Science.gov

Sample records for measured electron density

  1. Absolute Measurement of Electron Cloud Density

    SciTech Connect

    Covo, M K; Molvik, A W; Cohen, R H; Friedman, A; Seidl, P A; Logan, G; Bieniosek, F; Baca, D; Vay, J; Orlando, E; Vujic, J L

    2007-06-21

    Beam interaction with background gas and walls produces ubiquitous clouds of stray electrons that frequently limit the performance of particle accelerator and storage rings. Counterintuitively we obtained the electron cloud accumulation by measuring the expelled ions that are originated from the beam-background gas interaction, rather than by measuring electrons that reach the walls. The kinetic ion energy measured with a retarding field analyzer (RFA) maps the depressed beam space-charge potential and provides the dynamic electron cloud density. Clearing electrode current measurements give the static electron cloud background that complements and corroborates with the RFA measurements, providing an absolute measurement of electron cloud density during a 5 {micro}s duration beam pulse in a drift region of the magnetic transport section of the High-Current Experiment (HCX) at LBNL.

  2. Electron density measurements for plasma adaptive optics

    NASA Astrophysics Data System (ADS)

    Neiswander, Brian W.

    Over the past 40 years, there has been growing interest in both laser communications and directed energy weapons that operate from moving aircraft. As a laser beam propagates from an aircraft in flight, it passes through boundary layers, turbulence, and shear layers in the near-region of the aircraft. These fluid instabilities cause strong density gradients which adversely affect the transmission of laser energy to a target. Adaptive optics provides corrective measures for this problem but current technology cannot respond quickly enough to be useful for high speed flight conditions. This research investigated the use of plasma as a medium for adaptive optics for aero-optics applications. When a laser beam passes through plasma, its phase is shifted proportionally to the electron density and gas heating within the plasma. As a result, plasma can be utilized as a dynamically controllable optical medium. Experiments were carried out using a cylindrical dielectric barrier discharge plasma chamber which generated a sub-atmospheric pressure, low-temperature plasma. An electrostatic model of this design was developed and revealed an important design constraint relating to the geometry of the chamber. Optical diagnostic techniques were used to characterize the plasma discharge. Single-wavelength interferometric experiments were performed and demonstrated up to 1.5 microns of optical path difference (OPD) in a 633 nm laser beam. Dual-wavelength interferometry was used to obtain time-resolved profiles of the plasma electron density and gas heating inside the plasma chamber. Furthermore, a new multi-wavelength infrared diagnostic technique was developed and proof-of-concept simulations were conducted to demonstrate the system's capabilities.

  3. Estimation of topside electron density profile using on-orbit measured GPS and electron density data.

    NASA Astrophysics Data System (ADS)

    Lee, J.

    2015-12-01

    The topside ionophere have lacks of information about plasma, but it is important for human beings and scientific applicaiton. We establish an estimation method for electron density profile using Langmuir Probe and GPS data of CHAMP satellite and have comparision the method results with other satellites measurements. In order to develop the model, hydrostatic mapping function, vertical scale height, and vertical TEC(Total Electron Contents) are used for calculations. The electron density and GPS data with hydrostatic mapping function give the vertical TEC and after some algebra using exponential model of density profile give the vertical scale height of ionosphere. The scale height have about 10^2~10^3 km order of magnitude so it can be used exponential model again since the altitude of CHAMP. Therefore, apply the scale height to exponoential model we can get the topside electron density profile. The result of the density profile model can be compared with other satellite data as STSAT-1, ROCSAT, DMSP which is measured the electron density in similar Local Time, Latitude, Longitude but above the CHAMP. This comparison shows the method is accecptable and it can be applied to other reseach for topside ionosphere.

  4. Measurement of electron density using reactance cutoff probe

    NASA Astrophysics Data System (ADS)

    You, K. H.; You, S. J.; Kim, D. W.; Na, B. K.; Seo, B. H.; Kim, J. H.; Seong, D. J.; Chang, H. Y.

    2016-05-01

    This paper proposes a new measurement method of electron density using the reactance spectrum of the plasma in the cutoff probe system instead of the transmission spectrum. The highly accurate reactance spectrum of the plasma-cutoff probe system, as expected from previous circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], was measured using the full two-port error correction and automatic port extension methods of the network analyzer. The electron density can be obtained from the analysis of the measured reactance spectrum, based on circuit modeling. According to the circuit simulation results, the reactance cutoff probe can measure the electron density more precisely than the previous cutoff probe at low densities or at higher pressure. The obtained results for the electron density are presented and discussed for a wide range of experimental conditions, and this method is compared with previous methods (a cutoff probe using the transmission spectrum and a single Langmuir probe).

  5. Measurement of electron density using reactance cutoff probe

    SciTech Connect

    You, K. H.; Seo, B. H.; Kim, J. H.; Seong, D. J.; You, S. J.; Kim, D. W.; Na, B. K.; Chang, H. Y.

    2016-05-15

    This paper proposes a new measurement method of electron density using the reactance spectrum of the plasma in the cutoff probe system instead of the transmission spectrum. The highly accurate reactance spectrum of the plasma-cutoff probe system, as expected from previous circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], was measured using the full two-port error correction and automatic port extension methods of the network analyzer. The electron density can be obtained from the analysis of the measured reactance spectrum, based on circuit modeling. According to the circuit simulation results, the reactance cutoff probe can measure the electron density more precisely than the previous cutoff probe at low densities or at higher pressure. The obtained results for the electron density are presented and discussed for a wide range of experimental conditions, and this method is compared with previous methods (a cutoff probe using the transmission spectrum and a single Langmuir probe).

  6. Measurement of electron density and temperature in plasmas

    NASA Technical Reports Server (NTRS)

    Billman, K. W.; Rowley, P. D.; Presley, L. L.; Stallcop, J.

    1972-01-01

    Application of two laser wavelengths passing through plasma measures electron density and temperature. Function depends on determining absorption of light at two wavelengths. Nature of reaction is explained and schematic diagram of equipment is included.

  7. Electron Density Measurements on Radiographic Diodes

    DTIC Science & Technology

    2007-06-01

    cosine of the phase shift measured by the interferometer leave the circular Lissajous figure as the scene beam is likely refracted during the SMP...from the interferometer unusable. Additional insight into this behavior is gained by looking at the Lissajous figure obtained by plotting the raw...photodiode voltages against each other. Figure 4 shows the Lissajous figure plotted in blue on a long time scale, before, during, and after the SMP

  8. Rocket measurements of electron density irregularities during MAC/SINE

    NASA Technical Reports Server (NTRS)

    Ulwick, J. C.

    1989-01-01

    Four Super Arcas rockets were launched at the Andoya Rocket Range, Norway, as part of the MAC/SINE campaign to measure electron density irregularities with high spatial resolution in the cold summer polar mesosphere. They were launched as part of two salvos: the turbulent/gravity wave salvo (3 rockets) and the EISCAT/SOUSY radar salvo (one rocket). In both salvos meteorological rockets, measuring temperature and winds, were also launched and the SOUSY radar, located near the launch site, measured mesospheric turbulence. Electron density irregularities and strong gradients were measured by the rocket probes in the region of most intense backscatter observed by the radar. The electron density profiles (8 to 4 on ascent and 4 on descent) show very different characteristics in the peak scattering region and show marked spatial and temporal variability. These data are intercompared and discussed.

  9. Measuring ionospheric electron density using the plasma frequency probe

    SciTech Connect

    Jensen, M.D.; Baker, K.D. )

    1992-02-01

    During the past decade, the plasma frequency probe (PFP) has evolved into an accurate, proven method of measuring electron density in the ionosphere above about 90 km. The instrument uses an electrically short antenna mounted on a sounding rocket that is immersed in the plasma and notes the frequency where the antenna impedance is large and nonreactive. This frequency is closely related to the plasma frequency, which is a direct function of free electron concentration. The probe uses phase-locked loop technology to follow a changing electron density. Several sections of the plasma frequency probe circuitry are unique, especially the voltage-controlled oscillator that uses both an electronically tuned capacitor and inductor to give the wide tuning range needed for electron density measurements. The results from two recent sounding rocket flights (Thunderstorm II and CRIT II) under vastly different plasma conditions demonstrate the capabilities of the PFP and show the importance of in situ electron density measurements of understanding plasma processes. 9 refs.

  10. Rocket radio measurement of electron density in the nighttime ionosphere

    NASA Technical Reports Server (NTRS)

    Gilchrist, B. E.; Smith, L. G.

    1979-01-01

    One experimental technique based on the Faraday rotation effect of radio waves is presented for measuring electron density in the nighttime ionosphere at midlatitudes. High frequency linearly-polarized radio signals were transmitted to a linearly-polarized receiving system located in a spinning rocket moving through the ionosphere. Faraday rotation was observed in the reference plane of the rocket as a change in frequency of the detected receiver output. The frequency change was measured and the information was used to obtain electron density data. System performance was evaluated and some sources of error were identified. The data obtained was useful in calibrating a Langmuir probe experiment for electron density values of 100/cu cm and greater. Data from two rocket flights are presented to illustrate the experiment.

  11. Electron density measurements in the ITER fusion plasma

    NASA Astrophysics Data System (ADS)

    Watts, Christopher; Udintsev, Victor; Andrew, Philip; Vayakis, George; Van Zeeland, Michael; Brower, David; Feder, Russell; Mukhin, Eugene; Tolstyakov, Sergey

    2013-08-01

    The operation of ITER requires high-quality estimates of the plasma electron density over multiple regions in the plasma for plasma evaluation, plasma control and machine protection purposes. Although the density regimes of ITER are not very different from those of existing tokamaks (1018-1021 m-3), the severe conditions of the fusion plasma environment present particular challenges to implementing these density diagnostics. In this paper we present an overview of the array of ITER electron density diagnostics designed to measure over the entire ITER domain: plasma core, pedestal, edge, scrape-off layer and divertor. It will focus on the challenges faced in making these measurements, and the technical solutions of the current designs.

  12. Seismo-ionospheric coupling appearing as equatorial electron density enhancements observed via DEMETER electron density measurements

    NASA Astrophysics Data System (ADS)

    Ryu, K.; Lee, E.; Chae, J. S.; Parrot, M.; Pulinets, S.

    2014-10-01

    We report the processes and results of statistical analysis on the ionospheric electron density data measured by the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite over a period of 6 years (2005-2010), in order to investigate the correlation between seismic activity and equatorial plasma density variations. To simplify the analysis, three equatorial regions with frequent earthquakes were selected and then one-dimensional time series analysis between the daily seismic activity indices and the equatorial ionization anomaly (EIA) intensity indices, which represent relative equatorial electron density increase, were performed for each region. The statistically significant values of the lagged cross-correlation function, particularly in the region with minimal effects of longitudinal asymmetry, indicate that some of the very large earthquakes with M > 5.0 in the low-latitude region can accompany observable precursory and concurrent EIA enhancements, even though the seismic activity is not the most significant driver of the equatorial ionospheric evolution. The physical mechanisms of the seismo-ionospheric coupling is consistent with our observation, and the possibility of earthquake prediction using the EIA intensity variation is discussed.

  13. Electron temperature and density measurements of laser induced germanium plasma

    SciTech Connect

    Shakeel, Hira; Arshad, Saboohi; Haq, S. U. Nadeem, Ali

    2016-05-15

    The germanium plasma produced by the fundamental harmonics (1064 nm) of Nd:YAG laser in single and double pulse configurations have been studied spectroscopically. The plasma is characterized by measuring the electron temperature using the Boltzmann plot method for neutral and ionized species and electron number density as a function of laser irradiance, ambient pressure, and distance from the target surface. It is observed that the plasma parameters have an increasing trend with laser irradiance (9–33 GW/cm{sup 2}) and with ambient pressure (8–250 mbar). However, a decreasing trend is observed along the plume length up to 4.5 mm. The electron temperature and electron number density are also determined using a double pulse configuration, and their behavior at fixed energy ratio and different interpulse delays is discussed.

  14. Absolute electron density measurements in the equatorial ionosphere

    NASA Technical Reports Server (NTRS)

    Baker, K. D.; Howlett, L. C.; Rao, N. B.; Ulwick, J. C.; Labelle, J.

    1985-01-01

    Accurate measurement of the electron density profile and its variations is crucial to further progress in understanding the physics of the disturbed equatorial ionosphere. To accomplish this, a plasma frequency probe was included in the payload complement of two rockets flown during the Condor rocket campaign conducted from Peru in March 1983. This paper presents density profiles of the disturbed equatorial ionosphere from a night-time flight in which spread-F conditions were present and from a day-time flight during strong electrojet conditions. Results from both flights are in excellent agreement with simultaneous radar data in that the regions of highly disturbed plasma coincide with the radar signatures. The spread-F rocket penetrated a topside depletion during both the upleg and downleg. The electrojet measurements showed a profile peaking at 1.3 x 10 to the 5th per cu cm at 106 km, with large scale fluctuations having amplitudes of roughly 10 percent seen only in the upward gradient in electron density. This is in agreement with plasma instability theory. It is further shown that simultaneous measurements by fixed-bias Langmuir probes, when normalized at a single point to the altitude profile of electron density, are inadequate to correctly parameterize the observed enhancements and depletions.

  15. Absolute electron density measurements in the equatorial ionosphere

    NASA Technical Reports Server (NTRS)

    Baker, K. D.; Howlett, L. C.; Rao, N. B.; Ulwick, J. C.; Labelle, J.

    1985-01-01

    Accurate measurement of the electron density profile and its variations is crucial to further progress in understanding the physics of the disturbed equatorial ionosphere. To accomplish this, a plasma frequency probe was included in the payload complement of two rockets flown during the Condor rocket campaign conducted from Peru in March 1983. This paper presents density profiles of the disturbed equatorial ionosphere from a night-time flight in which spread-F conditions were present and from a day-time flight during strong electrojet conditions. Results from both flights are in excellent agreement with simultaneous radar data in that the regions of highly disturbed plasma coincide with the radar signatures. The spread-F rocket penetrated a topside depletion during both the upleg and downleg. The electrojet measurements showed a profile peaking at 1.3 x 10 to the 5th per cu cm at 106 km, with large scale fluctuations having amplitudes of roughly 10 percent seen only in the upward gradient in electron density. This is in agreement with plasma instability theory. It is further shown that simultaneous measurements by fixed-bias Langmuir probes, when normalized at a single point to the altitude profile of electron density, are inadequate to correctly parameterize the observed enhancements and depletions.

  16. Plasma actuator electron density measurement using microwave perturbation method

    SciTech Connect

    Mirhosseini, Farid; Colpitts, Bruce

    2014-07-21

    A cylindrical dielectric barrier discharge plasma under five different pressures is generated in an evacuated glass tube. This plasma volume is located at the center of a rectangular copper waveguide cavity, where the electric field is maximum for the first mode and the magnetic field is very close to zero. The microwave perturbation method is used to measure electron density and plasma frequency for these five pressures. Simulations by a commercial microwave simulator are comparable to the experimental results.

  17. Measurements of electron number density and plasma temperature using LIBS

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-xia; Luo, Wen-feng; He, Jun-fang; Wang, Hong-ying; Yang, Sen-lin; Li, Yuan-yuan

    2016-10-01

    Plasma produced by the radiation of a 1064 nm Nd:YAG laser focused onto a standard aluminum alloy E311 was studied spectroscopically. The electron density was inferred by measuring the Stark broadened line profile of Cu I 324.75 nm at a distance of 1.5 mm from the target surface with the laser irradiance of 3.27 GW/cm2. The electron temperature was determined using the Boltzmann plot method with eight neutral iron lines. At the same time, the validity of the assumption of local thermodynamic equilibrium was discussed in light of the results obtained.

  18. Cutoff probe using Fourier analysis for electron density measurement

    SciTech Connect

    Na, Byung-Keun; You, Kwang-Ho; Kim, Dae-Woong; Chang, Hong-Young; You, Shin-Jae; Kim, Jung-Hyung

    2012-01-15

    This paper proposes a new method for cutoff probe using a nanosecond impulse generator and an oscilloscope, instead of a network analyzer. The nanosecond impulse generator supplies a radiating signal of broadband frequency spectrum simultaneously without frequency sweeping, while frequency sweeping method is used by a network analyzer in a previous method. The transmission spectrum (S21) was obtained through a Fourier analysis of the transmitted impulse signal detected by the oscilloscope and was used to measure the electron density. The results showed that the transmission frequency spectrum and the electron density obtained with a new method are very close to those obtained with a previous method using a network analyzer. And also, only 15 ns long signal was necessary for spectrum reconstruction. These results were also compared to the Langmuir probe's measurements with satisfactory results. This method is expected to provide not only fast measurement of absolute electron density, but also function in other diagnostic situations where a network analyzer would be used (a hairpin probe and an impedance probe) by replacing the network analyzer with a nanosecond impulse generator and an oscilloscope.

  19. Electron density measurements during the NLC-91 campaign

    NASA Technical Reports Server (NTRS)

    Ulwick, J. C.; Kelley, Michael C.; Alcala, C.

    1994-01-01

    A Super Arcas rocket, MISTI B, containing DC and RF probes, was launched as a part of the PMSE (Polar Mesosphere Summer Echoes) Salvo during the NLC-91 (Noctilucent Cloud) campaign to measure electron density irregularities with high spatial resolution. Measurements of large and small scale structures in the electron density were made on rocket ascent and descent at the altitudes of 86.5 and 88.5 +/- 0.5 km corresponding to the two altitudes of strongest backscatter recorded by the nearby CUPRI (Cornell University Portable Radar Interferometer) radar. Power spectra of the fluctuations shows two different structuring and scattering mechanisms exist at altitudes only 1 km apart. Since the rocket apogee was 89 km, the rocket was in the height range 88.5 +/- 0.5 km for 30 seconds giving an unusual measurement of horizontal structure over a distance of 5.5 km. Using the simultaneous DC and RF probe measurements of electron depletions and sharp gradient in the lower layer, the role of aerosols in creating these depletions and gradients is speculated upon.

  20. Electron density measurements during the NLC-91 campaign

    NASA Technical Reports Server (NTRS)

    Ulwick, J. C.; Kelley, Michael C.; Alcala, C.

    1994-01-01

    A Super Arcas rocket, MISTI B, containing DC and RF probes, was launched as a part of the PMSE (Polar Mesosphere Summer Echoes) Salvo during the NLC-91 (Noctilucent Cloud) campaign to measure electron density irregularities with high spatial resolution. Measurements of large and small scale structures in the electron density were made on rocket ascent and descent at the altitudes of 86.5 and 88.5 +/- 0.5 km corresponding to the two altitudes of strongest backscatter recorded by the nearby CUPRI (Cornell University Portable Radar Interferometer) radar. Power spectra of the fluctuations shows two different structuring and scattering mechanisms exist at altitudes only 1 km apart. Since the rocket apogee was 89 km, the rocket was in the height range 88.5 +/- 0.5 km for 30 seconds giving an unusual measurement of horizontal structure over a distance of 5.5 km. Using the simultaneous DC and RF probe measurements of electron depletions and sharp gradient in the lower layer, the role of aerosols in creating these depletions and gradients is speculated upon.

  1. Electron density and gas density measurements in a millimeter-wave discharge

    SciTech Connect

    Schaub, S. C. Hummelt, J. S.; Guss, W. C.; Shapiro, M. A.; Temkin, R. J.

    2016-08-15

    Electron density and neutral gas density have been measured in a non-equilibrium air breakdown plasma using optical emission spectroscopy and two-dimensional laser interferometry, respectively. A plasma was created with a focused high frequency microwave beam in air. Experiments were run with 110 GHz and 124.5 GHz microwaves at powers up to 1.2 MW. Microwave pulses were 3 μs long at 110 GHz and 2.2 μs long at 124.5 GHz. Electron density was measured over a pressure range of 25 to 700 Torr as the input microwave power was varied. Electron density was found to be close to the critical density, where the collisional plasma frequency is equal to the microwave frequency, over the pressure range studied and to vary weakly with input power. Neutral gas density was measured over a pressure range from 150 to 750 Torr at power levels high above the threshold for initiating breakdown. The two-dimensional structure of the neutral gas density was resolved. Intense, localized heating was found to occur hundreds of nanoseconds after visible plasma formed. This heating led to neutral gas density reductions of greater than 80% where peak plasma densities occurred. Spatial structure and temporal dynamics of gas heating at atmospheric pressure were found to agree well with published numerical simulations.

  2. Rocket-borne measurements of electron temperature and density with the Electron Retarding Potential Analyzer instrument

    NASA Astrophysics Data System (ADS)

    Cohen, I. J.; Widholm, M.; Lessard, M. R.; Riley, P.; Heavisides, J.; Moen, J. I.; Clausen, L. B. N.; Bekkeng, T. A.

    2016-07-01

    Determining electron temperature in the ionosphere is a fundamentally important measurement for space science. Obtaining measurements of electron temperatures at high altitudes (>700 km) is difficult because of limitations on ground-based radar and classic spacecraft instrumentation. In light of these limitations, the rocket-borne Electron Retarding Potential Analyzer (ERPA) was developed to allow for accurate in situ measurement of ionospheric electron temperature with a simple and low-resource instrument. The compact ERPA, a traditional retarding potential analyzer with multiple baffle collimators, allows for a straightforward calculation of electron temperature. Since its first mission in 2004, it has amassed significant flight heritage and obtained data used in multiple studies investigating a myriad of phenomena related to magnetosphere-ionosphere coupling. In addition to highlighting the scientific contributions of the ERPA instrument, this paper outlines its theory and operation, the methodology used to obtain electron temperature measurements, and a comparative study suggesting that the ERPA can also provide electron density measurements.

  3. Measurements of electron density profiles using an angular filter refractometer

    SciTech Connect

    Haberberger, D. Ivancic, S.; Hu, S. X.; Boni, R.; Barczys, M.; Craxton, R. S.; Froula, D. H.

    2014-05-15

    A novel diagnostic technique, angular filter refractometry (AFR), has been developed to characterize high-density, long-scale-length plasmas relevant to high-energy-density physics experiments. AFR measures plasma densities up to 10{sup 21} cm{sup −3} with a 263-nm probe laser and is used to study the plasma expansion from CH foil and spherical targets that are irradiated with ∼9 kJ of ultraviolet (351-nm) laser energy in a 2-ns pulse. The data elucidate the temporal evolution of the plasma profile for the CH planar targets and the dependence of the plasma profile on target radius for CH spheres.

  4. Accuracy of cutoff probe for measuring electron density: simulation and experiment

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Woong; You, Shin-Jae; Kim, Si-June; Lee, Jang-Jae; Kim, Jung-Hyung; Oh, Wang-Yuhl

    2016-09-01

    The electron density has been used for characterizing the plasma for basic research as well as industrial application. To measure the exact electron density, various type of microwave probe has been developed and improved. The cutoff probe is a promising technique inferring the electron density from the plasma resonance peak on the transmission spectrum. In this study, we present the accuracy of electron density inferred from cutoff probe. The accuracy was investigated by electromagnetic simulation and experiment. The discrepancy between the electron densities from the cutoff probe and other sophisticated microwave probes were investigated and discussed. We found that the cutoff probe has good accuracy in inferred electron density. corresponding author.

  5. Time-resolved electron density and electron temperature measurements in nanosecond pulse discharges in helium

    NASA Astrophysics Data System (ADS)

    Roettgen, A.; Shkurenkov, I.; Simeni Simeni, M.; Petrishchev, V.; Adamovich, I. V.; Lempert, W. R.

    2016-10-01

     ≈  4.25 eV, attained after the surface ionization wave reaches the grounded electrode. The sensitivity of the present diagnostics is too low to measure electron density in the plasma during surface ionization wave propagation (estimated to be below n e  ≈  1013 cm-3). After peaking during the primary current pulse, the electron density decays due to dissociative recombination. Electron temperature decreases rapidly over ~150 ns after the primary current pulse rise, to T e  ≈  0.5 eV, followed by a much more gradual electron cooling between the primary and the secondary discharge pulses, due to superelastic collisions providing moderate electron heating in the afterglow.

  6. Electron density and electron temperature measurements in nanosecond pulse discharges over liquid water surface

    NASA Astrophysics Data System (ADS)

    Simeni Simeni, M.; Roettgen, A.; Petrishchev, V.; Frederickson, K.; Adamovich, I. V.

    2016-12-01

    Time-resolved electron density, electron temperature, and gas temperature in nanosecond pulse discharges in helium and O2-He mixtures near liquid water surface are measured using Thomson/pure rotational Raman scattering, in two different geometries, (a) ‘diffuse filament’ discharge between a spherical high-voltage electrode and a grounded pin electrode placed in a reservoir filled with distilled water, with the tip exposed, and (b) dielectric barrier discharge between the high-voltage electrode and the liquid water surface. A diffuse plasma filament generated between the electrodes in helium during the primary discharge pulse exhibits noticeable constriction during the secondary discharge pulse several hundred ns later. Adding oxygen to the mixture reduces the plasma filament diameter and enhances constriction during the secondary pulse. In the dielectric barrier discharge, diffuse volumetric plasma occupies nearly the entire space between the high voltage electrode and the liquid surface, and extends radially along the surface. In the filament discharge in helium, adding water to the container results in considerable reduction of plasma lifetime compared to the discharge in dry helium, by about an order of magnitude, indicating rapid electron recombination with water cluster ions. Peak electron density during the pulse is also reduced, by about a factor of two, likely due to dissociative attachment to water vapor during the discharge pulse. These trends become more pronounced as oxygen is added to the mixture, which increases net rate of dissociative attachment. Gas temperature during the primary discharge pulse remains near room temperature, after which it increases up to T ~ 500 K over 5 µs and decays back to near room temperature before the next discharge pulse several tens of ms later. As expected, electron density and electron temperature in diffuse DBD plasmas are considerably lower compared to peak values in the filament discharge. Use of Thomson

  7. Electron density dependence of impedance probe plasma potential measurements

    SciTech Connect

    Walker, D. N.; Blackwell, D. D.; Amatucci, W. E.

    2015-08-15

    In earlier works, we used spheres of various sizes as impedance probes in demonstrating a method of determining plasma potential, φ{sub p}, when the probe radius is much larger than the Debye length, λ{sub D}. The basis of the method in those works [Walker et al., Phys. Plasmas 13, 032108 (2006); ibid. 15, 123506 (2008); ibid. 17, 113503 (2010)] relies on applying a small amplitude signal of fixed frequency to a probe in a plasma and, through network analyzer-based measurements, determining the complex reflection coefficient, Γ, for varying probe bias, V{sub b}. The frequency range of the applied signal is restricted to avoid sheath resonant effects and ion contributions such that ω{sub pi} ≪ ω ≪ ω{sub pe}, where ω{sub pi} is the ion plasma frequency and ω{sub pe} is the electron plasma frequency. For a given frequency and applied bias, both Re(Z{sub ac}) and Im(Z{sub ac}) are available from Γ. When Re(Z{sub ac}) is plotted versus V{sub b}, a minimum predicted by theory occurs at φ{sub p} [Walker et al., Phys. Plasmas 17, 113503 (2010)]. In addition, Im(Z{sub ac}) appears at, or very near, a maximum at φ{sub p}. As n{sub e} decreases and the sheath expands, the minimum becomes harder to discern. The purpose of this work is to demonstrate that when using network analyzer-based measurements, Γ itself and Im(Z{sub ac}) and their derivatives are useful as accompanying indicators to Re(Z{sub ac}) in these difficult cases. We note the difficulties encountered by the most commonly used plasma diagnostic, the Langmuir probe. Spherical probe data is mainly used in this work, although we present limited data for a cylinder and a disk. To demonstrate the effect of lowered density as a function of probe geometry, we compare the cylinder and disk using only the indicator Re(Z{sub ac})

  8. Measurements of Electron Density Profile and Fluctuations on HSX*

    NASA Astrophysics Data System (ADS)

    Deng, C.; Brower, D. L.; Ding, W. X.; Almagri, A. F.; Anderson, D. T.; Anderson, F. S. B.; Gerhardt, S. P.; Probert, P.; Radder, J.; Talmadge, J. N.

    2001-10-01

    The 288 GHz interferometer system on the quasi-helical stellarator HSX views the plasma cross section along 9 adjacent chords with 1.5 cm spacing. At this frequency refraction is manageable but requires correction when performing inversions. The interferometer has sensitivity n_edl = 8 x 10^11 cm-2 and frequency response up to 1 MHz. Improved time response permits measurement of high-frequency density fluctuations as well as fast changes to the equilibrium profile. First results from HSX with 2nd harmonic ECH at 28 GHz, using a 5 chord version of the interferometer, indicate that the density profile is quite peaked for both quasi-helically symmetric (QHS) plasmas and those where the quasisymmetry is broken (mirror mode) for ne = 1 x 10^12 cm-3. However, for densities ne = 3 x 10^11 cm-3, the profile for the QHS plasma (high stored energy) is narrower when compared to the mirror mode (low stored energy). Density profile variation with plasma configuration and resonant heating location using the 9 channel interferometer will be described. For high density HSX plasmas, ne > 3 x 10^12 cm-3, coherent oscillations are observed in the line-integrated density traces which are out of phase across the magnetic axis. These m=1 oscillations are observed at frequencies of 1-2 kHz and result in a periodic displacement of the density profile. *Supported by USDOE under grant DE-FG03-01ER-54615, Task III and DE-FG02-93ER54222.

  9. Electron density and electron temperature measurement in a bi-Maxwellian electron distribution using a derivative method of Langmuir probes

    SciTech Connect

    Choi, Ikjin; Chung, ChinWook; Youn Moon, Se

    2013-08-15

    In plasma diagnostics with a single Langmuir probe, the electron temperature T{sub e} is usually obtained from the slope of the logarithm of the electron current or from the electron energy probability functions of current (I)-voltage (V) curve. Recently, Chen [F. F. Chen, Phys. Plasmas 8, 3029 (2001)] suggested a derivative analysis method to obtain T{sub e} by the ratio between the probe current and the derivative of the probe current at a plasma potential where the ion current becomes zero. Based on this method, electron temperatures and electron densities were measured and compared with those from the electron energy distribution function (EEDF) measurement in Maxwellian and bi-Maxwellian electron distribution conditions. In a bi-Maxwellian electron distribution, we found the electron temperature T{sub e} obtained from the method is always lower than the effective temperatures T{sub eff} derived from EEDFs. The theoretical analysis for this is presented.

  10. Absolute Measurement of Electron Cloud Density in aPositively-Charged Particle Beam

    SciTech Connect

    Kireeff Covo, Michel; Molvik, Arthur W.; Friedman, Alex; Vay,Jean-Luc; Seidl, Peter A.; Logan, Grant; Baca, David; Vujic, Jasmina L.

    2006-04-27

    Clouds of stray electrons are ubiquitous in particle accelerators and frequently limit the performance of storage rings. Earlier measurements of electron energy distribution and flux to the walls provided only a relative electron cloud density. We have measured electron accumulation using ions expelled by the beam. The ion energy distribution maps the depressed beam potential and gives the dynamic cloud density. Clearing electrode current reveals the static background cloud density, allowing the first absolute measurement of the time-dependent electron cloud density during the beam pulse.

  11. Absolute Measurement of Electron Cloud Density in a Positively-Charged Particle Beam

    SciTech Connect

    Covo, M K; Molvik, A W; Friedman, A; Vay, J; Seidl, P A; Logan, B G; Baca, D; Vujic, J L

    2006-05-18

    Clouds of stray electrons are ubiquitous in particle accelerators and frequently limit the performance of storage rings. Earlier measurements of electron energy distribution and flux to the walls provided only a relative electron cloud density. We have measured electron accumulation using ions expelled by the beam. The ion energy distribution maps the depressed beam potential and gives the dynamic cloud density. Clearing electrode current reveals the static background cloud density, allowing the first absolute measurement of the time-dependent electron cloud density during the beam pulse.

  12. Absolute measurement of electron-cloud density in a positively charged particle beam.

    PubMed

    Kireeff Covo, Michel; Molvik, Arthur W; Friedman, Alex; Vay, Jean-Luc; Seidl, Peter A; Logan, Grant; Baca, David; Vujic, Jasmina L

    2006-08-04

    Clouds of stray electrons are ubiquitous in particle accelerators and frequently limit the performance of storage rings. Earlier measurements of electron energy distribution and flux to the walls provided only a relative electron-cloud density. We have measured electron accumulation using ions expelled by the beam. The ion energy distribution maps the depressed beam potential and gives the dynamic cloud density. Clearing electrode current reveals the static background cloud density, allowing the first absolute measurement of the time-dependent electron-cloud density during the beam pulse.

  13. A restoration model of distorted electron density in wave-cutoff probe measurement

    SciTech Connect

    Jun, Hyun-Su Lee, Yun-Seong

    2014-02-15

    This study investigates the problem of electron density distortion and how the density can be restored in a wave-cutoff probe. Despite recent plasma diagnostics research using a wave-cutoff probe, the problem of electron density distortion caused by plasma conditions has not been resolved. Experimental results indicate that electron density measured using the wave-cutoff method is highly susceptible to variations in the probe tip gap. This electron density distortion is caused by the bulk plasma disturbance between probe tips, and it must be removed for calculating the absolute electron density. To do this, a detailed analytic model was developed using the power balance equation near probe tips. This model demonstrates the characteristics of plasma distortion in wave-cutoff probe measurement and successfully restored the absolute value of electron density with varying probe tip gaps.

  14. Electron density measurements in a photoinitiated, impulse-enhanced, electrically excited laser gas discharge

    NASA Astrophysics Data System (ADS)

    Seguin, V. A.; Seguin, H. J. J.; Capjack, C. E.; Nikumb, S. K.

    1986-11-01

    Measurements of the electron density within a photo-initiated, impulse-enhanced, electrically excited (PIE) laser gas discharge are presented. Ion current measurements were made using a single Langmuir electrostatic probe positioned within the laser discharge volume. Calculations of the electron density were made utilizing a thick-sheath analysis. The results indicate that the electron density increases by two orders of magnitude as the pulser power level is increased. In addition, the electron density was observed to decrease markedly as the dc discharge current was increased.

  15. Electronically swept millimeter-wave interferometer for spatially resolved measurement of plasma electron density.

    PubMed

    Howard, John; Oliver, David

    2006-12-01

    We report the development and initial implementation of what we believe to be a new rapid- spatial-scan millimeter-wave interferometer for plasma density measurements. The fast scan is effected by electronic frequency sweeping of a wideband (180-280 GHz) backward-wave oscillator whose output is focused onto a fixed blazed diffraction grating. The system, which augments the rotating-grating scanned multiview H-1 heliac interferometer, can sweep the plasma cross section in a period of less than 1 ms with a beam diameter in the plasma of 20 mm and phase noise of the order of 0.01 rad.

  16. Electron densities in the ionosphere of Mars: A comparison of MARSIS and radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Vogt, Marissa F.; Withers, Paul; Fallows, Kathryn; Flynn, Casey L.; Andrews, David J.; Duru, Firdevs; Morgan, David D.

    2016-10-01

    Radio occultation electron densities measurements from the Mariner 9 and Viking spacecraft, which orbited Mars in the 1970s, have recently become available in a digital format. These data are highly complementary to the radio occultation electron density profiles from Mars Global Surveyor, which were restricted in solar zenith angle and altitude. We have compiled data from the Mariner 9, Viking, and Mars Global Surveyor radio occultation experiments for comparison to electron density measurements made by Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS), the topside radar sounder on Mars Express, and MARSIS-based empirical density models. We find that the electron densities measured by radio occultation are in generally good agreement with the MARSIS data and model, especially near the altitude of the peak electron density but that the MARSIS data and model display a larger plasma scale height than the radio occultation profiles at altitudes between the peak density and 200 km. Consequently, the MARSIS-measured and model electron densities are consistently larger than radio occultation densities at altitudes 200-300 km. Finally, we have analyzed transitions in the topside ionosphere, at the boundary between the photochemically controlled and transport-controlled regions, and identified the average transition altitude, or altitude at which a change in scale height occurs. The average transition altitude is 200 km in the Mariner 9 and Viking radio occultation profiles and in profiles of the median MARSIS radar sounding electron densities.

  17. Wavefront-sensor-based electron density measurements for laser-plasma accelerators

    SciTech Connect

    Plateau, Guillaume; Matlis, Nicholas; Geddes, Cameron; Gonsalves, Anthony; Shiraishi, Satomi; Lin, Chen; van Mourik, Reinier; Leemans, Wim

    2010-02-20

    Characterization of the electron density in laser produced plasmas is presented using direct wavefront analysis of a probe laser beam. The performance of a laser-driven plasma-wakefield accelerator depends on the plasma wavelength, hence on the electron density. Density measurements using a conventional folded-wave interferometer and using a commercial wavefront sensor are compared for different regimes of the laser-plasma accelerator. It is shown that direct wavefront measurements agree with interferometric measurements and, because of the robustness of the compact commercial device, have greater phase sensitivity, straightforward analysis, improving shot-to-shot plasma-density diagnostics.

  18. Absolute measurements of night-time electron density using ISR gyro lines

    NASA Astrophysics Data System (ADS)

    Bhatt, Asti; Kelley, Michael; Nicolls, Michael; Sulzer, Michael

    2012-07-01

    Gyro line in Incoherent Scatter Spectrum is the underused cousin of the more popular Plasma line. This is because it is very weak during the day and stronger during dawn and dusk hours. When the electron density is such that the electron plasma frequency drops below the electron gyro frequency, the gyro line frequency becomes proportional to the electron density. This is during a time when the plasma line is no longer detected, and we have no other means for getting precise measurements for absolute electron density. In this paper, we will present a linear equation for the gyro line frequency and measurements from the Arecibo radar in Puerto Rico, showing comparison with the plasma line data and derived electron density.

  19. Spatial electron density and electric field strength measurements in microwave cavity experiments

    NASA Technical Reports Server (NTRS)

    Peters, M.; Rogers, J.; Whitehair, S.; Asmussen, J.; Kerber, R.

    1984-01-01

    Measurements of electron density and electric field strength have been made in an argon plasma contained in a resonant microwave cavity at 2.45 GHz. Spatial measurements of electron density, n sub e, are correlated with fluorescence observations of the discharge. Measurements of n sub e were made with Stark broadening and compared with n sub 3 calculated from measured plasma conductivity. Additional measurements of n sub 3 as a function of pressure and in mixtures of argon and oxygen are presented for pressures from 10 Torr to 1 atm. Measurements in flowing gases and in static systems are presented. In addition, limitations of these measurements are identified.

  20. Rocket measurements of ion and electron densities in the D-region during sunrise.

    NASA Technical Reports Server (NTRS)

    Pedersen, A.; Kane, J. A.

    1971-01-01

    Results from two rockets launched near sunrise at White Sands, N. Mex., when positive ion and electron densities were measured in the D-region for solar zenith angles of 91 and 79 deg. The measurements cover the height range 80 to 110 km and complement previous vlf observations and rocket measurements of electron density. It is shown that the majority of negative ions in this height range are detached near to after ground sunrise. On the basis of these measurements it is possible to discuss electron affinity of negative ions and ion production functions during twilight.

  1. Automated determination of electron density from electric field measurements on the Van Allen Probes spacecraft

    NASA Astrophysics Data System (ADS)

    Zhelavskaya, Irina; Kurth, William; Spasojevic, Maria; Shprits, Yuri

    2016-07-01

    We present the Neural-network-based Upper-hybrid Resonance Determination (NURD) algorithm for automatic inference of the electron number density from plasma wave measurements made onboard NASA's Van Allen Probes mission. A feedforward neural network is developed to determine the upper hybrid resonance frequency, f_{uhr}, from electric field measurements, which is then used to calculate the electron number density. In previous missions, the plasma resonance bands were manually identified, and there have been few attempts to do robust, routine automated detections. We describe the design and implementation of the algorithm and perform an initial analysis of the resulting electron number density distribution obtained by applying NURD to 2.5 years of data collected with the EMFISIS instrumentation suite of the Van Allen Probes mission. Densities obtained by NURD are compared to those obtained by another recently developed automated technique and also to an existing empirical plasmasphere and trough density model.

  2. Electron cloud density measurements in accelerator beam-pipe using resonant microwave excitation

    NASA Astrophysics Data System (ADS)

    Sikora, John P.; Carlson, Benjamin T.; Duggins, Danielle O.; Hammond, Kenneth C.; De Santis, Stefano; Tencate, Alister J.

    2014-08-01

    An accelerator beam can generate low energy electrons in the beam-pipe, generally called electron cloud, that can produce instabilities in a positively charged beam. One method of measuring the electron cloud density is by coupling microwaves into and out of the beam-pipe and observing the response of the microwaves to the presence of the electron cloud. In the original technique, microwaves are transmitted through a section of beam-pipe and a change in EC density produces a change in the phase of the transmitted signal. This paper describes a variation on this technique in which the beam-pipe is resonantly excited with microwaves and the electron cloud density calculated from the change that it produces in the resonant frequency of the beam-pipe. The resonant technique has the advantage that measurements can be localized to sections of beam-pipe that are a meter or less in length with a greatly improved signal to noise ratio.

  3. The first in situ electron temperature and density measurements of the Martian nightside ionosphere

    NASA Astrophysics Data System (ADS)

    Fowler, C. M.; Andersson, L.; Ergun, R. E.; Morooka, M.; Delory, G.; Andrews, D. J.; Lillis, Robert J.; McEnulty, T.; Weber, T. D.; Chamandy, T. M.; Eriksson, A. I.; Mitchell, D. L.; Mazelle, C.; Jakosky, B. M.

    2015-11-01

    The first in situ nightside electron density and temperature profiles at Mars are presented as functions of altitude and local time (LT) from the Langmuir Probe and Waves (LPW) instrument on board the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission spacecraft. LPW is able to measure densities as low as ˜100 cm-3, a factor of up to 10 or greater improvement over previous measurements. Above 200 km, near-vertical density profiles of a few hundred cubic centimeters were observed for almost all nightside LT, with the lowest densities and highest temperatures observed postmidnight. Density peaks of a few thousand cubic centimeters were observed below 200 km at all nightside LT. The lowest temperatures were observed below 180 km and approach the neutral atmospheric temperature. One-dimensional modeling demonstrates that precipitating electrons were able to sustain the observed nightside ionospheric densities below 200 km.

  4. Measurements of electron density and energy content in the VX-30 helicon discharge

    NASA Astrophysics Data System (ADS)

    Sciamma, Ella; Chavers, Greg; Chang-Diaz, Franklin

    2005-10-01

    We have observed plasma conditions at several locations in the VASIMR experiment, VX-30, a 20 kW helicon plasma expanding into a nozzle. - A three frequency interferometer (70, 90, 110 GHz) provided electron densities at these locations. - We made absolutely calibrated spectroscopic measurements of He I and He II lines in the UV, visible, and near IR. - A comparison with a collisional radiative model suggested that the actual electron density distribution function was not a Maxwellian, but rather was significantly underpopulated at higher electron energies. - We will present preliminary results comparing our measurements with a spectral model using a non Maxwellian distribution.

  5. Laser Thomson scattering measurements of electron temperature and density in a hall-effect plasma

    NASA Astrophysics Data System (ADS)

    Washeleski, Robert L.

    Hall-effect thrusters (HETs) are compact electric propulsion devices with high specific impulse used for a variety of space propulsion applications. HET technology is well developed but the electron properties in the discharge are not completely understood, mainly due to the difficulty involved in performing accurate measurements in the discharge. Measurements of electron temperature and density have been performed using electrostatic probes, but presence of the probes can significantly disrupt thruster operation, and thus alter the electron temperature and density. While fast-probe studies have expanded understanding of HET discharges, a non-invasive method of measuring the electron temperature and density in the plasma is highly desirable. An alternative to electrostatic probes is a non-perturbing laser diagnostic technique that measures Thomson scattering from the plasma. Thomson scattering is the process by which photons are elastically scattered from the free electrons in a plasma. Since the electrons have thermal energy their motion causes a Doppler shift in the scattered photons that is proportional to their velocity. Like electrostatic probes, laser Thomson scattering (LTS) can be used to determine the temperature and density of free electrons in the plasma. Since Thomson scattering measures the electron velocity distribution function directly no assumptions of the plasma conditions are required, allowing accurate measurements in anisotropic and non-Maxwellian plasmas. LTS requires a complicated measurement apparatus, but has the potential to provide accurate, non-perturbing measurements of electron temperature and density in HET discharges. In order to assess the feasibility of LTS diagnostics on HETs non-invasive measurements of electron temperature and density in the near-field plume of a Hall thruster were performed using a custom built laser Thomson scattering diagnostic. Laser measurements were processed using a maximum likelihood estimation method

  6. Development and application of diagnostic instrumentation for measurement of electron density and conductivity

    SciTech Connect

    Bauman, L.E.

    1990-05-01

    The purpose of this contract was to assemble and demonstrate in the laboratory a Faraday rotation system for measurement of electron density and conductivity, with the intent to produce a system suitable for diagnostic support of the development of pulsed, space-based magnetohydrodynamic (MHD) power systems. Two system configurations were tested: (1) a rotating polarizer and (2) a beam splitting polarizer. Due to the short path length plasma produced in the laboratory flame, the long wavelength 496 {mu}m methyl fluoride laser line was used and only the more sensitive rotating polarizer configuration was used for the demonstration experiments. Electron number densities from 2 {times} 10{sup 19} to 9 {times} 10{sup 19} were measured with good agreement to statistical equilibrium (Saha) calculations using emission absorption-measured flame temperatures and neutral seed atom number seed atom nuclear densities. The electron collision frequencies were measured by transmission measurements. Combining these two measurements gave measured electron conductivities of between 4 and 12 mohs/m. These results compared reasonably well with those found with an electron collision frequency model combined with chemical equilibrium calculations and the emission absorption measurements. Ellipticity measurements of electron collision frequency were not possible due to the short path length of the laboratory plasma. 46 refs., 25 figs., 9 tabs.

  7. Automated Determination of Electron Density from Electric Field Measurements on the Van Allen Probes Spacecraft

    NASA Astrophysics Data System (ADS)

    Zhelavskaya, I. S.; Spasojevic, M.; Shprits, Y.

    2015-12-01

    In this study we present an algorithm for automatic inference of the electron number density from plasma wave measurement made onboard NASA's Van Allen Probes mission. It accomplishes this by using feedforward neural networks to automatically infer the upper hybrid resonance frequency, 𝑓𝑢h𝑟, from plasma wave measurement, which is then used to determine the electron number density. In previous missions, the plasma resonance bands were manually identified, and there have been few attempts to do robust, routine automated detection (Kurth et al. [JGR, 2014]). We describe the design and implementation of the algorithm, as well as the resulting electron number density distribution. Resulting densities are compared with the densities obtained by Kurth et al. [JGR, 2014] and also to the empirical plasmasphere and trough density model of Sheeley et al. [JGR, 2001]. The analysis of the conditions, under which densities obtained by the proposed method differ significantly from the model of Sheeley et al. [JGR, 2001], is presented. Finally, we discuss the dependence of the electron number density on magnetic activity (Kp) and magnetic local time.

  8. Absolute measurement of effective atomic number and electron density using dual-energy computed tomography images

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hong; Kim, Hee-Joung; Lee, Chang-Lae; Cho, Hyo-Min; Park, Hye-Suk; Lee, Seung-Wan; Choi, Yu-Na; Kim, Ye-Seul; Park, Su-Jin

    2012-03-01

    The dual-energy computed tomography (CT) techniques can be adopted to separate the materials having similar Houndsfield Unit (HU) value such as tissues. In the technique, CT image values can be described as effective atomic number and electron density using the dual-energy equation. In this work, we measured effective atomic number and electron density using dual-energy CT images and assessed the image quality in vascular application. For the effective atomic number assessment, the measurements of a Polymethyl methacrylate (PMMA) and water demonstrated small discrepancies of 3.28 % and 5.56 %, respectively. For electron density measurement, the experimental errors of PMMA and water were 7.83 % and 4.00 %, respectively. The trend obtained when comparing the HU values and absolute values such as effective atomic number and electron density demonstrates that the CNR of the HU values is higher than that of the absolute values such as effective atomic number and electron density. With contrast media having low concentration, it is remarkable that the effective atomic number image occasionally has higher CNR values than the HU images. In this study, small discrepancies between the experimental values and known values were obtained. The CNR values provided meaningful results for the absolute measurements in a dual-energy CT technique.

  9. Two-resonance probe for measuring electron density in low-pressure plasmas

    NASA Astrophysics Data System (ADS)

    Kim, D. W.; You, S. J.; Kim, S. J.; Kim, J. H.; Oh, W. Y.

    2017-04-01

    A technique for measuring double-checked electron density using two types of microwave resonance is presented. Simultaneous measurement of the resonances (plasma and quarter-wavelength resonator resonances), which were used for the cutoff probe (CP) and hairpin probe (HP), was achieved by the proposed microwave resonance probe. The developed two-resonance probe (TRP) consists of parallel separated coaxial cables exposing the radiation and detection tips. The structure resembles that of the CP, except the gapped coaxial cables operate not only as a microwave feeder for the CP but also as a U- shaped quarter-wavelength resonator for the HP. By virtue of this structure, the microwave resonances that have typically been used for measuring the electron density for the CP and HP were clearly identified on the microwave transmission spectrum of the TRP. The two types of resonances were measured experimentally under various power and pressure conditions for the plasma. A three-dimensional full-wave simulation model for the TRP is also presented and used to investigate and reproduce the resonances. The electron densities inferred from the resonances were compared and showed good agreement. Quantitative differences between the densities were attributed to the effects of the sheath width and spatial density gradient on the resonances. This accessible technique of using the TRP to obtain double-checked electron densities may be useful for comparative study and provides complementary uses for the CP and HP.

  10. Simultaneous measurement of core electron temperature and density fluctuations during electron cyclotron heating on DIII-D

    SciTech Connect

    White, A. E.; Schmitz, L.; Peebles, W. A.; Rhodes, T. L.; Carter, T. A.; McKee, G. R.; Shafer, M. W.; Staebler, G. M.; Burrell, K. H.; DeBoo, J. C.; Prater, R.

    2010-02-15

    New measurements show that long-wavelength (k{sub t}hetarho{sub s}<0.5) electron temperature fluctuations can play an important role in determining electron thermal transport in low-confinement mode (L-mode) tokamak plasmas. In neutral beam-heated L-mode tokamak plasmas, electron thermal transport and the amplitude of long-wavelength electron temperature fluctuations both increase in cases where local electron cyclotron heating (ECH) is used to modify the plasma profiles. In contrast, the amplitude of simultaneously measured long-wavelength density fluctuations does not significantly increase. Linear stability analysis indicates that the ratio of the trapped electron mode (TEM) to ion temperature gradient (ITG) mode growth rates increases in the cases with ECH. The increased importance of the TEM drive relative to the ITG mode drive in the cases with ECH may be associated with the increases in electron thermal transport and electron temperature fluctuations.

  11. Two-Dimensional Electron Density Measurement of Positive Streamer Discharge in Atmospheric-Pressure Air

    NASA Astrophysics Data System (ADS)

    Inada, Yuki; Ono, Ryo; Kumada, Akiko; Hidaka, Kunihiko; Maeyama, Mitsuaki

    2016-09-01

    The electron density of streamer discharges propagating in atmospheric-pressure air is crucially important for systematic understanding of the production mechanisms of reactive species utilized in wide ranging applications such as medical treatment, plasma-assisted ignition and combustion, ozone production and environmental pollutant processing. However, electron density measurement during the propagation of the atmospheric-pressure streamers is extremely difficult by using the conventional localized type measurement systems due to the streamer initiation jitters and the irreproducibility in the discharge paths. In order to overcome the difficulties, single-shot two-dimensional electron density measurement was conducted by using a Shack-Hartmann type laser wavefront sensor. The Shack-Hartmann sensor with a temporal resolution of 2 ns was applied to pulsed positive streamer discharges generated in an air gap between pin-to-plate electrodes. The electron density a few ns after the streamer initiation was 7*1021m-3 and uniformly distributed along the streamer channel. The electron density and its distribution profile were compared with a previous study simulating similar streamers, demonstrating good agreement. This work was supported in part by JKA and its promotion funds from KEIRIN RACE. The authors like to thank Mr. Kazuaki Ogura and Mr. Kaiho Aono of The University of Tokyo for their support during this work.

  12. Electron Temperature and Density Measurements by the Unicity of Particle Confinement Time on the TCABR Tokamak

    SciTech Connect

    Machida, M.; Nascimento, I. C.; Severo, J. H. F.; Sanada, E. K.; Galvao, R. M. O.; Daltrini, A. M.

    2006-12-04

    The electron temperature Te and density ne at inner border side of plasma on TCABR tokamak are determined using the unicity of particle confinement time {tau}p. In this method, the signals from hydrogen Balmer series emissions like H alfa, beta and gama are measured with an absolutely intensity calibrated spectrometer during the discharge and the particle confinement time then is evaluated using these three emissions for large range of electron temperature and density, until the unique value of {tau}p is achieved. The results show that during the current plateau, the values of the edge electron density and temperature in high fill density discharge, present much strong variations compared to the low fill pressure because of larger edge turbulence activity.

  13. Measurements of the Electron Cloud Density in the PEP-II Low Energy Ring

    SciTech Connect

    Byrd, J.; De Santis, S.; Sonnad, K.; Caspers, F.; Kroyer, T.; Krasnykh, A.; Pivi, M.; /SLAC

    2012-04-10

    Clouds of low energy electrons in the vacuum beam pipes of accelerators of positively charged particle beams present a serious limitation for operation of these machines at high currents. Because of the size of these accelerators, it is difficult to probe the low energy electron clouds over substantial lengths of the beam pipe. We have developed a novel technique to directly measure the electron cloud density via the phase shift induced in a TE wave that is independently excited and transmitted over a section of the accelerator. We infer the absolute phase shift with relatively high accuracy from the phase modulation of the transmission due to the modulation of the electron cloud density from a gap in the positively charged beam. We have used this technique for the first time to measure the average electron cloud density over a 50 m straight section in the positron ring of the PEP-II collider at the Stanford Linear Accelerator Center. We have also measured the variation of the density by using low field solenoid magnets to control the electrons.

  14. In-situ measurements of topside ionosphere electron density enhancements during an HF-modification experiment

    NASA Astrophysics Data System (ADS)

    Fallen, Christopher T.; Secan, James A.; Watkins, Brenton J.

    2011-04-01

    A Defense Meteorological Satellite Program (DMSP) satellite measured an electron density enhancement of approximately 30% at 840 km altitude on 25 February 2008 during an overpass of the High frequency Active Auroral Research Program (HAARP) research station in Alaska where ionosphere modification experiments were being conducted. An upward ion velocity enhancement of 200 m/s was also observed. Simulation results from a one-dimensional self-consistent ionosphere model indicate that topside electron density enhancements similar in magnitude to the observed enhancements at HAARP follow from electron temperature enhanced ambipolar diffusion, lifting atomic oxygen ions from the peak density layer along the geomagnetic field line up to the DMSP satellite orbit altitude. Assuming the HF pump heats the ionosphere electrons uniformly over a 10 km layer, the effective volume heating rate inferred from the model calculations is approximately 1 nW/m3.

  15. Measuring the Density of a Molecular Cluster Injector via Visible Emission from an Electron Beam

    SciTech Connect

    Lundberg, D. P.; Kaita, R.; Majeski, R. M.; Stotler, D. P.

    2010-06-28

    A method to measure the density distribution of a dense hydrogen gas jet is pre- sented. A Mach 5.5 nozzle is cooled to 80K to form a flow capable of molecular cluster formation. A 250V, 10mA electron beam collides with the jet and produces Hα emission that is viewed by a fast camera. The high density of the jet, several 1016cm-3, results in substantial electron depletion, which attenuates the Hα emission. The attenuated emission measurement, combined with a simplified electron-molecule collision model, allows us to determine the molecular density profile via a simple iterative calculation.

  16. Real time two-dimensional spatial distribution measurement method of electron temperature and plasma density

    NASA Astrophysics Data System (ADS)

    Kim, Young Cheol; Jang, Sung Ho; Kim, Gun Ho; Chung, Chin Wook

    2009-10-01

    Real time two-dimensional spatial distribution measurement method of electron temperature and plasma density was developed. It is based on a floating probe method [1] because the floating probe has high time resolution. Two-dimensional array of sensors on a 300 mm diameter wafer-shaped printed circuit board (PCB) and a high speed multiplexer circuit were used for real time distribution measurement. The method was tested at various powers and pressures, spatial distributions of the electron temperature and the plasma density could be obtained. And in the measurement results, asymmetric plasma density distributions caused by pumping port effect could be observed. This method can measure spatial distribution of plasma parameters on the wafer in real time without plasma perturbation, therefore it will be expected to improve the uniformity of processing plasmas such as etching and deposition. [4pt] [1] M. H. Lee, S. H. Jang, C. W. Chung, J. Appl. Phys. 101, 033305 (2007).

  17. Partial-reflection studies of D-region winter variability. [electron density measurements

    NASA Technical Reports Server (NTRS)

    Denny, B. W.; Bowhill, S. A.

    1973-01-01

    D-region electron densities were measured from December, 1972, to July, 1973, at Urbana, Illinois (latitude 40.2N) using the partial-reflection technique. During the winter, electron densities at altitudes of 72, 76.5, and 81 km show cyclical changes with a period of about 5 days that are highly correlated between these altitudes, suggesting that the mechanism responsible for the winter anomaly in D-region ionization applies throughout this height region. From January 13 to February 3, a pronounced wave-like variation occurred in the partial-reflection measurements, apparently associated with a major stratospheric warming that developed in that period. During the same time period, a traveling periodic variation is observed in the 10-mb height; it is highly correlated with the partial-reflection measurements. Electron density enhancements occur approximately at the same time as increases in the 10-mb height. Comparison of AL and A3 absorption measurements with electron density measurements below 82 km indicates that the winter anomaly in D-region ionization is divided into two types. Type 1, above about 82 km, extends horizontally for about 200 km while type 2, below about 82 km, extends for a horizontal scale of at least 1000 km.

  18. Comparing Galileo Electron Density Measurements to the Khurana and Kivelson Jovian Current Sheet Model

    NASA Astrophysics Data System (ADS)

    Ansher, J. A.; Khurana, K. K.; Gurnett, D. A.; Holland, D. L.; Kivelson, M. G.; Martin, R. F.; Persoon, A. M.

    2002-05-01

    Electron density has been determined throughout much of Galileo's primary mission at Jupiter (December 7, 1995 to November 6, 1997) by observing plasma waves measured by the plasma wave instrument on board the spacecraft. At radial distances less than about 20 RJ from Jupiter, upper hybrid emissions can be used to determine the density, while the low frequency cutoff of continuum radiation can be used to do so at radial distances greater than 20 RJ. The density data set is used to identify spacecraft encounters with Jupiter's magnetotail current sheet during the primary mission by assuming that electron density is highest at the center of the current sheet. These encounters are compared to predictions of the current sheet location made by Khurana and Kivelson's 1998 current sheet model, and data from the Galileo magnetometer instrument. As Jupiter rotates, the spacecraft encounters one pair of plasma sheet crossings during each ten-hour rotation period. During these encounters, Galileo passes through the central current sheet once moving from north to south, and once from south to north. Electron density is usually seen to increase, reach a maximum value when Galileo is near the center of the current sheet, and then decrease as the spacecraft leaves the plasma sheet. Average densities measured at the center of the current sheet range between 1 cm-3 at 20 RJ, and 0.01 cm-3 at 120 RJ. Comparison with the Khurana and Kivelson model indicates good correlation between electron density maxima and predicted current sheet location for radial distances less than about 50 RJ. At larger radial distances, the co-incidence is significantly less. This same radial relationship also exists between the density maxima, and the measured current sheet locations identified by the reversal of the magnetic field's radial component. This may indicate physical differences in current sheet structure at larger radial distances, and potentially suggests adjustments to the Khurana and Kivelson

  19. Raman calibration of the HT-7 yttrium aluminum garnet Thomson scattering for electron density measurements

    SciTech Connect

    Zang Qing; Zhao Junyu; Gao Xiang; Shi Lingwei; Zhang Tao; Xi Xiaoqi; Yang Li; Hu Qingsheng; Sajjad, S.

    2007-11-15

    A multipulse neodym doped yttrium aluminum garnet laser Thomson scattering system calibrated by the anti-Stokes rotational Raman scattering from nitrogen gas had been developed in the HT-7 superconducting Tokmak. By virtue of this system, measured electron density results of the plasma were obtained. The results showed good repeatability and its total uncertainty was estimated to be {+-}18%.

  20. Simultaneous measurement of electron temperature and density by a line pair method in the RFP plasma

    NASA Astrophysics Data System (ADS)

    Watanabe, Masayuki; Shimizu, S.; Ogawa, H.; Shinohara, T.

    2009-11-01

    A line-pair-method has been applied for a simultaneous measurement of the electron temperature and density in ATRAS RFP plasma. Three helium spectrum lines (668nm, 706nm, 728nm) were measured during the discharge at the same time and the electron temperature and density is estimated by using a Collision-Radiation model. To get the signal of the helium impunity line from the RFP discharge, the RFP plasma in the hydrogen gas with a few mixed helium gas was formed. In the typical ATRAS RFP discharge of the plasma current of 60kA, the electron temperature was approximately 50-150 eV and the electron density is the order of 10^18 m-3. During the discharge, the change of the temperature and density are mutually related and this correlation was the almost reverse phase. The periodically change of the temperature and density were also observed. This change synchronizes with a periodically increase of the averaged toroidal magnetic field, which is caused by the toroidal rotation of the increase of the toroidal magnetic field. This rotation, which is deeply related with dynamo effect, makes the plasma energy lose and particles also diffuse toward the plasma edge. As a result, the recycling of the particle and energy are occurred at the same time.

  1. Radial Electron Temperature and Density Measurements Using Thomson Scattering System in GAMMA 10/PDX

    NASA Astrophysics Data System (ADS)

    Yoshikawa, M.; Ohta, K.; Wang, X.; Chikatsu, M.; Kohagura, J.; Shima, Y.; Sakamoto, M.; Imai, T.; Nakashima, Y.; Yasuhara, R.; Yamada, I.; Funaba, H.; Minami, T.

    2015-11-01

    A Thomson scattering (TS) system in GAMMA 10/PDX has been developed for the measurement of radial profiles of electron temperature and density in a single plasma and laser shot. The TS system has a large solid angle optical collection system and high-sensitivity signal detection system. The TS signals are obtained using four-channel high-speed digital oscilloscopes controlled by a Windows PC. We designed the acquisition program for six oscilloscopes to obtain 10-Hz TS signals in a single plasma shot, following which the time-dependent electron temperatures and densities can be determined. Moreover, in order to obtain larger TS signal intensity in the edge region, we added a second collection mirror. The radial electron temperatures and densities at six radial positions in GAMMA 10/PDX were successfully obtained.

  2. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe

    SciTech Connect

    Chen, Y. H.; Yang, X. Y.; Lin, C. E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J. E-mail: cjxiao@pku.edu.cn; Wang, L.; Xu, M.

    2014-11-15

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  3. Measurement of electron density transients in pulsed RF discharges using a frequency boxcar hairpin probe

    NASA Astrophysics Data System (ADS)

    Peterson, David; Coumou, David; Shannon, Steven

    2015-11-01

    Time resolved electron density measurements in pulsed RF discharges are shown using a hairpin resonance probe using low cost electronics, on par with normal Langmuir probe boxcar mode operation. Time resolution of 10 microseconds has been demonstrated. A signal generator produces the applied microwave frequency; the reflected waveform is passed through a directional coupler and filtered to remove the RF component. The signal is heterodyned with a frequency mixer and rectified to produce a DC signal read by an oscilloscope. At certain points during the pulse, the plasma density is such that the applied frequency is the same as the resonance frequency of the probe/plasma system, creating reflected signal dips. The applied microwave frequency is shifted in small increments in a frequency boxcar routine to determine the density as a function of time. A dc sheath correction is applied for the grounded probe, producing low cost, high fidelity, and highly reproducible electron density measurements. The measurements are made in both inductively and capacitively coupled systems, the latter driven by multiple frequencies where a subset of these frequencies are pulsed. Measurements are compared to previous published results, time resolved OES, and in-line measurement of plasma impedance. This work is supported by the NSF DOE partnership on plasma science, the NSF GOALI program, and MKS Instruments.

  4. Measuring Density Profiles of Electrons and Heavy Particles in a Stable Axially Blown Arc

    NASA Astrophysics Data System (ADS)

    Carstensen, J.; Stoller, P.; Galletti, B.; Doiron, C. B.; Sokolov, A.

    2017-08-01

    Two-color spatial carrier wave interferometry employing pulsed 532- and 671-nm lasers is used to measure the electron-density and heavy-particle-density profiles in the stagnation point of a stable, axially blown arc in argon for currents of 50 to 200 A and stagnation point pressures of 0.2 to 16 bar. This technique takes advantage of the fact that the free-electron contribution to the refractive index depends strongly on the wavelength, while that of the heavy particles does not. The high spatial resolution achieved allows the hot core of the arc to be readily distinguished from the surrounding boundary layer. A custom-built test device is used to ensure flow conditions that lead to a stable, axisymmetric arc; this permits the reconstruction of the density and temperature profiles using a single projection (interferometric image) of the refractive-index distribution through the arc (at two wavelengths). The arc radius determined from the heavy-particle density decreases with increasing stagnation pressure and increases with the current. These measurements are in good agreement with a simple axially blown arc model taking into account Ohmic heating, radiation losses, and enthalpy flow for core temperatures of approximately 16 500 K. The measured electron density at the center of the arc agrees well with a prediction based on local thermodynamic equilibrium.

  5. Real-time electron density measurements from Cotton-Mouton effect in JET machine

    SciTech Connect

    Brombin, M.; Boboc, A.; Zabeo, L.

