Quantum Effects on the Capacitance of Graphene-Based Electrodes
Zhan, Cheng; Neal, Justin; Wu, Jianzhong; ...
2015-09-08
We recently measured quantum capacitance for electric double layers (EDL) at electrolyte/graphene interfaces. However, the importance of quantum capacitance in realistic carbon electrodes is not clear. Toward understanding that from a theoretical perspective, here we studied the quantum capacitance and total capacitance of graphene electrodes as a function of the number of graphene layers. The quantum capacitance was obtained from electronic density functional theory based on fixed band approximation with an implicit solvation model, while the EDL capacitances were from classical density functional theory. We found that quantum capacitance plays a dominant role in total capacitance of the single-layer graphenemore » both in aqueous and ionic-liquid electrolytes but the contribution decreases as the number of graphene layers increases. Moreover, the total integral capacitance roughly levels off and is dominated by the EDL capacitance beyond about four graphene layers. Finally, because many porous carbons have nanopores with stacked graphene layers at the surface, this research provides a good estimate of the effect of quantum capacitance on their electrochemical performance.« less
Enhancing Graphene Capacitance by Nitrogen: Effects of Doping Configuration and Concentration
Zhan, Cheng; Cummings, Peter; Jiang, De-en
2016-01-08
Recent experiments have shown that nitrogen doping enhances capacitance in carbon electrode supercapacitors. However, a detailed study of the effect of N-doping on capacitance is still lacking. In this paper, we study the doping concentration and the configuration effect on the electric double-layer (EDL) capacitance, quantum capacitance, and total capacitance. It is found that pyridinic and graphitic nitrogens can increase the total capacitance by increasing quantum capacitance, but pyrrolic configuration limits the total capacitance due to its much lower quantum capacitance than the other two configurations. We also find that, unlike the graphitic and pyridinic nitrogens, the pyrrolic configuration's quantummore » capacitance does not depend on the nitrogen concentration, which may explain why some capacitance versus voltage measurements of N-doped graphene exhibit a V-shaped curve similar to that of undoped graphene. Our investigation provides a deeper understanding of the capacitance enhancement of the N-doping effect in carbon electrodes and suggests a potentially effective way to optimize the capacitance by controlling the type of N-doping.« less
Admittance measurements in the quantum Hall effect regime
NASA Astrophysics Data System (ADS)
Hernández, C.; Consejo, C.; Chaubet, C.
2014-11-01
In this work we present an admittance study of a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime. We have studied several Hall bars in different contacts configurations in the frequency range 100 Hz-1 MHz. Our interpretation is based on the Landauer-Büttiker theory and takes into account both the capacitance and the topology of the coaxial cables which are connected to the sample holder. We show that we always observe losses through the capacitive impedance of the coaxial cables, except in the two contacts configuration in which the cable capacitance does not influence the admittance measurement of the sample. In this case, we measure the electrochemical capacitance of the 2DEG and show its dependence with the filling factor ν.
Song, Ce; Wang, Jinyan; Meng, Zhaoliang; Hu, Fangyuan; Jian, Xigao
2018-03-31
Graphene oxide has become an attractive electrode-material candidate for supercapacitors thanks to its higher specific capacitance compared to graphene. The quantum capacitance makes relative contributions to the specific capacitance, which is considered as the major limitation of graphene electrodes, while the quantum capacitance of graphene oxide is rarely concerned. This study explores the quantum capacitance of graphene oxide, which bears epoxy and hydroxyl groups on its basal plane, by employing density functional theory (DFT) calculations. The results demonstrate that the total density of states near the Fermi level is significantly enhanced by introducing oxygen-containing groups, which is beneficial for the improvement of the quantum capacitance. Moreover, the quantum capacitances of the graphene oxide with different concentrations of these two oxygen-containing groups are compared, revealing that more epoxy and hydroxyl groups result in a higher quantum capacitance. Notably, the hydroxyl concentration has a considerable effect on the capacitive behavior. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Single photon detection of 1.5 THz radiation with the quantum capacitance detector
NASA Astrophysics Data System (ADS)
Echternach, P. M.; Pepper, B. J.; Reck, T.; Bradford, C. M.
2018-01-01
Far-infrared spectroscopy can reveal secrets of galaxy evolution and heavy-element enrichment throughout cosmic time, prompting astronomers worldwide to design cryogenic space telescopes for far-infrared spectroscopy. The most challenging aspect is a far-infrared detector that is both exquisitely sensitive (limited by the zodiacal-light noise in a narrow wavelength band, λ/Δλ 1,000) and array-able to tens of thousands of pixels. We present the quantum capacitance detector, a superconducting device adapted from quantum computing applications in which photon-produced free electrons in a superconductor tunnel into a small capacitive island embedded in a resonant circuit. The quantum capacitance detector has an optically measured noise equivalent power below 10-20 W Hz-1/2 at 1.5 THz, making it the most sensitive far-infrared detector ever demonstrated. We further demonstrate individual far-infrared photon counting, confirming the excellent sensitivity and suitability for cryogenic space astrophysics.
Admittance of multiterminal quantum Hall conductors at kilohertz frequencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernández, C.; Consejo, C.; Chaubet, C., E-mail: christophe.chaubet@univ-montp2.fr
2014-03-28
We present an experimental study of the low frequency admittance of quantum Hall conductors in the [100 Hz, 1 MHz] frequency range. We show that the frequency dependence of the admittance of the sample strongly depends on the topology of the contacts connections. Our experimental results are well explained within the Christen and Büttiker approach for finite frequency transport in quantum Hall edge channels taking into account the influence of the coaxial cables capacitance. In the Hall bar geometry, we demonstrate that there exists a configuration in which the cable capacitance does not influence the admittance measurement of the sample. In thismore » case, we measure the electrochemical capacitance of the sample and observe its dependence on the filling factor.« less
Anomalous high capacitance in a coaxial single nanowire capacitor.
Liu, Zheng; Zhan, Yongjie; Shi, Gang; Moldovan, Simona; Gharbi, Mohamed; Song, Li; Ma, Lulu; Gao, Wei; Huang, Jiaqi; Vajtai, Robert; Banhart, Florian; Sharma, Pradeep; Lou, Jun; Ajayan, Pulickel M
2012-06-06
Building entire multiple-component devices on single nanowires is a promising strategy for miniaturizing electronic applications. Here we demonstrate a single nanowire capacitor with a coaxial asymmetric Cu-Cu(2)O-C structure, fabricated using a two-step chemical reaction and vapour deposition method. The capacitance measured from a single nanowire device corresponds to ~140 μF cm(-2), exceeding previous reported values for metal-insulator-metal micro-capacitors and is more than one order of magnitude higher than what is predicted by classical electrostatics. Quantum mechanical calculations indicate that this unusually high capacitance may be attributed to a negative quantum capacitance of the dielectric-metal interface, enhanced significantly at the nanoscale.
Capacitive Sensing of Glucose in Electrolytes Using Graphene Quantum Capacitance Varactors.
