasmas was determined by measuring the pellet speed and duration of the H/sub ..cap alpha..//D/sub ..cap alpha../ light emission during pellet ablation in the plasma. These penetration measurements are compared to the predicted penetration computed using the ablation model developed by Oak Ridge National Laboratory. The plasma density profiles before and after pellet injection are used to estimate the number of particles deposited in the plasma. The plasma particle increase compared to the estimated number of atoms in the pellet yields a measure of the fueling efficiency of pellets in TFTR. The ablation cloud parameters are discussed based on polychromater measurements of the H/sub ..cap alpha..//D/sub ..cap alpha../ line emission from the neutral cloud surrounding the pellet. The electron temperature profile evolution after pellet injection is examined for the case of multiple pellet injection into an ohmically heated plasma. The ORNL pellet ablation code was used to compare measured pellet penetration depths with a theoretical model. The measured input parameters to the model are the electron density and temperature profiles, the neutral beam heating profile, the neutral density profile, the pellet size, pellet speed and pellet composition. The free parameter in the model is the thickness of the neutral cloud surrounding the pellet. This parameter is adjusted to arrive at a reasonable agreement between measured and calculated pellet penetration depths. The output of the model which is directly comparable to experiment is the calculated ablation rate. It is assumed that the broad-band H/sub ..cap alpha..//D/sub ..cap alpha../ emission is proportional to the ablation rate.

  17. Modeling dune response using measured and equilibrium bathymetric profiles

    USGS Publications Warehouse

    Fauver, Laura A.; Thompson, David M.; Sallenger, Asbury H.

    2007-01-01

    Coastal engineers typically use numerical models such as SBEACH to predict coastal change due to extreme storms. SBEACH model inputs include pre-storm profiles, wave heights and periods, and water levels. This study focuses on the sensitivity of SBEACH to the details of pre-storm bathymetry. The SBEACH model is tested with two initial conditions for bathymetry, including (1) measured bathymetry from lidar, and (2) calculated equilibrium profiles. Results show that longshore variability in the predicted erosion signal is greater over measured bathymetric profiles, due to longshore variations in initial surf zone bathymetry. Additionally, patterns in predicted erosion can be partially explained by the configuration of the inner surf zone from the shoreline to the trough, with surf zone slope accounting for 67% of the variability in predicted erosion volumes.

  18. Cost effective determination of vehicle emission factors using on-road measurements

    NASA Astrophysics Data System (ADS)

    Hudda, N.; Fruin, S.; Delfino, R. J.; Sioutas, C.

    2012-07-01

    To evaluate the success of vehicle emissions regulations, trends in both fleet-wide average emissions as well as high-emitter emissions are needed, but it is challenging to capture the full spread of vehicle emission factors (EFs) with chassis dynamometer, tunnel or remote sensing studies. We developed an efficient and cost-effective method using real-time on-road pollutant measurements from a mobile platform, which when linked with real-time traffic data, allows calculating both the average and spread of EFs for light-duty gasoline-powered vehicles (LDV) and heavy-duty diesel-powered vehicles (HDV). This is the first study in California to report EFs under a wide range of real-driving conditions on multiple freeways and it captured much or most of the variability in EFs due to inter-vehicle differences. Fleet average LDV EFs were generally in agreement with most recent studies and an order of magnitude lower than HDV EFs, but over an order of magnitude or more spread was observed for both LDV and HDV EFs. HDV EFs reflected relatively rapid decreases occurring in diesel emissions in Los Angeles/California, and HDV EFs on I-710, a primary route used for goods movement and a focus of additional truck fleet turnover incentives, were lower than on other freeways. When freeway emission rates (ER) were quantified as the product of EF and vehicle activity rates per mile of freeway, ERs were found to be generally similar in magnitude. Despite a two- to three-fold difference in HDV fractions between freeways, higher LDV volumes largely offset this difference.

  19. Optical fan blade profile measurement in rotating turbomachinery

    NASA Astrophysics Data System (ADS)

    Davinson, I.; Mutton, J. E.; Parker, R.; Parnell, A.; Roberts, J. P.

    1990-06-01

    An optical technique for measuring the profile of a fan blade at a range of radial heights in a rotating turbofan by laser triangulation has been developed and tested. The technique has been successfully used on fan rigs and on full size engines. The data thus obtained is now being used to verify the current models of fan blade behavior.

  20. A Comparison of Modeled Pollutant Profiles With MOZAIC Aircraft Measurements

    EPA Science Inventory

    In this study, we use measurements performed under the MOZAIC program to evaluate vertical profiles of meteorological parameters, CO, and ozone that were simulated for the year 2006 with several versions of the WRF/CMAQ modeling system. Model updates, including WRF nudging strate...

  1. Near-Road Mulltipollutant Profiles: Association between Volatile Organic Compounds and a Tracer Gas Surrogate Near a Busy Highway

    EPA Science Inventory

    This research characterizes associations between multiple pollutants in the near-road environment attributed to a roadway line source. It also examines the use of a tracer gas as a surrogate of mobile source pollutants. Air samples were collected in summa canisters along a 300 m ...

  2. Measurement and Modeling of Near Road & Near-Port Air Quality

    EPA Science Inventory

    Air pollution from mobile sources has been identified by numerous organizations as a potential public health concern. Based upon multiple near-road and near-source monitoring studies, both busy roadways and large emission sources at ports can significantly impact local air qualit...

  3. ON-ROAD FACILITY TO MEASURE AND CHARACTERIZE EMISSIONS FROM HEAVY-DUTY DIESEL VEHICLES

    EPA Science Inventory

    In response to lingering concerns about the utility of dynamometer data for mobile source emissions modeling, the U.S. Environmental Protection Agency (EPA) has constructed an on-road test facility to characterize the real-world emissions of heavy-duty trucks. The facility was de...

  4. Evaluating the role of green infrastructures on near-road pollutant dispersion and removal: Modelling and measurement.

    PubMed

    Morakinyo, Tobi Eniolu; Lam, Yun Fat; Hao, Song

    2016-11-01

    To enhance the quality of human life in a rapidly urbanized world plagued with high transportation, the masterful contribution of improved urban and local air quality cannot be overemphasized. In order to reduce human exposure to near-road air pollution, several approaches including the installation of roadside structural barriers especially in open street areas, such as city entrances are being applied. In the present study, the air quality around real world and idealized green infrastructures was investigated by means of numerical simulation and a short field measurement campaign. Fair agreement was found between ENVI-met modelled and measured particulate matter's concentration data around a realistic vegetation barrier indicating a fair representation of reality in the model. Several numerical experiments were conducted to investigate the influence of barrier type (vegetation/hedge and green wall) and dimensions on near-road air quality. The results show different horizontal/vertical patterns and magnitudes of upwind and downwind relative concentration (with and without a barrier) depending on wind condition, barrier type and dimension. Furthermore, an integrated dispersion-deposition approach was employed to assess the impact on air quality of near-road vegetation barrier. At last, recommendations to city and urban planners on the implementation of roadside structural barriers were made.

  5. Lidar method of measurement of atmospheric extinction and ozone profiles

    NASA Technical Reports Server (NTRS)

    Cooney, J. A.

    1986-01-01

    A description of a method of measurement of atmospheric extinction and of ozone profiles by use of the backscatter signal from a monostatic lidar is given. The central feature of the procedure involves a measurement of the ratio of the Raman backscatter returns of both the oxygen and nitrogen atmospheric content. Because the ratio of the number density of both species is known to high accuracy, the measurement itself becomes a measure of the ratio of two transmissions to altitude along with a ratio of the two system constants. The calibration measurement for determining the value of the ratio of the two system constants or electro-optical conversion constants is accomplished by a lidar measurement of identical atmospheric targets while at the same time interchanging the two optical filters in the two optical channels of the receiver. More details of the procedure are discussed. Factoring this calibrated value into the measured O2/N2 profile ratio provides a measured value of the ratio of the two transmissions. Or equivalently, it provides a measurement of the difference of the two extinction coefficients at the O2 and N2 Raman wavelengths as a function of the height.

  6. Measurement uncertainty in the profile detection on solar troughs

    NASA Astrophysics Data System (ADS)

    Sansoni, P.; Fontani, D.; Francini, F.; Toccafondi, S.; Messeri, M.; Coraggia, S.; Mercatelli, L.; Jafrancesco, D.; Sani, E.

    2013-04-01

    Surface profile control on solar concentrators is fundamental since the mirror can be imperfectly manufactured. Optical profilometric measurements are generally addressed to detect small localised irregularities. The paper presents an optical profilometer for linear solar collectors, which are typically employed in thermal plants and more recently in concentrating photovoltaic systems. The profilometer includes a source of parallel rays and a target placed at the collector focal distance. It was developed simulating profile measurements on linear parabolic mirrors; then the method was validated by tests on a practical realisation. The device examines the reflector surface operating on a plane transversal to the linear collector axis; then the detection is repeated displacing the optical profilometer along the collector axis. This experimentation allowed to deeply examine and reduce the errors of the measurement procedure.

  7. Blood viscosity measurement: an integral method using Doppler ultrasonic profiles

    NASA Astrophysics Data System (ADS)

    Flaud, P.; Bensalah, A.

    2005-12-01

    The aim of this work is to present a new indirect and noninvasive method for the measurement of the Newtonian blood viscosity. Based on an integral form of the axial Navier-Stokes equation, this method is particularly suited for in vivo investigations using ultrasonic arterial blood velocity profiles. Its main advantage is that it is applicable to periodic as well as non periodic flows. Moreover it does not require classical filtering methods enhancing signal to noise ratio of the physiological signals. This method only requires the knowledge of the velocimetric data measured inside a spatially and temporally optimized zone of the Doppler velocity profiles. The results obtained using numerical simulation as well as in vitro or in vivo experiments prove the effectiveness of the method. It is then well adapted to the clinical environment as a systematic quasi on-line method for the measurement of the blood viscosity.

  8. Miscellaneous flow discharge measurements collected downstream of Brandon Road Lock and Dam

    USGS Publications Warehouse

    Engel, Frank

    2016-01-01

    Flow discharges were measured in the Des Plaines River from approximately river mile 286 to river mile 284 on October 19–21, 2015 using Teledyne Rio Grande 1200 kHz acoustic Doppler current profilers (ADCP). The data were georeferenced with differential GPS receivers with submeter accuracy. These flow discharge measurements were collected in support of the US Army Corps of Engineers Great Lakes and Mississippi River Interbasin Study (GLMRIS), and were concurrent with a dye-tracing study. The discharge measurements included here were collected in the following locations:immediately upstream, across, and immediately downstream of the NRG Energy Joliet Power Station right descending bank intake (North Intake)immediately upstream, across, and immediately downstream of the NRG Energy Joliet Power Station left descending bank intake (South Intake)immediately upstream, across, and immediately downstream of the NRG Energy Joliet Power Station right descending bank outfall (North Outfall)across the NRG Energy Joliet Power Station left descending bank outfall (South Outfall)ADCP data were collected and initially reviewed in the WinRiver II software. Final review of discharge measurements was completed using the QRev discharge computation and review software (Mueller, 2016). The output from QRev includes an XML document with the processed results, and is included here. A stylesheet (XLS) file is also included to enable easy viewing of the QRev processed results. Note that additional discharge measurements associated with the dye-tracing study were taken at the existing US Geological Gaging Station, Des Plaines River in Lock Channel at Rockdale, IL (05538020), and can be accessed with the links below. A KMZ archive containing the locations of the ADCP shiptracks for each discharge measurement are included, along with an associated metadata file.Mueller, D.S., 2016, QRev—Software for computation and quality assurance of acoustic Doppler current profiler moving

  9. Ultrasoft X-ray Measurements of Impurity Profiles in NSTX*

    NASA Astrophysics Data System (ADS)

    Stutman, D.; Finkenthal, M.; Vero, R.; Fournier, K.; Soukhanovskii, V.; Menard, J.; Bell, M.; Bell, R.; Efthimion, P.; Kaye, S.; Leblanc, B.; Mueller, P.; Synakowski, E.; Maingi, R.; Houlberg, W.

    2001-10-01

    Three arrays of absolute photodiodes and several calibrated spectrometers measure the emission profiles and impurity spectra in the ultrasoft and soft X-ray range in NSTX. A multilayer mirror array for C VI Ly-alpha was also recently installed. Impurity density profiles are estimated by modeling these data with an atomic physics and impurity transport computational package. Many ohmic discharges show evidence for strong impurity peaking, which is reduced by either sawtooth crashes or early Reconnection Events. The peaking is associated with strong 1/1 activity. Peripheral impurity accumulation and cold island formation are observed in ELM-free H-modes.The profiles in center-stack -limited NBI discharges on the other hand, exhibit a pronounced 'well' at r/a <0.5-0.6. Modeling this profile requires a discontinuity in the core particle transport, suggesting the existence of a 'natural' internal barrier. Sheared MHD rotation is often observed at the radius of this discontinuity. Neon injection experiments were performed for a preliminary quantitative estimate of the impurity transport. The time-dependent simulation of the Ne profiles seems to support a large decrease in particle diffusion at about mid-radius. Comparison with neo-classical predictions will be discussed. *Work supported by DoE grant No. DE-FG02-99ER54523

  10. Wire Scanner Beam Profile Measurements for the LANSCE Facility

    SciTech Connect

    Gilpatrick, John D.; Gruchalla, Michael E.; Martinez, Derwin; Pillai, Chandra; Rodriguez Esparza, Sergio; Sedillo, James Daniel; Smith, Brian G.

    2012-05-15

    The Los Alamos Neutron Science Center (LANSCE) is replacing beam profile measurement systems, commonly known as Wire Scanners (WS). Using the principal of secondary electron emission, the WS measurement system moves a wire or fiber across an impinging particle beam, sampling a projected transverse-beam distribution. Because existing WS actuators and electronic components are either no longer manufactured or home-built with antiquated parts, a new WS beam profile measurement is being designed, fabricated, and tested. The goals for these new WS's include using off-the-shelf components while eliminating antiquated components, providing quick operation while allowing for easy maintainability, and tolerating external radioactivation. The WS measurement system consists of beam line actuators, a cable plant, an electronics processor chassis, and software located both in the electronics chassis (National Instruments LabVIEW) and in the Central Control Room (EPICS-based client software). This WS measurement system will measure Hand H{sup +} LANSCE-facility beams and will also measure less common beams. This paper describes these WS measurement systems.

  11. Measurements of Reynolds stress profiles in unstratified tidal flow

    USGS Publications Warehouse

    Stacey, M.T.; Monismith, Stephen G.; Burau, J.R.

    1999-01-01

    In this paper we present a method for measuring profiles of turbulence quantities using a broadband acoustic doppler current profiler (ADCP). The method follows previous work on the continental shelf and extends the analysis to develop estimates of the errors associated with the estimation methods. ADCP data was collected in an unstratified channel and the results of the analysis are compared to theory. This comparison shows that the method provides an estimate of the Reynolds stresses, which is unbiased by Doppler noise, and an estimate of the turbulent kinetic energy (TKE) which is biased by an amount proportional to the Doppler noise. The noise in each of these quantities as well as the bias in the TKE match well with the theoretical values produced by the error analysis. The quantification of profiles of Reynolds stresses simultaneous with the measurement of mean velocity profiles allows for extensive analysis of the turbulence of the flow. In this paper, we examine the relation between the turbulence and the mean flow through the calculation of u*, the friction velocity, and Cd, the coefficient of drag. Finally, we calculate quantities of particular interest in turbulence modeling and analysis, the characteristic lengthscales, including a lengthscale which represents the stream-wise scale of the eddies which dominate the Reynolds stresses. Copyright 1999 by the American Geophysical Union.

  12. Estimating Concentrations of Road-Salt Constituents in Highway-Runoff from Measurements of Specific Conductance

    USGS Publications Warehouse

    Granato, Gregory E.; Smith, Kirk P.

    1999-01-01

    Discrete or composite samples of highway runoff may not adequately represent in-storm water-quality fluctuations because continuous records of water stage, specific conductance, pH, and temperature of the runoff indicate that these properties fluctuate substantially during a storm. Continuous records of water-quality properties can be used to maximize the information obtained about the stormwater runoff system being studied and can provide the context needed to interpret analyses of water samples. Concentrations of the road-salt constituents calcium, sodium, and chloride in highway runoff were estimated from theoretical and empirical relations between specific conductance and the concentrations of these ions. These relations were examined using the analysis of 233 highwayrunoff samples collected from August 1988 through March 1995 at four highway-drainage monitoring stations along State Route 25 in southeastern Massachusetts. Theoretically, the specific conductance of a water sample is the sum of the individual conductances attributed to each ionic species in solution-the product of the concentrations of each ion in milliequivalents per liter (meq/L) multiplied by the equivalent ionic conductance at infinite dilution-thereby establishing the principle of superposition. Superposition provides an estimate of actual specific conductance that is within measurement error throughout the conductance range of many natural waters, with errors of less than ?5 percent below 1,000 microsiemens per centimeter (?S/cm) and ?10 percent between 1,000 and 4,000 ?S/cm if all major ionic constituents are accounted for. A semi-empirical method (adjusted superposition) was used to adjust for concentration effects-superposition-method prediction errors at high and low concentrations-and to relate measured specific conductance to that calculated using superposition. The adjusted superposition method, which was developed to interpret the State Route 25 highway-runoff records, accounts for

  13. Effects of winter road grooming on bison in YNP

    USGS Publications Warehouse

    Bjornlie, Daniel D; Garrott, R.A.

    2001-01-01

    The effects of winter recreation—specifically snowmobiling—on wildlife in Yellowstone National Park (YNP) have become high-profile management issues. The road grooming needed to support oversnow travel in YNP is also being examined for its effects on bison (Bison bison) ecology. Data were collected from November 1997 through May 1998 and from December 1998 through May 1999 on the effects of road grooming on bison in Madison–Gibbon–Firehole (MGF) area of YNP Peak bison numbers occurred during late March—early April and were strongly correlated with the snow water equivalent measurements in the Hayden Valley area (1997–1998: r* = 0.62, p:0.001: 1998–1999: r2 = 0.64, P-0.001). Data from an infrared trail monitor on the Mary Mountain trail between the Hayden and Firehole valleys suggest that this trail is the sole corridor for major bison distributional shifts between these locations. Of the 28,293 observations of individual bison made during the study, 8% were traveling and 69% were foraging. These percentages were nearly identical during the period of winter road grooming (7% and 68%, respectively). During this period, 77% of bison foraging activity and 12% of bison traveling activity involved displacing snow. Most travel took place off roads (P<0.001), Bison utilized geothermal features, a network of trails they established, and river and stream banks for travel. Bison road use was negatively correlated with road grooming, with peak use in April and lowest use during the road-grooming period. Bison in the MGF area of YNF neither seek out nor avoid groomed roads. The minimal use of roads compared to off-road areas, the short distances traveled on the roads, the decreased use of roads during the over snow vehicle (OSV) season, and the increased costs of negative interactions with OSVs suggest that grooming roads during winter does not have a major influence on bison ecology.

  14. Measuring velocity and temperature profile sectional pipeline behind confuser

    NASA Astrophysics Data System (ADS)

    Siažik, Ján; Malcho, Milan; Lenhard, Richard; Novomestský, Marcel

    2016-06-01

    The article deals with the measuring of temperature and velocity profile in area behind confuser in real made scale model of bypass. For proper operation of the equipment it is necessary to know the actual flow in the pipe. Bypasses have wide application and can be also associated with devices for heat recovery, heat exchangers different designs in which may be used in certain circumstances. In the present case, the heat that would otherwise has not been used is used for heating of insulators, and heating the air in the spray-dryer. The measuring principle was verify how the above-mentioned temperature and velocity profile decomposition above confuser on real made scale model.

  15. Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development

    SciTech Connect

    Gilpatrick, John D.; Batygin, Yuri K.; Gonzales, Fermin; Gruchalla, Michael E.; Kutac, Vincent G.; Martinez, Derwin; Sedillo, James Daniel; Pillai, Chandra; Rodriguez Esparza, Sergio; Smith, Brian G.

    2012-05-15

    The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H{sup -} beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how noise currents were not generated. This paper will describe these beam development tests and show some resulting data.

  16. Heterodyne moiré interferometry for measuring corneal surface profile

    NASA Astrophysics Data System (ADS)

    Chang, Wei-Yao; Chen, Kun-Huang; Chen, Der-Chin; Tseng, Jung-Kai; Chen, Shyan-Tarng; Sun, Han-Ying; Chen, Jing-Heng; Hsu, Ken Y.

    2014-03-01

    This study proposes an accurate method for reconstructing the corneal surface profile. By applying a constant velocity to the projection grating along the grating plane, a series of sampling points of the sinusoidal wave, which behaves in the manner of heterodyne interferometric signals, can be recorded using a CMOS camera. The phase distribution of the moiré fringes can then be obtained using the IEEE 1241 least-square sine fitting algorithm and two-dimensional (2D) phase unwrapping. Finally, the corneal surface profile can be reconstructed by substituting the phase distribution into a specially derived equation. To validate the proposed method, the corneal surface of a pig eyeball was measured. The measurement resolution was approximately 3.5 μm. Because of the introduction of the Talbot effect, the projection moiré method, and heterodyne interferometry, this approach provides the advantages of a simple optical setup, ease of operation, high stability, and high resolution.

  17. Prediction of flow profiles in arteries from local measurements.

    NASA Technical Reports Server (NTRS)

    Ling, S. C.; Atabek, H. B.

    1971-01-01

    This paper develops an approximate numerical method for calculating flow profiles in arteries. The theory takes into account the nonlinear terms of the Navier-Stokes equations as well as the large deformations of the arterial wall. The method, assuming axially symmetric flow, determines velocity distribution and wall shear at a given location from the locally measured values of the pressure, pressure gradient, and pressure-radius relation. The computed results agree well with the corresponding experimental data.

  18. Real-world emissions and fuel consumption of diesel buses and trucks in Macao: From on-road measurement to policy implications

    NASA Astrophysics Data System (ADS)

    Wu, Xiaomeng; Zhang, Shaojun; Wu, Ye; Li, Zhenhua; Zhou, Yu; Fu, Lixin; Hao, Jiming

    2015-11-01

    A total of 13 diesel buses and 12 diesel trucks in Macao were tested using portable emission measurement systems (PEMS) including a SEMTECH-DS for gaseous emissions and a SEMTECH-PPMD for PM2.5. The average emission rates of gaseous pollutants and CO2 are developed with the operating mode defined by the instantaneous vehicle specific power (VSP) and vehicle speed. Both distance-based and fuel mass-based emission factors for gaseous pollutants (e.g., CO, THC and NOX) are further estimated under typical driving conditions. The average distance-based NOX emission of heavy-duty buses (HDBs) is higher than 13 g km-1. Considering the unfavorable conditions for selective reductions catalyst (SCR) systems, such as low-speed driving conditions, more effective technology options (e.g., dedicated natural gas buses and electric buses) should be considered by policy makers in Macao. We identified strong effects of the vehicle size, engine displacement and driving conditions on real-world CO2 emission factors and fuel consumption for diesel vehicles. Therefore, detailed profiles regarding vehicle specifications can reduce the uncertainty in their fleet-average on-road fuel consumption. In addition, strong correlations between relative emission factors and driving conditions indicated by the average speed of generated micro-trips are identified based on a micro-trip method. For example, distance-based emission factors of HDBs will increase by 39% for CO, 29% for THC, 43% for NOX and 26% for CO2 when the average speed decreases from 30 km h-1 to 20 km h-1. The mitigation of on-road emissions from diesel buses and trucks by improving traffic conditions through effective traffic and economic management measures is therefore required. This study demonstrates the important role of PEMS in understanding vehicle emissions and mitigation strategies from science to policy perspectives.

  19. Measurements of temperature profiles at the exit of small rockets.

    PubMed

    Griggs, M; Harshbarger, F C

    1966-02-01

    The sodium line reversal technique was used to determine the reversal temperature profile across the exit of small rockets. Measurements were made on one 73-kg thrust rocket, and two 23-kg thrust rockets with different injectors. The large rocket showed little variation of reversal temperature across the plume. However, the 23-kg rockets both showed a large decrease of reversal temperature from the axis to the edge of the plume. In addition, the sodium line reversal technique of temperature measurement was compared with an infrared technique developed in these laboratories.

  20. Measurement of CT scanner dose profiles in a filmless department.

    PubMed

    Thomson, F J

    2005-09-01

    The measurement of the FWHM of the slice thickness radiation dose profile of a CT scanner using a prototype low sensitivity CR imaging plate has been investigated, as an alternative to the traditional method using envelope-packed industrial film. Using a standard Agfa clinical CR system to acquire the image, the FWHM of the dose profile can be accurately measured using readily available Public Domain software. An Agfa 18 x 24 cm CR cassette gives a pixel pitch of 113.5 microm, but with interpolation, the measurement accuracy can be less than 1 pixel. For a nominal 10 mm collimation, 15 successive measurements of the FWHM using CR gave an average width of 10.00 mm with a standard deviation of 0.02 mm. This may be compared with 4 successive measurements using film and a dual exposure technique to define the optical density at half peak height, yielding an average width of 9.98 mm with a SD of 0.03 mm. This prototype NDT plate is not a commercial product, but a radiotherapy plate with a similar sensitivity is available commercially and should give similar results.

  1. Estimation of road vehicle exhaust emissions from 1992 to 2010 and comparison with air quality measurements in Genoa, Italy

    NASA Astrophysics Data System (ADS)

    Zamboni, Giorgio; Capobianco, Massimo; Daminelli, Enrico

    An investigation into road transport exhaust emissions in the Genoa urban area was performed by comparing the quantities of carbon monoxide (CO), nitrogen oxides (NO x), nitrogen dioxide (NO 2) and particulate matter (PM) emitted by different vehicle categories with air quality measurements referred to the same pollutants. Exhaust emissions were evaluated by applying the PROGRESS (computer PROGramme for Road vehicle EmiSSions evaluation) code, developed by the Internal Combustion Engines Group of the University of Genoa, to eight different years (from 1992 to 2010), considering spark ignition and Diesel passenger cars and light duty vehicles, heavy duty vehicles and buses, motorcycles and mopeds. Changes in terms of vehicles number, mileage and total emissions are presented together with relative distributions among the various vehicle categories. By comparing 1992 and 2010 data, calculated trends show a 7% increase in the number of vehicles, with total mileage growing at a faster rate (approx. 22%); total emissions decrease considerably, by approximately 50% for NO x and PM, 70% for HC and 80% for CO, due to improvements in engines and fuels forced by the stricter European legislation and the fleet renewal, while primary NO 2 emission will be very close to 1992 level, after a decrease of about 18% in 2000. Air quality was analysed by selecting traffic and background measuring stations from the monitoring network managed by the Environmental Department of the Province of Genoa: average annual concentrations of considered pollutants from 1994 to 2007 were calculated in order to obtain the relative historical trends and compare them with European public health limits and with road vehicle emissions. Though an important reduction in pollutant concentrations has been achieved as a consequence of cleaner vehicles, some difficulties in complying with present and/or future NO 2 and PM 10 limits are also apparent, thus requiring suitable measures to be taken by the local

  2. Validation of streamflow measurements made with acoustic doppler current profilers

    USGS Publications Warehouse

    Oberg, K.; Mueller, D.S.

    2007-01-01

    The U.S. Geological Survey and other international agencies have collaborated to conduct laboratory and field validations of acoustic Doppler current profiler (ADCP) measurements of streamflow. Laboratory validations made in a large towing basin show that the mean differences between tow cart velocity and ADCP bottom-track and water-track velocities were -0.51 and -1.10%, respectively. Field validations of commercially available ADCPs were conducted by comparing streamflow measurements made with ADCPs to reference streamflow measurements obtained from concurrent mechanical current-meter measurements, stable rating curves, salt-dilution measurements, or acoustic velocity meters. Data from 1,032 transects, comprising 100 discharge measurements, were analyzed from 22 sites in the United States, Canada, Sweden, and The Netherlands. Results of these analyses show that broadband ADCP streamflow measurements are unbiased when compared to the reference discharges regardless of the water mode used for making the measurement. Measurement duration is more important than the number of transects for reducing the uncertainty of the ADCP streamflow measurement. ?? 2007 ASCE.

  3. Water Vapor Profiling From CoSSIR Radiometric Measurements

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Chang, L. A.; Monosmith, B.; Zhang, Z.

    2007-01-01

    Previous millimeter-wave radiometry for water vapor profiling, by either airborne or satellite sensors, has been limited to frequencies less than or equal to 183 GHz. The retrievals are generally limited to an altitude range of 0-10 km. The additional measurements at the frequencies of 380.2 plus or minus 0.8, 380.2 plus or minus 1.8, 380.2 plus or minus 3.3, and 380.2 plus or minus 6.2 GHz provided by the new airborne Compact Scanning Submillimeter-wave Imaging Radiometer (CoSSIR) can extend this profiling capability up to an altitude of about 15 km. Furthermore, the retrievals can be performed over both land and water surfaces in the tropics without much difficulty. These properties are demonstrated by recent CoSSIR measurements on board the NASA WB-57 aircraft during CR-AVE in January 2006. Retrievals of water vapor mixing ratio were performed at eight altitude levels of 1, 3, 5, 7, 9, 11, 13, and 15 km from CoSSIR data sets acquired at observational angles of 0 and 53.4 degrees, and the results were compared with other available measurements from the same aircraft and near-concurrent satellites. A comparison of the variations of mixing ratios retrieved from CoSSIR and those derived from the Meteorological Measurement System (MMS) in the aircraft vicinity, along the path of the transit flight on January 14, 2006, appears to show some connection, although the measurements were referring to different altitudes. A very good agreement was found between the collocated values of total precipitable water derived from the CoSSIR-retrieved water vapor profiles and those estimated from TMI (TRMM Microwave Imager)

  4. A technique for measuring hypersonic flow velocity profiles

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.

    1973-01-01

    A technique for measuring hypersonic flow velocity profiles is described. This technique utilizes an arc-discharge-electron-beam system to produce a luminous disturbance in the flow. The time of flight of this disturbance was measured. Experimental tests were conducted in the Langley pilot model expansion tube. The measured velocities were of the order of 6000 m/sec over a free-stream density range from 0.000196 to 0.00186 kg/cu m. The fractional error in the velocity measurements was less than 5 percent. Long arc discharge columns (0.356 m) were generated under hypersonic flow conditions in the expansion-tube modified to operate as an expansion tunnel.

  5. Measurements of Electron Density Profile and Fluctuations on HSX*

    NASA Astrophysics Data System (ADS)

    Deng, C.; Brower, D. L.; Ding, W. X.; Almagri, A. F.; Anderson, D. T.; Anderson, F. S. B.; Gerhardt, S. P.; Probert, P.; Radder, J.; Talmadge, J. N.

    2001-10-01

    The 288 GHz interferometer system on the quasi-helical stellarator HSX views the plasma cross section along 9 adjacent chords with 1.5 cm spacing. At this frequency refraction is manageable but requires correction when performing inversions. The interferometer has sensitivity n_edl = 8 x 10^11 cm-2 and frequency response up to 1 MHz. Improved time response permits measurement of high-frequency density fluctuations as well as fast changes to the equilibrium profile. First results from HSX with 2nd harmonic ECH at 28 GHz, using a 5 chord version of the interferometer, indicate that the density profile is quite peaked for both quasi-helically symmetric (QHS) plasmas and those where the quasisymmetry is broken (mirror mode) for ne = 1 x 10^12 cm-3. However, for densities ne = 3 x 10^11 cm-3, the profile for the QHS plasma (high stored energy) is narrower when compared to the mirror mode (low stored energy). Density profile variation with plasma configuration and resonant heating location using the 9 channel interferometer will be described. For high density HSX plasmas, ne > 3 x 10^12 cm-3, coherent oscillations are observed in the line-integrated density traces which are out of phase across the magnetic axis. These m=1 oscillations are observed at frequencies of 1-2 kHz and result in a periodic displacement of the density profile. *Supported by USDOE under grant DE-FG03-01ER-54615, Task III and DE-FG02-93ER54222.

  6. Ozone Profile Retrievals from GOME-2 UV/Visible Measurements

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zoogman, P.; Chance, K.; Nowlan, C. R.

    2014-12-01

    It has been shown that adding visible measurements in the Chappuis band to ultraviolet (UV) measurements in the Hartley/Huggins bands can significantly enhance retrieval sensitivity to lower tropospheric ozone from backscattered solar radiances due to deeper photon penetration in the visible to the surface than in the ultraviolet. The first NASA Eearth Venture Instrument TEMPO (Tropospheric Emissions: Monitoring of Pollution) instrument is being developed to measure backscattered solar radiation in two channels (~290-490 and 540-740 nm) and make atmospheric pollution measurements over North America from the Geostationary orbit; the primary purpose of including the second channel is to improve lower tropospheric ozone retrieval for air quality monitoring. However, this retrieval enhancement has yet to be solidly demonstrated from existing measurements due to the weak ozone absorption in the visible and strong interference from surface reflectance. We present retrievals from GOME-2 (Global Ozone Monitoring and Experiment-2) UV and visible measurements using the SAO optimal estimation based ozone profile retrieval algorithm, to directly explore the retrieval improvement in lower tropospheric ozone from additional visible measurements. To reduce the retrieval interference from surface reflectance, we add characterization of surface spectral reflectance in the visible into the ozone profile algorithm based on existing surface reflectance spectra and MODIS (Moderate-resolution Imaging Spectroradiometer) BRDF (Bidirectional Reflectance Distribution Function) climatology. We evaluate the retrieval performance of UV/visible retrieval over the UV retrieval in terms of retrieved lower tropospheric ozone and increase in degree of free for signal (DFS) over the globe in different seasons, and we validate both retrievals against ozonesonde measurements.

  7. High time resolution ion temperature profile measurements on PBX

    SciTech Connect

    Gammel, G.; Kaita, R.; Fonck, R.; Jaehnig, K.; Powell, E.

    1986-05-01

    Ion temperature profiles with a time resolution of 2 to 5 ms have been measured on PBX by charge-exchange-recombination spectroscopy (CXRS) and a neutral-particle charge-exchange analyzer (NPA). The sightlines of both diagnostics crossed the trajectory of a near-perpendicular heating beam, which enhanced the local neutral density (proportional to signal strength) and provided spatial resolution. The time resolution of these two independent techniques is sufficient to see sawtooth oscillations and other MHD activity. Effects of these phenomena on the toroidal rotation velocity profile, v/sub phi/(r), are clearly observed by CXRS. For example, a sharp drop in the central v/sub phi/ occurs at the sawtooth crash, followed by a linear rise during the quiescent phase. The NPA results are compared with those from CXRS.

  8. Optical center alignment technique based on inner profile measurement method

    NASA Astrophysics Data System (ADS)

    Wakayama, Toshitaka; Yoshizawa, Toru

    2014-05-01

    Center alignment is important technique to tune up the spindle of various precision machines in manufacturing industry. Conventionally such a tool as a dial indicator has been used to adjust and to position the axis by manual operations of a technical worker. However, it is not easy to precisely control its axis. In this paper, we developed the optical center alignment technique based on inner profile measurement using a ring beam device. In this case, the center position of the cylinder hole can be determined from circular profile detected by optical sectioning method using a ring beam device. In our trials, the resolution of the center position is proved less than 10 micrometers in extreme cases. This technique is available for practical applications in machine tool industry.

  9. Measuring Neutron Star Radii via Pulse Profile Modeling with NICER

    NASA Astrophysics Data System (ADS)

    Özel, Feryal; Psaltis, Dimitrios; Arzoumanian, Zaven; Morsink, Sharon; Bauböck, Michi

    2016-11-01

    The Neutron-star Interior Composition Explorer is an X-ray astrophysics payload that will be placed on the International Space Station. Its primary science goal is to measure with high accuracy the pulse profiles that arise from the non-uniform thermal surface emission of rotation-powered pulsars. Modeling general relativistic effects on the profiles will lead to measuring the radii of these neutron stars and to constraining their equation of state. Achieving this goal will depend, among other things, on accurate knowledge of the source, sky, and instrument backgrounds. We use here simple analytic estimates to quantify the level at which these backgrounds need to be known in order for the upcoming measurements to provide significant constraints on the properties of neutron stars. We show that, even in the minimal-information scenario, knowledge of the background at a few percent level for a background-to-source countrate ratio of 0.2 allows for a measurement of the neutron star compactness to better than 10% uncertainty for most of the parameter space. These constraints improve further when more realistic assumptions are made about the neutron star emission and spin, and when additional information about the source itself, such as its mass or distance, are incorporated.

  10. Neutral Helium Profile Measurements in the WVU Helicon Source

    NASA Astrophysics Data System (ADS)

    Keesee, Amy; Hardin, Robert; Scime, Earl; Connor, Spencer

    2006-10-01

    We report spatially resolved measurements of excited state neutral helium density, temperature, and flow velocities in the WVU helicon plasma source (HELIX). While ion dynamics are studied extensively, neutral particle characteristics such as density and temperature are frequently neglected in low temperature plasmas and assumed to be spatially uniform. Measurement of the neutral flow is also important, specifically for researchers who use line integrated spectroscopy, since flows along the line of sight can artificially broaden the line width of emission lines. Recent work by Holland et al. on spontaneous flow shear illustrates the need for spatially resolved measurement profiles of the neutral particle parameters. Inclusion of a spatially varying ion-neutral momentum dampening parameter in theoretical models would not only give a more comprehensive understanding of the physics, but could lead to increased shear. Profile measurements were made using the 2D stage described in Hardin et al. C. Holland, J. H. Yu, A. James et al., Phys. Rev. Lett. 96, 195002 (2006). R. Hardin, X. Sun, E. Scime, Rev. Sci. Instrum. 75, 4091 (2004).

  11. Measurement of aesthetic proportions in the profile view of Koreans.

    PubMed

    Wang, Jong Hwan; Jang, Yong Ju; Park, Soo-Kyung; Lee, Bong-Jae

    2009-02-01

    We have evaluated the usefulness of direct soft tissue measurements in profile photographs for determining the nasal proportions and angles of young Korean individuals and those of rhinoplasty patients, and we compared these findings with existing norms of Caucasian populations. We retrospectively compared preoperative profile measurements of nasal length, nasal tip projection, dorsal height, radix height, nasolabial angle, and nasofrontal angle in 123 patients who underwent rhinoplasty, with measurements in 21 young Korean adults. Rhinoplasty patients were grouped by preoperative diagnosis as deviated nose without saddle or hump, saddle nose, hump nose, and low radix. The young Koreans had a nasal length to nasal tip projection to dorsal height to radix height ratio of 2:0.97:0.61:0.28. Dorsal height differed significantly among groups of rhinoplasty patients. Those with low radix had the lowest dorsal and radix height, whereas those with saddle nose had the smallest nasal tip projection. The average nasolabial and nasofrontal angles were 78.5 degrees and 82.7 degrees, respectively, in young male Koreans and 126.0 degrees and 133.6 degrees, respectively, in young female Koreans. In the deviated nose group, all parameters except for nasofrontal angle were significantly changed after rhinoplasty. In the saddle nose group, nasal tip projection and dorsal height were significantly increased, whereas, in the hump nose group, nasal tip projection and nasolabial angle were significantly altered. Direct soft tissue measurement on profile photographs is useful for assessing nasal characteristics and postrhinoplasty outcomes. Compared with Caucasians, young Koreans had relatively lower dorsum and radix and more acute nasolabial angle, but similar nasofrontal angle.

  12. Atmospheric Temperature Profile Measurements Using Mobile High Spectral Resolution Lidar

    NASA Astrophysics Data System (ADS)

    Razenkov, Ilya I.; Eloranta, Edwin W.

    2016-06-01

    The High Spectral Resolution Lidar (HSRL) designed at the University of Wisconsin-Madison discriminates between Mie and Rayleigh backscattering [1]. It exploits the Doppler effect caused by thermal motion of molecules, which broadens the spectrum of the transmitted laser light. That allows for absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different absorption line widths (a regular iodine vapor filter and Argon buffered iodine filter) allow for atmospheric temperature profile measurements. The sensitivity of the measured signal-to-air temperature ratio is around 0.14%/K. The instrument uses a shared telescope transmitter-receiver design and operates in eyesafe mode (the product of laser average power and telescope aperture equals 0.1 Wm2 at 532 nm).

  13. Development of a new generation of optical slope measuring profiler

    SciTech Connect

    Yashchuk, Valeriy V.; Takacs, Peter Z.; McKinney, Wayne R.; Assoufid, Lahsen; Siewert, Frank; Zeschke, Thomas

    2010-09-16

    A collaboration, including all DOE synchrotron labs, industrial vendors of x-ray optics, and with active participation of the HBZ-BESSY-II optics group has been established to work together on a new slope measuring profiler -- the optical slope measuring system (OSMS). The slope measurement accuracy of the instrument is expected to be<50 nrad for the current and future metrology of x-ray optics for the next generation of light sources. The goals were to solidify a design that meets the needs of mirror specifications and also be affordable; and to create a common specification for fabrication of a multi-functional translation/scanning (MFTS) system for the OSMS. This was accomplished by two collaborative meetings at the ALS (March 26, 2010) and at the APS (May 6, 2010).

  14. Measurement of the lunar neutron density profile. [Apollo 17 flight

    NASA Technical Reports Server (NTRS)

    Woolum, D. S.; Burnett, D. S.; Furst, M.; Weiss, J. R.

    1974-01-01

    An in situ measurement of the lunar neutron density from 20 to 400 g/sq cm depth between the lunar surface was made by the Apollo 17 Lunar Neutron Probe Experiment using particle tracks produced by the B10(n, alpha)Li7 reaction. Both the absolute magnitude and depth profile of the neutron density are in good agreement with past theoretical calculations. The effect of cadmium absorption on the neutron density and in the relative Sm149 to Gd157 capture rates obtained experimentally implies that the true lunar Gd157 capture rate is about one half of that calculated theoretically.

  15. Measurement of photonic nanojet generated by square-profile microstep

    NASA Astrophysics Data System (ADS)

    Stafeev, S. S.; Kotlyar, V. V.

    2015-03-01

    It was numerically and experimentally shown that square-profile microsteps with width of 0.4 μm, 0.5 μm, 0.6 μm, 0.8 μm and height of 500 nm illuminated by linearly polarized laser light with wavelength λ = 633 nm formed near its' surface photonic nanojets with intensity that is 6 times higher than the intensity of incident light. Experimentally measured diameters of photonic nanojets were equal to 0.44λ, 0.43λ, 0.39λ and 0.47λ (less than the diffraction limit 0.51λ).

  16. Measurement of ion profiles in TFTR neutral beamlines

    SciTech Connect

    Kamperschroer, J.H.; Grisham, L.R.; Kugel, H.W.; O`Connor, T.E.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1992-02-01

    A technique is described whereby the ion dumps inside the TFTR Neutral Beam Test Stand were used to measure thermal profiles of the full-, half-, and third-energy ions. 136 thermocouples were installed on the full-energy ion dump, allowing full beam contours. Additional linear arrays across the widths of the half- and third-energy ion dumps provided a measure of the shape, in the direction parallel to the grid rails, of the half- and third-energy ions, and, hence, of the molecular ions extracted from the source. As a result of these measurements it was found that the magnet was more weakly focusing, by a factor of two, than expected, explaining past overheating of the full-energy ion dump. Hollow profiles on the half- and third-energy ion dumps were observed, suggesting that extraction of D{sub 2}+ and D{sub 3}+ are primarily from the edge of the ion source. If extraction of half-energy ions is from the edge of the accelerator, a divergence parallel to the grid rails of 0.6{degrees}{plus_minus}0.1{degrees} results. It is postulated that a nonuniform gas profile near the accelerator is the cause of the hollow partial-energy ion profiles; the pressure being depressed over the accelerator by particles passing through this highly transparent structure. Primary electrons reaching the accelerator produce nonuniform densities of D{sub 2}+ through the ionization of this across the full-energy dump was examined as a means of reducing the power density. By unbalancing the current in the two coils of the magnet, on a shot by shot basis, by up to 2:1 ratio, it was possible to move the centerline of the full-energy ion beam sideways by {approximately}12.5 cm. The adoption of such a technique, with a ramp of the coil imbalance from 2:1 to 1:2 over a beam pulse, could reduce the power density by a factor of {ge}1.5.

  17. Measurement of ion profiles in TFTR neutral beamlines

    SciTech Connect

    Kamperschroer, J.H.; Grisham, L.R.; Kugel, H.W.; O'Connor, T.E.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1992-02-01

    A technique is described whereby the ion dumps inside the TFTR Neutral Beam Test Stand were used to measure thermal profiles of the full-, half-, and third-energy ions. 136 thermocouples were installed on the full-energy ion dump, allowing full beam contours. Additional linear arrays across the widths of the half- and third-energy ion dumps provided a measure of the shape, in the direction parallel to the grid rails, of the half- and third-energy ions, and, hence, of the molecular ions extracted from the source. As a result of these measurements it was found that the magnet was more weakly focusing, by a factor of two, than expected, explaining past overheating of the full-energy ion dump. Hollow profiles on the half- and third-energy ion dumps were observed, suggesting that extraction of D{sub 2}+ and D{sub 3}+ are primarily from the edge of the ion source. If extraction of half-energy ions is from the edge of the accelerator, a divergence parallel to the grid rails of 0.6{degrees}{plus minus}0.1{degrees} results. It is postulated that a nonuniform gas profile near the accelerator is the cause of the hollow partial-energy ion profiles; the pressure being depressed over the accelerator by particles passing through this highly transparent structure. Primary electrons reaching the accelerator produce nonuniform densities of D{sub 2}+ through the ionization of this across the full-energy dump was examined as a means of reducing the power density. By unbalancing the current in the two coils of the magnet, on a shot by shot basis, by up to 2:1 ratio, it was possible to move the centerline of the full-energy ion beam sideways by {approximately}12.5 cm. The adoption of such a technique, with a ramp of the coil imbalance from 2:1 to 1:2 over a beam pulse, could reduce the power density by a factor of {ge}1.5.

  18. Pre-correction of projected gratings for surface profile measurement

    NASA Astrophysics Data System (ADS)

    Sun, Cuiru; Lu, Hua

    2008-11-01

    This paper discusses errors caused by unequal grating pitch in applying the phase-shifted digital grating projection method for object profile measurement. To address the related issues, a new scheme is proposed to effectively improve the uniformity of the projected grating pitch across the object surface with no additional hardware cost. The improvement is mainly realized via a grating pitch pre-correction algorithm assisted by Digital Speckle/Image Correlation (DSC/DIC). DIC is utilized to accurately determine the surface grating pitch variation when an originally equal-pitched grating pattern is slant projected to the surface. With the actual pitch distribution function determined, a pre-corrected grating with unequal pitch is generated and projected, and the iterative algorithm reaches a constant pitched surface grating. The mapping relationship between the object surface profile (or out-of-plane displacement) and the fringe phase changes is obtained with a real-time subtraction based calibration. A quality guide phase unwrapping method is also adopted in the fringe processing. Finally, a virtual reference phase plane obtained by a 3-point plane fitting algorithm is subtracted to eliminate the carrier phase. The study shows that a simple optical system implemented with the mentioned improvements remarkably increase the accuracy and the efficiency of the measurement.

  19. Progress in measuring detonation wave profiles in PBX9501

    SciTech Connect

    Gustavsen, R.L.; Sheffield, S.A.; Alcon, R.R.

    1998-12-31

    The authors have measured detonation wave profiles in PBX9501 (95 wt% HMX and 5 wt% binders) using VISAR. Planar detonations were produced by impacting the explosive with projectiles launched in a 72 mm bore gas gun. Particle velocity wave profiles were measured at the explosive/window interface using two VISARs with different fringe constants. Windows with very thin vapor deposited aluminum mirrors were used for all experiments. PMMA windows provided an undermatch, and LiF (Lithium Fluoride) windows provided an overmatch to the explosive, reacted and unreacted. While the present experiments do not have adequate time resolution to adequately resolve the ZND spike condition, they do constrain it to lie between 38.7 and 53.4 Gpa or 2.4 and 3.3 km/s. Accurate knowledge of the CJ state places the reaction zone length at 35 {+-} 12 ns ({approx} 0.3 mm). The present experiments do not show any effect of the window on the reaction zone; both window materials result in the same reaction zone length.

  20. Normalized velocity profiles of field-measured turbidity currents

    USGS Publications Warehouse

    Xu, Jingping

    2010-01-01

    Multiple turbidity currents were recorded in two submarine canyons with maximum speed as high as 280 cm/s. For each individual turbidity current measured at a fixed station, its depth-averaged velocity typically decreased over time while its thickness increased. Some turbidity currents gained in speed as they traveled downcanyon, suggesting a possible self-accelerating process. The measured velocity profiles, first in this high resolution, allowed normalizations with various schemes. Empirical functions, obtained from laboratory experiments whose spatial and time scales are two to three orders of magnitude smaller, were found to represent the field data fairly well. The best similarity collapse of the velocity profiles was achieved when the streamwise velocity and the elevation were normalized respectively by the depth-averaged velocity and the turbidity current thickness. This normalization scheme can be generalized to an empirical function Y = exp(–αXβ) for the jet region above the velocity maximum. Confirming theoretical arguments and laboratory results of other studies, the field turbidity currents are Froude-supercritical.

  1. Measurement of multipath delay profile in land mobile satellite channels

    NASA Technical Reports Server (NTRS)

    Ikegami, Tetsushi; Arakaki, Yoshiya; Wakana, Hiromitsu; Suzuki, Ryutaro

    1993-01-01

    Mobile satellite communication channel has been evaluated mainly with fading statistics of signal. When bandwidth of transmitting signal becomes wider, frequency selectivity of fading becomes a significant factor of the channel. Channel characteristics, not only signal variation but multipath delay spread should be evaluated. A multipath measurement system is proposed and developed for mobile satellite applications. With this system and ETS-V satellite, multipath delay profiles are measured in various environments including Tokyo metropolis and Sapporo city at 1.5 GHz. Results show that the maximum excess delay is within 1 microsec and the maximum delay spread is 0.2 microsecs at elevation angles of 40 to 47 degrees. In wideband signal transmission of about 1 MHz and more, designers should consider the effect of selective fading due to the multipath of land mobile satellite channel.

  2. Real-world operation conditions and on-road emissions of Beijing diesel buses measured by using portable emission measurement system and electric low-pressure impactor.

    PubMed

    Liu, Zhihua; Ge, Yunshan; Johnson, Kent C; Shah, Asad Naeem; Tan, Jianwei; Wang, Chu; Yu, Linxiao

    2011-03-15

    On-road measurement is an effective method to investigate real-world emissions generated from vehicles and estimate the difference between engine certification cycles and real-world operating conditions. This study presents the results of on-road measurements collected from urban buses which propelled by diesel engine in Beijing city. Two widely used Euro III emission level buses and two Euro IV emission level buses were chosen to perform on-road emission measurements using portable emission measurement system (PEMS) for gaseous pollutant and Electric Low Pressure Impactor (ELPI) for particulate matter (PM) number emissions. The results indicate that considerable discrepancies of engine operating conditions between real-world driving cycles and engine certification cycles have been observed. Under real-world operating conditions, carbon monoxide (CO) and hydrocarbon (HC) emissions can easily meet their respective regulations limits, while brake specification nitrogen oxide (bsNO(x)) emissions present a significant deviation from its corresponding limit. Compared with standard limits, the real-world bsNO(x) emission of the two Euro III emission level buses approximately increased by 60% and 120% respectively, and bsNO(x) of two Euro IV buses nearly twice standard limits because Selective Catalytic Reduction (SCR) system not active under low exhaust temperature. Particle mass were estimated via particle size distribution with the assumption that particle density and diameter is liner. The results demonstrate that nanometer size particulate matter make significant contribution to total particle number but play a minor role to total particle mass. It is suggested that specific certified cycle should be developed to regulate bus engines emissions on the test bench or use PEMS to control the bus emissions under real-world operating conditions.

  3. EPA GHG Certification of Medium- and Heavy-Duty Vehicles: Development of Road Grade Profiles Representative of US Controlled Access Highways

    SciTech Connect

    Wood, Eric; Duran, Adam; Burton, Evan; Gonder, Jeffrey; Kelly, Kenneth

    2015-05-12

    This report includes a detailed comparison of the TomTom national road grade database relative to a local road grade dataset generated by Southwest Research Institute and a national elevation dataset publically available from the U.S. Geological Survey. This analysis concluded that the TomTom national road grade database was a suitable source of road grade data for purposes of this study.

