Chai, Rui; Xu, Li-Sheng; Yao, Yang; Hao, Li-Ling; Qi, Lin
2017-01-01
This study analyzed ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO), and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. Invasively measured parameters were compared with parameters measured from brachial pulse waves by regression model and transfer function model. Accuracy of parameters estimated by regression and transfer function model, was compared too. Findings showed that k value, central pulse wave and brachial pulse wave parameters invasively measured, correlated positively. Regression model parameters including A_slope, DBP, SEVR, and transfer function model parameters had good consistency with parameters invasively measured. They had same effect of consistency. SBP, PP, SV, and CO could be calculated through the regression model, but their accuracies were worse than that of transfer function model.
A Comparative Study of Distribution System Parameter Estimation Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yannan; Williams, Tess L.; Gourisetti, Sri Nikhil Gup
2016-07-17
In this paper, we compare two parameter estimation methods for distribution systems: residual sensitivity analysis and state-vector augmentation with a Kalman filter. These two methods were originally proposed for transmission systems, and are still the most commonly used methods for parameter estimation. Distribution systems have much lower measurement redundancy than transmission systems. Therefore, estimating parameters is much more difficult. To increase the robustness of parameter estimation, the two methods are applied with combined measurement snapshots (measurement sets taken at different points in time), so that the redundancy for computing the parameter values is increased. The advantages and disadvantages of bothmore » methods are discussed. The results of this paper show that state-vector augmentation is a better approach for parameter estimation in distribution systems. Simulation studies are done on a modified version of IEEE 13-Node Test Feeder with varying levels of measurement noise and non-zero error in the other system model parameters.« less
Chai Rui; Li Si-Man; Xu Li-Sheng; Yao Yang; Hao Li-Ling
2017-07-01
This study mainly analyzed the parameters such as ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO) and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. These parameters extracted from the central pulse wave invasively measured were compared with the parameters measured from the brachial pulse waves by a regression model and a transfer function model. The accuracy of the parameters which were estimated by the regression model and the transfer function model was compared too. Our findings showed that in addition to the k value, the above parameters of the central pulse wave and the brachial pulse wave invasively measured had positive correlation. Both the regression model parameters including A_slope, DBP, SEVR and the transfer function model parameters had good consistency with the parameters invasively measured, and they had the same effect of consistency. The regression equations of the three parameters were expressed by Y'=a+bx. The SBP, PP, SV, CO of central pulse wave could be calculated through the regression model, but their accuracies were worse than that of transfer function model.
Field-Scale Evaluation of Infiltration Parameters From Soil Texture for Hydrologic Analysis
NASA Astrophysics Data System (ADS)
Springer, Everett P.; Cundy, Terrance W.
1987-02-01
Recent interest in predicting soil hydraulic properties from simple physical properties such as texture has major implications in the parameterization of physically based models of surface runoff. This study was undertaken to (1) compare, on a field scale, soil hydraulic parameters predicted from texture to those derived from field measurements and (2) compare simulated overland flow response using these two parameter sets. The parameters for the Green-Ampt infiltration equation were obtained from field measurements and using texture-based predictors for two agricultural fields, which were mapped as single soil units. Results of the analyses were that (1) the mean and variance of the field-based parameters were not preserved by the texture-based estimates, (2) spatial and cross correlations between parameters were induced by the texture-based estimation procedures, (3) the overland flow simulations using texture-based parameters were significantly different than those from field-based parameters, and (4) simulations using field-measured hydraulic conductivities and texture-based storage parameters were very close to simulations using only field-based parameters.
Remote measurements of water pollution with a lidar polarimeter
NASA Technical Reports Server (NTRS)
Sheives, T. C.; Rouse, J. W., Jr.; Mayo, W. T., Jr.
1974-01-01
This paper examines a dual polarization laser backscatter system as a method for remote measurements of certain water quality parameters. Analytical models for describing the backscatter from turbid water and oil on turbid water are presented and compared with experimental data. Laser backscatter field measurements from natural waterways are presented and compared with simultaneous ground observations of the water quality parameters: turbidity, suspended solids, and transmittance. The results of this study show that the analytical models appear valid and that the sensor investigated is applicable to remote measurements of these water quality parameters and oil spills on water.-
Generation of Requirements for Simulant Measurements
NASA Technical Reports Server (NTRS)
Rickman, D. L.; Schrader, C. M.; Edmunson, J. E.
2010-01-01
This TM presents a formal, logical explanation of the parameters selected for the figure of merit (FoM) algorithm. The FoM algorithm is used to evaluate lunar regolith simulant. The objectives, requirements, assumptions, and analysis behind the parameters are provided. A requirement is derived to verify and validate simulant performance versus lunar regolith from NASA s objectives for lunar simulants. This requirement leads to a specification that comparative measurements be taken the same way on the regolith and the simulant. In turn, this leads to a set of nine criteria with which to evaluate comparative measurements. Many of the potential measurements of interest are not defensible under these criteria. For example, many geotechnical properties of interest were not explicitly measured during Apollo and they can only be measured in situ on the Moon. A 2005 workshop identified 32 properties of major interest to users. Virtually all of the properties are tightly constrained, though not predictable, if just four parameters are controlled. Three parameters (composition, size, and shape) are recognized as being definable at the particle level. The fourth parameter (density) is a bulk property. In recent work, a fifth parameter (spectroscopy) has been identified, which will need to be added to future releases of the FoM.
Generalized Grueneisen tensor from solid nonlinearity parameters
NASA Technical Reports Server (NTRS)
Cantrell, J. H., Jr.
1980-01-01
Anharmonic effects in solids are often described in terms of generalized Grueneisen parameters which measure the strain dependence of the lattice vibrational frequencies. The relationship between these parameters and the solid nonlinearity parameters measured directly in ultrasonic harmonic generation experiments is derived using an approach valid for normal-mode elastic wave propagation in any crystalline direction. The resulting generalized Grueneisen parameters are purely isentropic in contrast to the Brugger-Grueneisen parameters which are of a mixed thermodynamic state. Experimental data comparing the isentropic generalized Grueneisen parameters and the Brugger-Grueneisen parameters are presented.
Pineda, F D; Medved, M; Fan, X; Ivancevic, M K; Abe, H; Shimauchi, A; Newstead, G M
2015-01-01
Objective: To compare dynamic contrast-enhanced (DCE) MRI parameters from scans of breast lesions at 1.5 and 3.0 T. Methods: 11 patients underwent paired MRI examinations in both Philips 1.5 and 3.0 T systems (Best, Netherlands) using a standard clinical fat-suppressed, T1 weighted DCE-MRI protocol, with 70–76 s temporal resolution. Signal intensity vs time curves were fit with an empirical mathematical model to obtain semi-quantitative measures of uptake and washout rates as well as time-to-peak enhancement (TTP). Maximum percent enhancement and signal enhancement ratio (SER) were also measured for each lesion. Percent differences between parameters measured at the two field strengths were compared. Results: TTP and SER parameters measured at 1.5 and 3.0 T were similar; with mean absolute differences of 19% and 22%, respectively. Maximum percent signal enhancement was significantly higher at 3 T than at 1.5 T (p = 0.006). Qualitative assessment showed that image quality was significantly higher at 3 T (p = 0.005). Conclusion: Our results suggest that TTP and SER are more robust to field strength change than other measured kinetic parameters, and therefore measurements of these parameters can be more easily standardized than measurements of other parameters derived from DCE-MRI. Semi-quantitative measures of overall kinetic curve shape showed higher reproducibility than do discrete classification of kinetic curve early and delayed phases in a majority of the cases studied. Advances in knowledge: Qualitative measures of curve shape are not consistent across field strength even when acquisition parameters are standardized. Quantitative measures of overall kinetic curve shape, by contrast, have higher reproducibility. PMID:25785918
Instrument for the measurement and determination of chemical pulse column parameters
Marchant, Norman J.; Morgan, John P.
1990-01-01
An instrument for monitoring and measuring pneumatic driving force pulse parameters applied to chemical separation pulse columns obtains real time pulse frequency and root mean square amplitude values, calculates column inch values and compares these values against preset limits to alert column operators to the variations of pulse column operational parameters beyond desired limits.
Linear and non-linear bias: predictions versus measurements
NASA Astrophysics Data System (ADS)
Hoffmann, K.; Bel, J.; Gaztañaga, E.
2017-02-01
We study the linear and non-linear bias parameters which determine the mapping between the distributions of galaxies and the full matter density fields, comparing different measurements and predictions. Associating galaxies with dark matter haloes in the Marenostrum Institut de Ciències de l'Espai (MICE) Grand Challenge N-body simulation, we directly measure the bias parameters by comparing the smoothed density fluctuations of haloes and matter in the same region at different positions as a function of smoothing scale. Alternatively, we measure the bias parameters by matching the probability distributions of halo and matter density fluctuations, which can be applied to observations. These direct bias measurements are compared to corresponding measurements from two-point and different third-order correlations, as well as predictions from the peak-background model, which we presented in previous papers using the same data. We find an overall variation of the linear bias measurements and predictions of ˜5 per cent with respect to results from two-point correlations for different halo samples with masses between ˜1012and1015 h-1 M⊙ at the redshifts z = 0.0 and 0.5. Variations between the second- and third-order bias parameters from the different methods show larger variations, but with consistent trends in mass and redshift. The various bias measurements reveal a tight relation between the linear and the quadratic bias parameters, which is consistent with results from the literature based on simulations with different cosmologies. Such a universal relation might improve constraints on cosmological models, derived from second-order clustering statistics at small scales or higher order clustering statistics.
NASA Technical Reports Server (NTRS)
Waddington, C. J.
1978-01-01
Evidence is reexamined which has been cited as suggesting serious errors in the use of fragmentation parameters appropriate to an airlike medium deduced from measurements made in nuclear emulsions to evaluate corrections for certain effects in balloon-borne observations of cosmic-ray nuclei. Fragmentation parameters for hydrogenlike interactions are calculated and shown to be in overall good agreement with those obtained previously for air. Experimentally measured fragmentation parameters in emulsion are compared with values computed semiempirically, and reasonable agreement is indicated.
Investigating The Kinematics of Canids and Felids
NASA Astrophysics Data System (ADS)
Sur, D.
2016-12-01
For all organisms, metabolic energy is critical for survival. While moving efficiently is a necessity for large carnivores, the influence of kinematics on energy demand remains poorly understood. We measured the kinematics of dogs, wolves, and pumas to detect any differences in their respective energy expenditures. Using 22 kinematic parameters measured on 78 videos, we used one-way ANOVAs and paired T-tests to compare 5 experimental treatments among gaits in dogs (n=11 in 3 breed groups), wolves (n=2), and pumas (n=2). Across the measured parameters, we found greater kinematic similarity than expected among dog breeds and no trend in any of the 22 parameters regarding the effect of steepness on locomotion mechanics. Similarly, treadmill kinematics were nearly identical to those measured during outdoor movement. However, in 3 inches of snow, we observed significant differences (p<0.05) in 5 of the 22 parameters for one wolf. When comparing canids (wolves and dogs) to a felid (pumas), we found that pumas and dogs are the most kinematically distinct (differing in 13 of 22 parameters, compared with 5 of 22 for wolves and pumas). Lastly, compared with wolves, walking pumas had larger head angles (p=0.0025), forelimb excursion angles (p=0.0045), and hindlimb excursion angles (p=0.0327). After comparing the energetics of pumas and dogs with their respective kinematics, we noted that less dynamic kinematics result in energy savings. Through tracking the locations and gait behavior of large carnivores, novel sensor technology can reveal how indoor kinematics applies to wild animals and improve the conservation of these species.
NASA Astrophysics Data System (ADS)
Zaib Jadoon, Khan; Umer Altaf, Muhammad; McCabe, Matthew Francis; Hoteit, Ibrahim; Muhammad, Nisar; Moghadas, Davood; Weihermüller, Lutz
2017-10-01
A substantial interpretation of electromagnetic induction (EMI) measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In MCMC the posterior distribution is computed using Bayes' rule. The electromagnetic forward model based on the full solution of Maxwell's equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD Mini-Explorer. Uncertainty in the parameters for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness as compared to layers electrical conductivity are not very informative and are therefore difficult to resolve. Application of the proposed MCMC-based inversion to field measurements in a drip irrigation system demonstrates that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provides useful insight about parameter uncertainty for the assessment of the model outputs.
New parameters in adaptive testing of ferromagnetic materials utilizing magnetic Barkhausen noise
NASA Astrophysics Data System (ADS)
Pal'a, Jozef; Ušák, Elemír
2016-03-01
A new method of magnetic Barkhausen noise (MBN) measurement and optimization of the measured data processing with respect to non-destructive evaluation of ferromagnetic materials was tested. Using this method we tried to found, if it is possible to enhance sensitivity and stability of measurement results by replacing the traditional MBN parameter (root mean square) with some new parameter. In the tested method, a complex set of the MBN from minor hysteresis loops is measured. Afterward, the MBN data are collected into suitably designed matrices and optimal parameters of MBN with respect to maximum sensitivity to the evaluated variable are searched. The method was verified on plastically deformed steel samples. It was shown that the proposed measuring method and measured data processing bring an improvement of the sensitivity to the evaluated variable when comparing with measuring traditional MBN parameter. Moreover, we found a parameter of MBN, which is highly resistant to the changes of applied field amplitude and at the same time it is noticeably more sensitive to the evaluated variable.
Bizios, Dimitrios; Heijl, Anders; Hougaard, Jesper Leth; Bengtsson, Boel
2010-02-01
To compare the performance of two machine learning classifiers (MLCs), artificial neural networks (ANNs) and support vector machines (SVMs), with input based on retinal nerve fibre layer thickness (RNFLT) measurements by optical coherence tomography (OCT), on the diagnosis of glaucoma, and to assess the effects of different input parameters. We analysed Stratus OCT data from 90 healthy persons and 62 glaucoma patients. Performance of MLCs was compared using conventional OCT RNFLT parameters plus novel parameters such as minimum RNFLT values, 10th and 90th percentiles of measured RNFLT, and transformations of A-scan measurements. For each input parameter and MLC, the area under the receiver operating characteristic curve (AROC) was calculated. There were no statistically significant differences between ANNs and SVMs. The best AROCs for both ANN (0.982, 95%CI: 0.966-0.999) and SVM (0.989, 95% CI: 0.979-1.0) were based on input of transformed A-scan measurements. Our SVM trained on this input performed better than ANNs or SVMs trained on any of the single RNFLT parameters (p < or = 0.038). The performance of ANNs and SVMs trained on minimum thickness values and the 10th and 90th percentiles were at least as good as ANNs and SVMs with input based on the conventional RNFLT parameters. No differences between ANN and SVM were observed in this study. Both MLCs performed very well, with similar diagnostic performance. Input parameters have a larger impact on diagnostic performance than the type of machine classifier. Our results suggest that parameters based on transformed A-scan thickness measurements of the RNFL processed by machine classifiers can improve OCT-based glaucoma diagnosis.
Using Indirect Turbulence Measurements for Real-Time Parameter Estimation in Turbulent Air
NASA Technical Reports Server (NTRS)
Martos, Borja; Morelli, Eugene A.
2012-01-01
The use of indirect turbulence measurements for real-time estimation of parameters in a linear longitudinal dynamics model in atmospheric turbulence was studied. It is shown that measuring the atmospheric turbulence makes it possible to treat the turbulence as a measured explanatory variable in the parameter estimation problem. Commercial off-the-shelf sensors were researched and evaluated, then compared to air data booms. Sources of colored noise in the explanatory variables resulting from typical turbulence measurement techniques were identified and studied. A major source of colored noise in the explanatory variables was identified as frequency dependent upwash and time delay. The resulting upwash and time delay corrections were analyzed and compared to previous time shift dynamic modeling research. Simulation data as well as flight test data in atmospheric turbulence were used to verify the time delay behavior. Recommendations are given for follow on flight research and instrumentation.
NASA Technical Reports Server (NTRS)
Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Kosters, J. J.; Murcray, D. G.; Rinsland, C. P.; Flaud, J.-M.; Camy-Peyret, C.
1992-01-01
Very-high-resolution FWHM solar-occultation spectra are investigated with a balloon-borne interferometer using revised spectroscopic line parameters for HNO3, O3, and H2O. The O3 and H2O data are evaluated to determine their capacity for interference in the HNO3 line which is studied in the nu sub 2 band at 5.8 microns. The line parameters developed with the stratospheric data are compared to data based on a HITRAN compilation as well as laboratory spectra with a 0.002/cm resolution. The line list is calculated and shown to include J and Ka transitions which improve the line parameters for HNO3 by accounting for the weaker absorption features in the stratospheric spectra. The stratospheric HNO3 profile developed analytically is compared to those based on reported measurements, and the one developed with the stratospheric solar spectra is found to be consistent with the measurements and confirm inherent measurement biases.
Quantitative fluorescence angiography for neurosurgical interventions.
Weichelt, Claudia; Duscha, Philipp; Steinmeier, Ralf; Meyer, Tobias; Kuß, Julia; Cimalla, Peter; Kirsch, Matthias; Sobottka, Stephan B; Koch, Edmund; Schackert, Gabriele; Morgenstern, Ute
2013-06-01
Present methods for quantitative measurement of cerebral perfusion during neurosurgical operations require additional technology for measurement, data acquisition, and processing. This study used conventional fluorescence video angiography--as an established method to visualize blood flow in brain vessels--enhanced by a quantifying perfusion software tool. For these purposes, the fluorescence dye indocyanine green is given intravenously, and after activation by a near-infrared light source the fluorescence signal is recorded. Video data are analyzed by software algorithms to allow quantification of the blood flow. Additionally, perfusion is measured intraoperatively by a reference system. Furthermore, comparing reference measurements using a flow phantom were performed to verify the quantitative blood flow results of the software and to validate the software algorithm. Analysis of intraoperative video data provides characteristic biological parameters. These parameters were implemented in the special flow phantom for experimental validation of the developed software algorithms. Furthermore, various factors that influence the determination of perfusion parameters were analyzed by means of mathematical simulation. Comparing patient measurement, phantom experiment, and computer simulation under certain conditions (variable frame rate, vessel diameter, etc.), the results of the software algorithms are within the range of parameter accuracy of the reference methods. Therefore, the software algorithm for calculating cortical perfusion parameters from video data presents a helpful intraoperative tool without complex additional measurement technology.
Prediction of the explosion effect of aluminized explosives
NASA Astrophysics Data System (ADS)
Zhang, Qi; Xiang, Cong; Liang, HuiMin
2013-05-01
We present an approach to predict the explosion load for aluminized explosives using a numerical calculation. A code to calculate the species of detonation products of high energy ingredients and those of the secondary reaction of aluminum and the detonation products, velocity of detonation, pressure, temperature and JWL parameters of aluminized explosives has been developed in this study. Through numerical calculations carried out with this code, the predicted JWL parameters for aluminized explosives have been compared with those measured by the cylinder test. The predicted JWL parameters with this code agree with those measured by the cylinder test. Furthermore, the load of explosion for the aluminized explosive was calculated using the numerical simulation by using the JWL equation of state. The loads of explosion for the aluminized explosive obtained using the predicted JWL parameters have been compared with those using the measured JWL parameters. Both of them are almost the same. The numerical results using the predicted JWL parameters show that the explosion air shock wave is the strongest when the mass fraction of aluminum powder in the explosive mixtures is 30%. This result agrees with the empirical data.
Effect of electric potential and current on mandibular linear measurements in cone beam CT.
Panmekiate, S; Apinhasmit, W; Petersson, A
2012-10-01
The purpose of this study was to compare mandibular linear distances measured from cone beam CT (CBCT) images produced by different radiographic parameter settings (peak kilovoltage and milliampere value). 20 cadaver hemimandibles with edentulous ridges posterior to the mental foramen were embedded in clear resin blocks and scanned by a CBCT machine (CB MercuRay(TM); Hitachi Medico Technology Corp., Chiba-ken, Japan). The radiographic parameters comprised four peak kilovoltage settings (60 kVp, 80 kVp, 100 kVp and 120 kVp) and two milliampere settings (10 mA and 15 mA). A 102.4 mm field of view was chosen. Each hemimandible was scanned 8 times with 8 different parameter combinations resulting in 160 CBCT data sets. On the cross-sectional images, six linear distances were measured. To assess the intraobserver variation, the 160 data sets were remeasured after 2 weeks. The measurement precision was calculated using Dahlberg's formula. With the same peak kilovoltage, the measurements yielded by different milliampere values were compared using the paired t-test. With the same milliampere value, the measurements yielded by different peak kilovoltage were compared using analysis of variance. A significant difference was considered when p < 0.05. Measurement precision varied from 0.03 mm to 0.28 mm. No significant differences in the distances were found among the different radiographic parameter combinations. Based upon the specific machine in the present study, low peak kilovoltage and milliampere value might be used for linear measurements in the posterior mandible.
Singhatanadgige, Weerasak; Kang, Daniel G; Luksanapruksa, Panya; Peters, Colleen; Riew, K Daniel
2016-09-01
Retrospective analysis. To evaluate the correlation and reliability of cervical sagittal alignment parameters obtained from lateral cervical radiographs (XRs) compared with lateral whole-body stereoradiographs (SRs). We evaluated adults with cervical deformity using both lateral XRs and lateral SRs obtained within 1 week of each other between 2010 and 2014. XR and SR images were measured by two independent spine surgeons using the following sagittal alignment parameters: C2-C7 sagittal Cobb angle (SCA), C2-C7 sagittal vertical axis (SVA), C1-C7 translational distance (C1-7), T1 slope (T1-S), neck tilt (NT), and thoracic inlet angle (TIA). Pearson correlation and paired t test were used for statistical analysis, with intra- and interrater reliability analyzed using intraclass correlation coefficient (ICC). A total of 35 patients were included in the study. We found excellent intrarater reliability for all sagittal alignment parameters in both the XR and SR groups with ICC ranging from 0.799 to 0.994 for XR and 0.791 to 0.995 for SR. Interrater reliability was also excellent for all parameters except NT and TIA, which had fair reliability. We also found excellent correlations between XR and SR measurements for most sagittal alignment parameters; SCA, SVA, and C1-C7 had r > 0.90, and only NT had r < 0.70. There was a significant difference between groups, with SR having lower measurements compared with XR for both SVA (0.68 cm lower, p < 0.001) and C1-C7 (1.02 cm lower, p < 0.001). There were no differences between groups for SCA, T1-S, NT, and TIA. Whole-body stereoradiography appears to be a viable alternative for measuring cervical sagittal alignment parameters compared with standard radiography. XR and SR demonstrated excellent correlation for most sagittal alignment parameters except NT. However, SR had significantly lower average SVA and C1-C7 measurements than XR. The lower radiation exposure using single SR has to be weighed against its higher cost compared with XR.
Measurement of the Acoustic Nonlinearity Parameter for Biological Media.
NASA Astrophysics Data System (ADS)
Cobb, Wesley Nelson
In vitro measurements of the acoustic nonlinearity parameter are presented for several biological media. With these measurements it is possible to predict the distortion of a finite amplitude wave in biological tissues of current diagnostic and research interest. The measurement method is based on the finite amplitude distortion of a sine wave that is emmitted by a piston source. The growth of the second harmonic component of this wave is measured by a piston receiver which is coaxial with and has the same size as the source. The experimental measurements and theory are compared in order to determine the nonlinearity parameter. The density, sound speed, and attenuation for the medium are determined in order to make this comparison. The theory developed for this study accounts for the influence of both diffraction and attenuation on the experimental measurements. The effects of dispersion, tissue inhomogeneity and gas bubbles within the excised tissues are studied. To test the measurement method, experimental results are compared with established values for the nonlinearity parameter of distilled water, ethylene glycol and glycerol. The agreement between these values suggests that the measurement uncertainty is (+OR-) 5% for liquids and (+OR-) 10% for solid tissues. Measurements are presented for dog blood and bovine serum albumen as a function of concentration. The nonlinearity parameters for liver, kidney and spleen are reported for both human and canine tissues. The values for the fresh tissues displayed little variation (6.8 to 7.8). Measurements for fixed, normal and cirrhotic tissues indicated that the nonlinearity parameter does not depend strongly on pathology. However, the values for fixed tissues were somewhat higher than those of the fresh tissues.
NASA Technical Reports Server (NTRS)
Kibler, J. F.; Suttles, J. T.
1977-01-01
One way to obtain estimates of the unknown parameters in a pollution dispersion model is to compare the model predictions with remotely sensed air quality data. A ground-based LIDAR sensor provides relative pollution concentration measurements as a function of space and time. The measured sensor data are compared with the dispersion model output through a numerical estimation procedure to yield parameter estimates which best fit the data. This overall process is tested in a computer simulation to study the effects of various measurement strategies. Such a simulation is useful prior to a field measurement exercise to maximize the information content in the collected data. Parametric studies of simulated data matched to a Gaussian plume dispersion model indicate the trade offs available between estimation accuracy and data acquisition strategy.
NASA Astrophysics Data System (ADS)
Quan, Naicheng; Zhang, Chunmin; Mu, Tingkui; Li, Qiwei
2018-05-01
The principle and experimental demonstration of a method based on channeled polarimetric technique (CPT) to measure spectrally resolved linearly Stokes parameters (SRLS) is presented. By replacing front retarder with an achromatic quarter wave-plate of CPT, the linearly SRLS can be measured simultaneously. It also retains the advantages of static and compact of CPT. Besides, comparing with CPT, it can reduce the RMS error by nearly a factor of 2-5 for the individual linear Stokes parameters.
Jeoung, Jin Wook; Choi, Yun Jeong; Park, Ki Ho; Kim, Dong Myung
2013-07-01
We evaluated the diagnostic accuracy of macular ganglion cell-inner plexiform layer (GCIPL) measurements using a high-definition optical coherence tomography (Cirrus HD-OCT) ganglion cell analysis algorithm for detecting early and moderate-to-severe glaucoma. Totals of 119 normal subjects and 306 glaucoma patients (164 patients with early glaucoma and 142 with moderate-to-severe glaucoma) were enrolled from the Macular Ganglion Cell Imaging Study. Macular GCIPL, peripapillary retinal nerve fiber layer (RNFL) thickness, and optic nerve head (ONH) parameters were measured in each subject. Areas under the receiver operating characteristic curves (AUROCs) were calculated and compared. Based on the internal normative database, the sensitivity and specificity for detecting early and moderate-to-severe glaucoma were calculated. There was no statistically significant difference between the AUROCs for the best OCT parameters. For detecting early glaucoma, the sensitivity of the Cirrus GCIPL parameters ranged from 26.8% to 73.2% and that of the Cirrus RNFL parameters ranged from 6.1% to 61.6%. For the early glaucoma group, the best parameter from the GCIPL generally had a higher sensitivity than those of the RNFL and ONH parameters with comparable specificity (P < 0.05, McNemar's test). There were no significant differences between the AUROCs for Cirrus GCIPL, RNFL, and ONH parameters, indicating that these maps have similar diagnostic potentials for glaucoma. The minimum GCIPL showed better glaucoma diagnostic performance than the other parameters at comparable specificities. However, other GCIPL parameters showed performances comparable to those of the RNFL parameters.
Generation of Requirements for Simulant Measurements. Revised, May 30, 2010
NASA Technical Reports Server (NTRS)
Rickman, Doug; Edmunson, Jennifer
2010-01-01
This document provides a formal, logical explanation of the parameters selected for the Figure of Merit algorithm used to evaluate lunar regolith simulant. The objectives, requirements, assumptions and analysis behind the parameters is provided. From NASA's objectives for lunar simulants a requirement is derived to verify and validate simulant performance versus lunar regolith. This requirement leads to a specification that comparative measurements be taken the same way on the regolith and the simulant. In turn this leads to a set of 9 criteria with which to evaluate comparative measurement. Many of the potential measurements of interest are not defensible under these criteria, for example many geotechnical properties of interest were not explicitly measured during Apollo and they can only be measured in situ on the Moon. A 2005 workshop identified 32 properties of major interest to users (Sibille Carpenter Schlagheck, and French, 2006). Virtually all of the properties are tightly constrained, though not predictable, if just four parameters are controlled. Three: composition, size and shape, are recognized as being definable at the particle level. The fourth, density, is a bulk property. In recent work a fifth parameter has been identified, which will need to be added to future releases of the Figure of Merit: spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerns, James R.; Followill, David S.; Imaging and Radiation Oncology Core-Houston, The University of Texas Health Science Center-Houston, Houston, Texas
Purpose: To compare radiation machine measurement data collected by the Imaging and Radiation Oncology Core at Houston (IROC-H) with institutional treatment planning system (TPS) values, to identify parameters with large differences in agreement; the findings will help institutions focus their efforts to improve the accuracy of their TPS models. Methods and Materials: Between 2000 and 2014, IROC-H visited more than 250 institutions and conducted independent measurements of machine dosimetric data points, including percentage depth dose, output factors, off-axis factors, multileaf collimator small fields, and wedge data. We compared these data with the institutional TPS values for the same points bymore » energy, class, and parameter to identify differences and similarities using criteria involving both the medians and standard deviations for Varian linear accelerators. Distributions of differences between machine measurements and institutional TPS values were generated for basic dosimetric parameters. Results: On average, intensity modulated radiation therapy–style and stereotactic body radiation therapy–style output factors and upper physical wedge output factors were the most problematic. Percentage depth dose, jaw output factors, and enhanced dynamic wedge output factors agreed best between the IROC-H measurements and the TPS values. Although small differences were shown between 2 common TPS systems, neither was superior to the other. Parameter agreement was constant over time from 2000 to 2014. Conclusions: Differences in basic dosimetric parameters between machine measurements and TPS values vary widely depending on the parameter, although agreement does not seem to vary by TPS and has not changed over time. Intensity modulated radiation therapy–style output factors, stereotactic body radiation therapy–style output factors, and upper physical wedge output factors had the largest disagreement and should be carefully modeled to ensure accuracy.« less
Verification of the test stand for microbolometer camera in accredited laboratory
NASA Astrophysics Data System (ADS)
Krupiński, Michal; Bareła, Jaroslaw; Chmielewski, Krzysztof; Kastek, Mariusz
2017-10-01
Microbolometer belongs to the group of thermal detectors and consist of temperature sensitive resistor which is exposed to measured radiation flux. Bolometer array employs a pixel structure prepared in silicon technology. The detecting area is defined by a size of thin membrane, usually made of amorphous silicon (a-Si) or vanadium oxide (VOx). FPAs are made of a multitude of detector elements (for example 384 × 288 ), where each individual detector has different sensitivity and offset due to detector-to-detector spread in the FPA fabrication process, and additionally can change with sensor operating temperature, biasing voltage variation or temperature of the observed scene. The difference in sensitivity and offset among detectors (which is called non-uniformity) additionally with its high sensitivity, produces fixed pattern noise (FPN) on produced image. Fixed pattern noise degrades parameters of infrared cameras like sensitivity or NETD. Additionally it degrades image quality, radiometric accuracy and temperature resolution. In order to objectively compare the two infrared cameras ones must measure and compare their parameters on a laboratory test stand. One of the basic parameters for the evaluation of a designed camera is NETD. In order to examine the NETD, parameters such as sensitivity and pixels noise must be measured. To do so, ones should register the output signal from the camera in response to the radiation of black bodies at two different temperatures. The article presets an application and measuring stand for determining the parameters of microbolometers camera. Prepared measurements were compared with the result of the measurements in the Institute of Optoelectronics, MUT on a METS test stand by CI SYSTEM. This test stand consists of IR collimator, IR standard source, rotating wheel with test patterns, a computer with a video grabber card and specialized software. The parameters of thermals cameras were measure according to norms and method described in literature.
Chan, Tommy C.Y.; Biswas, Sayantan; Yu, Marco; Jhanji, Vishal
2015-01-01
Abstract Swept-source optical coherence tomography (OCT) is the latest advancement in anterior segment imaging. There are limited data regarding its performance after laser in situ keratomileusis (LASIK). We compared the reliability of swept-source OCT and Scheimpflug imaging for evaluation of corneal parameters in refractive surgery candidates with myopia or myopic astigmatism. Three consecutive measurements were obtained preoperatively and 1 year postoperatively using swept-source OCT and Scheimpflug imaging. The study parameters included central corneal thickness (CCT), thinnest corneal thickness (TCT), keratometry at steep (Ks) and flat (Kf) axes, mean keratometry (Km), and, anterior and posterior best fit spheres (Ant and Post BFS). The main outcome measures included reliability of measurements before and after LASIK was evaluated using intraclass correlation coefficient (ICC) and reproducibility coefficients (RC). Association between the mean value of corneal parameters with age, spherical equivalent (SEQ), and residual bed thickness (RBT) and association of variance heterogeneity of corneal parameters and these covariates were analyzed. Twenty-six right eyes of 26 participants (mean age, 32.7 ± 6.9 yrs; mean SEQ, −6.27 ± 1.67 D) were included. Preoperatively, swept-source OCT demonstrated significantly higher ICC for Ks, CCT, TCT, and Post BFS (P ≤ 0.016), compared with Scheimpflug imaging. Swept-source OCT demonstrated significantly smaller RC values for CCT, TCT, and Post BFS (P ≤ 0.001). After LASIK, both devices had significant differences in measurements for all corneal parameters (P ≤ 0.015). Swept-source OCT demonstrated a significantly higher ICC and smaller RC for all measurements, compared with Scheimpflug imaging (P ≤ 0.001). Association of variance heterogeneity was only found in pre-LASIK Ant BFS and post-LASIK Post BFS for swept-source OCT, whereas significant association of variance heterogeneity was noted for all measurements except Ks and Km for Scheimpflug imaging. This study reported higher reliability of swept-source OCT for post-LASIK corneal measurements, as compared with Scheimpflug imaging. The reliability of corneal parameters measured with Scheimpflug imaging after LASIK was not consistent across different age, SEQ, and RBT measurements. These factors need to be considered during follow-up and evaluation of post-LASIK patients for further surgical procedures. PMID:26222852
Repeatability of Spectral Domain Optical Coherence Tomography Measurements in High Myopia.
Rao, Harsha L; Kumar, Addepalli U; Bonala, Sampath R; Yogesh, Kadam; Lakshmi, Bodduluri
2016-05-01
The purpose of this study was to compare the repeatability of spectral domain optical coherence tomography (SDOCT) parameters in high-myopic and emmetropic healthy subjects, and to evaluate the influence of axial length on the repeatability of SDOCT parameters in high myopia. In a prospective study, 93 eyes of 63 high-myopic subjects (spherical refractive error, -6 to -12 D; median age, 25 y) and 28 eyes of 14 emmetropic (spherical refractive error, 0 D; median age, 30 y) subjects underwent optic nerve head, retinal nerve fiber layer (RNFL), and ganglion cell complex imaging with SDOCT. For the repeatability analysis, 31 eyes of 31 high-myopic subjects and 14 eyes of 14 emmetropic subjects underwent 3 repeated scans in the same session. Among the optic nerve head parameters, within-subject coefficient of variation (CVw) measurements of the disc area (0.6% vs. 0.2%), rim area (8.7 vs. 2.8), and rim volume (16.7 vs. 8.9) were significantly larger (worse) in high-myopic compared with the emmetropic subjects. CVw measurements of all RNFL (range, 1.7 to 22.4) and ganglion cell complex (range, 1.8 to 2.5) parameters in high-myopic subjects were comparable to that in emmetropic subjects (2.4 to 24.0 and 1.7 to 2.0, respectively). Axial length significantly affected the CVw of nasal (coefficient, 0.01; P=0.04) and average RNFL (coefficient, 0.004; P=0.001) parameters but not that of the other SDOCT parameters. Repeatabilities of most of the SDOCT parameters in high-myopic subjects were good and comparable to that of emmetropic subjects. This suggests that SDOCT can be useful for following up high-myopic glaucoma patients to detect progression.
Incorporating measurement error in n = 1 psychological autoregressive modeling.
Schuurman, Noémi K; Houtveen, Jan H; Hamaker, Ellen L
2015-01-01
Measurement error is omnipresent in psychological data. However, the vast majority of applications of autoregressive time series analyses in psychology do not take measurement error into account. Disregarding measurement error when it is present in the data results in a bias of the autoregressive parameters. We discuss two models that take measurement error into account: An autoregressive model with a white noise term (AR+WN), and an autoregressive moving average (ARMA) model. In a simulation study we compare the parameter recovery performance of these models, and compare this performance for both a Bayesian and frequentist approach. We find that overall, the AR+WN model performs better. Furthermore, we find that for realistic (i.e., small) sample sizes, psychological research would benefit from a Bayesian approach in fitting these models. Finally, we illustrate the effect of disregarding measurement error in an AR(1) model by means of an empirical application on mood data in women. We find that, depending on the person, approximately 30-50% of the total variance was due to measurement error, and that disregarding this measurement error results in a substantial underestimation of the autoregressive parameters.
A comparison of four different blood gas analysers.
Kofstad, J
1981-06-01
Four automatic blood gas analysers from four different manufactures were evaluated and compared. The measurements were performed on blood representing respiratory acidosis and hypoxemia, normal conditions, and respiratory alkalosis and hyperoxemia. On each level nine complete runs were carried out, each run consisting of six replicates of each parameter (pH, Pco2 and Po2) on each instrument (six rounds). Only the directly measured parameters (pH, Pco2, Po2) were compared. The main conclusion is that the four instruments can be used alternatively, and that the differences between the values measured by the four instruments are of little clinical significance.
Seven-parameter statistical model for BRDF in the UV band.
Bai, Lu; Wu, Zhensen; Zou, Xiren; Cao, Yunhua
2012-05-21
A new semi-empirical seven-parameter BRDF model is developed in the UV band using experimentally measured data. The model is based on the five-parameter model of Wu and the fourteen-parameter model of Renhorn and Boreman. Surface scatter, bulk scatter and retro-reflection scatter are considered. An optimizing modeling method, the artificial immune network genetic algorithm, is used to fit the BRDF measurement data over a wide range of incident angles. The calculation time and accuracy of the five- and seven-parameter models are compared. After fixing the seven parameters, the model can well describe scattering data in the UV band.
The Hildebrand solubility parameters of ionic liquids-part 2.
Marciniak, Andrzej
2011-01-01
The Hildebrand solubility parameters have been calculated for eight ionic liquids. Retention data from the inverse gas chromatography measurements of the activity coefficients at infinite dilution were used for the calculation. From the solubility parameters, the enthalpies of vaporization of ionic liquids were estimated. Results are compared with solubility parameters estimated by different methods.
Structural and functional assessment of macula to diagnose glaucoma.
Rao, H L; Hussain, R S M; Januwada, M; Pillutla, L N; Begum, V U; Chaitanya, A; Senthil, S; Garudadri, C S
2017-04-01
PurposeTo compare the diagnostic abilities of structural (ganglion cell-inner plexiform layer (GCIPL) thickness measured using spectral domain optical coherence tomography (SDOCT)) and functional (visual sensitivities measured using standard automated perimetry (SAP) and microperimetry (MP)) assessments of macula in glaucoma.MethodsIn a prospective study, 46 control eyes (28 subjects) and 61 glaucoma eyes (46 patients) underwent visual sensitivity estimation at macula (central 10°) by SAP and MP, and GCIPL thickness measurement at macula by SDOCT. Glaucoma was diagnosed by experts based on the optic disc and retinal nerve fiber layer changes. Area under the receiver-operating characteristic (AUC) curves and sensitivities at 95% specificity were used to assess the diagnostic ability of visual sensitivity and GCIPL measurements at various macular sectors.ResultsAUCs of GCIPL parameters ranged between 0.58 and 0.79. AUCs of SAP and MP sensitivities ranged between 0.59 and 0.71, and 0.59 and 0.72, respectively. There were no statistically significant differences between the AUCs of corresponding sector measurements (P>0.10 for all comparisons). Sensitivities at 95% specificities ranged from 31-59% for GCIPL parameters, 16-34% for SAP, and 8-38% for MP parameters. Sensitivities were significantly better with GCIPL compared with SAP and MP parameters in diagnosing glaucoma. Inferotemporal, inferior, and superotemporal sector measurements of GCIPL and visual sensitivity showed the best abilities to diagnose glaucoma.ConclusionsComparing the diagnostic abilities of structural and functional tests at macula in glaucoma, GCIPL thickness measurements with SDOCT performed better than the visual sensitivity measurements by SAP and MP.
Dipole and nondipole photoionization of molecular hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmermann, B.; McKoy, V.; Southworth, S. H.
2015-05-01
We describe a theoretical approach to molecular photoionization that includes first-order corrections to the dipole approximation. The theoretical formalism is presented and applied to photoionization of H-2 over the 20-to 180-eV photon energy range. The angle-integrated cross section sigma, the electric dipole anisotropy parameter beta(e), the molecular alignment anisotropy parameter beta(m), and the first-order nondipole asymmetry parameters gamma and delta were calculated within the single-channel, static-exchange approximation. The calculated parameters are compared with previous measurements of sigma and beta(m) and the present measurements of beta(e) and gamma + 3 delta. The dipole and nondipole angular distribution parameters were determined simultaneouslymore » using an efficient, multiangle measurement technique. Good overall agreement is observed between the magnitudes and spectral variations of the calculated and measured parameters. The nondipole asymmetries of He 1s and Ne 2p photoelectrons were also measured in the course of this work.« less
Gap probability - Measurements and models of a pecan orchard
NASA Technical Reports Server (NTRS)
Strahler, Alan H.; Li, Xiaowen; Moody, Aaron; Liu, YI
1992-01-01
Measurements and models are compared for gap probability in a pecan orchard. Measurements are based on panoramic photographs of 50* by 135 view angle made under the canopy looking upwards at regular positions along transects between orchard trees. The gap probability model is driven by geometric parameters at two levels-crown and leaf. Crown level parameters include the shape of the crown envelope and spacing of crowns; leaf level parameters include leaf size and shape, leaf area index, and leaf angle, all as functions of canopy position.
Karmakar, Chandan; Udhayakumar, Radhagayathri K; Li, Peng; Venkatesh, Svetha; Palaniswami, Marimuthu
2017-01-01
Distribution entropy ( DistEn ) is a recently developed measure of complexity that is used to analyse heart rate variability (HRV) data. Its calculation requires two input parameters-the embedding dimension m , and the number of bins M which replaces the tolerance parameter r that is used by the existing approximation entropy ( ApEn ) and sample entropy ( SampEn ) measures. The performance of DistEn can also be affected by the data length N . In our previous studies, we have analyzed stability and performance of DistEn with respect to one parameter ( m or M ) or combination of two parameters ( N and M ). However, impact of varying all the three input parameters on DistEn is not yet studied. Since DistEn is predominantly aimed at analysing short length heart rate variability (HRV) signal, it is important to comprehensively study the stability, consistency and performance of the measure using multiple case studies. In this study, we examined the impact of changing input parameters on DistEn for synthetic and physiological signals. We also compared the variations of DistEn and performance in distinguishing physiological (Elderly from Young) and pathological (Healthy from Arrhythmia) conditions with ApEn and SampEn . The results showed that DistEn values are minimally affected by the variations of input parameters compared to ApEn and SampEn. DistEn also showed the most consistent and the best performance in differentiating physiological and pathological conditions with various of input parameters among reported complexity measures. In conclusion, DistEn is found to be the best measure for analysing short length HRV time series.
The Hildebrand Solubility Parameters of Ionic Liquids—Part 2
Marciniak, Andrzej
2011-01-01
The Hildebrand solubility parameters have been calculated for eight ionic liquids. Retention data from the inverse gas chromatography measurements of the activity coefficients at infinite dilution were used for the calculation. From the solubility parameters, the enthalpies of vaporization of ionic liquids were estimated. Results are compared with solubility parameters estimated by different methods. PMID:21747694
Bayesian inversions of a dynamic vegetation model in four European grassland sites
NASA Astrophysics Data System (ADS)
Minet, J.; Laloy, E.; Tychon, B.; François, L.
2015-01-01
Eddy covariance data from four European grassland sites are used to probabilistically invert the CARAIB dynamic vegetation model (DVM) with ten unknown parameters, using the DREAM(ZS) Markov chain Monte Carlo (MCMC) sampler. We compare model inversions considering both homoscedastic and heteroscedastic eddy covariance residual errors, with variances either fixed a~priori or jointly inferred with the model parameters. Agreements between measured and simulated data during calibration are comparable with previous studies, with root-mean-square error (RMSE) of simulated daily gross primary productivity (GPP), ecosystem respiration (RECO) and evapotranspiration (ET) ranging from 1.73 to 2.19 g C m-2 day-1, 1.04 to 1.56 g C m-2 day-1, and 0.50 to 1.28 mm day-1, respectively. In validation, mismatches between measured and simulated data are larger, but still with Nash-Sutcliffe efficiency scores above 0.5 for three out of the four sites. Although measurement errors associated with eddy covariance data are known to be heteroscedastic, we showed that assuming a classical linear heteroscedastic model of the residual errors in the inversion do not fully remove heteroscedasticity. Since the employed heteroscedastic error model allows for larger deviations between simulated and measured data as the magnitude of the measured data increases, this error model expectedly lead to poorer data fitting compared to inversions considering a constant variance of the residual errors. Furthermore, sampling the residual error variances along with model parameters results in overall similar model parameter posterior distributions as those obtained by fixing these variances beforehand, while slightly improving model performance. Despite the fact that the calibrated model is generally capable of fitting the data within measurement errors, systematic bias in the model simulations are observed. These are likely due to model inadequacies such as shortcomings in the photosynthesis modelling. Besides model behaviour, difference between model parameter posterior distributions among the four grassland sites are also investigated. It is shown that the marginal distributions of the specific leaf area and characteristic mortality time parameters can be explained by site-specific ecophysiological characteristics. Lastly, the possibility of finding a common set of parameters among the four experimental sites is discussed.
Linking Item Parameters to a Base Scale
ERIC Educational Resources Information Center
Kang, Taehoon; Petersen, Nancy S.
2012-01-01
This paper compares three methods of item calibration--concurrent calibration, separate calibration with linking, and fixed item parameter calibration--that are frequently used for linking item parameters to a base scale. Concurrent and separate calibrations were implemented using BILOG-MG. The Stocking and Lord in "Appl Psychol Measure"…
Figure of Merit Characteristics Compared to Engineering Parameters
NASA Technical Reports Server (NTRS)
Rickman, D.L.; Schrader, C.M.
2010-01-01
A workshop held in 2005 defined a large number of parameters of interest for users of lunar simulants. The need for formal requirements and standards in the manufacture and use of simulants necessitates certain features of measurements. They must be definable, measureable, useful, and primary rather than derived. There are also certain features that must be avoided. Analysis of the total parameter list led to the realization that almost all of the parameters could be tightly constrained, though not predicted, if only four properties were measured: Particle composition, particle size distribution, particle shape distribution, and bulk density. These four are collectively referred to as figures of merit (FoMs). An evaluation of how each of the parameters identified in 2005 is controlled by the four FoMs is given.
Incorporating measurement error in n = 1 psychological autoregressive modeling
Schuurman, Noémi K.; Houtveen, Jan H.; Hamaker, Ellen L.
2015-01-01
Measurement error is omnipresent in psychological data. However, the vast majority of applications of autoregressive time series analyses in psychology do not take measurement error into account. Disregarding measurement error when it is present in the data results in a bias of the autoregressive parameters. We discuss two models that take measurement error into account: An autoregressive model with a white noise term (AR+WN), and an autoregressive moving average (ARMA) model. In a simulation study we compare the parameter recovery performance of these models, and compare this performance for both a Bayesian and frequentist approach. We find that overall, the AR+WN model performs better. Furthermore, we find that for realistic (i.e., small) sample sizes, psychological research would benefit from a Bayesian approach in fitting these models. Finally, we illustrate the effect of disregarding measurement error in an AR(1) model by means of an empirical application on mood data in women. We find that, depending on the person, approximately 30–50% of the total variance was due to measurement error, and that disregarding this measurement error results in a substantial underestimation of the autoregressive parameters. PMID:26283988
Hasegawa, Kazuhiro; Kitahara, Ko; Hara, Toshiaki; Takano, Ko; Shimoda, Haruka; Homma, Takao
2008-03-01
In vivo quantitative measurement of lumbar segmental stability has not been established. The authors developed a new measurement system to determine intraoperative lumbar stability. The objective of this study was to clarify the biomechanical properties of degenerative lumbar segments by using the new method. Twenty-two patients with a degenerative symptomatic segment were studied and their measurements compared with those obtained in normal or asymptomatic degenerative segments (Normal group). The measurement system produces cyclic flexion-extension through spinous process holders by using a computer-controlled motion generator with all ligamentous structures intact. The following biomechanical parameters were determined: stiffness, absorption energy (AE), and neutral zone (NZ). Discs with degeneration were divided into 2 groups based on magnetic resonance imaging grading: degeneration without collapse (Collapse[-]) and degeneration with collapse (Collapse[+]). Biomechanical parameters were compared among the groups. Relationships among the biomechanical parameters and age, diagnosis, or radiographic parameters were analyzed. The mean stiffness value in the Normal group was significantly greater than that in Collapse(-) or Collapse(+) group. There was no significant difference in the average AE value among the Normal, Collapse(-), and Collapse(+) groups. The NZ in the Collapse(-) was significantly higher than in the Normal or Collapse(+) groups. Stiffness was negatively and NZ was positively correlated with age. Stiffness demonstrated a significant negative and NZ a significant positive relationship with disc height, however. There were no significant differences in stiffness between spines in the Collapse(-) and Collapse(+) groups. The values of a more sensitive parameter, NZ, were higher in Collapse(-) than in Collapse(+) groups, demonstrating that degenerative segments with preserved disc height have a latent instability compared to segments with collapsed discs.
Coherence parameter measurements for neon and hydrogen
NASA Astrophysics Data System (ADS)
Wright, Robert; Hargreaves, Leigh; Khakoo, Murtadha; Zatsarinny, Oleg; Bartschat, Klaus; Stauffer, Al
2015-09-01
We present recent coherence parameter measurements for excitation of neon and hydrogen by 50 eV electrons. The measurements were made using a crossed electron/gas beam spectrometer, featuring a hemispherically selected electron energy analyzer for detecting scattered electrons and double-reflection VUV polarization analyzer to register fluorescence photons. Time-coincidence counting methods on the electron and photon signals were employed to determine Stokes Parameters at each scattering angle, with data measured at angles between 20 - 115 degrees. The data are compared with calculated results using the B-Spline R-Matrix (BSR) and Relativistic Distorted Wave (RDW) approaches. Measurements were made of both the linear (Plin and γ) and circular (Lperp) parameters for the lowest lying excited states in these two targets. We particularly focus on results in the Lperp parameter, which shows unusual behavior in these particular targets, including strong sign changes implying reversal of the angular momentum transfer. In the case of neon, the unusual behavior is well captured by the BSR, but not by other models.
Does the use of automated fetal biometry improve clinical work flow efficiency?
Espinoza, Jimmy; Good, Sara; Russell, Evie; Lee, Wesley
2013-05-01
This study was designed to compare the work flow efficiency of manual measurements of 5 fetal parameters with a novel technique that automatically measures these parameters from 2-dimensional sonograms. This prospective study included 200 singleton pregnancies between 15 and 40 weeks' gestation. Patients were randomly allocated to either manual (n = 100) or automatic (n = 100) fetal biometry. The automatic measurement was performed using a commercially available software application. A digital video recorder captured all on-screen activity associated with the sonographic examination. The examination time and number of steps required to obtain fetal measurements were compared between manual and automatic methods. The mean time required to obtain the biometric measurements was significantly shorter using the automated technique than the manual approach (P < .001 for all comparisons). Similarly, the mean number of steps required to perform these measurements was significantly fewer with automatic measurements compared to the manual technique (P < .001). In summary, automated biometry reduced the examination time required for standard fetal measurements. This approach may improve work flow efficiency in busy obstetric sonography practices.
Karmakar, Chandan; Udhayakumar, Radhagayathri K.; Li, Peng; Venkatesh, Svetha; Palaniswami, Marimuthu
2017-01-01
Distribution entropy (DistEn) is a recently developed measure of complexity that is used to analyse heart rate variability (HRV) data. Its calculation requires two input parameters—the embedding dimension m, and the number of bins M which replaces the tolerance parameter r that is used by the existing approximation entropy (ApEn) and sample entropy (SampEn) measures. The performance of DistEn can also be affected by the data length N. In our previous studies, we have analyzed stability and performance of DistEn with respect to one parameter (m or M) or combination of two parameters (N and M). However, impact of varying all the three input parameters on DistEn is not yet studied. Since DistEn is predominantly aimed at analysing short length heart rate variability (HRV) signal, it is important to comprehensively study the stability, consistency and performance of the measure using multiple case studies. In this study, we examined the impact of changing input parameters on DistEn for synthetic and physiological signals. We also compared the variations of DistEn and performance in distinguishing physiological (Elderly from Young) and pathological (Healthy from Arrhythmia) conditions with ApEn and SampEn. The results showed that DistEn values are minimally affected by the variations of input parameters compared to ApEn and SampEn. DistEn also showed the most consistent and the best performance in differentiating physiological and pathological conditions with various of input parameters among reported complexity measures. In conclusion, DistEn is found to be the best measure for analysing short length HRV time series. PMID:28979215
Fukuoka, Masato; Sugimoto, Takaki; Okita, Yutaka
2003-10-01
The purpose of this study was to evaluate lower extremity venous function in patients with chronic venous insufficiency, with foot venous pressure (FVP) measurements and air plethysmography (APG). Eighty-five limbs of 63 patients with a history of chronic venous insufficiency (CVI) from 1995 to 1999 were studied. FVP parameters studied included ambulatory venous pressure (AVP), percent decrease in FVP with manual calf compression (%drop), ratio of increase in FVP over 4 seconds after release of compression (4SR%), and time to 90% recovery of FVP were measured. APG parameters studied included functional venous volume, 90% refilling time (VFT90), venous filling index, ejection fraction, and residual volume fraction. Venous filling index and 90% refilling time were significantly decreased in limbs with stasis syndrome compared with the control group. AVP, %drop, and 4SR% also showed significantly decrease in limbs with stasis syndrome compared with those without it. AVP, %drop, and 4SR% were significantly different for the primary group compared with the secondary group, whereas no differences were found with regard to any APG parameter. APG enables prediction of the presence of CVI, whereas FVP measurements are more useful for evaluation of clinical severity of CVI.
Zhang, Shangjian; Wang, Heng; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Liu, Yong
2015-06-15
An extinction-ratio-independent electrical method is proposed for measuring chirp parameters of Mach-Zehnder electric-optic intensity modulators based on frequency-shifted optical heterodyne. The method utilizes the electrical spectrum analysis of the heterodyne products between the intensity modulated optical signal and the frequency-shifted optical carrier, and achieves the intrinsic chirp parameters measurement at microwave region with high-frequency resolution and wide-frequency range for the Mach-Zehnder modulator with a finite extinction ratio. Moreover, the proposed method avoids calibrating the responsivity fluctuation of the photodiode in spite of the involved photodetection. Chirp parameters as a function of modulation frequency are experimentally measured and compared to those with the conventional optical spectrum analysis method. Our method enables an extinction-ratio-independent and calibration-free electrical measurement of Mach-Zehnder intensity modulators by using the high-resolution frequency-shifted heterodyne technique.
Experience of the JPL Exploratory Data Analysis Team at validating HIRS2/MSU cloud parameters
NASA Technical Reports Server (NTRS)
Kahn, Ralph; Haskins, Robert D.; Granger-Gallegos, Stephanie; Pursch, Andrew; Delgenio, Anthony
1992-01-01
Validation of the HIRS2/MSU cloud parameters began with the cloud/climate feedback problem. The derived effective cloud amount is less sensitive to surface temperature for higher clouds. This occurs because as the cloud elevation increases, the difference between surface temperature and cloud temperature increases, so only a small change in cloud amount is needed to effect a large change in radiance at the detector. By validating the cloud parameters it is meant 'developing a quantitative sense for the physical meaning of the measured parameters', by: (1) identifying the assumptions involved in deriving parameters from the measured radiances, (2) testing the input data and derived parameters for statistical error, sensitivity, and internal consistency, and (3) comparing with similar parameters obtained from other sources using other techniques.
Test Method Variability in Slow Crack Growth Properties of Sealing Glasses
NASA Technical Reports Server (NTRS)
Salem, J. A.; Tandon, R.
2010-01-01
The crack growth properties of several sealing glasses were measured by using constant stress rate testing in 2 and 95 percent RH (relative humidity). Crack growth parameters measured in high humidity are systematically smaller (n and B) than those measured in low humidity, and crack velocities for dry environments are 100x lower than for wet environments. The crack velocity is very sensitive to small changes in RH at low RH. Biaxial and uniaxial stress states produced similar parameters. Confidence intervals on crack growth parameters that were estimated from propagation of errors solutions were comparable to those from Monte Carlo simulation. Use of scratch-like and indentation flaws produced similar crack growth parameters when residual stresses were considered.
Item response theory analysis of the mechanics baseline test
NASA Astrophysics Data System (ADS)
Cardamone, Caroline N.; Abbott, Jonathan E.; Rayyan, Saif; Seaton, Daniel T.; Pawl, Andrew; Pritchard, David E.
2012-02-01
Item response theory is useful in both the development and evaluation of assessments and in computing standardized measures of student performance. In item response theory, individual parameters (difficulty, discrimination) for each item or question are fit by item response models. These parameters provide a means for evaluating a test and offer a better measure of student skill than a raw test score, because each skill calculation considers not only the number of questions answered correctly, but the individual properties of all questions answered. Here, we present the results from an analysis of the Mechanics Baseline Test given at MIT during 2005-2010. Using the item parameters, we identify questions on the Mechanics Baseline Test that are not effective in discriminating between MIT students of different abilities. We show that a limited subset of the highest quality questions on the Mechanics Baseline Test returns accurate measures of student skill. We compare student skills as determined by item response theory to the more traditional measurement of the raw score and show that a comparable measure of learning gain can be computed.
Cloud and Thermodynamic Parameters Retrieved from Satellite Ultraspectral Infrared Measurements
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Smith, William L.; Larar, Allen M.; Liu, Xu; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.
2008-01-01
Atmospheric-thermodynamic parameters and surface properties are basic meteorological parameters for weather forecasting. A physical geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiance observed with satellite ultraspectral infrared sounders has been developed and applied to the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric InfraRed Sounder (AIRS). The retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.
NASA Astrophysics Data System (ADS)
Mubarok, S.; Lubis, L. E.; Pawiro, S. A.
2016-03-01
Compromise between radiation dose and image quality is essential in the use of CT imaging. CT dose index (CTDI) is currently the primary dosimetric formalisms in CT scan, while the low and high contrast resolutions are aspects indicating the image quality. This study was aimed to estimate CTDIvol and image quality measures through a range of exposure parameters variation. CTDI measurements were performed using PMMA (polymethyl methacrylate) phantom of 16 cm diameter, while the image quality test was conducted by using catphan ® 600. CTDI measurements were carried out according to IAEA TRS 457 protocol using axial scan mode, under varied parameters of tube voltage, collimation or slice thickness, and tube current. Image quality test was conducted accordingly under the same exposure parameters with CTDI measurements. An Android™ based software was also result of this study. The software was designed to estimate the value of CTDIvol with maximum difference compared to actual CTDIvol measurement of 8.97%. Image quality can also be estimated through CNR parameter with maximum difference to actual CNR measurement of 21.65%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burger, D.E.
1979-11-01
The extraction of morphological parameters from biological cells by analysis of light-scatter patterns is described. A light-scattering measurement system has been designed and constructed that allows one to visually examine and photographically record biological cells or cell models and measure the light-scatter pattern of an individual cell or cell model. Using a laser or conventional illumination, the imaging system consists of a modified microscope with a 35 mm camera attached to record the cell image or light-scatter pattern. Models of biological cells were fabricated. The dynamic range and angular distributions of light scattered from these models was compared to calculatedmore » distributions. Spectrum analysis techniques applied on the light-scatter data give the sought after morphological cell parameters. These results compared favorably to shape parameters of the fabricated cell models confirming the mathematical model procedure. For nucleated biological material, correct nuclear and cell eccentricity as well as the nuclear and cytoplasmic diameters were determined. A method for comparing the flow equivalent of nuclear and cytoplasmic size to the actual dimensions is shown. This light-scattering experiment provides baseline information for automated cytology. In its present application, it involves correlating average size as measured in flow cytology to the actual dimensions determined from this technique. (ERB)« less
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2008-01-01
In this paper, an enhanced on-line diagnostic system which utilizes dual-channel sensor measurements is developed for the aircraft engine application. The enhanced system is composed of a nonlinear on-board engine model (NOBEM), the hybrid Kalman filter (HKF) algorithm, and fault detection and isolation (FDI) logic. The NOBEM provides the analytical third channel against which the dual-channel measurements are compared. The NOBEM is further utilized as part of the HKF algorithm which estimates measured engine parameters. Engine parameters obtained from the dual-channel measurements, the NOBEM, and the HKF are compared against each other. When the discrepancy among the signals exceeds a tolerance level, the FDI logic determines the cause of discrepancy. Through this approach, the enhanced system achieves the following objectives: 1) anomaly detection, 2) component fault detection, and 3) sensor fault detection and isolation. The performance of the enhanced system is evaluated in a simulation environment using faults in sensors and components, and it is compared to an existing baseline system.
Gain determination of optical active doped planar waveguides
NASA Astrophysics Data System (ADS)
Šmejcký, J.; Jeřábek, V.; Nekvindová, P.
2017-12-01
This paper summarizes the results of the gain transmission characteristics measurement carried out on the new ion exchange Ag+ - Na+ optical Er3+ and Yb3+ doped active planar waveguides realized on a silica based glass substrates. The results were used for optimization of the precursor concentration in the glass substrates. The gain measurements were performed by the time domain method using a pulse generator, as well as broadband measurement method using supercontinuum optical source in the wavelength domain. Both methods were compared and the results were graphically processed. It has been confirmed that pulse method is useful as it provides a very accurate measurement of the gain - pumping power characteristics for one wavelength. In the case of radiation spectral characteristics, our measurement exactly determined the maximum gain wavelength bandwidth of the active waveguide. The spectral characteristics of the pumped and unpumped waveguides were compared. The gain parameters of the reported silica-based glasses can be compared with the phosphate-based parameters, typically used for optical active devices application.
Integrated rate isolation sensor
NASA Technical Reports Server (NTRS)
Brady, Tye (Inventor); Henderson, Timothy (Inventor); Phillips, Richard (Inventor); Zimpfer, Doug (Inventor); Crain, Tim (Inventor)
2012-01-01
In one embodiment, a system for providing fault-tolerant inertial measurement data includes a sensor for measuring an inertial parameter and a processor. The sensor has less accuracy than a typical inertial measurement unit (IMU). The processor detects whether a difference exists between a first data stream received from a first inertial measurement unit and a second data stream received from a second inertial measurement unit. Upon detecting a difference, the processor determines whether at least one of the first or second inertial measurement units has failed by comparing each of the first and second data streams to the inertial parameter.
Marjanović, Ivan; Martinez, Antonio; Marjanović, Marija; Milić, Natasa; Kontić, Djordje; Hentova-Senćanić, Paraskeva; Marković, Vujica; Bozić, Marija
2014-01-01
Ocular blood flow (OBF) disturbances could be involved both in the pathogenesis and in progression of glaucomatous damage. The aim of the study was to compare the retrobulbar hemodynamic parameters in the ophthalmic artery (OA), central retinal artery (CRA) and short posterior cilliary arteries (SPCA) after decreasing the elevated intraocular pressure (IOP) in primary open-angle glaucoma (POAG) patients by using color Doppler imaging (CDI). We examined 60 patients (21 male and 39 female) with diagnosed and treated POAG. Thirty-nine patients had increased IOP (> 25 mm Hg). Peak-systolic velocity (PSV), end-diastolic velocity (EDV), Pourcelot resistance index (RI), and pulsatility index (PI) were assessed in the OA, CRA, and SPCA. IOP was measured both with the Goldmann Applanation tonometer (GAT) and with the Dynamic Contour tonometer (DCT), three times respectively. Ocular pulse amplitude (OPA) was measured using DCT. The retrobulbar parameters between the baseline and after IOP reduction showed no difference in measurements. After Bonferroni correction (p < or = 0.0056, alpha/9) statistical significance was recorded only in the following retrobulbar hemodynamic parameters; DCT (29.8 +/- 6.2 vs. 15.5 +/- 5.0), GAT (33.8 +/- 9.0 vs. 15.0 +/- 6.6) and OPA measurements (4.3 +/- 1.0 vs. 3.0 +/- 1.6), as compared to the baseline. There was no correlation between the changes in IOP measured with either DCT or GAT and changes in the hemodynamic parameters (p > 0.05 for all). Pearson correlation coefficient (95% CI) showed very good correlation for IOP measurements between DCT and GAT: at baseline 0.83 (0.71 to 0.90) and at the end 0.71 (0.55 to 0.83); p < 0.0001 for both measurements, but without any difference between them (p > 0.05). There was a lack of correlation between the changes in IOP measured with either DCT or GAT and the changes in the hemodynamic parameters.
High resolution sea ice modeling for the region of Baffin Bay and the Labrador Sea
NASA Astrophysics Data System (ADS)
Zakharov, I.; Prasad, S.; McGuire, P.
2016-12-01
A multi-category numerical sea ice model (CICE) with a data assimilation module was implemented to derive sea ice parameters in the region of Baffin Bay and the Labrador Sea with resolution higher than 10 km. The model derived ice parameters include concentration, ridge keel measurement, thickness and freeboard. The module for assimilation of ice concentration uses data from the Advance Microwave Scanning Radiometer (AMSR-E) and OSI SAF data. The sea surface temperature (SST) data from AMSRE-AVHRR and Operational SST and Sea Ice Analysis (OSTIA) system were used to correct the SST computed by a mixed layer slab ocean model that is used to determine the growth and melt of sea ice. The ice thickness parameter from the model was compared with the measurements from Soil Moisture Ocean Salinity - Microwave Imaging Radiometer using Aperture Synthesis (SMOS-MIRAS). The freeboard measures where compared with the Cryosat-2 measurements. A spatial root mean square error computed for freeboard measures was found to be within the uncertainty limits of the observation. The model was also used to estimate the correlation parameter between the ridge and the ridge keel measurements in the region of Makkovik Bank. Also, the level ice draft estimated from the model was in good agreement with the ice draft derived from the upward looking sonar (ULS) instrument deployed in the Makkovik bank. The model corrected with ice concentration and SST from remote sensing data demonstrated significant improvements in accuracy of the estimated ice parameters. The model can be used for operational forecast and climate research.
Huang, Shaodan; Xiong, Jianyin; Zhang, Yinping
2013-10-15
The indoor pollution caused by formaldehyde and volatile organic compounds (VOCs) emitted from building materials poses an adverse effect on people's health. It is necessary to understand and control the behaviors of the emission sources. Based on detailed mass transfer analysis on the emission process in a ventilated chamber, this paper proposes a novel method of measuring the three emission characteristic parameters, i.e., the initial emittable concentration, the diffusion coefficient and the partition coefficient. A linear correlation between the logarithm of dimensionless concentration and time is derived. The three parameters can then be calculated from the intercept and slope of the correlation. Compared with the closed chamber C-history method, the test is performed under ventilated condition thus some commonly-used measurement instruments (e.g., GC/MS, HPLC) can be applied. While compared with other methods, the present method can rapidly and accurately measure the three parameters, with experimental time less than 12h and R(2) ranging from 0.96 to 0.99 for the cases studied. Independent experiment was carried out to validate the developed method, and good agreement was observed between the simulations based on the determined parameters and experiments. The present method should prove useful for quick characterization of formaldehyde/VOC emissions from indoor materials. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boffi, V.C.; Molinari, V.G.; Parks, D.E.
1962-05-01
Features of the pulsed neution source theory connected with the measurement of diffusion parameters are discussed. Various analytical procedures for determining the decay constant of the fully thermalized neutron flux are compared. The problem of the diffusion coefficient definition is also considered in some detail. (auth)
Complex Impedance of Fast Optical Transition Edge Sensors up to 30 MHz
NASA Astrophysics Data System (ADS)
Hattori, K.; Kobayashi, R.; Numata, T.; Inoue, S.; Fukuda, D.
2018-03-01
Optical transition edge sensors (TESs) are characterized by a very fast response, of the order of μs, which is 10^3 times faster than TESs for X-ray and gamma-ray. To extract important parameters associated with the optical TES, complex impedances at high frequencies (> 1 MHz) need to be measured, where the parasitic impedance in the circuit and reflections of electrical signals due to discontinuities in the characteristic impedance of the readout circuits become significant. This prevents the measurements of the current sensitivity β , which can be extracted from the complex impedance. In usual setups, it is hard to build a circuit model taking into account the parasitic impedances and reflections. In this study, we present an alternative method to estimate a transfer function without investigating the details of the entire circuit. Based on this method, the complex impedance up to 30 MHz was measured. The parameters were extracted from the impedance and were compared with other measurements. Using these parameters, we calculated the theoretical limit on an energy resolution and compared it with the measured energy resolution. In this paper, the reasons for the deviation of the measured value from theoretically predicted values will be discussed.
Advancements in noncontact, multiparameter physiological measurements using a webcam.
Poh, Ming-Zher; McDuff, Daniel J; Picard, Rosalind W
2011-01-01
We present a simple, low-cost method for measuring multiple physiological parameters using a basic webcam. By applying independent component analysis on the color channels in video recordings, we extracted the blood volume pulse from the facial regions. Heart rate (HR), respiratory rate, and HR variability (HRV, an index for cardiac autonomic activity) were subsequently quantified and compared to corresponding measurements using Food and Drug Administration-approved sensors. High degrees of agreement were achieved between the measurements across all physiological parameters. This technology has significant potential for advancing personal health care and telemedicine.
A novel method for simultaneous measurement of doped optical fiber parameters
NASA Astrophysics Data System (ADS)
Karimi, M.; Seraji, F. E.
2010-05-01
Simultaneous measurement technique of evaluating the doped optical fibers (DOF) parameters is a suitable scheme for DOF production industries. In this paper, we introduce a novel technique to characterize simultaneously the main parameters of DOF such as absorption and emission cross-sections (ACS, ECS), background loss coefficient (BLC), and low dopant concentration using the gain equation of DOFs. We used this new method to determine the ACS, ECS, BLC in a standard sample of Al-P-Erbium doped optical fiber. The results have been analyzed and compared with other reports.
NASA Astrophysics Data System (ADS)
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Escalante Del Valle, A.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Taurok, A.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Marchesini, I.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Bilin, B.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dorney, B.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Kalsi, A. K.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Seva, T.; Starling, E.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Trocino, D.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; David, P.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Saggio, A.; Vidal Marono, M.; Wertz, S.; Zobec, J.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correia Silva, G.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Sanchez Rosas, L. J.; Santoro, A.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Yuan, L.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Yu, T.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, J.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zhang, F.; Wang, Y.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Segura Delgado, M. A.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Mohamed, A.; Mohammed, Y.; Salama, E.; Bhowmik, S.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Leloup, C.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Drouhin, F.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Juillot, P.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Zhang, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Teroerde, M.; Wittmer, B.; Zhukov, V.; Albert, A.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Missiroli, M.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Aggleton, R.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baselga, M.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Faltermann, N.; Freund, B.; Friese, R.; Giffels, M.; Harrendorf, M. A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Gianneios, P.; Katsoulis, P.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Tsitsonis, D.; Csanad, M.; Filipovic, N.; Pasztor, G.; Surányi, O.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kaur, A.; Kaur, M.; Kaur, S.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Borgonovi, L.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Ravera, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Beschi, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Fanzago, F.; Gasparini, F.; Gozzelino, A.; Lacaprara, S.; Lujan, P.; Margoni, M.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Eysermans, J.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Golutvin, I.; Karjavin, V.; Kashunin, I.; Korenkov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Mitsyn, V. V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Trofimov, V.; Yuldashev, B. S.; Zarubin, A.; Zhiltsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sosnov, D.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Stolin, V.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chistov, R.; Danilov, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Rusakov, S. V.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Shtol, D.; Skovpen, Y.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Godizov, A.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Bachiller, I.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Soares, M. S.; Triossi, A.; Álvarez Fernández, A.; Albajar, C.; de Trocóniz, J. F.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Akgun, B.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Deelen, N.; Dobson, M.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Jafari, A.; Janot, P.; Karacheban, O.; Kieseler, J.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Rabady, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Backhaus, M.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dorfer, C.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Sanz Becerra, D. A.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Schweiger, K.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Chang, Y. H.; Cheng, K. y.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Bakirci, M. N.; Bat, A.; Boran, F.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Polatoz, A.; Tali, B.; Tok, U. G.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Komurcu, Y.; Grynyov, B.; Levchuk, L.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Newbold, D. M.; Paramesvaran, S.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Linacre, J.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Auzinger, G.; Bainbridge, R.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Teodorescu, L.; Zahid, S.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Hadley, M.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Lee, J.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Karapostoli, G.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Gilbert, D.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; Gouskos, L.; Heller, R.; Incandela, J.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bornheim, A.; Bunn, J.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T. Q.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Wilkinson, R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Quach, D.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, W.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Joshi, B. M.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Shi, K.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Rogan, C.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Rebassoo, F.; Wright, D.; Baden, A.; Baron, O.; Belloni, A.; Eno, S. C.; Feng, Y.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bauer, G.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Hu, M.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Hiltbrand, J.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Wadud, M. A.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Golf, F.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Freer, C.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Orimoto, T.; Teixeira De Lima, R.; Wamorkar, T.; Wang, B.; Wisecarver, A.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Bucci, R.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Li, W.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Siddireddy, P.; Smith, G.; Taroni, S.; Wayne, M.; Wightman, A.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Ling, T. Y.; Liu, B.; Luo, W.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Kalogeropoulos, A.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Qiu, H.; Schulte, J. F.; Sun, J.; Wang, F.; Xiao, R.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Chen, Z.; Ecklund, K. M.; Freed, S.; Geurts, F. J. M.; Guilbaud, M.; Kilpatrick, M.; Li, W.; Michlin, B.; Padley, B. P.; Roberts, J.; Rorie, J.; Shi, W.; Tu, Z.; Zabel, J.; Zhang, A.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Mengke, T.; Muthumuni, S.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Poudyal, N.; Sturdy, J.; Thapa, P.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Carlsmith, D.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration
2018-04-01
An analysis of the bottom baryon decay Λb→J /ψ (→μ+μ- )Λ (→p π- ) is performed to measure the Λb polarization and three angular parameters in data from p p collisions at √{s }=7 and 8 TeV, collected by the CMS experiment at the Large Hadron Collider. The Λb polarization is measured to be 0.00 ±0.06 (stat )±0.06 (syst ) and the parity-violating asymmetry parameter is determined to be 0.14 ±0.14 (stat )±0.10 (syst ) . The measurements are compared to various theoretical predictions, including those from perturbative quantum chromodynamics.