Zhang, Yao; Ma, Rui; Zhen, Xue V; Kudva, Yogish C; Bühlmann, Philippe; Koester, Steven J
2017-11-08
A novel graphene-based variable capacitor (varactor) that senses glucose based on the quantum capacitance effect was successfully developed. The sensor utilizes a metal-oxide-graphene varactor device structure that is inherently compatible with passive wireless sensing, a key advantage for in vivo glucose sensing. The graphene varactors were functionalized with pyrene-1-boronic acid (PBA) by self-assembly driven by π-π interactions. Successful surface functionalization was confirmed by both Raman spectroscopy and capacitance-voltage characterization of the devices. Through glucose binding to the PBA, the glucose concentration in the buffer solutions modulates the level of electrostatic doping of the graphene surface to different degrees, which leads to capacitance changes and Dirac voltage shifts. These responses to the glucose concentration were shown to be reproducible and reversible over multiple measurement cycles, suggesting promise for eventual use in wireless glucose monitoring.
Impedance analysis of PbS colloidal quantum dot solar cells with different ZnO nanowire lengths
NASA Astrophysics Data System (ADS)
Fukuda, Takeshi; Takahashi, Akihiro; Wang, Haibin; Takahira, Kazuya; Kubo, Takaya; Segawa, Hiroshi
2018-03-01
The photoconversion efficiency of colloidal quantum dot (QD) solar cells has been markedly improved by optimizing the surface passivation and device structure, and details of device physics are now under investigation. In this study, we investigated the resistance and capacitance components at the ZnO/PbS-QD interface and inside a PbS-QD layer by measuring the impedance spectrum while the interface area was controlled by changing the ZnO nanowire length. By evaluating the dependence of optical intensity and DC bias voltage on the ZnO nanowire length, only the capacitance was observed to be influenced by the interface area, and this indicates that photoinduced carriers are generated at the surface of PbS-QD. In addition, since the capacitance is proportional to the surface area of the QD, the interface area can be evaluated from the capacitance. Finally, photovoltaic performance was observed to increase with increasing ZnO nanowire length owing to the large interface area, and this result is in good agreement with the capacitance measurement.
Negative quantum capacitance induced by midgap states in single-layer graphene.
Wang, Lin; Wang, Yang; Chen, Xiaolong; Zhu, Wei; Zhu, Chao; Wu, Zefei; Han, Yu; Zhang, Mingwei; Li, Wei; He, Yuheng; Xiong, Wei; Law, Kam Tuen; Su, Dangsheng; Wang, Ning
2013-01-01
We demonstrate that single-layer graphene (SLG) decorated with a high density of Ag adatoms displays the unconventional phenomenon of negative quantum capacitance. The Ag adatoms act as resonant impurities and form nearly dispersionless resonant impurity bands near the charge neutrality point (CNP). Resonant impurities quench the kinetic energy and drive the electrons to the Coulomb energy dominated regime with negative compressibility. In the absence of a magnetic field, negative quantum capacitance is observed near the CNP. In the quantum Hall regime, negative quantum capacitance behavior at several Landau level positions is displayed, which is associated with the quenching of kinetic energy by the formation of Landau levels. The negative quantum capacitance effect near the CNP is further enhanced in the presence of Landau levels due to the magnetic-field-enhanced Coulomb interactions.
Negative Quantum Capacitance Induced by Midgap States in Single-layer Graphene
Wang, Lin; Wang, Yang; Chen, Xiaolong; Zhu, Wei; Zhu, Chao; Wu, Zefei; Han, Yu; Zhang, Mingwei; Li, Wei; He, Yuheng; Xiong, Wei; Law, Kam Tuen; Su, Dangsheng; Wang, Ning
2013-01-01
We demonstrate that single-layer graphene (SLG) decorated with a high density of Ag adatoms displays the unconventional phenomenon of negative quantum capacitance. The Ag adatoms act as resonant impurities and form nearly dispersionless resonant impurity bands near the charge neutrality point (CNP). Resonant impurities quench the kinetic energy and drive the electrons to the Coulomb energy dominated regime with negative compressibility. In the absence of a magnetic field, negative quantum capacitance is observed near the CNP. In the quantum Hall regime, negative quantum capacitance behavior at several Landau level positions is displayed, which is associated with the quenching of kinetic energy by the formation of Landau levels. The negative quantum capacitance effect near the CNP is further enhanced in the presence of Landau levels due to the magnetic-field-enhanced Coulomb interactions. PMID:23784258
Dhar, R S; Ban, D
2013-07-01
The distribution of charge carriers inside the active region of a terahertz (THz) quantum cascade laser (QCL) has been measured with scanning spreading resistance microscopy (SSRM) and scanning capacitance microscopy (SCM). Individual quantum well-barrier modules with a 35.7-nm single module thickness in the active region of the device have been resolved for the first time using high-resolution SSRM and SCM techniques at room temperature. SSRM and SCM measurements on the quantum well-barrier structure were calibrated utilizing known GaAs dopant staircase samples. Doping concentrations derived from SSRM and SCM measurements were found to be in quantitative agreement with the designed average doping values of the n-type active region in the terahertz quantum cascade laser. The secondary ion mass spectroscopy provides a partial picture of internal device parameters, and we have demonstrated with our results the efficacy of uniting calibrated SSRM and SCM to delineate quantitatively the transverse cross-sectional structure of complex two-dimensional terahertz quantum cascade laser devices. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot
NASA Astrophysics Data System (ADS)
Ward, Daniel R.; Kim, Dohun; Savage, Donald E.; Lagally, Max G.; Foote, Ryan H.; Friesen, Mark; Coppersmith, Susan N.; Eriksson, Mark A.
2016-10-01
Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of double quantum dots by measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other double dot. We further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau-Zener-Stückelberg oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement and control in semiconductor quantum dots.
State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Daniel R.; Kim, Dohun; Savage, Donald E.
Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of doublemore » quantum dots by measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other double dot. Finally, we further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau–Zener–Stückelberg oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement and control in semiconductor quantum dots.« less
State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot
Ward, Daniel R.; Kim, Dohun; Savage, Donald E.; ...
2016-10-18
Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of doublemore » quantum dots by measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other double dot. Finally, we further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau–Zener–Stückelberg oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement and control in semiconductor quantum dots.« less
NASA Astrophysics Data System (ADS)
Liu, Wei; Guo, Huazhong; He, Jianhong; Gao, Jie
2018-05-01
We have measured the dynamic admittance of an interacting coherent capacitor in the quantum Hall regime. Our experiments demonstrate that, in the fully coherent regime, the charge relaxation resistance is universal and independent of the transmission even in the presence of strong charge interactions. Conversely, we observe strong suppression of the electrochemical capacitance, which is related to the density of states of the charge excitations due to strong interactions. Our experiments form the building blocks for the realization of electron quantum optics experiments with strong charge interactions, and they should prove useful for quantum bits in interacting ballistic conductors.