  4. 40 CFR 86.129-94 - Road load power, test weight, inertia weight class determination, and fuel temperature profile.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...—(1) General requirements. (i) To be tested for running losses, as specified in § 86.134, a vehicle... profile, which serves as a target for controlling fuel temperatures during the running loss test. This... parameters that may affect fuel temperatures, such as solar loading, pavement heat, and relative...

  5. 40 CFR 86.129-94 - Road load power, test weight, inertia weight class determination, and fuel temperature profile.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...—(1) General requirements. (i) To be tested for running losses, as specified in § 86.134, a vehicle... profile, which serves as a target for controlling fuel temperatures during the running loss test. This... parameters that may affect fuel temperatures, such as solar loading, pavement heat, and relative...

  6. 40 CFR 86.129-94 - Road load power, test weight, inertia weight class determination, and fuel temperature profile.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...—(1) General requirements. (i) To be tested for running losses, as specified in § 86.134, a vehicle... profile, which serves as a target for controlling fuel temperatures during the running loss test. This... parameters that may affect fuel temperatures, such as solar loading, pavement heat, and relative...

  7. 40 CFR 86.129-94 - Road load power, test weight, inertia weight class determination, and fuel temperature profile.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...—(1) General requirements. (i) To be tested for running losses, as specified in § 86.134, a vehicle... profile, which serves as a target for controlling fuel temperatures during the running loss test. This... parameters that may affect fuel temperatures, such as solar loading, pavement heat, and relative...

  8. VisibleWind: wind profile measurements at low altitude

    NASA Astrophysics Data System (ADS)

    Wilkerson, Tom; Bradford, Bill; Marchant, Alan; Apedaile, Tom; Wright, Cordell

    2009-09-01

    VisibleWindTM is developing an inexpensive rapid response system, for accurately characterizing wind shear and small scale wind phenomena in the boundary layer and for prospecting suitable locations for wind power turbines. The ValidWind system can also collect reliable "ground truth" for other remote wind sensors. The system employs small (0.25 m dia.) lightweight balloons and a tracker consisting of an Impulse 200 XL laser rangefinder coupled to a PC for automated data recording. Experiments on balloon trajectories demonstrate that the laser detection of range (+/- 0.5 m), together with measured azimuth and altitude, is an inexpensive, convenient, and capable alternative to other wind tracking methods. The maximum detection range has been increased to 2200 meters using micro-corner-cube retroreflector tape on balloons. Low power LEDs enable nighttime tracking. To avoid large balloon gyrations about the mean trajectory, we use balloons having low ascent rates and subcritical Reynolds numbers. Trajectory points are typically recorded every 4 - 7 seconds. Atmospheric features observed under conditions of inversions or "light and variable winds" include abrupt onsets of shear at altitudes of 100-250 m, velocity changes of order 1-3 m/s within layers of 10-20 m thickness, and veering of the wind direction by 180 degrees or more as altitude increases from 300 to 500 m. We have previously reported comparisons of balloon-based wind profiles with the output of a co-located sodar. Even with the Impulse rangefinder, our system still requires a "man in the loop" to track the balloon. A future system enhancement will automate balloon tracking, so that laser returns are obtained automatically at 1 Hz. While balloon measurements of large-scale, high altitude wind profiles are well known, this novel measurement system provides high-resolution, real-time characterization of the fluctuating local wind fields at the bottom of the boundary layer where wind power turbines and other

  9. Detection of the local sliding in the tyre-road contact by measuring vibrations on the inner liner of the tyre

    NASA Astrophysics Data System (ADS)

    Niskanen, Arto J.; Tuononen, Ari J.

    2017-04-01

    Intelligent tyres can provide vital information from the tyre-road contact, especially for autonomous cars and intelligent infrastructure. In this paper, the acceleration measured on the inner liner of a tyre is used to detect the local sliding in the tyre-road contact. The Hilbert–Huang transform is utilized to extract the relevant vibration components and localize them in the wheel rotation angle domain. The energy of the vibration in the trailing part of the contact is shown to increase in low-friction conditions which can be related to the sliding of the tread part as a result of the shear stresses exceeding the local friction limit. To separate the effect of the surface roughness and the friction, different road surfaces were used in the measurements. In addition, the effects of different driving manoeuvres on the measured accelerations and the propagation of the sliding zone in the contact patch during braking are illustrated.

  10. Tropospheric Wind Profile Measurements with a Direct Detection Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Korb, C. Laurence; Chen, Huailin; Mathur, Savyasachee

    1998-01-01

    Research has established the importance of global tropospheric wind measurements for large scale improvements in numerical weather prediction. In addition, global wind measurements provide data that are fundamental to the understanding and prediction of global climate change. These tasks are closely linked with the goals of the NASA Earth Science Enterprise and Global Climate Change programs. NASA Goddard has been actively involved in the development of direct detection Doppler lidar methods and technologies to meet the wind observing needs of the atmospheric science community. In this paper we describe a recently developed prototype wind lidar system using a direct detection Doppler technique for measuring wind profiles from the surface through the troposphere. This system uses a pulsed ND:YAG laser operating at 1064 nm as the transmitter. The laser pulse is directed to the atmosphere using a 40 cm diameter scan mirror. The portion of the laser energy backscattered from aerosols and molecules is collected by a 40 cm diameter telescope and coupled via fiber optics into the Doppler receiver. Single photon counting APD's are used to detect the atmospheric backscattered signal. The principle element of the receiver is a dual bandpass tunable Fabry Perot etalon which analyzes the Doppler shift of the incoming laser signal using the double edge technique. The double edge technique uses two high resolution optical filters having bandpasses offset relative to one another such that the 'edge' of the first filter's transmission function crosses that of the second at the half power point. The outgoing laser frequency is located approximately at the crossover point. Due to the opposite going slopes of the edges, a Doppler shift in the atmospheric backscattered laser frequency produces a positive change in signal for one filter and a negative change in the second filter. Taking the ratio of the two edge channel signals yields a result which is directly proportional to the

  11. Surface profile measurement using spatially dispersed short coherence interferometry

    NASA Astrophysics Data System (ADS)

    Hassan, Mothana A.; Martin, Haydn; Jiang, Xiangqian

    2014-04-01

    Improved online techniques for surface profile measurement can be beneficial in high/ultra-precision manufacturing, in terms of enabling manufacture and reducing costs. This paper introduces a spatially dispersed short-coherence interferometer sourced by a super luminescent diode. This technique uses a broadband light source, which is spatially dispersed across a surface using a reflective grating and a scan lens. In this way, the phase data pertaining to surface at height is spectrally encoded. The light reflected from the surface is interfered with a reference beam in a Michelson interferometer, after which the resulting fringes are interrogated by a spectrometer. Phase shifting interferometry is used to extract the spectrally encoded phase information by analysing four captured frames using a Carré algorithm procedure; in this way, surface height can be determined across a profile on a sample. The short coherent light utilized in this interferometric technique means it has the potential for an application as a remote probe through an optical fibre link. This paper describes the concept of a spatially dispersed short coherence interferometer and provides some of the initial experimental results.

  12. On-road remote sensing measurements and fuel-based motor vehicle emission inventory in Hangzhou, China

    NASA Astrophysics Data System (ADS)

    Guo, Hui; Zhang, Qingyu; Shi, Yao; Wang, Dahui

    Motor vehicles are one of the largest sources of air pollutants worldwide. Despite their importance, motor vehicle emissions are inadequately understood and quantified, esp. in developing countries. In this study, the real-world emissions of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NO) were measured using an on-road remote sensing system at five sites in Hangzhou, China in 2004 and 2005. Average emission factors of CO, HC and NO x for petrol vehicles of different model year, technology class and vehicle type were calculated in grams of pollutant per unit of fuel use (g l -1) from approximately 32,260 petrol vehicles. Because the availability of data used in traditional on-road mobile source estimation methodologies is limited in China, fuel-based approach was implemented to estimate motor vehicle emissions using fuel sales as a measure of vehicle activity, and exhaust emissions factors from remote sensing measurements. The fuel-based exhaust emission inventories were also compared with the results from the recent international vehicle emission (IVE) model. Results show that petrol vehicle fleet in Hangzhou has significantly high CO emissions, relatively high HC and low NO x, with the average emission factors of 193.07±15.63, 9.51±2.40 and 5.53±0.48 g l -1, respectively. For year 2005 petrol vehicles exhaust emissions contributed with 182,013±16,936, 9107±2255 and 5050±480 metric ton yr -1 of CO, HC and NO x, respectively. The inventories are 45.5% higher, 6.6% higher and 53.7% lower for CO, HC and NO x, respectively, than the estimates using IVE travel-based model. In addition, a number of insights about the emission distributions and formation mechanisms have been obtained from an in-depth analysis of these results.

  13. Road tunnel, roadside, and urban background measurements of aliphatic compounds in size-segregated particulate matter

    NASA Astrophysics Data System (ADS)

    Alves, Célia A.; Oliveira, César; Martins, Natércia; Mirante, Fátima; Caseiro, Alexandre; Pio, Casimiro; Matos, Manuel; Silva, Hugo F.; Oliveira, Cristina; Camões, Filomena

    2016-02-01

    Particulate matter samples were collected in a road tunnel in Lisbon (PM0.5, PM0.5-1, PM1-2.5, and PM2.5-10) and at two urban locations representing roadside and background stations (PM2.5 and PM2.5-10). Samples were analysed for organic and elemental carbon (OC and EC), n-alkanes, n-alkenes, hopanes, some isoprenoid compounds, and steranes. Particulate matter concentrations in the tunnel were 17-31 times higher than at roadside in the vicinity, evidencing an aerosol origin almost exclusively in fresh vehicle emissions. PM0.5 in the tunnel comprised more than 60% and 80% of the total OC and EC mass in PM10, respectively. Concentrations of the different aliphatic groups of compounds in the tunnel were up to 89 times higher than at roadside and 143 times higher than at urban background. Based on the application of hopane-to-OC or hopanes-to-EC ratios obtained in the tunnel, it was found that vehicle emissions are the dominant contributor to carbonaceous particles in the city but do not represent the only source of these triterpenic compounds. Contrary to what has been observed in other studies, the Σhopane-to-EC ratios were higher in summer than in winter, suggesting that other factors (e.g. biomass burning, dust resuspension, and different fuels/engine technologies) prevail in relation to the photochemical decay of triterpenoid hydrocarbons from vehicle exhaust.

  14. Evaluation of the use of bioethanol fuelled buses based on ambient air pollution screening and on-road measurements.

    PubMed

    López-Aparicio, S; Hak, C

    2013-05-01

    Mitigation measures to reduce greenhouse gas emissions may have adverse effects on urban air quality and human exposure to harmful pollutants. The use of bioethanol fuelled vehicles is increasing worldwide and may create new undesired pollution effects. Different measurement campaigns were performed in a pilot study to contribute to the understanding of the consequences associated with the use of bioethanol blended fuel (E95) on a series of pollutants. Ambient screening measurements of NO2, O3, acetic acid, formaldehyde and acetaldehyde were performed at different urban locations, exposed and not exposed to the circulation of bioethanol buses. In addition, volatile organic compounds were measured at the exhaust pipe of a bioethanol fuelled bus, both under idling conditions (carbonyls; DNPH cartridge) and under on-road driving conditions applying online monitoring (PTR-TOF). Higher ambient acetaldehyde values were measured at locations exposed to bioethanol fuelled buses than at locations not exposed, and very high acetaldehyde and acetic acid values were measured from the exhaust pipe during driving conditions (acetaldehyde>150 ppm; acetic acid ≈ 20-30 ppm) and modelled at close distance to the bioethanol bus. Human exposure to high concentration of acetaldehyde is expected, and it may involve a significantly increased chance in developing cancer. The high concentration of acetic acid will involve odour annoyance and significant material degradation or corrosion.

  15. On machine capacitance dimensional and surface profile measurement system

    NASA Astrophysics Data System (ADS)

    Resnick, Ralph

    1993-02-01

    A program was awarded under the Air Force Machine Tool Sensor Improvements Program Research and Development Announcement to develop and demonstrate the use of a Capacitance Sensor System including Capacitive Non-Contact Analog Probe and a Capacitive Array Dimensional Measurement System to check the dimensions of complex shapes and contours on a machine tool or in an automated inspection cell. The manufacturing of complex shapes and contours and the subsequent verification of those manufactured shapes is fundamental and widespread throughout industry. The critical profile of a gear tooth; the overall shape of a graphite EDM electrode; the contour of a turbine blade in a jet engine; and countless other components in varied applications possess complex shapes that require detailed and complex inspection procedures. Current inspection methods for complex shapes and contours are expensive, time-consuming, and labor intensive.

  16. On Machine Capacitance Dimensional and Surface Profile Measurement System

    NASA Technical Reports Server (NTRS)

    Resnick, Ralph

    1993-01-01

    A program was awarded under the Air Force Machine Tool Sensor Improvements Program Research and Development Announcement to develop and demonstrate the use of a Capacitance Sensor System including Capacitive Non-Contact Analog Probe and a Capacitive Array Dimensional Measurement System to check the dimensions of complex shapes and contours on a machine tool or in an automated inspection cell. The manufacturing of complex shapes and contours and the subsequent verification of those manufactured shapes is fundamental and widespread throughout industry. The critical profile of a gear tooth; the overall shape of a graphite EDM electrode; the contour of a turbine blade in a jet engine; and countless other components in varied applications possess complex shapes that require detailed and complex inspection procedures. Current inspection methods for complex shapes and contours are expensive, time-consuming, and labor intensive.

  17. Delta Ray Road Trip: Measuring δ13C, δ18O and concentration of CO2 across Canada

    NASA Astrophysics Data System (ADS)

    Jost, Hansjurg; Stow, Peter; Mandic, Luka

    2016-04-01

    The Delta Ray Road Trip was conceived to demonstrate that there is now an instrument capable of being taken to the sample collection point and in fact taken to the samples along an 8000 km route across Canada. The concept was to drive a Thermo Scientific Delta Ray Isotope Ratio Infrared Spectrometer from coast to coast across the 2nd largest country in the world. This route took the Delta Ray from a coastal environment, through forests, arable farm land, urban and industrial centres, across prairies and over mountains. The vehicle was a standard RV with as few modifications as possible. Along the way there were stops at most of the major universities in Canada as well as the AGU-GAC-MAC conference in Montreal, where indoor measurements were performed. Date was uploaded in quasi realtime to a website. We will present data acquired during the trip and discuss the lessons learned.

  18. Vehicular road influence areas

    NASA Astrophysics Data System (ADS)

    Huertas, María E.; Huertas, José I.; Valencia, Alexander

    2017-02-01

    Vehicle operation over paved and unpaved roads is an emission source that significantly contributes to air pollution. Emissions are derived from vehicle exhaust pipes and re-suspension of particulate matter generated by wind erosion and tire to road surface interactions. Environmental authorities require a methodology to evaluate road impact areas, which enable managers to initiate counter-measures, particularly under circumstances where historic meteorological and/or air quality data is unavailable. The present study describes an analytical and experimental work developed to establish a simplified methodology to estimate the area influenced by vehicular roads. AERMOD was chosen to model pollutant dispersion generated by two roads of common attributes (straight road over flat terrain) under the effects of several arbitrary chosen weather conditions. The resulting pollutant concentration vs. Distance curves collapsed into a single curve when concentration and distance were expressed as dimensionless numbers and this curve can be described by a beta distribution function. This result implied that average concentration at a given distance was proportional to emission intensity and that it showed minor sensitivity to meteorological conditions. Therefore, road influence was defined by the area adjacent to the road limited by distance at which the beta distribution function equaled the limiting value specified by the national air quality standard for the pollutant under consideration.

  19. Comparison of road traffic emission factors and testing by comparison of modelled and measured ambient air quality data.

    PubMed

    Peace, H; Owen, B; Raper, D W

    2004-12-01

    This paper describes a comparison of three different sets of road traffic emission factors released by the UK government for use in air quality review and assessment. The air quality management process of review and assessment began in 1997 in the UK. During this period of ongoing review and assessment, a number of changes have been made to the emission factors provided by the government. The use of different sets of emission factors during the assessment process has lead to some inconsistencies between results from neighbouring local authorities and also between different modelling exercises undertaken by the same local authorities. One purpose of this study has been to compare three different sets of emission factors, including the most recent set, and to some degree highlight the uncertainty associated with the use of factors, such as the shift of emphasis in terms of emissions from cars to heavy goods vehicles. The most recently released emission factors are the most comprehensive to date, and theoretically more accurate than previous sets due to the larger database of emission measurements that they have been based on. Therefore, the most recent set of emission factors have been additionally used in a validation exercise between modelled and monitored data. Comparison has been undertaken with monitoring data at a variety of urban background, urban centre and roadside sites. This work has shown some differences between the predicted trends in emission factors and measured trends in ambient air pollution levels, especially at roadside sites, indicating an under-prediction of the air pollution contribution from road traffic.

  20. Developing Markov chain models for road surface simulation

    NASA Astrophysics Data System (ADS)

    Israel, Wescott B.; Ferris, John B.

    2007-04-01

    Chassis loads and vehicle handling are primarily impacted by the road surface over which a vehicle is traversing. By accurately measuring the geometries of road surfaces, one can generate computer models of these surfaces that will allow more accurate predictions of the loads introduced to various vehicle components. However, the logistics and computational power necessary to handle such large data files makes this problem a difficult one to resolve, especially when vehicle design deadlines are impending. This work aims to improve this process by developing Markov Chain models by which all relevant characteristics of road surface geometries will be represented in the model. This will reduce the logistical difficulties that are presented when attempting to collect data and run a simulation using large data sets of individual roads. Models will be generated primarily from measured road profiles of highways in the United States. Any synthetic road realized from a particular model is representative of all profiles in the set from which the model was derived. Realizations of any length can then be generated allowing efficient simulation and timely information about chassis loads that can be used to make better informed design decisions, more quickly.

  1. Temperature Profile Measurements During Heat Treatment of BSCCO 2212 Coils

    SciTech Connect

    Tollestrup, Alvin; /Fermilab

    2011-04-14

    The temperature profile of two different BSCCO 2212 coils has been analyzed. The profiles are obtained from thermocouples imbedded in the windings during the heat treatment that activates the 2212. The melting and freezing of the 2212 is clearly observed. A model that describes the data and can be used to guide the processing of new coils has been developed. We have obtained the thermal history of two BSCCO coils, one from NHMFL (1) that had 10 layers of 1 mm diameter wire with 0.15 mm insulation and a second coil from OST that had 24 layers with similar insulation and conductor size. Both coils had thermocouples imbedded in the windings and excellent recordings of the temperature over the whole reaction cycle were available for analysis. There are several features that we will address in this note. Measurements have shown that the I{sub c} of the conductor is a sensitive function of its thermal history. This brings up the question of the absolute accuracy of the thermometry in the range around 882 C, the MP of 2212. The reference for the treatment profile is really related to this MP and to small deviations around it. Since the heat of fusion of 2212 is rather large, it generates a clear signal during the melting and cooling transition that automatically generates the relative temperature markers. The physics is the same as the way ice in water maintains an isothermal environment until it is all melted. A related question is the thermal response time of the coil package. The temperature cycles that are being used to optimize strand and small coils can have rapid changes easily implemented whereas a large coil may have such a large thermal time constant that the optimum cycle may not be attainable. A simple analytical model that works well for small solenoids has been developed and an ANSYS (5) program that works for larger coils with more complicated geometry has been set up but will not be discussed in this note.

  2. Cylindrical surface profile and diameter measuring tool and method

    NASA Technical Reports Server (NTRS)

    Currie, James R. (Inventor); Kissel, Ralph R. (Inventor); Oliver, Charles E. (Inventor); Smith, Earnest C. (Inventor); Redmon, John W. (Inventor); Wallace, Charles C. (Inventor); Swanson, Charles P. (Inventor)

    1989-01-01

    A tool is shown having a cross beam assembly (15) made of beams (18, 19, 20, 21) joined by a center box structure (23). The assembly (15) is adapted to be mounted by brackets (16) to the outer end of a cylindrical case (11). The center box structure (23) has a vertical shaft (25) rotatably mounted therein and extending beneath the assembly (15). Secured to the vertical shaft (25) is a radius arm (28) which is adapted to rotate with shaft (25). On the longer end of the radius arm (28) is a measuring tip (30) which contacts the cylindrical surface to be measured and which provides an electric signal representing the radius of the cylindrical surface from the center of rotation of the radius arm (28). An electric servomotor (49) rotates the vertical shaft (25) and an electronic resolver (61) provides an electric signal representing the angle of rotation of the shaft (25). The electric signals are provided to a computer station (73) which has software for its computer to calculate and print out the continuous circumference profile of the cylindrical surface, and give its true diameter and the deviations from the ideal circle.

  3. Cylindrical surface profile and diameter measuring tool and method

    NASA Technical Reports Server (NTRS)

    Currie, James R. (Inventor); Kissel, Ralph R. (Inventor); Smith, Earnest C. (Inventor); Oliver, Charles E. (Inventor); Redmon, John W., Sr. (Inventor); Wallace, Charles C. (Inventor); Swanson, Charles P. (Inventor)

    1987-01-01

    A tool is shown having a cross beam assembly made of beams joined by a center box structure. The assembly is adapted to be mounted by brackets to the outer end of a cylindrical case. The center box structure has a vertical shaft rotatably mounted therein and extending beneath the assembly. Secured to the vertical shaft is a radius arm which is adapted to rotate with the shaft. On the longer end of the radius arm is a measuring tip which contacts the cylindrical surface to be measured and which provides an electric signal representing the radius of the cylindrical surface from the center of rotation of the radius arm. An electric servomotor rotates the vertical shaft and an electronic resolver provides an electric signal representing the angle of rotation of the shaft. The electric signals are provided to a computer station which has software for its computer to calculate and print out the continuous circumference profile of the cylindrical surface, and give its true diameter and the deviations from the ideal circle.

  4. Radiation profiles measured through clouds using a return glider radiosonde

    NASA Astrophysics Data System (ADS)

    Kräuchi, Andreas; Philipona, Rolf; Kivi, Rigel

    2016-04-01

    With new and improved radiation sensors in a small glider aircraft vertical flights through clouds have been conducted. This new Return Glider Radiosonde (RG-R) is lifted up with double balloon technique to keep the radiation instruments as horizontal as possible during ascent. The RG-R is equipped with a routine radiosonde to transmit the data to a ground station and an autopilot to fly the glider radiosonde back to the launch site, where it lands autonomous with a parachute. The RG-R was successfully tested and deployed for tropospheric and stratospheric radiation measurements up to 30 hPa (24 km altitude) at the GRUAN sites Payerne (Switzerland) and Sodankylä (Finland). Radiation profiles and the radiation budget through the atmosphere during different daytimes and under cloud-free and cloudy situations will be shown in relation to temperature and humidity at the surface and in the atmosphere. The RG-R flight characteristics and new measurement possibilities will also be discussed.

  5. Temperature differences in the air layer close to a road surface

    NASA Astrophysics Data System (ADS)

    Bogren, Jörgen; Gustavsson, Torbjörn; Karlsson, Maria

    2001-12-01

    In this study, profiles of temperature and humidity (<250 cm above the road and 5 m into the surroundings) have been used to examine the development of temperature differences in the air layer close to the road. Temperature, humidity and wind profiles were measured, together with net radiation and observations of road surface state, at a test site at Road 45, Surte, Sweden. Measured temperature differences were compared with present weather, preceding weather, surface status, wind direction and other parameters thought to be important for the development of temperature differences. The results showed that large temperature differences (1-3 °C between 250 cm and 10 cm above the road) occurred when there was a high risk of slipperiness caused by hoarfrost, snow or ice on the road. The temperature differences between different levels were associated with the exchange of humidity and temperature between the air layer and the road surface. The 10 cm level reflected the surface processes well. Higher levels were influenced by the surroundings because of turbulence and advection. This study emphasises the need for measurements to be taken at a height and place that reflects the processes at the road surface.

  6. Line Profile Measurements of the Lunar Exospheric Sodium

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J.; Mierkiewicz, Edwin J.; Line, Michael R.; Roesler, Fred L.; Lupie, Olivia L.

    2012-01-01

    We report ongoing results of a program to measure the lunar sodium exospheric line profile from near the lunar limb out to two lunar radii (approx 3500 km). These observations are conducted from the National Solar Observatory McMath-Pierce telescope using a dual-etalon Fabry-Perot spectrometer with a resolving power of 180,600 (1.7 km/s) to measure line widths and velocity shifts of the Na D2 (5889 950 A) emission line in equatorial and polar regions at different lunar phases. The typical field of view (FOV) is 3 arcmin (approx 360 km) with an occasional smaller 1 arcmin FOV used right at the limb edge. The first data were obtained from full Moon to 3 days following full Moon (waning phase) in March 2009 as part of a demonstration run aimed at establishing techniques for a thorough study of temperatures and velocity variations in the lunar sodium exosphere. These data indicate velocity displacements from different locations off the lunar limb range between 150 and 600 m/s from the lunar rest velocity with a precision of +/- 20 to +/- 50 m/s depending on brightness. The measured Doppler line widths for observations within 10.5 arcmin of the east and south lunar limbs for observations between 5 deg and 40 deg lunar phase imply temperatures ranging decreasing from 3250 +/- 260K to 1175 +/- 150K. Additional data is now being collected on a quarterly basis since March 2011 and preliminary results will be reported.

  7. On-road measurement of NH3 and N2O emissions from a Euro V heavy-duty vehicle

    NASA Astrophysics Data System (ADS)

    Suarez-Bertoa, Ricardo; Mendoza-Villafuerte, Pablo; Bonnel, Pierre; Lilova, Velizara; Hill, Leslie; Perujo, Adolfo; Astorga, Covadonga

    2016-08-01

    The use of selective catalytic reduction systems (SCR) to abate NOx vehicular emissions brings new concerns on the emissions of the byproducts NH3 and N2O. Therefore, NH3 and N2O on-road emissions from a Euro V truck equipped with a SCR were measured in real time using a QCL-IR. Results bring to light possibility to perform this kind of real time measurements for other pollutants besides, hydrocarbons, NOx, CO and CO2. The capability to measure NH3 and N2O in a second-by-second basis will allow applying the currently agreed regulatory emissions evaluation for gaseous compounds. Average N2O emission factors calculated applying the current PEMS-based data analysis to all available windows from the tests ranged from 0.063 g/kWh to 0.139 g/kWh. Average NH3 concentrations ranged from 0.9 ppm to 5.7 ppm. Although calculated average N2O and NH3 emissions were within current limits, NOx emissions were substantially higher than Euro V limits under the studied conditions.

  8. Near-road modeling and measurement of cerium-containing particles generated by nanoparticle diesel fuel additive use.

    PubMed

    Gantt, Brett; Hoque, Shamia; Willis, Robert D; Fahey, Kathleen M; Delgado-Saborit, Juana Mari; Harrison, Roy M; Erdakos, Garnet B; Bhave, Prakash V; Zhang, K Max; Kovalcik, Kasey; Pye, Havala O T

    2014-09-16

    Cerium oxide nanoparticles (nCe) are used as a fuel-borne catalyst in diesel engines to reduce particulate emissions, yet the environmental and human health impacts of the exhaust particles are not well understood. To bridge the gap between emission measurements and ambient impacts, size-resolved measurements of particle composition and mass concentration have been performed in Newcastle-upon-Tyne, United Kingdom, where buses have used an nCe additive since 2005. These observations show that the noncrustal cerium fraction thought to be associated with the use of nCe has a mass concentration ∼ 0.3 ng m(-3) with a size distribution peaking at 100-320 nm in aerodynamic diameter. Simulations with a near-roadway multicomponent sectional aerosol dynamic model predict that the use of nCe additives increases the number concentration of nuclei mode particles (<50 nm in diameter) while decreasing the total mass concentration. The near-road model predicts a downwind mass size distribution of cerium-containing particles peaking at 150 nm in aerodynamic diameter, a value similar to that measured for noncrustal cerium in Newcastle. This work shows that both the emission and atmospheric transformation of cerium-containing particles needs to be taken into account by regional modelers, exposure scientists, and policymakers when determining potential environmental and human health impacts.

  9. Black carbon, particle number concentration and nitrogen oxide emission factors of random in-use vehicles measured with the on-road chasing method

    NASA Astrophysics Data System (ADS)

    Ježek, I.; Katrašnik, T.; Westerdahl, D.; Močnik, G.

    2015-06-01

    The chasing method was used in an on-road measurement campaign, and emission factors (EF) of black carbon (BC), particle number (PN) and nitrogen oxides (NOx) were determined for 139 individual vehicles of different types encountered on the roads. The aggregated results provide EFs for BC, NOx and PN for three vehicle categories: goods vehicles, gasoline and diesel passenger cars. This is the first on-road measurement study where BC EFs of numerous individual diesel cars were determined in real-world driving conditions. We found good agreement between EFs of goods vehicles determined in this campaign and the results of previous studies that used either chasing or remote sensing measurement techniques. The composition of the sampled car fleet determined from the national vehicle registry information is reflective of Eurostat statistical data on the Slovenian and European vehicle fleet. The median BC EF of diesel and gasoline cars that were in use for less than 5 years, decreased by 60 and 47% from those in use for 5-10 years, respectively, the median NOx and PN EFs, of goods vehicles that were in use for less than five years, decreased from those in use for 5-10 years by 52 and 67%, respectively. The influence of engine maximum power of the measured EFs showed an increase in NOx EF from least to more powerful vehicles with diesel engines. Finally a disproportionate contribution of high emitters to the total emissions of the measured fleet was found; the top 25% of emitting diesel cars contributed 63, 47 and 61% of BC, NOx and PN emissions respectively. With the combination of relatively simple on-road measurements with sophisticated post processing individual vehicles EF can be determined and useful information about the fleet emissions can be obtained by exactly representing vehicles which contribute disproportionally to vehicle fleet emissions; and monitor how the numerous emission reduction approaches are reflected in on-road driving conditions.

  10. Monitoring training status with HR measures: do all roads lead to Rome?

    PubMed Central

    Buchheit, Martin

    2014-01-01

    Measures of resting, exercise, and recovery heart rate are receiving increasing interest for monitoring fatigue, fitness and endurance performance responses, which has direct implications for adjusting training load (1) daily during specific training blocks and (2) throughout the competitive season. However, these measures are still not widely implemented to monitor athletes' responses to training load, probably because of apparent contradictory findings in the literature. In this review I contend that most of the contradictory findings are related to methodological inconsistencies and/or misinterpretation of the data rather than to limitations of heart rate measures to accurately inform on training status. I also provide evidence that measures derived from 5-min (almost daily) recordings of resting (indices capturing beat-to-beat changes in heart rate, reflecting cardiac parasympathetic activity) and submaximal exercise (30- to 60-s average) heart rate are likely the most useful monitoring tools. For appropriate interpretation at the individual level, changes in a given measure should be interpreted by taking into account the error of measurement and the smallest important change of the measure, as well as the training context (training phase, load, and intensity distribution). The decision to use a given measure should be based upon the level of information that is required by the athlete, the marker's sensitivity to changes in training status and the practical constrains required for the measurements. However, measures of heart rate cannot inform on all aspects of wellness, fatigue, and performance, so their use in combination with daily training logs, psychometric questionnaires and non-invasive, cost-effective performance tests such as a countermovement jump may offer a complete solution to monitor training status in athletes participating in aerobic-oriented sports. PMID:24578692

  11. Measuring Protoplanetary Disk Gas Surface Density Profiles with ALMA

    NASA Astrophysics Data System (ADS)

    Williams, Jonathan P.; McPartland, Conor

    2016-10-01

    The gas and dust are spatially segregated in protoplanetary disks due to the vertical settling and radial drift of large grains. A fuller accounting of the mass content and distribution in disks therefore requires spectral line observations. We extend the modeling approach presented in Williams & Best to show that gas surface density profiles can be measured from high fidelity 13CO integrated intensity images. We demonstrate the methodology by fitting ALMA observations of the HD 163296 disk to determine a gas mass, M gas = 0.048 M ⊙, and accretion disk characteristic size R c = 213 au and gradient γ = 0.39. The same parameters match the C18O 2-1 image and indicate an abundance ratio [12CO]/[C18O] of 700 independent of radius. To test how well this methodology can be applied to future line surveys of smaller, lower mass T Tauri disks, we create a large 13CO 2-1 image library and fit simulated data. For disks with gas masses 3-10 M Jup at 150 pc, ALMA observations with a resolution of 0.″2-0.″3 and integration times of ˜20 minutes allow reliable estimates of R c to within about 10 au and γ to within about 0.2. Economic gas imaging surveys are therefore feasible and offer the opportunity to open up a new dimension for studying disk structure and its evolution toward planet formation.

  12. Method and apparatus for measuring irradiated fuel profiles

    DOEpatents

    Lee, D.M.

    1980-03-27

    A new apparatus is used to substantially instantaneously obtain a profile of an object, for example a spent fuel assembly, which profile (when normalized) has unexpectedly been found to be substantially identical to the normalized profile of the burnup monitor Cs-137 obtained with a germanium detector. That profile can be used without normalization in a new method of identifying and monitoring in order to determine for example whether any of the fuel has been removed. Alternatively, two other new methods involve calibrating that profile so as to obtain a determination of fuel burnup (which is important for complying with safeguards requirements, for utilizing fuel to an optimal extent, and for storing spent fuel in a minimal amount of space).

  13. Characterizing near-road air pollution using local-scale emission and dispersion models and validation against in-situ measurements

    NASA Astrophysics Data System (ADS)

    Wang, An; Fallah-Shorshani, Masoud; Xu, Junshi; Hatzopoulou, Marianne

    2016-10-01

    Near-road concentrations of nitrogen dioxide (NO2), a known marker of traffic-related air pollution, were simulated along a busy urban corridor in Montreal, Quebec using a combination of microscopic traffic simulation, instantaneous emission modeling, and air pollution dispersion. In order to calibrate and validate the model, a data collection campaign was designed. For this purpose, measurements of NO2 were conducted mid-block along four segments of the corridor throughout a four-week campaign conducted between March and April 2015. The four segments were chosen to be consecutive and yet exhibiting variability in road configuration and built environment characteristics. Roadside NO2 measurements were also paired with on-site and fixed-station meteorological data. In addition, traffic volumes, composition, and routing decisions were collected using video-cameras located at upstream and downstream intersections. Dispersion of simulated emissions was conducted for eight time slots and under a range of meteorological conditions using three different models with vastly different dispersion algorithms (OSPM, CALINE 4, and SIRANE). The three models exhibited poor correlation with near-road NO2 concentrations and were better able to simulate average concentrations occurring along the roadways rather than the range of concentrations measured under diverse meteorological and traffic conditions. As hypothesized, the model SIRANE that can handle a street canyon configuration was the most sensitive to the built environment especially to the presence of tall buildings around the road. In contrast, CALINE exhibited the lowest sensitivity to the built environment.

  14. On-Road Measurement of Exhaust Emission Factors for Individual Diesel Trucks

    NASA Astrophysics Data System (ADS)

    Dallmann, T. R.; DeMartini, S.; Harley, R. A.; Kirchstetter, T. W.; Wood, E. C.; Onasch, T. B.; Herndon, S. C.

    2011-12-01

    Diesel trucks are an important source of primary fine particulate matter (PM2.5) that includes black carbon (BC) as a major component. More stringent exhaust emission standards for new engines, effective starting in 2007, considerably reduce allowable emissions and have led to use of after-treatment control devices such as diesel particle filters. The state of California is also implementing programs to accelerate replacement or retrofit of older trucks. In light of these changes, measurements of emissions from in-use heavy-duty diesel trucks are timely and needed to understand the impact of new control technologies on emissions. PM2.5, BC mass, particle light absorption, and particle light extinction emission factors for hundreds of individual diesel trucks were measured in this study. Emissions were measured in July 2010 from trucks driving through the Caldecott tunnel in the San Francisco Bay area. Gas-phase emissions including nitric oxide, nitrogen dioxide, carbon monoxide, and carbon dioxide (CO2) were also measured. Pollutants were measured using air sampling inlets located directly above the vertical exhaust stacks of heavy-duty trucks driving by on the roadway below. All of these measurements were made using fast time response (1 Hz) sensors. Particle optical properties were simultaneously characterized with direct measurements of absorption (babs) and extinction (bext) coefficients. Emission factors for individual trucks were calculated using a carbon balance method in which emissions of PM2.5, BC, babs, and bext in each exhaust plume were normalized to emissions of CO2. Emission factor distributions and fleet-average values are quantified. Absorption and extinction emission factors are used to calculate the aerosol single scattering albedo and BC mass absorption efficiency for individual truck exhaust plumes.

  15. Effectiveness of Mitigation Measures in Reducing Future Primary Particulate Matter Emissions from On-Road Vehicle Exhaust

    SciTech Connect

    Yan, Fang; Bond, Tami C.; Streets, David G.

    2014-12-16

    This work evaluates the effectiveness of on-road primary particulate matter emission reductions that can be achieved by long-term vehicle scrappage and retrofit measures on regional and global levels. Scenario analysis shows that scrappage can provide significant emission reductions as soon as the measures begin, whereas retrofit provides greater emission reductions in later years, when more advanced technologies become available in most regions. Reductions are compared with a baseline that already accounts for implementation of clean vehicle standards. The greatest global emission reductions from a scrappage program occur 5 to 10 years after its introduction and can reach as much as 70%. The greatest reductions with retrofit occur around 2030 and range from 16-31%. Monte Carlo simulations are used to evaluate how uncertainties in the composition of the vehicle fleet affect predicted reductions. Scrappage and retrofit reduce global emissions by 22-60% and 15-31%, respectively, within 95% confidence intervals, under a midrange scenario in the year 2030. The simulations provide guidance about which strategies are most effective for specific regions. Retrofit is preferable for high-income regions. For regions where early emission standards are in place, scrappage is suggested, followed by retrofit after more advanced emission standards are introduced. The early implementation of advanced emission standards is recommended for Western and Eastern Africa

  16. Doppler laser radar for range and speed measurement of road targets

    NASA Astrophysics Data System (ADS)

    Lin, Yanfang; Mao, Xuesong; Fang, Jianchao; Zhang, Tao

    2016-11-01

    A pulsed coherent vehicle laser radar system basing on the measurement of light flight time and Doppler frequency shift is demonstrated for the first time, which features a simple design that uses one photodiode (PD) as its optical detector. Pseudo random noise (PN) code is used for modulating the amplitude of transmitting light. Correlation function of the received echoes and the local modulating codes is calculated for measuring the light flight time. Due to PN code modulation, beat signal output from PD is piecewise continuous, which causes equidistant sampling of Doppler sine wave not feasible. In order that Doppler frequency be correctly measured by using fast Fourier transform (FFT), a simple signal amplitude modification method is derived from the definition of Fourier transform.

  17. Measurement of inner and/or outer profiles of pipes using ring beam devices

    NASA Astrophysics Data System (ADS)

    Wakayama, T.; Yoshizawa, T.

    2009-11-01

    Inner profile measurement is an important matter in such fields as medicine, dentistry and anthropology as well as mechanical engineering and industry. Here we propose a measurement method for inner diameter of pipes and/or holes. The key device in this technique is a ring beam device which consists of a conical mirror and a laser diode. And the fundamental principle is based on optical sectioning without any contact probe. The optically sectioned profile of an inner wall of a pipe-like object is analyzed to give the inner profile in addition to the inner diameter. This optical instrument with a simple and small configuration is now under development for practical uses. In the hitherto-tried experimental works, the availability of this instrument has been highly evaluated and usability for practical applications is expected, especially, for measurement and inspection of mechanical components and elements besides pipes. This ring beam device consisting of a conical mirror and a LD is assembled to form a disklike light beam sheet. We show measurement result of pipes and holes, and, at the same time, report a compact inner profile measuring instrument. Both the ring beam device and a miniaturized CCD camera are fabricated in a glass tube. Availability of this instrument is shown by measuring the inner profiles of various pipes. In response to this trial, there appeared a strong request that not only the internal but external profiles should be measured simultaneously. Therefore we propose an improved method for measuring the external profile in addition to the internal profile. In our arrangement, one pair of concaved conical mirrors is used for the external profile measurement. In combination with the inner profile measurement technique, simultaneous measurement of the inner and outer profiles becomes attainable. A measurement result on a bevel gear shows availability of newly proposed principle. Now we are aiming to realize simultaneous measurement of the internal

  18. Will Euro 6 reduce the NOx emissions of new diesel cars? - Insights from on-road tests with Portable Emissions Measurement Systems (PEMS)

    NASA Astrophysics Data System (ADS)

    Weiss, Martin; Bonnel, Pierre; Kühlwein, Jörg; Provenza, Alessio; Lambrecht, Udo; Alessandrini, Stefano; Carriero, Massimo; Colombo, Rinaldo; Forni, Fausto; Lanappe, Gaston; Le Lijour, Philippe; Manfredi, Urbano; Montigny, Francois; Sculati, Mirco

    2012-12-01

    The nitrogen dioxide (NO2) pollution in urban areas of Europe can be partially attributed to the increasing market penetration of diesel cars that show higher distance-specific nitrogen oxides (NOx) emissions than gasoline cars. The on-road NOx emissions of diesel cars, furthermore, appear to exceed substantially applicable emissions standards. This observation raises concerns that the introduction of more stringent Euro 6 emissions standards in 2014 may not adequately reduce the distance-specific on-road NOx emissions of new diesel cars. We address the existing concerns by analyzing the gaseous emissions of one novel Euro 6 diesel car and six Euro 4-5 diesel cars with Portable Emissions Measurement Systems (PEMS). We find that the average on-road NOx emissions of the Euro 6 car (0.21 ± 0.09 g per kilometer [g km-1]) are considerably lower than those of the Euro 4 cars (0.76 ± 0.12 g km-1) and the Euro 5 cars (0.71 ± 0.30 g km-1). The selective catalytic reduction (SCR) system of the Euro 6 diesel car is suitable to limit NOx emissions during real-world on-road driving. Still, all tested cars, including the Euro 6 diesel car, exceed their NOx emissions standards on the road by 260 ± 130%. This finding suggests that the current type-approval procedure does not adequately capture the on-road NOx emissions of diesel cars. By introducing a complementary emissions test procedure that covers a wide range of normal operating conditions, the European legislative authorities can address this problem and ensure that Euro 6 will indeed deliver an adequate reduction in the NOx emissions of new diesel cars.

  19. A model for investigating the influence of road surface texture and tyre tread pattern on rolling resistance

    NASA Astrophysics Data System (ADS)

    Hoever, Carsten; Kropp, Wolfgang

    2015-09-01

    The reduction of rolling resistance is essential for a more environmentally friendly road transportation sector. Both tyre and road design can be utilised to reduce rolling resistance. In both cases a reliable simulation tool is needed which is able to quantify the influence of design parameters on the rolling resistance of a tyre rolling on a specific road surface. In this work a previously developed tyre/road interaction model is extended to account for different tread patterns and for losses due to small-scale tread deformation. Calculated contact forces and tyre vibrations for tyre/road interaction under steady-state rolling are used to predict rolling losses in the tyre. Rolling resistance is calculated for a series of different tyre/road combinations. Results are compared with rolling resistance measurements. The agreement between simulations and measurements is generally very good. It is found that both the tyre structure and small-scale tread deformations contribute to the rolling losses. The small-scale contribution depends mainly on the road roughness profile. The mean profile depth of the road surface is identified to correlate very well with the rolling resistance. Additional calculations are performed for non-traditional rubberised road surfaces, however, with mixed results. This possibly indicates the existence of additional loss mechanisms for these surfaces.

  20. Real-world traffic emission factors of gases and particles measured in a road tunnel in Stockholm, Sweden

    NASA Astrophysics Data System (ADS)

    Kristensson, Adam; Johansson, Christer; Westerholm, Roger; Swietlicki, Erik; Gidhagen, Lars; Wideqvist, Ulla; Vesely, Vaclav

    Measurements in a road tunnel in Stockholm, Sweden give the real-world traffic emission factors for a number of gaseous and particle pollutants. These include 49 different polycyclic aromatic hydrocarbons (PAH), CO, NO X, benzene, toluene, xylenes, aldehydes, elements and inorganic/organic carbon contained in particles, the sub-micrometer aerosol number size distribution, PM 2.5 and PM 10. The exhaust pipe emission factors are divided with the help of automated traffic counts into the two pollutant sources, the heavy-duty vehicles (HDV) and light-duty vehicles (LDV). The LDV fleet contains 95% petrol cars and the total fleet contains about 5% HDV. When data permitted, the emission factors were further calculated at different vehicle speeds. The current work shows that average CO, NO X and benzene emission factors amounted to 5.3, 1.4 and 0.017 g veh -1 km -1, respectively. Since the mid-90s CO and benzene decreased by about 15%, carbonyls by about a factor 2, whereas NO X did not change much. PAH emission factors were 2-15 times higher than found during dynamometer tests. Most particles are distributed around 20 nm diameter and the LDV fleet contributes to about 65% of both PM and particle number. In general, the gaseous emissions are higher in Sweden than in USA and Switzerland, foremost due to the lower fraction catalytic converters in Sweden. The PM and number emissions of particles are also slightly higher in the Swedish tunnel.

  1. Multiband reflectometry system for density profile measurement with high temporal resolution on JET tokamaka)

    NASA Astrophysics Data System (ADS)

    Sirinelli, A.; Alper, B.; Bottereau, C.; Clairet, F.; Cupido, L.; Fessey, J.; Hogben, C.; Meneses, L.; Sandford, G.; Walsh, M. J.; JET-EFDA Contributors

    2010-10-01

    A new system has been installed on the JET tokamak consisting of six independent fast-sweeping reflectometers covering four bands between 44 and 150 GHz and using orthogonal polarizations. It has been designed to measure density profiles from the plasma edge to the center, launching microwaves through 40 m of oversized corrugated waveguides. It has routinely produced density profiles with a maximum repetition rate of one profile every 15 μs and up to 100 000 profiles per pulse.

  2. 3D-profile measurement of advanced semiconductor features by reference metrology

    NASA Astrophysics Data System (ADS)

    Takamasu, Kiyoshi; Iwaki, Yuuki; Takahashi, Satoru; Kawada, Hiroki; Ikota, Masami; Lorusso, Gian F.; Horiguchi, Naoto

    2016-03-01

    A method of sub-nanometer uncertainty for the 3D-profile measurement using TEM (Transmission Electron Microscope) images is proposed to standardize 3D-profile measurement through reference metrology. The proposed method has been validated for profiles of Si lines, photoresist features and advanced-FinFET (Fin-shaped Field-Effect Transistor) features in our previous investigations. However, efficiency of 3D-profile measurement using TEM is limited by measurement time including processing of the sample. In this article, we demonstrate a novel on-wafer 3D-profile metrology as "FIB-to-CDSEM method" with FIB (Focused Ion Beam) slope cut and CD-SEM (Critical Dimension Secondary Electron Microscope) measuring. Using the method, a few micrometer wide on a wafer is coated and cut by 45 degree slope using FIB tool. Then, the wafer is transferred to CD-SEM to measure the cross section image by top down CD-SEM measurement. We apply FIB-to-CDSEM method to CMOS sensor device. 3D-profile and 3D-profile parameters such as top line width and side wall angles of CMOS sensor device are evaluated. The 3D-profile parameters also are measured by TEM images as reference metrology. We compare the 3D-profile parameters by TEM method and FIB-to-CDSEM method. The average values and correlations on the wafer are agreed well between TEM and FIB-to- CDSEM methods.

  3. Dilution and aerosol dynamics within a diesel car exhaust plume—CFD simulations of on-road measurement conditions

    NASA Astrophysics Data System (ADS)

    Uhrner, U.; von Löwis, S.; Vehkamäki, H.; Wehner, B.; Bräsel, S.; Hermann, M.; Stratmann, F.; Kulmala, M.; Wiedensohler, A.

    Vehicle particle emissions are studied extensively because of their health effects, contribution to ambient PM levels and possible impact on climate. The aim of this work was to obtain a better understanding of secondary particle formation and growth in a diluting vehicle exhaust plume using 3-d information of simulations together with measurements. Detailed coupled computational fluid dynamics (CFD) and aerosol dynamics simulations have been conducted for H 2SO 4-H 2O and soot particles based on measurements within a vehicle exhaust plume under real conditions on public roads. Turbulent diffusion of soot and nucleation particles is responsible for the measured decrease of number concentrations within the diesel car exhaust plume and decreases coagulation rates. Particle size distribution measurements at 0.45 and 0.9 m distance to the tailpipe indicate a consistent soot mode (particle diameter Dp˜50 nm) at variable operating conditions. Soot mode number concentrations reached up to 10 13 m -3 depending on operating conditions and mixing. For nucleation particles the simulations showed a strong sensitivity to the spatial dilution pattern, related cooling and exhaust H 2SO 4(g). The highest simulated nucleation rates were about 0.05-0.1 m from the axis of the plume. The simulated particle number concentration pattern is in approximate accordance with measured concentrations, along the jet centreline and 0.45 and 0.9 m from the tailpipe. Although the test car was run with ultralow sulphur fuel, high nucleation particle ( Dp⩽15 nm) concentrations (>10 13 m -3) were measured under driving conditions of strong acceleration or the combination of high vehicle speed (>140 km h -1) and high engine rotational speed (>3800 revolutions per minute (rpm)). Strong mixing and cooling caused rapid nucleation immediately behind the tailpipe, so that the highest particle number concentrations were recorded at a distance, x=0.45 m behind the tailpipe. The simulated growth of H 2SO 4

  4. Measuring errors and violations on the road: a bifactor modeling approach to the Driver Behavior Questionnaire.

    PubMed

    Rowe, Richard; Roman, Gabriela D; McKenna, Frank P; Barker, Edward; Poulter, Damian

    2015-01-01

    The Driver Behavior Questionnaire (DBQ) is a self-report measure of driving behavior that has been widely used over more than 20 years. Despite this wealth of evidence a number of questions remain, including understanding the correlation between its violations and errors sub-components, identifying how these components are related to crash involvement, and testing whether a DBQ based on a reduced number of items can be effective. We address these issues using a bifactor modeling approach to data drawn from the UK Cohort II longitudinal study of novice drivers. This dataset provides observations on 12,012 drivers with DBQ data collected at .5, 1, 2 and 3 years after passing their test. A bifactor model, including a general factor onto which all items loaded, and specific factors for ordinary violations, aggressive violations, slips and errors fitted the data better than correlated factors and second-order factor structures. A model based on only 12 items replicated this structure and produced factor scores that were highly correlated with the full model. The ordinary violations and general factor were significant independent predictors of crash involvement at 6 months after starting independent driving. The discussion considers the role of the general and specific factors in crash involvement.

  5. On-road measurement of particle emission in the exhaust plume of a diesel passenger car.

    PubMed

    Vogt, Rainer; Scheer, Volker; Casati, Roberto; Benter, Thorsten

    2003-09-15

    Particle size distributions were measured under real world dilution conditions in the exhaust plume of a diesel passenger car closely followed by a mobile laboratory on a high speed test track. Under carefully controlled conditions the exhaust plume was continuously sampled and analyzed inside the mobile laboratory. Exhaust particle size distribution data were recorded together with exhaust gas concentrations, i.e., CO, CO2, and NO(x), and compared to data obtained from the same vehicle tested on a chassis dynamometer. Good agreement was found for the soot mode particles which occurred at a geometric mean diameter of approximately 50 nm and a total particle emission rate of 10(14) particles km(-1). Using 350 ppm high sulfur fuel and the standard oxidation catalyst a bimodal size distribution with a nucleation mode at 10 nm was observed at car velocities of 100 km h(-1) and 120 km h(-1), respectively. Nucleation mode particles were only present if high sulfur fuel was used with the oxidation catalyst installed. This is in agreement with prior work that these particles are of semivolatile nature and originate from the nucleation of sulfates formed inside the catalyst. Temporal effects of the occurrence of nucleation mode particles during steady-state cruising and the dynamical behavior during acceleration and deceleration were investigated.