    2008-10-15

    Real-time density profile measurements are essential for advanced fusion tokamak operation and interferometry is a proven method for this task. Nevertheless, as a consequence of edge localized modes, pellet injections, fast density increases, or disruptions, the interferometer is subject to fringe jumps, which produce loss of the signal preventing reliable use of the measured density in a real-time feedback controller. An alternative method to measure the density is polarimetry based on the Cotton-Mouton effect, which is proportional to the line-integrated electron density. A new analysis approach has been implemented and tested to verify the reliability of the Cotton-Mouton measurements for a wide range of plasma parameters and to compare the density evaluated from polarimetry with that from interferometry. The density measurements based on polarimetry are going to be integrated in the real-time control system of JET since the difference with the interferometry is within one fringe for more than 90% of the cases.

  6. Real-time electron density measurements from Cotton-Mouton effect in JET machine.

    PubMed

    Brombin, M; Boboc, A; Zabeo, L; Murari, A

    2008-10-01

    Real-time density profile measurements are essential for advanced fusion tokamak operation and interferometry is a proven method for this task. Nevertheless, as a consequence of edge localized modes, pellet injections, fast density increases, or disruptions, the interferometer is subject to fringe jumps, which produce loss of the signal preventing reliable use of the measured density in a real-time feedback controller. An alternative method to measure the density is polarimetry based on the Cotton-Mouton effect, which is proportional to the line-integrated electron density. A new analysis approach has been implemented and tested to verify the reliability of the Cotton-Mouton measurements for a wide range of plasma parameters and to compare the density evaluated from polarimetry with that from interferometry. The density measurements based on polarimetry are going to be integrated in the real-time control system of JET since the difference with the interferometry is within one fringe for more than 90% of the cases.

  7. Measuring Mars' Atmospheric Neutral Density from 160 to 220km with the MGS Electron Reflectometer

    NASA Astrophysics Data System (ADS)

    Lillis, R.; Engel, J.; Mitchell, D.; Brain, D.; Lin, R.; Bougher, S.; Acuna, M.

    2005-08-01

    The Magnetometer/Electron Reflectometer (MAG/ER) experiment aboard Mars Global Surveyor (MGS) samples the local electron population's distribution in energy and pitch angle (angle between electron velocity and local magnetic field direction) at the mapping orbit altitude of ˜400km. We develop a single-particle model of the electrons' interaction with the neutral atmosphere and motion along open field-lines connecting the solar wind to remnant crustal magnetization. Electron reflection from magnetic gradients and absorption due to inelastic collisons with atmospheric neutrals results in characteristic pitch angle (PA) distributions for open field lines. By assuming the validity of spherical harmonic expansions (Cain et al, 2003) in the strongest field regions of Mars (such as Terra Sirenum), we trace the electron paths and fit these PA distributions to our model to constrain the scale height and density of the neutral atmosphere in the region of greatest absorption, 160-220km. We analyse almost 3 martian years of MGS mapping Orbit Data and present the first measurements of Mars' neutral density above 180km. Although the uncertainties in single measurements are quite large, averaging over many measurements over a period of weeks allows us to see long-term trends. Major results are: 1) a mean density of 0.03 kg/km3 at 160km with a month-averaged variation of ˜40%, 2) a very strong annual seasonal variation, confirmed by periodogram and least-squares fit and 3) increasing seasonal density variability with distance from the equator. We see broad general agreement with predictions from Mars Thermosphere Global Circulation Model (MTGCM) simulations [Bougher et al, 2004] and with inferred densities from MGS Doppler tracking data [Tracadas et al, 2001]. Our results will help to constrain the upper boundaries of GCMs and assist orbital decay calculations for low-orbiting spacecraft, such as the 2005 Mars Reconnaissance Orbiter. We thank the NASA Jet Propulsion Laboratory

  8. Validation of ISS Floating Potential Measurement Unit Electron Densities and Temperatures

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria N.; Minow, Joseph I.; Parker, Linda N.; Bui, Them; Wright, Kenneth, Jr.; Koontz, Steven L.; Schneider, T.; Vaughn, J.; Craven, P.

    2007-01-01

    Validation of the Floating Potential Measurement Unit (FPMU) electron density and temperature measurements is an important step in the process of evaluating International Space Station spacecraft charging issues .including vehicle arcing and hazards to crew during extravehicular activities. The highest potentials observed on Space Station are due to the combined VxB effects on a large spacecraft and the collection of ionospheric electron and ion currents by the 160 V US solar array modules. Ionospheric electron environments are needed for input to the ISS spacecraft charging models used to predict the severity and frequency of occurrence of ISS charging hazards. Validation of these charging models requires comparing their predictions with measured FPMU values. Of course, the FPMU measurements themselves must also be validated independently for use in manned flight safety work. This presentation compares electron density and temperatures derived from the FPMU Langmuir probes and Plasma Impedance Probe against the independent density and temperature measurements from ultraviolet imagers, ground based incoherent scatter radar, and ionosonde sites.

  9. Measurement of electron temperature and density in an argon microdischarge by laser Thomson scattering

    NASA Astrophysics Data System (ADS)

    Belostotskiy, Sergey G.; Khandelwal, Rahul; Wang, Qiang; Donnelly, Vincent M.; Economou, Demetre J.; Sadeghi, Nader

    2008-06-01

    Laser Thomson scattering in a novel, backscattered configuration was employed to measure the electron temperature (Te) and electron density (ne) in argon dc microdischarges, with an interelectrode gap of 600μm. Measurements were performed at the center of the gap that corresponds to the positive column. For 50mA microdischarge current and over the pressure range of 300-700Torr, the plasma parameters were found to be Te=0.9±0.3eV and ne=(6±3)×1013cm-3, in reasonable agreement with the predictions of a mathematical model.

  10. Measuring Mars' Atmospheric Neutral Density from 160 to 320km altitude with the MGS Electron Reflectometer

    NASA Astrophysics Data System (ADS)

    Lillis, R. J.; Mitchell, D. L.; Lin, R. P.; Acuna, M. H.

    2003-12-01

    The Magnetometer/Electron Reflectometer (MAG/ER) experiment aboard Mars Global Surveyor (MGS) samples the local electron population's distribution in energy and pitch angle (angle between electron velocity and local magneticfield direction) at the mapping orbit altitude of ~400km. We develop a single-particle model of the electrons' interaction with the neutral atmosphere and motion along open field-lines connecting the solar wind to remnant crustal magnetization. Electron reflection from magnetic gradients and absorption due to inelastic collisons with atmospheric neutrals results in characteristic pitch angle (PA) distributions for open field lines. By assuming the validity of spherical harmonic expansions (Cain, Arkani-hamed) in the strongest field regions of Mars (such as Terra Sirenum), we trace the electron paths and fit these PA distributions to our model to constrain the scale height and base density of the neutral atmosphere in the interaction region, which is between 160 and 320km altitude. We analyse ~2 martian years of MGS mapping Orbit Data and present the first measurements of Mars' exospheric neutral density. We track density variations over season, latitude and solar cycle and compare with predictions from Mars Thermosphere Global Circulation Model (MTGCM) simulations and with MGS acceleromater data. Our results will help to constrain the upper boundaries of GCMs and assist orbital decay calculations for low-orbiting spacecraft, such as the 2005 Mars Reconnaissance Orbiter.

  11. Curling probe measurement of electron density in pulse-modulated plasma

    SciTech Connect

    Pandey, Anil; Nakamura, Keiji; Sugai, Hideo; Sakakibara, Wataru; Matsuoka, Hiroyuki

    2014-01-13

    The electron density n{sub e} of stationary plasma can be easily obtained on the basis of the resonance frequency f of a curling probe (CP) measured by a network analyzer (NWA). However, in pulsed plasma with discharge period T, the n{sub e} and f values periodically change with time. This study extends the conventional CP technique to a time-resolved measurement of the pulse-modulated electron density. The condition necessary for the measurement is revealed to be synchronization of NWA with the pulse modulation, which is expressed as (n − 1)T/T{sub SWP} = integer (1, 2, …) for a number n of data point and sweep time T{sub SWP}.

  12. A study of density measurements in hypersonic helium tunnels using an electron beam fluorescence technique

    NASA Technical Reports Server (NTRS)

    Honaker, W. C.; Hunter, W. W., Jr.; Woods, W. C.

    1979-01-01

    A series of experiments have been conducted at Langley Research Center to determine the feasibility of using electron-beam fluorescence to measure the free-stream static density of gaseous helium flow over a wide range of conditions. These experiments were conducted in the Langley hypersonic helium tunnel facility and its 3-inch prototype. Measurements were made for a range of stagnation pressures and temperatures and produced free-stream number densities of 1.53 x 10 to the 23rd to 1.25 x 10 to the 24th molecules/cu m and static temperatures from 2 K to 80 K. The results showed the collision quenching cross section to be 4.4 x 10 to the -15th sq cm at 1 K and to have a weak temperature dependence of T to the 1/6. With knowledge of these two values, the free-stream number density can be measured quite accurately.

  13. Finite grid radius and thickness effects on retarding potential analyzer measured suprathermal electron density and temperature

    NASA Technical Reports Server (NTRS)

    Knudsen, William C.

    1992-01-01

    The effect of finite grid radius and thickness on the electron current measured by planar retarding potential analyzers (RPAs) is analyzed numerically. Depending on the plasma environment, the current is significantly reduced below that which is calculated using a theoretical equation derived for an idealized RPA having grids with infinite radius and vanishingly small thickness. A correction factor to the idealized theoretical equation is derived for the Pioneer Venus (PV) orbiter RPA (ORPA) for electron gasses consisting of one or more components obeying Maxwell statistics. The error in density and temperature of Maxwellian electron distributions previously derived from ORPA data using the theoretical expression for the idealized ORPA is evaluated by comparing the densities and temperatures derived from a sample of PV ORPA data using the theoretical expression with and without the correction factor.

  14. A Method to Improve Electron Density Measurement of Cone-Beam CT Using Dual Energy Technique

    PubMed Central

    Men, Kuo; Dai, Jian-Rong; Li, Ming-Hui; Chen, Xin-Yuan; Zhang, Ke; Tian, Yuan; Huang, Peng; Xu, Ying-Jie

    2015-01-01

    Purpose. To develop a dual energy imaging method to improve the accuracy of electron density measurement with a cone-beam CT (CBCT) device. Materials and Methods. The imaging system is the XVI CBCT system on Elekta Synergy linac. Projection data were acquired with the high and low energy X-ray, respectively, to set up a basis material decomposition model. Virtual phantom simulation and phantoms experiments were carried out for quantitative evaluation of the method. Phantoms were also scanned twice with the high and low energy X-ray, respectively. The data were decomposed into projections of the two basis material coefficients according to the model set up earlier. The two sets of decomposed projections were used to reconstruct CBCT images of the basis material coefficients. Then, the images of electron densities were calculated with these CBCT images. Results. The difference between the calculated and theoretical values was within 2% and the correlation coefficient of them was about 1.0. The dual energy imaging method obtained more accurate electron density values and reduced the beam hardening artifacts obviously. Conclusion. A novel dual energy CBCT imaging method to calculate the electron densities was developed. It can acquire more accurate values and provide a platform potentially for dose calculation. PMID:26346510

  15. Electron density measurements in very electronegative plasmas using different diagnostic techniques: theory and experiments

    NASA Astrophysics Data System (ADS)

    Rafalskyi, Dmytro; Lafleur, Trevor; Aanesland, Ane

    2016-09-01

    Very electronegative plasmas (known as ``ion-ion'' plasmas) are used in different applications including material processing, space propulsion and thermonuclear fusion. Diagnostics of ion-ion plasmas can be performed using different probe techniques, including Langmuir and hairpin probes, RF, microwave and optical diagnostics. However, in certain applications (for example, in the electronegative thruster PEGASES), the electron density is too low (<1012m-3) to be reliably measured by these standard techniques. This is further complicated by the presence of strong, non-homogeneous, magnetic fields in the plasma ( 200 G) and the relatively small plasma size (few cm). In this work we compare results achieved with a Langmuir probe, and with an independent measurement of the electron density using a matched dipole probe. Measurements are performed in an SF6 plasma with an electronegativity in the range between a few hundred to a few thousand. We show here that though the model itself can correctly describe the plasma-probe interactions, there is a critical value of plasma electronegativity above which the electron density measured with a Langmuir probe can give only an upper limit estimation.

  16. Electron density profile measurements from hydrogen line intensity ratio method in Versatile Experiment Spherical Torus

    NASA Astrophysics Data System (ADS)

    Kim, YooSung; Shi, Yue-Jiang; Yang, Jeong-hun; Kim, SeongCheol; Kim, Young-Gi; Dang, Jeong-Jeung; Yang, Seongmoo; Jo, Jungmin; Oh, Soo-Ghee; Chung, Kyoung-Jae; Hwang, Y. S.

    2016-11-01

    Electron density profiles of versatile experiment spherical torus plasmas are measured by using a hydrogen line intensity ratio method. A fast-frame visible camera with appropriate bandpass filters is used to detect images of Balmer line intensities. The unique optical system makes it possible to take images of Hα and Hβ radiation simultaneously, with only one camera. The frame rate is 1000 fps and the spatial resolution of the system is about 0.5 cm. One-dimensional local emissivity profiles have been obtained from the toroidal line of sight with viewing dumps. An initial result for the electron density profile is presented and is in reasonable agreement with values measured by a triple Langmuir probe.

  17. Electron density profile measurements from hydrogen line intensity ratio method in Versatile Experimental Spherical Torus

    SciTech Connect

    Kim, YooSung; Shi, Yue-Jiang Yang, Jeong-hun; Kim, SeongCheol; Kim, Young-Gi; Dang, Jeong-Jeung; Yang, Seongmoo; Jo, Jungmin; Chung, Kyoung-Jae; Oh, Soo-Ghee; Hwang, Y. S.

    2016-11-15

    Electron density profiles of versatile experiment spherical torus plasmas are measured by using a hydrogen line intensity ratio method. A fast-frame visible camera with appropriate bandpass filters is used to detect images of Balmer line intensities. The unique optical system makes it possible to take images of H{sub α} and H{sub β} radiation simultaneously, with only one camera. The frame rate is 1000 fps and the spatial resolution of the system is about 0.5 cm. One-dimensional local emissivity profiles have been obtained from the toroidal line of sight with viewing dumps. An initial result for the electron density profile is presented and is in reasonable agreement with values measured by a triple Langmuir probe.

  18. Complete determination of molecular orbitals by measurement of phase symmetry and electron density.

    PubMed

    Wießner, M; Hauschild, D; Sauer, C; Feyer, V; Schöll, A; Reinert, F

    2014-06-09

    Several experimental methods allow measuring the spatial probability density of electrons in atoms, molecules and solids, that is, the absolute square of the respective single-particle wave function. But it is an intrinsic problem of the measurement process that the information about the phase is generally lost during the experiment. The symmetry of this phase, however, is a crucial parameter for the knowledge of the full orbital information in real space. Here, we report on a key experiment that demonstrates that the phase symmetry can be derived from a strictly experimental approach from the circular dichroism in the angular distribution of photoelectrons. In combination with the electron density derived from the same experiment, the full quantum mechanical wave function can thus be determined experimentally.

  19. Simultaneous streak and frame interferometry for electron density measurements of laser produced plasmas

    NASA Astrophysics Data System (ADS)

    Quevedo, H. J.; McCormick, M.; Wisher, M.; Bengtson, Roger D.; Ditmire, T.

    2016-01-01

    A system of two collinear probe beams with different wavelengths and pulse durations was used to capture simultaneously snapshot interferograms and streaked interferograms of laser produced plasmas. The snapshots measured the two dimensional, path-integrated, electron density on a charge-coupled device while the radial temporal evolution of a one dimensional plasma slice was recorded by a streak camera. This dual-probe combination allowed us to select plasmas that were uniform and axisymmetric along the laser direction suitable for retrieving the continuous evolution of the radial electron density of homogeneous plasmas. Demonstration of this double probe system was done by measuring rapidly evolving plasmas on time scales less than 1 ns produced by the interaction of femtosecond, high intensity, laser pulses with argon gas clusters. Experiments aimed at studying homogeneous plasmas from high intensity laser-gas or laser-cluster interaction could benefit from the use of this probing scheme.

  20. Simultaneous streak and frame interferometry for electron density measurements of laser produced plasmas

    SciTech Connect

    Quevedo, H. J. McCormick, M.; Wisher, M.; Bengtson, Roger D.; Ditmire, T.

    2016-01-15

    A system of two collinear probe beams with different wavelengths and pulse durations was used to capture simultaneously snapshot interferograms and streaked interferograms of laser produced plasmas. The snapshots measured the two dimensional, path-integrated, electron density on a charge-coupled device while the radial temporal evolution of a one dimensional plasma slice was recorded by a streak camera. This dual-probe combination allowed us to select plasmas that were uniform and axisymmetric along the laser direction suitable for retrieving the continuous evolution of the radial electron density of homogeneous plasmas. Demonstration of this double probe system was done by measuring rapidly evolving plasmas on time scales less than 1 ns produced by the interaction of femtosecond, high intensity, laser pulses with argon gas clusters. Experiments aimed at studying homogeneous plasmas from high intensity laser-gas or laser-cluster interaction could benefit from the use of this probing scheme.

  1. Diagnostics principle of microwave cut-off probe for measuring absolute electron density

    SciTech Connect

    Jun, Hyun-Su

    2014-08-15

    A generalized diagnostics principle of microwave cut-off probe is presented with a full analytical solution. In previous studies on the microwave cut-off measurement of weakly ionized plasmas, the cut-off frequency ω{sub c} of a given electron density is assumed to be equal to the plasma frequency ω{sub p} and is predicted using electromagnetic simulation or electric circuit model analysis. However, for specific plasma conditions such as highly collisional plasma and a very narrow probe tip gap, it has been found that ω{sub c} and ω{sub p} are not equal. To resolve this problem, a generalized diagnostics principle is proposed by analytically solving the microwave cut-off condition Re[ε{sub r,eff}(ω = ω{sub c})] = 0. In addition, characteristics of the microwave cut-off condition are theoretically tested for correct measurement of the absolute electron density.

  2. Development of far infrared attenuation to measure electron densities in cw pin discharge lasers

    NASA Technical Reports Server (NTRS)

    Babcock, R. V.

    1977-01-01

    A two beam attenuation technique was devised to measure electron densities 10 to the 9th power to 10 to the 11th power cm/3 resolved to 1 cm, in a near atmospheric COFFEE laser discharge, using 496 micrometer and 1,220 micrometer radiations from CH3F, optically pumped by a CO2 laser. A far infrared generator was developed which was suitable except for a periodic intensity variation in FIR output deriving from frequency variation of the pump radiation.

  3. Local ionospheric electron density reconstruction from simultaneous ground-based GNSS and ionosonde measurements

    NASA Astrophysics Data System (ADS)

    Stankov, S. M.; Warnant, R.; Stegen, K.

    2009-04-01

    The purpose of the LIEDR (Local Ionospheric Electron Density Reconstruction) system is to acquire and process data from simultaneous ground-based GNSS TEC and digital ionosonde measurements, and subsequently to deduce the vertical electron density distribution in the local ionosphere. LIEDR is primarily designed to operate in real time for service applications, and, if sufficient data from solar and geomagnetic observations are available, to provide short-term forecast as well. For research applications and further development of the system, a post-processing mode of operation is also envisaged. In essence, the reconstruction procedure consists in the following. The high-precision ionosonde measurements are used for directly obtaining the bottom part of the electron density profile. The ionospheric profiler for the lower side (i.e. below the density peak height, hmF2) is based on the Epstein layer functions using the known values of the critical frequencies, foF2 and foE, and the propagation factor, M3000F2. The corresponding bottom-side part of the total electron content is calculated from this profile and is then subtracted from the GPS TEC value in order to obtain the unknown portion of the TEC in the upper side (i.e. above the hmF2). Ionosonde data, together with the simultaneously-measured TEC and empirically obtained O+/H+ ion transition level values, are all required for the determination of the topside electron density scale height. The topside electron density is considered as a sum of the constituent oxygen and hydrogen ion densities with unknown vertical scale heights. The latter are calculated by solving a system of transcendental equations that arise from the incorporation of a suitable ionospheric profiler (Chapman, Epstein, or Exponential) into formulae describing ionospheric conditions (plasma quasi-neutrality, ion transition level). Once the topside scale heights are determined, the construction of the vertical electron density distribution in the

  4. Two color interferometric electron density measurement in an axially blown arc

    NASA Astrophysics Data System (ADS)

    Stoller, Patrick; Carstensen, Jan; Galletti, Bernardo; Doiron, Charles; Sokolov, Alexey; Salzmann, René; Simon, Sandor; Jabs, Philipp

    2016-09-01

    High voltage circuit breakers protect the power grid by interrupting the current in case of a short circuit. To do so an arc is ignited between two contacts as they separate; transonic gas flow is used to cool and ultimately extinguish the arc at a current-zero crossing of the alternating current. A detailed understanding of the arc interruption process is needed to improve circuit breaker design. The conductivity of the partially ionized gas remaining after the current-zero crossing, a key parameter in determining whether the arc will be interrupted or not, is a function of the electron density. The electron density, in turn, is a function of the detailed dynamics of the arc cooling process, which does not necessarily occur under local thermodynamic equilibrium (LTE) conditions. In this work, we measure the spatially resolved line-integrated index of refraction in a near-current-zero arc stabilized in an axial flow of synthetic air with two nanosecond pulsed lasers at wavelengths of 532 nm and 671 nm. Generating a stable, cylindrically symmetric arc enables us to determine the three-dimensional index of refraction distribution using Abel inversion. Due to the wavelength dependence of the component of the index of refraction related to the free electrons, the information at two different wavelengths can be used to determine the electron density. This information allows us to determine how important it is to take into account non-equilibrium effects for accurate modeling of the physics of decaying arcs.

  5. Temperature and density measurement by electron beam fluorescence technique in rocket experiment

    NASA Astrophysics Data System (ADS)

    Kurihara, J.; Oyama, K.-I.

    The Electron Beam Fluorescence (EBF) technique has been widely used in the field of rarefied gas dynamics for over 40 years and applied to measurements for a variety of gases and flow conditions in the laboratory experiment. The EBF technique uses a high-energy electron beam to excite a gas molecule by an inelastic collision with an electron. Spectrum of subsequent fluorescence by the excited molecule consists of many vibrational bands, and each band has a fine rotational structure. If the excitation-emission process is known precisely, the analysis of the vibrational-rotational band provides properties of the initial state of molecules. We applied the EBF technique to an in-situ measurement in the lower thermosphere and the vibrational temperature, the rotational temperature, and the number density of atmospheric molecular nitrogen between 100 - 150 km altitudes were observed by the sounding rocket experiment. Aerodynamic effects on the measurement caused by the rocket flight are corrected quantitatively using Direct Simulation Monte Carlo (DSMC) method. The great advantage of this type of instrument is that temperature and density are observed simultaneously and the consistency between the two measurements can be checked assuming hydrostatic equilibrium.

  6. An interpretation of the Voyager measurement of Jovian electron density profiles

    NASA Technical Reports Server (NTRS)

    Atreya, S. K.; Donahue, T. M.; Waite, J. H., Jr.

    1979-01-01

    Electron-density profiles measured for the daytime and nighttime Jovian ionosphere by the Voyager 1 radio-science experiment are analyzed. It is found that the measured profiles can be reproduced by using a model appropriate for an exospheric temperature of 1300 K with temperature varying above the homopause and with an eddy diffusion coefficient of 100,000 to 300,000 sq cm/s at the homopause. An overall rate constant of 4.3 x 10 to the -16th cu cm/s is estimated for the reaction H(+) + H2 (v-prime at least 4) yields H2(+) + H.

  7. Computational characterization of cutoff probe system for the measurement of electron density

    SciTech Connect

    Na, Byung-Keun; Kim, Dae-Woong; Kwon, Jun-Hyuk; Chang, Hong-Young; Kim, Jung-Hyung; You, Shin-Jae

    2012-05-15

    The wave cutoff probe, a precise measurement method for measuring the electron density, was recently proposed. To characterize the cutoff probe system, in this paper, the microwave simulations of a cutoff probe system were performed at various configurations of the cutoff probe system. The influence of the cutoff probe spectrum stemming from numerous parametric elements such as the probe tip length, probe tip distance, probe tip plane orientation, chamber volume/geometry, and coaxial cable length is presented and discussed. This article is expected to provide qualitative and quantitative insight into cutoff probe systems and its optimization process.

  8. Electron Density Measurements on LTX Using Microwave and Millimeter-Wave Diagnostics

    NASA Astrophysics Data System (ADS)

    Kubota, S.; Nguyen, X. V.; Peebles, W. A.; Boyle, D. P.; Kaita, R.; Kozub, T.; Majeski, R.; Merino, E.; Schmitt, J. C.

    2015-11-01

    The dynamic evolution of the electron density profile is tracked using microwave and millimeter-wave diagnostics on LTX. The 296 GHz (λ =1 mm) interferometer provides a radial line density measurement at the midplane, while an FMCW (frequency-modulated continuous-wave) reflectometer (13.5 -33 GHz, or O-mode 0 . 2 - 1 . 3 ×1013 cm-3) provides density profile measurements for the low-field side. Data taken during FY2015 will be compared with measurements from Thomson scattering and estimates of the plasma position from LRDFIT. Measurements of density fluctuations due to low-frequency (<100 kHz) MHD instabilities will also be shown. Future plans include the installation of a correlation reflectomter (Ka-band, 27-40 GHz) with dual tuneable sources and a frequency bandwidth of up to 5 MHz. This system will utilize the same antennas as the profile reflectometer to provide radial and/or toroidal/poloidal correlations. Further diagnostic details will be presented at the meeting. Supported by U.S. DoE Grants DE-FG02-99ER54527 and DE-AC02-09CH11466.

  9. Reproducibility of the cutoff probe for the measurement of electron density

    SciTech Connect

    Kim, D. W.; Oh, W. Y.; You, S. J.; Kwon, J. H.; You, K. H.; Seo, B. H.; Kim, J. H.; Yoon, J.-S.

    2016-06-15

    Since a plasma processing control based on plasma diagnostics attracted considerable attention in industry, the reproducibility of the diagnostics using in this application has become a great interest. Because the cutoff probe is one of the potential candidates for this application, knowing the reproducibility of the cutoff probe measurement becomes quit important in the cutoff probe application research. To test the reproducibility of the cutoff probe measurement, in this paper, a comparative study among the different cutoff probe measurements was performed. The comparative study revealed remarkable result: the cutoff probe has a great reproducibility for the electron density measurement, i.e., there are little differences among measurements by different probes made by different experimenters. The discussion including the reason for the result was addressed via this paper by using a basic measurement principle of cutoff probe and a comparative experiment with Langmuir probe.

  10. Development and Miniaturization of RF based probes for Electron Density Measurements

    NASA Astrophysics Data System (ADS)

    Nakamura, Keiji

    2016-09-01

    To make a diagnostics on plasmas for materials processing plasmas accompanying with deposition of non-conducting films in etching and/or CVD processes, curling probe (CP) with a spiral slot antenna has been recently developed as a compact diagnostic tool which enables the local electron density measurement. The electron density is obtained from a shift of the probe resonance frequency in discharge ON and OFF monitored by a network analyzer (NWA). A conventional CP has a diameter larger than 15 mm typically, because a slot length of the CP is as long as several tens millimeters for its resonance frequency less than several GHz. Further miniaturization of the CP was required to expand applicable range to various plasma sources like a narrow-gap parallel plate discharge. We tried miniaturization of the CP down to less than 3 mm in the probe diameter by fabricating narrow spiral slot antenna, and experimentally and numerically the miniaturized probe was investigated how much influence the slot width has on probe resonance characteristics and electron density measurements. In the case of the conventional CP made of stainless steel, 0.3-mm-wide normal slot antenna, the resonance spectra was clearly observed regardless of antenna materials of copper or stainless steel (SS). However, when the slot width was reduced down to 0.03 mm, the slot resonance was strongly dependent on the antenna materials. Namely the resonance peak was almost vanished for the SS antenna, whereas clearly appeared for the copper antenna. In general, the narrower the slot is, the higher attenuation factor the slot has for electromagnetic wave propagating along the slot. In such an attenuated transmission line of the narrow slot, high electric conductivity of the antenna seems preferable for the slot resonance. Furthermore, the miniaturized CP with the copper antenna was also introduced into low pressure (< 1Pa) Ar plasma. The resonance frequency was confirmed to changes sensitively with electron

  11. Microwave techniques for electron density measurements in low pressure RF plasmas

    NASA Astrophysics Data System (ADS)

    Zheltukhin, Viktor; Gafarov, Ildar; Shemakhin, Alexander

    2016-09-01

    Results of the experimental studying of RF plasma jet at low pressure in the range of 10 - 300 Pa is presented. The electron density distribution both in inductive and in capacitive coupled RF discharges was measured at 1.76 MHz and 13.56 MHz consequently. We used three independent microwave diagnostic techniques such as free space (the ``two-frequency'' and ``on the cut-off signal'') and a resonator. It is found that the electron density in the RF plasma jets is by 1-2 orders of magnitude greater than in the decaying plasma jet, and by 1-2 orders of magnitude less than in the RF plasma torch. Thus the RF plasma jet is similar to the additional discharge between the electrodes or the coil and the vacuum chamber walls. As a consequence, the formation of the positive charge sheath near the specimen placed in plasma stream is observed. It is found that the maximum of ionization degree as well as more uniform electron density distribution across the stream is observed in the range of the gas flow rate Gg = 0 . 06 - 0 . 12 g/s and the discharge power Pd = 0 . 5 - 2 . 5 kW. The work was funded by RFBR, according to the research projects No. 16-31-60081 mol_a_dk.

  12. Matched dipole probe for precise electron density measurements in magnetized and non-magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Rafalskyi, Dmytro; Aanesland, Ane

    2015-09-01

    We present a plasma diagnostics method based on impedance measurements of a short matched dipole placed in the plasma. This allows measuring the local electron density in the range from 1012-1015 m-3 with a magnetic field of at least 0-50 mT. The magnetic field strength is not directly influencing the data analysis and requires only that the dipole probe is oriented perpendicularly to the magnetic field. As a result, the magnetic field can be non-homogeneous or even non-defined within the probe length without any effect on the final tolerance of the measurements. The method can be applied to plasmas of relatively small dimensions (< 10 cm) and doesn't require any special boundary conditions. The high sensitivity of the impedance measurements is achieved by using a miniature matching system installed close to the probe tip, which also allows to suppress sheath resonance effects. We experimentally show here that the tolerance of the electron density measurements reaches values lower than 1%, both with and without the magnetic field. The method is successfully validated by both analytical modeling and experimental comparison with Langmuir probes. The validation experiments are conducted in a low pressure (1 mTorr) Ar discharge sustained in a 10 cm size plasma chamber with and without a transversal magnetic field of about 20 mT. This work was supported by a Marie Curie International Incoming Fellowships within FP7 (NEPTUNE PIIF-GA-2012-326054).

  13. Solar wind electron densities from Viking dual-frequency radio measurements

    NASA Technical Reports Server (NTRS)

    Muhleman, D. O.; Anderson, J. D.

    1981-01-01

    Simultaneous phase coherent, two-frequency measurements of the time delay between the earth station and the Viking spacecraft have been analyzed in terms of the electron density profiles from 4 solar radii to 200 solar radii. The measurements were made during a period of solar activity minimum (1976-1977) and show a strong solar latitude effect. The data were analyzed with both a model independent, direct numerical inversion technique and with model fitting, yielding essentially the same results. It is shown that the solar wind density can be represented by two power laws near the solar equator proportional to r exp -2.7 and r exp -2.04. However, the more rapidly falling term quickly disappears at moderate latitudes (approximately 20 deg) leaving only the inverse-square behavior.

  14. Weak-beam scanning transmission electron microscopy for quantitative dislocation density measurement in steels.

    PubMed

    Yoshida, Kenta; Shimodaira, Masaki; Toyama, Takeshi; Shimizu, Yasuo; Inoue, Koji; Yoshiie, Toshimasa; Milan, Konstantinovic J; Gerard, Robert; Nagai, Yasuyoshi

    2017-04-01

    To evaluate dislocations induced by neutron irradiation, we developed a weak-beam scanning transmission electron microscopy (WB-STEM) system by installing a novel beam selector, an annular detector, a high-speed CCD camera and an imaging filter in the camera chamber of a spherical aberration-corrected transmission electron microscope. The capabilities of the WB-STEM with respect to wide-view imaging, real-time diffraction monitoring and multi-contrast imaging are demonstrated using typical reactor pressure vessel steel that had been used in an European nuclear reactor for 30 years as a surveillance test piece with a fluence of 1.09 × 1020 neutrons cm-2. The quantitatively measured size distribution (average loop size = 3.6 ± 2.1 nm), number density of the dislocation loops (3.6 × 1022 m-3) and dislocation density (7.8 × 1013 m m-3) were carefully compared with the values obtained via conventional weak-beam transmission electron microscopy studies. In addition, cluster analysis using atom probe tomography (APT) further demonstrated the potential of the WB-STEM for correlative electron tomography/APT experiments. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Data-driven sensitivity inference for Thomson scattering electron density measurement systems.

    PubMed

    Fujii, Keisuke; Yamada, Ichihiro; Hasuo, Masahiro

    2017-01-01

    We developed a method to infer the calibration parameters of multichannel measurement systems, such as channel variations of sensitivity and noise amplitude, from experimental data. We regard such uncertainties of the calibration parameters as dependent noise. The statistical properties of the dependent noise and that of the latent functions were modeled and implemented in the Gaussian process kernel. Based on their statistical difference, both parameters were inferred from the data. We applied this method to the electron density measurement system by Thomson scattering for the Large Helical Device plasma, which is equipped with 141 spatial channels. Based on the 210 sets of experimental data, we evaluated the correction factor of the sensitivity and noise amplitude for each channel. The correction factor varies by ≈10%, and the random noise amplitude is ≈2%, i.e., the measurement accuracy increases by a factor of 5 after this sensitivity correction. The certainty improvement in the spatial derivative inference was demonstrated.

  16. Plasma Core Electron Density and Temperature Measurements Using CVI Line Emissions in TCABR Tokamak

    NASA Astrophysics Data System (ADS)

    do Nascimento, F.; Machida, M.; Severo, J. H. F.; Sanada, E.; Ronchi, G.

    2015-08-01

    In this work, we present results of electron temperature ( T e ) and density ( n e ) measurements obtained in Tokamak Chauffage Alfvén Brésilien (TCABR) tokamak using visible spectroscopy from CVI line emissions which occurs mainly near the center of the plasma column. The presented method is based on a well-known relationship between the particle flux ( Γ ion) and the photon flux ( ø ion) emitted by an ion species combined with ionizations per photon atomic data provided by the atomic data and analysis structure (ADAS) database. In the experiment, we measured the photon fluxes of three different CVI spectral line emissions, 4685.2, 5290.5, and 6200.6 Å (one line per shot). Using this method it was possible to find out the temporal evolution of T e and n e in the plasma. The results achieved are in good agreement with T e and n e measurements made using other diagnostic tools.

  17. Electron beam flourescence measurements in low density free jets of heated nitrogen

    NASA Technical Reports Server (NTRS)

    Gochberg, L. A.; Hurlbut, F. C.

    1993-01-01

    Rotational temperatures have been measured in heated free jet expansions of low density nitrogen using the electron beam flourescence technique. Spectroscopic measurements of the (0,0) band of the first negative system of nitrogen revealed the rotational nonequilibrium behavior in the flow field upstream of and through the Mach disk, as well as the flow field farther downstream. These results are compared to free jet expansion data and computations regarding Mach disk location and terminal rotational temperature. Comparisons indicate a rotational relaxation-collision number of about 3. Both measurements and calculations show that these flow fields are generated from stagnation conditions of 240 to 475 Torr-mm and 700 to 1325 K. Results are also presented for shock thickness based on rotational temperature.

  18. Data-driven sensitivity inference for Thomson scattering electron density measurement systems

    NASA Astrophysics Data System (ADS)

    Fujii, Keisuke; Yamada, Ichihiro; Hasuo, Masahiro

    2017-01-01

    We developed a method to infer the calibration parameters of multichannel measurement systems, such as channel variations of sensitivity and noise amplitude, from experimental data. We regard such uncertainties of the calibration parameters as dependent noise. The statistical properties of the dependent noise and that of the latent functions were modeled and implemented in the Gaussian process kernel. Based on their statistical difference, both parameters were inferred from the data. We applied this method to the electron density measurement system by Thomson scattering for the Large Helical Device plasma, which is equipped with 141 spatial channels. Based on the 210 sets of experimental data, we evaluated the correction factor of the sensitivity and noise amplitude for each channel. The correction factor varies by ≈10%, and the random noise amplitude is ≈2%, i.e., the measurement accuracy increases by a factor of 5 after this sensitivity correction. The certainty improvement in the spatial derivative inference was demonstrated.

  19. Measurements of plasma bremsstrahlung and plasma energy density produced by electron cyclotron resonance ion source plasmas

    NASA Astrophysics Data System (ADS)

    Noland, Jonathan David

    2011-12-01

    The goal of this dissertation was to gain an understanding on the relative importance of microwave power, neutral pressure, and magnetic field configuration on the behavior of the hot electrons within an Electron Cyclotron Resonance Ion Source (ECRIS) plasma. This was carried out through measurement of plasma bremsstrahlung with both NaI(Tl) (hv > 30 keV) and CdTe (2 keV < hv < 70 keV) x-ray detectors, and through measurement of the plasma energy density with a diamagnetic loop placed around the plasma chamber. We also examined the anisotropy in x-ray power by simultaneously measuring the x-ray spectra in two orthogonal directions: radially and axially, using NaI(Tl) detectors. We have seen that for a 6.4 GHz ECRIS, both the x-ray power produced by confined electrons and the plasma energy density behave logarithmically with microwave power. The x-ray flux created by electrons lost from the plasma, however, does not saturate. Thus, the small increase in plasma density that occurred at high microwave powers (> 150 W on a 6.4 GHz ECRIS) was accompanied by a large increase in total x-ray power. We suggest that the saturation of x-ray power and plasma energy density was due to rf-induced pitch-angle scattering of the electrons. X-ray power and plasma energy density were also shown to saturate with neutral pressure, and to increase nearly linearly as the gradient of the magnetic field in the resonance zone was decreased. All of these findings were in agreement with the theoretical models describing ECRIS plasmas. We have discussed the use of a diamagnetic loop as a means of exploring various plasma time scales on a relative basis. Specifically, we focused much of our attention on studying how changing ion source parameters, such as microwave power and neutral pressure, would effect the rise and decay of the integrated diamagnetic signal, which can be related to plasma energy density. We showed that increasing microwave power lowers the e-fold times at both the leading

  20. Measurement of solar wind electron density and temperature in the shocked region of Venus and the density and temperature of photoelectrons within the ionosphere of Venus

    NASA Astrophysics Data System (ADS)

    Knudsen, William C.; Jones, Douglas E.; Peterson, Bryan G.; Knadler, Charles E.

    2016-08-01

    Presented herein are measurements of the solar wind electron number density and temperature near and within the bow shock of Venus. The measurements were made by the Pioneer Venus mission Orbiter Retarding Potential Analyzer operating in its suprathermal electron mode. The measurements are essentially point measurements. The spacecraft travels approximately 0.8 km during the 0.1 s time interval required to record a single I-V curve. The dual measurement of a density and temperature is obtained from one sweep by least squares fitting a mathematical Maxwellian expression to the I-V curve. The distance between successive measurements is approximately 100 km. In many orbits, when the spacecraft is crossing or traveling within the bow shock, the derived densities and temperatures (high density, high temperature (HDHT)) are large, densities of the order of 100 cm-3 and temperatures of the order of several hundred eV. We interpret these HDHT measurements as measurements in regions where the large, directed kinetic energy of the solar wind ions is being degraded into randomized, more thermal-like energy distributions of the electrons and ions through wave-particle interactions. The HDHT values define the electron energy distribution in the limited energy interval 0 to 50 eV. We assume that the underlying electron flux distributions are flat topped like those measured in the Earth's bow shock. We also report densities and temperatures of EUV produced photoelectron energy distributions measured within the ionosphere.

  1. Local Electron Density Measurements from Sounding Experiments by RPI on IMAGE

    NASA Astrophysics Data System (ADS)

    Proddaturi, R.; Sonwalkar, V. S.; Li, J.; Venkatasubramanian, A.; Carpenter, D.; Benson, R.; Reinisch, B.

    2004-12-01

    RPI sounding experiments lead to a variety of echoes, propagating in various plasma wave modes, and local resonances. Characteristic frequencies of these echoes and resonances can be used to determine the local plasma frequency and thus the local electron density. In this work we have estimated plasma frequency by two methods: (1) using upper hybrid frequency measured from the diffuse Z mode echo upper cutoff and gyro-frequency measured from a gap in the diffuse Z mode echo or from resonances at the multiples of gyrofrequency, (2) upper hybrid frequency from the diffuse Z mode and the free space cutoff frequency fR=0 from the R-X mode echo. Broadband diffuse Z-mode echoes occur 90% of the time at high latitudes (λ m>45oS) near perigee in the southern hemisphere, where fpe << fce. In the middle and low latitudes (λ m<45oS), where fpe >> fce, Z-mode echoes are narrowband and are often accompanied by Qn and Dn resonances. The free space R-X mode echoes are commonly observed at both high and low latitudes. Multiples of gyrofrequency are typically observed at mid- to low-latitude in both the northern and southern hemisphere and at high latitude in the northern hemisphere. RPI plasmagrams were analyzed for three orbits (apogee to apogee) in the year 2002. These three orbits were selected because suitable sounding programs, those that can cover Z mode bandwidth over a wide range of latitude, were used, and also because a large number of diffuse Z mode echoes were actually observed. Electron densities as low as 10 el/cc and as high as 9000 el/cc were measured. The transmission frequencies place a limitation on the upper and lower limits of measurable fpe. The measured fpe values showed good agreement with measurements made from the thermal noise but showed large deviations when compared with model fpe values. For a particular orbit on August 26, 2002, Ne measured was as low as ˜20 el/cc at higher altitudes outside the plasmasphere (λ m > 60oN, altitude >7000 km, MLT=1

  2. Supersonic helium beam diagnostic for fluctuation measurements of electron temperature and density at the Tokamak TEXTOR.

    PubMed

    Kruezi, U; Stoschus, H; Schweer, B; Sergienko, G; Samm, U

    2012-06-01

    A supersonic helium beam diagnostic, based on the line-ratio technique for high resolution electron density and temperature measurements in the plasma edge (r/a > 0.9) was designed, built, and optimised at TEXTOR (Torus Experiment for Technology Oriented Research). The supersonic injection system, based on the Campargue skimmer-nozzle concept, was developed and optimised in order to provide both a high neutral helium beam density of n(0) = 1.5 × 10(18) m(-3) and a low beam divergence of ±1° simultaneously, achieving a poloidal resolution of Δ(poloidal) = 9 mm. The setup utilises a newly developed dead volume free piezo valve for operation in a high magnetic field environment of up to 2 T with a maximum repetition rate of 80 Hz. Gas injections are realised for a duration of 120 ms at a repetition rate of 2 Hz (duty cycle 1/3). In combination with a high sensitivity detection system, consisting of three 32 multi-channel photomultipliers (PMTs), measurements of edge electron temperature and density with a radial resolution of Δ(radial) = 2 mm and a maximum temporal resolution of Δt ≃ 2 μs (470 kHz) are possible for the first time. The diagnostic setup at TEXTOR is presented. The newly developed injection system and its theoretical bases are discussed. The applicability of the stationary collisional-radiative model as basis of the line-ratio technique is shown. Finally, an example of a fluctuation analysis demonstrating the unique high temporal and spatial resolution capabilities of this new diagnostic is presented.

  3. Supersonic helium beam diagnostic for fluctuation measurements of electron temperature and density at the Tokamak TEXTOR

    SciTech Connect

    Kruezi, U.; Stoschus, H.; Schweer, B.; Sergienko, G.; Samm, U.

    2012-06-15

    A supersonic helium beam diagnostic, based on the line-ratio technique for high resolution electron density and temperature measurements in the plasma edge (r/a > 0.9) was designed, built, and optimised at TEXTOR (Torus Experiment for Technology Oriented Research). The supersonic injection system, based on the Campargue skimmer-nozzle concept, was developed and optimised in order to provide both a high neutral helium beam density of n{sub 0}= 1.5 Multiplication-Sign 10{sup 18} m{sup -3} and a low beam divergence of {+-}1 Degree-Sign simultaneously, achieving a poloidal resolution of {Delta}{sub poloidal}= 9 mm. The setup utilises a newly developed dead volume free piezo valve for operation in a high magnetic field environment of up to 2 T with a maximum repetition rate of 80 Hz. Gas injections are realised for a duration of 120 ms at a repetition rate of 2 Hz (duty cycle 1/3). In combination with a high sensitivity detection system, consisting of three 32 multi-channel photomultipliers (PMTs), measurements of edge electron temperature and density with a radial resolution of {Delta}{sub radial}= 2 mm and a maximum temporal resolution of {Delta}t Asymptotically-Equal-To 2 {mu}s (470 kHz) are possible for the first time. The diagnostic setup at TEXTOR is presented. The newly developed injection system and its theoretical bases are discussed. The applicability of the stationary collisional-radiative model as basis of the line-ratio technique is shown. Finally, an example of a fluctuation analysis demonstrating the unique high temporal and spatial resolution capabilities of this new diagnostic is presented.

  4. Supersonic helium beam diagnostic for fluctuation measurements of electron temperature and density at the Tokamak TEXTOR

    NASA Astrophysics Data System (ADS)

    Kruezi, U.; Stoschus, H.; Schweer, B.; Sergienko, G.; Samm, U.

    2012-06-01

    A supersonic helium beam diagnostic, based on the line-ratio technique for high resolution electron density and temperature measurements in the plasma edge (r/a > 0.9) was designed, built, and optimised at TEXTOR (Torus Experiment for Technology Oriented Research). The supersonic injection system, based on the Campargue skimmer-nozzle concept, was developed and optimised in order to provide both a high neutral helium beam density of n0 = 1.5 × 1018 m-3 and a low beam divergence of ±1° simultaneously, achieving a poloidal resolution of Δpoloidal = 9 mm. The setup utilises a newly developed dead volume free piezo valve for operation in a high magnetic field environment of up to 2 T with a maximum repetition rate of 80 Hz. Gas injections are realised for a duration of 120 ms at a repetition rate of 2 Hz (duty cycle 1/3). In combination with a high sensitivity detection system, consisting of three 32 multi-channel photomultipliers (PMTs), measurements of edge electron temperature and density with a radial resolution of Δradial = 2 mm and a maximum temporal resolution of Δt ≃ 2 μs (470 kHz) are possible for the first time. The diagnostic setup at TEXTOR is presented. The newly developed injection system and its theoretical bases are discussed. The applicability of the stationary collisional-radiative model as basis of the line-ratio technique is shown. Finally, an example of a fluctuation analysis demonstrating the unique high temporal and spatial resolution capabilities of this new diagnostic is presented.

  5. Electron density profile measurements at a self-focusing ion beam with high current density and low energy extracted through concave electrodes

    SciTech Connect

    Fujiwara, Y. Nakamiya, A.; Sakakita, H.; Hirano, Y.; Kiyama, S.; Koguchi, H.

    2014-02-15

    The self-focusing phenomenon has been observed in a high current density and low energy ion beam. In order to study the mechanism of this phenomenon, a special designed double probe to measure the electron density and temperature is installed into the chamber where the high current density ion beam is injected. Electron density profile is successfully measured without the influence of the ion beam components. Estimated electron temperature and density are ∼0.9 eV and ∼8 × 10{sup 8} cm{sup −3} at the center of ion beam cross section, respectively. It was found that a large amount of electrons are spontaneously accumulated in the ion beam line in the case of self-forcing state.

  6. Measurements of mass attenuation coefficient, effective atomic number and electron density of some amino acids

    NASA Astrophysics Data System (ADS)

    Kore, Prashant S.; Pawar, Pravina P.

    2014-05-01

    The mass attenuation coefficients of some amino acids, such as DL-aspartic acid-LR(C4H7NO4), L-glutamine (C4H10N2O3), creatine monohydrate LR(C4H9N3O2H2O), creatinine hydrochloride (C4H7N3O·HCl) L-asparagine monohydrate(C4H9N3O2H2O), L-methionine LR(C5H11NO2S), were measured at 122, 356, 511, 662, 1170, 1275 and 1330 keV photon energies using a well-collimated narrow beam good geometry set-up. The gamma-rays were detected using NaI (Tl) scintillation detection system with a resolution of 0.101785 at 662 keV. The attenuation coefficient data were then used to obtain the effective atomic numbers (Zeff), and effective electron densities (Neff) of amino acids. It was observed that the effective atomic number (Zeff) and effective electron densities (Neff) initially decrease and tend to be almost constant as a function of gamma-ray energy. Zeff and Neff experimental values showed good agreement with the theoretical values with less than 1% error for amino acids.

  7. Magnetic field vector and electron density diagnostics from linear polarization measurements in 14 solar prominences

    NASA Technical Reports Server (NTRS)

    Bommier, V.

    1986-01-01

    The Hanle effect is the modification of the linear polarization parameters of a spectral line due to the effect of the magnetic field. It has been successfully applied to the magnetic field vector diagnostic in solar prominences. The magnetic field vector is determined by comparing the measured polarization to the polarization computed, taking into account all the polarizing and depolarizing processes in line formation and the depolarizing effect of the magnetic field. The method was applied to simultaneous polarization measurements in the Helium D3 line and in the hydrogen beta line in 14 prominences. Four polarization parameters are measured, which lead to the determination of the three coordinates of the magnetic field vector and the electron density, owing to the sensitivity of the hydrogen beta line to the non-negligible effect of depolarizing collisions with electrons and protons of the medium. A mean value of 1.3 x 10 to the 10th power cu. cm. is derived in 14 prominences.

  8. Evaluating the diffusive equilibrium models: Comparison with the IMAGE RPI field-aligned electron density measurements

    NASA Astrophysics Data System (ADS)

    Ozhogin, P.; Song, P.; Tu, J.; Reinisch, B. W.

    2014-06-01

    The diffusive equilibrium models that are widely used by the space physics community to describe the plasma densities in the plasmasphere are evaluated with field-aligned electron density measurements from the radio plasma imager (RPI) instrument onboard the IMAGE satellite. The original mathematical form of the diffusive equilibrium model was based on the hydrostatic equilibrium along the magnetic field line with the centrifugal force and the field-aligned electrostatic force as well as a large number of simplifying approximations. Six free parameters in the mathematical form have been conventionally determined from observations. We evaluate four sets of the parameters that have been reported in the literature. The evaluation is made according to the equatorial radial distance dependence, latitudinal dependence at a given radial distance, and the combined radial and latitudinal dependences. We find that the mathematical form given in the diffusive equilibrium model is intrinsically incompatible with the measurements unless another large number of free parameters are artificially introduced, which essentially changes the nature of a theoretical model to an empirical model.

  9. Ionospheric electron number densities from CUTLASS dual-frequency velocity measurements using artificial backscatter over EISCAT

    NASA Astrophysics Data System (ADS)

    Sarno-Smith, Lois K.; Kosch, Michael J.; Yeoman, Timothy; Rietveld, Michael; Nel, Amore'; Liemohn, Michael W.

    2016-08-01

    Using quasi-simultaneous line-of-sight velocity measurements at multiple frequencies from the Hankasalmi Cooperative UK Twin Auroral Sounding System (CUTLASS) on the Super Dual Auroral Radar Network (SuperDARN), we calculate electron number densities using a derivation outlined in Gillies et al. (2010, 2012). Backscatter targets were generated using the European Incoherent Scatter (EISCAT) ionospheric modification facility at Tromsø, Norway. We use two methods on two case studies. The first approach is to use the dual-frequency capability on CUTLASS and compare line-of-sight velocities between frequencies with a MHz or greater difference. The other method used the kHz frequency shifts automatically made by the SuperDARN radar during routine operations. Using ray tracing to obtain the approximate altitude of the backscatter, we demonstrate that for both methods, SuperDARN significantly overestimates Ne compared to those obtained from the EISCAT incoherent scatter radar over the same time period. The discrepancy between the Ne measurements of both radars may be largely due to SuperDARN sensitivity to backscatter produced by localized density irregularities which obscure the background levels.

  10. A global survey of COSMIC ionospheric peak electron density and its height: A comparison with ground-based ionosonde measurements

    NASA Astrophysics Data System (ADS)

    Chu, Yen-Hsyang; Su, Chin-Lung; Ko, Hsiao-Tsung

    2010-08-01

    With a network of ground-based ionosondes distributed around the world, the ionospheric peak electron density and its height measured by FORMOSAT-3/COSMIC satellites in terms of GPS radio occultation technique are extensively examined in this article. It is found that, in spite of the latitude, the mean values of the peak electron density measured by COSMIC satellites are systematically smaller than those observed by ground-based ionosondes. The discrepancy between them is dependent on the latitude, namely, it is small in low and mid-latitudes and large in high-latitude region. Moreover, statistical analysis shows that the slopes of the regression line that is best fitted to the scatter diagram of occultation-retrieved peak electron density (ordinate axis) versus ionosonde-observed peak density (abscissa axis) are universally less than one. This feature is believed to be the result of path average effect of non-uniform distribution of the electron density along the GSP ray during the occultation. A comparison between COSMIC-measured peak height and ionosonde-derived peak height hmF2 indicates that the former is systematically higher than the latter. The difference in the two can be as large as 20% or more in equatorial and low-latitude regions. This result implies that the peak height hmF2 derived from the virtual height through true height analysis based on Titheridge method seems to underestimate the true peak height. The correlation between COSMIC and ionosonde peak electron densities is analyzed and the result reveals that correlation coefficient seems to be dependent on the fluctuation of the occultation-retrieved electron density profile. The correlation will be higher (lower) for the electron density profiles with smaller (larger) fluctuations. This feature suggests that the inhomogeneous distribution of the electron density along the GPS ray path during the occultation plays an important role affecting the correlation between COSMIC and ionosonde

  11. Comparison of measured electron density rise and calculated neutral beam particle deposition in the TFTR tokamak

    SciTech Connect

    Park, H.; Budny, R.; McCune, D.; Taylor, G.; Zarnstorff, M.C. . Plasma Physics Lab.); Barnes, C.W. )

    1991-12-01

    The initial rate of rise of the central electron density during {approximately}100 keV deuterium neutral beam injection is found to agree well with calculations of the beam deposition rate. The best agreement is with beam deposition calculations using older tabulations of the atomic cross-sections; the effects of using new tabulations or including multi-step ionization processes appear to approximately cancel. The neutral-beam deposition profile is a strong function of both the magnitude and the shape of the target plasma density. Peaked heating profiles can be achieved at high target densities only from peaked target density profiles. 15 refs., 4 figs.

  12. Electron density fluctuation measurements using a multichannel microwave interferometer in GAMMA 10

    SciTech Connect

    Yoshikawa, M.; Shima, Y.; Matsumoto, T.; Nakahara, A.; Yanagi, N.; Itakura, A.; Hojo, H.; Kobayashi, T.; Matama, K.; Tatematsu, Y.; Imai, T.; Kohagura, J.; Hirata, M.; Nakashima, Y.; Cho, T.

    2006-10-15

    Measurement of fluctuation in plasma is important for studying the improvement in plasma confinement by the formation of the plasma confinement potential. The density fluctuation is observed by microwaves by methods such as interferometry, reflectometry and Fraunhofer diffraction method. We have constructed a new multichannel microwave interferometer to measure the plasma density and fluctuation radial profiles in a single plasma shot. We successfully measured the time-dependent density and line-integrated density fluctuation radial profiles in a single plasma shot using the multichannel microwave interferometer. Thus, we have developed a useful tool for studying the improvement in plasma confinement by the formation of plasma confinement potential.

  13. Developing an ANN electron density profile model over Cyprus based on ionosonde measurements

    NASA Astrophysics Data System (ADS)

    Haralambous, H.; Papadopoulos, Harris; Mostafa, Md. Golam

    2015-06-01

    The impact of the upper atmosphere on navigation, communication as well as surveillance systems is defined by the state of the ionosphere and in particular by variations in its electron density profile along the signal propagation path. The requirement for the accurate specification of the electron density profile stems from the fact that the electron density at each altitude determines the refractive index for radiowaves that are refracted by or penetrate the ionosphere and therefore affects significantly navigation and communication signals. Consequently satellite systems that are based on trans-ionospheric propagation may be affected by complex variations in the ionospheric structure in space and time leading to degradation of the availability, accuracy and reliability of their services. Therefore the specification of the electron density profile over a geographical region is very important within the context of operation of such systems. Although regional models have been developed for such a purpose by interpolating data coming from different instruments using various techniques, for a limited geographical scope, the single station model approach is the preferable option as it best encapsulates the behaviour of the ionosphere over the station. This paper presents the development of an Artificial Neural Network (ANN) model for the electron density profile of the ionosphere over Cyprus based on manually scaled ionograms collected at the Nicosia ionosonde station during the period 2009-2013.

  14. Temporal and spatial measurements of the electron density perturbation produced in the wake of an ultrashort laser pulse

    SciTech Connect

    Marques, J.R.; Geindre, J.P.; Amiranoff, F.; Audebert, P.; Gauthier, J.C.; Antonetti, A.; Grillon, G. |

    1996-05-01

    The plasma electron density oscillation produced in the wake of a narrow (beam waist {lt} plasma wavelength) ultrashort laser pulse is measured for the first time, with a temporal resolution much better than the electron plasma period and a high spatial resolution along the laser focal spot diameter. The relative density perturbation is between 30{percent} and 100{percent}, in good agreement with numerical simulations. {copyright} {ital 1996 The American Physical Society.}

  15. Bonding in Uranium(V) Hexafluoride Based on the Experimental Electron Density Distribution Measured at 20 K.

    PubMed

    Gianopoulos, Christopher G; Zhurov, Vladimir V; Minasian, Stefan G; Batista, Enrique R; Jelsch, Christian; Pinkerton, A Alan

    2017-02-20

    The electron density distribution of [PPh4][UF6] was obtained from high-resolution X-ray diffraction data measured at 20 K. The electron density was modeled with an augmented Hansen-Coppens multipolar formalism. Topological analysis reveals that the U-F bond is of incipient covalent nature. Theoretical calculations add further support to the bonding description gleaned from the experimental model. The impact of the uranium anomalous dispersion terms on the refinement is also discussed.

  16. Gas temperature and electron density profiles in an argon dc microdischarge measured by optical emission spectroscopy

    SciTech Connect

    Belostotskiy, Sergey G.; Ouk, Tola; Donnelly, Vincent M.; Economou, Demetre J.; Sadeghi, Nader

    2010-03-15

    Optical emisssion spectroscopy was employed to study a high pressure (100 s of Torr), slot-type (600 {mu}m interelectrode gap), argon dc microdischarge, with added traces of nitrogen. Spatially resolved gas temperature profiles were obtained by analyzing rovibrational bands of the N{sub 2} first positive system. The gas temperature peaked near the cathode and increased with current. The contribution of Stark broadening to the hydrogen H{sub {beta}} emission lineshape was used to extract the electron density. The axial distribution of electron density as well as visual observation revealed that the microdischarge positive column was highly constricted. The electron density near the sheath edge increased with both pressure and current.

  17. Visualization of electronic density

    DOE PAGES

    Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; ...

    2015-04-22

    An atom’s volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.

  18. Visualization of electronic density

    SciTech Connect

    Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; Hashibon, Adham; Yaish, Yuval; Adler, Joan

    2015-04-22

    An atom’s volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.

  19. Electron number density measurements using laser-induced breakdown spectroscopy of ionized nitrogen spectral lines

    NASA Astrophysics Data System (ADS)

    EL Sherbini, Ashraf M.; Aboulfotouh, Abdelnasser M.; Parigger, Christian G.

    2016-11-01

    Spectrally broadened, singly ionized nitrogen emission lines are monitored to determine electron number densities in laser-induced plasma from aluminum, nano- and bulk-zinc monoxide, as well as hydrogen-rich plastic and wood targets. The optical emission spectra for N II at the average wavelength of 500.33 nm are recorded in standard ambient temperature and pressure environments. For time delays of 25 to 450 ns from the onset of the 1064-nm Nd:YAG radiation induced optical breakdown, the electron number densities in the range of 5.1 ±1 ×1019 to 0.22 ±0.04 ×1019 cm-3 are inferred from the continuum and the nitrogen spectral line analysis. In addition, the corresponding electron temperatures of 10.1 ±0.6 eV to 1 ±0.2 eV are determined from the calculated absolute spectral radiance values in the near infrared region. At the early stages of plasma emission, Balmer series hydrogen lines are embedded in free electron radiation yet the broadening of the N II lines yields reliable electron number density values.

  20. Stark broadening measurement of the electron density in an atmospheric pressure argon plasma jet with double-power electrodes

    SciTech Connect

    Qian Muyang; Ren Chunsheng; Wang Dezhen; Zhang Jialiang; Wei Guodong

    2010-03-15

    Characteristics of a double-power electrode dielectric barrier discharge of an argon plasma jet generated at the atmospheric pressure are investigated in this paper. Time-averaged optical emission spectroscopy is used to measure the plasma parameters, of which the excitation electron temperature is determined by the Boltzmann's plot method whereas the gas temperature is estimated using a fiber thermometer. Furthermore, the Stark broadening of the hydrogen Balmer H{sub {beta}} line is applied to measure the electron density, and the simultaneous presence of comparable Doppler, van der Waals, and instrumental broadenings is discussed. Besides, properties of the jet discharge are also studied by electrical diagnosis. It has been found that the electron densities in this argon plasma jet are on the order of 10{sup 14} cm{sup -3}, and the excitation temperature, gas temperature, and electron density increase with the applied voltage. On the other hand, these parameters are inversely proportional to the argon gas flow rate.

  1. Simulation and analysis of TE wave propagation for measurement of electron cloud densities in particle accelerators

    NASA Astrophysics Data System (ADS)

    Sonnad, Kiran G.; Hammond, Kenneth C.; Schwartz, Robert M.; Veitzer, Seth A.

    2014-08-01

    The use of transverse electric (TE) waves has proved to be a powerful, noninvasive method for estimating the densities of electron clouds formed in particle accelerators. Results from the plasma simulation program VSim have served as a useful guide for experimental studies related to this method, which have been performed at various accelerator facilities. This paper provides results of the simulation and modeling work done in conjunction with experimental efforts carried out at the Cornell electron storage ring “Test Accelerator” (CESRTA). This paper begins with a discussion of the phase shift induced by electron clouds in the transmission of RF waves, followed by the effect of reflections along the beam pipe, simulation of the resonant standing wave frequency shifts and finally the effects of external magnetic fields, namely dipoles and wigglers. A derivation of the dispersion relationship of wave propagation for arbitrary geometries in field free regions with a cold, uniform cloud density is also provided.

  2. D-region electron densities obtained by differential absorption and phase measurements with a 3-MHz-Doppler radar

    NASA Astrophysics Data System (ADS)

    Singer, W.; Latteck, R.; Friedrich, M.; Dalin, P.; Kirkwood, S.; Engler, N.; Holdsworth, D.

    2005-08-01

    A Doppler radar at 3.17 MHz has been installed close to the Andøya Rocket Range as part of the ALOMAR observatory at Andenes, Norway (69.3°N, 16.0°E) in summer 2002 to improve the ground based capabilities for measurements of small scale features and electron number densities in the mesosphere. The main feature of the new radar is the transmitting/receiving antenna which is arranged as a Mills Cross of 29 crossed half-wave dipoles with a minimum beam width of about 7°. The modular transceiver system provides high flexibility in beam forming and pointing as well as in switching of the polarisation between ordinary and extraordinary mode on transmission and reception. Doppler winds and electron number densities can be measured between about 55 km and 90 km with a time resolution of 9 minutes. The electron number density profiles derived with differential absorption (DAE) and differential phase (DPE) measurements are in remarkable good agreement. We discuss the diurnal and seasonal variability of electron densities obtained at Andenes in 2004/2005, the response of D-region electron densities to geomagnetic disturbances and solar proton events. The results are compared with rocket measurements from Andenes and with observations from EISCAT VHF radar at Tromsø.

  3. Reconstruction of the ionospheric 3D electron density distribution by assimilation of ionosonde measurements and operational TEC estimations

    NASA Astrophysics Data System (ADS)

    Gerzen, Tatjana; Wilken, Volker; Jakowski, Norbert; Hoque, Mainul M.

    2013-04-01

    New methods to generate maps of the F2 layer peak electron density of the ionosphere (NmF2) and to reconstruct the ionospheric 3D electron density distribution will be presented. For validation, reconstructed NmF2 maps will be compared with peak electron density measurements from independent ionosonde stations. The ionosphere is the ionized part of the upper Earth's atmosphere lying between about 50 km and 1000 km above the Earth's surface. From the applications perspective the electron density, Ne, is certainly one of the most important parameters of the ionosphere because of its strong impact on radio signal propagation. Especially the critical frequency, foF2, which is related to the F2 layer peak electron density, NmF2, according to the equation NmF2-m3 = 1.24 ? 1010(foF2-MHz)2 and builds the lower limit for the maximum usable frequency MUF, is of particular interest with regard to the HF radio communication applications. In a first order approximation the ionospheric delay of transionospheric radio waves of frequency f is proportional to 1-f2 and to the integral of the electron density (total electron content - TEC) along the ray path. Thus, the information about the total electron content along the receiver-to-satellite ray path can be obtained from the dual frequency measurements permanently transmitted by GNSS satellites. As data base for our reconstruction approaches we use the vertical sounding measurements of the ionosonde stations providing foF2 and routinely generated TEC maps in SWACI (http://swaciweb.dlr.de) at DLR Neustrelitz. The basic concept of our approach is the following one: To reconstruct NmF2 maps we assimilate the ionosonde data into the global Neustrelitz F2 layer Peak electron Density Model (NPDM) by means of a successive corrections method. The TEC maps are produced by assimilating actual ground based GPS measurements providing TEC into an operational version of Neustrelitz TEC Model (NTCM). Finally, the derived NmF2 and TEC maps in

  4. Pseudopotentials from electron density

    NASA Astrophysics Data System (ADS)

    Nagy, Á.; Andrejkovics, I.