Observation of negative differential capacitance (NDC) in Ti Schottky diodes on SiGe islands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rangel-Kuoppa, Victor-Tapio; Jantsch, Wolfgang; Tonkikh, Alexander
2013-12-04
The Negative Differential Capacitance (NDC) effect on Ti Schottky diodes formed on n-type Silicon samples with embedded Germanium Quantum Dots (QDs) is observed and reported. The NDC-effect is detected using capacitance-voltage (CV) method at temperatures below 200 K. It is explained by the capture of electrons in Germanium QDs. Our measurements reveal that each Ge QD captures in average eight electrons.
Undoped Si/SiGe Depletion-Mode Few-Electron Double Quantum Dots
NASA Astrophysics Data System (ADS)
Borselli, Matthew; Huang, Biqin; Ross, Richard; Croke, Edward; Holabird, Kevin; Hazard, Thomas; Watson, Christopher; Kiselev, Andrey; Deelman, Peter; Alvarado-Rodriguez, Ivan; Schmitz, Adele; Sokolich, Marko; Gyure, Mark; Hunter, Andrew
2011-03-01
We have successfully formed a double quantum dot in the sSi/SiGe material system without need for intentional dopants. In our design, a two-dimensional electron gas is formed in a strained silicon well by forward biasing a global gate. Lateral definition of quantum dots is established with reverse-biased gates with ~ 40 nm critical dimensions. Low-temperature capacitance and Hall measurements confirm electrons are confined in the Si-well with mobilities > 10 4 cm 2 / V - s . Further characterization identifies practical gate bias limits for this design and will be compared to simulation. Several double dot devices have been brought into the few-electron Coulomb blockade regime as measured by through-dot transport. Honeycomb diagrams and nonlinear through-dot transport measurements are used to quantify dot capacitances and addition energies of several meV. Sponsored by United States Department of Defense. Approved for Public Release, Distribution Unlimited.
Size dependence in tunneling spectra of PbSe quantum-dot arrays.
Ou, Y C; Cheng, S F; Jian, W B
2009-07-15
Interdot Coulomb interactions and collective Coulomb blockade were theoretically argued to be a newly important topic, and experimentally identified in semiconductor quantum dots, formed in the gate confined two-dimensional electron gas system. Developments of cluster science and colloidal synthesis accelerated the studies of electron transport in colloidal nanocrystal or quantum-dot solids. To study the interdot coupling, various sizes of two-dimensional arrays of colloidal PbSe quantum dots are self-assembled on flat gold surfaces for scanning tunneling microscopy and scanning tunneling spectroscopy measurements at both room and liquid-nitrogen temperatures. The tip-to-array, array-to-substrate, and interdot capacitances are evaluated and the tunneling spectra of quantum-dot arrays are analyzed by the theory of collective Coulomb blockade. The current-voltage of PbSe quantum-dot arrays conforms properly to a scaling power law function. In this study, the dependence of tunneling spectra on the sizes (numbers of quantum dots) of arrays is reported and the capacitive coupling between quantum dots in the arrays is explored.
Atif, M; Farooq, W A; Fatehmulla, Amanullah; Aslam, M; Ali, Syed Mansoor
2015-01-19
Cadmium sulphide (CdS) quantum dot sensitized solar cells (QDSSCs) based on screen-printed TiO₂ were assembled using a screen-printing technique. The CdS quantum dots (QDs) were grown by using the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The optical properties were studied by UV-Vis absorbance spectroscopy. Photovoltaic characteristics and impedance spectroscopic measurements of CdS QDSSCs were carried out under air mass 1.5 illuminations. The experimental results of capacitance against voltage indicate a trend from positive to negative capacitance because of the injection of electrons from the Fluorine doped tin oxide (FTO) electrode into TiO₂.
Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices
NASA Technical Reports Server (NTRS)
Biegel, Bryan A.; Ancona, Mario G.; Rafferty, Conor S.; Yu, Zhiping
2000-01-01
We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction ot the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.
NASA Astrophysics Data System (ADS)
Srivastava, Anurag; SanthiBhushan, Boddepalli
2018-03-01
Defects are inevitable most of the times either at the synthesis, handling or processing stage of graphene, causes significant deviation of properties. The present work discusses the influence of vacancy defects on the quantum capacitance as well as thermodynamic stability of graphene, and the nitrogen doping pattern needs to be followed to attain a trade-off between these two. Density Functional Theory (DFT) calculations have been performed to analyze various vacancy defects and different possible nitrogen doping patterns at the vacancy site of graphene, with an implication for supercapacitor electrodes. The results signify that vacancy defect improves the quantum capacitance of graphene at the cost of thermodynamic stability, while the nitrogen functionalization at the vacancy improves thermodynamic stability and quantum capacitance both. It has been observed that functionalizing all the dangling carbons at the defect site with nitrogen is the key to attain high thermodynamic stability as well as quantum capacitance. Furthermore, the results signify the suitability of these functionalized graphenes for anode electrode of high energy density asymmetric supercapacitors.
Paek, Eunsu; Pak, Alexander J; Hwang, Gyeong S
2014-08-13
Chemically doped graphene-based materials have recently been explored as a means to improve the performance of supercapacitors. In this work, we investigate the effects of 3d transition metals bound to vacancy sites in graphene with [BMIM][PF6] ionic liquid on the interfacial capacitance; these results are compared to the pristine graphene case with particular attention to the relative contributions of the quantum and electric double layer capacitances. Our study highlights that the presence of metal-vacancy complexes significantly increases the availability of electronic states near the charge neutrality point, thereby enhancing the quantum capacitance drastically. In addition, the use of metal-doped graphene electrodes is found to only marginally influence the microstructure and capacitance of the electric double layer. Our findings indicate that metal-doping of graphene-like electrodes can be a promising route toward increasing the interfacial capacitance of electrochemical double layer capacitors, primarily by enhancing the quantum capacitance.
Simulation of Ultra-Small MOSFETs Using a 2-D Quantum-Corrected Drift-Diffusion Model
NASA Technical Reports Server (NTRS)
Biegel, Bryan A.; Rafferty, Conor S.; Yu, Zhiping; Dutton, Robert W.; Ancona, Mario G.; Saini, Subhash (Technical Monitor)
1998-01-01
We describe an electronic transport model and an implementation approach that respond to the challenges of device modeling for gigascale integration. We use the density-gradient (DG) transport model, which adds tunneling and quantum smoothing of carrier density profiles to the drift-diffusion model. We present the current implementation of the DG model in PROPHET, a partial differential equation solver developed by Lucent Technologies. This implementation approach permits rapid development and enhancement of models, as well as run-time modifications and model switching. We show that even in typical bulk transport devices such as P-N diodes and BJTs, DG quantum effects can significantly modify the I-V characteristics. Quantum effects are shown to be even more significant in small, surface transport devices, such as sub-0.1 micron MOSFETs. In thin-oxide MOS capacitors, we find that quantum effects may reduce gate capacitance by 25% or more. The inclusion of quantum effects in simulations dramatically improves the match between C-V simulations and measurements. Significant quantum corrections also occur in the I-V characteristics of short-channel MOSFETs due to the gate capacitance correction.