  6. Tropospheric O3 measurement by simultaneous differential absorption lidar and null profiling and comparison with sonde measurement

    NASA Astrophysics Data System (ADS)

    Fukuchi, Tetsuo; Fujii, Takashi; Cao, Nianwen; Nemoto, Koshichi; Takeuchi, Nobuo

    2001-09-01

    A differential absorption lidar (DIAL) system consisting of two identical tunable laser systems and a single optical receiver is applied to measurement of O3 concentration profiles in the lower troposphere. Each laser is capable of emitting two wavelengths on alternate pulses, so the system is capable of simultaneous measurement of two species in the same wavelength region. We set the two lasers to emit at identical wavelength pairs consisting of on wavelength 285.0 nm and off wavelength 290.1 nm for simultaneous measurement of two null profiles, one at each wavelength, and two DIAL profiles, or O3 concentration profiles. Null profiles are useful in estimating instrumental error and checking the vertical range interval in which the DIAL profiles are accurate. Null and DIAL profiles are obtained for vertical range 1000 to 4000 m using neutral density filters of different transmissions to prevent the strong return signals from close range from saturating the photodetector. The obtained O3 concentration profiles agree with simultaneous O3 sonde measurements. An evaluation of the measurement error shows that the average O3 measurement error for vertical range 1000 to 4000 m was 3.4 ppb, or 8% relative to the average O3 concentration of 42.3 ppb, most of which is due to statistical error. The error due to differential Mie attenuation and differential backscatter gradient was found to be 0.5 ppb.

  7. Evaluation of diesel fleet emissions and control policies from plume chasing measurements of on-road vehicles

    NASA Astrophysics Data System (ADS)

    Lau, Chui Fong; Rakowska, Agata; Townsend, Thomas; Brimblecombe, Peter; Chan, Tat Leung; Yam, Yat Shing; Močnik, Griša; Ning, Zhi

    2015-12-01

    Vehicle emissions are an important source of urban air pollution. Diesel fuelled vehicles, although constituting a relatively small fraction of fleet population in many cities, are significant contributors to the emission inventory due to their often long mileage for goods and public transport. Recent classification of diesel exhaust as carcinogenic by the World Health Organization also raises attention to more stringent control of diesel emissions to protect public health. Although various mandatory and voluntary based emission control measures have been implemented in Hong Kong, there have been few investigations to evaluate if the fleet emission characteristics have met desired emission reduction objectives and if adoption of an Inspection/Maintenance (I/M) programme has been effective in achieving these objectives. The limitations are partially due to the lack of cost-effective approaches for the large scale characterisation of fleet based emissions to assess the effectiveness of control measures and policy. This study has used a plume chasing method to collect a large amount of on-road vehicle emission data of Hong Kong highways and a detailed analysis was carried out to provide a quantitative evaluation of the emission characteristics in terms of the role of high and super-emitters in total emission reduction, impact of after-treatment on the multi-pollutants reduction strategy and the trend of NO2 emissions with newer emission standards. The study revealed that not all the high-emitters are from those vehicles of older Euro emission standards. Meanwhile, there is clear evidence that high-emitters for one pollutant may not be a high-emitter for another pollutant. Multi-pollutant control strategy needs to be considered in the enactment of the emission control policy which requires more comprehensive retrofitting technological solutions and matching I/M programme to ensure the proper maintenance of fleets. The plume chasing approach used in this study also

  8. Distributed road assessment system

    DOEpatents

    Beer, N. Reginald; Paglieroni, David W

    2014-03-25

    A system that detects damage on or below the surface of a paved structure or pavement is provided. A distributed road assessment system includes road assessment pods and a road assessment server. Each road assessment pod includes a ground-penetrating radar antenna array and a detection system that detects road damage from the return signals as the vehicle on which the pod is mounted travels down a road. Each road assessment pod transmits to the road assessment server occurrence information describing each occurrence of road damage that is newly detected on a current scan of a road. The road assessment server maintains a road damage database of occurrence information describing the previously detected occurrences of road damage. After the road assessment server receives occurrence information for newly detected occurrences of road damage for a portion of a road, the road assessment server determines which newly detected occurrences correspond to which previously detected occurrences of road damage.

  9. Non-parametrically Measuring Dark Matter Profiles in the Milky Way's Dwarf Spheroidals

    NASA Astrophysics Data System (ADS)

    Jardel, John; Gebhardt, K.

    2013-01-01

    The Milky Way's population of dwarf spheroidal (dSph) satellites has received much attention as a test site for the Cold Dark Matter (CDM) model for structure formation. Dynamical modeling, using the motions of the stars to trace the unknown mass distribution, is well-suited to test predictions of CDM by measuring the radial density profiles of the dark matter (DM) halos in which the dSphs reside. These studies reveal DM profiles with constant-density cores, in contrast to the cuspy profiles predicted from DM-only simulations. To resolve this discrepancy, many believe that feedback from baryons can alter the DM profiles and turn cusps into cores. Since it is difficult to simulate these complex baryonic processes with high fidelity, there are not many robust predictions for how feedback should affect the dSphs. We therefore do not know the type of DM profile to look for in these systems. This motivates a study to measure the DM profiles of dSphs non-parametrically to detect profiles other than the traditional cored and cuspy profiles most studies explore. I will present early results from a study using orbit-based models to non-parametrically measure the DM profiles of several of the bright Milky Way dSphs. The DM profiles measured will place observational constraints on the effects of feedback in low-mass galaxies.

  10. CO{sub 2}-mitigation measures through reduction of fossil fuel burning in power utilities. Which road to go?

    SciTech Connect

    Kaupp, A.

    1996-12-31

    Five conditions, at minimum, should be examined in the comparative analysis of CO{sub 2}-mitigation options for the power sector. Under the continuing constraint of scarce financial resources for any private or public investment in the power sector, the following combination of requirements characterise a successful CO{sub 2}-mitigation project: (1) Financial attractiveness for private or public investors. (2) Low, or even negative, long range marginal costs per ton of `CO{sub 2} saved`. (3) High impact on CO{sub 2}-mitigation, which indicates a large market potential for the measure. (4) The number of individual investments required to achieve the impact is relatively small. In other words, logistical difficulties in project implementation are minimised. (5) The projects are `socially fair` and have minimal negative impact on any segment of the society. This paper deals with options to reduce carbonaceous fuel burning in the power sector. Part I explains how projects should be selected and classified. Part II describes the technical options. Since reduction of carbonaceous fuel burning may be achieved through Demand Side Management (DSM) and Supply Side Management (SSM) both are treated. Within the context of this paper SSM does not mean to expand power supply as demand grows. It means to economically generate and distribute power as efficiently as possible. In too many instances DSM has degenerated into efficient lighting programs and utility managed incentives and rebate programs. To what extent this is a desirable situation for utilities in Developing Countries that face totally different problems as their counterparts in highly industrialised countries remains to be seen. Which road to go is the topic of this paper.

  11. Overview on the profile measurement of turbine blade and its development

    NASA Astrophysics Data System (ADS)

    Huang, Junhui; Wang, Zhao; Gao, Jianmin; Yu, Yanguang

    2010-10-01

    Turbine machinery has an extraordinary wide range of applications in the aviation, aerospace, automotive, energy and many other industries. The turbine blade is one of the most important parts of turbine machinery, and the characteristic parameters, pressure ratio of the engine and rotating speed of the turbine are all related to the shape and size of blades. Therefore, the profile measurement of turbine blade is an essential issue in the blade machining processing, however, it is difficult and particular to establish the profile measurement of turbine blade because of its complicated shapes and space angles of the blades, and the specific stringent environmental requirements need a more appropriate measurement method to the Turbine Blade profile measurement. This paper reviews the recent research and development on the Turbine Blade profile measurement methods, which mainly describes several common and advanced measurement methods, such as the traditional coordinate measuring machines, some optical measurement methods with the characteristics of non-contact like optical theodolite, three-dimensional photography, laser interferometry, as well as the laser triangulation method studied more recently and so on. Firstly, the measuring principles, the key technical issues and the applications in the Turbine Blade profile measurement of the methods which are mentioned above are described respectively in detail, and the characteristics of those methods are analyzed in this paper. Furthermore, the scope of application and limitations of those measurement methods are summed up. Finally, some views on the current research focus and perspective trend of the Turbine Blade profile measurement technology are presented.

  12. Turbulence in planetary occultations. II - Effects on atmospheric profiles derived from Doppler measurements. III - Effects on atmospheric profiles derived from intensity measurements

    NASA Technical Reports Server (NTRS)

    Haugstad, B. S.

    1978-01-01

    The nature and magnitude of turbulence-induced errors in atmospheric profiles derived from Doppler measurements made during radio occultations are investigated. It is found that turbulence in planetary atmospheres induces both fluctuating and systematic errors in derived profiles, but the errors of both types are very small. Consideration of the occultation of Mariner 10 by Venus and of the Pioneer occultations by Jupiter shows that the rms fractional errors in the atmospheric profiles derived from these observations were less than 0.01 in both temperature and pressure, while the fractional systematic errors were typically of the order of 1 millionth. The extent to which atmospheric profiles derived from radio and optical intensity measurements are affected by turbulence is also examined. The results indicate that turbulence in planetary atmospheres has only a marginal effect on derived profiles in the weak-scattering limit and that the turbulence-induced errors in this case are always much larger than the corresponding errors in profiles derived from radio Doppler measurements.

  13. Black carbon, particle number concentration and nitrogen oxide emission factors of random in-use vehicles measured with the on-road chasing method

    NASA Astrophysics Data System (ADS)

    Ježek, I.; Katrašnik, T.; Westerdahl, D.; Močnik, G.

    2015-10-01

    The chasing method was used in an on-road measurement campaign, and emission factors (EF) of black carbon (BC), particle number (PN) and nitrogen oxides (NOx) were determined for 139 individual vehicles of different types encountered on the roads. The aggregated results provide EFs for BC, NOx and PN for three vehicle categories: goods vehicles, gasoline and diesel passenger cars. This is the first on-road measurement study where BC EFs of numerous individual diesel cars were determined in real-world driving conditions. We found good agreement between EFs of goods vehicles determined in this campaign and the results of previous studies that used either chasing or remote-sensing measurement techniques. The composition of the sampled car fleet determined from the national vehicle registry information is reflective of Eurostat statistical data on the Slovenian and European vehicle fleet. The median BC EF of diesel and gasoline cars that were in use for less than 5 years decreased by 60 and 47 % from those in use for 5-10 years, respectively; the median NOx and PN EFs of goods vehicles that were in use for less than 5 years decreased from those in use for 5-10 years by 52 and 67 %, respectively. Surprisingly, we found an increase of BC EFs in the newer goods vehicle fleet compared to the 5-10-year old one. The influence of engine maximum power of the measured EFs showed an increase in NOx EF from least to more powerful vehicles with diesel engines. Finally, a disproportionate contribution of high emitters to the total emissions of the measured fleet was found; the top 25 % of emitting diesel cars contributed 63, 47 and 61 % of BC, NOx and PN emissions respectively. With the combination of relatively simple on-road measurements and sophisticated post processing, individual vehicle EF can be determined and useful information about the fleet emissions can be obtained by exactly representing vehicles which contribute disproportionally to vehicle fleet emissions; and

  14. EAST equilibrium current profile reconstruction using polarimeter-interferometer internal measurement constraints

    NASA Astrophysics Data System (ADS)

    Qian, J. P.; Lao, L. L.; Liu, H. Q.; Ding, W. X.; Zeng, L.; Luo, Z. P.; Ren, Q. L.; Huang, Y.; Huang, J.; Brower, D. L.; Hanada, K.; Chen, D. L.; Sun, Y. W.; Shen, B.; Gong, X. Z.; Xiao, B. J.; Wan, B. N.

    2017-03-01

    The first equilibrium reconstruction of EAST current-density profile based on internal Faraday rotation measurements provided by the POlarimeter-INTerferometer (POINT) diagnostic is demonstrated using the EFIT equilibrium reconstruction code. EFIT incorporates 11 simultaneous line-integrated density and Faraday effect measurements from POINT to self-consistently reconstruct the equilibrium toroidal current density profile using a Faraday rotation reconstruction algorithm. It is shown that the POINT measurements can be applied to improve the accuracy of core plasma current density and q profile on EAST. Comparisons of magnetic surfaces and the q profile reconstructed using external magnetic data against those using magnetic and POINT data are presented. Equilibrium reconstructions using POINT data are found to be consistent with sawtooth phenomena. The sensitivity of equilibrium reconstruction to POINT measurements indicates Faraday rotation provides important constraints for determining the current profile.

  15. Near-wall velocity profile measurement for nanofluids

    NASA Astrophysics Data System (ADS)

    Kanjirakat, Anoop; Sadr, Reza

    2016-01-01

    We perform near-wall velocity measurements of a SiO2-water nanofluid inside a microchannel. Nanoparticle image velocimetry measurements at three visible depths within 500 nm of the wall are conducted. We evaluate the optical properties of the nanofluid and their effect on the measurement technique. The results indicate that the small effect of the nanoparticles on the optical properties of the suspension have a negligible effect on the measurement technique. Our measurements show an increase in nanofluid velocity gradients near the walls, with no measurable slip, relative to the equivalent basefluid flow. We conjecture that particle migration induced by shear may have caused this increase. The effect of this increase in the measured near wall velocity gradient has implications on the viscosity measurement for these fluids.

  16. Evaluation of Acoustic Doppler Current Profiler measurements of river discharge

    USGS Publications Warehouse

    Morlock, S.E.

    1996-01-01

    The standard deviations of the ADCP measurements ranged from approximately 1 to 6 percent and were generally higher than the measurement errors predicted by error-propagation analysis of ADCP instrument performance. These error-prediction methods assume that the largest component of ADCP discharge measurement error is instrument related. The larger standard deviations indicate that substantial portions of measurement error may be attributable to sources unrelated to ADCP electronics or signal processing and are functions of the field environment.

  17. Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City

    NASA Astrophysics Data System (ADS)

    Thornhill, D. A.; Williams, A. E.; Onasch, T. B.; Wood, E.; Herndon, S. C.; Kolb, C. E.; Knighton, W. B.; Zavala, M.; Molina, L. T.; Marr, L. C.

    2010-04-01

    The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA) using on-road measurements captured by a mobile laboratory combined with positive matrix factorization (PMF) receptor modeling. During the MCMA-2006 ground-based component of the MILAGRO field campaign, the Aerodyne Mobile Laboratory (AML) measured many gaseous and particulate pollutants, including carbon dioxide, carbon monoxide (CO), nitrogen oxides (NOx), benzene, toluene, alkylated aromatics, formaldehyde, acetaldehyde, acetone, ammonia, particle number, fine particulate mass (PM2.5), and black carbon (BC). These serve as inputs to the receptor model, which is able to resolve three factors corresponding to gasoline engine exhaust, diesel engine exhaust, and the urban background. Using the source profiles, we calculate fuel-based emission factors for each type of exhaust. The MCMA's gasoline-powered vehicles are considerably dirtier, on average, than those in the US with respect to CO and aldehydes. Its diesel-powered vehicles have similar emission factors of NOx and higher emission factors of aldehydes, particle number, and BC. In the fleet sampled during AML driving, gasoline-powered vehicles are found to be responsible for 97% of total vehicular emissions of CO, 22% of NOx, 95-97% of each aromatic species, 72-85% of each carbonyl species, 74% of ammonia, negligible amounts of particle number, 26% of PM2.5, and 2% of BC; diesel-powered vehicles account for the balance. Because the mobile lab spent 17% of its time waiting at stoplights, the results may overemphasize idling conditions, possibly resulting in an underestimate of NOx and overestimate of CO emissions. On the other hand, estimates of the inventory that do not correctly account for emissions during idling are likely to produce bias in the opposite direction.The resulting fuel-based estimates of emissions are lower than in the official inventory for CO and NOx

  18. Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City

    NASA Astrophysics Data System (ADS)

    Thornhill, D. A.; Williams, A. E.; Onasch, T. B.; Wood, E.; Herndon, S. C.; Kolb, C. E.; Knighton, W. B.; Zavala, M.; Molina, L. T.; Marr, L. C.

    2009-12-01

    The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA) using on-road measurements captured by a mobile laboratory combined with positive matrix factorization (PMF) receptor modeling. During the MCMA-2006 ground-based component of the MILAGRO field campaign, the Aerodyne Mobile Laboratory (AML) measured many gaseous and particulate pollutants, including carbon dioxide, carbon monoxide (CO), nitrogen oxides (NOx), benzene, toluene, alkylated aromatics, formaldehyde, acetaldehyde, acetone, ammonia, particle number, fine particulate mass (PM2.5), and black carbon (BC). These serve as inputs to the receptor model, which is able to resolve three factors corresponding to gasoline engine exhaust, diesel engine exhaust, and the urban background. Using the source profiles, we calculate fuel-based emission factors for each type of exhaust. The MCMA's gasoline-powered vehicles are considerably dirtier, on average, than those in the US with respect to CO and aldehydes. Its diesel-powered vehicles have similar emission factors of NOx and higher emission factors of aldehydes, particle number, and BC. In the fleet sampled during AML driving, gasoline-powered vehicles are responsible for 97% of mobile source emissions of CO, 22% of NOx, 95-97% of aromatics, 72-85% of carbonyls, 74% of ammonia, negligible amounts of particle number, 26% of PM2.5, and 2% of BC; diesel-powered vehicles account for the balance. Because the mobile lab spent 17% of its time waiting at stoplights, the results may overemphasize idling conditions, possibly resulting in an underestimate of NOx and overestimate of CO emissions. On the other hand, estimates of the inventory that do not correctly account for emissions during idling are likely to produce bias in the opposite direction. Nevertheless, the fuel-based inventory suggests that mobile source emissions of CO and NOx are overstated in the official inventory while

  19. a Compact Dial LIDAR for Ground-Based Ozone Atmospheric Profiling Measurements

    NASA Astrophysics Data System (ADS)

    De Young, R.; Carrion, W.; Pliutau, D.; Ganoe, R. E.

    2013-12-01

    ozone profiles from 100 to 200-m above ground. To obtain an ozone atmospheric measurement, the transmitter sends a laser pulse into the atmosphere at alternating on-line and off-line wavelengths (500Hz each line). The 527-nm green laser output is always transmitted giving a return from atmospheric aerosols. Examples of ozone profiles in the Hampton Roads region of Virginia will be presented. The system has been configured to enable mobile operation from a trailer which is environmentally controlled, and is towed with a truck to sites that are equipped with power. The objective is to make the system mobile such that it can be setup at remote sites to support major air quality field campaigns.

  20. The Australian MRI-Linac Program: measuring profiles and PDD in a horizontal beam

    NASA Astrophysics Data System (ADS)

    Begg, J.; George, A.; Alnaghy, S. J.; Causer, T.; Alharthi, T.; Glaubes, L.; Dong, B.; Goozee, G.; Liney, G.; Holloway, L.; Keall, P.

    2017-02-01

    The Australian MRI-Linac consists of a fixed horizontal photon beam combined with a MRI. Commissioning required PDD and profiles measured in a horizontal set-up using a combination of water tank measurements and gafchromic film. To validate the methodology, measurements were performed comparing PDD and profiles measured with the gantry angle set to 0 and 90° on a conventional linac. Results showed agreement to within 2.0% for PDD measured using both film and the water tank at gantry 90° relative to PDD acquired using gantry 0°. Profiles acquired using a water tank at both gantry 0 and 90° showed agreement in FWHM to within 1 mm. The agreement for both PDD and profiles measured at gantry 90° relative to gantry 0° curves indicates that the methodology described can be used to acquire the necessary beam data for horizontal beam lines and in particular, commissioning the Australian MRI-linac.

  1. In Situ Aerosol Profile Measurements and Comparisons with SAGE 3 Aerosol Extinction and Surface Area Profiles at 68 deg North

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Under funding from this proposal three in situ profile measurements of stratospheric sulfate aerosol and ozone were completed from balloon-borne platforms. The measured quantities are aerosol size resolved number concentration and ozone. The one derived product is aerosol size distribution, from which aerosol moments, such as surface area, volume, and extinction can be calculated for comparison with SAGE III measurements and SAGE III derived products, such as surface area. The analysis of these profiles and comparison with SAGE III extinction measurements and SAGE III derived surface areas are provided in Yongxiao (2005), which comprised the research thesis component of Mr. Jian Yongxiao's M.S. degree in Atmospheric Science at the University of Wyoming. In addition analysis continues on using principal component analysis (PCA) to derive aerosol surface area from the 9 wavelength extinction measurements available from SAGE III. Ths paper will present PCA components to calculate surface area from SAGE III measurements and compare these derived surface areas with those available directly from in situ size distribution measurements, as well as surface areas which would be derived from PCA and Thomason's algorithm applied to the four wavelength SAGE II extinction measurements.

  2. A lidar system for measuring atmospheric pressure and temperature profiles

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Dombrowski, Mark; Korb, C. Laurence; Milrod, Jeffry; Walden, Harvey

    1987-01-01

    The design and operation of a differential absorption lidar system capable of remotely measuring the vertical structure of tropospheric pressure and temperature are described. The measurements are based on the absorption by atmospheric oxygen of the spectrally narrowband output of two pulsed alexandrite lasers. Detailed laser output spectral characteristics, which are critical to successful lidar measurements, are presented. Spectral linewidths of 0.026 and 0.018 per cm for the lasers were measured with over 99.99 percent of the energy contained in three longitudinal modes.

  3. Wake profile measurements of fixed and oscillating flaps

    NASA Technical Reports Server (NTRS)

    Owen, F. K.

    1984-01-01

    Although the potential of laser velocimetry for the non-intrusive measurement of complex shear flows has long been recognized, there have been few applications in other small, closely controlled laboratory situations. Measurements in large scale, high speed wind tunnels are still a complex task. To support a study of periodic flows produced by an oscillating edge flap in the Ames eleven foot wind tunnel, this study was done. The potential for laser velocimeter measurements in large scale production facilities are evaluated. The results with hot wire flow field measurements are compared.

  4. Tethered acoustic doppler current profiler platforms for measuring streamflow

    USGS Publications Warehouse

    Rehmel, Michael S.; Stewart, James A.; Morlock, Scott E.

    2003-01-01

    A tethered-platform design with a trimaran hull and 900-megahertz radio modems is now commercially available. Continued field use has resulted in U.S. Geological Survey procedures for making tethered-platform discharge measurements, including methods for tethered-boat deployment, moving-bed tests, and measurement of edge distances.

  5. PNNL/Euratom glass fiber-optic, spent-fuel profile measurement system

    SciTech Connect

    Bowyer, S.M.; Smart, J.E.; Hansen, R.R.

    1999-07-01

    Discussions between Euratom and Pacific Northwest National Laboratory (PNNL) revealed a need for a neutron detection system that could measure the neutron profile down the entire length of a CASTOR in one measurement. The CASTORS (dry storage casks for spent fuel and vitrified wastes) are {approximately}6 m high and 2 x 2 m square in cross section. Neutron profiles of the CASTORS are desirable for both content identification and verification. Profile measurements have traditionally been done with {sup 3}He-based detectors {approximately}1 m high that scan the length of a CASTOR as they are lifted by a crane. Geometric reproducibility errors plague this type of measurement; hence, the ability to simultaneously measure the neutron profile over the entire length of the CASTOR became highly desirable. Use of the PNNL-developed neutron-sensitive glass fibers in the construction of a 6-m-high detector was proposed, and design and construction of the detector began.

  6. Temporal variability of the trade wind inversion: Measured with a boundary layer vertical profiler. Master's thesis

    SciTech Connect

    Grindinger, C.M.

    1992-05-01

    This study uses Hawaiian Rainband Project (HaRP) data, from the summer of 1991, to show a boundary layer wind profiler can be used to measure the trade wind inversion. An algorithm has been developed for the profiler that objectively measures the depth of the moist oceanic boundary layer. The Hilo inversion, measured by radiosonde, is highly correlated with the moist oceanic boundary layer measured by the profiler at Paradise Park. The inversion height on windward Hawaii is typically 2253 + or - 514 m. The inversion height varies not only on a daily basis, but on less than an hourly basis. It has a diurnal, as well as a three to four day cycle. There appears to be no consistent relationship between inversion height and precipitation. Currently, this profiler is capable of making high frequency (12 minute) measurements of the inversion base variation, as well as other features.

  7. Rapid road repair vehicle

    DOEpatents

    Mara, Leo M.

    1999-01-01

    Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

  8. MEASURING VERTICAL PROFILES OF HYDRAULIC CONDUCTIVITY WITH IN SITU DIRECT-PUSH METHODS

    EPA Science Inventory

    U.S. EPA (Environmental Protection Agency) staff developed a field procedure to measure hydraulic conductivity using a direct-push system to obtain vertical profiles of hydraulic conductivity. Vertical profiles were obtained using an in situ field device-composed of a
    Geopr...

  9. Intercomparison of aerosol extinction profiles retrieved from MAX-DOAS measurements

    NASA Astrophysics Data System (ADS)

    Frieß, U.; Klein Baltink, H.; Beirle, S.; Clémer, K.; Hendrick, F.; Henzing, B.; Irie, H.; de Leeuw, G.; Li, A.; Moerman, M. M.; van Roozendael, M.; Shaiganfar, R.; Wagner, T.; Wang, Y.; Xie, P.; Yilmaz, S.; Zieger, P.

    2016-07-01

    A first direct intercomparison of aerosol vertical profiles from Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations, performed during the Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments (CINDI) in summer 2009, is presented. Five out of 14 participants of the CINDI campaign reported aerosol extinction profiles and aerosol optical thickness (AOT) as deduced from observations of differential slant column densities of the oxygen collision complex (O4) at different elevation angles. Aerosol extinction vertical profiles and AOT are compared to backscatter profiles from a ceilometer instrument and to sun photometer measurements, respectively. Furthermore, the near-surface aerosol extinction coefficient is compared to in situ measurements of a humidity-controlled nephelometer and dry aerosol absorption measurements. The participants of this intercomparison exercise use different approaches for the retrieval of aerosol information, including the retrieval of the full vertical profile using optimal estimation and a parametrised approach with a prescribed profile shape. Despite these large conceptual differences, and also differences in the wavelength of the observed O4 absorption band, good agreement in terms of the vertical structure of aerosols within the boundary layer is achieved between the aerosol extinction profiles retrieved by the different groups and the backscatter profiles observed by the ceilometer instrument. AOTs from MAX-DOAS and sun photometer show a good correlation (R>0.8), but all participants systematically underestimate the AOT. Substantial differences between the near-surface aerosol extinction from MAX-DOAS and from the humidified nephelometer remain largely unresolved.

  10. Profiles.

    ERIC Educational Resources Information Center

    School Arts, 1979

    1979-01-01

    Profiles seven Black, Native American, and Chicano artists and art teachers: Hale A. Woodruff, Allan Houser, Luis Jimenez, Betrand D. Phillips, James E. Pate, I, and Fernando Navarro. This article is part of a theme issue on multicultural art. (SJL)

  11. Photogrammetric Techniques for Road Surface Analysis

    NASA Astrophysics Data System (ADS)

    Knyaz, V. A.; Chibunichev, A. G.

    2016-06-01

    The quality and condition of a road surface is of great importance for convenience and safety of driving. So the investigations of the behaviour of road materials in laboratory conditions and monitoring of existing roads are widely fulfilled for controlling a geometric parameters and detecting defects in the road surface. Photogrammetry as accurate non-contact measuring method provides powerful means for solving different tasks in road surface reconstruction and analysis. The range of dimensions concerned in road surface analysis can have great variation from tenths of millimetre to hundreds meters and more. So a set of techniques is needed to meet all requirements of road parameters estimation. Two photogrammetric techniques for road surface analysis are presented: for accurate measuring of road pavement and for road surface reconstruction based on imagery obtained from unmanned aerial vehicle. The first technique uses photogrammetric system based on structured light for fast and accurate surface 3D reconstruction and it allows analysing the characteristics of road texture and monitoring the pavement behaviour. The second technique provides dense 3D model road suitable for road macro parameters estimation.

  12. The Decrease in Traumatic Brain Injury Epidemics Deriving from Road Traffic Collision Following Strengthened Legislative Measures in France

    PubMed Central

    Lieutaud, Thomas; Gadegbeku, Blandine; Ndiaye, Amina; Chiron, Mireille; Viallon, Vivian

    2016-01-01

    Background Since 2002, France has been strengthening legislation on road traffic. This study is intended to evaluate the changes in Traumatic Brain Injury (TBI) incidence and mortality resulting from Road Traffic Collision (RTC) in the two 6-year periods before and after 2002. Methods We used a Registry of all RTC casualties in the Rhône Department of France. Each casualty was coded according to the Abbreviated Injury Scale (AIS). The study describes changes in demographic variables, TBI (AIS ≥ 2) incidence and mortality, other body lesions (AIS ≥ 3) associated with TBI, road user types, seatbelt and helmet wearing. Findings RTC casualty occurrences decreased by 21% (from 64,312 to 50,746) during the period after 2002. TBI occurrence accounted for 8.6% and 6.7% of all RTC in both periods. This corresponds to a reduction of TBI casualty incidence (-42%), which was much more pronounced than RTC casualty incidence (-25%) (p < 0.0001). Severe and critical TBI (AIS-4 and -5) incidences were reduced by half as much (-21%), compared to TBI incidence. TBI mortality rate (among population) and lethality (among TBI related to RTC casualties) decreased 56% and 23%, respectively. This reduction particularly affected car occupants and victims who deceased. TBI incidence decreased 43% in all 10-year age classes until 60 on average, this decrease declining with age in the period after 2002. After adjustment for age, sex, road user types, and severity of lesions at the head and other body regions, logistic regression analysis displayed a protective effect of the period following 2002, on the risk of death after RTC-related TBI. Interpretation The greater reductions in the incidence, severity and mortality of TBI when compared with the reduction of casualty incidence have mainly affected car users. These results should be attributable to the improvements in standards of care, primary safety of the car fleet and general road architecture safety. However, the increased reduction

  13. Measurements of dimensional accuracy using linear and scanning profile techniques.

    PubMed

    Harrison, A; Huggett, R; Zissis, A

    1992-01-01

    Various measurement methods have been described for the determination of dimensional accuracy and stability of denture base materials. This investigation introduces a computerised coordinate measuring machine (CCMM) and compares it with two methods routinely used for assessment of the accuracy of fit of denture base materials. The results demonstrate that the three methods (digital calipers, optical comparator, and CCMM) are acceptable for linear measurement. The CCMM was also used in its scanning mode to define and to quantify the contour changes of the resin bases. The advantages of the CCMM become apparent when two-dimensional changes require assessment.

  14. Sinusoidal phase modulating interferometry system for 3D profile measurement

    NASA Astrophysics Data System (ADS)

    En, Bo; Fa-jie, Duan; Chang-rong, Lv; Fu-kai, Zhang; Fan, Feng

    2014-07-01

    We describe a fiber-optic sinusoidal phase modulating (SPM) interferometer for three-dimensional (3D) profilometry, which is insensitive to external disturbances such as mechanical vibration and temperature fluctuation. Sinusoidal phase modulation is created by modulating the drive voltage of the piezoelectric transducer (PZT) with a sinusoidal wave. The external disturbances that cause phase drift in the interference signal and decrease measuring accuracy are effectively eliminated by building a closed-loop feedback system. The phase stability can be measured with a precision of 2.75 mrad, and the external disturbances can be reduced to 53.43 mrad for the phase of fringe patterns. By measuring the dynamic deformation of the rubber membrane, the RMSE is about 0.018 mm, and a single measurement takes less than 250 ms. The feasibility for real-time application has been verified.

  15. Doppler Lidar Measurements of Tropospheric Wind Profiles Using the Aerosol Double Edge Technique

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Mathur, Savyasachee; Korb, C. Laurence; Chen, Huailin

    2000-01-01

    The development of a ground based direct detection Doppler lidar based on the recently described aerosol double edge technique is reported. A pulsed, injection seeded Nd:YAG laser operating at 1064 nm is used to make range resolved measurements of atmospheric winds in the free troposphere. The wind measurements are determined by measuring the Doppler shift of the laser signal backscattered from atmospheric aerosols. The lidar instrument and double edge method are described and initial tropospheric wind profile measurements are presented. Wind profiles are reported for both day and night operation. The measurements extend to altitudes as high as 14 km and are compared to rawinsonde wind profile data from Dulles airport in Virginia. Vertical resolution of the lidar measurements is 330 m and the rms precision of the measurements is a low as 0.6 m/s.

  16. Interpretation of combined wind profiler and aircraft-measured tropospheric winds and clear air turbulence

    NASA Technical Reports Server (NTRS)

    Thomson, D. W.; Syrett, William J.; Fairall, C. W.

    1991-01-01

    In the first experiment, it was found that wind profilers are far better suited for the detailed examination of jet stream structure than are weather balloons. The combination of good vertical resolution with not previously obtained temporal resolution reveals structural details not seen before. Development of probability-derived shear values appears possible. A good correlation between pilot reports of turbulence and wind shear was found. In the second experiment, hourly measurements of wind speed and direction obtained using two wind profiling Doppler radars during two prolonged jet stream occurrences over western Pennsylvania were analyzed. In particular, the time-variant characteristics of derived shear profiles were examined. Profiler data dropouts were studied in an attempt to determine possible reasons for the apparently reduced performance of profiling radar operating beneath a jet stream. Richardson number and wind shear statistics were examined along with pilot reports of turbulence in the vicinity of the profiler.

  17. Monitoring sodium chloride concentrations and density profiles in solar ponds by electrical conductivity and temperature measurement

    SciTech Connect

    Fynn, R.P.; Short, T.H.; Badger, P.C.; Sciarini, M.J.

    1980-01-01

    A simple accurate and semi-automatic system was developed for monitoring sodium chloride concentrations and density profiles in a solar pond. The profile meter, which measures pond solution conductivity and temperature, and the equations which convert this data into salt concentration and/or brine density, are covered in detail so that any potential users may construct their own equipment. The use of the profile meter, its advantages and disadvantages, are discussed. Emphasis is placed on the day-to-day profile monitoring that the conductivity-temperature method enables, and the use of the meter during modification of the pond profiles. A program is also available to calculate the pond profile using a Hewlett-Packard HP-97 programmable calculator.

  18. CLEAN-ROADS project: air quality considerations after the application of a novel MDSS on winter road maintenance activities

    NASA Astrophysics Data System (ADS)

    Pretto, Ilaria; Malloci, Elisa; Tonidandel, Gabriele; Benedetti, Guido; Di Napoli, Claudia; Piazza, Andrea; Apolloni, Roberto; Cavaliere, Roberto

    2016-04-01

    on sodium chloride, which releases Na+ and Cl-, the estimation of the contribution of road salting to PM10 concentration can be carried out considering only measured concentrations of Na+ and Cl-. However, the presence of these elements might not be due exclusively to salting activities. For this reason data collected during first winter campaign were analysed using the Positive Matrix Factorization (PMF) Model developed by United States Environmental Protection Agency (EPA) to identify the presence of Na+ and Cl- in emission profiles of other PM10 sources (e.g., biomass burning, traffic) [3]. Through this study new guidelines have been defined for the optimization of current road management operations, and their applicability to other area in the Province of Trento has been assessed for future purposes. [1] Pretto I. et al., SIRWEC 2014 conference proceedings, ID:0019 (2014) [2] Ambient Air Quality and Cleaner Air for Europe (CAFE) Directive (2008/50/EC) [3] http://www.epa.gov/air-research/positive-matrix-factorization-model-environmental-data-analyses

  19. Comparison of Profiling Microwave Radiometer, Aircraft, and Radiosonde Measurements From the Alliance Icing Research Study (AIRS)

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.

    2001-01-01

    Measurements from a profiling microwave radiometer are compared to measurements from a research aircraft and radiosondes. Data compared is temperature, water vapor, and liquid water profiles. Data was gathered at the Alliance Icing Research Study (AIRS) at Mirabel Airport outside Montreal, Canada during December 1999 and January 2000. All radiometer measurements were found to lose accuracy when the radome was wet. When the radome was not wetted, the radiometer was seen to indicate an inverted distribution of liquid water within a cloud. When the radiometer measurements were made at 15 deg. instead of the standard zenith, the measurements were less accurate.

  20. Development of an inner profile measurement instrument using a ring beam device

    NASA Astrophysics Data System (ADS)

    Yoshizawa, T.; Wakayama, T.

    2010-11-01

    Inner profile measurement is an important matter in such fields as medicine, dentistry and anthropology as well as mechanical engineering and other industrial applications. Here we describe recent development of our measurement principle for inner diameter of pipes and/or holes. The key device in this technique is a ring beam device which consists of a conical mirror and a laser diode. And the fundamental principle is based on optical sectioning without using any contact type stylus. The optically sectioned profile of an inner wall of a pipe-like object is analyzed to give the inner profile in addition to the inner diameter. This optical instrument with a simple and small configuration is now under development for practical uses. In our hitherto trial experimental works, the availability of this instrument has been evaluated in many cases and availability for practical applications is expected, especially, for measurement and inspection of mechanical components and elements besides pipes. This ring beam device consisting of a conical mirror and a LD is assembled to form a disk-like light sheet. We show measurement result of pipes and holes, and, at the same time, report a compact inner profile measuring instrument at this point. Both the ring beam device and a miniaturized CCD camera are fabricated into a glass tube. Availability of this instrument is shown by measuring the inner profiles of various pipes. In response to this trial, there appeared a strong request that not only the internal but external profiles should be measured simultaneously. Therefore we propose potentially possible method for measurement of external profile at the same time with internal profile. If one pair of concave mirrors are used in our arrangement, external profile is captured. In combination with inner profile measurement technique, simultaneous measurement of inner and outer profiles becomes attainable. A measurement result on a bevel gear shows availability of here proposed

  1. Road Surfaces And Earthquake Engineering: A Theoretical And Experimental Study

    SciTech Connect

    Pratico, Filippo Giammaria

    2008-07-08

    As is well known, road surfaces greatly affect vehicle-road interaction. As a consequence, road surfaces have a paramount influence on road safety and pavement management systems. On the other hand, earthquakes produce deformations able to modify road surface structure, properties and performance. In the light of these facts, the main goal of this paper has been confined into the modelling of road surface before, during and after the seismic event. The fundamentals of road surface texture theory have been stated in a general formulation. Models in the field of road profile generation and theoretical properties, before, during and after the earthquake, have been formulated and discussed. Practical applications can be hypothesised in the field of vehicle-road interaction as a result of road surface texture derived from deformations and accelerations caused by seismic or similar events.

  2. An overtone CO laser application for lidar measurements of profiles of atmospheric meteorological parameters

    NASA Astrophysics Data System (ADS)

    Romanovskii, O. A.; Kharchenko, O. V.; Yakovlev, S. V.

    2014-11-01

    Possibilities of using an overtone CO laser in the mid-IR range for lidar measurements of air humidity and temperature profiles by the differential absorption method have been studied. Wavelengths for lidar measurements of meteorological parameters are selected. Spatial and spectrally resolved lidar signals, as well as random errors of retrieval of profiles of the atmospheric meteorological parameters, have been calculated using the wavelengths.

  3. Intercomparison between ozone profiles measured above Spitsbergen by lidar and sonde techniques

    NASA Technical Reports Server (NTRS)

    Fabian, Rolf; Vondergathen, Peter; Ehlers, J.; Krueger, Bernd C.; Neuber, Roland; Beyerle, Georg

    1994-01-01

    This paper compares coincident ozone profile measurements by electrochemical sondes and lidar performed at Ny-Alesund/Spitsbergen. A detailed height dependent statistical analysis of the differences between these complementary methods was performed for the overlapping altitude region (13-35 km). The data set comprises ozone profile measurements conducted between Jan. 1989 and Jan. 1991. Differences of up to 25 percent were found above 30 km altitude.

  4. Continuous Profiles of Cloud Microphysical Properties for the Fixed Atmospheric Radiation Measurement Sites

    SciTech Connect

    Jensen, M; Jensen, K

    2006-06-01

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the third quarter of Fiscal Year 2006 to produce and refine a one-year continuous time series of cloud microphysical properties based on cloud radar measurements for each of the fixed ARM sites. To accomplish this metric, we used a combination of recently developed algorithms that interpret radar reflectivity profiles, lidar backscatter profiles, and microwave brightness temperatures into the context of the underlying cloud microphysical structure.

  5. Measuring Resiliency in Youth: The Resiliency Attitudes and Skills Profile.

    ERIC Educational Resources Information Center

    Hurtes, Karen P.; Allen, Lawrence R.

    2001-01-01

    Describes the development and validation of a self-report instrument for measuring resiliency in youth for recreation and other social services, noting that the instrument is not yet ready for use under all conditions and that while use of structural equation modeling removes some subjectivity, results of this type of analysis are still left to…

  6. Surface Depletion Correction to Carrier Profiles by Hall Measurements.

    DTIC Science & Technology

    1985-12-01

    geometry L . J . van der Pauw (14:6) has shown that it is necessary to measure the voltage accross two adjacent contacts when a current is passing...Physics, 53: 6906-6910 (October 1982) 13. Henisch, H. K. Rectifying Semiconductor Contacts. Oxford: The Clarendon Press, 1957 14. L . J . van der Pauw . "A

  7. Elasticity of foam bubbles measured by profile analysis tensiometry

    NASA Astrophysics Data System (ADS)

    Karakashev, S. I.; Tsekov, R.; Manev, E. D.; Nguyen, A. V.

    2010-10-01

    Elastic modulus of foam bubbles, stabilized with tetraethylene glycol octyl ether (C8E4) and 1 × 10-5 M NaCl, was determined by cyclic expansion and shrinking of foam bubbles with frequency of 0.1 Hz and volumetric amplitude of 2 mm3. The film tension was monitored by a commercial profile analysis tensiometer (Sinterface Technologies, GmbH). The elastic moduli of foam bubbles were obtained as a function of surfactant concentration in the range of 2 × 10-3-1 × 10-2 M. The theory of Lucassen and van den Tempel [1] for the elastic modulus of a single liquid/air interface at a given frequency was employed. In the theoretical analysis the bulk diffusion coefficient of surfactant molecules was considered as a unknown model parameter which was obtained by matching the theory with the experimental data. Hence, the dependence of the bulk diffusion coefficient of C8E4 molecules upon the C8E4 concentration was obtained. The diffusion coefficient reached a maximum at 5 × 10-3 M C8E4 (D = 8.5 × 10-11 m2/s). In the experimental surfactant concentration range (2 × 10-3-1 × 10-2 M, CMC = 7.5 × 10-3 M) the foam bubbles were relatively dry, with visible interferometric fringes corresponding to thin films stabilized by repulsion of the electrostatic disjoining pressure. Hence, the overall dynamics of periodical expansion and shrinking of the foam bubbles occurred within the thin film state.

  8. Compensation method for the alignment angle error of a gear axis in profile deviation measurement

    NASA Astrophysics Data System (ADS)

    Fang, Suping; Liu, Yongsheng; Wang, Huiyi; Taguchi, Tetsuya; Takeda, Ryuhei

    2013-05-01

    In the precision measurement of involute helical gears, the alignment angle error of a gear axis, which was caused by the assembly error of a gear measuring machine, will affect the measurement accuracy of profile deviation. A model of the involute helical gear is established under the condition that the alignment angle error of the gear axis exists. Based on the measurement theory of profile deviation, without changing the initial measurement method and data process of the gear measuring machine, a compensation method is proposed for the alignment angle error of the gear axis that is included in profile deviation measurement results. Using this method, the alignment angle error of the gear axis can be compensated for precisely. Some experiments that compare the residual alignment angle error of a gear axis after compensation for the initial alignment angle error were performed to verify the accuracy and feasibility of this method. Experimental results show that the residual alignment angle error of a gear axis included in the profile deviation measurement results is decreased by more than 85% after compensation, and this compensation method significantly improves the measurement accuracy of the profile deviation of involute helical gear.

  9. Measuring depth profiles of residual stress with Raman spectroscopy

    SciTech Connect

    Enloe, W.S.; Sparks, R.G.; Paesler, M.A.

    1988-12-01

    Knowledge of the variation of residual stress is a very important factor in understanding the properties of machined surfaces. The nature of the residual stress can determine a part`s susceptibility to wear deformation, and cracking. Raman spectroscopy is known to be a very useful technique for measuring residual stress in many materials. These measurements are routinely made with a lateral resolution of 1{mu}m and an accuracy of 0.1 kbar. The variation of stress with depth; however, has not received much attention in the past. A novel technique has been developed that allows quantitative measurement of the variation of the residual stress with depth with an accuracy of 10nm in the z direction. Qualitative techniques for determining whether the stress is varying with depth are presented. It is also demonstrated that when the stress is changing over the volume sampled, errors can be introduced if the variation of the stress with depth is ignored. Computer aided data analysis is used to determine the depth dependence of the residual stress.

  10. Estimation of volcanic ash emission profiles using ceilometer measurements and transport models

    NASA Astrophysics Data System (ADS)

    Chan, Ka Lok; Geiß, Alexander; Gasteiger, Josef; Wagner, Frank; Wiegner, Matthias

    2016-04-01

    In recent years, the number of active remote sensing systems grows rapidly, since several national weather services initiated ceilometer networks. These networks are excellent tools to monitor the dispersion of volcanic ash clouds and to validate chemical transport models. Moreover, it is expected that the can be used to refine model calculations to better predict situations that might be dangerous for aviation. As a ceilometer can be considered as a simple single-wavelength backscatter lidar, quantitative aerosol profile information, i.e., the aerosol backscatter coefficient (βp) profile, can be derived provided that the ceilometer is calibrated. Volcanic ash concentration profile can then be estimated by using prior optical properties of volcanic ash. These profiles are then used for the inverse calculation of the emission profile of the volcanic eruption, thus, improving one of the most critical parameters of the numerical simulation. In this study, the Lagrangian particle dispersion model FLEXPART (FLEXible PARTicle dispersion model) is used to simulate the dispersion of volcanic ash. We simulate the distribution of ash for a given time/height grid, in order to compute the sensitivity functions for each measurements. As an example we use ceilometer measurements of the German weather service to reconstruct the temporal and spatial emission profile of Eyjafjallajökull eruption in April 2010. We have also examined the sensitivity of the retrieved emission profiles to different measurement parameters, e.g., geolocation of the measurement sites, total number of measurement sites, temporal and vertical resolution of the measurements, etc. The first results show that ceilometer measurements in principle are feasible for the inversion of volcanic ash emission profiles.

  11. Washboard Road

    NASA Astrophysics Data System (ADS)

    McElwaine, Jim; Dalziel, Stuart; Taberlet, Nicolas; Morris, Stephen

    2006-11-01

    The tendency of unpaved road surfaces to develop lateral ripples (``washboard'' or ``corrugated'' road) is annoyingly familiar to drivers on dry gravel roads. Similar ripples are well known on railroad tracks and many other rolling or sliding, load bearing surfaces. Our approach combined laboratory experiments, soft-particle direct numerical simulations and simple nonlinear dynamics models. The experiment consisted of a rotating table 60 cm in radius with a thick layer of sand forming a roadbed around the circumference. A 6 cm radius hard rubber wheel, with a support stationary in the lab frame, rolled on the sand layer. We varied the speed of the table and the details of the suspension of the wheel. The onset of the ripple pattern exhibits a sharp threshold and was strongly subcritical with a large hysteresis as a function of the speed of the table. The ripple pattern appears as small patches of travelling waves which eventually spread to the entire circumference. The ripples move slowly in the driving direction. Interesting secondary dynamics of the saturated ripples were observed. All of these effects are captured qualitatively by a 2D soft particle simulations. The simulations clearly indicate that neither compaction nor particle size segregation are crucial for the appearance of the ripples, and we present a simple model to describe the wavelength and amplitude of the ripples.

  12. TH-C-18A-04: Validation of Dosimetric Measurement of CT Radiation Profile Width

    SciTech Connect

    Gauntt, D; Al-Senan, R

    2014-06-15

    Purpose: The ACR now requires that the CT radiation profile width be measured at all clinically used collimations. We developed a method for measuring the profile width using dosimetry alone to allow a faster and simpler measurement of beam widths. Methods: A pencil ionization chamber is used to take two dose-length product measurements in air for a wide collimation. One of these is taken with a 1cm tungsten mask on the pencil chamber. The difference between these measurements is the calibration factor, or the DLP in air per unit length. By dividing the doselength product for any given collimation by this factor, we can rapidly determine the beam profile width.We measured the beam width for all available detector configurations and focal spot sizes on three different CT scanners from two different manufacturers. The measurements were done using film, CR cassette, and the present dosimetric method. Results: The beam widths measured dosimetrically are approximately 2% wider than those measured using film or computed radiography; this difference is believed due to off-focus or scattered radiation. After correcting for this, the dosimetric beam widths match the film and CR widths with an RMS difference of approximately 0.2mm. The measured beam widths are largely insensitive to errors in positioning of the mask, or to tilt errors in the pencil chamber. Conclusion: Using the present method, radiation profile widths can be measured quickly, with an accuracy better than 1mm.

  13. Development of a magnetic vector potential profile measurement using a Heavy Ion Beam Probe

    NASA Astrophysics Data System (ADS)

    Fimognari, P. J.; Demers, D. R.; Crowley, T. P.

    2015-11-01

    Measurement of the plasma current density profile remains a fundamental need in toroidal confinement. Establishing this unique capability within the fusion program is invaluable to stability and transport studies. Inference of localized values of the magnetic vector potential, which will enable current density profile studies, can be accomplished through measurement of the toroidal velocity of secondary ions produced through electron-impact ionization of a heavy ion beam in an axisymmetric plasma. We are developing a specialized detector to measure particle velocity and the techniques necessary to unfold the magnetic vector potential profile, and hence the poloidal flux and current density profiles. Initial modeling of the velocity detector has been performed. Simulations are enabling estimation of anticipated sensitivity to, and resolution of, equilibrium and fluctuating quantities. Results of this work and forward looking plans will be presented. This work is supported by US DoE award no. DE-SC0006077.

  14. Optimal sets of measurement data for profile reconstruction in scatterometry

    NASA Astrophysics Data System (ADS)

    Gross, H.; Rathsfeld, A.; Scholze, F.; Bär, M.; Dersch, U.

    2007-06-01

    We discuss numerical algorithms for the determination of periodic surface structures from light diffraction patterns. With decreasing feature sizes of lithography masks, increasing demands on metrology techniques arise. Scatterometry as a non-imaging indirect optical method is applied to simple periodic line structures in order to determine parameters like side-wall angles, heights, top and bottom widths and to evaluate the quality of the manufacturing process. The numerical simulation of diffraction is based on the finite element solution of the Helmholtz equation. The inverse problem seeks to reconstruct the grating geometry from measured diffraction patterns. Restricting the class of gratings and the set of measurements, this inverse problem can be reformulated as a non-linear operator equation in Euclidean spaces. The operator maps the grating parameters to special efficiencies of diffracted plane wave modes. We employ a Gauss-Newton type iterative method to solve this operator equation. The reconstruction properties and the convergence of the algorithm, however, is controlled by the local conditioning of the non-linear mapping. To improve reconstruction and convergence, we determine optimal sets of efficiencies optimizing the condition numbers of the corresponding Jacobians. Numerical examples are presented for "chrome on glass" masks under the wavelength 632.8 nm and for EUV masks.

  15. Characterization and calibration of 2nd generation slope measuring profiler

    NASA Astrophysics Data System (ADS)

    Siewert, Frank; Buchheim, Jana; Zeschke, Thomas

    2010-05-01

    High spectral resolution and nanometer sized foci of 3rd generation SR beamlines can only be achieved by means of ultra precise optical elements. The improved brilliance and the coherence of free electron lasers (FEL) even push the accuracy limits and make the development of a new generation of ultra precise reflective optical elements mandatory. Typical elements are wave front preserving plane mirrors (lengths of up to 1 m, residual slope errors ˜0.05 μrad (rms) and values of 0.1 nm (rms) for the micro-roughness) and curved optical elements like spheres, toroids or elliptical cylinder (residual slope error ˜0.25 μrad (rms) and better). These challenging specifications and the ongoing progress in finishing technology need to be matched by improved accuracy metrology instruments. We will discuss the results of recent developments in the field of metrology made in the BESSY-II-optics laboratory (BOL) at the Helmholtz Zentrum Berlin (HZB), by the use of vertical angle comparator (VAC) in use to calibrate the nanometer optical component measuring machine (NOM). The BESSY-NOM represents an ultra accurate type of slope measuring instruments characterized by an accuracy of 0.05 μrad (rms) for plane substrates and 0.2 μrad (rms) for significant curved surfaces.