NASA Astrophysics Data System (ADS)
Li, L.; Li, Z.; Li, K.; Blarel, L.; Wendisch, M.
2014-12-01
The polarized CIMEL sun/sky radiometers have been routinely operated within the Sun/sky-radiometer Observation NETwork (SONET) in China and some sites of the AErosol RObotic NETwork (AERONET) around the world. However, the polarization measurements are not yet widely used due to in a certain degree the lack of Stokes parameters derived directly from these polarization measurements. Meanwhile, it have been shown that retrievals of several microphysical properties of aerosol particles can be significantly improved by using degree of linear polarization (DoLP) measurements of polarized CIMEL sun/sky radiometers (CE318-DP). The Stokes parameters Q and U, as well as angle of polarization (AoP) contain additional information about linear polarization and its orientation. A method to calculate Stokes parameters Q, U, and AoP from CE318-DP polarized skylight measurements is introduced in this study. A new polarized almucantar geometry based on CE318-DP is measured to illustrate abundant variation features of these parameters. The polarization parameters calculated in this study are consistent with previous results of DoLP and I, and also comparable to vector radiative transfer simulations.
Crack Growth Properties of Sealing Glasses
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Tandon, R.
2008-01-01
The crack growth properties of several sealing glasses were measured using constant stress rate testing in 2% and 95% RH (relative humidity). Crack growth parameters measured in high humidity are systematically smaller (n and B) than those measured in low humidity, and velocities for dry environments are approx. 100x lower than for wet environments. The crack velocity is very sensitivity to small changes in RH at low RH. Confidence intervals on parameters that were estimated from propagation of errors were comparable to those from Monte Carlo simulation.
NASA Astrophysics Data System (ADS)
Wildeboer, R. R.; Southern, P.; Pankhurst, Q. A.
2014-12-01
In the clinical application of magnetic hyperthermia, the heat generated by magnetic nanoparticles in an alternating magnetic field is used as a cancer treatment. The heating ability of the particles is quantified by the specific absorption rate (SAR), an extrinsic parameter based on the clinical response characteristic of power delivered per unit mass, and by the intrinsic loss parameter (ILP), an intrinsic parameter based on the heating capacity of the material. Even though both the SAR and ILP are widely used as comparative design parameters, they are almost always measured in non-adiabatic systems that make accurate measurements difficult. We present here the results of a systematic review of measurement methods for both SAR and ILP, leading to recommendations for a standardised, simple and reliable method for measurements using non-adiabatic systems. In a representative survey of 50 retrieved datasets taken from published papers, the derived SAR or ILP was found to be more than 5% overestimated in 24% of cases and more than 5% underestimated in 52% of cases.
Šimůnek, Jirka; Nimmo, John R.
2005-01-01
A modified version of the Hydrus software package that can directly or inversely simulate water flow in a transient centrifugal field is presented. The inverse solver for parameter estimation of the soil hydraulic parameters is then applied to multirotation transient flow experiments in a centrifuge. Using time‐variable water contents measured at a sequence of several rotation speeds, soil hydraulic properties were successfully estimated by numerical inversion of transient experiments. The inverse method was then evaluated by comparing estimated soil hydraulic properties with those determined independently using an equilibrium analysis. The optimized soil hydraulic properties compared well with those determined using equilibrium analysis and steady state experiment. Multirotation experiments in a centrifuge not only offer significant time savings by accelerating time but also provide significantly more information for the parameter estimation procedure compared to multistep outflow experiments in a gravitational field.
Liegl, Gregor; Wahl, Inka; Berghöfer, Anne; Nolte, Sandra; Pieh, Christoph; Rose, Matthias; Fischer, Felix
2016-03-01
To investigate the validity of a common depression metric in independent samples. We applied a common metrics approach based on item-response theory for measuring depression to four German-speaking samples that completed the Patient Health Questionnaire (PHQ-9). We compared the PHQ item parameters reported for this common metric to reestimated item parameters that derived from fitting a generalized partial credit model solely to the PHQ-9 items. We calibrated the new model on the same scale as the common metric using two approaches (estimation with shifted prior and Stocking-Lord linking). By fitting a mixed-effects model and using Bland-Altman plots, we investigated the agreement between latent depression scores resulting from the different estimation models. We found different item parameters across samples and estimation methods. Although differences in latent depression scores between different estimation methods were statistically significant, these were clinically irrelevant. Our findings provide evidence that it is possible to estimate latent depression scores by using the item parameters from a common metric instead of reestimating and linking a model. The use of common metric parameters is simple, for example, using a Web application (http://www.common-metrics.org) and offers a long-term perspective to improve the comparability of patient-reported outcome measures. Copyright © 2016 Elsevier Inc. All rights reserved.
Cheng, Xiaoyin; Li, Zhoulei; Liu, Zhen; Navab, Nassir; Huang, Sung-Cheng; Keller, Ulrich; Ziegler, Sibylle; Shi, Kuangyu
2015-02-12
The separation of multiple PET tracers within an overlapping scan based on intrinsic differences of tracer pharmacokinetics is challenging, due to limited signal-to-noise ratio (SNR) of PET measurements and high complexity of fitting models. In this study, we developed a direct parametric image reconstruction (DPIR) method for estimating kinetic parameters and recovering single tracer information from rapid multi-tracer PET measurements. This is achieved by integrating a multi-tracer model in a reduced parameter space (RPS) into dynamic image reconstruction. This new RPS model is reformulated from an existing multi-tracer model and contains fewer parameters for kinetic fitting. Ordered-subsets expectation-maximization (OSEM) was employed to approximate log-likelihood function with respect to kinetic parameters. To incorporate the multi-tracer model, an iterative weighted nonlinear least square (WNLS) method was employed. The proposed multi-tracer DPIR (MTDPIR) algorithm was evaluated on dual-tracer PET simulations ([18F]FDG and [11C]MET) as well as on preclinical PET measurements ([18F]FLT and [18F]FDG). The performance of the proposed algorithm was compared to the indirect parameter estimation method with the original dual-tracer model. The respective contributions of the RPS technique and the DPIR method to the performance of the new algorithm were analyzed in detail. For the preclinical evaluation, the tracer separation results were compared with single [18F]FDG scans of the same subjects measured 2 days before the dual-tracer scan. The results of the simulation and preclinical studies demonstrate that the proposed MT-DPIR method can improve the separation of multiple tracers for PET image quantification and kinetic parameter estimations.
Large Uncertainty in Estimating pCO2 From Carbonate Equilibria in Lakes
NASA Astrophysics Data System (ADS)
Golub, Malgorzata; Desai, Ankur R.; McKinley, Galen A.; Remucal, Christina K.; Stanley, Emily H.
2017-11-01
Most estimates of carbon dioxide (CO2) evasion from freshwaters rely on calculating partial pressure of aquatic CO2 (pCO2) from two out of three CO2-related parameters using carbonate equilibria. However, the pCO2 uncertainty has not been systematically evaluated across multiple lake types and equilibria. We quantified random errors in pH, dissolved inorganic carbon, alkalinity, and temperature from the North Temperate Lakes Long-Term Ecological Research site in four lake groups across a broad gradient of chemical composition. These errors were propagated onto pCO2 calculated from three carbonate equilibria, and for overlapping observations, compared against uncertainties in directly measured pCO2. The empirical random errors in CO2-related parameters were mostly below 2% of their median values. Resulting random pCO2 errors ranged from ±3.7% to ±31.5% of the median depending on alkalinity group and choice of input parameter pairs. Temperature uncertainty had a negligible effect on pCO2. When compared with direct pCO2 measurements, all parameter combinations produced biased pCO2 estimates with less than one third of total uncertainty explained by random pCO2 errors, indicating that systematic uncertainty dominates over random error. Multidecadal trend of pCO2 was difficult to reconstruct from uncertain historical observations of CO2-related parameters. Given poor precision and accuracy of pCO2 estimates derived from virtually any combination of two CO2-related parameters, we recommend direct pCO2 measurements where possible. To achieve consistently robust estimates of CO2 emissions from freshwater components of terrestrial carbon balances, future efforts should focus on improving accuracy and precision of CO2-related parameters (including direct pCO2) measurements and associated pCO2 calculations.
Evaluation of the 3dMDface system as a tool for soft tissue analysis.
Hong, C; Choi, K; Kachroo, Y; Kwon, T; Nguyen, A; McComb, R; Moon, W
2017-06-01
To evaluate the accuracy of three-dimensional stereophotogrammetry by comparing values obtained from direct anthropometry and the 3dMDface system. To achieve a more comprehensive evaluation of the reliability of 3dMD, both linear and surface measurements were examined. UCLA Section of Orthodontics. Mannequin head as model for anthropometric measurements. Image acquisition and analysis were carried out on a mannequin head using 16 anthropometric landmarks and 21 measured parameters for linear and surface distances. 3D images using 3dMDface system were made at 0, 1 and 24 hours; 1, 2, 3 and 4 weeks. Error magnitude statistics used include mean absolute difference, standard deviation of error, relative error magnitude and root mean square error. Intra-observer agreement for all measurements was attained. Overall mean errors were lower than 1.00 mm for both linear and surface parameter measurements, except in 5 of the 21 measurements. The three longest parameter distances showed increased variation compared to shorter distances. No systematic errors were observed for all performed paired t tests (P<.05). Agreement values between two observers ranged from 0.91 to 0.99. Measurements on a mannequin confirmed the accuracy of all landmarks and parameters analysed in this study using the 3dMDface system. Results indicated that 3dMDface system is an accurate tool for linear and surface measurements, with potentially broad-reaching applications in orthodontics, surgical treatment planning and treatment evaluation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Wang, Ling; Muralikrishnan, Bala; Rachakonda, Prem; Sawyer, Daniel
2017-01-01
Terrestrial laser scanners (TLS) are increasingly used in large-scale manufacturing and assembly where required measurement uncertainties are on the order of few tenths of a millimeter or smaller. In order to meet these stringent requirements, systematic errors within a TLS are compensated in-situ through self-calibration. In the Network method of self-calibration, numerous targets distributed in the work-volume are measured from multiple locations with the TLS to determine parameters of the TLS error model. In this paper, we propose two new self-calibration methods, the Two-face method and the Length-consistency method. The Length-consistency method is proposed as a more efficient way of realizing the Network method where the length between any pair of targets from multiple TLS positions are compared to determine TLS model parameters. The Two-face method is a two-step process. In the first step, many model parameters are determined directly from the difference between front-face and back-face measurements of targets distributed in the work volume. In the second step, all remaining model parameters are determined through the Length-consistency method. We compare the Two-face method, the Length-consistency method, and the Network method in terms of the uncertainties in the model parameters, and demonstrate the validity of our techniques using a calibrated scale bar and front-face back-face target measurements. The clear advantage of these self-calibration methods is that a reference instrument or calibrated artifacts are not required, thus significantly lowering the cost involved in the calibration process. PMID:28890607
Marschollek, M; Nemitz, G; Gietzelt, M; Wolf, K H; Meyer Zu Schwabedissen, H; Haux, R
2009-08-01
Falls are among the predominant causes for morbidity and mortality in elderly persons and occur most often in geriatric clinics. Despite several studies that have identified parameters associated with elderly patients' fall risk, prediction models -- e.g., based on geriatric assessment data -- are currently not used on a regular basis. Furthermore, technical aids to objectively assess mobility-associated parameters are currently not used. To assess group differences in clinical as well as common geriatric assessment data and sensory gait measurements between fallers and non-fallers in a geriatric sample, and to derive and compare two prediction models based on assessment data alone (model #1) and added sensory measurement data (model #2). For a sample of n=110 geriatric in-patients (81 women, 29 men) the following fall risk-associated assessments were performed: Timed 'Up & Go' (TUG) test, STRATIFY score and Barthel index. During the TUG test the subjects wore a triaxial accelerometer, and sensory gait parameters were extracted from the data recorded. Group differences between fallers (n=26) and non-fallers (n=84) were compared using Student's t-test. Two classification tree prediction models were computed and compared. Significant differences between the two groups were found for the following parameters: time to complete the TUG test, transfer item (Barthel), recent falls (STRATIFY), pelvic sway while walking and step length. Prediction model #1 (using common assessment data only) showed a sensitivity of 38.5% and a specificity of 97.6%, prediction model #2 (assessment data plus sensory gait parameters) performed with 57.7% and 100%, respectively. Significant differences between fallers and non-fallers among geriatric in-patients can be detected for several assessment subscores as well as parameters recorded by simple accelerometric measurements during a common mobility test. Existing geriatric assessment data may be used for falls prediction on a regular basis. Adding sensory data improves the specificity of our test markedly.
Di Stefano, Danilo Alessio; Arosio, Paolo; Gastaldi, Giorgio; Gherlone, Enrico
2017-07-08
Recent research has shown that dynamic parameters correlate with insertion energy-that is, the total work needed to place an implant into its site-might convey more reliable information concerning immediate implant primary stability at insertion than the commonly used insertion torque (IT), the reverse torque (RT), or the implant stability quotient (ISQ). Yet knowledge on these dynamic parameters is still limited. The purpose of this in vitro study was to evaluate whether an energy-related parameter, the torque-depth curve integral (I), could be a reliable measure of primary stability. This was done by assessing if (I) measurement was operator-independent, by investigating its correlation with other known primary stability parameters (IT, RT, or ISQ) by quantifying the (I) average error and correlating (I), IT, RT, and ISQ variations with bone density. Five operators placed 200 implants in polyurethane foam blocks of different densities using a micromotor that calculated the (I) during implant placement. Primary implant stability was assessed by measuring the ISQ, IT, and RT. ANOVA tests were used to evaluate whether measurements were operator independent (P>.05 in all cases). A correlation analysis was performed between (I) and IT, ISQ, and RT. The (I) average error was calculated and compared with that of the other parameters by ANOVA. (I)-density, IT-density, ISQ-density, and RT-density plots were drawn, and their slopes were compared by ANCOVA. The (I) measurements were operator independent and correlated with IT, ISQ, and RT. The average error of these parameters was not significantly different (P>.05 in all cases). The (I)-density, IT-density, ISQ-density, and RT-density curves were linear in the 0.16 to 0.49 g/cm³ range, with the (I)-density curves having a significantly greater slope than those regarding the other parameters (P≤.001 in all cases). The torque-depth curve integral (I) provides a reliable assessment of primary stability and shows a greater sensitivity to density variations than other known primary stability parameters. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Kim, Eun Sook; Wang, Yan
2017-01-01
Population heterogeneity in growth trajectories can be detected with growth mixture modeling (GMM). It is common that researchers compute composite scores of repeated measures and use them as multiple indicators of growth factors (baseline performance and growth) assuming measurement invariance between latent classes. Considering that the assumption of measurement invariance does not always hold, we investigate the impact of measurement noninvariance on class enumeration and parameter recovery in GMM through a Monte Carlo simulation study (Study 1). In Study 2, we examine the class enumeration and parameter recovery of the second-order growth mixture modeling (SOGMM) that incorporates measurement models at the first order level. Thus, SOGMM estimates growth trajectory parameters with reliable sources of variance, that is, common factor variance of repeated measures and allows heterogeneity in measurement parameters between latent classes. The class enumeration rates are examined with information criteria such as AIC, BIC, sample-size adjusted BIC, and hierarchical BIC under various simulation conditions. The results of Study 1 showed that the parameter estimates of baseline performance and growth factor means were biased to the degree of measurement noninvariance even when the correct number of latent classes was extracted. In Study 2, the class enumeration accuracy of SOGMM depended on information criteria, class separation, and sample size. The estimates of baseline performance and growth factor mean differences between classes were generally unbiased but the size of measurement noninvariance was underestimated. Overall, SOGMM is advantageous in that it yields unbiased estimates of growth trajectory parameters and more accurate class enumeration compared to GMM by incorporating measurement models. PMID:28928691
Perceptual Calibration for Immersive Display Environments
Ponto, Kevin; Gleicher, Michael; Radwin, Robert G.; Shin, Hyun Joon
2013-01-01
The perception of objects, depth, and distance has been repeatedly shown to be divergent between virtual and physical environments. We hypothesize that many of these discrepancies stem from incorrect geometric viewing parameters, specifically that physical measurements of eye position are insufficiently precise to provide proper viewing parameters. In this paper, we introduce a perceptual calibration procedure derived from geometric models. While most research has used geometric models to predict perceptual errors, we instead use these models inversely to determine perceptually correct viewing parameters. We study the advantages of these new psychophysically determined viewing parameters compared to the commonly used measured viewing parameters in an experiment with 20 subjects. The perceptually calibrated viewing parameters for the subjects generally produced new virtual eye positions that were wider and deeper than standard practices would estimate. Our study shows that perceptually calibrated viewing parameters can significantly improve depth acuity, distance estimation, and the perception of shape. PMID:23428454
Computer-assisted uncertainty assessment of k0-NAA measurement results
NASA Astrophysics Data System (ADS)
Bučar, T.; Smodiš, B.
2008-10-01
In quantifying measurement uncertainty of measurement results obtained by the k0-based neutron activation analysis ( k0-NAA), a number of parameters should be considered and appropriately combined in deriving the final budget. To facilitate this process, a program ERON (ERror propagatiON) was developed, which computes uncertainty propagation factors from the relevant formulae and calculates the combined uncertainty. The program calculates uncertainty of the final result—mass fraction of an element in the measured sample—taking into account the relevant neutron flux parameters such as α and f, including their uncertainties. Nuclear parameters and their uncertainties are taken from the IUPAC database (V.P. Kolotov and F. De Corte, Compilation of k0 and related data for NAA). Furthermore, the program allows for uncertainty calculations of the measured parameters needed in k0-NAA: α (determined with either the Cd-ratio or the Cd-covered multi-monitor method), f (using the Cd-ratio or the bare method), Q0 (using the Cd-ratio or internal comparator method) and k0 (using the Cd-ratio, internal comparator or the Cd subtraction method). The results of calculations can be printed or exported to text or MS Excel format for further analysis. Special care was taken to make the calculation engine portable by having possibility of its incorporation into other applications (e.g., DLL and WWW server). Theoretical basis and the program are described in detail, and typical results obtained under real measurement conditions are presented.
Schneider, Stefan; Choi, Seung W; Junghaenel, Doerte U; Schwartz, Joseph E; Stone, Arthur A
2013-09-01
The Patient-Reported Outcomes (PRO) Measurement Information System (PROMIS(®)) has developed assessment tools for numerous PROs, most using a 7-day recall format. We examined whether modifying the recall period for use in daily diary research would affect the psychometric characteristics of several PROMIS measures. Daily versions of short-forms for three PROMIS domains (pain interference, fatigue, depression) were administered to a general population sample (n = 100) for 28 days. Analyses used multilevel item response theory (IRT) models. We examined differential item functioning (DIF) across recall periods by comparing the IRT parameters from the daily data with the PROMIS 7-day recall IRT parameters. Additionally, we examined whether the IRT parameters for day-to-day within-person changes are invariant to those for between-person (cross-sectional) differences in PROs. Dimensionality analyses of the daily data suggested a single dimension for each PRO domain, consistent with PROMIS instruments. One-third of the daily items showed uniform DIF when compared with PROMIS 7-day recall, but the impact of DIF on the scale level was minor. IRT parameters for within-person changes differed from between-person parameters for 3 depression items, which were more sensitive for measuring change than between-person differences, but not for pain interference and fatigue items. Notably, mean scores from daily diaries were significantly lower than the PROMIS 7-day recall norms. The results provide initial evidence supporting the adaptation of PROMIS measures for daily diary research. However, scores from daily diaries cannot be directly interpreted on PROMIS norms established for 7-day recall.
Joshi, Nabin R; Ly, Emma; Viswanathan, Suresh
2017-08-01
To assess the effect of age and test-retest reliability of the intensity response function of the full-field photopic negative response (PhNR) in normal healthy human subjects. Full-field electroretinograms (ERGs) were recorded from one eye of 45 subjects, and 39 of these subjects were tested on two separate days with a Diagnosys Espion System (Lowell, MA, USA). The visual stimuli consisted of brief (<5 ms) red flashes ranging from 0.00625 to 6.4 phot cd.s/m 2 , delivered on a constant 7 cd/m 2 blue background. PhNR amplitudes were measured at its trough from baseline (BT) and from the preceding b-wave peak (PT), and b-wave amplitude was measured at its peak from the preceding a-wave trough or baseline if the a-wave was not present. The intensity response data of all three ERG measures were fitted with a generalized Naka-Rushton function to derive the saturated amplitude (V max ), semisaturation constant (K) and slope (n) parameters. Effect of age on the fit parameters was assessed with linear regression, and test-retest reliability was assessed with the Wilcoxon signed-rank test and Bland-Altman analysis. Holm's correction was applied to account for multiple comparisons. V max of BT was significantly smaller than that of PT and b-wave, and the V max of PT and b-wave was not significantly different from each other. The slope parameter n was smallest for BT and the largest for b-wave and the difference between the slopes of all three measures were statistically significant. Small differences observed in the mean values of K for the different measures did not reach statistical significance. The Wilcoxon signed-rank test indicated no significant differences between the two test visits for any of the Naka-Rushton parameters for the three ERG measures, and the Bland-Altman plots indicated that the mean difference between test and retest measurements of the different fit parameters was close to zero and within 6% of the average of the test and retest values of the respective parameters for all three ERG measurements, indicating minimal bias. While the coefficient of reliability (COR, defined as 1.96 times the standard deviation of the test and retest difference) of each fit parameter was more or less comparable across the three ERG measurements, the %COR (COR normalized to the mean test and retest measures) was generally larger for BT compared to both PT and b-wave for each fit parameter. The Naka-Rushton fit parameters did not show statistically significant changes with age for any of the ERG measures when corrections were applied for multiple comparisons. However, the V max of BT demonstrated a weak correlation with age prior to correction for multiple comparisons, and the effect of age on this parameter showed greater significance when the measure was expressed as a ratio of the V max of b-wave from the same subject. V max of the BT amplitude measure of PhNR at the best was weakly correlated with age. None of the other parameters of the Naka-Rushton fit to the intensity response data of either the PhNR or the b-wave showed any systematic changes with age. The test-retest reliability of the fit parameters for PhNR BT amplitude measurements appears to be lower than those of the PhNR PT and b-wave amplitude measurements.
The application of the pilot points in groundwater numerical inversion model
NASA Astrophysics Data System (ADS)
Hu, Bin; Teng, Yanguo; Cheng, Lirong
2015-04-01
Numerical inversion simulation of groundwater has been widely applied in groundwater. Compared to traditional forward modeling, inversion model has more space to study. Zones and inversing modeling cell by cell are conventional methods. Pilot points is a method between them. The traditional inverse modeling method often uses software dividing the model into several zones with a few parameters needed to be inversed. However, distribution is usually too simple for modeler and result of simulation deviation. Inverse cell by cell will get the most actual parameter distribution in theory, but it need computational complexity greatly and quantity of survey data for geological statistical simulation areas. Compared to those methods, pilot points distribute a set of points throughout the different model domains for parameter estimation. Property values are assigned to model cells by Kriging to ensure geological units within the parameters of heterogeneity. It will reduce requirements of simulation area geological statistics and offset the gap between above methods. Pilot points can not only save calculation time, increase fitting degree, but also reduce instability of numerical model caused by numbers of parameters and other advantages. In this paper, we use pilot point in a field which structure formation heterogeneity and hydraulics parameter was unknown. We compare inversion modeling results of zones and pilot point methods. With the method of comparative analysis, we explore the characteristic of pilot point in groundwater inversion model. First, modeler generates an initial spatially correlated field given a geostatistical model by the description of the case site with the software named Groundwater Vistas 6. Defining Kriging to obtain the value of the field functions over the model domain on the basis of their values at measurement and pilot point locations (hydraulic conductivity), then we assign pilot points to the interpolated field which have been divided into 4 zones. And add range of disturbance values to inversion targets to calculate the value of hydraulic conductivity. Third, after inversion calculation (PEST), the interpolated field will minimize an objective function measuring the misfit between calculated and measured data. It's an optimization problem to find the optimum value of parameters. After the inversion modeling, the following major conclusion can be found out: (1) In a field structure formation is heterogeneity, the results of pilot point method is more real: better fitting result of parameters, more stable calculation of numerical simulation (stable residual distribution). Compared to zones, it is better of reflecting the heterogeneity of study field. (2) Pilot point method ensures that each parameter is sensitive and not entirely dependent on other parameters. Thus it guarantees the relative independence and authenticity of parameters evaluation results. However, it costs more time to calculate than zones. Key words: groundwater; pilot point; inverse model; heterogeneity; hydraulic conductivity
The Magnetically-Tuned Transition-Edge Sensor
NASA Technical Reports Server (NTRS)
Sadleir, John E.; Lee, Sang-Jun; Smith, Stephen J.; Busch, Sarah E.; Bandler, Simon R.; Adams, Joseph S.; Eckart, Megan E.; Chevenak, James A.; Kelley, Richard L.; Kilbourne, Caroline A.;
2014-01-01
We present the first measurements on the proposed magnetically-tuned superconducting transition-edge sensor (MTES) and compare the modified resistive transition with the theoretical prediction. A TES's resistive transition is customarily characterized in terms of the unit less device parameters alpha and beta corresponding to the resistive response to changes in temperature and current respectively. We present a new relationship between measured IV quantities and the parameters alpha and beta and use these relations to confirm we have stably biased a TES with negative beta parameter with magnetic tuning. Motivated by access to this new unexplored parameter space, we investigate the conditions for bias stability of a TES taking into account both self and externally applied magnetic fields.
Comparison of results from simple expressions for MOSFET parameter extraction
NASA Technical Reports Server (NTRS)
Buehler, M. G.; Lin, Y.-S.
1988-01-01
In this paper results are compared from a parameter extraction procedure applied to the linear, saturation, and subthreshold regions for enhancement-mode MOSFETs fabricated in a 3-micron CMOS process. The results indicate that the extracted parameters differ significantly depending on the extraction algorithm and the distribution of I-V data points. It was observed that KP values vary by 30 percent, VT values differ by 50 mV, and Delta L values differ by 1 micron. Thus for acceptance of wafers from foundries and for modeling purposes, the extraction method and data point distribution must be specified. In this paper measurement and extraction procedures that will allow a consistent evaluation of measured parameters are discussed.
Bone histomorphometry using free and commonly available software.
Egan, Kevin P; Brennan, Tracy A; Pignolo, Robert J
2012-12-01
Histomorphometric analysis is a widely used technique to assess changes in tissue structure and function. Commercially available programs that measure histomorphometric parameters can be cost-prohibitive. In this study, we compared an inexpensive method of histomorphometry to a current proprietary software program. Image J and Adobe Photoshop(®) were used to measure static and kinetic bone histomorphometric parameters. Photomicrographs of Goldner's trichrome-stained femurs were used to generate black-and-white image masks, representing bone and non-bone tissue, respectively, in Adobe Photoshop(®) . The masks were used to quantify histomorphometric parameters (bone volume, tissue volume, osteoid volume, mineralizing surface and interlabel width) in Image J. The resultant values obtained using Image J and the proprietary software were compared and differences found to be statistically non-significant. The wide-ranging use of histomorphometric analysis for assessing the basic morphology of tissue components makes it important to have affordable and accurate measurement options available for a diverse range of applications. Here we have developed and validated an approach to histomorphometry using commonly and freely available software that is comparable to a much more costly, commercially available software program. © 2012 Blackwell Publishing Limited.
Bone histomorphometry using free and commonly available software
Egan, Kevin P.; Brennan, Tracy A.; Pignolo, Robert J.
2012-01-01
Aims Histomorphometric analysis is a widely used technique to assess changes in tissue structure and function. Commercially-available programs that measure histomorphometric parameters can be cost prohibitive. In this study, we compared an inexpensive method of histomorphometry to a current proprietary software program. Methods and results Image J and Adobe Photoshop® were used to measure static and kinetic bone histomorphometric parameters. Photomicrographs of Goldner’s Trichrome stained femurs were used to generate black and white image masks, representing bone and non-bone tissue, respectively, in Adobe Photoshop®. The masks were used to quantify histomorphometric parameters (bone volume, tissue volume, osteoid volume, mineralizing surface, and interlabel width) in Image J. The resultant values obtained using Image J and the proprietary software were compared and found to be statistically non-significant. Conclusions The wide ranging use of histomorphometric analysis for assessing the basic morphology of tissue components makes it important to have affordable and accurate measurement options that are available for a diverse range of applications. Here we have developed and validated an approach to histomorphometry using commonly and freely available software that is comparable to a much more costly, commercially-available software program. PMID:22882309
Denis, D; Righini, M; Scheiner, C; Volot, F; Boubli, L; Dezard, X; Vola, J; Saracco, J B
1993-01-01
The knowledge of ocular growth during fetal life, when compared with other fetal biometric parameters, could not only provide a better definition of malformation syndromes but could also give a better understanding of certain pathological processes in premature babies and in newborns. As the literature concerning prenatal ocular dimensions contains few data, the aim of this study was to measure the axial length of the globe (AL) in fetuses and compare this measurement with their gestational age, weight, height, head circumference (HC) and thoracic circumference (TC) in order to compile a reference table. In the present study, 76 globes from 38 fetuses (18-41 weeks gestational age) from the Department of Pathology (Timone University Hospital, Marseille) were examined. Ultrasonography A and B were used to measure the AL, and a pathological examination determined fetal weight, HC, TC and height. We were interested to find out which of the parameters studied would give the best correlation with ocular growth. Statistical analysis showed that HC remained the most discriminant factor and correlated best with ocular growth. We thus obtained an equation for ocular size according to HC that could serve as a basis for detecting pre- or postnatal ocular defects.
Scaling in sensitivity analysis
Link, W.A.; Doherty, P.F.
2002-01-01
Population matrix models allow sets of demographic parameters to be summarized by a single value 8, the finite rate of population increase. The consequences of change in individual demographic parameters are naturally measured by the corresponding changes in 8; sensitivity analyses compare demographic parameters on the basis of these changes. These comparisons are complicated by issues of scale. Elasticity analysis attempts to deal with issues of scale by comparing the effects of proportional changes in demographic parameters, but leads to inconsistencies in evaluating demographic rates. We discuss this and other problems of scaling in sensitivity analysis, and suggest a simple criterion for choosing appropriate scales. We apply our suggestions to data for the killer whale, Orcinus orca.
The Visi-Chroma VC-100: a new imaging colorimeter for dermatocosmetic research.
Barel, A O; Clarys, P; Alewaeters, K; Duez, C; Hubinon, J L; Mommaerts, M
2001-02-01
It was the aim of this study to carry out a comparative evaluation in vitro on standardized color charts and in vivo on healthy subjects using the Visi-Chroma VC-100, a new imaging tristimulus colorimeter and the Minolta Chromameter CR-200 as a reference instrument. The Visi-Chroma combines tristimulus color analysis with full color visualization of the skin area measured. The technical performances of both instruments were compared with the purpose of validating the use of this new imaging colorimeter in dermatocosmetic research. In vitro L*a*b* color parameters were taken with both instruments on standardized color charts (Macbeth and RAL charts) in order to evaluate accuracy, sensitivity range and repeatability. These measurements were completed by in vivo studies on different sites of human skin and studies of color changes induced by topical chemical agents on forearm skin. The accuracy, sensitivity range and repeatability of measurements of selected distances and surfaces in the measuring zone considered and specific color determinations of specific skin zones were also determined. The technical performance of this imaging colorimeter was rather good, with low coefficients of variation for repeatability of in vitro and vivo color measurements. High positive correlations were established in vitro and in vivo over a wide range of color measurements. The imaging colorimeter was able to measure the L*a*b* color parameters of specific chosen parts of the skin area considered and to measure accurately selected distances and surfaces in the same skin site considered. These comparative measurements show that both instruments have very similar technical performances and that high levels of correlation were obtained in vitro and in vivo using the L*a*b* color parameters. In addition, the Visi-Chroma presents the following improvements: 1) direct visualization and recording of the skin area considered with concomitant color measurements; 2) determination of the specific color parameters of skin areas chosen in the total measuring area; and 3) accurate determination of selected distances and surfaces in the same skin areas chosen.
Kim, M A; Kim, E J; Lee, H K
2018-02-06
Skin elasticity is an important indicator of skin aging. The aim of this study was to demonstrate that the SkinFibrometer ® is appropriate for measuring skin biomechanical properties, and to correlate it with elasticity parameters measured using the Cutometer ® and with dermis structural properties measured using DUB ® Skinscanner. Twenty-one individuals participated in this study. The skin of the cheek, around the eye, and the volar forearm were evaluated. To analyze correlations of elasticity parameters, the induration value against the indenter pressure of SkinFibrometer ® and R, Q parameters of Cutometer ® were compared. Dermal echogenicity using DUB ® Skinscanner was compared with the induration value of SkinFibrometer ® . The younger age group showed more firm and elastic skin properties compared to the older age group, and the elasticity values of the volar forearm were significantly higher than those of the cheek and around the eye region. Even though the measuring principle is different, both SkinFibrometer ® and Cutometer ® demonstrated the same trends of skin elasticity differences according to age and anatomical regions. There were significant correlations between the induration value of SkinFibrometer ® , representing skin firmness, and R0, Q0 and R2, R5, R7, Q1, Q2 of Cutometer ® , which represent skin firmness and resilience, respectively (P < .01). In addition, dermal echogenicity positively correlated with skin firmness determined by SkinFibrometer ® (P < .01). We identified correlations between skin elasticity parameters evaluated by two different methods of suction and indentation, and demonstrated that the SkinFibrometer ® is an objective, non-invasive evaluation tool for skin stiffness and elasticity. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osterman, Gordon; Keating, Kristina; Binley, Andrew
Here, we estimate parameters from the Katz and Thompson permeability model using laboratory complex electrical conductivity (CC) and nuclear magnetic resonance (NMR) data to build permeability models parameterized with geophysical measurements. We use the Katz and Thompson model based on the characteristic hydraulic length scale, determined from mercury injection capillary pressure estimates of pore throat size, and the intrinsic formation factor, determined from multisalinity conductivity measurements, for this purpose. Two new permeability models are tested, one based on CC data and another that incorporates CC and NMR data. From measurements made on forty-five sandstone cores collected from fifteen different formations,more » we evaluate how well the CC relaxation time and the NMR transverse relaxation times compare to the characteristic hydraulic length scale and how well the formation factor estimated from CC parameters compares to the intrinsic formation factor. We find: (1) the NMR transverse relaxation time models the characteristic hydraulic length scale more accurately than the CC relaxation time (R 2 of 0.69 and 0.33 and normalized root mean square errors (NRMSE) of 0.16 and 0.21, respectively); (2) the CC estimated formation factor is well correlated with the intrinsic formation factor (NRMSE50.23). We demonstrate that that permeability estimates from the joint-NMR-CC model (NRMSE50.13) compare favorably to estimates from the Katz and Thompson model (NRMSE50.074). Lastly, this model advances the capability of the Katz and Thompson model by employing parameters measureable in the field giving it the potential to more accurately estimate permeability using geophysical measurements than are currently possible.« less
Osterman, Gordon; Keating, Kristina; Binley, Andrew; ...
2016-03-18
Here, we estimate parameters from the Katz and Thompson permeability model using laboratory complex electrical conductivity (CC) and nuclear magnetic resonance (NMR) data to build permeability models parameterized with geophysical measurements. We use the Katz and Thompson model based on the characteristic hydraulic length scale, determined from mercury injection capillary pressure estimates of pore throat size, and the intrinsic formation factor, determined from multisalinity conductivity measurements, for this purpose. Two new permeability models are tested, one based on CC data and another that incorporates CC and NMR data. From measurements made on forty-five sandstone cores collected from fifteen different formations,more » we evaluate how well the CC relaxation time and the NMR transverse relaxation times compare to the characteristic hydraulic length scale and how well the formation factor estimated from CC parameters compares to the intrinsic formation factor. We find: (1) the NMR transverse relaxation time models the characteristic hydraulic length scale more accurately than the CC relaxation time (R 2 of 0.69 and 0.33 and normalized root mean square errors (NRMSE) of 0.16 and 0.21, respectively); (2) the CC estimated formation factor is well correlated with the intrinsic formation factor (NRMSE50.23). We demonstrate that that permeability estimates from the joint-NMR-CC model (NRMSE50.13) compare favorably to estimates from the Katz and Thompson model (NRMSE50.074). Lastly, this model advances the capability of the Katz and Thompson model by employing parameters measureable in the field giving it the potential to more accurately estimate permeability using geophysical measurements than are currently possible.« less
Suk, Jinweon; Kim, Seokhoon; Ryoo, Intae
2011-01-01
This paper proposes a non-contact plant growth measurement system using infrared sensors based on the ubiquitous sensor network (USN) technology. The proposed system measures plant growth parameters such as the stem radius of plants using real-time non-contact methods, and generates diameter, cross-sectional area and thickening form of plant stems using this measured data. Non-contact sensors have been used not to cause any damage to plants during measurement of the growth parameters. Once the growth parameters are measured, they are transmitted to a remote server using the sensor network technology and analyzed in the application program server. The analyzed data are then provided for administrators and a group of interested users. The proposed plant growth measurement system has been designed and implemented using fixed-type and rotary-type infrared sensor based measurement methods and devices. Finally, the system performance is compared and verified with the measurement data that have been obtained by practical field experiments.
Design and Calibration of the X-33 Flush Airdata Sensing (FADS) System
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Cobleigh, Brent R.; Haering, Edward A.
1998-01-01
This paper presents the design of the X-33 Flush Airdata Sensing (FADS) system. The X-33 FADS uses a matrix of pressure orifices on the vehicle nose to estimate airdata parameters. The system is designed with dual-redundant measurement hardware, which produces two independent measurement paths. Airdata parameters that correspond to the measurement path with the minimum fit error are selected as the output values. This method enables a single sensor failure to occur with minimal degrading of the system performance. The paper shows the X-33 FADS architecture, derives the estimating algorithms, and demonstrates a mathematical analysis of the FADS system stability. Preliminary aerodynamic calibrations are also presented here. The calibration parameters, the position error coefficient (epsilon), and flow correction terms for the angle of attack (delta alpha), and angle of sideslip (delta beta) are derived from wind tunnel data. Statistical accuracy of' the calibration is evaluated by comparing the wind tunnel reference conditions to the airdata parameters estimated. This comparison is accomplished by applying the calibrated FADS algorithm to the sensed wind tunnel pressures. When the resulting accuracy estimates are compared to accuracy requirements for the X-33 airdata, the FADS system meets these requirements.
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...
2018-04-17
An analysis of the bottom baryon decay Λ b → J/ψ(→μ +μ -)Λ(→ pπ -) is performed to measure the Λb polarization and three angular parameters in data from pp collisions at √s = 7 and 8 TeV, collected by the CMS experiment at the Large Hadron Collider. The Λ b polarization is measured to be 0.00 ± 0.06(stat) ± 0.06(syst) and the parity-violating asymmetry parameter is determined to be 0.14 ± 0.14(stat) ± 0.10(syst). Furthermore, the measurements are compared to various theoretical predictions, including those from perturbative quantum chromodynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirunyan, A. M.; Tumasyan, A.; Adam, W.
An analysis of the bottom baryon decay Λ b → J/ψ(→μ +μ -)Λ(→ pπ -) is performed to measure the Λb polarization and three angular parameters in data from pp collisions at √s = 7 and 8 TeV, collected by the CMS experiment at the Large Hadron Collider. The Λ b polarization is measured to be 0.00 ± 0.06(stat) ± 0.06(syst) and the parity-violating asymmetry parameter is determined to be 0.14 ± 0.14(stat) ± 0.10(syst). Furthermore, the measurements are compared to various theoretical predictions, including those from perturbative quantum chromodynamics.
Investigation of statistical parameters of the evolving wind wave field using a laser slope gauge
NASA Astrophysics Data System (ADS)
Zavadsky, A.; Shemer, L.
2017-05-01
Statistical parameters of water waves generated by wind in a small scale facility are studied using extensively a Laser Slope Gauge (LSG), in addition to conventional measuring instruments such as a wave gauge and Pitot tube. The LSG enables direct measurements of two components of the instantaneous surface slope. Long sampling duration in a relatively small experimental facility allowed accumulating records of the measured parameters containing a large number of waves. Data were accumulated for a range of wind velocities at multiple fetches. Frequency spectra of the surface elevation and of the instantaneous local slope variation measured under identical conditions are compared. Higher moments of the surface slope are presented. Information on the waves' asymmetry is retrieved from the computed skewness of the surface slope components.
On the consistency among different approaches for nuclear track scanning and data processing
NASA Astrophysics Data System (ADS)
Inozemtsev, K. O.; Kushin, V. V.; Kodaira, S.; Shurshakov, V. A.
2018-04-01
The article describes various approaches for space radiation track measurement using CR-39™ detector (Tastrak). The results of comparing different methods for track scanning and data processing are presented. Basic algorithms for determination of track parameters are described. Every approach involves individual set of measured track parameters. For two sets, track scanning is sufficient in the plane of detector surface (2-D measurement), third set requires scanning in the additional projection (3-D measurement). An experimental comparison of considered techniques was made with the use of accelerated heavy ions Ar, Fe and Kr.
Boswell, C Andrew; Mundo, Eduardo E; Ulufatu, Sheila; Bumbaca, Daniela; Cahaya, Hendry S; Majidy, Nicholas; Van Hoy, Marjie; Schweiger, Michelle G; Fielder, Paul J; Prabhu, Saileta; Khawli, Leslie A
2014-05-05
A solid understanding of physiology is beneficial in optimizing drug delivery and in the development of clinically predictive models of drug disposition kinetics. Although an abundance of data exists in the literature, it is often confounded by the use of various experimental methods and a lack of consensus in values from different sources. To help address this deficiency, we sought to directly compare three important vascular parameters at the tissue level using the same experimental approach in both mice and rats. Interstitial volume, vascular volume, and blood flow were radiometrically measured in selected harvested tissues of both species by extracellular marker infusion, red blood cell labeling, and rubidium chloride bolus distribution, respectively. The latter two parameters were further compared by whole-body autoradiographic imaging. An overall good interspecies agreement was observed for interstitial volume and blood flow on a weight-normalized basis in most tissues. In contrast, the measured vascular volumes of most rat tissues were higher than for mouse. Mice and rats, the two most commonly utilized rodent species in translational drug development, should not be considered as interchangeable in terms of vascular volume per gram of tissue. This will be particularly critical in biodistribution studies of drugs, as the amount of drug in the residual blood of tissues is often not negligible, especially for biologic drugs (e.g., antibodies) having long circulation half-lives. Physiologically based models of drug pharmacokinetics and/or pharmacodynamics also rely on accurate knowledge of biological parameters in tissues. For tissue parameters with poor interspecies agreement, the significance and possible drivers are discussed.
Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2010-01-01
A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomlinson, E.T.; deSaussure, G.; Weisbin, C.R.
1977-03-01
The main purpose of the study is the determination of the sensitivity of TRX-2 thermal lattice performance parameters to nuclear cross section data, particularly the epithermal resonance capture cross section of /sup 238/U. An energy-dependent sensitivity profile was generated for each of the performance parameters, to the most important cross sections of the various isotopes in the lattice. Uncertainties in the calculated values of the performance parameters due to estimated uncertainties in the basic nuclear data, deduced in this study, were shown to be small compared to the uncertainties in the measured values of the performance parameter and compared tomore » differences among calculations based upon the same data but with different methodologies.« less
NASA Technical Reports Server (NTRS)
English, Robert E; Cavicchi, Richard H
1951-01-01
Empirical methods of Ainley and Kochendorfer and Nettles were used to predict performances of nine turbine designs. Measured and predicted performances were compared. Appropriate values of blade-loss parameter were determined for the method of Kochendorfer and Nettles. The measured design-point efficiencies were lower than predicted by as much as 0.09 (Ainley and 0.07 (Kochendorfer and Nettles). For the method of Kochendorfer and Nettles, appropriate values of blade-loss parameter ranged from 0.63 to 0.87 and the off-design performance was accurately predicted.
NASA Astrophysics Data System (ADS)
Chen, Shuo; Lin, Xiaoqian; Zhu, Caigang; Liu, Quan
2014-12-01
Key tissue parameters, e.g., total hemoglobin concentration and tissue oxygenation, are important biomarkers in clinical diagnosis for various diseases. Although point measurement techniques based on diffuse reflectance spectroscopy can accurately recover these tissue parameters, they are not suitable for the examination of a large tissue region due to slow data acquisition. The previous imaging studies have shown that hemoglobin concentration and oxygenation can be estimated from color measurements with the assumption of known scattering properties, which is impractical in clinical applications. To overcome this limitation and speed-up image processing, we propose a method of sequential weighted Wiener estimation (WE) to quickly extract key tissue parameters, including total hemoglobin concentration (CtHb), hemoglobin oxygenation (StO2), scatterer density (α), and scattering power (β), from wide-band color measurements. This method takes advantage of the fact that each parameter is sensitive to the color measurements in a different way and attempts to maximize the contribution of those color measurements likely to generate correct results in WE. The method was evaluated on skin phantoms with varying CtHb, StO2, and scattering properties. The results demonstrate excellent agreement between the estimated tissue parameters and the corresponding reference values. Compared with traditional WE, the sequential weighted WE shows significant improvement in the estimation accuracy. This method could be used to monitor tissue parameters in an imaging setup in real time.
Bayesian Parameter Estimation for Heavy-Duty Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Eric; Konan, Arnaud; Duran, Adam
2017-03-28
Accurate vehicle parameters are valuable for design, modeling, and reporting. Estimating vehicle parameters can be a very time-consuming process requiring tightly-controlled experimentation. This work describes a method to estimate vehicle parameters such as mass, coefficient of drag/frontal area, and rolling resistance using data logged during standard vehicle operation. The method uses Monte Carlo to generate parameter sets which is fed to a variant of the road load equation. Modeled road load is then compared to measured load to evaluate the probability of the parameter set. Acceptance of a proposed parameter set is determined using the probability ratio to the currentmore » state, so that the chain history will give a distribution of parameter sets. Compared to a single value, a distribution of possible values provides information on the quality of estimates and the range of possible parameter values. The method is demonstrated by estimating dynamometer parameters. Results confirm the method's ability to estimate reasonable parameter sets, and indicates an opportunity to increase the certainty of estimates through careful selection or generation of the test drive cycle.« less
Farsalinos, Konstantinos E; Daraban, Ana M; Ünlü, Serkan; Thomas, James D; Badano, Luigi P; Voigt, Jens-Uwe
2015-10-01
This study was planned by the EACVI/ASE/Industry Task Force to Standardize Deformation Imaging to (1) test the variability of speckle-tracking global longitudinal strain (GLS) measurements among different vendors and (2) compare GLS measurement variability with conventional echocardiographic parameters. Sixty-two volunteers were studied using ultrasound systems from seven manufacturers. Each volunteer was examined by the same sonographer on all machines. Inter- and intraobserver variability was determined in a true test-retest setting. Conventional echocardiographic parameters were acquired for comparison. Using the software packages of the respective manufacturer and of two software-only vendors, endocardial GLS was measured because it was the only GLS parameter that could be provided by all manufactures. We compared GLSAV (the average from the three apical views) and GLS4CH (measured in the four-chamber view) measurements among vendors and with the conventional echocardiographic parameters. Absolute values of GLSAV ranged from 18.0% to 21.5%, while GLS4CH ranged from 17.9% to 21.4%. The absolute difference between vendors for GLSAV was up to 3.7% strain units (P < .001). The interobserver relative mean errors were 5.4% to 8.6% for GLSAV and 6.2% to 11.0% for GLS4CH, while the intraobserver relative mean errors were 4.9% to 7.3% and 7.2% to 11.3%, respectively. These errors were lower than for left ventricular ejection fraction and most other conventional echocardiographic parameters. Reproducibility of GLS measurements was good and in many cases superior to conventional echocardiographic measurements. The small but statistically significant variation among vendors should be considered in performing serial studies and reflects a reference point for ongoing standardization efforts. Copyright © 2015 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Raudsepp, Allan; A K Williams, Martin; B Hall, Simon
2016-07-01
Measurements of the electrostatic force with separation between a fixed and an optically trapped colloidal particle are examined with experiment, simulation and analytical calculation. Non-Gaussian Brownian motion is observed in the position of the optically trapped particle when particles are close and traps weak. As a consequence of this motion, a simple least squares parameterization of direct force measurements, in which force is inferred from the displacement of an optically trapped particle as separation is gradually decreased, contains forces generated by the rectification of thermal fluctuations in addition to those originating directly from the electrostatic interaction between the particles. Thus, when particles are close and traps weak, simply fitting the measured direct force measurement to DLVO theory extracts parameters with modified meanings when compared to the original formulation. In such cases, however, physically meaningful DLVO parameters can be recovered by comparing the measured non-Gaussian statistics to those predicted by solutions to Smoluchowski's equation for diffusion in a potential.
NASA Astrophysics Data System (ADS)
Schön, Peter; Prokop, Alexander; Naaim-Bouvet, Florence; Nishimura, Kouichi; Vionnet, Vincent; Guyomarc'h, Gilbert
2014-05-01
Wind and the associated snow drift are dominating factors determining the snow distribution and accumulation in alpine areas, resulting in a high spatial variability of snow depth that is difficult to evaluate and quantify. The terrain-based parameter Sx characterizes the degree of shelter or exposure of a grid point provided by the upwind terrain, without the computational complexity of numerical wind field models. The parameter has shown to qualitatively predict snow redistribution with good reproduction of spatial patterns, but has failed to quantitatively describe the snow redistribution, and correlations with measured snow heights were poor. The objective of our research was to a) identify the sources of poor correlations between predicted and measured snow re-distribution and b) improve the parameters ability to qualitatively and quantitatively describe snow redistribution in our research area, the Col du Lac Blanc in the French Alps. The area is at an elevation of 2700 m and particularly suited for our study due to its constant wind direction and the availability of data from a meteorological station. Our work focused on areas with terrain edges of approximately 10 m height, and we worked with 1-2 m resolution digital terrain and snow surface data. We first compared the results of the terrain-based parameter calculations to measured snow-depths, obtained by high-accuracy terrestrial laser scan measurements. The results were similar to previous studies: The parameter was able to reproduce observed patterns in snow distribution, but regression analyses showed poor correlations between terrain-based parameter and measured snow-depths. We demonstrate how the correlations between measured and calculated snow heights improve if the parameter is calculated based on a snow surface model instead of a digital terrain model. We show how changing the parameter's search distance and how raster re-sampling and raster smoothing improve the results. To improve the parameter's quantitative abilities, we modified the parameter, based on the comparisons with TLS data and the terrain and wind conditions specific to the research site. The modification is in a linear form f(x) = a * Sx, where a is a newly introduced parameter; f(x) yields the estimates for the snow height. We found that the parameter depends on the time period between the compared snow surfaces and the intensity of drifting snow events, which are linked to wind velocities. At the Col du Lac Blanc test side, blowing snow flux is recorded with snow particle counters (SPC). Snow flux is the number of drifting snow particles per time and area. Hence, the SPC provide data about the duration and intensity of drifting snow events, two important factors not accounted for by the terrain parameter Sx. We analyse how the SPC snow flux data can be used to estimate the magnitude of the new variable parameter a. We could improve the parameters' correlations with measured snow heights and its ability to quantitatively describe snow distribution in the Col du Lac Blanc area. We believe that our work is also a prerequisite to further improve the parameter's ability to describe snow redistribution.
MEASUREMENT OF BEHAVIORAL THERMOREGULATION
The measurement of thermoregulatory behavior by the techniques of thermal gradient and operant conditioning allows the study of many parameters of the behavioral control of body temperature in particular species as well as the comparative study of thermo- regulatory capabilities ...
The acoustical structure of highly porous open-cell foams
NASA Technical Reports Server (NTRS)
Lambert, R. F.
1982-01-01
This work concerns both the theoretical prediction and measurement of structural parameters in open-cell highly porous polyurethane foams. Of particular interest are the dynamic flow resistance, thermal time constant, and mass structure factor and their dependence on frequency and geometry of the cellular structure. The predictions of cell size parameters, static flow resistance, and heat transfer as accounted for by a Nusselt number are compared with measurement. Since the static flow resistance and inverse thermal time constant are interrelated via the 'mean' pore size parameter of Biot, only two independent measurements such as volume porosity and mean filament diameter are required to make the predictions for a given fluid condition. The agreements between this theory and nonacoustical experiments are excellent.
Accuracy of the Microsoft Kinect for measuring gait parameters during treadmill walking.
Xu, Xu; McGorry, Raymond W; Chou, Li-Shan; Lin, Jia-Hua; Chang, Chien-Chi
2015-07-01
The measurement of gait parameters normally requires motion tracking systems combined with force plates, which limits the measurement to laboratory settings. In some recent studies, the possibility of using the portable, low cost, and marker-less Microsoft Kinect sensor to measure gait parameters on over-ground walking has been examined. The current study further examined the accuracy level of the Kinect sensor for assessment of various gait parameters during treadmill walking under different walking speeds. Twenty healthy participants walked on the treadmill and their full body kinematics data were measured by a Kinect sensor and a motion tracking system, concurrently. Spatiotemporal gait parameters and knee and hip joint angles were extracted from the two devices and were compared. The results showed that the accuracy levels when using the Kinect sensor varied across the gait parameters. Average heel strike frame errors were 0.18 and 0.30 frames for the right and left foot, respectively, while average toe off frame errors were -2.25 and -2.61 frames, respectively, across all participants and all walking speeds. The temporal gait parameters based purely on heel strike have less error than the temporal gait parameters based on toe off. The Kinect sensor can follow the trend of the joint trajectories for the knee and hip joints, though there was substantial error in magnitudes. The walking speed was also found to significantly affect the identified timing of toe off. The results of the study suggest that the Kinect sensor may be used as an alternative device to measure some gait parameters for treadmill walking, depending on the desired accuracy level. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Measuring Parameters of Massive Black Hole Binaries with Partially Aligned Spins
NASA Technical Reports Server (NTRS)
Lang, Ryan N.; Hughes, Scott A.; Cornish, Neil J.
2011-01-01
The future space-based gravitational wave detector LISA will be able to measure parameters of coalescing massive black hole binaries, often to extremely high accuracy. Previous work has demonstrated that the black hole spins can have a strong impact on the accuracy of parameter measurement. Relativistic spin-induced precession modulates the waveform in a manner which can break degeneracies between parameters, in principle significantly improving how well they are measured. Recent studies have indicated, however, that spin precession may be weak for an important subset of astrophysical binary black holes: those in which the spins are aligned due to interactions with gas. In this paper, we examine how well a binary's parameters can be measured when its spins are partially aligned and compare results using waveforms that include higher post-Newtonian harmonics to those that are truncated at leading quadrupole order. We find that the weakened precession can substantially degrade parameter estimation, particularly for the "extrinsic" parameters sky position and distance. Absent higher harmonics, LISA typically localizes the sky position of a nearly aligned binary about an order of magnitude less accurately than one for which the spin orientations are random. Our knowledge of a source's sky position will thus be worst for the gas-rich systems which are most likely to produce electromagnetic counterparts. Fortunately, higher harmonics of the waveform can make up for this degradation. By including harmonics beyond the quadrupole in our waveform model, we find that the accuracy with which most of the binary's parameters are measured can be substantially improved. In some cases, the improvement is such that they are measured almost as well as when the binary spins are randomly aligned.
Caracterisation mecanique dynamique de materiaux poro-visco-elastiques
NASA Astrophysics Data System (ADS)
Renault, Amelie
Poro-viscoelastic materials are well modelled with Biot-Allard equations. This model needs a number of geometrical parameters in order to describe the macroscopic geometry of the material and elastic parameters in order to describe the elastic properties of the material skeleton. Several characterisation methods of viscoelastic parameters of porous materials are studied in this thesis. Firstly, quasistatic and resonant characterization methods are described and analyzed. Secondly, a new inverse dynamic characterization of the same modulus is developed. The latter involves a two layers metal-porous beam, which is excited at the center. The input mobility is measured. The set-up is simplified compared to previous methods. The parameters are obtained via an inversion procedure based on the minimisation of the cost function comparing the measured and calculated frequency response functions (FRF). The calculation is done with a general laminate model. A parametric study identifies the optimal beam dimensions for maximum sensitivity of the inversion model. The advantage of using a code which is not taking into account fluid-structure interactions is the low computation time. For most materials, the effect of this interaction on the elastic properties is negligible. Several materials are tested to demonstrate the performance of the method compared to the classical quasi-static approaches, and set its limitations and range of validity. Finally, conclusions about their utilisation are given. Keywords. Elastic parameters, porous materials, anisotropy, vibration.
EEG alpha spindle measures as indicators of driver fatigue under real traffic conditions.
Simon, Michael; Schmidt, Eike A; Kincses, Wilhelm E; Fritzsche, Martin; Bruns, Andreas; Aufmuth, Claus; Bogdan, Martin; Rosenstiel, Wolfgang; Schrauf, Michael
2011-06-01
The purpose of this study is to show the effectiveness of EEG alpha spindles, defined by short narrowband bursts in the alpha band, as an objective measure for assessing driver fatigue under real driving conditions. An algorithm for the identification of alpha spindles is described. The performance of the algorithm is tested based on simulated data. The method is applied to real data recorded under real traffic conditions and compared with the performance of traditional EEG fatigue measures, i.e. alpha-band power. As a highly valid fatigue reference, the last 20 min of driving from participants who aborted the drive due to heavy fatigue were used in contrast to the initial 20 min of driving. Statistical analysis revealed significant increases from the first to the last driving section of several alpha spindle parameters and among all traditional EEG frequency bands, only of alpha-band power; with larger effect sizes for the alpha spindle based measures. An increased level of fatigue over the same time periods for drop-outs, as compared to participants who did not abort the drive, was observed only by means of alpha spindle parameters. EEG alpha spindle parameters increase both fatigue detection sensitivity and specificity as compared to EEG alpha-band power. It is demonstrated that alpha spindles are superior to EEG band power measures for assessing driver fatigue under real traffic conditions. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hoang, Phong V.; Konyakhin, Igor A.
2017-06-01
Autocollimators are widely used for angular measurements in instrument-making and the manufacture of elements of optical systems (wedges, prisms, plane-parallel plates) to check their shape parameters (rectilinearity, parallelism and planarity) and retrieve their optical parameters (curvature radii, measure and test their flange focusing). Autocollimator efficiency is due to the high sensitivity of the autocollimation method to minor rotations of the reflecting control element or the controlled surface itself. We consider using quaternions to optimize reflector parameters during autocollimation measurements as compared to the matrix technique. Mathematical model studies have demonstrated that the orthogonal positioning of the two basic unchanged directions of the tetrahedral reflector of the autocollimator is optimal by the criterion of reducing measurement errors where the axis of actual rotation is in a bisecting position towards them. Computer results are presented of running quaternion models that yielded conditions for diminishing measurement errors provided apriori information is available on the position of rotation axis. A practical technique is considered for synthesizing the parameters of the tetrahedral reflector that employs the newly-retrieved relationships. Following the relationships found between the angles of the tetrahedral reflector and the angles of the parameters of its initial orientation, an applied technique was developed to synthesize the control element for autocollimation measurements in case apriori information is available on the axis of actual rotation during monitoring measurements of shaft or pipeline deformation.
Measuring relative performance of an EDS detector using a NiO standard.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugar, Joshua Daniel; Kotula, Paul Gabriel
2013-09-01
A method for measuring the relative performance of energy dispersive spectrometers (EDS) on a TEM is discussed. A NiO thin-film standard fabricated at Sandia CA is used. A performance parameter,, is measured and compared to values on several TEM systems.
Transmuted of Rayleigh Distribution with Estimation and Application on Noise Signal
NASA Astrophysics Data System (ADS)
Ahmed, Suhad; Qasim, Zainab
2018-05-01
This paper deals with transforming one parameter Rayleigh distribution, into transmuted probability distribution through introducing a new parameter (λ), since this studied distribution is necessary in representing signal data distribution and failure data model the value of this transmuted parameter |λ| ≤ 1, is also estimated as well as the original parameter (⊖) by methods of moments and maximum likelihood using different sample size (n=25, 50, 75, 100) and comparing the results of estimation by statistical measure (mean square error, MSE).
ZASPE: A Code to Measure Stellar Atmospheric Parameters and their Covariance from Spectra
NASA Astrophysics Data System (ADS)
Brahm, Rafael; Jordán, Andrés; Hartman, Joel; Bakos, Gáspár
2017-05-01
We describe the Zonal Atmospheric Stellar Parameters Estimator (zaspe), a new algorithm, and its associated code, for determining precise stellar atmospheric parameters and their uncertainties from high-resolution echelle spectra of FGK-type stars. zaspe estimates stellar atmospheric parameters by comparing the observed spectrum against a grid of synthetic spectra only in the most sensitive spectral zones to changes in the atmospheric parameters. Realistic uncertainties in the parameters are computed from the data itself, by taking into account the systematic mismatches between the observed spectrum and the best-fitting synthetic one. The covariances between the parameters are also estimated in the process. zaspe can in principle use any pre-calculated grid of synthetic spectra, but unbiased grids are required to obtain accurate parameters. We tested the performance of two existing libraries, and we concluded that neither is suitable for computing precise atmospheric parameters. We describe a process to synthesize a new library of synthetic spectra that was found to generate consistent results when compared with parameters obtained with different methods (interferometry, asteroseismology, equivalent widths).
Material parameter estimation with terahertz time-domain spectroscopy.
Dorney, T D; Baraniuk, R G; Mittleman, D M
2001-07-01
Imaging systems based on terahertz (THz) time-domain spectroscopy offer a range of unique modalities owing to the broad bandwidth, subpicosecond duration, and phase-sensitive detection of the THz pulses. Furthermore, the possibility exists for combining spectroscopic characterization or identification with imaging because the radiation is broadband in nature. To achieve this, we require novel methods for real-time analysis of THz waveforms. This paper describes a robust algorithm for extracting material parameters from measured THz waveforms. Our algorithm simultaneously obtains both the thickness and the complex refractive index of an unknown sample under certain conditions. In contrast, most spectroscopic transmission measurements require knowledge of the sample's thickness for an accurate determination of its optical parameters. Our approach relies on a model-based estimation, a gradient descent search, and the total variation measure. We explore the limits of this technique and compare the results with literature data for optical parameters of several different materials.
Three-parameter optical studies in Scottish coastal waters
NASA Astrophysics Data System (ADS)
McKee, David; Cunningham, Alex; Jones, Ken
1997-02-01
A new submersible optical instrument has been constructed which allows chlorophyll fluorescence, attenuation and wide- angle scattering measurements to be made simultaneously at he same point in a body of water. The instrument sues a single xenon flashlamp as the light source, and incorporates its own power supply and microprocessor based data logging system. It has ben cross-calibrated against commercial single-parameter instruments using a range of non-algal particles and phytoplankton cultures. The equipment has been deployed at sea in the Firth of Clyde and Loch Linnhe, where is has been used to study seasonal variability in optical water column structure. Results will be presented to illustrate how ambiguity in the interpretation of measurements of a single optical parameter can be alleviated by measuring several parameters simultaneously. Comparative studies of differences in winter and spring relationships between optical variable shave also ben carried out.
NASA Astrophysics Data System (ADS)
Isakson, Marcia; Camin, H. John; Canepa, Gaetano
2005-04-01
The reflection coefficient from a sand/water interface is an important parameter in modeling the acoustics of littoral environments. Many models have been advanced to describe the influence of the sediment parameters and interface roughness parameters on the reflection coefficient. In this study, the magnitude and phase of the reflection coefficient from 30 to 160 kHz is measured in a bistatic experiment on a smoothed water/sand interface at grazing angles from 5 to 75 degrees. The measured complex reflection coefficient is compared with the fluid model, the elastic model and poro-elastic models. Effects of rough surface scattering are investigated using the Bottom Response from Inhomogeneities and Surface using Small Slope Approximation (BoRIS-SSA). Spherical wave effects are modeled using plane wave decomposition. Models are considered for their ability to predict the measured results using realistic parameters. [Work supported by ONR, Ocean Acoustics.
NASA Astrophysics Data System (ADS)
Quan, Naicheng; Zhang, Chunmin; Mu, Tingkui
2018-05-01
We address the optimal configuration of a partial Mueller matrix polarimeter used to determine the ellipsometric parameters in the presence of additive Gaussian noise and signal-dependent shot noise. The numerical results show that, for the PSG/PSA consisting of a variable retarder and a fixed polarizer, the detection process immune to these two types of noise can be optimally composed by 121.2° retardation with a pair of azimuths ±71.34° and a 144.48° retardation with a pair of azimuths ±31.56° for four Mueller matrix elements measurement. Compared with the existing configurations, the configuration presented in this paper can effectively decrease the measurement variance and thus statistically improve the measurement precision of the ellipsometric parameters.
NASA Astrophysics Data System (ADS)
Langer, P.; Sepahvand, K.; Guist, C.; Bär, J.; Peplow, A.; Marburg, S.
2018-03-01
The simulation model which examines the dynamic behavior of real structures needs to address the impact of uncertainty in both geometry and material parameters. This article investigates three-dimensional finite element models for structural dynamics problems with respect to both model and parameter uncertainties. The parameter uncertainties are determined via laboratory measurements on several beam-like samples. The parameters are then considered as random variables to the finite element model for exploring the uncertainty effects on the quality of the model outputs, i.e. natural frequencies. The accuracy of the output predictions from the model is compared with the experimental results. To this end, the non-contact experimental modal analysis is conducted to identify the natural frequency of the samples. The results show a good agreement compared with experimental data. Furthermore, it is demonstrated that geometrical uncertainties have more influence on the natural frequencies compared to material parameters and material uncertainties are about two times higher than geometrical uncertainties. This gives valuable insights for improving the finite element model due to various parameter ranges required in a modeling process involving uncertainty.
Comparison of information theoretic divergences for sensor management
NASA Astrophysics Data System (ADS)
Yang, Chun; Kadar, Ivan; Blasch, Erik; Bakich, Michael
2011-06-01
In this paper, we compare the information-theoretic metrics of the Kullback-Leibler (K-L) and Renyi (α) divergence formulations for sensor management. Information-theoretic metrics have been well suited for sensor management as they afford comparisons between distributions resulting from different types of sensors under different actions. The difference in distributions can also be measured as entropy formulations to discern the communication channel capacity (i.e., Shannon limit). In this paper, we formulate a sensor management scenario for target tracking and compare various metrics for performance evaluation as a function of the design parameter (α) so as to determine which measures might be appropriate for sensor management given the dynamics of the scenario and design parameter.
Ranacher, Peter; Tzavella, Katerina
2014-05-27
In geographic information science, a plethora of different approaches and methods is used to assess the similarity of movement. Some of these approaches term two moving objects similar if they share akin paths. Others require objects to move at similar speed and yet others consider movement similar if it occurs at the same time. We believe that a structured and comprehensive classification of movement comparison measures is missing. We argue that such a classification not only depicts the status quo of qualitative and quantitative movement analysis, but also allows for identifying those aspects of movement for which similarity measures are scarce or entirely missing. In this review paper we, first, decompose movement into its spatial, temporal, and spatiotemporal movement parameters. A movement parameter is a physical quantity of movement, such as speed, spatial path, or temporal duration. For each of these parameters we then review qualitative and quantitative methods of how to compare movement. Thus, we provide a systematic and comprehensive classification of different movement similarity measures used in geographic information science. This classification is a valuable first step toward a GIS toolbox comprising all relevant movement comparison methods.
Ranacher, Peter; Tzavella, Katerina
2014-01-01
In geographic information science, a plethora of different approaches and methods is used to assess the similarity of movement. Some of these approaches term two moving objects similar if they share akin paths. Others require objects to move at similar speed and yet others consider movement similar if it occurs at the same time. We believe that a structured and comprehensive classification of movement comparison measures is missing. We argue that such a classification not only depicts the status quo of qualitative and quantitative movement analysis, but also allows for identifying those aspects of movement for which similarity measures are scarce or entirely missing. In this review paper we, first, decompose movement into its spatial, temporal, and spatiotemporal movement parameters. A movement parameter is a physical quantity of movement, such as speed, spatial path, or temporal duration. For each of these parameters we then review qualitative and quantitative methods of how to compare movement. Thus, we provide a systematic and comprehensive classification of different movement similarity measures used in geographic information science. This classification is a valuable first step toward a GIS toolbox comprising all relevant movement comparison methods. PMID:27019646
Direct and accelerated parameter mapping using the unscented Kalman filter.
Zhao, Li; Feng, Xue; Meyer, Craig H
2016-05-01
To accelerate parameter mapping using a new paradigm that combines image reconstruction and model regression as a parameter state-tracking problem. In T2 mapping, the T2 map is first encoded in parameter space by multi-TE measurements and then encoded by Fourier transformation with readout/phase encoding gradients. Using a state transition function and a measurement function, the unscented Kalman filter can describe T2 mapping as a dynamic system and directly estimate the T2 map from the k-space data. The proposed method was validated with a numerical brain phantom and volunteer experiments with a multiple-contrast spin echo sequence. Its performance was compared with a conjugate-gradient nonlinear inversion method at undersampling factors of 2 to 8. An accelerated pulse sequence was developed based on this method to achieve prospective undersampling. Compared with the nonlinear inversion reconstruction, the proposed method had higher precision, improved structural similarity and reduced normalized root mean squared error, with acceleration factors up to 8 in numerical phantom and volunteer studies. This work describes a new perspective on parameter mapping by state tracking. The unscented Kalman filter provides a highly accelerated and efficient paradigm for T2 mapping. © 2015 Wiley Periodicals, Inc.
Hotrabhavananda, Benjamin; Mishra, Anup K; Skubic, Marjorie; Hotrabhavananda, Nijaporn; Abbott, Carmen
2016-08-01
We compared the performance of the Kinect skeletal data with the Kinect depth data in capturing different gait parameters during the Timed-up and Go Test (TUG) and Figure of 8 Walk Test (F8W). The gait parameters considered were stride length, stride time, and walking speed for the TUG, and number of steps and completion time for the F8W. A marker-based Vicon motion capture system was used for the ground-truth measurements. Five healthy participants were recruited for the experiment and were asked to perform three trials of each task. Results show that depth data analysis yields stride length and stride time measures with significantly low percentile errors as compared to the skeletal data analysis. However, the skeletal and depth data performed similar with less than 3% of absolute mean percentile error in determining the walking speed for the TUG and both parameters of F8W. The results show potential capabilities of Kinect depth data analysis in computing many gait parameters, whereas, the Kinect skeletal data can also be used for walking speed in TUG and F8W gait parameters.