Quantum decrease of capacitance in a nanometer-sized tunnel junction
NASA Astrophysics Data System (ADS)
Untiedt, C.; Saenz, G.; Olivera, B.; Corso, M.; Sabater, C.; Pascual, J. I.
2013-03-01
We have studied the capacitance of the tunnel junction defined by the tip and sample of a Scanning Tunnelling Microscope through the measurement of the electrostatic forces and impedance of the junction. A decrease of the capacitance when a tunnel current is present has shown to be a more general phenomenon as previously reported in other systems. On another hand, an unexpected reduction of the capacitance is also observed when increasing the applied voltage above the work function energy of the electrodes to the Field Emission (FE) regime, and the decrease of capacitance due to a single FE-Resonance has been characterized. All these effects should be considered when doing measurements of the electronic characteristics of nanometer-sized electronic devices and have been neglected up to date. Spanish government (FIS2010-21883-C02-01, CONSOLIDER CSD2007-0010), Comunidad Valenciana (ACOMP/2012/127 and PROMETEO/2012/011)
NASA Astrophysics Data System (ADS)
Choi, Hyunwoo; Kim, Tae Geun; Shin, Changhwan
2017-06-01
A topological insulator (TI) is a new kind of material that exhibits unique electronic properties owing to its topological surface state (TSS). Previous studies focused on the transport properties of the TSS, since it can be used as the active channel layer in metal-oxide-semiconductor field-effect transistors (MOSFETs). However, a TI with a negative quantum capacitance (QC) effect can be used in the gate stack of MOSFETs, thereby facilitating the creation of ultra-low power electronics. Therefore, it is important to study the physics behind the QC in TIs in the absence of any external magnetic field, at room temperature. We fabricated a simple capacitor structure using a TI (TI-capacitor: Au-TI-SiO2-Si), which shows clear evidence of QC at room temperature. In the capacitance-voltage (C-V) measurement, the total capacitance of the TI-capacitor increases in the accumulation regime, since QC is the dominant capacitive component in the series capacitor model (i.e., CT-1 = CQ-1 + CSiO2-1). Based on the QC model of the two-dimensional electron systems, we quantitatively calculated the QC, and observed that the simulated C-V curve theoretically supports the conclusion that the QC of the TI-capacitor is originated from electron-electron interaction in the two-dimensional surface state of the TI.
NASA Astrophysics Data System (ADS)
Ma, Nan; Jena, Debdeep
2015-03-01
In this work, the consequence of the high band-edge density of states on the carrier statistics and quantum capacitance in transition metal dichalcogenide two-dimensional semiconductor devices is explored. The study questions the validity of commonly used expressions for extracting carrier densities and field-effect mobilities from the transfer characteristics of transistors with such channel materials. By comparison to experimental data, a new method for the accurate extraction of carrier densities and mobilities is outlined. The work thus highlights a fundamental difference between these materials and traditional semiconductors that must be considered in future experimental measurements.
Capacitance of carbon-based electrical double-layer capacitors.
Ji, Hengxing; Zhao, Xin; Qiao, Zhenhua; Jung, Jeil; Zhu, Yanwu; Lu, Yalin; Zhang, Li Li; MacDonald, Allan H; Ruoff, Rodney S
2014-01-01
Experimental electrical double-layer capacitances of porous carbon electrodes fall below ideal values, thus limiting the practical energy densities of carbon-based electrical double-layer capacitors. Here we investigate the origin of this behaviour by measuring the electrical double-layer capacitance in one to five-layer graphene. We find that the capacitances are suppressed near neutrality, and are anomalously enhanced for thicknesses below a few layers. We attribute the first effect to quantum capacitance effects near the point of zero charge, and the second to correlations between electrons in the graphene sheet and ions in the electrolyte. The large capacitance values imply gravimetric energy storage densities in the single-layer graphene limit that are comparable to those of batteries. We anticipate that these results shed light on developing new theoretical models in understanding the electrical double-layer capacitance of carbon electrodes, and on opening up new strategies for improving the energy density of carbon-based capacitors.
Predicting ion specific capacitances of supercapacitors due to quantum ionic interactions.
Parsons, Drew F
2014-08-01
A new theoretical framework is now available to help explain ion specific (Hofmeister) effects. All measurements in physical chemistry show ion specificity, inexplicable by classical electrostatic theories. These ignore ionic dispersion forces that change ionic adsorption. We explored ion specificity in supercapacitors using a modified Poisson-Boltzmann approach that includes ionic dispersion energies. We have applied ab initio quantum chemical methods to determine required ion sizes and ion polarisabilities. Our model represents graphite electrodes through their optical dielectric spectra. The electrolyte was 1.2 M Li salt in propylene carbonate, using the common battery anions, PF6(-), BF4(-) and ClO4(-). We also investigated the perhalate series with BrO4(-) and IO4(-). The capacitance C=dσ/dψ was calculated from the predicted electrode surface charge σ of each electrode with potential ψ between electrodes. Compared to the purely electrostatic calculation, the capacitance of a positively charged graphite electrode was enhanced by more than 15%, with PF6(-) showing >50% increase in capacitance. IO4(-) provided minimal enhancement. The enhancement is due to adsorption of both anions and cations, driven by ionic dispersion forces. The Hofmeister series in the single-electrode capacitance was PF6(-)>BF4(-)>ClO4(-)>BrO4(-)>IO4(-) . When the graphite electrode was negatively charged, the perhalates provided almost no enhancement of capacitance, while PF6(-) and BF4(-) decreased capacitance by about 15%. Due to the asymmetric impact of nonelectrostatic ion interactions, the capacitances of positive and negative electrodes are not equal. The capacitance of a supercapacitor should therefore be reported as two values rather than one, similar to the matrix of mutual capacitances used in multielectrode devices. Copyright © 2014 Elsevier Inc. All rights reserved.
Scanning gate imaging of two coupled quantum dots in single-walled carbon nanotubes.
Zhou, Xin; Hedberg, James; Miyahara, Yoichi; Grutter, Peter; Ishibashi, Koji
2014-12-12
Two coupled single wall carbon nanotube quantum dots in a multiple quantum dot system were characterized by using a low temperature scanning gate microscopy (SGM) technique, at a temperature of 170 mK. The locations of single wall carbon nanotube quantum dots were identified by taking the conductance images of a single wall carbon nanotube contacted by two metallic electrodes. The single electron transport through single wall carbon nanotube multiple quantum dots has been observed by varying either the position or voltage bias of a conductive atomic force microscopy tip. Clear hexagonal patterns were observed in the region of the conductance images where only two sets of overlapping conductance rings are visible. The values of coupling capacitance over the total capacitance of the two dots, C(m)/C(1(2)) have been extracted to be 0.21 ∼ 0.27 and 0.23 ∼ 0.28, respectively. In addition, the interdot coupling (conductance peak splitting) has also been confirmed in both conductance image measurement and current-voltage curves. The results show that a SGM technique enables spectroscopic investigation of coupled quantum dots even in the presence of unexpected multiple quantum dots.