    1996-05-01

    A method is introduced that allows the construction of pseudopotentials in the density-functional theory. This method is based on a procedure worked out by one of the authors [J. Phys. B 26, 43 (1993); Philos. Mag. B 69, 779 (1994)] for determining Kohn-Sham potentials, one-electron orbitals, and energies from the electron density. The Hartree-Fock densities of Bunge, Barrientos, and Bunge [At. Data Nucl. Data Tables 53, 114 (1993)] are used to obtain the Kohn-Sham potentials of the Li, Na, and K atoms, and then Phillips-Kleinman-type [Phys. Rev. 116, 287 (1959); 118, 1153 (1960)] pseudopotentials are calculated. The arbitrariness of the pseudo-orbital is removed by minimization of the kinetic energy.

  5. Measurement of a density profile of a hot-electron plasma in RT-1 with three-chord interferometry

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Yano, Y.; Yoshida, Z.; Nishiura, M.; Morikawa, J.; Kawazura, Y.; Nogami, T.; Yamasaki, M.

    2015-02-01

    The electron density profile of a plasma in a magnetospheric dipole field configuration was measured with a multi-chord interferometry including a relativistic correction. In order to improve the accuracy of density reconstruction, a 75 GHz interferometer was installed at a vertical chord of the Ring Trap 1 (RT-1) device in addition to previously installed ones at tangential and another vertical chords. The density profile was calculated by using the data of three-chord interferometry including relativistic effects for a plasma consisting of hot and cold electrons generated by electron cyclotron resonance heating (ECH). The results clearly showed the effects of density peaking and magnetic mirror trapping in a strongly inhomogeneous dipole magnetic field.

  6. Measurement of a density profile of a hot-electron plasma in RT-1 with three-chord interferometry

    SciTech Connect

    Saitoh, H.; Yano, Y.; Yoshida, Z.; Nishiura, M.; Morikawa, J.; Kawazura, Y.; Nogami, T.; Yamasaki, M.

    2015-02-15

    The electron density profile of a plasma in a magnetospheric dipole field configuration was measured with a multi-chord interferometry including a relativistic correction. In order to improve the accuracy of density reconstruction, a 75 GHz interferometer was installed at a vertical chord of the Ring Trap 1 (RT-1) device in addition to previously installed ones at tangential and another vertical chords. The density profile was calculated by using the data of three-chord interferometry including relativistic effects for a plasma consisting of hot and cold electrons generated by electron cyclotron resonance heating (ECH). The results clearly showed the effects of density peaking and magnetic mirror trapping in a strongly inhomogeneous dipole magnetic field.

  7. Coronal electron density distributions estimated from CMEs, DH type II radio bursts, and polarized brightness measurements

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Ok; Moon, Y.-J.; Lee, Jin-Yi; Lee, Kyoung-Sun; Kim, R.-S.

    2016-04-01

    We determine coronal electron density distributions (CEDDs) by analyzing decahectometric (DH) type II observations under two assumptions. DH type II bursts are generated by either (1) shocks at the leading edges of coronal mass ejections (CMEs) or (2) CME shock-streamer interactions. Among 399 Wind/WAVES type II bursts (from 1997 to 2012) associated with SOHO/LASCO (Large Angle Spectroscopic COronagraph) CMEs, we select 11 limb events whose fundamental and second harmonic emission lanes are well identified. We determine the lowest frequencies of fundamental emission lanes and the heights of leading edges of their associated CMEs. We also determine the heights of CME shock-streamer interaction regions. The CEDDs are estimated by minimizing the root-mean-square error between the heights from the CME leading edges (or CME shock-streamer interaction regions) and DH type II bursts. We also estimate CEDDs of seven events using polarized brightness (pB) measurements. We find the following results. Under the first assumption, the average of estimated CEDDs from 3 to 20 Rs is about 5-fold Saito's model (NSaito(r)). Under the second assumption, the average of estimated CEDDs from 3 to 10 Rs is 1.5-fold NSaito(r). While the CEDDs obtained from pB measurements are significantly smaller than those based on the first assumption and CME flank regions without streamers, they are well consistent with those on the second assumption. Our results show that not only about 1-fold NSaito(r) is a proper CEDD for analyzing DH type II bursts but also CME shock-streamer interactions could be a plausible origin for generating DH type II bursts.

  8. Assessment of plasma impedance probe for measuring electron density and collision frequency in a plasma with spatial and temporal gradients

    SciTech Connect

    Hopkins, Mark A. King, Lyon B.

    2014-05-15

    Numerical simulations and experimental measurements were combined to determine the ability of a plasma impedance probe (PIP) to measure plasma density and electron collision frequency in a plasma containing spatial gradients as well as time-varying oscillations in the plasma density. A PIP is sensitive to collision frequency through the width of the parallel resonance in the Re[Z]-vs.-frequency characteristic, while also being sensitive to electron density through the zero-crossing of the Im[Z]-vs.-frequency characteristic at parallel resonance. Simulations of the probe characteristic in a linear plasma gradient indicated that the broadening of Re[Z] due to the spatial gradient obscured the broadening due to electron collision frequency, preventing a quantitative measurement of the absolute collision frequency for gradients considered in this study. Simulation results also showed that the PIP is sensitive to relative changes in electron collision frequency in a spatial density gradient, but a second broadening effect due to time-varying oscillations made collision frequency measurements impossible. The time-varying oscillations had the effect of causing multiple zero-crossings in Im[Z] at parallel resonance. Results of experiments and simulations indicated that the lowest-frequency zero-crossing represented the lowest plasma density in the oscillations and the highest-frequency zero-crossing represented the highest plasma density in the oscillations, thus the PIP probe was found to be an effective tool to measure both the average plasma density as well as the maximum and minimum densities due to temporal oscillations.

  9. Measurements of Electron Density and Temperature of Micropinch Plasma Formed in Vacuum-Spark Discharge

    NASA Astrophysics Data System (ADS)

    Mohammad, Nisar; Koshelev, K. N.; Antsiferov, P. S.; Kunze, H. J.

    2000-10-01

    The parameters of micropinches formed in vacuum-spark discharge are investigated spectroscopically. Single shot x-ray spectra of He-like S, Cl, Ca, Cr, Fe and H-like Ca ions are recorded using crystal spectrograph. The comparison of experimental spectrum with the corresponding theoretical one, generated by codes FLY and FLYSPEC is used to determine the electron density ne and temperature Te of micropinch plasma.

  10. Measurement of Field Aligned Electron and Ion Densities and Ducts from the Whistler and Z Mode Radio Sounding from IMAGE

    NASA Astrophysics Data System (ADS)

    Sonwalkar, V. S.; Hazra, S.; Mayank, K.; Reddy, A.; Liu, Y.; Carpenter, D. L.

    2013-12-01

    We present recent results from the application of whistler mode (WM) and Z mode (ZM) radio sounding experiments from the IMAGE satellite to the magnetospheric plasma diagnostics. A recently developed WM radio sounding method [Sonwalkar et al., JGR, 116, A11210, doi:10.1029/2011JA016759, 2011] was applied to 200 cases of WM echoes observed within the plasmasphere to measure field aligned electron density (Ne) and ion densities (NH+, NHe+, NO+) for L~1.6 -4, altitude <5000 km, Kp ~1-7, and F10.7 ~ 72-110 (low solar activity). The measured plasma parameters are in general consistent with the past space borne (e.g. CHAMP, DMSP, Alouette, ISIS, AE) and ground (e.g. ionosonde) measurements, but show significant differences from those predicted by IRI-2012 and GCPM models. We believe our measurements will lead to an improved model of electron and ion densities at <5000 km within the plasmasphere. The WM radio sounding method was applied to a case study of the variation of plasma parameters at L~2 during the development of a major storm, from quiet conditions and subsequent recovery, followed by a moderate and minor storm. Our study showed that relative to the preceding quiet time: (1) There was depletion in electron density, H+, He+ and enhancement in O+ ions leading to increase in O+-H+ transition height; (2) The recovery period of electrons and individual ions was different; (3) A similar trend in the variation of electron density, H+, O+ was observed after the moderate storm and the minor storm but He+ was not affected. Following a ray tracing technique originally developed for whistler mode sounding, we analyzed the fast nonducted and ducted Z mode echoes to obtain field aligned electron density and duct parameters (duct width and enhancement) from the measured dispersion of Z mode echoes. With the help of two case studies, we illustrate that fast Z mode echoes provide measurement of electron density at altitudes <10,000 km and duct width and enhancement within an

  11. An evaluation of International Reference Ionosphere electron density in the polar cap and cusp using EISCAT Svalbard radar measurements

    NASA Astrophysics Data System (ADS)

    Merete Bjoland, Lindis; Belyey, Vasyl; Løvhaug, Unni Pia; La Hoz, Cesar

    2016-09-01

    Incoherent scatter radar measurements are an important source for studies of ionospheric plasma parameters. In this paper the EISCAT Svalbard radar (ESR) long-term database is used to evaluate the International Reference Ionosphere (IRI) model. The ESR started operations in 1996, and the accumulated database up to 2012 thus covers 16 years, giving an overview of the ionosphere in the polar cap and cusp during more than one solar cycle. Data from ESR can be used to obtain information about primary plasma parameters: electron density, electron and ion temperature, and line-of-sight plasma velocity from an altitude of about 50 and up to 1600 km. Monthly averages of electron density and temperature and ion temperature and composition are also provided by the IRI model from an altitude of 50 to 2000 km. We have compared electron density data obtained from the ESR with the predicted electron density from the IRI-2016 model. Our results show that the IRI model in general fits the ESR data well around the F2 peak height. However, the model seems to underestimate the electron density at lower altitudes, particularly during winter months. During solar minimum the model is also less accurate at higher altitudes. The purpose of this study is to validate the IRI model at polar latitudes.

  12. Measurement of electron density in complex plasmas of the PK-3 plus apparatus on the International Space Station

    SciTech Connect

    Takahashi, Kazuo; Hayashi, Yasuaki; Adachi, Satoshi

    2011-07-01

    Dust particles in discharge are often levitated in a sheath region rather than in bulk plasma under gravitational conditions (on Earth). Gravity compresses dust clouds, and the gravitational force restricts the motion of the dust particles. Microgravity gives the plasmas, including dust particles, so-called complex (dusty) plasmas, where dust particles are embedded in a completely charge-neutral region of the bulk plasma. The dust cloud, as an uncompressed strongly-coupled Coulomb system, corresponds to an atomic model with physical phenomena, e.g., crystallization, phase transition, and so on. Since the phenomena are tightly connected to plasma states expressed by plasma parameters, it is significant to estimate the plasma parameters, such as electron density and temperature. The present work shows the electron density measured by the frequency shift probe in the apparatus for microgravity experiments currently boarding on the International Space Station (PK-3 plus). The frequency shift probe measurement gave electron density in the order of 10{sup 8} cm{sup -3} as a typical value in the apparatus, and demonstrated the detection of electrons in plasmas with dust particles. The spatial distribution profile of the electron density obtained in this measurement presents an aspect for the void formation of dust clouds under microgravity.

  13. Electron density measurement in gas discharge plasmas by optical and acoustic methods

    NASA Astrophysics Data System (ADS)

    Biagioni, A.; Anania, M. P.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Mostacci, A.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-08-01

    Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.

  14. Measurement of Electron Density Using the Multipole Resonance Probe, Langmuir Probe and Optical Emission Spectroscopy in Low Pressure Plasmas with Different Electron Energy Distribution Functions

    NASA Astrophysics Data System (ADS)

    Oberberg, Moritz; Bibinov, Nikita; Ries, Stefan; Awakowicz, Peter; Institute of Electrical Engineering; Plasma Technology Team

    2016-09-01

    In recently publication, the young diagnostic tool Multipole Resonance Probe (MRP) for electron density measurements was introduced. It is based on active plasma resonance spectroscopy (APRS). The probe was simulated und evaluated for different devices. The geometrical and electrical symmetry simplifies the APRS model, so that the electron density can be easily calculated from the measured resonance. In this work, low pressure nitrogen mixture plasmas with different electron energy distribution functions (EEDF) are investigated. The results of the MRP measurement are compared with measurements of a Langmuir Probe (LP) and Optical Emission Spectroscopy (OES). Probes and OES measure in different regimes of kinetic electron energy. Both probes measure electrons with low kinetic energy (<10 eV), whereas the OES is influenced by electrons with high kinetic energy which are needed for transitions of molecule bands. By the determination of the absolute intensity of N2(C-B) and N2+(B-X)electron temperature and density can be calculated. In a non-maxwellian plasma, all plasma diagnostics need to be combined.

  15. Measuring atomic oxygen densities and electron properties in an Inductively Coupled Plasma for thin film deposition

    NASA Astrophysics Data System (ADS)

    Meehan, David; Gibson, Andrew; Booth, Jean-Paul; Wagenaars, Erik

    2016-09-01

    Plasma Enhanced Pulsed Laser Deposition (PE-PLD) is an advanced way of depositing thin films of oxide materials by using a laser to ablate a target, and passing the resulting plasma plume through a background Inductively-Coupled Plasma (ICP), instead of a background gas as is done in traditional PLD. The main advantage of PE-PLD is the control of film stoichiometry via the direct control of the reactive oxygen species in the ICP instead of relying on a neutral gas background. The aim is to deposit zinc oxide films from a zinc metal target and an oxygen ICP. In this work, we characterise the range of compositions of the reactive oxygen species achievable in ICPs; in particular the atomic oxygen density. The density of atomic oxygen has been determined within two ICPs of two different geometries over a range of plasma powers and pressures with the use of Energy Resolved Actinometry (ERA). ERA is a robust diagnostic technique with determines both the dissociation degree and average electron energy by comparing the excitation ratios of two oxygen and one argon transition. Alongside this the electron densities have been determined with the use of a hairpin probe. This work received financial support from the EPSRC, and York-Paris CIRC.

  16. Measurements of core electron temperature and density fluctuations in DIII-D and comparison to nonlinear gyrokinetic simulations

    SciTech Connect

    White, A. E.; Schmitz, L.; Peebles, W. A.; Carter, T. A.; Doyle, E. J.; Rhodes, T. L.; Wang, G.; McKee, G. R.; Shafer, M. W.; Holland, C.; Tynan, G. R.; Austin, M. E.; Burrell, K. H.; Candy, J.; DeBoo, J. C.; Prater, R.; Staebler, G. M.; Waltz, R. E.; Makowski, M. A.

    2008-05-15

    For the first time, profiles (0.3<{rho}<0.9) of electron temperature and density fluctuations in a tokamak have been measured simultaneously and the results compared to nonlinear gyrokinetic simulations. Electron temperature and density fluctuations measured in neutral beam-heated, sawtooth-free low confinement mode (L-mode) plasmas in DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] are found to be similar in frequency and normalized amplitude, with amplitude increasing with radius. The measured radial profile of two fluctuation fields allows for a new and rigorous comparison with gyrokinetic results. Nonlinear gyrokinetic flux-tube simulations predict that electron temperature and density fluctuations have similar normalized amplitudes in L-mode. At {rho}=0.5, simulation results match experimental heat diffusivities and density fluctuation amplitude, but overestimate electron temperature fluctuation amplitude and particle diffusivity. In contrast, simulations at {rho}=0.75 do not match either the experimentally derived transport properties or the measured fluctuation levels.

  17. Communications on quantum similarity (2): A geometric discussion on holographic electron density theorem and confined quantum similarity measures.

    PubMed

    Carbó-Dorca, R; Besalú, E

    2010-10-01

    The so-called holographic electron density theorem (HEDT) is analyzed from an algebraic perspective, and a brief analytical point of view is also given. The connection of the HEDT with quantum similarity measures (QSM) over electronic density functions (DF) is studied using GTO functions, atomic ASA DF, and promolecular ASA DF. Restricted integration of QSM over a box of finite side length is discussed for all this DF. This work emphasizes the geometric aspects of HEDT, but for the sake of completeness, some analytical insight based on a general Taylor series expansion is also given at the end. (c) 2010 Wiley Periodicals, Inc.

  18. Assimilating Electron Density Profiles Measured by the Real Time Global Ionospheric Radio Observatory - GIRO

    NASA Astrophysics Data System (ADS)

    Reinisch, B. W.; Galkin, I. A.

    2009-04-01

    Operational applications of ionospheric models, whether they are first principles or data-driven models, rely on the accuracy of the models during quiet and disturbed conditions. Of course models can correctly describe ionospheric weather only if they assimilate measured ionospheric characteristics and electron density profiles (EDPs). For the "assimilating model" to make correct predictions, the measurements in turn must be accurate and reliable. Ionosondes provide the most accurate vertical EDPs at the site locations but do not cover all parts of the globe. Ionogram-derived EDPs have become the ground truth reference for ionospheric specification, presenting the unrivaled accuracy of the data on continuous demand for validation of alternative ionospheric techniques, including radio occultation, ultraviolet, and tomography. In recent years the digisonde network of ionosondes has grown to eighty stations and is expected to expand to more than 100 stations in the next couple of years. The new Digisonde-4D is running the Automatic Real Time Ionogram Scaler with True height inversion, ARTIST-5. The ARTIST-5 autoscaling program now calculates the EDPs together with density uncertainty limits at each height, making the data products suitable for ingestion in assimilative ionospheric models. In order to specify uncertainty at each height, two boundary profiles, inner and outer, are determined. The inner and outer boundaries reflect the uncertainties of the critical frequencies of each layer, the internal uncertainty of the starting height of the profile, and the uncertainties of the E valley model representation. The actual uncertainties are calculated from a cumulative difference characteristic representing a mismatch between automatically and manually scaled parameters (i.e., foF2, foF1) for the same ionogram. The cumulative differences are determined from statistical analysis of a large amount of ionograms for a specific station. The characteristics of interest are

  19. Validation of NeQuick TEC data ingestion technique against C/NOFS and EISCAT electron density measurements

    NASA Astrophysics Data System (ADS)

    Nigussie, M.; Radicella, S. M.; Damtie, B.; Yizengaw, E.; Nava, B.; Roininen, L.

    2016-07-01

    This paper investigates a technique to estimate near-real-time electron density structure of the ionosphere. Ground-based GPS receiver total electron content (TEC) at low and high latitudes has been used to assist the NeQuick 2 model. First, we compute model input (effective ionization level) when the modeled slant TEC (sTEC) best fits the measured sTEC by single GPS receiver (reference station). Then we run the model at different locations nearby the reference station and produce the spatial distribution of the density profiles of the ionosphere in the East African region. We investigate the performance of the model, before and after data ingestion in estimating the topside ionosphere density profiles. This is carried out by extracting in situ density from the model at the corresponding location of C/NOFS (Communication/Navigation Outage Forecast System) satellite orbit and comparing the modeled ion density with the in situ ion density observed by Planar Langmuir Probe onboard C/NOFS. It is shown that the performance of the model after data ingestion reproduces the topside ionosphere better up to about 824 km away from the reference station than that before adaptation. Similarly, for high-latitude region, NeQuick 2 adapted to sTEC obtained from high-latitude (Tromsø in Norway) GPS receiver and the model used to reproduce parameters measured by European Incoherent Scatter Scientific Association (EISCAT) VHF radar. It is shown that the model after adaptation shows considerable improvement in estimating EISCAT measurements of electron density profile, F2 peak density, and height.

  20. Middle atmosphere measurements of small-scale electron density irregularities and ion properties during the MAC/Epsilon campaign

    NASA Technical Reports Server (NTRS)

    Blood, S. P.; Mitchell, J. D.; Croskey, C. L.

    1989-01-01

    Rocket payloads designed to measure small scale electron density irregularities and ion properties in the middle atmosphere were flown with each of the three main salvos of the MAC/Epsilon campaign conducted at the Andoya Rocket Range, Norway, during October to November 1987. Fixed bias, hemispheric nose tip probes measured small scale electron density irregularities, indicative of neutral air turbulence, during the rocket's ascent; and subsequently, parachute-borne Gerdien condensers measured the region's polar electrical conductivity, ion mobility and density. One rocket was launched during daylight (October 15, 1052:20 UT), and the other two launches occurred at night (October 21, 2134 UT: November 12, 0021:40 UT) under moderately disturbed conditions which enhanced the detection and measurement of turbulence structures. A preliminary analysis of the real time data displays indicates the presence of small scale electron density irregularities in the altitude range of 60 to 90 km. Ongoing data reduction will determine turbulence parameters and also the region's electrical properties below 90 km.

  1. Inductively-coupled plasmas in pure Cl, Oand mixtures: measurements of atoms, ClxOyand electron densities

    NASA Astrophysics Data System (ADS)

    Foucher, Mickaël; Carbone, Emile; Booth, Jean-Paul; Chabert, Pascal; LPP-Plasmas froids Team

    2014-10-01

    Inductively-coupled plasmas in Cl/O (often with HBr) are widely used in the microelectronics industry for the etching of silicon CMOS gates. Many simulations describing these plasmas (global and 2-dimensional fluid models such as HPEM) have been developed but experimental validation is sparse. This paper addresses this gap with a large quantity of experimental data in plasmas of Cl, Oand their mixtures. The plasma is excited by a 4-turn planar coil powered at 13.56 MHz through a dielectric window, and contained in a cylindrical anodized aluminium reactor (55 cm diameter, 10 cm high). Electron densities were measured with a microwave hairpin resonator. In all cases the electron density passes through a maximum with pressure. The ground-state O and Cl atom density was measured by Two-Photon Absorption Laser-Induced Fluorescence (TALIF) combined with specific absolute calibration techniques. Broad-band absorption spectroscopy was used to measure the density of Cland vibrationally excited Omolecules, excited state Cl atoms and a range of oxychlorides products. To our knowledge this is the first time that these oxychloride densities and vibrationally excited molecules have been measured in low-pressure plasmas.

  2. Upgraded millimeter-wave interferometer for measuring the electron density during the beam extraction in the negative ion source.

    PubMed

    Tokuzawa, T; Kisaki, M; Nagaoka, K; Tsumori, K; Ito, Y; Ikeda, K; Nakano, H; Osakabe, M; Takeiri, Y; Kaneko, O

    2016-11-01

    The upgraded millimeter-wave interferometer with the frequency of 70 GHz is installed on a large-scaled negative ion source. Measurable line-averaged electron density is from 2 × 10(15) to 3 × 10(18) m(-3) in front of the plasma grid. Several improvements such as the change to shorter wavelength probing with low noise, the installation of special ordered horn antenna, the signal modulation for a high accuracy digital phase detection, the insertion of insulator, and so on, are carried out for the measurement during the beam extraction by applying high voltage. The line-averaged electron density is successfully measured and it is found that it increases linearly with the arc power and drops suddenly at the beam extraction.

  3. Upgraded millimeter-wave interferometer for measuring the electron density during the beam extraction in the negative ion source

    NASA Astrophysics Data System (ADS)

    Tokuzawa, T.; Kisaki, M.; Nagaoka, K.; Tsumori, K.; Ito, Y.; Ikeda, K.; Nakano, H.; Osakabe, M.; Takeiri, Y.; Kaneko, O.

    2016-11-01

    The upgraded millimeter-wave interferometer with the frequency of 70 GHz is installed on a large-scaled negative ion source. Measurable line-averaged electron density is from 2 × 1015 to 3 × 1018 m-3 in front of the plasma grid. Several improvements such as the change to shorter wavelength probing with low noise, the installation of special ordered horn antenna, the signal modulation for a high accuracy digital phase detection, the insertion of insulator, and so on, are carried out for the measurement during the beam extraction by applying high voltage. The line-averaged electron density is successfully measured and it is found that it increases linearly with the arc power and drops suddenly at the beam extraction.

  4. Upgraded millimeter-wave interferometer for measuring the electron density during the beam extraction in the negative ion source

    SciTech Connect

    Tokuzawa, T. Kisaki, M.; Nagaoka, K.; Ito, Y.; Ikeda, K.; Nakano, H.; Tsumori, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.

    2016-11-15

    The upgraded millimeter-wave interferometer with the frequency of 70 GHz is installed on a large-scaled negative ion source. Measurable line-averaged electron density is from 2 × 10{sup 15} to 3 × 10{sup 18} m{sup −3} in front of the plasma grid. Several improvements such as the change to shorter wavelength probing with low noise, the installation of special ordered horn antenna, the signal modulation for a high accuracy digital phase detection, the insertion of insulator, and so on, are carried out for the measurement during the beam extraction by applying high voltage. The line-averaged electron density is successfully measured and it is found that it increases linearly with the arc power and drops suddenly at the beam extraction.

  5. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    NASA Astrophysics Data System (ADS)

    Kühn-Kauffeldt, M.; Marques, J.-L.; Forster, G.; Schein, J.

    2013-10-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned.

  6. Simulations of Electron-Cloud Current Density Measurements in Dipoles, Drifts, and Wigglers at CesrTA

    SciTech Connect

    Calvey, J.; Crittenden, J. A.; Dugan, G.; Greenwald, S.; Kreinick, D.; Livezey, J. A.; Palmer, M. A.; Rubin, D.; Fukuma, H.; Jain, P.; Kanazawa, K.; Suetsugu, Y.; Celata, C. M.; Furman, M.; Penn, G.; Venturini, M.; Pivi, M.T.F.; Harkay, K.C.; Wang, L.

    2009-05-01

    A core component of the Cesr-TA research program at Cornell is to fully understand the electron cloud effect through the use of simulation programs that have been developed to predict the growth of the cloud and its interaction with the beam. As a local probe of the electron cloud, several segmented retarding field analyzers (RFAs) have been installed in CesrTA in dipole, drift and wiggler regions. Using these RFAs, the energy spectrum of the time-average electron cloud current density striking the walls has been measured for a variety of bunch train patterns, with different bunch currents, beam energies, emittances, and bunch lengths, and for both positron and electron beams. This paper will compare these measurements with the predictions of simulation programs.

  7. Simulations of Electron-Cloud Current Density Measurements in Dipoles, Drifts And Wigglers at CesrTA

    SciTech Connect

    Calvey, J.; Crittenden, J. A.; Dugan, G.; Greenwald, S.; Livezey, J. A.; Palmer, M. A.; Rubin, D.; Harkay, K. C.; Jain, P.; Kanazawa, K.; Suetsugu, Y.; Celata, C. M.; Furman, M.; Pivi, M. T. F.; Wang, L.; Kreinick, D.; Penn, G.; Venturini, M.

    2009-05-04

    A core component of the CesrTA research program at Cornell is to fully understand the electron cloud effect through the use of simulation programs that have been developed to predict the growth of the cloud and its interaction with the beam. As a local probe of the electron cloud, several segmented retarding field analyzers (RFAs) have been installed in CesrTA in dipole, drift and wiggler regions. Using these RFAs, the energy spectrum of the time-average electron cloud current density striking the walls has been measured for a variety of bunch train patterns, with different bunch currents, beam energies, emittances, and bunch lengths, and for both positron and electron beams. This paper will compare these measurements with the predictions of simulation programs.

  8. Development of a Method for Local Electron Temperature and Density Measurements in the Divertor of the JET Tokamak

    NASA Technical Reports Server (NTRS)

    Jupen, C.; Meigs, A.; Bhatia, A. K.; Brezinsek, S.; OMullane, M.

    2004-01-01

    Plasma volume recombination in the divertor, a process in which charged particles recombine to neutral atoms, contributes to plasma detachment and hence cooling at the divertor target region. Detachment has been observed at JET and other tokamaks and is known to occur at low electron temperatures (T(sub e)<1 eV) and at high electron density (n(sub e)>10(exp 20)/m(exp 3)). The ability to measure such low temperatures is therefore of interest for modelling the divertor. In present work we report development of a new spectroscopic technique for investigation of local electron density (n(sub e)) and temperature (T,) in the outer divertor at JET.

  9. Electron and ion density depletions measured in the STS-3 orbiter wake

    NASA Technical Reports Server (NTRS)

    Murphy, G. B.; Pickett, J. S.; Raitt, W. S.; Shawhan, S. D.

    1985-01-01

    The third Space Shuttle flight on Columbia carried instrumentation to measure thermal plasma density and temperature. Two separate investigations, the Plasma Diagnostics Package (PDP) and the Vehicle Charging and Potential Experiment (VCAP), carried a Langmuir Probe, and the VCAP also included a Spherical Retarding Potential Analyzer (SRPA). Only those measurements made while the PDP is in the payload bay are discussed here since the VCAP instrumentation remains in the payload bay at all times and the two measurements are compared. The wake behind a large structure (in this case the Space Shuttle Orbiter) flying through the ionospheric plasma is discussed. Much theoretical work was done regarding plasma wakes. The instrumentation on this mission gives the first data taken with a large vehicle in the ionospheric laboratory. First, the PDP Langmuir Probe and its data set will be presented, then the VCAP Langmuir Probe and SRPA with associated data. The agreement between the two data sets is discussed and then followed by some other PDP data which infers an even lower wake density.

  10. Plasma Sheet Thickness at Jupiter From Galileo Measurements of Electron Density and a New Model of Jupiter's Magnetic Field

    NASA Astrophysics Data System (ADS)

    Ansher, J. A.; Khurana, K. K.; Kivelson, M. G.; Gurnett, D. A.; Holland, D. L.; Martin, R. F.

    2005-05-01

    Electron density has been determined throughout much of Galileo's primary mission at Jupiter (December 7, 1995 to November 6, 1997) by observing plasma waves measured by the plasma wave instrument on board the spacecraft. The density data set is used here to identify spacecraft encounters with Jupiter's magnetotail plasma sheet during the primary mission by assuming that electron density is highest at the center of the plasma sheet. As Jupiter rotates, the spacecraft encounters one pair of plasma sheet crossings during each ten-hour rotation period. Electron density is usually seen to increase as Galileo enters the plasma sheet, reach a maximum value near the center of the plasma sheet, and then decrease as the spacecraft exits the plasma sheet. This signature is clearest in the data at radial distances between 20 RJ, and 50 RJ from Jupiter. Plasma sheet thickness is determined by identifying the z-coordinate of the spacecraft as it enters and exits the plasma sheet. The z-position is measured with respect to a newer magnetic field model by Khurana and Kivelson. This work seeks to determine the plasma sheet thickness in Jupiter's magnetotail, where other instruments observe a thicker plasma sheet in the midnight and dusk sectors and a thinner, more distinct sheet in Jupiter's dawn sector.

  11. Identification of errors in the electron density measurements of a tangential interferometer/polarimeter system during a tokamak discharge

    SciTech Connect

    Arakawa, H.; Kawano, Y.; Itami, K.

    2012-10-15

    A new method for the comparative verification of electron density measurements obtained with a tangential interferometer and a polarimeter during a discharge is proposed. The possible errors associated with the interferometer and polarimeter are classified by the time required for their identification. Based on the characteristics of the errors, the fringe shift error of the interferometer and the low-frequency noise of the polarimeter were identified and corrected for the JT-60U tangential interferometer/polarimeter system.

  12. Development of a spectroscopic technique for simultaneous magnetic field, electron density, and temperature measurements in Z-pinch plasmas

    NASA Astrophysics Data System (ADS)

    Dutra, Eric; Presura, Radu; Covington, Aaron; Mancini, Roberto; Darling, Timothy; Angermeier, William

    2016-10-01

    Visible spectroscopic techniques are often used in plasma experiments to measure B-field induced Zeeman splitting, electron densities via Stark broadening, and temperatures from Doppler broadening. However, when electron densities and temperatures are sufficiently high, the broadening of the Stark and Doppler components can dominate the emission spectra and obscure the Zeeman component. In this research, we are developing a time-resolved multi-axial technique for measuring the Zeeman, Stark, and Doppler broadened line emission of dense magnetized plasmas for Z-pinch. In parallel, we are developing a line-shape modeling code that incorporates the broadening effects due to Stark, Doppler, and Zeeman effects for dense magnetized plasma. Experiments were conducted at the University of Nevada (Reno) at the Nevada Terawatt Facility (NTF) using the 1 MA Z-pinch (Zebra). The research explored the optical emission of Al III doublet, 4P 2P3/2 to 4S 2S1/2 and 4P 2P1/2 to 4s 2S1/2 transitions and used it to measure Zeeman, Stark, and Doppler broadened emission. The initial parameters for the line shape code are varied to simulate emission spectra. The simulated spectra are compared to experimental results. These results are used to infer temperature, electron density, and B-fields in the magnetized plasma.

  13. Flexible microwave system to measure the electron number density and quantify the communications impact of electric thruster plasma plumes

    NASA Astrophysics Data System (ADS)

    Gilchrist, B. E.; Ohler, S. G.; Gallimore, A. D.

    1997-02-01

    An advanced microwave interferometric system operating in the Ku (12-18 GHz) band has been implemented for use in very large vacuum chambers to determine the effects of electromagnetic wave propagation through a plasma plume created by a space electric propulsion thruster. This diagnostic tool is used to nonintrusively obtain the local electron number density as well as provide information necessary for understanding impact to communications and other spacecraft electromagnetic systems. The use of a nonintrusive electromagnetic measurement provides highly accurate line integrated density and avoids problems caused by intrusive measurement techniques. If the plasma is symmetrical, local plasma density can also be determined accurately using well known inversion techniques. A network analyzer acts as a transmitter and receiver while a two axis positioning system maps the amplitude and phase variation of a transmitted signal over one plane of the plasma plume. The utilization of a 6 m×9 m vacuum chamber effectively minimizes plasma boundary effects, but the longer cable path lengths have required a frequency conversion circuit to reduce power loss and phase uncertainty at high frequencies. Two studies are presented: the first is a measurement of the local electron density in the plume of a 1 kW arcjet and the second is a measurement of attenuation in the plume of a stationary plasma thruster. Both the arcjet and SPT emit a steady state conical unmagnetized plasma that is radially symmetric. The arcjet peak density is 1015-1016 m-3 along centerline and the SPT peak density is 1016-1017 m-3 along centerline.

  14. Saturn's ionosphere - Inferred electron densities

    NASA Astrophysics Data System (ADS)

    Kaiser, M. L.; Desch, M. D.; Connerney, J. E. P.

    1984-04-01

    During the two Voyager encounters with Saturn, radio bursts were detected which appear to have originated from atmospheric lightning storms. Although these bursts generally extended over frequencies from as low as 100 kHz to the upper detection limit of the instrument, 40 MHz, they often exhibited a sharp but variable low frequency cutoff below which bursts were not detected. We interpret the variable low-frequency extent of these bursts to be due to the reflection of the radio waves as they propagate through an ionosphere which varies with local time. We obtain estimates of electron densities at a variety of latitude and local time locations. These compare well with the dawn and dusk densities measured by the Pioneer 11 Voyager Radio Science investigations, and with model predictions for dayside densities. However, we infer a two-order-of-magnitude diurnal variation of electron density, which had not been anticipated by theoretical models of Saturn's ionosphere, and an equally dramatic extinction of ionospheric electron density by Saturn's rings. Previously announced in STAR as N84-17102

  15. Saturn's ionosphere - Inferred electron densities

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.; Desch, M. D.; Connerney, J. E. P.

    1984-01-01

    During the two Voyager encounters with Saturn, radio bursts were detected which appear to have originated from atmospheric lightning storms. Although these bursts generally extended over frequencies from as low as 100 kHz to the upper detection limit of the instrument, 40 MHz, they often exhibited a sharp but variable low frequency cutoff below which bursts were not detected. We interpret the variable low-frequency extent of these bursts to be due to the reflection of the radio waves as they propagate through an ionosphere which varies with local time. We obtain estimates of electron densities at a variety of latitude and local time locations. These compare well with the dawn and dusk densities measured by the Pioneer 11 Voyager Radio Science investigations, and with model predictions for dayside densities. However, we infer a two-order-of-magnitude diurnal variation of electron density, which had not been anticipated by theoretical models of Saturn's ionosphere, and an equally dramatic extinction of ionospheric electron density by Saturn's rings. Previously announced in STAR as N84-17102

  16. Saturn's ionosphere: Inferred electron densities

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.; Desch, M. D.; Connerney, J. E. P.

    1983-01-01

    During the two Voyager encounters with Saturn, radio bursts were detected which appear to have originated from atmospheric lightning storms. Although these bursts generally extended over frequencies from as low as 100 kHz to the upper detection limit of the instrument, 40 MHz, they often exhibited a sharp but variable low frequency cutoff below which bursts were not detected. We interpret the variable low-frequency extent of these bursts to be due to the reflection of the radio waves as they propagate through an ionosphere which varies with local time. We obtain estimates of electron densities at a variety of latitude and local time locations. These compare well with the dawn and dusk densitis measured by the Pioneer 11 Voyager Radio Science investigations, and with model predictions for dayside densities. However, we infer a two-order-of-magnitude diurnal variation of electron density, which had not been anticipated by theoretical models of Saturn's ionosphere, and an equally dramatic extinction of ionospheric electron density by Saturn's rings.

  17. Kinetic Temperature and Electron Density Measurement in an Inductively Coupled Plasma Torch using Degenerate Four-Wave Mixing

    NASA Technical Reports Server (NTRS)

    Schafer, Julia; Lyons, Wendy; Tong, WIlliam G.; Danehy, Paul M.

    2008-01-01

    Laser wave mixing is presented as an effective technique for spatially resolved kinetic temperature measurements in an atmospheric-pressure radio-frequency inductively-coupled plasma. Measurements are performed in a 1 kW, 27 MHz RF plasma using a continuous-wave, tunable 811.5-nm diode laser to excite the 4s(sup 3)P2 approaches 4p(sup 3)D3 argon transition. Kinetic temperature measurements are made at five radial steps from the center of the torch and at four different torch heights. The kinetic temperature is determined by measuring simultaneously the line shape of the sub-Doppler backward phase-conjugate degenerate four-wave mixing and the Doppler-broadened forward-scattering degenerate four-wave mixing. The temperature measurements result in a range of 3,500 to 14,000 K+/-150 K. Electron densities measured range from 6.1 (+/-0.3) x 10(exp 15)/cu cm to 10.1 (+/-0.3) x 10(exp 15)/cu cm. The experimental spectra are analyzed using a perturbative treatment of the backward phase-conjugate and forward-geometry wave-mixing theory. Stark width is determined from the collisional broadening measured in the phase-conjugate geometry. Electron density measurements are made based on the Stark width. The kinetic temperature of the plasma was found to be more than halved by adding deionized water through the nebulizer.

  18. Development of a spectroscopic technique for simultaneous magnetic field, electron density, and temperature measurements in ICF-relevant plasmas

    NASA Astrophysics Data System (ADS)

    Dutra, E. C.; Koch, J. A.; Presura, R.; Angermeier, W. A.; Darling, T.; Haque, S.; Mancini, R. C.; Covington, A. M.

    2016-11-01

    Spectroscopic techniques in the visible range are often used in plasma experiments to measure B-field induced Zeeman splitting, electron densities via Stark broadening, and temperatures from Doppler broadening. However, when electron densities and temperatures are sufficiently high, the broadening of the Stark and Doppler components can dominate the emission spectra and obscure the Zeeman component. In this research, we are developing a time-resolved multi-axial technique for measuring the Zeeman, Stark, and Doppler broadened line emission of dense magnetized plasmas for Z-pinch and Dense Plasma Focus (DPF) accelerators. The line emission is used to calculate the electron densities, temperatures, and B-fields. In parallel, we are developing a line-shape modeling code that incorporates the broadening effects due to Stark, Doppler, and Zeeman effects for dense magnetized plasma. This manuscript presents the details of the experimental setup and line shape code, along with the results obtained from an Al iii doublet at the University of Nevada, Reno at Nevada Terawatt Facility. Future tests are planned to further evaluate the technique and modeling on other material wire array, gas puff, and DPF platforms.

  19. Scientific objectives of the Plazma experiment in the Phobos project and principles underlying the measurement of electron density in the Martian ionosphere

    NASA Astrophysics Data System (ADS)

    Breus, T. K.; Krymskii, A. M.; Shtern, D. Ia.; El'Kin, M. L.

    A theoretical evaluation is presented which suggests that vertical profiles of electron density in the Martian ionosphere can be measured effectively via radar sounding from Phobos orbit. It is further suggested that such measurements can be performed with a resolution sufficient to detect a sharp decline of electron density in the ionosphere, corresponding to its upper boundary.

  20. Experimental measurement of spatially resolved electron density in a filament of a pulsed positive streamer discharge in water

    SciTech Connect

    Wen, Xiao Qiong; Niu, Zhi Wen; Ren, Chun-Sheng; Hou, Bo

    2015-06-29

    By combining a high-speed frame camera with a monochromator, the spatially resolved optical emission spectrum of hydrogen α line in a single filament of a pulsed positive streamer discharge in water has been experimentally measured. The spatially resolved electron densities in a single filament of a pulsed positive streamer discharge in water with a conductivity of 200 μS/cm were investigated. During the experiment, the average energy per pulse of discharge was 90.6 ± 13.6 mJ. The results show that the electron density in the streamer filament is 10{sup 17–18}/cm{sup 3}, and present a decreasing tendency along the axial direction of the streamer filament with increasing distance from the tip of the anode.

  1. Multichannel microwave interferometer with an antenna switching system for electron density measurement in a laboratory plasma experiment

    SciTech Connect

    Kawamori, Eiichirou; Lin, Yu-Hsiang; Mase, Atsushi; Nishida, Yasushi; Cheng, C. Z.

    2014-02-15

    This study presents a simple and powerful technique for multichannel measurements of the density profile in laboratory plasmas by microwave interferometry. This technique uses electromechanical microwave switches to temporally switch the connection between multiple receiver antennas and one phase-detection circuit. Using this method, the phase information detected at different positions is rearranged into a time series that can be acquired from a minimum number of data acquisition channels (e.g., two channels in the case of quadrature detection). Our successfully developed multichannel microwave interferometer that uses the antenna switching method was applied to measure the radial electron density profiles in a magnetized plasma experiment. The advantage of the proposed method is its compactness and scalability to multidimensional measurement systems at low cost.

  2. Understanding the dramatic role of anomalous dispersion on the measurement of electron densities in plasmas using interferometers

    SciTech Connect

    Nilsen, J; Johnson, W R; Iglesias, C A; Scofield, J H

    2005-07-20

    For decades the electron density of plasmas has been measured using optical interferometers. With the availability of good X-ray laser sources in the last decade interferometers have been extended into the wavelength range 14-47 nm, which has enabled researchers to probe even higher density plasmas. The data analysis assumes the index of refraction is due only to the free electrons, which makes the index less than one. Recent interferometer experiments in Al plasmas observed plasmas with index of refraction greater than one at 14 nm and brought into question the validity of the usual formula for calculating the index. In this paper we show how the anomalous dispersion from bound electrons can dominate the free electron contribution to the index of refraction in many plasmas and make the index greater than one or enhance the contribution to the index such that one would greatly overestimate the density of the plasma using interferometers. Using a new average-atom code we calculate the index of refraction in many plasmas at different temperatures for photon energies from 0 to 100 eV and compare against calculations done with OPAL. We also present examples of other plasmas that may have index of refraction greater than one at X-ray laser energies. During the next decade X-ray free electron lasers and other X-ray sources will be available to probe a wider variety of plasmas at higher densities and shorter wavelengths so understanding the index of refraction in plasmas will be even more essential.

  3. ISS FPP Ionospheric Electron Density and Temperature Measurements: Results, Comparison with the IRI-90 Model, and Implications for ISS Charging

    NASA Technical Reports Server (NTRS)

    Ferguson, D. C.; Hillard, G. B.; Morton, T. L.; Personen, R.

    2003-01-01

    We give measurement results of electron temperature and electron density from the Floating Potential Probe (FPP) on the International Space Station (ISS), and relate them to the electron current collection of the ISS solar arrays and the degree of charging of ISS when its Plasma Contacting Units (PCUs) are not operating. We show that on days of high solar activity index Kp, high levels of ISS charging are significantly more probable than on days of low solar activity, due to some abnormally low morning electron temperatures. Although the FPP electron temperatures measured are almost always higher than predicted by the International Reference Ionosphere 90 model (IRI-90), it is shown that the CHAMP satellite Langmuir Probe (PLP) also shows low dawn electron temperatures on the same day as those found by FPP. It is further shown that similar high levels of predicted charging, accompanied by vxB charging on the ISS structure, could exceed the -40 V specification on ISS charging, and could be dangerous to ISS astronauts if the PCUs fail to operate.

  4. ISS FPP Ionospheric Electron Density and Temperature Measurements: Results, Comparison with the IRI-90 Model, and Implications for ISS Charging

    NASA Technical Reports Server (NTRS)

    Ferguson, D. C.; Hillard, G. B.; Morton, T. L.; Personen, R.

    2003-01-01

    We give measurement results of electron temperature and electron density from the Floating Potential Probe (FPP) on the International Space Station (ISS), and relate them to the electron current collection of the ISS solar arrays and the degree of charging of ISS when its Plasma Contacting Units (PCUs) are not operating. We show that on days of high solar activity index Kp, high levels of ISS charging are significantly more probable than on days of low solar activity, due to some abnormally low morning electron temperatures. Although the FPP electron temperatures measured are almost always higher than predicted by the International Reference Ionosphere 90 model (IRI-90), it is shown that the CHAMP satellite Langmuir Probe (PLP) also shows low dawn electron temperatures on the same day as those found by FPP. It is further shown that similar high levels of predicted charging, accompanied by vxB charging on the ISS structure, could exceed the -40 V specification on ISS charging, and could be dangerous to ISS astronauts if the PCUs fail to operate.

  5. Design of Q-band FMCW reflectometry for electron density profile measurement on the Joint TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Linghan, Wan; Zhoujun, Yang; Ruobing, Zhou; Xiaoming, Pan; Chi, Zhang; Xianli, Xie; Bowen, Ruan

    2017-02-01

    The Q-band (33-50 GHz) fast sweep frequency modulated continuous wave (FMCW) reflectometry has been recently developed for electron density profile measurement on the Joint TEXT tokamak. It operates in ordinary mode (O-mode) with a 20 μs sweeping period, covering the density range from 1 × 1019 m-3 to 3 × 1019 m-3. On the bench test, a Yttrium Iron Garnet (YIG) filter is used for the dynamic calibration of the voltage controlled oscillator (VCO) to obtain a linear frequency sweep. Besides, the use of a power combiner helps to improve the side-band suppression level of the single side-band modulator (SSBM). The reconstructed density profiles are presented, which demonstrate the capability of the reflectometry.

  6. Topside-plasmasphere electron density profiles model by using AIS ionosonde measurements and calibrates GPS TEC data

    NASA Astrophysics Data System (ADS)

    Cesaroni, Claudio; Scotto, Carlo; Ippolito, Alessandro; Ciraolo, Luigi

    2013-04-01

    The Upper Atmosphere Physics group at INGV (Istituto Nazionale di Geofisica e Vulcanologia) developed Autoscala, a computer program for automatic scaling of the critical frequency foF2 and other ionospheric parameters derived from ionograms. Autoscala includes a routine that automatically estimates the electron density profile below F layer peak height hmF2, by adjusting the parameters of a model according to the recorded ionogram [Scotto (2009)]. By integrating this profile we can estimate bottom-side total electron content (bTEC). By means of a calibration technique [Ciraolo et al. (2007)], we are able to obtain calibrated vertical TEC (vTEC) values from GPS measurements over a receiver station. This method permits to estimate biases of the received signal due to transmitter-receiver hardware configuration. These biases must be eliminated from the GPS data in order to calibrate the experimental slant total electron content (sTEC) along the satellite-receiver line-of-sight (LoS). The difference between vTEC and bottom-side TEC (bTEC) permits to evaluate electron content of the topside ionospheric region (tTEC). Starting from tTEC, bottom-side parameters (foF2, hmF2, scale height at hmF2) obtained by ionosonde and O+ - H+ transition level, we can solve a system of equations based on different ionospheric profiler (Chapman, sech-squared and exponential) the solution of which provides ion scale height [Stankov et al. (2003)]. This last factor is sufficient to establish the vertical distribution of electrons in topside and plasmasphere regions. Obtained vertical profiles could be used to develop a new model for real time estimation of TEC and topside electron density distribution. References: Scotto, C. (2009). Electron density profile calculation technique for Autoscala ionogram analysis. Advances in Space Research, 44(6), 756-766. doi:10.1016/j.asr.2009.04.037 Ciraolo, L., et al. "Calibration errors on experimental slant total electron content (TEC) determined with

  7. Multichannel Microwave Interferometer for Simultaneous Measurement of Electron Density and its Fluctuation on HL-2A Tokamak

    NASA Astrophysics Data System (ADS)

    Shi, Peiwan; Shi, Zhongbing; Chen, Wei; Zhong, Wulyu; Yang, Zengchen; Jiang, Min; Zhang, Boyu; Li, Yonggao; Yu, Liming; Liu, Zetian; Ding, Xuantong

    2016-07-01

    A multichannel microwave interferometer system has been developed on the HL-2A tokomak. Its working frequency is well designed to avoid the fringe jump effect. Taking the structure of HL-2A into account, its antennas are installed in the horizontal direction, i.e. one launcher in high field side (HFS) and four receivers in low field side (LFS). The fan-shaped measurement area covers those regions where the magnetohydrodynamics (MHD) instabilities are active. The heterodyne technique contributes to its high temporal resolution (1 μs). It is possible for the multichannel system to realize simultaneous measurements of density and its fluctuation. The quadrature phase detection based on the zero-crossing method is introduced to density measurement. With this system, reliable line-averaged densities and density profiles are obtained. The location of the saturated internal kink mode can be figured out from the mode showing different intensities on four channels, and the result agrees well with that measured by electron cyclotron emission imaging (ECEI). supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB104002, 2013GB107002, 2014GB107001) and National Natural Science Foundation of China (Nos. 11475058, 11475057, 11261140326, 11405049)

  8. Improvement of GPS radio occultation retrieval error of E region electron density: COSMIC measurement and IRI model simulation

    NASA Astrophysics Data System (ADS)

    Wu, Kang-Hung; Su, Ching-Lun; Chu, Yen-Hsyang

    2015-03-01

    In this article, we use the International Reference Ionosphere (IRI) model to simulate temporal and spatial distributions of global E region electron densities retrieved by the FORMOSAT-3/COSMIC satellites by means of GPS radio occultation (RO) technique. Despite regional discrepancies in the magnitudes of the E region electron density, the IRI model simulations can, on the whole, describe the COSMIC measurements in quality and quantity. On the basis of global ionosonde network and the IRI model, the retrieval errors of the global COSMIC-measured E region peak electron density (NmE) from July 2006 to July 2011 are examined and simulated. The COSMIC measurement and the IRI model simulation both reveal that the magnitudes of the percentage error (PE) and root mean-square-error (RMSE) of the relative RO retrieval errors of the NmE values are dependent on local time (LT) and geomagnetic latitude, with minimum in the early morning and at high latitudes and maximum in the afternoon and at middle latitudes. In addition, the seasonal variation of PE and RMSE values seems to be latitude dependent. After removing the IRI model-simulated GPS RO retrieval errors from the original COSMIC measurements, the average values of the annual and monthly mean percentage errors of the RO retrieval errors of the COSMIC-measured E region electron density are, respectively, substantially reduced by a factor of about 2.95 and 3.35, and the corresponding root-mean-square errors show averaged decreases of 15.6% and 15.4%, respectively. It is found that, with this process, the largest reduction in the PE and RMSE of the COSMIC-measured NmE occurs at the equatorial anomaly latitudes 10°N-30°N in the afternoon from 14 to 18 LT, with a factor of 25 and 2, respectively. Statistics show that the residual errors that remained in the corrected COSMIC-measured NmE vary in a range of -20% to 38%, which are comparable to or larger than the percentage errors of the IRI-predicted NmE fluctuating in a

  9. Inductively-coupled plasmas in pure O2: measurements of densities of O atoms, electrons and vibrationally excited Omolecules

    NASA Astrophysics Data System (ADS)

    Foucher, Mickaël; Carbone, Emile; Booth, Jean-Paul; Chabert, Pascal; LPP-Plasmas froids Team

    2014-10-01

    Inductively-coupled plasmas containing O2 (pure or mixtures) are widely used in materials processing. Various simulations have been developed but experimental validation is still sparse. We present here a comprehensive data set for O2 plasmas over a wide range of pressure and RF power to address this need. The plasma is excited with a 4-turn planar coil through a dielectric window at 13.56 MHz in an anodized aluminium reactor. The electron density was measured with a microwave resonator hairpin probe. It increases continuously with RF power, but with pressure it passes through a broad maximum around 40 mTorr. Ground-state O atom densities were determined using Two-Photon Absorption Laser-Induced Fluorescence combined with absolute calibration using Xe TALIF. The atom density increases with gas pressure, but with RF power it first increases but progressively saturates tot about 20% of the initial (no plasma) gas density. A novel high-sensitivity ultra-broad-band absorption spectroscopy setup allowed O2 molecules to be detected in high vibrational states (up to v = 18) via the Schumann-Runge bands. Molecular Ovibrational temperatures up to 12,000 K were observed, whereas the rotational temperature did not exceed 500 K. This indicates that electron-impact pumping of vibrational levels is important, whereas V-T transfer is slow. These processes must be included to accurately model the O2 plasma system.

  10. Edge electron density profiles and fluctuations measured by two-dimensional beam emission spectroscopy in the KSTAR

    SciTech Connect

    Nam, Y. U. Wi, H. M.; Zoletnik, S.; Lampert, M.; Kovácsik, Ákos

    2014-11-15

    Beam emission spectroscopy (BES) system in Korea Superconducting Tokamak Advanced Research (KSTAR) has recently been upgraded. The background intensity was reduced from 30% to 2% by suppressing the stray lights. This allows acquisition of the relative electron density profiles on the plasma edge without background subtraction from the beam power modulation signals. The KSTAR BES system has its spatial resolution of 1 cm, the temporal resolution of 2 MHz, and a total 32 channel (8 radial × 4 poloidal) avalanche photo diode array. Most measurements were done on the plasma edge, r/a ∼ 0.9, with 8 cm radial measurement width that covers the pedestal range. High speed density profile measurements reveal temporal behaviors of fast transient events, such as the precursors of edge localized modes and the transitions between confinement modes. Low background level also allows analysis of the edge density fluctuation patterns with reduced background fluctuations. Propagation of the density structures can be investigated by comparing the phase delays between the spatially distributed channels.

  11. Spectral optimization for measuring electron density by the dual-energy computed tomography coupled with balanced filter method.

    PubMed

    Saito, Masatoshi

    2009-08-01

    Dual-energy computed tomography (DECT) has the potential for measuring electron density distribution in a human body to predict the range of particle beams for treatment planning in proton or heavy-ion radiotherapy. However, thus far, a practical dual-energy method that can be used to precisely determine electron density for treatment planning in particle radiotherapy has not been developed. In this article, another DECT technique involving a balanced filter method using a conventional x-ray tube is described. For the spectral optimization of DECT using balanced filters, the author calculates beam-hardening error and air kerma required to achieve a desired noise level in electron density and effective atomic number images of a cylindrical water phantom with 50 cm diameter. The calculation enables the selection of beam parameters such as tube voltage, balanced filter material, and its thickness. The optimized parameters were applied to cases with different phantom diameters ranging from 5 to 50 cm for the calculations. The author predicts that the optimal combination of tube voltages would be 80 and 140 kV with Tb/Hf and Bi/Mo filter pairs for the 50-cm-diameter water phantom. When a single phantom calibration at a diameter of 25 cm was employed to cover all phantom sizes, maximum absolute beam-hardening errors were 0.3% and 0.03% for electron density and effective atomic number, respectively, over a range of diameters of the water phantom. The beam-hardening errors were 1/10 or less as compared to those obtained by conventional DECT, although the dose was twice that of the conventional DECT case. From the viewpoint of beam hardening and the tube-loading efficiency, the present DECT using balanced filters would be significantly more effective in measuring the electron density than the conventional DECT. Nevertheless, further developments of low-exposure imaging technology should be necessary as well as x-ray tubes with higher outputs to apply DECT coupled with the

  12. Comparison of the electron density measurements using Thomson scattering and emission spectroscopy for laser induced breakdown in one atmosphere of helium

    SciTech Connect

    Nedanovska, E.; Nersisyan, G.; Lewis, C. L. S.; Riley, D.; Graham, W. G.; Morgan, T. J.; Huewel, L.

    2011-12-26

    Thomson scattering from laser-induced plasma in atmospheric helium was used to obtain temporally and spatially resolved electron temperature and density profiles. Electron density measurements at 5 {mu}s after breakdown are compared with those derived from the separation of the allowed and forbidden components of the 447.1 nm He I line. Plasma is created using 9 ns, 140 mJ pulses from Nd:YAG laser at 1064 nm. Electron densities of {approx}5 x 10{sup 16 }cm{sup -3} are in good agreement with Thomson scattering measurements, benchmarking this emission line as a useful diagnostic for high density plasmas.

  13. Compact and high-particle-flux thermal-lithium-beam probe system for measurement of two-dimensional electron density profile

    SciTech Connect

    Shibata, Y. Manabe, T.; Ohno, N.; Takagi, M.; Kajita, S.; Tsuchiya, H.; Morisaki, T.

    2014-09-15

    A compact and high-particle-flux thermal-lithium-beam source for two-dimensional measurement of electron density profiles has been developed. The thermal-lithium-beam oven is heated by a carbon heater. In this system, the maximum particle flux of the thermal lithium beam was ∼4 × 10{sup 19} m{sup −2} s{sup −1} when the temperature of the thermal-lithium-beam oven was 900 K. The electron density profile was evaluated in the small tokamak device HYBTOK-II. The electron density profile was reconstructed using the thermal-lithium-beam probe data and this profile was consistent with the electron density profile measured with a Langmuir electrostatic probe. We confirm that the developed thermal-lithium-beam probe can be used to measure the two-dimensional electron density profile with high time and spatial resolutions.

  14. Numerical Analysis of the Measurement of Near-Beam Electron Cloud Density in Field-Free Region at KEK B-Factory Low-Energy Ring

    NASA Astrophysics Data System (ADS)

    Jain, Puneet; Fukuma, Hitoshi; Kanazawa, Ken-ichi; Suetsugu, Yusuke

    2010-11-01

    A large number of electrons in the so-called electron cloud are accumulated in beam chambers in positron storage rings. These electrons interact with the beam and can make the beam unstable. The density information of the electron cloud near the beam is therefore fundamental for studying beam instability and mitigation techniques related to the electron cloud. Recently, a method to measure the density of the electron cloud near the beam has been proposed by Kanazawa et al. The method enables the measurement of high-energy electrons selectively using a retarding field analyzer located on a chamber wall, noting that the electrons near the beam receive a strong kick by the beam. They calculated the density of the electron cloud simply assuming that the electrons that receive a kick are stationary. We examined the measurement technique in detail using a new computer code developed by us. The analysis showed that the volume near the beam occupied by the detected electrons, i.e., the observed volume, was strongly deformed owing to the horizontal velocity of the electrons; nevertheless this volume calculated assuming that the stationary electrons can still be used for calculating the density of the electron cloud in their measurement conditions.

  15. Comparison of polar cap electron density enhancement due to solar illumination and geomagnetic activity as measured by IMAGE/RPI

    NASA Astrophysics Data System (ADS)

    Nsumei, P.; Reinisch, B.; Song, P.; Tu, J.; Huang, X.

    2007-12-01

    Polar cap electron density (Ne) measurements made between the years 2000 - 2005 by the radio plasma imager (RPI) on board the IMAGE spacecraft are used to study the density enhancements resulting from changes in solar illumination and geomagnetic activity level. This study covers a geocentric distance, R = 1.4 - 5.0 RE and the polar cap is defined by an empirical boundary model that takes into account the dynamic nature of the location and size of the polar cap. The average polar cap electron density profile depends on geomagnetic activity level e.g., measured by the Kp index and solar illumination (solar zenith angle) at the footprints of the geomagnetic field lines. Our analysis of RPI Ne data shows that increase in geomagnetic activity leads to an enhancement in Ne. This enhancement in Ne is found to increase with altitude. At geocentric distance of R = 4.5 RE, an increase in the geomagnetic activity level from Kp < 2 to ~5 results in an Ne increase by a factor of ~5. On the other hand, a strong solar illumination control of Ne at lower altitudes, and not at higher is observed. At geocentric distance of ~ 2 RE, the average Ne is larger on the sunlit side than on the dark side by a factor of 3 - 4 both for quiet and disturbed conditions. At geocentric distance of about 2.5 RE the effects of these two factors on Ne appear to be comparable. Similar to previous polar cap density models, a functional representation of RPI Ne that takes the form of a power law is proposed. While in the previous Ne functional representations the power index is a constant, the power index in our representation of Ne distribution is found to correlate with (and hence is a function of) the Kp index and the solar zenith angle (SZA).

  16. Comparison of topside electron density measured by Radio Occultation (RO) of FORMOSAT-3/COSMIC satellites and Digisondes on a global scale with IRI

    NASA Astrophysics Data System (ADS)

    Das, Tanmay; Haralambous, Haris

    2016-07-01

    This paper represents a comparison of the topside electron density of the F2-layer measured by FORMOSAT-3/COSMIC satellites in terms of GPS radio occultation technique and digisondes as manually scaled ionograms being provided by DIDBase (Digital Ionogram Database) with IRI. This study encompasses data from more than 40 locations for an extended period from January 2007 to December 2015. It utilises a subset of around 1000 very well matched (in terms of bottomside) FORMOSAT-3/COSMIC - Digisonde electron density profile pairs to compare the corresponding topside electron density profiles with IRI. The selection criteria for the electron density profile pairs, apart from coincidence of COSMIC and Digisonde electron density in the bottomside, is a collocation distance of less than 2.5o in terms of latitude and longtitude and 15 min maximum time difference in measuring NmF2 with the two techniques.

  17. A precision control method for plasma electron density and Faraday rotation angle measurement on HL-2A

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wu, Tongyu; Ding, Baogang; Li, Yonggao; Zhou, Yan; Yin, Zejie

    2017-07-01

    The precision of plasma electron density and Faraday rotation angle measurement is a key indicator for far-infrared laser interferometer/polarimeter plasma diagnosis. To improve the precision, a new multi-channel high signal-to-noise ratio HCOOH interferometer/polarimeter has been developed on the HL-2A tokamak. It has a higher level requirement for phase demodulation precision. This paper introduces an improved real-time fast Fourier transform algorithm based on the field programmable gate array, which significantly improves the precision. We also apply a real-time error monitoring module (REMM) and a stable error inhibiting module (SEIM) for precision control to deal with the weak signal. We test the interferometer/polarimeter system with this improved precision control method in plasma discharge experiments and simulation experiments. The experimental results confirm that the plasma electron density precision is better than 1/3600 fringe and the Faraday rotation angle measurement precision is better than 1/900 fringe, while the temporal resolution is 80 ns. This performance can fully meet the requirements of HL-2A.

  18. A simple far-infrared laser interferometer for measuring electron densities in reactive low-temperature plasmas

    SciTech Connect

    Pargmann, C.; Singh, S.V.; Soltwisch, H.

    2005-11-15

    A sensitive far-infrared (fir) interferometer for electron density measurements in reactive low-temperature plasmas is described. The instrument is based on an optically pumped fir laser (wavelength range 50-600 {mu}m depending on the working gas) and makes use of the nonlinear relation between output power and cavity loss. The fir beam, which leaves the resonator through a coupling hole in the end mirror, is reflected back into the cavity, such that the coupling hole behaves like a variable 'leak' with a loss rate depending on the phase of the reentering wave relative to the standing wave within the resonator. As a result of the feedback, the output intensity undergoes strong nonlinear variations if the optical distance of the external mirror is changed by small amounts, {delta}z. The power variation is monitored through a small opening in the external mirror. Test experiments using a wavelength of 432.6 {mu}m and a Schottky-diode detector have yielded a minimum detectable pathlength variation of {delta}z=0.4 {mu}m, corresponding to a change of the line-integrated electron density n{sub e}xL of about 5x10{sup 15} m{sup -2}. A first application to argon plasmas in inductively coupled rf discharges has been made, and the results have been compared to concomitant Langmuir probe measurements.

  19. Measurement of electron density in dual-energy x-ray CT with monochromatic x rays and evaluation of its accuracy.

    PubMed

    Tsunoo, Takanori; Torikoshi, Masami; Ohno, Yumiko; Uesugi, Kentaro; Yagi, Naoto

    2008-11-01

    Information on electron density is important for radiotherapy treatment planning in order to optimize the dose distribution in the target volume of a patient. At present, the electron density is derived from a computed tomography (CT) number measured in x-ray CT scanning; however, there are uncertainties due to the beam hardening effect and the method by which the electron density is converted from the CT number. In order to measure the electron density with an accuracy of +/-1%, the authors have developed dual-energy x ray CT using monochromatic x rays. They experimentally proved that the measured linear attenuation coefficients were only a few percent lower than the theoretical ones, which led to an accuracy within 2% for the electron density. There were three factors causing inaccuracy in the linear attenuation coefficient and the electron density: the influence of scattered radiation, the nonlinearity in the detector response function, and a theoretical process to derive the electron density from the linear attenuation coefficients. The linear attenuation coefficients of water were experimentally proved to differ by 1%-2% from the theoretical one even when the scattering effect was negligible. The nonlinearity of the response function played an important role in correcting the difference in the linear attenuation coefficient. Furthermore, the theoretical process used for deriving the electron density from the linear attenuation coefficients introduces about 0.6% deviation from the theoretical value into the resultant electron density. This deviation occurs systematically so that it can be corrected. The authors measured the electron densities for seven samples equivalent to soft tissue in dual-energy x-ray CT, and finally obtained them with an accuracy of around +/-1%.

  20. Use of micro-photoluminescence as a contactless measure of the 2D electron density in a GaAs quantum well

    NASA Astrophysics Data System (ADS)

    Kamburov, D.; Baldwin, K. W.; West, K. W.; Lyon, S.; Pfeiffer, L. N.; Pinczuk, A.