Fotina, I; Lütgendorf-Caucig, C; Stock, M; Pötter, R; Georg, D
2012-02-01
Inter-observer studies represent a valid method for the evaluation of target definition uncertainties and contouring guidelines. However, data from the literature do not yet give clear guidelines for reporting contouring variability. Thus, the purpose of this work was to compare and discuss various methods to determine variability on the basis of clinical cases and a literature review. In this study, 7 prostate and 8 lung cases were contoured on CT images by 8 experienced observers. Analysis of variability included descriptive statistics, calculation of overlap measures, and statistical measures of agreement. Cross tables with ratios and correlations were established for overlap parameters. It was shown that the minimal set of parameters to be reported should include at least one of three volume overlap measures (i.e., generalized conformity index, Jaccard coefficient, or conformation number). High correlation between these parameters and scatter of the results was observed. A combination of descriptive statistics, overlap measure, and statistical measure of agreement or reliability analysis is required to fully report the interrater variability in delineation.
Acoustic energy relations in Mudejar-Gothic churches.
Zamarreño, Teófilo; Girón, Sara; Galindo, Miguel
2007-01-01
Extensive objective energy-based parameters have been measured in 12 Mudejar-Gothic churches in the south of Spain. Measurements took place in unoccupied churches according to the ISO-3382 standard. Monoaural objective measures in the 125-4000 Hz frequency range and in their spatial distributions were obtained. Acoustic parameters: clarity C80, definition D50, sound strength G and center time Ts have been deduced using impulse response analysis through a maximum length sequence measurement system in each church. These parameters spectrally averaged according to the most extended criteria in auditoria in order to consider acoustic quality were studied as a function of source-receiver distance. The experimental results were compared with predictions given by classical and other existing theoretical models proposed for concert halls and churches. An analytical semi-empirical model based on the measured values of the C80 parameter is proposed in this work for these spaces. The good agreement between predicted values and experimental data for definition, sound strength, and center time in the churches analyzed shows that the model can be used for design predictions and other purposes with reasonable accuracy.
Measuring the Pharmacokinetic Properties of Drugs with a Novel Surgical Rat Model.
Christakis, Ioannis; Scott, Rebecca; Minnion, James; Cuenco, Joyceline; Tan, Tricia; Palazzo, Fausto; Bloom, Stephen
2017-06-01
Purpose/aim of the study: The pharmacokinetic (PK) parameters in animal models can help optimize novel candidate drugs prior to human trials. However, due to the complexity of pharmacokinetic experiments, their use is limited in academia. We present a novel surgical rat model for investigation of pharmacokinetic parameters and its use in an anti-obesity drug development program. The model uses anesthetized male Wistar rats, a jugular, a femoral catheter, and an insulin pump for peptide infusion. The following pharmacokinetic parameters were measured: metabolic clearance rate (MCR), half-life, and volume of distribution (Vd). Glucagon-like peptide 1 (GLP-1), glucagon (GCG), and exendin-4 (Ex-4) were used to validate the model. The pharmacokinetic parameters of anti-obesity drug candidates X1, X2, and X3 were measured. GLP-1 had a significantly higher MCR (83.9 ± 14.1 mL/min/kg) compared to GCG (40.7 ± 14.3 mL/min/kg) and Ex-4 (10.1 ± 2.5 mL/min/kg) (p < .01 and p < .001 respectively). Ex-4 had a statistically significant longer half-life (35.1 ± 7.4 min) compared to both GCG (3.2 ± 1.7 min) and GLP-1 (1.2 ± 0.4 min) (p < .01 for both GCG and GLP-1). Ex-4 had a statistically significant higher volume of distribution (429.7 ± 164.9 mL/kg) compared to both GCG (146.8 ± 49.6 mL/kg) and GLP-1 (149.7 ± 53.5 mL/kg) (p < .01 for both GCG and GLP-1). Peptide X3 had a statistically significant longer half-life (21.3 ± 3.5 min) compared to both X1 (3.9 ± 0.4 min) and X2 (16.1 ± 2.8 min) (p < .001 for both X1 and X2). We present an affordable and easily accessible platform for the measurement of PK parameters of peptides. This novel surgical rat model produces consistent and reproducible results while minimizing animal use.
Variability aware compact model characterization for statistical circuit design optimization
NASA Astrophysics Data System (ADS)
Qiao, Ying; Qian, Kun; Spanos, Costas J.
2012-03-01
Variability modeling at the compact transistor model level can enable statistically optimized designs in view of limitations imposed by the fabrication technology. In this work we propose an efficient variabilityaware compact model characterization methodology based on the linear propagation of variance. Hierarchical spatial variability patterns of selected compact model parameters are directly calculated from transistor array test structures. This methodology has been implemented and tested using transistor I-V measurements and the EKV-EPFL compact model. Calculation results compare well to full-wafer direct model parameter extractions. Further studies are done on the proper selection of both compact model parameters and electrical measurement metrics used in the method.
Noninvasive Hemodynamic Measurements During Neurosurgical Procedures in Sitting Position.
Schramm, Patrick; Tzanova, Irene; Gööck, Tilman; Hagen, Frank; Schmidtmann, Irene; Engelhard, Kristin; Pestel, Gunther
2017-07-01
Neurosurgical procedures in sitting position need advanced cardiovascular monitoring. Transesophageal echocardiography (TEE) to measure cardiac output (CO)/cardiac index (CI) and stroke volume (SV), and invasive arterial blood pressure measurements for systolic (ABPsys), diastolic (ABPdiast) and mean arterial pressure (MAP) are established monitoring technologies for these kind of procedures. A noninvasive device for continuous monitoring of blood pressure and CO based on a modified Penaz technique (volume-clamp method) was introduced recently. In the present study the noninvasive blood pressure measurements were compared with invasive arterial blood pressure monitoring, and the noninvasive CO monitoring to TEE measurements. Measurements of blood pressure and CO were performed in 35 patients before/after giving a fluid bolus and a change from supine to sitting position, start of surgery, and repositioning from sitting to supine at the end of surgery. Data pairs from the noninvasive device (Nexfin HD) versus arterial line measurements (ABPsys, ABPdiast, MAP) and versus TEE (CO, CI, SV) were compared using Bland-Altman analysis and percentage error. All parameters compared (CO, CI, SV, ABPsys, ABPdiast, MAP) showed a large bias and wide limits of agreement. Percentage error was above 30% for all parameters except ABPsys. The noninvasive device based on a modified Penaz technique cannot replace arterial blood pressure monitoring or TEE in anesthetized patients undergoing neurosurgery in sitting position.
Petersen, Nick; Perrin, David; Newhauser, Wayne; Zhang, Rui
2017-01-01
The purpose of this study was to evaluate the impact of selected configuration parameters that govern multileaf collimator (MLC) transmission and rounded leaf offset in a commercial treatment planning system (TPS) (Pinnacle 3 , Philips Medical Systems, Andover, MA, USA) on the accuracy of intensity-modulated radiation therapy (IMRT) dose calculation. The MLC leaf transmission factor was modified based on measurements made with ionization chambers. The table of parameters containing rounded-leaf-end offset values was modified by measuring the radiation field edge as a function of leaf bank position with an ionization chamber in a scanning water-tank dosimetry system and comparing the locations to those predicted by the TPS. The modified parameter values were validated by performing IMRT quality assurance (QA) measurements on 19 gantry-static IMRT plans. Planar dose measurements were performed with radiographic film and a diode array (MapCHECK2) and compared to TPS calculated dose distributions using default and modified configuration parameters. Based on measurements, the leaf transmission factor was changed from a default value of 0.001 to 0.005. Surprisingly, this modification resulted in a small but statistically significant worsening of IMRT QA gamma-index passing rate, which revealed that the overall dosimetric accuracy of the TPS depends on multiple configuration parameters in a manner that is coupled and not intuitive because of the commissioning protocol used in our clinic. The rounded leaf offset table had little room for improvement, with the average difference between the default and modified offset values being -0.2 ± 0.7 mm. While our results depend on the current clinical protocols, treatment unit and TPS used, the methodology used in this study is generally applicable. Different clinics could potentially obtain different results and improve their dosimetric accuracy using our approach.
Room temperature mechanical properties of electron beam welded zircaloy-4 sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parga, C. J.; Rooyen, I. J.; Coryell, B. D.
Room temperature mechanical properties of electron beam welded and plain Zircaloy-4 sheet (1.6mm thick) have been measured and compared. Various welding parameters were utilized to join sheet material. Electron beam welded specimens and as-received sheet specimens show comparable mechanical properties. Zr-4 sheet displays anisotropy; tensile properties measured for transverse display higher elastic modulus, yield strength, reduction of area and slightly lower ductility than for the longitudinal (rolling direction). Higher welding power increases the alloy’s hardness, elastic modulus and yield strength, with a corresponding decrease in tensile strength and ductility. The hardness measured at weld is comparable to the parent metalmore » hardness. Hardness at heat-affected-zone is slightly higher. Electron microscopic examination shows distinct microstructure morphology and grain size at the weld zone, HAZ and parent metal. A correlation between welding parameters, mechanical properties and microstructural features was established for electron beam welded Zircaloy-4 sheet material.« less
Room temperature mechanical properties of electron beam welded zircaloy-4 sheet
Parga, C. J.; Rooyen, I. J.; Coryell, B. D.; ...
2017-11-04
Room temperature mechanical properties of electron beam welded and plain Zircaloy-4 sheet (1.6mm thick) have been measured and compared. Various welding parameters were utilized to join sheet material. Electron beam welded specimens and as-received sheet specimens show comparable mechanical properties. Zr-4 sheet displays anisotropy; tensile properties measured for transverse display higher elastic modulus, yield strength, reduction of area and slightly lower ductility than for the longitudinal (rolling direction). Higher welding power increases the alloy’s hardness, elastic modulus and yield strength, with a corresponding decrease in tensile strength and ductility. The hardness measured at weld is comparable to the parent metalmore » hardness. Hardness at heat-affected-zone is slightly higher. Electron microscopic examination shows distinct microstructure morphology and grain size at the weld zone, HAZ and parent metal. A correlation between welding parameters, mechanical properties and microstructural features was established for electron beam welded Zircaloy-4 sheet material.« less
Erbacher, Monica K; Schmidt, Karen M; Boker, Steven M; Bergeman, Cindy S
2012-01-01
Positive (PA) and negative affect (NA) are important constructs in health and well-being research. Good longitudinal measurement is crucial to conducting meaningful research on relationships between affect, health, and well-being across the lifespan. One common affect measure, the PANAS, has been evaluated thoroughly with factor analysis, but not with Racsh-based latent trait models (RLTMs) such as the Partial Credit Model (PCM), and not longitudinally. Current longitudinal RLTMs can computationally handle few occasions of data. The present study compares four methods of anchoring PCMs across 56 occasions to longitudinally evaluate the psychometric properties of the PANAS plus additional items. Anchoring item parameters on mean parameter values across occasions produced more desirable results than using no anchor, using first occasion parameters as anchors, or allowing anchor values to vary across occasions. Results indicated problems with NA items, including poor category utilization, gaps in the item distribution, and a lack of easy-to-endorse items. PA items had much more desirable psychometric qualities.
Saturated-unsaturated flow to a well with storage in a compressible unconfined aquifer
NASA Astrophysics Data System (ADS)
Mishra, Phoolendra Kumar; Neuman, Shlomo P.
2011-05-01
Mishra and Neuman (2010) developed an analytical solution for flow to a partially penetrating well of zero radius in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from responses recorded in the saturated and/or unsaturated zones. Their solution accounts for horizontal as well as vertical flows in each zone. It represents unsaturated zone constitutive properties in a manner that is at once mathematically tractable and sufficiently flexible to provide much improved fits to standard constitutive models. In this paper we extend the solution of [2010] to the case of a finite diameter pumping well with storage; investigate the effects of storage in the pumping well and delayed piezometer response on drawdowns in the saturated and unsaturated zones as functions of position and time; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the [1980]- [1976] model; use our solution to analyze 11 transducer-measured drawdown records from a seven-day pumping test conducted by University of Waterloo researchers at the Canadian Forces Base Borden in Ontario, Canada; validate our parameter estimates against manually-measured drawdown records in 14 other piezometers at Borden; and compare (a) our estimates of aquifer parameters with those obtained on the basis of all these records by [2008], (b) on the basis of 11 transducer-measured drawdown records by [2007], (c) our estimates of van Genuchten-Mualem parameters with those obtained on the basis of laboratory drainage data from the site by [1992], and (d) our corresponding prediction of how effective saturation varies with elevation above the initial water table under static conditions with a profile based on water contents measured in a neutron access tube at a radial distance of about 5 m from the center of the pumping well. We also use our solution to analyze 11 transducer-measured drawdown records from a 7 day pumping test conducted by University of Waterloo researchers at the Canadian Forces Base Borden in Ontario, Canada. We validate our parameter estimates against manually measured drawdown records in 14 other piezometers at Borden. We compare our estimates of aquifer parameters with those obtained on the basis of all these records by Moench (2008) and on the basis of 11 transducer-measured drawdown records by Endres et al. (2007), and we compare our estimates of van Genuchten-Mualem parameters with those obtained on the basis of laboratory drainage data from the site by Akindunni and Gillham (1992); finally, we compare our corresponding prediction of how effective saturation varies with elevation above the initial water table under static conditions with a profile based on water contents measured in a neutron access tube at a radial distance of about 5 m from the center of the pumping well.
Parametric and experimental analysis using a power flow approach
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1990-01-01
A structural power flow approach for the analysis of structure-borne transmission of vibrations is used to analyze the influence of structural parameters on transmitted power. The parametric analysis is also performed using the Statistical Energy Analysis approach and the results are compared with those obtained using the power flow approach. The advantages of structural power flow analysis are demonstrated by comparing the type of results that are obtained by the two analytical methods. Also, to demonstrate that the power flow results represent a direct physical parameter that can be measured on a typical structure, an experimental study of structural power flow is presented. This experimental study presents results for an L shaped beam for which an available solution was already obtained. Various methods to measure vibrational power flow are compared to study their advantages and disadvantages.
Ramadan, Ahmed; Boss, Connor; Choi, Jongeun; Peter Reeves, N; Cholewicki, Jacek; Popovich, John M; Radcliffe, Clark J
2018-07-01
Estimating many parameters of biomechanical systems with limited data may achieve good fit but may also increase 95% confidence intervals in parameter estimates. This results in poor identifiability in the estimation problem. Therefore, we propose a novel method to select sensitive biomechanical model parameters that should be estimated, while fixing the remaining parameters to values obtained from preliminary estimation. Our method relies on identifying the parameters to which the measurement output is most sensitive. The proposed method is based on the Fisher information matrix (FIM). It was compared against the nonlinear least absolute shrinkage and selection operator (LASSO) method to guide modelers on the pros and cons of our FIM method. We present an application identifying a biomechanical parametric model of a head position-tracking task for ten human subjects. Using measured data, our method (1) reduced model complexity by only requiring five out of twelve parameters to be estimated, (2) significantly reduced parameter 95% confidence intervals by up to 89% of the original confidence interval, (3) maintained goodness of fit measured by variance accounted for (VAF) at 82%, (4) reduced computation time, where our FIM method was 164 times faster than the LASSO method, and (5) selected similar sensitive parameters to the LASSO method, where three out of five selected sensitive parameters were shared by FIM and LASSO methods.
Inference of reactive transport model parameters using a Bayesian multivariate approach
NASA Astrophysics Data System (ADS)
Carniato, Luca; Schoups, Gerrit; van de Giesen, Nick
2014-08-01
Parameter estimation of subsurface transport models from multispecies data requires the definition of an objective function that includes different types of measurements. Common approaches are weighted least squares (WLS), where weights are specified a priori for each measurement, and weighted least squares with weight estimation (WLS(we)) where weights are estimated from the data together with the parameters. In this study, we formulate the parameter estimation task as a multivariate Bayesian inference problem. The WLS and WLS(we) methods are special cases in this framework, corresponding to specific prior assumptions about the residual covariance matrix. The Bayesian perspective allows for generalizations to cases where residual correlation is important and for efficient inference by analytically integrating out the variances (weights) and selected covariances from the joint posterior. Specifically, the WLS and WLS(we) methods are compared to a multivariate (MV) approach that accounts for specific residual correlations without the need for explicit estimation of the error parameters. When applied to inference of reactive transport model parameters from column-scale data on dissolved species concentrations, the following results were obtained: (1) accounting for residual correlation between species provides more accurate parameter estimation for high residual correlation levels whereas its influence for predictive uncertainty is negligible, (2) integrating out the (co)variances leads to an efficient estimation of the full joint posterior with a reduced computational effort compared to the WLS(we) method, and (3) in the presence of model structural errors, none of the methods is able to identify the correct parameter values.
Fan, Kenneth Chen; Tsikata, Edem; Khoueir, Ziad; Simavli, Huseyin; Guo, Rong; DeLuna, Regina; Pandit, Sumir; Que, Christian John; de Boer, Johannes F.; Chen, Teresa C.
2017-01-01
Purpose To compare the diagnostic capability of 3-dimensional (3D) neuroretinal rim parameters with existing 2-dimensional (2D) neuroretinal and retinal nerve fiber layer (RNFL) thickness rim parameters using spectral domain optical coherence tomography (SD-OCT) volume scans Materials and Methods Design Institutional prospective pilot study. Study population 65 subjects (35 open angle glaucoma patients, 30 normal patients). Observation procedures One eye of each subject was included. SD-OCT was used to obtain 2D retinal nerve fiber layer (RNFL) thickness values and five neuroretinal rim parameters [i.e. 3D minimum distance band (MDB) thickness, 3D Bruch’s membrane opening-minimum rim width (BMO-MRW), 3D rim volume, 2D rim area, and 2D rim thickness]. Main outcome measures Area under the receiver operating characteristic (AUROC) curve values, sensitivity, specificity. Results Comparing all 3D with all 2D parameters, 3D rim parameters (MDB, BMO-MRW, rim volume) generally had higher AUROC curve values (range 0.770–0.946) compared to 2D parameters (RNFL thickness, rim area, rim thickness; range 0.678–0.911). For global region analyses, all 3D rim parameters (BMO-MRW, rim volume, MDB) were equal to or better than 2D parameters (RNFL thickness, rim area, rim thickness; p-values from 0.023–1.0). Among the three 3D rim parameters (MDB, BMO-MRW, and rim volume), there were no significant differences in diagnostic capability (false discovery rate > 0.05 at 95% specificity). Conclusion 3D neuroretinal rim parameters (MDB, BMO-MRW, and rim volume) demonstrated better diagnostic capability for primary and secondary open angle glaucomas compared to 2D neuroretinal parameters (rim area, rim thickness). Compared to 2D RNFL thickness, 3D neuroretinal rim parameters have the same or better diagnostic capability. PMID:28234677
Comparative Analyses of MIRT Models and Software (BMIRT and flexMIRT)
ERIC Educational Resources Information Center
Yavuz, Guler; Hambleton, Ronald K.
2017-01-01
Application of MIRT modeling procedures is dependent on the quality of parameter estimates provided by the estimation software and techniques used. This study investigated model parameter recovery of two popular MIRT packages, BMIRT and flexMIRT, under some common measurement conditions. These packages were specifically selected to investigate the…
NASA Astrophysics Data System (ADS)
Pourbabaee, Bahareh; Meskin, Nader; Khorasani, Khashayar
2016-08-01
In this paper, a novel robust sensor fault detection and isolation (FDI) strategy using the multiple model-based (MM) approach is proposed that remains robust with respect to both time-varying parameter uncertainties and process and measurement noise in all the channels. The scheme is composed of robust Kalman filters (RKF) that are constructed for multiple piecewise linear (PWL) models that are constructed at various operating points of an uncertain nonlinear system. The parameter uncertainty is modeled by using a time-varying norm bounded admissible structure that affects all the PWL state space matrices. The robust Kalman filter gain matrices are designed by solving two algebraic Riccati equations (AREs) that are expressed as two linear matrix inequality (LMI) feasibility conditions. The proposed multiple RKF-based FDI scheme is simulated for a single spool gas turbine engine to diagnose various sensor faults despite the presence of parameter uncertainties, process and measurement noise. Our comparative studies confirm the superiority of our proposed FDI method when compared to the methods that are available in the literature.
Gerlinsky, Carling D; Haulena, Martin; Trites, Andrew W; Rosen, David A S
2018-03-01
Decreased health may have lowered the birth and survival rates of Steller sea lions ( Eumetopias jubatus) in the Gulf of Alaska and Aleutian Islands over the past 30 yr. Reference ranges for clinical hematology and serum chemistry parameters needed to assess the health of wild sea lion populations are limited. Here, blood parameters were serially measured in 12 captive female Steller sea lions ranging in age from 3 wk to 16 yr to establish baseline values and investigate age-related changes. Whether diving activity affects hematology parameters in animals swimming in the ocean compared with animals in a traditional aquarium setting was also examined. Almost all blood parameters measured exhibited significant changes with age. Many of the age-related changes reflected developmental life history changes, including a change in diet during weaning, an improvement of diving capacity, and the maturity of the immune system. Mean corpuscular hemoglobin and mean corpuscular volume were also higher in the ocean diving group compared with the aquarium group, likely reflecting responses to increased exercise regimes. These data provide ranges of hematology and serum chemistry values needed to evaluate and compare the health and nutritional status of captive and wild Steller sea lions.
NASA Astrophysics Data System (ADS)
Mendoza, Sergio; Rothenberger, Michael; Hake, Alison; Fathy, Hosam
2016-03-01
This article presents a framework for optimizing the thermal cycle to estimate a battery cell's entropy coefficient at 20% state of charge (SOC). Our goal is to maximize Fisher identifiability: a measure of the accuracy with which a parameter can be estimated. Existing protocols in the literature for estimating entropy coefficients demand excessive laboratory time. Identifiability optimization makes it possible to achieve comparable accuracy levels in a fraction of the time. This article demonstrates this result for a set of lithium iron phosphate (LFP) cells. We conduct a 24-h experiment to obtain benchmark measurements of their entropy coefficients. We optimize a thermal cycle to maximize parameter identifiability for these cells. This optimization proceeds with respect to the coefficients of a Fourier discretization of this thermal cycle. Finally, we compare the estimated parameters using (i) the benchmark test, (ii) the optimized protocol, and (iii) a 15-h test from the literature (by Forgez et al.). The results are encouraging for two reasons. First, they confirm the simulation-based prediction that the optimized experiment can produce accurate parameter estimates in 2 h, compared to 15-24. Second, the optimized experiment also estimates a thermal time constant representing the effects of thermal capacitance and convection heat transfer.
In situ sensors for measurements in the global trosposphere
NASA Technical Reports Server (NTRS)
Saeger, M. L.; Eaton, W. C.; Wright, R. S.; White, J. H.; Tommerdahl, J. B.
1981-01-01
Current techniques available for the in situ measurement of ambient trace gas species, particulate composition, and particulate size distribution are reviewed. The operational specifications of the various techniques are described. Most of the techniques described are those that have been used in airborne applications or show promise of being adaptable to airborne applications. Some of the instruments described are specialty items that are not commercially-available. In situ measurement techniques for several meteorological parameters important in the study of the distribution and transport of ambient air pollutants are discussed. Some remote measurement techniques for meteorological parameters are also discussed. State-of-the-art measurement capabilities are compared with a list of capabilities and specifications desired by NASA for ambient measurements in the global troposphere.
Validation of refraction and anterior segment parameters by a new multi-diagnostic platform (VX120).
Gordon-Shaag, Ariela; Piñero, David P; Kahloun, Cyril; Markov, David; Parnes, Tzadok; Gantz, Liat; Shneor, Einat
2018-03-08
The VX120 (Visionix Luneau, France) is a novel multi-diagnostic platform that combines Hartmann-Shack based autorefraction, Placido-disk based corneal-topography and anterior segment measurements made with a stationary-Scheimpflug camera. We investigate the agreement between different parameters measured by the VX120 with accepted or gold-standard techniques to test if they are interchangeable, as well as to evaluate the repeatability and reproducibility. The right-eyes of healthy subjects were included in the study. Autorefraction of the VX120 was compared to subjective refraction. Agreement of anterior segment parameters was compared to the Sirius (CSO, Italy) including autokeratometry, central corneal thickness (CCT), iridiocorneal angle (IA). Inter and intra-test repeatability of the above parameters was assessed. Results were analyzed using Bland and Altman analyses. A total of 164 eyes were evaluated. The mean difference between VX120 autorefraction and subjective refraction for sphere, spherical equivalent (SE), and cylinder was 0.01±0.43D, 0.14±0.47D, and -0.26±0.30D, respectively and high correlation was found to all parameter (r>0.75) except for J 45 (r=0.61). The mean difference between VX120 and the Sirius system for CCT, IA, and keratometry (k1 and k2) was -3.51±8.64μm, 7.6±4.2°, 0.003±0.06mm and 0.004±0.04mm, respectively and high correlation was found to all parameter (r>0.97) except for IA (r=0.67). Intrasession repeatability of VX120 refraction, CCT, IA and keratometry yielded low within-subject standard deviations. Inter-session repeatability showed no statistically significant difference for most of the parameters measured. The VX120 provides consistent refraction and most anterior segment measurements in normal healthy eyes, with high levels of intra and inter-session repeatability. Copyright © 2018. Published by Elsevier España, S.L.U.
Seo, Nieun; Chung, Yong Eun; Park, Yung Nyun; Kim, Eunju; Hwang, Jinwoo; Kim, Myeong-Jin
2018-07-01
To compare the ability of diffusion-weighted imaging (DWI) parameters acquired from three different models for the diagnosis of hepatic fibrosis (HF). Ninety-five patients underwent DWI using nine b values at 3 T magnetic resonance. The hepatic apparent diffusion coefficient (ADC) from a mono-exponential model, the true diffusion coefficient (D t ), pseudo-diffusion coefficient (D p ) and perfusion fraction (f) from a biexponential model, and the distributed diffusion coefficient (DDC) and intravoxel heterogeneity index (α) from a stretched exponential model were compared with the pathological HF stage. For the stretched exponential model, parameters were also obtained using a dataset of six b values (DDC # , α # ). The diagnostic performances of the parameters for HF staging were evaluated with Obuchowski measures and receiver operating characteristics (ROC) analysis. The measurement variability of DWI parameters was evaluated using the coefficient of variation (CoV). Diagnostic accuracy for HF staging was highest for DDC # (Obuchowski measures, 0.770 ± 0.03), and it was significantly higher than that of ADC (0.597 ± 0.05, p < 0.001), D t (0.575 ± 0.05, p < 0.001) and f (0.669 ± 0.04, p = 0.035). The parameters from stretched exponential DWI and D p showed higher areas under the ROC curve (AUCs) for determining significant fibrosis (≥F2) and cirrhosis (F = 4) than other parameters. However, D p showed significantly higher measurement variability (CoV, 74.6%) than DDC # (16.1%, p < 0.001) and α # (15.1%, p < 0.001). Stretched exponential DWI is a promising method for HF staging with good diagnostic performance and fewer b-value acquisitions, allowing shorter acquisition time. • Stretched exponential DWI provides a precise and accurate model for HF staging. • Stretched exponential DWI parameters are more reliable than D p from bi-exponential DWI model • Acquisition of six b values is sufficient to obtain accurate DDC and α.
Multi-frequency parameter mapping of electrical impedance scanning using two kinds of circuit model.
Liu, Ruigang; Dong, Xiuzhen; Fu, Feng; You, Fusheng; Shi, Xuetao; Ji, Zhenyu; Wang, Kan
2007-07-01
Electrical impedance scanning (EIS) is a kind of potential bio-impedance measurement technology, especially aiding the diagnosis of breast cancer in women. By changing the frequency of the driving signal in turn while keeping the other conditions stable, multi-frequency measurement results on the object can be obtained. According to the least square method and circuit theory, the parameters in two models are deduced when measured with data at multiple driving frequencies. The arcs, in the real and imaginary parts of a trans-admittance coordinate, made by the evaluated parameters fit well the realistic data measured by our EIS device on female subjects. The Cole-Cole model in the form of admittance is closer to the measured data than the three-element model. Based on the evaluation of the multi-frequency parameters, we presented parameter mapping of EIS using two kinds of circuit model: one is the three-element model in the form of admittance and the other is the Cole-Cole model in the form of admittance. Comparing with classical admittance mapping at a single frequency, the multi-frequency parameter mapping will provide a novel vision to study EIS. The multi-frequency approach can provide the mappings of four parameters, which is helpful to identify different diseases with a similar characteristic in classical EIS mapping. From plots of the real and imaginary parts of the admittance, it is easy to make sure whether there exists abnormal tissue.
NASA Technical Reports Server (NTRS)
Mulhall, B. D. L.
1980-01-01
The development of both quantitative criteria that were used to evaluate conceptional systems for automating the functions for the FBI Identification Division is described. Specific alternative systems for automation were compared by using these developed criteria, defined as Measures of Effectiveness (MOE), to gauge system's performance in attempting to achieve certain goals. The MOE, essentially measurement tools that were developed through the combination of suitable parameters, pertain to each conceivable area of system operation. The methods and approaches used, both in selecting the parameters and in using the resulting MOE, are described.
M L V, Sai Krishna; Sharma, Deep; Menon, Jagdish
2018-04-01
This was a prospective, two-group comparative study. The present study aimed to determine the importance of the spinopelvic parameters in the causation and progression of spondylolisthesis. Spondylolisthesis is slippage of one vertebra over the vertebra below. Since the discovery of pelvic incidence (PI) in 1998 in addition to documentation of other parameters in spinopelvic balance, slippage in spondylolisthesis has been attributed to these parameters. Many studies on the Caucasian population have implicated high PI as a causative factor of spondylolisthesis. To the best of our knowledge, no study has described the role of these parameters in the progression of spondylolisthesis. The study was conducted in Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India. Seventy-nine patients with spondylolisthesis consented to participate in the study. All patients were advised to undergo conservative treatment and were regularly followed up according to the protocol. Seventy-five asymptomatic volunteers were recruited as a control group. Of the total of 79 patients, 54 were followed up for 6 months, during which 46 improved, eight showed no improvement, and 25 were lost to follow-up. Sagittal spinopelvic parameters were measured by a single observer using the Surgimap spine software ver. 2.1.2 (Nemaris, New York, NY, USA). Parameters measured were PI, pelvic tilt (PT), sacral slope (SS), thoracic kyphosis, and lumbar lordosis. The results from patients and controls were compared using appropriate statistical methods. The normal and spondylolisthesis groups significantly differed with respect to PI, SS, and PT ( p <0.001). There were no significant differences in the measured spinopelvic parameters between patients with high- and low-grade spondylolisthesis or between those whose condition improved and those whose condition worsened. PI, the most important of all spinopelvic parameters, is responsible for the slip in spondylolisthesis, but not for its progression.
Krzysztof, Naus; Aleksander, Nowak
2016-01-01
The article presents a study of the accuracy of estimating the position coordinates of BAUV (Biomimetic Autonomous Underwater Vehicle) by the extended Kalman filter (EKF) method. The fusion of movement parameters measurements and position coordinates fixes was applied. The movement parameters measurements are carried out by on-board navigation devices, while the position coordinates fixes are done by the USBL (Ultra Short Base Line) system. The problem of underwater positioning and the conceptual design of the BAUV navigation system constructed at the Naval Academy (Polish Naval Academy—PNA) are presented in the first part of the paper. The second part consists of description of the evaluation results of positioning accuracy, the genesis of the problem of selecting method for underwater positioning, and the mathematical description of the method of estimating the position coordinates using the EKF method by the fusion of measurements with on-board navigation and measurements obtained with the USBL system. The main part contains a description of experimental research. It consists of a simulation program of navigational parameter measurements carried out during the BAUV passage along the test section. Next, the article covers the determination of position coordinates on the basis of simulated parameters, using EKF and DR methods and the USBL system, which are then subjected to a comparative analysis of accuracy. The final part contains systemic conclusions justifying the desirability of applying the proposed fusion method of navigation parameters for the BAUV positioning. PMID:27537884
Krzysztof, Naus; Aleksander, Nowak
2016-08-15
The article presents a study of the accuracy of estimating the position coordinates of BAUV (Biomimetic Autonomous Underwater Vehicle) by the extended Kalman filter (EKF) method. The fusion of movement parameters measurements and position coordinates fixes was applied. The movement parameters measurements are carried out by on-board navigation devices, while the position coordinates fixes are done by the USBL (Ultra Short Base Line) system. The problem of underwater positioning and the conceptual design of the BAUV navigation system constructed at the Naval Academy (Polish Naval Academy-PNA) are presented in the first part of the paper. The second part consists of description of the evaluation results of positioning accuracy, the genesis of the problem of selecting method for underwater positioning, and the mathematical description of the method of estimating the position coordinates using the EKF method by the fusion of measurements with on-board navigation and measurements obtained with the USBL system. The main part contains a description of experimental research. It consists of a simulation program of navigational parameter measurements carried out during the BAUV passage along the test section. Next, the article covers the determination of position coordinates on the basis of simulated parameters, using EKF and DR methods and the USBL system, which are then subjected to a comparative analysis of accuracy. The final part contains systemic conclusions justifying the desirability of applying the proposed fusion method of navigation parameters for the BAUV positioning.
Ramdani, Sofiane; Bonnet, Vincent; Tallon, Guillaume; Lagarde, Julien; Bernard, Pierre Louis; Blain, Hubert
2016-08-01
Entropy measures are often used to quantify the regularity of postural sway time series. Recent methodological developments provided both multivariate and multiscale approaches allowing the extraction of complexity features from physiological signals; see "Dynamical complexity of human responses: A multivariate data-adaptive framework," in Bulletin of Polish Academy of Science and Technology, vol. 60, p. 433, 2012. The resulting entropy measures are good candidates for the analysis of bivariate postural sway signals exhibiting nonstationarity and multiscale properties. These methods are dependant on several input parameters such as embedding parameters. Using two data sets collected from institutionalized frail older adults, we numerically investigate the behavior of a recent multivariate and multiscale entropy estimator; see "Multivariate multiscale entropy: A tool for complexity analysis of multichannel data," Physics Review E, vol. 84, p. 061918, 2011. We propose criteria for the selection of the input parameters. Using these optimal parameters, we statistically compare the multivariate and multiscale entropy values of postural sway data of non-faller subjects to those of fallers. These two groups are discriminated by the resulting measures over multiple time scales. We also demonstrate that the typical parameter settings proposed in the literature lead to entropy measures that do not distinguish the two groups. This last result confirms the importance of the selection of appropriate input parameters.
Reliability of plain radiographic parameters for developmental dysplasia of the hip in children.
Upasani, Vidyadhar V; Bomar, James D; Parikh, Gaurav; Hosalkar, Harish
2012-07-01
Few studies have evaluated the reliability and reproducibility of the femoral neck-shaft angle (NSA), center-edge angle (CEA), and acetabular index (AI) in young children with developmental dysplasia of the hip (DDH). We wanted to determine whether these parameters could be used reliably by practitioners. Fifty radiographs from 21 children with DDH were reviewed. Analysis was performed by three observers, at two time periods. The intra- and inter-observer reliability for each measure was assessed. At time period one, we noted a "high" level of agreement between observers when measuring the NSA, a "low" level when measuring the CEA, and a "moderate" level when measuring the AI. At time period two, we noted a "very high" level of agreement between observers when measuring the NSA and a "high" level when measuring the CEA and AI. When comparing the measurements of observer 1 at the two different time periods, we noted nearly "very high" agreement when measuring the NSA, a "moderate" agreement when measuring the CEA, and a "high" agreement for the AI. In comparing the measurements of observer 2, we noted "very high" agreement for the NSA and "high" agreement for the CEA and AI. In comparing the measurements for observer 3, we noted nearly "very high" agreement for the NSA, nearly "high" agreement for the CEA, and "high" agreement for the AI. It is difficult to reliably measure three-dimensional pelvic morphology on a frontal plane radiograph, especially when important pelvic landmarks have yet to ossify.
Semi-physical parameter identification for an iron-loss formula allowing loss-separation
NASA Astrophysics Data System (ADS)
Steentjes, S.; Leßmann, M.; Hameyer, K.
2013-05-01
This paper presents a semi-physical parameter identification for a recently proposed enhanced iron-loss formula, the IEM-Formula. Measurements are performed on a standardized Epstein frame by the conventional field-metric method under sinusoidal magnetic flux densities up to high magnitudes and frequencies. Quasi-static losses are identified on the one hand by point-by-point dc-measurements using a flux-meter and on the other hand by extrapolating higher frequency measurements to dc magnetization using the statistical loss-separation theory (Jacobs et al., "Magnetic material optimization for hybrid vehicle PMSM drives," in Inductica Conference, CD-Rom, Chicago/USA, 2009). Utilizing this material information, possibilities to identify the parameter of the IEM-Formula are analyzed. Along with this, the importance of excess losses in present-day non-grain oriented Fe-Si laminations is investigated. In conclusion, the calculated losses are compared to the measured losses.
Spectral structure of pressure measurements made in a combustion duct. [jet engine noise
NASA Technical Reports Server (NTRS)
Miles, J. H.; Raftopoulos, D. D.
1980-01-01
A model for acoustic plane wave propagation in a combustion duct through a confined, flowing gas containing soot particles is presented. The model takes into account only heat transfer between the gas and soot particles. As a result, the model depends on only a single parameter which can be written as the ratio of the soot particle thermal relaxation time to the soot particle mass fraction. The model yields expressions for the attenuation and dispersion of the plane wave which depends only on this single parameter. The model was used to calculate pressure spectra in a combustion duct. The results were compared with measured spectra. For particular values of the single free parameter, the calculated spectra resemble the measured spectra. Consequently, the model, to this extent, explains the experimental measurements and provides some insight into the number and type of particles.
Geiss, S; Einax, J W
2001-07-01
Detection limit, reporting limit and limit of quantitation are analytical parameters which describe the power of analytical methods. These parameters are used for internal quality assurance and externally for competing, especially in the case of trace analysis in environmental compartments. The wide variety of possibilities for computing or obtaining these measures in literature and in legislative rules makes any comparison difficult. Additionally, a host of terms have been used within the analytical community to describe detection and quantitation capabilities. Without trying to create an order for the variety of terms, this paper is aimed at providing a practical proposal for answering the main questions for the analysts concerning quality measures above. These main questions and related parameters were explained and graphically demonstrated. Estimation and verification of these parameters are the two steps to get real measures. A rule for a practical verification is given in a table, where the analyst can read out what to measure, what to estimate and which criteria have to be fulfilled. In this manner verified parameters detection limit, reporting limit and limit of quantitation now are comparable and the analyst himself is responsible to the unambiguity and reliability of these measures.
Parasitic Parameters Extraction for InP DHBT Based on EM Method and Validation up to H-Band
NASA Astrophysics Data System (ADS)
Li, Oupeng; Zhang, Yong; Wang, Lei; Xu, Ruimin; Cheng, Wei; Wang, Yuan; Lu, Haiyan
2017-05-01
This paper presents a small-signal model for InGaAs/InP double heterojunction bipolar transistor (DHBT). Parasitic parameters of access via and electrode finger are extracted by 3-D electromagnetic (EM) simulation. By analyzing the equivalent circuit of seven special structures and using the EM simulation results, the parasitic parameters are extracted systematically. Compared with multi-port s-parameter EM model, the equivalent circuit model has clear physical intension and avoids the complex internal ports setting. The model is validated on a 0.5 × 7 μm2 InP DHBT up to 325 GHz. The model provides a good fitting result between measured and simulated multi-bias s-parameters in full band. At last, an H-band amplifier is designed and fabricated for further verification. The measured amplifier performance is highly agreed with the model prediction, which indicates the model has good accuracy in submillimeterwave band.
NASA Astrophysics Data System (ADS)
Al Mashwood, Abdullah; Predoi-Cross, Adriana; Devi, V. Malathy; Rozario, Hoimonti; Billinghurst, Brant
2018-06-01
Pure CO2 spectra recorded at room temperature and different pressures (0.2-140 Torr) have been analyzed with the help of a fitting routine that takes into account asymmetries arising in the spectral lines due to pressure induced effects such as line mixing. The fitting procedure used in this study allows one to adjust the ro-vibrational constants for the band rather than fitting for individual line parameters. These constrained parameters greatly reduce the measurement uncertainties and allow us to observe the behavior of the weak lines corresponding to high J quantum numbers. We have also calculated line mixing parameters using approximations based on exponential nature of the energy difference between ground and upper vibrational states involved in the ro-vibrational band transitions. The calculated results show good agreement when compared with the experimentally determined parameters.
NASA Astrophysics Data System (ADS)
Schroeder, Paul J.; Cich, Matthew J.; Yang, Jinyu; Giorgetta, Fabrizio R.; Swann, William C.; Coddington, Ian; Newbury, Nathan R.; Drouin, Brian J.; Rieker, Gregory B.
2018-05-01
We measure speed-dependent Voigt lineshape parameters with temperature-dependence exponents for several hundred spectroscopic features of pure water spanning 6801-7188 cm-1. The parameters are extracted from broad bandwidth, high-resolution dual frequency comb absorption spectra with multispectrum fitting techniques. The data encompass 25 spectra ranging from 296 K to 1305 K and 1 to 17 Torr of pure water vapor. We present the extracted parameters, compare them to published data, and present speed-dependence, self-shift, and self-broadening temperature-dependent parameters for the first time. Lineshape data is extracted using a quadratic speed-dependent Voigt profile and a single self-broadening power law temperature-dependence exponent over the entire temperature range. The results represent an important step toward a new high-temperature database using advanced lineshape profiles.
Mass-number and excitation-energy dependence of the spin cutoff parameter
Grimes, S. M.; Voinov, A. V.; Massey, T. N.
2016-07-12
Here, the spin cutoff parameter determining the nuclear level density spin distribution ρ(J) is defined through the spin projection as < J 2 z > 1/2 or equivalently for spherical nuclei, (< J(J+1) >/3) 1/2. It is needed to divide the total level density into levels as a function of J. To obtain the total level density at the neutron binding energy from the s-wave resonance count, the spin cutoff parameter is also needed. The spin cutoff parameter has been calculated as a function of excitation energy and mass with a super-conducting Hamiltonian. Calculations have been compared with two commonlymore » used semiempirical formulas. A need for further measurements is also observed. Some complications for deformed nuclei are discussed. The quality of spin cut off parameter data derived from isomeric ratio measurement is examined.« less
A Study on the Basic Criteria for Selecting Heterogeneity Parameters of F18-FDG PET Images.
Forgacs, Attila; Pall Jonsson, Hermann; Dahlbom, Magnus; Daver, Freddie; D DiFranco, Matthew; Opposits, Gabor; K Krizsan, Aron; Garai, Ildiko; Czernin, Johannes; Varga, Jozsef; Tron, Lajos; Balkay, Laszlo
2016-01-01
Textural analysis might give new insights into the quantitative characterization of metabolically active tumors. More than thirty textural parameters have been investigated in former F18-FDG studies already. The purpose of the paper is to declare basic requirements as a selection strategy to identify the most appropriate heterogeneity parameters to measure textural features. Our predefined requirements were: a reliable heterogeneity parameter has to be volume independent, reproducible, and suitable for expressing quantitatively the degree of heterogeneity. Based on this criteria, we compared various suggested measures of homogeneity. A homogeneous cylindrical phantom was measured on three different PET/CT scanners using the commonly used protocol. In addition, a custom-made inhomogeneous tumor insert placed into the NEMA image quality phantom was imaged with a set of acquisition times and several different reconstruction protocols. PET data of 65 patients with proven lung lesions were retrospectively analyzed as well. Four heterogeneity parameters out of 27 were found as the most attractive ones to characterize the textural properties of metabolically active tumors in FDG PET images. These four parameters included Entropy, Contrast, Correlation, and Coefficient of Variation. These parameters were independent of delineated tumor volume (bigger than 25-30 ml), provided reproducible values (relative standard deviation< 10%), and showed high sensitivity to changes in heterogeneity. Phantom measurements are a viable way to test the reliability of heterogeneity parameters that would be of interest to nuclear imaging clinicians.
A Study on the Basic Criteria for Selecting Heterogeneity Parameters of F18-FDG PET Images
Forgacs, Attila; Pall Jonsson, Hermann; Dahlbom, Magnus; Daver, Freddie; D. DiFranco, Matthew; Opposits, Gabor; K. Krizsan, Aron; Garai, Ildiko; Czernin, Johannes; Varga, Jozsef; Tron, Lajos; Balkay, Laszlo
2016-01-01
Textural analysis might give new insights into the quantitative characterization of metabolically active tumors. More than thirty textural parameters have been investigated in former F18-FDG studies already. The purpose of the paper is to declare basic requirements as a selection strategy to identify the most appropriate heterogeneity parameters to measure textural features. Our predefined requirements were: a reliable heterogeneity parameter has to be volume independent, reproducible, and suitable for expressing quantitatively the degree of heterogeneity. Based on this criteria, we compared various suggested measures of homogeneity. A homogeneous cylindrical phantom was measured on three different PET/CT scanners using the commonly used protocol. In addition, a custom-made inhomogeneous tumor insert placed into the NEMA image quality phantom was imaged with a set of acquisition times and several different reconstruction protocols. PET data of 65 patients with proven lung lesions were retrospectively analyzed as well. Four heterogeneity parameters out of 27 were found as the most attractive ones to characterize the textural properties of metabolically active tumors in FDG PET images. These four parameters included Entropy, Contrast, Correlation, and Coefficient of Variation. These parameters were independent of delineated tumor volume (bigger than 25–30 ml), provided reproducible values (relative standard deviation< 10%), and showed high sensitivity to changes in heterogeneity. Phantom measurements are a viable way to test the reliability of heterogeneity parameters that would be of interest to nuclear imaging clinicians. PMID:27736888
Bouc-Wen hysteresis model identification using Modified Firefly Algorithm
NASA Astrophysics Data System (ADS)
Zaman, Mohammad Asif; Sikder, Urmita
2015-12-01
The parameters of Bouc-Wen hysteresis model are identified using a Modified Firefly Algorithm. The proposed algorithm uses dynamic process control parameters to improve its performance. The algorithm is used to find the model parameter values that results in the least amount of error between a set of given data points and points obtained from the Bouc-Wen model. The performance of the algorithm is compared with the performance of conventional Firefly Algorithm, Genetic Algorithm and Differential Evolution algorithm in terms of convergence rate and accuracy. Compared to the other three optimization algorithms, the proposed algorithm is found to have good convergence rate with high degree of accuracy in identifying Bouc-Wen model parameters. Finally, the proposed method is used to find the Bouc-Wen model parameters from experimental data. The obtained model is found to be in good agreement with measured data.
NASA Technical Reports Server (NTRS)
Hughes, D. L.; Ray, R. J.; Walton, J. T.
1985-01-01
The calculated value of net thrust of an aircraft powered by a General Electric F404-GE-400 afterburning turbofan engine was evaluated for its sensitivity to various input parameters. The effects of a 1.0-percent change in each input parameter on the calculated value of net thrust with two calculation methods are compared. This paper presents the results of these comparisons and also gives the estimated accuracy of the overall net thrust calculation as determined from the influence coefficients and estimated parameter measurement accuracies.
Optical assessment of intravascular and intracellular parameters related to tissue viability
NASA Astrophysics Data System (ADS)
Mayevsky, Avraham; Sherman, Efrat; Cohen-Kashi, Meir; Dekel, Nava; Pewzner, Eliyahu
2007-02-01
Tissue viability represents the balance between O II supply and demand. In our previous paper (Mayevsky et al; Proc.SPIE 6083 : z1-z10, 2006) the HbO II was added to the multiparametric tissue spectroscope (Mayevsky et al J.Biomedical Optics 9:1028-1045,2004). This parameter provides relative values of microcirculatory blood oxygenation (MC-HbO II) evaluated by the 2 wavelength reflectometry principle. The advantage of this approach as compared to pulse oximetry is that the measurement is not dependent of the existence of the pulse of the heart. Also in the MC-HbO II the information is collected from small vessels providing O II to the mitochondria as compared to the pulse oximeter indicating blood oxygenation by the respiratory and cardiovascular systems. In the present study we compared the level of blood oxygenation measured by the pulse oximeter to that measured by the CritiView in the brain exposed to various systemic and localized perturbations of O II supply or demand. We exposed gerbils to anoxia, hypoxia, ischemia and terminal anoxia. In addition we measured mitochondrial NADH (surface fluorometry), tissue reflectance, tissue blood flow (laser Doppler flowmetry) from the same site of MC-HbO II measurement. A clear connection was found between the two blood oxygenation parameters only when systemic perturbations were used (anoxia, hypoxia and terminal anoxia). Under local events (ischemia) the MC-HbO II was responsive while the systemic oxygenation was unchanged. We concluded that MC-HbO II has a significant value in interpretation of tissue energy metabolism under pathophysiological conditions.
Muscle activity characterization by laser Doppler Myography
NASA Astrophysics Data System (ADS)
Scalise, Lorenzo; Casaccia, Sara; Marchionni, Paolo; Ercoli, Ilaria; Primo Tomasini, Enrico
2013-09-01
Electromiography (EMG) is the gold-standard technique used for the evaluation of muscle activity. This technique is used in biomechanics, sport medicine, neurology and rehabilitation therapy and it provides the electrical activity produced by skeletal muscles. Among the parameters measured with EMG, two very important quantities are: signal amplitude and duration of muscle contraction, muscle fatigue and maximum muscle power. Recently, a new measurement procedure, named Laser Doppler Myography (LDMi), for the non contact assessment of muscle activity has been proposed to measure the vibro-mechanical behaviour of the muscle. The aim of this study is to present the LDMi technique and to evaluate its capacity to measure some characteristic features proper of the muscle. In this paper LDMi is compared with standard superficial EMG (sEMG) requiring the application of sensors on the skin of each patient. sEMG and LDMi signals have been simultaneously acquired and processed to test correlations. Three parameters has been analyzed to compare these techniques: Muscle activation timing, signal amplitude and muscle fatigue. LDMi appears to be a reliable and promising measurement technique allowing the measurements without contact with the patient skin.
Abduljabbar, Tariq; Al-Sahaly, Faisal; Al-Kathami, Mohammed; Afzal, Sibtain; Vohra, Fahim
2017-07-01
The aim was to compare periodontal and periimplant inflammatory parameters (plaque index [PI], bleeding on probing [BOP], probing depth [PD] and marginal bone loss [MBL]) among patients with prediabetes, type-2 diabetes mellitus (T2DM) and non-diabetic controls. Forty-five patients with prediabetes (Group-1), 43 patients with T2DM (Group-2) and 42 controls (Group-3) were included. Demographic data was recorded using a questionnaire. Full mouth and periimplant clinical (PI, BOP and PD) were assessed and the radiographic MBL were measured on digital radiographs. In all groups, haemoglobin A1c (HbA1c) levels were also measured. p values less than .05 were considered statistically significant. The mean HbA1c levels of participants in groups 1, 2 and 3 were 6.1%, 8.4% and 4.8%, respectively. The mean duration of prediabetes and T2DM among patients in groups 1 and 2 were 1.9 ± 0.3 and 3.1 ± 0.5 years, respectively. Periodontal and periimplant PI, BOP, PD and MBL were higher in groups 1 (p < .05) and 2 (p < .05) than group 3. There was no difference in these parameters in groups 1 and 2. Periodontal and periimplant inflammatory parameters were worse among patients with prediabetes and T2DM compared with controls; however, these parameters were comparable among patients with prediabetes and T2DM.
NASA Astrophysics Data System (ADS)
Martins, J. M. P.; Thuillier, S.; Andrade-Campos, A.
2018-05-01
The identification of material parameters, for a given constitutive model, can be seen as the first step before any practical application. In the last years, the field of material parameters identification received an important boost with the development of full-field measurement techniques, such as Digital Image Correlation. These techniques enable the use of heterogeneous displacement/strain fields, which contain more information than the classical homogeneous tests. Consequently, different techniques have been developed to extract material parameters from full-field measurements. In this study, two of these techniques are addressed, the Finite Element Model Updating (FEMU) and the Virtual Fields Method (VFM). The main idea behind FEMU is to update the parameters of a constitutive model implemented in a finite element model until both numerical and experimental results match, whereas VFM makes use of the Principle of Virtual Work and does not require any finite element simulation. Though both techniques proved their feasibility in linear and non-linear constitutive models, it is rather difficult to rank their robustness in plasticity. The purpose of this work is to perform a comparative study in the case of elasto-plastic models. Details concerning the implementation of each strategy are presented. Moreover, a dedicated code for VFM within a large strain framework is developed. The reconstruction of the stress field is performed through a user subroutine. A heterogeneous tensile test is considered to compare FEMU and VFM strategies.
Ataro, Zerihun; Geremew, Abraham; Urgessa, Fekadu
2018-01-01
Occupational exposure to chemicals in garages causes a wide range of biological effects, depending upon the level and duration of exposure. In Ethiopia, there have been few studies conducted to assess the exposure of garage workers to chemicals. Preceding studies have not explored the effect of working in garage on blood pressure and hematological parameters. Therefore, this study aimed to assess differences in blood pressure and hematological parameters among garage workers compared to the Haramaya University community, Harar, eastern Ethiopia. A comparative cross-sectional study was conducted in Harar town, eastern Ethiopia. Thirty garage workers were selected and compared with 30 age- and sex-matched controls comprising of teachers and students. Demographic and occupational data were collected by using a structured questionnaire by a trained data collector. Blood pressure was measured using sphygmomanometry. Hematological parameters were measured with an automated hematology analyzer. Data were analyzed using Stata version 13. The majority of the garage workers did not implement effective preventive or control measures for workplace chemical exposure. Statistically significant increases were found in systolic (128.67±18.14 vs 106.33 ±9.27 mmHg, P <0.0001), diastolic blood pressure (90.33±11.29 vs 75.67 ±5.68 mmHg, P <0.0001), total white blood cells (7.9±1.51 vs 6.72±2.04×10 9 cells/L, P =0.0138), and platelets (323.20±48.82 vs 244.1±47.3×10 9 cells/L, P <0.0001) in garage workers compared to the control group. On the other hand, statistically significant decreases were found in red blood cells (5.13±0.38 vs 5.46±0.36×10 12 cells/L, P =0.0006), hemoglobin (14.89±0.71 vs 15.45±0.87 g/dL, P =0.0062), hematocrit (43.98%±1.99% vs 46.4%3±2.32%, P <0.0001), and mean corpuscular volume (83.19±2.93 vs 85.11±3.87 fL, P =0.0353) among garage workers compared to the control group. There were significant differences in blood pressure and hematological parameters between garage workers and the control group. Therefore, appropriate and effective safety measures need to be taken by the workers to prevent possible chemical exposure during routine tasks.
Ataro, Zerihun; Geremew, Abraham; Urgessa, Fekadu
2018-01-01
Background Occupational exposure to chemicals in garages causes a wide range of biological effects, depending upon the level and duration of exposure. In Ethiopia, there have been few studies conducted to assess the exposure of garage workers to chemicals. Preceding studies have not explored the effect of working in garage on blood pressure and hematological parameters. Therefore, this study aimed to assess differences in blood pressure and hematological parameters among garage workers compared to the Haramaya University community, Harar, eastern Ethiopia. Materials and methods A comparative cross-sectional study was conducted in Harar town, eastern Ethiopia. Thirty garage workers were selected and compared with 30 age- and sex-matched controls comprising of teachers and students. Demographic and occupational data were collected by using a structured questionnaire by a trained data collector. Blood pressure was measured using sphygmomanometry. Hematological parameters were measured with an automated hematology analyzer. Data were analyzed using Stata version 13. Results The majority of the garage workers did not implement effective preventive or control measures for workplace chemical exposure. Statistically significant increases were found in systolic (128.67±18.14 vs 106.33 ±9.27 mmHg, P<0.0001), diastolic blood pressure (90.33±11.29 vs 75.67 ±5.68 mmHg, P<0.0001), total white blood cells (7.9±1.51 vs 6.72±2.04×109 cells/L, P=0.0138), and platelets (323.20±48.82 vs 244.1±47.3×109 cells/L, P<0.0001) in garage workers compared to the control group. On the other hand, statistically significant decreases were found in red blood cells (5.13±0.38 vs 5.46±0.36×1012 cells/L, P=0.0006), hemoglobin (14.89±0.71 vs 15.45±0.87 g/dL, P=0.0062), hematocrit (43.98%±1.99% vs 46.4%3±2.32%, P<0.0001), and mean corpuscular volume (83.19±2.93 vs 85.11±3.87 fL, P=0.0353) among garage workers compared to the control group. Conclusion There were significant differences in blood pressure and hematological parameters between garage workers and the control group. Therefore, appropriate and effective safety measures need to be taken by the workers to prevent possible chemical exposure during routine tasks. PMID:29559815
NASA Astrophysics Data System (ADS)
Schiemann, Martin; Geier, Manfred; Shaddix, Christopher R.; Vorobiev, Nikita; Scherer, Viktor
2014-07-01
In this study, the char burnout characteristics of two German coals (a lignite and a high-volatile bituminous coal) were investigated using two different experimental configurations and optical techniques in two distinct laboratories for measurement of temperature and size of burning particles. The optical diagnostic hardware is quite different in the two systems, but both perform two-color pyrometry and optical sizing measurements on individual particles burning in isolation from each other in high-temperature laminar flows to characterize the char consumption kinetics. The performance of the specialized systems is compared for two different combustion atmospheres (with 6.6 and 12 vol.% O2) and gas temperatures between 1700 and 1800 K. The measured particle temperatures and diameters are converted to char burning rate parameters for several residence times during the course of the particles' burnout. The results confirm that comparable results are obtained with the two configurations, although higher levels of variability in the measured data were observed in the imaging-based pyrometer setup. Corresponding uncertainties in kinetics parameters were larger, and appear to be more sensitive to systematic measurement errors when lower oxygen contents are used in the experiments. Consequently, burnout experiments in environments with sufficiently high O2 contents may be used to measure reliable char burning kinetics rates. Based on simulation results for the two coals, O2 concentrations in the range 10%-30% are recommended for kinetic rate measurements on 100 μm particles.
Comparative Sensitivity Analysis of Muscle Activation Dynamics
Günther, Michael; Götz, Thomas
2015-01-01
We mathematically compared two models of mammalian striated muscle activation dynamics proposed by Hatze and Zajac. Both models are representative for a broad variety of biomechanical models formulated as ordinary differential equations (ODEs). These models incorporate parameters that directly represent known physiological properties. Other parameters have been introduced to reproduce empirical observations. We used sensitivity analysis to investigate the influence of model parameters on the ODE solutions. In addition, we expanded an existing approach to treating initial conditions as parameters and to calculating second-order sensitivities. Furthermore, we used a global sensitivity analysis approach to include finite ranges of parameter values. Hence, a theoretician striving for model reduction could use the method for identifying particularly low sensitivities to detect superfluous parameters. An experimenter could use it for identifying particularly high sensitivities to improve parameter estimation. Hatze's nonlinear model incorporates some parameters to which activation dynamics is clearly more sensitive than to any parameter in Zajac's linear model. Other than Zajac's model, Hatze's model can, however, reproduce measured shifts in optimal muscle length with varied muscle activity. Accordingly we extracted a specific parameter set for Hatze's model that combines best with a particular muscle force-length relation. PMID:26417379
Yu, Sha-Sha; Song, Hui; Tang, Xin
2017-01-01
AIM To determine the repeatability of Ophtha Top topography and assess the consistency with intraocular lens (IOL)-Master and LenstarLS900 (Lenstar) in measuring corneal parameters among cataract patients. METHODS Totally 125 eyes were enrolled. Corneas were successively measured with Ophtha Top, IOL-Master and Lenstar at least three times. The flattest meridian power (Kf), the steepest meridian power (Ks), mean power (Km), J0 and J45 were recorded. Intra-class correlation coefficients (ICCs), the coefficient of variance (COV), within subject standard deviation (Sw), and test-retest repeatability (2.77Sw) were adopted to determine the repeatability. The 95% limit of agreement (95%LOA) and Bland-Altman plots were used to assess comparability. RESULTS Repeatability of Ophtha Top topography for measuring corneal parameters showed the ICCs were all above 0.93, 2.77Sw was lower than 0.31, and the COV of the Kf and Ks was lower than 0.25. The keratometric readings with Ophtha Top topography were flatter than with the IOL-Master and Lenstar devices, while the Pearson correlation coefficients were over 0.97. The J0 and J45 with Ophtha Top topography were smaller compared with Lenstar and IOL-Master, while was comparable between Lenstar and IOL-Master. CONCLUSION Ophtha Top topography shows excellent repeatability for measuring corneal parameters. However, differences between the Ophtha TOP topography and Lenstar, IOL-Master both in cornea curvature and the astigmatism should be noted clinically. PMID:29181314
Yu, Sha-Sha; Song, Hui; Tang, Xin
2017-01-01
To determine the repeatability of Ophtha Top topography and assess the consistency with intraocular lens (IOL)-Master and LenstarLS900 (Lenstar) in measuring corneal parameters among cataract patients. Totally 125 eyes were enrolled. Corneas were successively measured with Ophtha Top, IOL-Master and Lenstar at least three times. The flattest meridian power (Kf), the steepest meridian power (Ks), mean power (Km), J0 and J45 were recorded. Intra-class correlation coefficients (ICCs), the coefficient of variance (COV), within subject standard deviation (Sw), and test-retest repeatability (2.77Sw) were adopted to determine the repeatability. The 95% limit of agreement (95%LOA) and Bland-Altman plots were used to assess comparability. Repeatability of Ophtha Top topography for measuring corneal parameters showed the ICCs were all above 0.93, 2.77Sw was lower than 0.31, and the COV of the Kf and Ks was lower than 0.25. The keratometric readings with Ophtha Top topography were flatter than with the IOL-Master and Lenstar devices, while the Pearson correlation coefficients were over 0.97. The J0 and J45 with Ophtha Top topography were smaller compared with Lenstar and IOL-Master, while was comparable between Lenstar and IOL-Master. Ophtha Top topography shows excellent repeatability for measuring corneal parameters. However, differences between the Ophtha TOP topography and Lenstar, IOL-Master both in cornea curvature and the astigmatism should be noted clinically.
Seresht, L. Mousavi; Golparvar, Mohammad; Yaraghi, Ahmad
2014-01-01
Background: Appropriate determination of tidal volume (VT) is important for preventing ventilation induced lung injury. We compared hemodynamic and respiratory parameters in two conditions of receiving VTs calculated by using body weight (BW), which was estimated by measured height (HBW) or demi-span based body weight (DBW). Materials and Methods: This controlled-trial was conducted in St. Alzahra Hospital in 2009 on American Society of Anesthesiologists (ASA) I and II, 18-65-years-old patients. Standing height and weight were measured and then height was calculated using demi-span method. BW and VT were calculated with acute respiratory distress syndrome-net formula. Patients were randomized and then crossed to receive ventilation with both calculated VTs for 20 min. Hemodynamic and respiratory parameters were analyzed with SPSS version 20.0 using univariate and multivariate analyses. Results: Forty nine patients were studied. Demi-span based body weight and thus VT (DTV) were lower than Height based body weight and VT (HTV) (P = 0.028), in male patients (P = 0.005). Difference was observed in peak airway pressure (PAP) and airway resistance (AR) changes with higher PAP and AR at 20 min after receiving HTV compared with DTV. Conclusions: Estimated VT based on measured height is higher than that based on demi-span and this difference exists only in females, and this higher VT results higher airway pressures during mechanical ventilation. PMID:24627845
Seresht, L Mousavi; Golparvar, Mohammad; Yaraghi, Ahmad
2014-01-01
Appropriate determination of tidal volume (VT) is important for preventing ventilation induced lung injury. We compared hemodynamic and respiratory parameters in two conditions of receiving VTs calculated by using body weight (BW), which was estimated by measured height (HBW) or demi-span based body weight (DBW). This controlled-trial was conducted in St. Alzahra Hospital in 2009 on American Society of Anesthesiologists (ASA) I and II, 18-65-years-old patients. Standing height and weight were measured and then height was calculated using demi-span method. BW and VT were calculated with acute respiratory distress syndrome-net formula. Patients were randomized and then crossed to receive ventilation with both calculated VTs for 20 min. Hemodynamic and respiratory parameters were analyzed with SPSS version 20.0 using univariate and multivariate analyses. Forty nine patients were studied. Demi-span based body weight and thus VT (DTV) were lower than Height based body weight and VT (HTV) (P = 0.028), in male patients (P = 0.005). Difference was observed in peak airway pressure (PAP) and airway resistance (AR) changes with higher PAP and AR at 20 min after receiving HTV compared with DTV. Estimated VT based on measured height is higher than that based on demi-span and this difference exists only in females, and this higher VT results higher airway pressures during mechanical ventilation.
Benchmarking of Touschek Beam Lifetime Calculations for the Advanced Photon Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, A.; Yang, B.
2017-06-25
Particle loss from Touschek scattering is one of the most significant issues faced by present and future synchrotron light source storage rings. For example, the predicted, Touschek-dominated beam lifetime for the Advanced Photon Source (APS) Upgrade lattice in 48-bunch, 200-mA timing mode is only ~ 2 h. In order to understand the reliability of the predicted lifetime, a series of measurements with various beam parameters was performed on the present APS storage ring. This paper first describes the entire process of beam lifetime measurement, then compares measured lifetime with the calculated one by applying the measured beam parameters. The resultsmore » show very good agreement.« less
NASA Astrophysics Data System (ADS)
Bagán, H.; Tarancón, A.; Rauret, G.; García, J. F.
2008-07-01
The quenching parameters used to model detection efficiency variations in scintillation measurements have not evolved since the decade of 1970s. Meanwhile, computer capabilities have increased enormously and ionization quenching has appeared in practical measurements using plastic scintillation. This study compares the results obtained in activity quantification by plastic scintillation of 14C samples that contain colour and ionization quenchers, using classical (SIS, SCR-limited, SCR-non-limited, SIS(ext), SQP(E)) and evolved (MWA-SCR and WDW) parameters and following three calibration approaches: single step, which does not take into account the quenching mechanism; two steps, which takes into account the quenching phenomena; and multivariate calibration. Two-step calibration (ionization followed by colour) yielded the lowest relative errors, which means that each quenching phenomenon must be specifically modelled. In addition, the sample activity was quantified more accurately when the evolved parameters were used. Multivariate calibration-PLS also yielded better results than those obtained using classical parameters, which confirms that the quenching phenomena must be taken into account. The detection limits for each calibration method and each parameter were close to those obtained theoretically using the Currie approach.
Variation of semen parameters in healthy medical students due to exam stress.
Lampiao, Fanuel
2009-12-01
This study was aimed at investigating semen parameters that vary most in samples of healthy donors undergoing stressful examination period. Samples were left to liquefy in an incubator at 37 degrees C, 5% CO2 for 30 minutes before volume was measured. Concentration and motility parameters were measured by means of computer assisted semen analysis (CASA) using Sperm Class Analyzer (Microptic S.L, Madrid, Spain). Sperm concentration was significantly decreased in samples donated close to the exam period as well as samples donated during the exam period when compared to samples donated at the beginning of the semester. Stress levels of donors might prove to be clinically relevant and important when designing experiment protocols.
Miranda, David A; Rivera, S A López
2008-05-01
An algorithm is presented to determine the Cole-Cole parameters of electrical impedivity using only measurements of its real part. The algorithm is based on two multi-fold direct inversion methods for the Cole-Cole and Debye equations, respectively, and a genetic algorithm for the optimization of the mean square error between experimental and calculated data. The algorithm has been developed to obtain the Cole-Cole parameters from experimental data, which were used to screen cervical intra-epithelial neoplasia. The proposed algorithm was compared with different numerical integrations of the Kramers-Kronig relation and the result shows that this algorithm is the best. A high immunity to noise was obtained.
NASA Technical Reports Server (NTRS)
Grams, G. W.
1981-01-01
A laser nephelometer developed for airborne measurements of polar scattering diagrams of atmospheric aerosols was flown on the NCAR Sabreliner aircraft to obtain data on light-scattering parameters for stratospheric aerosol particles over Alaska during July 1979. Observed values of the angular variation of scattered-light intensity were compared with those calculated for different values of the asymmetry parameter g in the Henyey-Greenstein phase function. The observations indicate that, for the time and location of the experiments, the Henyey-Greenstein phase function could be used to calculate polar scattering diagrams to within experimental errors for an asymmetry parameter value of 0.49 plus or minus 0.07.
Lee, Myungmo; Song, Changho; Lee, Kyoungjin; Shin, Doochul; Shin, Seungho
2014-07-14
Treadmill gait analysis was more advantageous than over-ground walking because it allowed continuous measurements of the gait parameters. The purpose of this study was to investigate the concurrent validity and the test-retest reliability of the OPTOGait photoelectric cell system against the treadmill-based gait analysis system by assessing spatio-temporal gait parameters. Twenty-six stroke patients and 18 healthy adults were asked to walk on the treadmill at their preferred speed. The concurrent validity was assessed by comparing data obtained from the 2 systems, and the test-retest reliability was determined by comparing data obtained from the 1st and the 2nd session of the OPTOGait system. The concurrent validity, identified by the intra-class correlation coefficients (ICC [2, 1]), coefficients of variation (CVME), and 95% limits of agreement (LOA) for the spatial-temporal gait parameters, were excellent but the temporal parameters expressed as a percentage of the gait cycle were poor. The test-retest reliability of the OPTOGait System, identified by ICC (3, 1), CVME, 95% LOA, standard error of measurement (SEM), and minimum detectable change (MDC95%) for the spatio-temporal gait parameters, was high. These findings indicated that the treadmill-based OPTOGait System had strong concurrent validity and test-retest reliability. This portable system could be useful for clinical assessments.
NASA Astrophysics Data System (ADS)
Stein, George Juraj; Múčka, Peter; Hinz, Barbara; Blüthner, Ralph
2009-04-01
Laboratory tests were conducted using 13 male subjects seated on a cushioned commercial vehicle driver's seat. The hands gripped a mock-up steering wheel and the subjects were in contact with the lumbar region of the backrest. The accelerations and forces in the y-direction were measured during random lateral whole-body vibration with a frequency range between 0.25 and 30 Hz, vibration magnitudes 0.30, 0.98, and 1.92 m s -2 (unweighted root mean square (rms)). Based on these laboratory measurements, a linear multi-degree-of-freedom (mdof) model of the seated human body and cushioned seat in the lateral direction ( y-axis) was developed. Model parameters were identified from averaged measured apparent mass values (modulus and phase) for the three excitation magnitudes mentioned. A preferred model structure was selected from four 3-dof models analysed. The mean subject parameters were identified. In addition, identification of each subject's apparent mass model parameters was performed. The results are compared with previous studies. The developed model structure and the identified parameters can be used for further biodynamical research in seating dynamics.
Development of a Kinetic Assay for Late Endosome Movement.
Esner, Milan; Meyenhofer, Felix; Kuhn, Michael; Thomas, Melissa; Kalaidzidis, Yannis; Bickle, Marc
2014-08-01
Automated imaging screens are performed mostly on fixed and stained samples to simplify the workflow and increase throughput. Some processes, such as the movement of cells and organelles or measuring membrane integrity and potential, can be measured only in living cells. Developing such assays to screen large compound or RNAi collections is challenging in many respects. Here, we develop a live-cell high-content assay for tracking endocytic organelles in medium throughput. We evaluate the added value of measuring kinetic parameters compared with measuring static parameters solely. We screened 2000 compounds in U-2 OS cells expressing Lamp1-GFP to label late endosomes. All hits have phenotypes in both static and kinetic parameters. However, we show that the kinetic parameters enable better discrimination of the mechanisms of action. Most of the compounds cause a decrease of motility of endosomes, but we identify several compounds that increase endosomal motility. In summary, we show that kinetic data help to better discriminate phenotypes and thereby obtain more subtle phenotypic clustering. © 2014 Society for Laboratory Automation and Screening.
Reijnierse, Esmee M.; Trappenburg, Marijke C.; Leter, Morena J.; Blauw, Gerard Jan; de van der Schueren, Marian A. E.; Meskers, Carel G. M.; Maier, Andrea B.
2015-01-01
Objectives Diagnostic criteria for sarcopenia include measures of muscle mass, muscle strength and physical performance. Consensus on the definition of sarcopenia has not been reached yet. To improve insight into the most clinically valid definition of sarcopenia, this study aimed to compare the association between parameters of malnutrition, as a risk factor in sarcopenia, and diagnostic measures of sarcopenia in geriatric outpatients. Material and Methods This study is based on data from a cross-sectional study conducted in a geriatric outpatient clinic including 185 geriatric outpatients (mean age 82 years). Parameters of malnutrition included risk of malnutrition (assessed by the Short Nutritional Assessment Questionnaire), loss of appetite, unintentional weight loss and underweight (body mass index <22 kg/m2). Diagnostic measures of sarcopenia included relative muscle mass (lean mass and appendicular lean mass [ALM] as percentages), absolute muscle mass (total lean mass and ALM/height2), handgrip strength and walking speed. All diagnostic measures of sarcopenia were standardized. Associations between parameters of malnutrition (independent variables) and diagnostic measures of sarcopenia (dependent variables) were analysed using multivariate linear regression models adjusted for age, body mass, fat mass and height in separate models. Results None of the parameters of malnutrition was consistently associated with diagnostic measures of sarcopenia. The strongest associations were found for both relative and absolute muscle mass; less stronger associations were found for muscle strength and physical performance. Underweight (p = <0.001) and unintentional weight loss (p = 0.031) were most strongly associated with higher lean mass percentage after adjusting for age. Loss of appetite (p = 0.003) and underweight (p = 0.021) were most strongly associated with lower total lean mass after adjusting for age and fat mass. Conclusion Parameters of malnutrition relate differently to diagnostic measures of sarcopenia in geriatric outpatients. The association between parameters of malnutrition and diagnostic measures of sarcopenia was strongest for both relative and absolute muscle mass, while less strong associations were found with muscle strength and physical performance. PMID:26284368
Methods and pitfalls of measuring thermal preference and tolerance in lizards.