Exact CNOT gates with a single nonlocal rotation for quantum-dot qubits
NASA Astrophysics Data System (ADS)
Pal, Arijeet; Rashba, Emmanuel I.; Halperin, Bertrand I.
2015-09-01
We investigate capacitively-coupled exchange-only two-qubit quantum gates based on quantum dots. For exchange-only coded qubits electron spin S and its projection Sz are exact quantum numbers. Capacitive coupling between qubits, as distinct from interqubit exchange, preserves these quantum numbers. We prove, both analytically and numerically, that conservation of the spins of individual qubits has a dramatic effect on the performance of two-qubit gates. By varying the level splittings of individual qubits, Ja and Jb, and the interqubit coupling time, t , we can find an infinite number of triples (Ja,Jb,t ) for which the two-qubit entanglement, in combination with appropriate single-qubit rotations, can produce an exact cnot gate. This statement is true for practically arbitrary magnitude and form of capacitive interqubit coupling. Our findings promise a large decrease in the number of nonlocal (two-qubit) operations in quantum circuits.
Near-IR photon number resolving detector design
NASA Astrophysics Data System (ADS)
Bogdanski, Jan; Huntington, Elanor H.
2013-05-01
Photon-Number-Resolving-Detection (PNRD) capability is crucial for many Quantum-Information (QI) applications, e.g. for Coherent-State-Quantum-Computing, Linear-Optics-Quantum-Computing. In Quantum-Key-Distribution and Quantum-Secret-Sharing over 1310/1550 nm fiber, two other important, defense and information security related, QI applications, it's crucial for the information transmission security to guarantee that the information carriers (photons) are single. Thus a PNRD can provide an additional security level against eavesdropping. Currently, there are at least a couple of promising PNRD technologies in the Near-Infrared, but all of them require cryogenic cooling. Thus a compact, portable PNRD, based on commercial Avalanche-Photo-Diodes (APDs), could be a very useful instrument for many QI experiments. For an APD-based PNRD, it is crucial to measure the APD-current in the beginning of the avalanche. Thus an efficient cancellation of the APD capacitive spikes is a necessary condition for the very weak APD current measurement. The detector's principle is based on two commercial, pair-matched InGaAs/InP APDs, connected in series. It leads to a great cancelation of the capacitive spikes caused by the narrow (300 ps), differential gate-pulses of maximum 4V amplitude assuming that both pulses are perfectly matched in regards to their phases, amplitudes, and shapes. The cancellation scheme could be used for other APD-technologies, e.g. Silicon, extending the detection spectrum from visible to NIR. The design distinguishes itself from other, APD-based, schemes by its scalability feature and its computer controlled cancellation of the capacitive spikes. Furthermore, both APDs could be equally used for the detection purpose, which opens a possibility for the odd-even photon number parity detection.
Develop of a quantum electromechanical hybrid system
NASA Astrophysics Data System (ADS)
Hao, Yu; Rouxinol, Francisco; Brito, Frederico; Caldeira, Amir; Irish, Elinor; Lahaye, Matthew
In this poster, we will show our results from measurements of a hybrid quantum system composed of a superconducting transmon qubit-coupled and ultra-high frequency nano-mechanical resonator, embedded in a superconducting cavity. The transmon is capacitively coupled to a 3.4GHz nanoresonator and a T-filter-biased high-Q transmission line cavity. Single-tone and two-tone transmission spectroscopy measurements are used to probe the interactions between the cavity, qubit and mechanical resonator. These measurements are in good agreement with numerical simulations based upon a master equation for the tripartite system including dissipation. The results indicate that this system may be developed to serve as a platform for more advanced measurements with nanoresonators, including quantum state measurement, the exploration of nanoresonator quantum noise, and reservoir engineering.
Capacitive Energy Extraction by Few-Layer Graphene Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, Cheng; Zhan, Cheng; Jiang, De-en
Capacitive double-layer expansion is a promising technology to harvest energy arising from the salinity difference between freshwater and seawater. Its optimal performance requires a careful selection of the operation potentials and electrode materials. While carbonaceous materials such as graphene and various forms of activated carbons are routinely used as the electrodes, there is little knowledge on how the quantum capacitance and the electric double-layer (EDL) capacitance, which are on the same order of magnitude, affect the capacitive performance. Toward understanding that from a theoretical perspective, here we study the capacitive energy extraction with graphene electrodes as a function of themore » number of graphene layers. The classical density functional theory is joined with the electronic density functional theory to obtain the EDL and the quantum capacitance, respectively. The theoretical results show that the quantum capacitance contribution plays a dominant role in extracting energy using the single-layer graphene, but its effect diminishes as the number of graphene layers increases. The overall extracted energy is dominated by the EDL contribution beyond about four graphene layers. Electrodes with more graphene layers are able to extract more energy at low charging potential. Here, because many porous carbons have nanopores with stacked graphene layers, our theoretical predictions are useful to identify optimal operation parameters for capacitive energy extraction with porous electrodes of different wall thickness.« less
Capacitive Energy Extraction by Few-Layer Graphene Electrodes
Lian, Cheng; Zhan, Cheng; Jiang, De-en; ...