  16. SU-E-P-24: Simplified EDW Profile Measurements Using Two Commonly Available Detector Arrays

    SciTech Connect

    Reynolds, T; Arentsen, L; Watanabe, Y; Alaei, P

    2015-06-15

    Purpose: Enhanced dynamic wedge (EDW) profiles are needed as part of the commissioning of a treatment planning system. This work compares the acquisition of EDW profiles using a linear diode array (LDA) with two commonly used detector arrays available in the clinics, with the goal of identifying the simplest approach for these measurements. Methods: The measurements of EDW profiles were performed on a Varian TrueBeam linear accelerator for 6, 10, and 18 MV photon beams for all seven wedge angles at four depths. The measurements were done using the LDA 99 in Blue Phantom2 (IBA Dosimetry), and IC Profiler and MapCHECK2 (Sun Nuclear) in solid water phantoms. The water phantom was set up at 100 cm SSD, whereas the two other devices were set up at 75 cm due to the size limitations of the devices. The largest possible field size was used. The average and maximum percentage differences were examined within the central 90% of the field and in the penumbra. Results: Dose profiles measured with IC Profiler were in a good agreement with LDA 99 data. The average percentage difference within the field did not exceed 0.5% for all energies. MapCHECK2 measurements matched well with LDA 99 for 10 and 18 MV (within 0.3%) with discrepancies of up to 1.4% observed for the 6 MV beam. The maximum percentage differences for both devices in the penumbra exhibited larger variations than LDA 99 results due to differences in detector spacing and high dose gradient, as expected. Conclusion: Common linac QA devices such as IC Profiler or MapCHECK2 provide EDW beam profile data of reasonable accuracy as compared to measurements performed using a linear diode array in a water phantom, saving the expense and time involved in acquiring and setting up a LDA.

  17. Coarse-fine vertical scanning based optical profiler for structured surface measurement with large step height

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Liu, Xiaojun; Lei, Zili; Li, Qian; Yang, Xiao; Chen, Liangzhou; Lu, Wenlong

    2015-02-01

    White light interference (WLI) optical profiler had been used widely for structured surface measurement. To achieve high measuring accuracy, piezoelectric ceramic (PZT) was usually used as the vertical scanning unit, which was normally less than 100um and only for small range structured surface measurement. With the development of advanced manufacturing technology, precision structured surfaces with large step height were appearing. To satisfy the measurement requirements of this kind of precision structured surfaces, WLI optical profiler with large range had to be developed. In this paper, an optical profiler was proposed, in which a coarse-fine vertical scanning system was adopted to expand its measurement range to 10mm while its resolution still at nanometer level.

  18. A novel non-contact profiler design for measuring synchrotron radiation mirrors

    SciTech Connect

    Lin, Yao; Takacs, P.Z.; Furenlid, K.; DeBiasse, R.A. ); Wang, Run-Wen . Shanghai Inst. of Optics and Fine Mechanics)

    1990-08-01

    A novel optical profiler is described in this paper for measurement of surface profiles of synchrotron radiation (SR) mirrors. The measurement is based on a combination of an optical heterodyne technique and a precise phase measurement procedure without a reference surface. A Zeeman two-frequency He-Ne laser is employed as the light source. The common-path optical system, which uses a birefringent lens as the beam splitter, minimizes the effects of air turbulence, sample vibration and temperature variation. A special autofocus system allows the profiler to measure the roughness and shape of a sample surface. The optical system is mounted on a large linear air-bearing slide, and is capable of scanning over distances covering the spatial period range from several microns to nearly one meter with a high measurement accuracy. 9 refs., 5 figs.

  19. Measurement of bow tie profiles in CT scanners using a real-time dosimeter

    SciTech Connect

    Whiting, Bruce R.; Evans, Joshua D.; Williamson, Jeffrey F.; Dohatcu, Andreea C.; Politte, David G.

    2014-10-15

    Purpose: Several areas of computed tomography (CT) research require knowledge about the intensity profile of the x-ray fan beam that is introduced by a bow tie filter. This information is considered proprietary by CT manufacturers, so noninvasive measurement methods are required. One method using real-time dosimeters has been proposed in the literature. A commercially available dosimeter was used to apply that method, and analysis techniques were developed to extract fan beam profiles from measurements. Methods: A real-time ion chamber was placed near the periphery of an empty CT gantry and the dose rate versus time waveform was recorded as the x-ray source rotated about the isocenter. In contrast to previously proposed analysis methods that assumed a pointlike detector, the finite-size ion chamber received varying amounts of coverage by the collimated x-ray beam during rotation, precluding a simple relationship between the source intensity as a function of fan beam angle and measured intensity. A two-parameter model for measurement intensity was developed that included both effective collimation width and source-to-detector distance, which then was iteratively solved to minimize the error between duplicate measurements at corresponding fan beam angles, allowing determination of the fan beam profile from measured dose-rate waveforms. Measurements were performed on five different scanner systems while varying parameters such as collimation, kVp, and bow tie filters. On one system, direct measurements of the bow tie profile were collected for comparison with the real-time dosimeter technique. Results: The data analysis method for a finite-size detector was found to produce a fan beam profile estimate with a relative error between duplicate measurement intensities of <5%. It was robust over a wide range of collimation widths (e.g., 1–40 mm), producing fan beam profiles that agreed with a relative error of 1%–5%. Comparison with a direct measurement technique on

  20. Constraining CO2 tower measurements in an inhomogeneous area with anthropogenic emissions using a combination of car-mounted instrument campaigns, aircraft profiles, transport modeling and neural networks

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Rella, C.; Conley, S. A.; Goeckede, M.; Law, B. E.

    2013-12-01

    The NOAA CO2 observation network in Oregon has been enhanced by 3 new towers in 2012. The tallest tower in the network (270 m), located in Silverton in the Willamette Valley is affected by anthropogenic emissions from Oregon's busiest traffic routes and urban centers. In summer 2012, we conducted a measurement campaign using a car-mounted PICARRO CRDS CO2/CO analyzer. Over 3 days, the instrument was driven over 1000 miles throughout the northwestern portion of Oregon measuring the CO/ CO2 ratios on main highways, back roads in forests, agricultural sites, and Oregon's biggest urban centers. By geospatial analyses we obtained ratios of CO/ CO2 over distinct land cover types divided into 10 classes represented in the study area. Using the coupled WRF-STILT transport model we calculated the footprints of nearby CO/ CO2 observation towers for the corresponding days of mobile road measurements. Spatiotemporally assigned source areas in combination with the land use classification were then used to calculate specific ratios of CO (anthropogenic origins) and CO2 to separate the anthropogenic portion of CO2 from the mixing ratio time series measured at the tower in Silverton. The WRF modeled boundary layer heights used in out study showed some differences compared to the boundary layer heights derived from profile data of wind, temperature, and humidity measured with an airplane in August, September, and November 2012, repeatedly over 5 tower locations. A Bayesian Regularized Artificial Neural Network (BRANN) was used to correct the boundary layer height calculated with WRF with a temporal resolution of 20 minutes and a horizontal resolution of 4 km. For that purpose the BRANN was trained using height profile data from the flight campaigns and spatiotemporally corresponding meteorological data from WRF. Our analyses provide information needed to run inverse modeling of CO2 exchange in an area that is affected by sources that cannot easily be considered by biospheric models

  1. Carbon monoxide (CO) vertical profiles derived from joined TES and MLS measurements

    NASA Astrophysics Data System (ADS)

    Luo, Ming; Read, William; Kulawik, Susan; Worden, John; Livesey, Nathaniel; Bowman, Kevin; Herman, Robert

    2013-09-01

    (Tropospheric Emission Spectrometer) nadir and MLS (Microwave Limb Sounder) limb measurements from the Aura satellite are used to jointly estimate an atmospheric carbon monoxide (CO) profile with extended vertical range compared to profiles retrieved from the individual measurement. We describe the algorithms, the processing procedures, the prototyping results, and the evaluations for this new joint product. TES and MLS "stand-alone" CO profile retrievals are largely complementary, with TES being largely sensitive to lower to middle troposphere while MLS measures CO in the upper troposphere and above. We pair TES nadir and MLS limb tangent locations within 6-8 min and within 220 km. The paired radiance measurements of the two instruments in each location are optimally combined to retrieve a single CO profile along with other trace gases whose signal interferes with that from CO. This combined CO profile has a vertical resolution and vertical range that is an improvement over the two stand-alone products, especially in the upper troposphere/lower stratosphere. For example, the degrees of freedom for signal (DOFS) between surface and 50 hPa for TES alone are < 2, and for the combined CO profiles are 2-4. This new Aura CO product will be made available to the public using TES V005 and MLS V003 processing results and will provide a unique data set for studying tropospheric transport of air pollutants and troposphere-stratospheric exchange processes.

  2. Technical Note: Measurement of bow tie profiles in CT scanners using radiochromic film

    PubMed Central

    Whiting, Bruce R.; Dohatcu, Andreea C.; Evans, Joshua D.; Politte, David G.; Williamson, Jeffrey F.

    2015-01-01

    Purpose: To provide a noninvasive technique to measure the intensity profile of the fan beam in a computed tomography (CT) scanner that is cost effective and easily implemented without the need to access proprietary scanner information or service modes. Methods: The fabrication of an inexpensive aperture is described, which is used to expose radiochromic film in a rotating CT gantry. A series of exposures is made, each of which is digitized on a personal computer document scanner, and the resulting data set is analyzed to produce a self-consistent calibration of relative radiation exposure. The bow tie profiles were analyzed to determine the precision of the process and were compared to two other measurement techniques, direct measurements from CT gantry detectors and a dynamic dosimeter. Results: The radiochromic film method presented here can measure radiation exposures with a precision of ∼6% root-mean-square relative error. The intensity profiles have a maximum 25% root-mean-square relative error compared with existing techniques. Conclusions: The proposed radiochromic film method for measuring bow tie profiles is an inexpensive (∼$100 USD + film costs), noninvasive method to measure the fan beam intensity profile in CT scanners. PMID:26127044

  3. Technical Note: Measurement of bow tie profiles in CT scanners using radiochromic film

    SciTech Connect

    Whiting, Bruce R.; Dohatcu, Andreea C.; Evans, Joshua D.; Williamson, Jeffrey F.; Politte, David G.

    2015-06-15

    Purpose: To provide a noninvasive technique to measure the intensity profile of the fan beam in a computed tomography (CT) scanner that is cost effective and easily implemented without the need to access proprietary scanner information or service modes. Methods: The fabrication of an inexpensive aperture is described, which is used to expose radiochromic film in a rotating CT gantry. A series of exposures is made, each of which is digitized on a personal computer document scanner, and the resulting data set is analyzed to produce a self-consistent calibration of relative radiation exposure. The bow tie profiles were analyzed to determine the precision of the process and were compared to two other measurement techniques, direct measurements from CT gantry detectors and a dynamic dosimeter. Results: The radiochromic film method presented here can measure radiation exposures with a precision of ∼6% root-mean-square relative error. The intensity profiles have a maximum 25% root-mean-square relative error compared with existing techniques. Conclusions: The proposed radiochromic film method for measuring bow tie profiles is an inexpensive (∼$100 USD + film costs), noninvasive method to measure the fan beam intensity profile in CT scanners.

  4. Line profile measurement of advanced-FinFET features by reference metrology

    NASA Astrophysics Data System (ADS)

    Takamasu, Kiyoshi; Iwaki, Yuuki; Takahashi, Satoru; Kawada, Hiroki; Ikota, Masami; Yamaguchi, Atsuko; Lorusso, Gian F.; Horiguchi, Naoto

    2015-03-01

    A novel method of sub-nanometer uncertainty for the line profile measurement using TEM (Transmission Electron Microscope) images is proposed to calibrate CD-SEM (Critical Dimension Scanning Electron Microscope) line width measurement and to standardize line profile measurement through reference metrology. The proposed method has been validated for profile of Si line and photoresist features in our previous investigations. In this article, we apply the methodology to line profile measurements of advanced-FinFET (Fin-shaped Field-Effect Transistor) features. The FinFET features are sliced as thin specimens of 100 nm thickness by FIB (Focused Ion Beam) micro sampling system. Cross-sectional images of the specimens are obtained then by TEM. The profiles of fin, hardmask and dummy gate of FinFET features are evaluated using TEM images. The width of fin, the length of hardmask, and the length of dummy gate of FinFET features are measured and compared to CD-SEM measurement. The TEM results will be used to implement CD-SEM and CD-AFM reference metrology.

  5. Measuring vertical oxygen profiles in the hyporheic zone using planar optodes

    NASA Astrophysics Data System (ADS)

    Vieweg, M.; Fleckenstein, J. H.; Schmidt, C.

    2012-04-01

    On of the key parameters, controlling biogeochemical reactions in the hyporheic zone (HZ) is the distribution of oxygen. A reliable measurement of the vertical oxygen distribution is an important tool to understand the dynamic fluctuations of the aerobic zone within the HZ. With repeated measurements of continuous profiles, mixing of surface water and groundwater as well as the consumption of oxygen can be evaluated. We present a novel approach for the in situ measurements of vertical oxygen distribution in the riverbed using a planar optode. The luminescence based optode measurement enables a non invasive measurement without consumption of oxygen, no creation of preferential flow paths and only minimal disturbance of the flow field. Possible atmospheric contamination by pumping pore water into a vessel can be avoided and the readings are independent of flow velocity. A self manufactured planar optode is wrapped around an acrylic tube and installed in the riverbed. The measurement is performed by vertically moving a profiler-piston inside the acrylic tube. The piston holds a robust polymer optical fibre which emits a modulated light signal through the acrylic glass to the optode-foil and transmits the induced luminescence signal back to a commercially available trace oxygen meter. Temperature compensation is accomplished using a depth-oriented temperature probe nearby and processing the raw data within a Matlab script. Robust and unbiased oxygen profiles are obtained by averaging multiple consecutive measurements. To ensure a constant velocity of the profiler for replicating the exact measuring depths, an electric motor device is used. First results at our test site show a variable oxygen profile down to 40 cm depth which is strongly influenced by stream level and upwelling groundwater conditions. The measured oxygen profiles will serve as input parameter for a 3D solute transport and chemical reaction subsurface model of the HZ.

  6. Relative vegetation profiles in a Neotropical forest: comparison of lidar instrumentation and field-based measurements

    NASA Astrophysics Data System (ADS)

    Sullivan, F. B.; Palace, M. W.; Ducey, M.; Czarnecki, C.; Zanin Shimbo, J.; Mota e Silva, J.

    2012-12-01

    Tropical forests are considered to be some of the most structurally complex forests in the world. Understanding vegetation height structure in these forests can aid in understanding the spatial temporal components of disturbance, from blowdowns to gap dynamics. Vegetation profiles can be used to better estimate carbon storage and flux across the landscape. Using light detection and ranging (lidar) data collected at La Selva, Costa Rica from four instruments (three airborne, one terrestrial) at four times since 2005, and field data collected in January 2012, we generated relative vegetation profiles for twenty plots in La Selva. Relative vegetation profiles were derived from lidar data by accounting for obscured plant material through a log transformation of the cumulative proportion of observations (percent canopy closure). Profiles were derived from field data using two different sets of allometric equations describing crown shape and tree height. We conducted a cluster analysis on similarity matrices developed in R (version 2.14.1) using three different metrics (sum of squares, Kullback-Leibler divergence, Kolmogorov-Smirnov D statistic) and identified general similarity between lidar profiles. Results were consistent across each of the three similarity metrics. Three distinct clusters were found, with profiles from three airborne lidar instruments, two profiles from a terrestrial lidar instrument, and profiles derived from field data forming the clusters. Our results indicate that although estimating lidar relative vegetation profiles from field data was not possible, terrestrial lidar relative vegetation profiles are generally similar to airborne relative vegetation profiles. Given the rapidity and repeatability of terrestrial lidar measurements, these results show promise for terrestrial lidar instruments to collect plot-specific data on forest structure and vertical distribution of plant material. Furthermore, identifying relationships between terrestrial and

  7. Genetic Algorithm for Opto-thermal Skin Hydration Depth Profiling Measurements

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Xiao, Perry; Imhof, R. E.

    2013-09-01

    Stratum corneum is the outermost skin layer, and the water content in stratum corneum plays a key role in skin cosmetic properties as well as skin barrier functions. However, to measure the water content, especially the water concentration depth profile, within stratum corneum is very difficult. Opto-thermal emission radiometry, or OTTER, is a promising technique that can be used for such measurements. In this paper, a study on stratum corneum hydration depth profiling by using a genetic algorithm (GA) is presented. The pros and cons of a GA compared against other inverse algorithms such as neural networks, maximum entropy, conjugate gradient, and singular value decomposition will be discussed first. Then, it will be shown how to use existing knowledge to optimize a GA for analyzing the opto-thermal signals. Finally, these latest GA results on hydration depth profiling of stratum corneum under different conditions, as well as on the penetration profiles of externally applied solvents, will be shown.

  8. Measurements of the density profile in oxidized graphite by X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Ioka, I.; Yoda, S.

    1988-01-01

    A computed tomography (CT) has been applied to the measurement of the density profile in nuclear-grade isotropic graphite (IG-11) having an oxidation gradient. The density profile of oxidized graphite was estimated from the CT number of oxidized graphite as the basis of the CT number and density of unoxidized graphite. On the other hand, the density profile of oxidized graphite was calculated from the weight loss and volume of the removed layer which were incrementally ground from the exterior surface. The agreement between the estimated and the measured results was good in regard to the density profile of oxidized graphite. Further, some tomograms of nuclear-grade graphites with artificial defects were tested using the X-ray CT scanner. The features of the defects in the graphite were also verified from the tomograms, but the accurate dimension of these defects could not be obtained.

  9. Electronic BAR Gauge: a customized optical rail profile measurement system for rail-grinding applications

    NASA Astrophysics Data System (ADS)

    Bachinsky, Gordon S.

    1995-06-01

    The dynamic interaction that occurs at the rail/wheel interface of any rail system is significantly influenced by rail and wheel profiles. In an effort to enhance this interaction, railways and transit systems often employ rail grinding as a means to maintain a defined rail profile. The cost to perform this procedure can be very high, sometimes exceeding $DLR25,000 per day for the use of a large grinding machine (with up to 128 grinding motors-each motor being 20 hp or more). Because of this, it is imperative that the work be done efficiently and accurately. In recent years there has been substantial research into the optimization of rail profiles. The National Research Council (NRC) of Canada is one research facility that has generated a unique, precise set of specified profiles for use in heavy-haul railway operations. To implement these profiles in a consistent manner, during rail grinding operations, requires some type of measurement system that provides feedback to the field staff. Up until recently, this has been accomplished with a manual BAR gauge that is fitted with a set of accurate profile templates. The BAR gauge, which initially was fitted with four specified templates, is now equipped with ten such templates. To obtain the full potential of benefits from these profiles requires more precise grinding than that which has been achieved in the past. The other problem with the current manual profile measurement (BAR) method is that it is somewhat slow and cumbersome and the differences between profiles is quite small (i.e. 0.020 inch or less). In order to enhance their rail grinding management support, ARM pursued an automated system that would optically measure rail profiles very fast and accurately from a hy-rail vehicle and compare them with the NRC profiles. Another important feature that was desired in this system was the ability to measure the relative position of one profile with respect to the other (i.e. left versus right rail). Such a system

  10. Full-field step profile measurement with sinusoidal wavelength scanning interferometer

    NASA Astrophysics Data System (ADS)

    Choi, Samuel; Sasaki, Osami; Suzuki, Takamasa

    2014-05-01

    A sinusoidal wavelength scanning interferometer is proposed for 3-D profile measurement. The interference phase-shift signal generated by the sinusoidal wavelength scanning contains information of optical path difference (OPD) covering nm-mm scale structure. The interference phase-shift signal was obtained by the four-step phase shifting method. The sinusoidal wavelength shifting bandwidth of 5.7 nm with a frequency of approximately 180 Hz was performed by the Littman-Metcalf external resonator-type tunable laser with a center of 772.1 nm. The full-field step-height surface profile measurement and 3-D surface measurement were conducted by a CCD image sensor with an accuracy of few tens nm. The surface profile of gauge blocks with a step-height of up to 10 μm was successfully measured.

  11. Radiation profiles through the atmosphere measured by an auto controlled glider aircraft

    NASA Astrophysics Data System (ADS)

    Kräuchi, Andreas; Philipona, Rolf

    2014-05-01

    In 2011 radiation measurements through the atmosphere were made with a balloon borne short- and longwave net radiometer. These measurements were very promising and therefore new and improved sensors from Kipp&Zonen were used to equip a glider aircraft together with the standard Swiss radiosonde from Meteolabor AG. The glider serves as returning platform for the expensive and well calibrated radiation sensors. Double balloon technique is used to prevent pendulum motion during the ascent and to keep the radiation instruments as horizontal as possible. The built-in autopilot allows to return the gliderradiosonde to the launch site or to land it on predefined open space, which makes recovery much easier. The new return gliderradiosonde technique as well as new measurement possibilities will be shown. First measurements show radiation profiles through the atmosphere during different cloud conditions. Radiation profiles during different daytimes show the temporal resolution of vertical radiation profiles trough the atmosphere.

  12. A new measurement of the Her X-1 X-ray pulse profile

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Boldt, E. A.; Rothschild, R. E.; Serlemitsos, P. J.

    1974-01-01

    A triple peaked 1.24 sec. pulse profile in a 1-minute rocket borne exposure to Her X-1 was measured, in contrast to the doublepeaked profiles expected from models which maximize the X ray emission at the magnetic equator of an accreting neutron star. The profile exhibits statistically significant energy dependence, with the emission approximately greater than 12 keV having narrower peaks which lag (by approximately 5% of the pulse period) the corresponding peaks at lower energies. Approximately one third of the total emission from the source is nonpulsed.

  13. Reconstruction of q- and p-profiles in ITER using External and Internal Measurements

    SciTech Connect

    Leonid E. Zakharov, Elizabeth L. Foley, Fred M. Levinton, and Howard Y. Yuh

    2007-08-02

    *This manuscript is in Russian* A method of calculation of uncertainties in equilibrium construction of q- and p-profiles in ITER using external magnetic measurements as well as signals from the plasma core on the Motion Stark line polarization (MSE-LP) and line shift (MSE-LS) is described. It is shown that recently proposed by Nova Photonics use of MSE-LS signal significantly improves the reconstruction of plasma profiles, which determine the magnetic configuration.

  14. Measuring the Quality of Inclusive Practices: Findings from the Inclusive Classroom Profile Pilot

    ERIC Educational Resources Information Center

    Soukakou, Elena P.; Winton, Pam J.; West, Tracey A.; Sideris, John H.; Rucker, Lia M.

    2014-01-01

    The purpose of this study was to test the reliability and validity of the Inclusive Classroom Profile (ICP), an observation measure designed to assess the quality of classroom practices in inclusive preschool programs. The measure was field tested in 51 inclusive classrooms. Results confirmed and extended previous research findings, providing…

  15. Dysarthria Impact Profile: Development of a Scale to Measure Psychosocial Effects

    ERIC Educational Resources Information Center

    Walshe, Margaret; Peach, Richard K.; Miller, Nick

    2009-01-01

    Background: The psychosocial impact of acquired dysarthria on the speaker is well recognized. To date, speech-and-language therapists have no instrument available to measure this construct. This has implications for outcome measurement and for planning intervention. This paper describes the Dysarthria Impact Profile (DIP), an instrument that has…

  16. Image processing techniques for measuring non-uniform film thickness profiles

    SciTech Connect

    Nitta, S.V.; Liu, An-Hong; Plawsky, J.L.; Wayner, P.C. Jr.

    1996-12-31

    The long term objective of this research program is to determine the fluid flow and drying characteristics of thin liquid/solid films using image processing techniques such as Image Analyzing Interferometry (IAI) and Image Scanning Ellipsometry (ISE). The primary purpose of this paper is to present experimental data on the effectiveness of IAI and ISE to measure nonuniform film thickness profiles. Steady-state, non-isothermal profiles of evaporating films were measured using IAI. Transient thickness profiles of a draining film were measured using ISE. The two techniques are then compared and contrasted. The ISE can be used to measure transient as well as steady-state profiles of films with thickness ranging from 1 nm to > 20 {mu}m, whereas IAI can be used to directly measure Steady-state and transient profiles of only films thicker than about 100 nm. An evaluation of the reflected intensity can be used to extend the use of the IAI below 100 nm.

  17. Measurement of temperature profiles in turbulent pipe flow of polymer and surfactant drag-reducing solutions

    NASA Astrophysics Data System (ADS)

    Gasljevic, K.; Aguilar, G.; Matthys, E. F.

    2007-08-01

    A device was built to measure temperature profiles of turbulent pipe flows of various drag-reducing fluids. It is easy to use and reliable. We measured temperature profiles over a range of conditions leading to accurate measurements down to y+≈10, for tests carried over Reynolds numbers (Re) between 10 000 and 90 000. The effects of high heat fluxes and buoyancy, in particular, were quantified to ascertain the parameter range for accurate measurements. Temperature profiles measured for type-A polymer solution and for cationic surfactant solutions allowed us to see strong similarity between velocity and temperature profiles for drag-reducing surfactant solutions. A comparison between the slopes of the thermal and velocity buffer layers resulted in calculated turbulent Prandtl numbers between 6 and 9 for those drag-reducing solutions. We also used this tool to investigate drag reduction for a nonionic surfactant solution, which showed a significantly different fan-type profile, and also for a type-B drag-reducing polymer solution (Xanthan gum).

  18. Impact on air quality of measures to reduce CO2 emissions from road traffic in Basel, Rotterdam, Xi'an and Suzhou

    NASA Astrophysics Data System (ADS)

    Keuken, M. P.; Jonkers, S.; Verhagen, H. L. M.; Perez, L.; Trüeb, S.; Okkerse, W.-J.; Liu, J.; Pan, X. C.; Zheng, L.; Wang, H.; Xu, R.; Sabel, C. E.

    2014-12-01

    Two traffic scenarios to reduce CO2 emissions from road traffic in two European cities (Basel and Rotterdam) and two Chinese cities (Xi'an and Suzhou) were evaluated in terms of their impact on air quality. The two scenarios, one modelling a reduction of private vehicle kilometres driven by 10% on urban streets and the other modelling the introduction of 50% electric-powered private vehicle kilometres on urban streets, were both compared to a scenario following “business-as-usual”: 2020-BAU. The annual average concentrations of NO2, PM2.5, PM10 and elemental carbon (EC) were modelled separately in busy street canyons, near urban motorways and in the remainder of the urban area. It was concluded that traffic-related CO2 emissions in 2020-BAU could be expected to remain at the levels of 2010 in Basel and Rotterdam, while in Xi'an and Suzhou to increase 30-50% due to growth in the traffic volume. Traffic-related CO2 emissions may be reduced by up to 5% and 25%, respectively using the first and second scenarios. Air pollution in the Chinese cities is a factor 3 to 5 higher than in the European cities in 2010 and 2020-BAU. The impact of both CO2 reduction scenarios on air quality in 2020-BAU is limited. In Europe, due to implementation of stringent emission standards in all sectors, air quality is expected to improve at both the urban background and near busy road traffic. In China, the regional background is expected to improve for EC, stabilize for PM2.5 and PM10, and decrease for NO2. The urban background follows this regional trend, while near busy road traffic, air pollution will remain elevated due to the considerable growth in traffic volume. A major constraint for modelling air quality in China is access to the input data required and lack of measurements at ground level for validation.

  19. Fiber Optic Picosecond Laser Pulse Transmission Line for Hydrogen Ion Beam Profile Measurement

    SciTech Connect

    Liu, Yun; Huang, Chunning; Aleksandrov, Alexander V

    2013-01-01

    We present a fiber optic laser pulse transmission line for non-intrusive longitudinal profile measurement of the hydrogen ion (H-) beam at the front-end of the Spallation Neutron Source (SNS) accelerator. The 80.5 MHz, 2.5 ps, multi-killowatt optical pulses are delivered to the accelerator beam line through a large mode area polarization maintaining optical fiber to ensure a high measurement stability. The transmission efficiency, output laser beam quality, pulse jitter and pulse width broadening over a 100-ft fiber line are experimentally investigated. A successful measurement of the H- beam microbunch (~130 ps) profile is obtained. Our experiment is the first demonstration of particle beam profile diagnostics using fiber optic laser pulse transmission line.

  20. Measurement of temperature profiles in flames by emission-absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Simmons, F. S.; Arnold, C. B.; Lindquist, G. H.

    1972-01-01

    An investigation was conducted to explore the use of infrared and ultraviolet emission-absorption spectroscopy for determination of temperature profiles in flames. Spectral radiances and absorptances were measured in the 2.7-micron H2O band and the 3064-A OH band in H2/O2 flames for several temperature profiles which were directly measured by a sodium line-reversal technique. The temperature profiles, determined by inversion of the infrared and ultraviolet spectra, showed an average disagreement with line-reversal measurements of 50 K for the infrared and 200 K for the ultraviolet at a temperature of 2600 K. The reasons for these discrepancies are discussed in some detail.

  1. Line Profile Measurements of Atomic Oxygen at 1300 A with a VUV Raman Shifter

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.; Exberger, Richard J.; Meyer, Scott A.; Gilmore, John O.

    1994-01-01

    We are currently developing an atomic oxygen diagnostic to study the degree of oxygen dissociation in ground-based facilities. The absorption of the (sub 3)P - (sup 3)S(sup 0) resonance triplet in the vacuum ultraviolet is a direct measure of the ground state number density of atomic oxygen. Although the integrated line strength is well known for these transitions, the line profile is not. We report the results of a series of experiments in which the line profile is measured in shock-heated oxygen. An ArF excimer laser and a hydrogen Raman shifter generate tunable VUV radiation at the resonance wavelength. The test gas is dissociated oxygen, generated in the Electric Arc Shock Tube (EAST) Facility at NASA-Ames Research Center. By measuring the absorption of known concentrations of atomic oxygen, we are able to study the absorption line profile. The results will serve as a calibration to apply this diagnostic in other flowfields.

  2. Surface profile measurement in white-light scanning interferometry using a three-chip color CCD

    SciTech Connect

    Ma Suodong; Quan Chenggen; Zhu Rihong; Tay, Cho Jui; Chen Lei

    2011-05-20

    White-light scanning interferometry (WLSI) is a useful technique to measure surface profile when a test object contains discontinuous structures or microstructures. A black and white CCD camera is usually utilized to capture interferograms, and a series of corresponding algorithms is used to achieve the profile measurement. However, the color information in the interferograms is lost. A novel profile measurement method that uses phase information in different color channels (red-green-blue) of an interferogram obtained using a three-chip color CCD in WLSI is proposed. The phase values are extracted by a windowed Fourier transform algorithm. Simulation and experimental results are presented to demonstrate the validity of the proposed method.

  3. Stratospheric H2O and HNO3 profiles derived from solar occultation measurements

    NASA Astrophysics Data System (ADS)

    Fischer, H.; Fergg, F.; Rabus, D.; Burkert, P.

    1985-04-01

    Compact two-channel radiometers for solar occultation experiments have been constructed in order to measure stratospheric trace gases. The instruments can be used as filter- or correlation-type radiometers, depending on the trace gas under investigation. Within the LIMS correlative measurement program, balloon flights were performed with a payload of up to four of these two-channel radiometers. From the filter-type measurements, profiles of the trace gases H2O and HNO3 are inferred for the height region between the tropopause and the balloon float level. The data evaluation also includes a comprehensive analysis of the error sources and their effect on the accuracy of the trace gas profiles. The derived H2O and HNO3 profiles are assessed against the observations of other authors and are discussed in the light of the trace gas distributions calcualted from photochemical models.

  4. Non-contact precision profile measurement to rough-surface objects with optical frequency combs

    NASA Astrophysics Data System (ADS)

    Onoe, Taro; Takahashi, Satoru; Takamasu, Kiyoshi; Matsumoto, Hirokazu

    2016-12-01

    In this research, we developed a new method for the high precision and contactless profile measurement of rough-surfaced objects using optical frequency combs. The uncertainty of the frequency beats of an optical frequency comb is very small (relative uncertainty is 10-10 in our laboratory). In addition, the wavelengths corresponding to these frequency beats are long enough to measure rough-surfaced objects. We can conduct high-precision measurement because several GHz frequency beats can be used if the capability of the detector permits. Moreover, two optical frequency combs with Rb-stabilized repetition frequencies are used for the measurement instead of an RF frequency oscillator; thus, we can avoid the cyclic error caused by the RF frequency oscillator. We measured the profile of a wood cylinder with a rough surface (diameter is approximately 113.2 mm) and compared the result with that of coordinate measuring machine (CMM).

  5. Profile measurement of transparent inclined surface with transmitted differential interference contrast shearing interferometer.

    PubMed

    Yu, Sheng-Kang; Chen, Wei-Lun; Liu, Ting-Kun; Lin, Shih-Chieh

    2012-08-27

    A quantitative phase shifting differential interference contrast (PS-DIC) shearing interferometer is adopted to measure the profile of transparent specimen with inclined surface. The effects of the incline angle on DIC measurement accuracy were studied. The optical model of the test system was constructed and the measurement of surface with various incline angles ranging from 5° to 60° was simulated. The experiments validate the simulation model and show the feasibility of profile reconstruction of inclined structure. It is interested to find that even with an inclined angle of 15°, unwrapping technique is required to make the measurement more accurate. In addition, the measurement can be further improved by taking into account the effects of the change in shear distance on the optical path difference. This study provides useful information that should be considered for complex geometry measurement with quantitative DIC technique.

  6. Development of ultrasonic pulse-train Doppler method for velocity profile and flowrate measurement

    NASA Astrophysics Data System (ADS)

    Wada, Sanehiro; Furuichi, Noriyuki; Shimada, Takashi

    2016-11-01

    We present a novel technique for measuring the velocity profile and flowrate in a pipe. This method, named the ultrasonic pulse-train Doppler method (UPTD), has the advantages of expanding the velocity range and setting the smaller measurement volume with low calculation and instrument costs in comparison with the conventional ultrasonic pulse Doppler method. The conventional method has limited measurement of the velocity range due to the Nyquist sampling theorem. In addition, previous reports indicate that a smaller measurement volume increases the accuracy of the measurement. In consideration of the application of the conventional method to actual flow fields, such as industrial facilities and power plants, the issues of velocity range and measurement volume are important. The UPTD algorithm, which exploits two pulses of ultrasound with a short interval and envelope detection, is proposed. Velocity profiles calculated by this algorithm were examined through simulations and excellent agreement was found in all cases. The influence of the signal-to-noise ratio (SNR) on the algorithm was also estimated. The result indicates that UPTD can measure velocity profiles with high accuracy, even under a small SNR. Experimental measurements were conducted and the results were evaluated at the national standard calibration facility of water flowrate in Japan. Every detected signal forms a set of two pulses and the enveloped line can be observed clearly. The results show that UPTD can measure the velocity profiles over the pipe diameter, even if the velocities exceed the measurable velocity range. The measured flowrates were under 0.6% and the standard deviations for all flowrate conditions were within  ±0.38%, which is the uncertainty of the flowrate measurement estimated in the previous report. In conclusion, UPTD provides superior accuracy and expansion of the velocity range.

  7. Profile measurements in the plasma edge of mega amp spherical tokamak using a ball pen probe.

    PubMed

    Walkden, N R; Adamek, J; Allan, S; Dudson, B D; Elmore, S; Fishpool, G; Harrison, J; Kirk, A; Komm, M

    2015-02-01

    The ball pen probe (BPP) technique is used successfully to make profile measurements of plasma potential, electron temperature, and radial electric field on the Mega Amp Spherical Tokamak. The potential profile measured by the BPP is shown to significantly differ from the floating potential both in polarity and profile shape. By combining the BPP potential and the floating potential, the electron temperature can be measured, which is compared with the Thomson scattering (TS) diagnostic. Excellent agreement between the two diagnostics is obtained when secondary electron emission is accounted for in the floating potential. From the BPP profile, an estimate of the radial electric field is extracted which is shown to be of the order ∼1 kV/m and increases with plasma current. Corrections to the BPP measurement, constrained by the TS comparison, introduce uncertainty into the ER measurements. The uncertainty is most significant in the electric field well inside the separatrix. The electric field is used to estimate toroidal and poloidal rotation velocities from E × B motion. This paper further demonstrates the ability of the ball pen probe to make valuable and important measurements in the boundary plasma of a tokamak.

  8. Profile measurements in the plasma edge of mega amp spherical tokamak using a ball pen probe

    SciTech Connect

    Walkden, N. R.; Adamek, J.; Komm, M.; Allan, S.; Elmore, S.; Fishpool, G.; Harrison, J.; Kirk, A.; Dudson, B. D.

    2015-02-15

    The ball pen probe (BPP) technique is used successfully to make profile measurements of plasma potential, electron temperature, and radial electric field on the Mega Amp Spherical Tokamak. The potential profile measured by the BPP is shown to significantly differ from the floating potential both in polarity and profile shape. By combining the BPP potential and the floating potential, the electron temperature can be measured, which is compared with the Thomson scattering (TS) diagnostic. Excellent agreement between the two diagnostics is obtained when secondary electron emission is accounted for in the floating potential. From the BPP profile, an estimate of the radial electric field is extracted which is shown to be of the order ∼1 kV/m and increases with plasma current. Corrections to the BPP measurement, constrained by the TS comparison, introduce uncertainty into the E{sub R} measurements. The uncertainty is most significant in the electric field well inside the separatrix. The electric field is used to estimate toroidal and poloidal rotation velocities from E × B motion. This paper further demonstrates the ability of the ball pen probe to make valuable and important measurements in the boundary plasma of a tokamak.

  9. Measurement of dynamic gas disengagement profile by using an analog output level gauge

    NASA Astrophysics Data System (ADS)

    Mikkilineni, S.; Koelle, M.; Xu, H.

    The dynamic gas disengagement profile was measured in a 0.14 m diameter and 3.66 m high plexiglas column by using an analog output gauge, which was connected to a data acquisition system. This analog output gauge is a high accuracy continuous measurement level gauge. It is made up of a wave guide, a float, a motion or stress sensing device and a probe housing. The fluid level at any gas velocity is obtained by using the data acquisition system. The dynamic gas disengagement profile produced one slope in the bubble flow and two slopes in the churn turbulent flow representing unimodal and bimodal distributions of bubbles.

  10. Development of surface profile measurement method for ellipsoidal x-ray mirrors using phase retrieval

    NASA Astrophysics Data System (ADS)

    Saitou, Takahiro; Takei, Yoshinori; Mimura, Hidekazu

    2012-09-01

    An ellipsoidal mirror is a promising type of X-ray mirror, because it can focus X-rays to nanometer size with a very large aperture and no chromatic aberration. However, ideal ellipsoidal mirrors have not yet been realized by any manufacturing method. This is partly because there is no evaluation method for its surface figure profile. In this paper, we propose and develop a method for measuring surface figure profile of ellipsoidal mirrors using phase retrieval. An optical design for soft X-ray focusing, the employed phase retrieval method and an experimental optical system specialized for wavefront measurement using a He-Ne laser are reported.

  11. Simultaneous Measurements of Water Vapor Profiles From Airborne MIR and LASE

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Racette, P.; Triesky, M. E.; Browell, E. V.; Ismail, S.; Chang, L. A.

    1997-01-01

    A NASA ER-2 aircraft flight with both Millimeter-wave Imaging radiometer (MIR) and lidar Atmospheric Sensing Experiment (LASE) was made over ocean areas in the eastern United States on September 25, 1995. The water vapor profiles derived from both instruments under both clear and cloudy conditions are compared in this paper. It is shown that good agreement is found between the MIR-derived and the LASE-measured water vapor profiles over the areas of clear-sky condition. In the cloudy areas, the MIR-retrieved values at the altitudes of the cloud layers and below are generally higher than those measured by the LASE.

  12. Beam Profile Measurement in MTA Beam Line for High Pressure RF Cavity Beam Test

    SciTech Connect

    Jana, M.R.; Bross, A.; Chung, M.; Greer, S.; Johnstone, C.; Kobilarcik, T.; Koizumi, G.; Leonova, M.; Moretti, A.; Popovic, M.; Schwartz, T.; /Fermilab /IIT, Chicago /PDT, Torino

    2012-05-15

    Recent High Pressure RF (HPRF) cavity experiment at MuCool Test Area (MTA) has used 400 MeV Linac proton beam to study the beam loading effect. When the energetic proton beam passes through the cavity, it ionizes the inside gas and produces the electrons. These electrons consume RF power inside the cavity. Number of electrons produced per cm inside the cavity (at 950 psi Hydrogen gas) per incident proton is {approx} 1200. The measurement of beam position and profile are necessary. MTA is flammable gas (Hydrogen) hazard zone so we have developed a passive beam diagnostic instrument using Chromox-6 scintillation screen and CCD camera. This paper presents quantitative information about beam position and beam profile. Neutral density filter was used to avoid saturation of CCD camera. Image data is filtered and fitted with Gaussian function to compute the beam size. The beam profile obtained from scintillation screen shall be compared with multi-wire beam profile.

  13. Ozonesonde profiles from the West Pacific Warm Pool: measurements and validation

    NASA Astrophysics Data System (ADS)

    Newton, R.; Vaughan, G.; Ricketts, H. M. A.; Pan, L. L.; Weinheimer, A. J.; Chemel, C.

    2016-01-01

    We present a series of ozonesonde profiles measured from Manus Island, Papua New Guinea, during February 2014, with new insights on the calibration of ozonesondes for measurements in the tropical troposphere. The experiment formed a part of a wider airborne campaign involving three aircraft based in Guam, to characterise the atmospheric composition above the tropical West Pacific in unprecedented detail. Thirty-nine ozonesondes were launched between 2 and 25 February of which 34 gave good ozone profiles. Particular attention was paid to evaluating the background current of the ozonesondes, as this can amount to half the measured signal in the tropical tropopause layer (TTL). An unexpected contamination event affected the measurements and required a departure from standard operating procedures for the ozonesondes. The most significant departure was not exposing the sondes to ozone during preparation, which meant that the background current remained stable before launch. Comparison with aircraft measurements allows validation of the measured ozone profiles and confirms that for well-characterized sondes (background current ˜ 50 nA) a constant background current could be assumed throughout the profile, equal to the minimum value measured during preparation just before launch. From this set of 34 ozonesondes, the minimum reproducible ozone concentration measured in the TTL was 12-13 ppbv; no examples of ozone concentrations < 5 ppbv, as reported by other recent papers, were measured. The lowest ozone concentrations coincided with outflow from extensive deep convection to the east of Manus, consistent with uplift of ozone-poor air from the boundary layer. However, these minima were lower than the ozone concentration measured through most of the boundary layer, and were matched only by measurements at the surface in Manus.

  14. AUTOSCALA software improvements: topside-plasmasphere profiles and TEC model assisted by AIS ionosonde measurements

    NASA Astrophysics Data System (ADS)

    Cesaroni, C.; Ippolito, A.; Scotto, C.; Ciraolo, L.

    2012-12-01

    The group of Upper Atmosphere Physics at INGV (Istituto Nazionale di Geofisica e Vulcanologia) developed Autoscala, a computer program for automatic scaling of the critical frequency foF2 and other ionospheric parameters derived from ionograms. Autoscala includes a routine that automatically estimates the electron density profile below F layer peak height hmF2, by adjusting the parameters of a model according to the recorded ionogram [Scotto (2009)]. Recently we have introduced a new algorithm for modeling upper ionosphere and plasmasphere electron density profiles following the approach suggested by Kutiev et al. (2009). In particular, these model uses the parameters of F layer peak (foF2, hmF2, scale height at hmF2) to obtain scale heights that are useful to construct H- and O+ density profiles, and consequently N(h) profile (given as the sum of the former two). Integrating electron density profiles we are then able to obtain a real time TEC estimation above the considered ionospheric station. A first validation of the model is carried out for data measured at Rome ionospheric station (Italy, 41°54' N 12°28' E) using independent TEC measurements from GPS receivers. References: Scotto, C. (2009). Electron density profile calculation technique for Autoscala ionogram analysis. Advances in Space Research, 44(6), 756-766. doi:10.1016/j.asr.2009.04.037 Kutiev, I., Marinov, P., Belehaki, a., Reinisch, B., & Jakowski, N. (2009). Reconstruction of topside density profile by using the topside sounder model profiler and digisonde data. Advances in Space Research, 43(11), 1683-1687. doi:10.1016/j.asr.2008.08.017

  15. State of the art of compact optical 3D profile measurement apparatuses: from outer surface to inner surface measurement

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Toru; Wakayama, Toshitaka

    2013-06-01

    This paper is not an original paper, but a review paper passed on our previous papers. We have been developing a few apparatuses for 2D and/or 3D profile measurement because these systems, especially 3D profiling systems, have become indispensable tools in manufacturing industry. However, in surface profile measurement, conventional systems have several short comings including being very large in size and heavy in weight. Therefore we propose to realize a compact portable apparatus on the basis of pattern projection method using a single MEMS mirror scanning. On the other hand, in the case of inner profile measurement for pipes or tubes, we propose to use optical section method by means of disk beam produced by a conical mirror. In these systems development of elements and devices such as a MEMS mirror and/or cone mirror play important role to apply our fundamental principles to practical apparatuses. We introduce the state of the art of these systems including commercialized products for practical purpose.

  16. Overestimation of on-road air quality surveying data measured with a mobile laboratory caused by exhaust plumes of a vehicle ahead in dense traffic areas.

    PubMed

    Woo, Sang-Hee; Kwak, Kyung-Hwan; Bae, Gwi-Nam; Kim, Kyung Hwan; Kim, Chang Hyeok; Yook, Se-Jin; Jeon, Sangzin; Kwon, Sangil; Kim, Jeongsoo; Lee, Seung-Bok

    2016-11-01

    The unintended influence of exhaust plumes emitted from a vehicle ahead to on-road air quality surveying data measured with a mobile laboratory (ML) at 20-40 km h(-1) in dense traffic areas was investigated by experiment and life-sized computational fluidic dynamics (CFD) simulation. The ML equipped with variable sampling inlets of five columns by four rows was used to measure the spatial distribution of CO2 and NOx concentrations when following 5-20 m behind a sport utility vehicle (SUV) as an emitter vehicle equipped with a portable emission monitoring system (PEMS). The PEMS measured exhaust gases at the tailpipe for input data of the CFD simulations. After the CFD method was verified with experimental results of the SUV, dispersion of exhaust plumes emitted from a bus and a sedan was numerically analyzed. More dilution of the exhaust plume was observed at higher vehicle speeds, probably because of eddy diffusion that was proportional to turbulent kinetic energy and vehicle speed. The CO2 and NOx concentrations behind the emitter vehicle showed less overestimation as both the distance between the two vehicles and their background concentrations increased. If the height of the ML inlet is lower than 2 m and the ML travels within 20 m behind a SUV and a sedan ahead at 20 km h(-1), the overestimation should be considered by as much as 200 ppb in NOx and 80 ppm in CO2. Following a bus should be avoided if possible, because effect of exhaust plumes from a bus ahead could not be negligible even when the distance between the bus and the ML with the inlet height of 2 m, was more than 40 m. Recommendations are provided to avoid the unintended influence of exhaust plumes from vehicles ahead of the ML during on-road measurement in urban dense traffic conditions.

  17. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2007-07-01

    A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  18. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2008-02-01

    A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  19. Prospects for measuring neutron-star masses and radii with X-ray pulse profile modeling

    SciTech Connect

    Psaltis, Dimitrios; Özel, Feryal; Chakrabarty, Deepto E-mail: fozel@email.arizona.edu

    2014-06-01

    Modeling the amplitudes and shapes of the X-ray pulsations observed from hot, rotating neutron stars provides a direct method for measuring neutron-star properties. This technique constitutes an important part of the science case for the forthcoming NICER and proposed LOFT X-ray missions. In this paper, we determine the number of distinct observables that can be derived from pulse profile modeling and show that using only bolometric pulse profiles is insufficient for breaking the degeneracy between inferred neutron-star radius and mass. However, we also show that for moderately spinning (300-800 Hz) neutron stars, analysis of pulse profiles in two different energy bands provides additional constraints that allow a unique determination of the neutron-star properties. Using the fractional amplitudes of the fundamental and the second harmonic of the pulse profile in addition to the amplitude and phase difference of the spectral color oscillations, we quantify the signal-to-noise ratio necessary to achieve a specified measurement precision for neutron star radius. We find that accumulating 10{sup 6} counts in a pulse profile is sufficient to achieve a ≲ 5% uncertainty in the neutron star radius, which is the level of accuracy required to determine the equation of state of neutron-star matter. Finally, we formally derive the background limits that can be tolerated in the measurements of the various pulsation amplitudes as a function of the system parameters.

  20. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging

    SciTech Connect

    Meng, Congsen; Janssen, Maurice H. M.

    2015-02-15

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the density profile of the molecular beam, and the measured absolute density is compared with theoretical calculations of the centre line beam density. Subsequently, we discuss reasons accounting for the differences between measurements and calculations and propose that strong skimmer interference is the most probable cause for the differences. Furthermore, we report on experiments measuring the centre line density of seeded supersonic beams. The femtosecond ion images show that seeding the heavy Xe atom at low relative seed fractions (1%-10%) in a light carrier gas like Ne results in strong relative enhancements of up to two orders of magnitude.

  1. Temperature, velocity and Species Profile Measurements for Reburning in a Pulverized, Entrained Flow, Coal Combustor

    SciTech Connect

    Tree, D.R.

    1997-10-01

    Measurements of effluent NO{sub x}, CO, and O{sub 2} have been obtained for various reburning locations in the controlled profile reactor. the location of the reburning zone and tertiary air zone have been varied to find an optimal location for detailed reburning profile measurements. No{sub x} reduction of greater than 70% has been seen with natural gas injection in and just below the primary combustion zone. Strategic injection of the natural gas for reburning reduces the total No{sub x} reduction capability of reburning. Modeling efforts continue in trying to match the modeling solution to the detailed baseline data taken in previous measurement. The use of more accurate measured boundary conditions did not appear to improve the model predictions greatly but the use of more detailed turbulence models was found to improve the predictions, the predictions are still far from matching the combustion measurements.

  2. Measurement of Turbulence with Acoustic Doppler Current Profilers - Sources of Error and Laboratory Results

    USGS Publications Warehouse

    Nystrom, E.A.; Oberg, K.A.; Rehmann, C.R.; ,

    2002-01-01

    Acoustic Doppler current profilers (ADCPs) provide a promising method for measuring surface-water turbulence because they can provide data from a large spatial range in a relatively short time with relative ease. Some potential sources of errors in turbulence measurements made with ADCPs include inaccuracy of Doppler-shift measurements, poor temporal and spatial measurement resolution, and inaccuracy of multi-dimensional velocities resolved from one-dimensional velocities measured at separate locations. Results from laboratory measurements of mean velocity and turbulence statistics made with two pulse-coherent ADCPs in 0.87 meters of water are used to illustrate several of inherent sources of error in ADCP turbulence measurements. Results show that processing algorithms and beam configurations have important effects on turbulence measurements. ADCPs can provide reasonable estimates of many turbulence parameters; however, the accuracy of turbulence measurements made with commercially available ADCPs is often poor in comparison to standard measurement techniques.

  3. Electron density profile measurements from hydrogen line intensity ratio method in Versatile Experiment Spherical Torus

    NASA Astrophysics Data System (ADS)

    Kim, YooSung; Shi, Yue-Jiang; Yang, Jeong-hun; Kim, SeongCheol; Kim, Young-Gi; Dang, Jeong-Jeung; Yang, Seongmoo; Jo, Jungmin; Oh, Soo-Ghee; Chung, Kyoung-Jae; Hwang, Y. S.