Camacho, Agustín; Rusch, Travis W
2017-08-01
Understanding methodological and biological sources of bias during the measurement of thermal parameters is essential for the advancement of thermal biology. For more than a century, studies on lizards have deepened our understanding of thermal ecophysiology, employing multiple methods to measure thermal preferences and tolerances. We reviewed 129 articles concerned with measuring preferred body temperature (PBT), voluntary thermal tolerance, and critical temperatures of lizards to offer: a) an overview of the methods used to measure and report these parameters, b) a summary of the methodological and biological factors affecting thermal preference and tolerance, c) recommendations to avoid identified pitfalls, and d) directions for continued progress in our application and understanding of these thermal parameters. We emphasize the need for more methodological and comparative studies. Lastly, we urge researchers to provide more detailed methodological descriptions and suggest ways to make their raw data more informative to increase the utility of thermal biology studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Comparative Study of Light Sources for Household
NASA Astrophysics Data System (ADS)
Pawlak, Andrzej; Zalesińska, Małgorzata
2017-03-01
The article describes test results that provided the ground to define and evaluate basic photometric, colorimetric and electric parameters of selected, widely available light sources, which are equivalent to a traditional incandescent 60-Watt light bulb. Overall, one halogen light bulb, three compact fluorescent lamps and eleven LED light sources were tested. In general, it was concluded that in most cases (branded products, in particular) the measured and calculated parameters differ from the values declared by manufacturers only to a small degree. LED sources prove to be the most beneficial substitute for traditional light bulbs, considering both their operational parameters and their price, which is comparable with the price of compact fluorescent lamps or, in some instances, even lower.
Online residence time distribution measurement of thermochemical biomass pretreatment reactors
Sievers, David A.; Kuhn, Erik M.; Stickel, Jonathan J.; ...
2015-11-03
Residence time is a critical parameter that strongly affects the product profile and overall yield achieved from thermochemical pretreatment of lignocellulosic biomass during production of liquid transportation fuels. The residence time distribution (RTD) is one important measure of reactor performance and provides a metric to use when evaluating changes in reactor design and operating parameters. An inexpensive and rapid RTD measurement technique was developed to measure the residence time characteristics in biomass pretreatment reactors and similar equipment processing wet-granular slurries. Sodium chloride was pulsed into the feed entering a 600 kg/d pilot-scale reactor operated at various conditions, and aqueous saltmore » concentration was measured in the discharge using specially fabricated electrical conductivity instrumentation. This online conductivity method was superior in both measurement accuracy and resource requirements compared to offline analysis. Experimentally measured mean residence time values were longer than estimated by simple calculation and screw speed and throughput rate were investigated as contributing factors. In conclusion, a semi-empirical model was developed to predict the mean residence time as a function of operating parameters and enabled improved agreement.« less
Optimizing detection and analysis of slow waves in sleep EEG.
Mensen, Armand; Riedner, Brady; Tononi, Giulio
2016-12-01
Analysis of individual slow waves in EEG recording during sleep provides both greater sensitivity and specificity compared to spectral power measures. However, parameters for detection and analysis have not been widely explored and validated. We present a new, open-source, Matlab based, toolbox for the automatic detection and analysis of slow waves; with adjustable parameter settings, as well as manual correction and exploration of the results using a multi-faceted visualization tool. We explore a large search space of parameter settings for slow wave detection and measure their effects on a selection of outcome parameters. Every choice of parameter setting had some effect on at least one outcome parameter. In general, the largest effect sizes were found when choosing the EEG reference, type of canonical waveform, and amplitude thresholding. Previously published methods accurately detect large, global waves but are conservative and miss the detection of smaller amplitude, local slow waves. The toolbox has additional benefits in terms of speed, user-interface, and visualization options to compare and contrast slow waves. The exploration of parameter settings in the toolbox highlights the importance of careful selection of detection METHODS: The sensitivity and specificity of the automated detection can be improved by manually adding or deleting entire waves and or specific channels using the toolbox visualization functions. The toolbox standardizes the detection procedure, sets the stage for reliable results and comparisons and is easy to use without previous programming experience. Copyright © 2016 Elsevier B.V. All rights reserved.
Frasher, Sarah K; Woodruff, Tracy M; Bouldin, Jennifer L
2016-06-01
In efforts to reduce nonpoint source runoff and improve water quality, Best Management Practices (BMPs) were implemented in the Outlet Larkin Creek Watershed. Farmers need to make scientifically informed decisions concerning BMPs addressing contaminants from agricultural fields. The BMP Tool was developed from previous studies to estimate BMP effectiveness at reducing nonpoint source contaminants. The purpose of this study was to compare the measured percent reduction of dissolved phosphorus (DP) and total suspended solids to the reported percent reductions from the BMP Tool for validation. Similarities were measured between the BMP Tool and the measured water quality parameters. Construction of a sedimentation pond resulted in 74 %-76 % reduction in DP as compared to 80 % as predicted with the BMP Tool. However, further research is needed to validate the tool for additional water quality parameters. The BMP Tool is recommended for future BMP implementation as a useful predictor for farmers.
Data Analysis of the Floating Potential Measurement Unit aboard the International Space Station
NASA Technical Reports Server (NTRS)
Barjatya, Aroh; Swenson, Charles M.; Thompson, Donald C.; Wright, Kenneth H., Jr.
2009-01-01
We present data from the Floating Potential Measurement Unit (FPMU), that is deployed on the starboard (S1) truss of the International Space Station. The FPMU is a suite of instruments capable of redundant measurements of various plasma parameters. The instrument suite consists of: a Floating Potential Probe, a Wide-sweeping spherical Langmuir probe, a Narrow-sweeping cylindrical Langmuir Probe, and a Plasma Impedance Probe. This paper gives a brief overview of the instrumentation and the received data quality, and then presents the algorithm used to reduce I-V curves to plasma parameters. Several hours of data is presented from August 5th, 2006 and March 3rd, 2007. The FPMU derived plasma density and temperatures are compared with the International Reference Ionosphere (IRI) and USU-Global Assimilation of Ionospheric Measurement (USU-GAIM) models. Our results show that the derived in-situ density matches the USU-GAIM model better than the IRI, and the derived in-situ temperatures are comparable to the average temperatures given by the IRI.
HRV analysis and blood pressure monitoring on weighing scale using BCG.
Shin, Jae Hyuk; Park, Kwang Suk
2012-01-01
Using the Ballistocardiogram(BCG) measured on weighing scale, heart rate variability(HRV) and blood pressure were estimated. BCG was measured while subjects were on weighing scale in resting state and under the Valsalva maneuver and static exercise condition to induce the change in cardiac autonomic rhythm. Time domain, frequency domain and nonlinear HRV parameters were estimated from the measured BCG and compared with the ones calculated from ECG measured simultaneously. For blood pressure(BP) estimation, ECG was measured additionally on the feet using dry electrodes simultaneously installed on weighing scale and R-J intervals were extracted as a BP correlated parameter at every beat cycle. HRV estimation results shows the correlation higher than 0.97, and the estimated BP was similar to the measured BP with a reliable correlations.
Cotter, Meghan M.; Whyms, Brian J.; Kelly, Michael P.; Doherty, Benjamin M.; Gentry, Lindell R.; Bersu, Edward T.; Vorperian, Houri K.
2015-01-01
The hyoid bone anchors and supports the vocal tract. Its complex shape is best studied in three dimensions, but it is difficult to capture on computed tomography (CT) images and three-dimensional volume renderings. The goal of this study was to determine the optimal CT scanning and rendering parameters to accurately measure the growth and developmental anatomy of the hyoid and to determine whether it is feasible and necessary to use these parameters in the measurement of hyoids from in vivo CT scans. Direct linear and volumetric measurements of skeletonized hyoid bone specimens were compared to corresponding CT images to determine the most accurate scanning parameters and three-dimensional rendering techniques. A pilot study was undertaken using in vivo scans from a retrospective CT database to determine feasibility of quantifying hyoid growth. Scanning parameters and rendering technique affected accuracy of measurements. Most linear CT measurements were within 10% of direct measurements; however, volume was overestimated when CT scans were acquired with a slice thickness greater than 1.25 mm. Slice-by-slice thresholding of hyoid images decreased volume overestimation. The pilot study revealed that the linear measurements tested correlate with age. A fine-tuned rendering approach applied to small slice thickness CT scans produces the most accurate measurements of hyoid bones. However, linear measurements can be accurately assessed from in vivo CT scans at a larger slice thickness. Such findings imply that investigation into the growth and development of the hyoid bone, and the vocal tract as a whole, can now be performed using these techniques. PMID:25810349
Cotter, Meghan M; Whyms, Brian J; Kelly, Michael P; Doherty, Benjamin M; Gentry, Lindell R; Bersu, Edward T; Vorperian, Houri K
2015-08-01
The hyoid bone anchors and supports the vocal tract. Its complex shape is best studied in three dimensions, but it is difficult to capture on computed tomography (CT) images and three-dimensional volume renderings. The goal of this study was to determine the optimal CT scanning and rendering parameters to accurately measure the growth and developmental anatomy of the hyoid and to determine whether it is feasible and necessary to use these parameters in the measurement of hyoids from in vivo CT scans. Direct linear and volumetric measurements of skeletonized hyoid bone specimens were compared with corresponding CT images to determine the most accurate scanning parameters and three-dimensional rendering techniques. A pilot study was undertaken using in vivo scans from a retrospective CT database to determine feasibility of quantifying hyoid growth. Scanning parameters and rendering technique affected accuracy of measurements. Most linear CT measurements were within 10% of direct measurements; however, volume was overestimated when CT scans were acquired with a slice thickness greater than 1.25 mm. Slice-by-slice thresholding of hyoid images decreased volume overestimation. The pilot study revealed that the linear measurements tested correlate with age. A fine-tuned rendering approach applied to small slice thickness CT scans produces the most accurate measurements of hyoid bones. However, linear measurements can be accurately assessed from in vivo CT scans at a larger slice thickness. Such findings imply that investigation into the growth and development of the hyoid bone, and the vocal tract as a whole, can now be performed using these techniques. © 2015 Wiley Periodicals, Inc.
Mojs, Ewa; Stanisławska-Kubiak, Maia; Wójciak, Rafał W; Wojciechowska, Julita; Przewoźniak, Sabina
2016-03-01
Anemia in patients with diabetes is not scarce and may contribute to the complications of the disease. The risk of iron deficiency parameters in child sufferers of diabetes type 1, observed in studies, can lead to cognitive impairment. The aim of the study was to determine whether children and adolescents with diabetes type 1, in whom reduced ferric parameters are observed in control tests, may also show reduced cognitive performance. The study included 100 children with diabetes type 1 at the age of 6-17 years. During control tests, patients' morphological blood parameters were measured: red blood cells (RBC), hemoglobin, glycosylated hemoglobin, hematocrit, RBC volume, the molar mass of hemoglobin in RBC (MCH), mean corpuscular hemoglobin in RBC and iron concentrations in serum using flame atomic absorption spectroscopy and the Wechsler Intelligence Scale for Children (WISC-R). Results in the group of children with a diabetes type 1 significantly lower concentration of three ferric parameters affect the non-verbal intelligence measured with WISC-R. The prevalence of reduced ferric parameters justifies further screening in all children with diabetes type 1 and taking up appropriate preventive measures to reduce the risk of their occurrence. Copyright © 2016 American Federation for Medical Research.
Estimating Sleep from Multisensory Armband Measurements: Validity and Reliability in Teens
Roane, Brandy M.; Van Reen, Eliza; Hart, Chantelle N.; Wing, Rena; Carskadon, Mary A.
2015-01-01
SUMMARY Given the recognition that sleep may influence obesity risk, there is increasing interest in measuring sleep parameters within obesity studies. The goal of the current analyses was to determine whether the SenseWear® Pro3 Armband (armband), typically used to assess physical activity, is reliable at assessing sleep parameters. We compared the armband to the AMI Motionlogger® (actigraph), a validated activity monitor for sleep assessment and to polysomnography (PSG), the gold standard for assessing sleep. Participants were twenty adolescents (mean age=15.5 years) with a mean BMI %tile of 63.7. All participants wore the armband and actigraph on their non-dominant arm while in-lab during a nocturnal PSG recording (600 minutes). Epoch-by-epoch sleep/wake data and concordance of sleep parameters were examined. No significant sleep parameter differences were found between the armband and PSG; the actigraph tended to overestimate sleep and underestimate wake compared to PSG. Both devices showed high sleep sensitivity, but lower wake detection rates. Bland-Altman plots showed large individual differences in armband sleep parameter concordance rates. The armband did well estimating sleep overall with group results more similar to PSG than the actigraph; however, the armband was less accurate at an individual level than the actigraph. PMID:26126746
Estimating sleep from multisensory armband measurements: validity and reliability in teens.
Roane, Brandy M; Van Reen, Eliza; Hart, Chantelle N; Wing, Rena; Carskadon, Mary A
2015-12-01
Given the recognition that sleep may influence obesity risk, there is increasing interest in measuring sleep parameters within obesity studies. The goal of the current analyses was to determine whether the SenseWear(®) Pro3 Armband (armband), typically used to assess physical activity, is reliable at assessing sleep parameters. The armband was compared with the AMI Motionlogger(®) (actigraph), a validated activity monitor for sleep assessment, and with polysomnography, the gold standard for assessing sleep. Participants were 20 adolescents (mean age = 15.5 years) with a mean body mass index percentile of 63.7. All participants wore the armband and actigraph on their non-dominant arm while in-lab during a nocturnal polysomnographic recording (600 min). Epoch-by-epoch sleep/wake data and concordance of sleep parameters were examined. No significant sleep parameter differences were found between the armband and polysomnography; the actigraph tended to overestimate sleep and underestimate wake compared with polysomnography. Both devices showed high sleep sensitivity, but lower wake detection rates. Bland-Altman plots showed large individual differences in armband sleep parameter concordance rates. The armband did well estimating sleep overall, with group results more similar to polysomnography than the actigraph; however, the armband was less accurate at an individual level than the actigraph. © 2015 European Sleep Research Society.
Moustapha, S M; Alain, G; Robert, E; Bernard, T; Mourtalla, Kâ M; Lamine, G; François, V
2012-01-01
Among Parkinsonian axial signs, dysarthria represents an important disabling symptom able to lead towards a significant reduction of oral communication. Several methods of dysarthria assessment have been used but aerodynamic evaluation is rare in the literature. To highlight the importance of aerodynamic parameters measurements in assessment of parkinsonian dysarthria. Using a dedicated system (EVA2), 24 parkinsonian patients were recorded after withdrawal of L-dopa for at least 12 h (condition called OFF DOPA) in order to evaluate intra-oral pressure (IOP), mean oral air flow (MOAF) and laryngeal resistance (LR) on six /p/ during realization of the sentence "Papa ne m'a pas parle' de beau-papa" ("Daddy did not speak to me about daddy-in-law") which corresponds to a breath group. 50 control subjects were recorded in parallel in order to define reference measurements. It appeared that there is in Parkinson's disease aerodynamic impairments which were evidenced by the fall in IOP and that of MOAF in patients compared with control subjects. The difference between the two groups was statistically significant. In addition a greater instability of LR in patients compared with control subjects was also noted. Our results show that measurements of aerodynamics parameters, by reflecting the dysfunction induced by disease, may well be relevant factors in parkinsonian dysarthria evaluation.
Ability of Cirrus™ HD-OCT Optic Nerve Head Parameters to Discriminate Normal from Glaucomatous Eyes
Mwanza, Jean-Claude; Oakley, Jonathan D; Budenz, Donald L; Anderson, Douglas R
2010-01-01
Purpose To determine the ability of optic nerve head (ONH) parameters measured with spectral domain Cirrus™ HD-OCT to discriminate between normal and glaucomatous eyes and to compare them to the discriminating ability of peripapillary retinal nerve fiber layer (RNFL) thickness measurements performed with Cirrus™ HD-OCT. Design Evaluation of diagnostic test or technology. Participants Seventy-three subjects with glaucoma and one hundred and forty-six age-matched normal subjects. Methods Peripapillary ONH parameters and RNFL thickness were measured in one randomly selected eye of each participant within a 200×200 pixel A-scan acquired with Cirrus™ HD-OCT centered on the ONH. Main Outcome Measures ONH topographic parameters, peripapillary RNFL thickness, and the area under receiver operating characteristic curves (AUCs). Results For distinguishing normal from glaucomatous eyes, regardless of disease stage, the six best parameters (expressed as AUC) were vertical rim thickness (VRT, 0.963), rim area (RA, 0.962), RNFL thickness at clock-hour 7 (0.957), RNFL thickness of the inferior quadrant (0.953), vertical cup-to-disc ratio (VCDR, 0.951) and average RNFL thickness (0.950). The AUC for distinguishing between normal and eyes with mild glaucoma was greatest for RNFL thickness of clock-hour 7 (0.918), VRT (0.914), RA (0.912), RNFL thickness of inferior quadrant (0.895), average RNFL thickness (0.893) and VCDR (0.890). There were no statistically significant differences between AUCs for the best ONH parameters and RNFL thickness measurements (p > 0.05). Conclusions Cirrus™ HD-OCT ONH parameters are able to discriminate between eyes that are normal from those with glaucoma or even mild glaucoma. There is no difference in the ability of ONH parameters and RNFL thickness measurement, as measured with Cirrus™ OCT, to distinguish between normal and glaucomatous eyes. PMID:20920824
Carroll, R.D.
1969-01-01
A statistical analysis was made of the relationship of various acoustic parameters of volcanic rocks to compressional wave velocities for data obtained in a volcanic region in Nevada. Some additional samples, chiefly granitic rocks, were also included in the study to extend the range of parameters and the variety of siliceous rock types sampled. Laboratory acoustic measurements obtained on 62 dry core samples were grouped with similar measurements obtained from geophysical logging devices at several depth intervals in a hole from which 15 of the core samples had been obtained. The effects of lithostatic and hydrostatic load on changing the rock acoustic parameters measured in the hole were noticeable when compared with the laboratory measurements on the same core. The results of the analyses determined by grouping all of the data, however, indicate that dynamic Young's, shear and bulk modulus, shear velocity, shear and compressional characteristic impedance, as well as amplitude and energy reflection coefficients may be reliably estimated on the basis of the compressional wave velocities of the rocks investigated. Less precise estimates can be made of density based on the rock compressional velocity. The possible extension of these relationships to include many siliceous rocks is suggested. ?? 1969.
The dynamic nature of conflict in Wikipedia
NASA Astrophysics Data System (ADS)
Gandica, Y.; Sampaio dos Aidos, F.; Carvalho, J.
2014-10-01
The voluntary process of Wikipedia edition provides an environment in which the outcome is clearly a collective product of interactions involving a large number of people. We propose a simple agent-based model, developed from real data, to reproduce the collaborative process of Wikipedia edition. With a small number of simple ingredients, our model mimics several interesting features of real human behaviour, namely in the context of edit wars. We show that the level of conflict is determined by a tolerance parameter, which measures the editors' capability to accept different opinions and to change their own opinion. We propose to measure conflict with a parameter based on mutual reverts, which increases only in contentious situations. Using this parameter, we find a distribution for the inter-peace periods that is heavy tailed. The effects of wiki-robots in the conflict levels and in the edition patterns are also studied. Our findings are compared with previous parameters used to measure conflicts in edit wars.
Comparison of NBG-18, NBG-17, IG-110 and IG-11 oxidation kinetics in air
NASA Astrophysics Data System (ADS)
Lee, Jo Jo; Ghosh, Tushar K.; Loyalka, Sudarshan K.
2018-03-01
The oxidation rates of several nuclear-grade graphites, NBG-18, NBG-17, IG-110 and IG-11, were measured in air using thermogravimetry. Kinetic parameters and oxidation behavior for each grade were compared by coke type, filler grain size and microstructure. The thickness of the oxidized layer for each grade was determined by layer peeling and direct density measurements. The results for NBG-17 and IG-11 were compared with those available in the literature and our recently reported results for NBG-18 and IG-110 oxidation in air. The finer-grained graphites IG-110 and IG-11 were more oxidized than medium-grained NBG-18 and NBG-17 because of deeper oxidant penetration, higher porosity and higher probability of available active sites. Variation in experimental conditions also had a marked effect on the reported kinetic parameters by several studies. Kinetic parameters such as activation energy and transition temperature were sensitive to air flow rates as well as sample size and geometry.
Effects of primary selective laser trabeculoplasty on anterior segment parameters
Guven Yilmaz, Suzan; Palamar, Melis; Yusifov, Emil; Ates, Halil; Egrilmez, Sait; Yagci, Ayse
2015-01-01
AIM To investigate the effects of selective laser trabeculoplasty (SLT) on the main numerical parameters of anterior segment with Pentacam rotating Scheimpflug camera in patients with ocular hypertension (OHT) and primary open angle glaucoma (POAG). METHODS Pentacam measurements of 45 eyes of 25 (15 females and 10 males) patients (12 with OHT, 13 with POAG) before and after SLT were obtained. Measurements were taken before and 1 and 3mo after SLT. Pentacam parameters were compared between OHT and POAG patients, and age groups (60y and older, and younger than 60y). RESULTS The mean age of the patients was 57.8±13.9 (range 20-77y). Twelve patients (48%) were younger than 60y, while 13 patients (52%) were 60y and older. Measurements of pre-SLT and post-SLT 1mo were significantly different for the parameters of central corneal thickness (CCT) and anterior chamber volume (ACV) (P<0.05). These parameters returned back to pre-SLT values at post-SLT 3mo. Decrease of ACV at post-SLT 1mo was significantly higher in younger than 60y group than 60y and older group. There was no statistically significant difference in Pentacam parameters between OHT and POAG patients at pre- and post-treatment measurements (P>0.05). CONCLUSION SLT leads to significant increase in CCT and decrease in ACV at the 1st month of the procedure. Effects of SLT on these anterior segment parameters, especially for CCT that interferes IOP measurement, should be considered to ensure accurate clinical interpretation. PMID:26558208
Simple method to set up low eccentricity initial data for moving puncture simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichy, Wolfgang; Marronetti, Pedro
2011-01-15
We introduce two new eccentricity measures to analyze numerical simulations. Unlike earlier definitions these eccentricity measures do not involve any free parameters which makes them easy to use. We show how relatively inexpensive grid setups can be used to estimate the eccentricity during the early inspiral phase. Furthermore, we compare standard puncture data and post-Newtonian data in ADMTT gauge. We find that both use different coordinates. Thus low eccentricity initial momentum parameters for a certain separation measured in ADMTT coordinates are hard to use in puncture data, because it is not known how the separation in puncture coordinates is relatedmore » to the separation in ADMTT coordinates. As a remedy we provide a simple approach which allows us to iterate the momentum parameters until our numerical simulations result in acceptably low eccentricities.« less
Improved test methods for determining lightning-induced voltages in aircraft
NASA Technical Reports Server (NTRS)
Crouch, K. E.; Plumer, J. A.
1980-01-01
A lumped parameter transmission line with a surge impedance matching that of the aircraft and its return lines was evaluated as a replacement for earlier current generators. Various test circuit parameters were evaluated using a 1/10 scale relative geometric model. Induced voltage response was evaluated by taking measurements on the NASA-Dryden Digital Fly by Wire F-8 aircraft. Return conductor arrangements as well as other circuit changes were also evaluated, with all induced voltage measurements being made on the same circuit for comparison purposes. The lumped parameter transmission line generates a concave front current wave with the peak di/dt near the peak of the current wave which is more representative of lightning. However, the induced voltage measurements when scaled by appropriate scale factors (peak current or di/dt) resulting from both techniques yield comparable results.
NASA Technical Reports Server (NTRS)
Stewart, Eric C.
1991-01-01
An analysis of flight measurements made near a wake vortex was conducted to explore the feasibility of providing a pilot with useful wake avoidance information. The measurements were made with relatively low cost flow and motion sensors on a light airplane flying near the wake vortex of a turboprop airplane weighing approximately 90000 lbs. Algorithms were developed which removed the response of the airplane to control inputs from the total airplane response and produced parameters which were due solely to the flow field of the vortex. These parameters were compared with values predicted by potential theory. The results indicated that the presence of the vortex could be detected by a combination of parameters derived from the simple sensors. However, the location and strength of the vortex cannot be determined without additional and more accurate sensors.
Reference tissue modeling with parameter coupling: application to a study of SERT binding in HIV
NASA Astrophysics Data System (ADS)
Endres, Christopher J.; Hammoud, Dima A.; Pomper, Martin G.
2011-04-01
When applicable, it is generally preferred to evaluate positron emission tomography (PET) studies using a reference tissue-based approach as that avoids the need for invasive arterial blood sampling. However, most reference tissue methods have been shown to have a bias that is dependent on the level of tracer binding, and the variability of parameter estimates may be substantially affected by noise level. In a study of serotonin transporter (SERT) binding in HIV dementia, it was determined that applying parameter coupling to the simplified reference tissue model (SRTM) reduced the variability of parameter estimates and yielded the strongest between-group significant differences in SERT binding. The use of parameter coupling makes the application of SRTM more consistent with conventional blood input models and reduces the total number of fitted parameters, thus should yield more robust parameter estimates. Here, we provide a detailed evaluation of the application of parameter constraint and parameter coupling to [11C]DASB PET studies. Five quantitative methods, including three methods that constrain the reference tissue clearance (kr2) to a common value across regions were applied to the clinical and simulated data to compare measurement of the tracer binding potential (BPND). Compared with standard SRTM, either coupling of kr2 across regions or constraining kr2 to a first-pass estimate improved the sensitivity of SRTM to measuring a significant difference in BPND between patients and controls. Parameter coupling was particularly effective in reducing the variance of parameter estimates, which was less than 50% of the variance obtained with standard SRTM. A linear approach was also improved when constraining kr2 to a first-pass estimate, although the SRTM-based methods yielded stronger significant differences when applied to the clinical study. This work shows that parameter coupling reduces the variance of parameter estimates and may better discriminate between-group differences in specific binding.
Digital forensic osteology--possibilities in cooperation with the Virtopsy project.
Verhoff, Marcel A; Ramsthaler, Frank; Krähahn, Jonathan; Deml, Ulf; Gille, Ralf J; Grabherr, Silke; Thali, Michael J; Kreutz, Kerstin
2008-01-30
The present study was carried out to check whether classic osteometric parameters can be determined from the 3D reconstructions of MSCT (multislice computed tomography) scans acquired in the context of the Virtopsy project. To this end, four isolated and macerated skulls were examined by six examiners. First the skulls were conventionally (manually) measured using 32 internationally accepted linear measurements. Then the skulls were scanned by the use of MSCT with slice thicknesses of 1.25 mm and 0.63 mm, and the 33 measurements were virtually determined on the digital 3D reconstructions of the skulls. The results of the traditional and the digital measurements were compared for each examiner to figure out variations. Furthermore, several parameters were measured on the cranium and postcranium during an autopsy and compared to the values that had been measured on a 3D reconstruction from a previously acquired postmortem MSCT scan. The results indicate that equivalent osteometric values can be obtained from digital 3D reconstructions from MSCT scans using a slice thickness of 1.25 mm, and from conventional manual examinations. The measurements taken from a corpse during an autopsy could also be validated with the methods used for the digital 3D reconstructions in the context of the Virtopsy project. Future aims are the assessment and biostatistical evaluation in respect to sex, age and stature of all data sets stored in the Virtopsy project so far, as well as of future data sets. Furthermore, a definition of new parameters, only measurable with the aid of MSCT data would be conceivable.
NASA Astrophysics Data System (ADS)
Nair, S. P.; Righetti, R.
2015-05-01
Recent elastography techniques focus on imaging information on properties of materials which can be modeled as viscoelastic or poroelastic. These techniques often require the fitting of temporal strain data, acquired from either a creep or stress-relaxation experiment to a mathematical model using least square error (LSE) parameter estimation. It is known that the strain versus time relationships for tissues undergoing creep compression have a non-linear relationship. In non-linear cases, devising a measure of estimate reliability can be challenging. In this article, we have developed and tested a method to provide non linear LSE parameter estimate reliability: which we called Resimulation of Noise (RoN). RoN provides a measure of reliability by estimating the spread of parameter estimates from a single experiment realization. We have tested RoN specifically for the case of axial strain time constant parameter estimation in poroelastic media. Our tests show that the RoN estimated precision has a linear relationship to the actual precision of the LSE estimator. We have also compared results from the RoN derived measure of reliability against a commonly used reliability measure: the correlation coefficient (CorrCoeff). Our results show that CorrCoeff is a poor measure of estimate reliability for non-linear LSE parameter estimation. While the RoN is specifically tested only for axial strain time constant imaging, a general algorithm is provided for use in all LSE parameter estimation.
Begum, Viquar Unnisa; Addepalli, Uday Kumar; Senthil, Sirisha; Garudadri, Chandra Sekhar; Rao, Harsha Laxmana
2016-04-01
Heidelberg retina tomogram (HRT) and optical coherence tomography (OCT) are two widely used imaging modalities to evaluate the optic nerve head (ONH) in glaucoma. To compare the ONH parameters of HRT3 and high-definition OCT (HD-OCT) and evaluate their diagnostic abilities in perimetric and preperimetric glaucoma. Cross-sectional analysis. 35 control eyes (24 subjects), 21 preperimetric glaucoma eyes (15 patients), and 64 perimetric glaucoma eyes (44 patients) from the Longitudinal Glaucoma Evaluation Study underwent HRT3 and HD-OCT examinations. Agreement between the ONH parameters of HRT and HD-OCT were assessed using Bland-Altman plots. Diagnostic abilities of ONH parameters were evaluated using area under the receiver operating characteristic curves (AUCs), sensitivity at fixed specificity, and likelihood ratios (LR). Optic disc area, vertical cup to disc ratio, and cup volume with HD-OCT were larger than with HRT, while the rim area was smaller with HD-OCT (P < 0.001 for all comparisons). AUCs of all HD-OCT ONH parameters (0.90-0.97 in perimetric and 0.62-0.71 in preperimetric glaucoma) were comparable (P > 0.10) to the corresponding HRT ONH parameters (0.81-0.95 in perimetric and 0.55-0.72 in preperimetric glaucoma). LRs associated with diagnostic categorization of ONH parameters of both HD-OCT and HRT were associated with larger effects on posttest probability of perimetric compared to preperimetric glaucoma. ONH measurements of HD-OCT and HRT3 cannot be used interchangeably. Though the diagnostic abilities of ONH parameters of HD-OCT and HRT in glaucoma were comparable, the same were significantly lower in preperimetric compared to perimetric glaucoma.
Begum, Viquar Unnisa; Addepalli, Uday Kumar; Senthil, Sirisha; Garudadri, Chandra Sekhar; Rao, Harsha Laxmana
2016-01-01
Background: Heidelberg retina tomogram (HRT) and optical coherence tomography (OCT) are two widely used imaging modalities to evaluate the optic nerve head (ONH) in glaucoma. Purpose: To compare the ONH parameters of HRT3 and high-definition OCT (HD-OCT) and evaluate their diagnostic abilities in perimetric and preperimetric glaucoma. Design: Cross-sectional analysis. Methods: 35 control eyes (24 subjects), 21 preperimetric glaucoma eyes (15 patients), and 64 perimetric glaucoma eyes (44 patients) from the Longitudinal Glaucoma Evaluation Study underwent HRT3 and HD-OCT examinations. Statistical Analysis: Agreement between the ONH parameters of HRT and HD-OCT were assessed using Bland-Altman plots. Diagnostic abilities of ONH parameters were evaluated using area under the receiver operating characteristic curves (AUCs), sensitivity at fixed specificity, and likelihood ratios (LR). Results: Optic disc area, vertical cup to disc ratio, and cup volume with HD-OCT were larger than with HRT, while the rim area was smaller with HD-OCT (P < 0.001 for all comparisons). AUCs of all HD-OCT ONH parameters (0.90-0.97 in perimetric and 0.62-0.71 in preperimetric glaucoma) were comparable (P > 0.10) to the corresponding HRT ONH parameters (0.81-0.95 in perimetric and 0.55-0.72 in preperimetric glaucoma). LRs associated with diagnostic categorization of ONH parameters of both HD-OCT and HRT were associated with larger effects on posttest probability of perimetric compared to preperimetric glaucoma. Conclusions: ONH measurements of HD-OCT and HRT3 cannot be used interchangeably. Though the diagnostic abilities of ONH parameters of HD-OCT and HRT in glaucoma were comparable, the same were significantly lower in preperimetric compared to perimetric glaucoma. PMID:27221679
An approach to measure parameter sensitivity in watershed ...
Hydrologic responses vary spatially and temporally according to watershed characteristics. In this study, the hydrologic models that we developed earlier for the Little Miami River (LMR) and Las Vegas Wash (LVW) watersheds were used for detail sensitivity analyses. To compare the relative sensitivities of the hydrologic parameters of these two models, we used Normalized Root Mean Square Error (NRMSE). By combining the NRMSE index with the flow duration curve analysis, we derived an approach to measure parameter sensitivities under different flow regimes. Results show that the parameters related to groundwater are highly sensitive in the LMR watershed, whereas the LVW watershed is primarily sensitive to near surface and impervious parameters. The high and medium flows are more impacted by most of the parameters. Low flow regime was highly sensitive to groundwater related parameters. Moreover, our approach is found to be useful in facilitating model development and calibration. This journal article describes hydrological modeling of climate change and land use changes on stream hydrology, and elucidates the importance of hydrological model construction in generating valid modeling results.
Hematological, oxidative stress, and immune status profiling in elite combat sport athletes.
Dopsaj, Violeta; Martinovic, Jelena; Dopsaj, Milivoj; Kasum, Goran; Kotur-Stevuljevic, Jelena; Koropanovski, Nenad
2013-12-01
The aim of this study was to profile hematological, oxidative stress, and immunological parameters in male athletes who practiced combat sports and to determine whether the type of combat sport influenced the measured parameters. Eighteen karate professionals, 15 wrestlers, and 14 kickboxers participated in the study. Hematological, iron-related, oxidative stress, and immunological parameters were measured at the beginning of a precompetitive period. The general linear model showed significant differences between the karate professionals, wrestlers, and kickboxers with respect to their hematological and iron status parameters (Wilks' Lambda = 0.270, F = 2.186, p < 0.05) and oxidative stress status (Wilks' Lambda = 0.529, F = 1.940, p < 0.05). The immature reticulocyte fraction was significantly higher in wrestlers (0.30 ± 0.03) compared with kickboxers (0.24 ± 0.04; p < 0.05) and karate professionals (0.26 ± 0.04; p < 0.05). Low hemoglobin density was significantly lower in wrestlers and kickboxers (p < 0.05) compared with karate professionals (karate: 3.51 ± 1.19, wrestlers: 1.95 ± 1.10, and kickboxers: 1.77 ± 0.76). Significant differences were observed between the karate professionals and wrestlers with respect to their pro-oxidant-antioxidant balance (437 ± 103 vs. 323 ± 148, p < 0.05) and superoxide-dismutase activity (SOD) (73 ± 37 vs. 103 ± 30, p < 0.05). All the measured parameters (with the exception of SOD activity) fell within their physiological ranges, indicating that the study participants represented a young and healthy male population. Hematological parameters differed between kickboxers and karate professionals. The low pro-oxidant-antioxidant balance and high SOD activity in wrestlers could be associated with the long-term impact of wrestling as a type of strenuous exercise.
ERIC Educational Resources Information Center
Callaway, Andrew J.; Cobb, Jon E.
2012-01-01
Where as video cameras are a reliable and established technology for the measurement of kinematic parameters, accelerometers are increasingly being employed for this type of measurement due to their ease of use, performance, and comparatively low cost. However, the majority of accelerometer-based studies involve a single channel due to the…
Horoshenkov, Kirill V; Groby, Jean-Philippe; Dazel, Olivier
2016-05-01
Modeling of sound propagation in porous media requires the knowledge of several intrinsic material parameters, some of which are difficult or impossible to measure directly, particularly in the case of a porous medium which is composed of pores with a wide range of scales and random interconnections. Four particular parameters which are rarely measured non-acoustically, but used extensively in a number of acoustical models, are the viscous and thermal characteristic lengths, thermal permeability, and Pride parameter. The main purpose of this work is to show how these parameters relate to the pore size distribution which is a routine characteristic measured non-acoustically. This is achieved through the analysis of the asymptotic behavior of four analytical models which have been developed previously to predict the dynamic density and/or compressibility of the equivalent fluid in a porous medium. In this work the models proposed by Johnson, Koplik, and Dashn [J. Fluid Mech. 176, 379-402 (1987)], Champoux and Allard [J. Appl. Phys. 70(4), 1975-1979 (1991)], Pride, Morgan, and Gangi [Phys. Rev. B 47, 4964-4978 (1993)], and Horoshenkov, Attenborough, and Chandler-Wilde [J. Acoust. Soc. Am. 104, 1198-1209 (1998)] are compared. The findings are then used to compare the behavior of the complex dynamic density and compressibility of the fluid in a material pore with uniform and variable cross-sections.
Precision and Accuracy Parameters in Structured Light 3-D Scanning
NASA Astrophysics Data System (ADS)
Eiríksson, E. R.; Wilm, J.; Pedersen, D. B.; Aanæs, H.
2016-04-01
Structured light systems are popular in part because they can be constructed from off-the-shelf low cost components. In this paper we quantitatively show how common design parameters affect precision and accuracy in such systems, supplying a much needed guide for practitioners. Our quantitative measure is the established VDI/VDE 2634 (Part 2) guideline using precision made calibration artifacts. Experiments are performed on our own structured light setup, consisting of two cameras and a projector. We place our focus on the influence of calibration design parameters, the calibration procedure and encoding strategy and present our findings. Finally, we compare our setup to a state of the art metrology grade commercial scanner. Our results show that comparable, and in some cases better, results can be obtained using the parameter settings determined in this study.
Teixeira, Miriam S.; Banks, Juliane; Swarts, J. Douglas; Alper, Cuneyt M.; Doyle, William J.
2014-01-01
Objective Test the hypothesis that active Eustachian tube opening efficiency as measured by sonotubometry is higher in adults with no extant middle-ear disease and no history of previous otitis media (Group-1) when compared to adults with no middle-ear disease but a positive history for otitis media (Group-2). Methods Eustachian tube function for 1 ear of 33 otherwise healthy adult subjects, 16 assigned to Group-1 and 17 to Group-2, was tested by sonotubometry using a standard protocol. For each test, the sound envelopes for 3 swallows were abstracted independently by 2 observers from the data stream and 7 descriptive parameters related to sound envelope “shape” were calculated. Interrelatedness among the values for the parameters was explored using correlation analysis. The contributions of swallow, observer and group to the variance in each parameter were evaluated for significance using a General Linear Model. Results The shape parameters reflecting envelope height, area and rise and fall rates were highly inter-correlated, but those reflecting envelope widths were not. There was no effect of “swallow” on any of the parameters; but there was a significant “observer” effect on all measures of envelope width, greater for observer-2, and a significant “group” effect for 5 of the 7 shape parameters, all greater in Group-1. Conclusions Quantifiable measures of the sound signal “shape” recorded by sonotubometry during swallowing were significantly different between the 2 groups of subjects. This is interpretable as evidencing a more efficient Eustachian tube opening-function in adults with healthy middle ears who do not have a previous history of otitis media when compared to similar adults with a history of prior otitis media. Inefficient Eustachian tube function as children may not be completely resolved by adulthood increasing adult otitis media risk when Eustachian tube function is down-graded by extant upper respiratory diseases that provoke nasopharyngeal inflammation. PMID:24491807
Diagnostics of Robust Growth Curve Modeling Using Student's "t" Distribution
ERIC Educational Resources Information Center
Tong, Xin; Zhang, Zhiyong
2012-01-01
Growth curve models with different types of distributions of random effects and of intraindividual measurement errors for robust analysis are compared. After demonstrating the influence of distribution specification on parameter estimation, 3 methods for diagnosing the distributions for both random effects and intraindividual measurement errors…
One of the main uses of biomarker measurements is to compare different populations to each other and to assess risk in comparison to established parameters. This is most often done using summary statistics such as central tendency, variance components, confidence intervals, excee...
NASA Astrophysics Data System (ADS)
Ding, Liang; Gao, Haibo; Liu, Zhen; Deng, Zongquan; Liu, Guangjun
2015-12-01
Identifying the mechanical property parameters of planetary soil based on terramechanics models using in-situ data obtained from autonomous planetary exploration rovers is both an important scientific goal and essential for control strategy optimization and high-fidelity simulations of rovers. However, identifying all the terrain parameters is a challenging task because of the nonlinear and coupling nature of the involved functions. Three parameter identification methods are presented in this paper to serve different purposes based on an improved terramechanics model that takes into account the effects of slip, wheel lugs, etc. Parameter sensitivity and coupling of the equations are analyzed, and the parameters are grouped according to their sensitivity to the normal force, resistance moment and drawbar pull. An iterative identification method using the original integral model is developed first. In order to realize real-time identification, the model is then simplified by linearizing the normal and shearing stresses to derive decoupled closed-form analytical equations. Each equation contains one or two groups of soil parameters, making step-by-step identification of all the unknowns feasible. Experiments were performed using six different types of single-wheels as well as a four-wheeled rover moving on planetary soil simulant. All the unknown model parameters were identified using the measured data and compared with the values obtained by conventional experiments. It is verified that the proposed iterative identification method provides improved accuracy, making it suitable for scientific studies of soil properties, whereas the step-by-step identification methods based on simplified models require less calculation time, making them more suitable for real-time applications. The models have less than 10% margin of error comparing with the measured results when predicting the interaction forces and moments using the corresponding identified parameters.
Cognitive models of risky choice: parameter stability and predictive accuracy of prospect theory.
Glöckner, Andreas; Pachur, Thorsten
2012-04-01
In the behavioral sciences, a popular approach to describe and predict behavior is cognitive modeling with adjustable parameters (i.e., which can be fitted to data). Modeling with adjustable parameters allows, among other things, measuring differences between people. At the same time, parameter estimation also bears the risk of overfitting. Are individual differences as measured by model parameters stable enough to improve the ability to predict behavior as compared to modeling without adjustable parameters? We examined this issue in cumulative prospect theory (CPT), arguably the most widely used framework to model decisions under risk. Specifically, we examined (a) the temporal stability of CPT's parameters; and (b) how well different implementations of CPT, varying in the number of adjustable parameters, predict individual choice relative to models with no adjustable parameters (such as CPT with fixed parameters, expected value theory, and various heuristics). We presented participants with risky choice problems and fitted CPT to each individual's choices in two separate sessions (which were 1 week apart). All parameters were correlated across time, in particular when using a simple implementation of CPT. CPT allowing for individual variability in parameter values predicted individual choice better than CPT with fixed parameters, expected value theory, and the heuristics. CPT's parameters thus seem to pick up stable individual differences that need to be considered when predicting risky choice. Copyright © 2011 Elsevier B.V. All rights reserved.
Schmitt, Neal; Golubovich, Juliya; Leong, Frederick T L
2011-12-01
The impact of measurement invariance and the provision for partial invariance in confirmatory factor analytic models on factor intercorrelations, latent mean differences, and estimates of relations with external variables is investigated for measures of two sets of widely assessed constructs: Big Five personality and the six Holland interests (RIASEC). In comparing models that include provisions for partial invariance with models that do not, the results indicate quite small differences in parameter estimates involving the relations between factors, one relatively large standardized mean difference in factors between the subgroups compared and relatively small differences in the regression coefficients when the factors are used to predict external variables. The results provide support for the use of partially invariant models, but there does not seem to be a great deal of difference between structural coefficients when the measurement model does or does not include separate estimates of subgroup parameters that differ across subgroups. Future research should include simulations in which the impact of various factors related to invariance is estimated.
Scott, Daniel B; Van Dyke, Michele I; Anderson, William B; Huck, Peter M
2015-12-01
The potential for regrowth of nitrifying microorganisms was monitored in 2 full-scale chloraminated drinking water distribution systems in Ontario, Canada, over a 9-month period. Quantitative PCR was used to measure amoA genes from ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), and these values were compared with water quality parameters that can influence nitrifier survival and growth, including total chlorine, ammonia, temperature, pH, and organic carbon. Although there were no severe nitrification episodes, AOB and AOA were frequently detected at low concentrations in samples collected from both distribution systems. A culture-based presence-absence test confirmed the presence of viable nitrifiers. AOB were usually present in similar or greater numbers than AOA in both systems. As well, AOB showed higher regrowth potential compared with AOA in both systems. Statistically significant correlations were measured between several water quality parameters of relevance to nitrification. Total chlorine was negatively correlated with both nitrifiers and heterotrophic plate count (HPC) bacteria, and ammonia levels were positively correlated with nitrifiers. Of particular importance was the strong correlation between HPC and AOB, which reinforced the usefulness of HPC as an operational parameter to measure general microbiological conditions in distribution systems.
NASA Astrophysics Data System (ADS)
Miyauchi, T.; Machimura, T.
2013-12-01
In the simulation using an ecosystem process model, the adjustment of parameters is indispensable for improving the accuracy of prediction. This procedure, however, requires much time and effort for approaching the simulation results to the measurements on models consisting of various ecosystem processes. In this study, we tried to apply a general purpose optimization tool in the parameter optimization of an ecosystem model, and examined its validity by comparing the simulated and measured biomass growth of a woody plantation. A biometric survey of tree biomass growth was performed in 2009 in an 11-year old Eucommia ulmoides plantation in Henan Province, China. Climate of the site was dry temperate. Leaf, above- and below-ground woody biomass were measured from three cut trees and converted into carbon mass per area by measured carbon contents and stem density. Yearly woody biomass growth of the plantation was calculated according to allometric relationships determined by tree ring analysis of seven cut trees. We used Biome-BGC (Thornton, 2002) to reproduce biomass growth of the plantation. Air temperature and humidity from 1981 to 2010 was used as input climate condition. The plant functional type was deciduous broadleaf, and non-optimizing parameters were left default. 11-year long normal simulations were performed following a spin-up run. In order to select optimizing parameters, we analyzed the sensitivity of leaf, above- and below-ground woody biomass to eco-physiological parameters. Following the selection, optimization of parameters was performed by using the Dakota optimizer. Dakota is an optimizer developed by Sandia National Laboratories for providing a systematic and rapid means to obtain optimal designs using simulation based models. As the object function, we calculated the sum of relative errors between simulated and measured leaf, above- and below-ground woody carbon at each of eleven years. In an alternative run, errors at the last year (at the field survey) were weighted for priority. We compared some gradient-based global optimization methods of Dakota starting with the default parameters of Biome-BGC. In the result of sensitive analysis, carbon allocation parameters between coarse root and leaf, between stem and leaf, and SLA had high contribution on both leaf and woody biomass changes. These parameters were selected to be optimized. The measured leaf, above- and below-ground woody biomass carbon density at the last year were 0.22, 1.81 and 0.86 kgC m-2, respectively, whereas those simulated in the non-optimized control case using all default parameters were 0.12, 2.26 and 0.52 kgC m-2, respectively. After optimizing the parameters, the simulated values were improved to 0.19, 1.81 and 0.86 kgC m-2, respectively. The coliny global optimization method gave the better fitness than efficient global and ncsu direct method. The optimized parameters showed the higher carbon allocation rates to coarse roots and leaves and the lower SLA than the default parameters, which were consistent to the general water physiological response in a dry climate. The simulation using the weighted object function resulted in the closer simulations to the measurements at the last year with the lower fitness during the previous years.
Uav-Based Automatic Tree Growth Measurement for Biomass Estimation
NASA Astrophysics Data System (ADS)
Karpina, M.; Jarząbek-Rychard, M.; Tymków, P.; Borkowski, A.
2016-06-01
Manual in-situ measurements of geometric tree parameters for the biomass volume estimation are time-consuming and economically non-effective. Photogrammetric techniques can be deployed in order to automate the measurement procedure. The purpose of the presented work is an automatic tree growth estimation based on Unmanned Aircraft Vehicle (UAV) imagery. The experiment was conducted in an agriculture test field with scots pine canopies. The data was collected using a Leica Aibotix X6V2 platform equipped with a Nikon D800 camera. Reference geometric parameters of selected sample plants were measured manually each week. In situ measurements were correlated with the UAV data acquisition. The correlation aimed at the investigation of optimal conditions for a flight and parameter settings for image acquisition. The collected images are processed in a state of the art tool resulting in a generation of dense 3D point clouds. The algorithm is developed in order to estimate geometric tree parameters from 3D points. Stem positions and tree tops are identified automatically in a cross section, followed by the calculation of tree heights. The automatically derived height values are compared to the reference measurements performed manually. The comparison allows for the evaluation of automatic growth estimation process. The accuracy achieved using UAV photogrammetry for tree heights estimation is about 5cm.
Distinguishing Functional DNA Words; A Method for Measuring Clustering Levels
NASA Astrophysics Data System (ADS)
Moghaddasi, Hanieh; Khalifeh, Khosrow; Darooneh, Amir Hossein
2017-01-01
Functional DNA sub-sequences and genome elements are spatially clustered through the genome just as keywords in literary texts. Therefore, some of the methods for ranking words in texts can also be used to compare different DNA sub-sequences. In analogy with the literary texts, here we claim that the distribution of distances between the successive sub-sequences (words) is q-exponential which is the distribution function in non-extensive statistical mechanics. Thus the q-parameter can be used as a measure of words clustering levels. Here, we analyzed the distribution of distances between consecutive occurrences of 16 possible dinucleotides in human chromosomes to obtain their corresponding q-parameters. We found that CG as a biologically important two-letter word concerning its methylation, has the highest clustering level. This finding shows the predicting ability of the method in biology. We also proposed that chromosome 18 with the largest value of q-parameter for promoters of genes is more sensitive to dietary and lifestyle. We extended our study to compare the genome of some selected organisms and concluded that the clustering level of CGs increases in higher evolutionary organisms compared to lower ones.
Noise parameter estimation for poisson corrupted images using variance stabilization transforms.
Jin, Xiaodan; Xu, Zhenyu; Hirakawa, Keigo
2014-03-01
Noise is present in all images captured by real-world image sensors. Poisson distribution is said to model the stochastic nature of the photon arrival process and agrees with the distribution of measured pixel values. We propose a method for estimating unknown noise parameters from Poisson corrupted images using properties of variance stabilization. With a significantly lower computational complexity and improved stability, the proposed estimation technique yields noise parameters that are comparable in accuracy to the state-of-art methods.
Using unassisted ecosystem development to restore marginal land case study of post mining areas
NASA Astrophysics Data System (ADS)
Frouz, Jan
2017-04-01
When we evaluate efficiency of individual restoration measures we typically compare individual restoration treatments or compare them with initial state or similar ecosystem in surrounding landscape. We argue that sensible way to show added value of restoration measure is to compare them with unassisted ecosystem development. Case study of ecosystem development in Sokolov post mining district (Czech Republic) show that spontaneous succession of ecosystem can be, in many parameters, comparable with various reclamation approaches. In suitable substrates the succession is driven mainly by site topography. In sites which were leveled grassy vegetation develops. In sites where original wave like topography was preserved the ecosystem develops towards forest. In forest sites the development on most of the investigated ecosystem parameters (cower, biomass soil developments, water holding capacity, carbon storage) in succession sites is little bit slower compare to reclaimed plantation during first 15-20 years. However in older sites differences disappear and succession sites show similarity with restored sites. Despite similarity in these ecosystem functions possibilities of spontaneous sites for commercial use has to be explored.
Isothermal enthalpy relaxation of glassy 1,2,6-hexanetriol
NASA Astrophysics Data System (ADS)
Fransson, Å.; Bäckström, G.
The isothermal enthalpy relaxation of glassy 1,2,6-hexanetriol has been measured at six temperatures. The relaxation time and the distribution parameters extracted from fits of the Williams-Watts relaxation function are compared with parameters obtained by other techniques and on other substances. A detailed comparison of the Williams-Watts and the Davidson-Cole relaxation functions is presented.
Wind speed vector restoration algorithm
NASA Astrophysics Data System (ADS)
Baranov, Nikolay; Petrov, Gleb; Shiriaev, Ilia
2018-04-01
Impulse wind lidar (IWL) signal processing software developed by JSC «BANS» recovers full wind speed vector by radial projections and provides wind parameters information up to 2 km distance. Increasing accuracy and speed of wind parameters calculation signal processing technics have been studied in this research. Measurements results of IWL and continuous scanning lidar were compared. Also, IWL data processing modeling results have been analyzed.
NASA Technical Reports Server (NTRS)
Doyle, V. L.
1978-01-01
The acoustic characteristics of the double annular combustor in a CF6-50 high bypass turbofan engine were investigated. Internal fluctuating pressure measurements were made in the combustor region and in the core exhaust. The transmission loss across the turbine and nozzle was determined from the measurements and compared to previous component results and present theory. The primary noise source location in the combustor was investigated. Spectral comparisons of test rig results were made with the engine results. The measured overall power level was compared with component and engine correlating parameters.
Theoretical and experimental determination of K - and L -shell x-ray relaxation parameters in Ni
NASA Astrophysics Data System (ADS)
Guerra, M.; Sampaio, J. M.; Parente, F.; Indelicato, P.; Hönicke, P.; Müller, M.; Beckhoff, B.; Marques, J. P.; Santos, J. P.
2018-04-01
Fluorescence yields (FY) for the Ni K and L shells were determined by a theoretical and an experimental group within the framework of the International Initiative on X-ray Fundamental Parameters (FPs) collaboration. Coster-Kronig (CK) parameters were also measured for the L shell of Ni. Theoretical calculations of the same parameters were performed using the Dirac-Fock method, including relativistic and QED corrections. The experimental values for the FY and CK were determined at the PTB laboratory in the synchrotron radiation facility BESSY II, Berlin, Germany, and are compared to the corresponding calculated values.
NASA Technical Reports Server (NTRS)
Sun, C. T.; Yoon, K. J.
1990-01-01
A one-parameter plasticity model was shown to adequately describe the orthotropic plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The nonlinear stress-strain relations were measured and compared with those predicted by the finite element analysis using the one-parameter elastic-plastic constitutive model. The results show that the one-parameter orthotropic plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.
Elastic-plastic analysis of AS4/PEEK composite laminate using a one-parameter plasticity model
NASA Technical Reports Server (NTRS)
Sun, C. T.; Yoon, K. J.
1992-01-01
A one-parameter plasticity model was shown to adequately describe the plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The elastic-plastic stress-strain relations of coupon specimens were measured and compared with those predicted by the finite element analysis using the one-parameter plasticity model. The results show that the one-parameter plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.
Sung, Mi-Sun; Kang, Byung-Wan; Kim, Hwang-Gyun; Heo, Hwan; Park, Sang-Woo
2014-08-01
To evaluate the repeatability and diagnostic power of macular ganglion cell complex (mGCC) thickness and peripapillary retinal nerve fiber layer (pRNFL) thickness using a spectral domain-optical coherence tomography in advanced glaucoma. Forty advanced glaucoma patients were enrolled. Patients were divided into 2 groups of 20 patients each, according to the MD between -20 and -10 dB, and <-20 dB. The thickness of mGCC and pRNFL were measured with spectral domain-optical coherence tomography in both the groups. The repeatability of each parameter was assessed in both the groups, and the diagnostic power of each parameter was compared with the normal controls. Comparison of diagnostic power between the pRNFL and mGCC parameters revealed that the area under the receiver operating characteristic curve was not significantly different in patients with advanced glaucoma. The repeatability of pRNFL parameters was similar, irrespective of the severity of glaucoma. However, the repeatability of mGCC parameters became lower as the severity increased in patients with advanced glaucoma. In advanced glaucoma, the measurement of mGCC thickness has similar diagnostic power as the measurement of pRNFL thickness. However, the measurement of mGCC thickness showed a lower repeatability as MD decreased.
The use of Rz roughness parameter for evaluation of materials behavior to cavitation erosion
NASA Astrophysics Data System (ADS)
Bordeasu, I.; Popoviciu, M. O.; Ghera, C.; Micu, L. M.; Pirvulescu, L. D.; Bena, T.
2018-01-01
It is well known that the cavitation eroded surfaces have a porous appearance with a pronounced roughness. The cause is the pitting resulted from the impact with the micro jets as well as the shock waves both determined by the implosion of cavitation bubbles. The height and the shape of roughness is undoubtedly an expression of the resistance of the surface to the cavitation stresses. The paper put into evidence the possibility of using the roughness parameter Rz for estimating the material resistance to cavitation phenomena. For this purpose, the mean depth erosion penetration (MDE-parameter, recommended by the ASTM G32-2010 Standard) was compared with the roughness of three different materials (an annealed bronze, the same bronze subjected to quenching and an annealed alloyed steel), both measured at four cavitation erosion exposure (30, 75, 120 and 165 minutes). The roughness measurements were made in 18 different zones, disposed after two perpendicular diameters, along a measuring lengths of 4 mm. The results confirm the possibility of using the parameter Rz for estimating the cavitation erosion resistance of a material. The differences between the measured values of Rz and those of the characteristic parameter MDE are of the same order of magnitude as those obtained for MDE determination, using more samples of the same material.
Krůček, Martin; Vrška, Tomáš; Král, Kamil
2017-01-01
Terrestrial laser scanning is a powerful technology for capturing the three-dimensional structure of forests with a high level of detail and accuracy. Over the last decade, many algorithms have been developed to extract various tree parameters from terrestrial laser scanning data. Here we present 3D Forest, an open-source non-platform-specific software application with an easy-to-use graphical user interface with the compilation of algorithms focused on the forest environment and extraction of tree parameters. The current version (0.42) extracts important parameters of forest structure from the terrestrial laser scanning data, such as stem positions (X, Y, Z), tree heights, diameters at breast height (DBH), as well as more advanced parameters such as tree planar projections, stem profiles or detailed crown parameters including convex and concave crown surface and volume. Moreover, 3D Forest provides quantitative measures of between-crown interactions and their real arrangement in 3D space. 3D Forest also includes an original algorithm of automatic tree segmentation and crown segmentation. Comparison with field data measurements showed no significant difference in measuring DBH or tree height using 3D Forest, although for DBH only the Randomized Hough Transform algorithm proved to be sufficiently resistant to noise and provided results comparable to traditional field measurements. PMID:28472167
Estimating chlorophyll content and bathymetry of Lake Tahoe using AVIRIS data
NASA Technical Reports Server (NTRS)
Hamilton, Michael K.; Davis, Curtiss O.; Rhea, W. J.; Pilorz, Stuart H.; Carder, Kendall L.
1993-01-01
Data on chlorophyll content and bathymetry of Lake Tahoe obtained on August 9, 1990 by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) are compared to concurrent in situ surface and in-water measurements. Measured parameters included profiles of percent transmission of monochromatic light, stimulated chlorophyll fluorescence, photosynthetically available radiation, spectral upwelling and downwelling irradiance, and upwelling radiance. Several analyses were performed illustrating the utility of the AVIRIS over a dark water scene. Image-derived chlorophyll concentration compared extremely well with that measured with bottle samples. A bathymetry map of the shallow parts of the lake was constructed which compares favorably with published lake soundings.
Real topological entropy versus metric entropy for birational measure-preserving transformations
NASA Astrophysics Data System (ADS)
Abarenkova, N.; Anglès d'Auriac, J.-Ch.; Boukraa, S.; Maillard, J.-M.
2000-10-01
We consider a family of birational measure-preserving transformations of two complex variables, depending on one parameter for which simple rational expressions for the dynamical zeta function have been conjectured, together with an equality between the topological entropy and the logarithm of the Arnold complexity (divided by the number of iterations). Similar results have been obtained for the adaptation of these two concepts to dynamical systems of real variables, yielding to introduce a “real topological entropy” and a “real Arnold complexity”. We try to compare, here, the Kolmogorov-Sinai metric entropy and this real Arnold complexity, or real topological entropy, on this particular example of a one-parameter dependent birational transformation of two variables. More precisely, we analyze, using an infinite precision calculation, the Lyapunov characteristic exponents for various values of the parameter of the birational transformation, in order to compare these results with the ones for the real Arnold complexity. We find a quite surprising result: for this very birational example, and, in fact, for a large set of birational measure-preserving mappings generated by involutions, the Lyapunov characteristic exponents seem to be equal to zero or, at least, extremely small, for all the orbits we have considered, and for all values of the parameter. Birational measure-preserving transformations, generated by involutions, could thus allow to better understand the difference between the topological description and the probabilistic description of discrete dynamical systems. Many birational measure-preserving transformations, generated by involutions, seem to provide examples of discrete dynamical systems which can be topologically chaotic while they are metrically almost quasi-periodic. Heuristically, this can be understood as a consequence of the fact that their orbits seem to form some kind of “transcendental foliation” of the two-dimensional space of variables.
Intra-Sensor Variability Study of two BLS 900 Scintillometers
NASA Astrophysics Data System (ADS)
Thiem, Christina; Mauder, Matthias; Chwala, Christian; Bernhardt, Matthias; Kunstmann, Harald; Schulz, Karsten
2017-04-01
The latent heat flux is an important validation parameter for satellite measurements and a wide variety of hydrological and meteorological numerical models. Scintillometers can provide references for such validations due to their ability to spatially integrate turbulent fluxes. Large-aperture near-infrared scintillometers are capable of determining spatial averages of the structure parameter of temperature and the sensible heat flux over path lengths up to 5 km. One way to derive both sensible and latent heat flux is to use a combined optical and microwave scintillometer system. With only an optical scintillometer and additional measurements of ground heat flux and net radiation, the latent heat flux can be calculated from the residual of the energy balance. Studies have shown, however, that in certain cases measurements from the same types of scintillometers differ due to minute differences in construction. In order to prove the robustness of the measurements of two near-infrared scintillometers for future studies, we compared their observations and validated them by comparison to the sensible heat flux derived from an eddy covariance system. In this study two boundary layer scintillometers (BLS; BLS900, Scintec, Rottenburg, Germany) were installed in a central European valley as part of the TERENO preAlpine observatory during the years 2013 and 2015. An independent measurement of the sensible and latent heat flux was obtained from a permanent eddy covariance system installed in the vicinity of the scintillometer path. The structure parameter of the refractive index and average sensible heat fluxes of both BLS units were compared with each other. In general, the BLS structure parameters correlated very well and the high correlation between the BLS-derived sensible heat fluxes and the eddy covariance-derived sensible heat fluxes encouraged further application of these scintillometers in separate experiments.
Comparison of the color of natural teeth measured by a colorimeter and Shade Vision System.
Cho, Byeong-Hoon; Lim, Yong-Kyu; Lee, Yong-Keun
2007-10-01
The objectives were to measure the difference in the color and color parameters of natural teeth measured by a tristimulus colorimeter (CM, used as a reference) and Shade Vision System (SV), and to determine the influence of color parameters on the color difference between the values measured by two instruments. Color of 12 maxillary and mandibular anterior teeth was measured by CM and SV for 47 volunteers (number of teeth=564). Color parameters such as CIE L*, a* and b* values, chroma and hue angle measured by two instruments were compared. Chroma was calculated as C*ab=(a*2 = b*2)1/2, and hue angle was calculated as h degrees =arctan(b*/a*). The influence of color parameters measured by CM on the color difference (DeltaE*(ab)) between the values measured by two instruments was analyzed with multiple regression analysis (alpha=0.01). Mean DeltaE*(ab) value between the values measured by two instruments was 21.7 (+/-3.7), and the mean difference in lightness (CIE L*) and chroma was 16.2 (+/-3.9) and 13.2 (+/-3.0), respectively. Difference in hue angle was high as 132.7 (+/-53.3) degrees . Except for the hue angle, all the color parameters showed significant correlations and the coefficient of determination (r(2)) was in the range of 0.089-0.478. Based on multiple regression analysis, the standardized partial correlation coefficient (beta) of the included predictors for the color difference was -0.710 for CIE L* and -0.300 for C*(ab) (p<0.01). All the color parameters showed significant but weak correlations except for hue angle. When lightness and chroma of teeth were high, color difference between the values measured by two instruments was small. Clinical accuracy of two instruments should be investigated further.
Software thresholds alter the bias of actigraphy for monitoring sleep in team-sport athletes.
Fuller, Kate L; Juliff, Laura; Gore, Christopher J; Peiffer, Jeremiah J; Halson, Shona L
2017-08-01
Actical ® actigraphy is commonly used to monitor athlete sleep. The proprietary software, called Actiware ® , processes data with three different sleep-wake thresholds (Low, Medium or High), but there is no standardisation regarding their use. The purpose of this study was to examine validity and bias of the sleep-wake thresholds for processing Actical ® sleep data in team sport athletes. Validation study comparing actigraph against accepted gold standard polysomnography (PSG). Sixty seven nights of sleep were recorded simultaneously with polysomnography and Actical ® devices. Individual night data was compared across five sleep measures for each sleep-wake threshold using Actiware ® software. Accuracy of each sleep-wake threshold compared with PSG was evaluated from mean bias with 95% confidence limits, Pearson moment-product correlation and associated standard error of estimate. The Medium threshold generated the smallest mean bias compared with polysomnography for total sleep time (8.5min), sleep efficiency (1.8%) and wake after sleep onset (-4.1min); whereas the Low threshold had the smallest bias (7.5min) for wake bouts. Bias in sleep onset latency was the same across thresholds (-9.5min). The standard error of the estimate was similar across all thresholds; total sleep time ∼25min, sleep efficiency ∼4.5%, wake after sleep onset ∼21min, and wake bouts ∼8 counts. Sleep parameters measured by the Actical ® device are greatly influenced by the sleep-wake threshold applied. In the present study the Medium threshold produced the smallest bias for most parameters compared with PSG. Given the magnitude of measurement variability, confidence limits should be employed when interpreting changes in sleep parameters. Copyright © 2017 Sports Medicine Australia. All rights reserved.
Gain and saturation energy measurements in low pressure longitudinally excited N 2-lasers
NASA Astrophysics Data System (ADS)
Ghoreyshi, S.; Rahimian, K.; Hariri, Akbar
2004-08-01
A flat-plate Blumlein circuit has been used for operating a low pressure longitudinally excited oscillator-amplifier N 2-laser at 14 kV input voltage (LE-LE type). For investigating the effect of the excitation length on the laser performances, various amplifiers made of glass tubes of different lengths ranging from 15.5 to 35 cm with 4 mm inner bore diameters have been used. The measurements have been carried out for the laser parameters: small signal gain, and saturation energy density; and the laser beam divergence. Details of our measurements are presented. The results of our measurements have also been compared with the reported values of laser parameters in TE-TEA and LE N 2-laser configurations.
ERIC Educational Resources Information Center
Klein, Harriet B.; McAllister Byun, Tara; Davidson, Lisa; Grigos, Maria I.
2013-01-01
Purpose: This study explored relationships among perceptual, ultrasound, and acoustic measurements of children's correct and misarticulated /r/ sounds. Longitudinal data documenting changes across these parameters were collected from 2 children who acquired /r/ over a period of intervention and were compared with data from children with typical…
Comparative fiber evaluation of the mesdan aqualab microwave moisture measurement instrument
USDA-ARS?s Scientific Manuscript database
Moisture is a key cotton fiber parameter, as it can impact the fiber quality and the processing of cotton fiber. The Mesdan Aqualab is a microwave-based fiber moisture measurement instrument for samples with moderate sample size. A program was implemented to determine the capabilities of the Aqual...
What measurements of neutrino neutral current events can reveal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gandhi, Raj; Kayser, Boris; Prakash, Suprabh
Here, we show that neutral current (NC) measurements at neutrino detectors can play a valuable role in the search for new physics. Such measurements have certain intrinsic features and advantages that can fruitfully be combined with the usual well-studied charged lepton detection channels in order to probe the presence of new interactions or new light states. In addition to the fact that NC events are immune to uncertainties in standard model neutrino mixing and mass parameters, they can have small matter effects and superior rates since all three flavours participate. We also show, as a general feature, that NC measurementsmore » provide access to different combinations of CP phases and mixing parameters compared to CC measurements at both long and short baseline experiments. Using the Deep Underground Neutrino Experiment (DUNE) as an illustrative setting, we demonstrate the capability of NC measurements to break degeneracies arising in CC measurements, allowing us, in principle, to distinguish between new physics that violates three flavour unitarity and that which does not. Finally, we show that NC measurements can enable us to restrict new physics parameters that are not easily constrained by CC measurements.« less
What measurements of neutrino neutral current events can reveal
Gandhi, Raj; Kayser, Boris; Prakash, Suprabh; ...
2017-11-29
Here, we show that neutral current (NC) measurements at neutrino detectors can play a valuable role in the search for new physics. Such measurements have certain intrinsic features and advantages that can fruitfully be combined with the usual well-studied charged lepton detection channels in order to probe the presence of new interactions or new light states. In addition to the fact that NC events are immune to uncertainties in standard model neutrino mixing and mass parameters, they can have small matter effects and superior rates since all three flavours participate. We also show, as a general feature, that NC measurementsmore » provide access to different combinations of CP phases and mixing parameters compared to CC measurements at both long and short baseline experiments. Using the Deep Underground Neutrino Experiment (DUNE) as an illustrative setting, we demonstrate the capability of NC measurements to break degeneracies arising in CC measurements, allowing us, in principle, to distinguish between new physics that violates three flavour unitarity and that which does not. Finally, we show that NC measurements can enable us to restrict new physics parameters that are not easily constrained by CC measurements.« less
NASA Astrophysics Data System (ADS)
Brunner, Philip; Doherty, J.; Simmons, Craig T.
2012-07-01
The data set used for calibration of regional numerical models which simulate groundwater flow and vadose zone processes is often dominated by head observations. It is to be expected therefore, that parameters describing vadose zone processes are poorly constrained. A number of studies on small spatial scales explored how additional data types used in calibration constrain vadose zone parameters or reduce predictive uncertainty. However, available studies focused on subsets of observation types and did not jointly account for different measurement accuracies or different hydrologic conditions. In this study, parameter identifiability and predictive uncertainty are quantified in simulation of a 1-D vadose zone soil system driven by infiltration, evaporation and transpiration. The worth of different types of observation data (employed individually, in combination, and with different measurement accuracies) is evaluated by using a linear methodology and a nonlinear Pareto-based methodology under different hydrological conditions. Our main conclusions are (1) Linear analysis provides valuable information on comparative parameter and predictive uncertainty reduction accrued through acquisition of different data types. Its use can be supplemented by nonlinear methods. (2) Measurements of water table elevation can support future water table predictions, even if such measurements inform the individual parameters of vadose zone models to only a small degree. (3) The benefits of including ET and soil moisture observations in the calibration data set are heavily dependent on depth to groundwater. (4) Measurements of groundwater levels, measurements of vadose ET or soil moisture poorly constrain regional groundwater system forcing functions.
Luo, Rutao; Piovoso, Michael J.; Martinez-Picado, Javier; Zurakowski, Ryan
2012-01-01
Mathematical models based on ordinary differential equations (ODE) have had significant impact on understanding HIV disease dynamics and optimizing patient treatment. A model that characterizes the essential disease dynamics can be used for prediction only if the model parameters are identifiable from clinical data. Most previous parameter identification studies for HIV have used sparsely sampled data from the decay phase following the introduction of therapy. In this paper, model parameters are identified from frequently sampled viral-load data taken from ten patients enrolled in the previously published AutoVac HAART interruption study, providing between 69 and 114 viral load measurements from 3–5 phases of viral decay and rebound for each patient. This dataset is considerably larger than those used in previously published parameter estimation studies. Furthermore, the measurements come from two separate experimental conditions, which allows for the direct estimation of drug efficacy and reservoir contribution rates, two parameters that cannot be identified from decay-phase data alone. A Markov-Chain Monte-Carlo method is used to estimate the model parameter values, with initial estimates obtained using nonlinear least-squares methods. The posterior distributions of the parameter estimates are reported and compared for all patients. PMID:22815727
Weak-value amplification and optimal parameter estimation in the presence of correlated noise
NASA Astrophysics Data System (ADS)
Sinclair, Josiah; Hallaji, Matin; Steinberg, Aephraim M.; Tollaksen, Jeff; Jordan, Andrew N.