    2017-06-01

    We compare micro-photoluminescence (μPL) as a measure of the electron density in a clean, two-dimensional (2D) system confined in a GaAs quantum well (QW) to the standard magneto-transport technique. Our study explores the PL shape evolution across a number of molecular beam epitaxy-grown samples with different QW widths and 2D electron densities and notes its correspondence with the density obtained in magneto-transport measurements on these samples. We also measure the 2D density in a top-gated quantum well sample using both PL and transport and find that the two techniques agree to within a few percent over a wide range of gate voltages. We find that the PL measurements are sensitive to gate-induced 2D density changes on the order of 109 electrons/cm2. The spatial resolution of the PL density measurement in our experiments is 40 μm, which is already substantially better than the millimeter-scale resolution now possible in spatial density mapping using magneto-transport. Our results establish that μPL can be used as a reliable high spatial resolution technique for future contactless measurements of density variations in a 2D electron system.

  1. Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy.

    PubMed

    Müller-Caspary, Knut; Krause, Florian F; Grieb, Tim; Löffler, Stefan; Schowalter, Marco; Béché, Armand; Galioit, Vincent; Marquardt, Dennis; Zweck, Josef; Schattschneider, Peter; Verbeeck, Johan; Rosenauer, Andreas

    2016-05-12

    This study sheds light on the prerequisites, possibilities, limitations and interpretation of high-resolution differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM). We draw particular attention to the well-established DPC technique based on segmented annular detectors and its relation to recent developments based on pixelated detectors. These employ the expectation value of the momentum transfer as a reliable measure of the angular deflection of the STEM beam induced by an electric field in the specimen. The influence of scattering and propagation of electrons within the specimen is initially discussed separately and then treated in terms of a two-state channeling theory. A detailed simulation study of GaN is presented as a function of specimen thickness and bonding. It is found that bonding effects are rather detectable implicitly, e.g., by characteristics of the momentum flux in areas between the atoms than by directly mapping electric fields and charge densities. For strontium titanate, experimental charge densities are compared with simulations and discussed with respect to experimental artifacts such as scan noise. Finally, we consider practical issues such as figures of merit for spatial and momentum resolution, minimum electron dose, and the mapping of larger-scale, built-in electric fields by virtue of data averaged over a crystal unit cell. We find that the latter is possible for crystals with an inversion center. Concerning the optimal detector design, this study indicates that a sampling of 5mrad per pixel is sufficient in typical applications, corresponding to approximately 10×10 available pixels.

  2. Electron Density and Temperature Measurements At Mercury Using Thermal Noise Spectroscopy

    NASA Astrophysics Data System (ADS)

    Moncuquet, M.; Bougeret, J.-L.; Hellinger, P.; Issautier, K.; Maksimovic, M.; Manning, R.; Meyer-Vernet, N.; Travnicek, P.; Zarka, P.

    With an innovative procedure, we have constructed a model of the de-biased orbital and magnitude distribution of Near Earth Objects (NEOs), up to absolute magnitude H=22. This model accounts for 4 main sources of Near Earth Objects in the asteroid belt and for extinct Jupiter Family Comets (JFCs). It fits well the orbital-magnitude distribution of the NEOs detected by the Spacewatch Survey, once the observational biases are properly taken into account. The model predicts the existence of 960 NEOs with absolute magnitude H<18 and semimajor axis a<7.8 AU. of these, 58 bodies should be Aten (NEOs with a<1 AU), 590 should be Apollo (NEOs with a>1 AU and perihelion distance q<1 AU) and 310 should be Amor (NEOs with 11km is 834, which, compared to the total number of NEOs with H<18 (963), shows that the usually assumed conversion H=18 <=> D=1km is slightly pessimistic, on average (the exact correspondence would be H=17.82). In a size limited sample, our model predicts that the de-biased ratio between dark and bright (albedo smaller or larger than 0.089) NEOs is 0.8 (I.E., 56% of the NEO with a < 7.4 AU have dark albedos). Moreover, combining our orbital distribution model with the new albedo distribution model, and assuming that the density of bright and dark bodies is 2.7 and 1.3 g/cm3, respectively, we estimate

  3. Deferred electronic heterodyne moire deflectometry: A method for transient density fields measurement

    NASA Technical Reports Server (NTRS)

    Stricker, Josef

    1989-01-01

    Effects of spherical aberrations of the mirror used in the moire system on the angular resolution of the system are investigated. It is shown that the spherical aberrations may reduce significantly the performance of the conventional moire deflectometer. However, due to the heterodyne procedure, this is not the case with the heterodyne moire system. A moire system with a constant speed moving grating is demonstrated. It is shown that the system readout is linear and the system does not need calibration. In addition, the repeatability of the measurements is improved in this system as compared to the sinusoidally moving grating setup. The problem of the photographic plates alignment is solved by using a mechanical system in which the plate is held firmly throughout the experiment and accurately replaced after removing for photographic processing. The effect of a circular detector's aperture size on readout was tested. It is shown that the spatial phase variations, observed when scanning along a straight moire fringe, may considerably be reduced. At present we may say that both the on-line and the deferred heterodyne moire techniques may reliably be used. The errors of phase readings are 1 deg and 5 deg for the on-line and deferred methods. The total error due to subtraction of two readings at each position is, therefore, 1.4 deg and 7 deg, respectively. Further research for improving the deferred system is suggested.

  4. Spatially resolved measurements of ion density and electron temperature in a dual-frequency capacitively coupled plasma by complete floating double probe technique

    SciTech Connect

    Jiang Xiangzhan; Liu Yongxin; Yang Shuo; Lu Wenqi; Bi Zhenhua; Li Xiaosong; Wang Younian

    2011-01-15

    Spatially resolved measurements of the ion density and electron temperature in a dual-frequency capacitively coupled Ar discharge plasma are performed with a newly developed complete floating double probe. Axial and radial distributions of the ion density and electron temperature under various high-frequency (HF) power and gas pressure were studied in detail. Both the ion density and the electron temperature increased with increasing HF power. With increasing gas pressure from 1.3 to 9.3 Pa, the radial profile of ion density below the driven electrode experienced a change from ''bimodal'' to ''unimodal'' shape, with better uniformity being achieved at the optimal pressure of about 5 Pa. In addition, changing the axial profile of ion density was also observed with the peak shift toward the powered electrode at higher pressures. The measured results showed satisfying consistency with that of improved two dimensional fluid simulations.

  5. Measurements of the cross-phase angle between density and electron temperature fluctuations and comparison with gyrokinetic simulations

    SciTech Connect

    White, A. E.; Peebles, W. A.; Rhodes, T. L.; Schmitz, L.; Carter, T. A.; Hillesheim, J. C.; Doyle, E. J.; Zeng, L.; Holland, C. H.; Wang, G.; McKee, G. R.; Staebler, G. M.; Waltz, R. E.; DeBoo, J. C.; Petty, C. C.; Burrell, K. H.

    2010-05-15

    This paper presents new measurements of the cross-phase angle, alpha{sub n{sub eT{sub e}}}, between long-wavelength (k{sub t}hetarho{sub s}<0.5) density, n-tilde{sub e}, and electron temperature, T-tilde{sub e}, fluctuations in the core of DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] tokamak plasmas. The coherency and cross-phase angle between n-tilde{sub e} and T-tilde{sub e} are measured using coupled reflectometer and correlation electron cyclotron emission diagnostics that view the same plasma volume. In addition to the experimental results, two sets of local, nonlinear gyrokinetic turbulence simulations that are performed with the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] are described. One set, called the pre-experiment simulations, was performed prior to the experiment in order to predict a change in alpha{sub n{sub eT{sub e}}} given experimentally realizable increases in the electron temperature, T{sub e}. In the experiment the cross-phase angle was measured at three radial locations (rho=0.55, 0.65, and 0.75) in both a 'Base' case and a 'High T{sub e}' case. The measured cross-phase angle is in good qualitative agreement with the pre-experiment simulations, which predicted that n-tilde{sub e} and T-tilde{sub e} would be out of phase. The pre-experiment simulations also predicted a decrease in cross-phase angle as T{sub e} is increased. Experimentally, this trend is observed at the inner two radial locations only. The second set of simulations, the postexperiment simulations, is carried out using local parameters taken from measured experimental profiles as input to GYRO. These postexperiment simulation results are in good quantitative agreement with the measured cross-phase angle, despite disagreements with transport fluxes. Directions for future modeling and experimental work are discussed.

  6. Absolute measurement of the effective atomic number and the electron density by using dual-energy CT images

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hong; Lee, Won-Hyung; Jeon, Sung-Soo; Kim, Hee-Joung

    2012-12-01

    Material decomposition using dual-energy and material-selective techniques was performed using computed-tomography (CT)-generated reconstructed images. Previous work using the dual-energy method focused on extracting the effective atomic number and the electron density of materials to confirm the dosimetric accuracy in radiation therapy. Dual-energy methods mostly depend on the device generating the X-rays, such as a synchrotron, and on dose verification for radiation treatment planning. Information obtained from CT imaging is important both in diagnosis and in planning radiation therapy. In a clinical setting, CT images are usually displayed as Houndsfield units (HU), which are extracted from the attenuation coefficient of a material. The attenuation coefficient is calculated using the effective atomic number and the electron density of a material; thus, information expressed in HU can be converted into the effective atomic number and the electron density by using the dual-energy equation. This study was performed using realistic Xray spectra to differentiate between the contrast media and plaque in vascular images. Our results suggest that the effective atomic number and electron density are useful in distinguishing between two adjacent materials with similar HUs.

  7. Neurite density from magnetic resonance diffusion measurements at ultrahigh field: comparison with light microscopy and electron microscopy.

    PubMed

    Jespersen, Sune N; Bjarkam, Carsten R; Nyengaard, Jens R; Chakravarty, M Mallar; Hansen, Brian; Vosegaard, Thomas; Østergaard, Leif; Yablonskiy, Dmitriy; Nielsen, Niels Chr; Vestergaard-Poulsen, Peter

    2010-01-01

    Due to its unique sensitivity to tissue microstructure, diffusion-weighted magnetic resonance imaging (MRI) has found many applications in clinical and fundamental science. With few exceptions, a more precise correspondence between physiological or biophysical properties and the obtained diffusion parameters remain uncertain due to lack of specificity. In this work, we address this problem by comparing diffusion parameters of a recently introduced model for water diffusion in brain matter to light microscopy and quantitative electron microscopy. Specifically, we compare diffusion model predictions of neurite density in rats to optical myelin staining intensity and stereological estimation of neurite volume fraction using electron microscopy. We find that the diffusion model describes data better and that its parameters show stronger correlation with optical and electron microscopy, and thus reflect myelinated neurite density better than the more frequently used diffusion tensor imaging (DTI) and cumulant expansion methods. Furthermore, the estimated neurite orientations capture dendritic architecture more faithfully than DTI diffusion ellipsoids.

  8. Nighttime D-region electron density measurements from ELF-VLF tweek radio atmospherics recorded at low latitudes

    NASA Astrophysics Data System (ADS)

    Maurya, A. K.; Veenadhari, B.; Singh, R.; Kumar, S.; Cohen, M.

    2012-12-01

    Dispersive atmospherics (tweeks) observed during 2010 simultaneously at two low latitude stations, Allahabad (geomagnetic lat., 16.79° N) and Nainital (geomagnetic lat. 20.48° N), have been utilized to estimate the nighttime D-region electron density at the ionospheric reflection height under the local nighttime propagation (21:00 - 02:00 LT or 15:30 - 20:30 UT). The analysis of simultaneously recorded tweeks at both the stations on five international quiet days during one month each from summer (June), winter (January) and equinox (March) seasons shows that the D-region electron density varies 21.5-24.5 cm-3 over the ionospheric reflection height of 85-95 km. The average values of Wait lower ionospheric parameters: ionospheric reference height h‧ and sharpness factor β are almost same during winter (86.1-85.9 km, 0.51-0.52 km-1) and equinox (85.6-85.7 km, 0.54 km-1) seasons. The values of h‧ and β during summer season are about 83.5 km and 0.60 km-1 at both stations. Overall, equivalent electron density profile obtained using tweek method shows lower values of electron density by about 5-60% than those obtained using IRI-2007 model and lower/higher by 2-68% than those obtained using rocket technique. The electron density estimated using all three techniques (tweek, IRI 2007, Rocket) is consistent in the altitude range of 82-98 km. The estimated geographic locations of causative lightnings of tweeks were matched with the locations and times of lightnings detected by the World-Wide Lightning Location Network (WWLLN). The WWLLN detected about 27.5% of causative lightnings of tweeks simultaneously observed at both the stations.

  9. The measurement of electron number density in helium micro hollow gas discharge using asymmetric He I lines

    NASA Astrophysics Data System (ADS)

    Jovović, J.; Šišović, N. M.

    2015-09-01

    The electron number density N e in helium micro hollow gas discharge (MHGD) is measured by means of optical emission spectroscopy (OES) techniques. The structure of MHGD is a gold-alumina-gold sandwich with 250 μm alumina thickness and 100 μm diameter hole. The electron temperature T e and gas temperature T g in the discharge is determined using the relative intensity of He I lines and {{\\text{N}}2}+≤ft({{\\text{B}}2}Σ\\text{u}+- {{X}2}Σ\\text{g}+\\right) R branch lines in the frame of BP technique, respectively. The simple procedure based on spectral line broadening theory was developed in MATLAB to generate synthetic neutral line asymmetric profiles. The synthetic profiles were compared with an experimental He I 447.1 nm and He I 492.2 nm line to obtain N e from the centre of a micro hollow gas discharge (MHGD) source in helium. The N e results were compared with N e values obtained from the forbidden-to-allowed (F/A) intensity ratio technique. The comparison confirmed higher N e determined using a F/A ratio due to large uncertainty of the method. Applying the fitting formula for a He I 492.2 nm line derived from computer simulation (CS) gives the same N e values as the one determined using the MATLAB procedure in this study. The dependence of N e on gas pressure and electric current is investigated as well.

  10. First electron density and temperature estimates from the Swarm Langmuir probes and a comparison with IS measurements

    NASA Astrophysics Data System (ADS)

    Buchert, Stephan C.; Eriksson, Anders; Gill, Reine; Nilsson, Thomas; Åhlen, Lennart; Wahlund, Jan-Erik; Knudsen, David; Burchill, Johnathan; Archer, William; Kouznetsov, Alexei; Stricker, Nico; Bouridah, Abderrazak; Bock, Ralph; Häggström, Ingemar; Rietveld, Michael; Gonzalez, Sixto; Aponte, Nestor

    2014-05-01

    The Langmuir Probes (LP) on the Swarm satellites are part of the Electric Field Instruments (EFI), which are featuring thermal ion imagers (TII) and so are measuring 3-d ion distributions. The main task of the Langmuir probes is to provide measurements of spacecraft potentials influencing the ions before they enter the TIIs. In addition also electron density (Ne) and temperature (Te) are estimated from EFI LP data. The design of the Swarm LP includes a standard current sampling under sweeps of the bias voltage, and also a novel ripple technique yielding derivatives of the current-voltage characteristics at three points in a rapid cycle. In normal mode the time resolution of the Ne and Te measurements so becomes only 0.5 s. We show first Ne and Te estimates from the EFI LPs obtained in the commissioning phase in December 2013, when all three satellites were following each other at about 500 km altitude at mutual distances of a few tens of kilometers. The LP data are compared with observations by incoherent scatter radars, namely EISCAT UHF, VHF, the ESR, and also Arecibo. Acknowledgements: The EFIs were developed and built by a consortium that includes COM DEV Canada, the University of Calgary, and the Swedish Institute for Space Physics in Uppsala. The Swarm EFI project is managed and funded by the European Space Agency with additional funding from the Canadian Space Agency. EISCAT is an international association supported by research organisations in China (CRIRP), Finland (SA), Japan (NIPR and STEL), Norway (NFR), Sweden (VR), and the United Kingdom (NERC). The Arecibo Observatory is operated by SRI International under a cooperative agreement with the National Science Foundation (AST-1100968), and in alliance with Ana G. Méndez-Universidad Metropolitana, and the Universities Space Research Association.

  11. a High-Density Electron Beam and Quad-Scan Measurements at Pleiades Thomson X-Ray Source

    NASA Astrophysics Data System (ADS)

    Lim, J. K.; Rosenzweig, J. B.; Anderson, S. G.; Tremaine, A. M.

    2007-09-01

    A recent development of the photo-cathode injector technology has greatly enhanced the beam quality necessary for the creation of high density/high brightness electron beam sources. In the Thomson backscattering x-ray experiment, there is an immense need for under 20 micron electron beam spot at the interaction point with a high-intensity laser in order to produce a large x-ray flux. This has been demonstrated successfully at PLEIADES in Lawrence Livermore National Laboratory. For this Thomson backscattering experiment, we employed an asymmetric triplet, high remanence permanent-magnet quads to produce smaller electron beams. Utilizing highly efficient optical transition radiation (OTR) beam spot imaging technique and varying electron focal spot sizes enabled a quadrupole scan at the interaction zone. Comparisons between Twiss parameters obtained upstream to those parameter values deduced from PMQ scan will be presented in this report.

  12. a High-Density Electron Beam and Quad-Scan Measurements at Pleiades Thomson X-Ray Source

    NASA Astrophysics Data System (ADS)

    Lim, J. K.; Rosenzweig, J. B.; Anderson, S. G.; Tremaine, A. M.

    A recent development of the photo-cathode injector technology has greatly enhanced the beam quality necessary for the creation of high density/high brightness electron beam sources. In the Thomson backscattering x-ray experiment, there is an immense need for under 20 micron electron beam spot at the interaction point with a high-intensity laser in order to produce a large x-ray flux. This has been demonstrated successfully at PLEIADES in Lawrence Livermore National Laboratory. For this Thomson backscattering experiment, we employed an asymmetric triplet, high remanence permanent-magnet quads to produce smaller electron beams. Utilizing highly efficient optical transition radiation (OTR) beam spot imaging technique and varying electron focal spot sizes enabled a quadrupole scan at the interaction zone. Comparisons between Twiss parameters obtained upstream to those parameter values deduced from PMQ scan will be presented in this report.

  13. Development of frequency modulated continuous wave reflectometer for electron density profile measurement on the HL-2A tokamak

    SciTech Connect

    Zhong, W. L. Shi, Z. B.; Liu, Z. T.; Chen, W.; Jiang, M.; Li, J.; Cui, Z. Y.; Song, X. M.; Chen, L. Y.; Ding, X. T.; Liu, Yi; Yan, L. W.; Yang, Q. W.; Duan, X. R.; Huang, X. L.; Zou, X. L.

    2014-01-15

    The frequency modulated continuous wave reflectometer was developed for the first time on the HL-2A tokamak. The system utilizes a voltage controlled oscillator and an active multiplier for broadband coverage and detects as heterodyne mode. Three reflectometers have been installed and operated in extraordinary mode polarization on HL-2A to measure density profiles at low field side, covering the Q-band (33–50 GHz), V-band (50–75 GHz), and W-band (75–110 GHz). For density profile reconstruction from the phase shift of the probing wave, a corrected phase unwrapping method is introduced in this article. The effectiveness of the method is demonstrated. The density profile behavior of a fast plasma event is presented and it demonstrates the capability of the reflectometer. These diagnostics will be contributed to the routine density profile measurements and the plasma physics study on HL-2A.

  14. Electron-density profiles and plasma-drift measurements with digital ionosondes. Technical report, July 1987-June 1988

    SciTech Connect

    Reinisch, B.W.; Buchau, J.; Gamache, R.R.; Bibl, K.; Sales, G.S.

    1988-09-01

    Knowledge of the three-dimensional electron-density distribution and the plasma drift in the earth's ionosphere is needed for the radio communication engineer and the geophysicist. The combination of global models, e.g. the International Reference Ionosphere (IRI), modern digital ionosondes, and relatively powerful micro-computers provide the capabilities to overcome the limitations that have heretofore prevented real-time ionospheric specification and improved forecasting techniques. The developing network of digital ionosondes provides an improved ionogram data set. The cumbersome evaluation of electron density profiles (EDP), from the ionograms, has been eased with automatic ionogram scaling and related microcomputer-based algorithms for calculating EDPs. The purpose of this report is to summarize the evolving network of digital ionosondes based on the Digisonde 256 technology and to present techniques that have been developed for calculating electron-density profiles and determining the drift velocities. In addition, examples are presented to illustrate related data summaries that can be developed and tailored to the needs of the communication or radar-system manager and to the needs of the geophysicist involved in basic and applied research in solar-terrestrial physics.

  15. Initial measurements of plasma current and electron density profiles using a polarimeter/interferometer (POINT) for long pulse operation in EAST (invited).

    PubMed

    Liu, H Q; Qian, J P; Jie, Y X; Ding, W X; Brower, D L; Zou, Z Y; Li, W M; Lian, H; Wang, S X; Yang, Y; Zeng, L; Lan, T; Yao, Y; Hu, L Q; Zhang, X D; Wan, B N

    2016-11-01

    A double-pass, radially viewing, far-infrared laser-based POlarimeter-INTerferometer (POINT) system utilizing the three-wave technique has been implemented for diagnosing the plasma current and electron density profiles in the Experimental Advanced Superconducting Tokamak (EAST). POINT has been operated routinely during the most recent experimental campaign and provides continuous 11 chord line-integrated Faraday effect and density measurement throughout the entire plasma discharge for all heating schemes and all plasma conditions (including ITER relevant scenario development). Reliability of both the polarimetric and interferometric measurements is demonstrated in 25 s plasmas with H-mode and 102 s long-pulse discharges. Current density, safety factor (q), and electron density profiles are reconstructed using equilibrium fitting code (EFIT) with POINT constraints for the plasma core.

  16. Initial measurements of plasma current and electron density profiles using a polarimeter/interferometer (POINT) for long pulse operation in EAST (invited)

    NASA Astrophysics Data System (ADS)

    Liu, H. Q.; Qian, J. P.; Jie, Y. X.; Ding, W. X.; Brower, D. L.; Zou, Z. Y.; Li, W. M.; Lian, H.; Wang, S. X.; Yang, Y.; Zeng, L.; Lan, T.; Yao, Y.; Hu, L. Q.; Zhang, X. D.; Wan, B. N.

    2016-11-01

    A double-pass, radially viewing, far-infrared laser-based POlarimeter-INTerferometer (POINT) system utilizing the three-wave technique has been implemented for diagnosing the plasma current and electron density profiles in the Experimental Advanced Superconducting Tokamak (EAST). POINT has been operated routinely during the most recent experimental campaign and provides continuous 11 chord line-integrated Faraday effect and density measurement throughout the entire plasma discharge for all heating schemes and all plasma conditions (including ITER relevant scenario development). Reliability of both the polarimetric and interferometric measurements is demonstrated in 25 s plasmas with H-mode and 102 s long-pulse discharges. Current density, safety factor (q), and electron density profiles are reconstructed using equilibrium fitting code (EFIT) with POINT constraints for the plasma core.

  17. A new method to measure electron density and effective atomic number using dual-energy CT images

    NASA Astrophysics Data System (ADS)

    Ramos Garcia, Luis Isaac; Pérez Azorin, José Fernando; Almansa, Julio F.

    2016-01-01

    The purpose of this work is to present a new method to extract the electron density ({ρ\\text{e}} ) and the effective atomic number (Z eff) from dual-energy CT images, based on a Karhunen-Loeve expansion (KLE) of the atomic cross section per electron. This method was used to calibrate a Siemens Definition CT using the CIRS phantom. The predicted electron density and effective atomic number using 80 kVp and 140 kVp were compared with a calibration phantom and an independent set of samples. The mean absolute deviations between the theoretical and calculated values for all the samples were 1.7 %  ±  0.1 % for {ρ\\text{e}} and 4.1 %  ±  0.3 % for Z eff. Finally, these results were compared with other stoichiometric method. The application of the KLE to represent the atomic cross section per electron is a promising method for calculating {ρ\\text{e}} and Z eff using dual-energy CT images.

  18. A new method to measure electron density and effective atomic number using dual-energy CT images.

    PubMed

    Garcia, Luis Isaac Ramos; Azorin, José Fernando Pérez; Almansa, Julio F

    2016-01-07

    The purpose of this work is to present a new method to extract the electron density ([Formula: see text]) and the effective atomic number (Z eff) from dual-energy CT images, based on a Karhunen-Loeve expansion (KLE) of the atomic cross section per electron. This method was used to calibrate a Siemens Definition CT using the CIRS phantom. The predicted electron density and effective atomic number using 80 kVp and 140 kVp were compared with a calibration phantom and an independent set of samples. The mean absolute deviations between the theoretical and calculated values for all the samples were 1.7 %  ±  0.1 % for [Formula: see text] and 4.1 %  ±  0.3 % for Z eff. Finally, these results were compared with other stoichiometric method. The application of the KLE to represent the atomic cross section per electron is a promising method for calculating [Formula: see text] and Z eff using dual-energy CT images.

  19. Design of a dispersion interferometer combined with a polarimeter to increase the electron density measurement reliability on ITER

    NASA Astrophysics Data System (ADS)

    Akiyama, T.; Sirinelli, A.; Watts, C.; Shigin, P.; Vayakis, G.; Walsh, M.

    2016-11-01

    A dispersion interferometer is a reliable density measurement system and is being designed as a complementary density diagnostic on ITER. The dispersion interferometer is inherently insensitive to mechanical vibrations, and a combined polarimeter with the same line of sight can correct fringe jump errors. A proof of the principle of the CO2 laser dispersion interferometer combined with the PEM polarimeter was recently conducted, where the phase shift and the polarization angle were successfully measured simultaneously. Standard deviations of the line-average density and the polarization angle measurements over 1 s are 9 × 1016 m-2 and 0.19°, respectively, with a time constant of 100 μs. Drifts of the zero point, which determine the resolution in steady-state operation, correspond to 0.25% and 1% of the phase shift and the Faraday rotation angle expected on ITER.

  20. Design of a dispersion interferometer combined with a polarimeter to increase the electron density measurement reliability on ITER.

    PubMed

    Akiyama, T; Sirinelli, A; Watts, C; Shigin, P; Vayakis, G; Walsh, M

    2016-11-01

    A dispersion interferometer is a reliable density measurement system and is being designed as a complementary density diagnostic on ITER. The dispersion interferometer is inherently insensitive to mechanical vibrations, and a combined polarimeter with the same line of sight can correct fringe jump errors. A proof of the principle of the CO2 laser dispersion interferometer combined with the PEM polarimeter was recently conducted, where the phase shift and the polarization angle were successfully measured simultaneously. Standard deviations of the line-average density and the polarization angle measurements over 1 s are 9 × 10(16) m(-2) and 0.19°, respectively, with a time constant of 100 μs. Drifts of the zero point, which determine the resolution in steady-state operation, correspond to 0.25% and 1% of the phase shift and the Faraday rotation angle expected on ITER.

  1. Comparison of the measured and modeled electron densities and temperatures in the ionosphere and plasmasphere during the period 25-29 June 1990

    NASA Astrophysics Data System (ADS)

    Pavlov, A. V.; Abe, T.; Oyama, K.-I.

    2001-04-01

    We present a comparison of the electron density and temperature behavior measured in the ionosphere by the Millstone Hill incoherent-scatter radar during the period 25-29 June 1990, and in the plasmasphere within the Millstone Hill magnetic field flux tube by the instruments on board of the EXOS-D satellite in the Northern Hemisphere between 02:07:56 UT and 02:11:08 UT on 28 June 1990 with numerical model calculations from a time-dependent mathematical model of the Earth's ionosphere and plasmasphere. We have evaluated the value of the nighttime additional heating rate that should be added to the normal photoelectron heating in the electron energy equation in the plasmasphere region above 5000 km along the magnetic field line to explain the high electron temperature measured by the instruments on board of the EXOS-D satellite. The additional heating brings the measured and modeled electron temperatures into agreement with the plasmasphere and into very large disagreement with the ionosphere if the classical electron heat flux along magnetic field line is used in the model. The approach of Pavlov et al. (Annales Geophysicae 18 (2000) 1257-1272) based on an effective electron thermal conductivity coefficient along the magnetic field line, is used to explain the measured electron temperature in the ionosphere and plasmasphere. This approach leads to a heat flux which is less than that given by the classical Spitzer-Harm theory. The evaluated additional heating of electrons in the plasmasphere and the decrease of the thermal conductivity in the topside ionosphere and the greater part of the plasmasphere allow the model to accurately reproduce the electron temperatures observed by the instruments on board of the EXOS-D satellite in the plasmasphere and the Millstone Hill incoherent-scatter radar in the ionosphere. The resulting effect of vibrationally excited N2 and O2 on NmF2 is the decrease of the calculated daytime NmF2 up to a factor of 2. The modeled electron

  2. Time-resolved electron temperature and electron density measurements in a nanosecond pulse filament discharge in H2-He and O2-He mixtures

    NASA Astrophysics Data System (ADS)

    Roettgen, A.; Shkurenkov, I.; Simeni Simeni, M.; Adamovich, I. V.; Lempert, W. R.

    2016-10-01

    Time evolution of electron density and electron temperature in a nanosecond pulse, diffuse filament electric discharge in H2-He and O2-He mixtures at a pressure of 100 Torr is studied by Thomson/pure rotational Raman scattering and kinetic modeling. The discharge is sustained between two spherical electrodes separated by a 1 cm gap and powered by high voltage pulses ~150 ns duration. Discharge energy coupled to the plasma filament 2-3 mm in diameter is 4-5 mJ/pulse, with specific energy loading of up to ~0.3 eV/molecule. At all experimental conditions, a rapid initial rise of electron temperature and electron density during the discharge pulse is observed, followed by the decay in the afterglow, over ~100 ns-1 µs. Electron density in the afterglow decays more rapidly as H2 or O2 fraction in the mixture is increased. In He/H2 mixtures, this is likely due to more rapid recombination of electrons in collisions with \\text{H}2+ and \\text{H}3+ ions, compared to recombination with \\text{He}2+ ions. In O2/He mixtures, electron density decay in the afterglow is affected by recombination with \\text{O}2+ and \\text{O}4+ ions, while the effect of three-body attachment is relatively minor. Peak electron number densities and electron temperatures are n e  =  (1.7-3.1) · 1014 cm-3 and T e  =  2.9-5.5 eV, depending on gas mixture composition. Electron temperature in the afterglow decays to approximately T e  ≈  0.3 eV, considerably higher compared to the gas temperature of T  =  300-380 K, inferred from O2 pure rotational Raman scattering spectra, due to superelastic collisions. The experimental results in helium and O2-He mixtures are compared with kinetic modeling predictions, showing good agreement.

  3. Dust storm and electron density in the equatorial D region ionosphere of Mars: Comparison with Earth's ionosphere from rocket measurements in Brazil

    NASA Astrophysics Data System (ADS)

    Haider, S. A.; Batista, I. S.; Abdu, M. A.; Muralikrishna, P.; Shah, Siddhi Y.; Kuroda, T.

    2015-10-01

    We report the first model result for the dust densities and electron densities in the D region ionosphere of Mars for aerosol particles of different sizes during a major dust storm that occurred in Martian Year (MY) 25 at low latitude. These calculations are made at latitude 10°S and solar longitudes (Ls) = 200°, 220°, 250°, and 280° for high, medium, low, and absence of dust storms, respectively. Four corresponding dust layers were found at 50 km, 50 km, 38 km, and 25 km during these events. During high dust storm period, the optical depth and dust density increased by a factor of ~20 from its normal condition. The electron densities estimated for the D region ionosphere of Mars for submicron sized dust particles are largest as compared to that estimated for larger particles. The electron density reduced by ~2 orders of magnitude during high dust storm. The estimated electron density in the clear atmosphere of Mars is compared with measurements of Earth's ionosphere at nearly the same geophysical condition.

  4. Model-independent measurement of the charge density distribution along an Fe atom probe needle using off-axis electron holography without mean inner potential effects

    SciTech Connect

    Migunov, V. Dunin-Borkowski, R. E.; London, A.; Farle, M.

    2015-04-07

    The one-dimensional charge density distribution along an electrically biased Fe atom probe needle is measured using a model-independent approach based on off-axis electron holography in the transmission electron microscope. Both the mean inner potential and the magnetic contribution to the phase shift are subtracted by taking differences between electron-optical phase images recorded with different voltages applied to the needle. The measured one-dimensional charge density distribution along the needle is compared with a similar result obtained using model-based fitting of the phase shift surrounding the needle. On the assumption of cylindrical symmetry, it is then used to infer the three-dimensional electric field and electrostatic potential around the needle with ∼10 nm spatial resolution, without needing to consider either the influence of the perturbed reference wave or the extension of the projected potential outside the field of view of the electron hologram. The present study illustrates how a model-independent approach can be used to measure local variations in charge density in a material using electron holography in the presence of additional contributions to the phase, such as those arising from changes in mean inner potential and specimen thickness.

  5. Model-independent measurement of the charge density distribution along an Fe atom probe needle using off-axis electron holography without mean inner potential effects

    NASA Astrophysics Data System (ADS)

    Migunov, V.; London, A.; Farle, M.; Dunin-Borkowski, R. E.

    2015-04-01

    The one-dimensional charge density distribution along an electrically biased Fe atom probe needle is measured using a model-independent approach based on off-axis electron holography in the transmission electron microscope. Both the mean inner potential and the magnetic contribution to the phase shift are subtracted by taking differences between electron-optical phase images recorded with different voltages applied to the needle. The measured one-dimensional charge density distribution along the needle is compared with a similar result obtained using model-based fitting of the phase shift surrounding the needle. On the assumption of cylindrical symmetry, it is then used to infer the three-dimensional electric field and electrostatic potential around the needle with ˜10 nm spatial resolution, without needing to consider either the influence of the perturbed reference wave or the extension of the projected potential outside the field of view of the electron hologram. The present study illustrates how a model-independent approach can be used to measure local variations in charge density in a material using electron holography in the presence of additional contributions to the phase, such as those arising from changes in mean inner potential and specimen thickness.

  6. Comparison of the measured and modeled electron densities and temperatures in the ionosphere and plasmasphere during 14-16 May 1991

    NASA Astrophysics Data System (ADS)

    Pavlov, A. V.; Pavlova, N. M.

    2004-01-01

    The electron density and temperature in the ionosphere and plasmasphere measured by the Millstone Hill incoherent-scatter radar and the instruments on board of the EXOS-D satellite are compared with calculations from a time-dependent mathematical model of the Earth's ionosphere and plasmasphere during 14-16 May 1991. Use of [O]/[N2] correction factors with the NRLMSISE-00 model of the neutral atmosphere was found to bring the modeled and measured F-region main peak electron densities into agreement. It was found that the nighttime additional heating rate should be added to the normal photoelectron heating in the electron energy equation, in the nighttime plasmasphere region, in order for the model to reproduce the observed high plasmaspheric electron temperature within the Millstone Hill magnetic field flux tube in the Northern Hemisphere. The additional heating brings the measured and modeled electron temperatures into agreement in the plasmasphere and into a very large disagreement in the ionosphere, if the classical electron heat flux along magnetic field lines is used. An approach of Pavlov et al. (2000, 2001) based on a new effective electron thermal conductivity coefficient along the magnetic field line and the evaluated additional heating of electrons in the plasmasphere is used to explain the observed electron temperature in the ionosphere and plasmasphere. This approach leads to a heat flux which is less than that given by the classical theory. The effects of the additional plasmaspheric heating of electrons on the electron temperature and density are small at the F-region altitudes if the modified electron heat flux is used. We found that the resulting effect of vibrationally excited N2 and O2 on NmF2 is the decrease of the calculated NmF2 by up to a factor of about 2.7 by day and up to a factor of about 2.5 by night. The modeled electron temperature is very sensitive to the electron density, and this decrease in electron density results in an increase of

  7. F2 peak electron density at Millstone Hill and Hobart: Comparsion of theory and measurement at solar maximum

    NASA Technical Reports Server (NTRS)

    Richards, P. G.; Torr, D. G.; Reinisch, B. W.; Gamache, R. R.; Wilkinson, P. J.

    1994-01-01

    This paper compares the observed behavior of the (F2) layer of the ionosphere at Millstone Hill and Hobart with calculations from the field line interhemispheric plasma (FLIP) model for solar maximum, solstice conditions in 1990. During the study period the daily F(sub 10.7) index varied by more than a factor of 2 (123 to 280), but the 81-day mean F(sub 10.7) (F(sub 10.7 A)) was almost constant near 190. Calculations were performed with and without the effects of vibrationally excited N2 (N(sup *)(sub 2) which affects the loss rate of atomic oxygen ions. In the case without N(sup *)(sub 2) there is generally good agreement between the model and measurement for the daytime, peak density of the F region (NmF2). Both the model and the measurement show a strong seasonal anomaly with the winter noon densities a factor of 3 to 4 greater than the summer noon densities at Millstone Hill and a factor of 2 greater at Hobart. The seasonal anomaly in the model is caused by changes in the neutral composition as given by the mass spectrometer and incoherent scatter (MSIS) 86 neutral density model. There is generally little or no increase in the observed noon NmF2 as a function of daily F(sub 10.7) except at Millstone Hill in winter. In contrast to the generally good agreement between model and data at noon, the model badly underestimates the density at night at Millstone Hill at all seasons. At Hobart the model reproduces the nighttime density variations well in both winter and summer. The international reference ionosphere (IRI) model generally provides a good representation of the average behavior of noon NmF2 and hmF2 but because the data show a lot of day-to-day variability, there are often large differences. The FLIP model is able to reproduce this variability when hmF2 is specified. The IRI model peak densities are better than the FLIP densities at night, but the IRI model does not represent the Millstone Hill summer data very well at night in 1990.

  8. Nuclear cusps in the HSF electron density

    NASA Astrophysics Data System (ADS)

    Cioslowski, Jerzy; Challacombe, Matt

    1994-07-01

    The Hiller-Sucher-Feinberg (HSF) identity provides an alternative definition for the electron density. The behavior of the HSF electron density in the vicinity of nuclei is analyzed. It is shown that the HSF density possesses nuclear cusps at which its gradient is discontinuous. The discontinuities in the HSF density gradient satisfy a simple equation analogous to Kato's electron-nuclear cusp condition. However, in contrast to Kato's condition, the electron-nuclear cusp condition is satisfied by HSF densities originating from both exact and approximate electronic wavefunctions. Several numerical examples are presented to illustrate this property of the HSF electron density.

  9. Measurements of the K -Shell Opacity of a Solid-Density Magnesium Plasma Heated by an X-Ray Free-Electron Laser

    DOE PAGES

    Preston, T. R.; Vinko, S. M.; Ciricosta, O.; ...

    2017-08-25

    We present measurements of the spectrally resolved x rays emitted from solid-density magnesium targets of varying sub-μm thicknesses isochorically heated by an x-ray laser. The data exhibit a largely thickness independent source function, allowing the extraction of a measure of the opacity to K-shell x rays within well-defined regimes of electron density and temperature, extremely close to local thermodynamic equilibrium conditions. The deduced opacities at the peak of the Kα transitions of the ions are consistent with those predicted by detailed atomic-kinetics calculations.

  10. Measurements of the K-Shell Opacity of a Solid-Density Magnesium Plasma Heated by an X-Ray Free-Electron Laser.

    PubMed

    Preston, T R; Vinko, S M; Ciricosta, O; Hollebon, P; Chung, H-K; Dakovski, G L; Krzywinski, J; Minitti, M; Burian, T; Chalupský, J; Hájková, V; Juha, L; Vozda, V; Zastrau, U; Lee, R W; Wark, J S

    2017-08-25

    We present measurements of the spectrally resolved x rays emitted from solid-density magnesium targets of varying sub-μm thicknesses isochorically heated by an x-ray laser. The data exhibit a largely thickness-independent source function, allowing the extraction of a measure of the opacity to K-shell x rays within well-defined regimes of electron density and temperature, extremely close to local thermodynamic equilibrium conditions. The deduced opacities at the peak of the Kα transitions of the ions are consistent with those predicted by detailed atomic-kinetics calculations.

  11. Measurements of the K -Shell Opacity of a Solid-Density Magnesium Plasma Heated by an X-Ray Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Preston, T. R.; Vinko, S. M.; Ciricosta, O.; Hollebon, P.; Chung, H.-K.; Dakovski, G. L.; Krzywinski, J.; Minitti, M.; Burian, T.; Chalupský, J.; Hájková, V.; Juha, L.; Vozda, V.; Zastrau, U.; Lee, R. W.; Wark, J. S.

    2017-08-01

    We present measurements of the spectrally resolved x rays emitted from solid-density magnesium targets of varying sub-μ m thicknesses isochorically heated by an x-ray laser. The data exhibit a largely thickness-independent source function, allowing the extraction of a measure of the opacity to K -shell x rays within well-defined regimes of electron density and temperature, extremely close to local thermodynamic equilibrium conditions. The deduced opacities at the peak of the K α transitions of the ions are consistent with those predicted by detailed atomic-kinetics calculations.

  12. Contactless Mobility, Carrier Density, and Sheet Resistance Measurements on Si, GaN, and AlGaN/GaN High Electron Mobility Transistor (HEMT) Wafers

    DTIC Science & Technology

    2015-02-01

    Si, GaN , and AlGaN/ GaN High Electron Mobility Transistor (HEMT) Wafers by Randy P Tompkins and Danh Nguyen Approved for...7209 ● FEB 2015 US Army Research Laboratory Contactless Mobility, Carrier Density, and Sheet Resistance Measurements on Si, GaN , and AlGaN/ GaN ...Resistance Measurements on Si, GaN , and AlGaN/ GaN High Electron Mobility Transistor (HEMT) Wafers 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  13. Time-resolved electron density measurements in PF-1000 device by means of the Mechelle® 900 optical spectrometer

    NASA Astrophysics Data System (ADS)

    Skladnik-Sadowska, E.; Sadowski, M. J.; Mallnowski, K.; Tsarenko, A. V.; Scholz, M.; Paduch, M.; Tomaszewski, K.

    2004-03-01

    The report presents the main results of the recent spectroscopic investigations of plasma produced within the PF-1000 facility. That experimental device was operated mostly with the pure deuterium filling. The initial pressure was 5 hPa D2 or H2 and the charging voltage of a capacity bank was 28 kV. The electron density was estimated by means of three different techniques: the linear Stark broadening of the Balmer series, the quadratic Stark broadening of copper and carbon spectral lines (including the lines of multi-charged ions), and using the Inglis-Teller correlation for a shift of the boundary serial. At all the stages of the data processing there was applied a convenient and effective software of the GRAMS-32 type (attached to the MECHELLE®900 spectrometer). A critical evaluation of the obtained results, taking into consideration their accuracy and reliability, has been performed.

  14. F{sub 2} peak electron density at Millstone Hill and Hobart: Comparison of theory and measurement at solar maximum

    SciTech Connect

    Richards, P.G.; Torr, D.G.; Reinisch, B.W.

    1994-08-01

    This paper compares the observed behavior of the F{sub 2} layer of the ionosphere at Millstone Hill and Hobart with calculations from the field line interhemispheric plasma (FLIP) model for solar maximum, solstice conditions in 1990. During the study period the daily F{sub 10.7} index varied by more than a factor of 2 (123 to 280), but the 81-day mean F{sub 10.7} (F{sub 10.7A}) was almost constant near 190. Calculations were performed with and without the effects of vibrationally excited N{sub 2} (N{sub 2}*) which affects the loss rate of atomic oxygen ions. In the case without N{sub 2}* there is generally good agreement between the model and measurement for the daytime, peak density of the F region (NmF{sub 2}). Both the model and the measurement show a strong seasonal anomaly with the winter noon densities a factor of 3 to 4 greater than the summer noon densities at Millstone Hill and a factor of 2 greater at Hobart. The seasonal anomaly in the model is caused by changes in the neutral composition as given by the mass spectrometer and incoherent scatter (MSIS) 86 neutral density model. While N{sub 2}* worsens the model-data comparison at Millstone Hill, it does bring the model seasonal density ratio into better agreement with the data and also improves the agreement at Hobart. Although the 1990 daytime ionosphere can be well modeled without N{sub 2}*, it may still be important for high levels of solar and magnetic activity. There is a very close relationship between the height at which peak density occurs hmF{sub 2} variation and the NmF{sub 2} variation with F{sub 10.7} in summer at Millstone Hill. The international reference ionosphere (IRI) model generally provides a good representation of the average behavior of noon NmF{sub 2} and hmF{sub 2} but because the data show a lot of day-to-day variability, there are often large differences. The FLIP model is able to reproduce this variability when hmF{sub 2} is specified. 28 refs., 16 figs.

  15. Departures from local thermodynamic equilibrium in cutting arc plasmas derived from electron and gas density measurements using a two-wavelength quantitative Schlieren technique

    SciTech Connect

    Prevosto, L.; Mancinelli, B.; Artana, G.; Kelly, H.

    2011-03-15

    A two-wavelength quantitative Schlieren technique that allows inferring the electron and gas densities of axisymmetric arc plasmas without imposing any assumption regarding statistical equilibrium models is reported. This technique was applied to the study of local thermodynamic equilibrium (LTE) departures within the core of a 30 A high-energy density cutting arc. In order to derive the electron and heavy particle temperatures from the inferred density profiles, a generalized two-temperature Saha equation together with the plasma equation of state and the quasineutrality condition were employed. Factors such as arc fluctuations that influence the accuracy of the measurements and the validity of the assumptions used to derive the plasma species temperature were considered. Significant deviations from chemical equilibrium as well as kinetic equilibrium were found at elevated electron temperatures and gas densities toward the arc core edge. An electron temperature profile nearly constant through the arc core with a value of about 14000-15000 K, well decoupled from the heavy particle temperature of about 1500 K at the arc core edge, was inferred.

  16. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: X-ray beam hardening correction for measuring density in linear accelerator industrial computed tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Ri-Feng; Wang, Jue; Chen, Wei-Min

    2009-07-01

    Due to X-ray attenuation being approximately proportional to material density, it is possible to measure the inner density through Industrial Computed Tomography (ICT) images accurately. In practice, however, a number of factors including the non-linear effects of beam hardening and diffuse scattered radiation complicate the quantitative measurement of density variations in materials. This paper is based on the linearization method of beam hardening correction, and uses polynomial fitting coefficient which is obtained by the curvature of iron polychromatic beam data to fit other materials. Through theoretical deduction, the paper proves that the density measure error is less than 2% if using pre-filters to make the spectrum of linear accelerator range mainly 0.3 MeV to 3 MeV. Experiment had been set up at an ICT system with a 9 MeV electron linear accelerator. The result is satisfactory. This technique makes the beam hardening correction easy and simple, and it is valuable for measuring the ICT density and making use of the CT images to recognize materials.

  17. A Comparison of Electron Density Profiles Derived from the Low Resolution Airglow and Aurora Spectrograph (LORAAS) Ultraviolet Measurements: Resolution of the 911 Å Conundrum

    NASA Astrophysics Data System (ADS)

    Dymond, K.; Budzien, S. A.; Coker, C.; Nicholas, A. C.; Stephan, A. W.; Bishop, R. L.; Christensen, A. B.; Hecht, J. H.; Straus, P. R.

    2010-12-01

    Previous measurements of the 911 Å emission made by sounding rockets, at altitude less than 320 km, indicated that the emission was either very weak or non-existent. Newer measurements made by the Remote Atmospheric and Ionospheric Detection System (RAIDS) currently in operation aboard the International Space Station, at an altitude of 340 km, show the same behavior. Yet, satellite-based measurements made at altitudes above 800 km showed the emission to be present and strong enough to be accurately measured and inverted; those inversions were validated against ionosonde measurements and demonstrated the possibility of using the 911 Å emission for daytime ionospheric sensing. So the conundrum is: why do measurements made at lower altitudes (< 350 km) indicate weak or non-existent emission while satellite measurements at higher altitudes (>800 km) show the presence of the emission at the expected level? We present our measurements of the daytime and nighttime electron density derived by analysis of the O I 1356 and O I 911 Å altitude profiles measured by the Low Resolution Airglow and Aurora Spectrograph (LORAAS) instrument launched aboard the Advanced Research and Global Observation Satellite (ARGOS), which operated between mid-May 1999 and April 2002. We compare the retrieved electron density profiles inferred from the limb intensities of the ultraviolet emissions to peak heights and peak densities measured during ionosonde overflights. We show that the 911 Å emission is strongly affected by the height of the ionosphere and show that this is consistent with absorption of the 911 Å by atomic oxygen. Model results are presented showing that the RAIDS and sounding rocket measurements can be explained by this absorption.

  18. Diurnal variations of the ionospheric electron density height profiles over Irkutsk: Comparison of the incoherent scatter radar measurements, GSM TIP simulations and IRI predictions

    NASA Astrophysics Data System (ADS)

    Zherebtsov, G. A.; Ratovsky, K. G.; Klimenko, M. V.; Klimenko, V. V.; Medvedev, A. V.; Alsatkin, S. S.; Oinats, A. V.; Lukianova, R. Yu.

    2017-07-01

    The long-duration continuous Irkutsk incoherent scatter radar (ISR) measurements allowed us to obtain the monthly averaged height-diurnal variations of the electron density in the 180-600 km altitudinal range for 4 four seasons (winter, spring, summer, autumn) and for two solar activity levels (low and moderate). Considering these electron density variations as ;quiet ionosphere patterns; we compared them with the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) simulations and the International Reference Ionosphere (IRI) predictions. It was found that some observational features revealed from the ISR measurements are reproduced nicely by both the theoretical and empirical models, and some features agree better with the GSM TIP than with IRI. None of the models is able to reproduce a detailed multi-peak behavior of the electron density observed by ISR at ∼300 km and above for the spring and autumn under low solar activity, while for the spring the GSM TIP tends to reproduce the morning and daytime peaks at the same local times as they are seen from the ISR observations.

  19. Measurements of electron density and temperature profiles in plasma produced by Nike KrF laser for laser plasma instability research

    NASA Astrophysics Data System (ADS)

    Oh, Jaechul; Weaver, J. L.; Karasik, M.; Chan, L. Y.

    2015-08-01

    A grid image refractometer (GIR) has been implemented at the Nike krypton fluoride laser facility of the Naval Research Laboratory. This instrument simultaneously measures propagation angles and transmissions of UV probe rays (λ = 263 nm, Δt = 10 ps) refracted through plasma. We report results of the first Nike-GIR measurement on a CH plasma produced by the Nike laser pulse (˜1 ns FWHM) with the intensity of 1.1 × 1015 W/cm2. The measured angles and transmissions were processed to construct spatial profiles of electron density (ne) and temperature (Te) in the underdense coronal region of the plasma. Using an inversion algorithm developed for the strongly refracted rays, the deployed GIR system probed electron densities up to 4 × 1021 cm-3 with the density scale length of 120 μm along the plasma symmetry axis. The resulting ne and Te profiles are verified to be self-consistent with the measured quantities of the refracted probe light.

  20. Simulation, measurement, and emulation of photovoltaic modules using high frequency and high power density power electronic circuits

    NASA Astrophysics Data System (ADS)

    Erkaya, Yunus

    The number of solar photovoltaic (PV) installations is growing exponentially, and to improve the energy yield and the efficiency of PV systems, it is necessary to have correct methods for simulation, measurement, and emulation. PV systems can be simulated using PV models for different configurations and technologies of PV modules. Additionally, different environmental conditions of solar irradiance, temperature, and partial shading can be incorporated in the model to accurately simulate PV systems for any given condition. The electrical measurement of PV systems both prior to and after making electrical connections is important for attaining high efficiency and reliability. Measuring PV modules using a current-voltage (I-V) curve tracer allows the installer to know whether the PV modules are 100% operational. The installed modules can be properly matched to maximize performance. Once installed, the whole system needs to be characterized similarly to detect mismatches, partial shading, or installation damage before energizing the system. This will prevent any reliability issues from the onset and ensure the system efficiency will remain high. A capacitive load is implemented in making I-V curve measurements with the goal of minimizing the curve tracer volume and cost. Additionally, the increase of measurement resolution and accuracy is possible via the use of accurate voltage and current measurement methods and accurate PV models to translate the curves to standard testing conditions. A move from mechanical relays to solid-state MOSFETs improved system reliability while significantly reducing device volume and costs. Finally, emulating PV modules is necessary for testing electrical components of a PV system. PV emulation simplifies and standardizes the tests allowing for different irradiance, temperature and partial shading levels to be easily tested. Proper emulation of PV modules requires an accurate and mathematically simple PV model that incorporates all known

  1. Electron Density and Two-Channel Neutron Emission Measurements in Steady-State Spherical Inertial-Electrostatically Confined Plasmas, with Review of the One-Dimensional Kinetic Model

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Hrbud, Ivana

    2004-01-01

    Electron density measurements have been made in steady-state plasmas in a spherical inertial electrostatic confinement (IEC) discharge using microwave interferometry. Plasma cores interior to two cathodes, having diameters of 15 and 23 cm, respectively, were probed over a transverse range of 10 cm with a spatial resolution of about 1.4 cm for buffer gas pressures from 0.2 to 6 Pa in argon and deuterium. The transverse profiles are generally flat, in some cases with eccentric symmetric minima, and give mean densities of from approx. = 0.4 to 7 x 10(exp 10)/cu cm, the density generally increasing with the neutral gas pressure. Numerical solutions of the one-dimensional Poisson equation for IEC plasmas are reviewed and energy distribution functions are identified which give flat transverse profiles. These functions are used with the plasma approximation to obtain solutions which also give densities consistent with the measurements, and a double potential well solution is obtained which has minima qualitatively similar to those observed. Explicit consideration is given to the compatibility of the solutions interior and exterior to the cathode, and to grid transparency. Deuterium fusion neutron emission rates were also measured and found to be isotropic, to within the measurement error, over two simultaneous directions. Anisotropy was observed in residual emissions during operation with nonfusing hydrogen- 1. The deuterium rates are consistent with predictions from the model.

  2. Electron Density and Two-Channel Neutron Emission Measurements in Steady-State Spherical Inertial-Electrostatically Confined Plasmas, with Review of the 1-D Kinetic Model

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Hrbud, Ivana

    2004-01-01

    Electron density measurements have been made in steady-state plasmas in a spherical inertial electrostatic confinement (IEC) discharge using microwave interferometry. Plasma cores interior to two cathodes, having diameters of 15 and 23 cm, respectively, were probed over a transverse range of 10 cm with a spatial resolution of about 1.4 cm for buffer gas pressures from 0.2 to 6 Pa in argon and deuterium. The transverse profiles are generally flat, in some cases with eccentric symmetric minima, and give mean densities of from approx. = 0.4 to 7x 10(exp 10)/cu cm, the density generally increasing with the neutral gas pressure. Numerical solutions of the 1-D Poisson equation for EC plasmas are reviewed and energy distribution functions are identified which give flat transverse profiles. These functions are used with the plasma approximation to obtain solutions which also give densities consistent with the measurements, and a double potential well solution is obtained which has minima qualitatively similar to those observed. Explicit consideration is given to the compatibility of the solutions interior and exterior to the cathode, and to grid transparency. Deuterium fusion neutron emission rates were also measured and found to be isotropic, to within the measurement error, over two simultaneous directions. Anisotropy was observed in residual emissions during operation with non-fusing hydrogen-1. The deuterium rates are consistent with predictions from the model.

  3. Electron Density and Two-Channel Neutron Emission Measurements in Steady-State Spherical Inertial-Electrostatically Confined Plasmas, with Review of the One-Dimensional Kinetic Model

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Hrbud, Ivana

    2004-01-01

    Electron density measurements have been made in steady-state plasmas in a spherical inertial electrostatic confinement (IEC) discharge using microwave interferometry. Plasma cores interior to two cathodes, having diameters of 15 and 23 cm, respectively, were probed over a transverse range of 10 cm with a spatial resolution of about 1.4 cm for buffer gas pressures from 0.2 to 6 Pa in argon and deuterium. The transverse profiles are generally flat, in some cases with eccentric symmetric minima, and give mean densities of from approx. = 0.4 to 7 x 10(exp 10)/cu cm, the density generally increasing with the neutral gas pressure. Numerical solutions of the one-dimensional Poisson equation for IEC plasmas are reviewed and energy distribution functions are identified which give flat transverse profiles. These functions are used with the plasma approximation to obtain solutions which also give densities consistent with the measurements, and a double potential well solution is obtained which has minima qualitatively similar to those observed. Explicit consideration is given to the compatibility of the solutions interior and exterior to the cathode, and to grid transparency. Deuterium fusion neutron emission rates were also measured and found to be isotropic, to within the measurement error, over two simultaneous directions. Anisotropy was observed in residual emissions during operation with nonfusing hydrogen- 1. The deuterium rates are consistent with predictions from the model.

  4. Measuring the Autocorrelation Function of Nanoscale Three-Dimensional Density Distribution in Individual Cells Using Scanning Transmission Electron Microscopy, Atomic Force Microscopy, and a New Deconvolution Algorithm.

    PubMed

    Li, Yue; Zhang, Di; Capoglu, Ilker; Hujsak, Karl A; Damania, Dhwanil; Cherkezyan, Lusik; Roth, Eric; Bleher, Reiner; Wu, Jinsong S; Subramanian, Hariharan; Dravid, Vinayak P; Backman, Vadim

    2017-06-01

    Essentially all biological processes are highly dependent on the nanoscale architecture of the cellular components where these processes take place. Statistical measures, such as the autocorrelation function (ACF) of the three-dimensional (3D) mass-density distribution, are widely used to characterize cellular nanostructure. However, conventional methods of reconstruction of the deterministic 3D mass-density distribution, from which these statistical measures can be calculated, have been inadequate for thick biological structures, such as whole cells, due to the conflict between the need for nanoscale resolution and its inverse relationship with thickness after conventional tomographic reconstruction. To tackle the problem, we have developed a robust method to calculate the ACF of the 3D mass-density distribution without tomography. Assuming the biological mass distribution is isotropic, our method allows for accurate statistical characterization of the 3D mass-density distribution by ACF with two data sets: a single projection image by scanning transmission electron microscopy and a thickness map by atomic force microscopy. Here we present validation of the ACF reconstruction algorithm, as well as its application to calculate the statistics of the 3D distribution of mass-density in a region containing the nucleus of an entire mammalian cell. This method may provide important insights into architectural changes that accompany cellular processes.

  5. Electron (charge) density studies of cellulose models

    USDA-ARS?s Scientific Manuscript database

    Introductory material first describes electron density approaches and demonstrates visualization of electron lone pairs and bonding as concentrations of electron density. Then it focuses on the application of Bader’s Quantum Theory of Atoms-in-Molecules (AIM) to cellulose models. The purpose of the ...

  6. Pulsed HF radiowave absorption measurements at 2.1 MHZ. over Delhi under quiet and solar flare conditions and related electron density height profiles

    NASA Astrophysics Data System (ADS)

    Balachandra Swamy, A. C.

    EXTENDED ABSTRACT Pulsed HF radiowave absorption measurements at 2.1 MHZ. over Delhi under quiet and solar flare conditions and related electron density height profiles A.C.Balachandra swmay & Late C.S.G.K. Setty Absorption of radio waves in the ionosphere is of great practical importance for radio communication and navigation systems. The first attempt to measure the absolute magnitude of the radiowave absorption were made by appletion and Ratcliffe (1930) using the frequency change method for medium frequency waves reflected from the E-region. They concluded from their experiment that the main part of the attenuation occurred below the reflection level and named the absorption region, D-region of the ionosphere. One of the basic properties of the ionosphere is the absorption of high Frequency Radiowaves. HF radiowave absorption results mainly from collisions between electrons (which are set into forced oscillations by the electric field of the wave) and neutral air particles, the RF energy abstracted from the wave being converted into thermal energy. The radiowave absorption in the ionosphere depends on electron density and collision frequency. The most important absorbing regions are the D-region and the lower E-region (50-100 Km.) The regular diurnal variation of the electron density in this height range is caused mainly by the changes in the depth of penetration of solar XUV radiations with solar zenith angle under quiet solar conditions. In 1937 Dellinger J.H.identified fade outs in high frequency radio circuits as due to abnormal ionospheric absorption associated with solar flares. The onset of the fade out was usually rapid and the duration was typically tens of minutes like that of the visible flare, because of the sudden onset, the immediate effects of solar flares are known collectively as sudden Ionospheric Disturbances (STD). The phenomenon discovered by Dellinger is usually called a short Wave Fadeout(SWF). Since the SWF is due to abnormal absorption

  7. Electron measurement in PHENIX

    SciTech Connect

    Akiba, Y.

    1995-07-15

    Electron Measurement in PHENIX detector at RHIC is discussed. The yield and S/N ratio at vector meson peaks ({phi}, {omega}, {rho}{sup o}, and J/{psi}) are evaluated. The electrons from open charm decay, and its consequence to the di-electron measurements is discussed.

  8. Teaching Chemistry with Electron Density Models.

    ERIC Educational Resources Information Center

    Shusterman, Gwendolyn P.; Shusterman, Alan J.

    1997-01-01

    Describes a method for teaching electronic structure and its relevance to chemical phenomena that relies on computer-generated three-dimensional models of electron density distributions. Discusses the quantum mechanical background needed and presents ways of using models of electronic ground states to teach electronic structure, bonding concepts,…

  9. The Reliability of Density Measurements.

    ERIC Educational Resources Information Center

    Crothers, Charles

    1978-01-01

    Data from a land-use study of small- and medium-sized towns in New Zealand are used to ascertain the relationship between official and effective density measures. It was found that the reliability of official measures of density is very low overall, although reliability increases with community size. (Author/RLV)

  10. Development of a spectroscopic technique for simultaneous magnetic field, electron density, and temperature measurements in ICF-relevant plasmas (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dutra, Eric C.; Covington, Aaron M.; Darling, Timothy; Mancini, Roberto C.; Haque, Showera; Angermeier, William A.

    2016-09-01

    Visible spectroscopic techniques are often used in plasma experiments to measure B-field induced Zeeman splitting, electron densities via Stark broadening and temperatures from Doppler broadening. However, when electron densities and temperatures are sufficiently high, the broadening of the Stark and Doppler components can dominate the emission spectra and obscure the Zeeman component. In this research, we are developing a time-resolved multi-axial technique for measuring the Zeeman, Stark, and Doppler broadened line emission of dense magnetized plasmas for Z-pinch and Dense Plasma Focus (DPF) accelerators. The line emission is used to calculate the electron densities, temperatures, and B-fields. In parallel, we are developing a line-shape modeling code that incorporates the broadening effects due to Stark, Doppler, and Zeeman effects for dense magnetized plasma. Experiments conducted at the University of Nevada (Reno) at the Nevada Terawatt Facility (NTF) using the 1 MA Z-pinch (Zebra). The research explored the response of Al III doublet, 4p 2P3/2 to 4s 2S1/2 and 4p 2P1/2 to 4s 2S1/2 transitions. Optical light emitted from the pinch is fiber coupled to high-resolution spectrometers. The dual spectrometers are coupled to two high-speed visible streak cameras to capture time-resolved emission spectra from the experiment. The data reflects emission spectra from 100 ns before the current peak to 100 ns after the current peak, where the current peak is approximately the time at which the pinch occurs. The Al III doublet is used to measure Zeeman, Stark, and Doppler broadened emission. The line emission is then used to calculate the temperature, electron density, and B-fields. The measured quantities are used as initial parameters for the line shape code to simulate emission spectra and compare to experimental results. Future tests are planned to evaluate technique and modeling on other material wire array, gas puff, and DPF platforms. This work was done by National

  11. Ionospheric E-region electron density and neutral atmosphere variations

    NASA Technical Reports Server (NTRS)

    Stick, T. L.

    1976-01-01

    Electron density deviations from a basic variation with the solar zenith angle were investigated. A model study was conducted in which the effects of changes in neutral and relative densities of atomic and molecular oxygen on calculated electron densities were compared with incoherent scatter measurements in the height range 100-117 km at Arecibo, Puerto Rico. The feasibility of determining tides in the neutral atmosphere from electron density profiles was studied. It was determined that variations in phase between the density and temperature variation and the comparable magnitudes of their components make it appear improbable that the useful information on tidal modes can be obtained in this way.

  12. Measuring the magnetic-field-dependent chemical potential of a low-density three-dimensional electron gas in n -GaAs and extracting its magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Roy Choudhury, Aditya N.; Venkataraman, V.

    2016-01-01

    We report the magnetic-field-dependent shift of the electron chemical potential in bulk, n -type GaAs at room temperature. A transient voltage of ˜100 μ V was measured across a Au-Al2O3 -GaAs metal-oxide-semiconductor capacitor in a pulsed magnetic field of ˜6 T . Several spurious voltages larger than the signal that had plagued earlier researchers performing similar experiments were carefully eliminated. The itinerant magnetic susceptibility of GaAs is extracted from the experimentally measured data for four different doping densities, including one as low as 5 ×1015cm-3 . Though the susceptibility in GaAs is dominated by Landau-Peierls diamagnetism, the experimental technique demonstrated can be a powerful tool for extracting the total free carrier magnetization of any electron system. The method is also virtually independent of the carrier concentration and is expected to work better in the nondegenerate limit. Such experiments had been successfully performed in two-dimensional electron gases at cryogenic temperatures. However, an unambiguous report on having observed this effect in any three-dimensional electron gas has been lacking. We highlight the 50 year old literature of various trials and discuss the key details of our experiment that were essential for its success. The technique can be used to unambiguously yield only the itinerant part of the magnetic susceptibility of complex materials such as magnetic semiconductors and hexaborides, and thus shed light on the origin of ferromagnetism in such systems.

  13. Electron density studies of methyl cellobioside

    USDA-ARS?s Scientific Manuscript database

    Experimental X-ray diffraction crystallography determines the variations in electron density that result from the periodic array of atoms in a crystal. Normally, the positions and type of atom are determined from the electron density based on an approximation that the atoms are spherical. However, t...

  14. Instrumentation for bone density measurement

    NASA Technical Reports Server (NTRS)

    Meharg, L. S.

    1968-01-01

    Measurement system evaluates the integrated bone density over a specific cross section of bone. A digital computer converts stored bone scan data to equivalent aluminum calibration wedge thickness, and bone density is then integrated along the scan by using the trapezoidal approximation integration formula.

  15. LIF Measurements on an Atomic Helium Beam in the Edge of a Fusion Plasma—possible derivation of the electron density

    NASA Astrophysics Data System (ADS)

    Krychowiak, M.; Mertens, Ph.; Schweer, B.; Brezinsek, S.; König, R.; Schmitz, O.; Brix, M.; Klinger, T.; Samm, U.