2017-06-09
Capacitive double-layer expansion is a promising technology to harvest energy arising from the salinity difference between freshwater and seawater. Its optimal performance requires a careful selection of the operation potentials and electrode materials. While carbonaceous materials such as graphene and various forms of activated carbons are routinely used as the electrodes, there is little knowledge on how the quantum capacitance and the electric double-layer (EDL) capacitance, which are on the same order of magnitude, affect the capacitive performance. Toward understanding that from a theoretical perspective, here we study the capacitive energy extraction with graphene electrodes as a function of themore » number of graphene layers. The classical density functional theory is joined with the electronic density functional theory to obtain the EDL and the quantum capacitance, respectively. The theoretical results show that the quantum capacitance contribution plays a dominant role in extracting energy using the single-layer graphene, but its effect diminishes as the number of graphene layers increases. The overall extracted energy is dominated by the EDL contribution beyond about four graphene layers. Electrodes with more graphene layers are able to extract more energy at low charging potential. Here, because many porous carbons have nanopores with stacked graphene layers, our theoretical predictions are useful to identify optimal operation parameters for capacitive energy extraction with porous electrodes of different wall thickness.« less
NASA Astrophysics Data System (ADS)
Senokos, E.; Reguero, V.; Palma, J.; Vilatela, J. J.; Marcilla, Rebeca
2016-02-01
In this work we present a combined electrochemical and mechanical study of mesoporous electrodes based on CNT fibres in the context of electric double layer capacitors. We show that through control of the synthetic and assembly processes of the fibres, it is possible to obtain an active material that combines a surface area of 250 m2 g-1, high electrical conductivity (3.5 × 105 S m-1) and mechanical properties in the high-performance range including toughness (35 J g-1) comparable to that of aramid fibre (e.g. Kevlar). These properties are a consequence of the predominant orientation of the CNTs, observed by wide- and small-angle X-ray diffraction, and to the exceptionally long CNT length on the millimetre scale. Cyclic voltammetry measurements in a three-electrode configuration and using 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (PYR14TFSI) ionic liquid electrolyte, show that the CNT fibres have a large quantum capacitance, evidenced by the near linear dependence of geometric capacitance (and conductivity) on potential bias. This reflects the low dimensionality of the CNT building blocks, which were purposely synthesised to have 1-5 layers and a high degree of graphitization. From the charge-discharge measurements of supercapacitor devices with symmetric CNT fibre electrodes we obtain power and energy densities as high as 58 kW kg-1 and 14 Wh kg-1, respectively. These record-high values for CNT fibre-based supercapacitors, are a consequence of the low equivalent series resistance due to the high conductivity of the fibres, the large contribution from quantum capacitance, and the wide stability window of the ionic liquid (3.5 V). Cycle life experiments demonstrate stable capacitance and energy retention over 10 000 cycles of charge-discharge at 3.5 V.In this work we present a combined electrochemical and mechanical study of mesoporous electrodes based on CNT fibres in the context of electric double layer capacitors. We show that through control of the synthetic and assembly processes of the fibres, it is possible to obtain an active material that combines a surface area of 250 m2 g-1, high electrical conductivity (3.5 × 105 S m-1) and mechanical properties in the high-performance range including toughness (35 J g-1) comparable to that of aramid fibre (e.g. Kevlar). These properties are a consequence of the predominant orientation of the CNTs, observed by wide- and small-angle X-ray diffraction, and to the exceptionally long CNT length on the millimetre scale. Cyclic voltammetry measurements in a three-electrode configuration and using 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (PYR14TFSI) ionic liquid electrolyte, show that the CNT fibres have a large quantum capacitance, evidenced by the near linear dependence of geometric capacitance (and conductivity) on potential bias. This reflects the low dimensionality of the CNT building blocks, which were purposely synthesised to have 1-5 layers and a high degree of graphitization. From the charge-discharge measurements of supercapacitor devices with symmetric CNT fibre electrodes we obtain power and energy densities as high as 58 kW kg-1 and 14 Wh kg-1, respectively. These record-high values for CNT fibre-based supercapacitors, are a consequence of the low equivalent series resistance due to the high conductivity of the fibres, the large contribution from quantum capacitance, and the wide stability window of the ionic liquid (3.5 V). Cycle life experiments demonstrate stable capacitance and energy retention over 10 000 cycles of charge-discharge at 3.5 V. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07697h
Senokos, E; Reguero, V; Palma, J; Vilatela, J J; Marcilla, Rebeca
2016-02-14
In this work we present a combined electrochemical and mechanical study of mesoporous electrodes based on CNT fibres in the context of electric double layer capacitors. We show that through control of the synthetic and assembly processes of the fibres, it is possible to obtain an active material that combines a surface area of 250 m(2) g(-1), high electrical conductivity (3.5 × 10(5) S m(-1)) and mechanical properties in the high-performance range including toughness (35 J g(-1)) comparable to that of aramid fibre (e.g. Kevlar). These properties are a consequence of the predominant orientation of the CNTs, observed by wide- and small-angle X-ray diffraction, and to the exceptionally long CNT length on the millimetre scale. Cyclic voltammetry measurements in a three-electrode configuration and using 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (PYR14TFSI) ionic liquid electrolyte, show that the CNT fibres have a large quantum capacitance, evidenced by the near linear dependence of geometric capacitance (and conductivity) on potential bias. This reflects the low dimensionality of the CNT building blocks, which were purposely synthesised to have 1-5 layers and a high degree of graphitization. From the charge-discharge measurements of supercapacitor devices with symmetric CNT fibre electrodes we obtain power and energy densities as high as 58 kW kg(-1) and 14 Wh kg(-1), respectively. These record-high values for CNT fibre-based supercapacitors, are a consequence of the low equivalent series resistance due to the high conductivity of the fibres, the large contribution from quantum capacitance, and the wide stability window of the ionic liquid (3.5 V). Cycle life experiments demonstrate stable capacitance and energy retention over 10,000 cycles of charge-discharge at 3.5 V.
Charging the quantum capacitance of graphene with a single biological ion channel.
Wang, Yung Yu; Pham, Ted D; Zand, Katayoun; Li, Jinfeng; Burke, Peter J
2014-05-27
The interaction of cell and organelle membranes (lipid bilayers) with nanoelectronics can enable new technologies to sense and measure electrophysiology in qualitatively new ways. To date, a variety of sensing devices have been demonstrated to measure membrane currents through macroscopic numbers of ion channels. However, nanoelectronic based sensing of single ion channel currents has been a challenge. Here, we report graphene-based field-effect transistors combined with supported lipid bilayers as a platform for measuring, for the first time, individual ion channel activity. We show that the supported lipid bilayers uniformly coat the single layer graphene surface, acting as a biomimetic barrier that insulates (both electrically and chemically) the graphene from the electrolyte environment. Upon introduction of pore-forming membrane proteins such as alamethicin and gramicidin A, current pulses are observed through the lipid bilayers from the graphene to the electrolyte, which charge the quantum capacitance of the graphene. This approach combines nanotechnology with electrophysiology to demonstrate qualitatively new ways of measuring ion channel currents.
Charging the Quantum Capacitance of Graphene with a Single Biological Ion Channel
2015-01-01
The interaction of cell and organelle membranes (lipid bilayers) with nanoelectronics can enable new technologies to sense and measure electrophysiology in qualitatively new ways. To date, a variety of sensing devices have been demonstrated to measure membrane currents through macroscopic numbers of ion channels. However, nanoelectronic based sensing of single ion channel currents has been a challenge. Here, we report graphene-based field-effect transistors combined with supported lipid bilayers as a platform for measuring, for the first time, individual ion channel activity. We show that the supported lipid bilayers uniformly coat the single layer graphene surface, acting as a biomimetic barrier that insulates (both electrically and chemically) the graphene from the electrolyte environment. Upon introduction of pore-forming membrane proteins such as alamethicin and gramicidin A, current pulses are observed through the lipid bilayers from the graphene to the electrolyte, which charge the quantum capacitance of the graphene. This approach combines nanotechnology with electrophysiology to demonstrate qualitatively new ways of measuring ion channel currents. PMID:24754625
NASA Astrophysics Data System (ADS)
Fakih, Ibrahim; Mahvash, Farzaneh; Siaj, Mohamed; Szkopek, Thomas
2017-10-01
A challenge for p H sensing is decreasing the minimum measurable p H per unit bandwidth in an economical fashion. Minimizing noise to reach the inherent limit imposed by charge fluctuation remains an obstacle. We demonstrate here graphene-based ion-sensing field-effect transistors that saturate the physical limit of sensitivity, defined here as the change in electrical response with respect to p H , and achieve a precision limited by charge-fluctuation noise at the sensing layer. We present a model outlining the necessity for maximizing the device carrier mobility, active sensing area, and capacitive coupling in order to minimize noise. We encapsulate large-area graphene with an ultrathin layer of parylene, a hydrophobic polymer, and deposit an ultrathin, stoichiometric p H -sensing layer of either aluminum oxide or tantalum pentoxide. With these structures, we achieve gate capacitances ˜0.6 μ F /cm2 , approaching the quantum-capacitance limit inherent to graphene, along with a near-Nernstian p H response of ˜55 ±2 mV /p H . We observe field-effect mobilities as high as 7000 cm2 V-1 s-1 with minimal hysteresis as a result of the parylene encapsulation. A detection limit of 0.1 m p H in a 60-Hz electrical bandwidth is observed in optimized graphene transistors.