2017-11-01
We analytically and numerically investigate the performance of weak-value amplification (WVA) and related parameter estimation methods in the presence of temporally correlated noise. WVA is a special instance of a general measurement strategy that involves sorting data into separate subsets based on the outcome of a second "partitioning" measurement. Using a simplified correlated noise model that can be analyzed exactly together with optimal statistical estimators, we compare WVA to a conventional measurement method. We find that WVA indeed yields a much lower variance of the parameter of interest than the conventional technique does, optimized in the absence of any partitioning measurements. In contrast, a statistically optimal analysis that employs partitioning measurements, incorporating all partitioned results and their known correlations, is found to yield an improvement—typically slight—over the noise reduction achieved by WVA. This result occurs because the simple WVA technique is not tailored to any specific noise environment and therefore does not make use of correlations between the different partitions. We also compare WVA to traditional background subtraction, a familiar technique where measurement outcomes are partitioned to eliminate unknown offsets or errors in calibration. Surprisingly, for the cases we consider, background subtraction turns out to be a special case of the optimal partitioning approach, possessing a similar typically slight advantage over WVA. These results give deeper insight into the role of partitioning measurements (with or without postselection) in enhancing measurement precision, which some have found puzzling. They also resolve previously made conflicting claims about the usefulness of weak-value amplification to precision measurement in the presence of correlated noise. We finish by presenting numerical results to model a more realistic laboratory situation of time-decaying correlations, showing that our conclusions hold for a wide range of statistical models.
NASA Astrophysics Data System (ADS)
Gugsa, Solomon A.; Davies, Angela
2005-08-01
Characterizing an aspheric micro lens is critical for understanding the performance and providing feedback to the manufacturing. We describe a method to find the best-fit conic of an aspheric micro lens using a least squares minimization and Monte Carlo analysis. Our analysis is based on scanning white light interferometry measurements, and we compare the standard rapid technique where a single measurement is taken of the apex of the lens to the more time-consuming stitching technique where more surface area is measured. Both are corrected for tip/tilt based on a planar fit to the substrate. Four major parameters and their uncertainties are estimated from the measurement and a chi-square minimization is carried out to determine the best-fit conic constant. The four parameters are the base radius of curvature, the aperture of the lens, the lens center, and the sag of the lens. A probability distribution is chosen for each of the four parameters based on the measurement uncertainties and a Monte Carlo process is used to iterate the minimization process. Eleven measurements were taken and data is also chosen randomly from the group during the Monte Carlo simulation to capture the measurement repeatability. A distribution of best-fit conic constants results, where the mean is a good estimate of the best-fit conic and the distribution width represents the combined measurement uncertainty. We also compare the Monte Carlo process for the stitched data and the not stitched data. Our analysis allows us to analyze the residual surface error in terms of Zernike polynomials and determine uncertainty estimates for each coefficient.
Bolesta, Michael J; Winslow, Lauren; Gill, Kevin
2010-06-01
A comparison of measurements of degenerative spondylolisthesis made on film and on computer workstations. To determine whether the 2 methodologies are comparable in some of the parameters used to assess lumbar degenerative spondylolisthesis. Digital radiology has been replacing analog radiographs. In scoliosis, several studies have shown that measurements made on digital and analog films are similar and that they are also similar to those made on computer workstations. Such work has not been done in spondylolisthesis. Twenty-four cases of lumbar degenerative spondylolisthesis were identified from our clinic practice. Three observers measured anterior displacement, sagittal rotation, and lumbar lordosis on digital films using the same protractor and pencil. The same parameters were measured on the same studies at clinical workstations. All measurements were repeated 2 weeks later. A statistician determined the intra and interobserver reliability of the 2 measurement methods and the degree of agreement between the 2 methods. The differences between the first and second readings did reach statistical significance in some cases, but none of them were large enough to be clinically meaningful. The interclass correlation coefficients (ICCs) were >or=0.80 except for one (0.67). The difference among the 3 observers was similarly statistically significant in a few instances but not enough to influence clinical decisions and with good ICCs (0.67 and better). Similarly, the differences in the 2 methods were small, and ICCs ranged from 0.69 to 0.98. This study supports the use of computer workstation measurements in lumbar degenerative spondylolisthesis. The parameters used in this study were comparable, whether measured on film or at clinical workstations.
Dark energy equation of state parameter and its evolution at low redshift
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, Ashutosh; Sangwan, Archana; Jassal, H.K., E-mail: ashutosh_tripathi@fudan.edu.cn, E-mail: archanakumari@iisermohali.ac.in, E-mail: hkjassal@iisermohali.ac.in
In this paper, we constrain dark energy models using a compendium of observations at low redshifts. We consider the dark energy as a barotropic fluid, with the equation of state a constant as well the case where dark energy equation of state is a function of time. The observations considered here are Supernova Type Ia data, Baryon Acoustic Oscillation data and Hubble parameter measurements. We compare constraints obtained from these data and also do a combined analysis. The combined observational constraints put strong limits on variation of dark energy density with redshift. For varying dark energy models, the range ofmore » parameters preferred by the supernova type Ia data is in tension with the other low redshift distance measurements.« less
Nakagawa, Masataka; Namimoto, Tomohiro; Shimizu, Kie; Morita, Kosuke; Sakamoto, Fumi; Oda, Seitaro; Nakaura, Takeshi; Utsunomiya, Daisuke; Shiraishi, Shinya; Yamashita, Yasuyuki
2017-07-01
To determine the utility of liver T1-mapping on gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA) enhanced magnetic resonance (MR) imaging for the measurement of liver functional reserve compared with the signal intensity (SI) based parameters, technetium-99m-galactosyl serum albumin ( 99m Tc-GSA) scintigraphy and indocyanine green (ICG) clearance. This retrospective study included 111 patients (Child-Pugh-A 90; -B 21) performed with both Gd-EOB-DTPA enhanced liver MR imaging and 99m Tc-GSA (76 patients with ICG). Receiver operating characteristic (ROC) curve analysis was performed to compare diagnostic performances of T1-relaxation-time parameters [pre-(T1pre) and post-contrast (T1hb) Gd-EOB-DTPA], SI based parameters [relative enhancement (RE), liver-to-muscle-ratio (LMR), liver-to-spleen-ratio (LSR)] and 99m Tc-GSA scintigraphy blood clearance index (HH15)] for Child-Pugh classification. Pearson's correlation was used for comparisons among T1-relaxation-time parameters, SI-based parameters, HH15 and ICG. A significant difference was obtained for Child-Pugh classification with T1hb, ΔT1, all SI based parameters and HH15. T1hb had the highest AUC followed by RE, LMR, LSR, ΔT1, HH15 and T1pre. The correlation coefficients with HH15 were T1pre 0.22, T1hb 0.53, ΔT1 -0.38 of T1 relaxation parameters; RE -0.44, LMR -0.45, LSR -0.43 of SI-based parameters. T1hb was highest for correlation with HH15. The correlation coefficients with ICG were T1pre 0.29, T1hb 0.64, ΔT1 -0.42 of T1 relaxation parameters; RE -0.50, LMR -0.61, LSR -0.58 of SI-based parameters; 0.64 of HH15. Both T1hb and HH15 were highest for correlation with ICG. T1 relaxation time at post-contrast of Gd-EOB-DTPA (T1hb) was strongly correlated with ICG clearance and moderately correlated HH15 with 99m Tc-GSA. T1hb has the potential to provide robust parameter of liver functional reserve. Copyright © 2017 Elsevier B.V. All rights reserved.
Fafin-Lefevre, Mélanie; Morlais, Fabrice; Guittet, Lydia; Clin, Bénédicte; Launoy, Guy; Galateau-Sallé, Françoise; Plancoulaine, Benoît; Herlin, Paulette; Letourneux, Marc
2011-08-01
To identify which morphologic or densitometric parameters are modified in cell nuclei from bronchopulmonary cancer based on 18 parameters involving shape, intensity, chromatin, texture, and DNA content and develop a bronchopulmonary cancer screening method relying on analysis of sputum sample cell nuclei. A total of 25 sputum samples from controls and 22 bronchial aspiration samples from patients presenting with bronchopulmonary cancer who were professionally exposed to cancer were used. After Feulgen staining, 18 morphologic and DNA content parameters were measured on cell nuclei, via image cytom- etry. A method was developed for analyzing distribution quantiles, compared with simply interpreting mean values, to characterize morphologic modifications in cell nuclei. Distribution analysis of parameters enabled us to distinguish 13 of 18 parameters that demonstrated significant differences between controls and cancer cases. These parameters, used alone, enabled us to distinguish two population types, with both sensitivity and specificity > 70%. Three parameters offered 100% sensitivity and specificity. When mean values offered high sensitivity and specificity, comparable or higher sensitivity and specificity values were observed for at least one of the corresponding quantiles. Analysis of modification in morphologic parameters via distribution analysis proved promising for screening bronchopulmonary cancer from sputum.
Testing the Visual Soil Assessment tool on Estonian farm fields
NASA Astrophysics Data System (ADS)
Reintam, Endla; Are, Mihkel; Selge, Are
2017-04-01
Soil quality estimation plays important role in decision making on farm as well on policy level. Sustaining the production ability and good health of the soil the chemical, physical and biological indicators should be taken into account. The system to use soil chemical parameters is usually quite well established in most European counties, including Estonia. However, measuring soil physical properties, such bulk density, porosity, penetration resistance, structural stability ect is time consuming, needs special tools and is highly weather dependent. In that reason these parameters are excluded from controllable quality parameters in policy in Estonia. Within the project "Interactive Soil Quality Assessment in Europe and China for Agricultural Productivity and Environmental Resilience" (iSQAPER) the visual soil assessment (VSA) tool was developed for easy detection of soil quality as well the different soil friendly agricultural management practices (AMP) were detected. The aim of current study was to test the VSA tool on Estonian farm fields under different management practices and compare the results with laboratory measurements. The main focus was set on soil physical parameters. Next to the VSA, the undisturbed soil samples were collected from the depth of 5-10 cm and 25-30 cm. The study revealed that results of a visually assessed soil physical parameters, such a soil structure, soil structural stability, soil porosity, presence of tillage pan, were confirmed by laboratory measurements in most cases. Soil water stable structure measurement on field (on 1 cm2 net in one 1 l box with 4-6 cm air dry clods for 5-10 min) underestimated very well structured soil on grassland and overestimated the structure aggregates stability of compacted soil. The slightly better soil quality was detected under no-tillage compared to ploughed soils. However, the ploughed soil got higher quality points compared with minimum tillage. The slurry application (organic manuring) had controversial impact - it increased the number of earthworms but decreased soil structural stability. Even the manuring with slurry increases organic matter amount in the soil, the compaction due to the use of heavy machinery during the application, especially on wet soil, reduces the positive effect of slurry.
Determination of power system component parameters using nonlinear dead beat estimation method
NASA Astrophysics Data System (ADS)
Kolluru, Lakshmi
Power systems are considered the most complex man-made wonders in existence today. In order to effectively supply the ever increasing demands of the consumers, power systems are required to remain stable at all times. Stability and monitoring of these complex systems are achieved by strategically placed computerized control centers. State and parameter estimation is an integral part of these facilities, as they deal with identifying the unknown states and/or parameters of the systems. Advancements in measurement technologies and the introduction of phasor measurement units (PMU) provide detailed and dynamic information of all measurements. Accurate availability of dynamic measurements provides engineers the opportunity to expand and explore various possibilities in power system dynamic analysis/control. This thesis discusses the development of a parameter determination algorithm for nonlinear power systems, using dynamic data obtained from local measurements. The proposed algorithm was developed by observing the dead beat estimator used in state space estimation of linear systems. The dead beat estimator is considered to be very effective as it is capable of obtaining the required results in a fixed number of steps. The number of steps required is related to the order of the system and the number of parameters to be estimated. The proposed algorithm uses the idea of dead beat estimator and nonlinear finite difference methods to create an algorithm which is user friendly and can determine the parameters fairly accurately and effectively. The proposed algorithm is based on a deterministic approach, which uses dynamic data and mathematical models of power system components to determine the unknown parameters. The effectiveness of the algorithm is tested by implementing it to identify the unknown parameters of a synchronous machine. MATLAB environment is used to create three test cases for dynamic analysis of the system with assumed known parameters. Faults are introduced in the virtual test systems and the dynamic data obtained in each case is analyzed and recorded. Ideally, actual measurements are to be provided to the algorithm. As the measurements are not readily available the data obtained from simulations is fed into the determination algorithm as inputs. The obtained results are then compared to the original (or assumed) values of the parameters. The results obtained suggest that the algorithm is able to determine the parameters of a synchronous machine when crisp data is available.
Improving the twilight model for polar cap absorption nowcasts
NASA Astrophysics Data System (ADS)
Rogers, N. C.; Kero, A.; Honary, F.; Verronen, P. T.; Warrington, E. M.; Danskin, D. W.
2016-11-01
During solar proton events (SPE), energetic protons ionize the polar mesosphere causing HF radio wave attenuation, more strongly on the dayside where the effective recombination coefficient, αeff, is low. Polar cap absorption models predict the 30 MHz cosmic noise absorption, A, measured by riometers, based on real-time measurements of the integrated proton flux-energy spectrum, J. However, empirical models in common use cannot account for regional and day-to-day variations in the daytime and nighttime profiles of αeff(z) or the related sensitivity parameter, m=A>/&sqrt;J. Large prediction errors occur during twilight when m changes rapidly, and due to errors locating the rigidity cutoff latitude. Modeling the twilight change in m as a linear or Gauss error-function transition over a range of solar-zenith angles (χl < χ < χu) provides a better fit to measurements than selecting day or night αeff profiles based on the Earth-shadow height. Optimal model parameters were determined for several polar cap riometers for large SPEs in 1998-2005. The optimal χl parameter was found to be most variable, with smaller values (as low as 60°) postsunrise compared with presunset and with positive correlation between riometers over a wide area. Day and night values of m exhibited higher correlation for closely spaced riometers. A nowcast simulation is presented in which rigidity boundary latitude and twilight model parameters are optimized by assimilating age-weighted measurements from 25 riometers. The technique reduces model bias, and root-mean-square errors are reduced by up to 30% compared with a model employing no riometer data assimilation.
Differences in ocular parameters between diurnal and nocturnal raptors.
Beckwith-Cohen, Billie; Horowitz, Igal; Bdolah-Abram, Tali; Lublin, Avishai; Ofri, Ron
2015-01-01
To establish and compare normal ocular parameters between and within diurnal and nocturnal raptor groups. Eighty-eight ophthalmically normal raptors of six nocturnal and 11 diurnal species were studied. Tear production was measured using Schirmer tear test (STT) and phenol red thread test (PRTT), and applanation tonometry was conducted. Ultrasonographic measurements of axial length (AL), mediolateral axis (ML), vitreous body (VB), and pecten length (PL) were recorded, and conjunctival cultures were obtained. A weak correlation (R = 0.312, P = 0.006) was found between PRTT and STT. Tear production was significantly lower in nocturnal species (P < 0.001), but no difference was observed in intraocular pressure (IOP). VB and PL were significantly longer in diurnals (P < 0.001 and P = 0.021, respectively), and no significant difference was observed in AL and ML. When comparing results within these groups, there was a significant difference between most species for all parameters except IOP. Fifty-one percent of the examined raptors were positive for mycology or bacteriology, either on culture or PCR. The most common infectious agent isolated was Staphylococcus spp. Phenol red thread test and STT are both valid methods to measure tear production; however, a separate baseline must be determined for each species using these methods, as the results of one method cannot be extrapolated to the other. Due to significant differences observed within diurnal and nocturnal species, it appears that a more intricate division should be used when comparing these parameters for raptors, and the classification of diurnal or nocturnal holds little significance in the baseline of these data. © 2013 American College of Veterinary Ophthalmologists.
Auricular anthropometry of Hong Kong Chinese babies.
Fok, T F; Hon, K L; So, H K; Ng, P C; Wong, E; Lee, A K Y; Chang, A
2004-02-01
To provide a database of the auricular measurements of Chinese infants born in Hong Kong. Prospective cross-sectional study. A total of 2384 healthy singleton, born consecutively at the Prince of Wales Hospital and the Union Hospital from October 1998 to September 2000, were included in the study. The range of gestation was 33-42 weeks. Measurements included ear width (EW), ear length (EL) and ear position (EP). The data show generally higher values for males in the parameters measured. When compared with previously published data for Caucasian and Jordanian term babies, Chinese babies have shorter EL. The ears were within normal position in nearly all our infants. The human ear appears to grow in a remarkably constant fashion. This study establishes the first set of gestational age-specific standard of the ear parameters for Chinese new-borns, potentially enabling early syndromal diagnosis. There are significant inter-racial differences in these ear parameters.
Gamma dosimetric parameters in some skeletal muscle relaxants
NASA Astrophysics Data System (ADS)
Manjunatha, H. C.
2017-09-01
We have studied the attenuation of gamma radiation of energy ranging from 84 keV to 1330 keV (^{170}Tm, ^{22}Na,^{137}Cs, and ^{60}Co) in some commonly used skeletal muscle relaxants such as tubocurarine chloride, gallamine triethiodide, pancuronium bromide, suxamethonium bromide and mephenesin. The mass attenuation coefficient is measured from the attenuation experiment. In the present work, we have also proposed the direct relation between mass attenuation coefficient (μ /ρ ) and mass energy absorption coefficient (μ _{en}/ρ ) based on the nonlinear fitting procedure. The gamma dosimetric parameters such as mass energy absorption coefficient (μ _{en}/ρ ), effective atomic number (Z_{eff}), effective electron density (N_{el}), specific γ-ray constant, air kerma strength and dose rate are evaluated from the measured mass attentuation coefficient. These measured gamma dosimetric parameters are compared with the theoretical values. The measured values agree with the theoretical values. The studied gamma dosimetric values for the relaxants are useful in medical physics and radiation medicine.
Yang, Qing-Song; Yu, Ya-Jie; Li, Shu-Ning; Liu, Juan; Hao, Ying-Juan
2012-08-01
Copernicus optical coherence tomography (SOCT) is a new, ultra high-speed and high-resolution instrument available for clinical evaluation of optic nerve. The purpose of the study was to compare the agreements between SOCT and Heidelberg retinal tomography (HRT). A total of 44 healthy normal volunteers were recruited in this study. One eye in each subject was selected randomly. Agreement between SOCT and HRT-3 in measuring optic disc area was assessed using Bland-Altman plots. Relationships between measurements of optic nerve head parameter obtained by SOCT and HRT-3 were assessed by Pearson correlation. There was no significant difference in the average cup area (0.306 vs. 0.355 mm, P = 0.766), cup volume (0.158 vs. 0.130 mm, P = 0.106) and cup/disc ration (0.394 vs. 0.349 mm, P = 0.576) measured by the two instruments. However, other optic disc parameters from SOCT were significantly lower compared with HRT-3. The Bland-Altman plot revealed good agreement of cup area and cup volume measured by SOCT and HRT-3. Bad agreement of disc area, rim area, rim volume and cup/disc ratio were found between SOCT and HRT-3. The highest correlations between the two instruments were observed for cup area (r(2) = 0.783, P = 0.000) and cup/disc ratio (r(2) = 0.669, P = 0.000), whereas the lowest correlation was observed for disc area (r(2) = 0.100, P = 0.037), rim area (r(2) = 0.275, P = 0.000), cup volume (r(2) = 0.005, P = 0.391) and rim volume (r(2) = 0.021, P = 0.346). There were poor agreements between SOCT and HRT-3 for measurement of optic nerve parameters except cup area and cup volume. Measurement results of the two instruments are not interchangeable.
NASA Technical Reports Server (NTRS)
Sheives, T. C.
1974-01-01
Remote identification and measurement of subsurface water turbidity and oil on water was accomplished with analytical models which describe the backscatter from smooth surface turbid water, including single scatter and multiple scatter effects. Lidar measurements from natural waterways are also presented and compared with ground observations of several physical water quality parameters.
Three-dimensional measurement of femur based on structured light scanning
NASA Astrophysics Data System (ADS)
Li, Jie; Ouyang, Jianfei; Qu, Xinghua
2009-12-01
Osteometry is fundamental to study the human skeleton. It has been widely used in palaeoanthropology, bionics, and criminal investigation for more than 200 years. The traditional osteometry is a simple 1-dimensional measurement that can only get 1D size of the bones in manual step-by-step way, even though there are more than 400 parameters to be measured. For today's research and application it is significant and necessary to develop an advanced 3-dimensional osteometry technique. In this paper a new 3D osteometry is presented, which focuses on measurement of the femur, the largest tubular bone in human body. 3D measurement based on the structured light scanning is developed to create fast and precise measurement of the entire body of the femur. The cloud data and geometry model of the sample femur is established in mathematic, accurate and fast way. More than 30 parameters are measured and compared with each other. The experiment shows that the proposed method can meet traditional osteometry and obtain all 1D geometric parameters of the bone at the same time by the mathematics model, such as trochanter-lateral condyle length, superior breadth of shaft, and collo-diaphyseal angle, etc. In the best way, many important geometric parameters that are very difficult to measure by existing osteometry, such as volume, surface area, and curvature of the bone, can be obtained very easily. The overall measuring error is less than 0.1mm.
Three-dimensional measurement of femur based on structured light scanning
NASA Astrophysics Data System (ADS)
Li, Jie; Ouyang, Jianfei; Qu, Xinghua
2010-03-01
Osteometry is fundamental to study the human skeleton. It has been widely used in palaeoanthropology, bionics, and criminal investigation for more than 200 years. The traditional osteometry is a simple 1-dimensional measurement that can only get 1D size of the bones in manual step-by-step way, even though there are more than 400 parameters to be measured. For today's research and application it is significant and necessary to develop an advanced 3-dimensional osteometry technique. In this paper a new 3D osteometry is presented, which focuses on measurement of the femur, the largest tubular bone in human body. 3D measurement based on the structured light scanning is developed to create fast and precise measurement of the entire body of the femur. The cloud data and geometry model of the sample femur is established in mathematic, accurate and fast way. More than 30 parameters are measured and compared with each other. The experiment shows that the proposed method can meet traditional osteometry and obtain all 1D geometric parameters of the bone at the same time by the mathematics model, such as trochanter-lateral condyle length, superior breadth of shaft, and collo-diaphyseal angle, etc. In the best way, many important geometric parameters that are very difficult to measure by existing osteometry, such as volume, surface area, and curvature of the bone, can be obtained very easily. The overall measuring error is less than 0.1mm.
NASA Astrophysics Data System (ADS)
Pakula, Anna; Tomczewski, Slawomir; Skalski, Andrzej; Biało, Dionizy; Salbut, Leszek
2010-05-01
This paper presents novel application of Low Coherence Interferometry (LCI) in measurements of characteristic parameters as circular pitch, foot diameter, heads diameter, in extremely small cogged wheels (cogged wheel diameter lower than θ=3 mm and module m = 0.15) produced from metal and ceramics. The most interesting issue concerning small diameter cogged wheels occurs during their production. The characteristic parameters of the wheel depend strongly on the manufacturing process and while inspecting small diameter wheels the shrinkage during the cast varies with the slight change of fabrication process. In the paper the LCI interferometric Twyman - Green setup with pigtailed high power light emitting diode, for cogged wheels measurement, is described. Due to its relatively big field of view the whole wheel can be examined in one measurement, without the necessity of numerical stitching. For purposes of small cogged wheel's characteristic parameters measurement the special binarization algorithm was developed and successfully applied. At the end the results of measurement of heads and foot diameters of two cogged wheels obtained by proposed LCI setup are presented and compared with the results obtained by the commercial optical profiler. The results of examination of injection moulds used for fabrication of measured cogged wheels are also presented. Additionally, the value of cogged wheels shrinkage is calculated as a conclusion for obtained results. Proposed method is suitable for complex measurements of small diameter cogged wheels with low module especially when there are no measurements standards for such objects.
Virtual IED sensor at an rf-biased electrode in low-pressure plasma
NASA Astrophysics Data System (ADS)
Bogdanova, Maria; Lopaev, Dmitry; Zyryanov, Sergey; Rakhimov, Alexander
2016-09-01
The majority of present-day technologies resort to ion-assisted processes in rf low-pressure plasma. In order to control the process precisely, the energy distribution of ions (IED) bombarding the sample placed on the rf-biased electrode should be tracked. In this work the ``Virtual IED sensor'' concept is considered. The idea is to obtain the IED ``virtually'' from the plasma sheath model including a set of externally measurable discharge parameters. The applicability of the ``Virtual IED sensor'' concept was studied for dual-frequency asymmetric ICP and CCP discharges. The IED measurements were carried out in Ar and H2 plasmas in a wide range of conditions. The calculated IEDs were compared to those measured by the Retarded Field Energy Analyzer. To calibrate the ``Virtual IED sensor'', the ion flux was measured by the pulsed self-bias method and then compared to plasma density measurements by Langmuir and hairpin probes. It is shown that if there is a reliable calibration procedure, the ``Virtual IED sensor'' can be successfully realized on the basis of analytical and semianalytical plasma sheath models including measurable discharge parameters. This research is supported by Russian Science Foundation (RSF) Grant 14-12-01012.
Calculation of Optical Parameters of Liquid Crystals
NASA Astrophysics Data System (ADS)
Kumar, A.
2007-12-01
Validation of a modified four-parameter model describing temperature effect on liquid crystal refractive indices is being reported in the present article. This model is based upon the Vuks equation. Experimental data of ordinary and extraordinary refractive indices for two liquid crystal samples MLC-9200-000 and MLC-6608 are used to validate the above-mentioned theoretical model. Using these experimental data, birefringence, order parameter, normalized polarizabilities, and the temperature gradient of refractive indices are determined. Two methods: directly using birefringence measurements and using Haller's extrapolation procedure are adopted for the determination of order parameter. Both approches of order parameter calculation are compared. The temperature dependences of all these parameters are discussed. A close agreement between theory and experiment is obtained.
Yazdani, Shahin; Akbarian, Shadi; Pakravan, Mohammad; Doozandeh, Azadeh; Afrouzifar, Mohsen
2015-03-01
To compare ocular biometric parameters using low-coherence interferometry among siblings affected with different degrees of primary angle closure (PAC). In this cross-sectional comparative study, a total of 170 eyes of 86 siblings from 47 families underwent low-coherence interferometry (LenStar 900; Haag-Streit, Koeniz, Switzerland) to determine central corneal thickness, anterior chamber depth (ACD), aqueous depth (AD), lens thickness (LT), vitreous depth, and axial length (AL). Regression coefficients were applied to show the trend of the measured variables in different stages of angle closure. To evaluate the discriminative power of the parameters, receiver operating characteristic curves were used. Best cutoff points were selected based on the Youden index. Sensitivity, specificity, positive and negative predicative values, positive and negative likelihood ratios, and diagnostic accuracy were determined for each variable. All biometric parameters changed significantly from normal eyes to PAC suspects, PAC, and PAC glaucoma; there was a significant stepwise decrease in central corneal thickness, ACD, AD, vitreous depth, and AL, and an increase in LT and LT/AL. Anterior chamber depth and AD had the best diagnostic power for detecting angle closure; best levels of sensitivity and specificity were obtained with cutoff values of 3.11 mm for ACD and 2.57 mm for AD. Biometric parameters measured by low-coherence interferometry demonstrated a significant and stepwise change among eyes affected with various degrees of angle closure. Although the current classification scheme for angle closure is based on anatomical features, it has excellent correlation with biometric parameters.
NASA Astrophysics Data System (ADS)
Domanskyi, Sergii; Schilling, Joshua E.; Gorshkov, Vyacheslav; Libert, Sergiy; Privman, Vladimir
2016-09-01
We develop a theoretical approach that uses physiochemical kinetics modelling to describe cell population dynamics upon progression of viral infection in cell culture, which results in cell apoptosis (programmed cell death) and necrosis (direct cell death). Several model parameters necessary for computer simulation were determined by reviewing and analyzing available published experimental data. By comparing experimental data to computer modelling results, we identify the parameters that are the most sensitive to the measured system properties and allow for the best data fitting. Our model allows extraction of parameters from experimental data and also has predictive power. Using the model we describe interesting time-dependent quantities that were not directly measured in the experiment and identify correlations among the fitted parameter values. Numerical simulation of viral infection progression is done by a rate-equation approach resulting in a system of "stiff" equations, which are solved by using a novel variant of the stochastic ensemble modelling approach. The latter was originally developed for coupled chemical reactions.
NASA Astrophysics Data System (ADS)
Domanskyi, Sergii; Schilling, Joshua; Gorshkov, Vyacheslav; Libert, Sergiy; Privman, Vladimir
We develop a theoretical approach that uses physiochemical kinetics modelling to describe cell population dynamics upon progression of viral infection in cell culture, which results in cell apoptosis (programmed cell death) and necrosis (direct cell death). Several model parameters necessary for computer simulation were determined by reviewing and analyzing available published experimental data. By comparing experimental data to computer modelling results, we identify the parameters that are the most sensitive to the measured system properties and allow for the best data fitting. Our model allows extraction of parameters from experimental data and also has predictive power. Using the model we describe interesting time-dependent quantities that were not directly measured in the experiment and identify correlations among the fitted parameter values. Numerical simulation of viral infection progression is done by a rate-equation approach resulting in a system of ``stiff'' equations, which are solved by using a novel variant of the stochastic ensemble modelling approach. The latter was originally developed for coupled chemical reactions.
Parameter optimization for reproducible cardiac 1 H-MR spectroscopy at 3 Tesla.
de Heer, Paul; Bizino, Maurice B; Lamb, Hildo J; Webb, Andrew G
2016-11-01
To optimize data acquisition parameters in cardiac proton MR spectroscopy, and to evaluate the intra- and intersession variability in myocardial triglyceride content. Data acquisition parameters at 3 Tesla (T) were optimized and reproducibility measured using, in total, 49 healthy subjects. The signal-to-noise-ratio (SNR) and the variance in metabolite amplitude between averages were measured for: (i) global versus local power optimization; (ii) static magnetic field (B 0 ) shimming performed during free-breathing or within breathholds; (iii) post R-wave peak measurement times between 50 and 900 ms; (iv) without respiratory compensation, with breathholds and with navigator triggering; and (v) frequency selective excitation, Chemical Shift Selective (CHESS) and Multiply Optimized Insensitive Suppression Train (MOIST) water suppression techniques. Using the optimized parameters intra- and intersession myocardial triglyceride content reproducibility was measured. Two cardiac proton spectra were acquired with the same parameters and compared (intrasession reproducibility) after which the subject was removed from the scanner and placed back in the scanner and a third spectrum was acquired which was compared with the first measurement (intersession reproducibility). Local power optimization increased SNR on average by 22% compared with global power optimization (P = 0.0002). The average linewidth was not significantly different for pencil beam B 0 shimming using free-breathing or breathholds (19.1 Hz versus 17.5 Hz; P = 0.15). The highest signal stability occurred at a cardiac trigger delay around 240 ms. The mean amplitude variation was significantly lower for breathholds versus free-breathing (P = 0.03) and for navigator triggering versus free-breathing (P = 0.03) as well as for navigator triggering versus breathhold (P = 0.02). The mean residual water signal using CHESS (1.1%, P = 0.01) or MOIST (0.7%, P = 0.01) water suppression was significantly lower than using frequency selective excitation water suppression (7.0%). Using the optimized parameters an intrasession limits of agreement of the myocardial triglyceride content of -0.11% to +0.04%, and an intersession of -0.15% to +0.9%, were achieved. The coefficient of variation was 5% for the intrasession reproducibility and 6.5% for the intersession reproducibility. Using approaches designed to optimize SNR and minimize the variation in inter-average signal intensities and frequencies/phases, a protocol was developed to perform cardiac MR spectroscopy on a clinical 3T system with high reproducibility. J. Magn. Reson. Imaging 2016;44:1151-1158. © 2016 International Society for Magnetic Resonance in Medicine.
Johnson, Mark I.; Francis, Peter
2018-01-01
Context The influence of methodological parameters on the measurement of muscle contractile properties using Tensiomyography (TMG) has not been published. Objective To investigate the; (1) reliability of stimulus amplitude needed to elicit maximum muscle displacement (Dm), (2) effect of changing inter-stimulus interval on Dm (using a fixed stimulus amplitude) and contraction time (Tc), (3) the effect of changing inter-electrode distance on Dm and Tc. Design Within subject, repeated measures. Participants 10 participants for each objective. Main outcome measures Dm and Tc of the rectus femoris, measured using TMG. Results The coefficient of variance (CV) and the intra-class correlation (ICC) of stimulus amplitude needed to elicit maximum Dm was 5.7% and 0.92 respectively. Dm was higher when using an inter-electrode distance of 7cm compared to 5cm [P = 0.03] and when using an inter-stimulus interval of 10s compared to 30s [P = 0.017]. Further analysis of inter-stimulus interval data, found that during 10 repeated stimuli Tc became faster after the 5th measure when compared to the second measure [P<0.05]. The 30s inter-stimulus interval produced the most stable Tc over 10 measures compared to 10s and 5s respectively. Conclusion Our data suggest that the stimulus amplitude producing maximum Dm of the rectus femoris is reliable. Inter-electrode distance and inter-stimulus interval can significantly influence Dm and/ or Tc. Our results support the use of a 30s inter-stimulus interval over 10s or 5s. Future studies should determine the influence of methodological parameters on muscle contractile properties in a range of muscles. PMID:29451885
Qiu, Jianfeng; Wang, Guozhu; Min, Jiao; Wang, Xiaoyan; Wang, Pengcheng
2013-12-21
Our aim was to measure the performance of desktop magnetic resonance imaging (MRI) systems using specially designed phantoms, by testing imaging parameters and analysing the imaging quality. We designed multifunction phantoms with diameters of 18 and 60 mm for desktop MRI scanners in accordance with the American Association of Physicists in Medicine (AAPM) report no. 28. We scanned the phantoms with three permanent magnet 0.5 T desktop MRI systems, measured the MRI image parameters, and analysed imaging quality by comparing the data with the AAPM criteria and Chinese national standards. Image parameters included: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, signal-to-noise ratio (SNR), and image uniformity. The image parameters of three desktop MRI machines could be measured using our specially designed phantoms, and most parameters were in line with MRI quality control criterion, including: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, image uniformity and slice position accuracy. However, SNR was significantly lower than in some references. The imaging test and quality control are necessary for desktop MRI systems, and should be performed with the applicable phantom and corresponding standards.
Modal parameters of space structures in 1 G and 0 G
NASA Technical Reports Server (NTRS)
Bicos, Andrew S.; Crawley, Edward F.; Barlow, Mark S.; Van Schoor, Marthinus C.; Masters, Brett
1993-01-01
Analytic and experimental results are presented from a study of the changes in the modal parameters of space structural test articles from one- to zero-gravity. Deployable, erectable, and rotary modules was assembled to form three one- and two-dimensional structures, in which variations in bracing wire and rotary joint preload could be introduced. The structures were modeled as if hanging from a suspension system in one gravity, and unconstrained, as if free floating in zero-gravity. The analysis is compared with ground experimental measurements, which were made on a spring-wire suspension system with a nominal plunge frequency of one Hertz, and with measurements made on the Shuttle middeck. The degree of change in linear modal parameters as well as the change in nonlinear nature of the response is examined. Trends in modal parameters are presented as a function of force amplitude, joint preload, reassembly, shipset, suspension, and ambient gravity level.
Robust measurement of supernova ν e spectra with future neutrino detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikrant, Alex; Laha, Ranjan; Horiuchi, Shunsaku
Measuring precise all-flavor neutrino information from a supernova is crucial for understanding the core-collapse process as well as neutrino properties. We apply a chi-squared analysis for different detector setups to explore determination of ν e spectral parameters. Using a long-term two-dimensional core-collapse simulation with three time-varying spectral parameters, we generate mock data to examine the capabilities of the current Super-Kamiokande detector and compare the relative improvements that gadolinium, Hyper-Kamiokande, and DUNE would have. We show that in a realistic three spectral parameter framework, the addition of gadolinium to Super-Kamiokande allows for a qualitative improvement in νe determination. Efficient neutron taggingmore » will allow Hyper-Kamiokande to constrain spectral information more strongly in both the accretion and cooling phases. Overall, significant improvements will be made by Hyper-Kamiokande and DUNE, allowing for much more precise determination of ν e spectral parameters.« less
Robust measurement of supernova ν e spectra with future neutrino detectors
Nikrant, Alex; Laha, Ranjan; Horiuchi, Shunsaku
2018-01-25
Measuring precise all-flavor neutrino information from a supernova is crucial for understanding the core-collapse process as well as neutrino properties. We apply a chi-squared analysis for different detector setups to explore determination of ν e spectral parameters. Using a long-term two-dimensional core-collapse simulation with three time-varying spectral parameters, we generate mock data to examine the capabilities of the current Super-Kamiokande detector and compare the relative improvements that gadolinium, Hyper-Kamiokande, and DUNE would have. We show that in a realistic three spectral parameter framework, the addition of gadolinium to Super-Kamiokande allows for a qualitative improvement in νe determination. Efficient neutron taggingmore » will allow Hyper-Kamiokande to constrain spectral information more strongly in both the accretion and cooling phases. Overall, significant improvements will be made by Hyper-Kamiokande and DUNE, allowing for much more precise determination of ν e spectral parameters.« less
Xiong, Jianyin; Yao, Yuan; Zhang, Yinping
2011-04-15
The initial emittable concentration (C(m,0)), the diffusion coefficient (D(m)), and the material/air partition coefficient (K) are the three characteristic parameters influencing emissions of formaldehyde and volatile organic compounds (VOCs) from building materials or furniture. It is necessary to determine these parameters to understand emission characteristics and how to control them. In this paper we develop a new method, the C-history method for a closed chamber, to measure these three parameters. Compared to the available methods of determining the three parameters described in the literature, our approach has the following salient features: (1) the three parameters can be simultaneously obtained; (2) it is time-saving, generally taking less than 3 days for the cases studied (the available methods tend to need 7-28 days); (3) the maximum relative standard deviations of the measured C(m,0), D(m) and K are 8.5%, 7.7%, and 9.8%, respectively, which are acceptable for engineering applications. The new method was validated by using the characteristic parameters determined in the closed chamber experiment to predict the observed emissions in a ventilated full scale chamber experiment, proving that the approach is reliable and convincing. Our new C-history method should prove useful for rapidly determining the parameters required to predict formaldehyde and VOC emissions from building materials as well as for furniture labeling.
Software-assisted small bowel motility analysis using free-breathing MRI: feasibility study.
Bickelhaupt, Sebastian; Froehlich, Johannes M; Cattin, Roger; Raible, Stephan; Bouquet, Hanspeter; Bill, Urs; Patak, Michael A
2014-01-01
To validate a software prototype allowing for small bowel motility analysis in free breathing by comparing it to manual measurements. In all, 25 patients (15 male, 10 female; mean age 39 years) were included in this Institutional Review Board-approved, retrospective study. Magnetic resonance imaging (MRI) was performed on a 1.5T system after standardized preparation acquiring motility sequences in free breathing over 69-84 seconds. Small bowel motility was analyzed manually and with the software. Functional parameters, measurement time, and reproducibility were compared using the coefficient of variance and paired Student's t-test. Correlation was analyzed using Pearson's correlation coefficient and linear regression. The 25 segments were analyzed twice both by hand and using the software with automatic breathing correction. All assessed parameters significantly correlated between the methods (P < 0.01), but the scattering of repeated measurements was significantly (P < 0.01) lower using the software (3.90%, standard deviation [SD] ± 5.69) than manual examinations (9.77%, SD ± 11.08). The time needed was significantly less (P < 0.001) with the software (4.52 minutes, SD ± 1.58) compared to manual measurement, lasting 17.48 minutes for manual (SD ± 1.75 minutes). The use of the software proves reliable and faster small bowel motility measurements in free-breathing MRI compared to manual analyses. The new technique allows for analyses of prolonged sequences acquired in free breathing, improving the informative value of the examinations by amplifying the evaluable data. Copyright © 2013 Wiley Periodicals, Inc.
Damage detection in rotating machinery by means of entropy-based parameters
NASA Astrophysics Data System (ADS)
Tocarciuc, Alexandru; Bereteu, Liviu; ǎgǎnescu, Gheorghe Eugen, Dr
2014-11-01
The paper is proposing two new entropy-based parameters, namely Renyi Entropy Index (REI) and Sharma-Mittal Entropy Index (SMEI), for detecting the presence of failures (or damages) in rotating machinery, namely: belt structural damage, belt wheels misalignment, failure of the fixing bolt of the machine to its baseplate and eccentricities (i.e.: due to detaching a small piece of material or bad mounting of the rotating components of the machine). The algorithms to obtain the proposed entropy-based parameters are described and test data is used in order to assess their sensitivity. A vibration test bench is used for measuring the levels of vibration while artificially inducing damage. The deviation of the two entropy-based parameters is compared in two states of the vibration test bench: not damaged and damaged. At the end of the study, their sensitivity is compared to Shannon Entropic Index.
NASA Technical Reports Server (NTRS)
Shimizu, H.; Kobayasi, T.; Inaba, H.
1979-01-01
A method of remote measurement of the particle size and density distribution of water droplets was developed. In this method, the size of droplets is measured from the Mie scattering parameter which is defined as the total-to-backscattering ratio of the laser beam. The water density distribution is obtained by a combination of the Mie scattering parameter and the extinction coefficient of the laser beam. This method was examined experimentally for the mist generated by an ultrasonic mist generator and applied to clouds containing rain and snow. Compared with the conventional sampling method, the present method has advantages of remote measurement capability and improvement in accuracy.
NASA Astrophysics Data System (ADS)
Stromqvist Vetelino, Frida; Borbath, Michael R.; Andrews, Larry C.; Phillips, Ronald L.; Burdge, Geoffrey L.; Chin, Peter G.; Galus, Darren J.; Wayne, David; Pescatore, Robert; Cowan, Doris; Thomas, Frederick
2005-08-01
The Shuttle Landing Facility runway at the Kennedy Space Center in Cape Canaveral, Florida is almost 5 km long and 100 m wide. Its homogeneous environment makes it a unique and ideal place for testing and evaluating EO systems. An experiment, with the goal of characterizing atmospheric parameters on the runway, was conducted in June 2005. Weather data was collected and the refractive index structure parameter was measured with a commercial scintillometer. The inner scale of turbulence was inferred from wind speed measurements and surface roughness. Values of the crosswind speed obtained from the scintillometer were compared with wind measurements taken by a weather station.
Reliability of a Single Light Source Purkinjemeter in Pseudophakic Eyes.
Janunts, Edgar; Chashchina, Ekaterina; Seitz, Berthold; Schaeffel, Frank; Langenbucher, Achim
2015-08-01
To study the reliability of Purkinje image analysis for assessment of intraocular lens tilt and decentration in pseudophakic eyes. The study comprised 64 eyes of 39 patients. All eyes underwent phacoemulsification with intraocular lens implanted in the capsular bag. Lens decentration and tilt were measured multiple times by an infrared Purkinjemeter. A total of 396 measurements were performed 1 week and 1 month postoperatively. Lens tilt (Tx, Ty) and decentration (Dx, Dy) in horizontal and vertical directions, respectively, were calculated by dedicated software based on regression analysis for each measurement using only four images, and afterward, the data were averaged (mean values, MV) for repeated sequence of measurements. New software was designed by us for recalculating lens misalignment parameters offline, using a complete set of Purkinje images obtained through the repeated measurements (9 to 15 Purkinje images) (recalculated values, MV'). MV and MV' were compared using SPSS statistical software package. MV and MV' were found to be highly correlated for the Tx and Ty parameters (R2 > 0.9; p < 0.001), moderately correlated for the Dx parameter (R2 > 0.7; p < 0.001), and weakly correlated for the Dy parameter (R2 = 0.23; p < 0.05). Reliability was high (Cronbach α > 0.9) for all measured parameters. Standard deviation values were 0.86 ± 0.69 degrees, 0.72 ± 0.65 degrees, 0.04 ± 0.05 mm, and 0.23 ± 0.34 mm for Tx, Ty, Dx, and Dy, respectively. The Purkinjemeter demonstrated high reliability and reproducibility for lens misalignment parameters. To further improve reliability, we recommend capturing at least six Purkinje images instead of three.
Salk, Ismail; Cetin, Meral; Salk, Sultan; Cetin, Ali
2016-01-01
To determine the incidence of gynecoid pelvis by using classical criteria and measured parameters obtained from three-dimensional computed tomography (3D CT) pelvimetry in nonpregnant multiparous women who delivered vaginally. Our hospital's picture archiving and communication system was reviewed retrospectively. All adult women who had undergone CT examination with routine abdominal protocols were identified. In the pelvic inlet, midpelvis, and pelvic outlet, classical criteria and measured parameters, both alone and in combination, were used to determine the presence of gynecoid pelvis. 3D CT pelvimetry was performed on 226 women aged 23-65 years without any history of cephalopelvic disproportion and who had at least one delivery of an average fetal size (>2,500 g). The median parity was 4, and the mean (±SD) birth weight was 3,700 ± 498 g. Compared to the classical criteria, measured parameters and their combined use with the classical criteria significantly reduced the frequency of gynecoid pelvis (51.3 and 47.8%, respectively, vs. 71.6%; p = 0.001); however, there was no significant difference between the measured parameters and their combined use with classical criteria with regard to the frequencies of gynecoid pelvis (p > 0.05). With the use of measured parameters of 3D CT pelvimetry, the incidence of gynecoid pelvis reduces to a more acceptable level (51.3%) in accordance with obstetric knowledge. Since there is no considerable decrease with the addition of classical criteria, 3D CT pelvimetry alone has merit for determining a woman's pelvic capacity for obstetric needs after the improvement and standardization of measured parameters. © 2015 S. Karger AG, Basel.
Salk, Ismail; Cetin, Meral; Salk, Sultan; Cetin, Ali
2015-01-01
Objectives To determine the incidence of gynecoid pelvis by using classical criteria and measured parameters obtained from three-dimensional computed tomography (3D CT) pelvimetry in nonpregnant multiparous women who delivered vaginally. Subjects and Methods Our hospital's picture archiving and communication system was reviewed retrospectively. All adult women who had undergone CT examination with routine abdominal protocols were identified. In the pelvic inlet, midpelvis, and pelvic outlet, classical criteria and measured parameters, both alone and in combination, were used to determine the presence of gynecoid pelvis. Results 3D CT pelvimetry was performed on 226 women aged 23-65 years without any history of cephalopelvic disproportion and who had at least one delivery of an average fetal size (>2,500 g). The median parity was 4, and the mean (±SD) birth weight was 3,700 ± 498 g. Compared to the classical criteria, measured parameters and their combined use with the classical criteria significantly reduced the frequency of gynecoid pelvis (51.3 and 47.8%, respectively, vs. 71.6%; p = 0.001); however, there was no significant difference between the measured parameters and their combined use with classical criteria with regard to the frequencies of gynecoid pelvis (p > 0.05). Conclusions With the use of measured parameters of 3D CT pelvimetry, the incidence of gynecoid pelvis reduces to a more acceptable level (51.3%) in accordance with obstetric knowledge. Since there is no considerable decrease with the addition of classical criteria, 3D CT pelvimetry alone has merit for determining a woman's pelvic capacity for obstetric needs after the improvement and standardization of measured parameters. PMID:26334957
Misu, Shogo; Asai, Tsuyoshi; Ono, Rei; Sawa, Ryuichi; Tsutsumimoto, Kota; Ando, Hiroshi; Doi, Takehiko
2017-09-01
The heel is likely a suitable location to which inertial sensors are attached for the detection of gait events. However, there are few studies to detect gait events and determine temporal gait parameters using sensors attached to the heels. We developed two methods to determine temporal gait parameters: detecting heel-contact using acceleration and detecting toe-off using angular velocity data (acceleration-angular velocity method; A-V method), and detecting both heel-contact and toe-off using angular velocity data (angular velocity-angular velocity method; V-V method). The aim of this study was to examine the concurrent validity of the A-V and V-V methods against the standard method, and to compare their accuracy. Temporal gait parameters were measured in 10 younger and 10 older adults. The intra-class correlation coefficients were excellent in both methods compared with the standard method (0.80 to 1.00). The root mean square errors of stance and swing time in the A-V method were smaller than the V-V method in older adults, although there were no significant discrepancies in the other comparisons. Our study suggests that inertial sensors attached to the heels, using the A-V method in particular, provide a valid measurement of temporal gait parameters. Copyright © 2017 Elsevier B.V. All rights reserved.
The effect of music on preprocedure anxiety in Hong Kong Chinese day patients.
Lee, David; Henderson, Amanda; Shum, David
2004-03-01
To identify the effect of music on preprocedure anxiety levels of Hong Kong Chinese patients undergoing day procedures in a local community based hospital. Pre and post-test quasi experimental design with non-random assignment. A total of 113 participants were assigned to the control group or intervention group depending on the day of their procedure. Participants' anxiety levels were measured objectively by comparing their vital signs and subjectively by the Spielberger State Trait Anxiety Scale. Participants' physiological parameters (blood pressure, pulse and respiration) and State Trait Anxiety Scale were measured at two time periods. The control group undertook the usual relaxing activities provided in the waiting room compared with the intervention group who listened to music of their own choice in reclining chairs while waiting for the procedure. The physiological parameters for both the control and intervention groups dropped significantly during the waiting period, however, only the intervention group had a significant reduction in reported anxiety levels. These results suggest that providing self-selected music to day procedure patients in the preprocedure period assists in the reduction of physiological parameters and anxiety, yet, a relaxing environment can assist in the reduction of physiological parameters. The administration of self-selected music to day procedure patients in the preprocedure period can be effective in the reduction of physiological parameters and anxiety.
NASA Astrophysics Data System (ADS)
Hadia, Sarman K.; Thakker, R. A.; Bhatt, Kirit R.
2016-05-01
The study proposes an application of evolutionary algorithms, specifically an artificial bee colony (ABC), variant ABC and particle swarm optimisation (PSO), to extract the parameters of metal oxide semiconductor field effect transistor (MOSFET) model. These algorithms are applied for the MOSFET parameter extraction problem using a Pennsylvania surface potential model. MOSFET parameter extraction procedures involve reducing the error between measured and modelled data. This study shows that ABC algorithm optimises the parameter values based on intelligent activities of honey bee swarms. Some modifications have also been applied to the basic ABC algorithm. Particle swarm optimisation is a population-based stochastic optimisation method that is based on bird flocking activities. The performances of these algorithms are compared with respect to the quality of the solutions. The simulation results of this study show that the PSO algorithm performs better than the variant ABC and basic ABC algorithm for the parameter extraction of the MOSFET model; also the implementation of the ABC algorithm is shown to be simpler than that of the PSO algorithm.
Influence of spray nozzle shape upon atomization process
NASA Astrophysics Data System (ADS)
Beniuga, Marius; Mihai, Ioan
2016-12-01
The atomization process is affected by a number of operating parameters (pressure, viscosity, temperature, etc.) [1-6] and the adopted constructive solution. In this article are compared parameters of atomized liquid jet with two nozzles that have different lifespan, one being new and the other one out. The last statement shows that the second nozzle was monitored as time of operation on the one hand and on the other hand, two dimensional nozzles have been analyzed using laser profilometry. To compare the experimental parameters was carried an experimental stand to change the period and pulse width in injecting liquid through two nozzles. Atomized liquid jets were photographed and filmed quickly. Images obtained were analyzed using a Matlab code that allowed to determine a number of parameters that characterize an atomized jet. Knowing the conditions and operating parameters of atomized jet, will establish a new wastewater nozzle block of parameter values that can be implemented in controller that provides dosing of the liquid injected. Experimental measurements to observe the myriad forms of atomized droplets to a wide range of operating conditions, realized using the electronic control module.
NASA Astrophysics Data System (ADS)
Nosrati, Reyhaneh; Ramadeen, Andrew; Hu, Xudong; Woldemichael, Ermias; Kim, Siwook; Dorian, Paul; Toronov, Vladislav
2015-03-01
In this series of animal experiments on resuscitation after cardiac arrest we had a unique opportunity to measure hyperspectral near-infrared spectroscopy (hNIRS) parameters directly on the brain dura, or on the brain through the intact pig skull, and simultaneously the muscle hNIRS parameters. Simultaneously the arterial blood pressure and carotid and femoral blood flow were recorded in real time using invasive sensors. We used a novel hyperspectral signalprocessing algorithm to extract time-dependent concentrations of water, hemoglobin, and redox state of cytochrome c oxidase during cardiac arrest and resuscitation. In addition in order to assess the validity of the non-invasive brain measurements the obtained results from the open brain was compared to the results acquired through the skull. The comparison of hNIRS data acquired on brain surface and through the adult pig skull shows that in both cases the hemoglobin and the redox state cytochrome c oxidase changed in similar ways in similar situations and in agreement with blood pressure and flow changes. The comparison of simultaneously measured brain and muscle changes showed expected differences. Overall the results show feasibility of transcranial hNIRS measurements cerebral parameters including the redox state of cytochrome oxidase in human cardiac arrest patients.
Correlation and agreement of a digital and conventional method to measure arch parameters.
Nawi, Nes; Mohamed, Alizae Marny; Marizan Nor, Murshida; Ashar, Nor Atika
2018-01-01
The aim of the present study was to determine the overall reliability and validity of arch parameters measured digitally compared to conventional measurement. A sample of 111 plaster study models of Down syndrome (DS) patients were digitized using a blue light three-dimensional (3D) scanner. Digital and manual measurements of defined parameters were performed using Geomagic analysis software (Geomagic Studio 2014 software, 3D Systems, Rock Hill, SC, USA) on digital models and with a digital calliper (Tuten, Germany) on plaster study models. Both measurements were repeated twice to validate the intraexaminer reliability based on intraclass correlation coefficients (ICCs) using the independent t test and Pearson's correlation, respectively. The Bland-Altman method of analysis was used to evaluate the agreement of the measurement between the digital and plaster models. No statistically significant differences (p > 0.05) were found between the manual and digital methods when measuring the arch width, arch length, and space analysis. In addition, all parameters showed a significant correlation coefficient (r ≥ 0.972; p < 0.01) between all digital and manual measurements. Furthermore, a positive agreement between digital and manual measurements of the arch width (90-96%), arch length and space analysis (95-99%) were also distinguished using the Bland-Altman method. These results demonstrate that 3D blue light scanning and measurement software are able to precisely produce 3D digital model and measure arch width, arch length, and space analysis. The 3D digital model is valid to be used in various clinical applications.
Klipping, Christine; Marr, Joachim
2005-06-01
To compare the effect of ethinyl estradiol 20 microg/drospirenone 3 mg (EE 20 microg/DRSP 3 mg) administered according to a 24/4 regimen with ethinyl estradiol 20 microg/desogestrel 150 microg (EE 20 microg/DSG 150 microg) administered according to the conventional 21/7 regimen on lipid, carbohydrate and hemostatic parameters. In this open-label study, healthy women were randomized to EE 20 microg/DRSP 3 mg or EE 20 microg/DSG 150 microg for seven cycles. Mean differences in high-density lipoprotein (HDL)- and low-density lipoprotein (LDL)-cholesterol levels at cycle 7 compared to baseline were assessed. Secondary variables included changes in other lipid, hemostatic and carbohydrate parameters. Both treatments increased HDL-cholesterol, but decreased LDL-cholesterol by a comparable extent. Although slightly elevated in both groups, blood glucose and C-peptide levels measured during oral glucose tolerance tests were within normal reference ranges at cycle 7. Overall, the differences in lipid, hemostatic or carbohydrate parameters were not significant between the two treatments. EE 20 microg/DRSP 3 mg has a good safety profile comparable with EE 20 microg/DSG 150 microg.
Approach to in-process tool wear monitoring in drilling: Application of Kalman filter theory
NASA Astrophysics Data System (ADS)
He, Ning; Zhang, Youzhen; Pan, Liangxian
1993-05-01
The two parameters often used in adaptive control, tool wear and wear rate, are the important factors affecting machinability. In this paper, it is attempted to use the modern cybernetics to solve the in-process tool wear monitoring problem by applying the Kalman filter theory to monitor drill wear quantitatively. Based on the experimental results, a dynamic model, a measuring model and a measurement conversion model suitable for Kalman filter are established. It is proved that the monitoring system possesses complete observability but does not possess complete controllability. A discriminant for selecting the characteristic parameters is put forward. The thrust force Fz is selected as the characteristic parameter in monitoring the tool wear by this discriminant. The in-process Kalman filter drill wear monitoring system composed of force sensor microphotography and microcomputer is well established. The results obtained by the Kalman filter, the common indirect measuring method and the real drill wear measured by the aid of microphotography are compared. The result shows that the Kalman filter has high precision of measurement and the real time requirement can be satisfied.
Takeshima, Teppei; Yumura, Yasushi; Yasuda, Kengo; Sanjo, Hiroyuki; Kuroda, Shinnosuke; Yamanaka, Hiroyuki; Iwasaki, Akira
2017-01-01
This study investigated the correlation between sperm motion parameters obtained by a computer-assisted semen analyzer and levels of reactive oxygen species in unwashed semen. In total, 847 patients, except for azoospermic patients were investigated. At the time of each patient's first consultation, semen parameters were measured using SMAS™ or CellSoft 3000™, and production of reactive oxygen species was measured using a computer-driven LKB Wallac Luminometer 1251 Analyzer. The patients were divided into two groups: reactive oxygen species - positive and negative. The semen parameters within each group were measured using one of the two computer-assisted semen analyzer systems and then compared. Correlations between reactive oxygen species levels and sperm motion parameters in semen from the reactive oxygen species - positive group were also investigated. Reactive oxygen species were detected in semen samples of 282 cases (33.3%). Sperm concentration (P < 0.01; P < 0.01), motility (P < 0.01; P < 0.05), and progressive motility (P < 0.01; P < 0.01) were markedly lower in the reactive oxygen species - positive group than in the reactive oxygen species - negative group. Among the sperm motion parameters in the reactive oxygen species - positive group, sperm concentration (P < 0.01; P < 0.01), motility (P < 0.05; P < 0.01), mALH (P < 0.05; P < 0.01), and progressive motility (P < 0.05; P < 0.01) also showed inverse correlations with the logarithmic transformed reactive oxygen species levels. Therefore, this study demonstrated that excessive reactive oxygen species in semen damage sperm concentration, motility, and other sperm motion parameters.
NASA Technical Reports Server (NTRS)
Thibault, F.; Mantz, A. W.; Claveau, C.; Valentin, A.; Hurtmans, D.
2007-01-01
We present measurements of He-broadening parameters for the R(0) and O(2) lines in the fundamental band of 13CO at different temperatures between 12K and room temperature. The broadening parameters are determined, taking into account confinement narrowing, by simultaneous least-squares fitting of spectra recorded using a frequency stabilized diode laser spectrometer. The pressure broadening cross sections are deduced and compared to close-coupling calculations and earlier results obtained for rotational transitions of 12 CO.
The Modern Measurement Technology And Checking Of Shafs Parameters
NASA Astrophysics Data System (ADS)
Tichá, Šárka; Botek, Jan
2015-12-01
This paper is focused on rationalization checking parameters of shaft in companies engaged in the production of components of electric motors, wind turbines and vacuum systems. Customers increasing constantly their requirements to ensure the overall quality of the product, i.e. the quality of machining, dimensional and shape accuracy and overall purity of the subscribed products. The aim of this paper is to introduce using modern measurement technology in controlling these components and compare the results with existing control methodology. The main objective of this rationalization is to eliminate mistakes and shortcomings of current inspection methods.
Modelling and optimization of a wellhead gas flowmeter using concentric pipes
NASA Astrophysics Data System (ADS)
Nec, Yana; Huculak, Greg
2017-09-01
A novel configuration of a landfill wellhead was analysed to measure the flow rate of gas extracted from sanitary landfills. The device provides access points for pressure measurement integral to flow rate computation similarly to orifice and Venturi meters, and has the advantage of eliminating the problem of water condensation often impairing the accuracy thereof. It is proved that the proposed configuration entails comparable computational complexity and negligible sensitivity to geometric parameters. Calibration for the new device was attained using a custom optimization procedure, operating on a quadri-dimensional parameter surface evincing discontinuity and non-smoothness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerstein, Alan R.; Sayler, Bentley J.; Wunsch, Scott Edward
2010-11-01
Numerical simulations using the One-Dimensional-Turbulence model are compared to water-tank measurements [B. J. Sayler and R. E. Breidenthal, J. Geophys. Res. 103 (D8), 8827 (1998)] emulating convection and entrainment in stratiform clouds driven by cloud-top cooling. Measured dependences of the entrainment rate on Richardson number, molecular transport coefficients, and other experimental parameters are reproduced. Additional parameter variations suggest more complicated dependences of the entrainment rate than previously anticipated. A simple algebraic model indicates the ways in which laboratory and cloud entrainment behaviors might be similar and different.
Reliability of reference distances used in photogrammetry.
Aksu, Muge; Kaya, Demet; Kocadereli, Ilken
2010-07-01
To determine the reliability of the reference distances used for photogrammetric assessment. The sample consisted of 100 subjects with mean ages of 22.97 +/- 2.98 years. Five lateral and four frontal parameters were measured directly on the subjects' faces. For photogrammetric assessment, two reference distances for the profile view and three reference distances for the frontal view were established. Standardized photographs were taken and all the parameters that had been measured directly on the face were measured on the photographs. The reliability of the reference distances was checked by comparing direct and indirect values of the parameters obtained from the subjects' faces and photographs. Repeated measure analysis of variance (ANOVA) and Bland-Altman analyses were used for statistical assessment. For profile measurements, the indirect values measured were statistically different from the direct values except for Sn-Sto in male subjects and Prn-Sn and Sn-Sto in female subjects. The indirect values of Prn-Sn and Sn-Sto were reliable in both sexes. The poorest results were obtained in the indirect values of the N-Sn parameter for female subjects and the Sn-Me parameter for male subjects according to the Sa-Sba reference distance. For frontal measurements, the indirect values were statistically different from the direct values in both sexes except for one in male subjects. The indirect values measured were not statistically different from the direct values for Go-Go. The indirect values of Ch-Ch were reliable in male subjects. The poorest results were obtained according to the P-P reference distance. For profile assessment, the T-Ex reference distance was reliable for Prn-Sn and Sn-Sto in both sexes. For frontal assessment, Ex-Ex and En-En reference distances were reliable for Ch-Ch in male subjects.
Albert, Carlo; Ulzega, Simone; Stoop, Ruedi
2016-04-01
Parameter inference is a fundamental problem in data-driven modeling. Given observed data that is believed to be a realization of some parameterized model, the aim is to find parameter values that are able to explain the observed data. In many situations, the dominant sources of uncertainty must be included into the model for making reliable predictions. This naturally leads to stochastic models. Stochastic models render parameter inference much harder, as the aim then is to find a distribution of likely parameter values. In Bayesian statistics, which is a consistent framework for data-driven learning, this so-called posterior distribution can be used to make probabilistic predictions. We propose a novel, exact, and very efficient approach for generating posterior parameter distributions for stochastic differential equation models calibrated to measured time series. The algorithm is inspired by reinterpreting the posterior distribution as a statistical mechanics partition function of an object akin to a polymer, where the measurements are mapped on heavier beads compared to those of the simulated data. To arrive at distribution samples, we employ a Hamiltonian Monte Carlo approach combined with a multiple time-scale integration. A separation of time scales naturally arises if either the number of measurement points or the number of simulation points becomes large. Furthermore, at least for one-dimensional problems, we can decouple the harmonic modes between measurement points and solve the fastest part of their dynamics analytically. Our approach is applicable to a wide range of inference problems and is highly parallelizable.
NASA Astrophysics Data System (ADS)
Xiao, H.; Ren, G.; Dong, Y.; Li, H.; Xiao, S.; Wu, B.; Jian, S.
2018-06-01
A numerical analysis of a GeO2-doped single-mode optical fiber with a multi-step index core toward stimulated Brillouin scattering (SBS) based dual-parameter sensing applications is proposed. Adjusting the parameters in the fiber design, higher-order acoustic modes are sufficiently enhanced, making the fiber feasible for discriminative measurements of temperature and strain in the meantime. Numerical simulations indicate that the Brillouin frequency shifts and peak SBS efficiencies are strongly dependent on the doping concentration and the thickness of low-index ring in the proposed fiber. With appropriate structural and optical parameters, this fiber could support two distinct acoustic modes with comparable peak SBS efficiencies and well-spaced Brillouin frequency shifts. The sensing characteristics contributed by the dual-peak feature in the Brillouin gain spectrum are explored. Calculated accuracies of temperature and strain in simultaneous measurements can be up to 0.64 °C and 15.4 με, respectively. The proposed fiber might have potential applications for long-haul distributed dual-parameter simultaneous measurements.
NASA Astrophysics Data System (ADS)
Wu, Kaihua; Shao, Zhencheng; Chen, Nian; Wang, Wenjie
2018-01-01
The wearing degree of the wheel set tread is one of the main factors that influence the safety and stability of running train. Geometrical parameters mainly include flange thickness and flange height. Line structure laser light was projected on the wheel tread surface. The geometrical parameters can be deduced from the profile image. An online image acquisition system was designed based on asynchronous reset of CCD and CUDA parallel processing unit. The image acquisition was fulfilled by hardware interrupt mode. A high efficiency parallel segmentation algorithm based on CUDA was proposed. The algorithm firstly divides the image into smaller squares, and extracts the squares of the target by fusion of k_means and STING clustering image segmentation algorithm. Segmentation time is less than 0.97ms. A considerable acceleration ratio compared with the CPU serial calculation was obtained, which greatly improved the real-time image processing capacity. When wheel set was running in a limited speed, the system placed alone railway line can measure the geometrical parameters automatically. The maximum measuring speed is 120km/h.
Kaçal, Mustafa Recep; Han, İbrahim; Akman, Ferdi
2015-01-01
Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring K-shell absorption jump factors and jump ratios for Ti, Cr, Fe, Co, Ni and Cu elements. The jump factors and jump ratios for these elements were determined by measuring K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to-Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation and transmission experimental geometry. The measured values for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Donohue, James M.; Victor, Kenneth G.; Mcdaniel, James C., Jr.
1993-01-01
A computer-controlled technique, using planar laser-induced iodine fluorescence, for measuring complex compressible flowfields is presented. A new laser permits the use of a planar two-line temperature technique so that all parameters can be measured with the laser operated narrowband. Pressure and temperature measurements in a step flowfield show agreement within 10 percent of a CFD model except in regions close to walls. Deviation of near wall temperature measurements from the model was decreased from 21 percent to 12 percent compared to broadband planar temperature measurements. Computer-control of the experiment has been implemented, except for the frequency tuning of the laser. Image data storage and processing has been improved by integrating a workstation into the experimental setup reducing the data reduction time by a factor of 50.
A hybrid method of estimating pulsating flow parameters in the space-time domain
NASA Astrophysics Data System (ADS)
Pałczyński, Tomasz
2017-05-01
This paper presents a method for estimating pulsating flow parameters in partially open pipes, such as pipelines, internal combustion engine inlets, exhaust pipes and piston compressors. The procedure is based on the method of characteristics, and employs a combination of measurements and simulations. An experimental test rig is described, which enables pressure, temperature and mass flow rate to be measured within a defined cross section. The second part of the paper discusses the main assumptions of a simulation algorithm elaborated in the Matlab/Simulink environment. The simulation results are shown as 3D plots in the space-time domain, and compared with proposed models of phenomena relating to wave propagation, boundary conditions, acoustics and fluid mechanics. The simulation results are finally compared with acoustic phenomena, with an emphasis on the identification of resonant frequencies.
Nazarov, V E; Kolpakov, A B; Radostin, A V
2012-07-01
The results of experimental and theoretical studies of low-frequency nonlinear acoustics phenomena (amplitude-dependent loss, resonance frequency shifts, and a generation of second and third harmonics) in a magnesite rod resonator are presented. Acceleration and velocity oscillograms of vibrations of the free boundary of the resonator caused by harmonic excitations were measured and analyzed. A theoretical description of the observed amplitude dependences was carried out within the framework of the phenomenological state equations that contain either of the two types of hysteretic nonlinearity (elastic and inelastic). The type of hysteresis and parameters of acoustic nonlinearity of magnesite were established from comparing the experimental measurements with the theoretical dependences. The values of the parameters were anomalously high even when compared to those of other strongly nonlinear polycrystalline materials such as granite, marble, limestone, sandstone, etc.
Model selection as a science driver for dark energy surveys
NASA Astrophysics Data System (ADS)
Mukherjee, Pia; Parkinson, David; Corasaniti, Pier Stefano; Liddle, Andrew R.; Kunz, Martin
2006-07-01
A key science goal of upcoming dark energy surveys is to seek time-evolution of the dark energy. This problem is one of model selection, where the aim is to differentiate between cosmological models with different numbers of parameters. However, the power of these surveys is traditionally assessed by estimating their ability to constrain parameters, which is a different statistical problem. In this paper, we use Bayesian model selection techniques, specifically forecasting of the Bayes factors, to compare the abilities of different proposed surveys in discovering dark energy evolution. We consider six experiments - supernova luminosity measurements by the Supernova Legacy Survey, SNAP, JEDI and ALPACA, and baryon acoustic oscillation measurements by WFMOS and JEDI - and use Bayes factor plots to compare their statistical constraining power. The concept of Bayes factor forecasting has much broader applicability than dark energy surveys.
Using the in-line component for fixed-wing EM 1D inversion
NASA Astrophysics Data System (ADS)
Smiarowski, Adam
2015-09-01
Numerous authors have discussed the utility of multicomponent measurements. Generally speaking, for a vertical-oriented dipole source, the measured vertical component couples to horizontal planar bodies while the horizontal in-line component couples best to vertical planar targets. For layered-earth cases, helicopter EM systems have little or no in-line component response and as a result much of the in-line signal is due to receiver coil rotation and appears as noise. In contrast to this, the in-line component of a fixed-wing airborne electromagnetic (AEM) system with large transmitter-receiver offset can be substantial, exceeding the vertical component in conductive areas. This paper compares the in-line and vertical response of a fixed-wing airborne electromagnetic (AEM) system using a half-space model and calculates sensitivity functions. The a posteriori inversion model parameter uncertainty matrix is calculated for a bathymetry model (conductive layer over more resistive half-space) for two inversion cases; use of vertical component alone is compared to joint inversion of vertical and in-line components. The joint inversion is able to better resolve model parameters. An example is then provided using field data from a bathymetry survey to compare the joint inversion to vertical component only inversion. For each inversion set, the difference between the inverted water depth and ship-measured bathymetry is calculated. The result is in general agreement with that expected from the a posteriori inversion model parameter uncertainty calculation.
Photoacoustic signal and noise analysis for Si thin plate: signal correction in frequency domain.
Markushev, D D; Rabasović, M D; Todorović, D M; Galović, S; Bialkowski, S E
2015-03-01
Methods for photoacoustic signal measurement, rectification, and analysis for 85 μm thin Si samples in the 20-20 000 Hz modulation frequency range are presented. Methods for frequency-dependent amplitude and phase signal rectification in the presence of coherent and incoherent noise as well as distortion due to microphone characteristics are presented. Signal correction is accomplished using inverse system response functions deduced by comparing real to ideal signals for a sample with well-known bulk parameters and dimensions. The system response is a piece-wise construction, each component being due to a particular effect of the measurement system. Heat transfer and elastic effects are modeled using standard Rosencweig-Gersho and elastic-bending theories. Thermal diffusion, thermoelastic, and plasmaelastic signal components are calculated and compared to measurements. The differences between theory and experiment are used to detect and correct signal distortion and to determine detector and sound-card characteristics. Corrected signal analysis is found to faithfully reflect known sample parameters.
Rufo, Montaña; Antolín, Alicia; Paniagua, Jesús M; Jiménez, Antonio
2018-04-01
A comparative study was made of three methods of interpolation - inverse distance weighting (IDW), spline and ordinary kriging - after optimization of their characteristic parameters. These interpolation methods were used to represent the electric field levels for three emission frequencies (774kHz, 900kHz, and 1107kHz) and for the electrical stimulation quotient, Q E , characteristic of complex electromagnetic environments. Measurements were made with a spectrum analyser in a village in the vicinity of medium-wave radio broadcasting antennas. The accuracy of the models was quantified by comparing their predictions with levels measured at the control points not used to generate the models. The results showed that optimizing the characteristic parameters of each interpolation method allows any of them to be used. However, the best results in terms of the regression coefficient between each model's predictions and the actual control point field measurements were for the IDW method. Copyright © 2018 Elsevier Inc. All rights reserved.
Parametric and experimental analysis using a power flow approach
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1988-01-01
Having defined and developed a structural power flow approach for the analysis of structure-borne transmission of structural vibrations, the technique is used to perform an analysis of the influence of structural parameters on the transmitted energy. As a base for comparison, the parametric analysis is first performed using a Statistical Energy Analysis approach and the results compared with those obtained using the power flow approach. The advantages of using structural power flow are thus demonstrated by comparing the type of results obtained by the two methods. Additionally, to demonstrate the advantages of using the power flow method and to show that the power flow results represent a direct physical parameter that can be measured on a typical structure, an experimental investigation of structural power flow is also presented. Results are presented for an L-shaped beam for which an analytical solution has already been obtained. Furthermore, the various methods available to measure vibrational power flow are compared to investigate the advantages and disadvantages of each method.