    2008-03-01

    Local values of the electron density and temperature in the edge of a fusion plasma can be derived with high space and time resolution by the use of line radiation of atomic helium beams. The accuracy of this method is mainly limited by the uncertainties in the collisional-radiative model which is needed in order to obtain both plasma parameters from the measured relative intensities of atomic helium lines. Combination of a helium beam with a pulsed high-power laser provides a possibility of ne measurement which does not require a detailed knowledge of the collisional-radiative model. The method relies on resonant laser pumping of some levels and analyzing their fluorescence after the end of the laser pulse. Such measurements were already performed in low temperature plasmas with some content of atomic helium [1,2,3]. In this paper, we discuss the applicability of this method in the fusion edge plasma in the density range of ˜1012-1013 cm-3 when exciting helium atoms with a laser at the wavelength of λ = 388.9 nm tuned to the triplet transition 23S⃗33P ° and observing the fluorescence light at the laser wavelength and at λ = 587.6 nm(33D⃗23P °). A first test measurement at the TEXTOR tokamak in Jülich performed by use of an excimer-pumped dye laser in connection with a thermal helium beam is shown and discussed.

  16. Measuring single-cell density

    PubMed Central

    Grover, William H.; Bryan, Andrea K.; Diez-Silva, Monica; Suresh, Subra; Higgins, John M.; Manalis, Scott R.

    2011-01-01

    We have used a microfluidic mass sensor to measure the density of single living cells. By weighing each cell in two fluids of different densities, our technique measures the single-cell mass, volume, and density of approximately 500 cells per hour with a density precision of 0.001 g mL-1. We observe that the intrinsic cell-to-cell variation in density is nearly 100-fold smaller than the mass or volume variation. As a result, we can measure changes in cell density indicative of cellular processes that would be otherwise undetectable by mass or volume measurements. Here, we demonstrate this with four examples: identifying Plasmodium falciparum malaria-infected erythrocytes in a culture, distinguishing transfused blood cells from a patient’s own blood, identifying irreversibly sickled cells in a sickle cell patient, and identifying leukemia cells in the early stages of responding to a drug treatment. These demonstrations suggest that the ability to measure single-cell density will provide valuable insights into cell state for a wide range of biological processes. PMID:21690360

  17. Bulk Density Measurements of Meteorites

    NASA Astrophysics Data System (ADS)

    Wilkison, S. L.; Robinson, M. S.

    1999-03-01

    We present density measurements of meteorites detailing the precision and errors associated with the modified Archimedian method of Consolmagno and Britt. We find that the method is accurate to better than 1%.

  18. Structural, electronic and optical properties of monoclinic Na2Ti3O7 from density functional theory calculations: A comparison with XRD and optical absorption measurements

    NASA Astrophysics Data System (ADS)

    Araújo-Filho, Adailton A.; Silva, Fábio L. R.; Righi, Ariete; da Silva, Mauricélio B.; Silva, Bruno P.; Caetano, Ewerton W. S.; Freire, Valder N.

    2017-06-01

    Powder samples of bulk monoclinic sodium trititanate Na2Ti3O7 were prepared carefully by solid state reaction, and its monoclinic P21/m crystal structure and morphology were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), respectively. Moreover, the sodium trititanate main energy band gap was estimated as Eg=3.51±0.01 eV employing UV-Vis spectroscopy, which is smaller than the measured 3.70 eV energy gap published previously by other authors. Aiming to achieve a better understanding of the experimental data, density functional theory (DFT) computations were performed within the local density and generalized gradient approximations (LDA and GGA, respectively) taking into account dispersion effects through the scheme of Tkatchenko and Scheffler (GGA+TS). Optimal lattice parameters, with deviations relative to measurements Δa=-0.06 Å, Δb=0.02 Å, and Δc=-0.09 Å, were obtained at the GGA level, which was then used to simulate the sodium trititanate electronic and optical properties. Indirect band transitions have led to a theoretical gap energy value of about 3.25 eV. Our results, however, differ from pioneer DFT results with respect to the specific Brillouin zone vectors for which the indirect transition with smallest energy value occurs. Effective masses for electrons and holes were also estimated along a set of directions in reciprocal space. Lastly, our calculations revealed a relatively large degree of optical isotropy for the Na2Ti3O7 optical absorption and complex dielectric function.

  19. Surface loss rates of H and Cl radicals in an inductively coupled plasma etcher derived from time-resolved electron density and optical emission measurements

    SciTech Connect

    Curley, G. A.; Gatilova, L.; Guilet, S.; Bouchoule, S.; Gogna, G. S.; Sirse, N.; Karkari, S.; Booth, J. P.

    2010-03-15

    A study is undertaken of the loss kinetics of H and Cl atoms in an inductively coupled plasma (ICP) reactor used for the etching of III-V semiconductor materials. A time-resolved optical emission spectroscopy technique, also referred to as pulsed induced fluorescence (PIF), has been combined with time-resolved microwave hairpin probe measurements of the electron density in a pulsed Cl{sub 2}/H{sub 2}-based discharge for this purpose. The surface loss rate of H, k{sub w}{sup H}, was measured in H{sub 2} plasma and was found to lie in the 125-500 s{sup -1} range ({gamma}{sub H} surface recombination coefficient of {approx}0.006-0.023), depending on the reactor walls conditioning. The PIF technique was then evaluated for the derivation of k{sub w}{sup Cl}, and {gamma}{sub Cl} in Cl{sub 2}-based plasmas. In contrast to H{sub 2} plasma, significant variations in the electron density may occur over the millisecond time scale corresponding to Cl{sub 2} dissociation at the rising edge of the plasma pulse. By comparing the temporal evolution of the electron density and the Ar-line intensity curves with 10% of Ar added in the discharge, the authors show that a time-resolved actinometry procedure using Ar as an actinometer is valid at low to moderate ICP powers to estimate the Cl loss rate. They measured a Cl loss rate of {approx}125-200 s{sup -1} (0.03{<=}{gamma}{sub Cl}{<=}0.06) at 150 W ICP power for a reactor state close to etching conditions. The Cl surface loss rate was also estimated for high ICP power (800 W) following the same procedure, giving a value of {approx}130-150 s{sup -1} ({gamma}{sub Cl}{approx}0.04), which is close to that measured at 150 W ICP power.

  20. Measurements of line-averaged electron density of pulsed plasmas using a He-Ne laser interferometer in a magnetized coaxial plasma gun device

    NASA Astrophysics Data System (ADS)

    Iwamoto, D.; Sakuma, I.; Kitagawa, Y.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    In next step of fusion devices such as ITER, lifetime of plasma-facing materials (PFMs) is strongly affected by transient heat and particle loads during type I edge localized modes (ELMs) and disruption. To clarify damage characteristics of the PFMs, transient heat and particle loads have been simulated by using a plasma gun device. We have performed simulation experiments by using a magnetized coaxial plasma gun (MCPG) device at University of Hyogo. The line-averaged electron density measured by a He-Ne interferometer is 2x10^21 m-3 in a drift tube. The plasma velocity measured by a time of flight technique and ion Doppler spectrometer was 70 km/s, corresponding to the ion energy of 100 eV for helium. Thus, the ion flux density is 1.4x10^26 m-2s-1. On the other hand, the MCPG is connected to a target chamber for material irradiation experiments. It is important to measure plasma parameters in front of target materials in the target chamber. In particular, a vapor cloud layer in front of the target material produced by the pulsed plasma irradiation has to be characterized in order to understand surface damage of PFMs under ELM-like plasma bombardment. In the conference, preliminary results of application of the He-Ne laser interferometer for the above experiment will be shown.

  1. Morphology of high-latitude plasma density perturbations as deduced from the total electron content measurements onboard the Swarm constellation

    NASA Astrophysics Data System (ADS)

    Park, Jaeheung; Lühr, Hermann; Kervalishvili, Guram; Rauberg, Jan; Stolle, Claudia; Kwak, Young-Sil; Lee, Woo Kyoung

    2017-01-01

    In this study, we investigate the climatology of high-latitude total electron content (TEC) variations as observed by the dual-frequency Global Navigation Satellite Systems (GNSS) receivers onboard the Swarm satellite constellation. The distribution of TEC perturbations as a function of geographic/magnetic coordinates and seasons reasonably agrees with that of the Challenging Minisatellite Payload observations published earlier. Categorizing the high-latitude TEC perturbations according to line-of-sight directions between Swarm and GNSS satellites, we can deduce their morphology with respect to the geomagnetic field lines. In the Northern Hemisphere, the perturbation shapes are mostly aligned with the L shell surface, and this anisotropy is strongest in the nightside auroral (substorm) and subauroral regions and weakest in the central polar cap. The results are consistent with the well-known two-cell plasma convection pattern of the high-latitude ionosphere, which is approximately aligned with L shells at auroral regions and crossing different L shells for a significant part of the polar cap. In the Southern Hemisphere, the perturbation structures exhibit noticeable misalignment to the local L shells. Here the direction toward the Sun has an additional influence on the plasma structure, which we attribute to photoionization effects. The larger offset between geographic and geomagnetic poles in the south than in the north is responsible for the hemispheric difference.

  2. Two color multichannel heterodyne interferometer set up for high spatial resolution electron density profile measurements in TJ-II

    SciTech Connect

    Pedreira, P.; Criado, A. R.; Acedo, P.; Esteban, L.; Sanchez, M.; Sanchez, J.

    2010-10-15

    A high spatial resolution two color [CO{sub 2}, {lambda}=10.6 {mu}m/Nd:YAG (Nd:YAG denotes neodymium-doped yttrium aluminum garnet), and {lambda}=1.064 {mu}m] expanded-beam multichannel heterodyne interferometer has been installed on the TJ-II stellarator. Careful design of the optical system has allowed complete control on the evolution of both Gaussian beams along the interferometer, as well as the evaluation and optimization of the spatial resolution to be expected in the measurements. Five CO{sub 2} (measurement) channels and three Nd:YAG (vibration compensation) channels have been used to illuminate the plasma with a probe beam of 100 mm size. An optimum interpolation method has been applied to recover both interferometric phasefronts prior to mechanical vibration subtraction. The first results of the installed diagnostic are presented in this paper.

  3. Electron densities of three B12 vitamins.

    PubMed

    Mebs, Stefan; Henn, Julian; Dittrich, Birger; Paulmann, Carsten; Luger, Peter

    2009-07-23

    The electron densities of the three natural B(12)-vitamins, two of them being essential cofactors for animal life, were determined in a procedure combining high-order X-ray data collection at low to very low temperatures with high-level density functional calculations. In a series of extensive experimental attempts, a high-order data set of adenosylcobalamin (AdoCbl) could be collected to a resolution of sin theta/lambda = 1.00 A(-1) at 25 K. This modification contains only minor disorder at the solvent bulk. For methylcobalamin (MeCbl), only a severely disordered modification was found (sin theta/lambda = 1.00 A(-1), 100 K, measured with synchrotron radiation). The already published data set of cyanocobalamin (CNCbl) (sin theta/lambda = 1.25 A(-1), 100 K) was reintegrated to guarantee similar treatment of the three compounds and cut to sin theta/lambda = 1.11 A(-1) to obtain a higher degree of completeness and redundancy. On the basis of these accurate experimental geometries of AdoCbl, MeCbl, and CNCbl, state-of-the-art density functional calculations, single-point calculations, and geometry optimizations were performed on model compounds at the BP86/TZVP level of theory to evaluate the electronic differences of the three compounds. AdoCbl and MeCbl are known to undergo different reaction paths in the body. Thus, the focus was directed toward the characterization of the dative Co-C(ax) and Co-N(ax) bonds, which were quantifed by topological parameters, including energy densities; the source function including local source; and the electron localizability indicator (ELI-D), respectively. The source function reveals the existence of delocalized interactions between the corrin macrocycle and the axial ligands. The ELI-D indicates unsaturated Co-C(ax) bonding basins for the two biochemically active cofactors, but not for CNCbl, where a population of 2.2e is found. This may be related to significant pi-backbonding, which is supported by the delocalization index, delta

  4. Analysis of the interaction of an electron beam with a solar cell. III - The effect of spacial variations of the number density of recombination centers on SEM measurements

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1979-01-01

    By means of an exactly soluble model the short circuit current generated by a scanning electron microscope in a P-N junction has been determined in cases where the trap density is inhomogeneous. The diffusion length for minority carriers becomes then dependent on the spacial coordinates. It is shown that in this case the dependence of the Isc on characteristic parameters as cell thickness, distance of the beam excitation spot from ohmic contacts, etc., becomes very intricate. This fact precludes the determination of the local diffusion length in the usual manner. Although the model is somewhat simplified in order to make it amenable to exact solutions, it is nevertheless realistic enough to lead to the conclusion that SEM measurements of bulk transport parameters in inhomogeneous semiconductor material are impractical since they may lead to serious errors in the interpretation of the data by customary means.

  5. EISCAT (European Incoherent Scatter Radar) Electron Density Studies.

    DTIC Science & Technology

    1987-09-08

    lists the corresponding measurements of electron content made by HILAT and calculated from SPI03 measurements for each of the 7 coincident runs. The...TEC measured by HILAT and TEC calculated from EISCAT measurements, the HILAT values being always larger than those from EISCAT. The measurements...HILAT results could be due to several factors. The EISCAT value was calculated by integrating electron density over the range gates 184 km to 746.5

  6. Measuring liquid density using Archimedes' principle

    NASA Astrophysics Data System (ADS)

    Hughes, Stephen W.

    2006-09-01

    A simple technique is described for measuring absolute and relative liquid density based on Archimedes' principle. The technique involves placing a container of the liquid under test on an electronic balance and suspending a probe (e.g. a glass marble) attached to a length of line beneath the surface of the liquid. If the volume of the probe is known, the density of liquid is given by the difference between the balance reading before and after immersion of the probe divided by the volume of the probe. A test showed that the density of water at room temperature could be measured to an accuracy and precision of 0.01 ± 0.1%. The probe technique was also used to measure the relative density of milk, Coca-Cola, fruit juice, olive oil and vinegar.

  7. Polar cap electron densities from DE 1 plasma wave observations

    NASA Technical Reports Server (NTRS)

    Persoon, A. M.; Gurnett, D. A.; Shawhan, S. D.

    1983-01-01

    Electric-field-spectum measurements from the plasma-wave instrument on the Dynamics Explorer 1 spacecraft are used to study the local electron density at high altitudes in the northern polar-cap region. The electron density is determined from the upper cutoff of whistler-mode radiation at the electron plasma frequency. Median density values over the polar cap at L greater than 10 are found to vary from 35.2 + or - 8.5 cu cm at 2.1 earth radii to 0.99 + or - 0.51 cu cm at 4.66 earth radii. The steady-state radial-outflow model is examined for consistency with the observed density profile. A power-law fit to the radial variation of the electron density yields an exponent of - 3.85 + or - 0.32, which for the radial-outflow model implies a flow velocity increasing nearly linearly with incresing radial distance. Comparison of the observed electron densities with theoretical polar-wind densities yields consistent results up to 2.8 earth radii. A comparison of the observed electron densities with low-altitude density profiles from the Alouette II and ISIS 1 spacecraft illustrates transitions in the slope of the profile at 1.16 earth radii and between 1.55 and 2.0 earth radii. The changes in the density profile suggest that changes occur in the basic radial-transport processes at these altitudes.

  8. Density Measurements of Be Shells

    SciTech Connect

    Cook, R C

    2005-02-15

    The purpose of this memo is to lay out the uncertainties associated with the measurement of density of Be ablators by the weigh and volume method. I am counting on the readers to point out any faulty assumptions about the techniques or uncertainties associated with them. Based on the analysis presented below we should expect that 30 {micro}m thick shells will have an uncertainty in the measured density of about 2% of the value, coming more or less equally from the mass and volume measurement. The uncertainty is roughly inversely proportional to the coating thickness, thus a 60 {micro}m walled shell would result in a 1% uncertainty in the density.

  9. LIF Measurements on an Atomic Helium Beam in the Edge of a Fusion Plasma--possible derivation of the electron density

    SciTech Connect

    Krychowiak, M.; Koenig, R.; Klinger, T.; Mertens, Ph.; Schweer, B.; Brezinsek, S.; Schmitz, O.; Samm, U.; Brix, M.

    2008-03-19

    Local values of the electron density and temperature in the edge of a fusion plasma can be derived with high space and time resolution by the use of line radiation of atomic helium beams. The accuracy of this method is mainly limited by the uncertainties in the collisional-radiative model which is needed in order to obtain both plasma parameters from the measured relative intensities of atomic helium lines. Combination of a helium beam with a pulsed high-power laser provides a possibility of n{sub e} measurement which does not require a detailed knowledge of the collisional-radiative model. The method relies on resonant laser pumping of some levels and analyzing their fluorescence after the end of the laser pulse. Such measurements were already performed in low temperature plasmas with some content of atomic helium [1,2,3]. In this paper, we discuss the applicability of this method in the fusion edge plasma in the density range of {approx}10{sup 12}-10{sup 13} cm{sup -3} when exciting helium atoms with a laser at the wavelength of {lambda} = 388.9 nm tuned to the triplet transition 2{sup 3}S-vector3{sup 3}P deg. and observing the fluorescence light at the laser wavelength and at {lambda} = 587.6 nm(3{sup 3}D-vector2{sup 3}P deg.). A first test measurement at the TEXTOR tokamak in Juelich performed by use of an excimer-pumped dye laser in connection with a thermal helium beam is shown and discussed.

  10. Electron cyclotron emission as a density fluctuation diagnostic

    SciTech Connect

    Lynn, A.G.; Phillips, P.E.; Hubbard, A.

    2004-10-01

    A new technique for measuring density fluctuations using a high-resolution heterodyne electron cyclotron emission (ECE) radiometer has been developed. Although ECE radiometry is typically used for electron temperature measurements, the unique viewing geometry of this system's quasioptical antenna has been found to make the detected emission extremely sensitive to refractive effects under certain conditions. This sensitivity gives the diagnostic the ability to measure very low levels of density fluctuations in the core of Alcator C-Mod tokamak. The refractive effects have been modeled using ray-tracing methods, allowing estimates of the density fluctuation magnitude and spatial localization.

  11. Ionospheric density enhancement during relativistic electron precipitation

    NASA Technical Reports Server (NTRS)

    Foster, J. C.; Doupnik, J. R.; Stiles, G. S.

    1980-01-01

    The temporal evolution of the ionospheric density enhancement produced by a widespread relativistic electron precipitation (REP) has been observed with the Chatanika Radar. The REP was associated with a substorm particle energization event, and both the ionospheric absorption and density perturbation exhibited an approximately 90 min periodicity associated with the particles' longitudinal drift. A 80-keV characteristic energy for the precipitating electrons is deduced from ground-based and satellite data. At the maximum of the event, electrons deposited approximately 50 ergs/sq cm per sec in the ionosphere, producing a peak density of 500,000/cu cm at 89 km altitude. At that time the radar observed densities greater than 100,000/cu cm between 70 km and 110 km altitude and riometer absorption at 30 MHz was approximately 12 db.

  12. Picosecond imaging of low-density plasmas by electron deflectometry.

    PubMed

    Centurion, M; Reckenthaeler, P; Krausz, F; Fill, E E

    2009-02-15

    We have imaged optical-field ionized plasmas with electron densities as low as 10(13) cm(-3) on a picosecond timescale using ultrashort electron pulses. Electric fields generated by the separation of charges are imprinted on a 20 keV probe electron pulse and reveal a cloud of electrons expanding away from a positively charged plasma core. Our method allows for a direct measurement of the electron energy required to escape the plasma and the total charge. Simulations reproduce the main features of the experiment and allow determination of the energy of the electrons.

  13. Time-resolved ion flux, electron temperature and plasma density measurements in a pulsed Ar plasma using a capacitively coupled planar probe

    NASA Astrophysics Data System (ADS)

    Darnon, Maxime; Cunge, Gilles; Braithwaite, Nicholas St. J.

    2014-04-01

    The resurgence of industrial interest in pulsed radiofrequency plasmas for etching applications highlights the fact that these plasmas are much less well characterized than their continuous wave counterparts. A capacitively coupled planar probe is used to determine the time variations of the ion flux, electron temperature (of the high-energy tail of the electron energy distribution function) and plasma density. For a pulsing frequency of 1 kHz or higher, the plasma never reaches a steady state during the on-time and is not fully extinguished during the off-time. The drop of plasma density during the off-time leads to an overshoot in the electron temperature at the beginning of each pulse, particularly at low frequencies, in good agreement with modeling results from the literature.

  14. Stabilization of electron-scale turbulence by electron density gradient in national spherical torus experiment

    SciTech Connect

    Ruiz Ruiz, J.; White, A. E.; Ren, Y.; Guttenfelder, W.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E.; Lee, K. C.; Domier, C. W.; Smith, D. R.; Yuh, H.

    2015-12-15

    Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which is shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.

  15. Electron density errors and density-driven exchange-correlation energy errors in approximate density functional calculations.

    PubMed

    Mezei, Pal Daniel; Csonka, Gabor I; Kallay, Mihaly

    2017-09-11

    Since its formal introduction, density functional theory has achieved many successes on the fields of molecular and solid-state chemistry. According to its central theorems, the ground state of a many-electron system is fully described by its electron density, and the exact functional minimizes the energy at the exact electron density. For many years of density functional development, it was assumed that the improvements in the energy are accompanied by the improvements in the density, and the approximations approach the exact functional. In a recent analysis (Medvedev et al. Science 2017, 355, 49-52.), it has been pointed out for fourteen first row (Be-Ne) atoms and cations with 2, 4, or 10 electrons that the nowadays popular flexible but physically less rigorous approximate density functionals may provide large errors in the calculated electron densities despite the accurate energies. Although far-reaching conclusions have been drawn in this work, the methodology used by the authors may need improvements. Most importantly, their benchmark set was biased towards small atomic cations with compressed, high electron densities. In our paper, we construct a molecular test set with chemically relevant densities and analyze the performance of several density functional approximations including the less-investigated double hybrids. We apply an intensive error measure for the density, its gradient, and its Laplacian and examine how the errors in the density propagate into the semi-local exchange-correlation energy. While we have confirmed the broad conclusions of Medvedev et al., our different way of analyzing the data has led to conclusions that differ in detail. Finally, seeking for a rationale behind the global hybrid or double hybrid methods from the density's point of view, we also analyze the role of the exact exchange and second-order perturbative correlation mixing in PBE-based global hybrid and double hybrid functional forms.

  16. A Robust High Current Density Electron Gun

    NASA Astrophysics Data System (ADS)

    Mako, F.; Peter, W.; Shiloh, J.; Len, L. K.

    1996-11-01

    Proof-of-principle experiments are proposed to validate a new concept for a robust, high-current density Pierce electron gun (RPG) for use in klystrons and high brightness electron sources for accelerators. This rugged, long-life electron gun avoids the difficulties associated with plasma cathodes, thermionic emitters, and field emission cathodes. The RPG concept employs the emission of secondary electrons in a transmission mode as opposed to the conventional mode of reflection, i.e., electrons exit from the back face of a thin negative electron affinity (NEA) material, and in the same direction as the incident beam. Current amplification through one stage of a NEA material could be over 50 times. The amplification is accomplished in one or more stages consisting of one primary emitter and one or more secondary emitters. The primary emitter is a low current density robust emitter (e.g., thoriated tungsten). The secondary emitters are thin NEA electrodes which emit secondary electrons in the same direction as the incident beam. Specific application is targeted for a klystron gun to be used by SLAC with a cold cathode at 30-40 amps/cm^2 output from the secondary emission stage, a ~2 μs pulse length, and ~200 pulses/second.

  17. A study of density in electron-cyclotron-resonance plasma

    SciTech Connect

    Uhm, H.S.; Lee, P.H.; Kim, Y.I.; Kim, J.H.; Chang, H.Y.

    1995-08-01

    A theory is developed for the density profile of low-temperature plasmas confined by applied magnetic field and an experiment of the electron-cyclotron-resonance (ECR) plasma is conducted to compare the theoretical prediction and experimental measurements. Due to a large electron mobility along the magnetic field, electrons move quickly out of the system, leaving ions behind and building a space charge potential, which leads to the ambipolar diffusion of ions. In a steady-state condition, the plasma generation by ionization of neutral molecules is in balance with plasma loss due to the diffusion, leading to the electron temperature equation, which is expressed in terms of the plasma size, chamber pressure, and the ionization energy and cross section of neutrals. The power balance condition leads to the plasma density equation, which is also expressed in terms of the electron temperature, the input microwave power and the chamber pressure. It is shown that the plasma density increases, reaches its peak and decreases, as the chamber pressure increases from a small value (0.1 mTorr). These simple expressions of electron temperature and density provide a scaling law of ECR plasma in terms of system parameters. After carrying out an experimental observation, it is concluded that the theoretical predictions of the electron temperature and plasma density agree remarkably well with experimental data. A large-volume plasma generated by the electron-cyclotron-resonance (ECR) mechanism plays a pivotal role in the plasma processing, including thin-film depositions and plasma etching technologies.

  18. Teaching Chemistry with Electron Density Models

    NASA Astrophysics Data System (ADS)

    Shusterman, Gwendolyn P.; Shusterman, Alan J.

    1997-07-01

    Linus Pauling once said that a topic must satisfy two criteria before it can be taught to students. First, students must be able to assimilate the topic within a reasonable amount of time. Second, the topic must be relevant to the educational needs and interests of the students. Unfortunately, the standard general chemistry textbook presentation of "electronic structure theory", set as it is in the language of molecular orbitals, has a difficult time satisfying either criterion. Many of the quantum mechanical aspects of molecular orbitals are too difficult for most beginning students to appreciate, much less master, and the few applications that are presented in the typical textbook are too limited in scope to excite much student interest. This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, which we have developed and used for several years in general chemistry (G.P.S.) and organic chemistry (A.J.S.) courses, relies on computer-generated three-dimensional models of electron density distributions, and largely satisfies Pauling's two criteria. Students find electron density models easy to understand and use, and because these models are easily applied to a broad range of topics, they successfully convey to students the importance of electronic structure. In addition, when students finally learn about orbital concepts they are better prepared because they already have a well-developed three-dimensional picture of electronic structure to fall back on. We note in this regard that the types of models we use have found widespread, rigorous application in chemical research (1, 2), so students who understand and use electron density models do not need to "unlearn" anything before progressing to more advanced theories.

  19. Evidence of Electron Density Enhancements at Enceladus' Apoapsis

    NASA Astrophysics Data System (ADS)

    Persoon, A. M.; Gurnett, D. A.; Kurth, W. S.; Hospodarsky, G. B.; Groene, J. B.

    2015-12-01

    Enceladus' plumes are the dominant source of plasma in Saturn's magnetosphere. Icy particles and water vapor are vented into the inner magnetosphere through fissures in Enceladus' southern polar region. These fissures are subjected to tidal stresses that vary as Enceladus moves in a slightly eccentric orbit around Saturn. Plume activity is greatest when tidal stress is minimal. This occurs when Enceladus is farthest away from Saturn in its orbit (the Enceladus apoapsis). This study will show temporal variations in the electron density distribution that correlate with the position of Enceladus in its orbit around Saturn, with strong density enhancements in the vicinity of Enceladus when the moon is near apoapsis. Equatorial electron density measurements derived from the upper hybrid resonance frequency from the Cassini Radio and Plasma Wave Science (RPWS) experiment are used to illustrate these electron density enhancements.

  20. Electron correlation by polarization of interacting densities

    NASA Astrophysics Data System (ADS)

    Whitten, Jerry L.

    2017-02-01

    Coulomb interactions that occur in electronic structure calculations are correlated by allowing basis function components of the interacting densities to polarize dynamically, thereby reducing the magnitude of the interaction. Exchange integrals of molecular orbitals are not correlated. The modified Coulomb interactions are used in single-determinant or configuration interaction calculations. The objective is to account for dynamical correlation effects without explicitly introducing higher spherical harmonic functions into the molecular orbital basis. Molecular orbital densities are decomposed into a distribution of spherical components that conserve the charge and each of the interacting components is considered as a two-electron wavefunction embedded in the system acted on by an average field Hamiltonian plus r12-1. A method of avoiding redundancy is described. Applications to atoms, negative ions, and molecules representing different types of bonding and spin states are discussed.

  1. Electron Density Profiles of the Topside Ionosphere

    NASA Technical Reports Server (NTRS)

    Huang, Xue-Qin; Reinsch, Bodo W.; Bilitza, Dieter; Benson, Robert F.

    2002-01-01

    The existing uncertainties about the electron density profiles in the topside ionosphere, i.e., in the height region from h,F2 to - 2000 km, require the search for new data sources. The ISIS and Alouette topside sounder satellites from the sixties to the eighties recorded millions of ionograms but most were not analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. As of November 2001 about 350000 ionograms have been digitized from the original 7-track analog tapes. These data are available in binary and CDF format from the anonymous ftp site of the National Space Science Data Center. A search site and browse capabilities on CDAWeb assist the scientific usage of these data. All information and access links can be found at http://nssdc.gsfc.nasa.gov/space/isis/isis- status.htm1. This paper describes the ISIS data restoration effort and shows how the digital ionograms are automatically processed into electron density profiles from satellite orbit altitude (1400 km for ISIS-2) down to the F peak. Because of the large volume of data an automated processing algorithm is imperative. The TOPside Ionogram Scaler with True height algorithm TOPIST software developed for this task is successfully scaling - 70% of the ionograms. An <> is available to manually scale the more difficult ionograms. The automated processing of the digitized ISIS ionograms is now underway, producing a much-needed database of topside electron density profiles for ionospheric modeling covering more than one solar cycle.

  2. Electron Density Profiles of the Topside Ionosphere

    NASA Technical Reports Server (NTRS)

    Huang, Xue-Qin; Reinsch, Bodo W.; Bilitza, Dieter; Benson, Robert F.

    2002-01-01

    The existing uncertainties about the electron density profiles in the topside ionosphere, i.e., in the height region from h,F2 to - 2000 km, require the search for new data sources. The ISIS and Alouette topside sounder satellites from the sixties to the eighties recorded millions of ionograms but most were not analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. As of November 2001 about 350000 ionograms have been digitized from the original 7-track analog tapes. These data are available in binary and CDF format from the anonymous ftp site of the National Space Science Data Center. A search site and browse capabilities on CDAWeb assist the scientific usage of these data. All information and access links can be found at http://nssdc.gsfc.nasa.gov/space/isis/isis- status.htm1. This paper describes the ISIS data restoration effort and shows how the digital ionograms are automatically processed into electron density profiles from satellite orbit altitude (1400 km for ISIS-2) down to the F peak. Because of the large volume of data an automated processing algorithm is imperative. The TOPside Ionogram Scaler with True height algorithm TOPIST software developed for this task is successfully scaling - 70% of the ionograms. An <> is available to manually scale the more difficult ionograms. The automated processing of the digitized ISIS ionograms is now underway, producing a much-needed database of topside electron density profiles for ionospheric modeling covering more than one solar cycle.

  3. Electroweak charge density distributions with parity-violating electron scattering

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Ren, Zhongzhou; Xu, Chang; Xu, Renli

    2013-11-01

    Parity-violating electron scattering (PVS) is an accurate and model-independent way to investigate the weak-charge density distributions of nuclei. In this paper, we study parity-violating electron scattering with the Helm model where the effects of spin-orbit currents on nuclear weak skins are taken into account. The conditions of two PVS measurements to constrain the surface thickness σW of Helm weak-charge densities are investigated. According to the plane wave Born approximation, Apv is expressed in terms of parameters of the corresponding Helm charge and weak-charge densities. After fitting the results of Apv calculated from the phase-shift analysis method where the Coulomb distortion effects are incorporated, an empirical formula in terms of Helm model parameters for calculating Apv is obtained. If two PVS measurements with different scattering angles are carried out, the modeled weak-charge density distributions with two parameters could be extracted from this empirical formula.

  4. Electron densities and the excitation of CN in molecular clouds

    NASA Technical Reports Server (NTRS)

    Black, John H.; Van Dishoeck, Ewine F.

    1991-01-01

    In molecular clouds of modest density and relatively high fractional ionization, the rotational excitation of CN is controlled by a competition among electron impact, neutral impact and the interaction with the cosmic background radiation. The degree of excitation can be measured through optical absorption lines and millimeter-wave emission lines. The available, accurate data on CN in diffuse and translucent molecular clouds are assembled and used to determine electron densities. The derived values, n(e) = roughly 0.02 - 0.5/cu cm, imply modest neutral densities, which generally agree well with determinations by other techniques. The absorption- and emission-line measurements of CN both exclude densities higher than n(H2) = roughly 10 exp 3.5/cu cm on scales varying from 0.001 to 60 arcsec in these clouds.

  5. Analysis of the IMAGE RPI electron density data and CHAMP plasmasphere electron density reconstructions with focus on plasmasphere modelling

    NASA Astrophysics Data System (ADS)

    Gerzen, T.; Feltens, J.; Jakowski, N.; Galkin, I.; Reinisch, B.; Zandbergen, R.

    2016-09-01

    The electron density of the topside ionosphere and the plasmasphere contributes essentially to the overall Total Electron Content (TEC) budget affecting Global Navigation Satellite Systems (GNSS) signals. The plasmasphere can cause half or even more of the GNSS range error budget due to ionospheric propagation errors. This paper presents a comparative study of different plasmasphere and topside ionosphere data aiming at establishing an appropriate database for plasmasphere modelling. We analyze electron density profiles along the geomagnetic field lines derived from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) satellite/Radio Plasma Imager (RPI) records of remote plasma sounding with radio waves. We compare these RPI profiles with 2D reconstructions of the topside ionosphere and plasmasphere electron density derived from GNSS based TEC measurements onboard the Challenging Minisatellite Payload (CHAMP) satellite. Most of the coincidences between IMAGE profiles and CHAMP reconstructions are detected in the region with L-shell between 2 and 5. In general the CHAMP reconstructed electron densities are below the IMAGE profile densities, with median of the CHAMP minus IMAGE residuals around -588 cm-3. Additionally, a comparison is made with electron densities derived from passive radio wave RPI measurements onboard the IMAGE satellite. Over the available 2001-2005 period of IMAGE measurements, the considered combined data from the active and passive RPI operations cover the region within a latitude range of ±60°N, all longitudes, and an L-shell ranging from 1.2 to 15. In the coincidence regions (mainly 2 ⩽ L ⩽ 4), we check the agreement between available active and passive RPI data. The comparison shows that the measurements are well correlated, with a median residual of ∼52 cm-3. The RMS and STD values of the relative residuals are around 22% and 21% respectively. In summary, the results encourage the application of IMAGE RPI data for

  6. Topology of molecular electron density and electrostatic potential with DAMQT

    NASA Astrophysics Data System (ADS)

    López, Rafael; Rico, Jaime Fernández; Ramírez, Guillermo; Ema, Ignacio; Zorrilla, David; Kumar, Anmol; Yeole, Sachin D.; Gadre, Shridhar R.

    2017-05-01

    A new version of the DAMQT package incorporating topological analysis of the molecular electron density and electrostatic potential is reported. Evaluation of electron density, electrostatic potential and their first and second derivatives within DAM partition-expansion is discussed, and the pertaining equations are reported. An efficient algorithm for the search of critical points, gradient paths, atomic basins and Hessian analysis is implemented using these equations. 3D viewer built in DAMQT incorporates new facilities for visualization of these properties, as well as for distance and angle measurements. Full control of projection mode is also added to the viewer in DAMQT. Some examples are provided showing the excellent performance for large molecular systems.

  7. Optical Emission Spectroscopic Techniques for Low Electron Density Diagnostics

    SciTech Connect

    Ivkovic, M.

    2006-12-01

    This paper comprises an analysis of optical emission spectroscopy (OES) techniques and results of their application for diagnostics of middle and low electron densities in low temperature plasmas. The following OES diagnostic techniques based on: 1) line merging along spectral line series, 2) use of line shapes and Stark halfwidths of hydrogen Balmer lines, 3) line shape of helium lines with forbidden components and 4) use of molecular nitrogen bandhead intensities are studied, discussed, tested and applied and in some cases ugraded for electron density measurements. The overall comparative analysis is performed also.

  8. Measurements of Laser Plasma Instability (LPI) and Electron Density/Temperature Profiles in Plasmas Produced by the Nike KrF Laser

    NASA Astrophysics Data System (ADS)

    Oh, Jaechul; Weaver, J. L.; Serlin, V.; Obenschain, S. P.

    2016-10-01

    We will present results of simultaneous measurements of LPI-driven light scattering and density/temperature profiles in CH plasmas produced by the Nike krypton fluoride laser (λ = 248 nm). The primary diagnostics for the LPI measurement are time-resolved spectrometers with absolute intensity calibration in spectral ranges relevant to the optical detection of stimulated Raman scattering or two plasmon decay. The spectrometers are capable of monitoring signal intensity relative to thermal background radiation from plasma providing a useful way to analyze LPI initiation. For further understanding of LPI processes, the recently implemented grid image refractometer (Nike-GIR)a is used to measure the coronal plasma profiles. In this experiment, Nike-GIR is equipped with a 5th harmonic probe laser (λ = 213 nm) in attempt to probe into a high density region over the previous peak density with λ = 263 nm probe light ( 4 ×1021 cm-3). The LPI behaviors will be discussed with the measured data sets. Work supported by DoE/NNSA.

  9. Single electron densities: a new tool to analyze molecular wavefunctions.

    PubMed

    Lüchow, Arne; Petz, René

    2011-09-01

    A new partitioning scheme for the electron density of a many-electron wavefunction into single electron densities is proposed. These densities are based on the most probable arrangement of the electrons in an atom or molecule. Therefore, they contain information about the electron-electron interaction and, most notably, the Fermi hole due to the antisymmetry of the many-electron wavefunction. The single electron densities overlap and can be combined to electron pair distributions close to the qualitative electron pairs that represent, for instance, the basis of the valence shell electron pair repulsion model. Single electron analyses are presented for the water, ethane, and ethene molecules. The effect of electron correlation on the single electron and pair densities is investigated for the water molecule.

  10. High Density Mastering Using Electron Beam

    NASA Astrophysics Data System (ADS)

    Kojima, Yoshiaki; Kitahara, Hiroaki; Kasono, Osamu; Katsumura, Masahiro; Wada, Yasumitsu

    1998-04-01

    A mastering system for the next-generation digital versatile disk (DVD) is required to have a higher resolution compared with the conventional mastering systems. We have developed an electron beam mastering machine which features a thermal field emitter and a vacuum sealed air spindle motor. Beam displacement caused by magnetic fluctuation with spindle rotation was about 60 nm(p-p) in both the radial and tangential directions. Considering the servo gain of a read-out system, it has little influence on the read-out signal in terms of tracking errors and jitters. The disk performance was evaluated by recording either the 8/16 modulation signal or a groove on the disk. The electron beam recording showed better jitter values from the disk playback than those from a laser beam recorder. The deviation of track pitch was 44 nm(p-p). We also confirmed the high density recording with a capacity reaching 30 GB.

  11. Electron Density Measurements in the National Spherical Torus Experiment Detached Divertor Region Using Stark Broadening of Deuterium Infrared Paschen Emission Lines

    SciTech Connect

    Soukhanovskii, V A; Johnson, D W; Kaita, R; Roquemore, A L

    2007-04-27

    Spatially resolved measurements of deuterium Balmer and Paschen line emission have been performed in the divertor region of the National Spherical Torus Experiment using a commercial 0.5 m Czerny-Turner spectrometer. While the Balmer emission lines, Balmer and Paschen continua in the ultraviolet and visible regions have been extensively used for tokamak divertor plasma temperature and density measurements, the diagnostic potential of infrared Paschen lines has been largely overlooked. We analyze Stark broadening of the lines corresponding to 2-n and 3-m transitions with principle quantum numbers n = 7-12 and m = 10-12 using recent Model Microfield Method calculations (C. Stehle and R. Hutcheon, Astron. Astrophys. Supl. Ser. 140, 93 (1999)). Densities in the range (5-50) x 10{sup 19} m{sup -3} are obtained in the recombining inner divertor plasma in 2-6 MW NBI H-mode discharges. The measured Paschen line profiles show good sensitivity to Stark effects, and low sensitivity to instrumental and Doppler broadening. The lines are situated in the near-infrared wavelength domain, where optical signal extraction schemes for harsh nuclear environments are practically realizable, and where a recombining divertor plasma is optically thin. These properties make them an attractive recombining divertor density diagnostic for a burning plasma experiment.

  12. Electron temperature and density relationships in coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Hammond, C. M.; Phillips, J. L.; Balogh, A.

    1995-01-01

    We examine 10 coronal mass ejections from the in-ecliptic portion of the Ulysses mission. Five of these CMEs are magnetic clouds. In each case we observe an inverse relationship between electron temperature and density. For protons this relationship is less clear. Earlier work has shown a similar inverse relationship for electrons inside magnetic clouds and interpreted it to mean that the polytropic index governing the expansion of electrons is less than unity. This requires electrons to be heated as the CME expands. We offer an alternative view that the inverse relationship between electron temperature and density is caused by more rapid cooling of the denser plasma through collisions. More rapid cooling of denser plasma has been shown for 1 AU measurements in the solar wind. As evidence for this hypothesis we show that the denser plasma inside the CMEs tends to be more isotropic indicating a different history of collisions for the dense plasma. Thus, although the electron temperature inside CMEs consistently shows an inverse correlation with the density, this is not an indication of the polytropic index of the plasma but instead supports the idea of collisional modification of the electrons during their transit from the sun.

  13. Electron temperature and density relationships in coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Hammond, C. M.; Phillips, J. L.; Balogh, A.

    1995-01-01

    We examine 10 coronal mass ejections from the in-ecliptic portion of the Ulysses mission. Five of these CMEs are magnetic clouds. In each case we observe an inverse relationship between electron temperature and density. For protons this relationship is less clear. Earlier work has shown a similar inverse relationship for electrons inside magnetic clouds and interpreted it to mean that the polytropic index governing the expansion of electrons is less than unity. This requires electrons to be heated as the CME expands. We offer an alternative view that the inverse relationship between electron temperature and density is caused by more rapid cooling of the denser plasma through collisions. More rapid cooling of denser plasma has been shown for 1 AU measurements in the solar wind. As evidence for this hypothesis we show that the denser plasma inside the CMEs tends to be more isotropic indicating a different history of collisions for the dense plasma. Thus, although the electron temperature inside CMEs consistently shows an inverse correlation with the density, this is not an indication of the polytropic index of the plasma but instead supports the idea of collisional modification of the electrons during their transit from the sun.

  14. Interconnections between atomic-electron density and electron-momentum density: Leading and tail corrections

    NASA Astrophysics Data System (ADS)

    Gadre, Shridhar R.; Chakravorty, Subhas J.

    1986-02-01

    The Burkhardt-Konya-Coulson-March (BKCM) procedure developed by Gadre and Pathak for direct and reverse transformations between atomic-electron density and electron-momentum density has been modified. The modification is based on a work by Allan and March suggesting the use of a square of the Fourier transform of √ρ(r) for obtaining electron-momentum density at small as well as large p values. The new procedure [grafted-BKCM (G-BKCM)] involves an amalgamation of these procedures: the Allan-March procedure being grafted onto the BKCM method for low and high p values. The G-BKCM method has been tested out in direct as well as reverse directions and is seen to lead to extremely good estimates of atomic properties in the conjugate space.

  15. Experimental charge density from electron microscopic maps.

    PubMed

    Wang, Jimin

    2017-08-01

    The charge density (CD) distribution of an atom is the difference per unit volume between the positive charge of its nucleus and the distribution of the negative charges carried by the electrons that are associated with it. The CDs of the atoms in macromolecules are responsible for their electrostatic potential (ESP) distributions, which can now be visualized using cryo-electron microscopy at high resolution. CD maps can be recovered from experimental ESP density maps using the negative Laplacian operation. CD maps are easier to interpret than ESP maps because they are less sensitive to long-range electrostatic effects. An ESP-to-CD conversion involves multiplication of amplitudes of structure factors as Fourier transforms of these maps in reciprocal space by 1/d(2) , where d is the resolution of reflections. In principle, it should be possible to determine the charges carried by the individual atoms in macromolecules by comparing experimental CD maps with experimental ESP maps. © 2017 The Protein Society.

  16. Electron density and plasma dynamics of a colliding plasma experiment

    SciTech Connect

    Wiechula, J. Schönlein, A.; Iberler, M.; Hock, C.; Manegold, T.; Bohlender, B.; Jacoby, J.

    2016-07-15

    We present experimental results of two head-on colliding plasma sheaths accelerated by pulsed-power-driven coaxial plasma accelerators. The measurements have been performed in a small vacuum chamber with a neutral-gas prefill of ArH{sub 2} at gas pressures between 17 Pa and 400 Pa and load voltages between 4 kV and 9 kV. As the plasma sheaths collide, the electron density is significantly increased. The electron density reaches maximum values of ≈8 ⋅ 10{sup 15} cm{sup −3} for a single accelerated plasma and a maximum value of ≈2.6 ⋅ 10{sup 16} cm{sup −3} for the plasma collision. Overall a raise of the plasma density by a factor of 1.3 to 3.8 has been achieved. A scaling behavior has been derived from the values of the electron density which shows a disproportionately high increase of the electron density of the collisional case for higher applied voltages in comparison to a single accelerated plasma. Sequences of the plasma collision have been taken, using a fast framing camera to study the plasma dynamics. These sequences indicate a maximum collision velocity of 34 km/s.

  17. Comparative analysis of atmospheric and ionospheric variability by measurements of temperature in the mesopause region and peak electron density NmF2

    NASA Astrophysics Data System (ADS)

    Medvedeva, I. V.; Ratovsky, K. G.

    2017-03-01

    The results of studying the atmospheric and ionospheric variability in the region of Eastern Siberia are presented. The analysis involved data on the atmosphere temperature at mesopause heights ( Tm) and vertical sounding data on the peak electron density ( NmF2). The data on temperature were obtained by spectrometric observations of the hydroxyl molecule emission (band OH (6-2), 834.0 nm, maximum emission height 87 km). The analysis covers the period from 2008 to 2015. Seasonal and year-to-year variations in the variability of Tm and NmF2 were studied and compared in different time periods: day-to-day variations ( T > 24 h), tidal variations (8 h ≤ T ≤ 24 h), and variations with periods of internal gravity waves ( T < 8 h). Both common features and distinctions in the behavior of the analyzed parameters have been found, and their possible physical causes are analyzed.

  18. Covariance and correlation estimation in electron-density maps.

    PubMed

    Altomare, Angela; Cuocci, Corrado; Giacovazzo, Carmelo; Moliterni, Anna; Rizzi, Rosanna

    2012-03-01

    Quite recently two papers have been published [Giacovazzo & Mazzone (2011). Acta Cryst. A67, 210-218; Giacovazzo et al. (2011). Acta Cryst. A67, 368-382] which calculate the variance in any point of an electron-density map at any stage of the phasing process. The main aim of the papers was to associate a standard deviation to each pixel of the map, in order to obtain a better estimate of the map reliability. This paper deals with the covariance estimate between points of an electron-density map in any space group, centrosymmetric or non-centrosymmetric, no matter the correlation between the model and target structures. The aim is as follows: to verify if the electron density in one point of the map is amplified or depressed as an effect of the electron density in one or more other points of the map. High values of the covariances are usually connected with undesired features of the map. The phases are the primitive random variables of our probabilistic model; the covariance changes with the quality of the model and therefore with the quality of the phases. The conclusive formulas show that the covariance is also influenced by the Patterson map. Uncertainty on measurements may influence the covariance, particularly in the final stages of the structure refinement; a general formula is obtained taking into account both phase and measurement uncertainty, valid at any stage of the crystal structure solution.

  19. Electron momentum spectroscopy study of amantadine: binding energy spectra and valence orbital electron density distributions

    NASA Astrophysics Data System (ADS)

    Litvinyuk, I. V.; Zheng, Y.; Brion, C. E.

    2000-11-01

    The electron binding energy spectrum and valence orbital electron momentum density distributions of amantadine (1-aminoadamantane), an important anti-viral and anti-Parkinsonian drug, have been measured by electron momentum spectroscopy. Theoretical momentum distributions, calculated at the 6-311++G** and AUG-CC-PVTZ levels within the target Hartree-Fock and also the target Kohn-Sham density functional theory approximations, show good agreement with the experimental results. The results for amantadine are also compared with those for the parent molecule, adamantane, reported earlier (Chem. Phys. 253 (2000) 41). Based on the comparison tentative assignments of the valence region ionization bands of amantadine have been made.

  20. Density-dependent electron transport and precise modeling of GaN high electron mobility transistors

    SciTech Connect

    Bajaj, Sanyam Shoron, Omor F.; Park, Pil Sung; Krishnamoorthy, Sriram; Akyol, Fatih; Hung, Ting-Hsiang; Reza, Shahed; Chumbes, Eduardo M.; Khurgin, Jacob; Rajan, Siddharth

    2015-10-12

    We report on the direct measurement of two-dimensional sheet charge density dependence of electron transport in AlGaN/GaN high electron mobility transistors (HEMTs). Pulsed IV measurements established increasing electron velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 10{sup 7 }cm/s at a low sheet charge density of 7.8 × 10{sup 11 }cm{sup −2}. An optical phonon emission-based electron velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the electron velocity with strong electron-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity shows that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs.

  1. Superthermal electron distribution measurements from polarized electron cyclotron emission

    SciTech Connect

    Luce, T.C.; Efthimion, P.C.; Fisch, N.J.

    1988-06-01

    Measurements of the superthermal electron distribution can be made by observing the polarized electron cyclotron emission. The emission is viewed along a constant magnetic field surface. This simplifies the resonance condition and gives a direct correlation between emission frequency and kinetic energy of the emitting electron. A transformation technique is formulated which determines the anisotropy of the distribution and number density of superthermals at each energy measured. The steady-state distribution during lower hybrid current drive and examples of the superthermal dynamics as the runaway conditions is varied are presented for discharges in the PLT tokamak. 15 refs., 8 figs.

  2. Total electron content and F-region electron density distribution near the magnetic equator in India

    NASA Technical Reports Server (NTRS)

    Rastogi, R. G.; Sethia, G.; Chandra, H.; Deshpande, M. R.; Davies, K.; Murthy, B. S.

    1979-01-01

    Total electron content derived from the group delay measurements of ATS-6 radio beacons received at Ootacamund (India) are compared with the electron-density vs height distributions derived from the ionosonde data of the nearby station Kodaikanal. The daily variation of equivalent vertical total electron content does not show the midday bite out which is so prominently present in the corresponding daily variation of the maximum F-region electron density. The topside electron content continues to increase from sunrise to a maximum value around 1500 LT, while the bottomside electron content reaches a maximum value around 0500 LT. Daily variations of these as well as other parameters, e.g. the vertical slab thickness, the bottomside semi-thickness, the height of the F2 peak have been also studied for a geomagnetically quiet and a disturbed day.

  3. Implementation of a multichannel soft x-ray diagnostic for electron temperature measurements in TJ-II high-density plasmas

    SciTech Connect

    Baiao, D.; Varandas, C.; Molinero, A.; Chercoles, J.

    2012-10-15

    Based on the multi-foil technique, a multichannel soft x-ray diagnostic for electron temperature measurements has been recently implemented in the TJ-II stellarator. The diagnostic system is composed by four photodiodes arrays with beryllium filters of different thickness. An in-vacuum amplifier board is coupled to each array, aiming at preventing induced noise currents. The Thomson scattering and the vacuum ultraviolet survey diagnostics are used for assessing plasma profiles and composition, being the analysis carried out with the radiation code IONEQ. The electron temperature is determined through the different signal-pair ratios with temporal and spatial resolution. The design and preliminary results from the diagnostic are presented.

  4. Electron density irregularities observed on DE-2

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.; Curtis, S. A.; Brace, L. H.

    1986-01-01

    Observations of electron density irregularities have been made with the Langmuir probe (LANG) on DE-2. The DE-2 LANG data were examined for irregularities with scale sizes of 30 to 170 km. Such irregularities were found at all longitudes in the polar cap and auroral oval with stronger fluctuations in the oval. Night time equatorial passes having local times near 1900 or 2400 LT and occurring in an 80 day wide band about equinox were examined for irregularity occurrence. A definite longitude pattern was found in the data from several hundred orbits which showed an eastward shift at later local times. The equatorial irregularity occurrence pattern found in the LANG data is consistent with earlier in situ and remote observations of irregularities and spread F. In fact, the combined data set was found to closely follow the season-longitude pattern determined by the condition of solar terminator alignment with magnetic field lines. Tsunoda (1985) first showed this correlation with scintillation data.

  5. Exploring the temporally resolved electron density evolution in extreme ultra-violet induced plasmas

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Beckers, J.; Nijdam, S.; Kroesen, G. M. W.

    2014-07-01

    We measured the electron density in an extreme ultra-violet (EUV) induced plasma. This is achieved in a low-pressure argon plasma by using a method called microwave cavity resonance spectroscopy. The measured electron density just after the EUV pulse is 2.6 × 1016 m-3. This is in good agreement with a theoretical prediction from photo-ionization, which yields a density of 4.5 × 1016 m-3. After the EUV pulse the density slightly increases due to electron impact ionization. The plasma (i.e. electron density) decays in tens of microseconds.

  6. Modeling Ionosphere Environments: Creating an ISS Electron Density Tool

    NASA Technical Reports Server (NTRS)

    Gurgew, Danielle N.; Minow, Joseph I.

    2011-01-01

    The International Space Station (ISS) maintains an altitude typically between 300 km and 400 km in low Earth orbit (LEO) which itself is situated in the Earth's ionosphere. The ionosphere is a region of partially ionized gas (plasma) formed by the photoionization of neutral atoms and molecules in the upper atmosphere of Earth. It is important to understand what electron density the spacecraft is/will be operating in because the ionized gas along the ISS orbit interacts with the electrical power system resulting in charging of the vehicle. One instrument that is already operational onboard the ISS with a goal of monitoring electron density, electron temperature, and ISS floating potential is the Floating Potential Measurement Unit (FPMU). Although this tool is a valuable addition to the ISS, there are limitations concerning the data collection periods. The FPMU uses the Ku band communication frequency to transmit data from orbit. Use of this band for FPMU data runs is often terminated due to necessary observation of higher priority Extravehicular Activities (EVAs) and other operations on ISS. Thus, large gaps are present in FPMU data. The purpose of this study is to solve the issue of missing environmental data by implementing a secondary electron density data source, derived from the COSMIC satellite constellation, to create a model of ISS orbital environments. Extrapolating data specific to ISS orbital altitudes, we model the ionospheric electron density along the ISS orbit track to supply a set of data when the FPMU is unavailable. This computer model also provides an additional new source of electron density data that is used to confirm FPMU is operating correctly and supplements the original environmental data taken by FPMU.

  7. Silicon surface barrier detectors used for liquid hydrogen density measurement

    NASA Technical Reports Server (NTRS)

    James, D. T.; Milam, J. K.; Winslett, H. B.

    1968-01-01

    Multichannel system employing a radioisotope radiation source, strontium-90, radiation detector, and a silicon surface barrier detector, measures the local density of liquid hydrogen at various levels in a storage tank. The instrument contains electronic equipment for collecting the density information, and a data handling system for processing this information.

  8. Bottomside Ionospheric Electron Density Specification using Passive High Frequency Signals

    NASA Astrophysics Data System (ADS)

    Kaeppler, S. R.; Cosgrove, R. B.; Mackay, C.; Varney, R. H.; Kendall, E. A.; Nicolls, M. J.

    2016-12-01

    The vertical bottomside electron density profile is influenced by a variety of natural sources, most especially traveling ionospheric disturbances (TIDs). These disturbances cause plasma to be moved up or down along the local geomagnetic field and can strongly impact the propagation of high frequency radio waves. While the basic physics of these perturbations has been well studied, practical bottomside models are not well developed. We present initial results from an assimilative bottomside ionosphere model. This model uses empirical orthogonal functions based on the International Reference Ionosphere (IRI) to develop a vertical electron density profile, and features a builtin HF ray tracing function. This parameterized model is then perturbed to model electron density perturbations associated with TIDs or ionospheric gradients. Using the ray tracing feature, the model assimilates angle of arrival measurements from passive HF transmitters. We demonstrate the effectiveness of the model using angle of arrival data. Modeling results of bottomside electron density specification are compared against suitable ancillary observations to quantify accuracy of our model.

  9. Electron Density Determination, Bonding and Properties of Tetragonal Ferromagnetic Intermetallics

    SciTech Connect

    Wiezorek, Jorg

    2016-09-01

    The project developed quantitative convergent-beam electron diffraction (QCBED) methods by energy-filtered transmission electron microscopy (EFTEM) and used them in combination with density functional theory (DFT) calculations to study the electron density distribution in metallic and intermetallic phases with different cubic and non-cubic crystal structures that comprise elements with d-electron shells. The experimental methods developed here focus on the bonding charge distribution as one of the quantum mechanical characteristics central for understanding of intrinsic properties and validation of DFT calculations. Multiple structure and temperature factors have been measured simultaneously from nano-scale volumes of high-quality crystal with sufficient accuracy and precision for comparison with electron density distribution calculations by DFT. The often anisotropic temperature factors for the different atoms and atom sites in chemically ordered phases can differ significantly from those known for relevant pure element crystals due to bonding effects. Thus they have been measured from the same crystal volumes from which the structure factors have been determined. The ferromagnetic ordered intermetallic phases FePd and FePt are selected as model systems for 3d-4d and 3d-5d electron interactions, while the intermetallic phases NiAl and TiAl are used to probe 3d-3p electron interactions. Additionally, pure transition metal elements with d-electrons have been studied. FCC metals exhibit well defined delocalized bonding charge in tetrahedral sites, while less directional, more distributed bonding charge attains in BCC metals. Agreement between DFT calculated and QCBED results degrades as d-electron levels fill in the elements, and for intermetallics as d-d interactions become prominent over p-d interactions. Utilizing the LDA+U approach enabled inclusion of onsite Coulomb-repulsion effects in DFT calculations, which can afford improved agreements with QCBED results

  10. Time and space resolved measurement of the electron temperature, mass density and ionization state in the ablation plasma between two exploding Al wiresa)

    NASA Astrophysics Data System (ADS)

    Knapp, P. F.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Hansen, S. B.

    2012-05-01

    We have determined the properties of plasma around and between two exploding wires using high-resolution x-ray absorption spectroscopy. Plasma densities and temperatures ranging from ≳0.1g/cm3 and a few eV to less than 0.01 g/cm3 and 30 eV have been measured in experiments at Cornell University with two 40 μm aluminum (Al) wires spaced 1 mm apart driven by ˜150 kA peak current pulses with 100 ns rise time. The wire plasma was backlit by the 1.4-1.6 keV continuum radiation produced by a Mo wire X-pinch. The spectrometer employed two spherically bent quartz crystals to record the absorption and backlighter spectra simultaneously. The transition between the dense Al wire core and the coronal plasma is seen as a transition from cold K-edge absorption to Mg-, Na-, and finally Ne-like absorption at the boundary. In the plasma that accumulates between the wires, ionization states up to C-Like Al are observed. The spectrometer geometry and ˜2μm X-pinch source size provide 0.3 eV spectral resolution and 20 μm spatial resolution enabling us to see 1s → 2p satellite transitions as separate lines as well as O-, F-, and Ne-like 1s → 3p transitions that have not been seen before. A step wedge was used to calibrate the transmission, enabling density to be measured within a factor of two and temperature to be measured within ±25%. A genetic algorithm was developed to fit synthetic spectra calculated using the collisional-radiative code SCRAM to the experimental spectra. In order to obtain agreement it was necessary to assume multiple plasma regions with variable thicknesses, thereby allowing the inferred plasma conditions to vary along the absorption path.

  11. A novel electron density reconstruction method for asymmetrical toroidal plasmas

    SciTech Connect

    Shi, N.; Ohshima, S.; Minami, T.; Nagasaki, K.; Yamamoto, S.; Mizuuchi, T.; Okada, H.; Kado, S.; Kobayashi, S.; Konoshima, S.; Sano, F.; Tanaka, K.; Ohtani, Y.; Zang, L.; Kenmochi, N.

    2014-05-15

    A novel reconstruction method is developed for acquiring the electron density profile from multi-channel interferometric measurements of strongly asymmetrical toroidal plasmas. It is based on a regularization technique, and a generalized cross-validation function is used to optimize the regularization parameter with the aid of singular value decomposition. The feasibility of method could be testified by simulated measurements based on a magnetic configuration of the flexible helical-axis heliotron device, Heliotron J, which has an asymmetrical poloidal cross section. And the successful reconstruction makes possible to construct a multi-channel Far-infrared laser interferometry on this device. The advantages of this method are demonstrated by comparison with a conventional method. The factors which may affect the accuracy of the results are investigated, and an error analysis is carried out. Based on the obtained results, the proposed method is highly promising for accurately reconstructing the electron density in the asymmetrical toroidal plasma.

  12. Wireless Sensor Node for Surface Seawater Density Measurements

    PubMed Central

    Baronti, Federico; Fantechi, Gabriele; Roncella, Roberto; Saletti, Roberto

    2012-01-01

    An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes’ law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings. PMID:22736986

  13. Wireless sensor node for surface seawater density measurements.

    PubMed

    Baronti, Federico; Fantechi, Gabriele; Roncella, Roberto; Saletti, Roberto

    2012-01-01

    An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes' law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings.

  14. Imaginary time density-density correlations for two-dimensional electron gases at high density

    SciTech Connect

    Motta, M.; Galli, D. E.; Moroni, S.; Vitali, E.

    2015-10-28

    We evaluate imaginary time density-density correlation functions for two-dimensional homogeneous electron gases of up to 42 particles in the continuum using the phaseless auxiliary field quantum Monte Carlo method. We use periodic boundary conditions and up to 300 plane waves as basis set elements. We show that such methodology, once equipped with suitable numerical stabilization techniques necessary to deal with exponentials, products, and inversions of large matrices, gives access to the calculation of imaginary time correlation functions for medium-sized systems. We discuss the numerical stabilization techniques and the computational complexity of the methodology and we present the limitations related to the size of the systems on a quantitative basis. We perform the inverse Laplace transform of the obtained density-density correlation functions, assessing the ability of the phaseless auxiliary field quantum Monte Carlo method to evaluate dynamical properties of medium-sized homogeneous fermion systems.

  15. Communication: Investigation of the electron momentum density distribution of nanodiamonds by electron energy-loss spectroscopy

    SciTech Connect

    Feng, Zhenbao; Yang, Bing; Lin, Yangming; Su, Dangsheng

    2015-12-07

    The electron momentum distribution of detonation nanodiamonds (DND) was investigated by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope (TEM), which is known as electron Compton scattering from solid (ECOSS). Compton profile of diamond film obtained by ECOSS was found in good agreement with prior photon experimental measurement and theoretical calculation that for bulk diamond. Compared to the diamond film, the valence Compton profile of DND was found to be narrower, which indicates a more delocalization of the ground-state charge density for the latter. Combining with other TEM characterizations such as high-resolution transmission electron spectroscopy, diffraction, and energy dispersive X-ray spectroscopy measurements, ECOSS was shown to be a great potential technique to study ground-state electronic properties of nanomaterials.

  16. Evidence for a continuous, power law, electron density irregularity spectrum

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.

    1972-01-01

    The spectral form of the irregularities in electron density that cause interplanetary scintillation (IPS) of small angular diameter radio sources is discussed. The intensity scintillation technique always yields an irregularity scale size, which is of the order of the first Fresnel zone for the wavelength at which the observations are taken. This includes not only the radio wavelength measurements of the structure of the interplanetary medium, but also radio wavelength measurements of the irregularity structure of the ionosphere and interstellar medium, and optical wavelength measurements of the irregularity structure of the atmosphere.

  17. [Measurements of Ar(I) excitation temperatures and electron number densities in an ICP with and without the presence of Freon 12--the development of ICP technology for hazardous waste management].

    PubMed

    Chen, D; Wang, X; Chen, W; Yang, P; Lee, F S

    1998-06-01

    For the management of refractory hazardous wastes, an innovative technology emerging recently is the application of ultra high temperature plasma. The preliminary study on destruction of Freon 12 by ICP (1-2kW) under a joint program between Xiamen Univ. and Hong Kong Baptist Univ. showed that the ICP technology indeed holds a great potential for hazardous wastes management. The destruction efficiency is more than 99.9999%. With and without the presence of Freon 12, Ar(I) excitation temperatures were measured by Boltzmann plot method and electron number densities the by H (beta) line broadening method. It was found that above the load coil, the excitation temperatures and electron number densities decrease with increasing the amount of Freon 12 presented in the central channel of the ICP, but inside the load coil region, the excitation temperatures are affected little by Freon 12. The conclusion of thermal pinch could be expected from this phenomenon.

  18. Existence of time-dependent density-functional theory for open electronic systems: time-dependent holographic electron density theorem.

    PubMed

    Zheng, Xiao; Yam, ChiYung; Wang, Fan; Chen, GuanHua

    2011-08-28

    We present the time-dependent holographic electron density theorem (TD-HEDT), which lays the foundation of time-dependent density-functional theory (TDDFT) for open electronic systems. For any finite electronic system, the TD-HEDT formally establishes a one-to-one correspondence between the electron density inside any finite subsystem and the time-dependent external potential. As a result, any electronic property of an open system in principle can be determined uniquely by the electron density function inside the open region. Implications of the TD-HEDT on the practicality of TDDFT are also discussed.

  19. Measuring electron beam polarization

    NASA Astrophysics Data System (ADS)

    Napolitano, J.

    1992-12-01

    A two-hour discussion session was held on electron beam polarimetry including representatives from Halls A, B, and C. Presentations included a description of an existing Mo/ller polarimeter at the MIT-Bates laboratory, plans for Mo/ller polarimeters in Halls A and B, and a Compton (i.e., ``laser backscatter'') polarimeter planned for Hall A. This paper is a summary of those discussions.

  20. Time and space resolved measurement of the electron temperature, mass density and ionization state in the ablation plasma between two exploding Al wires

    SciTech Connect

    Knapp, P. F.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Hansen, S. B.