NASA Astrophysics Data System (ADS)
Liu, Wei; He, Jianhong; Guo, Huazhong; Gao, Jie
2018-04-01
We report experiments on the dynamic response of an interacting mesoscopic capacitor consisting of a quantum dot with two confined spin-split levels of the lowest Landau level. In high magnetic fields, states inside the dot are regulated by a mixture of Coulomb interaction and Landau-level quantization, and electrons distribute on two spatially separated regions. Quantum point contact voltage and magnetic field are employed to manipulate the number and distribution of electrons inside the quantum dot. We find that the periodicity of the electrochemical capacitance oscillations is dominated by the charging energy, and their amplitudes, due to internal charge transfer and strong internal capacitive coupling, show rich variations of modulations. Magnetocapacitance displays a sawtoothlike manner and may differ in tooth directions for different voltages, which, we demonstrate, result from a sawtoothlike electrochemical potential change induced by internal charge transfer and field-sensitive electrostatic potential. We further build a charge stability diagram, which, together with all other capacitance properties, is consistently interpreted in terms of a double-dot model. The demonstrated technique is of interest as a tool for fast and sensitive charge state readout of a double-quantum-dot qubit in the gigahertz frequency quantum electronics.
Grinolds, Darcy D W; Brown, Patrick R; Harris, Daniel K; Bulovic, Vladimir; Bawendi, Moungi G
2015-01-14
We study the dielectric constant of lead sulfide quantum dot (QD) films as a function of the volume fraction of QDs by varying the QD size and keeping the ligand constant. We create a reliable QD sizing curve using small-angle X-ray scattering (SAXS), thin-film SAXS to extract a pair-distribution function for QD spacing, and a stacked-capacitor geometry to measure the capacitance of the thin film. Our data support a reduced dielectric constant in nanoparticles.
NASA Astrophysics Data System (ADS)
Vatamanu, Jenel; Ni, Xiaojuan; Liu, Feng; Bedrov, Dmitry
2015-11-01
The semiconducting character of graphene and some carbon-based electrodes can lead to noticeably lower total capacitances and stored energy densities in electric double layer (EDL) capacitors. This paper discusses the chemical and electronic structure modifications that enhance the available energy bands, density of states and quantum capacitance of graphene substrates near the Fermi level, therefore restoring the conducting character of these materials. The doping of graphene with p or n dopants, such as boron and nitrogen atoms, or the introduction of vacancy defects that introduce zigzag edges, can significantly increase the quantum capacitance within the potential range of interest for the energy storage applications by either shifting the Dirac point away from the Fermi level or by eliminating the Dirac point. We show that a combination of doping and vacancies at realistic concentrations is sufficient to increase the capacitance of a graphene-based electrode to within 1 μF cm-2 from that of a metallic surface. Using a combination of ab initio calculations and classical molecular dynamics simulations we estimate how the changes in the quantum capacitance of these electrode materials affect the total capacitance stored by the open structure EDL capacitors containing room temperature ionic liquid electrolytes.
Effect of noncovalent basal plane functionalization on the quantum capacitance in graphene.
Ebrish, Mona A; Olson, Eric J; Koester, Steven J
2014-07-09
The concentration-dependent density of states in graphene allows the capacitance in metal-oxide-graphene structures to be tunable with the carrier concentration. This feature allows graphene to act as a variable capacitor (varactor) that can be utilized for wireless sensing applications. Surface functionalization can be used to make graphene sensitive to a particular species. In this manuscript, the effect on the quantum capacitance of noncovalent basal plane functionalization using 1-pyrenebutanoic acid succimidyl ester and glucose oxidase is reported. It is found that functionalized samples tested in air have (1) a Dirac point similar to vacuum conditions, (2) increased maximum capacitance compared to vacuum but similar to air, (3) and quantum capacitance "tuning" that is greater than that in vacuum and ambient atmosphere. These trends are attributed to reduced surface doping and random potential fluctuations as a result of the surface functionalization due to the displacement of H2O on the graphene surface and intercalation of a stable H2O layer beneath graphene that increases the overall device capacitance. The results are important for future application of graphene as a platform for wireless chemical and biological sensors.
Role of Copper in the Performance of CdS/CdTe Solar Cells (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demtsu, S.; Albin, D.; Sites, J.
2006-05-01
The performance of CdS/CdTe solar cells made with evaporated Cu as a primary back contact was studied through current-voltage (JV) at different intensities, quantum efficiency (QE) under light and voltage bias, capacitance-voltage (CV), and drive-level capacitance profiling (DLCP) measurements. The results show that while modest amounts of Cu enhance cell performance, excessive amounts degrade device quality and reduce performance. The analysis is supported with numerical simulations to reproduce and explain some of the experimental results.
NASA Astrophysics Data System (ADS)
Inhofer, A.; Duffy, J.; Boukhicha, M.; Bocquillon, E.; Palomo, J.; Watanabe, K.; Taniguchi, T.; Estève, I.; Berroir, J. M.; Fève, G.; Plaçais, B.; Assaf, B. A.
2018-02-01
A metal-dielectric topological-insulator capacitor device based on hexagonal-boron-nitrate- (h -BN) encapsulated CVD-grown Bi2Se3 is realized and investigated in the radio-frequency regime. The rf quantum capacitance and device resistance are extracted for frequencies as high as 10 GHz and studied as a function of the applied gate voltage. The superior quality h -BN gate dielectric combined with the optimized transport characteristics of CVD-grown Bi2Se3 (n ˜1018 cm-3 in 8 nm) on h -BN allow us to attain a bulk depleted regime by dielectric gating. A quantum-capacitance minimum and a linear variation of the capacitance with the chemical potential are observed revealing a Dirac regime. The topological surface state in proximity to the gate is seen to reach charge neutrality, but the bottom surface state remains charged and capacitively coupled to the top via the insulating bulk. Our work paves the way toward implementation of topological materials in rf devices.