Statistical Analysis of Organ Morphometric Parameters and Weights in South Iranian Adult Autopsies.
Gholamzadeh, Saeid; Zarenezhad, Mohammad; Montazeri, Mahmoud; Zareikordshooli, Marzieh; Sadeghi, Ghazaleh; Malekpour, Abdorrasoul; Hoseni, Sanaz; Bahrani, Mohammadreza; Hajatmand, Razieh
2017-05-01
Organ weight is one important indicator to discern normal from abnormal condition in forensic pathology as well as in clinical medicine. The present study aimed to investigate morphometric parameters and organ weights of southern Iranian adults, which can be fundamental sources to be compared to abnormal cases.Morphometric parameters and weights of 6 organs (heart, liver, kidney, spleen, appendix, and brain), which were harvested from 501 southern Iranian adults (385 males and 116 females) during ordinary postmortem examination, were measured.All the organs were heavier in males than in females. Heart, brain, spleen, and right kidney were significantly heavier in males compared to females, but no significant difference was observed between the 2 sexes regarding the weights of the rest of the organs. Moreover, brain and heart became heavier as one got older and most organs were heavier in middle-aged individuals compared to other age groups. Furthermore, various types of correlations were observed between different organs' weights and body parameters.These results can be useful anatomical data for autopsy investigations, clinical practices, and research in southern Iran.
Effect of considering the initial parameters on accuracy of experimental studies conclusions
NASA Astrophysics Data System (ADS)
Zagulova, D.; Nesterenko, A.; Kapilevich, L.; Popova, J.
2015-11-01
The presented paper contains the evidences of the necessity to take into account the initial level of physiological parameters while conducting the biomedical research; it is exemplified by certain indicators of cardiorespiratory system. The analysis is based on the employment of data obtained via the multiple surveys of medical and pharmaceutical college students. There has been revealed a negative correlation of changes of the studied parameters of cardiorespiratory system in the repeated measurements compared to their initial level. It is assumed that the dependence of the changes of physiological parameters from the baseline can be caused by the biorhythmic changes inherent for all body systems.
Composition measurement of epitaxial Sc x Ga1-x N films
NASA Astrophysics Data System (ADS)
Tsui, H. C. L.; Goff, L. E.; Barradas, N. P.; Alves, E.; Pereira, S.; Palgrave, R. G.; Davies, R. J.; Beere, H. E.; Farrer, I.; Ritchie, D. A.; Moram, M. A.
2016-06-01
Four different methods for measuring the compositions of epitaxial Sc x Ga1-x N films were assessed and compared to determine which was the most reliable and accurate. The compositions of epitaxial Sc x Ga1-x N films with 0 ≤ x ≤ 0.26 were measured directly using Rutherford backscattering (RBS) and x-ray photoelectron spectroscopy (XPS), and indirectly using c lattice parameter measurements from x-ray diffraction and c/a ratio measurements from electron diffraction patterns. RBS measurements were taken as a standard reference. XPS was found to underestimate the Sc content, whereas c lattice parameter and c/a ratio were not reliable for composition determination due to the unknown degree of strain relaxation in the film. However, the Sc flux used during growth was found to relate linearly with x and could be used to estimate the Sc content.
NASA Astrophysics Data System (ADS)
Novosel, Nikolina; Žilić, Dijana; Pajić, Damir; Jurić, Marijana; Perić, Berislav; Zadro, Krešo; Rakvin, Boris; Planinić, Pavica
2008-10-01
Magnetic properties of single crystals of the heterometallic complex [Cu(bpy) 3] 2[Cr(C 2O 4) 3]NO 3·9H 2O (bpy = 2,2'-bipyridine) have been investigated. From the recorded EPR spectra, the spin-Hamiltonian parameters have been determined. The magnetization measurements have shown magnetic anisotropy at low temperatures, which has been analysed as a result of the zero-field splitting of the Cr III ion. By fitting the exactly derived magnetization expression to the measured magnetization data, the axial zero-field splitting parameter, D, has been calculated. Comparing to the EPR measurements, it has been confirmed that D can be determined from the measurements of the macroscopic magnetization on the single crystals.
Comparison of NBG-18, NBG-17, IG-110 and IG-11 oxidation kinetics in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jo Jo; Ghosh, Tushar K.; Loyalka, Sudarshan K.
In this paper, the oxidation rates of several nuclear-grade graphites, NBG-18, NBG-17, IG-110 and IG-11, were measured in air using thermogravimetry. Kinetic parameters and oxidation behavior for each grade were compared by coke type, filler grain size and microstructure. The thickness of the oxidized layer for each grade was determined by layer peeling and direct density measurements. The results for NBG-17 and IG-11 were compared with those available in the literature and our recently reported results for NBG-18 and IG-110 oxidation in air. The finer-grained graphites IG-110 and IG-11 were more oxidized than medium-grained NBG-18 and NBG-17 because of deepermore » oxidant penetration, higher porosity and higher probability of available active sites. Variation in experimental conditions also had a marked effect on the reported kinetic parameters by several studies. Finally, kinetic parameters such as activation energy and transition temperature were sensitive to air flow rates as well as sample size and geometry.« less
Comparison of NBG-18, NBG-17, IG-110 and IG-11 oxidation kinetics in air
Lee, Jo Jo; Ghosh, Tushar K.; Loyalka, Sudarshan K.
2017-12-14
In this paper, the oxidation rates of several nuclear-grade graphites, NBG-18, NBG-17, IG-110 and IG-11, were measured in air using thermogravimetry. Kinetic parameters and oxidation behavior for each grade were compared by coke type, filler grain size and microstructure. The thickness of the oxidized layer for each grade was determined by layer peeling and direct density measurements. The results for NBG-17 and IG-11 were compared with those available in the literature and our recently reported results for NBG-18 and IG-110 oxidation in air. The finer-grained graphites IG-110 and IG-11 were more oxidized than medium-grained NBG-18 and NBG-17 because of deepermore » oxidant penetration, higher porosity and higher probability of available active sites. Variation in experimental conditions also had a marked effect on the reported kinetic parameters by several studies. Finally, kinetic parameters such as activation energy and transition temperature were sensitive to air flow rates as well as sample size and geometry.« less
Perkins, Kimberlie; Johnson, Brittany D.; Mirus, Benjamin B.
2014-01-01
During 2013–14, the USGS, in cooperation with the U.S. Department of Energy, focused on further characterization of the sedimentary interbeds below the future site of the proposed Remote Handled Low-Level Waste (RHLLW) facility, which is intended for the long-term storage of low-level radioactive waste. Twelve core samples from the sedimentary interbeds from a borehole near the proposed facility were collected for laboratory analysis of hydraulic properties, which also allowed further testing of the property-transfer modeling approach. For each core sample, the steady-state centrifuge method was used to measure relations between matric potential, saturation, and conductivity. These laboratory measurements were compared to water-retention and unsaturated hydraulic conductivity parameters estimated using the established property-transfer models. For each core sample obtained, the agreement between measured and estimated hydraulic parameters was evaluated quantitatively using the Pearson correlation coefficient (r). The highest correlation is for saturated hydraulic conductivity (Ksat) with an r value of 0.922. The saturated water content (qsat) also exhibits a strong linear correlation with an r value of 0.892. The curve shape parameter (λ) has a value of 0.731, whereas the curve scaling parameter (yo) has the lowest r value of 0.528. The r values demonstrate that model predictions correspond well to the laboratory measured properties for most parameters, which supports the value of extending this approach for quantifying unsaturated hydraulic properties at various sites throughout INL.
Validating a large geophysical data set: Experiences with satellite-derived cloud parameters
NASA Technical Reports Server (NTRS)
Kahn, Ralph; Haskins, Robert D.; Knighton, James E.; Pursch, Andrew; Granger-Gallegos, Stephanie
1992-01-01
We are validating the global cloud parameters derived from the satellite-borne HIRS2 and MSU atmospheric sounding instrument measurements, and are using the analysis of these data as one prototype for studying large geophysical data sets in general. The HIRS2/MSU data set contains a total of 40 physical parameters, filling 25 MB/day; raw HIRS2/MSU data are available for a period exceeding 10 years. Validation involves developing a quantitative sense for the physical meaning of the derived parameters over the range of environmental conditions sampled. This is accomplished by comparing the spatial and temporal distributions of the derived quantities with similar measurements made using other techniques, and with model results. The data handling needed for this work is possible only with the help of a suite of interactive graphical and numerical analysis tools. Level 3 (gridded) data is the common form in which large data sets of this type are distributed for scientific analysis. We find that Level 3 data is inadequate for the data comparisons required for validation. Level 2 data (individual measurements in geophysical units) is needed. A sampling problem arises when individual measurements, which are not uniformly distributed in space or time, are used for the comparisons. Standard 'interpolation' methods involve fitting the measurements for each data set to surfaces, which are then compared. We are experimenting with formal criteria for selecting geographical regions, based upon the spatial frequency and variability of measurements, that allow us to quantify the uncertainty due to sampling. As part of this project, we are also dealing with ways to keep track of constraints placed on the output by assumptions made in the computer code. The need to work with Level 2 data introduces a number of other data handling issues, such as accessing data files across machine types, meeting large data storage requirements, accessing other validated data sets, processing speed and throughput for interactive graphical work, and problems relating to graphical interfaces.
Wind-tunnel based definition of the AFE aerothermodynamic environment. [Aeroassist Flight Experiment
NASA Technical Reports Server (NTRS)
Miller, Charles G.; Wells, W. L.
1992-01-01
The Aeroassist Flight Experiment (AFE), scheduled to be performed in 1994, will serve as a precursor for aeroassisted space transfer vehicles (ASTV's) and is representative of entry concepts being considered for missions to Mars. Rationale for the AFE is reviewed briefly as are the various experiments carried aboard the vehicle. The approach used to determine hypersonic aerodynamic and aerothermodynamic characteristics over a wide range of simulation parameters in ground-based facilities is presented. Facilities, instrumentation and test procedures employed in the establishment of the data base are discussed. Measurements illustrating the effects of hypersonic simulation parameters, particularly normal-shock density ratio (an important parameter for hypersonic blunt bodies), and attitude on aerodynamic and aerothermodynamic characteristics are presented, and predictions from computational fluid dynamic (CFD) computer codes are compared with measurement.
NASA Astrophysics Data System (ADS)
He, Cunfu; Yang, Meng; Liu, Xiucheng; Wang, Xueqian; Wu, Bin
2017-11-01
The magnetic hysteresis behaviours of ferromagnetic materials vary with the heat treatment-induced micro-structural changes. In the study, the minor hysteresis loop measurement technique was used to quantitatively characterise the case depth in two types of medium carbon steels. Firstly, high-frequency induction quenching was applied in rod samples to increase the volume fraction of hard martensite to the soft ferrite/pearlite (or sorbite) in the sample surface. In order to determine the effective and total case depth, a complementary error function was employed to fit the measured hardness-depth profiles of induction-hardened samples. The cluster of minor hysteresis loops together with the tangential magnetic field (TMF) were recorded from all the samples and the comparative study was conducted among three kinds of magnetic parameters, which were sensitive to the variation of case depth. Compared to the parameters extracted from an individual minor loop and the distortion factor of the TMF, the magnitude of three-order harmonic of TMF was more suitable to indicate the variation in case depth. Two new minor-loop coefficients were introduced by combining two magnetic parameters with cumulative statistics of the cluster of minor-loops. The experimental results showed that the two coefficients monotonically linearly varied with the case depth within the carefully selected magnetisation region.
Prediction of bone strength at the distal tibia by HR-pQCT and DXA.
Popp, Albrecht W; Windolf, Markus; Senn, Christoph; Tami, Andrea; Richards, R Geoff; Brianza, Stefano; Schiuma, Damiano
2012-01-01
Areal bone mineral density (aBMD) at the distal tibia, measured at the epiphysis (T-EPI) and diaphysis (T-DIA), is predictive for fracture risk. Structural bone parameters evaluated at the distal tibia by high resolution peripheral quantitative computed tomography (HR-pQCT) displayed differences between healthy and fracture patients. With its simple geometry, T-DIA may allow investigating the correlation between bone structural parameter and bone strength. Anatomical tibiae were examined ex vivo by DXA (aBMD) and HR-pQCT (volumetric BMD (vBMD) and bone microstructural parameters). Cortical thickness (CTh) and polar moment of inertia (pMOI) were derived from DXA measurements. Finally, an index combining material (BMD) and mechanical property (polar moment of inertia, pMOI) was defined and analyzed for correlation with torque at failure and stiffness values obtained by biomechanical testing. Areal BMD predicted the vBMD at T-EPI and T-DIA. A high correlation was found between aBMD and microstructural parameters at T-EPIas well as between aBMD and CTh at T-DIA. Finally, at T-DIA both indexes combining BMD and pMOI were strongly and comparably correlated with torque at failure and bone stiffness. Ex vivo, at the distal tibial diaphysis, a novel index combining BMD and pMOI, which can be calculated directly from a single DXA measurement, predicted bone strength and stiffness better than either parameter alone and with an order of magnitude comparable to that of HR-pQCT. Whether this index is suitable for better prediction of fracture risk in vivo deserves further investigation. Copyright © 2011 Elsevier Inc. All rights reserved.
Behavior of optical properties of coagulated blood sample at 633 nm wavelength
NASA Astrophysics Data System (ADS)
Morales Cruzado, Beatriz; Vázquez y Montiel, Sergio; Delgado Atencio, José Alberto
2011-03-01
Determination of tissue optical parameters is fundamental for application of light in either diagnostics or therapeutical procedures. However, in samples of biological tissue in vitro, the optical properties are modified by cellular death or cellular agglomeration that can not be avoided. This phenomena change the propagation of light within the biological sample. Optical properties of human blood tissue were investigated in vitro at 633 nm using an optical setup that includes a double integrating sphere system. We measure the diffuse transmittance and diffuse reflectance of the blood sample and compare these physical properties with those obtained by Monte Carlo Multi-Layered (MCML). The extraction of the optical parameters: absorption coefficient μa, scattering coefficient μs and anisotropic factor g from the measurements were carried out using a Genetic Algorithm, in which the search procedure is based in the evolution of a population due to selection of the best individual, evaluated by a function that compares the diffuse transmittance and diffuse reflectance of those individuals with the experimental ones. The algorithm converges rapidly to the best individual, extracting the optical parameters of the sample. We compare our results with those obtained by using other retrieve procedures. We found that the scattering coefficient and the anisotropic factor change dramatically due to the formation of clusters.
NASA Astrophysics Data System (ADS)
Bonin, Timothy A.; Goines, David C.; Scott, Aaron K.; Wainwright, Charlotte E.; Gibbs, Jeremy A.; Chilson, Phillip B.
2015-06-01
The structure function is often used to quantify the intensity of spatial inhomogeneities within turbulent flows. Here, the Small Multifunction Research and Teaching Sonde (SMARTSonde), an unmanned aerial system, is used to measure horizontal variations in temperature and to calculate the structure function of temperature at various heights for a range of separation distances. A method for correcting for the advection of turbulence in the calculation of the structure function is discussed. This advection correction improves the data quality, particularly when wind speeds are high. The temperature structure-function parameter can be calculated from the structure function of temperature. Two case studies from which the SMARTSonde was able to take measurements used to derive at several heights during multiple consecutive flights are discussed and compared with sodar measurements, from which is directly related to return power. Profiles of from both the sodar and SMARTSonde from an afternoon case exhibited generally good agreement. However, the profiles agreed poorly for a morning case. The discrepancies are partially attributed to different averaging times for the two instruments in a rapidly evolving environment, and the measurement errors associated with the SMARTSonde sampling within the stable boundary layer.
Ground reaction forces on stairs. Part II: knee implant patients versus normals.
Stacoff, Alex; Kramers-de Quervain, Inès A; Luder, Gerhard; List, Renate; Stüssi, Edgar
2007-06-01
The goal of this study was to compare selected parameters of vertical ground reaction forces (GRF) of good outcome patients with different prosthesis designs with a matched control group during level walking, stair ascent and descent. Forty subjects, 29 with three main implant designs (including four subjects with a passive knee flexion restriction), and 11 healthy controls were measured with 8-10 repetitions. Vertical ground reaction forces were measured during two consecutive steps with force plates embedded in the walkway and the staircase. Defined parameters of the force signals were used to compare the results of the test groups. The results show, that, postoperatively, good outcome patients produce gait patterns of the vertical ground reaction force which are comparable to normal healthy subjects with the exception of a few distinct differences: a significant reduction (p<0.05) in the vertical loading on the operated side during level walking at take-off, at weight acceptance and take-off during stair ascent of the normal stair. During stair descent, the patients did not reduce load on the operated side, but increased load variation and side-to-side asymmetry; thus, the mechanical loads on the implants were high, which may be important information with respect to loading protocols of knee implant simulators. No systematic differences in any of the test parameters were found between posterior cruciate-retaining (LCS MB and Innex CR) versus non-retaining (LCS RP and Innex UCOR) implant designs. The restricted group showed significant reductions (p<0.05) of several loading parameters as well as an increased side-to-side asymmetry. About one third of the force parameters of the good outcome patients showed a side-to-side asymmetry between two consecutive steps, which was over a proposed level of acceptance.
NASA Astrophysics Data System (ADS)
Shafii, M.; Tolson, B.; Matott, L. S.
2012-04-01
Hydrologic modeling has benefited from significant developments over the past two decades. This has resulted in building of higher levels of complexity into hydrologic models, which eventually makes the model evaluation process (parameter estimation via calibration and uncertainty analysis) more challenging. In order to avoid unreasonable parameter estimates, many researchers have suggested implementation of multi-criteria calibration schemes. Furthermore, for predictive hydrologic models to be useful, proper consideration of uncertainty is essential. Consequently, recent research has emphasized comprehensive model assessment procedures in which multi-criteria parameter estimation is combined with statistically-based uncertainty analysis routines such as Bayesian inference using Markov Chain Monte Carlo (MCMC) sampling. Such a procedure relies on the use of formal likelihood functions based on statistical assumptions, and moreover, the Bayesian inference structured on MCMC samplers requires a considerably large number of simulations. Due to these issues, especially in complex non-linear hydrological models, a variety of alternative informal approaches have been proposed for uncertainty analysis in the multi-criteria context. This study aims at exploring a number of such informal uncertainty analysis techniques in multi-criteria calibration of hydrological models. The informal methods addressed in this study are (i) Pareto optimality which quantifies the parameter uncertainty using the Pareto solutions, (ii) DDS-AU which uses the weighted sum of objective functions to derive the prediction limits, and (iii) GLUE which describes the total uncertainty through identification of behavioral solutions. The main objective is to compare such methods with MCMC-based Bayesian inference with respect to factors such as computational burden, and predictive capacity, which are evaluated based on multiple comparative measures. The measures for comparison are calculated both for calibration and evaluation periods. The uncertainty analysis methodologies are applied to a simple 5-parameter rainfall-runoff model, called HYMOD.
A Comparison of the One-and Three-Parameter Logistic Models on Measures of Test Efficiency.
ERIC Educational Resources Information Center
Benson, Jeri
Two methods of item selection were used to select sets of 40 items from a 50-item verbal analogies test, and the resulting item sets were compared for relative efficiency. The BICAL program was used to select the 40 items having the best mean square fit to the one parameter logistic (Rasch) model. The LOGIST program was used to select the 40 items…
NASA Astrophysics Data System (ADS)
Vance, Fredrick W.; Slone, Robert V.; Stern, Charlotte L.; Hupp, Joseph T.
2000-03-01
Electroabsorption or Stark spectroscopy has been used to evaluate the systems (NC) 5M II-CN-Ru III(NH 3) 51- and (NC) 5M II-CN-Ru III(NH 3) 4py 1-, where M II=Fe II or Ru II. When a pyridine ligand is present in the axial position on the Ru III acceptor, the effective optical electron transfer distance - as measured by the change in dipole moment, |Δ μ| - is increased by more than 35% relative to the ammine substituted counterpart. Comparison of the charge transfer distances to the crystal structure of Na[(CN) 5Fe-CN-Ru(NH 3) 4py] · 6H 2O reveals that the Stark derived distances are ˜50% to ˜90% of the geometric separation of the metal centers. The differences result in an upward revision in the Hush delocalization parameter, c b2, and of the electronic coupling matrix element, H ab, relative to those parameters obtained exclusively from electronic absorption measurements. The revised parameters are compared to those, which are obtained via electrochemical techniques and found to be in only fair agreement. We conclude that the absorption/electroabsorption analysis likely yields a more reliable set of mixing and coupling parameters.
Evaluation of extracranial blood flow in Parkinson disease.
Haktanir, Alpay; Yaman, Mehmet; Acar, Murat; Gecici, Omer; Demirel, Reha; Albayrak, Ramazan; Demirkirkan, Kemal
2006-01-02
Decreased cerebral flow velocities in Parkinsonian patients were reported previously. Because of the limited data on vascular changes in Parkinson disease (PD), which may have a vascular etiology, we aimed to disclose any possible cerebral hemodynamic alteration in Parkinsonian patients. We prospectively evaluated 28 non-demented, idiopathic parkinsonian patients and 19 age and sex matched controls with Doppler sonography. Flow volumes, peak systolic flow velocities, and cross-sectional areas of vertebral and internal carotid arteries (ICA) were measured and compared between patients and controls. Correlation of patient age and disease duration with Doppler parameters was observed; and each Doppler parameter of patients within each Hoehn-Yahr scale was compared. There was no significant difference of measured parameters between groups. No correlation was found between disease duration and age with flow volume, cross-sectional area or peak systolic velocity. Hoehn-Yahr scale was not found having significant relation with Doppler parameters. Values of vertebral, internal carotid and cerebral blood flow volumes (CBF), peak systolic velocities, and cross-sectional areas were not significantly different between Parkinsonian patients and age and sex matched controls. Although regional blood flow decreases may be seen as reported previously, Parkinson disease is not associated with a flow volume or velocity alteration of extracranial cerebral arteries.
Chiao, P C; Rogers, W L; Fessler, J A; Clinthorne, N H; Hero, A O
1994-01-01
The authors have previously developed a model-based strategy for joint estimation of myocardial perfusion and boundaries using ECT (emission computed tomography). They have also reported difficulties with boundary estimation in low contrast and low count rate situations. Here they propose using boundary side information (obtainable from high resolution MRI and CT images) or boundary regularization to improve both perfusion and boundary estimation in these situations. To fuse boundary side information into the emission measurements, the authors formulate a joint log-likelihood function to include auxiliary boundary measurements as well as ECT projection measurements. In addition, they introduce registration parameters to align auxiliary boundary measurements with ECT measurements and jointly estimate these parameters with other parameters of interest from the composite measurements. In simulated PET O-15 water myocardial perfusion studies using a simplified model, the authors show that the joint estimation improves perfusion estimation performance and gives boundary alignment accuracy of <0.5 mm even at 0.2 million counts. They implement boundary regularization through formulating a penalized log-likelihood function. They also demonstrate in simulations that simultaneous regularization of the epicardial boundary and myocardial thickness gives comparable perfusion estimation accuracy with the use of boundary side information.
Foo, Jong Yong Abdiel
2007-08-01
The ankle-brachial index (ABI) is known to be indicative of sub-clinical peripheral arterial diseases that are correlated with cardiovascular disease risk factors like atherosclerosis or ischemic extremity. Due to its occluding measurement nature, this may not be appealing to less cooperative patients when multiple prolonged screening is required. A simple and non-intrusive approach termed pulse transit time ratio (PTTR) has recently shown to be potential surrogate marker for the prolonged ABI measurement. Other studies have also suggested that subjects with hypertension have stiffer arterial wall and thereby can confound transit time related parameters. Thus, it becomes important to understand the PTTR normality and difference of hypertensive children when compared to those measured from normotensive children. About 55 normotensive (39 male; aged 8.4 +/- 2.3 yr) and 4 hypertensive (4 male; aged 5-10 yr) Caucasian children were recruited from the same geographical location. A customized device was used to compute pulse transit time related measurements. Since the PTTR approach produced a delta value that was similar to that of ABI, possible inter-subject physiologic differences had limited confounding effects on the derived PTTR parameter. The obtained transit time measurements from the hypertensive children had lower pulse transit time value when compared to their normotensive counterparts. However, the statistical analysis indicated that they had insignificant PTTR difference (p > 0.01) from those seen in the normotensive children. The findings herein suggest that stiffer arterial wall may have confounding effects on the derived transit time related measurements but it is limited on the PTTR parameter. Similar to the ABI approach, PTTR may be only confounded by abnormal local changes in either of the measured peripheral arterial wall. Hence, the PTTR technique shows promise to be an ABI marker from this perspective.
Positive outcomes following gait therapy intervention for hip osteoarthritis: A longitudinal study.
Solomonow-Avnon, Deborah; Herman, Amir; Levin, Daniel; Rozen, Nimrod; Peled, Eli; Wolf, Alon
2017-10-01
Footwear-generated biomechanical manipulation of lower-limb joints was shown to beneficially impact gait and quality of life in knee osteoarthritis patients, but has not been tested in hip osteoarthritis patients. We examined a customized gait treatment program using a biomechanical device shown in previous investigations to be capable of manipulating hip biomechanics via foot center of pressure (COP) modulation. The objective of this study was to assess the treatment program for hip osteoarthritis patients, enrolled in a 1-year prospective investigation, by means of objective gait and spatiotemporal parameters, and subjective quality of life measures. Gait analysis and completion of questionnaires were performed at the start of the treatment (baseline), and after 3, 6, and 12 months. Outcome parameters were evaluated over time using linear mixed effects models, and association between improvement in quality of life measures and change in objective outcomes was tested using mixed effect linear regression models. Quality of life measures improved compared to baseline, accompanied by increased gait speed and cadence. Sagittal-plane hip joint kinetics, kinematics, and spatiotemporal parameters changed throughout the study compared to baseline, in a manner suggesting improvement of gait. The most substantial improvement occurred within 3 months after treatment initiation, after which improvement approximately plateaued, but was sustained at 12 months. Speed and cadence, as well as several sagittal-plane gait parameters, were significant predictors of improvement in quality of life. Evidence suggests that a biomechanical gait therapy program improves subjective and objective outcomes measures and is a valid treatment option for hip osteoarthritis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2222-2232, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Modis, Laszlo; Hassan, Ziad; Szalai, Eszter; Flaskó, Zsuzsanna; Berta, Andras; Nemeth, Gabor
2016-01-01
AIM To analyse ocular biomechanical properties, central corneal thickness (CCT) and intraocular pressure (IOP) in post-keratoplasty eyes, as compared to normal subjects, with a new Scheimpflug-based technology. Moreover, biomechanical data were correlated with the size and age of the donor and recipient corneas. METHODS Measurements were conducted on 46 eyes of 46 healthy patients without any corneal pathology (age: 53.83±20.8y) and 30 eyes of 28 patients after penetrating keratoplasty (age: 49.43±21.34y). Ten biomechanical parameters, the CCT and IOP were recorded by corneal visualization scheimpflug technology (CorVis ST) using high-speed Scheimpflug imaging. Keratometry values were also recorded using Pentacam HR system. Scheimpflug measurements were performed after 43.41±40.17mo (range: 11-128mo) after the keratoplasty and after 7.64±2.34mo (range: 5-14mo) of suture removal. RESULTS Regarding the device-specific biomechanical parameters, the highest concavity time and radius values showed a significant decrease between these two groups (P=0.01 and P<0.001). None of other biomechanical parameters disclosed a significant difference. The CCT showed a significant difference between post-keratoplasty eyes as compared to normal subjects (P=0.003) using the CorVis ST device. The IOP was within the normal range in both groups (P=0.84). There were no significant relationships between the keratometric data, the size of the donor and recipient, age of the donor and recipient and biomechanical properties obtained by CorVis ST. CONCLUSION The ocular biomechanics remain stable after penetrating keratoplasty according to the CorVis ST measurements. Only two from the ten device-specific parameters have importance in the follow-up period after penetrating keratoplasty. PMID:26949641
Nagel, Deborah; Gehlen, Heidrun
2013-01-01
The aim of this study was to evaluate to what extent the myocardial function in horses (measured by PW-tissue Doppler = PW-TDI) is affected during a sedation with romifidine (0.04 mg/kg, i. v.), particularly in case of an accompanying heart disease. Based on an echo- and electrocardiographic examination, a total of 45 horses was subdivided into group 1 (no heart disease), group 2 (heart disease without increased heart dimensions) and group 3 (heart disease with increased heart dimensions). Heart rate (HF), M-mode- (FS%) and TDI-measurements were performed before and after the application of romifidine. The velocities of the radial myocardial movement in the left and right ventricular wall were evaluated using PW-TDI. The TDI parameters included the isovolumic contraction (IVC), the systolic (S) as well as the early (E) and late diastolic maximal velocity (A). After the application of romifidine HF and FS were significantly decreased in all groups. IVC, S and E, determined by PW-TDI were also significantly decreased in both ventricular walls. A significant difference between groups was shown for the isovolumic contraction in the left ventricular wall. This was observed distinctly more in horses with heart disease and increased heart dimensions compared to horses with heart disease but no increased heart dimensions. The results of the study indicate that PW-TDI is a suitable imaging technique to analyse the effects of romifidine on equine myocardial function. The major percentage change after application of romifidine for TDI measurements compared to the M-mode parameters indicate that the parameter myocardial velocity measured with TDI appeared to be the most sensitive parameter to document romifidine--induced changes on the myocardium.
Development and application of 3-D foot-shape measurement system under different loads
NASA Astrophysics Data System (ADS)
Liu, Guozhong; Wang, Boxiong; Shi, Hui; Luo, Xiuzhi
2008-03-01
The 3-D foot-shape measurement system under different loads based on laser-line-scanning principle was designed and the model of the measurement system was developed. 3-D foot-shape measurements without blind areas under different loads and the automatic extraction of foot-parameter are achieved with the system. A global calibration method for CCD cameras using a one-axis motion unit in the measurement system and the specialized calibration kits is presented. Errors caused by the nonlinearity of CCD cameras and other devices and caused by the installation of the one axis motion platform, the laser plane and the toughened glass plane can be eliminated by using the nonlinear coordinate mapping function and the Powell optimized method in calibration. Foot measurements under different loads for 170 participants were conducted and the statistic foot parameter measurement results for male and female participants under non-weight condition and changes of foot parameters under half-body-weight condition, full-body-weight condition and over-body-weight condition compared with non-weight condition are presented. 3-D foot-shape measurement under different loads makes it possible to realize custom-made shoe-making and shows great prosperity in shoe design, foot orthopaedic treatment, shoe size standardization, and establishment of a feet database for consumers and athletes.
Marjanovic, Ivan; Milic, Natasa; Martinez, Antonio
2012-01-01
To assess the retrobulbar hemodynamic parameters in the ophthalmic artery (OA), central retinal artery (CRA), and short posterior ciliary arteries (PCA) after decreasing elevated intraocular pressure (IOP) in patients with open-angle glaucoma (OAG) by using color Doppler imaging. A total of 46 eyes from 46 patients with OAG, with elevated IOP, were consecutively included in this prospective study. Peak-systolic velocity, end-diastolic velocity, and Pourcelot resistivity index were assessed in the OA, CRA, and PCA. The IOP was measured with Goldmann applanation tonometer (GAT) and the dynamic contour tonometer (DCT), 3 times respectively. Ocular pulse amplitude (OPA) appeared during the DCT measurement. After decreasing the elevated IOP, measured with both GAT and DCT, the retrobulbar parameters showed no differences as compared with baseline measurements. After Bonferroni correction (p ≤ 0.0042, alpha/12), statistical significance appeared in retrobulbar hemodynamics only in DCT (29.3 ± 6.4 vs 15.5 ± 4.2 mmHg), GAT (33.0 ± 8.3 vs 15.8 ± 7.0 mmHg), and OPA measurements (4.1 ± 1.3 vs 2.7 ± 1.4 mmHg), in comparison to baseline. There was no correlation between the changes in IOP measured with either DCT or GAT and the changes in the retrobulbar hemodynamic parameters (p>0.05 for all). The results of our study suggested a lack of correlation between the changes in IOP, measured with either DCT or GAT, and the changes in the retrobulbar hemodynamic parameters. The results of our study might suggest that the blood flow disturbances found in glaucoma patients are independent of the IOP.
Ibrahim, Alaa I; Hawamdeh, Ziad M
2007-03-01
The object of this study was to detect any possible relation between the current gross motor function score for cerebral palsy children and their physical growth parameters. We measured 71 children with spastic cerebral palsy (35 diplegic, 25 quadriplegic and 11 hemiplegic) and a control group of 80 normal children. Measures taken for cerebral palsy and normal children included stature, weight, head circumference and mid upper-arm circumference, and, additionally for the cerebral palsied children, duration of the disease, birth weight, presence or absence of orofacial dysfunction, distribution of paralysis and degree of spasticity. Motor abilities were measured using the Gross Motor Function Measure. Results showed a significant decrease in the stature, current weight, head circumference and mid upper-arm circumference of both sexes of the quadriplegic children, and significant decreases in the current weight of the diplegic girls and the head circumference of the hemiplegic girls. There were also significant decreases in all scores of the quadriplegic children compared to the diplegic and hemiplegic children. Diplegic children had significantly decreased standing, walking and running, and total scores, compared to the hemiplegic children. Total score at age of testing was independently predicted by the duration of the disease, distribution of paralysis, presence or absence of orofacial dysfunction, spasticity index and the current body weight. Our findings indicate that in spastic cerebral palsy the physical growth parameters were markedly decreased in the quadriplegic form compared to other forms. Only current body weight, from the growth parameters, in addition to other relevant clinical data, can be considered predictors of the current gross motor abilities of those children.
Ertan, Nesrin Zeynep; Bozfakioglu, Semra; Ugurel, Elif; Sinan, Mukaddes; Yalcin, Ozlem
2017-01-01
In this study, we investigated the effects of peritoneal dialysis on hemorheological and hematological parameters and their relations with oxidant and antioxidant status of uremic patients. Hemorheological parameters (erythrocyte deformability, erythrocyte aggregation, osmotic deformability, blood and plasma viscosity) were measured in patients with renal insufficiency undergoing peritoneal dialysis (PD) and volunteers. Erythrocyte deformability, osmotic deformability and aggregation in both autologous plasma and 3% dextran 70 were measured by laser diffraction ektacytometry. Enzyme activities of glutathione peroxidase, superoxide dismutase and catalase were studied in erythrocytes; lipid peroxidation was studied by measuring the amount of malondialdehyde in both erythrocytes and plasma samples. Blood viscosity at native hematocrit was significantly lower in PD patients at all measured shear rates compared to controls, but it was high in PD patients at corrected (45%) hematocrit. Erythrocyte deformability did not show any difference between the two groups. Osmotic deformability was significantly lower in PD patients compared to controls. Aggregation index values were significantly high in PD patients in plasma Catalase and glutathione peroxidase activities in erythrocytes were decreased in PD patients whereas superoxide dismutase activity was increased compared to controls. Malondialdehyde was significantly increased in erythrocytes and plasma samples of PD patients which also shows correlations with aggregation parameters. It has been concluded that erythrocytes in PD patients are more prone to aggregation and this tendency could be influenced by lipid peroxidation activity in patient's plasma. These results imply that uremic conditions, loss of plasma proteins and an increased risk of oxidative stress because of decreasing levels of antioxidant enzymes affect erythrocyte rheology during peritoneal dialysis. This level of distortion may have crucial effects, impairing the blood flow dynamics and causing inadequate microcirculatory perfusion.
Unified Model Deformation and Flow Transition Measurements
NASA Technical Reports Server (NTRS)
Burner, Alpheus W.; Liu, Tianshu; Garg, Sanjay; Bell, James H.; Morgan, Daniel G.
1999-01-01
The number of optical techniques that may potentially be used during a given wind tunnel test is continually growing. These include parameter sensitive paints that are sensitive to temperature or pressure, several different types of off-body and on-body flow visualization techniques, optical angle-of-attack (AoA), optical measurement of model deformation, optical techniques for determining density or velocity, and spectroscopic techniques for determining various flow field parameters. Often in the past the various optical techniques were developed independently of each other, with little or no consideration for other techniques that might also be used during a given test. Recently two optical techniques have been increasingly requested for production measurements in NASA wind tunnels. These are the video photogrammetric (or videogrammetric) technique for measuring model deformation known as the video model deformation (VMD) technique, and the parameter sensitive paints for making global pressure and temperature measurements. Considerations for, and initial attempts at, simultaneous measurements with the pressure sensitive paint (PSP) and the videogrammetric techniques have been implemented. Temperature sensitive paint (TSP) has been found to be useful for boundary-layer transition detection since turbulent boundary layers convect heat at higher rates than laminar boundary layers of comparable thickness. Transition is marked by a characteristic surface temperature change wherever there is a difference between model and flow temperatures. Recently, additional capabilities have been implemented in the target-tracking videogrammetric measurement system. These capabilities have permitted practical simultaneous measurements using parameter sensitive paint and video model deformation measurements that led to the first successful unified test with TSP for transition detection in a large production wind tunnel.
Muzyka-Woźniak, Maria; Oleszko, Adam
2018-04-26
To compare measurements of axial length (AL), corneal curvature (K), anterior chamber depth (ACD) and white-to-white (WTW) distance on a new device combining Scheimpflug camera and partial coherence interferometry (Pentacam AXL) with a reference optical biometer (IOL Master 500). To evaluate differences between IOL power calculations based on the two biometers. Ninety-seven eyes of 97 consecutive cataract or refractive lens exchange patients were examined preoperatively on IOL Master 500 and Pentacam AXL units. Comparisons between two devices were performed for AL, K, ACD and WTW. Intraocular lens (IOL) power targeting emmetropia was calculated with SRK/T and Haigis formulas on both devices and compared. There were statistically significant differences between two devices for all measured parameters (P < 0.05), except ACD (P = 0.36). Corneal curvature measured with Pentacam AXL was significantly flatter then with IOL Master. The mean difference in AL was clinically insignificant (0.01 mm; 95% LoA 0.16 mm). Pentacam AXL yielded higher IOL power in 75% of eyes for Haigis formula and in 62% of eyes for SRK/T formula, with a mean difference within ± 0.5 D for 72 and 86% of eyes, respectively. There were statistically significant differences between AL, K and WTW measurements obtained with the compared biometers. Flatter corneal curvature measurements on Pentacam AXL necessitate formulas optimisation for Pentacam AXL.
Line shape parameters of the 22-GHz water line for accurate modeling in atmospheric applications
NASA Astrophysics Data System (ADS)
Koshelev, M. A.; Golubiatnikov, G. Yu.; Vilkov, I. N.; Tretyakov, M. Yu.
2018-01-01
The paper concerns refining parameters of one of the major atmospheric diagnostic lines of water vapor at 22 GHz. Two high resolution microwave spectrometers based on different principles of operation covering together the pressure range from a few milliTorr up to a few Torr were used. Special efforts were made to minimize possible sources of systematic measurement errors. Satisfactory self-consistency of the obtained data was achieved ensuring reliability of the obtained parameters. Collisional broadening and shifting parameters of the line in pure water vapor and in its mixture with air were determined at room temperature. Comparative analysis of the obtained parameters with previous data is given. The speed dependence effect impact on the line shape was evaluated.
Stress responses to comparative handling procedures in sheep.
Yardimci, M; Sahin, E H; Cetingul, I S; Bayram, I; Aslan, R; Sengor, E
2013-01-01
The objective of this study was to compare some husbandry procedures on the base of physiological stress parameters and evaluate the welfare status in sheep. Forty ewes were used as the study material. Measurements were taken during several routine husbandry procedures such as milking, shearing, weighing, loading and hoof care. Data regarding time spent for each application, as well as heart and respiratory rates were recorded during the applications. Blood samples were taken 15 min before and after each application and malondialdehyde (MDA), glutathione-peroxidase (GSH-Px), cortisol T(3) and T(4) parameters were measured. In addition, changes in the same parameters between pre- and post-application periods were evaluated. According to the results, machine milking caused less stress than hand milking. No significant difference was seen between shearing methods for hand shearer or clipper; however, both applications caused stress in animals. The results for weighing methods of animals demonstrated significant differences in cortisol, T(3) and T(4) values in favor of traditional method. Cortisol, T(3) and T(4) levels were significantly higher in manual loading compared with loading by ramp. Regarding hoof care, all the examined parameters differed in favor of modern method. On the other hand, significant differences were determined between the stress parameters regarding pre- and post-applications. All values differed for hand milking while no significant difference was observed in MDA and T(3) values in machine milking group. Parameters in weighing groups changed significantly. For loading process, GSH, cortisol, T(3) and T(4) values differed in both treatment groups. With regard to hoof care, parameters except T(4) in laying group differed significantly. An increase occurred in minute-based measurements of heart and respiratory rates parallel to physiological data. The number of the respiratory rates during the applications differed except for the shearing process. All the parameters displayed significant differences between groups in terms of heart rates. Time spent for each application also differed between groups. Time saved for milking, shearing, weighing, loading and hoof care was 3.23 min, 4.37 min, 1.71 min, 7.85 s and 1.55 min, respectively. These results appear to provide a tangible advantage of using new husbandry methods to the breeders. It was concluded that using new methods in sheep husbandry procedures provided advantages in terms of saving time and reducing labor, as well as improved conditions for welfare of animals. In addition, it facilitated the routine works and flock husbandry.
NASA Astrophysics Data System (ADS)
Singh, D.; Linda, Sneha B.; Giri, Pankaj K.; Mahato, Amritraj; Tripathi, R.; Kumar, Harish; Tali, Suhail A.; Parashari, Siddharth; Ali, Asif; Dubey, Rakesh; Ansari, M. Afzal; Kumar, R.; Muralithar, S.; Singh, R. P.
2018-06-01
Excitation functions for the 11 evaporation residues populated through complete and/or incomplete fusion in 16O+124Sn system at low projectile energies ≈3 -7 MeV /nucleon have been measured. Recoil catcher activation technique followed by offline γ -ray spectrometry has been employed. Some of the evaporation residues are found to have contributions from precursor decays. The precursor contributions have been separated out from the measured cumulative cross-sections of evaporation residues. Independent cross-sections are compared with statistical model code PACE-4 predictions. The evaporation residues produced through x n and pxn channels are found to be well reproduced with the PACE-4 predictions after subtraction of precursor decay contributions. A substantial enhancement in the measured excitation functions over their theoretical predictions for the evaporation residues produced in α -emitting channels has been observed, which is attributed to the presence of incomplete fusion of projectile with target at these low energies. The present study shows that the incomplete fusion and the break-up probability of the incident 16O into α clusters (i.e., break-up of 16O into 12C+α and/or 8Be+8Be ) increases with projectile energy. The present data suggests that the deformation of target is highlighting the important role to affect the ICF reactions independently with different projectiles. The comparison of the present study with literature data also shows that the ICF probability depends on various entrance channel parameters, namely, projectile energy, entrance channel mass-asymmetry, α -Q value, Coulomb factor (ZPZT) , deformation parameter (β2), and their combinations. Moreover, the combined parameters ZPZT.β2 and μECAS.β2 are not found suitable to explain whole ICF characteristics, particularly for spherical and slightly deformed targets. On the other hand, the combined parameter ZPZT.μECAS has been found to explain more precisely the ICF dynamics as compared to other single and combined entrance channel parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussain, A
Purpose: Novel linac machines, TrueBeam (TB) and Elekta Versa have updated head designing and software control system, include flattening-filter-free (FFF) photon and electron beams. Later on FFF beams were also introduced on C-Series machines. In this work FFF beams for same energy 6MV but from different machine versions were studied with reference to beam data parameters. Methods: The 6MV-FFF percent depth doses, profile symmetry and flatness, dose rate tables, and multi-leaf collimator (MLC) transmission factors were measured during commissioning process of both C-series and Truebeam machines. The scanning and dosimetric data for 6MV-FFF beam from Truebeam and C-Series linacs wasmore » compared. A correlation of 6MV-FFF beam from Elekta Versa with that of Varian linacs was also found. Results: The scanning files were plotted for both qualitative and quantitative analysis. The dosimetric leaf gap (DLG) for C-Series 6MV-FFF beam is 1.1 mm. Published values for Truebeam dosimetric leaf gap is 1.16 mm. 6MV MLC transmission factor varies between 1.3 % and 1.4 % in two separate measurements and measured DLG values vary between 1.32 mm and 1.33 mm on C-Series machine. MLC transmission factor from C-Series machine varies between 1.5 % and 1.6 %. Some of the measured data values from C-Series FFF beam are compared with Truebeam representative data. 6MV-FFF beam parameter values like dmax, OP factors, beam symmetry and flatness and additional parameters for C-Series and Truebeam liancs will be presented and compared in graphical form and tabular data form if selected. Conclusion: The 6MV flattening filter (FF) beam data from C-Series & Truebeam and 6MV-FFF beam data from Truebeam has already presented. This particular analysis to compare 6MV-FFF beam from C-Series and Truebeam provides opportunity to better elaborate FFF mode on novel machines. It was found that C-Series and Truebeam 6MV-FFF dosimetric and beam data was quite similar.« less
Habitability Assessment on Earth in Preparation for Mars Science Laboratory
NASA Astrophysics Data System (ADS)
Conrad, Pamela; Mahaffy, Paul
NASA's upcoming Mars Science Laboratory mission is designed to explore and quantitatively assess a local region on the surface of Mars as a potential habitat for life, past or present. In advance of this complex mission, we are developing metrics from which to frame such an assess-ment. Evaluation of habitability potential is clearly different and more challenging than direct measurement of a discrete potential such as a voltage, which is a single parameter expressing the magnitude of a difference between a ground state and a measurable charge. Habitability potential is likely to require measurement of several parameters whose relationships determine the threshold value above which an environment may be deemed habitable in some regard. On Earth, in the continuum from uninhabitable to inhabited, one can measure environmental parameters that co-vary with biological parameters such as total biomass, functional diversity and/or ecotype along that binary join. Recognition of this statistical association facilitates development of predictive tools for assessment of habitability potential in environments that fall in between the end members of the habitability spectrum. The success of a habitabil-ity investigation on Mars depends upon development of criteria that can be agreed upon by the scientific community that will enable interpretation of the data from experiments on Mars within the context of a scalar notion of habitability, which we describe in this report. The scalar approach involves (1) measurement of physical, chemical and biological features of the candidate environment, (2) normalization of the scales over which they vary and (3) evaluation of their covariance. Inclusion of biological measurements, e.g., total biomass, diversity, ecotype, etc., serves as a benchmark in Earth environments, and the subsequent step in a campaign to develop a habitability scale involves measuring and analyzing only the chemical and physical environmental parameters, then predicting the habitability of the environment and validating the prediction with the biological measurements. Ultimately, one compares the parameters we measure at Earth analogs to environments of deposition that are most consistent with the candidate MSL landing sites. In this way, we can optimize the measurement approach of the powerful MSL payload to evaluate the habitability potential at the field site where its mission conducts surface operations.
Reduced exposure using asymmetric cone beam processing for wide area detector cardiac CT
Bedayat, Arash; Kumamaru, Kanako; Powers, Sara L.; Signorelli, Jason; Steigner, Michael L.; Steveson, Chloe; Soga, Shigeyoshi; Adams, Kimberly; Mitsouras, Dimitrios; Clouse, Melvin; Mather, Richard T.
2011-01-01
The purpose of this study was to estimate dose reduction after implementation of asymmetrical cone beam processing using exposure differences measured in a water phantom and a small cohort of clinical coronary CTA patients. Two separate 320 × 0.5 mm detector row scans of a water phantom used identical cardiac acquisition parameters before and after software modifications from symmetric to asymmetric cone beam acquisition and processing. Exposure was measured at the phantom surface with Optically Stimulated Luminescence (OSL) dosimeters at 12 equally spaced angular locations. Mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at the center plus four peripheral locations in the water phantom. To assess image quality, mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at five points within the water phantom. Retrospective evaluation of 64 patients (37 symmetric; 27 asymmetric acquisition) included clinical data, scanning parameters, quantitative plus qualitative image assessment, and estimated radiation dose. In the water phantom, the asymmetric cone beam processing reduces exposure by approximately 20% with no change in image quality. The clinical coronary CTA patient groups had comparable demographics. The estimated dose reduction after implementation of the asymmetric approach was roughly 24% with no significant difference between the symmetric and asymmetric approach with respect to objective measures of image quality or subjective assessment using a four point scale. When compared to a symmetric approach, the decreased exposure, subsequent lower patient radiation dose, and similar image quality from asymmetric cone beam processing supports its routine clinical use. PMID:21336552
Reduced exposure using asymmetric cone beam processing for wide area detector cardiac CT.
Bedayat, Arash; Rybicki, Frank J; Kumamaru, Kanako; Powers, Sara L; Signorelli, Jason; Steigner, Michael L; Steveson, Chloe; Soga, Shigeyoshi; Adams, Kimberly; Mitsouras, Dimitrios; Clouse, Melvin; Mather, Richard T
2012-02-01
The purpose of this study was to estimate dose reduction after implementation of asymmetrical cone beam processing using exposure differences measured in a water phantom and a small cohort of clinical coronary CTA patients. Two separate 320 × 0.5 mm detector row scans of a water phantom used identical cardiac acquisition parameters before and after software modifications from symmetric to asymmetric cone beam acquisition and processing. Exposure was measured at the phantom surface with Optically Stimulated Luminescence (OSL) dosimeters at 12 equally spaced angular locations. Mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at the center plus four peripheral locations in the water phantom. To assess image quality, mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at five points within the water phantom. Retrospective evaluation of 64 patients (37 symmetric; 27 asymmetric acquisition) included clinical data, scanning parameters, quantitative plus qualitative image assessment, and estimated radiation dose. In the water phantom, the asymmetric cone beam processing reduces exposure by approximately 20% with no change in image quality. The clinical coronary CTA patient groups had comparable demographics. The estimated dose reduction after implementation of the asymmetric approach was roughly 24% with no significant difference between the symmetric and asymmetric approach with respect to objective measures of image quality or subjective assessment using a four point scale. When compared to a symmetric approach, the decreased exposure, subsequent lower patient radiation dose, and similar image quality from asymmetric cone beam processing supports its routine clinical use.
Liu, S.; Anderson, P.; Zhou, G.; Kauffman, B.; Hughes, F.; Schimel, D.; Watson, Vicente; Tosi, Joseph
2008-01-01
Objectively assessing the performance of a model and deriving model parameter values from observations are critical and challenging in landscape to regional modeling. In this paper, we applied a nonlinear inversion technique to calibrate the ecosystem model CENTURY against carbon (C) and nitrogen (N) stock measurements collected from 39 mature tropical forest sites in seven life zones in Costa Rica. Net primary productivity from the Moderate-Resolution Imaging Spectroradiometer (MODIS), C and N stocks in aboveground live biomass, litter, coarse woody debris (CWD), and in soils were used to calibrate the model. To investigate the resolution of available observations on the number of adjustable parameters, inversion was performed using nine setups of adjustable parameters. Statistics including observation sensitivity, parameter correlation coefficient, parameter sensitivity, and parameter confidence limits were used to evaluate the information content of observations, resolution of model parameters, and overall model performance. Results indicated that soil organic carbon content, soil nitrogen content, and total aboveground biomass carbon had the highest information contents, while measurements of carbon in litter and nitrogen in CWD contributed little to the parameter estimation processes. The available information could resolve the values of 2-4 parameters. Adjusting just one parameter resulted in under-fitting and unacceptable model performance, while adjusting five parameters simultaneously led to over-fitting. Results further indicated that the MODIS NPP values were compressed as compared with the spatial variability of net primary production (NPP) values inferred from inverse modeling. Using inverse modeling to infer NPP and other sensitive model parameters from C and N stock observations provides an opportunity to utilize data collected by national to regional forest inventory systems to reduce the uncertainties in the carbon cycle and generate valuable databases to validate and improve MODIS NPP algorithms.
NASA Astrophysics Data System (ADS)
Reaver, N.; Kaplan, D. A.; Jawitz, J. W.
2017-12-01
The Budyko hypothesis states that a catchment's long-term water and energy balances are dependent on two relatively easy to measure quantities: rainfall depth and potential evaporation. This hypothesis is expressed as a simple function, the Budyko equation, which allows for the prediction of a catchment's actual evapotranspiration and discharge from measured rainfall depth and potential evaporation, data which are widely available. However, the two main analytically derived forms of the Budyko equation contain a single unknown watershed parameter, whose value varies across catchments; variation in this parameter has been used to explain the hydrological behavior of different catchments. The watershed parameter is generally thought of as a lumped quantity that represents the influence of all catchment biophysical features (e.g. soil type and depth, vegetation type, timing of rainfall, etc). Previous work has shown that the parameter is statistically correlated with catchment properties, but an explicit expression has been elusive. While the watershed parameter can be determined empirically by fitting the Budyko equation to measured data in gauged catchments where actual evapotranspiration can be estimated, this limits the utility of the framework for predicting impacts to catchment hydrology due to changing climate and land use. In this study, we developed an analytical solution for the lumped catchment parameter for both forms of the Budyko equation. We combined these solutions with a statistical soil moisture model to obtain analytical solutions for the Budyko equation parameter as a function of measurable catchment physical features, including rooting depth, soil porosity, and soil wilting point. We tested the predictive power of these solutions using the U.S. catchments in the MOPEX database. We also compared the Budyko equation parameter estimates generated from our analytical solutions (i.e. predicted parameters) with those obtained through the calibration of the Budyko equation to discharge data (i.e. empirical parameters), and found good agreement. These results suggest that it is possible to predict the Budyko equation watershed parameter directly from physical features, even for ungauged catchments.
Measured oscillator strengths in singly ionized molybdenum
NASA Astrophysics Data System (ADS)
Mayo-García, R.; Aragón, C.; Aguilera, J. A.; Ortiz, M.
2015-11-01
In this article, 112 oscillator strengths from Mo II have been measured, 79 of which for the first time. The radiative parameters have been obtained by laser-induced breakdown spectroscopy (LIBS). The plasma is produced from a fused glass sample prepared from molybdenum oxide with a Mo atomic concentration of 0.1%. The plasma evolved in air at atmospheric pressure, and measurements were carried out with the following plasma parameters: an electron density of (2.5+/- 0.1)\\cdot {10}17 cm-3 and an electron temperature of 14,400+/- 200 K. In these conditions, a local thermodynamic equilibrium environment and an optically thin plasma were confirmed for the measurements. The relative intensities were placed on an absolute scale by combining branching fractions with the measured lifetimes and by comparing well-known lines using the plasma temperature. Comparisons were made to previously obtained experimental and theoretical values wherever possible.
A Backscatter-Lidar Forward-Operator
NASA Astrophysics Data System (ADS)
Geisinger, Armin; Behrendt, Andreas; Wulfmeyer, Volker; Vogel, Bernhard; Mattis, Ina; Flentje, Harald; Förstner, Jochen; Potthast, Roland
2015-04-01
We have developed a forward-operator which is capable of calculating virtual lidar profiles from atmospheric state simulations. The operator allows us to compare lidar measurements and model simulations based on the same measurement parameter: the lidar backscatter profile. This method simplifies qualitative comparisons and also makes quantitative comparisons possible, including statistical error quantification. Implemented into an aerosol-capable model system, the operator will act as a component to assimilate backscatter-lidar measurements. As many weather services maintain already networks of backscatter-lidars, such data are acquired already in an operational manner. To estimate and quantify errors due to missing or uncertain aerosol information, we started sensitivity studies about several scattering parameters such as the aerosol size and both the real and imaginary part of the complex index of refraction. Furthermore, quantitative and statistical comparisons between measurements and virtual measurements are shown in this study, i.e. applying the backscatter-lidar forward-operator on model output.
The use of information theory for the evaluation of biomarkers of aging and physiological age.
Blokh, David; Stambler, Ilia
2017-04-01
The present work explores the application of information theoretical measures, such as entropy and normalized mutual information, for research of biomarkers of aging. The use of information theory affords unique methodological advantages for the study of aging processes, as it allows evaluating non-linear relations between biological parameters, providing the precise quantitative strength of those relations, both for individual and multiple parameters, showing cumulative or synergistic effect. Here we illustrate those capabilities utilizing a dataset on heart disease, including diagnostic parameters routinely available to physicians. The use of information-theoretical methods, utilizing normalized mutual information, revealed the exact amount of information that various diagnostic parameters or their combinations contained about the persons' age. Based on those exact informative values for the correlation of measured parameters with age, we constructed a diagnostic rule (a decision tree) to evaluate physiological age, as compared to chronological age. The present data illustrated that younger subjects suffering from heart disease showed characteristics of people of higher age (higher physiological age). Utilizing information-theoretical measures, with additional data, it may be possible to create further clinically applicable information-theory-based markers and models for the evaluation of physiological age, its relation to age-related diseases and its potential modifications by therapeutic interventions. Copyright © 2017 Elsevier B.V. All rights reserved.
Nine color eleven parameter immunophenotyping using three laser flow cytometry.
Bigos, M; Baumgarth, N; Jager, G C; Herman, O C; Nozaki, T; Stovel, R T; Parks, D R; Herzenberg, L A
1999-05-01
This study describes a three laser flow cytometer, reagents, and software used to simultaneously evaluate nine distinct fluorescent parameters on one cell sample. We compare the quality of data obtained with (1) full software compensation and (2) the use of partial spectral compensation of selected pairs of parameters in analog hardware, in combination with final software compensation. An application characterizing low frequency murine B cell subpopulations is given. The fluorochromes used are: fluorescein (FITC), phycoerythrin (PE), Cy5PE and Cy7PE, excited at 488 nm by an argon laser; Texas Red (TR), allophycocyanin (APC), and Cy7APC excited at 595 nm by a pumped dye laser; and cascade blue (CB) and cascade yellow (CY) excited at 407 nm by a violet-enhanced krypton laser. Custom additions to commercial electronics and an extended optical bench allow the measurement of these nine parameters plus forward and side scatter light signals. We find the use of partial analog compensation reduces the variation in the background staining levels introduced by the compensation process. Novel B cell populations with frequencies below 1% are characterized. Nine color flow cytometry is capable of providing measurements with high information content. The choice of reagent-dye combinations and the ability to compensate in multi-parameter measurement space are crucial to obtaining satisfactory results.
Sams, J. I.; Witt, E. C.
1995-01-01
The Hydrological Simulation Program - Fortran (HSPF) was used to simulate streamflow and sediment transport in two surface-mined basins of Fayette County, Pa. Hydrologic data from the Stony Fork Basin (0.93 square miles) was used to calibrate HSPF parameters. The calibrated parameters were applied to an HSPF model of the Poplar Run Basin (8.83 square miles) to evaluate the transfer value of model parameters. The results of this investigation provide information to the Pennsylvania Department of Environmental Resources, Bureau of Mining and Reclamation, regarding the value of the simulated hydrologic data for use in cumulative hydrologic-impact assessments of surface-mined basins. The calibration period was October 1, 1985, through September 30, 1988 (water years 1986-88). The simulated data were representative of the observed data from the Stony Fork Basin. Mean simulated streamflow was 1.64 cubic feet per second compared to measured streamflow of 1.58 cubic feet per second for the 3-year period. The difference between the observed and simulated peak stormflow ranged from 4.0 to 59.7 percent for 12 storms. The simulated sediment load for the 1987 water year was 127.14 tons (0.21 ton per acre), which compares to a measured sediment load of 147.09 tons (0.25 ton per acre). The total simulated suspended-sediment load for the 3-year period was 538.2 tons (0.30 ton per acre per year), which compares to a measured sediment load of 467.61 tons (0.26 ton per acre per year). The model was verified by comparing observed and simulated data from October 1, 1988, through September 30, 1989. The results obtained were comparable to those from the calibration period. The simulated mean daily discharge was representative of the range of data observed from the basin and of the frequency with which specific discharges were equalled or exceeded. The calibrated and verified parameters from the Stony Fork model were applied to an HSPF model of the Poplar Run Basin. The two basins are in a similar physical setting. Data from October 1, 1987, through September 30, 1989, were used to evaluate the Poplar Run model. In general, the results from the Poplar Run model were comparable to those obtained from the Stony Fork model. The difference between observed and simulated total streamflow was 1.1 percent for the 2-year period. The mean annual streamflow simulated by the Poplar Run model was 18.3 cubic feet per second. This compares to an observed streamflow of 18.15 cubic feet per second. For the 2-year period, the simulated sediment load was 2,754 tons (0.24 ton per acre per year), which compares to a measured sediment load of 3,051.2 tons (0.27 ton per acre per year) for the Poplar Run Basin. Cumulative frequency-distribution curves of the observed and simulated streamflow compared well. The comparison between observed and simulated data improved as the time span increased. Simulated annual means and totals were more representative of the observed data than hourly data used in comparing storm events. The structure and organization of the HSPF model facilitated the simulation of a wide range of hydrologic processes. The simulation results from this investigation indicate that model parameters may be transferred to ungaged basins to generate representative hydrologic data through modeling techniques.
NASA Astrophysics Data System (ADS)
Guchhait, Shyamal; Banerjee, Biswanath
2018-04-01
In this paper, a variant of constitutive equation error based material parameter estimation procedure for linear elastic plates is developed from partially measured free vibration sig-natures. It has been reported in many research articles that the mode shape curvatures are much more sensitive compared to mode shape themselves to localize inhomogeneity. Complying with this idea, an identification procedure is framed as an optimization problem where the proposed cost function measures the error in constitutive relation due to incompatible curvature/strain and moment/stress fields. Unlike standard constitutive equation error based procedure wherein a solution of a couple system is unavoidable in each iteration, we generate these incompatible fields via two linear solves. A simple, yet effective, penalty based approach is followed to incorporate measured data. The penalization parameter not only helps in incorporating corrupted measurement data weakly but also acts as a regularizer against the ill-posedness of the inverse problem. Explicit linear update formulas are then developed for anisotropic linear elastic material. Numerical examples are provided to show the applicability of the proposed technique. Finally, an experimental validation is also provided.
Analysis of pressure spectra measurements in a ducted combustion system. Ph.D. Thesis - Toledo Univ.
NASA Technical Reports Server (NTRS)
Miles, J. H.
1980-01-01
Combustion noise propagation in an operating ducted liquid fuel combustion system is studied in relation to the development of combustion noise prediction and suppression techniques. The presence of combustor emissions in the duct is proposed as the primary mechanism producing the attenuation and dispersion of combustion noise propagating in an operating liquid fuel combustion system. First, a complex mathematical model for calculating attenuation and dispersion taking into account mass transfer, heat transfer, and viscosity effects due to the presence of liquid fuel droplets or solid soot particles is discussed. Next, a simpler single parameter model for calculating pressure auto-spectra and cross-spectra which takes into account dispersion and attenuation due to heat transfer between solid soot particles and air is developed. Then, auto-spectra and cross-spectra obtained from internal pressure measurements in a combustion system consisting of a J-47 combustor can, a spool piece, and a long duct are presented. Last, analytical results obtained with the single parameter model are compared with the experimental measurements. The single parameter model results are shown to be in excellent agreement with the measurements.
Analysis of pressure spectra measurements in a ducted combustion system
NASA Astrophysics Data System (ADS)
Miles, J. H.
1980-11-01
Combustion noise propagation in an operating ducted liquid fuel combustion system is studied in relation to the development of combustion noise prediction and suppression techniques. The presence of combustor emissions in the duct is proposed as the primary mechanism producing the attenuation and dispersion of combustion noise propagating in an operating liquid fuel combustion system. First, a complex mathematical model for calculating attenuation and dispersion taking into account mass transfer, heat transfer, and viscosity effects due to the presence of liquid fuel droplets or solid soot particles is discussed. Next, a simpler single parameter model for calculating pressure auto-spectra and cross-spectra which takes into account dispersion and attenuation due to heat transfer between solid soot particles and air is developed. Then, auto-spectra and cross-spectra obtained from internal pressure measurements in a combustion system consisting of a J-47 combustor can, a spool piece, and a long duct are presented. Last, analytical results obtained with the single parameter model are compared with the experimental measurements. The single parameter model results are shown to be in excellent agreement with the measurements.
Comparative study of I- V methods to extract Au/FePc/p-Si Schottky barrier diode parameters
NASA Astrophysics Data System (ADS)
Oruç, Çiğdem; Altındal, Ahmet
2018-01-01
So far, various methods have been proposed to extract the Schottky diode parameters from measured current-voltage characteristics. In this work, Schottky barrier diode with structure of Au/2(3),9(10),16(17),23(24)-tetra(4-(4-methoxyphenyl)-8-methylcoumarin-7 oxy) phthalocyaninatoiron(II) (FePc)/p-Si was fabricated and current-voltage measurements were carried out on it. In addition, current-voltage measurements were also performed on Au/p-Si structure, without FePc, to clarify the influence of the presence of an interface layer on the device performance. The measured current-voltage characteristics indicate that the interface properties of a Schottky barrier diode can be controlled by the presence of an organic interface layer. It is found that the room temperature barrier height of Au/FePc/p-Si structure is larger than that of the Au/p-Si structure. The obtained forward bias current-voltage characteristics of the Au/FePc/p-Si device was analysed by five different analytical methods. It is found that the extracted values of SBD parameters strongly depends on the method used.
NASA Astrophysics Data System (ADS)
Ke, Weiyao; Moreland, J. Scott; Bernhard, Jonah E.; Bass, Steffen A.
2017-10-01
We study the initial three-dimensional spatial configuration of the quark-gluon plasma (QGP) produced in relativistic heavy-ion collisions using centrality and pseudorapidity-dependent measurements of the medium's charged particle density and two-particle correlations. A cumulant-generating function is first used to parametrize the rapidity dependence of local entropy deposition and extend arbitrary boost-invariant initial conditions to nonzero beam rapidities. The model is then compared to p +Pb and Pb + Pb charged-particle pseudorapidity densities and two-particle pseudorapidity correlations and systematically optimized using Bayesian parameter estimation to extract high-probability initial condition parameters. The optimized initial conditions are then compared to a number of experimental observables including the pseudorapidity-dependent anisotropic flows, event-plane decorrelations, and flow correlations. We find that the form of the initial local longitudinal entropy profile is well constrained by these experimental measurements.
Retrieving cloudy atmosphere parameters from RPG-HATPRO radiometer data
NASA Astrophysics Data System (ADS)
Kostsov, V. S.
2015-03-01
An algorithm for simultaneously determining both tropospheric temperature and humidity profiles and cloud liquid water content from ground-based measurements of microwave radiation is presented. A special feature of this algorithm is that it combines different types of measurements and different a priori information on the sought parameters. The features of its use in processing RPG-HATPRO radiometer data obtained in the course of atmospheric remote sensing experiments carried out by specialists from the Faculty of Physics of St. Petersburg State University are discussed. The results of a comparison of both temperature and humidity profiles obtained using a ground-based microwave remote sensing method with those obtained from radiosonde data are analyzed. It is shown that this combined algorithm is comparable (in accuracy) to the classical method of statistical regularization in determining temperature profiles; however, this algorithm demonstrates better accuracy (when compared to the method of statistical regularization) in determining humidity profiles.
Robot-assisted gait training in multiple sclerosis patients: a randomized trial.
Schwartz, Isabella; Sajin, Anna; Moreh, Elior; Fisher, Iris; Neeb, Martin; Forest, Adina; Vaknin-Dembinsky, Adi; Karusis, Dimitrios; Meiner, Zeev
2012-06-01
Preservation of locomotor activity in multiple sclerosis (MS) patients is of utmost importance. Robotic-assisted body weight-supported treadmill training is a promising method to improve gait functions in neurologically impaired patients, although its effectiveness in MS patients is still unknown. To compare the effectiveness of robot-assisted gait training (RAGT) with that of conventional walking treatment (CWT) on gait and generalized functions in a group of stable MS patients. A prospective randomized controlled trial of 12 sessions of RAGT or CWT in MS patients of EDSS score 5-7. Primary outcome measures were gait parameters and the secondary outcomes were functional and quality of life parameters. All tests were performed at baseline, 3 and 6 months post-treatment by a blinded rater. Fifteen and 17 patients were randomly allocated to RAGT and CWT, respectively. Both groups were comparable at baseline in all parameters. As compared with baseline, although some gait parameters improved significantly following the treatment at each time point there was no difference between the groups. Both FIM and EDSS scores improved significantly post-treatment with no difference between the groups. At 6 months, most gait and functional parameters had returned to baseline. Robot-assisted gait training is feasible and safe and may be an effective additional therapeutic option in MS patients with severe walking disabilities.
Pfitzer, S; Ganswindt, A; Fosgate, G T; Botha, P J; Myburgh, J G
2014-09-27
The electric stunner (e-stunner) is commonly used to handle Nile crocodiles (Crocodylus niloticus) on commercial farms in South Africa, but while it seems to improve handling and safety for the keepers, no information regarding physiological reactions to e-stunning is currently available. The aim of this study was therefore to compare various physiological parameters in farmed C niloticus captured either manually (noosing) or by using an e-stunner. A total of 45 crocodiles were captured at a South African farm by either e-stunning or noosing, and blood samples were taken immediately as well as four hours after capture. Parameters monitored were serum corticosterone, lactate, glucose, as well as alanine aminotransferase, alkaline phosphatase, aspartate aminotransferase and creatine kinase. Lactate concentrations were significantly higher in noosed compared with e-stunned animals (P<0.001). No other blood parameter differed significantly between the two methods of capture. In addition, recorded capture time confirmed that noosing takes significantly longer time compared with e-stunning (P<0.001), overall indicating that e-stunning seems to be the better option for restraint of especially large numbers of crocodiles in a commercial setup because it is quicker, safer and did not cause a significant increase in any of the parameters measured. British Veterinary Association.
A radial measurement of the galaxy tidal alignment magnitude with BOSS data
NASA Astrophysics Data System (ADS)
Martens, Daniel; Hirata, Christopher M.; Ross, Ashley J.; Fang, Xiao
2018-07-01
The anisotropy of galaxy clustering in redshift space has long been used to probe the rate of growth of cosmological perturbations. However, if galaxies are aligned by large-scale tidal fields, then a sample with an orientation-dependent selection effect has an additional anisotropy imprinted on to its correlation function. We use the LOWZ and CMASS catalogues of SDSS-III BOSS Data Release 12 to divide galaxies into two subsamples based on their offset from the Fundamental Plane, which should be correlated with orientation. These subsamples must trace the same underlying cosmology, but have opposite orientation-dependent selection effects. We measure the clustering parameters of each subsample and compare them in order to calculate the dimensionless parameter B, a measure of how strongly galaxies are aligned by gravitational tidal fields. We found that for CMASS (LOWZ), the measured B was -0.024 ± 0.015 (-0.030 ± 0.016). This result can be compared to the theoretical predictions of Hirata, who argued that since galaxy formation physics does not depend on the direction of the `observer,' the same intrinsic alignment parameters that describe galaxy-ellipticity correlations should also describe intrinsic alignments in the radial direction. We find that the ratio of observed to theoretical values is 0.51 ± 0.32 (0.77 ± 0.41) for CMASS (LOWZ). We combine the results to obtain a total Obs/Theory = 0.61 ± 0.26. This measurement constitutes evidence (between 2σand 3σ) for radial intrinsic alignments, and is consistent with theoretical expectations (<2σ difference).