    2012-05-15

    We have determined the properties of plasma around and between two exploding wires using high-resolution x-ray absorption spectroscopy. Plasma densities and temperatures ranging from Greater-Than-Or-Equivalent-To 0.1g/cm{sup 3} and a few eV to less than 0.01 g/cm{sup 3} and 30 eV have been measured in experiments at Cornell University with two 40 {mu}m aluminum (Al) wires spaced 1 mm apart driven by {approx}150 kA peak current pulses with 100 ns rise time. The wire plasma was backlit by the 1.4-1.6 keV continuum radiation produced by a Mo wire X-pinch. The spectrometer employed two spherically bent quartz crystals to record the absorption and backlighter spectra simultaneously. The transition between the dense Al wire core and the coronal plasma is seen as a transition from cold K-edge absorption to Mg-, Na-, and finally Ne-like absorption at the boundary. In the plasma that accumulates between the wires, ionization states up to C-Like Al are observed. The spectrometer geometry and {approx}2{mu}m X-pinch source size provide 0.3 eV spectral resolution and 20 {mu}m spatial resolution enabling us to see 1s{yields} 2p satellite transitions as separate lines as well as O-, F-, and Ne-like 1s{yields} 3p transitions that have not been seen before. A step wedge was used to calibrate the transmission, enabling density to be measured within a factor of two and temperature to be measured within {+-}25%. A genetic algorithm was developed to fit synthetic spectra calculated using the collisional-radiative code SCRAM to the experimental spectra. In order to obtain agreement it was necessary to assume multiple plasma regions with variable thicknesses, thereby allowing the inferred plasma conditions to vary along the absorption path.

  1. Mammographic density estimation with automated volumetric breast density measurement.

    PubMed

    Ko, Su Yeon; Kim, Eun-Kyung; Kim, Min Jung; Moon, Hee Jung

    2014-01-01

    To compare automated volumetric breast density measurement (VBDM) with radiologists' evaluations based on the Breast Imaging Reporting and Data System (BI-RADS), and to identify the factors associated with technical failure of VBDM. In this study, 1129 women aged 19-82 years who underwent mammography from December 2011 to January 2012 were included. Breast density evaluations by radiologists based on BI-RADS and by VBDM (Volpara Version 1.5.1) were compared. The agreement in interpreting breast density between radiologists and VBDM was determined based on four density grades (D1, D2, D3, and D4) and a binary classification of fatty (D1-2) vs. dense (D3-4) breast using kappa statistics. The association between technical failure of VBDM and patient age, total breast volume, fibroglandular tissue volume, history of partial mastectomy, the frequency of mass > 3 cm, and breast density was analyzed. The agreement between breast density evaluations by radiologists and VBDM was fair (k value = 0.26) when the four density grades (D1/D2/D3/D4) were used and moderate (k value = 0.47) for the binary classification (D1-2/D3-4). Twenty-seven women (2.4%) showed failure of VBDM. Small total breast volume, history of partial mastectomy, and high breast density were significantly associated with technical failure of VBDM (p = 0.001 to 0.015). There is fair or moderate agreement in breast density evaluation between radiologists and VBDM. Technical failure of VBDM may be related to small total breast volume, a history of partial mastectomy, and high breast density.

  2. Weather Effects on the D-region Electron Density

    NASA Astrophysics Data System (ADS)

    Eccles, V.; Rice, D.; Sojka, J. J.; Hunsucker, R. D.; Raitt, W. J.

    2009-05-01

    Studies of D-region ionization are complicated by the low electron densities and the altitude range involved. The D-region bottom-side densities are less than 100 cm-3 and the D-region altitudes are inaccessible to most in-situ measurements. Available methods, such as sounding rockets and incoherent scatter radar, can provide detailed profiles for specific times and locations, but mesoscale characterization of D-region weather effects is difficult to obtain. Specifically the horizontal structuring of these densities and to which drivers they are most sensitive is unclear. The response of the D-region to solar inputs, background radiation sources, and wind transport from high latitudes needs to be better understood to improve both our understanding and modeling efforts. The Agile beacon monitor network measures signal strength from radio beacons from three important frequency ranges. The measurements in three frequency ranges, VLF (3-30kHz), LF (30-300 kHz), and HF (0.3-30 MHz), cooperatively help define the D region more precisely. The daytime D-region is perhaps best known for absorption of frequencies below 30 MHz. Measurements of radio signal absorption are useful in describing the D-region response to solar flares and the winter absorption anomaly. Description of the D- region bottom-side and nighttime D-region density requires a different methodology. VLF and LF propagation analysis is sensitive to densities in the 0.1 to 10 cm-3 range. Networks of receivers over these frequency ranges provide an approach for observing the horizontal spatial distribution of the lower D-region density. The D-region electron densities may be inferred by interpreting signal levels at VLF, LF, and HF using D-region models and propagation analysis. This paper describes how the model electron density profiles are modified to include weather effects. Variations are observed in day and night data even during the quietest solar conditions; some variations are consistent with

  3. Electron density power spectrum in the local interstellar medium

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Rickett, B. J.; Spangler, S. R.

    1995-01-01

    Interstellar scintillation (ISS), fluctuations in the amplitude and phase of radio waves caused by scattering in the interstellar medium, is important as a diagnostic of interstellar plasma turbulence. ISS is also of interest because it is noise for other radio astronomical observations. The unifying concern is the power spectrum of the interstellar electron density. Here we use ISS observations through the nearby (less than or approximately =1 kpc) (ISM) to estimate the spectrum. From measurements of angular broadening of pulsars and extragalactic sources, decorrelation bandwidth of pulsars, refractive steering of features in pulsar dynamic spectra, dispersion measured fluctuations of pulsars, and refractive scintillation index measurements, we construct a composite structure function that is approximately power law over 2 x 10(exp 6) m less than scale less than 10(exp 13) m. The data are consistent with the structure function having a logarithmic slope versus baseline less than 2; thus there is a meaningful connection between scales in the radiowave fluctuation field and the scales in the electron density field causing the scattering. The data give an upper limit to the inner scale, l(sub o) less than or approximately 10(exp 8) m and are consistent with much smaller values. We construct a composite electron density spectrum that is approximately power law over at least the approximately = 5 decade wavenumber range 10(exp -13)/m less than wavenumber less than 10(exp -8)/m and that may extend to higher wavenumbers. The average spectral index of electron density over this wavenumber range is approximately = 3.7, very close to the value expected for a Kolmogorov process. The outer scale size, L(sub o), must be greater than or approximately = 10(exp 13) m (determined from dispersion measure fluctuations). When the ISS data are combined with measurements of differential Faraday rotation angle, and gradients in the average electron density, constraints can be put on the

  4. Electron density power spectrum in the local interstellar medium

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Rickett, B. J.; Spangler, S. R.

    1995-01-01

    Interstellar scintillation (ISS), fluctuations in the amplitude and phase of radio waves caused by scattering in the interstellar medium, is important as a diagnostic of interstellar plasma turbulence. ISS is also of interest because it is noise for other radio astronomical observations. The unifying concern is the power spectrum of the interstellar electron density. Here we use ISS observations through the nearby (less than or approximately =1 kpc) (ISM) to estimate the spectrum. From measurements of angular broadening of pulsars and extragalactic sources, decorrelation bandwidth of pulsars, refractive steering of features in pulsar dynamic spectra, dispersion measured fluctuations of pulsars, and refractive scintillation index measurements, we construct a composite structure function that is approximately power law over 2 x 10(exp 6) m less than scale less than 10(exp 13) m. The data are consistent with the structure function having a logarithmic slope versus baseline less than 2; thus there is a meaningful connection between scales in the radiowave fluctuation field and the scales in the electron density field causing the scattering. The data give an upper limit to the inner scale, l(sub o) less than or approximately 10(exp 8) m and are consistent with much smaller values. We construct a composite electron density spectrum that is approximately power law over at least the approximately = 5 decade wavenumber range 10(exp -13)/m less than wavenumber less than 10(exp -8)/m and that may extend to higher wavenumbers. The average spectral index of electron density over this wavenumber range is approximately = 3.7, very close to the value expected for a Kolmogorov process. The outer scale size, L(sub o), must be greater than or approximately = 10(exp 13) m (determined from dispersion measure fluctuations). When the ISS data are combined with measurements of differential Faraday rotation angle, and gradients in the average electron density, constraints can be put on the

  5. Synopsis of D- and E-region electron densities during the energy budget campaign

    NASA Technical Reports Server (NTRS)

    Friedrich, M.; Baker, K. D.; Brekke, A.; Dickinson, P. H. G.; Dumbs, A.; Grandal, B.; Thrane, E. V.; Smith, L. G.; Torkar, K. M.

    1982-01-01

    Electron density profiles from ground-based and rocket-borne measurements conducted at three sites in northern Scandinavia under various degrees of geophysical disturbances are presented. These data are checked against an instantaneous picture of the ionospheric absorption obtained via the dense riometer network. A map of the riometer absorption and measured electron densities over Scandinavia is given.

  6. Deriving large electron temperatures and small electron densities with the Cassini Langmuir probe at Saturn

    NASA Astrophysics Data System (ADS)

    Garnier, Philippe; Wahlund, Jan-Erik; Holmberg, Mika; Lewis, Geraint; Schippers, Patricia; Rochel Grimald, Sandrine; Gurnett, Donald; Coates, Andrew; Dandouras, Iannis; Waite, Hunter

    2014-05-01

    The Langmuir Probes (LPs) are commonly used to investigate the cold plasma characteristics in planetary ionospheres/magnetospheres. The LPs performances are limited to low temperatures (i.e. below 5-10 eV at Saturn) and large densities (above several particles/cm3). A strong sensitivity of the Cassini LP measurements to energetic electrons (hundreds eV) may however be observed at Saturn in the L Shell range L=6-10 RS. These electrons impact the surface of the probe and generate a detectable current of secondary electrons. We investigate the influence of such electrons on the current-voltage (I-V) characteristics (for negative potentials), and manage to reproduce the observations with a reasonable precision through empirical and theoretical methods. Conversely, the modelling allows us to derive useful information about the energetic electrons from the LP observations : some information about their pitch angle anisotropy (if combined with the data from a single CAPS ELS anode), as well as an estimate of the electron temperature (in the range 100-300 eV) and of the electron density (above 0.1 particles/cm3). This enlarges the LP measurements capabilities when the influence of the energetic electrons is large (essentially near L=6-10 RS at Saturn). We finally show that a significant influence of the energetic electrons (larger than the contribution of thermal ions) is also expected in various plasma environments of the Solar System, such as at Jupiter (i.e near Ganymede, Europa, Callisto and Io), or even at Earth (in the plasmasheet, the magnetosheath or in plasma cavities). Large electron temperatures and small electron densities could potentially be derived in these environments, which may be of interest for Langmuir Probes in the Earth magnetosphere or onboard the future JUICE mission at Jupiter.

  7. An Overview of Ionospheric Electron Density Variations over Istanbul

    NASA Astrophysics Data System (ADS)

    Kaymaz, Zerefsan; Türk Katircioglu, Filiz; Ceren Moral, Aysegul; Emine Ceren Kalafatoglu Eyiguler, R. A..; Zabotin, Nikolai

    2016-07-01

    This study will present the temporal variations in electron density measured in Istanbul (42, 29) using Dynasonde observations. Dynasonde is a type of ionosonde that can measure the dynamics of the ionosphere. Istanbul Dynasonde was established in October 2012 and collecting data since then. The NeXtYZ software have been used to convert ionospheric signals into ionospheric data. In this study, among 72 outputs of ionospheric parameters, electron density, and critical frequency for F2 layer, and TEC have been studied to reveal the ionospheric variations over Istanbul. Statistics for seasonal, monthly and daily variations were obtained by scanning thorough about two years of ionograms. Four types of temporal variability were determined depending on the season and the time of the day. Gravity waves were detected very clearly in the ionograms at this mid-latitude station. In addition, magnetic substorm signatures on the electron density are clearly noticeable and are seen both positive and negative phases. In this talk we will give an overview of the results based on the first two years of the Dynasonde operation in Istanbul.

  8. Relativistic Electron Beam Transport and Characteristics in Solid Density Plasmas

    SciTech Connect

    Snavely, R A; King, J; Freeman, R R; Hatchett, S; Key, M H; Koch, J; Langdon, A B; Lasinsky, B; MacKinnon, A; Wilks, S; Stephens, R

    2003-08-13

    The transport of intense relativistic beams in solid density plasma presently is actively being studied in laser laboratories around the world. The correct understanding of the transport enables further application of fast laser driven electrons to a host of interesting uses. Advanced x-ray sources, proton and ion beam generation and plasma heating in fast ignitor fusion all are owed their eventual utility to this transport. We report on measurements of relativistic transport over the whole of the transport region, via analysis of x-ray emission. Our experiments cover laser powers from Terawatt to Petawatt. Advances in transverse imaging of fluorescent k-alpha x-rays generated along the electron beam path are used to diagnose the electron emission. Additionally the spatial pattern of Bremsstrahlung x-rays provides clues into the physics of electron transport in above Alfven current limit beams. Issues regarding the electron distribution function will be discussed in light of possible electron transport anomalies. The initial experiments performed on the Nova Petawatt Laser System were those associated with determining the nature of the electrons and x-rays in this relativistic regime especially those useful for advanced radiography sources suitable for diagnostic use in dense high-Z dynamic processes or as the driver of a relativistic electron source in the Fast-Ignitor Inertial Confinement fusion concept. The development of very large arrays of thermoluminescent detectors is detailed along with their response. The characteristic pattern of x-rays and their intensity is found from detailed analysis of the TLD detector array data. Peak intensities as high as 2 Rads at 1 meter were measured with these shielded TLD arrays. An average energy yield of x-rays of 11 Joules indicates a very large fraction of 45-55% of the laser energy is absorbed into relativistic electrons. The pattern of x-ray distribution lends insight to the initial relativistic electron distribution

  9. Electron temperature and density probe for small aeronomy satellites

    SciTech Connect

    Oyama, K.-I.; Hsu, Y. W.; Jiang, G. S.; Chen, W. H.; Liu, W. T.; Cheng, C. Z.; Fang, H. K.

    2015-08-15

    A compact and low power consumption instrument for measuring the electron density and temperature in the ionosphere has been developed by modifying the previously developed Electron Temperature Probe (ETP). A circuit block which controls frequency of the sinusoidal signal is added to the ETP so that the instrument can measure both T{sub e} in low frequency mode and N{sub e} in high frequency mode from the floating potential shift of the electrode. The floating potential shift shows a minimum at the upper hybrid resonance frequency (f{sub UHR}). The instrument which is named “TeNeP” can be used for tiny satellites which do not have enough conductive surface area for conventional DC Langmuir probe measurements. The instrument also eliminates the serious problems associated with the contamination of satellite surface as well as the sensor electrode.

  10. Electron temperature and density probe for small aeronomy satellites.

    PubMed

    Oyama, K-I; Hsu, Y W; Jiang, G S; Chen, W H; Cheng, C Z; Fang, H K; Liu, W T

    2015-08-01

    A compact and low power consumption instrument for measuring the electron density and temperature in the ionosphere has been developed by modifying the previously developed Electron Temperature Probe (ETP). A circuit block which controls frequency of the sinusoidal signal is added to the ETP so that the instrument can measure both T(e) in low frequency mode and N(e) in high frequency mode from the floating potential shift of the electrode. The floating potential shift shows a minimum at the upper hybrid resonance frequency (f(UHR)). The instrument which is named "TeNeP" can be used for tiny satellites which do not have enough conductive surface area for conventional DC Langmuir probe measurements. The instrument also eliminates the serious problems associated with the contamination of satellite surface as well as the sensor electrode.

  11. Electron temperature and density probe for small aeronomy satellites

    NASA Astrophysics Data System (ADS)

    Oyama, K.-I.; Hsu, Y. W.; Jiang, G. S.; Chen, W. H.; Cheng, C. Z.; Fang, H. K.; Liu, W. T.

    2015-08-01

    A compact and low power consumption instrument for measuring the electron density and temperature in the ionosphere has been developed by modifying the previously developed Electron Temperature Probe (ETP). A circuit block which controls frequency of the sinusoidal signal is added to the ETP so that the instrument can measure both Te in low frequency mode and Ne in high frequency mode from the floating potential shift of the electrode. The floating potential shift shows a minimum at the upper hybrid resonance frequency (fUHR). The instrument which is named "TeNeP" can be used for tiny satellites which do not have enough conductive surface area for conventional DC Langmuir probe measurements. The instrument also eliminates the serious problems associated with the contamination of satellite surface as well as the sensor electrode.

  12. Measurements of Electron Temperature and Density Profiles of Plasmas Produced by Nike KrF Laser for Laser Plasma Instability (LPI) Research

    NASA Astrophysics Data System (ADS)

    Oh, Jaechul; Weaver, J. L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Karasik, M.; Chan, L.-Y.; Serlin, V.; Phillips, L.

    2012-10-01

    ExperimentsfootnotetextJ. Oh, et al, GO5.4, APS DPP (2010).^,footnotetextJ. L. Weaver, et al, GO5.3, APS DPP (2010). using Nike KrF laser observed LPI signatures from CH plasmas at the laser intensities above ˜1x10^15 W/cm^2. Knowing spatial profiles of temperature (Te) and density (ne) in the underdense coronal region (0 < n < nc/4) of the plasma is essential to understanding the LPI observation. However, numerical simulation was the only way to access the profiles for the previous experiments. In the current Nike LPI experiment, a side-on grid imaging refractometer (GIR)footnotetextR. S. Craxton, et al, Phys. Fluids B 5, 4419 (1993). is being deployed for measuring the underdense plasma profiles. The GIR will resolve Te and ne in space taking a 2D snapshot of probe laser (λ= 263 nm, δt = 10 psec) beamlets (50μm spacing) refracted by the plasma at a selected time during the laser illumination. Time-resolved spectrometers with an absolute-intensity-calibrated photodiode array and a streak camera will simultaneously monitor light emission from the plasma in spectral ranges relevant to Raman (SRS) and two plasmon decay (TDP) instabilities. The experimental study of effects of the plasma profiles on the LPI initiation will be presented.

  13. Driving Plasmaspheric Electron Density Simulations During Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    De Pascuale, S.; Kletzing, C.; Jordanova, V.; Goldstein, J.; Wygant, J. R.; Thaller, S. A.

    2015-12-01

    We test global convection electric field models driving plasmaspheric electron density simulations (RAM-CPL) during geomagnetic storms with in situ measurements provided by the Van Allen Probes (RBSP). RAM-CPL is the cold plasma component of the ring-current atmosphere interactions suite (RAM-SCB) and describes the evolution of plasma density in the magnetic equatorial plane near Earth. Geomagnetic events observed by the RBSP satellites in different magnetic local time (MLT) sectors enable a comparison of local asymmetries in the input electric field and output densities of these simulations. Using a fluid MHD approach, RAM-CPL reproduces core plasmaspheric densities (L<4) to less than 1 order of magnitude difference. Approximately 80% of plasmapause crossings, defined by a low-density threshold, are reproduced to within a mean radial difference of 0.6 L. RAM-CPL, in conjunction with a best-fit driver, can be used in other studies as an asset to predict density conditions in locations distant from RBSP orbits of interest.

  14. Probing Electron Dynamics with the Laplacian of the Momentum Density

    SciTech Connect

    Sukumar, N.; MacDougall, Preston J.; Levit, M. Creon

    2012-09-24

    This chapter in the above-titled monograph presents topological analysis of the Laplacian of the electron momentum density in organic molecules. It relates topological features in this distribution to chemical and physical properties, particularly aromaticity and electron transport.

  15. Interferometer for the measurement of plasma density

    DOEpatents

    Jacobson, Abram R.

    1980-01-01

    An interferometer which combines the advantages of a coupled cavity interferometer requiring alignment of only one light beam, and a quadrature interferometer which has the ability to track multi-fringe phase excursions unambiguously. The device utilizes a Bragg cell for generating a signal which is electronically analyzed to unambiguously determine phase modulation which is proportional to the path integral of the plasma density.

  16. Fast response densitometer for measuring liquid density

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Densitometer was developed which produces linear voltage proportional to changes in density of flowing liquid hydrogen. Unit has fast response time and good system stability, statistical variation, and thermal equilibrium. System accuracy is 2 percent of total density span. Basic design may be altered to include measurement of other flowing materials.

  17. A Direct Measurement of the Forward Shock Speed in Supernova Remnant 0509-67.5: Constraints on the Age, Ambient Density, Shock Compression Factor, and Electron-ion Temperature Equilibration

    NASA Astrophysics Data System (ADS)

    Hovey, Luke; Hughes, John P.; Eriksen, Kristoffer

    2015-08-01

    Two Hubble Space Telescope narrow-band Hα images separated in time by 1.03 years are used for a proper motion measurement of the forward shock of the LMC supernova remnant 0509-67.5, the only spectroscopically confirmed LMC remnant of Ia origin. We measure a global shock speed of 6500 ± 200 km s-1 and constrain the pre-shock neutral hydrogen density to be 0.084 ± 0.003 cm-3, for a typical mean number of Hα photons produced per neutral hydrogen atom entering the forward shock. Previously published broad Hα line widths from two locations on the rim and our corresponding shock speed measurements are consistent with Balmer shock models that do not include effects of cosmic-ray acceleration. For the northeastern rim location, we limit the post-shock electron temperature to 10% of the proton temperature by also using the broad-to-narrow flux ratio. Hydrodynamic simulations for different initial ejecta density profiles constrain the age and ambient medium density; for an exponential ejecta profile and initial explosion energy of 1.4 × 1051 erg, the remnant’s age is {310}-30+40 years. For all evolutionary models explored, the expansion parameter falls in the range of 0.41-0.73, indicating that the remnant is still firmly in the ejecta-dominated phase of its evolution. Our measured neutral hydrogen density of the ambient medium, combined with the shocked density obtained in Williams et al., disfavors forward shock compression factors greater than ˜7.

  18. Measuring track densities in lunar grains using image analysis

    NASA Technical Reports Server (NTRS)

    Blanford, G. E.; Mckay, D. S.; Bernhard, R. P.; Schulz, C. K.

    1994-01-01

    We have used digitized scanning electron micrographs and computer image analysis programs to measure track densities in lunar soil grains. Tracks were formed by highly ionizing solar energetic particles and cosmic rays. Back-scattered electron images produced suitable high contrast images for analysis. We used computer counting and measurement of area to obtain track densities. We found an excellent correlation with manual measurements for track densities below 1x10(exp 8) cm(exp -2). For track densities between 1x10(exp 8) to 1x10(exp 9) cm(exp -2) we found that a regression formula using the percentage area covered by tracks gave good agreement with manual measurements. Measurement of tract densities in lunar samples has been a very rewarding technique for measuring exposure ages and soil maturation processes. We have shown that we can reliably measure track densities in lunar grains using image analysis techniques. Automating track counting may allow application of this technique to important problems in regolith dynamics including the ratio of radiation exposure to reworking in various surface and core samples and in regolith breccias.

  19. Momentum-space properties from coordinate-space electron density

    SciTech Connect

    Harbola, Manoj K.; Zope, Rajendra R.; Kshirsagar, Anjali; Pathak, Rajeev K.

    2005-05-22

    Electron density and electron momentum density, while independently tractable experimentally, bear no direct connection without going through the many-electron wave function. However, invoking a variant of the constrained-search formulation of density-functional theory, we develop a general scheme (valid for arbitrary external potentials) yielding decent momentum-space properties, starting exclusively from the coordinate-space electron density. A numerical illustration of the scheme is provided for the closed-shell atomic systems He, Be, and Ne in their ground state and for 1s{sup 1} 2s{sup 1} singlet electronic excited state for helium by calculating the Compton profiles and the expectation values derived from given coordinate-space electron densities.

  20. Absolute density measurements in the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Rapp, M.; Gumbel, J.; Lübken, F.-J.

    2001-05-01

    In the last ten years a total of 25 sounding rockets employing ionization gauges have been launched at high latitudes ( ~ 70° N) to measure total atmospheric density and its small scale fluctuations in an altitude range between 70 and 110 km. While the determination of small scale fluctuations is unambiguous, the total density analysis has been complicated in the past by aerodynamical disturbances leading to densities inside the sensor which are enhanced compared to atmospheric values. Here, we present the results of both Monte Carlo simulations and wind tunnel measurements to quantify this aerodynamical effect. The comparison of the resulting ‘ram-factor’ profiles with empirically determined density ratios of ionization gauge measurements and falling sphere measurements provides excellent agreement. This demonstrates both the need, but also the possibility, to correct aerodynamical influences on measurements from sounding rockets. We have determined a total of 20 density profiles of the mesosphere-lower-thermosphere (MLT) region. Grouping these profiles according to season, a listing of mean density profiles is included in the paper. A comparison with density profiles taken from the reference atmospheres CIRA86 and MSIS90 results in differences of up to 40%. This reflects that current reference atmospheres are a significant potential error source for the determination of mixing ratios of, for example, trace gas constituents in the MLT region.

  1. Spacetime Average Density (SAD) cosmological measures

    NASA Astrophysics Data System (ADS)

    Page, Don N.

    2014-11-01

    The measure problem of cosmology is how to obtain normalized probabilities of observations from the quantum state of the universe. This is particularly a problem when eternal inflation leads to a universe of unbounded size so that there are apparently infinitely many realizations or occurrences of observations of each of many different kinds or types, making the ratios ambiguous. There is also the danger of domination by Boltzmann Brains. Here two new Spacetime Average Density (SAD) measures are proposed, Maximal Average Density (MAD) and Biased Average Density (BAD), for getting a finite number of observation occurrences by using properties of the Spacetime Average Density (SAD) of observation occurrences to restrict to finite regions of spacetimes that have a preferred beginning or bounce hypersurface. These measures avoid Boltzmann brain domination and appear to give results consistent with other observations that are problematic for other widely used measures, such as the observation of a positive cosmological constant.

  2. Spacetime Average Density (SAD) cosmological measures

    SciTech Connect

    Page, Don N.

    2014-11-01

    The measure problem of cosmology is how to obtain normalized probabilities of observations from the quantum state of the universe. This is particularly a problem when eternal inflation leads to a universe of unbounded size so that there are apparently infinitely many realizations or occurrences of observations of each of many different kinds or types, making the ratios ambiguous. There is also the danger of domination by Boltzmann Brains. Here two new Spacetime Average Density (SAD) measures are proposed, Maximal Average Density (MAD) and Biased Average Density (BAD), for getting a finite number of observation occurrences by using properties of the Spacetime Average Density (SAD) of observation occurrences to restrict to finite regions of spacetimes that have a preferred beginning or bounce hypersurface. These measures avoid Boltzmann brain domination and appear to give results consistent with other observations that are problematic for other widely used measures, such as the observation of a positive cosmological constant.

  3. Electronic and nuclear flux densities in the H2 molecule

    NASA Astrophysics Data System (ADS)

    Hermann, G.; Paulus, B.; Pérez-Torres, J. F.; Pohl, V.

    2014-05-01

    We present a theoretical study of the electronic and nuclear flux densities of a vibrating H2 molecule after an electronic excitation by a short femtosecond laser pulse. The final state, a coherent superposition of the electronic ground state X1Σg+ and the electronic excited state B1Σu+, evolves freely and permits the partition of the electronic flux density into two competing fluxes: the adiabatic and the transition flux density. The nature of the two fluxes allows us to identify two alternating dynamics of the electronic motion, occurring on the attosecond and the femtosecond time scales. In contradistinction to the adiabatic electronic flux density, the transition electronic flux density shows a dependence on the carrier-envelope phase of the laser field, encoding information of the interaction of the electrons with the electric field. Furthermore, the nuclear flux density displays multiple reversals, a quantum effect recently discovered by Manz et al. [J. Manz, J. F. Pérez-Torres, and Y. Yang, Phys. Rev. Lett. 111, 153004 (2013), 10.1103/PhysRevLett.111.153004], calling for investigation of the electronic flux density.

  4. BOOK REVIEW: Practical Density Measurement and Hydrometry

    NASA Astrophysics Data System (ADS)

    Gupta, S. V.

    2003-01-01

    Density determinations are very important not only for science and production but also in everyday life, since very often a product is sold by mass but the content of the package is measured by volume (or vice versa) so that the density is needed to convert the values. In production processes the density serves as a measure of mixing ratios and other properties. In science, the determination of Avogadro's constant using silicon single crystals and the potential replacement of the kilogram prototype boost density determination to an extremely low relative uncertainty of 10-7 or less. The book by S V Gupta explains in detail the foundations of any density measurement, namely the volume determination of solid artefacts in terms of the SI base unit of length and the density of water and mercury. Both the history and the actual state of science are reported. For practical density measurements, these chapters contain very useful formulae and tables. Water is treated in detail since it is most widely used as a standard not only for density determination but also to gravimetrically calibrate the capacity of volumetric glassware. Two thirds of the book are devoted to the practical density measurement of solids and liquids, mainly using classical instruments like pycnometers and hydrometers. Methods using free flotation of samples in a liquid without suspension are especially useful for small samples. Also, density determinations of powders and granular or porous samples are explained. Unfortunately, modern density meters of the oscillation type are dealt with in only a few pages. The book is clearly written and easy to understand. It contains a lot of evaluations of formulae that for practical measurements are represented in detailed tables. Methods and measurement procedures are described in detail, including also the calculation of uncertainty. Listings of the advantages and disadvantages of the different methods are very helpful. S V Gupta has written a book that will be

  5. Validation of DSMC results for chemically nonequilibrium air flows against measurements of the electron number density in RAM-C II flight experiment

    SciTech Connect

    Shevyrin, Alexander A.; Vashchenkov, Pavel V.; Bondar, Yevgeniy A.; Ivanov, Mikhail S.

    2014-12-09

    An ionized flow around the RAM C-II vehicle in the range of altitudes from 73 to 81 km is studied by the Direct Simulation Monte Carlo (DSMC) method with three models of chemical reactions. It is demonstrated that vibration favoring in reactions of dissociation of neutral molecules affects significantly the predicted values of plasma density in the shock layer, and good agreement between the results of experiments and DSMC computations can be achieved in terms of the plasma density as a function of the flight altitude.

  6. MAVEN observations of dayside peak electron densities in the ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Vogt, Marissa F.; Withers, Paul; Fallows, Kathryn; Andersson, Laila; Girazian, Zachary; Mahaffy, Paul R.; Benna, Mehdi; Elrod, Meredith K.; Connerney, John E. P.; Espley, Jared R.; Eparvier, Frank G.; Jakosky, Bruce M.

    2017-01-01

    The peak electron density in the dayside Martian ionosphere is a valuable diagnostic of the state of the ionosphere. Its dependence on factors like the solar zenith angle, ionizing solar irradiance, neutral scale height, and electron temperature has been well studied. The Mars Atmosphere and Volatile EvolutioN spacecraft's September 2015 "deep dip" orbits, in which the orbital periapsis was lowered to 125 km, provided the first opportunity since Viking to sample in situ a complete dayside electron density profile including the main peak. Here we present peak electron density measurements from 37 deep dip orbits and describe conditions at the altitude of the main peak, including the electron temperature and composition of the ionosphere and neutral atmosphere. We find that the dependence of the peak electron density and the altitude of the main peak on solar zenith angle are well described by analytical photochemical theory. Additionally, we find that the electron temperatures at the main peak display a dependence on solar zenith angle that is consistent with the observed variability in the peak electron density. Several peak density measurements were made in regions of large crustal magnetic field, but there is no clear evidence that the crustal magnetic field strength influences the peak electron density, peak altitude, or electron temperature. Finally, we find that the fractional abundance of O2+ and CO2+ at the peak altitude is variable but that the two species together consistently represent 95% of the total ion density.

  7. Ligand identification using electron-density mapcorrelations

    SciTech Connect

    Terwilliger, Thomas C.; Adams, Paul D.; Moriarty, Nigel W.; Cohn,Judith D.

    2006-12-01

    A procedure for the identification of ligands bound incrystal structuresof macromolecules is described. Two characteristics ofthe density corresponding to a ligand are used in the identificationprocedure. One is the correlation of the ligand density with each of aset of test ligands after optimization of the fit of that ligand to thedensity. The other is the correlation of a fingerprint of the densitywith the fingerprint of model density for each possible ligand. Thefingerprints consist of an ordered list of correlations of each the testligands with the density. The two characteristics are scored using aZ-score approach in which the correlations are normalized to the mean andstandard deviation of correlations found for a variety of mismatchedligand-density pairs, so that the Z scores are related to the probabilityof observing a particular value of the correlation by chance. Theprocedure was tested with a set of 200 of the most commonly found ligandsin the Protein Data Bank, collectively representing 57 percent of allligands in the Protein Data Bank. Using a combination of these twocharacteristics of ligand density, ranked lists of ligand identificationswere made for representative (F-o-F-c) exp(i phi(c)) difference densityfrom entries in the Protein Data Bank. In 48 percent of the 200 cases,the correct ligand was at the top of the ranked list of ligands. Thisapproach may be useful in identification of unknown ligands in newmacromolecular structures as well as in the identification of whichligands in a mixture have bound to a macromolecule.

  8. A new method for determining the plasma electron density using optical frequency comb interferometer

    SciTech Connect

    Arakawa, Hiroyuki Tojo, Hiroshi; Sasao, Hajime; Kawano, Yasunori; Itami, Kiyoshi

    2014-04-15

    A new method of plasma electron density measurement using interferometric phases (fractional fringes) of an optical frequency comb interferometer is proposed. Using the characteristics of the optical frequency comb laser, high density measurement can be achieved without fringe counting errors. Simulations show that the short wavelength and wide wavelength range of the laser source and low noise in interferometric phases measurements are effective to reduce ambiguity of measured density.

  9. The topology of the Coulomb potential density. A comparison with the electron density, the virial energy density, and the Ehrenfest force density.

    PubMed

    Ferreira, Lizé-Mari; Eaby, Alan; Dillen, Jan

    2017-09-30

    The topology of the Coulomb potential density has been studied within the context of the theory of Atoms in Molecules and has been compared with the topologies of the electron density, the virial energy density and the Ehrenfest force density. The Coulomb potential density is found to be mainly structurally homeomorphic with the electron density. The Coulomb potential density reproduces the non-nuclear attractor which is observed experimentally in the molecular graph of the electron density of a Mg dimer, thus, for the first time ever providing an alternative and energetic foundation for the existence of this critical point. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Thermionic cathode electron gun for high current densities

    NASA Astrophysics Data System (ADS)

    Herniter, Marc E.; Getty, Ward D.

    1987-08-01

    An electron gun using lanthanum hexaboride as a cathode material is being studied for use as a robust thermionic emitter at high cathode current densities. It has a standard planar cathode, Pierce-type electron gun design with a space-charge-limited perveance of 3.2 x 10 to the -6th A/V exp 3/2. Thus far it has been operated up to 36 kV in the space-charge-limited regime. The cathode is heated by electron bombardment and radiation from an auxiliary tungsten filament. The total heating requirement is found to be 202 W/sq cm of cathode area at a cathode temperature of 1626 C. These observations are found to be in reasonable agreement with a thermal steady-state power balance model. Beam current distribution measurements are made with a movable collector and Faraday cup, and are found to be in agreement with an electron-gun computer code. The cathode temperature distribution is also measured.

  11. A study of electron density profiles in relation to ionization sources and ground-based radio wave absorption measurements, part 2

    NASA Technical Reports Server (NTRS)

    Gnanalingam, S.; Kane, J. A.

    1975-01-01

    The D-region ion production functions are used to calculate the relationship between radio wave absorption and the flux level of X-rays in the 1-8A wavelength band. In order to bring this calculation into agreement with the empirically established relationship, it was found necessary to reduce by, a factor of about 5, the Meira nitric oxide densities below 90 km.

  12. Galileo measurements of plasma density in the Io torus

    NASA Astrophysics Data System (ADS)

    Bagenal, F.; Crary, F. J.; Stewart, A. I. F.; Schneider, N. M.; Gurnett, D. A.; Kurth, W. S.; Frank, L. A.; Paterson, W. R.

    1997-09-01

    The measurements of electron density made by the Plasma Wave Subsystem instruments on Galileo during its pass through the torus on December 7th, 1995 are compared with a model based on Voyager 1 measurements made in March 1979. Outside Io's orbit, the plasma densities observed by Galileo are approximately a factor of two higher than the Voyager values. Shortly after crossing Io's orbit, the Galileo density profile dropped sharply and remained at low values for the rest of the inbound leg, suggesting that the 'ribbon' region was either absent or much farther from Jupiter than usual. The peak density on the outbound leg is consistent with Voyager-based predictions for the cold torus in both location (5.1 RJ) and magnitude (950 cm-3). Inside 5 RJ the density dropped sharply to less than 3 cm-3.

  13. Gutzwiller density functional theory for correlated electron systems

    SciTech Connect

    Ho, K. M.; Schmalian, J.; Wang, C. Z.

    2008-02-04

    We develop a density functional theory (DFT) and formalism for correlated electron systems by taking as reference an interacting electron system that has a ground state wave function which exactly obeys the Gutzwiller approximation for all one-particle operators. The solution of the many-electron problem is mapped onto the self-consistent solution of a set of single-particle Schroedinger equations, analogously to standard DFT-local density approximation calculations.

  14. Instrument continuously measures density of flowing fluids

    NASA Technical Reports Server (NTRS)

    Jacobs, R. B.; Macinko, J.; Miller, C. E.

    1967-01-01

    Electromechanical densitometer continuously measures the densities of either single-phase or two-phase flowing cryogenic fluids. Measurement is made on actual flow. The instrument operates on the principle that the mass of any vibrating system is a primary factor in determining the dynamic characteristics of the system.

  15. The Influence of Energetic Electrons on the Cassini Langmuir Probe at Saturn : Deriving Large Electron Temperatures and Small Electron Densities

    NASA Astrophysics Data System (ADS)

    Garnier, P.; Wahlund, J.; Holmberg, M.; Lewis, G.; Schippers, P.; Thomsen, M. F.; Rochel Grimald, S.; Gurnett, D. A.; Coates, A. J.; Dandouras, I. S.; Waite, J. H.

    2013-12-01

    The Langmuir probes (LPs) are commonly used to investigate the cold plasma characteristics in planetary ionospheres/magnetospheres. The LPs performances are limited to low temperatures (i.e. below 5-10 eV at Saturn) and large densities (above several particles/cm3). A strong sensitivity of the Cassini LP measurements to energetic electrons (hundreds eV) may however be observed at Saturn in the L Shell range L=6-10 RS. These electrons impact the surface of the probe and generate a detectable current of secondary electrons. We investigated the influence of such electrons on the current-voltage (I-V) characteristics (for negative potentials), showing that both the DC level and slope of the I-V curve are modified. The influence of energetic electrons may be interpreted in terms of the critical and anticritical temperatures concept that is important for spacecraft charging studies. Estimations of the maximum secondary yield value for the LP surface are obtained without using laboratory measurements. Empirical and theoretical methods were developed to reproduce the influence of the energetic electrons with a reasonable precision. Conversely, this modelling allows us to derive useful information about the energetic electrons from the LP observations : some information about their pitch angle anisotropy (if combined with the data from a single CAPS ELS anode), as well as an estimate of the electron temperature (in the range 100-300 eV) and of the electron density (above 0.1 particles/cm3). This enlarges the LP measurements capabilities when the influence of the energetic electrons is large (essentially near L=6-10 RS at Saturn). The understanding of this influence may be used for other missions using Langmuir probes, such as the future missions JUICE at Jupiter, BepiColombo at Mercury, or even the probes in the Earth magnetosphere.

  16. The Use of Ultrasound to Measure Dislocation Density

    NASA Astrophysics Data System (ADS)

    Barra, Felipe; Espinoza-González, Rodrigo; Fernández, Henry; Lund, Fernando; Maurel, Agnès; Pagneux, Vincent

    2015-08-01

    Dislocations are at the heart of the plastic behavior of materials yet they are very difficult to probe experimentally. Lack of a practical nonintrusive measuring tool for, say, dislocation density, seriously hampers modeling efforts, as there is little guidance from data in the form of quantitative measurements, as opposed to visualizations. Dislocation density can be measured using transmission electron microscopy (TEM) and x-ray diffraction (XRD). TEM can directly show the strain field around dislocations, which allows for the counting of the number of dislocations in a micrograph. This procedure is very laborious and local, since samples have to be very small and thin, and is difficult to apply when dislocation densities are high. XRD relies on the broadening of diffraction peaks induced by the loss of crystalline order induced by the dislocations. This broadening can be very small, and finding the dislocation density involves unknown parameters that have to be fitted with the data. Both methods, but especially TEM, are intrusive, in the sense that samples must be especially treated, mechanically and chemically. A nonintrusive method to measure dislocation density would be desirable. This paper reviews recent developments in the theoretical treatment of the interaction of an elastic wave with dislocations that have led to formulae that relate dislocation density to quantities that can be measured with samples of cm size. Experimental results that use resonant ultrasound spectroscopy supporting this assertion are reported, and the outlook for the development of a practical, nonintrusive, method to measure dislocation density is discussed.

  17. Electron and ion densities in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Glassgold, A. E.; Langer, W. D.

    1974-01-01

    A quantitative theory of ionization in diffuse clouds is developed which includes H(+) charge exchange with O. Dissociative charge exchange of He(+) with H2 plays an important role in the densities of H(+) and He(+). The abundance of HD is also discussed.

  18. Ion energy distributions, electron temperatures, and electron densities in Ar, Kr, and Xe pulsed discharges

    SciTech Connect

    Shin, Hyungjoo; Zhu Weiye; Economou, Demetre J.; Donnelly, Vincent M.

    2012-05-15

    Ion energy distributions (IEDs) were measured near the edge of Faraday-shielded, inductively coupled pulsed plasmas in Ar, Kr, or Xe gas, while applying a synchronous dc bias on a boundary electrode, late in the afterglow. The magnitudes of the full width at half maximum of the IEDs were Xe > Kr > Ar, following the order of the corresponding electron temperatures in the afterglow, T{sub e}(Xe) > T{sub e}(Kr) > T{sub e}(Ar). The measured decays of T{sub e} with time in the afterglow were in excellent agreement with predictions from a global model. Measured time-resolved electron and positive ion densities near the plasma edge did not decay appreciably, even in the 80 {mu}s long afterglow. This was attributed to transport of ions and electrons from the higher density central region of the plasma to the edge region, balancing the loss of plasma due to diffusion. This provides a convenient means of maintaining a relatively constant plasma density in the afterglow during processing using pulsed plasmas.

  19. MAVEN Observations of Dayside Peak Electron Densities in the Ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Vogt, M. F.; Withers, P.; Andersson, L.; Mahaffy, P. R.; Benna, M.; Elrod, M. K.; Connerney, J. E. P.; Espley, J. R.; Eparvier, F. G.; Jakosky, B. M.

    2016-12-01

    The peak electron density in the dayside Martian ionosphere is a valuable diagnostic of the state of the ionosphere. Its dependence on factors like the solar zenith angle, ionizing solar irradiance, neutral scale height, and electron temperature has been well studied. The MAVEN spacecraft's September 2015 "deep dip" orbits, in which the orbital periapsis is lowered to 120 km, provided our first opportunity since Viking to sample in situ a complete dayside electron density profiles including the main peak, and the first observations with contemporaneous comprehensive measurements of the local plasma and magnetic field properties. We have analyzed the peak electron density measurements from the MAVEN deep dip orbits and will discuss their variability with various ionospheric properties, including the proximity to regions of large crustal magnetic fields, and external drivers. We will also present observations of the electron temperature and atmospheric neutral and ion composition at the altitude of the peak electron density.

  20. Topological analysis of electron densities from Kohn-Sham and subsystem density functional theory.

    PubMed

    Kiewisch, Karin; Eickerling, Georg; Reiher, Markus; Neugebauer, Johannes

    2008-01-28

    In this study, we compare the electron densities for a set of hydrogen-bonded complexes obtained with either conventional Kohn-Sham density functional theory (DFT) calculations or with the frozen-density embedding (FDE) method, which is a subsystem approach to DFT. For a detailed analysis of the differences between these two methods, we compare the topology of the electron densities obtained from Kohn-Sham DFT and FDE in terms of deformation densities, bond critical points, and the negative Laplacian of the electron density. Different kinetic-energy functionals as needed for the frozen-density embedding method are tested and compared to a purely electrostatic embedding. It is shown that FDE is able to reproduce the characteristics of the density in the bonding region even in systems such as the F-H-F(-) molecule, which contains one of the strongest hydrogen bonds. Basis functions on the frozen system are usually required to accurately reproduce the electron densities of supermolecular calculations. However, it is shown here that it is in general sufficient to provide just a few basis functions in the boundary region between the two subsystems so that the use of the full supermolecular basis set can be avoided. It also turns out that electron-density deformations upon bonding predicted by FDE lack directionality with currently available functionals for the nonadditive kinetic-energy contribution.

  1. Measurement of density and temperature in a hypersonic turbulent boundary layer using the electron beam fluorescence technique. Ph.D. Thesis. Final Report, 1 Oct. 1969 - 1 Sep. 1972

    NASA Technical Reports Server (NTRS)

    Mcronald, A. D.

    1975-01-01

    Mean density and temperature fluctuations were measured across the turbulent, cooled-wall boundary layer in a continuous hypersonic (Mach 9.4) wind tunnel in air, using the nitrogen fluorescence excited by a 50 kV electron beam. Data were taken at three values of the tunnel stagnation pressure, the corresponding free stream densities being equivalent to 1.2, 4.0, and 7.4 torr at room temperature, and the boundary layer thicknesses about 4.0, 4.5, and 6.0 inches. The mean temperature and density profiles were similar to those previously determined in the same facility by conventional probes (static and pitot pressure, total temperature). A static pressure variation of about 50% across the boundary layer was found, the shape of the variation changing somewhat for the three stagnation pressure levels. The quadrupole model for rotational temperature spectra gave closer agreement with the free stream isentropic level (approximately 44 K) than the dipole model.

  2. Neutral Atmosphere Properties Determining D-region Electron Densities

    NASA Technical Reports Server (NTRS)

    Taubenheim, J.

    1984-01-01

    The increasing discoveries of various manifestations of meteorological control of the D region ionization and the growth of techniques for its measurement provide a challenge to meteorologists to test their insight into middle atmosphere processes with the physical interpretation of D layer phenomena. Models for ion production due to photoionization of minor atmospheric nitric oxide by quasi-monochromatic solar Lyman-alpha radiation are presented. A ground based measuring technique using low frequency radio reflection heights is briefly described and an approach to the interpretation of data acquired by this method is discussed. It is shown that D region electron density variations can provide an efficient diagnostic tool for the detection of perturbations of the circulation state of the middle atmosphere.

  3. A study of electron density profiles in relation to ionization sources and ground-based radio wave absorption measurements, part 1

    NASA Technical Reports Server (NTRS)

    Gnanalingam, S.; Kane, J. A.

    1973-01-01

    An extensive set of ground-based measurements of the diurnal variation of medium frequency radio wave adsorption and virtual height is analyzed in terms of current understanding of the D- and lower E-region ion production and loss process. When this is done a gross discrepancy arises, the source of which is not known.

  4. SU-E-T-530: Relative Electron Density Phantom Comparison.

    PubMed

    Rasmussen, B; Chu, K; Tong, S

    2012-06-01

    Modern treatment planning systems require lookup tables to convert Hounsfield Units (HU) to relative electron density (RED) for use in heterogeneity corrections during dose calculations. The purpose of this work is to illustrate the impact of using different model CT phantoms to determine HU to RED curves for treatment planning. A GAMMEX model 467 tissue characterization phantom and a CATPHAN model 500 multipurpose CT phantom were imaged using CT scanners in four different cancer centers and the HU to RED curves derived from each phantom were imported into an Eclipse 8.10 treatment planning system. Dose calculation were performed on a heterogeneity phantom and then compared to measurements. A comparison of isodose and DVH were performed by calculating 3D and IMRT plans onto identical CT datasets with different HU to RED curves to determine the clinical significance. Analysis based on effective atomic number of the phantom inserts was also performed. The HU to RED curves from the GAMMEX and CATPHAN phantoms were found to be reasonably self-consistent across the different CT scanners. However, observable differences for higher density materials were observed between the two phantom models. The differences for the larger HU values can be attributed to the effective atomic number of the materials. In kV range of a CT scanner x-ray spectrum, photon interactions are partially due to the photoelectric effect which has a larger dependence on atomic number than Compton scatter which depends most directly on electron density. The HU to RED curve is more dependent on the phantom model than CT scanner. The HU to RED curve from the GAMMEX phantom produced better agreement between Eclipse AAA calculations and measured dose distributions on a heterogeneity phantom than that from the CATPHAN. However, DVH and isodose data on patient plans show small differences for common treatment sites. © 2012 American Association of Physicists in Medicine.

  5. Medical Electronics and Physiological Measurement.

    ERIC Educational Resources Information Center

    Cochrane, T.

    1989-01-01

    Described are developments in medical electronics and physiological measurement. Discussed are electrocardiology, audiology, and urology as mature applications; applied potential tomography, magnetic stimulation of nerves, and laser Doppler flowmetry as new techniques; and optical sensors, ambulatory monitoring, and biosensors as future…

  6. Medical Electronics and Physiological Measurement.

    ERIC Educational Resources Information Center

    Cochrane, T.

    1989-01-01

    Described are developments in medical electronics and physiological measurement. Discussed are electrocardiology, audiology, and urology as mature applications; applied potential tomography, magnetic stimulation of nerves, and laser Doppler flowmetry as new techniques; and optical sensors, ambulatory monitoring, and biosensors as future…

  7. A statistical study of magnetospheric electron density using the Cluster spacecraft

    NASA Astrophysics Data System (ADS)

    Sandhu, J. K.; Yeoman, T. K.; Fear, R. C.; Dandouras, I.

    2016-11-01

    Observations from the WHISPER (Waves of High frequency and Sounder for Probing of Electron density by Relaxation) instrument on board Cluster, for the interval spanning 2001-2012, are utilized to determine an empirical model describing the total electron density along closed geomagnetic field lines. The model, representing field lines in the region of 4.5≤L < 9.5, includes dependences on L and magnetic local time. Data verification tests ensured that the WHISPER data set provided unbiased measurements for low-density regions, including comparisons with Plasma Electron and Current Experiment and Electric Field and Waves observations. The model was determined by modeling variations in the electron density along the field lines, which is observed to follow a power law distribution along the geomagnetic field at high latitudes, with power law index values ranging from approximately 0.0 to 1.2. However, a localized peak in electron density close to the magnetic equator is observed, which is described using a Gaussian peak function, with the electron density peak ranging as high as 10 cm-3 above the background power law dependence. The resulting model illustrates some key features of the electron density spatial distribution. The role of the number density distribution, represented by the empirical electron density model, in determining the total plasma mass density is also explored. By combining the empirical electron density model with an empirical average ion mass model, the total plasma mass density distribution is inferred, which includes contributions of both the number density and ion composition of the plasma in the region.

  8. Measuring Air Density in the Introductory Lab

    ERIC Educational Resources Information Center

    Calza, G.; Gratton, L. M.; Lopez-Arias, T.; Oss, S.

    2010-01-01

    The measurement of the mass, or the density, of air can easily be done with very simple materials and offers many interesting phenomena for discussion--buoyancy and its effects being the most obvious but not the only one. Many interesting considerations can be done regarding the behavior of gases, the effect of the external conditions in the…

  9. Measuring Air Density in the Introductory Lab

    ERIC Educational Resources Information Center

    Calza, G.; Gratton, L. M.; Lopez-Arias, T.; Oss, S.

    2010-01-01

    The measurement of the mass, or the density, of air can easily be done with very simple materials and offers many interesting phenomena for discussion--buoyancy and its effects being the most obvious but not the only one. Many interesting considerations can be done regarding the behavior of gases, the effect of the external conditions in the…

  10. Effective atomic numbers and electron density of dosimetric material

    PubMed Central

    Kaginelli, S. B.; Rajeshwari, T.; Sharanabasappa; Kerur, B. R.; Kumar, Anil S.

    2009-01-01

    A novel method for determination of mass attenuation coefficient of x-rays employing NaI (Tl) detector system and radioactive sources is described.in this paper. A rigid geometry arrangement and gating of the spectrometer at FWHM position and selection of absorber foils are all done following detailed investigation, to minimize the effect of small angle scattering and multiple scattering on the mass attenuation coefficient, μ/ρ, value. Firstly, for standardization purposes the mass attenuation coefficients of elemental foils such as Aluminum, Copper, Molybdenum, Tantalum and Lead are measured and then, this method is utilized for dosimetric interested material (sulfates). The experimental mass attenuation coefficient values are compared with the theoretical values to find good agreement between the theory and experiment within one to two per cent. The effective atomic numbers of the biological substitute material are calculated by sum rule and from the graph. The electron density of dosimetric material is calculated using the effective atomic number. The study has discussed in detail the attenuation coefficient, effective atomic number and electron density of dosimetric material/biological substitutes. PMID:20098566

  11. Determination of Electronic Temperature and Density in Narrow Line Regions

    NASA Astrophysics Data System (ADS)

    Quintero, S.; Higuera-G., Mario A.

    2017-07-01

    We use observations of forbidden emission lines: [SII], [OII], N[II] and [OIII] from a sample of objects located in the Sloan Digital Sky Survey (SDSS) and determined the electronic temperature and densities.

  12. Radial density profile measurement by using the multichannel microwave interferometer in GAMMA 10

    SciTech Connect

    Yoshikawa, M.; Matsumoto, T.; Shima, Y.; Negishi, S.; Miyata, Y.; Mizuguchi, M.; Imai, N.; Yoneda, Y.; Hojo, H.; Itakura, A.; Imai, T.

    2008-10-15

    Plasma density radial profile measurements are an important study for fusion plasma researches. We reconstructed a multichannel microwave interferometer for radial plasma electron density and density fluctuation measurements with both changing the transmission horn position and using the Teflon lens by only using this system in a single plasma shot. By using this system, we can successfully measure the radial density and density fluctuation spectra in a single plasma shot.

  13. Exact high-density limit of correlation potential for two-electron density

    NASA Astrophysics Data System (ADS)

    Ivanov, Stanislav; Burke, Kieron; Levy, Mel

    1999-06-01

    Present approximations to the correlation energy, Ec[n], in density functional theory yield poor results for the corresponding correlation potential, vc([n];r)=δEc[n]δ/n(r). Improvements in vc([n];r), are especially needed for high-quality Kohn-Sham calculations. For a two-electron density, the exact form of vc([n];r) in its high-density limit is derived in terms of the density of the system and the first-order wave function from the adiabatic perturbation theory. Our expression leads to a formula for the difference 2Ec[n]-∫vc([n];r)n(r)dr, valid for any two-electron density in the high-density limit, thus generalizes previous results. Numerical results (both exact and approximate) are presented for both Ec[n] and ∫vc([n];r)n(r)dr in this limit for two electrons in a harmonic oscillator external potential (Hooke's atom).

  14. Waves in relativistic electron beam in low-density plasma

    NASA Astrophysics Data System (ADS)

    Sheinman, I.; Sheinman (Chernenco, J.

    2016-11-01

    Waves in electron beam in low-density plasma are analyzed. The analysis is based on complete electrodynamics consideration. Dependencies of dispersion laws from system parameters are investigated. It is shown that when relativistic electron beam is passed through low-density plasma surface waves of two types may exist. The first type is a high frequency wave on a boundary between the beam and neutralization area and the second type wave is on the boundary between neutralization area and stationary plasma.

  15. New link between conceptual density functional theory and electron delocalization.

    PubMed

    Matito, Eduard; Putz, Mihai V

    2011-11-17

    In this paper we give a new definition of the softness kernel based on the exchange-correlation density. This new kernel is shown to correspond to the change of electron fluctuation upon external perturbation, thus helping to bridge the gap between conceptual density functional theory and some tools describing electron localization in molecules. With the aid of a few computational calculations on diatomics we illustrate the performance of this new computational tool.

  16. High Current Density Scandate Cathodes for Future Vacuum Electronics Applications

    DTIC Science & Technology

    2008-05-30

    braze alloy . The structure was fired in a furnace at 16500 C for 15 minutes. The resultant structure was sectioned to determine if the scandium flowed...Density Cathodes for Future Vacuum Electronics Applications FA9550-07-C-0063 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION...Current Density Scandate Cathodes for Future Vacuum Electronics Applications USAF/AFRL Contract Number FA9550-07-C-0063 Final Report Calabazas Creek

  17. Influence of the electronic plasma density on the wave particle interaction

    NASA Astrophysics Data System (ADS)

    Sicard-Piet, Angelica; Boscher, Daniel

    2013-04-01

    The wave particle interaction, which is well known to be a major phenomenon in the electron radiation belts dynamics, is based on two main parameters: the characteristics of the wave (type of wave, intensity,…) and the characteristics of the ambient plasma. In this work we studied the second parameter. On one side, the electronic plasma density can be derived from in-situ measurements. On the other side, several empirical models exist: GCPM, IZMIRAN or Carpenter models. Here, we compared electronic plasma densities derived from in-situ measurements each other and with existing models. Then, we investigated on the electronic plasma density distribution to distinguish the inside to the outside plasmasphere. Finally, the effect of the electronic plasma density on the diffusion coefficients due to wave particle interaction has been studied via a numerical code, called WAPI, based on quasi linear theory.

  18. Two-color terahertz interferometer based on the frequency-splitted orthogonal polarization modes of the water vapor laser and designed for measuring the electron density profile in the L-2M stellarator

    SciTech Connect

    Letunov, A. A.; Logvinenko, V. P.; Zav'yalov, V. V.

    2008-03-15

    An upgraded diagnostics for measuring the electron density profile in the L-2M stellarator is proposed. The existing diagnostics employs an interferometer based on an HCN laser with a mechanical frequency shifter and unmagnetized InSb detectors cooled with liquid helium. It is proposed to replace the HCN laser with a water vapor laser operating simultaneously at two wavelengths (220 and 118 {mu}m). Being equipped with an anisotropic exit mirror, the water vapor laser allows the generation of orthogonally polarized, frequency-splitted modes at each of these wavelengths with a frequency difference of several tens of kilohertzs. Such a scheme makes it possible to get rid of the mechanical frequency shifter. Moreover, simultaneous measurements at two wavelengths allow one to reliably separate the phase increments introduced by the plasma electron component and by variations in the lengths of the interferometer arms. To take full advantage of this scheme, specially developed cryogenic receivers consisting of Ge and InSb photodetectors placed one after another will be used. To increase the response of the system near {lambda} = 220 {mu}m, the InSb detector is placed in a Almost-Equal-To 0.55-T magnetic field.

  19. Cassini INMS measurements of Enceladus plume density

    NASA Astrophysics Data System (ADS)

    Perry, M. E.; Teolis, B. D.; Hurley, D. M.; Magee, B. A.; Waite, J. H.; Brockwell, T. G.; Perryman, R. S.; McNutt, R. L.

    2015-09-01

    During six encounters between 2008 and 2013, the Cassini Ion and Neutral Mass Spectrometer (INMS) made in situ measurements deep within the Enceladus plumes. Throughout each encounter, those measurements contained density variations that reflected the nature of the source, particularly of the high-velocity jets. Since the dominant constituent of the vapor, H2O, interacted with the walls of the INMS inlet, we track changes in the external vapor density by using more-volatile species that responded promptly to those changes. However, the most-abundant volatiles, at 28 u and 44 u, behaved differently from each other in the plume. At least a portion of their differences may be attributed to mass-dependent thermal velocity that affects Mach number in the high-velocity jets. Variations between volatiles place an emphasis on modeling as a means to construct overall plume density from the volatile densities and to investigate the velocity, gas temperature, and location of the jets. Ice grains, entering the INMS aperture add complexity and uncertainty to the physical interpretation of the data because the grains modified the INMS measurements. A comparison of data from the last three encounters, E14, E17, and E18, are consistent with the VIMS observation of variability in jet production and a slower, more diffuse gas flux from the four sulci or tiger stripes. We provide and describe the INMS data, its processing, and its uncertainty.

  20. Long-term observations of D-region electron densities at high and middle northern latitudes

    NASA Astrophysics Data System (ADS)

    Singer, Werner; Keuer, Dieter; Friedrich, Martin; Strelnikova, Irina; Latteck, Ralph

    D-region electron densities are estimated using Doppler radars at frequencies around 3 MHz in Andenes, Norway (69.3°N, 16.0°E) since summer 2003 and in Juliusruh, Germany (54.6°N, 13.4°E) since summer 2006. Both experiments utilize partial reflections of ordinary and extraordinary component waves from scatterers in the altitude range 50-90 km to estimate electron number densities from differential absorption (DAE) and differential phase (DPE) measurements. Height profiles of electron density are obtained between about 55 km and 90 km with sampling times of 2-3 minutes and height resolution of 1.5 km at Andenes and 3 km at Juliusruh. The electron density profiles independently derived from DAE and DPE measurements agree remarkably well. The radar results are compared with co-located simultaneously measured electron densities by rocket-borne radio wave propagation experiments (differential absorption, Faraday rotation, and impedance probe) in Andenes with good agreement between insitu and ground-based measurements. The diurnal and seasonal variability of electron densities as observed at high and mid-latitudes under quiet ionospheric conditions is presented and compared to the corresponding electron density profiles of the International Reference Ionosphere. The response of D-region ionization to regular solar activity variation as well as to solar activity storms and geomagnetic disturbances has been studied at polar latitudes. Characteristic electron density variations are found during downwelling events of nitric oxide due to strong vertical coupling during stratospheric warming events. In addition, we discuss the inter-relation between D-region electron densities from radar observations, riometer absorption, and the empirical model IMAZ at different levels of solar activity and during particle precipitation events.

  1. Electronics reliability and measurement technology

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S. (Editor)

    1987-01-01

    A summary is presented of the Electronics Reliability and Measurement Technology Workshop. The meeting examined the U.S. electronics industry with particular focus on reliability and state-of-the-art technology. A general consensus of the approximately 75 attendees was that "the U.S. electronics industries are facing a crisis that may threaten their existence". The workshop had specific objectives to discuss mechanisms to improve areas such as reliability, yield, and performance while reducing failure rates, delivery times, and cost. The findings of the workshop addressed various aspects of the industry from wafers to parts to assemblies. Key problem areas that were singled out for attention are identified, and action items necessary to accomplish their resolution are recommended.

  2. Electron density fingerprints (EDprints): virtual screening using assembled information of electron density.

    PubMed

    Kooistra, Albert J; Binsl, Thomas W; van Beek, Johannes H G M; de Graaf, Chris; Heringa, Jaap

    2010-10-25

    We have designed a method to encode properties related to the electron densities of molecules (calculated (1)H and (13)C NMR shifts and atomic partial charges) in molecular fingerprints (EDprints). EDprints was evaluated in terms of their retrospective virtual screening accuracy against the Directory of Useful Decoys (DUD) and compared to the established ligand-based similarity search methods MOLPRINT 2D and FCFP-4. Although there are no significant differences in the overall virtual screening accuracies of the three methods, specific examples highlight interesting differences between the new EDprints fingerprint method and the atom-centered circular fingerprint methods of MOLPRINT 2D and FCFP-4. On one hand, EDprints similarity searches can be biased by the molecular protonation state, especially when reference ligands contain multiple ionizable groups. On the other hand, EDprints models are more robust toward subtle rearrangements of chemical groups and more suitable for screening against reference molecules with fused ring systems than MOLPRINT 2D and FCFP-4. EDprints is furthermore the fastest method under investigation in comparing fingerprints (average 56-233-fold increase in speed), which makes it highly suitable for all-against-all similarity searches and for repetitive virtual screening against large chemical databases of millions of compounds.

  3. Extracting electron transfer coupling elements from constrained density functional theory

    NASA Astrophysics Data System (ADS)

    Wu, Qin; Van Voorhis, Troy

    2006-10-01

    Constrained density functional theory (DFT) is a useful tool for studying electron transfer (ET) reactions. It can straightforwardly construct the charge-localized diabatic states and give a direct measure of the inner-sphere reorganization energy. In this work, a method is presented for calculating the electronic coupling matrix element (Hab) based on constrained DFT. This method completely avoids the use of ground-state DFT energies because they are known to irrationally predict fractional electron transfer in many cases. Instead it makes use of the constrained DFT energies and the Kohn-Sham wave functions for the diabatic states in a careful way. Test calculations on the Zn2+ and the benzene-Cl atom systems show that the new prescription yields reasonable agreement with the standard generalized Mulliken-Hush method. We then proceed to produce the diabatic and adiabatic potential energy curves along the reaction pathway for intervalence ET in the tetrathiafulvalene-diquinone (Q-TTF-Q) anion. While the unconstrained DFT curve has no reaction barrier and gives Hab≈17kcal /mol, which qualitatively disagrees with experimental results, the Hab calculated from constrained DFT is about 3kcal /mol and the generated ground state has a barrier height of 1.70kcal/mol, successfully predicting (Q-TTF-Q)- to be a class II mixed-valence compound.

  4. Acoustic levitation methods for density measurements

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Hsu, C. J.

    1986-01-01

    The capability of ultrasonic levitators operating in air to perform density measurements has been demonstrated. The remote determination of the density of ordinary liquids as well as low density solid metals can be carried out using levitated samples with size on the order of a few millimeters and at a frequency of 20 kHz. Two basic methods may be used. The first one is derived from a previously known technique developed for acoustic levitation in liquid media, and is based on the static equilibrium position of levitated samples in the earth's gravitational field. The second approach relies on the dynamic interaction between a levitated sample and the acoustic field. The first technique appears more accurate (1 percent uncertainty), but the latter method is directly applicable to a near gravity-free environment such as that found in space.

  5. A tale of two electrons: Correlation at high density

    NASA Astrophysics Data System (ADS)

    Loos, Pierre-François; Gill, Peter M. W.

    2010-11-01

    We review our recent progress in the determination of the high-density correlation energy E in two-electron systems. Several two-electron systems are considered, such as the well known helium-like ions (helium), and the Hooke's law atom (hookium). We also present results regarding two electrons on the surface of a sphere (spherium), and two electrons trapped in a spherical box (ballium). We also show that, in the large-dimension limit, the high-density correlation energy of two opposite-spin electrons interacting via a Coulomb potential is given by E˜-1/(8D2) for any radial external potential V(r), where D is the dimensionality of the space. This result explains the similarity of E in the previous two-electron systems for D=3.