    2016-11-01

    Electron density profiles of versatile experiment spherical torus plasmas are measured by using a hydrogen line intensity ratio method. A fast-frame visible camera with appropriate bandpass filters is used to detect images of Balmer line intensities. The unique optical system makes it possible to take images of Hα and Hβ radiation simultaneously, with only one camera. The frame rate is 1000 fps and the spatial resolution of the system is about 0.5 cm. One-dimensional local emissivity profiles have been obtained from the toroidal line of sight with viewing dumps. An initial result for the electron density profile is presented and is in reasonable agreement with values measured by a triple Langmuir probe.

  4. Reaching Higher Densities for Laboratory White Dwarf Photospheres to Measure Spectroscopic Line Profiles

    NASA Astrophysics Data System (ADS)

    Falcon, R. E.; Bailey, J. E.; Gomez, T. A.; Schaeuble, M.; Nagayama, T.; Montgomery, M. H.; Winget, D. E.; Rochau, G. A.

    2017-03-01

    As part of our laboratory investigation of the theoretical line profiles used in white dwarf atmosphere models, we extend the electron-density (ne) range measured by our experiments to higher densities (up to ne ˜80×1016 cm-3). Whereas inferred parameters using the hydrogen-β spectral line agree among different line-shape models for ne≲ 30×1016 cm–3, we now see divergence between models. These are densities beyond the range previously benchmarked in the laboratory, meaning theoretical profiles in this regime have not been fully validated. Experimentally exploring these higher densities enables us to test and constrain different line-profile models, as the differences in their relative H-Balmer line shapes are more pronounced at such conditions. These experiments also aid in our study of occupation probabilities because we can measure these from relative line strengths.

  5. Simulator of Road Tunnel

    NASA Astrophysics Data System (ADS)

    Danišovič, Peter; Schlosser, František; Šrámek, Juraj; Rázga, Martin

    2015-05-01

    A Tunnel Traffic & Operation Simulator is a device of the Centre of Transport Research at the University of Žilina. The Simulator allows managing technological equipment of virtual two-tube highway tunnel, which is interconnected with simulation of vehicle traffic in tunnel. Changes of the traffic-operation states and other equipment are reflecting at the simulated traffic, as well as simulations of various emergency events in traffic initiate changes in tunnel detecting and measuring devices. It is thus possible to simulate emergency states, which can be affected by various faults of technology as well as by climatic conditions. The solutions can be found in irreplaceable experiences of Slovak road tunnel operators, changes of trafficoperation states, visualizations of operator technological display screens, technological devices labelling in order to increase operational safety of road tunnels.

  6. Comparison of NOx emissions from China III and China IV in-use diesel trucks based on on-road measurements

    NASA Astrophysics Data System (ADS)

    Yao, Zhiliang; Wu, Bobo; Wu, Yunong; Cao, Xinyue; Jiang, Xi

    2015-12-01

    To mitigate NOx and other emissions from diesel vehicles, China I, China II, China III and China IV emissions standards for new vehicles have been implemented nationwide. However, recent on-road measurements using a portable emission measurement system (PEMS) have revealed no significant reductions in the NOx emissions factors of diesel trucks due to the change from China II emissions standards to the more stringent China III standards. Thus, it is important to understand the effect of the China IV emissions standard on NOx emissions. In this study, nine China III and nine China IV diesel trucks of three sizes (light-duty diesel trucks (LDDTs), medium-duty diesel trucks (MDDTs) and heavy-duty diesel trucks (HDDTs)) were tested on real roads in Beijing using a PEMS. Compared to the tested China III diesel trucks, the China IV diesel trucks showed significant reductions of the average NOx emissions factors in terms of both distance travelled and fuel consumption. However, the driving conditions had an important impact on the reduction. Under non-highway driving (NHD), several of the tested China IV diesel trucks experienced no reduction or an increase in NOx emissions compared to their China III counterparts. The NOx emissions factors of the 18 tested diesel trucks under NHD were on average 1.5-times greater than those under highway driving (HD), and the effects on NOx emissions removal from China III to China IV diesel trucks were greater under HD than under NHD. In addition, no significant reduction of NOx based on fuel consumption for China IV diesel trucks was observed for MDDTs and HDDTs compared to the test results for similar China II vehicles reported in a previous study. To reduce NOx emissions in China, additional control measures of vehicular NOx emissions should be formulated.

  7. Vegetation profiles in tropical forests from multibaseline interferometric synthetic aperture radar, field, and lidar measurements

    NASA Astrophysics Data System (ADS)

    Treuhaft, R. N.; Chapman, B. D.; Dos Santos, J. R.; GonçAlves, F. G.; Dutra, L. V.; GraçA, P. M. L. A.; Drake, J. B.

    2009-12-01

    This paper addresses the estimation of vertical vegetation density profiles from multibaseline interferometric synthetic aperture radar (InSAR) data from the AirSAR aircraft at C band over primary, secondary, and abandoned-pasture stands at La Selva Biological Station, Costa Rica in 2004. Profiles were also estimated from field data taken in 2006 and lidar data taken with the LVIS, 25 m spot instrument in 2005. After motivating the study of tropical forest profiles based on their role in the global carbon cycle, ecosystem state, and biodiversity, this paper describes the InSAR, field, and lidar data acquisitions and analyses. Beyond qualitative agreement between profiles from the 3 measurement techniques, results show that InSAR and lidar profile-averaged mean height have RMS scatters about field-measured means of 3.4 m and 3.2 m, 16% and 15% of the average mean height, respectively. InSAR and lidar standard deviations of the vegetation distribution have RMS scatters about the field standard deviations of 1.9 m and 1.5 m, or 27% and 21%, respectively. Dominant errors in the profile-averaged mean height for each measurement technique were modeled. InSAR inaccuracies, dominated by ambiguities in finding the ground altitude and coherence calibration, together account for about 3 m of InSAR error in the mean height. The dominant, modeled error for the field measurements was the inaccuracy in modeling the trees as uniformly filled volumes of leaf area, inducing field errors in mean height of about 3 m. The dominant, modeled lidar error, also due to finding the ground, was 2 m.

  8. Exploring the nearshore marine wind profile from field measurements and numerical hindcast

    NASA Astrophysics Data System (ADS)

    del Jesus, F.; Menendez, M.; Guanche, R.; Losada, I.

    2012-12-01

    Wind power is the predominant offshore renewable energy resource. In the last years, offshore wind farms have become a technically feasible source of electrical power. The economic feasibility of offshore wind farms depends on the quality of the offshore wind conditions compared to that of onshore sites. Installation and maintenance costs must be balanced with more hours and a higher quality of the available resources. European offshore wind development has revealed that the optimum offshore sites are those in which the distance from the coast is limited with high available resource. Due to the growth in the height of the turbines and the complexity of the coast, with interactions between inland wind/coastal orography and ocean winds, there is a need for field measurements and validation of numerical models to understand the marine wind profile near the coast. Moreover, recent studies have pointed out that the logarithmic law describing the vertical wind profile presents limitations. The aim of this work is to characterize the nearshore vertical wind profile in the medium atmosphere boundary layer. Instrumental observations analyzed in this work come from the Idermar project (www.Idermar.es). Three floating masts deployed at different locations on the Cantabrian coast provide wind measurements from a height of 20 to 90 meters. Wind speed and direction are measured as well as several meteorological variables at different heights of the profile. The shortest wind time series has over one year of data. A 20 year high-resolution atmospheric hindcast, using the WRF-ARW model and focusing on hourly offshore wind fields, is also analyzed. Two datasets have been evaluated: a European reanalysis with a ~15 Km spatial resolution, and a hybrid downscaling of wind fields with a spatial resolution of one nautical mile over the northern coast of Spain.. These numerical hindcasts have been validated based on field measurement data. Several parameterizations of the vertical wind

  9. Measure profile surrogates: A method to validate the performance of epileptic seizure prediction algorithms

    NASA Astrophysics Data System (ADS)

    Kreuz, Thomas; Andrzejak, Ralph G.; Mormann, Florian; Kraskov, Alexander; Stögbauer, Harald; Elger, Christian E.; Lehnertz, Klaus; Grassberger, Peter

    2004-06-01

    In a growing number of publications it is claimed that epileptic seizures can be predicted by analyzing the electroencephalogram (EEG) with different characterizing measures. However, many of these studies suffer from a severe lack of statistical validation. Only rarely are results passed to a statistical test and verified against some null hypothesis H0 in order to quantify their significance. In this paper we propose a method to statistically validate the performance of measures used to predict epileptic seizures. From measure profiles rendered by applying a moving-window technique to the electroencephalogram we first generate an ensemble of surrogates by a constrained randomization using simulated annealing. Subsequently the seizure prediction algorithm is applied to the original measure profile and to the surrogates. If detectable changes before seizure onset exist, highest performance values should be obtained for the original measure profiles and the null hypothesis. “The measure is not suited for seizure prediction” can be rejected. We demonstrate our method by applying two measures of synchronization to a quasicontinuous EEG recording and by evaluating their predictive performance using a straightforward seizure prediction statistics. We would like to stress that the proposed method is rather universal and can be applied to many other prediction and detection problems.

  10. Sediment profiles of less commonly determined elements measured by Laser Ablation ICP-MS.

    PubMed

    Dolor, Marvourneen K; Helz, George R; McDonough, William F

    2009-01-01

    Anthropogenic influences on trace element profiles in dated sediments from estuaries have been often documented, with the vast majority of studies focusing on a short list of high-abundance trace elements. Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) provides a new approach that minimizes sample preparation and contamination while yielding data on a much larger list of elements simultaneously. We present concentrations and enrichment factor profiles for 22 elements at a locality that is 50 km southeast of Baltimore, the principal industrial city on Chesapeake Bay. Samples representing deposition over almost the entire 20th century were obtained from two archived cores collected 20 years apart. The following elements exhibit profiles consistent with a strong anthropogenic influence, i.e. enrichment after 1920 followed by decline after ca.1980, possibly reflecting increased regulatory efforts: Mn, Co, Cu, Zn, Ag, Cd, In, Sn, Sb, Te, Tl, Pb and Bi. As expected, the redox-sensitive elements: Mo, Re and U have similar profiles to one another. Previously, the potentially hazardous elements, Ag, In, Sb, Te, Tl and Bi, have been measured only rarely in estuarine sediments and never in Chesapeake Bay. Our discovery that their profiles track those of well-known pollutants underscores a need to investigate their sources, transport and biogeochemical behavior. Several rarely determined trace elements, Ga, Ge and Nb, exhibit trendless profiles, as do the major elements, Ti and Fe.

  11. Comparison of GOME-2/Metop-A ozone profiles with GOMOS, OSIRIS and MLS measurements

    NASA Astrophysics Data System (ADS)

    Määttä, A.; Tuinder, O. N. E.; Tukiainen, S.; Sofieva, V.; Tamminen, J.

    2015-07-01

    This paper presents a comparison of vertical ozone profiles retrieved by the Ozone ProfilE Retrieval Algorithm (OPERA) from the Global Ozone Monitoring Experiment 2 (GOME-2) measurements on board Metop-A with high-vertical-resolution ozone profiles by Global Ozone Monitoring by Occultation of Stars (GOMOS), Optical Spectrograph and Infrared Imager System (OSIRIS) and Microwave Limb Sounder (MLS). The comparison, with global coverage, focuses on the stratosphere and the lower mesosphere and covers the period from March 2008 until the end of 2011. The comparison shows an agreement of the GOME-2 ozone profiles with those of GOMOS, OSIRIS and MLS within ±15 % in the altitude range from 15 km up to ~ 35-40 km depending on latitude. The GOME-2 ozone profiles from non-degradation corrected radiances have a tendency to a systematic negative bias with respect to the reference data above ~ 30 km. The GOME-2 bias with respect to the high-vertical resolution instruments depends on season, with the strongest dependence observed at high latitudes.

  12. Long-Term Correlations and Multifractality of Traffic Flow Measured by GIS for Congested and Free-Flow Roads

    NASA Astrophysics Data System (ADS)

    di, Baofeng; Shi, Kai; Zhang, Kaishan; Svirchev, Laurence; Hu, Xiaoxi

    2016-02-01

    In this paper, a GIS-based method was developed to extract the real-time traffic information (RTTI) from the Google Maps system for city roads. The method can be used to quantify both congested and free-flow traffic conditions. The roadway length was defined as congested length (CL) and free-flow length (FFL). Chengdu, the capital of Sichuan Province in the southwest of China, was chosen as a case study site. The RTTI data were extracted from the Google real-time maps in May 12-17, 2013 and were used to derive the CL and FFL for the study areas. The Multifractal Detrended Fluctuation Analysis (MFDFA) was used to characterize the long-term correlations of CL and FFL time series and their corresponding multifractal properties. Analysis showed that CL and FFL had demonstrated time nonlinearity and long-term correlations and both characteristics differed significantly. A shuffling procedure and a phase randomization procedure were further integrated with multifractal detrending moving average (MFDMA) to identify the major sources of multifractality of these two time series. The results showed that a multifractal process analysis could be used to characterize complex traffic data. Traffic data collected and methods developed in this paper will help better understand the complex traffic systems.

  13. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon doppler velocimetry (PDV)

    SciTech Connect

    Gustavsen, Richard L; Bartram, Brian D; Sanchez, Nathaniel J

    2009-01-01

    We present detonation wave profiles measured in two TATB based explosives and two HMX based explosives. Profiles were measured at the interface of the explosive and a Lithium-Fluoride (LiF) window using 1550 nm Photon Doppler Velocimetry (PDV). Planar detonations were produced by impacting the explosive with a projectile launched in a gas-gun. The impact state was varied to produce varied distance to detonation, and therefore varied support of the Taylor wave following the Chapman-Jouget (CJ) or sonic state. Profiles from experiments with different support should be the same between the Von-Neumann (VN) spike and CJ state and different thereafter. Comparison of profiles with differing support, therefore, allows us to estimate reaction zone lengths. For the TATB based explosive, a reaction zone length of {approx} 3.9 mm, 500 ns was measured in EDC-35, and a reaction zone length of {approx} 6.3 mm, 800 ns was measured in PBX 9502 pre-cooled to -55 C. The respective VN spike state was 2.25 {+-} 0.05 km/s in EDC-35 and 2.4 {+-} 0.1 km/s in the cooled PBX 9502. We do not believe we have resolved either the VN spike state (> 2.6 km/s) nor the reaction zone length (<< 50 ns) in the HMX based explosives.

  14. Measuring Quality in Inclusive Preschool Classrooms: Development and Validation of the Inclusive Classroom Profile (ICP)

    ERIC Educational Resources Information Center

    Soukakou, Elena P.

    2012-01-01

    The purpose of this study was to develop and validate an observation measure designed to assess classroom quality in inclusive preschool programs, the Inclusive Classroom Profile (ICP). Developing the rating scale entailed systematic fieldwork in inclusive settings and review of the literature on preschool inclusion. Results from the validation…

  15. Subgrouping of Readers Based on Performance Measures: A Latent Profile Analysis

    ERIC Educational Resources Information Center

    Wolff, Ulrika

    2010-01-01

    By using latent profile analysis eight stable and interpretable subgroups of readers were identified. The basis for subgrouping was different performance measures with four aspects of reading in focus: reading of continuous texts, reading of document texts, word reading and reading speed. Participants were 9-year-old Swedish students included in…

  16. Measurements and Modelling of the Wind Speed Profile in the Marine Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Peña, Alfredo; Gryning, Sven-Erik; Hasager, Charlotte B.

    2008-12-01

    We present measurements from 2006 of the marine wind speed profile at a site located 18 km from the west coast of Denmark in the North Sea. Measurements from mast-mounted cup anemometers up to a height of 45 m are extended to 161 m using LiDAR observations. Atmospheric turbulent flux measurements performed in 2004 with a sonic anemometer are compared to a bulk Richardson number formulation of the atmospheric stability. This is used to classify the LiDAR/cup wind speed profiles into atmospheric stability classes. The observations are compared to a simplified model for the wind speed profile that accounts for the effect of the boundary-layer height. For unstable and neutral atmospheric conditions the boundary-layer height could be neglected, whereas for stable conditions it is comparable to the measuring heights and therefore essential to include. It is interesting to note that, although it is derived from a different physical approach, the simplified wind speed profile conforms to the traditional expressions of the surface layer when the effect of the boundary-layer height is neglected.

  17. Return glider radiosonde to measure temperature, humidity and radiation profiles through the atmosphere

    NASA Astrophysics Data System (ADS)

    Kraeuchi, Andreas; Philipona, Rolf

    2015-04-01

    Very promising radiation profile measurements through the atmosphere were made in 2011 with a balloon borne short- and longwave net radiometer. New and improved radiation sensors from Kipp&Zonen are now used in a glider aircraft together with a standard Swiss radiosonde from Meteolabor AG. This new return glider radiosonde (RG-R), is lifted up with double balloon technique to prevent pendulum motion and to keep the radiation instruments as horizontal as possible during the ascent measuring phase. The RG-R is equipped with a mechanism that allows to release the radiosonde at a preset altitude, and an autopilot allowing to fly the radiosonde back to the launch site and to land it savely with a parachute at a preset location. The return glider radiosonde technique as well as new measurement possibilities will be shown. First measurements show temperature, humidity and radiation profiles through the atmosphere up to 30 hPa (24 km) during different atmospheric conditions. Radiation profiles during different daytimes show possibilities with respect to temporal resolution of vertical radiation profiles trough the atmosphere.

  18. Research and application of online measurement system of tire tread profile in automobile tire production

    NASA Astrophysics Data System (ADS)

    Wang, Pengyao; Chen, Xiangguang; Yang, Kai; Liu, Xuejiao

    2017-01-01

    To improve the measuring efficiency of width and thickness of tire tread in the process of automobile tire production, the actual condition for the tire production process is analyzed, and a fast online measurement system based on moving tire tread of tire specifications is established in this paper. The coordinate data of tire tread profile is acquired by 3D laser sensor, and we use C# language for programming which is an object-oriented programming language to complete the development of client program. The system with laser sensor can provide real-time display of tire tread profile and the data to require in the process of tire production. Experimental results demonstrate that the measuring precision of the system is <= 1mm, it can meet the measurement requirements of the production process, and the system has the characteristics of convenient installation and testing, system stable operation.

  19. Synergy benefit in temperature, humiditiy and cloud property profiling by integrating ground based and satellite measurements

    NASA Astrophysics Data System (ADS)

    Ebell, K.; Orlandi, E.; Hünerbein, A.; Crewell, S.; Löhnert, U.

    2012-12-01

    Accurate, highly vertically resolved temperature, humidity and cloud property profiles are needed for many applications. They are essential for climate monitoring, a better process understanding and the subsequent improvement of parameterizations in numerical weather prediction and climate models. In order to provide such profiles with a high temporal resolution, multiple wavelength active and passive remote sensing techniques available at ground based observatories, e.g. the Atmospheric Radiation Measruement (ARM) Program and Cloudnet facilities, need to be exploited. In particular, the Integrated Profiling Technique (IPT, Löhnert et al., 2008) has been successfully applied to simultaneously derive profiles of temperature, humidity and liquid water by a Bayesian based retrieval using a combination of ground based microwave radiometer, cloud radar and a priori information. Within the project ICOS (Integrating Cloud Observations from Ground and Space - a Way to Combine Time and Space Information), we develop a flexible IPT, which allows for the combination of a variety of ground based measurements from cloud radar, microwave radiometer (MWR) and IR spectrometer as well as satellite based information from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard of METEOSAT. As ground based observations are mainly sensitive to the lower parts of the troposphere, the satellite measurements provide complementary information and are thus expected to improve the estimates of the thermodynamic and cloud property profiles, i. e. hydrometeor content and effective radius, considerably. In addition to the SEVIRI IR measurements, which are provided with a high repetition time, information from polar orbiting satellites could be included. In paticular, the potential of the Advanced Microwave Sounding Unit-A (AMSU-A) and Microwave Sounding Unit (MHS) in the retrieval is investigated. In order to understand the improvement by integrating the measurements of the above

  20. Vertical Structure of the Wind Speed Profile at the North Sea Offshore Measurement Platform FINO1

    NASA Astrophysics Data System (ADS)

    Kettle, A. J.

    2013-12-01

    The vertical wind speed profile in the lowest 100m of the marine atmospheric boundary layer has been characterized from data collected at the FINO1 offshore research platform in the German North Sea sector for 2005. Located in 30m of water, the platform has a dense vertical array of meteorological instrumentation to measure wind speed, air temperature, relative humidity, and atmospheric turbulence characteristics. Along measurements of the ocean temperature and surface waves, the platform is well-equipped to characterize wind properties in the near-surface boundary layer. Preliminary analysis reveals a high incidence of vertical wind speed profiles that deviate significantly from Monin-Obukhov similarity theory with wind speed inflections that suggest decoupled layers near the surface. The presentation shows how the properties of the vertical wind speed profile change mainly depending on the wind speed, wind direction, and time of year. The results are significant because there are few reports of inflections in the vertical wind speed profile over the ocean and there is an a priori assumption that the vertical wind speed profile varies smoothly according to similarity theory. There are possible consequences for the wind energy development in terms of understanding the forces acting on offshore wind turbines whose rotors sweep across heights 150-200m above the sea surface.

  1. Effect of 3D Polarization profiles on polarization measurements and colliding beam experiments

    SciTech Connect

    Fischer, W.; Bazilevsky, A.

    2011-08-18

    The development of polarization profiles are the primary reason for the loss of average polarization. Polarization profiles have been parametrized with a Gaussian distribution. We derive the effect of 3-dimensional polarization profiles on the measured polarization in polarimeters, as well as the observed polarization and the figure of merit in single and double spin experiments. Examples from RHIC are provided. The Relativistic Heavy Ion Collider (RHIC) is the only collider of spin polarized protons. During beam acceleration and storage profiles of the polarization P develop, which affect the polarization measured in a polarimeter, and the polarization and figure of merit (FOM) in colliding beam experiments. We calculate these for profiles in all dimensions, and give examples for RHIC. Like in RHIC we call the two colliding beams Blue and Yellow. We use the overbar to designate intensity-weighted averages in polarimeters (e.g. {bar P}), and angle brackets to designate luminosity-weighted averages in colliding beam experiments (e.g.

    ).

  2. Using a dispersion model to estimate emission rates of particulate matter from paved roads

    NASA Astrophysics Data System (ADS)

    Venkatram, Akula; Fitz, Dennis; Bumiller, Kurt; Du, Shuming; Boeck, Michael; Ganguly, Chandragupta

    From January 1996 to June 1997, we carried out a series of measurements to estimate emissions of PM 10 from paved roads in Riverside County, California. The program involved the measurement of upwind and downwind vertical profiles of PM 10, in addition to meteorological variables such as wind speed and vertical turbulent intensity. This information was analyzed using a new dispersion model that incorporates current understanding of micrometeorology and dispersion. The emission rate was inferred by fitting model predictions to measurements. The inferred emission factors ranged from 0.2 g VKT -1 for freeways to about 3 g VKT -1 for city roads. The uncertainty in these factors is estimated to be approximately a factor of two since the contributions of paved road PM 10 emissions to ambient concentrations were comparable to the uncertainty in the mean value of the measurement. At this stage, our best estimate of emission factor lies between 0.1 and 10 g VKT -1; there is some indication that it is about 0.1 g VKT -1 for heavily traveled freeways, and is an order of magnitude higher for older city roads. We found that measured silt loadings were poor predictors of emission factors. The measured emission factors imply that paved road emissions may contribute about 30% to the total PM 10 emissions from a high traffic area such as Los Angeles. This suggests that it is necessary to develop methods that are more reliable than the upwind-downwind concentration difference technique.

  3. Trends of road dust emissions contributions on ambient air particulate levels at rural, urban and industrial sites in southern Spain

    NASA Astrophysics Data System (ADS)

    Amato, F.; Alastuey, A.; de la Rosa, J.; Sánchez de la Campa, A. M.; Pandolfi, M.; Lozano, A.; Contreras González, J.; Querol, X.

    2014-04-01

    The impact of road dust emissions on PM10 and PM2.5 (atmospheric particulate matter with diameteer < 10 μm and 2.5 μm mass concentrations recorded from 2003 to 2010 at 11 locations (rural, urban and industrial) in southern Spain was estimated based on the chemical characterization of PM and the use of a constrained Positive Matrix Factorization, where the chemical profile of local road dust samples is used as a priori knowledge. Results indicate that road dust increased PM10 levels on average by 21-35% at traffic sites, 29-34% at urban background sites heavily affected by road traffic emissions, 17-22% at urban-industrial sites and 9-22% at rural sites. Road dust contributions to ambient PM levels show a marked seasonality with maxima in summer and minima in winter, likely due to the rainfall frequency. Decreasing concentration trends over the sampling years were found at some traffic and urban sites but in most cases the decreases were less significant than for vehicle exhaust emissions, while concentrations increased at industrial sites, probably due to local peculiarities. Concerning PM2.5, road dust contributions were lower than in PM10, as expected but still important (21-31%, 11-31%, 6-16% and 7% for traffic, urban background, urban-industrial and rural sites, respectively). In addition the three main sources of road dust (carbonaceous particles, brake wear and road wear/mineral) were identified and their contributions to road dust mass loadings estimated, supporting the idea that air quality managers should drive measures aimed at preventing the build-up of road dust particles on roads.

  4. Improved Ozone Profile Retrievals Using Multispectral Measurements from NASA 'A Train' Satellites

    NASA Astrophysics Data System (ADS)

    Fu, D.; Worden, J.; Livesey, N. J.; Irion, F. W.; Schwartz, M. J.; Bowman, K. W.; Pawson, S.; Wargan, K.

    2013-12-01

    Ozone, a radiatively and chemically important trace gas, plays various roles in different altitude ranges in the atmosphere. In the stratosphere, it absorbs the solar UV radiation from the Sun and protects us from sunburn and skin cancers. In the upper troposphere, ozone acts as greenhouse gas. Ozone in the middle troposphere reacts with many anthropogenic pollutants and cleans up the atmosphere. Near surface ozone is harmful to human health and plant life. Accurate monitoring of ozone vertical distributions is crucial for a better understanding of air quality and climate change. The Ozone Monitoring Instrument (OMI) and the Microwave Limb Sounder (MLS) are both in orbit on the Earth Observing System Aura satellite and are providing ozone concentration profile measurements. MLS observes limb signals from 118 GHz to 2.5 THz, and measures upper tropospheric and stratospheric ozone concentration (among many other species) with a vertical resolution of about 3 km. OMI is a nadir-viewing pushbroom ultraviolet-visible (UV-VIS) imaging spectrograph that measures backscattered radiances covering the 270-500 nm wavelength range. AIRS is a grating spectrometer, on EOS Aqua satellite, that measures the thermal infrared (TIR) radiances emitted by Earth's surface and by gases and particles in the spectral range 650 - 2665 cm-1. We present an approach to combine simultaneously measured UV and TIR radiances together with the retrieved MLS ozone fields, to improve the ozone sounding. This approach has the potential to provide a decadal record of ozone profiles with an improved spatial coverage and vertical resolution from space missions. For evaluating the quality of retrieved profiles, we selected a set of AIRS and OMI measurements, whose ground pixels were collocated with ozonesonde launch sites. The results from combination of these measurements are presented and discussed. The improvements on vertical resolution of tropospheric ozone profiles from the MLS/AIRS/OMI joint

  5. Development of the methodology of exhaust emissions measurement under RDE (Real Driving Emissions) conditions for non-road mobile machinery (NRMM) vehicles

    NASA Astrophysics Data System (ADS)

    Merkisz, J.; Lijewski, P.; Fuc, P.; Siedlecki, M.; Ziolkowski, A.

    2016-09-01

    The paper analyzes the exhaust emissions from farm vehicles based on research performed under field conditions (RDE) according to the NTE procedure. This analysis has shown that it is hard to meet the NTE requirements under field conditions (engine operation in the NTE zone for at least 30 seconds). Due to a very high variability of the engine conditions, the share of a valid number of NTE windows in the field test is small throughout the entire test. For this reason, a modification of the measurement and exhaust emissions calculation methodology has been proposed for farm vehicles of the NRMM group. A test has been developed composed of the following phases: trip to the operation site (paved roads) and field operations (including u-turns and maneuvering). The range of the operation time share in individual test phases has been determined. A change in the method of calculating the real exhaust emissions has also been implemented in relation to the NTE procedure.

  6. Accuracy analysis of the space shuttle solid rocket motor profile measuring device

    NASA Technical Reports Server (NTRS)

    Estler, W. Tyler

    1989-01-01

    The Profile Measuring Device (PMD) was developed at the George C. Marshall Space Flight Center following the loss of the Space Shuttle Challenger. It is a rotating gauge used to measure the absolute diameters of mating features of redesigned Solid Rocket Motor field joints. Diameter tolerance of these features are typically + or - 0.005 inches and it is required that the PMD absolute measurement uncertainty be within this tolerance. In this analysis, the absolute accuracy of these measurements were found to be + or - 0.00375 inches, worst case, with a potential accuracy of + or - 0.0021 inches achievable by improved temperature control.

  7. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe

    SciTech Connect

    Chen, Y. H.; Yang, X. Y.; Lin, C. E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J. E-mail: cjxiao@pku.edu.cn; Wang, L.; Xu, M.

    2014-11-15

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  8. Fine-scale measurements of microwave refractivity profiles with helicopter and low-cost rocket probes

    NASA Astrophysics Data System (ADS)

    Rowland, John R.; Babin, Steven M.

    1987-12-01

    The recent development of computer models that can accurately predict radar performance under ducting or other anomalous propagation conditions has produced a need for high-resolution profiles of microwave refractivity in the lower troposphere. This article contains a brief description of two systems that can make the required meteorological measurements for use in those models. The first system is helicopter-based and has been used for research purposes to verify model performance. The second uses a low-cost rocket to carry a lightweight telemetry package to the desired altitudes. The rocket system shows promise for shipboard use where accurate, high-resolution refractivity profiles near the ocean surface are required.

  9. Performance of a typical ISO protocol profile (MAP 3. 0); Measurements and discussion

    SciTech Connect

    Kleines, H.; Holzer, J.; Eisenbach, H.; Zwoll, K. )

    1992-04-01

    The open OSI communication protocols are expected to replace TCP/IP even in instrumentation systems for physical experiments. Therefore this paper discusses the performance of the MAP protocol profile, which is a typical example of a layered OSI protocol profile in a local area network environment, and also shows the results of a number of measurements. Firstly it covers static aspects of performance, which are dominated by the implementation. The main issue is the examination of dynamic aspects, which are dominated by the transport layer.

  10. The Kardashian index: a measure of discrepant social media profile for scientists.

    PubMed

    Hall, Neil

    2014-07-30

    In the era of social media there are now many different ways that a scientist can build their public profile; the publication of high-quality scientific papers being just one. While social media is a valuable tool for outreach and the sharing of ideas, there is a danger that this form of communication is gaining too high a value and that we are losing sight of key metrics of scientific value, such as citation indices. To help quantify this, I propose the 'Kardashian Index', a measure of discrepancy between a scientist's social media profile and publication record based on the direct comparison of numbers of citations and Twitter followers.

  11. The use of radiochromic films to measure and analyze the beam profile of charged particle accelerators.

    PubMed

    Avila-Rodriguez, M A; Wilson, J S; McQuarrie, S A

    2009-11-01

    The use of radiochromic films as a simple and inexpensive tool to accurately measure and analyze the beam profile of charged particle accelerators is described. In this study, metallic foils of different materials and thicknesses were irradiated with 17.8MeV protons and autoradiographic images of the beam strike were acquired by exposing pieces of RCF in direct contact with the irradiated foils. The films were digitalized using a conventional scanner and images were analyzed using DoseLab. Beam intensity distributions, isodose curves and linear beam profiles of the digitalized images were acquired.

  12. The substance use risk profile scale: a scale measuring traits linked to reinforcement-specific substance use profiles.

    SciTech Connect

    Woicik, P.A.; Stewart, S.H.; Pihl, R.O.; Conrod, P.J.

    2009-12-01

    The Substance Use Risk Profile Scale (SURPS) is based on a model of personality risk for substance abuse in which four personality dimensions (hopelessness, anxiety sensitivity, impulsivity, and sensation seeking) are hypothesized to differentially relate to specific patterns of substance use. The current series of studies is a preliminary exploration of the psychometric properties of the SURPS in two populations (undergraduate and high school students). In study 1, an analysis of the internal structure of two versions of the SURPS shows that the abbreviated version best reflects the 4-factor structure. Concurrent, discriminant, and incremental validity of the SURPS is supported by convergent/divergent relationships between the SURPS subscales and other theoretically relevant personality and drug use criterion measures. In Study 2, the factorial structure of the SURPS is confirmed and evidence is provided for its test-retest reliability and validity with respect to measuring personality vulnerability to reinforcement-specific substance use patterns. In Study 3, the SURPS was administered in a more youthful population to test its sensitivity in identifying younger problematic drinkers. The results from the current series of studies demonstrate support for the reliability and construct validity of the SURPS, and suggest that four personality dimensions may be linked to substance-related behavior through different reinforcement processes. This brief assessment tool may have important implications for clinicians and future research.

  13. Baseline suppression problems for high precision measurements using optical beam profile monitors

    SciTech Connect

    Thieberger, P.; Gassner, D.; Glenn, J.; Minty, M.; Zimmer, C.

    2011-03-28

    The use of fluorescent screens (e.g. YAG screens) and Optical Transition Radiation (OTR) screens for beam profile monitors provides a simple and widely used way to obtain detailed two dimensional intensity maps. What makes this possible is the availability of relatively inexpensive CCD cameras. For high precision measurements many possible error contributions need to be considered that have to do with properties of the fluorescent screens and of the CCDs. Saturation effects, reflections within and outside the screen, non-linearities, radiation damage, etc are often mentioned. Here we concentrate on an error source less commonly described, namely erroneous baseline subtraction, which is particularly important when fitting projected images. We show computer simulations as well as measurement results having remarkable sensitivity of the fitted profile widths to even partial suppression of the profile baseline data, which often arises from large pixel-to-pixel variations at low intensity levels. Such inadvertent baseline data suppression is very easy to miss as it is usually not obvious when inspecting projected profiles. In this report we illustrate this effect and discuss possible algorithms to automate the detection of this problem as well as some possible corrective measures.

  14. An improved profiling method for the measurement of hyperspectral diffuse attenuation coefficents in shallow turbid waters

    NASA Astrophysics Data System (ADS)

    Ma, Li; Tao, Bangyi; Shi, Liangliang; Zhu, Qiankun

    2016-10-01

    The measurement of hyperspectral diffuse attenuation coefficients (Kd(λ)) in shallow turbid waters cannot be successfully achieved by the original Satlantic profiling system, because of less data available in the near-surface waters due to the rapid decrease of light intensity. In this paper, an improved profiling system and processing method are proposed. Firstly, a convenient buoyancy device is designed and mounted on the Satlantic Profiler II to allow the profiler to loiter close to the sea surface, thereby significantly improving the vertical sampling resolution to 1cm/s in near-surface waters, particularly in the depth between 0 and 1 meter. In addition, customized processing software CProSoft is developed to subjectively select the depths for various wavelengths that meet their different requirement for regression analysis. Comparison with original system results shows that our novel method can significantly improve the accuracy of Kd(λ) measurements especially in the short blue and red spectral range, and can even effectively derive near-surface Kd values in the extremely turbid waters with attenuation coefficients greater than 30 m-1, which dramatically enlarge the Kd(λ) measuring range

  15. Differential absorption lidar technique for measurement of the atmospheric pressure profile

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Weng, C. Y.

    1983-01-01

    A new two-wavelength lidar technique for remotely measuring the pressure profile using the trough absorption region between two strong lines in the oxygen A band is described. The theory of integrated vertical path, differential ranging, and horizontal-path pressure measurements is given, with methods to desensitize and correct for temperature effects. The properties of absorption troughs are described and shown to reduce errors due to laser frequency jitter by up to two orders of magnitude. A general analysis, including laser bandwidth effects, demonstrates that pressure measurements with an integrated-vertical-path technique are typically fifty times more accurate than with a differential ranging technique. Simulations show 0.1-0.3 percent accuracy for ground and Shuttle-based pressure-profile and surface-pressure experiments.

  16. Measurement of percentage depth dose and lateral beam profile for kilovoltage x-ray therapy beams.

    PubMed

    Li, X A; Ma, C M; Salhani, D

    1997-12-01

    In this work, nine commonly used dosimetry detectors have been investigated to determine suitable relative dosimeters for kilovoltage x-ray beams. By comparison with the Monte Carlo calculated data, it was determined that for the detectors studied the PTW N23342, Markus and NACP parallel-plate chambers are more suitable for the measurement of percentage depth dose (PDD) data for this beam quality range with an uncertainty of about 3%. A diode detector may be used to measure the PDD for the 100 kVp beam, but it is not suitable for higher energies (300 kVp). The Capintec parallel-plate chamber may be adequate for medium-energy photons, but it has a slightly higher uncertainty for low-energy x-rays (100 kVp). For the measurement of beam profiles, diode and film yield incorrect profile tails, which can be corrected using the RK ionization chamber.

  17. Continuous wavelet transform for micro-component profile measurement using vertical scanning interferometry

    NASA Astrophysics Data System (ADS)

    Li, M.; Quan, C.; Tay, C. J.

    2008-10-01

    White-light interferometric techniques have been widely used in three-dimensional (3D) profiling. This paper presents a new method based on vertical scanning interferometry (VSI) for the 3D profile measurement of a micro-component that contains sharp steps. The use of a white-light source in the system overcomes the phase ambiguity problem often encountered in monochromatic interferometry and also reduces speckle noises. A new algorithm based on the continuous wavelet transform (CWT) is used to retrieve the phase of an interferogram. The algorithm accurately determines local fringe peak and improves the vertical resolution of the measurement. The proposed method is highly resistant to noise and is able to achieve high accuracy. A micro-component (lamellar grating) fabricated by sacrificial etching technique is used as a test specimen to verify the proposed method. The measurement uncertainty of the experimental results is discussed.

  18. Comparison of ozone profiles obtained with NIES DIAL and SAGE II measurements

    NASA Technical Reports Server (NTRS)

    Nakane, Hideaki; Sasano, Yasuhiro; Hayashida-Amano, Sachiko; Sugimoto, Nobuo; Matsui, Ichiro; Minato, Atsushi; Mccormick, M. P.

    1993-01-01

    Ozone profiles obtained with the Differential Absorption Lidar (DIAL) system at the National Institute for Environmental Studies (NIES) (Tsukuba, Japan) were compared with data provided by the satellite sensor SAGE II. The SAGE II data were selected based on criteria of spatial and temporal differences between the DIAL and the SAGE II measurements: five degrees in latitude and 15 degrees in longitude, within a latitudinal band from 31 deg to 41 deg N, and within one, three and five days after or before the DIAL measurements. Results show very good agreement for the individual and the zonal-mean profiles. The average mean difference between the DIAL and the SAGE II measurements over the altitudes 15-50 km was about 10 percent.

  19. Method for measuring radial impurity emission profiles using correlations of line integrated signals

    NASA Astrophysics Data System (ADS)

    Kuldkepp, M.; Brunsell, P. R.; Drake, J.; Menmuir, S.; Rachlew, E.

    2006-04-01

    A method of determining radial impurity emission profiles is outlined. The method uses correlations between line integrated signals and is based on the assumption of cylindrically symmetric fluctuations. Measurements at the reversed field pinch EXTRAP T2R show that emission from impurities expected to be close to the edge is clearly different in raw as well as analyzed data to impurities expected to be more central. Best fitting of experimental data to simulated correlation coefficients yields emission profiles that are remarkably close to emission profiles determined using more conventional techniques. The radial extension of the fluctuations is small enough for the method to be used and bandpass filtered signals indicate that fluctuations below 10kHz are cylindrically symmetric. The novel method is not sensitive to vessel window attenuation or wall reflections and can therefore complement the standard methods in the impurity emission reconstruction procedure.

  20. Atmospheric profiles at the southern Pierre Auger Observatory and their relevance to air shower measurement

    SciTech Connect

    Keilhauer, B.; Bluemer, J.; Engel, R.; Gora, D.; Homola, P.; Klages, H.; Pekala, J.; Risse, M.; Unger, M.; Wilczynska, B.; Wilczynski, H.

    2005-07-01

    The dependence of atmospheric conditions on altitude and time have to be known at the site of an air shower experiment for accurate reconstruction of extensive air showers and their simulations. The height-profile of atmospheric depth is of particular interest as it enters directly into the reconstruction of longitudinal shower development and of the primary energy and mass of cosmic rays. For the southern part of the Auger Observatory, the atmosphere has been investigated in a number of campaigns with meteorological radio soundings and with continuous measurements of ground-based weather stations. Focusing on atmospheric depth and temperature profiles, temporal variations are described and monthly profiles are developed. Uncertainties of the monthly atmospheres that are currently applied in the Auger reconstruction are discussed.

  1. A comparison of vertical velocity variance measurements from wind profiling radars and sonic anemometers

    NASA Astrophysics Data System (ADS)

    McCaffrey, Katherine; Bianco, Laura; Johnston, Paul; Wilczak, James M.

    2017-03-01

    Observations of turbulence in the planetary boundary layer are critical for developing and evaluating boundary layer parameterizations in mesoscale numerical weather prediction models. These observations, however, are expensive and rarely profile the entire boundary layer. Using optimized configurations for 449 and 915 MHz wind profiling radars during the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA), improvements have been made to the historical methods of measuring vertical velocity variance through the time series of vertical velocity, as well as the Doppler spectral width. Using six heights of sonic anemometers mounted on a 300 m tower, correlations of up to R2 = 0. 74 are seen in measurements of the large-scale variances from the radar time series and R2 = 0. 79 in measurements of small-scale variance from radar spectral widths. The total variance, measured as the sum of the small and large scales, agrees well with sonic anemometers, with R2 = 0. 79. Correlation is higher in daytime convective boundary layers than nighttime stable conditions when turbulence levels are smaller. With the good agreement with the in situ measurements, highly resolved profiles up to 2 km can be accurately observed from the 449 MHz radar and 1 km from the 915 MHz radar. This optimized configuration will provide unique observations for the verification and improvement to boundary layer parameterizations in mesoscale models.

  2. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  3. Watershed Scale Shear Stress From Tethersonde Wind Profile Measurements Under Near Neutral and Unstable Atmospheric Stability

    NASA Astrophysics Data System (ADS)

    Parlange, M. B.; Katul, G. G.

    1995-04-01

    Mean wind speed profiles were measured in the atmospheric surface layer, using a tethersonde system, above the Ojai Valley Watershed in southern California. The valley is mainly planted with mature avocado and orange trees. The surface shear stress and latent and sensible heat fluxes were measured above the trees which are up to 9 m in height. Near-neutral wind speed profile measurements allowed the determination of the watershed surface roughness (z0 = 1.4 m) and the momentum displacement height (d0 = 7.0 m). The wind speed measurements obtained under unstable atmospheric stability were analyzed using Monin-Obukhov similarity theory. New stability correction functions proposed based on theory and experiments of Kader-Yaglom as well as the now classic Businger-Dyer type functions were tested. The watershed shear stress values calculated using the surface layer wind speed profiles with the new Monin-Obukhov stability functions were found to be improved in comparison with the values obtained with the Businger-Dyer functions under strongly unstable stability conditions. The Monin-Obukhov model with the Businger-Dyer stability correction function underpredicted the momentum flux by 25% under strongly unstable stability conditions, while the new Kader-Yaglom formulation compared well on average (R2 = 0.77) with the surface eddy correlation measurements for all atmospheric stability conditions. The unstable 100-m drag coefficient was found to be u*2/V1002 = 0.0182.

  4. Road Weather and Connected Vehicles

    NASA Astrophysics Data System (ADS)

    Pisano, P.; Boyce, B. C.

    2015-12-01

    On average, there are over 5.8 M vehicle crashes each year of which 23% are weather-related. Weather-related crashes are defined as those crashes that occur in adverse weather or on slick pavement. The vast majority of weather-related crashes happen on wet pavement (74%) and during rainfall (46%). Connected vehicle technologies hold the promise to transform road-weather management by providing improved road weather data in real time with greater temporal and geographic accuracy. This will dramatically expand the amount of data that can be used to assess, forecast, and address the impacts that weather has on roads, vehicles, and travelers. The use of vehicle-based measurements of the road and surrounding atmosphere with other, more traditional weather data sources, and create road and atmospheric hazard products for a variety of users. The broad availability of road weather data from mobile sources will vastly improve the ability to detect and forecast weather and road conditions, and will provide the capability to manage road-weather response on specific roadway links. The RWMP is currently demonstrating how weather, road conditions, and related vehicle data can be used for decision making through an innovative Integrated Mobile Observations project. FHWA is partnering with 3 DOTs (MN, MI, & NV) to pilot these applications. One is a mobile alerts application called the Motorists Advisories and Warnings (MAW) and a maintenance decision support application. These applications blend traditional weather information (e.g., radar, surface stations) with mobile vehicle data (e.g., temperature, brake status, wiper status) to determine current weather conditions. These weather conditions, and other road-travel-relevant information, are provided to users via web and phone applications. The MAW provides nowcasts and short-term forecasts out to 24 hours while the EMDSS application can provide forecasts up to 72 hours in advance. The three DOTs have placed readers and external

  5. A new centering method of the measuring probe for spiral scanning-based surface profile measurement systems

    NASA Astrophysics Data System (ADS)

    Du, Hui-Lin; Zeng, Pei-Yang; Ju, Bing-Feng; Zhou, Zhao-Zhong; Xu, Shaoning; Sun, Anyu

    2017-02-01

    Spiral scanning is a high-efficiency scanning mode for surface profile measurement systems. The most important priority to realize the spiral scanning mode is to accurately align the measuring probe with the rotational centre of the spindle. This paper proposes a novel centre alignment method of the measuring probe, which is considered to be suitable for any type of spiral scanning surface measurement systems. The proposed method, which only needs a tilted flat mirror as the artefact, makes the time-consuming centre alignment process of the measuring probe become much easier and faster. The operational steps of the proposed method are presented. Experiments have also been carried out based on a self-developed optical profiler with spiral scanning operation to verity the feasibility of the proposed method. The experimental results show that the proposed method is capable of conducting a fast alignment (only takes 3 min) while maintaining a high alignment accuracy. Evaluation of the alignment accuracy shows that the centering error is less than 10 µm on the mechanical guide rail stage and about 1.7 µm on the air-bearing stage.

  6. Development of internal magnetic probe for current density profile measurement in Versatile Experiment Spherical Torus

    NASA Astrophysics Data System (ADS)

    Yang, J.; Lee, J. W.; Jung, B. K.; Chung, K. J.; Hwang, Y. S.

    2014-11-01

    An internal magnetic probe using Hall sensors to measure a current density profile directly with perturbation of less than 10% to the plasma current is successfully operated for the first time in Versatile Experiment Spherical Torus (VEST). An appropriate Hall sensor is chosen to produce sufficient signals for VEST magnetic field while maintaining the small size of 10 mm in outer diameter. Temperature around the Hall sensor in a typical VEST plasma is regulated by blown air of 2 bars. First measurement of 60 kA VEST ohmic discharge shows a reasonable agreement with the total plasma current measured by Rogowski coil in VEST.

  7. Thin-film thickness profile measurement by three-wavelength interference color analysis.

    PubMed

    Kitagawa, Katsuichi

    2013-04-01

    Conventional transparent film thickness measurement methods such as spectroscopy are essentially capable of measuring only a single point at a time, and their spatial resolution is limited. We propose a film thickness measurement method that is an extension of the global model-fitting algorithm developed for three-wavelength interferometric surface profiling. It estimates the film thickness distribution from an interference color image captured by a color camera with three-wavelength illumination. The proposed method is validated through computer simulations and experiments.

  8. Development of internal magnetic probe for current density profile measurement in Versatile Experiment Spherical Torus.

    PubMed

    Yang, J; Lee, J W; Jung, B K; Chung, K J; Hwang, Y S

    2014-11-01

    An internal magnetic probe using Hall sensors to measure a current density profile directly with perturbation of less than 10% to the plasma current is successfully operated for the first time in Versatile Experiment Spherical Torus (VEST). An appropriate Hall sensor is chosen to produce sufficient signals for VEST magnetic field while maintaining the small size of 10 mm in outer diameter. Temperature around the Hall sensor in a typical VEST plasma is regulated by blown air of 2 bars. First measurement of 60 kA VEST ohmic discharge shows a reasonable agreement with the total plasma current measured by Rogowski coil in VEST.

  9. Estimation of topside electron density profile using on-orbit measured GPS and electron density data.

    NASA Astrophysics Data System (ADS)

    Lee, J.

    2015-12-01

    The topside ionophere have lacks of information about plasma, but it is important for human beings and scientific applicaiton. We establish an estimation method for electron density profile using Langmuir Probe and GPS data of CHAMP satellite and have comparision the method results with other satellites measurements. In order to develop the model, hydrostatic mapping function, vertical scale height, and vertical TEC(Total Electron Contents) are used for calculations. The electron density and GPS data with hydrostatic mapping function give the vertical TEC and after some algebra using exponential model of density profile give the vertical scale height of ionosphere. The scale height have about 10^2~10^3 km order of magnitude so it can be used exponential model again since the altitude of CHAMP. Therefore, apply the scale height to exponoential model we can get the topside electron density profile. The result of the density profile model can be compared with other satellite data as STSAT-1, ROCSAT, DMSP which is measured the electron density in similar Local Time, Latitude, Longitude but above the CHAMP. This comparison shows the method is accecptable and it can be applied to other reseach for topside ionosphere.

  10. Deep water current profile measurements for operational support and design statistics

    SciTech Connect

    Moore, A.N.; Stephens, R.V.

    1995-09-01

    This paper describes the use of Acoustic Doppler Current Profilers (ADCP) to provide real-time current profile information for drilling vessels operating in deep water and also discusses the quality control and post-processing of associated recorded data to provide design current statistics. Experience gained from many such deployments over the last seven years is drawn upon to make specific recommendations for instrument system configuration and data management procedures. Practicalities and limitations of the use of ADCPs from drilling vessels are also discussed. Consideration is given to mooring design details specific to this type of deployment. Practical measurement difficulties are examined such as data contamination due to direct acoustic signal reflection from sub-sea drilling components and also the case of operating in an environment of high background acoustic noise associated with vessel dynamic positioning. Quality control procedures are discussed, both for the current profile data displayed in real-time for operational support and for subsequent post-analysis of recorded data. The paper is concluded with examples of specific details of current profile structure which have been identified using rigmounted ADCPs but would not have been possible to observe using any other measurement technology.

  11. The measurement of neutral beam thermal profiles on `V`-shaped calorimeters

    SciTech Connect

    Kamperschroer, J.H.; Lagin, L.J.; Silber, K.

    1995-12-31

    It is customary in high power neutral beam systems to use a V-shaped calorimeter to stop and measure the beam. With proper instrumentation, it is possible to determine both the neutral beam power and divergence. By utilizing a near-grazing angle of incidence, the area over which the beam is in contact with the surface is increased, thereby decreasing the power density over the case of normal incidence. Thermocouples on the back of the calorimeter, in conjunction with real time fitting algorithms, are used to deduce the divergence from the thermal profile. This measurement implicitly assumes that the measured profile corresponds to that of the incident beam. It is shown that such is not the case. Energetic particle reflection at near-grazing angle causes the thermal profile on the calorimeter to be more peaked than the incident distribution. The implications of this on the non-linear multiple regression technique of determining the divergence are discussed. With the aid of a reflection model, developed and applied to the beam from a typical TFTR ion source, it is shown that a peaked power density can be modelled. Neural networks are being studied as a means of supplanting the older regression technique of measuring divergence. Y-direction divergences have been successfully derived using a one-dimensional neural network.

  12. Vertical Tracer Concentration Profiles Measured During the Joint Urban 2003 Dispersion Study

    SciTech Connect

    Flaherty, Julia E.; Lamb, Brian K.; Allwine, K Jerry; Allwine, Eugene J.