A Radial Measurement of the Galaxy Tidal Alignment Magnitude with BOSS Data
NASA Astrophysics Data System (ADS)
Martens, Daniel; Hirata, Christopher M.; Ross, Ashley J.; Fang, Xiao
2018-05-01
The anisotropy of galaxy clustering in redshift space has long been used to probe the rate of growth of cosmological perturbations. However, if galaxies are aligned by large-scale tidal fields, then a sample with an orientation-dependent selection effect has an additional anisotropy imprinted onto its correlation function. We use the LOWZ and CMASS catalogs of SDSS-III BOSS Data Release 12 to divide galaxies into two sub-samples based on their offset from the Fundamental Plane, which should be correlated with orientation. These sub-samples must trace the same underlying cosmology, but have opposite orientation-dependent selection effects. We measure the clustering parameters of each sub-sample and compare them in order to calculate the dimensionless parameter B, a measure of how strongly galaxies are aligned by gravitational tidal fields. We found that for CMASS (LOWZ), the measured B was -0.024 ± 0.015 (-0.030 ± 0.016). This result can be compared to the theoretical predictions of Hirata (2009), who argued that since galaxy formation physics does not depend on the direction of the "observer," the same intrinsic alignment parameters that describe galaxy-ellipticity correlations should also describe intrinsic alignments in the radial direction. We find that the ratio of observed to theoretical values is 0.51 ± 0.32 (0.77 ± 0.41) for CMASS (LOWZ). We combine the results to obtain a total Obs/Theory = 0.61 ± 0.26. This measurement constitutes evidence (between 2 and 3σ) for radial intrinsic alignments, and is consistent with theoretical expectations (<2σ difference).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domanskyi, Sergii; Schilling, Joshua E.; Privman, Vladimir, E-mail: privman@clarkson.edu
We develop a theoretical approach that uses physiochemical kinetics modelling to describe cell population dynamics upon progression of viral infection in cell culture, which results in cell apoptosis (programmed cell death) and necrosis (direct cell death). Several model parameters necessary for computer simulation were determined by reviewing and analyzing available published experimental data. By comparing experimental data to computer modelling results, we identify the parameters that are the most sensitive to the measured system properties and allow for the best data fitting. Our model allows extraction of parameters from experimental data and also has predictive power. Using the model wemore » describe interesting time-dependent quantities that were not directly measured in the experiment and identify correlations among the fitted parameter values. Numerical simulation of viral infection progression is done by a rate-equation approach resulting in a system of “stiff” equations, which are solved by using a novel variant of the stochastic ensemble modelling approach. The latter was originally developed for coupled chemical reactions.« less
Systematic study of rapidity dispersion parameter in high energy nucleus-nucleus interactions
NASA Astrophysics Data System (ADS)
Bhattacharyya, Swarnapratim; Haiduc, Maria; Neagu, Alina Tania; Firu, Elena
2014-03-01
A systematic study of rapidity dispersion parameter as a quantitative measure of clustering of particles has been carried out in the interactions of 16O, 28Si and 32S projectiles at 4.5 A GeV/c with heavy (AgBr) and light (CNO) groups of targets present in the nuclear emulsion. For all the interactions, the total ensemble of events has been divided into four overlapping multiplicity classes depending on the number of shower particles. For all the interactions and for each multiplicity class, the rapidity dispersion parameter values indicate the occurrence of clusterization during the multiparticle production at Dubna energy. The measured rapidity dispersion parameter values are found to decrease with the increase of average multiplicity for all the interactions. The dependence of rapidity dispersion parameter on the average multiplicity can be successfully described by a relation D(η) = a + b
Messaraa, C; Metois, A; Walsh, M; Hurley, S; Doyle, L; Mansfield, A; O'Connor, C; Mavon, A
2018-01-24
Skin topographic measurements are of paramount importance in the field of dermo-cosmetic evaluation. The aim of this study was to investigate how the Antera 3D, a multi-purpose handheld camera, correlates with other topographic techniques and changes in skin topography following the use of a cosmetic product. Skin topographic measurements were collected on 26 female volunteers aged 45-70 years with the Antera 3D, the DermaTOP and image analysis on parallel-polarized pictures. Different filters for analysis from the Antera 3D were investigated for repeatability, correlations with other imaging techniques and ability to detect improvements of skin topography following application of a serum. Most of Antera 3D parameters were found to be strongly correlated with the DermaTOP parameters. No association was found between the Antera 3D parameters and measurements on parallel-polarized photographs. The measurements repeatability was comparable among the different filters for analysis, with the exception of wrinkle max depth and roughness Rt. Following a single application of a tightening serum, both Antera 3D wrinkles and texture parameters were able to record significant improvements, with the best improvements observed with the large filter. The Antera 3D demonstrated its relevance for cosmetic product evaluation. We also provide recommendations for the analysis based on our findings. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Schramm, Stefan; Schikowski, Patrick; Lerm, Elena; Kaeding, André; Haueisen, Jens; Baumgarten, Daniel
2016-07-01
Objective measurement of straylight in the human eye with a Shack-Hartmann (SH) wavefront aberrometer is limited in imaging angle. We propose a measurement principle and a point spread function (PSF) reconstruction algorithm to overcome this limitation. In our optical setup, a variable stop replaces the stop conventionally used to suppress reflections and scatter in SH aberrometers. We record images with 21 diameters of the stop. From each SH image, the average intensity of the pupil is computed and normalized. The intensities represent integral values of the PSF. We reconstruct the PSF, which is the derivative of the intensities with respect to the visual angle. A modified Stiles Holladay approximation is fitted to the reconstructed PSF, resulting in a straylight parameter. A proof-of-principle study was carried out on eight healthy young volunteers. Scatter filters were positioned in front of the volunteers' eyes to simulate straylight. The straylight parameter was compared to the C-Quant measurements and the filter values. The PSF parameter shows strong correlation with the density of the filters and a linear relation to the C-Quant straylight parameter. Our measurement and reconstruction techniques allow for objective straylight analysis of visual angles up to 4 deg.
On the estimation algorithm used in adaptive performance optimization of turbofan engines
NASA Technical Reports Server (NTRS)
Espana, Martin D.; Gilyard, Glenn B.
1993-01-01
The performance seeking control algorithm is designed to continuously optimize the performance of propulsion systems. The performance seeking control algorithm uses a nominal model of the propulsion system and estimates, in flight, the engine deviation parameters characterizing the engine deviations with respect to nominal conditions. In practice, because of measurement biases and/or model uncertainties, the estimated engine deviation parameters may not reflect the engine's actual off-nominal condition. This factor has a necessary impact on the overall performance seeking control scheme exacerbated by the open-loop character of the algorithm. The effects produced by unknown measurement biases over the estimation algorithm are evaluated. This evaluation allows for identification of the most critical measurements for application of the performance seeking control algorithm to an F100 engine. An equivalence relation between the biases and engine deviation parameters stems from an observability study; therefore, it is undecided whether the estimated engine deviation parameters represent the actual engine deviation or whether they simply reflect the measurement biases. A new algorithm, based on the engine's (steady-state) optimization model, is proposed and tested with flight data. When compared with previous Kalman filter schemes, based on local engine dynamic models, the new algorithm is easier to design and tune and it reduces the computational burden of the onboard computer.
NASA Astrophysics Data System (ADS)
Rohrbach, Daniel J.; Rigual, Nestor; Arshad, Hassan; Tracy, Erin C.; Cooper, Michelle T.; Shafirstein, Gal; Wilding, Gregory; Merzianu, Mihai; Baumann, Heinz; Henderson, Barbara W.; Sunar, Ulas
2016-01-01
This study investigated whether diffuse optical spectroscopy (DOS) measurements could assess clinical response to photodynamic therapy (PDT) in patients with head and neck squamous cell carcinoma (HNSCC). In addition, the correlation between parameters measured with DOS and the crosslinking of signal transducer and activator of transcription 3 (STAT3), a molecular marker for PDT-induced photoreaction, was investigated. Thirteen patients with early stage HNSCC received the photosensitizer 2-[1-hexyloxyethyl]-2-devinylpyropheophorbide-a (HPPH) and DOS measurements were performed before and after PDT in the operating room (OR). In addition, biopsies were acquired after PDT to assess the STAT3 crosslinking. Parameters measured with DOS, including blood volume fraction, blood oxygen saturation (StO2), HPPH concentration (cHPPH), HPPH fluorescence, and blood flow index (BFI), were compared to the pathologic response and the STAT3 crosslinking. The best individual predictor of pathological response was a change in cHPPH (sensitivity=60%, specificity=100%), while discrimination analysis using a two-parameter classifier (change in cHPPH and change in StO2) classified pathological response with 100% sensitivity and 100% specificity. BFI showed the best correlation with the crosslinking of STAT3. These results indicate that DOS-derived parameters can assess the clinical response in the OR, allowing for earlier reintervention if needed.
Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Stephen S.; White, Josh; Hosemann, Peter
High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. We measured the oxidation kinetic constant (k) as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3–5 orders of magnitude lower across the experimental temperature range. Our results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.
Relations among low ionosphere parameters and high frequency radio wave absorption
NASA Technical Reports Server (NTRS)
Cipriano, J. P.
1973-01-01
Charged particle conductivities measured in the very low ionosphere at White Sands Missile Range, New Mexico, and Wallops Island, Virginia, are compared with atmospheric parameters and high frequency radio wave absorption measurements. Charged particle densities are derived from the conductivity data. Between 33 and 58 km, positive conductivity correlated well with neutral atmospheric temperature, with temperature coefficients as large as 4.6%/deg K. Good correlations were also found between HF radio wave absorption and negative conductivity at altitudes as low as 53 km, indicating that the day-to-day absorption variations were principally due to variations in electron loss rate.
Measurement and modelization of silica opal optical properties
NASA Astrophysics Data System (ADS)
Avoine, Amaury; Hong, Phan Ngoc; Frederich, Hugo; Aregahegn, Kifle; Bénalloul, Paul; Coolen, Laurent; Schwob, Catherine; Thu Nga, Pham; Gallas, Bruno; Maître, Agnès
2014-03-01
We present the synthesis process and optical characterization of artificial silica opals. The specular reflection spectra are analyzed and compared to band structure calculations and finite difference time domain (FDTD) simulations. The silica optical index is a key parameter to correctly describe an opal and is usually not known and treated as a free parameter. Here we propose a method to infer the silica index, as well as the silica spheres diameter, from the reflection spectra and we validate it by comparison with two independent infrared methods for the index and, scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements for the spheres diameter.
Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments
Parker, Stephen S.; White, Josh; Hosemann, Peter; ...
2017-11-03
High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. We measured the oxidation kinetic constant (k) as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3–5 orders of magnitude lower across the experimental temperature range. Our results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.
Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments
NASA Astrophysics Data System (ADS)
Parker, Stephen S.; White, Josh; Hosemann, Peter; Nelson, Andrew
2018-02-01
High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. The oxidation kinetic constant ( k) was measured as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3-5 orders of magnitude lower across the experimental temperature range. The results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.
Photovoltaic characteristics of diffused P/+N bulk GaAs solar cells
NASA Technical Reports Server (NTRS)
Borrego, J. M.; Keeney, R. P.; Bhat, I. B.; Bhat, K. N.; Sundaram, L. G.; Ghandhi, S. K.
1982-01-01
The photovoltaic characteristics of P(+)N junction solar cells fabricated on bulk GaAs by an open tube diffusion technique are described in this paper.Spectral response measurements were analyzed in detail and compared to a computer simulation in order to determine important material parameters. It is projected that proper optimization of the cell parameters can increase the efficiency of the cells from 12.2 percent to close to 20 percent.
Determination of Indicators of Ecological Change
2004-09-01
simultaneously characterized parameters for more than one forest (e.g., Huber and Iroume, 2001; Tobón Marin et al., 2000). As parameters (e.g...necessary to apply the revised model for use in five forest biomes , 2) use the model to predict precipitation interception and compare the measured and...larger interception losses than many other forest biomes . The within plot sampling coefficient of variation, ranging from a study average of 0.11 in
Latent Trait Model Contributions to Criterion-Referenced Testing Technology.
1982-02-01
levels of ability (ranging from very low to very high). The steps in the reserach were as follows: 1. Specify the characteristics of a "typical" pool...conventional testing methodologies displayed good fit to both of the latent trait models. The one-parameter model compared favorably with the three- parameter... Methodological developments: New directions for testing a!nd measurement (No. 4). San Francisco: Jossey-Bass, 1979. Haubleton, R. K. Advances in
NASA Technical Reports Server (NTRS)
Grauer, Jared A.; Morelli, Eugene A.
2013-01-01
The NASA Generic Transport Model (GTM) nonlinear simulation was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of identified parameters in mathematical models describing the flight dynamics and determined from flight data. Measurements from a typical flight condition and system identification maneuver were systematically and progressively deteriorated by introducing noise, resolution errors, and bias errors. The data were then used to estimate nondimensional stability and control derivatives within a Monte Carlo simulation. Based on these results, recommendations are provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using additional flight conditions and parameter estimation methods, as well as a nonlinear flight simulation of the General Dynamics F-16 aircraft, were compared with these recommendations
What to measure when determining orthotic needs in children with Down syndrome: a pilot study.
Looper, Julia; Benjamin, Danielle; Nolan, Mindy; Schumm, Laura
2012-01-01
To compare the effects of off-the-shelf foot orthoses and supramalleolar orthoses on the gait of children with Down syndrome (DS), and establish criteria for determining orthoses prescription for a child with DS. We assessed the gait of 6 children (aged 4-7 years) with DS using the GAITRite system, and obtained height, weight, leg length, hypermobility, calcaneal eversion, navicular drop, and tibial torsion measurements. Supramalleolar orthoses lead to a longer cycle time than foot orthoses (P = .05) and barefoot walking (P = .03) and a lower cadence than barefoot walking (P = .04). Significant strong correlations with gait parameters were obtained for height, leg length, and hypermobility. Biomechanical measurements showed no significant correlations with gait parameters. The role of physical examination data, including anthropometric and biomechanical measurements in the prescription of orthoses requires further investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larraga-Gutierrez, J. M.; Ballesteros-Zebadua, P.; Garcia-Garduno, O. A.
2008-08-11
Radiation transmission, leakage and beam penumbra are essential dosimetric parameters related to the commissioning of a multileaf collimation system. This work shows a comparative analysis of commonly used film detectors: X-OMAT V2 and EDR2 radiographic films, and GafChromic EBT registered radiochromic film. The results show that X-OMAT over-estimates radiation leakage and 80-20% beam penumbra. However, according to the reference values reported by the manufacturer for these dosimetric parameters, all three films are adequate for MLC dosimetric characterization, but special care must be taken when X-OMAT V2 film is used due to its low energy photon dependence.
Techniques for Liquid Rocket Combustion Spontaneous Stability and Rough Combustion Assessments
NASA Technical Reports Server (NTRS)
Kenny, R. J.; Giacomoni, C.; Casiano, M. J.; Fischbach, S. R.
2016-01-01
This work presents techniques for liquid rocket engine combustion stability assessments with respect to spontaneous stability and rough combustion. Techniques covering empirical parameter extraction, which were established in prior works, are applied for three additional programs: the F-1 Gas Generator (F1GG) component test program, the RS-84 preburner component test program, and the Marshall Integrated Test Rig (MITR) program. Stability assessment parameters from these programs are compared against prior established spontaneous stability metrics and updates are identified. Also, a procedure for comparing measured with predicted mode shapes is presented, based on an extension of the Modal Assurance Criterion (MAC).
Wei, Fanan; Yang, Haitao; Liu, Lianqing; Li, Guangyong
2017-03-01
Dynamic mechanical behaviour of living cells has been described by viscoelasticity. However, quantitation of the viscoelastic parameters for living cells is far from sophisticated. In this paper, combining inverse finite element (FE) simulation with Atomic Force Microscope characterization, we attempt to develop a new method to evaluate and acquire trustworthy viscoelastic index of living cells. First, influence of the experiment parameters on stress relaxation process is assessed using FE simulation. As suggested by the simulations, cell height has negligible impact on shape of the force-time curve, i.e. the characteristic relaxation time; and the effect originates from substrate can be totally eliminated when stiff substrate (Young's modulus larger than 3 GPa) is used. Then, so as to develop an effective optimization strategy for the inverse FE simulation, the parameters sensitivity evaluation is performed for Young's modulus, Poisson's ratio, and characteristic relaxation time. With the experiment data obtained through typical stress relaxation measurement, viscoelastic parameters are extracted through the inverse FE simulation by comparing the simulation results and experimental measurements. Finally, reliability of the acquired mechanical parameters is verified with different load experiments performed on the same cell.
Evaluation of Smartphone Inertial Sensor Performance for Cross-Platform Mobile Applications
Kos, Anton; Tomažič, Sašo; Umek, Anton
2016-01-01
Smartphone sensors are being increasingly used in mobile applications. The performance of sensors varies considerably among different smartphone models and the development of a cross-platform mobile application might be a very complex and demanding task. A publicly accessible resource containing real-life-situation smartphone sensor parameters could be of great help for cross-platform developers. To address this issue we have designed and implemented a pilot participatory sensing application for measuring, gathering, and analyzing smartphone sensor parameters. We start with smartphone accelerometer and gyroscope bias and noise parameters. The application database presently includes sensor parameters of more than 60 different smartphone models of different platforms. It is a modest, but important start, offering information on several statistical parameters of the measured smartphone sensors and insights into their performance. The next step, a large-scale cloud-based version of the application, is already planned. The large database of smartphone sensor parameters may prove particularly useful for cross-platform developers. It may also be interesting for individual participants who would be able to check-up and compare their smartphone sensors against a large number of similar or identical models. PMID:27049391
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonova, A. O., E-mail: aoantonova@mail.ru; Savyolova, T. I.
2016-05-15
A two-dimensional mathematical model of a polycrystalline sample and an experiment on electron backscattering diffraction (EBSD) is considered. The measurement parameters are taken to be the scanning step and threshold grain-boundary angle. Discrete pole figures for materials with hexagonal symmetry have been calculated based on the results of the model experiment. Discrete and smoothed (by the kernel method) pole figures of the model sample and the samples in the model experiment are compared using homogeneity criterion χ{sup 2}, an estimate of the pole figure maximum and its coordinate, a deviation of the pole figures of the model in the experimentmore » from the sample in the space of L{sub 1} measurable functions, and the RP-criterion for estimating the pole figure errors. Is is shown that the problem of calculating pole figures is ill-posed and their determination with respect to measurement parameters is not reliable.« less
Effects of intrinsic aging and photodamage on skin dyspigmentation: an explorative study
NASA Astrophysics Data System (ADS)
Dobos, Gabor; Trojahn, Carina; D'Alessandro, Brian; Patwardhan, Sachin; Canfield, Douglas; Blume-Peytavi, Ulrike; Kottner, Jan
2016-06-01
Photoaging is associated with increasing pigmentary heterogeneity and darkening of skin color. However, little is known about age-related changes in skin pigmentation on sun-protected areas. The aim of this explorative study was to measure skin color and dyspigmentation using image processing and to evaluate the reliability of these parameters. Twenty-four volunteers of three age-groups were included in this explorative study. Measurements were conducted at sun-exposed and sun-protected areas. Overall skin-color estimates were similar among age groups. The hyper- and hypopigmentation indices differed significantly by age groups and their correlations with age ranged between 0.61 and 0.74. Dorsal forearm skin differed from the other investigational areas (p<0.001). We observed an increase in dyspigmentation at all skin areas, including sun-protected skin areas, already in young adulthood. Associations between age and dyspigmentation estimates were higher compared to color parameters. All color and dyspigmentation estimates showed high reliability. Dyspigmentation parameters seem to be better biomarkers for UV damage than the overall color measurements.
NASA Technical Reports Server (NTRS)
Veselovskii, I.; Whiteman, D. N.; Korenskiy, M.; Kolgotin, A.; Dubovik, O.; Perez-Ramirez, D.; Suvorina, A.
2013-01-01
The results of the application of the linear estimation technique to multiwavelength Raman lidar measurements performed during the summer of 2011 in Greenbelt, MD, USA, are presented. We demonstrate that multiwavelength lidars are capable not only of providing vertical profiles of particle properties but also of revealing the spatio-temporal evolution of aerosol features. The nighttime 3 Beta + 1 alpha lidar measurements on 21 and 22 July were inverted to spatio-temporal distributions of particle microphysical parameters, such as volume, number density, effective radius and the complex refractive index. The particle volume and number density show strong variation during the night, while the effective radius remains approximately constant. The real part of the refractive index demonstrates a slight decreasing tendency in a region of enhanced extinction coefficient. The linear estimation retrievals are stable and provide time series of particle parameters as a function of height at 4 min resolution. AERONET observations are compared with multiwavelength lidar retrievals showing good agreement.
Absorption edge parameters of the LIII edge for compounds of Hg, Tl, Pb and Bi using EDXRF technique
NASA Astrophysics Data System (ADS)
Singh, Gurinderjeet; Singh, Amrit; Gupta, Manoj Kumar; Dhaliwal, A. S.; Kahlon, K. S.
2018-03-01
The measurement of Absorption edge parameters of the LIII edge of pure elements Hg, Tl, Pb and Bi along with their compounds HgCl2, HgO, HgF2, TlCl, Tl2O3, PbCl2, PbF2, Pb3O4, BiF3, BiCl3 and Bi2O3 has been done using EDXRF technique. In the present measurements 241Am (59.54 keV) radioactive source of activity 100 mCi along with CANBERRA make cryo-cooled Si (Li) detector is used. The measured results are compared with theoretically calculated values from FFAST version 2.1 (Chantler et al., 2005) and shows good agreement with each other within experimental uncertainties within 3.5%. It is observed that the values of absorption edge parameters of the LIII edge depends slightly on the chemical environment and shows almost constant behaviour with effective atomic number (Zeff)
Thermodynamic parameters of phase transitions of perfluoro-N-(4-methylcyclohexyl)piperidine
NASA Astrophysics Data System (ADS)
Druzhinina, A. I.; Efimova, A. A.; Varushchenko, R. M.; Chelovskaya, N. V.
2007-12-01
The heat capacity of perfluoro-N-(4-methylcyclohexyl)piperidine (PMCP) was measured by low-temperature adiabatic calorimetry. The purity of the substance ( N 1 = 99.66 mol %), triple point temperature ( T tp = 293.26 K), and enthalpy of fusion (Δfus H {m/°} = 8.32 kJ/mol) were determined. The enthalpy of vaporization was measured by calorimetry at 298.15 K (Δvap H {m/°}(298.15 K) = 56.56 kJ/mol). The temperature dependence of the saturated vapor pressure of PMCP over the pressure range 6.2-101.6 kPa was determined by comparative ebulliometry. The normal boiling point ( T n.b. = 460.74 K), ehthalpies of vaporization (at various temperatures), and critical parameters of PMCP were calculated. The calculated and experimental values of Δvap H {m/°}(298.15 K) agree to within measurement errors, which proves the reliability of these values and pT parameters used in calculations.
The effect of uphill and downhill walking on gait parameters: A self-paced treadmill study.
Kimel-Naor, Shani; Gottlieb, Amihai; Plotnik, Meir
2017-07-26
It has been shown that gait parameters vary systematically with the slope of the surface when walking uphill (UH) or downhill (DH) (Andriacchi et al., 1977; Crowe et al., 1996; Kawamura et al., 1991; Kirtley et al., 1985; McIntosh et al., 2006; Sun et al., 1996). However, gait trials performed on inclined surfaces have been subject to certain technical limitations including using fixed speed treadmills (TMs) or, alternatively, sampling only a few gait cycles on inclined ramps. Further, prior work has not analyzed upper body kinematics. This study aims to investigate effects of slope on gait parameters using a self-paced TM (SPTM) which facilitates more natural walking, including measuring upper body kinematics and gait coordination parameters. Gait of 11 young healthy participants was sampled during walking in steady state speed. Measurements were made at slopes of +10°, 0° and -10°. Force plates and a motion capture system were used to reconstruct twenty spatiotemporal gait parameters. For validation, previously described parameters were compared with the literature, and novel parameters measuring upper body kinematics and bilateral gait coordination were also analyzed. Results showed that most lower and upper body gait parameters were affected by walking slope angle. Specifically, UH walking had a higher impact on gait kinematics than DH walking. However, gait coordination parameters were not affected by walking slope, suggesting that gait asymmetry, left-right coordination and gait variability are robust characteristics of walking. The findings of the study are discussed in reference to a potential combined effect of slope and gait speed. Follow-up studies are needed to explore the relative effects of each of these factors. Copyright © 2017. Published by Elsevier Ltd.
Attitude Sensor and Gyro Calibration for Messenger
NASA Technical Reports Server (NTRS)
O'Shaughnessy, Daniel; Pittelkau, Mark E.
2007-01-01
The Redundant Inertial Measurement Unit Attitude Determination/Calibration (RADICAL(TM)) filter was used to estimate star tracker and gyro calibration parameters using MESSENGER telemetry data from three calibration events. We present an overview of the MESSENGER attitude sensors and their configuration is given, the calibration maneuvers are described, the results are compared with previous calibrations, and variations and trends in the estimated calibration parameters are examined. The warm restart and covariance bump features of the RADICAL(TM) filter were used to estimate calibration parameters from two disjoint telemetry streams. Results show that the calibration parameters converge faster with much less transient variation during convergence than when the filter is cold-started at the start of each telemetry stream.
NASA Astrophysics Data System (ADS)
Chrobak, Ł.; Maliński, M.
2018-06-01
This paper presents a comparison of three nondestructive and contactless techniques used for determination of recombination parameters of silicon samples. They are: photoacoustic method, modulated free carriers absorption method and the photothermal radiometry method. In the paper the experimental set-ups used for measurements of the recombination parameters in these methods as also theoretical models used for interpretation of obtained experimental data have been presented and described. The experimental results and their respective fits obtained with these nondestructive techniques are shown and discussed. The values of the recombination parameters obtained with these methods are also presented and compared. Main advantages and disadvantages of presented methods have been discussed.
Shi, Baoli; Wang, Yue; Jia, Lina
2011-02-11
Inverse gas chromatography (IGC) is an important technique for the characterization of surface properties of solid materials. A standard method of surface characterization is that the surface dispersive free energy of the solid stationary phase is firstly determined by using a series of linear alkane liquids as molecular probes, and then the acid-base parameters are calculated from the dispersive parameters. However, for the calculation of surface dispersive free energy, generally, two different methods are used, which are Dorris-Gray method and Schultz method. In this paper, the results calculated from Dorris-Gray method and Schultz method are compared through calculating their ratio with their basic equations and parameters. It can be concluded that the dispersive parameters calculated with Dorris-Gray method will always be larger than the data calculated with Schultz method. When the measuring temperature increases, the ratio increases large. Compared with the parameters in solvents handbook, it seems that the traditional surface free energy parameters of n-alkanes listed in the papers using Schultz method are not enough accurate, which can be proved with a published IGC experimental result. © 2010 Elsevier B.V. All rights reserved.
Estimating parameters from rotating ring disc electrode measurements
Santhanagopalan, Shriram; White, Ralph E.
2017-10-21
Rotating ring disc electrode (RRDE) experiments are a classic tool for investigating kinetics of electrochemical reactions. Several standardized methods exist for extracting transport parameters and reaction rate constants using RRDE measurements. Here in this work, we compare some approximate solutions to the convective diffusion used popularly in the literature to a rigorous numerical solution of the Nernst-Planck equations coupled to the three dimensional flow problem. In light of these computational advancements, we explore design aspects of the RRDE that will help improve sensitivity of our parameter estimation procedure to experimental data. We use the oxygen reduction in acidic media involvingmore » three charge transfer reactions and a chemical reaction as an example, and identify ways to isolate reaction currents for the individual processes in order to accurately estimate the exchange current densities.« less
Lancia, Loreto; Toccaceli, Andrea; Petrucci, Cristina; Romano, Silvio; Penco, Maria
2018-05-01
The purpose of the study was to compare the EASI system with the standard 12-lead surface electrocardiogram (ECG) for the accuracy in detecting the main electrocardiographic parameters (J point, PR, QT, and QRS) commonly monitored in patients with acute coronary syndromes or heart failure. In this observational comparative study, 253 patients who were consecutively admitted to the coronary care unit with acute coronary syndrome or heart failure were evaluated. In all patients, two complete 12-lead ECGs were acquired simultaneously. A total of 6,072 electrocardiographic leads were compared (3,036 standard and 3,036 EASI). No significant differences were found between the investigate parameters of the two measurement methods, either in patients with acute coronary syndrome or in those with heart failure. This study confirmed the accuracy of the EASI system in monitoring the main ECG parameters in patients admitted to the coronary care unit with acute coronary syndrome or heart failure.
Characteristics of holey fibers fabricated at different drawing speeds
NASA Astrophysics Data System (ADS)
Seraji, Faramarz E.; Rashidi, Mahnaz; Karimi, Maryam
2007-03-01
The effects of high drawing speeds on parameters of holey fibers are presented. A holey fiber preform structure was made by using tube-in-tube method and was drawn at high speeds with an aim of mass production to meet the demand of next generation communication systems. Transmission parameters such as numerical aperture and normalized frequency of the fabricated holey fibers have been measured and compared with theoretical values based on effective index method. Although the fabricated holey fibers were not of high quality, the analyses of the parameters have shown promising outlook for fabrication of such fibers.
Multiplicative Versus Additive Filtering for Spacecraft Attitude Determination
NASA Technical Reports Server (NTRS)
Markley, F. Landis
2003-01-01
The absence of a globally nonsingular three-parameter representation of rotations forces attitude Kalman filters to estimate either a singular or a redundant attitude representation. We compare two filtering strategies using simplified kinematics and measurement models. Our favored strategy estimates a three-parameter representation of attitude deviations from a reference attitude specified by a higher- dimensional nonsingular parameterization. The deviations from the reference are assumed to be small enough to avoid any singularity or discontinuity of the three-dimensional parameterization. We point out some disadvantages of the other strategy, which directly estimates the four-parameter quaternion representation.
NASA Astrophysics Data System (ADS)
Kopiev, V. F.; Palchikovskiy, V. V.; Belyaev, I. V.; Bersenev, Yu. V.; Makashov, S. Yu.; Khramtsov, I. V.; Korin, I. A.; Sorokin, E. V.; Kustov, O. Yu.
2017-01-01
The acoustic parameters of a new anechoic chamber constructed at Perm National Research Polytechnic University (PNRPU) are presented. This chamber is designed to be used, among other things, for measuring noise from aerodynamic sources. Sound-absorbing wedges lining the walls of the chamber were studied in an interferometer with normal wave incidence. The results are compared to the characteristics of sound-absorbing wedges of existing anechoic facilities. Metrological examination of the acoustic parameters of the PNRPU anechoic chamber demonstrates that free field conditions are established in it, which will make it possible to conduct quantitative acoustic experiments.
Mathaes, Roman; Mahler, Hanns-Christian; Roggo, Yves; Huwyler, Joerg; Eder, Juergen; Fritsch, Kamila; Posset, Tobias; Mohl, Silke; Streubel, Alexander
2016-01-01
Capping equipment used in good manufacturing practice manufacturing features different designs and a variety of adjustable process parameters. The overall capping result is a complex interplay of the different capping process parameters and is insufficiently described in literature. It remains poorly studied how the different capping equipment designs and capping equipment process parameters (e.g., pre-compression force, capping plate height, turntable rotating speed) contribute to the final residual seal force of a sealed container closure system and its relation to container closure integrity and other drug product quality parameters. Stopper compression measured by computer tomography correlated to residual seal force measurements.In our studies, we used different container closure system configurations from different good manufacturing practice drug product fill & finish facilities to investigate the influence of differences in primary packaging, that is, vial size and rubber stopper design on the capping process and the capped drug product. In addition, we compared two large-scale good manufacturing practice manufacturing capping equipment and different capping equipment settings and their impact on product quality and integrity, as determined by residual seal force.The capping plate to plunger distance had a major influence on the obtained residual seal force values of a sealed vial, whereas the capping pre-compression force and the turntable rotation speed showed only a minor influence on the residual seal force of a sealed vial. Capping process parameters could not easily be transferred from capping equipment of different manufacturers. However, the residual seal force tester did provide a valuable tool to compare capping performance of different capping equipment. No vial showed any leakage greater than 10(-8)mbar L/s as measured by a helium mass spectrometry system, suggesting that container closure integrity was warranted in the residual seal force range tested for the tested container closure systems. Capping equipment used in good manufacturing practice manufacturing features different designs and a variety of adjustable process parameters. The overall capping result is a complex interplay of the different capping process parameters and is insufficiently described in the literature. It remains poorly studied how the different capping equipment designs and capping equipment process parameters contribute to the final capping result.In this study, we used different container closure system configurations from different good manufacturing process drug product fill & finish facilities to investigate the influence of the vial size and the rubber stopper design on the capping process. In addition, we compared two examples of large-scale good manufacturing process capping equipment and different capping equipment settings and their impact on product quality and integrity, as determined by residual seal force. © PDA, Inc. 2016.
Flexible Carbon Nanotube Films for High Performance Strain Sensors
Kanoun, Olfa; Müller, Christian; Benchirouf, Abderahmane; Sanli, Abdulkadir; Dinh, Trong Nghia; Al-Hamry, Ammar; Bu, Lei; Gerlach, Carina; Bouhamed, Ayda
2014-01-01
Compared with traditional conductive fillers, carbon nanotubes (CNTs) have unique advantages, i.e., excellent mechanical properties, high electrical conductivity and thermal stability. Nanocomposites as piezoresistive films provide an interesting approach for the realization of large area strain sensors with high sensitivity and low manufacturing costs. A polymer-based nanocomposite with carbon nanomaterials as conductive filler can be deposited on a flexible substrate of choice and this leads to mechanically flexible layers. Such sensors allow the strain measurement for both integral measurement on a certain surface and local measurement at a certain position depending on the sensor geometry. Strain sensors based on carbon nanostructures can overcome several limitations of conventional strain sensors, e.g., sensitivity, adjustable measurement range and integral measurement on big surfaces. The novel technology allows realizing strain sensors which can be easily integrated even as buried layers in material systems. In this review paper, we discuss the dependence of strain sensitivity on different experimental parameters such as composition of the carbon nanomaterial/polymer layer, type of polymer, fabrication process and processing parameters. The insights about the relationship between film parameters and electromechanical properties can be used to improve the design and fabrication of CNT strain sensors. PMID:24915183
Neugebauer, R; Werner, M; Voigt, C; Steinke, H; Scholz, R; Scherer, S; Quickert, M
2011-05-17
To provide a close-to-reality simulation model, such as for improved surgery planning, this model has to be experimentally verified. The present article describes the use of a 3D laser vibrometer for determining modal parameters of human pelvic bones that can be used for verifying a finite elements model. Compared to previously used sensors, such as acceleration sensors or strain gauges, the laser vibrometric procedure used here is a non-contact and non-interacting measuring method that allows a high density of measuring points and measurement in a global coordinate system. Relevant modal parameters were extracted from the measured data and provided for verifying the model. The use of the 3D laser vibrometer allowed the establishment of a process chain for experimental examination of the pelvic bones that was optimized with respect to time and effort involved. The transfer functions determined feature good signal quality. Furthermore, a comparison of the results obtained from pairs of pelvic bones showed that repeatable measurements can be obtained with the method used. Copyright © 2011 Elsevier Ltd. All rights reserved.
Influence of the model's degree of freedom on human body dynamics identification.
Maita, Daichi; Venture, Gentiane
2013-01-01
In fields of sports and rehabilitation, opportunities of using motion analysis of the human body have dramatically increased. To analyze the motion dynamics, a number of subject specific parameters and measurements are required. For example the contact forces measurement and the inertial parameters of each segment of the human body are necessary to compute the joint torques. In this study, in order to perform accurate dynamic analysis we propose to identify the inertial parameters of the human body and to evaluate the influence of the model's number of degrees of freedom (DoF) on the results. We use a method to estimate the inertial parameters without torque sensor, using generalized coordinates of the base link, joint angles and external forces information. We consider a 34DoF model, a 58DoF model, as well as the case when the human is manipulating a tool (here a tennis racket). We compare the obtained in results in terms of contact force estimation.
Marine molluscs in environmental monitoring. I. Cellular and molecular responses
NASA Astrophysics Data System (ADS)
Bresler, Vladimir; Abelson, Avigdor; Fishelson, Lev; Feldstein, Tamar; Rosenfeld, Michael; Mokady, Ofer
2003-10-01
The study reported here is part of an ongoing effort to establish sensitive and reliable biomonitoring markers for probing the coastal marine environment. Here, we report comparative measurements of a range of histological, cellular and sub-cellular parameters in molluscs sampled in polluted and reference sites along the Mediterranean coast of Israel and in the northern tip of the Gulf of Aqaba, Red Sea. Available species enabled an examination of conditions in two environmental 'compartments': benthic (Donax trunculus) and intertidal (Brachidontes pharaonis, Patella caerulea) in the Mediterranean; pelagic (Pteria aegyptia) and intertidal (Cellana rota) in the Red Sea. The methodology used provides rapid results by combining specialized fluorescent probes and contact microscopy, by which all parameters are measured in unprocessed animal tissue. The research focused on three interconnected levels. First, antixenobiotic defence mechanisms aimed at keeping hazardous agents outside the cell. Paracellular permeability was 70-100% higher in polluted sites, and membrane pumps (MXRtr and SATOA) activity was up to 65% higher in polluted compared to reference sites. Second, intracellular defence mechanisms that act to minimize potential damage by agents having penetrated the first line of defence. Metallothionein expression and EROD activity were 160-520% higher in polluted sites, and lysosomal functional activity (as measured by neutral red accumulation) was 25-50% lower. Third, damage caused by agents not sufficiently eliminated by the above mechanisms (e.g. single-stranded DNA breaks, chromosome damage and other pathological alterations). At this level, the most striking differences were observed in the rate of micronuclei formation and DNA breaks (up to 150% and 400% higher in polluted sites, respectively). The different mollusc species used feature very similar trends between polluted and reference sites in all measured parameters. Concentrating on relatively basic levels of biological organization—the molecular and cellular level—the parameters measured may have the capacity not only for biomonitoring environmental quality, but also for early warning.
Konya, Mehmet Nuri; Aydn, Bahattin Kerem; Yldrm, Timur; Sofu, Hakan; Gürsu, Sarper
2016-03-01
Hip dysplasia (HD) is 1 of the major reasons of coxarthrosis. The goal of the treatment of HD by Tönnis triple pelvic osteotomy (TPAO) is to improve the function of hip joint while relieving pain, delaying and possibly preventing end-stage arthritis. The aim of this study is to compare the clinical and radiological results of TPAO to determine if previous surgery has a negative effect on TPAO.Patients operated with TPAO between 2005 and 2010, included in this study. Patients divided into 2 groups: primary acetabular dysplasia (PAD) and residual acetabular dysplasia (RAD). Prepostoperatively, hip range of motion, Harris hip score (HHS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) hip score, visual analog scores (VAS), impingement tests, and also the presence of Trendelenburg sign (TS) were investigated for clinical evaluation. For radiological analysis pre-postoperative, anterior-posterior (AP) pelvis and faux profile radiographs were used. Acetabular index, lateral center edge (LCE) angle, and Sharp angles were measured by AP pelvis; anterior center edge (ACE) angle were measured by faux profile radiography. All the clinical and radiological data of the groups were analyzed separately for the pre-postoperative scores also the amount of improvement in all parameters were analyzed.SPSS20 (SPSS Inc., Chicago, IL) was used for statistical analysis. Wilcoxon test, McNemar test, paired t tests, and Mann-Whitney U tests were used to compare the groups. P < 0.05 were defined as statistically significant.Study included 27 patients: 17 patients were in PAD and 10 patients were in RAD. The mean follow-up period was 6.2 years (5.2-10.3 years). In all patients, the radiological and the clinical outcomes were better after TPAO except the flexion of the hip parameter. When the patient groups were evaluated as pre-postoperatively, more statistically significant parameters were found in the PAD group when compared with RAD group. Extension, impingement, TS, VAS, HHS, WOMAC score parameters in clinical outcome and LCE, ACE, Sharp angle, coverage ratio in radiological results were significantly better in PAD group postoperatively but in RAD group; only extension, VAS, HHS, and WOMAC parameters were clinically and LCE and Coverage ratio were significantly different compared with the preoperative measurements. The change of the parameters that used for the evaluation of clinical and radiological results did not show a significant difference between groups.Our data suggest that TPAO can be performed on patients with HD for both groups. Although there were fewer parameters which changed significantly after TPAO in RAD patients; the improvement of radiological and clinical results was similar for groups. Further long-term follow-up studies with large number of patients are needed to determine the proper results of TPAO.
Does walking strategy in older people change as a function of walking distance?
Najafi, Bijan; Helbostad, Jorunn L; Moe-Nilssen, Rolf; Zijlstra, Wiebren; Aminian, Kamiar
2009-02-01
This study investigates whether the spatio-temporal parameters of gait in the elderly vary as a function of walking distance. The gait pattern of older subjects (n=27) over both short (SWD<10 m) and long (LWD>20 m) walking was evaluated using an ambulatory device consisting of body-worn sensors (Physilog). The stride velocity (SV), gait cycle time (GCT), and inter-cycle variability of each parameter (CV) were evaluated for each subject. Analysis was undertaken after evaluating the errors and the test-retest reliability of the Physilog device compared with an electronic walkway system (GaitRite) over the SWD with different walking speeds. While both systems were highly reliable with respect to the SV and GCT parameters (ICC>0.82), agreement for the gait variability was poor. Interestingly, our data revealed that the measured gait parameters over SWD and LWD were significantly different. LWD trials had a mean increase of 5.2% (p<0.05) in SV, and a mean decrease of 3.7% (p<0.05) in GCT compared with SWD trials. Although variability in both the SV and GCT measured during LWD trials decreased by an average of 1% relative to the SWD case, the drop was not significant. Moreover, reliability for gait variability measures was poor, irrespective of the instrument and despite a moderate improvement for LWD trials. Taken together, our findings indicate that for valid and reliable comparisons, test and retest should be performed under identical distance conditions. Furthermore, our findings suggest that the older subjects may choose different walking strategies for SWD and LWD conditions.
Legey, Sandro; Lamego, Murilo Khede; Lattari, Eduardo; Campos, Carlos; Paes, Flávia; Sancassiani, Federica; Mura, Gioia; Carta, Mauro Giovanni; Rocha, Nuno Barbosa F.; Nardi, Antônio Egídio; José de Oliveira, Aldair; Neto, Geraldo Maranhão; Murillo-Rodriguez, Eric; Arias-Carrión, Oscar; Budde, Henning; Machado, Sergio
2016-01-01
Background The prevalence of body image dissatisfaction (BID) is currently high. Given that psychological well-being is associated with the body measurements imposed by esthetic standards, BID is an important risk factor for mental disorders. Objective Identify the prevalence of BID, and compare anthropometric and mental health parameters between individuals satisfied and dissatisfied with their body image. Method A total of 140 university students completed the silhouette scale to screen for BID. Anthropometric measures, body mass index (BMI), waist circumference (WC) and body fat percentage (BFP) were used. To investigate mental health, The State-Trait Anxiety Inventories (STAI-S and STAI-T), Profile of Mood States (POMS) scale and Quality of Life (QOL-36) questionnaire were used to investigate mental health. The Student’s t-test was applied to compare anthropometric and mental health parameters. Results 67.1% of university students exhibited BID. There was a significant difference (p = 0.041) in BF and WC (p = 0.048) between dissatisfied and satisfied individuals. With respect to mood states, significant differences were observed for anger (p = 0.014), depression (p = 0.011), hostility (p = 0.006), fatigue (p = 0.013), mental confusion (p = 0.021) and total mood disturbance (TMD) (p = 0.001). The mental aspect of QOL was significantly higher (p = 0.001) in satisfied university students compared to their dissatisfied counterparts. Conclusion BID was high and it seems to be influenced by anthropometric measures related to the amount and distribution of body fat. This dissatisfaction may have a negative effect on the quality of life and mood state of young adults. PMID:28217145
Ulas, Turgay; Buyukhatipoglu, Hakan; Kirhan, Idris; Dal, Mehmet Sinan; Ulas, Sevilay; Demir, Mehmet Emin; Eren, Mehmet Ali; Ucar, Mehmet; Hazar, Abdussamet; Kurkcuoglu, Ibrahim Can; Aksoy, Nurten
2013-04-01
The aim of this study was to evaluate the oxidative stress and metabolic activities of nurses working day and night shifts. Intensive care unit (ICU) (n=70) and ordinary service (OS) nurses (n=70) were enrolled in the study. Just before and the end of the shifts, blood samples were obtained to measure the participants' oxidative stress parameters. Metabolic activities were analyzed using the SenseWear Armband. Oxidative stress parameters were increased at the end of the shifts for all OS and ICU nurses compared to the beginning of the shifts. Compared to the OS nurses, the ICU nurses' TAS, TOS, and OSI levels were not significantly different at the end of the day and night shifts. The metabolic activities of the OS and ICU nurses were found to be similar. As a result, the OS and ICU nurses' oxidative stress parameters and metabolic activities were not different, and all of the nurses experienced similar effects from both the day and night shifts.
Persson, A; Brismar, T B; Lundström, C; Dahlström, N; Othberg, F; Smedby, O
2006-03-01
To compare three methods for standardizing volume rendering technique (VRT) protocols by studying aortic diameter measurements in magnetic resonance angiography (MRA) datasets. Datasets from 20 patients previously examined with gadolinium-enhanced MRA and with digital subtraction angiography (DSA) for abdominal aortic aneurysm were retrospectively evaluated by three independent readers. The MRA datasets were viewed using VRT with three different standardized transfer functions: the percentile method (Pc-VRT), the maximum-likelihood method (ML-VRT), and the partial range histogram method (PRH-VRT). The aortic diameters obtained with these three methods were compared with freely chosen VRT parameters (F-VRT) and with maximum intensity projection (MIP) concerning inter-reader variability and agreement with the reference method DSA. F-VRT parameters and PRH-VRT gave significantly higher diameter values than DSA, whereas Pc-VRT gave significantly lower values than DSA. The highest interobserver variability was found for F-VRT parameters and MIP, and the lowest for Pc-VRT and PRH-VRT. All standardized VRT methods were significantly superior to both MIP and F-VRT in this respect. The agreement with DSA was best for PRH-VRT, which was the only method with a mean error below 1 mm and which also had the narrowest limits of agreement (95% of cases between 2.1 mm below and 3.1 mm above DSA). All the standardized VRT methods compare favorably with MIP and VRT with freely selected parameters as regards interobserver variability. The partial range histogram method, although systematically overestimating vessel diameters, gives results closest to those of DSA.
Comparison of parameters of modern cooled and uncooled thermal cameras
NASA Astrophysics Data System (ADS)
Bareła, Jarosław; Kastek, Mariusz; Firmanty, Krzysztof; Krupiński, Michał
2017-10-01
During the design of a system employing thermal cameras one always faces a problem of choosing the camera types best suited for the task. In many cases such a choice is far from optimal one, and there are several reasons for that. System designers often favor tried and tested solution they are used to. They do not follow the latest developments in the field of infrared technology and sometimes their choices are based on prejudice and not on facts. The paper presents the results of measurements of basic parameters of MWIR and LWIR thermal cameras, carried out in a specialized testing laboratory. The measured parameters are decisive in terms of image quality generated by thermal cameras. All measurements were conducted according to current procedures and standards. However the camera settings were not optimized for a specific test conditions or parameter measurements. Instead the real settings used in normal camera operations were applied to obtain realistic camera performance figures. For example there were significant differences between measured values of noise parameters and catalogue data provided by manufacturers, due to the application of edge detection filters to increase detection and recognition ranges. The purpose of this paper is to provide help in choosing the optimal thermal camera for particular application, answering the question whether to opt for cheaper microbolometer device or apply slightly better (in terms of specifications) yet more expensive cooled unit. Measurements and analysis were performed by qualified personnel with several dozen years of experience in both designing and testing of thermal camera systems with both cooled and uncooled focal plane arrays. Cameras of similar array sizes and optics were compared, and for each tested group the best performing devices were selected.
Jia, Xiaoyang; Chen, Yanxi; Qiang, Minfei; Zhang, Kun; Li, Haobo; Jiang, Yuchen; Zhang, Yijie
2016-07-15
Accurate comprehension of the normal humeral morphology is crucial for anatomical reconstruction in shoulder arthroplasty. However, traditional morphological measurements for humerus were mainly based on cadaver and radiography. The purpose of this study was to provide a series of precise and repeatable parameters of the normal proximal humerus for arthroplasty, based on the three-dimensional (3-D) measurements. Radiographic and 3-D computed tomography (CT) measurements of the proximal humerus were performed in a sample of 120 consecutive adults. Sex differences, two image modalities differences, and correlations of the parameters were evaluated. Intra- and inter-observer reproducibility was evaluated using intraclass correlation coefficients (ICCs). In the male group, all parameters except the neck-shaft angle of humerus, based on 3-D CT images, were greater than those in the female group (P < 0.05). All variables were significantly different between two image modalities (P < 0.05). In 3-D CT measurement, all parameters expect neck-shaft angle had correlation with each other (P < 0.001), particularly between two diameters of the humeral head (r = 0.907). All parameters in the 3-D CT measurement had excellent reproducibility (ICC range, 0.878 to 0.936) that was higher than those in the radiographs (ICC range, 0.741 to 0.858). The present study suggested that 3-D CT was more reproducible than plain radiography in the assessment of morphology of the normal proximal humerus. Therefore, this reproducible modality could be utilized in the preoperative planning. Our data could serve as an effective guideline for humeral component selection and improve the design of shoulder prosthesis.
2014-01-01
Background Striking a balance between the degree of model complexity and parameter identifiability, while still producing biologically feasible simulations using modelling is a major challenge in computational biology. While these two elements of model development are closely coupled, parameter fitting from measured data and analysis of model mechanisms have traditionally been performed separately and sequentially. This process produces potential mismatches between model and data complexities that can compromise the ability of computational frameworks to reveal mechanistic insights or predict new behaviour. In this study we address this issue by presenting a generic framework for combined model parameterisation, comparison of model alternatives and analysis of model mechanisms. Results The presented methodology is based on a combination of multivariate metamodelling (statistical approximation of the input–output relationships of deterministic models) and a systematic zooming into biologically feasible regions of the parameter space by iterative generation of new experimental designs and look-up of simulations in the proximity of the measured data. The parameter fitting pipeline includes an implicit sensitivity analysis and analysis of parameter identifiability, making it suitable for testing hypotheses for model reduction. Using this approach, under-constrained model parameters, as well as the coupling between parameters within the model are identified. The methodology is demonstrated by refitting the parameters of a published model of cardiac cellular mechanics using a combination of measured data and synthetic data from an alternative model of the same system. Using this approach, reduced models with simplified expressions for the tropomyosin/crossbridge kinetics were found by identification of model components that can be omitted without affecting the fit to the parameterising data. Our analysis revealed that model parameters could be constrained to a standard deviation of on average 15% of the mean values over the succeeding parameter sets. Conclusions Our results indicate that the presented approach is effective for comparing model alternatives and reducing models to the minimum complexity replicating measured data. We therefore believe that this approach has significant potential for reparameterising existing frameworks, for identification of redundant model components of large biophysical models and to increase their predictive capacity. PMID:24886522
A Systematic Approach to Sensor Selection for Aircraft Engine Health Estimation
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Garg, Sanjay
2009-01-01
A systematic approach for selecting an optimal suite of sensors for on-board aircraft gas turbine engine health estimation is presented. The methodology optimally chooses the engine sensor suite and the model tuning parameter vector to minimize the Kalman filter mean squared estimation error in the engine s health parameters or other unmeasured engine outputs. This technique specifically addresses the underdetermined estimation problem where there are more unknown system health parameters representing degradation than available sensor measurements. This paper presents the theoretical estimation error equations, and describes the optimization approach that is applied to select the sensors and model tuning parameters to minimize these errors. Two different model tuning parameter vector selection approaches are evaluated: the conventional approach of selecting a subset of health parameters to serve as the tuning parameters, and an alternative approach that selects tuning parameters as a linear combination of all health parameters. Results from the application of the technique to an aircraft engine simulation are presented, and compared to those from an alternative sensor selection strategy.
NASA Technical Reports Server (NTRS)
Ouyang, X.; Selby, K.; Lang, P.; Engelke, K.; Klifa, C.; Fan, B.; Zucconi, F.; Hottya, G.; Chen, M.; Majumdar, S.;
1997-01-01
A high-resolution magnetic resonance imaging (MRI) protocol, together with specialized image processing techniques, was applied to the quantitative measurement of age-related changes in calcaneal trabecular structure. The reproducibility of the technique was assessed and the annual rates of change for several trabecular structure parameters were measured. The MR-derived trabecular parameters were compared with calcaneal bone mineral density (BMD), measured by dual X-ray absorptiometry (DXA) in the same subjects. Sagittal MR images were acquired at 1.5 T in 23 healthy women (mean age: 49.3 +/- 16.6 [SD]), using a three-dimensional gradient echo sequence. Image analysis procedures included internal gray-scale calibration, bone and marrow segmentation, and run-length methods. Three trabecular structure parameters, apparent bone volume (ABV/TV), intercept thickness (I.Th), and intercept separation (I.Sp) were calculated from the MR images. The short- and long-term precision errors (mean %CV) of these measured parameters were in the ranges 1-2% and 3-6%, respectively. Linear regression of the trabecular structure parameters vs. age showed significant correlation: ABV/TV (r2 = 33.7%, P < 0.0037), I.Th (r2 = 26.6%, P < 0.0118), I.Sp (r2 = 28.9%, P < 0.0081). These trends with age were also expressed as annual rates of change: ABV/TV (-0.52%/year), I.Th (-0.33%/year), and I.Sp (0.59%/year). Linear regression analysis also showed significant correlation between the MR-derived trabecular structure parameters and calcaneal BMD values. Although a larger group of subjects is needed to better define the age-related changes in trabecular structure parameters and their relation to BMD, these preliminary results demonstrate that high-resolution MRI may potentially be useful for the quantitative assessment of trabecular structure.
NASA Astrophysics Data System (ADS)
Hou, Zhengyu; Chen, Zhong; Wang, Jingqiang; Zheng, Xufeng; Yan, Wen; Tian, Yuhang; Luo, Yun
2018-04-01
Geoacoustic parameters are essential inputs to sediment wave propagation theories and are vital to underwater acoustic environment and explorations of the sea bottom. In this study, 21 seafloor sediment samples were collected off the coast of southeastern Hainan in the South China Sea. The sound speed was measured using a portable WSD-3 digital sonic instrument and the coaxial differential distance measurement method. Based on the measured sound speed and physical properties, the acoustic impedance and the pore-water-independent index of impedance (IOI) were calculated in this study. Similar to the sound speed, the IOI values are closely related to the sediment physical properties and change gradually from the northwest to the southeast. The relations between IOI and physical properties were studied and compared to the relations between the sound speed and physical properties. IOI is better correlated to physical properties than sound speed. This study also uses an error norm method to analyze the sensitivity of IOI to the physical parameters in the double-parameter equations and finds that the most influential physical parameters are as follows: wet bulk density > porosity > clay content > mean particle size.
Intraocular pressure and ocular biometric parameters changes in migraine.
Koban, Yaran; Ozlece, Hatice Kose; Bilgin, Gorkem; Koc, Mustafa; Cagatay, Halil Huseyin; Durgunlu, Emre I; Burcu, Ayse
2016-05-31
The aim of this study was to assess the intraocular pressure and ocular biometric parameters in migraine patients during acute migraine attacks and compare them with painless period and healthy controls using a new optical biometer AL-Scan. In this prospective, case-control study, the axial length, corneal curvature radius, anterior chamber depth, central corneal thickness, and pupil size of 40 migraine patients during acute migraine attacks and painless period and 40 age- and sex-matched healthy subjects were measured using a AL-Scan optical biometer (Nidek Co., Gamagori, Japan). All patients underwent a complete ophthalmic examination before the measurements. IOP and biometer measurements were taken at the same time of day (10:00-12:00) in order to minimize the effects of diurnal variation. There was not a statistically significant difference in intraocular pressure between the migraine patients during acute migraine attacks (15.07 mmHg), painless period (14.10 mmHg), and the controls (15,73 ± 0,81). Also, the ocular biometric parameters did not significantly vary during the acute migraine attacks. Further studies are needed to evaluate the etiopathologic relationship between intraocular pressure and ocular biometric parameters and acute migraine attack.
Minsley, Burke J.
2011-01-01
A meaningful interpretation of geophysical measurements requires an assessment of the space of models that are consistent with the data, rather than just a single, ‘best’ model which does not convey information about parameter uncertainty. For this purpose, a trans-dimensional Bayesian Markov chain Monte Carlo (MCMC) algorithm is developed for assessing frequencydomain electromagnetic (FDEM) data acquired from airborne or ground-based systems. By sampling the distribution of models that are consistent with measured data and any prior knowledge, valuable inferences can be made about parameter values such as the likely depth to an interface, the distribution of possible resistivity values as a function of depth and non-unique relationships between parameters. The trans-dimensional aspect of the algorithm allows the number of layers to be a free parameter that is controlled by the data, where models with fewer layers are inherently favoured, which provides a natural measure of parsimony and a significant degree of flexibility in parametrization. The MCMC algorithm is used with synthetic examples to illustrate how the distribution of acceptable models is affected by the choice of prior information, the system geometry and configuration and the uncertainty in the measured system elevation. An airborne FDEM data set that was acquired for the purpose of hydrogeological characterization is also studied. The results compare favorably with traditional least-squares analysis, borehole resistivity and lithology logs from the site, and also provide new information about parameter uncertainty necessary for model assessment.
NASA Technical Reports Server (NTRS)
Tedesco, Marco; Kim, Edward J.
2005-01-01
In this paper, GA-based techniques are used to invert the equations of an electromagnetic model based on Dense Medium Radiative Transfer Theory (DMRT) under the Quasi Crystalline Approximation with Coherent Potential to retrieve snow depth, mean grain size and fractional volume from microwave brightness temperatures. The technique is initially tested on both noisy and not-noisy simulated data. During this phase, different configurations of genetic algorithm parameters are considered to quantify how their change can affect the algorithm performance. A configuration of GA parameters is then selected and the algorithm is applied to experimental data acquired during the NASA Cold Land Process Experiment. Snow parameters retrieved with the GA-DMRT technique are then compared with snow parameters measured on field.
Muzlovic, Igor; Perme, Janja; Stubljar, David
2018-05-01
The aim of the study was to investigate whether polyurethane (PU) endotracheal tubes, continuous measurements of cuff pressure and aspiration of the subglottic space as a bundle of parameters could reduce patients' risk for developing ventilator associated pneumonia (VAP). Two groups of patients that differed only in terms of endotracheal tubes and intubation intervention were compared. Group A was ventilated using PU tubes a with conical cuff; they also had continuous cuff pressure measurement and continuous subglottic aspiration. Group B was ventilated using PVC tubes with a cylindrical cuff; the patients underwent intermittent cuff pressure measurement and intermittent subglottic aspiration. Seven patients in group A (13.2%) and 18 in group B (36.0%) out of 103 were diagnosed with VAP. VAP patients were in general older, stayed longer in the ICU and were ventilated significantly longer compared with the patients with no VAP. Eight more patients in group B died compared with group A. Moreover, subjects in group A survived longer. Patient age, hours on mechanical ventilation, and days on an ICU were all positively associated with the occurrence of VAP. Prevention parameters in ventilation (PU cuff, conical cuff, continuous subglottic drainage and continuous cuff pressure measurement) could prevent the incidence of VAP in ICU patients.
Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.
1998-01-01
A method for generating a validated measurement of a process parameter at a point in time by using a plurality of individual sensor inputs from a scan of said sensors at said point in time. The sensor inputs from said scan are stored and a first validation pass is initiated by computing an initial average of all stored sensor inputs. Each sensor input is deviation checked by comparing each input including a preset tolerance against the initial average input. If the first deviation check is unsatisfactory, the sensor which produced the unsatisfactory input is flagged as suspect. It is then determined whether at least two of the inputs have not been flagged as suspect and are therefore considered good inputs. If two or more inputs are good, a second validation pass is initiated by computing a second average of all the good sensor inputs, and deviation checking the good inputs by comparing each good input including a present tolerance against the second average. If the second deviation check is satisfactory, the second average is displayed as the validated measurement and the suspect sensor as flagged as bad. A validation fault occurs if at least two inputs are not considered good, or if the second deviation check is not satisfactory. In the latter situation the inputs from each of all the sensors are compared against the last validated measurement and the value from the sensor input that deviates the least from the last valid measurement is displayed.
Parameter Estimation of Partial Differential Equation Models.
Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Carroll, Raymond J; Maity, Arnab
2013-01-01
Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown, and need to be estimated from the measurements of the dynamic system in the present of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE, and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from LIDAR data.
Joe, Paula S; Ito, Yasushi; Shih, Alan M; Oestenstad, Riedar K; Lungu, Claudiu T
2012-01-01
This study was designed to determine if three-dimensional (3D) laser scanning techniques could be used to collect accurate anthropometric measurements, compared with traditional methods. The use of an alternative 3D method would allow for quick collection of data that could be used to change the parameters used for facepiece design, improving fit and protection for a wider variety of faces. In our study, 10 facial dimensions were collected using both the traditional calipers and tape method and a Konica-Minolta Vivid9i laser scanner. Scans were combined using RapidForm XOR software to create a single complete facial geometry of the subject as a triangulated surface with an associated texture image from which to obtain measurements. A paired t-test was performed on subject means in each measurement by method. Nine subjects were used in this study: five males (one African-American and four Caucasian females) and four females displaying a range of facial dimensions. Five measurements showed significant differences (p<0.05), with most accounted for by subject movements or amended by scanning technique modifications. Laser scanning measurements showed high precision and accuracy when compared with traditional methods. Significant differences found can be very small changes in measurements and are unlikely to present a practical difference. The laser scanning technique demonstrated reliable and quick anthropometric data collection for use in future projects in redesigning respirators.
Walicka-Cupryś, Katarzyna; Drzał-Grabiec, Justyna; Mrozkowiak, Mirosław
2013-10-31
BACKGROUND. The photogrammetric method and inclinometer-based measurements are commonly employed to assess the anteroposterior curvatures of the spine. These methods are used both in clinical trials and for screening purposes. The aim of the study was to compare the parameters used to characterise the anteroposterior spinal curvatures as measured by photogrammetry and inclinometry. MATERIAL AND METHODS. The study enrolled 341 subjects: 169 girls and 172 boys, aged 4 to 9 years, from kindergartens and primary schools in Rzeszów. The anteroposterior spinal curvatures were examined by photogrammetry and with a mechanical inclinometer. RESULTS. There were significant differences in the α angle between the inclinometric and photogrammetric assessment in the Student t test (p=0.017) and the Fisher Snedecor test (p=0.0001), with similar differences in the β angle (Student's t p=0.0001, Fisher Snedecor p=0.007). For the γ angle, significant differences were revealed with Student's t test (p=0.0001), but not with the Fisher Snedecor test (p = 0.22). CONCLUSIONS. 1. Measurements of inclination of particular segments of the spine obtained with the photogrammetric method and the inclinometric method in the same study group revealed statistically significant differences. 2. The results of measurements obtained by photogrammetry and inclinometry are not comparable. 3. Further research on agreement between measurements of the anteroposterior spinal curvatures obtained using the available measurement equipment is recommended.
Valdez-Jasso, Daniela; Bia, Daniel; Zócalo, Yanina; Armentano, Ricardo L.; Haider, Mansoor A.; Olufsen, Mette S.
2013-01-01
A better understanding of the biomechanical properties of the arterial wall provides important insight into arterial vascular biology under normal (healthy) and pathological conditions. This insight has potential to improve tracking of disease progression and to aid in vascular graft design and implementation. In this study, we use linear and nonlinear viscoelastic models to predict biomechanical properties of the thoracic descending aorta and the carotid artery under ex vivo and in vivo conditions in ovine and human arteries. Models analyzed include a four-parameter (linear) Kelvin viscoelastic model and two five-parameter nonlinear viscoelastic models (an arctangent and a sigmoid model) that relate changes in arterial blood pressure to the vessel cross-sectional area (via estimation of vessel strain). These models were developed using the framework of Quasilinear Viscoelasticity (QLV) theory and were validated using measurements from the thoracic descending aorta and the carotid artery obtained from human and ovine arteries. In vivo measurements were obtained from ten ovine aortas and ten human carotid arteries. Ex vivo measurements (from both locations) were made in eleven male Merino sheep. Biomechanical properties were obtained through constrained estimation of model parameters. To further investigate the parameter estimates we computed standard errors and confidence intervals and we used analysis of variance to compare results within and between groups. Overall, our results indicate that optimal model selection depends on the arterial type. Results showed that for the thoracic descending aorta (under both experimental conditions) the best predictions were obtained with the nonlinear sigmoid model, while under healthy physiological pressure loading the carotid arteries nonlinear stiffening with increasing pressure is negligible, and consequently, the linear (Kelvin) viscoelastic model better describes the pressure-area dynamics in this vessel. Results comparing biomechanical properties show that the Kelvin and sigmoid models were able to predict the zero-pressure vessel radius; that under ex vivo conditions vessels are more rigid, and comparatively, that the carotid artery is stiffer than the thoracic descending aorta; and that the viscoelastic gain and relaxation parameters do not differ significantly between vessels or experimental conditions. In conclusion, our study demonstrates that the proposed models can predict pressure-area dynamics and that model parameters can be extracted for further interpretation of biomechanical properties. PMID:21203846
ON MEASUREMENT OF CARBON CONTENT IN RETAINED AUSTENITE IN A NANOSTRUCTURED BAINITIC STEEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Mateo, C.; Caballero, Francesca G.; Miller, Michael K
2012-01-01
In this study, the carbon content of retained austenite in a nanostructured bainitic steel was measured by atom probe tomography and compared with data derived from the austenite lattice parameter determined by X-ray diffraction. The results provide new evidence about the heterogeneous distribution of carbon in austenite, a fundamental issue controlling ductility in this type of microstructure.
ERIC Educational Resources Information Center
Mare, Robert D.; Mason, William M.
An important class of applications of measurement error or constrained factor analytic models consists of comparing models for several populations. In such cases, it is appropriate to make explicit statistical tests of model similarity across groups and to constrain some parameters of the models to be equal across groups using a priori substantive…
Makwana, Amit H; Solanki, Jayesh D; Gokhale, Pradnya A; Mehta, Hemant B; Shah, Chinmay J; Gadhavi, Bhakti P
2015-01-01
Air pollution due to road traffic is a serious health hazard and air quality crisis in cities is mainly due to vehicular emission. Thus the persons who are continuously exposed are at an increased risk. The study was carried out to evaluate the extent of impairment in lung function in traffic police personnel compared to matched unexposed control group. A cross-sectional study was conducted to measure the spirometric parameters of 100 traffic police personnel, aged 20-55 years, working in Saurashtra region, as compared to matched control group, consisting of 100 unexposed males. Measurement of lung volumes and capacities was done with SPIROEXCEL. The statistical analysis was carried out with Graph pad instat 3. Traffic police personnel had significantly declined forced vital capacity (FVC), forced expiratory volume in one second (FEV 1), slow vital capacity (SVC) and maximum voluntary ventilation (MVV) when compared with predictive normal values, which is probably due to exposure to vehicular exhaust. Comparison of test values between groups showed significantly reduced FVC, MVV and increased FEV1/FVC ratio and insignificantly declined FEV1 and SVC in cases as compared to controls. Traffic personnel with longer duration of exposure showed significantly reduced lung functions than those with shorter duration. Smokers showed lower test values as compared to non-smokers with significance only in unexposed group. The effect of pollution by vehicular exhausts may be responsible for these pulmonary function impairments and traffic police personnel should be offered personal protective or preventive measures.
ERIC Educational Resources Information Center
Sachse, Karoline A.; Roppelt, Alexander; Haag, Nicole
2016-01-01
Trend estimation in international comparative large-scale assessments relies on measurement invariance between countries. However, cross-national differential item functioning (DIF) has been repeatedly documented. We ran a simulation study using national item parameters, which required trends to be computed separately for each country, to compare…
Evaluating Carbonate System Algorithms in a Nearshore System: Does Total Alkalinity Matter?
Sweet, Julia; Brzezinski, Mark A.; McNair, Heather M.; Passow, Uta
2016-01-01
Ocean acidification is a threat to many marine organisms, especially those that use calcium carbonate to form their shells and skeletons. The ability to accurately measure the carbonate system is the first step in characterizing the drivers behind this threat. Due to logistical realities, regular carbonate system sampling is not possible in many nearshore ocean habitats, particularly in remote, difficult-to-access locations. The ability to autonomously measure the carbonate system in situ relieves many of the logistical challenges; however, it is not always possible to measure the two required carbonate parameters autonomously. Observed relationships between sea surface salinity and total alkalinity can frequently provide a second carbonate parameter thus allowing for the calculation of the entire carbonate system. Here, we assessed the rigor of estimating total alkalinity from salinity at a depth <15 m by routinely sampling water from a pier in southern California for several carbonate system parameters. Carbonate system parameters based on measured values were compared with those based on estimated TA values. Total alkalinity was not predictable from salinity or from a combination of salinity and temperature at this site. However, dissolved inorganic carbon and the calcium carbonate saturation state of these nearshore surface waters could both be estimated within on average 5% of measured values using measured pH and salinity-derived or regionally averaged total alkalinity. Thus we find that the autonomous measurement of pH and salinity can be used to monitor trends in coastal changes in DIC and saturation state and be a useful method for high-frequency, long-term monitoring of ocean acidification. PMID:27893739
Evaluating Carbonate System Algorithms in a Nearshore System: Does Total Alkalinity Matter?
Jones, Jonathan M; Sweet, Julia; Brzezinski, Mark A; McNair, Heather M; Passow, Uta
2016-01-01
Ocean acidification is a threat to many marine organisms, especially those that use calcium carbonate to form their shells and skeletons. The ability to accurately measure the carbonate system is the first step in characterizing the drivers behind this threat. Due to logistical realities, regular carbonate system sampling is not possible in many nearshore ocean habitats, particularly in remote, difficult-to-access locations. The ability to autonomously measure the carbonate system in situ relieves many of the logistical challenges; however, it is not always possible to measure the two required carbonate parameters autonomously. Observed relationships between sea surface salinity and total alkalinity can frequently provide a second carbonate parameter thus allowing for the calculation of the entire carbonate system. Here, we assessed the rigor of estimating total alkalinity from salinity at a depth <15 m by routinely sampling water from a pier in southern California for several carbonate system parameters. Carbonate system parameters based on measured values were compared with those based on estimated TA values. Total alkalinity was not predictable from salinity or from a combination of salinity and temperature at this site. However, dissolved inorganic carbon and the calcium carbonate saturation state of these nearshore surface waters could both be estimated within on average 5% of measured values using measured pH and salinity-derived or regionally averaged total alkalinity. Thus we find that the autonomous measurement of pH and salinity can be used to monitor trends in coastal changes in DIC and saturation state and be a useful method for high-frequency, long-term monitoring of ocean acidification.
Metal Standards for Waveguide Characterization of Materials
NASA Technical Reports Server (NTRS)
Lambert, Kevin M.; Kory, Carol L.
2009-01-01
Rectangular-waveguide inserts that are made of non-ferromagnetic metals and are sized and shaped to function as notch filters have been conceived as reference standards for use in the rectangular- waveguide method of characterizing materials with respect to such constitutive electromagnetic properties as permittivity and permeability. Such standards are needed for determining the accuracy of measurements used in the method, as described below. In this method, a specimen of a material to be characterized is cut to a prescribed size and shape and inserted in a rectangular- waveguide test fixture, wherein the specimen is irradiated with a known source signal and detectors are used to measure the signals reflected by, and transmitted through, the specimen. Scattering parameters [also known as "S" parameters (S11, S12, S21, and S22)] are computed from ratios between the transmitted and reflected signals and the source signal. Then the permeability and permittivity of the specimen material are derived from the scattering parameters. Theoretically, the technique for calculating the permeability and permittivity from the scattering parameters is exact, but the accuracy of the results depends on the accuracy of the measurements from which the scattering parameters are obtained. To determine whether the measurements are accurate, it is necessary to perform comparable measurements on reference standards, which are essentially specimens that have known scattering parameters. To be most useful, reference standards should provide the full range of scattering-parameter values that can be obtained from material specimens. Specifically, measurements of the backscattering parameter (S11) from no reflection to total reflection and of the forward-transmission parameter (S21) from no transmission to total transmission are needed. A reference standard that functions as a notch (band-stop) filter can satisfy this need because as the signal frequency is varied across the frequency range for which the filter is designed, the scattering parameters vary over the ranges of values between the extremes of total reflection and total transmission. A notch-filter reference standard in the form of a rectangular-waveguide insert that has a size and shape similar to that of a material specimen is advantageous because the measurement configuration used for the reference standard can be the same as that for a material specimen. Typically a specimen is a block of material that fills a waveguide cross-section but occupies only a small fraction of the length of the waveguide. A reference standard of the present type (see figure) is a metal block that fills part of a waveguide cross section and contains a slot, the long dimension of which can be chosen to tailor the notch frequency to a desired value. The scattering parameters and notch frequency can be estimated with high accuracy by use of commercially available electromagnetic-field-simulating software. The block can be fabricated to the requisite precision by wire electrical-discharge machining. In use, the accuracy of measurements is determined by comparison of (1) the scattering parameters calculated from the measurements with (2) the scattering parameters calculated by the aforementioned software.