  6. Measurement of Electron Clouds in Large Accelerators by Microwave Dispersion

    SciTech Connect

    De Santis, S.; Byrd, J.M.; Caspers, F.; Krasnykh, A.; Kroyer, T.; Pivi, M.T.F.; Sonnad, K.G.; /LBL, Berkeley

    2008-03-19

    Clouds of low energy electrons in the vacuum beam pipes of accelerators of positively charged particle beams present a serious limitation for operation at high currents. Furthermore, it is difficult to probe their density over substantial lengths of the beam pipe. We have developed a novel technique to directly measure the electron cloud density via the phase shift induced in a TE wave transmitted over a section of the accelerator and used it to measure the average electron cloud density over a 50 m section in the positron ring of the PEP-II collider at the Stanford Linear Accelerator Center.

  7. Measurement of electron clouds in large accelerators by microwave dispersion

    SciTech Connect

    Desantis, Stefano; De Santis, Stefano; Byrd, John M.; Sonnad, Kiran G.; Pivi, Mauro T.F.; Krasnykh, Anatoly; Caspers, Fritz; Kroyer, Tom

    2008-01-24

    Clouds of low energy electrons in the vacuum beam pipes of accelerators of positively charged particle beams present a serious limitation for operation at high currents. Furthermore, it is difficult to probe their density over substantial lengths of the beam pipe. We have developed a novel technique to directly measure the electron cloud density via the phase shift induced in a TE wave transmitted over a section of the accelerator and used it to measure the average electron cloud density over a 50 m section in the positron ring of the PEP-II collider at the Stanford Linear Accelerator Center.

  8. Measurement of electron clouds in large accelerators by microwave dispersion.

    PubMed

    De Santis, S; Byrd, J M; Caspers, F; Krasnykh, A; Kroyer, T; Pivi, M T F; Sonnad, K G

    2008-03-07

    Clouds of low energy electrons in the vacuum beam pipes of accelerators of positively charged particle beams present a serious limitation for operation at high currents. Furthermore, it is difficult to probe their density over substantial lengths of the beam pipe. We have developed a novel technique to directly measure the electron cloud density via the phase shift induced in a TE wave transmitted over a section of the accelerator and used it to measure the average electron cloud density over a 50 m section in the positron ring of the PEP-II collider at the Stanford Linear Accelerator Center.

  9. One-electron density matrices and energy gradients in second-order electron propagator theory

    NASA Astrophysics Data System (ADS)

    Cioslowski, Jerzy; Ortiz, J. V.

    1992-06-01

    A formalism for evaluation of the effective first-order density matrices associated with second-order electron propagator theory is described. Computer implementation of this formalism affords first-order density properties, such as dipole moments, and energy gradients. Given an initial state with N electrons, this approach enables geometry optimization of the ground and excited electronic states of species with N-1 and N+1 electrons. The performance of the present method is assessed with test calculations on the formyl radical.

  10. Radiance Measurement for Low Density Mars Entry

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.

    2012-01-01

    We report measurements of radiance behind a shock wave in Martian simulant (96% CO2, 4% N2) atmosphere at conditions relevant for aerodynamic decelerators. Shock waves are generated in the NASA Ames Electric Arc Shock Tube (EAST) facility at velocities from 6-8 km/s and freestream densities from 1.2-5.9 x 10(exp -4) kilograms per cubic meter (0.05-0.25 Torr, corresponding to 35-50 km altitude). Absolute radiance is measured as a function of wavelength and position in the shock. Radiance measurements extend from the vacuum ultraviolet to near infrared (120-1650 nm). As at higher density/velocity, radiation is dominate by CO 4th positive radiation in the vacuum ultraviolet, though CN contribution is also significant. At most low density conditions, the shock does not relax to equilibrium over several centimeters. A small number of measurements in the mid-infrared were performed to quantify radiation from the fundamental vibrational transition in CO, and this is found to be a minor contributor to the overall radiance at these speeds. Efforts to extend test time and reliability in the 60 cm (24) shock tube will be discussed in the full paper.

  11. The reliability of parafoveal cone density measurements

    PubMed Central

    Liu, Benjamin S; Tarima, Sergey; Visotcky, Alexis; Pechauer, Alex; Cooper, Robert F; Landsem, Leah; Wilk, Melissa A; Godara, Pooja; Makhijani, Vikram; Sulai, Yusufu N; Syed, Najia; Yasumura, Galen; Garg, Anupam K; Pennesi, Mark E; Lujan, Brandon J; Dubra, Alfredo; Duncan, Jacque L; Carroll, Joseph

    2014-01-01

    Background Adaptive optics scanning light ophthalmoscopy (AOSLO) enables direct visualisation of the cone mosaic, with metrics such as cone density and cell spacing used to assess the integrity or health of the mosaic. Here we examined the interobserver and inter-instrument reliability of cone density measurements. Methods For the interobserver reliability study, 30 subjects with no vision-limiting pathology were imaged. Three image sequences were acquired at a single parafoveal location and aligned to ensure that the three images were from the same retinal location. Ten observers used a semiautomated algorithm to identify the cones in each image, and this was repeated three times for each image. To assess inter-instrument reliability, 20 subjects were imaged at eight parafoveal locations on one AOSLO, followed by the same set of locations on the second AOSLO. A single observer manually aligned the pairs of images and used the semiautomated algorithm to identify the cones in each image. Results Based on a factorial study design model and a variance components model, the interobserver study's largest contribution to variability was the subject (95.72%) while the observer's contribution was only 1.03%. For the inter-instrument study, an average cone density intraclass correlation coefficient (ICC) of between 0.931 and 0.975 was calculated. Conclusions With the AOSLOs used here, reliable cone density measurements can be obtained between observers and between instruments. Additional work is needed to determine how these results vary with differences in image quality. PMID:24855115

  12. Quasi-equilibrium electron density along a magnetic field line

    SciTech Connect

    Mao, Hann-Shin; Wirz, Richard

    2012-11-26

    A methodology is developed to determine the density of high-energy electrons along a magnetic field line for a low-{beta} plasma. This method avoids the expense and statistical noise of traditional particle tracking techniques commonly used for high-energy electrons in bombardment plasma generators. By preserving the magnetic mirror and assuming a mixing timescale, typically the elastic collision frequency with neutrals, a quasi-equilibrium electron distribution can be calculated. Following the transient decay, the analysis shows that both the normalized density and the reduction fraction due to collision converge to a single quasi-equilibrium solution.

  13. Ionospheric electron-density profile and related studies. Final report

    SciTech Connect

    Basu, B.; Decker, D.T.; Retterer, J.M.; Bakshi, P.M.

    1984-08-15

    Photoionization of the neutral gas by photons was studied in the extreme ultraviolet (EUV) region of the solar spectrum along with the various particle-particle collisional processes that determine the energy dependence of the photoelectron flux. Also studied were the effects of plasma instabilities in determining the photoelectron energy spectrum in the 2-6 eV energy range. The authors describe a series of case studies, modeling the EDP(Electron Density Profile) using first-principle calculations and comparing the results to a variety of direct measurements. For cases in which simultaneous airglow-emission measurements are available, they evaluate the emissions predicted by the model EDP and compare with the observed emissions. The problem of specifying the flux incident on the atmosphere is addressed with a calculation of the magnetospheric loss-cone population resulting from pitch-angle diffusion. In an effort to describe the phenomena of ion conics, both the means by which turbulence can be caused by precipitating electrons and the way in which the turbulence can accelerate ionospheric ions were studied, using particle plasma simulation techniques. A simplified analysis shows no dependence upon beam current for the spherical geometry and a weak dependence for the cylindrical case.

  14. Two-dimensional time resolved measurements of toroidal velocity correlated with density blobs in magnetized plasmas

    SciTech Connect

    Labit, B.; Furno, I.; Fasoli, A.; Podesta, M.

    2008-08-15

    A new method for toroidal velocity measurements with Mach probes is presented. This technique is based on the conditional sampling technique, the triggering events being density blobs. A reconstruction of the time resolved two-dimensional profile of electron density, electron temperature, plasma potential, and toroidal velocity is possible with a single point measurement on a shot-to-shot basis.

  15. Solar activity variations of the ionospheric peak electron density

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Wan, Weixing; Ning, Baiqi; Pirog, O. M.; Kurkin, V. I.

    2006-08-01

    The daily averaged Solar EUV Monitor (SEM)/Solar Heliospheric Observatory (SOHO) EUV measurements, solar proxies, and foF2 data at 20 ionosonde stations in the east Asia/Australia sector are collected to investigate the solar activity dependences of the ionospheric peak electron density (NmF2). The intensities of solar EUV from the SEM/SOHO measurements from 1996 to 2005 show a nonlinear relationship with F107, and the SEM/SOHO EUV can be better represented by a solar activity factor P = (F107 + F107A)/2. Seasonal and latitudinal dependences are found in the solar activity variation of NmF2 in the east Asia/Australian sector. The slope of NmF2 with P in the linear segment further shows similar annual variations as the background electron densities at moderate solar activity. Observations show a nonlinear dependence of NmF2 on solar EUV (the saturation effect of NmF2 for high solar EUV). On the basis of a simple model of photochemistry, taking the neutral atmospheric consequences into account, calculations at fixed height simulate the saturation effect of NmF2, but the observed change rate of NmF2 with P is inadequately reproduced. Calculations taking into account the influence of dynamics (via a simple model of the solar EUV dependence of the ionospheric height) tend to reproduce the observed change rate of NmF2. Results indicate that besides solar EUV changes, the influence of dynamics and the atmospheric consequences should substantially contribute to the solar activity variations of NmF2.

  16. Warm O(+) polar wind and the DE-1 polar cap electron density profile

    NASA Technical Reports Server (NTRS)

    Ho, C. W.; Horwitz, J. L.

    1993-01-01

    Theoretical steady state semikinetic polar wind density profiles, based on DE1/RIMS polar wind data (up to 3700 km), were obtained which agree very well with the power law electron density profile measured by the DE1/PWI for high altitudes. The polar wind is found to be O(+) dominated for the full altitude range considered (up to 8 R(E)). Multiple solutions are obtained for various combinations of base altitude ion temperatures and electron temperatures, such that the densities fit the Persoon et al. (1983) profile. For example, good fits to measured density profile are found for low base ion temperatures (5000 K) and high electron temperatures (9000 K), and also for unheated H(+) and O(+)(3000 K) with electron temperatures of 11,000 K. Below 2.8 R(E) the theoretical polar wind density deviates somewhat from the r exp -3.85 power law. It is concluded that this theoretical polar wind density profile, with a sum of base electron and ion temperatures of 14,000 K, yields a close match with the measured DE-1 electron density profile.

  17. Density and Temperature Measurements in a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Warren, Harry P.; Winebarger, Amy R.

    2003-10-01

    We present electron density and temperature measurements from an active region observed above the limb with the Solar Ultraviolet Measurements of Emitted Radiation spectrometer on the Solar and Heliospheric Observatory. Density-sensitive line ratios from Si VIII and S X indicate densities greater than 108 cm-3 as high as 200" (or 145 Mm) above the limb. At these heights, static, uniformly heated loop models predict densities close to 107 cm-3. Differential emission measure analysis shows that the observed plasma is nearly isothermal with a mean temperature of about 1.5 MK and a dispersion of about 0.2 MK. Both the differential emission measure and the Si XI/Si VIII line ratios indicate only small variations in the temperature at the heights observed. These measurements confirm recent observations from the Transition Region and Coronal Explorer of ``overdense'' plasma at temperatures near 1 MK in solar active regions. Time-dependent hydrodynamic simulations suggest that impulsive heating models can account for the large densities, but they have a difficult time reproducing the narrow range of observed temperatures. The observations of overdense, nearly isothermal plasma in the solar corona provide a significant challenge to theories of coronal heating.

  18. Theoretical calculation of electron density and temperature in the edge of tokamak

    NASA Astrophysics Data System (ADS)

    Asif, Muhammad; Asif, Anila

    2017-06-01

    In this work, we use a method based on the concept of particle confinement time (τp) uniqueness to calculate the electron density and temperature in ohmically heated, edge plasma of the Hefei tokamak-7. Here, with the help of the data taken from Johnson and Hinnov’s table, we have done an extensive work to find electron densities and temperatures that satisfy the τp uniqueness to evaluate the temporal evolution of electron density (ne) and temperature (Te). The results are in good agreement as measured from the Langmuir probe array in previous works.

  19. ULTRASHORT ELECTRON BUNCH LENGTH MEASUREMENTS AT DUVFEL.

    SciTech Connect

    GRAVES, W.S.; CARR, G.L.; DIMAURO, L.F.; DOYURAN, A.; HEESE, R.; JOHNSON, E.D.; NEUMAN, C.; RAKOWSKY, G.; ROSE, J.; RUDATI, J.; SHAFTAN, T.; SHEEHY, B.; SKARITKA, J.; YU, L.H.

    2001-06-18

    The DUVFEL electron linac is designed to produce sub-picosecond, high brightness electron bunches for driving a short wavelength FEL. Four experiments have been commissioned to address the challenge of accurately measuring bunch lengths on this timescale. In the frequency domain, a short 12 period undulator is used to produce both off-axis coherent emission and on-axis incoherent single-shot spectra. The total coherent infrared power scales inversely with bunch length and the spectral cutoff is an indication of bunch length. The density of power spikes in the single-shot visible spectrum may also be used to estimate bunch length. In the time domain, the linac accelerating sections and a bending magnet are used to implement the RF-zero phasing method, and a sub-picosecond streak camera is also installed. Beam measurements and comparisons of these methods are reported.

  20. Continuous Measurement Of Mass Density Of Yarn

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Marchello, Joseph M.; Johnston, John D.

    1993-01-01

    Prototype instrument provides measurement data from which one computes mass density of strand of yarn. Includes fixtures placing known length of yarn under known tension across fixed and movable support. Transverse vibrations induced in yarn by moving movable support up and down. Source of light illuminates photodetector at midlength of yarn, and photodetector senses repeated shadowing caused by vibration of yarn through light, thereby measuring vibrations. Also used for continuous real-time monitoring of such yarn-manufacturing processes as coating or impregnation.

  1. Seasonal and solar activity variability of D-region electron density at 69°N

    NASA Astrophysics Data System (ADS)

    Singer, Werner; Latteck, Ralph; Friedrich, Martin; Wakabayashi, Makato; Rapp, Markus

    2011-06-01

    A narrow beam Doppler radar operating at 3.17 MHz and installed close to the Andøya Rocket Range in Andenes, Norway, (69.3°N, 16.0°E) has been providing electron densities in the lower ionosphere since summer 2003. The experiment utilizes partial reflection of ordinary and extraordinary component waves from scatterers in the altitude range 50-95 km to estimate electron densities from differential absorption and differential phase measurements. These ground-based observations are in good agreement with concurrent rocket-borne radio wave propagation measurements at Andenes. Results of the diurnal and seasonal variability of electron densities and the response of D-region electron densities to solar activity storms are presented.

  2. Density-shear instability in electron magneto-hydrodynamics

    SciTech Connect

    Wood, T. S. Hollerbach, R.; Lyutikov, M.

    2014-05-15

    We discuss a novel instability in inertia-less electron magneto-hydrodynamics (EMHD), which arises from a combination of electron velocity shear and electron density gradients. The unstable modes have a lengthscale longer than the transverse density scale, and a growth-rate of the order of the inverse Hall timescale. We suggest that this density-shear instability may be of importance in magnetic reconnection regions on scales smaller than the ion skin depth, and in neutron star crusts. We demonstrate that the so-called Hall drift instability, previously argued to be relevant in neutron star crusts, is a resistive tearing instability rather than an instability of the Hall term itself. We argue that the density-shear instability is of greater significance in neutron stars than the tearing instability, because it generally has a faster growth-rate and is less sensitive to geometry and boundary conditions. We prove that, for uniform electron density, EMHD is “at least as stable” as regular, incompressible MHD, in the sense that any field configuration that is stable in MHD is also stable in EMHD. We present a connection between the density-shear instability in EMHD and the magneto-buoyancy instability in anelastic MHD.

  3. Effective mass in bilayer graphene at low carrier densities: The role of potential disorder and electron-electron interaction

    NASA Astrophysics Data System (ADS)

    Li, J.; Tan, L. Z.; Zou, K.; Stabile, A. A.; Seiwell, D. J.; Watanabe, K.; Taniguchi, T.; Louie, Steven G.; Zhu, J.

    2016-10-01

    In a two-dimensional electron gas, the electron-electron interaction generally becomes stronger at lower carrier densities and renormalizes the Fermi-liquid parameters, such as the effective mass of carriers. We combine experiment and theory to study the effective masses of electrons and holes me* and mh* in bilayer graphene in the low carrier density regime on the order of 1 ×1011c m-2 . Measurements use temperature-dependent low-field Shubnikov-de Haas oscillations observed in high-mobility hexagonal boron nitride supported samples. We find that while me* follows a tight-binding description in the whole density range, mh* starts to drop rapidly below the tight-binding description at a carrier density of n =6 ×1011c m-2 and exhibits a strong suppression of 30% when n reaches 2 ×1011c m-2 . Contributions from the electron-electron interaction alone, evaluated using several different approximations, cannot explain the experimental trend. Instead, the effect of the potential fluctuation and the resulting electron-hole puddles play a crucial role. Calculations including both the electron-electron interaction and disorder effects explain the experimental data qualitatively and quantitatively. This Rapid Communication reveals an unusual disorder effect unique to two-dimensional semimetallic systems.

  4. Electric Field and Density Measurements with STEREO-SWaves.

    NASA Astrophysics Data System (ADS)

    Kellogg, P. J.; Goetz, K.; Monson, S. J.; Bale, S. D.; Maksimovic, M.

    2007-12-01

    The STEREO experiment SWaves has a low frequency part which is designed to make measurements of low frequency electric fields and rapid measurements of density fluctuations, using the three 6 meter stacer monopole antennas. The short antennas of STEREO respond both to density fluctuations and to electric fields. Therefore, it is desired to obtain four quantities, density and 3 components of electric field, from three measurements, the potentials on the three orthogonal antennas relative to the spacecraft, which requires some additional information. One possibility is to add a fourth equation implied by the large plasma conductivity, so large that electric field parallel to the magnetic field is zero, a condition which has often been used in electric field measurements. Under selected conditions, this seems to work. There are also conditions, for example ion acoustic waves, where the responses to density fluctuations and to electric fields are available from dispersion relations, and this provides another possible solution. A situation where it is not likely that the parallel electric field is zero is the case of solitary, intense bursts of Langmuir waves. For this case, it is expected that there is an electron density depression due to the ponderomotive pressure, and a resulting low frequency electric field from the non-neutrality which would be expected to have components parallel to the magnetic field. Examples will be discussed.

  5. Electron density profiles from ionograms - Underlying ionization corrections and their comparison with rocket results

    NASA Technical Reports Server (NTRS)

    Wright, J. W.; Paul, A. K.; Mechtly, E. A.

    1975-01-01

    Electron density profiles from nine daytime rocket flights at Wallops Island, Va., conducted at high and low levels of solar activity are compared with profiles calculated by inversion of ionograms obtained at the same times and location. Sources of error and uncertainty in the ionogram inversion are discussed, as are means for their amelioration. In most cases, agreement between the two kinds of measurement within a few percent in electron density and within a few percent of a scale height can be achieved.

  6. Measuring Air Density in the Introductory Lab

    NASA Astrophysics Data System (ADS)

    Calzà, G.; Gratton, L. M.; López-Arias, T.; Oss, S.

    2010-03-01

    The measurement of the mass, or the density, of air can easily be done with very simple materials and offers many interesting phenomena for discussion—buoyancy and its effects being the most obvious but not the only one. Many interesting considerations can be done regarding the behavior of gases, the effect of the external conditions in the measurement, and the reason for the choice of the procedure, among others. One of the most widespread approaches makes use of rubber balloons. Such an approach can be misleading if attention is not paid to the effect of the buoyant force on the balloon, exerted by the surrounding air. Air is weightless in an environment full of it. While this fact can usually be neglected in daily, nontechnical weight measurements, it is not the case when we are interested in the weight of air itself. A sketch such as the one depicted in Fig. 1 is often presented in elementary science textbooks, as a demonstration that air has weight. A search of the Internet will reveal that this misleading approach is often presented as the simplest one for this kind of measurement at an elementary level and represents one among other common misconceptions that can be found in K-6 science textbooks as discussed, for instance, in Ref. 2. For a more detailed description of the flaws inherent to the measurement of air's weight with a rubber balloon, see Ref. 3. In this paper we will describe two procedures to measure the density of air: weighing a PET bottle and a vacuum rigid container. There are other interesting ways to estimate the weight of air; see, for instance, the experiment of Zhu and Se-yuen using carbon dioxide and Archimedes' principle.4 We emphasize the experimental implications and the physical reasons for the accuracy and conceptual correctness of each method. It is important not to undervalue the importance of both simplicity and reliability for any experimental measurement made in a didactic context.

  7. Orbital imaging and assessment of different orbital models for the valence shell of methanol. Comparison of electron momentum spectroscopy measurements with near-Hartree-Fock limit, MRSD-CI, localized valence bond and density functional theory

    NASA Astrophysics Data System (ADS)

    Rolke, J.; Zheng, Y.; Brion, C. E.; Shi, Z.; Wolfe, Saul; Davidson, E. R.

    1999-06-01

    The momentum distributions of the valence orbitals of methanol have been studied by electron momentum spectroscopy (EMS) and Hartree-Fock (HF), multi-reference singles and doubles configuration interaction (MRSD-CI), localized valence bond (VB) and density functional theory (DFT) calculations. The experiment was performed using a multichannel EMS spectrometer at a total energy of 1200 eV plus the binding energy. Binding-energy spectra measured in the energy range of 6-47 eV are presented for the azimuthal angles φ=0° and φ=8°. Synthetic binding-energy spectra from Green's function and HF calculations for the azimuthal angles φ=0° and φ=8° in the 6-47 eV energy region are also compared to experiment. In the inner valence region strong splitting of the 4a' and 3a' ionization is observed due to final-state electron correlation effects. The measured momentum profiles are compared with HF calculations at the level of the target HF approximation using basis sets ranging from simple (STO-3G) to large (110-GTO and Trun-pV5Z). DFT calculations at the level of the target Kohn-Sham approximation employing the local density approximation or hybrid functional methods and the large Trun-pV5Z basis set are also compared to experiment. The effects of electron correlation and relaxation are also investigated in the outer valence region by MRSD-CI calculations of the full ion-neutral overlap amplitude using the 110-G(CI) basis set. The shapes of all momentum profiles are well predicted by higher level theory. Some small discrepancy still exists between all theoretical treatments and experiment in the low-momentum region for the HOMO 2a″ orbital. MRSD-CI or DFT (i.e. correlated) methods are needed to adequately describe the shape of the 7a' and (6a'+1a″) momentum profiles. The s-type character in the 5a' momentum profile is underestimated by HF theory and overemphasized by density functional theory (DFT). The 110-G(CI) calculation best predicts the shape for the 5a

  8. Electron density and parallel electric field distribution of the auroral density cavity

    NASA Astrophysics Data System (ADS)

    Alm, L.; Marklund, G. T.; Karlsson, T.

    2015-11-01

    We present an event study in which Cluster satellites C1 and C3 encounters the flux tube of a stable auroral arc in the premidnight sector. C1 observes the midcavity, while C3 enters the flux tube of the auroral arc at an altitude which is below the acceleration region, before crossing into the top half of the acceleration region. This allows us to study the boundary between the ionosphere and the density cavity, as well as large portion of the upper density cavity. The position of the two satellites, in relation to the acceleration region, is described using a pseudo altitude derived from the distribution of the parallel potential drop above and below the satellites. The electron density exhibits an anticorrelation with the pseudo altitude, indicating that the lowest electron densities are found near the top of the density cavity. Over the entire pseudo altitude range, the electron density distribution is similar to a planar sheath, formed out of a plasma sheet dominated electron distribution, in response to the parallel electric field of the acceleration region. This indicates that the parallel electric fields on the ionosphere-cavity boundary, as well as the midcavity parallel electric fields, are part of one unified structure rather than two discrete entities. The results highlight the strong connection between the auroral density cavity and auroral acceleration as well as the necessity of studying them in a unified fashion.

  9. Electron density in the cusp ionosphere: increase or depletion?

    NASA Astrophysics Data System (ADS)

    Pitout, Frédéric; Blelly, Pierre-Louis

    2003-07-01

    Radar observations indicate that the electron density may decrease significantly in the cusp ionosphere, despite the intense precipitation of low-energy electrons originating from the magnetosheath. We have modeled the ionospheric footprints of the cusp and mantle regions, and we focus on the two rival processes acting pro and con the electron density build-up in those regions of intense precipitation, which also happened to be regions of strong electric field. On one hand, the precipitation provides the ionosphere with electrons; on the other hand, the strong electric field heats up the ion population, stimulating the production of NO+. A fraction of the NO+ produced then feeds the electron-consuming chemical reaction NO+ + e- -> NO in the F1-region, although this reaction is not favored in presence of a high electron temperature. We investigate various combinations of E-field and initial electron densities. Our simulations clearly show that the overall result depends on the origin of the flux tube, which eventually opens in the cusp region. We interpret our results in terms of seasonal effects, IMF-By and MLT dependence.

  10. Interactive Database of Pulsar Flux Density Measurements

    NASA Astrophysics Data System (ADS)

    Koralewska, O.; Krzeszowski, K.; Kijak, J.; Lewandowski, W.

    2012-12-01

    The number of astronomical observations is steadily growing, giving rise to the need of cataloguing the obtained results. There are a lot of databases, created to store different types of data and serve a variety of purposes, e. g. databases providing basic data for astronomical objects (SIMBAD Astronomical Database), databases devoted to one type of astronomical object (ATNF Pulsar Database) or to a set of values of the specific parameter (Lorimer 1995 - database of flux density measurements for 280 pulsars on the frequencies up to 1606 MHz), etc. We found that creating an online database of pulsar flux measurements, provided with facilities for plotting diagrams and histograms, calculating mean values for a chosen set of data, filtering parameter values and adding new measurements by the registered users, could be useful in further studies on pulsar spectra.

  11. Mobility of electrons in supercritical krypton: Role of density fluctuations

    SciTech Connect

    Nishikawa, Masaru; Holroyd, Richard A.; Preses, Jack M.

    2007-07-07

    Excess electrons were generated in supercritical krypton by means of pulsed x-ray irradiation, and the electron transport phenomena were studied. Electron signals immediately after a 30 ps pulse showed a distinctive feature characteristic of the presence of the Ramsauer-Townsend minimum in the momentum transfer cross section. The dependence of the drift velocity v{sub D} on field strength was found to be concave upward in the low field region and then to go through a maximum with increasing field strength, which is also typical of the presence of a minimum in the scattering cross section at an intermediate field strength. A minimum in the electron mobility was observed at about one-half the critical density. The acoustical phonon scattering model, which successfully explained the mobility change in this density region in supercritical xenon, was again found to account for the mobility in supercritical krypton.

  12. Ionospheric topside models compared with experimental electron density profiles

    NASA Astrophysics Data System (ADS)

    Coisson, P.; Radicella, S. M.

    2003-04-01

    In the last couple of years an increasing number of topside electron density profiles has been made available through the Internet to the scientific community. This kind of data is particularly important for ionospheric modeling purposes, since the experimental information on the electron density above the ionosphere maximum of ionization is very scarce. The present work analyses the behavior of the NeQuick and IRI models, adopted by the ITU-R recommendation P.531-5, with respect to the topside electron density profiles available in the databases of ISIS2, IK19 and Cosmos-1809 satellites. Experimental total electron content (TEC) from the F2 peak up to satellite height and electron densities at fixed heights above that peak have been compared with values computed with the models. A wide range of different conditions (solar activity, local time, geographical and geomagnetic position has been considered). The analysis done allows to point out the behavior of the models and the improvement needed to allow a better reproduction of the experimental results.

  13. Measuring Entanglement Spectrum via Density Matrix Exponentiation

    NASA Astrophysics Data System (ADS)

    Zhu, Guanyu; Seif, Alireza; Pichler, Hannes; Zoller, Peter; Hafezi, Mohammad

    Entanglement spectrum (ES), the eigenvalues of the reduced density matrix of a subsystem, serves as a powerful theoretical tool to study many-body systems. For example, the gap and degeneracies of the entanglement spectrum have been used to identify various topological phases. However, the usefulness of such a concept in real experiments has been debated, since it is believed that obtaining the ES requires full state tomography, at a cost which exponentially grows with the systems size. Inspired by a recent density matrix exponentiation technique, we propose a scheme to measure ES by evolving the system with a Hamiltonian that is the subsystem's own reduced density matrix. Such a time evolution can be induced by an ancilla photon that is coupled to multiple qubits at the same time. The phase associated with the time evolution can be detected and converted into ES through either a digital or an analogue scheme. The digital scheme involves a modified quantum phase estimation algorithm based on random time evolution, while the analogue scheme is in the spirit of Ramsey interferometry. Both schemes are not limited by the size of the system, and are especially sensitive to the gap and degeneracies. We also discuss the implementation in cavity/circuit-QED and ion trap systems.

  14. Statistical quality indicators for electron-density maps

    SciTech Connect

    Tickle, Ian J.

    2012-04-01

    A likelihood-based metric for scoring the local agreement of a structure model with the observed electron density is described. The commonly used validation metrics for the local agreement of a structure model with the observed electron density, namely the real-space R (RSR) and the real-space correlation coefficient (RSCC), are reviewed. It is argued that the primary goal of all validation techniques is to verify the accuracy of the model, since precision is an inherent property of the crystal and the data. It is demonstrated that the principal weakness of both of the above metrics is their inability to distinguish the accuracy of the model from its precision. Furthermore, neither of these metrics in their usual implementation indicate the statistical significance of the result. The statistical properties of electron-density maps are reviewed and an improved alternative likelihood-based metric is suggested. This leads naturally to a χ{sup 2} significance test of the difference density using the real-space difference density Z score (RSZD). This is a metric purely of the local model accuracy, as required for effective model validation and structure optimization by practising crystallographers prior to submission of a structure model to the PDB. A new real-space observed density Z score (RSZO) is also proposed; this is a metric purely of the model precision, as a substitute for other precision metrics such as the B factor.

  15. Imaging polychromator for density measurements of polystyrene pellet cloud on the Large Helical Device.

    PubMed

    Sharov, I A; Sergeev, V Yu; Miroshnikov, I V; Tamura, N; Kuteev, B V; Sudo, S

    2015-04-01

    Experimental data on spatial distributions of a pellet cloud electron density are necessary for the development of many applications of pellet injection, namely, plasma fuelling, discharge control, and plasma diagnostics. An improved approach of electron density measurements inside the cloud of a polystyrene pellet ablating in hot plasma of the large helical device is described. Density values of (1-30) × 10(16) cm(-3) depending on the background plasma parameters and distance from the solid pellet were measured.

  16. Electron beam control using shock-induced density downramp injection

    NASA Astrophysics Data System (ADS)

    Swanson, K.; Tsai, H.-E.; Barber, S.; Lehe, R.; Mao, H.-S.; Steinke, S.; van Tilborg, J.; Geddes, C. G. R.; Leemans, W. P.

    2017-03-01

    In these experiments, we improve the quality of electrons injected along a shock-induced density downramp. We demonstrate that beam ellipticity and steering are influenced by the shock front tilt, and we present simple models to explain these effects. By adjusting the shock front angle, we minimize the beam's off-axis steering and ellipticity, producing high-quality electron beams over a tunable energy range.

  17. High Speed Digital Holography for Density and Fluctuation Measurements

    SciTech Connect

    ThomasJr., C. E.; Baylor, Larry R; Combs, Stephen Kirk; Meitner, Steven J; Rasmussen, David A; Granstedt, E. M.; Majeski, R.; Kaita, R.

    2010-01-01

    The state of the art in electro-optics has advanced to the point where digital holographic acquisition of wavefronts is now possible. Holographic wavefront acquisition provides the phase of the wavefront at every measurement point. This can be done with accuracy on the order of a thousandth of a wavelength, given that there is sufficient care in the design of the system. At wave frequencies which are much greater than the plasma frequency, the plasma index of refraction is linearly proportional to the electron density and wavelength, and the measurement of the phase of a wavefront passing through the plasma gives the chord-integrated density directly for all points measured on the wavefront. High-speed infrared cameras up to 40 000 fps at 644 pixels with resolutions up to 640512 pixels suitable for use with a CO2 laser are readily available, if expensive.

  18. High speed digital holography for density and fluctuation measurements (invited)

    SciTech Connect

    Thomas, C. E. Jr.; Baylor, L. R.; Combs, S. K.; Meitner, S. J.; Rasmussen, D. A.; Granstedt, E. M.; Majeski, R. P.; Kaita, R.

    2010-10-15

    The state of the art in electro-optics has advanced to the point where digital holographic acquisition of wavefronts is now possible. Holographic wavefront acquisition provides the phase of the wavefront at every measurement point. This can be done with accuracy on the order of a thousandth of a wavelength, given that there is sufficient care in the design of the system. At wave frequencies which are much greater than the plasma frequency, the plasma index of refraction is linearly proportional to the electron density and wavelength, and the measurement of the phase of a wavefront passing through the plasma gives the chord-integrated density directly for all points measured on the wavefront. High-speed infrared cameras (up to {approx}40 000 fps at {approx}64x4 pixels) with resolutions up to 640x512 pixels suitable for use with a CO{sub 2} laser are readily available, if expensive.

  19. High speed digital holography for density and fluctuation measurements (invited).

    PubMed

    Thomas, C E; Baylor, L R; Combs, S K; Meitner, S J; Rasmussen, D A; Granstedt, E M; Majeski, R P; Kaita, R

    2010-10-01

    The state of the art in electro-optics has advanced to the point where digital holographic acquisition of wavefronts is now possible. Holographic wavefront acquisition provides the phase of the wavefront at every measurement point. This can be done with accuracy on the order of a thousandth of a wavelength, given that there is sufficient care in the design of the system. At wave frequencies which are much greater than the plasma frequency, the plasma index of refraction is linearly proportional to the electron density and wavelength, and the measurement of the phase of a wavefront passing through the plasma gives the chord-integrated density directly for all points measured on the wavefront. High-speed infrared cameras (up to ∼40,000 fps at ∼64×4 pixels) with resolutions up to 640×512 pixels suitable for use with a CO(2) laser are readily available, if expensive.

  20. A simple and straightforward expression for curling probe electron density diagnosis in reactive plasmas

    NASA Astrophysics Data System (ADS)

    Arshadi, Ali; Brinkmann, Ralf Peter; Hotta, Masaya; Nakamura, Keiji

    2017-04-01

    Active plasma resonance spectroscopy (APRS) refers to the family of plasma diagnostic methods which utilize the ability of plasmas to resonate at frequencies close to the plasma frequency. APRS operates by exciting the plasma with a weak RF signal by means of a small electric probe. The response of the plasma is recorded by a network analyzer (NA). A mathematical model is applied to derive characteristics like the electron density and the electron temperature. The curling probe is a promising realization of APRS. The curling probe is well-qualified for the local measurement of the electron density in reactive plasmas. This spiral probe resonates in plasma at a larger density dependent frequency than the plasma frequency. This manuscript represents a simple and straightforward expression relating this resonance frequency to the electron density of the plasma. A good agreement is observed between the proposed expression and the results obtained from previous studies and numerical simulations.

  1. Comparisons of ionospheric electron density distributions reconstructed by GPS computerized tomography, backscatter ionograms, and vertical ionograms

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Lei, Yong; Li, Bofeng; An, Jiachun; Zhu, Peng; Jiang, Chunhua; Zhao, Zhengyu; Zhang, Yuannong; Ni, Binbin; Wang, Zemin; Zhou, Xuhua

    2015-12-01

    Global Positioning System (GPS) computerized ionosphere tomography (CIT) and ionospheric sky wave ground backscatter radar are both capable of measuring the large-scale, two-dimensional (2-D) distributions of ionospheric electron density (IED). Here we report the spatial and temporal electron density results obtained by GPS CIT and backscatter ionogram (BSI) inversion for three individual experiments. Both the GPS CIT and BSI inversion techniques demonstrate the capability and the consistency of reconstructing large-scale IED distributions. To validate the results, electron density profiles obtained from GPS CIT and BSI inversion are quantitatively compared to the vertical ionosonde data, which clearly manifests that both methods output accurate information of ionopsheric electron density and thereby provide reliable approaches to ionospheric soundings. Our study can improve current understanding of the capability and insufficiency of these two methods on the large-scale IED reconstruction.

  2. Electron density diagnostics in the 10-100 A interval for a solar flare

    NASA Technical Reports Server (NTRS)

    Brown, W. A.; Bruner, M. E.; Acton, L. W.; Mason, H. E.

    1986-01-01

    Electron density measurements from spectral-line diagnostics are reported for a solar flare on July 13, 1982, 1627 UT. The spectrogram, covering the 10-95 A interval, contained usable lines of helium-like ions C V, N VI, O VII, and Ne IX which are formed over the temperature interval 0.7-3.5 x 10 to the 6th K. In addition, spectral-line ratios of Si IX, Fe XIV, and Ca XV were compared with new theoretical estimates of their electron density sensitivity to obtain additional electron density diagnostics. An electron density of 3 x 10 to the 10th/cu cm was obtained. The comparison of these results from helium-like and other ions gives confidence in the utility of these tools for solar coronal analysis and will lead to a fuller understanding of the phenomena observed in this flare.

  3. The COSMOS-[O II] survey: evolution of electron density with star formation rate

    NASA Astrophysics Data System (ADS)

    Kaasinen, Melanie; Bian, Fuyan; Groves, Brent; Kewley, Lisa J.; Gupta, Anshu

    2017-03-01

    Star-forming galaxies at z > 1 exhibit significantly different properties to local galaxies of equivalent stellar mass. Not only are high-redshift star-forming galaxies characterized by higher star formation rates and gas fractions than their local counterparts, they also appear to host star-forming regions with significantly different physical conditions, including greater electron densities. To understand what physical mechanisms are responsible for the observed evolution of the star-forming conditions, we have assembled the largest sample of star-forming galaxies at z ∼ 1.5 with emission-line measurements of the {[O II]}λ λ 3726,3729 doublet. By comparing our z ∼ 1.5 sample to local galaxy samples with equivalent distributions of stellar mass, star formation rate and specific star formation rate we investigate the proposed evolution in electron density and its dependence on global properties. We measure an average electron density of 114_{-27}^{+28} cm^{-3} for our z ∼ 1.5 sample, a factor of 5 greater than the typical electron density of local star-forming galaxies. However, we find no offset between the typical electron densities of local and high-redshift galaxies with equivalent star formation rates. Our work indicates that the average electron density of a sample is highly sensitive to the star formation rates, implying that the previously observed evolution is mainly the result of selection effects.

  4. Density Measurement of Ethanol Blended Fuels

    NASA Astrophysics Data System (ADS)

    Man, John

    Density measurements for petro-ethanol blended fuels of various mixture ratios were conducted at temperatures from 5°C to 40°C using an oscillatory densitometer at the National Measurement Institute, Australia (NMIA). The petrol and ethanol fuels used for the preparation of samples of ethanol blends were supplied directly from a local petroleum refinery. Results were within the lower end of 0.06% repeatability and 0.3% reproducibility of the ASTM D4052-2011 method. The volume correction factors (VCF) for petrol and ethanol obtained from the measurement results agreed to within 0.1% and 0.01% of the values calculated as per American Petroleum Institute Standard 2540 Chapter 11.1 and 11.3.3 respectively. Based on a simple volume-mixture model, an equation was derived to calculate the VCF for petrol-ethanol blends. The measured and calculated values of VCF were in agreement within 0.1%. This paper presents the measurement method, results and the development of an equation for calculation of VCF for petro-ethanol blends. Note from Publisher: This article contains the abstract only.

  5. Assessing the effect of electron density in photon dose calculations

    SciTech Connect

    Seco, J.; Evans, P. M.

    2006-02-15

    Photon dose calculation algorithms (such as the pencil beam and collapsed cone, CC) model the attenuation of a primary photon beam in media other than water, by using pathlength scaling based on the relative mass density of the media to water. In this study, we assess if differences in the electron density between the water and media, with different atomic composition, can influence the accuracy of conventional photon dose calculations algorithms. A comparison is performed between an electron-density scaling method and the standard mass-density scaling method for (i) tissues present in the human body (such as bone, muscle, etc.), and for (ii) water-equivalent plastics, used in radiotherapy dosimetry and quality assurance. We demonstrate that the important material property that should be taken into account by photon dose algorithms is the electron density, and not the mass density. The mass-density scaling method is shown to overestimate, relative to electron-density predictions, the primary photon fluence for tissues in the human body and water-equivalent plastics, where 6%-7% and 10% differences were observed respectively for bone and air. However, in the case of patients, differences are expected to be smaller due to the large complexity of a treatment plan and of the patient anatomy and atomic composition and of the smaller thickness of bone/air that incident photon beams of a treatment plan may have to traverse. Differences have also been observed for conventional dose algorithms, such as CC, where an overestimate of the lung dose occurs, when irradiating lung tumors. The incorrect lung dose can be attributed to the incorrect modeling of the photon beam attenuation through the rib cage (thickness of 2-3 cm in bone upstream of the lung tumor) and through the lung and the oversimplified modeling of electron transport in convolution algorithms. In the present study, the overestimation of the primary photon fluence, using the mass-density scaling method, was shown

  6. A high current density plasma cathode electron gun

    SciTech Connect

    Fu Wenjie; Yan Yang; Li Wenxu; Li Xiaoyun; Wu Jianqiang

    2010-02-15

    The design, performance, and characteristics of a plasma cathode electron gun are presented. The plasma cathode is based on a hollow cathode direct current discharge, and the electron beam is accelerated by pulse voltage. By discharging at high gas pressure and operating at low gas pressure, both the maximum accelerating voltage and maximum emitting current could be increased. Utilizing argon, with the accelerating voltage up to 9 kV and gas pressure down to 52 mPa, the gun is able to generate an electron beam of about 4.7 A, and the corresponding emitting current density is about 600 A/cm{sup 2}.

  7. Electron-beam guiding by a reduced-density channel

    NASA Astrophysics Data System (ADS)

    Welch, D. R.; Bieniosek, F. M.; Godfrey, B. B.

    1990-12-01

    A new regime of density-channel guiding of a relativistic electron beam in air has been found using a three-dimensional charged-particle simulation code, and confirmed in a double-pulse electron-beam experiment. The guiding results from the temperature dependence of the electron-neutral momentum-transfer frequency nu(m). The mechanism does not require a deep channel to obtain a significant guiding force. For the 13-kA MEDEA II (and beams of similar parameters), guiding persists 10 nsec into the beam pulse, with the force per channel displacement as high as 4 G/cm.

  8. Plasma Focusing of High Energy Density Electron and Positron Beams

    SciTech Connect

    Ng, Johnny S.T.

    2000-10-09

    We present results from the SLAC E-150 experiment on plasma focusing of high energy density electron and, for the first time, positron beams. We also present results on plasma lens-induced synchrotron radiation, longitudinal dynamics of plasma focusing, and laser- and beam-plasma interactions.

  9. Probabilistic Fatigue Life Analysis of High Density Electronics Packaging

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Kolawa, E. A.; Sutharshana, S.; Newlin, L. E.; Creager, M.

    1996-01-01

    The fatigue of thin film metal interconnections in high density electronics packaging subjected to thermal cycling has been evaluated using a probabilistic fracture mechanics methodology. This probabilistic methodology includes characterization of thin film stress using an experimentally calibrated finite element model and simulation of flaw growth in the thin films using a stochastic crack growth model.

  10. Extreme atmospheric electron densities created by extensive air showers

    NASA Astrophysics Data System (ADS)

    Rutjes, Casper; Camporeale, Enrico; Ebert, Ute; Buitink, Stijn; Scholten, Olaf; Trinh, Gia

    2016-04-01

    A sufficient density of free electrons and strong electric fields are the basic requirements to start any electrical discharge. In the context of thunderstorm discharges it has become clear that in addition droplets and or ice particles are required to enhance the electric field to values above breakdown. In our recent study [1] we have shown that these three ingredients have to interplay to allow for lightning inception, triggered by an extensive air shower event. The extensive air showers are a very stochastic natural phenomenon, creating highly coherent bursts of extreme electron density in our atmosphere. Predicting these electron density bursts accurately one has to take the uncertainty of the input variables into account. To this end we use uncertainty quantification methods, like in [2], to post-process our detailed Monte Carlo extensive air shower simulations, done with the CORSIKA [3] software package, which provides an efficient and elegant way to determine the distribution of the atmospheric electron density enhancements. We will present the latest results. [1] Dubinova, A., Rutjes, C., Ebert, E., Buitink, S., Scholten, O., and Trinh, G. T. N. "Prediction of Lightning Inception by Large Ice Particles and Extensive Air Showers." PRL 115 015002 (2015) [2] G.J.A. Loeven, J.A.S. Witteveen, H. Bijl, Probabilistic collocation: an efficient nonintrusive approach for arbitrarily distributed parametric uncertainties, 45th AIAA Aerospace Sciences Meeting, Reno, Nevada, 2007, AIAA-2007-317 [3] Heck, Dieter, et al. CORSIKA: A Monte Carlo code to simulate extensive air showers. No. FZKA-6019. 1998.

  11. Communication: Near-locality of exchange and correlation density functionals for 1- and 2-electron systems.

    PubMed

    Sun, Jianwei; Perdew, John P; Yang, Zenghui; Peng, Haowei

    2016-05-21

    The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin density approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.

  12. Pseudoconvexity of the atomic electron density: A numerical study

    NASA Astrophysics Data System (ADS)

    Esquivel, Rodolfo O.; Sagar, Robin P.; Smith, Vedene H., Jr.; Chen, Jiqiang; Stott, M. J.

    1993-06-01

    The curvature, ρ''(r), of the atomic electron density ρ(r) is studied using results from a bare-Coulomb-field (BCF) model, Hartree-Fock (HF), and configuration-interaction (CI) calculations. A region of nonconvexity in ρ(r), previously reported by Angulo, Dehesa, and Gálvez [Phys. Rev. A 42, 641 (1990)] for light atoms in a Hartree-Fock framework, is investigated for all atoms up to Z=92 and is found not to be an artifact of the basis set or the HF model. Numerical results for the BCF model show that the total electron density of an arbitrary number of closed shells is convex. However, for the same model with electrons filling orbitals according to Stoner's restriction we find that nonconvexity of the density is a periodic property appearing around closed-shell ground-state hydrogenic configurations. Cusp conditions, reported earlier by Esquivel et al. [Phys. Rev. A 47, 936 (1993)] for the second derivative of the BCF density are verified for model atoms with s and p subshells. Using wave functions of near-HF accuracy we have found a region of nonconvexity in ρ(r) for atoms with Z=3-6, 16-32, and 45-92. Highly correlated densities of CI and Hylleraas-type quality for atoms of Li and Be isoelectronic sequences show that the nonconvex region of ρ(r) is largely unaffected by the inclusion of electron correlation. These results, coupled with those from the BCF model, lead us to suggest that it is the bare Coulomb field of the nucleus that is mainly responsible for the appearance of nonconvex regions in atoms. Furthermore, the degree of nonconvexity is shown to decrease as Z increases along the isoelectronic series. The contributions of different spin densities to the nonconvex electron densities is also studied. Finally, the behavior of the curvature of the electron density far from the nucleus is investigated. The ratio ρ''(r)/ρ(r) is found to approach an asymptotic value from above or below, according to the magnitude of the ionization potential.

  13. Relations among several nuclear and electronic density functional reactivity indexes

    NASA Astrophysics Data System (ADS)

    Torrent-Sucarrat, Miquel; Luis, Josep M.; Duran, Miquel; Toro-Labbé, Alejandro; Solà, Miquel

    2003-11-01

    An expansion of the energy functional in terms of the total number of electrons and the normal coordinates within the canonical ensemble is presented. A comparison of this expansion with the expansion of the energy in terms of the total number of electrons and the external potential leads to new relations among common density functional reactivity descriptors. The formulas obtained provide explicit links between important quantities related to the chemical reactivity of a system. In particular, the relation between the nuclear and the electronic Fukui functions is recovered. The connection between the derivatives of the electronic energy and the nuclear repulsion energy with respect to the external potential offers a proof for the "Quantum Chemical le Chatelier Principle." Finally, the nuclear linear response function is defined and the relation of this function with the electronic linear response function is given.

  14. Ligand Electron Density Shape Recognition Using 3D Zernike Descriptors

    NASA Astrophysics Data System (ADS)

    Gunasekaran, Prasad; Grandison, Scott; Cowtan, Kevin; Mak, Lora; Lawson, David M.; Morris, Richard J.

    We present a novel approach to crystallographic ligand density interpretation based on Zernike shape descriptors. Electron density for a bound ligand is expanded in an orthogonal polynomial series (3D Zernike polynomials) and the coefficients from this expansion are employed to construct rotation-invariant descriptors. These descriptors can be compared highly efficiently against large databases of descriptors computed from other molecules. In this manuscript we describe this process and show initial results from an electron density interpretation study on a dataset containing over a hundred OMIT maps. We could identify the correct ligand as the first hit in about 30 % of the cases, within the top five in a further 30 % of the cases, and giving rise to an 80 % probability of getting the correct ligand within the top ten matches. In all but a few examples, the top hit was highly similar to the correct ligand in both shape and chemistry. Further extensions and intrinsic limitations of the method are discussed.

  15. Bayesian electron density inference from JET lithium beam emission spectra using Gaussian processes

    NASA Astrophysics Data System (ADS)

    Kwak, Sehyun; Svensson, J.; Brix, M.; Ghim, Y.-C.; Contributors, JET

    2017-03-01

    A Bayesian model to infer edge electron density profiles is developed for the JET lithium beam emission spectroscopy (Li-BES) system, measuring Li I (2p-2s) line radiation using 26 channels with  ∼1 cm spatial resolution and 10∼ 20 ms temporal resolution. The density profile is modelled using a Gaussian process prior, and the uncertainty of the density profile is calculated by a Markov Chain Monte Carlo (MCMC) scheme. From the spectra measured by the transmission grating spectrometer, the Li I line intensities are extracted, and modelled as a function of the plasma density by a multi-state model which describes the relevant processes between neutral lithium beam atoms and plasma particles. The spectral model fully takes into account interference filter and instrument effects, that are separately estimated, again using Gaussian processes. The line intensities are inferred based on a spectral model consistent with the measured spectra within their uncertainties, which includes photon statistics and electronic noise. Our newly developed method to infer JET edge electron density profiles has the following advantages in comparison to the conventional method: (i) providing full posterior distributions of edge density profiles, including their associated uncertainties, (ii) the available radial range for density profiles is increased to the full observation range (∼26 cm), (iii) an assumption of monotonic electron density profile is not necessary, (iv) the absolute calibration factor of the diagnostic system is automatically estimated overcoming the limitation of the conventional technique and allowing us to infer the electron density profiles for all pulses without preprocessing the data or an additional boundary condition, and (v) since the full spectrum is modelled, the procedure of modulating the beam to measure the background signal is only necessary for the case of overlapping of the Li I line with impurity lines.

  16. Fast electronic resistance switching involving hidden charge density wave states

    NASA Astrophysics Data System (ADS)

    Vaskivskyi, I.; Mihailovic, I. A.; Brazovskii, S.; Gospodaric, J.; Mertelj, T.; Svetin, D.; Sutar, P.; Mihailovic, D.

    2016-05-01

    The functionality of computer memory elements is currently based on multi-stability, driven either by locally manipulating the density of electrons in transistors or by switching magnetic or ferroelectric order. Another possibility is switching between metallic and insulating phases by the motion of ions, but their speed is limited by slow nucleation and inhomogeneous percolative growth. Here we demonstrate fast resistance switching in a charge density wave system caused by pulsed current injection. As a charge pulse travels through the material, it converts a commensurately ordered polaronic Mott insulating state in 1T-TaS2 to a metastable electronic state with textured domain walls, accompanied with a conversion of polarons to band states, and concurrent rapid switching from an insulator to a metal. The large resistance change, high switching speed (30 ps) and ultralow energy per bit opens the way to new concepts in non-volatile memory devices manipulating all-electronic states.

  17. Sorting carbon nanotubes by electronic structure using density differentiation.

    PubMed

    Arnold, Michael S; Green, Alexander A; Hulvat, James F; Stupp, Samuel I; Hersam, Mark C

    2006-10-01

    The heterogeneity of as-synthesized single-walled carbon nanotubes (SWNTs) precludes their widespread application in electronics, optics and sensing. We report on the sorting of carbon nanotubes by diameter, bandgap and electronic type using structure-discriminating surfactants to engineer subtle differences in their buoyant densities. Using the scalable technique of density-gradient ultracentrifugation, we have isolated narrow distributions of SWNTs in which >97% are within a 0.02-nm-diameter range. Furthermore, using competing mixtures of surfactants, we have produced bulk quantities of SWNTs of predominantly a single electronic type. These materials were used to fabricate thin-film electrical devices of networked SWNTs characterized by either metallic or semiconducting behaviour.

  18. Fast electronic resistance switching involving hidden charge density wave states.

    PubMed

    Vaskivskyi, I; Mihailovic, I A; Brazovskii, S; Gospodaric, J; Mertelj, T; Svetin, D; Sutar, P; Mihailovic, D

    2016-05-16

    The functionality of computer memory elements is currently based on multi-stability, driven either by locally manipulating the density of electrons in transistors or by switching magnetic or ferroelectric order. Another possibility is switching between metallic and insulating phases by the motion of ions, but their speed is limited by slow nucleation and inhomogeneous percolative growth. Here we demonstrate fast resistance switching in a charge density wave system caused by pulsed current injection. As a charge pulse travels through the material, it converts a commensurately ordered polaronic Mott insulating state in 1T-TaS2 to a metastable electronic state with textured domain walls, accompanied with a conversion of polarons to band states, and concurrent rapid switching from an insulator to a metal. The large resistance change, high switching speed (30 ps) and ultralow energy per bit opens the way to new concepts in non-volatile memory devices manipulating all-electronic states.

  19. Fast electronic resistance switching involving hidden charge density wave states

    PubMed Central

    Vaskivskyi, I.; Mihailovic, I. A.; Brazovskii, S.; Gospodaric, J.; Mertelj, T.; Svetin, D.; Sutar, P.; Mihailovic, D.

    2016-01-01

    The functionality of computer memory elements is currently based on multi-stability, driven either by locally manipulating the density of electrons in transistors or by switching magnetic or ferroelectric order. Another possibility is switching between metallic and insulating phases by the motion of ions, but their speed is limited by slow nucleation and inhomogeneous percolative growth. Here we demonstrate fast resistance switching in a charge density wave system caused by pulsed current injection. As a charge pulse travels through the material, it converts a commensurately ordered polaronic Mott insulating state in 1T–TaS2 to a metastable electronic state with textured domain walls, accompanied with a conversion of polarons to band states, and concurrent rapid switching from an insulator to a metal. The large resistance change, high switching speed (30 ps) and ultralow energy per bit opens the way to new concepts in non-volatile memory devices manipulating all-electronic states. PMID:27181483

  20. FUSION++: A New Data Assimilative Model for Electron Density Forecasting

    NASA Astrophysics Data System (ADS)

    Bust, G. S.; Comberiate, J.; Paxton, L. J.; Kelly, M.; Datta-Barua, S.

    2014-12-01

    There is a continuing need within the operational space weather community, both civilian and military, for accurate, robust data assimilative specifications and forecasts of the global electron density field, as well as derived RF application product specifications and forecasts obtained from the electron density field. The spatial scales of interest range from a hundred to a few thousand kilometers horizontally (synoptic large scale structuring) and meters to kilometers (small scale structuring that cause scintillations). RF space weather applications affected by electron density variability on these scales include navigation, communication and geo-location of RF frequencies ranging from 100's of Hz to GHz. For many of these applications, the necessary forecast time periods range from nowcasts to 1-3 hours. For more "mission planning" applications, necessary forecast times can range from hours to days. In this paper we present a new ionosphere-thermosphere (IT) specification and forecast model being developed at JHU/APL based upon the well-known data assimilation algorithms Ionospheric Data Assimilation Four Dimensional (IDA4D) and Estimating Model Parameters from Ionospheric Reverse Engineering (EMPIRE). This new forecast model, "Forward Update Simple IONosphere model Plus IDA4D Plus EMPIRE (FUSION++), ingests data from observations related to electron density, winds, electric fields and neutral composition and provides improved specification and forecast of electron density. In addition, the new model provides improved specification of winds, electric fields and composition. We will present a short overview and derivation of the methodology behind FUSION++, some preliminary results using real observational sources, example derived RF application products such as HF bi-static propagation, and initial comparisons with independent data sources for validation.

  1. Accurate Measurement of Bone Density with QCT

    NASA Technical Reports Server (NTRS)

    Cleek, Tammy M.; Beaupre, Gary S.; Matsubara, Miki; Whalen, Robert T.; Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    The objective of this study was to determine the accuracy of bone density measurement with a new OCT technology. A phantom was fabricated using two materials, a water-equivalent compound and hydroxyapatite (HA), combined in precise proportions (QRM GrnbH, Germany). The phantom was designed to have the approximate physical size and range in bone density as a human calcaneus, with regions of 0, 50, 100, 200, 400, and 800 mg/cc HA. The phantom was scanned at 80, 120 and 140 KVp with a GE CT/i HiSpeed Advantage scanner. A ring of highly attenuating material (polyvinyl chloride or teflon) was slipped over the phantom to alter the image by introducing non-axi-symmetric beam hardening. Images were corrected with a new OCT technology using an estimate of the effective X-ray beam spectrum to eliminate beam hardening artifacts. The algorithm computes the volume fraction of HA and water-equivalent matrix in each voxel. We found excellent agreement between expected and computed HA volume fractions. Results were insensitive to beam hardening ring material, HA concentration, and scan voltage settings. Data from all 3 voltages with a best fit linear regression are displays.

  2. Accurate Measurement of Bone Density with QCT

    NASA Technical Reports Server (NTRS)

    Cleek, Tammy M.; Beaupre, Gary S.; Matsubara, Miki; Whalen, Robert T.; Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    The objective of this study was to determine the accuracy of bone density measurement with a new OCT technology. A phantom was fabricated using two materials, a water-equivalent compound and hydroxyapatite (HA), combined in precise proportions (QRM GrnbH, Germany). The phantom was designed to have the approximate physical size and range in bone density as a human calcaneus, with regions of 0, 50, 100, 200, 400, and 800 mg/cc HA. The phantom was scanned at 80, 120 and 140 KVp with a GE CT/i HiSpeed Advantage scanner. A ring of highly attenuating material (polyvinyl chloride or teflon) was slipped over the phantom to alter the image by introducing non-axi-symmetric beam hardening. Images were corrected with a new OCT technology using an estimate of the effective X-ray beam spectrum to eliminate beam hardening artifacts. The algorithm computes the volume fraction of HA and water-equivalent matrix in each voxel. We found excellent agreement between expected and computed HA volume fractions. Results were insensitive to beam hardening ring material, HA concentration, and scan voltage settings. Data from all 3 voltages with a best fit linear regression are displays.

  3. Standardizing CT lung density measure across scanner manufacturers.

    PubMed

    Chen-Mayer, Huaiyu Heather; Fuld, Matthew K; Hoppel, Bernice; Judy, Philip F; Sieren, Jered P; Guo, Junfeng; Lynch, David A; Possolo, Antonio; Fain, Sean B

    2017-03-01

    Computed Tomography (CT) imaging of the lung, reported in Hounsfield Units (HU), can be parameterized as a quantitative image biomarker for the diagnosis and monitoring of lung density changes due to emphysema, a type of chronic obstructive pulmonary disease (COPD). CT lung density metrics are global measurements based on lung CT number histograms, and are typically a quantity specifying either the percentage of voxels with CT numbers below a threshold, or a single CT number below which a fixed relative lung volume, nth percentile, falls. To reduce variability in the density metrics specified by CT attenuation, the Quantitative Imaging Biomarkers Alliance (QIBA) Lung Density Committee has organized efforts to conduct phantom studies in a variety of scanner models to establish a baseline for assessing the variations in patient studies that can be attributed to scanner calibration and measurement uncertainty. Data were obtained from a phantom study on CT scanners from four manufacturers with several protocols at various tube potential voltage (kVp) and exposure settings. Free from biological variation, these phantom studies provide an assessment of the accuracy and precision of the density metrics across platforms solely due to machine calibration and uncertainty of the reference materials. The phantom used in this study has three foam density references in the lung density region, which, after calibration against a suite of Standard Reference Materials (SRM) foams with certified physical density, establishes a HU-electron density relationship for each machine-protocol. We devised a 5-step calibration procedure combined with a simplified physical model that enabled the standardization of the CT numbers reported across a total of 22 scanner-protocol settings to a single energy (chosen at 80 keV). A standard deviation was calculated for overall CT numbers for each density, as well as by scanner and other variables, as a measure of the variability, before and after the

  4. Crustal Magnetic Field Effects on the Martian High-Latitude Electron Density Profiles

    NASA Astrophysics Data System (ADS)

    Majeed, T.; Bougher, S. W.; Haider, S. A.

    2016-12-01

    All measurements of the Martian high-latitude ionosphere near terminators have shown complex range of features for the plasma transport region. The measured dayside electron density profiles for large SZAs have shown unprecedented characteristics of the topside plasma distribution with scale heights in the range from tens of kilometers to hundreds of kilometers. The measured height of the top of the ionosphere ranges from 300 km to more than 600 km. Most recently, MAVEN has also measured in situ density profiles of the Martian ionospheric ions from its periapsis altitude of 150 km to an altitude of about 500 km. Some of the topside electron density profiles indicate strong solar wind interaction with the upper ionosphere and a variable magnetic field environment. The variation of the measured topside plasma scale heights seems to violate diffusive equilibrium: the condition that would have been imposed by a magnetic field-free ionosphere. Such a behavior of the ionosphere can be interpreted by the vertical plasma transport caused by the interaction between the solar wind and crustal magnetic field lines. The vertical transport of plasma in our 1-D chemical diffusive model is simulated by vertical ion velocities, whose values can be interpreted as drift velocities along the magnetic field lines. We find that the variation of the model electron density scale heights is sensitive to the magnitudes of upward and downward drifts. We also find that a combination of upward and downward drifts in the range 6 m/s to 35 m/s is required to explain some of the measured topside electron density profiles in the vicinity of strong crustal magnetic field. The magnitudes of these drift velocities are compared with the plasma velocities simulated by existing models. The model results will be presented in comparison with the measured electron density as well as ion density profiles.

  5. More systematic errors in the measurement of power spectral density

    NASA Astrophysics Data System (ADS)

    Mack, Chris A.

    2015-07-01

    Power spectral density (PSD) analysis is an important part of understanding line-edge and linewidth roughness in lithography. But uncertainty in the measured PSD, both random and systematic, complicates interpretation. It is essential to understand and quantify the sources of the measured PSD's uncertainty and to develop mitigation strategies. Both analytical derivations and simulations of rough features are used to evaluate data window functions for reducing spectral leakage and to understand the impact of data detrending on biases in PSD, autocovariance function (ACF), and height-to-height covariance function measurement. A generalized Welch window was found to be best among the windows tested. Linear detrending for line-edge roughness measurement results in underestimation of the low-frequency PSD and errors in the ACF and height-to-height covariance function. Measuring multiple edges per scanning electron microscope image reduces this detrending bias.

  6. Investigation of the Electronic Structure of Solid Density Plasmas by X-Ray Scattering

    SciTech Connect

    Gregori, G; Glenzer, S H; Forest, F J; Kuhlbrodt, S; Redmer, R; Faussurier, G; Blancard, C; Renaudin, P; Landen, O L

    2003-05-19

    We present an improved analytical expression for the x-ray dynamic structure factor from a dense plasma which includes the effects of weakly bound electrons. This result can be applied to describe scattering from low to moderate Z plasmas, and it covers the entire range of plasma conditions that can be found in inertial confinement fusion experiments, from ideal to degenerate up to moderately coupled systems. We use our theory to interpret x-ray scattering experiments from solid density carbon plasma and to extract accurate measurements of electron temperature, electron density and charge state. We use our experimental results to validate various equation-of-state models for carbon plasmas.

  7. Spectral density measurements of gyro noise

    NASA Technical Reports Server (NTRS)

    Truncale, A.; Koenigsberg, W.; Harris, R.

    1972-01-01

    Power spectral density (PSD) was used to analyze the outputs of several gyros in the frequency range from 0.01 to 200 Hz. Data were accumulated on eight inertial quality instruments. The results are described in terms of input angle noise (arcsec 2/Hz) and are presented on log-log plots of PSD. These data show that the standard deviation of measurement noise was 0.01 arcsec or less for some gyros in the passband from 1 Hz down 10 0.01 Hz and probably down to 0.001 Hz for at least one gyro. For the passband between 1 and 100 Hz, uncertainties in the 0.01 and 0.05 arcsec region were observed.

  8. Predictions of electron temperatures in the Mars ionosphere and their effects on electron densities

    NASA Astrophysics Data System (ADS)

    Withers, Paul; Fallows, Kathryn; Matta, Majd

    2014-04-01

    Observations of peak electron densities in the Mars ionosphere are well fit by a simplistic theory that assumes the electron temperature, Te, at the peak remains constant as solar zenith angle, χ, changes. However, Te ought to vary with both altitude and χ. Here we use an existing numerical model of ionospheric energetics, which includes both vertical and diurnal variations in temperatures, to predict that Te at the ionospheric peak is relatively independent of χ. This model accurately predicts the observed dependence of peak electron density on χ, whereas predictions using Viking-based electron temperatures that are held constant with time do not. A simplified analytic model is developed to interpret these results further. It predicts that the difference between electron and neutral temperatures is proportional to the ratio of electron heating rate to electron production rate and proportional to the square root of solar irradiance.