    2007-12-01

    An atmospheric tracer dispersion study known as Joint Urban 2003 was conducted in Oklahoma City, Oklahoma during the summer of 2003. As part of this field program, vertical concentration profiles were measured at approximately 1 km from downtown tracer gas release locations. These profiles indicated that the urban landscape was very effective in mixing the plume vertically. The height of the plume centerline (as determined by the maximum concentration over the depth of the measurements) for any specific 30 min period varied over the 65 m measurement range. Most of the variations in tracer concentration observed in the profile time series were related to changes in wind direction as opposed to changes in turbulence. As a simple analysis tool for emergency response, maximum normalized concentration curves were developed with 5-minute averaged measurements. These curves give the maximum concentration (normalized by the release rate) that would be observed as a function of downwind distance in an urban area. The 5-min data resulted in greater concentrations than predicted with a simple Gaussian plume model. However, the curve compared well with results from a computational fluid dynamics simulation. This dispersion dataset is a valuable asset not only for refining air quality models, but also for developing new tools for emergency response personnel in the event of a toxic release.

  13. Multi-scale roughness measurement of cementitious materials using different optical profilers and window resizing analysis

    NASA Astrophysics Data System (ADS)

    Montgomery, Paul C.; Salzenstein, Fabien; Gianto, Gianto; Apedo, Komla L.; Serres, Nicolas; Fond, Christophe; Feugeas, Françoise

    2015-05-01

    In the development of new eco-cements for ecologically friendly construction, the porosity, surface structure and chemical nature of the material can influence the bioreceptivity of the surface and the aptitude or not of environmental micro-organisms to form biofilms. Such films are the source of biocontamination that can lead to a degradation in the structural properties over time. Accurate measurement of surface roughness and topography are important to help in the understanding of this interaction. Optical profilers are well adapted to the quantifying of large surface roughness typical of cementitious materials, being more rapid and better able to cope with high roughness compared with stylus and near field probe techniques. But any given surface profiler typically has specific range limits in terms of axial and lateral resolution and field of view, resulting in different roughness values according to the type of optical profiler used. In the present work, unpolished and polished cement paste samples have been measured with two different systems, one using interference microscopy and the other, chromatic confocal sensing. Comparison of the results from both techniques using the method of window re-sizing, more commonly used in tribology, has been used for calculating the average roughness parameters at different scales. The initial results obtained show a successful overlap of the results for the unpolished samples and a slight separation for the polished samples. The validation of the measurements is demonstrated together with a revealing of differences in the measurements on different types of surfaces due to variations in instrument performance.

  14. An Optimal Estimation Method to Obtain Surface Layer Turbulent Fluxes from Profile Measurements

    NASA Astrophysics Data System (ADS)

    Kang, D.

    2015-12-01

    In the absence of direct turbulence measurements, the turbulence characteristics of the atmospheric surface layer are often derived from measurements of the surface layer mean properties based on Monin-Obukhov Similarity Theory (MOST). This approach requires two levels of the ensemble mean wind, temperature, and water vapor, from which the fluxes of momentum, sensible heat, and water vapor can be obtained. When only one measurement level is available, the roughness heights and the assumed properties of the corresponding variables at the respective roughness heights are used. In practice, the temporal mean with large number of samples are used in place of the ensemble mean. However, in many situations the samples of data are taken from multiple levels. It is thus desirable to derive the boundary layer flux properties using all measurements. In this study, we used an optimal estimation approach to derive surface layer properties based on all available measurements. This approach assumes that the samples are taken from a population whose ensemble mean profile follows the MOST. An optimized estimate is obtained when the results yield a minimum cost function defined as a weighted summation of all error variance at each sample altitude. The weights are based one sample data variance and the altitude of the measurements. This method was applied to measurements in the marine atmospheric surface layer from a small boat using radiosonde on a tethered balloon where temperature and relative humidity profiles in the lowest 50 m were made repeatedly in about 30 minutes. We will present the resultant fluxes and the derived MOST mean profiles using different sets of measurements. The advantage of this method over the 'traditional' methods will be illustrated. Some limitations of this optimization method will also be discussed. Its application to quantify the effects of marine surface layer environment on radar and communication signal propagation will be shown as well.

  15. Airborne Lidar measurements of the atmospheric pressure profile with tunable Alexandrite lasers

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Milrod, J.; Walden, H.

    1986-01-01

    The first remote measurements of the atmospheric pressure profile made from an airborne platform are described. The measurements utilize a differential absorption lidar and tunable solid state Alexandrite lasers. The pressure measurement technique uses a high resolution oxygen A band where the absorption is highly pressure sensitive due to collision broadening. Absorption troughs and regions of minimum absorption were used between pairs of stongly absorption lines for these measurements. The trough technique allows the measurement to be greatly desensitized to the effects of laser frequency instabilities. The lidar system was set up to measure pressure with the on-line laser tuned to the absorption trough at 13147.3/cm and with the reference laser tuned to a nonabsorbing frequency near 13170.0/cm. The lidar signal returns were sampled with a 200 range gate (30 vertical resoltion) and averaged over 100 shots.

  16. Airborne and ground based lidar measurements of the atmospheric pressure profile

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Schwemmer, Geary K.; Dombrowski, Mark; Weng, Chi Y.

    1989-01-01

    The first high accuracy remote measurements of the atmospheric pressure profile have been made. The measurements were made with a differential absorption lidar system that utilizes tunable alexandrite lasers. The absorption in the trough between two lines in the oxygen A-band near 760 nm was used for probing the atmosphere. Measurements of the two-dimensional structure of the pressure field were made in the troposphere from an aircraft looking down. Also, measurements of the one-dimensional structure were made from the ground looking up. Typical pressure accuracies for the aircraft measurements were 1.5-2 mbar with a 30-m vertical resolution and a 100-shot average (20 s), which corresponds to a 2-km horizontal resolution. Typical accuracies for the upward viewing ground based measurements were 2.0 mbar for a 30-m resolution and a 100-shot average.

  17. Temperature Profile Measurements in a Newly Constructed 30-Stage 5 cm Centrifugal Contactor pilot Plant

    SciTech Connect

    Troy G. Garn; Dave H. Meikrantz; Mitchell R. Greenhalgh; Jack D. Law

    2008-09-01

    An annular centrifugal contactor pilot plant incorporating 30 stages of commercial 5 cm CINC V-02 units has been built and operated at INL during the past year. The pilot plant includes an automated process control and data acquisitioning system. The primary purpose of the pilot plant is to evaluate the performance of a large number of inter-connected centrifugal contactors and obtain temperature profile measurements within a 30-stage cascade. Additional solvent extraction flowsheet testing using stable surrogates is also being considered. Preliminary hydraulic testing was conducted with all 30 contactors interconnected for continuous counter-current flow. Hydraulic performance and system operational tests were conducted successfully but with higher single-stage rotor speeds found necessary to maintain steady interstage flow at flowrates of 1 L/min and higher. Initial temperature profile measurements were also completed in this configuration studying the performance during single aqueous and two-phase counter-current flow at ambient and elevated inlet solution temperatures. Temperature profile testing of two discreet sections of the cascade required additional feed and discharge connections. Lamp oil, a commercially available alkane mixture of C14 to C18 chains, and tap water adjusted to pH 2 were the solution feeds for all the testing described in this report. Numerous temperature profiles were completed using a newly constructed 30-stage centrifugal contactor pilot plant. The automated process control and data acquisition system worked very well throughout testing. Temperature data profiles for an array of total flowrates (FT) and contactor rpm values for both single-phase and two-phase systems have been collected with selected profiles and comparisons reported. Total flowrates (FT) ranged from 0.5-1.4 L/min with rotor speeds from 3500-4000 rpm. Solution inlet temperatures ranging from ambient up to 50° C were tested. Ambient temperature testing shows that a

  18. Multispectral Image Road Extraction Based Upon Automated Map Conflation

    NASA Astrophysics Data System (ADS)

    Chen, Bin

    Road network extraction from remotely sensed imagery enables many important and diverse applications such as vehicle tracking, drone navigation, and intelligent transportation studies. There are, however, a number of challenges to road detection from an image. Road pavement material, width, direction, and topology vary across a scene. Complete or partial occlusions caused by nearby buildings, trees, and the shadows cast by them, make maintaining road connectivity difficult. The problems posed by occlusions are exacerbated with the increasing use of oblique imagery from aerial and satellite platforms. Further, common objects such as rooftops and parking lots are made of materials similar or identical to road pavements. This problem of common materials is a classic case of a single land cover material existing for different land use scenarios. This work addresses these problems in road extraction from geo-referenced imagery by leveraging the OpenStreetMap digital road map to guide image-based road extraction. The crowd-sourced cartography has the advantages of worldwide coverage that is constantly updated. The derived road vectors follow only roads and so can serve to guide image-based road extraction with minimal confusion from occlusions and changes in road material. On the other hand, the vector road map has no information on road widths and misalignments between the vector map and the geo-referenced image are small but nonsystematic. Properly correcting misalignment between two geospatial datasets, also known as map conflation, is an essential step. A generic framework requiring minimal human intervention is described for multispectral image road extraction and automatic road map conflation. The approach relies on the road feature generation of a binary mask and a corresponding curvilinear image. A method for generating the binary road mask from the image by applying a spectral measure is presented. The spectral measure, called anisotropy-tunable distance (ATD

  19. Determination of car on-road black carbon and particle number emission factors and comparison between mobile and stationary measurements

    NASA Astrophysics Data System (ADS)

    Ježek, I.; Drinovec, L.; Ferrero, L.; Carriero, M.; Močnik, G.

    2015-01-01

    We have used two methods for measuring emission factors (EFs) in real driving conditions on five cars in a controlled environment: the stationary method, where the investigated vehicle drives by the stationary measurement platform and the composition of the plume is measured, and the chasing method, where a mobile measurement platform drives behind the investigated vehicle. We measured EFs of black carbon and particle number concentration. The stationary method was tested for repeatability at different speeds and on a slope. The chasing method was tested on a test track and compared to the portable emission measurement system. We further developed the data processing algorithm for both methods, trying to improve consistency, determine the plume duration, limit the background influence and facilitate automatic processing of measurements. The comparison of emission factors determined by the two methods showed good agreement. EFs of a single car measured with either method have a specific distribution with a characteristic value and a long tail of super emissions. Measuring EFs at different speeds or slopes did not significantly influence the EFs of different cars; hence, we propose a new description of vehicle emissions that is not related to kinematic or engine parameters, and we rather describe the vehicle EF with a characteristic value and a super emission tail.

  20. Determination of car on-road black carbon and particle number emission factors and comparison between mobile and stationary measurements

    NASA Astrophysics Data System (ADS)

    Ježek, I.; Drinovec, L.; Ferrero, L.; Carriero, M.; Močnik, G.

    2014-06-01

    We have used two methods for measuring emission factors (EF) in real driving conditions on five cars in a controlled environment: the stationary method, where the investigated vehicle drives by the stationary measurement platform and the composition of the plume is measured; and the chasing method, where a mobile measurement platform drives behind the investigated vehicle. We measured EF of black carbon and particle number concentration. The stationary method was tested for repeatability at different speeds and on a slope. The chasing method was tested on a test track and compared to the portable emission measurement system. We further developed the data processing algorithm for both methods, trying to improve consistency, determine the plume duration, limit the background influence and facilitate automatic processing of measurements. The comparison of emission factors determined by the two methods showed good agreement. EFs of a single car measured with either method have a specific distribution with a characteristic value and a long tail of super emissions. Measuring EFs at different speeds or slopes did not significantly influence the EFs of different cars, hence we propose a new description of vehicle emissions that is not related to kinematic or engine parameters, rather we describe the vehicle EF with a characteristic value and a "super emission" tail.

  1. High-accuracy surface profile measuring system using a BSO phase conjugating mirror.

    PubMed

    Ikeda, O; Suzuki, T; Sato, T

    1982-12-15

    A highly accurate real-time surface profile measuring system has been constructed by combining a Bi(12)SiO(20) (BSO) phase conjugating mirror (PCM) with a Twyman-Green interferometer. In this new interferometer the convex lens collects and focuses the scattering object waves in the BSO crystal, and the PCM reconstructs the object field through the same lens. The method of deriving surface profile is similar to conventional ones but differs in that it does not require exact phase modulation of the interferograms. This system features a quite high measurement accuracy free of aberrations of the lens and of hysteresis or aging of the piston actuator used to change the phase of the reference field. The principle and basic experimental results are presented.

  2. Precision Measurement of Cylinder Surface Profile on an Ultra-Precision Machine Tool

    NASA Astrophysics Data System (ADS)

    Lee, J. C.; Noh, Y. J.; Arai, Y.; Gao, W.; Park, C. H.

    2009-01-01

    This paper describes the measurement of the surface straightness profile of a cylinder workpiece on an ultra-precision machine tool which has a T-base design with a spindle, an X-slide and a Z-slide. The movement range of the X-slide is 220 mm and that of the Z-slide is 150 mm, which have roller bearings in common. Two capacitive sensors are employed to scan a cylinder workpiece mounted on the spindle along the Z-axis. The straightness error motion of the Z-slide is measured to be approximately 100 nm by the reversal method. The straightness profile of the cylinder workpiece is evaluated to be approximately 400 nm by separation of the motion error, simultaneously.

  3. Method of measuring a profile of the density of charged particles in a particle beam

    DOEpatents

    Hyman, L.G.; Jankowski, D.J.

    1975-10-01

    A profile of the relative density of charged particles in a beam is obtained by disposing a number of rods parallel to each other in a plane perpendicular to the beam and shadowing the beam. A second number of rods is disposed perpendicular to the first rods in a plane perpendicular to the beam and also shadowing the beam. Irradiation of the rods by the beam of charged particles creates radioactive isotopes in a quantity proportional to the number of charged particles incident upon the rods. Measurement of the radioactivity of each of the rods provides a measure of the quantity of radioactive material generated thereby and, together with the location of the rods, provides information sufficient to identify a profile of the density of charged particles in the beam.

  4. PNNL/Euratom glass fiber optic, spent fuel neutron profile measurement system

    SciTech Connect

    SM Bowyer; JE Smart

    2000-03-03

    The glass fiber optic spent fuel neutron profile measurement system is designed to measure the neutron profile of a Castor with high reproducibility and to distinguish spent fuel Castor contents from vitrified waste Castor contents. The basic principle of the detector is that the glass fibers detect thermal neutrons. The glass is loaded with lithium enriched in Li-6, which has a high thermal neutron cross-section. A neutron is captured by the Li-6 and a He-4 and H-3 are created. Because the glass also contains Cerium in a 3{sup +} ionization state, the excitation caused by the movement of the He-4 and H-3 results in the emission of light from the cerium atoms. This light then travels to the ends of the fiber where it is detected by photon sensitive devices (e.g., photo-multiplier tubes).

  5. Measurement of the beam longitudinal profile in a storage ring bynon-linear laser mixing

    SciTech Connect

    Beche, J.-F.; Byrd, J.; De Santis, S.; Denes, P.; Placidi, M.; Turner, W.; Zolotorev, M.

    2004-05-03

    We report on the development of a new technique for the measurement of the longitudinal beam profile in storage rings. This technique, which has been successfully demonstrated at the Advanced Light Source, mixes the synchrotron radiation with the light from a mode-locked solid state laser oscillator in a non-linear crystal. The up-converted radiation is then detected with a photomultiplier and processed to extract, store, and display the required information. The available choices of laser repetition frequency, pulse width, and phase modulation give a wide range of options for matching the bunch configuration of a particular storage ring. Besides the dynamic measurement of the longitudinal profile of each bunch, the instrument can monitor the evolution of the bunch tails, the presence of untrapped particles and their diffusion into nominally empty RF buckets (''ghostbunches'').

  6. Siderophile Element Profile Measurements in Iron Meteorites Using Laser Ablation ICP-MS

    NASA Technical Reports Server (NTRS)

    Watson, H. C.; Watson, E. B.; McDonough, W. F.

    2005-01-01

    Understanding the behaviour of siderophile elements during cooling of iron meteorites can lead to insight into the general thermal histories of the meteorites as well as their respective parent bodies. Traditionally trace element analyses in meteorites have been done using techniques that only measure the average concentration in each phase. With these methods, all of the spatial information with respect to the distribution of an element within one phase is lost. Measuring concentration profiles of trace elements in meteorites is now possible, with the advent of high-resolution analytical techniques such as laser ablation, inductively coupled plasma mass spectrometry (LA-ICP-MS) with spatial resolution <20 microns. [e.g. 1,2] and secondary ion mass spectrometry [3]. These profiles can give more insight into both the partitioning and diffusive behavior of siderophile elements in metal systems relevant to iron meteorites, as well as parent body cooling rates.

  7. Extension of the range of profile measurements by overlapping successive traces

    SciTech Connect

    Church, E.L.

    1987-01-01

    It has been recently proposed to extend profile measurements by overlapping a number of successive colinear traces to generate a composite trace which is an order of magnitude longer than any individual measurement. This paper presents an error analysis of this method as a guide for its application and improvement. Expressions are derived for: (1) the cumulative rms error of the composite profile, (b) the trade-off between this error, the number of traces required, and the degree of overlap of successive traces, and (3) the power spectral density of the cumulative error. This last is important in the application of the method since - as expected - it predicts that most of the error is concentrated in long surface wavelengths, in precisely the region the method was designed to illuminate. The present analysis suggests that the performance of the method may be improved by using a global fitting procedure rather than the serial method originally considered.

  8. Relating profile instrument measurements to the functional performance of rough surfaces

    SciTech Connect

    McCool, J.I.

    1986-01-01

    An easily programmed method is proposed for translating the rms height (R/sub q/) and rms slope (..delta..q) determined using a profile measuring instrument, into more readily interpreted measures of functional severity such as the density of plastic contacts or the mean real contact pressure. The method involves estimation from the ratio R/sub q//..delta..q, of the exponent k of an assumed power function relation between the profile spectrum and the spatial frequency. Having estimated k, the mean square curvature is computed analytically and used together with R/sub q/ and ..delta..q to determine the three input variables needed for the Greenwood-Williamson (GW) microcontact model. The GW model is then used to compute, as a function of the separation of two rough surfaces, the contact density, the plastic contact density, the mean load per unit area and the mean load per unit of real contact area. The mean square curvature estimated in this manner is compared to the directly measured mean square curvature for 12 distinct surface types. The values compared quite favorably (with 25%) for three of the specimens which included a bearing ball and the ground inner ring rolling path of a cylindrical roller bearing. The discrepancies exceeded a factor of 3 for three other specimens. The microcontact model output computed using both measured and estimated mean square curvature values showed that some output variables, e.g., plastic contact density, are more discrepant than the estimated and measured curvature values. Other output variables of the microcontact model, in particular, the mean real pressure, attenuate the discrepancies. The mean real pressures computed using the calculated and measured curvatures, were within 30% for all but three specimens. The maximum discrepancy observed was 55%. The results are sufficiently encouraging and the methodology so easy to apply, to commend the practice of routinely supplementing profile measurement data with microcontact model

  9. Measuring Aerosol Optical Depth (AOD) and Aerosol Profiles Simultaneously with a Camera Lidar

    NASA Astrophysics Data System (ADS)

    Barnes, John; Pipes, Robert; Sharma, Nimmi C. P.

    2016-06-01

    CLidar or camera lidar is a simple, inexpensive technique to measure nighttime tropospheric aerosol profiles. Stars in the raw data images used in the CLidar analysis can also be used to calculate aerosol optical depth simultaneously. A single star can be used with the Langley method or multiple star pairs can be used to reduce the error. The estimated error from data taken under clear sky conditions at Mauna Loa Observatory is approximately +/- 0.01.

  10. Development of a probe for inner profile measurement and flaw detection

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Toru; Wakayama, Toshitaka; Kamakura, Yoshihisa

    2011-08-01

    It is one of the important necessities to precisely measure the inner diameter and/or the inner profile of pipes, tubes and other objects similar in shape. Especially in mechanical engineering field, there are many requests from automobile industry because the inner surface of engine blocks and other die casts are strongly required to be inspected and measured by non-contact methods (not by the naked eyes inspection using a borescope). If the inner diameter is large enough like water pipes or drain pipes, complicated and large equipment may be applicable. However, small pipes with a diameter ranging from 10mm to 100mm are difficult to be inspected by such a large instrument as is used for sewers inspection. And we have proposed an instrument which has no moving elements such as a rotating mirror or a prism for scanning a beam. Our measurement method is based on optical sectioning using triangulation. This optically sectioned profile of an inner wall of pipe-like objects is analyzed to produce numerical data of inner diameter or profile. Here, we report recent development of the principle and applications of the optical instrument with a simple and compact configuration. In addition to profile measurement, we found flaws and defects on the inner wall were also detected by using the similar principle. Up to now, we have developed probes with the diameter of 8mm to 25mm for small size objects and another probe (80 mm in diameter) for such a larger container with the dimensional size of 600mm.

  11. The Measure Matters: Language Dominance Profiles across Measures in Spanish-English Bilingual Children

    ERIC Educational Resources Information Center

    Bedore, Lisa M.; Pena, Elizabeth D.; Summers, Connie L.; Boerger, Karin M.; Resendiz, Maria D.; Greene, Kai; Bohman, Thomas M.; Gillam, Ronald B.

    2012-01-01

    The purpose of this study was to determine if different language measures resulted in the same classifications of language dominance and proficiency for a group of bilingual pre-kindergarteners and kindergarteners. Data were analyzed for 1029 Spanish-English bilingual pre-kindergarteners who spanned the full range of bilingual language…

  12. How Effective Is Road Mitigation at Reducing Road-Kill? A Meta-Analysis

    PubMed Central

    Rytwinski, Trina; Soanes, Kylie; Jaeger, Jochen A. G.; Fahrig, Lenore; Findlay, C. Scott; Houlahan, Jeff; van der Ree, Rodney; van der Grift, Edgar A

    2016-01-01

    Road traffic kills hundreds of millions of animals every year, posing a critical threat to the populations of many species. To address this problem there are more than forty types of road mitigation measures available that aim to reduce wildlife mortality on roads (road-kill). For road planners, deciding on what mitigation method to use has been problematic because there is little good information about the relative effectiveness of these measures in reducing road-kill, and the costs of these measures vary greatly. We conducted a meta-analysis using data from 50 studies that quantified the relationship between road-kill and a mitigation measure designed to reduce road-kill. Overall, mitigation measures reduce road-kill by 40% compared to controls. Fences, with or without crossing structures, reduce road-kill by 54%. We found no detectable effect on road-kill of crossing structures without fencing. We found that comparatively expensive mitigation measures reduce large mammal road-kill much more than inexpensive measures. For example, the combination of fencing and crossing structures led to an 83% reduction in road-kill of large mammals, compared to a 57% reduction for animal detection systems, and only a 1% for wildlife reflectors. We suggest that inexpensive measures such as reflectors should not be used until and unless their effectiveness is tested using a high-quality experimental approach. Our meta-analysis also highlights the fact that there are insufficient data to answer many of the most pressing questions that road planners ask about the effectiveness of road mitigation measures, such as whether other less common mitigation measures (e.g., measures to reduce traffic volume and/or speed) reduce road mortality, or to what extent the attributes of crossing structures and fences influence their effectiveness. To improve evaluations of mitigation effectiveness, studies should incorporate data collection before the mitigation is applied, and we recommend a

  13. 3D micro profile measurement with the method of spatial frequency domain analysis

    NASA Astrophysics Data System (ADS)

    Xu, Yongxiang

    2015-10-01

    3D micro profiles are often needed for measurement in many fields, e.g., binary optics, electronic industry, mechanical manufacturing, aeronautic and space industry, etc. In the case where height difference between two neighboring points of a test profile is equal to or greater than λ / 4, microscopic interferometry based on laser source will no longer be applicable because of the uncertainty in phase unwrapping. As white light possesses the characteristic of interference length approximate to zero, applying it for micro profilometry can avoid the trouble and can yield accurate results. Using self-developed Mirau-type scanning interference microscope, a step-like sample was tested twice, with 128 scanning interferograms recorded for each test. To process each set of the interferograms, the method of spatial frequency domain analysis was adopted. That is, for each point, by use of Furrier transform, white-light interference intensities were decomposed in spatial frequency domain, thus obtaining phase values corresponding to different wavenumbers; by using least square fitting on phases and wave numbers, a group-velocity OPD was gained for the very point; and finally in terms of the relation between relative height and the group-velocity OPD, the profile of the test sample was obtained. Two tests yielded same profile result for the sample, and step heights obtained were 50.88 nm and 50.94 nm, respectively. Meantime, the sample was also measured with a Zygo Newview 7200 topography instrument, with same profile result obtained and step height differing by 0.9 nm. In addition, data processing results indicate that chromatic dispersion equal to and higher than 2nd order is negligible when applying spatial frequency domain analysis method.

  14. Feasibility of lateral dose profile measurements in a small field using TLDs.

    PubMed

    Zhang, Bailin; Zhu, Jinhan; Li, Yinghui; Chen, Shaowen; Chen, Lixin; Liu, Xiaowei

    2015-02-07

    The purpose of this work was to study the feasibility of lateral dose profile measurements in a small field using thermoluminescent dosimeters (TLDs) and to evaluate the impact of the field size on the absorbed dose ratio factor fmd of LiF and Al2O3 TLDs. The Monte Carlo package BEAM/EGSNRC was used to simulate the lateral dose profile in solid water phantoms (RW3 slab phantom) with various field sizes beyond the build-up region for 6 MV x-rays, and a LiF : Mg, Cu, P (GR-200) dosimeter with dimensions of 0.1  ×  0.1  ×  0.1 cm(3) was used to measure the lateral dose profile under the same conditions as the Monte Carlo simulations. To enable comparisons between dosimeters, Gafchromic EBT3 films were used. The results indicate that (1) the measured results are in agreement with the simulated results within the uncertainty of the simulation; (2) the values of fmd for Al2O3 and LiF in a 1  ×  1 cm(2) field are 2.8% and 1.6% less, respectively, than those in a 10  ×  10 cm(2) field; and (3) within the 80% profile region, the dose differences between TLDs and solid water are less than 1%. In the 80-10% profile region, the TLD results are in agreement with the absorbed doses in the solid water within 1 mm. It is generally acceptable to ignore the impact of field size on the absorbed dose ratio factor fmd when the field sizes are larger than 1  ×  1 cm(2) for LiF and 2  ×  2 cm(2) for Al2O3. For 6 MV x-rays, the small GR-200 chip can be used to measure the relative lateral dose profiles of small fields.

  15. Dryline on 22 May 2002 During IHOP: Convective Scale Measurements at the Profiling Site

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Flamant, Cyrille; Miller, David; Evans, Keith; Fabry, Federic; DiGirolamo, Paolo; Whiteman, David; Geerts, Bart; Weckwerth, Tammy; Brown, William

    2004-01-01

    A unique set of measurements of wind, water vapor mixing ratio and boundary layer height variability was observed during the first MOP dryline mission of 22 May 2002. Water vapor mixing ratio from the Scanning Raman Lidar (SRL), high-resolution profiles of aerosol backscatter from the HARLIE and wind profiles from the GLOW are combined with the vertical velocity derived from the NCAR/ISS/MAPR and the high-resolution FMCW radar to reveal the convective variability of the cumulus cloud-topped boundary layer. A combined analysis of the in-situ and remote sensing data from aircraft, radiosonde, lidars, and radars reveals moisture variability within boundary layer updraft and downdraft regions as well as characterizes the boundary layer height variability in the dry and moist sides of the dryline. The profiler site measurements will be tied to aircraft data to reveal the relative intensity and location of these updrafts to the dry line. This study provides unprecedented high temporal and spatial resolution measurements of wind, moisture and backscatter within a dryline and the associated convective boundary layer.

  16. Linkages between unpaved forest roads and streambed sediment: why context matters in directing road restoration

    USGS Publications Warehouse

    Al-Chokhachy, Robert K.; Black, Tom A.; Thomas, Cameron; Luce, Charlie H.; Rieman, Bruce; Cissel, Richard; Carlson, Anne; Hendrickson, Shane; Archer, Eric K.; Kershner, Jeffrey L.

    2016-01-01

    Unpaved forest roads remain a pervasive disturbance on public lands and mitigating sediment from road networks remains a priority for management agencies. Restoring roaded landscapes is becoming increasingly important for many native coldwater fishes that disproportionately rely on public lands for persistence. However, effectively targeting restoration opportunities requires a comprehensive understanding of the effects of roads across different ecosystems. Here, we combine a review and a field study to evaluate the status of knowledge supporting the conceptual framework linking unpaved forest roads with streambed sediment. Through our review, we specifically focused on those studies linking measures of the density of forest roads or sediment delivery with empirical streambed sediment measures. Our field study provides an example of a targeted effort of linking spatially explicit estimates of sediment production with measures of streambed sediment. Surprisingly, our review uncovered few studies (n = 8) that empirically tested the conceptual framework linking unpaved forest roads and streambed sediment, and the results varied considerably. Field results generally supported the conceptual model that unpaved forest roads can control streambed sediment quality, but demonstrated high-spatial variability in the effects of forest roads on streambed sediment and the need to address hotspots of sediment sources. The importance of context in the effects of forest roads is apparent in both our review and field data, suggesting the need for in situ studies to avoid misdirected restoration actions.

  17. 2. Big Creek Road, worm fence and road at trailhead. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Big Creek Road, worm fence and road at trailhead. - Great Smoky Mountains National Park Roads & Bridges, Big Creek Road, Between State Route 284 & Big Creek Campground, Gatlinburg, Sevier County, TN

  18. 5. Big Creek Road, old bridge on Walnut Bottom Road, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Big Creek Road, old bridge on Walnut Bottom Road, deck view. - Great Smoky Mountains National Park Roads & Bridges, Big Creek Road, Between State Route 284 & Big Creek Campground, Gatlinburg, Sevier County, TN

  19. 4. Big Creek Road, old bridge on Walnut Bottom Road, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Big Creek Road, old bridge on Walnut Bottom Road, elevation view. - Great Smoky Mountains National Park Roads & Bridges, Big Creek Road, Between State Route 284 & Big Creek Campground, Gatlinburg, Sevier County, TN

  20. Radiographic film dosimetry of proton beams for depth-dose constancy check and beam profile measurement.

    PubMed

    Yeo, Inhwan J; Teran, Anthony; Ghebremedhin, Abiel; Johnson, Matt; Patyal, Baldev

    2015-05-08

    Radiographic film dosimetry suffers from its energy dependence in proton dosimetry. This study sought to develop a method of measuring proton beams by the film and to evaluate film response to proton beams for the constancy check of depth dose (DD). It also evaluated the film for profile measurements. To achieve this goal, from DDs measured by film and ion chamber (IC), calibration factors (ratios of dose measured by IC to film responses) as a function of depth in a phantom were obtained. These factors imply variable slopes (with proton energy and depth) of linear characteristic curves that relate film response to dose. We derived a calibration method that enables utilization of the factors for acquisition of dose from film density measured at later dates by adapting to a potentially altered processor condition. To test this model, the characteristic curve was obtained by using EDR2 film and in-phantom film dosimetry in parallel with a 149.65 MeV proton beam, using the method. An additional validation of the model was performed by concurrent film and IC measurement perpendicular to the beam at various depths. Beam profile measurements by the film were also evaluated at the center of beam modulation. In order to interpret and ascertain the film dosimetry, Monte Carlos simulation of the beam was performed, calculating the proton fluence spectrum along depths and off-axis distances. By multiplying respective stopping powers to the spectrum, doses to film and water were calculated. The ratio of film dose to water dose was evaluated. Results are as follows. The characteristic curve proved the assumed linearity. The measured DD approached that of IC, but near the end of the spread-out Bragg peak (SOBP), a spurious peak was observed due to the mismatch of distal edge between the calibration and measurement films. The width of SOBP and the proximal edge were both reproducible within a maximum of 5mm; the distal edge was reproducible within 1 mm. At 5 cm depth, the dose was

  1. SI2N overview paper: ozone profile measurements: techniques, uncertainties and availability

    NASA Astrophysics Data System (ADS)

    Hassler, B.; Petropavlovskikh, I.; Staehelin, J.; August, T.; Bhartia, P. K.; Clerbaux, C.; Degenstein, D.; De Mazière, M.; Dinelli, B. M.; Dudhia, A.; Dufour, G.; Frith, S. M.; Froidevaux, L.; Godin-Beekmann, S.; Granville, J.; Harris, N. R. P.; Hoppel, K.; Hubert, D.; Kasai, Y.; Kurylo, M. J.; Kyrölä, E.; Lambert, J.-C.; Levelt, P. F.; McElroy, C. T.; McPeters, R. D.; Munro, R.; Nakajima, H.; Parrish, A.; Raspollini, P.; Remsberg, E. E.; Rosenlof, K. H.; Rozanov, A.; Sano, T.; Sasano, Y.; Shiotani, M.; Smit, H. G. J.; Stiller, G.; Tamminen, J.; Tarasick, D. W.; Urban, J.; van der A, R. J.; Veefkind, J. P.; Vigouroux, C.; von Clarmann, T.; von Savigny, C.; Walker, K. A.; Weber, M.; Wild, J.; Zawodny, J.

    2013-11-01

    Peak stratospheric chlorofluorocarbon (CFC) and other ozone depleting substance (ODS) concentrations were reached in the mid to late 1990s. Detection and attribution of the expected recovery of the stratospheric ozone layer in an atmosphere with reduced ODSs as well as efforts to understand the evolution of stratospheric ozone in the presence of increasing greenhouse gases are key current research topics. These require a critical examination of the ozone changes with an accurate knowledge of the spatial (geographical and vertical) and temporal ozone response. For such an examination, it is vital that the quality of the measurements used be as high as possible and measurement uncertainties well quantified. In preparation for the 2014 United Nations Environment Programme (UNEP)/World Meteorological Organization (WMO) Scientific Assessment of Ozone Depletion, the SPARC/IO3C/IGACO-O3/NDACC (SI2N) initiative was designed to study and document changes in the global ozone profile distribution. This requires assessing long-term ozone profile data sets in regards to measurement stability and uncertainty characteristics. The ultimate goal is to establish suitability for estimating long-term ozone trends to contribute to ozone recovery studies. Some of the data sets have been improved as part of this initiative with updated versions now available. This summary presents an overview of stratospheric ozone profile measurement data sets (ground- and satellite-based) available for ozone recovery studies. Here we document measurement techniques, spatial and temporal coverage, vertical resolution, native units and measurement uncertainties. In addition, the latest data versions are briefly described (including data version updates as well as detailing multiple retrievals when available for a given satellite instrument). Archive location information is for each data set is also given.

  2. Trends of road dust emissions contributions on ambient PM levels at rural, urban and industrial sites in Southern Spain

    NASA Astrophysics Data System (ADS)

    Amato, F.; Alastuey, A.; de la Rosa, J.; González Castanedo, Y.; Sánchez de la Campa, A. M.; Pandolfi, M.; Lozano, A.; Contreras González, J.; Querol, X.

    2013-12-01

    The impact of road dust emissions on PM10 and PM2.5 mass concentrations recorded from 2003 to 2010 at 11 locations (rural, urban and industrial) in Southern Spain was estimated based on the chemical characterization of PM and a the use of a constrained Positive Matrix Factorization, where the chemical profile of local road dust samples is used as a priori knowledge. Results indicate that road dust emissions increased PM10 levels on average by 21-35% at traffic sites, 29-34% at urban background sites, 17-22% at urban-industrial sites and 9-22% at rural sites. Road dust contributions to ambient PM levels show a marked seasonality with maxima in summer and minima in winter, likely due to the rainfall frequency. Decreasing concentrations trends over the sampling years where found at some traffic and urban sites but in most cases less significant than for vehicle exhaust emissions, while concentrations increased at industrial sites, probably due to local peculiarities. Concerning PM2.5, road dust contributions were lower than in PM10 as expected, but still important (21-31%, 11-31%, 6-16% and 7% for traffic, urban background, urban-industrial and rural sites respectively). In addition the three main sources of road dust (carbonaceous particles, brake wear and road wear/mineral) were identified and their contributions to road dust mass loadings estimated, supporting air quality managers to drive measures aimed at preventing the build-up of road dust particles on roads.

  3. HOW FAR TO THE NEAREST ROAD?

    EPA Science Inventory

    Ecological impacts from roads may be the rule rather than the exception in most watersheds of the conterminous United States. We measured total area, and forestland area located within nine distances of the nearest road of any type in each of 2,108 watersheds nationwide. Overall,...

  4. Spatially resolved measurements of electron cyclotron resonance ion source beam profile characteristics

    SciTech Connect

    Panitzsch, Lauri; Stalder, Michael; Wimmer-Schweingruber, Robert F.

    2011-03-15

    Simulations predict that the concentric rings and the triangular structures in the profiles of strongly focused ion beams that are found in different experiments should be dominated by ion species with the same or at least similar m/q-ratio. To verify these theoretical predictions we have tuned our ECR ion source to deliver a beam consisting of multiple ion species whose particular m/q-depending focusing ranges from weakly focused to overfocused. We then recorded spatially resolved charge-state distributions of the beam profile at characteristic positions in the plane perpendicular to the beam line. The results validate theoretical predictions and are summarized in this paper. To achieve the required beam profile characteristics we moved the extraction along the beam line to achieve stronger focusing than by only changing the extraction voltage. To fit the regions of interest of the beam profile into the transmission area of the sector magnet, we steered the beam by moving the extraction in the plane perpendicular to the beam axis. The results of both investigations, beam focusing and beam steering by using a 3D-movable extraction, are also reported in this paper. A brief overview of the new beam monitor extensively used during these measurements, the Faraday cup array, is also given.

  5. On the quantitative method for measurement and analysis of the fine structure of Fraunhofer line profiles

    NASA Astrophysics Data System (ADS)

    Kuli-Zade, D. M.

    The methods of measurement and analysis of the fine structure of weak and moderate Fraunhofer line profiles are considered. The digital spectral materials were obtained using rapid scanning high dispersion and high resolution double monochromators. The methods of asymmetry coefficient, bisector method and new quantitative method pro- posed by the author are discussed. The new physical values of differential, integral, residual and relative asymmetries are first introduced. These quantitative values permit us to investigate the dependence of asymmetry on microscopic (atomic) and macro- scopic (photospheric) values. It is shown that the integral profile asymmetries grow appreciably with increase in line equivalent width. The average effective depths of the formation of used Fraunhofer lines in the photosphere of the Sun are determined. It is shown that with the increasing of the effective formation depths of the lines integral and residual asymmetries of the lines profiles noticeably decrease. It is in fine agree- ment with the results of intensity dependence of asymmetry. The above-mentioned methods are critically compared and the advantages of author's method are shown. The computer program of calculation of the line-profile asymmetry parameters has been worked out.

  6. Stratospheric CH4 and CO2 profiles derived from SCIAMACHY solar occultation measurements

    NASA Astrophysics Data System (ADS)

    Noël, S.; Bramstedt, K.; Hilker, M.; Liebing, P.; Plieninger, J.; Reuter, M.; Rozanov, A.; Bovensmann, H.; Burrows, J. P.

    2015-11-01

    Stratospheric profiles of methane (CH4) and carbon dioxide (CO2) have been derived from solar occultation measurements of the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). The retrieval is performed using a method called "Onion Peeling DOAS" (ONPD) which combines an onion peeling approach with a weighting function DOAS (Differential Optical Absorption Spectroscopy) fit. By use of updated pointing information and optimisation of the data selection and of the retrieval approach the altitude range for reasonable CH4 could be extended to about 17 to 45 km. Furthermore, the quality of the derived CO2 has been assessed such that now the first stratospheric profiles of CO2 from SCIAMACHY are available. Comparisons with independent data sets yield an estimated accuracy of the new SCIAMACHY stratospheric profiles of about 5-10 % for CH4 and 2-3 % for CO2. The accuracy of the products is currently mainly restricted by the appearance of unexpected vertical oscillations in the derived profiles which need further investigation. Using the improved ONPD retrieval, CH4 and CO2 stratospheric data sets covering the whole SCIAMACHY time series (August 2002-April 2012) and the latitudinal range between about 50 and 70° N have been derived. Based on these time series, CH4 and CO2 trends have been estimated, which are in reasonable agreement with total column trends for these gases. This shows that the new SCIAMACHY data sets can provide valuable information about the stratosphere.

  7. Measurement of two dimensional refractive index profiles of channel waveguides using an interferometric technique.

    PubMed

    Oven, R

    2009-10-20

    Two dimensional refractive index profiles of ion exchanged channel waveguides in glass have been measured using an interferometric method. In order to obtain depth data, a shallow bevel is produced in the glass by polishing. A regularization algorithm for the extraction of the phase data from the interferometer image is presented. The method is applied to waveguides formed by the electric field assisted diffusion of Cu+ ions into a borosilicate glass. The index change obtained from the interferometer is in good agreement with that obtained from measurements on planar waveguides.

  8. Thin-film thickness profile and its refractive index measurements by dispersive white-light interferometry.

    PubMed

    Ghim, Young-Sik; Kim, Seung-Woo

    2006-11-27

    As an extension of the authors' previous report of Ref 1, we describe an improved version of dispersive white-light interferometry that enables us to measure the tomographical thickness profile of a thin-film layer through Fourier-transform analysis of spectrally-resolved interference signals. The group refractive index can also be determined without prior knowledge of the geometrical thickness of the film layer. Owing to fast measurement speed with no need of mechanical depth scanning, the proposed method is well suited for in-line 3-D inspection of dielectric thin film layers particularly for the semiconductor and flat-panel display industry.

  9. Spitzer or neoclassical resistivity: A comparison between measured and model poloidal field profiles on PBX-M

    SciTech Connect

    Kaye, S.M.; Hatcher, R.; Kaita, R.; Kessel, C.; LeBlanc, B.; McCune, D.C.; Paul, S.; Levinton, F.M.

    1992-01-01

    Direct measurements of the radial profile of the magnetic field line pitch on PBX-M coupled with model predictions of these profiles allow a critical comparison with the Spitzer and neoclassical models of plasma parallel resistivity. The measurements of the magnetic field line pitch are made by Motional Stark Effect polarimetry, while the model profiles are determined by solving the poloidal field diffusion equation in the TRANSP transport code using measured plasma profiles and assuming either Spitzer or neoclassical resistivity. The measured field pitch profiles were available for only seven cases, and the model profiles were distinguishable from each other in only three of those cases due to finite resistive diffusion times. The data in two of these three were best matched by the Spitzer model, especially in the inner half of the plasma. Portions of the measured pitch profiles for these two cases and the full profiles for other cases, however, departed significantly from both the Spitzer and neoclassical models, indicating a plasma resistivity profile different from either model.

  10. A new device for high precision in situ sediment temperature profile measurements at the seafloor

    NASA Astrophysics Data System (ADS)

    Feseker, T.; Wetzel, G.; Heesemann, B.

    2012-04-01

    In situ sediment temperature profile measurements at the seafloor provide valuable information on fluid seepage, hydrate stability, and ambient temperature of samples. In addition, it can be convenient to approximate other parameters such as concentrations of porewater constituents from temperature or temperature gradient using transfer functions if their distribution is controlled by the same processes and direct quantification involves time-consuming sampling and laboratory analyses. We present a new instrument that can be used to obtain precisely positioned sediment temperature profile measurements from the seafloor during ROV dives. Consisting of a 0.4 m-long sensor rod equipped with eight temperature sensors and a standard data logger, the new T-Stick can be operated by an ROV in a fully autonomous mode. The temperature range of the instrument is -5 °C to 35 °C and it can withstand pressures of up to 600 bar. Compared to previously used instruments, the smaller diameter of the new T-Stick reduces the thermal inertia of the lance and results in shorter equilibration times. Virtual measurements generated by a numerical model showed that the T-Stick provides highly accurate temperature profile measurements with a root mean square error of 0.0027 K for a wide range of thermal sediment properties. Modeled temperature gradients are representative of both normal deep sea settings and cold seep environments with elevated temperature gradients of up to three orders of magnitude above normal background values, which are the primary target areas for T-Stick measurements. Deviations from the true in situ temperature profiles are caused by disturbance of the temperature field by the probe itself and may lead to underestimation of gradients and curvature in the profiles. A first field test of the T-Stick was conducted at the Håkon Mosby mud volcano at 1250 m water depth on the Barents Sea slope, where the new instrument provided useful information about the origin and

  11. Characteristics of on-road NOx emissions from Euro 6 light-duty diesel vehicles using a portable emissions measurement system.

    PubMed

    Kwon, Sangil; Park, Yonghee; Park, Junhong; Kim, Jeongsoo; Choi, Kwang-Ho; Cha, Jun-Seok

    2017-01-15

    This paper presents the on-road nitrogen oxides (NOx) emissions measurements from Euro 6 light-duty diesel vehicles using a portable emissions measurement system on the predesigned test routes in the metropolitan area of Seoul, Korea. Six diesel vehicles were tested and the NOx emissions results were analyzed according to the driving routes, driving conditions, data analysis methods, and ambient temperatures. Total NOx emissions for route 1, which has higher driving severity than route 2, differed by -4-60% from those for route 2. The NOx emissions when the air conditioner (AC) was used were higher by 68% and 85%, on average, for routes 1 and 2, respectively, compared to when the AC was not used. The analytical results for NOx emissions by the moving averaging window method were higher by 2-31% compared to the power binning method. NOx emissions at lower ambient temperatures (0-5°C) were higher by 82-192% compared to those at higher ambient temperatures (15-20°C). This result shows that performance improvements of exhaust gas recirculation and the NOx after-treatment system will be needed at lower ambient temperatures.

  12. Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar

    NASA Astrophysics Data System (ADS)

    Achtert, P.; Brooks, I. M.; Brooks, B. J.; Moat, B. I.; Prytherch, J.; Persson, P. O. G.; Tjernström, M.

    2015-09-01

    Three months of Doppler lidar wind measurements were obtained during the Arctic Cloud Summer Experiment on the icebreaker Oden during the summer of 2014. Such ship-borne measurements require active stabilisation to remove the effects of ship motion. We demonstrate that the combination of a commercial Doppler lidar with a custom-made motion-stabilisation platform enables the retrieval of wind profiles in the Arctic boundary layer during both cruising and ice-breaking with statistical uncertainties comparable to land-based measurements. This holds particularly within the planetary boundary layer even though the overall aerosol load was very low. Motion stabilisation was successful for high wind speeds in open water and the resulting wave conditions. It allows for the retrieval of winds with a random error below 0.2 m s-1, comparable to the measurement error of standard radiosondes. The combination of a motion-stabilised platform with a low-maintenance autonomous Doppler lidar has the potential to enable continuous long-term high-resolution ship-based wind profile measurements over the oceans.

  13. Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar

    NASA Astrophysics Data System (ADS)

    Achtert, P.; Brooks, I. M.; Brooks, B. J.; Moat, B. I.; Prytherch, J.; Persson, P. O. G.; Tjernström, M.

    2015-11-01

    Three months of Doppler lidar wind measurements were obtained during the Arctic Cloud Summer Experiment on the icebreaker Oden during the summer of 2014. Such ship-borne Doppler measurements require active stabilisation to remove the effects of ship motion. We demonstrate that the combination of a commercial Doppler lidar with a custom-made motion-stabilisation platform enables the retrieval of wind profiles in the Arctic atmospheric boundary layer during both cruising and ice-breaking with statistical uncertainties comparable to land-based measurements. This held true particularly within the atmospheric boundary layer even though the overall aerosol load was very low. Motion stabilisation was successful for high wind speeds in open water and the resulting wave conditions. It allows for the retrieval of vertical winds with a random error below 0.2 m s-1. The comparison of lidar-measured wind and radio soundings gives a mean bias of 0.3 m s-1 (2°) and a mean standard deviation of 1.1 m s-1 (12°) for wind speed (wind direction). The agreement for wind direction degrades with height. The combination of a motion-stabilised platform with a low-maintenance autonomous Doppler lidar has the potential to enable continuous long-term high-resolution ship-based wind profile measurements over the oceans.

  14. Road safety and road traffic accidents in Saudi Arabia

    PubMed Central

    Mansuri, Farah A.; Al-Zalabani, Abdulmohsen H.; Zalat, Marwa M.; Qabshawi, Reem I.

    2015-01-01

    Objectives: To identify the changing trends and crucial preventive approaches to road traffic accidents (RTAs) adopted in the Kingdom of Saudi Arabia (KSA) over the last 2.5 decades, and to analyze aspects previously overlooked. Methods: This systematic review was based on evidence of RTAs in KSA. All articles published during the last 25 years on road traffic accident in KSA were analyzed. This study was carried out from December 2013 to May 2014 in the Department of Family and Community Medicine, Taibah University, Al-Madinah Al-Munawwarah, KSA. Results: Road traffic accidents accounted for 83.4% of all trauma admissions in 1984-1989, and no such overall trend was studied thereafter. The most frequently injured body regions as reported in the latest studies were head and neck, followed by upper and lower extremities, which was found to be opposite to that of the studies reported earlier. Hospital data showed an 8% non-significant increase in road accident mortalities in contrast to police records of a 27% significant reduction during the years 2005-2010. Excessive speeding was the most common cause reported in all recent and past studies. Conclusion: Disparity was common in the type of reporting of RTAs, outcome measures, and possible causes over a period of 2.5 decade. All research exclusively looked into the drivers’ faults. A sentinel surveillance of road crashes should be kept in place in the secondary and tertiary care hospitals for all regions of KSA. PMID:25828277

  15. Discharge measurements using a broad-band acoustic Doppler current profiler

    USGS Publications Warehouse

    Simpson, Michael R.

    2002-01-01

    The measurement of unsteady or tidally affected flow has been a problem faced by hydrologists for many years. Dynamic discharge conditions impose an unreasonably short time constraint on conventional current-meter discharge-measurement methods, which typically last a minimum of 1 hour. Tidally affected discharge can change more than 100 percent during a 10-minute period. Over the years, the U.S. Geological Survey (USGS) has developed moving-boat discharge-measurement techniques that are much faster but less accurate than conventional methods. For a bibliography of conventional moving-boat publications, see Simpson and Oltmann (1993, page 17). The advent of the acoustic Doppler current profiler (ADCP) made possible the development of a discharge-measurement system capable of more accurately measuring unsteady or tidally affected flow. In most cases, an ADCP discharge-measurement system is dramatically faster than conventional discharge-measurement systems, and has comparable or better accuracy. In many cases, an ADCP discharge-measurement system is the only choice for use at a particular measurement site. ADCP systems are not yet ?turnkey;? they are still under development, and for proper operation, require a significant amount of operator training. Not only must the operator have a rudimentary knowledge of acoustic physics, but also a working knowledge of ADCP operation, the manufacturer's discharge-measurement software, and boating techniques and safety.

  16. The measure matters: Language dominance profiles across measures in Spanish–English bilingual children*

    PubMed Central

    BEDORE, LISA M.; PEÑA, ELIZABETH D.; SUMMERS, CONNIE L.; BOERGER, KARIN M.; RESENDIZ, MARIA D.; GREENE, KAI; BOHMAN, THOMAS M.; GILLAM, RONALD B.

    2013-01-01

    The purpose of this study was to determine if different language measures resulted in the same classifications of language dominance and proficiency for a group of bilingual pre-kindergarteners and kindergarteners. Data were analyzed for 1029 Spanish–English bilingual pre-kindergarteners who spanned the full range of bilingual language proficiency. Parent questionnaires were used to quantify age of first exposure and current language use. Scores from a short test of semantic and morphosyntactic development in Spanish and English were used to quantify children’s performance. Some children who were in the functionally monolingual range based on interview data demonstrated minimal knowledge of their other languages when tested. Current use accounted for more of the variance in language dominance than did age of first exposure. Results indicate that at different levels of language exposure children differed in their performance on semantic and morphosyntax tasks. These patterns suggest that it may be difficult to compare the results of studies that employ different measures of language dominance and proficiency. Current use is likely to be a useful metric of bilingual development that can be used to build a comprehensive picture of child bilingualism. PMID:23565049

  17. The measure matters: Language dominance profiles across measures in Spanish-English bilingual children.

    PubMed

    Bedore, Lisa M; Peña, Elizabeth D; Summers, Connie L; Boerger, Karin M; Resendiz, Maria D; Greene, Kai; Bohman, Thomas M; Gillam, Ronald B

    2012-07-01

    The purpose of this study was to determine if different language measures resulted in the same classifications of language dominance and proficiency for a group of bilingual pre-kindergarteners and kindergarteners. Data were analyzed for 1029 Spanish-English bilingual pre-kindergarteners who spanned the full range of bilingual language proficiency. Parent questionnaires were used to quantify age of first exposure and current language use. Scores from a short test of semantic and morphosyntactic development in Spanish and English were used to quantify children's performance. Some children who were in the functionally monolingual range based on interview data demonstrated minimal knowledge of their other languages when tested. Current use accounted for more of the variance in language dominance than did age of first exposure. Results indicate that at different levels of language exposure children differed in their performance on semantic and morphosyntax tasks. These patterns suggest that it may be difficult to compare the results of studies that employ different measures of language dominance and proficiency. Current use is likely to be a useful metric of bilingual development that can be used to build a comprehensive picture of child bilingualism.