Hetzel, Juergen; Boeckeler, Michael; Horger, Marius; Ehab, Ahmed; Kloth, Christopher; Wagner, Robert; Freitag, Lutz; Slebos, Dirk-Jan; Lewis, Richard Alexander; Haentschel, Maik
2017-01-01
Lung volume reduction (LVR) improves breathing mechanics by reducing hyperinflation. Lobar selection usually focuses on choosing the most destroyed emphysematous lobes as seen on an inspiratory CT scan. However, it has never been shown to what extent these densitometric CT parameters predict the least deflation of an individual lobe during expiration. The addition of expiratory CT analysis allows measurement of the extent of lobar air trapping and could therefore provide additional functional information for choice of potential treatment targets. To determine lobar vital capacity/lobar total capacity (LVC/LTC) as a functional parameter for lobar air trapping using on an inspiratory and expiratory CT scan. To compare lobar selection by LVC/LTC with the established morphological CT density parameters. 36 patients referred for endoscopic LVR were studied. LVC/LTC, defined as delta volume over maximum volume of a lobe, was calculated using inspiratory and expiratory CT scans. The CT morphological parameters of mean lung density (MLD), low attenuation volume (LAV), and 15th percentile of Hounsfield units (15%P) were determined on an inspiratory CT scan for each lobe. We compared and correlated LVC/LTC with MLD, LAV, and 15%P. There was a weak correlation between the functional parameter LVC/LTC and all inspiratory densitometric parameters. Target lobe selection using lowest lobar deflation (lowest LVC/LTC) correlated with target lobe selection based on lowest MLD in 18 patients (50.0%), with the highest LAV in 13 patients (36.1%), and with the lowest 15%P in 12 patients (33.3%). CT-based measurement of deflation (LVC/LTC) as a functional parameter correlates weakly with all densitometric CT parameters on a lobar level. Therefore, morphological criteria based on inspiratory CT densitometry partially reflect the deflation of particular lung lobes, and may be of limited value as a sole predictor for target lobe selection in LVR.
NASA Astrophysics Data System (ADS)
Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao de Mendizabal, J.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Hadef, A.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herget, V.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, C.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Melo, M.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perez Codina, E.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdes Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Deijl, P. C.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wolf, T. M. H.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zwalinski, L.; Atlas Collaboration
2017-07-01
This paper presents the extended results of measurements of W±W±j j production and limits on anomalous quartic gauge couplings using 20.3 fb-1 of proton-proton collision data at √{s }=8 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with two leptons (e or μ ) with the same electric charge and at least two jets are analyzed. Production cross sections are determined in two fiducial regions, with different sensitivities to the electroweak and strong production mechanisms. An additional fiducial region, particularly sensitive to anomalous quartic gauge coupling parameters α4 and α5, is introduced, which allows more stringent limits on these parameters compared to the previous ATLAS measurement.
Soil Moisture and Vegetation Effects on GPS Reflectivity From Land
NASA Astrophysics Data System (ADS)
Torres, O.; Grant, M. S.; Bosch, D.
2004-12-01
While originally designed as a navigation system, the GPS signal has been used to achieve a number of useful scientific measurements. One of these measurements utilizes the reflection of the GPS signal from land to determine soil moisture. The study of GPS reflections is based on a bistatic configuration that utilizes forward reflection from the surface. The strength of the GPS signal varies in proportion to surface parameters such as soil moisture, soil type, vegetation cover, and topography. This paper focuses on the effects of soil water content and vegetation cover on the surface based around a reflectivity. A two-part method for calibrating the GPS reflectivity was developed that permits the comparison of the data with surface parameters. The first part of the method relieves the direct signal from any multipath effects, the second part is an over-water calibration that yields a reflectivity independent of the transmitting satellite. The sensitivity of the GPS signal to water in the soil is shown by presenting the increase in reflectivity after rain as compared to before rain. The effect of vegetation on the reflected signal is also presented by the inclusion of leaf area index as a fading parameter in the reflected signal from corn and soy bean fields. The results are compared to extensive surface measurements made as part of the Soil Moisture Experiment 2002 (SMEX 2002) in Iowa and SMEX 2003 in Georgia.
Radiologic Parameters of Orbital Bone Remodeling in Thyroid Eye Disease.
Tan, Nicholas Y Q; Leong, Yuan-Yuh; Lang, Stephanie S; Htoon, Zin M; Young, Stephanie M; Sundar, Gangadhara
2017-05-01
To radiologically examine for the presence of bony remodeling of the orbit in thyroid eye disease (TED). Computed tomography (CT) scans of 248 orbits of 124 patients with TED and 185 orbits of 138 controls were retrospectively reviewed, and the following parameters measured: the angle of the inferomedial orbital strut (AIOS), the angle of the medial wall (AMW), and the diameters of the extraocular muscles. The association of TED with the AIOS or AMW was analyzed with linear regression models, and the correlations between the AMW or AIOS measurements with the extraocular muscle measurements were determined. Overall, the AIOS was found to be larger (P < 0.001) and the AMW smaller (P = 0.045) in patients with TED compared to controls. After adjusting for age and sex, the larger AIOS in TED remained significant (P < 0.001), but the smaller AMW in TED patients was no longer significant (P = 0.07). There was a negative correlation between AMW and the calculated average cross-sectional area of the medial rectus in TED (r = -0.23, P = 0.01). A difference in the structure of the bony orbit in TED compared to controls may be demonstrated by the AIOS and AMW radiological parameters. This likely represents the presence of bony remodeling in TED, which may be related to the expansion of the intraorbital soft tissue volume.
Effect of Electron Beam Freeform Fabrication (EBF3) Processing Parameters on Composition of Ti-6-4
NASA Technical Reports Server (NTRS)
Lach, Cynthia L.; Taminger, Karen; Schuszler, A. Bud, II; Sankaran, Sankara; Ehlers, Helen; Nasserrafi, Rahbar; Woods, Bryan
2007-01-01
The Electron Beam Freeform Fabrication (EBF3) process developed at NASA Langley Research Center was evaluated using a design of experiments approach to determine the effect of processing parameters on the composition and geometry of Ti-6-4 deposits. The effects of three processing parameters: beam power, translation speed, and wire feed rate, were investigated by varying one while keeping the remaining parameters constant. A three-factorial, three-level, fully balanced mutually orthogonal array (L27) design of experiments approach was used to examine the effects of low, medium, and high settings for the processing parameters on the chemistry, geometry, and quality of the resulting deposits. Single bead high deposits were fabricated and evaluated for 27 experimental conditions. Loss of aluminum in Ti-6-4 was observed in EBF3 processing due to selective vaporization of the aluminum from the sustained molten pool in the vacuum environment; therefore, the chemistries of the deposits were measured and compared with the composition of the initial wire and base plate to determine if the loss of aluminum could be minimized through careful selection of processing parameters. The influence of processing parameters and coupling between these parameters on bulk composition, measured by Direct Current Plasma (DCP), local microchemistries determined by Wavelength Dispersive Spectrometry (WDS), and deposit geometry will also be discussed.
Meinke, Martina C; Richter, Heike; Kleemann, Anke; Lademann, Juergen; Tscherch, Kathrin; Rohn, Sascha; Schempp, Christoph M
2015-05-01
Atopic dermatitis (AD) is a multifactorial inflammatory skin disease that affects both children and adults in an increasing manner. The treatment of AD often reduces subjective skin parameters, such as itching, dryness, and tension, but the inflammation cannot be cured. Laser scanning microscopy was used to investigate the skin surface, epidermal, and dermal characteristics of dry and atopic skin before and after treatment with an ointment rich in hyperforin, which is known for its anti-inflammatory effects. The results were compared to subjective parameters and transepidermal water loss, stratum corneum moisture, and stratum corneum lipids. Using biophysical methods, in particular laser scanning microscopy, it was found that atopic skin has distinct features compared to healthy skin. Treatment with a hyperforin-rich ointment resulted in an improvement of the stratum corneum moisture, skin surface dryness, skin lipids, and the subjective skin parameters, indicating that the barrier is stabilized and improved by the ointment. But in contrast to the improved skin surface, the inflammation in the deeper epidermis/dermis often continues to exist. This could be clearly shown by the reflectance confocal microscopy (RCM) measurements. Therefore, RCM measurements could be used to investigate the progress in treatment of atopic dermatitis.
NASA Astrophysics Data System (ADS)
Meinke, Martina C.; Richter, Heike; Kleemann, Anke; Lademann, Juergen; Tscherch, Kathrin; Rohn, Sascha; Schempp, Christoph M.
2015-05-01
Atopic dermatitis (AD) is a multifactorial inflammatory skin disease that affects both children and adults in an increasing manner. The treatment of AD often reduces subjective skin parameters, such as itching, dryness, and tension, but the inflammation cannot be cured. Laser scanning microscopy was used to investigate the skin surface, epidermal, and dermal characteristics of dry and atopic skin before and after treatment with an ointment rich in hyperforin, which is known for its anti-inflammatory effects. The results were compared to subjective parameters and transepidermal water loss, stratum corneum moisture, and stratum corneum lipids. Using biophysical methods, in particular laser scanning microscopy, it was found that atopic skin has distinct features compared to healthy skin. Treatment with a hyperforin-rich ointment resulted in an improvement of the stratum corneum moisture, skin surface dryness, skin lipids, and the subjective skin parameters, indicating that the barrier is stabilized and improved by the ointment. But in contrast to the improved skin surface, the inflammation in the deeper epidermis/dermis often continues to exist. This could be clearly shown by the reflectance confocal microscopy (RCM) measurements. Therefore, RCM measurements could be used to investigate the progress in treatment of atopic dermatitis.
Carcreff, Lena; Paraschiv-Ionescu, Anisoara; De Coulon, Geraldo; Armand, Stéphane; Aminian, Kamiar
2018-01-01
Wearable inertial devices have recently been used to evaluate spatiotemporal parameters of gait in daily life situations. Given the heterogeneity of gait patterns in children with cerebral palsy (CP), the sensor placement and analysis algorithm may influence the validity of the results. This study aimed at comparing the spatiotemporal measurement performances of three wearable configurations defined by different sensor positioning on the lower limbs: (1) shanks and thighs, (2) shanks, and (3) feet. The three configurations were selected based on their potential to be used in daily life for children with CP and typically developing (TD) controls. For each configuration, dedicated gait analysis algorithms were used to detect gait events and compute spatiotemporal parameters. Fifteen children with CP and 11 TD controls were included. Accuracy, precision, and agreement of the three configurations were determined in comparison with an optoelectronic system as a reference. The three configurations were comparable for the evaluation of TD children and children with a low level of disability (CP-GMFCS I) whereas the shank-and-thigh-based configuration was more robust regarding children with a higher level of disability (CP-GMFCS II–III). PMID:29385700
Chander, Gyanesh; Angal, Amit; Xiong, Xiaoxiong; Helder, Dennis L.; Mishra, Nischal; Choi, Taeyoung; Wu, Aisheng
2010-01-01
Test sites are central to any future quality assurance and quality control (QA/QC) strategy. The Committee on Earth Observation Satellites (CEOS) Working Group for Calibration and Validation (WGCV) Infrared Visible Optical Sensors (IVOS) worked with collaborators around the world to establish a core set of CEOS-endorsed, globally distributed, reference standard test sites (both instrumented and pseudo-invariant) for the post-launch calibration of space-based optical imaging sensors. The pseudo-invariant calibration sites (PICS) have high reflectance and are usually made up of sand dunes with low aerosol loading and practically no vegetation. The goal of this paper is to provide preliminary assessment of "several parameters" than can be used on an operational basis to compare and measure usefulness of reference sites all over the world. The data from Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and the Earth Observing-1 (EO-1) Hyperion sensors over the CEOS PICS were used to perform a preliminary assessment of several parameters, such as usable area, data availability, top-of-atmosphere (TOA) reflectance, at-sensor brightness temperature, spatial uniformity, temporal stability, spectral stability, and typical spectrum observed over the sites.
The effect of environmental parameters to dust concentration in air-conditioned space
NASA Astrophysics Data System (ADS)
Ismail, A. M. M.; Manssor, N. A. S.; Nalisa, A.; Yahaya, N.
2017-08-01
Malaysia has a wet and hot climate, therefore most of the spaces are air conditioned. The environment might affect dust concentration inside a space and affect the indoor air quality (IAQ). The main objective of this study is to study the dust concentration collected inside enclosed air-conditioned space. The measurement was done physically at four selected offices and two classrooms using a number of equipment to measure the dust concentration and environmental parameters which are temperature and relative air humidity. It was found that the highest dust concentration produced in office (temperature of 24.7°C, relative humidity of 66.5%) is 0.075 mg/m3, as compared to classroom, the highest dust concentration produced is 0.060 mg/m3 office (temperature of 25.9°C, relative humidity of 64.0%). However, both measurements show that value still within the safety level set by DOSH Malaysia (2005-2010) and ASHRAE 62.2 2016. The office contained higher dust concentration compared to classroom because of frequent movement transpires daily due to the functional of the offices.
NASA Astrophysics Data System (ADS)
Matsunaga, Y.; Sugita, Y.
2018-06-01
A data-driven modeling scheme is proposed for conformational dynamics of biomolecules based on molecular dynamics (MD) simulations and experimental measurements. In this scheme, an initial Markov State Model (MSM) is constructed from MD simulation trajectories, and then, the MSM parameters are refined using experimental measurements through machine learning techniques. The second step can reduce the bias of MD simulation results due to inaccurate force-field parameters. Either time-series trajectories or ensemble-averaged data are available as a training data set in the scheme. Using a coarse-grained model of a dye-labeled polyproline-20, we compare the performance of machine learning estimations from the two types of training data sets. Machine learning from time-series data could provide the equilibrium populations of conformational states as well as their transition probabilities. It estimates hidden conformational states in more robust ways compared to that from ensemble-averaged data although there are limitations in estimating the transition probabilities between minor states. We discuss how to use the machine learning scheme for various experimental measurements including single-molecule time-series trajectories.
Artificial neural network cardiopulmonary modeling and diagnosis
Kangas, L.J.; Keller, P.E.
1997-10-28
The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis. 12 figs.
Artificial neural network cardiopulmonary modeling and diagnosis
Kangas, Lars J.; Keller, Paul E.
1997-01-01
The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis.
Jahanbin, Arezoo; Rashed, Roozbeh; Yazdani, Roghayeh; Shahri, Naser Mahdavi; Kianifar, Hamidreza
2013-05-01
By finding the mean value of anthropometric parameters in normal samples of a population, it is possible to create a template for facial analysis. The aim of our study was to measure the anthropometric parameters in 0- to 12-year-old girls of Fars ethnic origin in the Northeast of Iran. Six hundred sixty-two newborn to 12-year-old girls of Fars ethnic origin participated in the study. A digital camera was used to take frontal full-face photographs of each child. Thirteen measurements were taken with the Smile Analyzer software: al-al, ch-ch, en-en, ex-ex, ft'-ft', go'-go', t-t, zy'-zy', n'-gn', n'-sn, t-g', t-gn', t-sn. Data were analyzed using the SPSS software at the significance level of 0.05. In almost all parameters, we found significant growth acceleration between 2 and 4 years as well as 5 and 6 years of age. Another growth spurt was seen between 9 and 11 years, although it was less noticeable. Comparing the linear regression equations suggests that different craniofacial dimensions do not grow similarly. By age, craniofacial dimensions change at different rates. Different craniofacial dimensions do not grow at consistent rates. Some parts grow slower compared with others. The intercanthal width has the slowest growth. Facial height shows the fastest growth.
Kim, Sun Jung; Park, Eun-Cheol; Kim, Sulgi; Nakagawa, Shunichi; Lung, John; Choi, Jong Bum; Ryu, Woo Sang; Min, Too Jae; Shin, Hyun Phil; Kim, Kyudam; Yoo, Ji Won
2014-03-01
To assess the overall quality of life of long-stay nursing home residents with preserved cognition, to examine whether the Centers for Medicare and Medicaid Service's Nursing Home Compare 5-star quality rating system reflects the overall quality of life of such residents, and to examine whether residents' demographics and clinical characteristics affect their quality of life. Quality of life was measured using the Participant Outcomes and Status Measures-Nursing Facility survey, which has 10 sections and 63 items. Total scores range from 20 (lowest possible quality of life) to 100 (highest). Long-stay nursing home residents with preserved cognition (n = 316) were interviewed. The average quality- of-life score was 71.4 (SD: 7.6; range: 45.1-93.0). Multilevel regression models revealed that quality of life was associated with physical impairment (parameter estimate = -0.728; P = .04) and depression (parameter estimate = -3.015; P = .01) but not Nursing Home Compare's overall star rating (parameter estimate = 0.683; P = .12) and not pain (parameter estimate = -0.705; P = .47). The 5-star quality rating system did not reflect the quality of life of long-stay nursing home residents with preserved cognition. Notably, pain was not associated with quality of life, but physical impairment and depression were. Copyright © 2014 American Medical Directors Association, Inc. Published by Elsevier Inc. All rights reserved.
Parsons, Nola J; Schaefer, Adam M; van der Spuy, Stephen D; Gous, Tertius A
2015-03-25
There are few publications on the clinical haematology and biochemistry of African penguins (Spheniscus demersus) and these are based on captive populations. Baseline haematology and serum biochemistry parameters were analysed from 108 blood samples from wild, adult African penguins. Samples were collected from the breeding range of the African penguin in South Africa and the results were compared between breeding region and sex. The haematological parameters that were measured were: haematocrit, haemoglobin, red cell count and white cell count. The biochemical parameters that were measured were: sodium, potassium, chloride, calcium, inorganic phosphate, creatinine, cholesterol, serum glucose, uric acid, bile acid, total serum protein, albumin, aspartate transaminase and creatine kinase. All samples were serologically negative for selected avian diseases and no blood parasites were detected. No haemolysis was present in any of the analysed samples. Male African penguins were larger and heavier than females, with higher haematocrit, haemoglobin and red cell count values, but lower calcium and phosphate values. African penguins in the Eastern Cape were heavier than those in the Western Cape, with lower white cell count and globulin values and a higher albumin/globulin ratio, possibly indicating that birds are in a poorer condition in the Western Cape. Results were also compared between multiple penguin species and with African penguins in captivity. These values for healthy, wild, adult penguins can be used for future health and disease assessments.
Audio visual speech source separation via improved context dependent association model
NASA Astrophysics Data System (ADS)
Kazemi, Alireza; Boostani, Reza; Sobhanmanesh, Fariborz
2014-12-01
In this paper, we exploit the non-linear relation between a speech source and its associated lip video as a source of extra information to propose an improved audio-visual speech source separation (AVSS) algorithm. The audio-visual association is modeled using a neural associator which estimates the visual lip parameters from a temporal context of acoustic observation frames. We define an objective function based on mean square error (MSE) measure between estimated and target visual parameters. This function is minimized for estimation of the de-mixing vector/filters to separate the relevant source from linear instantaneous or time-domain convolutive mixtures. We have also proposed a hybrid criterion which uses AV coherency together with kurtosis as a non-Gaussianity measure. Experimental results are presented and compared in terms of visually relevant speech detection accuracy and output signal-to-interference ratio (SIR) of source separation. The suggested audio-visual model significantly improves relevant speech classification accuracy compared to existing GMM-based model and the proposed AVSS algorithm improves the speech separation quality compared to reference ICA- and AVSS-based methods.
Free Dendritic Growth of Succinonitrile-Acetone Alloys with Thermosolutal Melt Convection
NASA Technical Reports Server (NTRS)
Beckermann, Christoph; Li, Ben Q.
2003-01-01
A stagnant film model of the effects of thermosolutal convection on free dendritic growth of alloys is developed, and its predictions are compared to available earth-based experimental data for succinonitrileacetone alloys. It is found that the convection model gives excellent agreement with the measured dendrite tip velocities and radii for low solute concentrations. However, at higher solute concentrations the present predictions show some deviations from the measured data, and the measured (thermal) Peclet numbers tend to fall even below the predictions from diffusion theory. Furthermore, the measured selection parameter (sigma*) is significantly above the expected value of 0.02 and exhibits strong scatter. It is shown that convection is not responsible for these discrepancies. Some of the deviations between the predicted and measured data at higher supercoolings could be caused by measurement difficulties. The systematic disagreement in the selection parameter for higher solute concentrations and all supercoolings examined, indicates that the theory for the selection of the dendrite tip operating state in alloys may need to be reexamined.
NASA Astrophysics Data System (ADS)
Tharim, Asniza Hamimi Abdul; Samad, Muna Hanim Abdul; Ismail, Mazran
2017-10-01
An Indoor Environmental Quality (IEQ) fieldwork assessment was conducted in the Platinum-rated GBI office building located in Putrajaya Malaysia. The aim of the study is to determine the current indoor performance of the selected green office building. The field measurement consists of several IEQ parameters counted under the GBI Malaysia namely the Thermal Comfort of temperature, relative humidity, air movement and heat transfer as well as solar radiation. This field measurement also comprises of the measurement for the background noise, visual lighting and Indoor Air Quality (IAQ) focusing on the aspect of carbon dioxide concentration. All the selected indoor parameters were measured for the period of five working days and the results were compared to the Malaysian Standard. Findings of the field measurement show good indoor performance of the Platinum rated office building that complies with the GBI standard. It is hoped that the research findings will be beneficial for future design and construction of office building intended to be rated under the GBI Malaysia.
Stiffness measurement of a biomaterial by optical manipulation of microparticle
NASA Astrophysics Data System (ADS)
Kim, Jung-Dae; Waleed, Muhammad; Lee, Yong-Gu
2013-02-01
Since the discovery of the trapping nature of laser beam, optical tweezers have been extensively employed to measure various parameters at micro/nano level. Optical tweezers show exceptional sensitivity to weak forces making it one of the most sensitive force measurement devices. In this work, we present a technique to measure the stiffness of a biomaterial at different points. For this purpose, a microparticle stuck at the bottom of the dish is illuminated by the trapping laser and respective QPD signal as a function of the distance between the focus of the laser and the center of the microparticle is monitored. After this, microparticle is trapped and manipulated towards the target biomaterial and when it touches the cell membrane, QPD signal shows variation. By comparing two different QPD signals and measuring the trap stiffness, a technique is described to measure the stiffness of the biomaterial at a particular point. We believe that this parameter can be used as a tool to identify and classify different biomaterials.
Willett, N J; Thote, T; Hart, M; Moran, S; Guldberg, R E; Kamath, R V
2016-09-01
The development of effective therapies for cartilage protection has been limited by a lack of efficient quantitative cartilage imaging modalities in pre-clinical in vivo models. Our objectives were two-fold: first, to validate a new contrast-enhanced 3D imaging analysis technique, equilibrium partitioning of an ionic contrast agent-micro computed tomography (EPIC-μCT), in a rat medial meniscal transection (MMT) osteoarthritis (OA) model; and second, to quantitatively assess the sensitivity of EPIC-μCT to detect the effects of matrix metalloproteinase inhibitor (MMPi) therapy on cartilage degeneration. Rats underwent MMT surgery and tissues were harvested at 1, 2, and 3 weeks post-surgery or rats received an MMPi or vehicle treatment and tissues harvested 3 weeks post-surgery. Parameters of disease progression were evaluated using histopathology and EPIC-μCT. Correlations and power analyses were performed to compare the techniques. EPIC-μCT was shown to provide simultaneous 3D quantification of multiple parameters, including cartilage degeneration and osteophyte formation. In MMT animals treated with MMPi, OA progression was attenuated, as measured by 3D parameters such as lesion volume and osteophyte size. A post-hoc power analysis showed that 3D parameters for EPIC-μCT were more sensitive than 2D parameters requiring fewer animals to detect a therapeutic effect of MMPi. 2D parameters were comparable between EPIC-μCT and histopathology. This study demonstrated that EPIC-μCT has high sensitivity to provide 3D structural and compositional measurements of cartilage and bone in the joint. EPIC-μCT can be used in combination with histology to provide a comprehensive analysis to screen new potential therapies. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Ly, Sovann; Arashiro, Takeshi; Ieng, Vanra; Tsuyuoka, Reiko; Parry, Amy; Horwood, Paul; Heng, Seng; Hamid, Sarah; Vandemaele, Katelijn; Chin, Savuth; Sar, Borann; Arima, Yuzo
2017-01-01
To establish seasonal and alert thresholds and transmission intensity categories for influenza to provide timely triggers for preventive measures or upscaling control measures in Cambodia. Using Cambodia's influenza-like illness (ILI) and laboratory-confirmed influenza surveillance data from 2009 to 2015, three parameters were assessed to monitor influenza activity: the proportion of ILI patients among all outpatients, proportion of ILI samples positive for influenza and the product of the two. With these parameters, four threshold levels (seasonal, moderate, high and alert) were established and transmission intensity was categorized based on a World Health Organization alignment method. Parameters were compared against their respective thresholds. Distinct seasonality was observed using the two parameters that incorporated laboratory data. Thresholds established using the composite parameter, combining syndromic and laboratory data, had the least number of false alarms in declaring season onset and were most useful in monitoring intensity. Unlike in temperate regions, the syndromic parameter was less useful in monitoring influenza activity or for setting thresholds. Influenza thresholds based on appropriate parameters have the potential to provide timely triggers for public health measures in a tropical country where monitoring and assessing influenza activity has been challenging. Based on these findings, the Ministry of Health plans to raise general awareness regarding influenza among the medical community and the general public. Our findings have important implications for countries in the tropics/subtropics and in resource-limited settings, and categorized transmission intensity can be used to assess severity of potential pandemic influenza as well as seasonal influenza.
Parameter sensitivity analysis of a 1-D cold region lake model for land-surface schemes
NASA Astrophysics Data System (ADS)
Guerrero, José-Luis; Pernica, Patricia; Wheater, Howard; Mackay, Murray; Spence, Chris
2017-12-01
Lakes might be sentinels of climate change, but the uncertainty in their main feedback to the atmosphere - heat-exchange fluxes - is often not considered within climate models. Additionally, these fluxes are seldom measured, hindering critical evaluation of model output. Analysis of the Canadian Small Lake Model (CSLM), a one-dimensional integral lake model, was performed to assess its ability to reproduce diurnal and seasonal variations in heat fluxes and the sensitivity of simulated fluxes to changes in model parameters, i.e., turbulent transport parameters and the light extinction coefficient (Kd). A C++ open-source software package, Problem Solving environment for Uncertainty Analysis and Design Exploration (PSUADE), was used to perform sensitivity analysis (SA) and identify the parameters that dominate model behavior. The generalized likelihood uncertainty estimation (GLUE) was applied to quantify the fluxes' uncertainty, comparing daily-averaged eddy-covariance observations to the output of CSLM. Seven qualitative and two quantitative SA methods were tested, and the posterior likelihoods of the modeled parameters, obtained from the GLUE analysis, were used to determine the dominant parameters and the uncertainty in the modeled fluxes. Despite the ubiquity of the equifinality issue - different parameter-value combinations yielding equivalent results - the answer to the question was unequivocal: Kd, a measure of how much light penetrates the lake, dominates sensible and latent heat fluxes, and the uncertainty in their estimates is strongly related to the accuracy with which Kd is determined. This is important since accurate and continuous measurements of Kd could reduce modeling uncertainty.
ERIC Educational Resources Information Center
Environmental Science and Technology, 1976
1976-01-01
Recent national surveys conducted by the Council on Environmental Quality and others uncovered inconsistencies and confusion in the manner environmental quality parameters were used and reported. A standard air pollution index, comparative guide to water quality indicators and biological monitoring information are being developed. (BT)
A Systematic Approach for Model-Based Aircraft Engine Performance Estimation
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Garg, Sanjay
2010-01-01
A requirement for effective aircraft engine performance estimation is the ability to account for engine degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. This paper presents a linear point design methodology for minimizing the degradation-induced error in model-based aircraft engine performance estimation applications. The technique specifically focuses on the underdetermined estimation problem, where there are more unknown health parameters than available sensor measurements. A condition for Kalman filter-based estimation is that the number of health parameters estimated cannot exceed the number of sensed measurements. In this paper, the estimated health parameter vector will be replaced by a reduced order tuner vector whose dimension is equivalent to the sensed measurement vector. The reduced order tuner vector is systematically selected to minimize the theoretical mean squared estimation error of a maximum a posteriori estimator formulation. This paper derives theoretical estimation errors at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the estimation accuracy achieved through conventional maximum a posteriori and Kalman filter estimation approaches. Maximum a posteriori estimation results demonstrate that reduced order tuning parameter vectors can be found that approximate the accuracy of estimating all health parameters directly. Kalman filter estimation results based on the same reduced order tuning parameter vectors demonstrate that significantly improved estimation accuracy can be achieved over the conventional approach of selecting a subset of health parameters to serve as the tuner vector. However, additional development is necessary to fully extend the methodology to Kalman filter-based estimation applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, He; Lv, Hongliang; Guo, Hui, E-mail: hguan@stu.xidian.edu.cn
2015-11-21
Impact ionization affects the radio-frequency (RF) behavior of high-electron-mobility transistors (HEMTs), which have narrow-bandgap semiconductor channels, and this necessitates complex parameter extraction procedures for HEMT modeling. In this paper, an enhanced small-signal equivalent circuit model is developed to investigate the impact ionization, and an improved method is presented in detail for direct extraction of intrinsic parameters using two-step measurements in low-frequency and high-frequency regimes. The practicability of the enhanced model and the proposed direct parameter extraction method are verified by comparing the simulated S-parameters with published experimental data from an InAs/AlSb HEMT operating over a wide frequency range. The resultsmore » demonstrate that the enhanced model with optimal intrinsic parameter values that were obtained by the direct extraction approach can effectively characterize the effects of impact ionization on the RF performance of HEMTs.« less
NASA Astrophysics Data System (ADS)
Hatch, Courtney D.; Greenaway, Ann L.; Christie, Matthew J.; Baltrusaitis, Jonas
2014-04-01
Fresh mineral aerosol has recently been found to be effective cloud condensation nuclei (CCN) and contribute to the number of cloud droplets in the atmosphere due to the effect of water adsorption on CCN activation. The work described here uses experimental water adsorption measurements on Na-montmorillonite and illite clay to determine empirical adsorption parameters that can be used in a recently derived theoretical framework (Frenkel-Halsey-Hill Activation Theory, FHH-AT) that accounts for the effect of water adsorption on CCN activation. Upon fitting the Frenkel-Halsey-Hill (FHH) adsorption model to water adsorption measurements, we find FHH adsorption parameters, AFHH and BFHH, to be 98 ± 22 and 1.79 ± 0.11 for montmorillonite and 75 ± 17 and 1.77 ± 0.11 for illite, respectively. The AFHH and BFHH values obtained from water adsorption measurements differ from values reported previously determined by applying FHH-AT to CCN activation measurements. Differences in FHH adsorption parameters were attributed to different methods used to obtain them and the hydratable nature of the clays. FHH adsorption parameters determined from water adsorption measurements were then used to calculate the critical super-saturation (sc) for CCN activation using FHH-AT. The relationship between sc and the dry particle diameter (Ddry) gave CCN activation curve exponents (xFHH) of -0.61 and -0.64 for montmorillonite and illite, respectively. The xFHH values were slightly lower than reported previously for mineral aerosol. The lower exponent suggests that the CCN activity of hydratable clays is less sensitive to changes in Ddry and the hygroscopicity parameter exhibits a broader variability with Ddry compared to more soluble aerosols. Despite the differences in AFHH, BFHH and xFHH, the FHH-AT derived CCN activities of montmorillonite and illite are quite similar to each other and in excellent agreement with experimental CCN measurements resulting from wet-generated clay aerosol. This study illustrates that FHH-AT using adsorption parameters constrained by water adsorption is a simple, valid method for predicting CCN activation of fresh clay minerals and provides parameters that can be used in atmospheric models to study the effect of mineral dust aerosol on cloud formation and climate.
Calibration Software for Use with Jurassicprok
NASA Technical Reports Server (NTRS)
Chapin, Elaine; Hensley, Scott; Siqueira, Paul
2004-01-01
The Jurassicprok Interferometric Calibration Software (also called "Calibration Processor" or simply "CP") estimates the calibration parameters of an airborne synthetic-aperture-radar (SAR) system, the raw measurement data of which are processed by the Jurassicprok software described in the preceding article. Calibration parameters estimated by CP include time delays, baseline offsets, phase screens, and radiometric offsets. CP examines raw radar-pulse data, single-look complex image data, and digital elevation map data. For each type of data, CP compares the actual values with values expected on the basis of ground-truth data. CP then converts the differences between the actual and expected values into updates for the calibration parameters in an interferometric calibration file (ICF) and a radiometric calibration file (RCF) for the particular SAR system. The updated ICF and RCF are used as inputs to both Jurassicprok and to the companion Motion Measurement Processor software (described in the following article) for use in generating calibrated digital elevation maps.
Probing dark energy in the scope of a Bianchi type I spacetime
NASA Astrophysics Data System (ADS)
Amirhashchi, Hassan
2018-03-01
It is well known that the flat Friedmann-Robertson-Walker metric is a special case of Bianchi type I spacetime. In this paper, we use 38 Hubble parameter, H (z ), measurements at intermediate redshifts 0.07 ≤z ≤2.36 and its joint combination with the latest "joint light curves" (JLA) sample, comprising 740 type Ia supernovae in the redshift range of z ɛ [0.01 ,1.30 ] to constrain the parameters of the Bianchi type I dark energy model. We also use the same datasets to constrain flat a Λ CDM model. In both cases, we specifically address the expansion rate H0 as well as the transition redshift zt determinations out of these measurements. In both models, we found that using joint combination of datasets gives rise to lower values for model parameters. Also to compare the considered cosmologies, we have made Akaike information criterion and Bayes factor (Ψ ) tests.
NASA Astrophysics Data System (ADS)
Frigenti, G.; Arjmand, M.; Barucci, A.; Baldini, F.; Berneschi, S.; Farnesi, D.; Gianfreda, M.; Pelli, S.; Soria, S.; Aray, A.; Dumeige, Y.; Féron, P.; Nunzi Conti, G.
2018-06-01
An original method able to fully characterize high-Q resonators in an add-drop configuration has been implemented. The method is based on the study of two cavity ringdown (CRD) signals, which are produced at the transmission and drop ports by wavelength sweeping a resonance in a time interval comparable with the photon cavity lifetime. All the resonator parameters can be assessed with a single set of simultaneous measurements. We first developed a model describing the two CRD output signals and a fitting program able to deduce the key parameters from the measured profiles. We successfully validated the model with an experiment based on a fiber ring resonator of known characteristics. Finally, we characterized a high-Q, home-made, MgF2 whispering gallery mode disk resonator in the add-drop configuration, assessing its intrinsic and coupling parameters.
Middeck zero-gravity dynamics experiment - Comparison of ground and flight test data
NASA Technical Reports Server (NTRS)
Crawley, Edward F.; Barlow, Mark S.; Van Schoor, Marthinus C.; Masters, Brett; Bicos, Andrew S.
1992-01-01
An analytic and experimental study of the changes in the modal parameters of space structural test articles from one- to zero-gravity is presented. Deployable, erectable, and rotary modules was assembled to form three one- and two-dimensional structures, in which variations in bracing wire and rotary joint preload could be introduced. The structures were modeled as if hanging from a suspension system in one gravity, and unconstrained, as if free floating in zero-gravity. The analysis is compared with ground experimental measurements, made on a spring/wire suspension system with a nominal plunge frequency of one Hertz, and with measurements made on the Shuttle middeck. The degree of change in linear modal parameters as well as the change in nonlinear nature of the response is examined. Trends in modal parameters are presented as a function of force amplitude, joint preload, and ambient gravity level.
Inamdar, Shaukatali N; Ingole, Pravin P; Haram, Santosh K
2008-12-01
Band structure parameters such as the conduction band edge, the valence band edge and the quasi-particle gap of diffusing CdSe quantum dots (Q-dots) of various sizes were determined using cyclic voltammetry. These parameters are strongly dependent on the size of the Q-dots. The results obtained from voltammetric measurements are compared to spectroscopic and theoretical data. The fit obtained to the reported calculations based on the semi-empirical pseudopotential method (SEPM)-especially in the strong size-confinement region, is the best reported so far, according to our knowledge. For the smallest CdSe Q-dots, the difference between the quasi-particle gap and the optical band gap gives the electron-hole Coulombic interaction energy (J(e1,h1)). Interband states seen in the photoluminescence spectra were verified with cyclic voltammetry measurements.
NASA Astrophysics Data System (ADS)
Mainali, Laxman; Feix, Jimmy B.; Hyde, James S.; Subczynski, Witold K.
2011-10-01
There are no easily obtainable EPR spectral parameters for lipid spin labels that describe profiles of membrane fluidity. The order parameter, which is most often used as a measure of membrane fluidity, describes the amplitude of wobbling motion of alkyl chains relative to the membrane normal and does not contain explicitly time or velocity. Thus, this parameter can be considered as nondynamic. The spin-lattice relaxation rate ( T1-1) obtained from saturation-recovery EPR measurements of lipid spin labels in deoxygenated samples depends primarily on the rotational correlation time of the nitroxide moiety within the lipid bilayer. Thus, T1-1 can be used as a convenient quantitative measure of membrane fluidity that reflects local membrane dynamics. T1-1 profiles obtained for 1-palmitoyl-2-( n-doxylstearoyl)phosphatidylcholine ( n-PC) spin labels in dimyristoylphosphatidylcholine (DMPC) membranes with and without 50 mol% cholesterol are presented in parallel with profiles of the rotational diffusion coefficient, R⊥, obtained from simulation of EPR spectra using Freed's model. These profiles are compared with profiles of the order parameter obtained directly from EPR spectra and with profiles of the order parameter obtained from simulation of EPR spectra. It is shown that T1-1 and R⊥ profiles reveal changes in membrane fluidity that depend on the motional properties of the lipid alkyl chain. We find that cholesterol has a rigidifying effect only to the depth occupied by the rigid steroid ring structure and a fluidizing effect at deeper locations. These effects cannot be differentiated by profiles of the order parameter. All profiles in this study were obtained at X-band (9.5 GHz).
Investigation of ellipsometric parameters of 2D microrough surfaces by FDTD.
Qiu, J; Ran, D F; Liu, Y B; Liu, L H
2016-07-10
Ellipsometry is a powerful method for measuring the optical constants of materials and is very sensitive to surface roughness. In previous ellipsometric measurement of optical constants of solid materials with rough surfaces, researchers frequently used effective medium approximation (EMA) with roughness already known to fit the complex refractive index of the material. However, the ignored correlation length, the other important parameter of rough surfaces, will definitely result in fitting errors. Hence it is necessary to consider the influence of surface roughness and correlation length on the ellipsometric parameters Δ (phase difference) and Ψ (azimuth) characterizing practical systems. In this paper, the influence of roughness of two-dimensional randomly microrough surfaces (relative roughness σ/λ ranges from 0.001 to 0.025) of silicon on ellipsometric parameters was simulated by the finite-difference time-domain method which was validated with experimental results. The effects of incident angle, relative roughness, and correlation length were numerically investigated for two-dimensional Gaussian distributed randomly microrough surfaces, respectively. The simulated results showed that compared with the smooth surface, only tiny changes of the ellipsometric parameter Δ could be observed for microrough silicon surface in the vicinity of the Brewster angle, but obviously changes of Ψ occur especially in the vicinity of the Brewster angle. More differences between the ellipsometric parameters of the rough surface and smooth surface can been seen especially in the vicinity of the Brewster angle as the relative roughness σ/λ increases or correlation length τ decreases. The results reveal that when we measure the optical constants of solid materials by ellipsometry, the smaller roughness, larger correlation length and larger incident wavelength will lead to the higher precision of measurements.
Impact parameter sensitive study of inner-shell atomic processes in the experimental storage ring
NASA Astrophysics Data System (ADS)
Gumberidze, A.; Kozhuharov, C.; Zhang, R. T.; Trotsenko, S.; Kozhedub, Y. S.; DuBois, R. D.; Beyer, H. F.; Blumenhagen, K.-H.; Brandau, C.; Bräuning-Demian, A.; Chen, W.; Forstner, O.; Gao, B.; Gassner, T.; Grisenti, R. E.; Hagmann, S.; Hillenbrand, P.-M.; Indelicato, P.; Kumar, A.; Lestinsky, M.; Litvinov, Yu. A.; Petridis, N.; Schury, D.; Spillmann, U.; Trageser, C.; Trassinelli, M.; Tu, X.; Stöhlker, Th.
2017-10-01
In this work, we present a pilot experiment in the experimental storage ring (ESR) at GSI devoted to impact parameter sensitive studies of inner shell atomic processes for low-energy (heavy-) ion-atom collisions. The experiment was performed with bare and He-like xenon ions (Xe54+, Xe52+) colliding with neutral xenon gas atoms, resulting in a symmetric collision system. This choice of the projectile charge states was made in order to compare the effect of a filled K-shell with the empty one. The projectile and target X-rays have been measured at different observation angles for all impact parameters as well as for the impact parameter range of ∼35-70 fm.
Development and evaluation of a general aviation real world noise simulator
NASA Technical Reports Server (NTRS)
Galanter, E.; Popper, R.
1980-01-01
An acoustic playback system is described which realistically simulates the sounds experienced by the pilot of a general aviation aircraft during engine idle, take-off, climb, cruise, descent, and landing. The physical parameters of the signal as they appear in the simulator environment are compared to analogous parameters derived from signals recorded during actual flight operations. The acoustic parameters of the simulated and real signals during cruise conditions are within plus or minus two dB in third octave bands from 0.04 to 4 kHz. The overall A-weighted levels of the signals are within one dB of signals generated in the actual aircraft during equivalent maneuvers. Psychoacoustic evaluations of the simulator signal are compared with similar measurements based on transcriptions of actual aircraft signals. The subjective judgments made by human observers support the conclusion that the simulated sound closely approximates transcribed sounds of real aircraft.
Lança, L; Silva, A; Alves, E; Serranheira, F; Correia, M
2008-01-01
Typical distribution of exposure parameters in plain radiography is unknown in Portugal. This study aims to identify exposure parameters that are being used in plain radiography in the Lisbon area and to compare the collected data with European references [Commission of European Communities (CEC) guidelines]. The results show that in four examinations (skull, chest, lumbar spine and pelvis), there is a strong tendency of using exposure times above the European recommendation. The X-ray tube potential values (in kV) are below the recommended values from CEC guidelines. This study shows that at a local level (Lisbon region), radiographic practice does not comply with CEC guidelines concerning exposure techniques. Further national/local studies are recommended with the objective to improve exposure optimisation and technical procedures in plain radiography. This study also suggests the need to establish national/local diagnostic reference levels and to proceed to effective measurements for exposure optimisation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.; Aad, G.; Abbott, B.
Tmore » his paper presents the extended results of measurements of W ± W ± j j production and limits on anomalous quartic gauge couplings using 20.3 fb -1 of proton–proton collision data at $$\\sqrt{s}$$ = 8 eV recorded by the ALAS detector at the Large Hadron Collider. Events with two leptons (e or μ) with the same electric charge and at least two jets are analyzed. Production cross sections are determined in two fiducial regions, with different sensitivities to the electroweak and strong production mechanisms. Lastly, an additional fiducial region, particularly sensitive to anomalous quartic gauge coupling parameters α 4 and α 5 , is introduced, which allows more stringent limits on these parameters compared to the previous ALAS measurement.« less
Estimation of Supercapacitor Energy Storage Based on Fractional Differential Equations.
Kopka, Ryszard
2017-12-22
In this paper, new results on using only voltage measurements on supercapacitor terminals for estimation of accumulated energy are presented. For this purpose, a study based on application of fractional-order models of supercapacitor charging/discharging circuits is undertaken. Parameter estimates of the models are then used to assess the amount of the energy accumulated in supercapacitor. The obtained results are compared with energy determined experimentally by measuring voltage and current on supercapacitor terminals. All the tests are repeated for various input signal shapes and parameters. Very high consistency between estimated and experimental results fully confirm suitability of the proposed approach and thus applicability of the fractional calculus to modelling of supercapacitor energy storage.
Evaluation of Clear Sky Models for Satellite-Based Irradiance Estimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Manajit; Gotseff, Peter
2013-12-01
This report describes an intercomparison of three popular broadband clear sky solar irradiance model results with measured data, as well as satellite-based model clear sky results compared to measured clear sky data. The authors conclude that one of the popular clear sky models (the Bird clear sky model developed by Richard Bird and Roland Hulstrom) could serve as a more accurate replacement for current satellite-model clear sky estimations. Additionally, the analysis of the model results with respect to model input parameters indicates that rather than climatological, annual, or monthly mean input data, higher-time-resolution input parameters improve the general clear skymore » model performance.« less
Comparison between Pludix and impact/optical disdrometers during rainfall measurement campaigns
NASA Astrophysics Data System (ADS)
Caracciolo, Clelia; Prodi, Franco; Uijlenhoet, Remko
2006-11-01
The performances of two couples of disdrometers based on different measuring principles are compared: a classical Joss-Waldvogel disdrometer and a recently developed device, called the Pludix tested in Ferrara, Italy, and Pludix and the two-dimensional video disdrometer (2DVD) tested in Cabauw, The Netherlands. First, the measuring principles of the different instruments are presented and compared. Secondly, the performances of the two pairs of disdrometers are analysed by comparing their rain amounts with nearby tipping bucket rain gauges and the inferred drop size distributions. The most important rainfall integral parameters (e.g. rain rate and radar reflectivity) and drop size distribution parameters are also analysed and compared. The data set for Ferrara comprises 13 rainfall events, with a total of 20 mm of rainfall and a maximum rain rate of 4 mm h - 1 . The data set for Cabauw consists of 9 events, with 25-50 mm of rainfall and a maximum rain rate of 20-40 mm h - 1 . The Pludix tends to underestimate slightly the bulk rainfall variables in less intense events, whereas it tends to overestimate with respect to the other instruments in heavier events. The correspondence of the inferred drop size distributions with those measured by the other disdrometers is reasonable, particularly with the Joss-Waldvogel disdrometer. Considering that the Pludix is still in a calibration and testing phase, the reported results are encouraging. A new signal inversion algorithm, which will allow the detection of rain drops throughout the entire diameter interval between 0.3 and 7.0 mm, is under development.
Chan, Ying Tze Viola; Ng, Vivian Kwun Sin; Yung, Wai Kuen; Lo, Tsz Kin; Leung, Wing Cheong; Lau, Wai Lam
2015-08-01
To assess whether angle of progression (AOP) and head-perineum distance (HPD) measured by intrapartum transperineal ultrasound (ITU) correlate with clinical fetal head station (station); and whether AOP versus HPD varies during uterine contraction and relaxation. In a subset of primiparous women, whether these ITU parameters correlate with time to normal spontaneous delivery (TD). We evaluated prospectively 100 primiparous and multiparous women at term in active labor. Transabdominal and transperineal ultrasound (sagittal and transverse plane) were used to measure fetal head position and ITU parameters, respectively. Digitally palpated station and cervical dilatation were also noted. The results were compared using regression and correlation coefficients. Station was moderately correlated with AOP (r = 0.579) and HPD (r = -0.497). AOP was highly correlated with HPD during uterine contraction (r = -0.703) and relaxation (r = -0.647). In the subgroup of primiparous women, natural log of TD has the highest correlation with HPD and AOP during uterine contraction (r = 0.742), making prediction of TD similar to that of using cervical dilatation. ITU parameters were moderately correlated with station. There was constant high correlation between AOP and HPD. Prediction of TD in primiparous women using ITU parameters was similar to that of using cervical dilatation.
Metrology of deep trench etched memory structures using 3D scatterometry
NASA Astrophysics Data System (ADS)
Reinig, Peter; Dost, Rene; Moert, Manfred; Hingst, Thomas; Mantz, Ulrich; Moffitt, Jasen; Shakya, Sushil; Raymond, Christopher J.; Littau, Mike
2005-05-01
Scatterometry is receiving considerable attention as an emerging optical metrology in the silicon industry. One area of progress in deploying these powerful measurements in process control is performing measurements on real device structures, as opposed to limiting scatterometry measurements to periodic structures, such as line-space gratings, placed in the wafer scribe. In this work we will discuss applications of 3D scatterometry to the measurement of advanced trench memory devices. This is a challenging and complex scatterometry application that requires exceptionally high-performance computational abilities. In order to represent the physical device, the relatively tall structures require a high number of slices in the rigorous coupled wave analysis (RCWA) theoretical model. This is complicated further by the presence of an amorphous silicon hard mask on the surface, which is highly sensitive to reflectance scattering and therefore needs to be modeled in detail. The overall structure is comprised of several layers, with the trenches presenting a complex bow-shape sidewall that must be measured. Finally, the double periodicity in the structures demands significantly greater computational capabilities. Our results demonstrate that angular scatterometry is sensitive to the key parameters of interest. The influence of further model parameters and parameter cross correlations have to be carefully taken into account. Profile results obtained by non-library optimization methods compare favorably with cross-section SEM images. Generating a model library suitable for process control, which is preferred for precision, presents numerical throughput challenges. Details will be discussed regarding library generation approaches and strategies for reducing the numerical overhead. Scatterometry and SEM results will be compared, leading to conclusions about the feasibility of this advanced application.
Random left censoring: a second look at bone lead concentration measurements
NASA Astrophysics Data System (ADS)
Popovic, M.; Nie, H.; Chettle, D. R.; McNeill, F. E.
2007-09-01
Bone lead concentrations measured in vivo by x-ray fluorescence (XRF) are subjected to left censoring due to limited precision of the technique at very low concentrations. In the analysis of bone lead measurements, inverse variance weighting (IVW) of measurements is commonly used to estimate the mean of a data set and its standard error. Student's t-test is used to compare the IVW means of two sets, testing the hypothesis that the two sets are from the same population. This analysis was undertaken to assess the adequacy of IVW in the analysis of bone lead measurements or to confirm the results of IVW using an independent approach. The rationale is provided for the use of methods of survival data analysis in the study of XRF bone lead measurements. The procedure is provided for bone lead data analysis using the Kaplan-Meier and Nelson-Aalen estimators. The methodology is also outlined for the rank tests that are used to determine whether two censored sets are from the same population. The methods are applied on six data sets acquired in epidemiological studies. The estimated parameters and test statistics were compared with the results of the IVW approach. It is concluded that the proposed methods of statistical analysis can provide valid inference about bone lead concentrations, but the computed parameters do not differ substantially from those derived by the more widely used method of IVW.
Westine, Carl D; Spybrook, Jessaca; Taylor, Joseph A
2013-12-01
Prior research has focused primarily on empirically estimating design parameters for cluster-randomized trials (CRTs) of mathematics and reading achievement. Little is known about how design parameters compare across other educational outcomes. This article presents empirical estimates of design parameters that can be used to appropriately power CRTs in science education and compares them to estimates using mathematics and reading. Estimates of intraclass correlations (ICCs) are computed for unconditional two-level (students in schools) and three-level (students in schools in districts) hierarchical linear models of science achievement. Relevant student- and school-level pretest and demographic covariates are then considered, and estimates of variance explained are computed. Subjects: Five consecutive years of Texas student-level data for Grades 5, 8, 10, and 11. Science, mathematics, and reading achievement raw scores as measured by the Texas Assessment of Knowledge and Skills. Results: Findings show that ICCs in science range from .172 to .196 across grades and are generally higher than comparable statistics in mathematics, .163-.172, and reading, .099-.156. When available, a 1-year lagged student-level science pretest explains the most variability in the outcome. The 1-year lagged school-level science pretest is the best alternative in the absence of a 1-year lagged student-level science pretest. Science educational researchers should utilize design parameters derived from science achievement outcomes. © The Author(s) 2014.
NASA Technical Reports Server (NTRS)
Briggs, Maxwell; Schifer, Nicholas
2011-01-01
Test hardware used to validate net heat prediction models. Problem: Net Heat Input cannot be measured directly during operation. Net heat input is a key parameter needed in prediction of efficiency for convertor performance. Efficiency = Electrical Power Output (Measured) divided by Net Heat Input (Calculated). Efficiency is used to compare convertor designs and trade technology advantages for mission planning.
A Limited Rotary-Wing Flight Investigation of Hyperstereo in Helmet-Mounted Display Designs
2009-07-01
when compared to current and near-term I2 systems with a direct optical linkage. In summary, the current binocular I2 HMD design of ANVIS, which...terms of visual and optical performance. This assessment was performed by measuring a number of system parameters and by comparing the obtained...to subject #2 who had 800 NVG flight hours. Interestingly, across all maneuvers for which the hyperstereo HMD was asked to be compared to ANVIS
Yanai, Toshimasa; Matsuo, Akifumi; Maeda, Akira; Nakamoto, Hiroki; Mizutani, Mirai; Kanehisa, Hiroaki; Fukunaga, Tetsuo
2017-08-01
We developed a force measurement system in a soil-filled mound for measuring ground reaction forces (GRFs) acting on baseball pitchers and examined the reliability and validity of kinetic and kinematic parameters determined from the GRFs. Three soil-filled trays of dimensions that satisfied the official baseball rules were fixed onto 3 force platforms. Eight collegiate pitchers wearing baseball shoes with metal cleats were asked to throw 5 fastballs with maximum effort from the mound toward a catcher. The reliability of each parameter was determined for each subject as the coefficient of variation across the 5 pitches. The validity of the measurements was tested by comparing the outcomes either with the true values or the corresponding values computed from a motion capture system. The coefficients of variation in the repeated measurements of the peak forces ranged from 0.00 to 0.17, and were smaller for the pivot foot than the stride foot. The mean absolute errors in the impulses determined over the entire duration of pitching motion were 5.3 N˙s, 1.9 N˙s, and 8.2 N˙s for the X-, Y-, and Z-directions, respectively. These results suggest that the present method is reliable and valid for determining selected kinetic and kinematic parameters for analyzing pitching performance.
Caiazzo, A; Caforio, Federica; Montecinos, Gino; Muller, Lucas O; Blanco, Pablo J; Toro, Eluterio F
2016-10-25
This work presents a detailed investigation of a parameter estimation approach on the basis of the reduced-order unscented Kalman filter (ROUKF) in the context of 1-dimensional blood flow models. In particular, the main aims of this study are (1) to investigate the effects of using real measurements versus synthetic data for the estimation procedure (i.e., numerical results of the same in silico model, perturbed with noise) and (2) to identify potential difficulties and limitations of the approach in clinically realistic applications to assess the applicability of the filter to such setups. For these purposes, the present numerical study is based on a recently published in vitro model of the arterial network, for which experimental flow and pressure measurements are available at few selected locations. To mimic clinically relevant situations, we focus on the estimation of terminal resistances and arterial wall parameters related to vessel mechanics (Young's modulus and wall thickness) using few experimental observations (at most a single pressure or flow measurement per vessel). In all cases, we first perform a theoretical identifiability analysis on the basis of the generalized sensitivity function, comparing then the results owith the ROUKF, using either synthetic or experimental data, to results obtained using reference parameters and to available measurements. Copyright © 2016 John Wiley & Sons, Ltd.
DBH Prediction Using Allometry Described by Bivariate Copula Distribution
NASA Astrophysics Data System (ADS)
Xu, Q.; Hou, Z.; Li, B.; Greenberg, J. A.
2017-12-01
Forest biomass mapping based on single tree detection from the airborne laser scanning (ALS) usually depends on an allometric equation that relates diameter at breast height (DBH) with per-tree aboveground biomass. The incapability of the ALS technology in directly measuring DBH leads to the need to predict DBH with other ALS-measured tree-level structural parameters. A copula-based method is proposed in the study to predict DBH with the ALS-measured tree height and crown diameter using a dataset measured in the Lassen National Forest in California. Instead of exploring an explicit mathematical equation that explains the underlying relationship between DBH and other structural parameters, the copula-based prediction method utilizes the dependency between cumulative distributions of these variables, and solves the DBH based on an assumption that for a single tree, the cumulative probability of each structural parameter is identical. Results show that compared with the bench-marking least-square linear regression and the k-MSN imputation, the copula-based method obtains better accuracy in the DBH for the Lassen National Forest. To assess the generalization of the proposed method, prediction uncertainty is quantified using bootstrapping techniques that examine the variability of the RMSE of the predicted DBH. We find that the copula distribution is reliable in describing the allometric relationship between tree-level structural parameters, and it contributes to the reduction of prediction uncertainty.
A comparative study of clock rate and drift estimation
NASA Technical Reports Server (NTRS)
Breakiron, Lee A.
1994-01-01
Five different methods of drift determination and four different methods of rate determination were compared using months of hourly phase and frequency data from a sample of cesium clocks and active hydrogen masers. Linear least squares on frequency is selected as the optimal method of determining both drift and rate, more on the basis of parameter parsimony and confidence measures than on random and systematic errors.
GROUND WATER QUALITY SURROUNDING LAKE TEXOMA DURING DROUGHT CONDITIONS
Water quality data from 55 producing monitoring wells during drought conditions surrounding Lake Texoma, located on the border of Oklahoma and Texas, was compared to assess the influence of drought on groundwater quality. The main water quality parameter measured was nitrate, an...
An approach to measure parameter sensitivity in watershed hydrological modelling
Hydrologic responses vary spatially and temporally according to watershed characteristics. In this study, the hydrologic models that we developed earlier for the Little Miami River (LMR) and Las Vegas Wash (LVW) watersheds were used for detail sensitivity analyses. To compare the...
INTEGRATING EPIDEMIOLOGY AND TOXICOLOGY IN NEUROTOXICITY RISK ASSESSMENT.
This manuscript provides an overview of the use of data from toxicology and epidemiology studies for neurotoxicity risk assessment. Parameters such as the use of subjects, study designs, exposures, and measured outcomes are compared and contrasted. The main concern for use of d...
Forecast of solar wind parameters according to STOP magnetograph observations
NASA Astrophysics Data System (ADS)
Tlatov, A. G.; Pashchenko, M. P.; Ponyavin, D. I.; Svidskii, P. M.; Peshcherov, V. S.; Demidov, M. L.
2016-12-01
The paper discusses the results of the forecast of solar wind parameters at a distance of 1 AU made according to observations made by the STOP telescope magnetograph during 2014-2015. The Wang-Sheeley-Arge (WSA) empirical model is used to reconstruct the magnetic field topology in the solar corona and estimate the solar wind speed in the interplanetary medium. The proposed model is adapted to STOP magnetograph observations. The results of the calculation of solar wind parameters are compared with ACE satellite measurements. It is shown that the use of STOP observations provides a significant correlation of predicted solar wind speed values with the observed ones.
Sinharay, Arijit; Rakshit, Raj; Chakravarty, Tapas; Ghosh, Deb; Pal, Arpan
2017-01-01
Pulmonary ailments are conventionally diagnosed by spirometry. The complex forceful breathing maneuver as well as the extreme cost of spirometry renders it unsuitable in many situations. This work is aimed to facilitate an emerging direction of tidal breathing-based pulmonary evaluation by designing a novel, equitable, precise and portable device for acquisition and analysis of directional tidal breathing patterns, in real time. The proposed system primarily uses an in-house designed blow pipe, 40-kHz air-coupled ultrasound transreceivers, and a radio frequency (RF) phase-gain integrated circuit (IC). Moreover, in order to achieve high sensitivity in a cost-effective design philosophy, we have exploited the phase measurement technique, instead of selecting the contemporary time-of-flight (TOF) measurement; since application of the TOF principle in tidal breathing assessments requires sub-micro to nanosecond time resolution. This approach, which depends on accurate phase measurement, contributed to enhanced sensitivity using a simple electronics design. The developed system has been calibrated using a standard 3-L calibration syringe. The parameters of this system are validated against a standard spirometer, with maximum percentage error below 16%. Further, the extracted respiratory parameters related to tidal breathing have been found to be comparable with relevant prior works. The error in detecting respiration rate only is 3.9% compared to manual evaluation. These encouraging insights reveal the definite potential of our tidal breathing pattern (TBP) prototype for measuring tidal breathing parameters in order to extend the reach of affordable healthcare in rural regions and developing areas. PMID:28800103
Mincewicz, Grzegorz; Rumiński, Jacek; Krzykowski, Grzegorz
2012-02-01
Recently, we described a model system which included corrections of high-resolution computed tomography (HRCT) bronchial measurements based on the adjusted subpixel method (ASM). To verify the clinical application of ASM by comparing bronchial measurements obtained by means of the traditional eye-driven method, subpixel method alone and ASM in a group comprised of bronchial asthma patients and healthy individuals. The study included 30 bronchial asthma patients and the control group comprised of 20 volunteers with no symptoms of asthma. The lowest internal and external diameters of the bronchial cross-sections (ID and ED) and their derivative parameters were determined in HRCT scans using: (1) traditional eye-driven method, (2) subpixel technique, and (3) ASM. In the case of the eye-driven method, lower ID values along with lower bronchial lumen area and its percentage ratio to total bronchial area were basic parameters that differed between asthma patients and healthy controls. In the case of the subpixel method and ASM, both groups were not significantly different in terms of ID. Significant differences were observed in values of ED and total bronchial area with both parameters being significantly higher in asthma patients. Compared to ASM, the eye-driven method overstated the values of ID and ED by about 30% and 10% respectively, while understating bronchial wall thickness by about 18%. Results obtained in this study suggest that the traditional eye-driven method of HRCT-based measurement of bronchial tree components probably overstates the degree of bronchial patency in asthma patients. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Leander, Jacob; Almquist, Joachim; Ahlström, Christine; Gabrielsson, Johan; Jirstrand, Mats
2015-05-01
Inclusion of stochastic differential equations in mixed effects models provides means to quantify and distinguish three sources of variability in data. In addition to the two commonly encountered sources, measurement error and interindividual variability, we also consider uncertainty in the dynamical model itself. To this end, we extend the ordinary differential equation setting used in nonlinear mixed effects models to include stochastic differential equations. The approximate population likelihood is derived using the first-order conditional estimation with interaction method and extended Kalman filtering. To illustrate the application of the stochastic differential mixed effects model, two pharmacokinetic models are considered. First, we use a stochastic one-compartmental model with first-order input and nonlinear elimination to generate synthetic data in a simulated study. We show that by using the proposed method, the three sources of variability can be successfully separated. If the stochastic part is neglected, the parameter estimates become biased, and the measurement error variance is significantly overestimated. Second, we consider an extension to a stochastic pharmacokinetic model in a preclinical study of nicotinic acid kinetics in obese Zucker rats. The parameter estimates are compared between a deterministic and a stochastic NiAc disposition model, respectively. Discrepancies between model predictions and observations, previously described as measurement noise only, are now separated into a comparatively lower level of measurement noise and a significant uncertainty in model dynamics. These examples demonstrate that stochastic differential mixed effects models are useful tools for identifying incomplete or inaccurate model dynamics and for reducing potential bias in parameter estimates due to such model deficiencies.
Diffused junction p(+)-n solar cells in bulk GaAs. II - Device characterization and modelling
NASA Technical Reports Server (NTRS)
Keeney, R.; Sundaram, L. M. G.; Rode, H.; Bhat, I.; Ghandhi, S. K.; Borrego, J. M.
1984-01-01
The photovoltaic characteristics of p(+)-n junction solar cells fabricated on bulk GaAs by an open tube diffusion technique are presented in detail. Quantum efficiency measurements were analyzed and compared to computer simulations of the cell structure in order to determine material parameters such as diffusion length, surface recombination velocity and junction depth. From the results obtained it is projected that proper optimization of the cell parameters can increase the efficiency of the cells to close to 20 percent.
Quantification of Changes in Mulberry Silk Fabrics due to Different Laundering: Using WAXS Technique
NASA Astrophysics Data System (ADS)
Parameswara, P.; Nivedita, S.; Somashekar, R.
2011-07-01
Loom finished mulberry silk fabrics (Taffeta) were machine laundered and hand laundered several times. X-ray diffractograms of pure and laundered fabrics were used to calculate microstructural parameters like average crystallite size (D) and lattice strain (Vegr) employing Williamson-Hall plot. Microstructural parameters were compared with measured mechanical properties like breaking load, tenacity, and elongation of warp yarns unraveled from fabrics. Surface morphology and texture of silk fabrics changed upon washing is evident from SEM images.
Investigation of physical parameters in stellar flares observed by GINGA
NASA Technical Reports Server (NTRS)
Stern, Robert A.
1994-01-01
This program involves analysis and interpretation of results from GINGA Large Area Counter (LAC) observations from a group of large stellar x-ray flares. All LAC data are re-extracted using the standard Hayashida method of LAC background subtraction and analyzed using various models available with the XSPEC spectral fitting program. Temperature-emission measure histories are available for a total of 5 flares observed by GINGA. These will be used to compare physical parameters of these flares with solar and stellar flare models.
Investigation of physical parameters in stellar flares observed by GINGA
NASA Technical Reports Server (NTRS)
Stern, Robert A.
1994-01-01
This program involves analysis and interpretation of results from GINGA Large Area Counter (LAC) observations from a group of large stellar X-ray flares. All LAC data are re-extracted using the standard Hayashida method of LAC background subtraction and analyzed using various models available with the XSPEC spectral fitting program.Temperature-emission measure histories are available for a total of 5 flares observed by GINGA. These will be used to compare physical parameters of these flares with solar and stellar flare models.
Duñabeitia, Iratxe; Arrieta, Haritz; Torres-Unda, Jon; Gil, Javier; Santos-Concejero, Jordan; Gil, Susana M; Irazusta, Jon; Bidaurrazaga-Letona, Iraia
2018-05-26
This study compared the effects of a capacitive-resistive electric transfer therapy (Tecar) and passive rest on physiological and biomechanical parameters in recreational runners when performed shortly after an exhausting training session. Randomized controlled crossover trial. University biomechanical research laboratory. Fourteen trained male runners MAIN OUTCOME MEASURES: Physiological (running economy, oxygen uptake, respiratory exchange ratio, ventilation, heart rate, blood lactate concentration) and biomechanical (step length; stride angle, height, frequency, and contact time; swing time; contact phase; support phase; push-off phase) parameters were measured during two incremental treadmill running tests performed two days apart after an exhaustive training session. When running at 14 km/h and 16 km/h, the Tecar treatment group presented greater increases in stride length (p < 0.001), angle (p < 0.05) and height (p < 0.001) between the first and second tests than the control group and, accordingly, greater decreases in stride frequency (p < 0.05). Physiological parameters were similar between groups. The present study suggests that a Tecar therapy intervention enhances biomechanical parameters in recreational runners after an exhaustive training session more than passive rest, generating a more efficient running pattern without affecting selected physiological parameters. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bayes-Turchin analysis of x-ray absorption data above the Fe L{sub 2,3}-edges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossner, H. H.; Schmitz, D.; Imperia, P.
2006-10-01
Extended x-ray absorption fine structure (EXAFS) data and magnetic EXAFS (MEXAFS) data were measured at two temperatures (180 and 296 K) in the energy region of the overlapping L-edges of bcc Fe grown on a V(110) crystal surface. In combination with a Bayes-Turchin data analysis procedure these measurements enable the exploration of local crystallographic and magnetic structures. The analysis determined the atomic-like background together with the EXAFS parameters which consisted of ten shell radii, the Debye-Waller parameters, separated into structural and vibrational components, and the third cumulant of the first scattering path. The vibrational components for 97 different scattering pathsmore » were determined by a two parameter force-field model using a priori values adjusted to Born-von Karman parameters of inelastic neutron scattering data. The investigations of the system Fe/V(110) demonstrate that the simultaneous fitting of atomic background parameters and EXAFS parameters can be performed reliably. Using the L{sub 2}- and L{sub 3}-components extracted from the EXAFS analysis and the rigid-band model, the MEXAFS oscillations can only be described when the sign of the exchange energy is changed compared to the predictions of the Hedin Lundquist exchange and correlation functional.« less
NASA Technical Reports Server (NTRS)
Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Redemann, J.; Quinn, P. K.; Carrico, C. M.; Rood, M. J.
2000-01-01
Bergstrom and Russell estimated direct solar radiative flux changes caused by atmospheric aerosols over the mid-latitude North Atlantic Ocean under cloud-free and cloudy conditions. They excluded African dust aerosols, primarily by restricting calculations to latitudes 25-60 N. As inputs they used midvisible aerosol optical depth (AOD) maps derived from AVHRR satellite measurements and aerosol intensive properties determined primarily in the 1996 IGAC Troposheric Aerosol Radiative Forcing Observational Experiment (TARFOX). Those aerosol intensive properties, which included optical depth wavelength dependence and spectra of single scattering albedo (SSA) and scattering asymmetry parameter, were also checked against initial properties from the 1997 North Atlantic Aerosol Characterization Experiment (ACE 2). Bergstrom and Russell investigated the sensitivity of their derived flux changes to assumed input parameters, including midvisible AOD, SSA, and scattering asymmetry parameter. Although the sensitivity of net flux change at the tropopause to SSA was moderate over the ocean (e.g., a SSA uncertainty of 0.07 produced a flux-change uncertainty of 21%), the sensitivity over common land surfaces can be much larger. Also, flux changes within and below the aerosol layer, which affect atmospheric stability, heating rates, and cloud formation and persistence, are quite sensitive to aerosol SSA. Therefore, this paper focuses on the question: "What have we learned from TARFOX and ACE 2 regarding aerosol single scattering albedo?" Three techniques were used in TARFOX to determine midvisible SSA. One of these derived SSA as a best-fit parameter in comparing radiative flux changes measured by airborne pyranometer to those computed from aerosol properties. Another technique combined airborne measurements of aerosol scattering and absorption by nephelometer and absorption photometer. A third technique obtained SSA from best-fit complex refractive indices derived by comparing vertical profiles of lidar backscatter, sunphotometer extinction, and relative size distribution. In ACE 2 midvisible SSA was determined both as a best-fit parameter in comparing measured and calculated flux changes at the surface and by combining nephelometer and absorption photometer measurements. The nephelometer/absorption-photometer results were obtained on the ACE 2 ship (10 m asl), at the Sagres, Portugal site at 50 m asl, and also on the Pelican aircraft. This paper presents and compares the TARFOX and ACE 2 SSA results from the above techniques for different situations (e.g., marine vs continental flows, "clean" vs polluted conditions). It also discusses the strengths and limitations of the techniques, including whether they describe the aerosol in its ambient state or as perturbed by sampling processes; whether they describe the aerosol at the surface, as a function of altitude, or integrated over a column; the ease of acquiring representative data sets; results obtained in tests of consistency with radiative flux changes, and the likelihood of various artifacts and errors.
Monitoring gait in multiple sclerosis with novel wearable motion sensors.
Moon, Yaejin; McGinnis, Ryan S; Seagers, Kirsten; Motl, Robert W; Sheth, Nirav; Wright, John A; Ghaffari, Roozbeh; Sosnoff, Jacob J
2017-01-01
Mobility impairment is common in people with multiple sclerosis (PwMS) and there is a need to assess mobility in remote settings. Here, we apply a novel wireless, skin-mounted, and conformal inertial sensor (BioStampRC, MC10 Inc.) to examine gait characteristics of PwMS under controlled conditions. We determine the accuracy and precision of BioStampRC in measuring gait kinematics by comparing to contemporary research-grade measurement devices. A total of 45 PwMS, who presented with diverse walking impairment (Mild MS = 15, Moderate MS = 15, Severe MS = 15), and 15 healthy control subjects participated in the study. Participants completed a series of clinical walking tests. During the tests participants were instrumented with BioStampRC and MTx (Xsens, Inc.) sensors on their shanks, as well as an activity monitor GT3X (Actigraph, Inc.) on their non-dominant hip. Shank angular velocity was simultaneously measured with the inertial sensors. Step number and temporal gait parameters were calculated from the data recorded by each sensor. Visual inspection and the MTx served as the reference standards for computing the step number and temporal parameters, respectively. Accuracy (error) and precision (variance of error) was assessed based on absolute and relative metrics. Temporal parameters were compared across groups using ANOVA. Mean accuracy±precision for the BioStampRC was 2±2 steps error for step number, 6±9ms error for stride time and 6±7ms error for step time (0.6-2.6% relative error). Swing time had the least accuracy±precision (25±19ms error, 5±4% relative error) among the parameters. GT3X had the least accuracy±precision (8±14% relative error) in step number estimate among the devices. Both MTx and BioStampRC detected significantly distinct gait characteristics between PwMS with different disability levels (p<0.01). BioStampRC sensors accurately and precisely measure gait parameters in PwMS across diverse walking impairment levels and detected differences in gait characteristics by disability level in PwMS. This technology has the potential to provide granular monitoring of gait both inside and outside the clinic.
Determination of Complex Microcalorimeter Parameters with Impedance Measurements
NASA Technical Reports Server (NTRS)
Saab, T.; Bandler, S. R.; Chervenak, J.; Figueroa-Feliciano, E.; Finkbeiner, F.; Iyomoto, N.; Kelley, R.; Kilbourne, C. A.; Lindeman, M. A.; Porter, F. S.;
2005-01-01
The proper understanding and modeling of a microcalorimeter s response requires the accurate knowledge of a handful of parameters, such as C, G, alpha, . . . . While a few of these, such 8s the normal state resistance and the total thermal conductance to the heat bath (G) are directly determined from the DC IV characteristics, some others, notoriously the heat capacity (C) and alpha, appear in degenerate combinations in most measurable quantities. The case of a complex microcalorimeter, i.e. one in which the absorber s heat capacity is connected by a finite thermal impedance to the sensor, and subsequently by another thermal impedance to the heat bath, results in an added ambiguity in the determination of the individual C's and G's. In general, the dependence of the microcalorimeter s complex impedance on these parameters varies with frequency. This variation allows us to determine the individual parameters by fitting the prediction of the microcalorimeter model to the impedance data. We describe in this paper our efforts at characterizing the Goddard X-ray microcalorimeters. Using the parameters determined with this method we them compare the pulse shape and noise spectra predicted by the microcalorimeter model to data taken with the same devices.