  9. Collimated fast electron beam generation in critical density plasma

    SciTech Connect

    Iwawaki, T. Habara, H.; Morita, K.; Tanaka, K. A.; Baton, S.; Fuchs, J.; Chen, S.; Nakatsutsumi, M.; Rousseaux, C.; Filippi, F.; Nazarov, W.

    2014-11-15

    Significantly collimated fast electron beam with a divergence angle 10° (FWHM) is observed when an ultra-intense laser pulse (I = 10{sup 14 }W/cm{sup 2}, 300 fs) irradiates a uniform critical density plasma. The uniform plasma is created through the ionization of an ultra-low density (5 mg/c.c.) plastic foam by X-ray burst from the interaction of intense laser (I = 10{sup 14 }W/cm{sup 2}, 600 ps) with a thin Cu foil. 2D Particle-In-Cell (PIC) simulation well reproduces the collimated electron beam with a strong magnetic field in the region of the laser pulse propagation. To understand the physical mechanism of the collimation, we calculate energetic electron motion in the magnetic field obtained from the 2D PIC simulation. As the results, the strong magnetic field (300 MG) collimates electrons with energy over a few MeV. This collimation mechanism may attract attention in many applications such as electron acceleration, electron microscope and fast ignition of laser fusion.

  10. Estimation of dislocation density from precession electron diffraction data using the Nye tensor.

    PubMed

    Leff, A C; Weinberger, C R; Taheri, M L

    2015-06-01

    The Nye tensor offers a means to estimate the geometrically necessary dislocation density of a crystalline sample based on measurements of the orientation changes within individual crystal grains. In this paper, the Nye tensor theory is applied to precession electron diffraction automated crystallographic orientation mapping (PED-ACOM) data acquired using a transmission electron microscope (TEM). The resulting dislocation density values are mapped in order to visualize the dislocation structures present in a quantitative manner. These density maps are compared with other related methods of approximating local strain dependencies in dislocation-based microstructural transitions from orientation data. The effect of acquisition parameters on density measurements is examined. By decreasing the step size and spot size during data acquisition, an increasing fraction of the dislocation content becomes accessible. Finally, the method described herein is applied to the measurement of dislocation emission during in situ annealing of Cu in TEM in order to demonstrate the utility of the technique for characterizing microstructural dynamics.

  11. Validation of Ionosonde Electron Density Reconstruction Algorithms with IONOLAB-RAY in Central Europe

    NASA Astrophysics Data System (ADS)

    Gok, Gokhan; Mosna, Zbysek; Arikan, Feza; Arikan, Orhan; Erdem, Esra

    2016-07-01

    Ionospheric observation is essentially accomplished by specialized radar systems called ionosondes. The time delay between the transmitted and received signals versus frequency is measured by the ionosondes and the received signals are processed to generate ionogram plots, which show the time delay or reflection height of signals with respect to transmitted frequency. The critical frequencies of ionospheric layers and virtual heights, that provide useful information about ionospheric structurecan be extracted from ionograms . Ionograms also indicate the amount of variability or disturbances in the ionosphere. With special inversion algorithms and tomographical methods, electron density profiles can also be estimated from the ionograms. Although structural pictures of ionosphere in the vertical direction can be observed from ionosonde measurements, some errors may arise due to inaccuracies that arise from signal propagation, modeling, data processing and tomographic reconstruction algorithms. Recently IONOLAB group (www.ionolab.org) developed a new algorithm for effective and accurate extraction of ionospheric parameters and reconstruction of electron density profile from ionograms. The electron density reconstruction algorithm applies advanced optimization techniques to calculate parameters of any existing analytical function which defines electron density with respect to height using ionogram measurement data. The process of reconstructing electron density with respect to height is known as the ionogram scaling or true height analysis. IONOLAB-RAY algorithm is a tool to investigate the propagation path and parameters of HF wave in the ionosphere. The algorithm models the wave propagation using ray representation under geometrical optics approximation. In the algorithm , the structural ionospheric characteristics arerepresented as realistically as possible including anisotropicity, inhomogenity and time dependence in 3-D voxel structure. The algorithm is also used

  12. A technique for routinely updating the ITU-R database using radio occultation electron density profiles

    NASA Astrophysics Data System (ADS)

    Brunini, Claudio; Azpilicueta, Francisco; Nava, Bruno

    2013-09-01

    Well credited and widely used ionospheric models, such as the International Reference Ionosphere or NeQuick, describe the variation of the electron density with height by means of a piecewise profile tied to the F2-peak parameters: the electron density,, and the height, . Accurate values of these parameters are crucial for retrieving reliable electron density estimations from those models. When direct measurements of these parameters are not available, the models compute the parameters using the so-called ITU-R database, which was established in the early 1960s. This paper presents a technique aimed at routinely updating the ITU-R database using radio occultation electron density profiles derived from GPS measurements gathered from low Earth orbit satellites. Before being used, these radio occultation profiles are validated by fitting to them an electron density model. A re-weighted Least Squares algorithm is used for down-weighting unreliable measurements (occasionally, entire profiles) and to retrieve and values—together with their error estimates—from the profiles. These values are used to monthly update the database, which consists of two sets of ITU-R-like coefficients that could easily be implemented in the IRI or NeQuick models. The technique was tested with radio occultation electron density profiles that are delivered to the community by the COSMIC/FORMOSAT-3 mission team. Tests were performed for solstices and equinoxes seasons in high and low-solar activity conditions. The global mean error of the resulting maps—estimated by the Least Squares technique—is between and elec/m for the F2-peak electron density (which is equivalent to 7 % of the value of the estimated parameter) and from 2.0 to 5.6 km for the height (2 %).

  13. Diurnal and seasonal Variability of D-Region Electron Densities at 69°N

    NASA Astrophysics Data System (ADS)

    Singer, Werner; Rapp, Markus; Latteck, Ralph; Friedrich, Martin

    Electron densities of the lower ionosphere are estimated with the Saura MF Doppler radar since summer 2004. The radar is located near country-regioncountry-regionAndenes, countryregionNorway (69.3° N, 16.0° E) and operates at 3.17 MHz with a peak power of 116 kW. The narrow beam transmitting/receiving antenna consists of 29 crossed half-wave dipoles arranged as a Mills Cross resulting in a beam width of about 7° . Antenna and transceiver system provide high flexibility in beam forming as well as the capability forming beams with left and right circular polarization at alternate pulses. The experiment utilizes partial reflections of ordinary and extraordinary component waves from scatterers in the altitude range 50-90 km to estimate electron number densities from differential absorption (DAE) and differential phase (DPE) measurements. Height profiles are obtained between about 55 km and 90 km with a time resolution of 9 minutes and a height resolution of 1 km. The electron density profiles independently derived from DAE and DPE measurements are in remarkable good agreement. Electron number densities are given if the results of the DAE and DPE experiments are in agreement within a factor of two. We discuss the diurnal and seasonal variability of electron densities obtained at Andenes and the response of D-region electron densities to solar activity storms and geomagnetic disturbances. The radar results are compared with previous rocket-borne radio wave propagation measurements at Andenes as well as with recent co-located simultaneous insitu observations using radio wave propagation experiments (differential absorption and Faraday rotation) which showed good agreement between the two techniques. In addition, monthly mean electron densities obtained with the MF radar are compared the recent dedicated auroral-zone, empirical model IMAZ.

  14. Electron charge densities at conduction-band edges of semiconductors

    SciTech Connect

    Richardson, S.L.; Cohen, M.L.; Louie, S.G.; Chelikowsky, J.R.

    1986-01-15

    We demonstrate that both the empirical pseudopotential method (EPM) and the linear combination of atomiclike orbitals (LCAO) approach are capable of producing consistent electronic charge distributions in a compound semiconductor. Since the EPM approach is known to produce total valence electron charge densities which compare well with experimental x-ray data (e.g., Si), this work serves as a further test for the LCAO method. In particular, the EPM scheme, which uses an extended plane-wave basis, and the LCAO scheme, which employs a localized Gaussian basis, are used, with the same empirical potential as input, to analyze both the total valence electron charge density and the charge density of the first conduction band at the GAMMA, L, and X k points of the Brillouin zone. These charge densities are decomposed into their s-, p-, and d-orbital contributions, and this information is used to interpret the differences in the topologies of the conduction bands at GAMMA, L, and X. Such differences are crucial for a comprehensive understanding of interstitial impurities and the response of specific band states to perturbations in compound semiconductors.

  15. Nearly degenerate electron distributions and superluminal radiation densities

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2010-02-01

    Polylogarithmic fugacity expansions of the partition function, the caloric and thermal equations of state, and the specific heat of fermionic power-law distributions are derived in the nearly degenerate low-temperature/high-density quantum regime. The spectral functions of an ultra-relativistic electron plasma are obtained by averaging the tachyonic radiation densities of inertial electrons with Fermi power-laws, whose entropy is shown to be extensive and stable. The averaged radiation densities are put to test by performing tachyonic cascade fits to the γ-ray spectrum of the TeV blazar Markarian 421 in a low and high emission state. Estimates of the thermal electron plasma in this active galactic nucleus are extracted from the spectral fits, such as temperature, number count, and internal energy. The tachyonic cascades reproduce the quiescent as well as a burst spectrum of the blazar obtained with imaging atmospheric Cherenkov detectors. Double-logarithmic plots of the differential tachyon flux exhibit intrinsic spectral curvature, caused by the Boltzmann factor of the electron gas.

  16. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics

    SciTech Connect

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; Theobald, W.; Mileham, C.; Begishev, I. A.; Bromage, J.; Regan, S. P.

    2016-02-10

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 1023 cm₋3 in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. We found the 50 ± 15 μm spatial resolution achieved across the full field of view was limited by the x-ray source-size, similar to conventional radiography.

  17. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics

    DOE PAGES

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; ...

    2016-02-10

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 1023 cm₋3 in amore » low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. We found the 50 ± 15 μm spatial resolution achieved across the full field of view was limited by the x-ray source-size, similar to conventional radiography.« less

  18. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics.

    PubMed

    Valdivia, M P; Stutman, D; Stoeckl, C; Theobald, W; Mileham, C; Begishev, I A; Bromage, J; Regan, S P

    2016-02-01

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 10(23) cm(-3) in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. The 50 ± 15 μm spatial resolution achieved across the full field of view was found to be limited by the x-ray source-size, similar to conventional radiography.

  19. Statistical quality indicators for electron-density maps

    PubMed Central

    Tickle, Ian J.

    2012-01-01

    The commonly used validation metrics for the local agreement of a structure model with the observed electron density, namely the real-space R (RSR) and the real-space correlation coefficient (RSCC), are reviewed. It is argued that the primary goal of all validation techniques is to verify the accuracy of the model, since precision is an inherent property of the crystal and the data. It is demonstrated that the principal weakness of both of the above metrics is their inability to distinguish the accuracy of the model from its precision. Furthermore, neither of these metrics in their usual implementation indicate the statistical significance of the result. The statistical properties of electron-density maps are reviewed and an improved alternative likelihood-based metric is suggested. This leads naturally to a χ2 significance test of the difference density using the real-space difference density Z score (RSZD). This is a metric purely of the local model accuracy, as required for effective model validation and structure optimization by practising crystallographers prior to submission of a structure model to the PDB. A new real-space observed density Z score (RSZO) is also proposed; this is a metric purely of the model precision, as a substitute for other precision metrics such as the B factor. PMID:22505266

  20. Statistical quality indicators for electron-density maps.

    PubMed

    Tickle, Ian J

    2012-04-01

    The commonly used validation metrics for the local agreement of a structure model with the observed electron density, namely the real-space R (RSR) and the real-space correlation coefficient (RSCC), are reviewed. It is argued that the primary goal of all validation techniques is to verify the accuracy of the model, since precision is an inherent property of the crystal and the data. It is demonstrated that the principal weakness of both of the above metrics is their inability to distinguish the accuracy of the model from its precision. Furthermore, neither of these metrics in their usual implementation indicate the statistical significance of the result. The statistical properties of electron-density maps are reviewed and an improved alternative likelihood-based metric is suggested. This leads naturally to a χ(2) significance test of the difference density using the real-space difference density Z score (RSZD). This is a metric purely of the local model accuracy, as required for effective model validation and structure optimization by practising crystallographers prior to submission of a structure model to the PDB. A new real-space observed density Z score (RSZO) is also proposed; this is a metric purely of the model precision, as a substitute for other precision metrics such as the B factor.

  1. A reexamination of electron density diagnostics for ionized gaseous nebulae

    NASA Astrophysics Data System (ADS)

    Wang, W.; Liu, X.-W.; Zhang, Y.; Barlow, M. J.

    2004-12-01

    We present a comparison of electron densities derived from optical forbidden line diagnostic ratios for a sample of over a hundred nebulae. We consider four density indicators, the [O II] λ3729/λ3726, [S II] λ6716/λ6731, [Cl III] λ5517/λ5537 and [Ar IV] λ4711/λ4740 doublet ratios. Except for a few H II regions for which data from the literature were used, diagnostic line ratios were derived from our own high quality spectra. For the [O II] λ3729/λ3726 doublet ratio, we find that our default atomic data set, consisting of transition probabilities from Zeippen (\\cite{zeippen1982}) and collision strengths from Pradhan (\\cite{pradhan}), fit the observations well, although at high electron densities, the [O II] doublet ratio yields densities systematically lower than those given by the [S II] λ6716/λ6731 doublet ratio, suggesting that the ratio of transition probabilities of the [O II] doublet, A(λ3729)/A(λ3726), given by Zeippen (\\cite{zeippen1982}) may need to be revised upwards by approximately 6 per cent. Our analysis also shows that the more recent calculations of [O II] transition probabilities by Zeippen (\\cite{zeippen1987a}) and collision strengths by McLaughlin & Bell (\\cite{mclaughlin}) are inconsistent with the observations at the high and low density limits, respectively, and can therefore be ruled out. We confirm the earlier result of Copetti & Writzl (\\cite{copetti2002}) that the [O II] transition probabilities calculated by Wiese et al. (\\cite{wiese}) yield electron densities systematically lower than those deduced from the [S II] λ6716/λ6731 doublet ratio and that the discrepancy is most likely caused by errors in the transition probabilities calculated by Wiese et al. (\\cite{wiese}). Using our default atomic data set for [O II], we find that Ne([O II]) ⪉ Ne([S II]) ≈ Ne([Cl III])< Ne([Ar IV]).

  2. Usefulness of bone density measurement in fallers.

    PubMed

    Blain, Hubert; Rolland, Yves; Beauchet, Olivier; Annweiler, Cedric; Benhamou, Claude-Laurent; Benetos, Athanase; Berrut, Gilles; Audran, Maurice; Bendavid, Sauveur; Bousson, Valérie; Briot, Karine; Brazier, Michel; Breuil, Véronique; Chapuis, Laure; Chapurlat, Roland; Cohen-Solal, Martine; Cortet, Bernard; Dargent, Patricia; Fardellone, Patrice; Feron, Jean-Marc; Gauvain, Jean-Bernard; Guggenbuhl, Pascal; Hanon, Olivier; Laroche, Michel; Kolta, Sami; Lespessailles, Eric; Letombe, Brigitte; Mallet, Eric; Marcelli, Christian; Orcel, Philippe; Puisieux, François; Seret, Patrick; Souberbielle, Jean-Claude; Sutter, Bruno; Trémollières, Florence; Weryha, Georges; Roux, Christian; Thomas, Thierry

    2014-10-01

    The objective of this systematic literature review is to discuss the latest French recommendation issued in 2012 that a fall within the past year should lead to bone mineral density (BMD) measurement using dual-energy X-ray absorptiometry (DXA). This recommendation rests on four facts. First, osteoporosis and fall risk are the two leading risk factors for nonvertebral fractures in postmenopausal women. Second, BMD measurement using DXA supplies significant information on the fracture risk independently from the fall risk. Thus, when a fall occurs, the fracture risk increases as BMD decreases. Third, osteoporosis drugs have been proven effective in preventing fractures only in populations with osteoporosis defined based on BMD criteria. Finally, the prevalence of osteoporosis is high in patients who fall and increases in the presence of markers for frailty (e.g., recurrent falls, sarcopenia [low muscle mass and strength], limited mobility, and weight loss), which are risk factors for both osteoporosis and falls. Nevertheless, life expectancy should be taken into account when assessing the appropriateness of DXA in fallers, as osteoporosis treatments require at least 12months to decrease the fracture risk. Another relevant factor is the availability of DXA, which may be limited due to geographic factors, patient dependency, or severe cognitive impairments, for instance. Studies are needed to better determine how the fall risk and frailty should be incorporated into the fracture risk evaluation based on BMD and the FRAX® tool. Copyright © 2014. Published by Elsevier SAS.

  3. Electron density and temperature in NIO1 RF source operated in oxygen and argon

    NASA Astrophysics Data System (ADS)

    Barbisan, M.; Zaniol, B.; Cavenago, M.; Pasqualotto, R.; Serianni, G.; Zanini, M.

    2017-08-01

    The NIO1 experiment, built and operated at Consorzio RFX, hosts an RF negative ion source, from which it is possible to produce a beam of maximum 130 mA in H- ions, accelerated up to 60 kV. For the preliminary tests of the extraction system the source has been operated in oxygen, whose high electronegativity allows to reach useful levels of extracted beam current. The efficiency of negative ions extraction is strongly influenced by the electron density and temperature close to the Plasma Grid, i.e. the grid of the acceleration system which faces the source. To support the tests, these parameters have been measured by means of the Optical Emission Spectroscopy diagnostic. This technique has involved the use of an oxygen-argon mixture to produce the plasma in the source. The intensities of specific Ar I and Ar II lines have been measured along lines of sight close to the Plasma Grid, and have been interpreted with the ADAS package to get the desired information. This work will describe the diagnostic hardware, the analysis method and the measured values of electron density and temperature, as function of the main source parameters (RF power, pressure, bias voltage and magnetic filter field). The main results show that not only electron density but also electron temperature increase with RF power; both decrease with increasing magnetic filter field. Variations of source pressure and plasma grid bias voltage appear to affect only electron temperature and electron density, respectively.

  4. The Electron Density in Explosive Transition Region Events Observed by IRIS

    NASA Astrophysics Data System (ADS)

    Doschek, G. A.; Warren, H. P.; Young, P. R.

    2016-11-01

    We discuss the intensity ratio of the O iv line at 1401.16 Å to the Si iv line at 1402.77 Å in Interface Region Imaging Spectrograph (IRIS) spectra. This intensity ratio is important if it can be used to measure high electron densities that cannot be measured using line intensity ratios of two different O iv lines from the multiplet within the IRIS wavelength range. Our discussion is in terms of considerably earlier observations made from the Skylab manned space station and other spectrometers on orbiting spacecraft. The earlier data on the O iv and Si iv ratio and other intersystem line ratios not available to IRIS are complementary to IRIS data. In this paper, we adopt a simple interpretation based on electron density. We adopt a set of assumptions and calculate the electron density as a function of velocity in the Si iv line profiles of two explosive events. At zero velocity the densities are about 2-3 × 1011 cm-3, and near 200 km s-1 outflow speed the densities are about 1012 cm-3. The densities increase with outflow speed up to about 150 km s-1 after which they level off. Because of the difference in the temperature of formation of the two lines and other possible effects such as non-ionization equilibrium, these density measurements do not have the precision that would be available if there were some additional lines near the formation temperature of O iv.

  5. Potential and electron density calculated for freely expanding plasma by an electron beam

    SciTech Connect

    Ho, C. Y.; Tsai, Y. H.; Ma, C.; Wen, M. Y.

    2011-07-01

    This paper investigates the radial distributions of potential and electron density in free expansion plasma induced by an electron beam irradiating on the plate. The region of plasma production is assumed to be cylindrical, and the plasma expansion is assumed to be from a cylindrical source. Therefore, the one-dimensional model in cylindrical coordinates is employed in order to analyze the radial distributions of the potential and electron density. The Runge-Kutta method and the perturbation method are utilized in order to obtain the numerical and approximate solutions, respectively. The results reveal that the decrease in the initial ion energy makes most of the ions gather near the plasma production region and reduces the distribution of the average positive potential, electron, and ion density along the radial direction. The oscillation of steady-state plasma along the radial direction is also presented in this paper. The ions induce a larger amplitude of oscillation along the radial direction than do electrons because the electrons oscillate around slowly moving ions due to a far smaller electron mass than ion mass. The radial distributions of the positive potential and electron density predicted from this study are compared with the available experimental data.

  6. Excess electrons in ice: a density functional theory study.

    PubMed

    Bhattacharya, Somesh Kr; Inam, Fakharul; Scandolo, Sandro

    2014-02-21

    We present a density functional theory study of the localization of excess electrons in the bulk and on the surface of crystalline and amorphous water ice. We analyze the initial stages of electron solvation in crystalline and amorphous ice. In the case of crystalline ice we find that excess electrons favor surface states over bulk states, even when the latter are localized at defect sites. In contrast, in amorphous ice excess electrons find it equally favorable to localize in bulk and in surface states which we attribute to the preexisting precursor states in the disordered structure. In all cases excess electrons are found to occupy the vacuum regions of the molecular network. The electron localization in the bulk of amorphous ice is assisted by its distorted hydrogen bonding network as opposed to the crystalline phase. Although qualitative, our results provide a simple interpretation of the large differences observed in the dynamics and localization of excess electrons in crystalline and amorphous ice films on metals.

  7. Phase-modulated dispersion interferometry for electron-density determination of high-pressure plasma

    NASA Astrophysics Data System (ADS)

    Urabe, Keiichiro; Akiyama, Tsuyoshi; Terashima, Kazuo

    2014-10-01

    Phase-modulated dispersion interferometry (PMDI) is a laser interferometry technique that was first developed for measurement of electron density in large fusion reactors. PMDI can eliminate the effect of nondispersive components in the refractive-index variation on the measured signals; therefore, it is mostly free from vibration of optical devices during the measurement. Also, configuration of the laser beam axis in PMDI is simpler than that in heterodyne interferometry. In this paper, we demonstrate the potential of PMDI for the diagnostics of low-temperature plasmas generated at high pressures. Most of the variation of the refractive index induced by the variation of gas density was eliminated by signal processing, and it contributed to accurate electron-density determination in high-pressure plasmas. The measurement results for a pulsed-dc microdischarge in an atmospheric-pressure helium gas flow revealed that the electron density in the microdischarge was in the range between 4 ×1013 and 1 . 4 ×1014 cm-3, and our PMDI system had a temporal resolution of 110 μs and a sensitivity of the line-integrated electron density of 7 ×1011 cm-2 respectively. This work is supported in part by MEXT of Japan, JSPS, and NIFS.

  8. Excitations and benchmark ensemble density functional theory for two electrons

    SciTech Connect

    Pribram-Jones, Aurora; Burke, Kieron; Yang, Zeng-hui; Ullrich, Carsten A.; Trail, John R.; Needs, Richard J.

    2014-05-14

    A new method for extracting ensemble Kohn-Sham potentials from accurate excited state densities is applied to a variety of two-electron systems, exploring the behavior of exact ensemble density functional theory. The issue of separating the Hartree energy and the choice of degenerate eigenstates is explored. A new approximation, spin eigenstate Hartree-exchange, is derived. Exact conditions that are proven include the signs of the correlation energy components and the asymptotic behavior of the potential for small weights of the excited states. Many energy components are given as a function of the weights for two electrons in a one-dimensional flat box, in a box with a large barrier to create charge transfer excitations, in a three-dimensional harmonic well (Hooke's atom), and for the He atom singlet-triplet ensemble, singlet-triplet-singlet ensemble, and triplet bi-ensemble.

  9. Temporal evolution of electron density and temperature in capillary discharge plasmas

    SciTech Connect

    Oh, Seong Y.; Kang, Hoonsoo; Uhm, Han S.; Lee, In W.; Suk, Hyyong

    2010-05-15

    Time-resolved spectroscopic measurements of a capillary discharge plasma of helium gas were carried out to obtain detailed information about dynamics of the discharge plasma column, where the fast plasma dynamics is determined by the electron density and temperature. Our measurements show that the electron density of the capillary plasma column increases sharply after gas breakdown and reaches its peak of the order of 10{sup 18} cm{sup -3} within less than 100 ns, and then it decreases as time goes by. The result indicates that a peak electron density of 2.3x10{sup 18} cm{sup -3} occurs about 65 ns after formation of the discharge current, which is ideal for laser wakefield acceleration experiments reported by Karsch et al. [New J. Phys. 9, 415 (2007)].

  10. Temporal evolution of electron density and temperature in capillary discharge plasmas

    NASA Astrophysics Data System (ADS)

    Oh, Seong Y.; Uhm, Han S.; Kang, Hoonsoo; Lee, In W.; Suk, Hyyong

    2010-05-01

    Time-resolved spectroscopic measurements of a capillary discharge plasma of helium gas were carried out to obtain detailed information about dynamics of the discharge plasma column, where the fast plasma dynamics is determined by the electron density and temperature. Our measurements show that the electron density of the capillary plasma column increases sharply after gas breakdown and reaches its peak of the order of 1018 cm-3 within less than 100 ns, and then it decreases as time goes by. The result indicates that a peak electron density of 2.3×1018 cm-3 occurs about 65 ns after formation of the discharge current, which is ideal for laser wakefield acceleration experiments reported by Karsch et al. [New J. Phys. 9, 415 (2007)].

  11. New Data on the Topside Electron Density Distribution

    NASA Technical Reports Server (NTRS)

    Huang, Xue-Qin; Reinisch, Bodo; Bilitza, Dieter; Benson, Robert F.

    2001-01-01

    The existing uncertainties about the electron density profiles in the topside ionosphere, i.e., in the height region from hmF2 to approx. 2000 km, require the search for new data sources. The ISIS and Alouette topside sounder satellites from the sixties to the eighties recorded millions of ionograms and most were not analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. As of November 2001 about 350,000 ionograms have been digitized from the original 7-track analog tapes. These data are available in binary and CDF format from the anonymous ftp site of the National Space Science Data Center. A search site and browse capabilities on CDAWeb assist the scientific usage of these data. All information and access links can be found at http://nssdc.gsfc.nasa.gov/space/isis/isis-status.html. This paper describes the ISIS data restoration effort and shows how the digital ionograms are automatically processed into electron density profiles from satellite orbit altitude (1400 km for ISIS-2) down to the F peak. Because of the large volume of data an automated processing algorithm is imperative. The automatic topside ionogram scaler with true height algorithm TOPIST software developed for this task is successfully scaling approx.70 % of the ionograms. An 'editing process' is available to manually scale the more difficult ionograms. The automated processing of the digitized ISIS ionograms is now underway, producing a much-needed database of topside electron density profiles for ionospheric modeling covering more than one solar cycle. The ISIS data restoration efforts are supported through NASA's Applied Systems and Information Research Program.

  12. New options for IRI electron density in the middle ionosphere

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter; Rawer, Karl

    1990-01-01

    This paper reviews the present International Reference Ionosphere (IRI) model of electron density in the middle ionosphere and explores two new options for future editions of IRI. The first of these options is a better description of the bottomside thickness parameters, and the second is an analytical representation from E- to F2-peak using LAY-functions. For this analytical representation a table of standard parameters and constraints for the four LAY-functions recommended for IRI have been established.

  13. Surprising resistivity decrease in manganites with constant electronic density

    NASA Astrophysics Data System (ADS)

    Cortés-Gil, R.; Ruiz-González, M. L.; Alonso, J. M.; Martínez, J. L.; Hernando, A.; Vallet-Regí, M.; González-Calbet, J. M.

    2013-12-01

    A decrease of eight orders of magnitude in the resistance of (La0.5Ca0.5)zMnO3 has been detected when the electronic density is kept constant while the calcium content is modified by introducing cationic vacancies. This effect is related to the disappearance of the charge ordering state and the emergence of an antiferromagnetic-ferromagnetic transition. Moreover, high values of the colossal magnetoresistance above room temperature are attained. Dedicated to Professor J M Rojo.

  14. Halogen bonding: a study based on the electronic charge density.

    PubMed

    Amezaga, Nancy J Martinez; Pamies, Silvana C; Peruchena, Nélida M; Sosa, Gladis L

    2010-01-14

    Density functional theory (DFT) and atoms in molecules theory (AIM) were used to study the characteristic of the noncovalent interactions in complexes formed between Lewis bases (NH(3), H(2)O, and H(2)S) and Lewis acids (ClF, BrF, IF, BrCl, ICl, and IBr). In order to compare halogen and hydrogen bonds interactions, this study included hydrogen complexes formed by some Lewis bases and HF, HCl, and HBr Lewis acids. Ab initio, wave functions were generated at B3LYP/6-311++G(d,p) level with optimized structures at the same level. Criteria based on a topological analysis of the electron density were used in order to characterize the nature of halogen interactions in Lewis complexes. The main purpose of the present work is to provide an answer to the following questions: (a) why can electronegative atoms such as halogens act as bridges between two other electronegative atoms? Can a study based on the electron charge density answer this question? Considering this, we had performed a profound study of halogen complexes in the framework of the AIM theory. A good correlation between the density at the intermolecular bond critical point and the energy interaction was found. We had also explored the concentration and depletion of the charge density, displayed by the Laplacian topology, in the interaction zone and in the X-Y halogen donor bond. From the atomic properties, it was generally observed that the two halogen atoms gain electron population in response to its own intrinsic nature. Because of this fact, both atoms are energetically stabilized.

  15. Kinetic and electron-electron energies for convex sums of ground state densities with degeneracies and fractional electron number

    SciTech Connect

    Levy, Mel E-mail: mlevy@tulane.edu; Anderson, James S. M.; Zadeh, Farnaz Heidar; Ayers, Paul W. E-mail: mlevy@tulane.edu

    2014-05-14

    Properties of exact density functionals provide useful constraints for the development of new approximate functionals. This paper focuses on convex sums of ground-level densities. It is observed that the electronic kinetic energy of a convex sum of degenerate ground-level densities is equal to the convex sum of the kinetic energies of the individual degenerate densities. (The same type of relationship holds also for the electron-electron repulsion energy.) This extends a known property of the Levy-Valone Ensemble Constrained-Search and the Lieb Legendre-Transform refomulations of the Hohenberg-Kohn functional to the individual components of the functional. Moreover, we observe that the kinetic and electron-repulsion results also apply to densities with fractional electron number (even if there are no degeneracies), and we close with an analogous point-wise property involving the external potential. Examples where different degenerate states have different kinetic energy and electron-nuclear attraction energy are given; consequently, individual components of the ground state electronic energy can change abruptly when the molecular geometry changes. These discontinuities are predicted to be ubiquitous at conical intersections, complicating the development of universally applicable density-functional approximations.

  16. Simple Fully Nonlocal Density Functionals for Electronic Repulsion Energy.

    PubMed

    Vuckovic, Stefan; Gori-Giorgi, Paola

    2017-07-06

    From a simplified version of the mathematical structure of the strong coupling limit of the exact exchange-correlation functional, we construct an approximation for the electronic repulsion energy at physical coupling strength, which is fully nonlocal. This functional is self-interaction free and yields energy densities within the definition of the electrostatic potential of the exchange-correlation hole that are locally accurate and have the correct asymptotic behavior. The model is able to capture strong correlation effects that arise from chemical bond dissociation, without relying on error cancellation. These features, which are usually missed by standard density functional theory (DFT) functionals, are captured by the highly nonlocal structure, which goes beyond the "Jacob's ladder" framework for functional construction, by using integrals of the density as the key ingredient. Possible routes for obtaining the full exchange-correlation functional by recovering the missing kinetic component of the correlation energy are also implemented and discussed.

  17. Electron intracule densities with correct electron coalescence cusps from Hiller-Sucher-Feinberg-type identities

    NASA Astrophysics Data System (ADS)

    Cioslowski, Jerzy; Stefanov, Boris B.; Tan, Agnes; Umrigar, C. J.

    1995-10-01

    Identities for the electron intracule density I(R) in atoms and molecules are derived within the Hiller-Sucher-Feinberg (HSF) formalism. It is proven that, when applied to arbitrary (exact or approximate) electronic wave functions, these identities produce intracule densities that satisfy a modified condition for the electron coalescence cusp. A corollary of this proof provides a new, simplified derivation of the cusp condition for the exact I(R). An expression for the Hartree-Fock approximation to the HSF electron intracule density that contains only two- and three-electron terms is obtained and its properties are analyzed. A simple scaling of the three-electron contributions in this expression assures integrability of the approximate I(R) and improves its overall accuracy. Numerical tests carried out for the H-, He, Li+, Be2+, Li, and Be systems demonstrate that the application of the scaled HSF-type identity to Hartree-Fock wave functions affords dramatic improvements in the short-range behavior of the electron intracule density.

  18. Reineke’s stand density index: a quantitative and non-unitless measure of stand density

    Treesearch

    Curtis L. VanderSchaaf

    2013-01-01

    When used as a measure of relative density, Reineke’s stand density index (SDI) can be made unitless by relating the current SDI to a standard density but when used as a quantitative measure of stand density SDI is not unitless. Reineke’s SDI relates the current stand density to an equivalent number of trees per unit area in a stand with a quadratic mean diameter (Dq)...

  19. Unfolding ambient electron plasma density from wave spectra induced by electron beam

    NASA Astrophysics Data System (ADS)

    Kiraga, A.; Klos, Z.; Oraevsky, V.; Dokukin, V.; Pulinets, S.

    Numerous rocket and few satellite projects were devoted to study of astrophysical plasma with the aid of active electron beam experiments. The quality and volume of wave data from such experiments did not fulfill original expectat ions due to complexity of involved processes, technical malfunctions and limited diagnostics. Due to fortunate, temporal malfunction of plasma accelerator, there were several cases when pulsed electron beam had been injected from the APEX satellite into otherwise unmodified ionospheric plasma. Instantaneous current intensity didn't exceeded 0.15A and an unstabilized acceleration voltage was of the order of 10keV. Injection pitch angle slowly changed according to moderate three-axis satellite stabilization. Injections took place in the altitude range 400-1100km in the European region and in the north, polar region. A receiver with bandwidth of 15kHz was connected to a cylindrical dipole antenna having half lengths of 7.5m. The receiver operated in survey mode providing one spectrum every 2s or 8s. The single spectrum was measured in 1s with an equally spaced mesh of 200 frequencies starting from 100kHz with a step of 50kHz. Electron beam induced spectra show up large variety of narrow band structures. In many cases, from reproducibility or slow evolution of the spectra, it may be inferred that distinct interactions prevail for some ranges of ambient electron gyro (fc) and plasma (fn) frequencies, injection pitch angles and beam intensity. Interaction plausibility arguments are useful in preliminary assignment of spectral structures. We show that discrete emission can be identified at least on ambient plasma frequency or ambient upper hybrid frequency. One class of arguments supporting such identification is provided by interrelation between spectral signatures of local plasma density in passive mode and beam induced spectra. Another class of arguments is provided by interrelations between spectral structures induced by electron beam

  20. Electron density and temperature profile diagnostics for C-2 field reversed configuration plasmas

    SciTech Connect

    Deng, B. H.; Kinley, J. S.; Schroeder, J.

    2012-10-15

    The 9-point Thomson scattering diagnostic system for the C-2 field reversed configuration plasmas is improved and the measured electron temperature profiles are consistent with theoretical expectations. Rayleigh scattering revealed a finite line width of the ruby laser emission, which complicates density calibration. Taking advantage of the plasma wobble motion, density profile reconstruction accuracy from the 6-chord two-color CO{sub 2}/HeNe interferometer data is improved.

  1. A real-space stochastic density matrix approach for density functional electronic structure.

    PubMed

    Beck, Thomas L

    2015-12-21

    The recent development of real-space grid methods has led to more efficient, accurate, and adaptable approaches for large-scale electrostatics and density functional electronic structure modeling. With the incorporation of multiscale techniques, linear-scaling real-space solvers are possible for density functional problems if localized orbitals are used to represent the Kohn-Sham energy functional. These methods still suffer from high computational and storage overheads, however, due to extensive matrix operations related to the underlying wave function grid representation. In this paper, an alternative stochastic method is outlined that aims to solve directly for the one-electron density matrix in real space. In order to illustrate aspects of the method, model calculations are performed for simple one-dimensional problems that display some features of the more general problem, such as spatial nodes in the density matrix. This orbital-free approach may prove helpful considering a future involving increasingly parallel computing architectures. Its primary advantage is the near-locality of the random walks, allowing for simultaneous updates of the density matrix in different regions of space partitioned across the processors. In addition, it allows for testing and enforcement of the particle number and idempotency constraints through stabilization of a Feynman-Kac functional integral as opposed to the extensive matrix operations in traditional approaches.

  2. Electronic density of states in sequence dependent DNA molecules

    NASA Astrophysics Data System (ADS)

    de Oliveira, B. P. W.; Albuquerque, E. L.; Vasconcelos, M. S.

    2006-09-01

    We report in this work a numerical study of the electronic density of states (DOS) in π-stacked arrays of DNA single-strand segments made up from the nucleotides guanine G, adenine A, cytosine C and thymine T, forming a Rudin-Shapiro (RS) as well as a Fibonacci (FB) polyGC quasiperiodic sequences. Both structures are constructed starting from a G nucleotide as seed and following their respective inflation rules. Our theoretical method uses Dyson's equation together with a transfer-matrix treatment, within an electronic tight-binding Hamiltonian model, suitable to describe the DNA segments modelled by the quasiperiodic chains. We compared the DOS spectra found for the quasiperiodic structure to those using a sequence of natural DNA, as part of the human chromosome Ch22, with a remarkable concordance, as far as the RS structure is concerned. The electronic spectrum shows several peaks, corresponding to localized states, as well as a striking self-similar aspect.

  3. 46 CFR 164.009-17 - Density measurement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false Density measurement. 164.009-17 Section 164.009-17...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-17 Density measurement. (a) The measurements described in this section are made to determine the density of a sample. (b...

  4. Electronic correlations in vanadium revealed by electron-positron annihilation measurements

    NASA Astrophysics Data System (ADS)

    Weber, Josef Andreas; Benea, Diana; Appelt, Wilhelm H.; Ceeh, Hubert; Kreuzpaintner, Wolfgang; Leitner, Michael; Vollhardt, Dieter; Hugenschmidt, Christoph; Chioncel, Liviu

    2017-02-01

    The electronic structure of vanadium measured by angular correlation of electron-positron annihilation radiation (ACAR) is compared with the predictions of the combined density functional and dynamical mean-field theory (DMFT). Reconstructing the momentum density from five two-dimensional projections we were able to determine the full Fermi surface and found excellent agreement with the DMFT calculations. In particular, we show that the local, dynamic self-energy corrections contribute to the anisotropy of the momentum density and need to be included to explain the experimental results.

  5. Feedback control of plasma electron density and ion energy in an inductively coupled plasma etcher

    SciTech Connect

    Lin Chaung; Leou, K.-C.; Huang, H.-M.; Hsieh, C.-H.

    2009-01-15

    Here the authors report the development of a fuzzy logic based feedback control of the plasma electron density and ion energy for high density plasma etch process. The plasma electron density was measured using their recently developed transmission line microstrip microwave interferometer mounted on the chamber wall, and the rf voltage was measured by a commercial impedance meter connected to the wafer stage. The actuators were two 13.56 MHz rf power generators which provided the inductively coupled plasma power and bias power, respectively. The control system adopted the fuzzy logic control algorithm to reduce frequent actuator action resulting from measurement noise. The experimental results show that the first wafer effect can be eliminated using closed-loop control for both poly-Si and HfO{sub 2} etching. In particular, for the HfO2 etch, the controlled variables in this work were much more effective than the previous one where ion current was controlled, instead of the electron density. However, the pressure disturbance effect cannot be reduced using plasma electron density feedback.

  6. Equation satisfied by the energy-density functional for electron-electron mutual Coulomb repulsion

    SciTech Connect

    Joubert, Daniel P.

    2011-10-15

    It is shown that the electron-electron mutual Coulomb repulsion energy-density functional V{sub ee}{sup {gamma}}[{rho}] satisfies the equationV{sub ee}{sup {gamma}}[{rho}{sub N}{sup 1}]-V{sub ee}{sup {gamma}}[{rho}{sub N-1}{sup {gamma}}]={integral}d{sup 3}r({delta}V{sub ee}{sup {gamma}}[{rho}{sub N}{sup 1}]/{delta}{rho}{sub N}{sup 1}(r))[{rho}{sub N}{sup 1}(r)-{rho}{sub N-1}{sup {gamma}}(r)], where {rho}{sub N}{sup 1}(r) and {rho}{sub N-1}{sup {gamma}}(r) are N-electron and (N-1)-electron densities determined from the same adiabatic scaled external potential of the N-electron system at coupling strength {gamma}.

  7. High precision electronic charge density determination for L10-ordered γ-TiAl by quantitative convergent beam electron diffraction

    NASA Astrophysics Data System (ADS)

    Sang, Xiahan; Kulovits, Andreas; Wang, Guofeng; Wiezorek, Jörg

    2012-12-01

    Low order structure and Debye-Waller (DW) factors for tetragonal L10-ordered γ-TiAl were measured simultaneously using quantitative convergent beam electron diffraction. The high precision and accuracy (largest error <0.5%) measurements allowed the construction of charge density difference maps from full sets of structure and DW factors, suitable for validation of first principles density functional theory (DFT) calculation results. Comparison of the experimentally determined charge density distribution with theoretical DFT predictions shows excellent qualitative agreement in this study. The three-dimensional charge density representations indicate a large electron charge localisation centred about the tetrahedral site at ¼, ¼, ¼, which is coordinated by two Ti atoms at 0, 0, 0 and ½, ½, 0 and two Al atoms at ½, 0, ½ and 0, ½, ½, respectively. Compared to experimental data, the DFT calculations based on full-potential linearised augmented plane wave (LAPW) method (implemented in WIEN2K) were found to quantitatively overestimate charge density between Ti-Ti second nearest neighbour atoms. Moreover, the results from the DFT method based on the projector-augmented wave (PAW) method and a plane wave basis set (implemented in VASP) were found to differ appreciably from both the experimental and LAPW-DFT results, implying that the PAW approach may not accurately describe the bonding in the intermetallic systems with 3 d electrons, such as γ-TiAl.

  8. A density-temperature description of the outer electron radiation belt during geomagnetic storms

    SciTech Connect

    Borovsky, Joseph E; Cayton, Thomas E; Denton, Michael H

    2009-01-01

    Electron flux measurements from 7 satellites in geosynchronous orbit from 1990-2007 are fit with relativistic bi-Maxwellians, yielding a number density n and temperature T description of the outer electron radiation belt. For 54.5 spacecraft years of measurements the median value ofn is 3.7x10-4 cm-3 and the median value ofT is 142 keY. General statistical properties of n, T, and the 1.1-1.5 MeV flux J are investigated, including local-time and solar-cycle dependencies. Using superposed-epoch analysis triggered on storm onset, the evolution of the outer electron radiation belt through high-speed-steam-driven storms is investigated. The number density decay during the calm before the storm is seen, relativistic-electron dropouts and recoveries from dropout are investigated, and the heating of the outer electron radiation belt during storms is examined. Using four different triggers (SSCs, southward-IMF CME sheaths, southward-IMF magnetic clouds, and minimum Dst), CME-driven storms are analyzed with superposed-epoch techniques. For CME-driven storms an absence of a density decay prior to storm onset is found, the compression of the outer electron radiation belt at time of SSC is analyzed, the number-density increase and temperature decrease during storm main phase is seen, and the increase in density and temperature during storm recovery phase is observed. Differences are found between the density-temperature and the flux descriptions, with more information for analysis being available in the density-temperature description.

  9. Measurements of recombination of electrons with HCO(plus) ions

    NASA Technical Reports Server (NTRS)

    Leu, M. T.; Biondi, M. A.; Johnsen, R.

    1973-01-01

    Recombination coefficients of electrons with HCO(+) ions were determined with a microwave afterglow/mass spectrometer apparatus. Afterglow measurements of electron density decays in neon-hydrogen-carbon monoxide mixtures are correlated with the decay of mass-identified ion currents to the wall of the microwave cavity. At the appropriate partial pressures of hydrogen and carbon monoxide in the mixture, the ion HCO(+) dominates the ion composition and its wall current approximately tracks the electron density decay curve. From recombination controlled electron density decay curves, the values alpha (HCO(+)) = (3.3 + or - 0.5) and (2.0 + or - 0.3) 0.0000001 cu cm/sec are obtained at 205 and 300 K, respectively. The implications of these results for models of polyatomic molecule formation in dense interstellar clouds are briefly discussed.

  10. Exploring the electron density in plasma induced by EUV radiation: II. Numerical studies in argon and hydrogen

    NASA Astrophysics Data System (ADS)

    Astakhov, D. I.; Goedheer, W. J.; Lee, C. J.; Ivanov, V. V.; Krivtsun, V. M.; Koshelev, K. N.; Lopaev, D. V.; van der Horst, R. M.; Beckers, J.; Osorio, E. A.; Bijkerk, F.

    2016-07-01

    We used numerical modeling to study the evolution of EUV-induced plasmas in argon and hydrogen. The results of simulations were compared to the electron densities measured by microwave cavity resonance spectroscopy. It was found that the measured electron densities can be used to derive the integral amount of plasma in the cavity. However, in some regimes, the impact of the setup geometry, EUV spectrum, and EUV induced secondary emission should be taken into account. The influence of these parameters on the generated plasma and the measured electron density is discussed.

  11. Damping of Electron Density Structures and Implications for Interstellar Scintillation

    NASA Astrophysics Data System (ADS)

    Smith, K. W.; Terry, P. W.

    2011-04-01

    The forms of electron density structures in kinetic Alfvén wave (KAW) turbulence are studied in connection with scintillation. The focus is on small scales L ~ 108-1010 cm where the KAW regime is active in the interstellar medium, principally within turbulent H II regions. Scales at 10 times the ion gyroradius and smaller are inferred to dominate scintillation in the theory of Boldyrev et al. From numerical solutions of a decaying KAW turbulence model, structure morphology reveals two types of localized structures, filaments and sheets, and shows that they arise in different regimes of resistive and diffusive damping. Minimal resistive damping yields localized current filaments that form out of Gaussian-distributed initial conditions. When resistive damping is large relative to diffusive damping, sheet-like structures form. In the filamentary regime, each filament is associated with a non-localized magnetic and density structure, circularly symmetric in cross section. Density and magnetic fields have Gaussian statistics (as inferred from Gaussian-valued kurtosis) while density gradients are strongly non-Gaussian, more so than current. This enhancement of non-Gaussian statistics in a derivative field is expected since gradient operations enhance small-scale fluctuations. The enhancement of density gradient kurtosis over current kurtosis is not obvious, yet it suggests that modest density fluctuations may yield large scintillation events during pulsar signal propagation. In the sheet regime the same statistical observations hold, despite the absence of localized filamentary structures. Probability density functions are constructed from statistical ensembles in both regimes, showing clear formation of long, highly non-Gaussian tails.

  12. Role of Density Gradient Driven Trapped Electron Modes in the H-Mode Inner Core with Electron Heating

    NASA Astrophysics Data System (ADS)

    Ernst, D.

    2015-11-01

    We present new experiments and nonlinear gyrokinetic simulations showing that density gradient driven TEM (DGTEM) turbulence dominates the inner core of H-Mode plasmas during strong electron heating. Thus α-heating may degrade inner core confinement in H-Mode plasmas with moderate density peaking. These DIII-D low torque quiescent H-mode experiments were designed to study DGTEM turbulence. Gyrokinetic simulations using GYRO (and GENE) closely match not only particle, energy, and momentum fluxes, but also density fluctuation spectra, with and without ECH. Adding 3.4 MW ECH doubles Te /Ti from 0.5 to 1.0, which halves the linear TEM critical density gradient, locally flattening the density profile. Density fluctuations from Doppler backscattering (DBS) intensify near ρ = 0.3 during ECH, displaying a band of coherent fluctuations with adjacent toroidal mode numbers. GYRO closely reproduces the DBS spectrum and its change in shape and intensity with ECH, identifying these as coherent TEMs. Prior to ECH, parallel flow shear lowers the effective nonlinear DGTEM critical density gradient 50%, but is negligible during ECH, when transport displays extreme stiffness in the density gradient. GS2 predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q0 >qmin > 1 . A related experiment in the same regime varied the electron temperature gradient in the outer half-radius (ρ ~ 0 . 65) using ECH, revealing spatially coherent 2D mode structures in the Te fluctuations measured by ECE imaging. Fourier analysis with modulated ECH finds a threshold in Te profile stiffness. Supported by the US DOE under DE-FC02-08ER54966 and DE-FC02-04ER54698.

  13. Performance of a local electron density trigger to select extensive air showers at sea level

    NASA Technical Reports Server (NTRS)

    Abbas, T.; Madani, J.; Ashton, F.

    1985-01-01

    Time coincident voltage pulses in the two closely space (1.6m) plastic scintillators were recorded. Most of the recorded events are expeted to be due to electrons in cosmic ray showers whose core fall at some distance from the detectors. This result is confirmed from a measurement of the frequency distribution of the recorded density ratios of the two scintillators.

  14. Calculation of optical and electronic properties of modeled titanium dioxide films of different densities.

    PubMed

    Turowski, Marcus; Amotchkina, Tatiana; Ehlers, Henrik; Jupé, Marco; Ristau, Detlev

    2014-02-01

    The electronic and optical properties of TiO2 atomic structures representing simulated thin films have been investigated using density functional theory. Suitable model parameters and system sizes have been identified in advance by validation of the results with experimental data. Dependencies of the electronic band gap and the refractive index have been calculated as a function of film density. The results of the performed calculations have been compared to characterized optical properties of titania single layers deposited using different coating techniques. The modeled dependencies are consistent with experimental observations, and absolute magnitudes of simulated values are in agreement with measured optical data.

  15. Small scale irregularities associated with a high latitude electron density gradient - Scintillation and EISCAT observations

    NASA Astrophysics Data System (ADS)

    Kersley, L.; Pryse, S. E.; Wheadon, N. S.

    1988-06-01

    A coordinated experiment involving scintillation observations using Navy Navigation Satellite System satellites and special program measurements with the European incoherent scatter inospheric radar facility is described. The results reveal the presence of sub-kilometer scale irregularities in the vicinity of a long lived steep equatorwards gradient in electron density. Evidence is presented of a southwards plasma flow which would cause the gradient to be unstable to the E-B gradient-drift mechanism. An instability growth time of about 4 min has been estimated from the observations. Cooler electron temperatures associated with enhanced densities rules out soft particle precipitation as an irregularity source in this case.

  16. Interpretation of the shape factor at Ootacamund, India. [ionospheric electron density profile

    NASA Technical Reports Server (NTRS)

    Donnelly, R. F.; Anderson, D. N.; Davies, K.; Rama Rao, P. V. S.

    1978-01-01

    The paper deals with equatorial ATS-6 measurements of the shape factor, F, interpreted in terms of the shape of the electron density profile along the ray path. The observed rapid increase in F at sunrise is attributed to EUV production of ionization in the E and F regions. The evening decrease is seen to result from an upward drift of the F region at sunset and the evening decay of the E and bottomside F regions. The nighttime peak, or plateau, is caused by gradual decrease of the electron density profile.

  17. A model of F2 peak electron densities in the main trough region of the ionosphere

    NASA Technical Reports Server (NTRS)

    Halcrow, B. W.; Nisbet, J. S.

    1977-01-01

    An empirical model of the peak electron densities in the region of the northerly main trough in the ionospheric F region is presented. The model was derived from measurements made by the satellites Alouette I and II and is in the form of a multiplicative modification factor to the CCIR peak electron density model. The model is a computer program which, when provided with the location, universal time, day number, sunspot number, and Kp index, provides the modification factor, the CCIR model prediction of Nm F2, and the new prediction including the effect of the trough. The model is expected to be of considerable use for propagation calculations in the affected region.

  18. Electron densities and alkali atoms in exoplanet atmospheres

    SciTech Connect

    Lavvas, P.; Koskinen, T.; Yelle, R. V.

    2014-11-20

    We describe a detailed study on the properties of alkali atoms in extrasolar giant planets, and specifically focus on their role in generating the atmospheric free electron densities, as well as their impact on the transit depth observations. We focus our study on the case of HD 209458b, and we show that photoionization produces a large electron density in the middle atmosphere that is about two orders of magnitude larger than the density anticipated from thermal ionization. Our purely photochemical calculations, though, result in a much larger transit depth for K than observed for this planet. This result does not change even if the roles of molecular chemistry and excited state chemistry are considered for the alkali atoms. In contrast, the model results for the case of exoplanet XO-2b are in good agreement with the available observations. Given these results we discuss other possible scenarios, such as changes in the elemental abundances, changes in the temperature profiles, and the possible presence of clouds, which could potentially explain the observed HD 209458b alkali properties. We find that most of these scenarios cannot explain the observations, with the exception of a heterogeneous source (i.e., clouds or aerosols) under specific conditions, but we also note the discrepancies among the available observations.

  19. Voyager observations of Saturnian ion and electron phase space densities

    SciTech Connect

    Armstrong, T.P.; Paonessa, M.T.; Bell, E.V. II; Krimigis, S.M.

    1983-11-01

    Voyager 1 and 2 low-energy charged particle (LECP) observations of 30-keV to 2-MeV electron and ion energy spectra and angular distributions have been used to calculate phase space densities at constant first and second adiabatic invariant in the Saturnian magnetosphere. The results are generally consistent with inward radial diffusion from a external source. The data obtained also indicate a source of ions located within the orbital distance of enceladus capable of producing 10-to 40-MeV/Gauss ions as well as a source of electrons at about 3.5 R/sub S/ which produces particles at 100 to 200 MeV/Gauss. Higher magnetic moment (200--400 MeV/Gauss) ions extend from the sunward boundary between a plasma mantle and the region of durable trapping at R/sub S/: the behavior of the phase space density suggests inward diffusion of these particles from a source at the boundary. The identification of sources of low (10 to 200 MeV/Gauss) magnetic moment particles deep in the Saturnian magnetosphere is a new result of this work. Several analyses of the observed phase space densities in terms of time-independent radial diffusion are presented.

  20. FINDMOL: automated identification of macromolecules in electron-density maps.

    PubMed

    McKee, E W; Kanbi, L D; Childs, K L; Grosse-Kunstleve, R W; Adams, P D; Sacchettini, J C; Ioerger, T R

    2005-11-01

    Automating the determination of novel macromolecular structures via X-ray crystallographic methods involves building a model into an electron-density map. Unfortunately, the conventional crystallographic asymmetric unit volumes are usually not well matched to the biological molecular units. In most cases, the facets of the asymmetric unit cut the molecules into a number of disconnected fragments, rendering interpretation by the crystallographer significantly more difficult. The FINDMOL algorithm is designed to quickly parse the arrangement of trace points (pseudo-atoms) derived from a skeletonized electron-density map without requiring higher level prior information such as sequence information or number of molecules in the asymmetric unit. The algorithm was tested with a variety of density-modified maps computed with medium- to low-resolution data. Typically, the resulting volume resembles the biological unit. In the remaining cases the number of disconnected fragments is very small. In all examples, secondary-structural elements such as alpha-helices or beta-sheets are easily identifiable in the defragmented arrangement. FINDMOL can greatly assist a crystallographer during manual model building or in cases where automatic model building can only build partial models owing to limitations of the data such as low resolution and/or poor phases.

  1. Statistical studies of electron density around lunar wake boundary derived from WFC observation onboard KAGUYA

    NASA Astrophysics Data System (ADS)

    Kasahara, Y.; Kanatani, K.; Goto, Y.; Hashimoto, K.; Omura, Y.; Kumamoto, A.; Ono, T.; Nishino, M. N.; Saito, Y.; Tsunakawa, H.

    2011-12-01

    The waveform capture (WFC) [1,2] onboard KAGUYA measured two components of electric wave signals detected by the two orthogonal 30 m tip-to-tip antennas from 100Hz to 1MHz during the mission period of KAGUYA from November, 2007 to June 2009. By taking advantage of a moon orbiter, the WFC was expected to measure plasma waves related to solar wind-moon interaction, mini-magnetospheres caused by magnetic anomaly on the lunar surface, and radio emissions to be observed from the moon. Because the moon is basically non-magnetized, the solar wind particles directly hit the lunar surface and a plasma cavity called the "lunar wake" is created behind the moon. We investigated electron density profile around the terminator of the moon from the local plasma frequency obtained by WFC. Because our measurement is a direct method measuring the local plasma frequency, we expect absolute density can be derived. KAGUYA experienced encounters with the lunar wake every 2 hours at an altitude of ~100km in the nominal mission, we first analyzed electron density statistically when KAGUYA was located in the solar wind comparing with the data from WIND. Using these observation data, we constructed an electron density model around the lunar wake boundary region. We also report several interesting feature in the profile such as asymmetric structure depending on the direction of interplanetary magnetic field (IMF). KAGUYA was descended to the 50 km altitude and was descended again down to 10-30km in lower altitude (perilune). Electron density in the lower altitude region is also studied using the data obtained in the extended mission. We found electron density slightly increases in the lower altitude region. [1] Y. Kasahara et al., Earth, Planets and Space, 60, 341-351, 2008. [2] T. Ono et al., Space Science Review, doi:10.1007/s11214-010-9673-8, 2010.

  2. The electron localization as the information content of the conditional pair density

    NASA Astrophysics Data System (ADS)

    Urbina, Andres S.; Torres, F. Javier; Rincon, Luis

    2016-06-01

    In the present work, the information gained by an electron for "knowing" about the position of another electron with the same spin is calculated using the Kullback-Leibler divergence (DKL) between the same-spin conditional pair probability density and the marginal probability. DKL is proposed as an electron localization measurement, based on the observation that regions of the space with high information gain can be associated with strong correlated localized electrons. Taking into consideration the scaling of DKL with the number of σ-spin electrons of a system (Nσ), the quantity χ = (Nσ - 1) DKLfcut is introduced as a general descriptor that allows the quantification of the electron localization in the space. fcut is defined such that it goes smoothly to zero for negligible densities. χ is computed for a selection of atomic and molecular systems in order to test its capability to determine the region in space where electrons are localized. As a general conclusion, χ is able to explain the electron structure of molecules on the basis of chemical grounds with a high degree of success and to produce a clear differentiation of the localization of electrons that can be traced to the fluctuation in the average number of electrons in these regions.

  3. The behavior of electron density and temperature during ionospheric heating near the fifth electron gyrofrequency

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Wu, Jian; Rietveld, M. T.; Haggstrom, I.; Zhao, Haisheng; Xu, Zhengwen

    2017-01-01

    The experimental phenomena involving the changes in electron temperature and electron density as a function of pump frequency during an ionospheric heating campaign at European Incoherent Scatter near Tromsø, Norway, are reported. When the pump frequency is slightly above the fifth electron gyrofrequency, the UHF radar observation shows some apparent enhancements over a wide altitude range in radar echo, ion line, and electron density respectively, which are apparently altitude independent and consistent temporally with the upshifting and spread of plasma line around the reflection altitude. However, they do not, in fact, correspond to true increase in electron density. Based on some existing theories, some discussions are presented to try to explain the above enhancements and the upshifting and spread of plasma line. Even so, the mechanism remains to be determined. In addition, the observation also shows some enhancements in electron temperature as a function of pump frequency around the reflection altitude of the pump, which are dependent on the behavior of dispersion of the upper hybrid wave near the fifth electron gyrofrequency.

  4. Density fitting for three-electron integrals in explicitly correlated electronic structure theory

    SciTech Connect

    Womack, James C.; Manby, Frederick R.

    2014-01-28

    The principal challenge in using explicitly correlated wavefunctions for molecules is the evaluation of nonfactorizable integrals over the coordinates of three or more electrons. Immense progress was made in tackling this problem through the introduction of a single-particle resolution of the identity. Decompositions of sufficient accuracy can be achieved, but only with large auxiliary basis sets. Density fitting is an alternative integral approximation scheme, which has proven to be very reliable for two-electron integrals. Here, we extend density fitting to the treatment of all three-electron integrals that appear at the MP2-F12/3*A level of theory. We demonstrate that the convergence of energies with respect to auxiliary basis size is much more rapid with density fitting than with the traditional resolution-of-the-identity approach.

  5. Analysis of line integrated electron density using plasma position data on Korea Superconducting Tokamak Advanced Researcha)

    NASA Astrophysics Data System (ADS)

    Nam, Y. U.; Chung, J.

    2010-10-01

    A 280 GHz single-channel horizontal millimeter-wave interferometer system has been installed for plasma electron density measurements on the Korea Superconducting Tokamak Advanced Research (KSTAR) device. This system has a triangular beam path that does not pass through the plasma axis due to geometrical constraints in the superconducting tokamak. The term line density on KSTAR has a different meaning from the line density of other tokamaks. To estimate the peak density and the mean density from the measured line density, information on the position of the plasma is needed. The information has been calculated from tangentially viewed visible images using the toroidal symmetry of the plasma. Interface definition language routines have been developed for this purpose. The calculated plasma position data correspond well to calculation results from magnetic analysis. With the position data and an estimated plasma profile, the peak density and the mean density have been obtained from the line density. From these results, changes of plasma density themselves can be separated from effects of the plasma movements, so they can give valuable information on the plasma status.

  6. Analysis of line integrated electron density using plasma position data on Korea Superconducting Tokamak Advanced Research

    SciTech Connect

    Nam, Y. U.; Chung, J.

    2010-10-15

    A 280 GHz single-channel horizontal millimeter-wave interferometer system has been installed for plasma electron density measurements on the Korea Superconducting Tokamak Advanced Research (KSTAR) device. This system has a triangular beam path that does not pass through the plasma axis due to geometrical constraints in the superconducting tokamak. The term line density on KSTAR has a different meaning from the line density of other tokamaks. To estimate the peak density and the mean density from the measured line density, information on the position of the plasma is needed. The information has been calculated from tangentially viewed visible images using the toroidal symmetry of the plasma. Interface definition language routines have been developed for this purpose. The calculated plasma position data correspond well to calculation results from magnetic analysis. With the position data and an estimated plasma profile, the peak density and the mean density have been obtained from the line density. From these results, changes of plasma density themselves can be separated from effects of the plasma movements, so they can give valuable information on the plasma status.

  7. [Research on electron density in DC needle-plate corona discharge at atmospheric pressure].

    PubMed

    Liu, Zhi-Qiang; Guo, Wei; Liu, Tao-Tao; Wu, Wen-Shuo; Liu, Shu-Min

    2013-11-01

    Using needle-plate discharge device, corona discharge experiment was done in the atmosphere. Through photo of spot size of light-emitting area, the relationship between the voltage and thickness of corona layer was discussed. When the distance between tip and plate is fixed, the thickness of corona layer increases with the increase in voltage; when the voltage is fixed, the thickness of corona layer decreases with the increase in the distance between tip and plate. As spectral intensity of N2 (C3pi(u)) (337.1 nm)reflects high energy electron density, it was measured with emission spectrometry. The results show that high energy electron density is the biggest near the needle tip and the relationship between high energy electron density and voltage is basically linear increasing. Fixing voltage, high energy electron density decreases with the increase in the distance between tip and plate. When the voltage and the distance between tip and plate are fixed, the high energy electron density increases with the decrease in the curvature radius of needle tip. These results are of great importance for the study of plasma parameters of corona discharge.

  8. Simulations of the electron cloud buildup and its influence on the microwave transmission measurement

    NASA Astrophysics Data System (ADS)

    Haas, Oliver Sebastian; Boine-Frankenheim, Oliver; Petrov, Fedor

    2013-11-01

    An electron cloud density in an accelerator can be measured using the Microwave Transmission (MWT) method. The aim of our study is to evaluate the influence of a realistic, nonuniform electron cloud on the MWT. We conduct electron cloud buildup simulations for beam pipe geometries and bunch parameters resembling roughly the conditions in the CERN SPS. For different microwave waveguide modes the phase shift induced by a known electron cloud density is obtained from three different approaches: 3D Particle-In-Cell (PIC) simulation of the electron response, a 2D eigenvalue solver for waveguide modes assuming a dielectric response function for cold electrons, a perturbative method assuming a sufficiently smooth density profile. While several electron cloud parameters, such as temperature, result in minor errors in the determined density, the transversely inhomogeneous density can introduce a large error in the measured electron density. We show that the perturbative approach is sufficient to describe the phase shift under realistic electron cloud conditions. Depending on the geometry of the beam pipe, the external magnetic field configuration and the used waveguide mode, the electron cloud density can be concentrated at the beam pipe or near the beam pipe center, leading to a severe over- or underestimation of the electron density. Electron cloud distributions are very inhomogeneous, especially in dipoles. These inhomogeneities affect the microwave transmission measurement results. Electron density might be over- or underestimated, depending on setup. This can be quantified with several models, e.g. a perturbative approach.

  9. Electron density in the intermediate heights for low latitude stations: observations and models

    NASA Astrophysics Data System (ADS)

    Mosert, M.; Radicella, S. M.; Adeniyi, J. O.; Ezquer, R. G.; Jadur, C.

    The electron density (NF1) and height (hF1) of the F1 inflection point measured at three low latitude ionosonde stations were compared with the parameters of the N170 point (electron density at 170 km) and with those predicted by the IRI model. The validity of the empirical equation proposed by Radicella and Mosert to predict the height hF1 was checked. Daytime electron density profiles from Ibadan, Ouagadougou and Tucumán covering different seasonal and solar activity conditions were used in the study. The results indicate that the two points are close together most of the time and that the Radicella-Mosert formula descrbies the data better than the current IRI model.

  10. Electron Density and S4 Index observed by FORMOSAT-3/COSMIC

    NASA Astrophysics Data System (ADS)

    Chen, S.; Liu, J. G.

    2010-12-01

    It has been known that the scintillation phenomenon is highly correlated with electron density gradient in the ionosphere. The six micro-satellites of the FORMOSAT-3/COSMIC (F3/C) in the low-Earth orbit are capable of monitoring the troposphere and ionosphere by using the powerful technique of radio occultation. With more than 6000 observations per day, it provides an excellent opportunity to probe three-dimensional structures of the S4 index and electron density. We examine diurnal, seasonal and geographical variations of simultaneous measurements<