  18. Road Nail: Experimental Solar Powered Intelligent Road Marking System

    NASA Astrophysics Data System (ADS)

    Samardžija, Dragan; Teslić, Nikola; Todorović, Branislav M.; Kovač, Erne; Isailović, Đorđe; Miladinović, Bojan

    2012-03-01

    Driving in low visibility conditions (night time, fog or heavy precipitation) is particularly challenging task with an increased probability of traffic accidents and possible injuries. Road Nail is a solar powered intelligent road marking system of wirelessly networked signaling devices that improve driver safety in low visibility conditions along hazardous roadways. Nails or signaling devices are autonomous nodes with capability to accumulate energy, exchange wireless messages, detect approaching vehicles and emit signalization light. We have built an experimental test-bed that consists of 20 nodes and a cellular gateway. Implementation details of the above system, including extensive measurements and performance evaluations in realistic field deployments are presented. A novel distributed network topology discovery scheme is proposed which integrates both sensor and wireless communication aspects, where nodes act autonomously. Finally, integration of the Road Nail system with the cellular network and the Internet is described.

  19. Differential-phase reflectometry for edge profile measurements on Tokamak fusion test reactor

    SciTech Connect

    Hanson, G.R.; Wilgen, J.B.; Bigelow, T.S.; Collazo, I.; England, A.C.; Murakami, M.; Rasmussen, D.A.; Wilson, J.R. )

    1995-01-01

    Edge electron density profile measurements, including the scrape-off layer, have been made during ion cyclotron range of frequency (ICRF) heating with the two-frequency differential-phase reflectometer installed on an ICRF antenna on the Tokamak fusion test reactor (TFTR). This system probes the plasma using the extraordinary mode with two signals swept from 90 to 118 GHz, while maintaining a fixed-difference frequency of 125 MHz. The extraordinary mode is used to obtain density profiles in the range of 1[times]10[sup 11]--3[times]10[sup 13] cm[sup [minus]3] in high-field (4.5--4.9 T) full-size ([ital R][sub 0]=2.62 m, [ital a]=0.96 m) TFTR plasmas. The reflectometer launcher is located in an ICRF antenna and views the plasma through a small penetration in the center of the Faraday shield. A 26-m-long overmoded waveguide run connects the launcher to the reflectometer microwave electronics. Profile measurements made with this reflectometer system will be presented along with a discussion of the characteristics of this differential phase reflectometer and data analysis.

  20. Near-road modeling and measurement of cerium-containing particles generated by nanoparticle diesel fuel additive use

    EPA Science Inventory

    Cerium oxide nanoparticles (nCe) are used as a fuel-borne catalyst in diesel engines to reduce particulate emissions, yet the environmental and human health impacts of the exhaust particles are not well understood. To bridge the gap between emission measurements and ambient impac...

  1. On-road measurement of gas and particle phase pollutant emission factors for individual heavy-duty diesel trucks.

    PubMed

    Dallmann, Timothy R; DeMartini, Steven J; Kirchstetter, Thomas W; Herndon, Scott C; Onasch, Timothy B; Wood, Ezra C; Harley, Robert A

    2012-08-07

    Pollutant concentrations in the exhaust plumes of individual diesel trucks were measured at high time resolution in a highway tunnel in Oakland, CA, during July 2010. Emission factors for individual trucks were calculated using a carbon balance method, in which pollutants measured in each exhaust plume were normalized to measured concentrations of carbon dioxide. Pollutants considered here include nitric oxide, nitrogen dioxide (NO(2)), carbon monoxide, formaldehyde, ethene, and black carbon (BC), as well as optical properties of emitted particles. Fleet-average emission factors for oxides of nitrogen (NO(x)) and BC respectively decreased 30 ± 6 and 37 ± 10% relative to levels measured at the same location in 2006, whereas a 34 ± 18% increase in the average NO(2) emission factor was observed. Emissions distributions for all species were skewed with a small fraction of trucks contributing disproportionately to total emissions. For example, the dirtiest 10% of trucks emitted half of total NO(2) and BC emissions. Emission rates for NO(2) were found to be anticorrelated with all other species considered here, likely due to the use of catalyzed diesel particle filters to help control exhaust emissions. Absorption and scattering cross-section emission factors were used to calculate the aerosol single scattering albedo (SSA, at 532 nm) for individual truck exhaust plumes, which averaged 0.14 ± 0.03.

  2. Fiber-optic interferometer for surface profile measurement with vibration suppression.

    PubMed

    Kwon, Taekmin; Kim, Seung-Woo

    2011-02-28

    We describe an improved design of fiber-optic interferometer intended to measure surface profiles with enhanced capability of vibration suppression. The reference wavefront is generated directly from the measurement wave using a multi-mode fiber that eliminates only the spatial wavefront distortion by means of bend loss. The temporal fluctuation caused by vibration is consequently cancelled out in the process of interference since it becomes to exist in both the measurement and reference waves. Further, an injection locking technique is incorporated to stabilize the reference wave intensity and hence make stable the interferometric fringe intensity. Experimental result proves that the proposed fiber-optic interferometer is capable of producing sub-wavelength measurement precision even in the presence of severe vibration with 100-μm amplitude.

  3. Construct Validity of the Relationship Profile Test: Links with measures of psychopathology and adult attachment

    PubMed Central

    Haggerty, Greg; Bornstein, Robert F.; Khalid, Mohammad; Sharma, Vishal; Riaz, Usman; Blanchard, Mark; Siefert, Caleb J; Sinclair, Samuel J.

    2015-01-01

    This study assessed the construct validity of the Relationship Profile Test (RPT; Bornstein & Languirand, 2003) with a substance abuse sample. One hundred-eight substance abuse patients completed the RPT, Experiences in Close Relationships Scale (ECR-SF; Wei, Russell, Mallinckrodt, & Vogel, 2007), Personality Assessment Inventory (PAI; Morey, 1991), and Symptom Checklist-90-Revised (SCL-90-R: Derogatis 1983). Results suggest that the RPT has good construct validity when compared against theoretically related broadband measures of personality, psychopathology and adult attachment. Overall, health hependency was negatively related to measures of psychopathology and insecure attachment, and overdependence was positively related to measures of psychopathology and attachment anxiety. Many of the predictions regarding RPT detachment and the criterion measures were not supported. Implications of these findings are discussed. PMID:26620463

  4. Analysis of Ozone And CO2 Profiles Measured At A Diary Facility

    NASA Astrophysics Data System (ADS)

    Ogunjemiyo, S. O.; Hasson, A. S.; Ashkan, S.; Steele, J.; Shelton, T.

    2015-12-01

    Ozone and carbon dioxide are both greenhouse gasses in the planetary boundary layer. Ozone is a harmful secondary pollutant in the troposphere produced mostly during the day when there is a photochemical reaction in which primary pollutant precursors such as nitrous oxide (NOx) or volatile organic compounds (VOC's) mix with sunlight. As with most pollutants in the lower troposphere, both ozone and carbon dioxide vary in spatial and temporal scale depending on sources of pollution, environmental conditions and the boundary layer dynamics. Among the several factors that influence ozone variation, the seasonal changes in meteorological parameters and availability of ozone precursors are crucial because they control ozone formation and decay. Understanding how the difference in emission sources affect vertical transport of ozone and carbon dioxide is considered crucial to the improvement of their regional inventory sources. The purpose of this study is to characterize vertical transport of ozone and carbon at a diary facility. The study was conducted in the summer of 2011 and 2012 at a commercial dairy facility in Central California and involved profile measurements of ozone and CO2 using electrochemical ozonesondes, meteorological sondes and CO2 probe tethered to a 9 cubic meters helium balloon. On each day of the data collection, multiple balloon launches were made over a period representing different stages of the boundary layer development. The results show ozone and CO2 profiles display different characteristics. Regardless of the time of the day, the CO2 concentration decreases with height with a sharp gradient near the surface that is strengthened by a stable atmospheric condition, a feature suggesting the surface as the source. On the other hand, ozone profiles show greater link to the evolution of the lower boundary layer. Ozone profiles display unique features indicating ozone destruction near the surface. This unusual near the surface, observed even in the

  5. Observations of Tropospheric Ozone Profiles Using Simultaneously Measured UV and IR Radiances from OMI and TES

    NASA Astrophysics Data System (ADS)

    Fu, D.; Worden, J.; Kulawik, S.; Bowman, K. W.; Sander, S. P.; Liu, X.

    2011-12-01

    Ozone is a radiativelly and chemically important trace gas in the atmosphere. Accurate monitoring of ozone vertical distributions is crucial for a better understanding of air quality and climate change. The Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission, an Earth Science Decadal Survey mission that has been recommended for launch in the 2013-2016 time frame by National Research Council, will measure tropospheric ozone and its precursors relating to air quality over the Americas. To improve current capability of tropospheric ozone sounding in terms of spatial and temporal resolution, GEO-CAPE mission calls for an instrument(s) that is sensitive over multiple spectral regions. Prior to the launch of GEO-CAPE satellite, using simultaneous measurements of multiple sensors of an ongoing satellite mission provide an alternative way to improve tropospheric ozone sounding and help in the evaluations of suitable spectral regions for the GEO-CAPE mission. The Ozone Monitoring Instrument (OMI) and the Tropospheric Emission Spectrometer (TES) are both on the Earth Observing System Aura satellite in orbit. They are providing ozone concentration profiles measurements respectively. OMI is a nadir-viewing pushbroom ultraviolet-visible (UV-VIS) imaging spectrograph that measures backscattered radiances covering the 270-500 nm wavelength range. TES is a Fourier transform spectrometer that measures the thermal infrared (TIR) light radiances emitted by Earth's surface and by gases and particles in spectral range 650 - 3050 cm-1. We present an approach to combine simultaneously measured OMI UV and TES TIR radiances to improve the tropospheric ozone sounding. The results from combination of these measurements are presented and discussed. The improvements on tropospheric ozone profiles from the UV+TIR joint retrievals, as compared with either spectral region alone, are charterized using the ozonesonde measurements.

  6. Poster — Thur Eve — 02: Measurement of CT radiation profile width using Fuji CR imaging plate raw data

    SciTech Connect

    Bjarnason, T A; Yang, C J

    2014-08-15

    Measuring the CT collimation width and assessing the shape of the overall profile is a relatively straightforward quality control (QC) measure that impacts both image quality and patient dose, and is often required at acceptance and routine testing. Most CT facilities have access to computed radiography (CR) systems, so performing CT collimation profile assessments using CR plates requires no additional equipment. Previous studies have shown how to effectively use CR plates to measure the radiation profile width. However, a major limitation of the previous work is that the full dynamic range of CR detector plates are not used, since the CR processing technology reduces the dynamic range of the DICOM output to 2{sup 10}, requiring the sensitivity and latitude settings of CR reader to be adjusted to prevent clipping of the CT profile data. Such adjustments to CR readers unnecessarily complicate the QC procedure. These clipping artefacts hinder the ability to accurately assess CT collimation width because the full-width at half maximum value of the penumbras are not properly determined if the maximum dose of the profile is not available. Furthermore, any inconsistencies in the radiation profile shape are lost if the profile plateau is clipped off. In this work we developed an opensource Matlab script for straightforward CT profile width measurements using raw CR data that also allows assessment of the profile shape without clipping, and applied this approach during CT QC.

  7. Experimental estimation of the photons visiting probability profiles in time-resolved diffuse reflectance measurement.

    PubMed

    Sawosz, P; Kacprzak, M; Weigl, W; Borowska-Solonynko, A; Krajewski, P; Zolek, N; Ciszek, B; Maniewski, R; Liebert, A

    2012-12-07

    A time-gated intensified CCD camera was applied for time-resolved imaging of light penetrating in an optically turbid medium. Spatial distributions of light penetration probability in the plane perpendicular to the axes of the source and the detector were determined at different source positions. Furthermore, visiting probability profiles of diffuse reflectance measurement were obtained by the convolution of the light penetration distributions recorded at different source positions. Experiments were carried out on homogeneous phantoms, more realistic two-layered tissue phantoms based on the human skull filled with Intralipid-ink solution and on cadavers. It was noted that the photons visiting probability profiles depend strongly on the source-detector separation, the delay between the laser pulse and the photons collection window and the complex tissue composition of the human head.

  8. Experimental estimation of the photons visiting probability profiles in time-resolved diffuse reflectance measurement

    NASA Astrophysics Data System (ADS)

    Sawosz, P.; Kacprzak, M.; Weigl, W.; Borowska-Solonynko, A.; Krajewski, P.; Zolek, N.; Ciszek, B.; Maniewski, R.; Liebert, A.

    2012-12-01

    A time-gated intensified CCD camera was applied for time-resolved imaging of light penetrating in an optically turbid medium. Spatial distributions of light penetration probability in the plane perpendicular to the axes of the source and the detector were determined at different source positions. Furthermore, visiting probability profiles of diffuse reflectance measurement were obtained by the convolution of the light penetration distributions recorded at different source positions. Experiments were carried out on homogeneous phantoms, more realistic two-layered tissue phantoms based on the human skull filled with Intralipid-ink solution and on cadavers. It was noted that the photons visiting probability profiles depend strongly on the source-detector separation, the delay between the laser pulse and the photons collection window and the complex tissue composition of the human head.

  9. Time-resolved wave profile measurements in copper to Megabar pressures

    SciTech Connect

    Chhabildas, L C; Asay, J R

    1981-01-01

    Many time-resolved techniques have been developed which have greatly aided in the understanding of dynamic material behavior such as the high pressure-dynamic strength of materials. In the paper, time-resolved measurements of copper (at shock-induced high pressures and temperatures) are used to illustrate the capability of using such techniques to investigate high pressure strength. Continuous shock loading and release wave profiles have been made in copper to 93 GPa using velocity interferometric techniques. Fine structure in the release wave profiles from the shocked state indicates an increase in shear strength of copper to 1.5 GPa at 93 GPa from its ambient value of 0.08 GPa.

  10. An intercomparison of ozone profile measurements from LIMS, SAGE, and SBUV

    NASA Technical Reports Server (NTRS)

    Fleig, A. J.; Bhartia, P. K.; Wong, C. K.; Klenk, K. F.

    1983-01-01

    Ozone profile measurements by the Limb IR Monitor of Stratosphere (LIMS) and the Solar Backscatter UV (SBUV) aboard the Nimbus satellite, and the Stratospheric Aerosol and Gas Experiment (SAGE) aboard the AEM-2 satellite are intercompared in an effort to assess the quality of satellite ozone retrieval techniques. Good correlation between LIMS and SBUV observations is noted in the ozone layer bounded by pressures of 31.2-15.6 mb; absolute differences are generally less than 10 percent, with similar zonal variations. Above 35 km SAGE values are systematically larger than SBUV or LIMS. The differences generally increase with height and are largest in the tropics. Finally, excellent agreement is noted to exist among the three data sets between 10 and 35 km of altitude with respect to the latitude dependence of the ozone profiles.

  11. Retrieval of Ozone Profile from Ground-Base Zenith Sky Measurements

    NASA Technical Reports Server (NTRS)

    Bhartia, P. K.; Petropavlovskikh, I.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    In this talk I will discuss recent results from examining the information content in zenith sky UV (ZUV) measurements from ground for the retrieval of vertical ozone profile. Our results indicate that ZUV can provide high quality ozone profile from ground to 50 km at roughly 10 krn vertical resolution that can be used for the calibration of satellite instruments. However, to take advantage of this the instruments must be better calibrated and it is also necessary that the ground-based Brewer instruments are operated in a mode that is different from the routine operational mode. This will allow one to correct for instrument calibration drifts and to remove noise due to clouds and aerosols. A key technical issue is if the instrument can be reprogrammed to do so.

  12. DIAL Measurements of Free-Tropospheric Ozone Profiles in Huntsville, AL

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John; Newchurch, Michael J.; Johnson, Steve

    2007-01-01

    A tropospheric ozone Differential Absorption Lidar (DIAL) system, developed jointly by NASA and the University of Alabama at Huntsville (UAH), measures free-tropospheric ozone profiles between 4-10 km. Located at 192 meters altitude in the Regional Atmospheric Profiling Laboratory for Discovery (RAPCD) on the UAH campus in Huntsville, AL, USA, this tropospheric ozone lidar operates under both daytime and nighttime conditions. Frequent coincident ozonesonde flights and theoretical calculations provide evidence to indicate the retrieval accuracy ranges from better than 8% at 4km to 40%-60% at 10 kin with 750-m vertical resolution and 30-minute integration. With anticipated improvements to allow retrievals at both higher and lower altitudes, this ozone lidar, along with co-located aerosol and Doppler Wind Lidars, will provide a unique 18 dataset for investigations of PBL and free-tropospheric chemical and dynamic processes.

  13. The 3-D wake measurements near a hovering rotor for determining profile and induced drag

    NASA Technical Reports Server (NTRS)

    Mcalister, K. W.; Schuler, C. A.; Branum, L.; Wu, J. C.

    1995-01-01

    Primarily an experimental effort, this study focuses on the velocity and vorticity fields in the near wake of a hovering rotor. Drag terminology is reviewed, and the theory for separately determining the profile-and-induced-drag components from wake quantities is introduced. Instantaneous visualizations of the flow field are used to center the laser velocimeter (LV) measurements on the vortex core and to assess the extent of the positional mandering of the trailing vortex. Velocity profiles obtained at different rotor speeds and distances behind the rotor blade clearly indicate the position, size, and rate of movement of the wake sheet and the core of the trailing vortex. The results also show the distribution of vorticity along the wake sheet and within the trailing vortex.

  14. Measurement of a zonal wind profile on Titan by Doppler tracking of the Cassini entry probe

    NASA Technical Reports Server (NTRS)

    Atkinson, D. H.; Pollack, J. B.; Seiff, A.

    1990-01-01

    A program, called the Cassini mission, intended to study the Saturn system by utilizing a Saturn orbiter and a probe descending to the surface of Titan, is discussed. Winds are expected to cause perturbations to the probe local horizontal velocity, resulting in an anomalous drift in the probe location and a shift in the frequency of the probe telemetry, due to the Doppler effect. By using an iterative algorithm, in which the time variation of the probe telemetry frequency is monitored throughout the descent, and the probe trajectory is updated to reflect the effect of wind on the probe location, a highly accurate relative wind profile can be recovered. By adding a single wind velocity, measured by independent means, an absolute wind profile can be obtained. However, the accuracy of the zonal winds recovery is limited by errors in trajectory, and frequency.

  15. Dose profile measurements during respiratory-gated lung stereotactic radiotherapy: A phantom study

    NASA Astrophysics Data System (ADS)

    Jong, W. L.; Wong, J. H. D.; Ng, K. H.; Ung, N. M.

    2016-03-01

    During stereotactic body radiotherapy, high radiation dose (∼60 Gy) is delivered to the tumour in small fractionation regime. In this study, the dosimetric characteristics were studied using radiochromic film during respiratory-gated and non-gated lung stereotactic body radiotherapy (SBRT). Specifically, the effect of respiratory cycle and amplitude, as well as gating window on the dosimetry were studied. In this study, the dose profiles along the irradiated area were measured. The dose profiles for respiratory-gated radiation delivery with different respiratory or tumour motion amplitudes, gating windows and respiratory time per cycle were in agreement with static radiation delivery. The respiratory gating system was able to deliver the radiation dose accurately (±1.05 mm) in the longitudinal direction. Although the treatment time for respiratory-gated SBRT was prolonged, this approach can potentially reduce the margin for internal tumour volume without compromising the tumour coverage. In addition, the normal tissue sparing effect can be improved.

  16. Measuring discharge with acoustic Doppler current profilers from a moving boat

    USGS Publications Warehouse

    Mueller, David S.; Wagner, Chad R.; Rehmel, Michael S.; Oberg, Kevin A.; Rainville, Francois

    2013-01-01

    The use of acoustic Doppler current profilers (ADCPs) from a moving boat is now a commonly used method for measuring streamflow. The technology and methods for making ADCP-based discharge measurements are different from the technology and methods used to make traditional discharge measurements with mechanical meters. Although the ADCP is a valuable tool for measuring streamflow, it is only accurate when used with appropriate techniques. This report presents guidance on the use of ADCPs for measuring streamflow; this guidance is based on the experience of U.S. Geological Survey employees and published reports, papers, and memorandums of the U.S. Geological Survey. The guidance is presented in a logical progression, from predeployment planning, to field data collection, and finally to post processing of the collected data. Acoustic Doppler technology and the instruments currently (2013) available also are discussed to highlight the advantages and limitations of the technology. More in-depth, technical explanations of how an ADCP measures streamflow and what to do when measuring in moving-bed conditions are presented in the appendixes. ADCP users need to know the proper procedures for measuring discharge from a moving boat and why those procedures are required, so that when the user encounters unusual field conditions, the procedures can be adapted without sacrificing the accuracy of the streamflow-measurement data.

  17. Measurements of Aerosol Vertical Profiles and Optical Properties during INDOEX 1999 Using Micro-Pulse Lidars

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Quinn, Patricia K.; Flatau, Piotr J.; Markowicz, Krzysztof; Campbell, James R.; Spinhirne, James D.; Gordon, Howard R.; Johnson, James E.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Micro-pulse lidar systems (MPL) were used to measure aerosol properties during the Indian Ocean Experiment (INDOEX) 1999 field phase. Measurements were made from two platforms: the NOAA ship RN Ronald H. Brown, and the Kaashidhoo Climate Observatory (KCO) in the Maldives. Sunphotometers were used to provide aerosol optical depths (AOD) needed to calibrate the MPL. This study focuses on the height distribution and optical properties (at 523 nm) of aerosols observed during the campaign. The height of the highest aerosols (top height) was calculated and found to be below 4 km for most of the cruise. The marine boundary layer (MBL) top was calculated and found to be less than 1 km. MPL results were combined with air mass trajectories, radiosonde profiles of temperature and humidity, and aerosol concentration and optical measurements. Humidity varied from approximately 80% near the surface to 50% near the top height during the entire cruise. The average value and standard deviation of aerosol optical parameters were determined for characteristic air mass regimes. Marine aerosols in the absence of any continental influence were found to have an AOD of 0.05 +/- 0.03, an extinction-to-backscatter ratio (S-ratio) of 33 +/- 6 sr, and peak extinction values around 0.05/km (near the MBL top). The marine results are shown to be in agreement with previously measured and expected values. Polluted marine areas over the Indian Ocean, influenced by continental aerosols, had AOD values in excess of 0.2, S-ratios well above 40 sr, and peak extinction values approximately 0.20/km (near the MBL top). The polluted marine results are shown to be similar to previously published values for continental aerosols. Comparisons between MPL derived extinction near the ship (75 m) and extinction calculated at ship-level using scattering measured by a nephelometer and absorption using a PSAP were conducted. The comparisons indicated that the MPL algorithm (using a constant S-ratio throughout the

  18. How well can we Measure the Vertical Profile of Tropospheric Aerosol Extinction?

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Ferrare, R.; Flynn, C.; Elleman, R.; Covert, D.; Strawa, A.; Welton, E.; Turner, D.; Jonsson, H.; Redemann, J.

    2005-01-01

    The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (MOP, May 2003) yielded one of the best measurement sets obtained to-date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(sub ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well characterized aerosol sampling ability carrying well proven and new aerosol instrumentation, devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from 6 different instuments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, ground-based Raman lidar and 2 ground-based elastic backscatter lidars. We find the in-situ measured sigma(sub ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002 - 0.004 K/m equivalent to 12-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(sub ep)(lambda) are higher. An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP and we expect better agreement from the recently restored system looking at the collective results from 6 field campaigns conducted since 1996, airborne in situ measurements of sigma(sub ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(sub ep)(lambda). On the other hand, sigma(sub ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated with measuring the tropospheric vertical profile of the ambient aerosol extinction with current state of-the art instrumentation is 15-20% at visible wavelengths and potentially larger in

  19. Monitoring glucose in vivo by measuring laser-induced acoustic profiles

    NASA Astrophysics Data System (ADS)

    Bednov, Andrey A.; Karabutov, Alexander A.; Savateeva, Elena V.; March, Wayne F.; Oraevsky, Alexander A.

    2000-05-01

    The optoacoustic method of monitoring absorbed optical energy distribution in tissues was employed to measure changes in glucose concentration in vivo. Glucose osmotic and hydrophilic properties cause reduction of tissue scattering as a result of glucose concentration increase around scattering particles and fibers. The opto-acoustic (OA) method utilizes time-resolved measurements of laser- induced ultrasonic profile in tissue resembling the distribution of absorbed optical energy. This opto-acoustic profile yields effective optical attenuation coefficient, which decreases with decrease of scattering. Glucose effect has been investigated initially in phantoms resembling optical properties of sclera and polystyrene microspheres water solution colored with potassium chromate and then in sclera in vitro and in sclera of live rabbits. The forward mode of opto-acoustic detection was used in the experiments in vitro. Experiments were performed in UV spectral range at the wavelength of (lambda) equals 355-nm. Experimental results demonstrated that an increase in glucose concentration from 5 mM to 60 mM was expressed in the 3 percent reduction of (mu) eff in aqueous solution of polystyrene microspheres. The effect of glucose on sclera in vitro was more prominent and measured as 10 percent reduction of (mu) eff with increase of glucose concentration from 1 mM to 50 mM. It was found that both the amplitude and the profile of OA signal were influenced by mechanical pressure applied to sclera specimen toward the surface of OA transducer. In experiments in live tissue, the backward detection mode was employed, as the only one side access to the tissue surface was available. In experiments in vivo the opto-acoustic profiles were measured in rabbit's sclera before and after intravenous glucose administering. The glucose concentration in rabbit blood was simultaneously measured using commercial device employing chemical analysis of blood. Experimental results demonstrated that a 1

  20. Temperature and dust profiles in Martian dust storm conditions retrieved from Mars Climate Sounder measurements

    NASA Astrophysics Data System (ADS)

    Kleinboehl, A.; Kass, D. M.; Schofield, J. T.; McCleese, D. J.

    2013-12-01

    Mars Climate Sounder (MCS) is a mid- and far-infrared thermal emission radiometer on board the Mars Reconnaissance Orbiter. It measures radiances in limb and nadir/on-planet geometry from which vertical profiles of atmospheric temperature, water vapor, dust and condensates can be retrieved in an altitude range from 0 to 80 km and with a vertical resolution of ~5 km. Due to the limb geometry used as the MCS primary observation mode, retrievals in conditions with high aerosol loading are challenging. We have developed several modifications to the MCS retrieval algorithm that will facilitate profile retrievals in high-dust conditions. Key modifications include a retrieval option that uses a surface pressure climatology if a pressure retrieval is not possible in high dust conditions, an extension of aerosol retrievals to higher altitudes, and a correction to the surface temperature climatology. In conditions of a global dust storm, surface temperatures tend to be lower compared to standard conditions. Taking this into account using an adaptive value based on atmospheric opacity leads to improved fits to the radiances measured by MCS and improves the retrieval success rate. We present first results of these improved retrievals during the global dust storm in 2007. Based on the limb opacities observed during the storm, retrievals are typically possible above ~30 km altitude. Temperatures around 240 K are observed in the middle atmosphere at mid- and high southern latitudes after the onset of the storm. Dust appears to be nearly homogeneously mixed at lower altitudes. Significant dust opacities are detected at least up to 70 km altitude. During much of the storm, in particular at higher altitudes, the retrieved dust profiles closely resemble a Conrath-profile.

  1. Magnetically filtered Faraday probe for measuring the ion current density profile of a Hall thruster

    SciTech Connect

    Rovey, Joshua L.; Walker, Mitchell L.R.; Gallimore, Alec D.; Peterson, Peter Y.

    2006-01-15

    The ability of a magnetically filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is designed to eliminate the collection of low-energy, charge-exchange (CEX) ions by using a variable magnetic field as an ion filter. In this study, a MFFP, Faraday probe with a reduced acceptance angle (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operating over the range of 300-500 V and 5-10 mg/s. The probes are evaluated on a xenon propellant Hall thruster in the University of Michigan Large Vacuum Test Facility at operating pressures within the range of 4.4x10{sup -4} Pa Xe (3.3x10{sup -6} Torr Xe) to 1.1x10{sup -3} Pa Xe (8.4x10{sup -6} Torr Xe) in order to study the ability of the Faraday probe designs to filter out CEX ions. Detailed examination of the results shows that the nude probe measures a greater ion current density profile than both the MFFP and BFP over the range of angular positions investigated for each operating condition. The differences between the current density profiles obtained by each probe are attributed to the ion filtering systems employed. Analysis of the results shows that the MFFP, operating at a +5 A solenoid current, provides the best agreement with flight-test data and across operating pressures.

  2. The GeoProfile metadata, exposure of instruments, and measurement bias in climatic record revisited

    NASA Astrophysics Data System (ADS)

    Mahmood, Rezaul; Foster, Stuart A.; Logan, David

    2006-06-01

    Station metadata plays a critical role in the accurate assessment of climate data and eventually of climatic change, climate variability, and climate prediction. However, current procedures of metadata collection are insufficient for these purposes. This paper introduces the GeoProfile as a model for documenting and visualizing enhanced spatial metadata. In addition to traditional metadata archiving, GeoProfiles integrate meso-scale topography, slope, aspect, and land-use data from the vicinity of climate observing stations (http://kyclim.wku.edu/tmp/geoprofiles/geoprofiles_main.html). We describe how GeoProfiles are created using Geographical Information Systems (GIS) and demonstrate how they may be used to help identify measurement bias in climate observations due to undesired instrument exposures and the subsequent forcings of micro- and meso-environments. A study involving 12 COOP and US Historical Climate Network (USHCN) stations finds that undesirable instrument exposures associated with both anthropogenic and natural influences resulted in biased measurement of temperature. Differences in average monthly maximum and minimum temperatures between proximate stations are as large as 1.6 and 3.8 °C, respectively. In addition, it is found that the difference in average extreme monthly minimum temperatures can be as high as 3.6 °C between nearby stations, largely owing to the differences in instrument exposures. Likewise, the difference in monthly extreme maximum temperatures between neighboring stations are as large as 2.4 °C. This investigation finds similar differences in the diurnal temperature range (DTR). GeoProfiles helped us to identify meso-scale forcing, e.g. instruments on a south-facing slope and topography, in addition to forcing of micro-scale setting.

  3. Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Park, C.B.; Hunter, J.A.; Harris, J.B.; Ivanov, J.

    2002-01-01

    Recent field tests illustrate the accuracy and consistency of calculating near-surface shear (S)-wave velocities using multichannel analysis of surface waves (MASW). S-wave velocity profiles (S-wave velocity vs. depth) derived from MASW compared favorably to direct borehole measurements at sites in Kansas, British Columbia, and Wyoming. Effects of changing the total number of recording channels, sampling interval, source offset, and receiver spacing on the inverted S-wave velocity were studied at a test site in Lawrence, Kansas. On the average, the difference between MASW calculated Vs and borehole measured Vs in eight wells along the Fraser River in Vancouver, Canada was less than 15%. One of the eight wells was a blind test well with the calculated overall difference between MASW and borehole measurements less than 9%. No systematic differences were observed in derived Vs values from any of the eight test sites. Surface wave analysis performed on surface data from Wyoming provided S-wave velocities in near-surface materials. Velocity profiles from MASW were confirmed by measurements based on suspension log analysis. ?? 2002 Elsevier Science Ltd. All rights reserved.

  4. Radiation Budget Profiles measured through the Atmosphere with a Return Glider Radiosonde

    NASA Astrophysics Data System (ADS)

    Philipona, R.; Kraeuchi, A.; Kivi, R.

    2015-12-01

    Very promising radiation budget profile measurements through the atmosphere were made in 2011 with a balloon borne short- and longwave net radiometer. New and improved radiation sensors from Kipp&Zonen are now used in a glider aircraft together with a standard Swiss radiosonde from Meteolabor AG. This new return glider radiosonde (RG-R), is lifted up with double balloon technique to prevent pendulum motion and to keep the radiation instruments as horizontal as possible during the ascent measuring phase. The RG-R is equipped with a release mechanism and an autopilot that flies the glider radiosonde back to the launch site, or to a predefined open space, where it releases a parachute for landing once it is 100 meter above ground. The RG-R was successfully tested and deployed for tropospheric and stratospheric radiation measurements up to 30 hPa (24 km altitude) at the GRUAN sites Payerne (Switzerland) and Sodankylä (Finland). Radiation profiles and the radiation budget through the atmosphere during different daytimes and under cloud-free and cloudy situations will be shown in relation to temperature and humidity at the surface and in the atmosphere. The RG-R flight characteristics and new measurement possibilities will also be discussed.

  5. Mars dayside temperature from airglow limb profiles : comparison with in situ measurements and models

    NASA Astrophysics Data System (ADS)

    Gérard, Jean-Claude; Bougher, Stephen; Montmessin, Franck; Bertaux, Jean-Loup; Stiepen, A.

    The thermal structure of the Mars upper atmosphere is the result of the thermal balance between heating by EUV solar radiation, infrared heating and cooling, conduction and dynamic influences such as gravity waves, planetary waves, and tides. It has been derived from observations performed from different spacecraft. These include in situ measurements of orbital drag whose strength depends on the local gas density. Atmospheric temperatures were determined from the altitude variation of the density measured in situ by the Viking landers and orbital drag measurements. Another method is based on remote sensing measurements of ultraviolet airglow limb profiles obtained over 40 years ago with spectrometers during the Mariner 6 and 7 flybys and from the Mariner 9 orbiter. Comparisons with model calculations indicate that they both reflect the CO_2 scale height from which atmospheric temperatures have been deduced. Upper atmospheric temperatures varying over the wide range 270-445 K, with a mean value of 325 K were deduced from the topside scale height of the airglow vertical profile. We present an analysis of limb profiles of the CO Cameron (a(3) Pi-X(1) Sigma(+) ) and CO_2(+) doublet (B(2) Sigma_u(+) - X(2) PiΠ_g) airglows observed with the SPICAM instrument on board Mars Express. We show that the temperature in the Mars thermosphere is very variable with a mean value of 270 K, but values ranging between 150 and 400 K have been observed. These values are compared to earlier determinations and model predictions. No clear dependence on solar zenith angle, latitude or season is apparent. Similarly, exospheric variations with F10.7 in the SPICAM airglow dataset are small over the solar minimum to moderate conditions sampled by Mars Express since 2005. We conclude that an unidentified process is the cause of the large observed temperature variability, which dominates the other sources of temperature variations.

  6. An optical technique for measuring divergence, beam profile, and aiming direction, of relativistic negative hydrogen ions

    SciTech Connect

    Hershcovitch, A.

    1988-02-01

    A novel, nonobstructive diagnostic technique for high energy H/sup minus/D/sup minus/ ion beams is described. This scheme employs spectroscopic techniques designed to measure beam profile, perpendicular velocity spread (i.e., divergence), and orientation of multiMeV H/sup minus/ beams. The basic principle of this method is to photoneutralize a small portion of the H/sup minus/ beam in a way such that the photodetachment process results in the formation of excited hydrogen atoms in the n = 2 levels. Observation of fluorescence from spontaneous decay of H(sp) andor induced deacy of H(2s) can be readily used to determine beam profile. Doppler broadening measurements can be used to determine velocity spread from which beam emittance is calculated. With off-the-shelf instruments resolutions of 1 mm for beam profile and 2 x 10/sup minus/2) ..pi.. cm-mrad are possible. For photodetachment, the best commercially available laser is found to be ArF eximer laser. The analysis is performed for the 200 MEV BNL Linac. The laser, which has a pulse duration which has a pulse duration which is of 10/sup minus/5) of the linac can produce sufficient signal at a negligible beam loss. In addition, measurements of minute Doppler shifts of this Lyman-Alpha radiation by a spectrograph could in principle resolve beam direction to within 1.57 ..mu..rad. The process under consideration has a resonance known as the shape resonance. As the following literature review indicates, the total cross section is known and there is a reasonable agreement between theory and experiment. There are no experimental measurements of partical cross sections. nevertheless, there are theoretical estimates which agree within 15%. 10 refs., 1 fig.

  7. A cross-sectional examination of the physical fitness and selected health attributes of recreational all-terrain vehicle riders and off-road motorcyclists.

    PubMed

    Burr, Jamie F; Jamnik, Veronica; Gledhill, Norman

    2010-11-01

    The aims of this study were: (1) to characterize selected fitness and health attributes of two types of habitual recreational off-road vehicle riders - off-road motorcyclists and all-terrain vehicle riders; (2) to explore differences among riders in terms of vehicle type, age, and gender; and (3) to compare the fitness and health of riders to population norms and clinical health standards. Canadian off-road riders (n = 141) of both sexes aged 16 years and over were recruited through local and national off-road riding organizations. Anthropometry, fitness, and health measures of off-road motorcycle and all-terrain vehicle riders were compared with population norms, health standards, and physical activity guidelines. Off-road motorcycle riders had above average aerobic fitness (79th percentile), while all-terrain vehicle riders were lower than average (40th percentile). All riders had a healthy blood lipid profile and a low incidence of the metabolic syndrome (12.9%) compared with members of the general population. Off-road motorcycle riders had healthier body composition and fitness than all-terrain vehicle riders; however, the body composition of off-road motorcycle riders was no healthier than that of the general population and all-terrain vehicle riders were worse than the general population. Off-road motorcycle riders had healthier anthropometry and fitness than all-terrain vehicle riders and thus fewer health risk factors for future disease, demonstrating that the physiological profiles of off-road riders are dependent on vehicle type.

  8. Improvement of GOME-2 Tropospheric Ozone Profile Retrievals from Joint UV/Visible Measurements

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zoogman, P.; Chance, K.; Cai, Z.; Nowlan, C. R.

    2015-12-01

    It has been shown that adding visible measurements in the Chappuis band to UV measurements in the Hartley/Huggins bands can significantly enhance retrieval sensitivity to lower tropospheric ozone from backscattered solar radiances due to deeper photon penetration in the visible to the surface than in the ultraviolet. The first NASA EVI TEMPO (Tropospheric Emissions: Monitoring of Pollution) instrument is being developed to measure backscattered solar radiation in two channels (~290-490 and 540-740 nm) and make atmospheric pollution measurements over North America from the Geostationary orbit. However, this retrieval enhancement has yet to be solidly demonstrated from existing measurements due to the weak ozone absorption in the visible and strong interference from surface reflectance and the requirement of accurate radiometric calibration across different spectral channels. We present GOME-2 retrievals from joint UV/visible measurements using the SAO optimal estimation based ozone profile retrieval algorithm, to directly explore the retrieval improvement in lower tropospheric ozone from additional visible measurements. To reduce the retrieval interference from surface reflectance, we add characterization of surface spectral reflectance in the visible based on ASTER and other surface reflectance spectra and MODIS BRDF climatology into the ozone profile algorithm using two approaches: fitting several EOFs (Empirical Orthogonal Functions) and scaling reflectance spectra. We also perform empirical radiometric calibration of the GOME-2 data based on radiative transfer simulations. We evaluate the retrieval improvement of joint UV/visible retrieval over the UV retrieval. These results clearly show the potential of using the visible to improve lower tropospheric ozone retrieval.

  9. Emission characteristics of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons from diesel trucks based on on-road measurements

    NASA Astrophysics Data System (ADS)

    Cao, Xinyue; Hao, Xuewei; Shen, Xianbao; Jiang, Xi; Wu, Bobo; Yao, Zhiliang

    2017-01-01

    Polycyclic aromatic hydrocarbon (PAH) and nitro-polycyclic aromatic hydrocarbon (NPAH) emissions from 18 diesel trucks of different sizes and with different emission standards were tested in Beijing using a portable emission measurement system (PEMS). Both the gaseous- and particulate-phase PAHs and NPAHs were quantified by high-performance liquid chromatography (HPLC) in the laboratory. The emission factors (EFs) of the total PAHs from light-duty diesel trucks (LDDTs), medium-duty diesel trucks (MDDTs) and heavy-duty diesel trucks (HDDTs) were 82229.11 ± 41906.06, 52867.43 ± 18946.47 and 93837.35 ± 32193.14 μg/km, respectively, much higher than the respective values of total NPAHs from their counterpart vehicles. The gaseous phase had an important contribution to the total PAHs and NPAHs, with a share rate of approximately 69% and 97% on average, respectively. The driving cycle had important impacts on the emissions of PAHs and NPAHs, especially for LDDTs and HDDTs. Higher emissions of PAHs and NPAHs were detected on non-highway roads compared to that on highways for these two types of vehicles. Compared to the results of different studies, the difference in the EFs of PAHs and NPAHs can reach several orders of magnitudes, which would introduce errors in the development of an emission inventory of PAHs and NPAHs.

  10. Prediction of RF-EMF exposure levels in large outdoor areas through car-mounted measurements on the enveloping roads.

    PubMed

    Aerts, Sam; Joseph, Wout; Maslanyj, Myron; Addison, Darren; Mee, Terry; Colussi, Loek; Kamer, Jos; Bolte, John

    2016-09-01

    Knowledge of spatial and temporal trends in the environmental exposure to radiofrequency electromagnetic fields (RF-EMF) is a key prerequisite for RF-EMF risk assessment studies attempting to establish a link between RF-EMF and potential effects on human health as well as on fauna and flora. In this paper, we determined the validity of RF exposure modelling based on inner-area kriging interpolation of measurements on the surrounding streets. The results vary depending on area size and shape and structural factors; a Spearman coefficient of 0.8 and a relative error of less than 3.5dB are achieved on a data set featuring a closed measurement ring around a decently sized area (1km(2), with an average minimum distance of the encircled area to the ring of less than 100m), containing mainly low, detached buildings. In larger areas, additional inner-area sampling is advised, lowering the average minimum distance between sampled and interpolated locations to 100m, to achieve the same level of accuracy.

  11. Distribution and sources of air pollutants in the North China Plain based on on-road mobile measurements

    NASA Astrophysics Data System (ADS)

    Zhu, Yi; Zhang, Jiping; Wang, Junxia; Chen, Wenyuan; Han, Yiqun; Ye, Chunxiang; Li, Yingruo; Liu, Jun; Zeng, Limin; Wu, Yusheng; Wang, Xinfeng; Wang, Wenxing; Chen, Jianmin; Zhu, Tong

    2016-10-01

    The North China Plain (NCP) has been experiencing severe air pollution problems with rapid economic growth and urbanisation. Many field and model studies have examined the distribution of air pollutants in the NCP, but convincing results have not been achieved, mainly due to a lack of direct measurements of pollutants over large areas. Here, we employed a mobile laboratory to observe the main air pollutants in a large part of the NCP from 11 June to 15 July 2013. High median concentrations of sulfur dioxide (SO2) (12 ppb), nitrogen oxides (NOx) (NO + NO2; 452 ppb), carbon monoxide (CO) (956 ppb), black carbon (BC; 5.5 µg m-3) and ultrafine particles (28 350 cm-3) were measured. Most of the high values, i.e. 95 percentile concentrations, were distributed near large cities, suggesting the influence of local emissions. In addition, we analysed the regional transport of SO2 and CO, relatively long-lived pollutants, based on our mobile observations together with wind field and satellite data analyses. Our results suggested that, for border areas of the NCP, wind from outside this area would have a diluting effect on pollutants, while south winds would bring in pollutants that have accumulated during transport through other parts of the NCP. For the central NCP, the concentrations of pollutants were likely to remain at high levels, partly due to the influence of regional transport by prevalent south-north winds over the NCP and partly by local emissions.

  12. The Road Not So Travelled: Should Measurement of Vitamin D Epimers during Pregnancy Affect Our Clinical Decisions?

    PubMed

    Karras, Spyridon N; Kotsa, Kalliopi; Angeloudi, Elena; Zebekakis, Pantelis; Naughton, Declan P

    2017-01-28

    Observational studies suggest an adverse effect of maternal hypovitaminosis D during pregnancy. However, intervention studies failed to show convincing benefit from vitamin D supplementation during pregnancy. With analytical advances, vitamin D can now be measured in ten forms-including as epimers-which were thought to be biologically inactive, but can critically impair immunoassays. The aim of this commentary is to highlight the potential clinical and analytical significance of vitamin D epimers in the interpretation of vitamin D roles in pregnancy. Epimers may contribute a considerable proportion of total vitamin D-especially in the neonate-which renders the majority of common assays questionable. Furthermore, epimers have been suggested to have activity in laboratory studies, and evidence suggests that the fetus contributes significantly to epimer production. Maternal epimer levels contribute significantly to predict neonate circulating 25-hydroxyvitamin D concentrations. In conclusion, the existence of various vitamin D forms (such as epimers) has been established, and their clinical significance remains obscure. These results underscore the need for accurate measurements to appraise vitamin D status, in order to understand the current gap between observational and supplementation studies on the field.

  13. The Road Not So Travelled: Should Measurement of Vitamin D Epimers during Pregnancy Affect Our Clinical Decisions?

    PubMed Central

    Karras, Spyridon N.; Kotsa, Kalliopi; Angeloudi, Elena; Zebekakis, Pantelis; Naughton, Declan P.

    2017-01-01

    Observational studies suggest an adverse effect of maternal hypovitaminosis D during pregnancy. However, intervention studies failed to show convincing benefit from vitamin D supplementation during pregnancy. With analytical advances, vitamin D can now be measured in ten forms—including as epimers—which were thought to be biologically inactive, but can critically impair immunoassays. The aim of this commentary is to highlight the potential clinical and analytical significance of vitamin D epimers in the interpretation of vitamin D roles in pregnancy. Epimers may contribute a considerable proportion of total vitamin D—especially in the neonate—which renders the majority of common assays questionable. Furthermore, epimers have been suggested to have activity in laboratory studies, and evidence suggests that the fetus contributes significantly to epimer production. Maternal epimer levels contribute significantly to predict neonate circulating 25-hydroxyvitamin D concentrations. In conclusion, the existence of various vitamin D forms (such as epimers) has been established, and their clinical significance remains obscure. These results underscore the need for accurate measurements to appraise vitamin D status, in order to understand the current gap between observational and supplementation studies on the field. PMID:28134839

  14. Collection efficiencies of high flow rate personal respirable samplers when measuring Arizona road dust and analysis of quartz by x-ray diffraction.

    PubMed

    Stacey, Peter; Lee, Taekhee; Thorpe, Andrew; Roberts, Paul; Frost, Gillian; Harper, Martin

    2014-05-01

    Prolonged exposure to respirable crystalline silica (RCS) causes silicosis and is also considered a cause of cancer. To meet emerging needs for precise measurements of RCS, from shorter sampling periods (<4 h) and lower air concentrations, collaborative work was done to assess the differences between personal respirable samplers at higher flow rates. The performance of FSP10, GK2.69, and CIP 10 R samplers were compared with that of the Safety In Mines Personal Dust Sampler (SIMPEDS) sampler as a reference, which is commonly used in the UK for the measurement of RCS. In addition, the performance of the FSP10 and GK 2.69 samplers were compared; at the nominal flow rates recommended by the manufacturers of 10 and 4.2 l · min(-1) and with flow rates proposed by the National Institute for Occupational Safety and Health of 11.2 and 4.4 l · min(-1). Samplers were exposed to aerosols of ultrafine and medium grades of Arizona road dust (ARD) generated in a calm air chamber. All analyses for RCS in this study were performed at the Health and Safety Laboratory. The difference in flow rates for the GK2.69 is small and does not result in a substantial difference in collection efficiency for the dusts tested, while the performance of the FSP10 at 11.2 l · min(-1) was more comparable with samples from the SIMPEDS. Conversely, the GK2.69 collected proportionately more crystalline silica in the respirable dust than other samplers, which then produced RCS results most comparable with the SIMPEDS. The CIP 10 R collected less ultrafine ARD than other samplers, as might be expected based on earlier performance evaluations. The higher flow rate for the FSP10 should be an added advantage for task-specific sampling or when measuring air concentrations less than current occupational exposure limits.

  15. Effects of Spot Size on Neutron-Star Radius Measurements from Pulse Profiles

    NASA Astrophysics Data System (ADS)

    Bauböck, Michi; Psaltis, Dimitrios; Özel, Feryal

    2015-10-01

    We calculate the effects of spot size on pulse profiles of moderately rotating neutron stars. Specifically, we quantify the bias introduced in radius measurements from the common assumption that spots are infinitesimally small. We find that this assumption is reasonable for spots smaller than 10°-18° and leads to errors that are ≤10% in the radius measurement, depending on the location of the spot and the inclination of the observer. We consider the implications of our results for neutron star radius measurements with the upcoming and planned X-ray missions NICER and LOFT. We calculate the expected spot size for different classes of sources and investigate the circumstances under which the assumption of a small spot is justified.

  16. Using CellProfiler for Automatic Identification and Measurement of Biological Objects in Images

    PubMed Central

    Bray, Mark-Anthony; Vokes, Martha S.; Carpenter, Anne E.

    2015-01-01

    Visual analysis is required to perform many biological experiments, from counting colonies to measuring the size or fluorescence intensity of individual cells or organisms. This unit outlines the use of CellProfiler, a free, open-source image analysis tool that extracts quantitative information from biological images. It includes a step-by-step protocol for automated analysis of the number, color, and size of yeast colonies growing on agar plates, but the methods can be adapted to identify and measure many other types of objects in images. The flexibility of the software allows experimenters to create pipelines of adjustable modules to fit different biological experiments and to generate accurate measurements from dozens or even hundreds of thousands of images. PMID:25559103

  17. Measurement of the stratospheric hydrogen peroxide concentration profile using far infrared thermal emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Chance, K. V.; Johnson, D. G.; Traub, W. A.; Jucks, K. W.

    1991-01-01

    The first unequivocal measurement of hydrogen peroxide in the stratosphere have been made, a concentration profile obtained from a balloon platform using Fourier transform thermal emission spectroscopy in the far infrared. Measurements were made using the 112/cm R-Q5 branch of the rotational-torsional spectrum, with some confirmation from the 94/cm R-Q4 branch. The volume mixing ratio of H2O2 is 1.6 x 10 to the -10th at 38.4 km, decreasing to 0.6 x 10 to the -10th at 23.8 km, with uncertainties of about 16 percent. These measurements are compared to a recent stratospheric model calculation.

  18. Raman lidar profiling of atmospheric water vapor: Simultaneous measurements with two collocated systems

    NASA Technical Reports Server (NTRS)

    Goldsmith, J. E. M.; Bisson, Scott E.; Ferrare, Richard A.; Evans, Keith D.; Whiteman, David N.; Melfi, S. H.

    1994-01-01

    Raman lidar is a leading candidate for providing the detailed space- and time-resolved measurements of water vapor needed by a variety of atmospheric studies. Simultaneous measurements of atmospheric water vapor are described using two collocated Raman lidar systems. These lidar systems, developed at the NASA/Goddard Space Flight Center and Sandia National Laboratories, acquired approximately 12 hours of simultaneous water vapor data during three nights in November 1992 while the systems were collocated at the Goddard Space Flight Center. Although these lidar systems differ substantially in their design, measured water vapor profiles agreeed within 0.15 g/kg between altitudes of 1 and 5 km. Comparisons with coincident radiosondes showed all instruments agreed within 0.2 g/kg in this same altitude range. Both lidars also clearly showed the advection of water vapor in the middle troposphere and the pronounced increase in water vapor in the nocturnal boundary layer that occurred during one night.

  19. Validation of Ozone Profiles Retrieved from SAGE III Limb Scatter Measurements

    NASA Technical Reports Server (NTRS)

    Rault, Didier F.; Taha, Ghassan

    2007-01-01

    Ozone profiles retrieved from Stratospheric Aerosol and Gas Experiment (SAGE III) limb scatter measurements are compared with correlative measurements made by occultation instruments (SAGE II, SAGE III and HALOE [Halogen Occultation Experiment]), a limb scatter instrument (Optical Spectrograph and InfraRed Imager System [OSIRIS]) and a series of ozonesondes and lidars, in order to ascertain the accuracy and precision of the SAGE III instrument in limb scatter mode. The measurement relative accuracy is found to be 5-10% from the tropopause to about 45km whereas the relative precision is found to be less than 10% from 20 to 38km. The main source of error is height registration uncertainty, which is found to be Gaussian with a standard deviation of about 350m.

  20. EFFECTS OF SPOT SIZE ON NEUTRON-STAR RADIUS MEASUREMENTS FROM PULSE PROFILES

    SciTech Connect

    Bauböck, Michi; Psaltis, Dimitrios; Özel, Feryal

    2015-10-01

    We calculate the effects of spot size on pulse profiles of moderately rotating neutron stars. Specifically, we quantify the bias introduced in radius measurements from the common assumption that spots are infinitesimally small. We find that this assumption is reasonable for spots smaller than 10°–18° and leads to errors that are ≤10% in the radius measurement, depending on the location of the spot and the inclination of the observer. We consider the implications of our results for neutron star radius measurements with the upcoming and planned X-ray missions NICER and LOFT. We calculate the expected spot size for different classes of sources and investigate the circumstances under which the assumption of a small spot is justified.

  1. Estimates of the potential temperature profile from lidar measurements of boundary layer evolution

    NASA Astrophysics Data System (ADS)

    Holder, H. E.; Eichinger, W. E.

    2006-10-01

    The Soil Moisture-Atmosphere Coupling Experiment (SMACEX) was conducted in the Walnut Creek Watershed near Ames, Iowa, over the period from 15 June to 11 July 2002. A main focus of SMACEX is the investigation of the interactions between the atmospheric boundary layer, surface moisture, and canopy. A vertically staring elastic lidar was used to provide a high time resolution, continuous record of the mixed layer height at the edge between a soybean and a corn field. The height and thickness of the entrainment zone are used to estimate the vertical potential temperature profile in the boundary layer using surface energy measurements in the Batchvarova-Gryning mixed layer model. Calculated values of potential temperature compared well to radiosonde measurements taken simultaneously with the lidar measurements. The root-mean-square difference between the lidar-derived values and the balloon-based values is 1.20°C.

  2. Use of an Acoustic Doppler Current Profiler (ADCP) to Measure Hypersaline Bidirectional Discharge

    USGS Publications Warehouse

    Johnson, K.K.; Loving, B.L.; ,

    2002-01-01

    The U.S. Geological Survey measures the exchange of flow between the north and south parts of Great Salt Lake, Utah, as part of a monitoring program. Turbidity and bidirectional flow through the breach in the causeway that divides the lake into two parts makes it difficult to measure discharge with conventional streamflow techniques. An acoustic Doppler current profiler (ADCP) can be used to more accurately define the angles of flow and the location of the interface between the layers of flow. Because of the high salinity levels measured in Great Salt Lake (60-280 parts per thousand), special methods had to be developed to adjust ADCP-computed discharges for the increased speed of sound in hypersaline waters and for water entrained at the interface between flow layers.

  3. O2 density and temperature profiles retrieving from direct solar Lyman-alpha radiation measurements

    NASA Astrophysics Data System (ADS)

    Guineva, V.; Witt, G.; Gumbel, J.; Khaplanov, M.; Werner, R.; Hedin, J.; Neichev, S.; Kirov, B.; Bankov, L.; Gramatikov, P.; Tashev, V.; Popov, M.; Hauglund, K.; Hansen, G.; Ilstad, J.; Wold, H.

    2009-12-01

    The resonance transition 2P-2S of the atomic hydrogen (Lyman-alpha emission) is the strongest and most conspicuous feature in the solar EUV spectrum. The Lyman-alpha radiation transfer depends on the resonance scattering from the hydrogen atoms in the atmosphere and on the O2 absorption. Since the Lyman-alpha extinction in the atmosphere is a measure for the column density of the oxygen molecules, the atmospheric O2 density and temperature profiles can be calculated thereof. A detector of solar Lyman-alpha radiation was manufactured in the Stara Zagora Department of the Solar-Terrestrial Influences Laboratory (STIL). Its basic part is an ionization camera, filled in with NO. A 60 V power supply is applied to the chamber. The produced photoelectric current from the sensor is fed to a two-channel amplifier, providing analog signal. The characteristics of the Lyman-alpha detector were studied. It passed successfully all tests and the results showed that the so-designed instrument could be used in rocket experiments to measure the Lymanalpha flux. From the measurements of the detector, the Lyman-alpha vertical profile can be obtained. Programs are created to compute the O2 density, atmospheric power and temperature profiles based on Lymanalpha data. The detector design appertained to ASLAF project (Attenuation of the Solar Lyman-Alpha Flux), a scientific cooperation between STIL—Bul.Acad.Sci., Stara Zagora Department and the Atmospheric Physics Group at the Department of Meteorology (MISU), Stockholm University, Sweden. The joint project was part of the rocket experiment HotPay I, in the ALOMAR eARI Project, EU’s 6th Framework Programme, Andøya Rocket Range, Andenes, Norway. The project is partly financed by the Bulgarian Ministry of Science and Education.

  4. Measurements of the bulk and interfacial velocity profiles in oscillating Newtonian and Maxwellian fluids.

    PubMed

    Torralba, M; Castrejón-Pita, J R; Castrejón-Pita, A A; Huelsz, G; del Río, J A; Ortín, J

    2005-07-01

    We present the dynamic velocity profiles of a Newtonian fluid (glycerol) and a viscoelastic Maxwell fluid (CPyCl-NaSal in water) driven by an oscillating pressure gradient in a vertical cylindrical pipe. The frequency range explored has been chosen to include the first three resonance peaks of the dynamic permeability of the viscoelastic-fluid--pipe system. Three different optical measurement techniques have been employed. Laser Doppler anemometry has been used to measure the magnitude of the velocity at the center of the liquid column. Particle image velocimetry and optical deflectometry are used to determine the velocity profiles at the bulk of the liquid column and at the liquid-air interface respectively. The velocity measurements in the bulk are in good agreement with the theoretical predictions of a linear theory. The results, however, show dramatic differences in the dynamic behavior of Newtonian and viscoelastic fluids, and demonstrate the importance of resonance phenomena in viscoelastic fluid flows, biofluids in particular, in confined geometries.

  5. Initial Results of the SSPX Transient Internal Probe System for Measuring Toroidal Field Profiles

    NASA Astrophysics Data System (ADS)

    Holcomb, C. T.; Jarboe, T. R.; Mattick, A. T.; Hill, D. N.; McLean, H. S.; Wood, R. D.; Cellamare, V.

    2000-10-01

    Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. The Sustained Spheromak Physics Experiment (SSPX) is using a field profile diagnostic called the Transient Internal Probe (TIP). TIP consists of a verdet-glass bullet that is used to measure the magnetic field by Faraday rotation. This probe is shot through the spheromak by a light gas gun at speeds near 2 km/s. An argon laser is aligned along the path of the probe. The light passes through the probe and is retro-reflected to an ellipsometer that measures the change in polarization angle. The measurement is spatially resolved down to the probes’ 1 cm length to within 15 Gauss. Initial testing results are given. This and future data will be used to determine the field profile for equilibrium reconstruction. TIP can also be used in conjunction with wall probes to map out toroidal mode amplitudes and phases internally. This work was performed under the auspices of US DOE by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

  6. Optimal tuning and calibration of bendable mirrors with slope measuring profilers

    SciTech Connect

    McKinney, Wayne; Kirschman, Jonathan; MacDowell, Alastair; Warwick, Tony; Yashchuk, Valeriy

    2009-06-22

    We describe a technique to optimally tune and calibrate bendable x-ray optics for sub-micron focusing. The focusing is divided between two elliptically cylindrical reflecting elements, a Kirkpatrick-Baez (KB) pair. Each optic is shaped by applying unequal bending couples to each end of a flat mirror. The developed technique allowsoptimal tuning of these systems using surface slope data obtained with a slope measuring instrument, the long trace profiler (LTP). Due to the near linearity of the problem, the minimal set of data necessary for the tuning of each bender, consists of only three slope traces measured before and after a single adjustment of each bending couple. The data are analyzed with software realizing a method of regression analysis with experimentally found characteristic functions of the benders. The resulting approximation to the functional dependence of the desired shape provides nearly final settings. Moreover, the characteristic functions of the benders found in the course of tuning, can be used for retuning to a new desired shape without removal from the beamline and re-measuring. We perform a ray trace, using profiler data for the finally tuned optics, predicting the performance to be expected during use of the optics on the beamline.

  7. Vertical profiles of aerosol volume from high-spectral-resolution infrared transmission measurements. I. Methodology.

    PubMed

    Eldering, A; Irion, F W; Chang, A Y; Gunson, M R; Mills, F P; Steele, H M

    2001-06-20

    The wavelength-dependent aerosol extinction in the 800-1250-cm(-1) region has been derived from ATMOS (atmospheric trace molecule spectroscopy) high-spectral-resolution IR transmission measurements. Using models of aerosol and cloud extinction, we have performed weighted nonlinear least-squares fitting to determine the aerosol-volume columns and vertical profiles of stratospheric sulfate aerosol and cirrus cloud volume. Modeled extinction by use of cold-temperature aerosol optical constants for a 70-80% sulfuric-acid-water solution shows good agreement with the measurements, and the derived aerosol volumes for a 1992 occultation are consistent with data from other experiments after the eruption of Mt. Pinatubo. The retrieved sulfuric acid aerosol-volume profiles are insensitive to the aerosol-size distribution and somewhat sensitive to the set of optical constants used. Data from the nonspherical cirrus extinction model agree well with a 1994 mid-latitude measurement indicating the presence of cirrus clouds at the tropopause.

  8. Studies of longitudinal profile of electron bunches and impedance measurements at Indus-2 synchrotron radiation source

    NASA Astrophysics Data System (ADS)

    Garg, Akash Deep; Yadav, S.; Kumar, Mukesh; Shrivastava, B. B.; Karnewar, A. K.; Ojha, A.; Puntambekar, T. A.

    2016-04-01

    Indus-2 is a 3rd generation synchrotron radiation source at the Raja Ramanna Centre for Advanced Technology (RRCAT) in India. We study the longitudinal profile of electrons in Indus-2 by using dual sweep synchroscan streak camera at visible diagnostic beamline. In this paper, the longitudinal profiles of electron bunch are analyzed by filling beam current in a single bunch mode. These studies are carried at injection energy (550 MeV) and at ramped beam energy (2.5 GeV). The effects of the wakefield generated interactions between the circulating electrons and the surrounding vacuum chamber are analyzed in terms of measured effects on longitudinal beam distribution. The impedance of the storage ring is obtained by fitting the solutions of Haissinski equation to the measured bunch lengthening with different impedance models. The impedance of storage ring obtained by a series R+L impedance model indicates a resistance (R) of 1350±125 Ω, an inductance (L) of 180±25 nH and broadband impedance of 2.69 Ω. These results are also compared with the values obtained from measured synchronous phase advancing and scaling laws. These studies are very useful in better understanding and control of the electromagnetic interactions.

  9. Indoor and outdoor measurements of vertical concentration profiles of airborne particulate matter.

    PubMed

    Micallef, A; Deuchar, C N; Colls, J J

    1998-05-04

    Vertical concentration profiles of various particle size ranges of airborne particulate matter were measured from ground level up to 3 m, in outdoor and indoor environments. Indoor measurements were carried out in an electronics workshop, while two outdoor environments were chosen: a street canyon cutting across a town and an open field situated in a semi-rural environment. The novel measurement technique employed in this experimental work, which can also be used to determine vertical concentration gradients of pollutants other than airborne particles in different environments, is given particular attention. Analyses of the collected data for the environments considered are presented and some conclusions and plausible explanations of the profiles are discussed. The workshop and street canyon environments exhibited larger concentrations and vertical concentration gradients as compared to the sports field. This indicates that people breathing at different heights are subjected to different concentrations of airborne particulate matter, which has implications for sitting air pollution monitors intended for protection of public health and estimation of human exposure.

  10. Flying spot laser triangulation scanner using lateral synchronization for surface profile precision measurement.

    PubMed

    Zhang, Hanlin; Ren, Yongjie; Liu, Changjie; Zhu, Jigui

    2014-07-10

    High-speed surface profile measurement with high precision is crucial for target inspection and quality control. In this study, a laser scanner based on a single point laser triangulation displacement sensor and a high-speed rotating polygon mirror is proposed. The autosynchronized scanning scheme is introduced to alleviate the trade-off between the field of view and the range precision, which is the inherent deficiency of the conventional triangulation. The lateral synchronized flying spot technology has excellent characteristics, such as programmable and larger field of view, high immunity to ambient light or secondary reflections, high optical signal-to-noise ratio, and minimum shadow effect. Owing to automatic point-to-point laser power control, high accuracy and superior data quality are possible when measuring objects featuring varying surface characteristics even in demanding applications. The proposed laser triangulation scanner is validated using a laboratory-built prototype and practical considerations for design and implementation of the system are described, including speckle noise reduction method and real-time signal processing. A method for rapid and accurate calibration of the laser triangulation scanner using lookup tables is also devised, and the system calibration accuracy is generally smaller than ±0.025  mm. Experimental results are presented and show a broad application prospect for fast surface profile precision measurement.

  11. Measurement of the near-wall velocity profile for a nanofluid flow inside a microchannel

    NASA Astrophysics Data System (ADS)

    Kanjirakat, Anoop; Sadr, Reza

    2015-11-01

    Hydrodynamics and anomalous heat transfer enhancements have been reported in the past for colloidal suspensions of nano-sized particles dispersed in a fluid (nanofluids). However, such augmentations may manifest itself by study of fluid flow characteristics near in the wall region. Present experimental study reports near-wall velocity profile for nanofluids (silicon dioxide nanoparticles in water) measured inside a microchannel. An objective-based nano-Particle Image Velocimetry (nPIV) technique is used to measure fluid velocity within three visible depths, O(100nm), from the wall. The near-wall fluid velocity profile is estimated after implementing the required corrections for optical properties and effects caused by hindered Brownian motion, wall-particle interactions, and non-uniform exponential illumination on the measurement technique. The fluid velocities of nanofluids at each of the three visible depths are observed to be higher than that of the base fluid resulting in a higher shear rate in this region. The relative increase in shear rates for nanofluids is believed to be the result of the near-wall shear-induced particle migration along with the Brownian motion of the nanoparticles. This research is funded by NPRP grant # 08-574-2-239 from the Qatar National Research Fund (a member of Qatar Foundation).

  12. Highlights from a decade of Ice-Tethered Profiler measurements of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Timmermans, M. L. E.; Toole, J. M.; Krishfield, R. A.; Proshutinsky, A. Y.; Cole, S. T.; Laney, S. R.

    2014-12-01

    Intensive sampling from drifting autonomous Ice-Tethered Profiler (ITP) systems since 2004 has brought new understanding to Arctic Ocean structure and dynamics, ocean heat and mixing processes, circulation and eddies, and seasonal characteristics of under-ice biological activity. This talk will review highlights of ITP studies, and demonstrate the value of the year-round water-column measurements extending from beneath the sea ice to 750 m depth across the major Arctic basins. ITP profiles show the detailed distribution of upper-ocean freshwater and heat content over the past decade, including the changing influence of Pacific and Atlantic-origin layers. ITPs allow for assessment of vertical fluxes of deep-ocean heat in context with the strong upper-ocean density stratification, while in the surface ocean ITPs equipped with velocity sensors provide turbulent ocean-to-ice fluxes. All upper-ocean layers exhibit a rich mesoscale eddy field, and ITP measurements also reveal an active surface-layer submesoscale flow field, with scales of a few kilometers or less. ITPs equipped with bio-optical sensors have returned the first year-round measurements under sea ice of biomass related to phytoplankton and sea-ice algae in the upper-water column, establishing important regional differences in the seasonal cycle and relationships to temperature and salinity variability.

  13. Current Profile and Magnetic Structure Measurements through Tangential Soft X-Ray Imaging in Compact Tori

    SciTech Connect

    Fonck, Raymond J.

    2004-07-12

    This report describes the fabrication and tests of a tangentially imaging soft X-ray (SXR) camera diagnostic for fusion energy plasma research. It can be used for the determination of the current distribution in strongly shaped toroidal magnetically confined plasmas, such as those found in spherical tori or advanced tokamaks. It included the development of both an appropriate imaging SXR camera and image analysis techniques necessary to deduce the plasma shape and current distribution. The basic camera concept consists of a tangentially viewing pinhole imaging system with thin-film SXR filters, a scintillator screen to provide SXR to visible conversion, a fast shuttering system, and an sensitive visible camera imaging device. The analysis approach consists of integrating the 2-D SXR image data into a Grad-Shafranov toroidal equilibrium solver code to provide strong constraints on the deduced plasma current and pressure profiles. Acceptable sensitivity in the deduced current profile can be obtained if the relative noise in the measured image can be kept in the range of 1% or less. Tests on the Pegasus Toroidal Experiment indicate very flat safety factor profiles in the plasma interior.

  14. Retrievals of Profiles of Fine And Coarse Aerosols Using Lidar And Radiometric Space Measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Leon, Jean-Francois; Pelon, Jacques; Lau, William K. M. (Technical Monitor)

    2002-01-01

    In couple of years we expect the launch of the CALIPSO lidar spaceborne mission designed to observe aerosols and clouds. CALIPSO will collect profiles of the lidar attenuated backscattering coefficients in two spectral wavelengths (0.53 and 1.06 microns). Observations are provided along the track of the satellite around the globe from pole to pole. The attenuated backscattering coefficients are sensitive to the vertical distribution of aerosol particles, their shape and size. However the information is insufficient to be mapped into unique aerosol physical properties and vertical distribution. Infinite number of physical solutions can reconstruct the same two wavelength backscattered profile measured from space. CALIPSO will fly in formation with the Aqua satellite and the MODIS spectro-radiometer on board. Spectral radiances measured by MODIS in six channels between 0.55 and 2.13 microns simultaneously with the CALIPSO observations can constrain the solutions and resolve this ambiguity, albeit under some assumptions. In this paper we describe the inversion method and apply it to aircraft lidar and MODIS data collected over a dust storm off the coast of West Africa during the SHADE experiment. It is shown that the product of the single scattering albedo, omega, and the phase function, P, for backscattering can be retrieved from the synergism between measurements avoiding a priori hypotheses required for inverting lidar measurements alone. The resultant value of (omega)P(180 deg.) = 0.016/sr are significantly different from what is expected using Mie theory, but are in good agreement with recent results obtained from lidar observations of dust episodes. The inversion is robust in the presence of noise of 10% and 20% in the lidar signal in the 0.53 and 1.06 pm channels respectively. Calibration errors of the lidar of 5 to 10% can cause an error in optical thickness of 20 to 40% respectively in the tested cases. The lidar calibration errors cause degradation in the

  15. Comparison of slope and height profiles for flat synchrotron x-ray mirrors measured with a long trace profiler and a PMI Fizeau interferometer

    NASA Astrophysics Data System (ADS)

    Qian, Jun; Assoufid, Lahsen; Macrander, Albert

    2007-09-01

    Long trace profilers (LTPs) (1) have been used at many synchrotron radiation laboratories worldwide for over a decade to measure surface slope profiles of long grazing incidence x-ray mirrors. Phase measuring interferometers (PMIs) of the Fizeau type, on the other hand, are being used by most mirror manufacturers to accomplish the same task. However, large mirrors whose dimensions exceed the aperture of the Fizeau interferometer require measurements to be carried out at grazing incidence, and aspheric optics require the use of a null lens. While an LTP provides a direct measurement of 1D slope profiles, PMIs measure area height profiles from which the slope can be obtained by a differentiation algorithm. Measurements of the two types of instruments have been found by us to be in good agreement, but to our knowledge there is no published work directly comparing the two instruments. This paper documents that comparison. We measured two different nominally flat mirrors with both the LTP in operation at the Advanced Photon Source (a type-II LTP) and a Fizeau-type PMI interferometer (Wyko model 6000). One mirror was 500 mm long and made of Zerodur, and the other mirror was 350 mm long and made of silicon. Slope error results with these instruments agree within nearly 100% (3.11+/-0.15 μrad for the LTP, and 3.11+/-0.02μrad for the Fizeau PMI interferometer) for the medium quality Zerodur mirror with 3 μrad rms nominal slope error. A significant difference was observed with the much higher quality silicon mirror. For the Si mirror, slope error data is 0.39+/-0.08Χrad from LTP measurements but it is 0.35 +/- 0.01 μrad from PMI interferometer measurements. The standard deviations show that the Fizeau PMI interferometer has much better measurement repeatability.

  16. Comparison of slope and height profiles for flat synchrotron x-ray mirrors measured with a long trace profiler and a Fizeau interferometer.

    SciTech Connect

    Qian, J.; Assoufid, L.; Macrander, A.; X-Ray Science Division

    2007-01-01

    Long trace profilers (LTPS) have been used at many synchrotron radiation laboratories worldwide for over a decade to measure surface slope profiles of long grazing incidence x-ray mirrors. Phase measuring interferometers (PMIs) of the Fizeau type, on the other hand, are being used by most mirror manufacturers to accomplish the same task. However, large mirrors whose dimensions exceed the aperture of the Fizeau interferometer require measurements to be carried out at grazing incidence, and aspheric optics require the use of a null lens. While an LTP provides a direct measurement of ID slope profiles, PMIs measure area height profiles from which the slope can be obtained by a differentiation algorithm. Measurements of the two types of instruments have been found by us to be in good agreement, but to our knowledge there is no published work directly comparing the two instruments. This paper documents that comparison. We measured two different nominally flat mirrors with both the LTP in operation at the Advanced Photon Source (a type-II LTP) and a Fizeau-type PMI interferometer (Wyko model 6000). One mirror was 500 mm long and made of Zerodur, and the other mirror was 350 mm long and made of silicon. Slope error results with these instruments agree within nearly 100% (3.11 {+-} 0.15 {micro}rad for the LTP, and 3.11 {+-} 0.02 {micro}rad for the Fizeau PMI interferometer) for the medium quality Zerodur mirror with 3 {micro}rad rms nominal slope error. A significant difference was observed with the much higher quality silicon mirror. For the Si mirror, slope error data is 0.39 {+-} 0.08 {micro}rad from LTP measurements but it is 0.35 {+-} 0.01 {micro}rad from PMI interferometer measurements. The standard deviations show that the Fizeau PMI interferometer has much better measurement repeatability.

  17. Towards the development of a hybrid-integrated chip interferometer for online surface profile measurements.

    PubMed

    Kumar, P; Martin, H; Jiang, X

    2016-06-01

    Non-destructive testing and online measurement of surface features are pressing demands in manufacturing. Thus optical techniques are gaining importance for characterization of complex engineering surfaces. Harnessing integrated optics for miniaturization of interferometry systems onto a silicon wafer and incorporating a compact optical probe would enable the development of a handheld sensor for embedded metrology applications. In this work, we present the progress in the development of a hybrid photonics based metrology sensor device for online surface profile measurements. The measurement principle along with test and measurement results of individual components has been presented. For non-contact measurement, a spectrally encoded lateral scanning probe based on the laser scanning microscopy has been developed to provide fast measurement with lateral resolution limited to the diffraction limit. The probe demonstrates a lateral resolution of ∼3.6 μm while high axial resolution (sub-nanometre) is inherently achieved by interferometry. Further the performance of the hybrid tuneable laser and the scanning probe was evaluated by measuring a standard step height sample of 100 nm.

  18. Rayleigh beacon for measuring the surface profile of a radio telescope.

    PubMed

    Padin, S

    2014-12-01

    Millimeter-wavelength Rayleigh scattering from water droplets in a cloud is proposed as a means of generating a bright beacon for measuring the surface profile of a radio telescope. A λ=3  mm transmitter, with an output power of a few watts, illuminating a stratiform cloud, can generate a beacon with the same flux as Mars in 10 GHz bandwidth, but the beacon has a narrow line width, so it is extremely bright. The key advantage of the beacon is that it can be used at any time, and positioned anywhere in the sky, as long as there are clouds.

  19. Fast profile measurement of micrometer-sized tapered fibers with better than 50-nm accuracy

    NASA Astrophysics Data System (ADS)

    Warken, Florian; Giessen, Harald

    2004-08-01

    The forward scattering of light illuminating a transparent dielectric cylinder, such as a tapered fiber, from the side can be understood as interference of the diffracted, reflected, and transmitted light. Additionally, light can be resonantly coupled into the fiber if a multiple of the wavelength matches the circumference. Using a suitable laser setup with a novel evaluation algorithm allows us to quickly extract the fiber radius from the complex diffraction pattern, obtaining an accuracy of better than 50 nm. We demonstrate experimentally our method, which is noncontact and allows one to simultaneously measure the profile of a several-centimeter-long fiber waist with a diameter near the diffraction limit.

  20. MEASUREMENT OF THE HALO BIAS FROM STACKED SHEAR PROFILES OF GALAXY CLUSTERS

    SciTech Connect

    Covone, Giovanni; Sereno, Mauro

    2014-04-01

    We present observational evidence of the two-halo term in the stacked shear profile of a sample of ∼1200 optically selected galaxy clusters based on imaging data and the public shear catalog from the CFHTLenS. We find that the halo bias, a measure of the correlated distribution of matter around galaxy clusters, has amplitude and correlation with galaxy cluster mass in very good agreement with the predictions based on the LCDM standard cosmological model. The mass-concentration relation is flat but higher than theoretical predictions. We also confirm the close scaling relation between the optical richness of galaxy clusters and their mass.

  1. Three interfering beams in laser Doppler velocimetry for particle position and microflow velocity profile measurements.

    PubMed

    Onofri, Fabrice

    2006-05-10

    It is proposed to use three interfering and coplanar laser beams to form the probe volume of laser Doppler systems. This allows us to obtain, for each particle crossing this probe volume, a Doppler signal whose frequency amplitude spectrum exhibits two characteristic peaks. Electromagnetic calculations and experimental validations clearly demonstrate that we can estimate simultaneously, from the analysis of these two frequency peaks, the particle position along the optical axis and one velocity component. This technique is expected to have great potentialities for velocity profile measurements in microfluidic or boundary layer flows, as well as for the sizing of spherical particles.

  2. Construct and Criterion Validities of the Service Need Assessment Profile (SNAP): A Measure of Support for People with Disabilities

    ERIC Educational Resources Information Center

    Guscia, Roma; Harries, Julia; Kirby, Neil; Nettelbeck, Ted; Taplin, John

    2006-01-01

    Background: The "Service Need Assessment Profile" (SNAP) measures individual functional needs in areas of daily living. It produces a support profile, detailing the time allocations for staff support to assist in each area of need. The "Supports Intensity Scale" (SIS) is a support needs assessment scale designed to provide an…

  3. Validation of streamflow measurements made with M9 and RiverRay acoustic Doppler current profilers

    USGS Publications Warehouse

    Boldt, Justin A.; Oberg, Kevin A.

    2015-01-01

    The U.S. Geological Survey (USGS) Office of Surface Water (OSW) previously validated the use of Teledyne RD Instruments (TRDI) Rio Grande (in 2007), StreamPro (in 2006), and Broadband (in 1996) acoustic Doppler current profilers (ADCPs) for streamflow (discharge) measurements made by the USGS. Two new ADCPs, the SonTek M9 and the TRDI RiverRay, were first used in the USGS Water Mission Area programs in 2009. Since 2009, the OSW and USGS Water Science Centers (WSCs) have been conducting field measurements as part of their stream-gaging program using these ADCPs. The purpose of this paper is to document the results of USGS OSW analyses for validation of M9 and RiverRay ADCP streamflow measurements. The OSW required each participating WSC to make comparison measurements over the range of operating conditions in which the instruments were used until sufficient measurements were available. The performance of these ADCPs was evaluated for validation and to identify any present and potential problems. Statistical analyses of streamflow measurements indicate that measurements made with the SonTek M9 ADCP using firmware 2.00–3.00 or the TRDI RiverRay ADCP using firmware 44.12–44.15 are unbiased, and therefore, can continue to be used to make streamflow measurements in the USGS stream-gaging program. However, for the M9 ADCP, there are some important issues to be considered in making future measurements. Possible future work may include additional validation of streamflow measurements made with these instruments from other locations in the United States and measurement validation using updated firmware and software.

  4. Refinement of the ice absorption spectrum in the visible using radiance profile measurements in Antarctic snow

    NASA Astrophysics Data System (ADS)

    Picard, Ghislain; Libois, Quentin; Arnaud, Laurent

    2016-11-01

    Ice is a highly transparent material in the visible. According to the most widely used database (IA2008; Warren and Brandt, 2008), the ice absorption coefficient reaches values lower than 10-3 m-1 around 400 nm. These values were obtained from a vertical profile of spectral radiance measured in a single snow layer at Dome C in Antarctica. We reproduced this experiment using an optical fiber inserted in the snow to record 56 profiles from which 70 homogeneous layers were identified. Applying the same estimation method on every layer yields 70 ice absorption spectra. They present a significant variability but absorption coefficients are overall larger than IA2008 by 1 order of magnitude at 400-450 nm. We devised another estimation method based on Bayesian inference that treats all the profiles simultaneously. It reduces the statistical variability and confirms the higher absorption, around 2 × 10-2 m-1 near the minimum at 440 nm. We explore potential instrumental artifacts by developing a 3-D radiative transfer model able to explicitly account for the presence of the fiber in the snow. The simulation shows that the radiance profile is indeed perturbed by the fiber intrusion, but the error on the ice absorption estimate is not larger than a factor of 2. This is insufficient to explain the difference between our new estimate and IA2008. The same conclusion applies regarding the plausible contamination by black carbon or dust, concentrations reported in the literature are insufficient. Considering the large number of profiles acquired for this study and other estimates from the Antarctic Muon and Neutrino Detector Array (AMANDA), we nevertheless estimate that ice absorption values around 10-2 m-1 at the minimum are more likely than under 10-3 m-1. A new estimate in the range 400-600 nm is provided for future modeling of snow, cloud, and sea-ice optical properties. Most importantly, we recommend that modeling studies take into account the large uncertainty of the ice

  5. Stratospheric CH4 and CO2 profiles derived from SCIAMACHY solar occultation measurements

    NASA Astrophysics Data System (ADS)

    Noël, Stefan; Bramstedt, Klaus; Hilker, Michael; Liebing, Patricia; Plieninger, Johannes; Reuter, Max; Rozanov, Alexei; Sioris, Christopher E.; Bovensmann, Heinrich; Burrows, John P.

    2016-04-01

    Stratospheric profiles of methane (CH4) and carbon dioxide (CO2) have been derived from solar occultation measurements of the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). The retrieval is performed using a method called onion peeling DOAS (ONPD), which combines an onion peeling approach with a weighting function DOAS (differential optical absorption spectroscopy) fit in the spectral region between 1559 and 1671 nm. By use of updated pointing information and optimisation of the data selection as well as of the retrieval approach, the altitude range for reasonable CH4 could be broadened from 20 to 40 km to about 17 to 45 km. Furthermore, the quality of the derived CO2 has been assessed such that now the first stratospheric profiles (17-45 km) of CO2 from SCIAMACHY are available. Comparisons with independent data sets yield an estimated accuracy of the new SCIAMACHY stratospheric profiles of about 5-10 % for CH4 and 2-3 % for CO2. The accuracy of the products is currently mainly restricted by the appearance of unexpected vertical oscillations in the derived profiles which need further investigation. Using the improved ONPD retrieval, CH4 and CO2 stratospheric data sets covering the whole SCIAMACHY time series (August 2002-April 2012) and the latitudinal range between about 50 and 70° N have been derived. Based on these time series, CH4 and CO2 trends have been estimated. CH4 trends above about 20 km are not significantly different from zero and the trend at 17 km is about 3 ppbv year-1. The derived CO2 trends show a general decrease with altitude with values of about 1.9 ppmv year-1 at 21 km and about 1.3 ppmv year-1 at 39 km. These results are in reasonable agreement with total column trends for these gases. This shows that the new SCIAMACHY data sets can provide valuable information about the stratosphere.

  6. Megha-Tropiques/SAPHIR measurements of humidity profiles: validation with AIRS and global radiosonde network

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, K. V.; Kumar, K. K.

    2013-12-01

    The vertical profiles of humidity measured by SAPHIR (Sondeur Atmospherique du Profil d' Humidité Intropicale par Radiométrie) on-board Megha-Tropiques satellite are validated using Atmosphere Infrared Sounder (AIRS) and ground based radiosonde observations during July-September 2012. SAPHIR provides humidity profiles at six pressure layers viz., 1000-850 (level 1), 850-700 (level 2), 700-550 (level 3), 550-400 (level 4) 400-250 (level 5) and 250-100(level 6) hPa. Segregated AIRS observations over land and oceanic regions are used to assess the performance of SAPHIR quantitatively. The regression analysis over oceanic region (125° W-180° W; 30° S-30° N) reveal that the SAPHIR measurements agrees very well with the AIRS measurements at levels 3, 4, 5 and 6 with correlation coefficients 0.79, 0.88, 0.87 and 0.78 respectively. However, at level 6 SAPHIR seems to be systematically underestimating the AIRS measurements. At level 2, the agreement is reasonably good with correlation coefficient of 0.52 and at level 1 the agreement is very poor with correlation coefficient 0.17. The regression analysis over land region (10° W-30° E; 8° N-30° N) revealed an excellent correlation between AIRS and SAPHIR at all the six levels with 0.80, 0.78, 0.84, 0.84, 0.86 and 0.65 respectively. However, again at levels 5 and 6, SAPHIR seems to be underestimating the AIRS measurements. After carrying out the quantitative comparison between SAPHIR and AIRS separately over land and ocean, the ground based global radiosonde network observations of humidity profiles over three distinct geographical locations (East Asia, tropical belt of South and North America and South Pacific) are then used to further validate the SAPHIR observations as AIRS has its own limitations. The SAPHIR observations within a radius of 50 km around the radiosonde stations are averaged and then the regression analysis is carried out at the first five levels of SAPHIR. The comparison is not carried out at sixth

  7. Evaluating the road safety effects of a fuel cost increase measure by means of zonal crash prediction modeling.

    PubMed

    Pirdavani, Ali; Brijs, Tom; Bellemans, Tom; Kochan, Bruno; Wets, Geert

    2013-01-01

    Travel demand management (TDM) consists of a variety of policy measures that affect the transportation system's effectiveness by changing travel behavior. The primary objective to implement such TDM strategies is not to improve traffic safety, although their impact on traffic safety should not be neglected. The main purpose of this study is to evaluate the traffic safety impact of conducting a fuel-cost increase scenario (i.e. increasing the fuel price by 20%) in Flanders, Belgium. Since TDM strategies are usually conducted at an aggregate level, crash prediction models (CPMs) should also be developed at a geographically aggregated level. Therefore zonal crash prediction models (ZCPMs) are considered to present the association between observed crashes in each zone and a set of predictor variables. To this end, an activity-based transportation model framework is applied to produce exposure metrics which will be used in prediction models. This allows us to conduct a more detailed and reliable assessment while TDM strategies are inherently modeled in the activity-based models unlike traditional models in which the impact of TDM strategies are assumed. The crash data used in this study consist of fatal and injury crashes observed between 2004 and 2007. The network and socio-demographic variables are also collected from other sources. In this study, different ZCPMs are developed to predict the number of injury crashes (NOCs) (disaggregated by different severity levels and crash types) for both the null and the fuel-cost increase scenario. The results show a considerable traffic safety benefit of conducting the fuel-cost increase scenario apart from its impact on the reduction of the total vehicle kilometers traveled (VKT). A 20% increase in fuel price is predicted to reduce the annual VKT by 5.02 billion (11.57% of the total annual VKT in Flanders), which causes the total NOCs to decline by 2.83%.

  8. On-road measurement of regulated pollutants from diesel and CNG buses with urea selective catalytic reduction systems

    NASA Astrophysics Data System (ADS)

    Guo, Jiadong; Ge, Yunshan; Hao, Lijun; Tan, Jianwei; Li, Jiaqiang; Feng, Xiangyu

    2014-12-01

    In this study, emissions from 13 buses operated in Beijing, including two Euro-III diesel buses, four Euro-IV diesel buses, three Euro-V diesel buses and four Euro-V CNG buses, were characterized in real world conditions. All of the buses tested were fitted with selective catalytic reduction (SCR) systems except for the Euro-III diesel buses. A SEMTECH-DS was used for testing the gaseous pollutants, and an electric low pressure impactor (ELPI) was used for measuring of particle numbers and size distributions. A comparison was made based on emission performance of these buses by employing the VSP approach and fuel- based emissions factors. Diesel buses emitted less CO and THC but more NOx and PM pollutants than CNG buses. The NOx reduction efficiencies of the SCR systems for CNG buses were higher because of the high exhaust temperature and high NO2/NOx ratio, whereas the efficiencies for diesel buses were lower. This resulted in extremely low NOx emissions from CNG buses, but the high NO2/NOx ratio needs further study. Failures of urea injection in the SCR systems were detected in this research, which resulted in very high NOx emissions. The CNG buses also emitted smaller numbers of particles and less particle mass with the presence of oxidation catalysts. Diesel buses satisfying the Euro-V standard performed better than Euro-IV and Euro-III diesel buses in terms of emission performance, except for more nuclei mode particles. Most of time, the Euro-IV diesel buses show no advantages in CO and NOx emissions compared with the Euro-III diesel buses.

  9. Method for measuring the intensity profile of a CT fan-beam filter

    NASA Astrophysics Data System (ADS)

    Whiting, Bruce R.; Dohatcu, Andreea

    2014-03-01

    Research on CT systems often requires knowledge of intensity as a function of angle in the fan-beam, due to the presence of bowtie filters, for studies such as dose reduction simulation, Monte Carlo dose calculations, or statistical reconstruction algorithms. Since manufacturers consider the x-ray bowtie filter design to be proprietary information, several methods have been proposed to measure the beam intensity profile independently: 1) calculate statistical properties of noise in acquired sinograms (requires access to raw data files, which is also vendor proprietary); 2) measure the waveform of a dosimeter located away from the isocenter (requires dosimeter equipment costing > 10K). We present a novel method that is inexpensive (parts costing 100 from any hardware store, using Gafchromic film at $3 per measurement), requires no proprietary information, and can be performed in a few minutes. A fixture is built from perforated steel tubing, which forms an aperture that selectively samples the intensity at a particular fan-beam angle in a rotating gantry. Two exposures (1× and 2×) are made and self-developing radiochromic film (Gafchromic XR- Ashland Inc.) is then scanned on an inexpensive PC document scanner. An analysis method is described that linearizes the measurements for relative exposure. The resultant profile is corrected for geometric effects (1/LΛ2 fall-off, gantry dwell time) and background exposure, providing a noninvasive estimate of the CT fan-beam intensity present in an operational CT system. This method will allow researchers to conveniently measure parameters required for modeling the effects of bowtie filters in clinical scanners.

  10. Precision and Resolution on Tore-Supra Ece Electron Temperature Profile Measurements

    NASA Astrophysics Data System (ADS)

    Ségui, J. L.; Molina, D.; Goniche, M.

    2003-02-01

    A 16-channel heterodyne radiometer, 2 GHz spaced, is used on Tore-Supra to measure the electron cyclotron emission in the frequency range 78-110 GHz for the O mode and 94 -126 GHz for the Xmode. In the equatorial plane, a dual polarisation gaussian optics lens antenna, with a perpendicular line of sight (with respect to the magnetic field), gives ECE measurements with very low refraction and Doppler effects. A separate O/X mode RF front-end allows the use of an IF electronic mode selector. This improves time stability calibration and gives the potentiality of simultaneous O/X mode measurements in the 94 -110 Ghz RF band for polarisation studies. RF and IF filters reject the gyrotron frequency (118 Ghz) in order to perform temperature measurements during ECRH plasmas. A precise absolute spectral calibration is performed outside the vacuum vessel by using a 600°C black body, a digital signal averaging on the waveform generated by a mechanical chopper placed directly in front of it, and a simulation window without Fabry-Pérot effects. The calibration precision leads to ECE temperature profiles which are very consistent with Thomson scattering measurements and guarantees a good stability of the ECE profiles for small changes on the magnetic field (absolute precision +/-6%, relative precision between channels +/-3%). Post-pulse data processing takes routinely into account the total magnetic field (Bvacuum with ripple, Bpara, Bdia, Bpol, all with analytical formulations), the radial relativistic shift (analytical formulation is used), the refraction (cut-offs detection with safety margin to avoid strong refraction), the nonthermal ECE spectra during LHCD (using an electron density threshold criterion). These previous analytical formulations are compatible with real time processing. Relativistic radial broadening simulations show that it is useful to fulfil 32 channels (1GHz

  11. Scaling roads and wildlife: The Cinderella principle

    USGS Publications Warehouse

    Bissonette, J.A.

    2002-01-01

    It is clear that a reduction in both direct and indirect effects of roads and road networks must be the goal of management agencies. However, increased permeability of roaded landscapes can only be achieved by up-front planning and subsequent mitigative actions. The key is to understand that roads must be made permeable to the movement of animals. More profoundly, ecosystem services, i.e., clean water, clean air, uncontaminated soil, natural landscapes, recreation opportunities, abundant wildlife, and life sustaining ecological processes must not be seriously impacted. In other words, quality of life as measured by ecosystem services should be a major component of the planning process when roads are constructed or improved. Mitigative structures exist to increase permeability of roads. Wildlife overpasses and underpasses, often referred to as ecoducts or green bridges, with associated structures to enable larger animals to exit the road right of way, e.g., earthen escape ramps (BISSONETTE and HAMMER, 2001), various culvert designs for smaller animals including badger pipes and amphibian and reptile tunnels, and fish ladders are but a small sampling of the structures already in place around the world. What is needed is attention to the big picture. Landscapes need to be reconnected and made more permeable. Responsible agencies and organizations need to be aggressive about promoting mitigations and a conservation ethic into road planning. Only with a broad based effort between a concerned public, a database to work from, and a willingness of responsible agencies, will the now very large virtual footprint of roads and road networks be reduced to more closely approximate the physical footprint. By embracing the Cinderella Principle of making the virtual shoe fit more closely the actual physical footprint of roads, we will be able to achieve a closer connection with ecological harmony with its resultant effect of abundant wildlife.

  12. SUB-M-RAD ANGULAR STABILITY MEASUREMENTS BY USE OF LONG TRACE PROFILER BASED SYSTEMS.

    SciTech Connect

    QIAN,S.

    1999-07-23

    High accuracy angle measurement at the sub-{mu}rad level requires extremely high instrument stability. In order to reach sub-{mu}rad stability (0.1 arc second or less) over long time periods, it is necessary to maintain the test object and almost all of the optical components in the measuring instrument in very steady positions. However, mechanical force relaxation, thermal expansion, and asymmetric structures produce angular and linear displacements in the system resulting in angular measurement error. A Long-Trace-Profiler (LTP)-based stable equipment is used to test precision angular stability with sub-{mu}rad resolution. Long term stability over 15 hours has been measured on different kind of mechanical structures. Temperature monitoring during the tests is extremely important. Some test results showing the effects of thermal variations are presented, which indicate that temperature stability on the order of 0.1 C is absolutely necessary for repeatable sub-{mu}rad measurements. The optical method, using optics with an even number of reflecting surfaces (for example, a right angle prism, pentaprism, or rhomboid prism) to reduce the influence of existing angular displacement, is introduced and the comparison measurement is presented. An optical fiber transfer line is able to reduce the laser angular shift from about 10 {mu}rad to a level of 0.3 {mu}rad rms. Careful system configuration, design and operation are very important for the sub-{mu}rad angle stability.

  13. Role of turbulence fluctuations on uncertainties of acoutic Doppler current profiler discharge measurements

    USGS Publications Warehouse

    Tarrab, Leticia; Garcia, Carlos M.; Cantero, Mariano I.; Oberg, Kevin

    2012-01-01

    This work presents a systematic analysis quantifying the role of the presence of turbulence fluctuations on uncertainties (random errors) of acoustic Doppler current profiler (ADCP) discharge measurements from moving platforms. Data sets of three-dimensional flow velocities with high temporal and spatial resolution were generated from direct numerical simulation (DNS) of turbulent open channel flow. Dimensionless functions relating parameters quantifying the uncertainty in discharge measurements due to flow turbulence (relative variance and relative maximum random error) to sampling configuration were developed from the DNS simulations and then validated with field-scale discharge measurements. The validated functions were used to evaluate the role of the presence of flow turbulence fluctuations on uncertainties in ADCP discharge measurements. The results of this work indicate that random errors due to the flow turbulence are significant when: (a) a low number of transects is used for a discharge measurement, and (b) measurements are made in shallow rivers using high boat velocity (short time for the boat to cross a flow turbulence structure).

  14. Form-Profiling of Optics Using the Geometry Measuring Machine and the M-48 CMM at NIST

    PubMed Central

    Machkour-Deshayes, Nadia; Stoup, John; Lu, Z. Q. John; Soons, Johannes; Griesmann, Ulf; Polvani, Robert

    2006-01-01

    We are developing an instrument, the Geometry Measuring Machine (GEMM), to measure the profile errors of aspheric and free form optical surfaces, with measurement uncertainties near 1 nm. Using GEMM, an optical profile is reconstructed from local curvatures of a surface, which are measured at points on the optic’s surface. We will describe a prototype version of GEMM, its repeatability with time, a measurements registry practice, and the calibration practice needed to make nanometer resolution comparisons with other instruments. Over three months, the repeatability of GEMM is 3 nm rms, and is based on the constancy of the measured profile of an elliptical mirror with a radius of curvature of about 83 m. As a demonstration of GEMM’s capabilities for curvature measurement, profiles of that same mirror were measured with GEMM and the NIST Moore M-48 coordinate measuring machine. Although the methods are far different, two reconstructed profiles differ by 22 nm peak-to-valley, or 6 nm rms. This comparability clearly demonstrates that with appropriate calibration, our prototype of the GEMM can measure complex-shaped optics. PMID:27274939

  15. Reflectometry: A Reliable And Sensitive Plasma Diagnostic For Density Profile And Turbulence Measurements On Tore-Supra

    SciTech Connect

    Sabot, R.; Clairet, F.; Giacalone, J. C.; Molina, D.; Sirinelli, A.; Vermare, L.; Heuraux, S.; Leclert, G.

    2006-01-15

    A set of four reflectometers has been installed on Tore-Supra to measure the density profiles and the properties of density fluctuations with good spatial resolution. Fast swept X-mode reflectometers covering the range 50 to 155 GHz provide reliable and accurate measurements of the whole density profile from the edge on the outer side up to the core on the high field side even during large and fast profile evolution. Precise evaluation of the density profile is crucial for particle transport studies. A particular feature, a local peaking, has been observed in the core during ohmic discharge. Density fluctuations are measured with three different techniques. The classical fixed frequency method looks at large scale fluctuations (kr < 3 cm-1) . It measures the radial profile of fluctuations and can detect density perturbation associated to high frequency modes. A new method has been validated to measure the radial profile of small scale density fluctuations from fast FM-CW phase reflected signal. This method could also retrieve the radial wavenumber spectrum. The last method Doppler reflectometry is based on back scattering. It measures the poloidal rotation and fluctuations amplitude at different poloidal wave numbers (3 < k{theta} < 20 cm-1). This collection of diagnostics achieves complementary measurements from the low to the high field side of the discharge and from large to small scale.

  16. Loch Linnhe experiment 1994: Background stratification and shear measurements. Part 1: Profile summary and dispersion relations

    SciTech Connect

    Robey, H.F.; Ravizza, D.L.

    1994-10-10

    This report documents water column measurements made during the 1994 Loch Linnhe experiment, a joint US/UK radar ocean imaging experiment. Part 1 summarizes the profiles of temperature, salinity, density, Brunt-Vaisala frequency, and horizontal currents resolved into along and cross track directions. Internal wave dispersion relations, phase and group velocities, and eigenfunctions for modes 1 and 2 are computed for each profile. The effect of depth on these derived internal wave parameters is examined as well by computing eigenvalues and eigenfunctions for two different depths. The trials were conducted in Loch Linnhe, Scotland during the period from September 4, 1994 to September 17, 1994. The measurements reported herein were made from on board the R. V. Calanus, a research vessel operated by the Dunstaffnage Marine Laboratory (DML). The Calanus was moored approximately 125 meters from the track of the wake generating ship, either the R. V. Colonel Templer or a {open_quotes}Dog{close_quotes} class tug, the Collie. The depth at the mooring location was approximately 45 meters, while the depth at the closest point along the ship track was approximately 80 meters. For further details of the experiment, one is referred to the Loch Linnhe Experiment 1994: Trial Plan, Draft Version 3.0.

  17. Upstream Measurements of Wind Profiles with Doppler Lidar for Improved Wind Energy Integration

    SciTech Connect

    Rodney Frehlich

    2012-10-30

    New upstream measurements of wind profiles over the altitude range of wind turbines will be produced using a scanning Doppler lidar. These long range high quality measurements will provide improved wind power forecasts for wind energy integration into the power grid. The main goal of the project is to develop the optimal Doppler lidar operating parameters and data processing algorithms for improved wind energy integration by enhancing the wind power forecasts in the 30 to 60 minute time frame, especially for the large wind power ramps. Currently, there is very little upstream data at large wind farms, especially accurate wind profiles over the full height of the turbine blades. The potential of scanning Doppler lidar will be determined by rigorous computer modeling and evaluation of actual Doppler lidar data from the WindTracer system produced by Lockheed Martin Coherent Technologies, Inc. of Louisville, Colorado. Various data products will be investigated for input into numerical weather prediction models and statistically based nowcasting algorithms. Successful implementation of the proposed research will provide the required information for a full cost benefit analysis of the improved forecasts of wind power for energy integration as well as the added benefit of high quality wind and turbulence information for optimal control of the wind turbines at large wind farms.

  18. Dial Measurements of Free-Tropospheric Ozone Profiles in Huntsville, AL

    NASA Technical Reports Server (NTRS)

    Newchurch, Mike; Kuang, Shi; Burris, John; Johnson, Steve; Long, Stephanie

    2008-01-01

    A tropospheric ozone DIfferential Absorption Lidar (DIAL) system has been developed jointly by NASA and the University of Alabama at Huntsville (UAH). Two separated Nd:YAG pumped dye laser systems produce the laser pulses with wavelengths of 285 and 291 nm at 20 Hz frequency. The receiver is a Newtonian telescope with a 40 cm primary and a two-channel aft optics unit. The detection system currently uses photon counting to facilitate operations at the maximum achievable altitude. This lidar measures free-tropospheric ozone profiles between 4-10 km at Regional Atmospheric Profiling Laboratory for Discovery (RAPCD) in UAH campus (ASL 206 m) under both daytime and nighttime conditions. Frequent coincident ozonesonde flights and theoretical calculations provide evidence to indicate the retrieval accuracy ranges from approx.5% at 4 km to approx.60% at 10 km with 750-m vertical resolution and 30-minute integration. Three Hamamatsu 7400 PMTs and analog detection technique will be added on the current system to extend the measurement to approx.100 m above ground to monitor the PBL and lower tropospheric ozone variations.

  19. Ultrasound measurements of temperature profiles in Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Rahal, Samir; Andereck, C. David

    1999-11-01

    Sound velocity in a fluid is a function of the temperature of the fluid along the path of the sound propagation. We have exploited this fact in developing an experimental technique for the measurement of temperature profiles in fluids using ultrasound. As a first step in testing this concept we have set up a narrow rectangular test cell containing a transparent fluid. The fluid layer is heated from below and cooled above, resulting in a periodic Rayleigh-Bénard roll pattern forming above convective onset. An ultrasound transducer operating in pulse/echo mode is moved systematically from one location to another along the test cell. At each location the time-of-flight across the cell (parallel with the convection roll axes) of the ultrasound pulses is measured. Each time-of-flight is converted to a local temperature, averaged across the cell, using the known relationship between the time-of-flight, the