Vatamanu, Jenel; Ni, Xiaojuan; Liu, Feng; Bedrov, Dmitry
2015-11-20
The semiconducting character of graphene and some carbon-based electrodes can lead to noticeably lower total capacitances and stored energy densities in electric double layer (EDL)capacitors. This paper discusses the chemical and electronic structure modifications that enhance the available energy bands, density of states and quantum capacitance of graphene substrates near the Fermi level, therefore restoring the conducting character of these materials. The doping of graphene with p or n dopants, such as boron and nitrogen atoms, or the introduction of vacancy defects that introduce zigzag edges, can significantly increase the quantum capacitance within the potential range of interest for the energy storage applications by either shifting the Dirac point away from the Fermi level or by eliminating the Dirac point. We show that a combination of doping and vacancies at realistic concentrations is sufficient to increase the capacitance of a graphene-based electrode to within 1 μF cm(−2) from that of a metallic surface.Using a combination of ab initio calculations and classical molecular dynamics simulations we estimate how the changes in the quantum capacitance of these electrode materials affect the total capacitance stored by the open structure EDL capacitors containing room temperature ionic liquid electrolytes.
Superconducting quantum interference device with frequency-dependent damping: Readout of flux qubits
NASA Astrophysics Data System (ADS)
Robertson, T. L.; Plourde, B. L. T.; Hime, T.; Linzen, S.; Reichardt, P. A.; Wilhelm, F. K.; Clarke, John
2005-07-01
Recent experiments on superconducting flux qubits, consisting of a superconducting loop interrupted by Josephson junctions, have demonstrated quantum coherence between two different quantum states. The state of the qubit is measured with a superconducting quantum interference device (SQUID). Such measurements require the SQUID to have high resolution while exerting minimal backaction on the qubit. By designing shunts across the SQUID junctions appropriately, one can improve the measurement resolution without increasing the backaction significantly. Using a path-integral approach to analyze the Caldeira-Leggett model, we calculate the narrowing of the distribution of the switching events from the zero-voltage state of the SQUID for arbitrary shunt admittances, focusing on shunts consisting of a capacitance Cs and resistance Rs in series. To test this model, we fabricated a dc SQUID in which each junction is shunted with a thin-film interdigitated capacitor in series with a resistor, and measured the switching distribution as a function of temperature and applied magnetic flux. After accounting for the damping due to the SQUID leads, we found good agreement between the measured escape rates and the predictions of our model. We analyze the backaction of a shunted symmetric SQUID on a flux qubit. For the given parameters of our SQUID and realistic parameters for a flux qubit, at the degeneracy point we find a relaxation time of 113μs , which limits the decoherence time to 226μs . Based on our analysis of the escape process, we determine that a SQUID with purely capacitive shunts should have narrow switching distributions and no dissipation.
Measurement of the entanglement of two superconducting qubits via state tomography.
Steffen, Matthias; Ansmann, M; Bialczak, Radoslaw C; Katz, N; Lucero, Erik; McDermott, R; Neeley, Matthew; Weig, E M; Cleland, A N; Martinis, John M
2006-09-08
Demonstration of quantum entanglement, a key resource in quantum computation arising from a nonclassical correlation of states, requires complete measurement of all states in varying bases. By using simultaneous measurement and state tomography, we demonstrated entanglement between two solid-state qubits. Single qubit operations and capacitive coupling between two super-conducting phase qubits were used to generate a Bell-type state. Full two-qubit tomography yielded a density matrix showing an entangled state with fidelity up to 87%. Our results demonstrate a high degree of unitary control of the system, indicating that larger implementations are within reach.
Coulomb coupling effects in the gigahertz complex admittance of a quantum R–L circuit
NASA Astrophysics Data System (ADS)
Song, L.; Yin, J. Z.; Chen, S. W.
2018-05-01
We report on the gigahertz admittance measurements of a quantum conductor, i.e. a quantum R–L circuit, to probe the intrinsic dynamic of the conductor. The magnetic field dependence of the admittance phase provides us with an effective way to study the role of Coulomb interaction between counterpropagating edge channels. In addition, there is a small jump in the admittance phase when the transmitted modes are changed. This is because the gate voltage leads to a static potential shift of the quantum channel, then a quantum capacitance related to the density of states of the edge channels are influenced. Our study has made new discoveries of the dynamic transport in a quantum conductor, finding evidence for the deviations from quantum chiral transport associated with Coulomb interactions.
Evaluating and enhancing quantum capacitance in graphene-based electrodes from first principles
NASA Astrophysics Data System (ADS)
Ogitsu, Tadashi; Otani, Minoru; Lee, Jonathan; Bagge-Hansen, Michael; Biener, Juergen; Wood, Brandon
2013-03-01
Graphene derivatives are attractive as supercapacitor electrodes because they are lightweight, chemically inert, have high surface area and conductivity, and are stable in electrolyte solutions. Nevertheless, devising reliable strategies for improving energy density relies on an understanding of the specific factors that control electrode performance. We use density-functional theory calculations of pristine and defective graphene to extract quantum capacitance, as well as to identify specific limiting factors. The effect of structural point defects and strain-related morphological changes on the density of states is also evaluated. The results are combined with predicted and measured in situ X-ray absorption spectra in order to give insight into the structural and chemical features present in synthesized carbon aerogel samples. Performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Schurr, J.; Fletcher, N.; Gournay, P.; Thévenot, O.; Overney, F.; Johnson, L.; Xie, R.; Dierikx, E.
2017-01-01
Within the framework of the supplementary comparison EURAMET.EM-S31, 'Comparison of capacitance and capacitance ratio', five participants (the BIPM, METAS, LNE, PTB, and VSL) inter-compared their capacitance realisations traced to the quantum Hall resistance measured at either ac or dc. The measurands were the capacitance values of three 10 pF standards and one 100 pF standard, and optionally their voltage and frequency dependences. Because the results were not fully satisfying, the circulation was repeated, augmented by a link to the NMIA calculable capacitor. Also two ac-dc resistors were circulated and their frequency dependences were measured in terms of the ac-dc resistance standards involved in the particular capacitance realisations, to allow inter-comparison of these resistance standards. At the end and in any case, a good agreement is achieved within the expanded uncertainties at coverage factor k = 2. Furthermore, the comparison led to new insight regarding the stability and travelling behaviour of the capacitance standards and, by virtue of the link to the NMIA calculable capacitor, to a determination of the von Klitzing constant in agreement with the 2014 CODATA value. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Low-Temperature Scanning Capacitance Probe for Imaging Electron Motion
NASA Astrophysics Data System (ADS)
Bhandari, S.; Westervelt, R. M.
2014-12-01
Novel techniques to probe electronic properties at the nanoscale can shed light on the physics of nanoscale devices. In particular, studying the scattering of electrons from edges and apertures at the nanoscale and imaging the electron profile in a quantum dot, have been of interest [1]. In this paper, we present the design and implementation of a cooled scanning capacitance probe that operates at liquid He temperatures to image electron waves in nanodevices. The conducting tip of a scanned probe microscope is held above the nanoscale structure, and an applied sample-to-tip voltage creates an image charge that is measured by a cooled charge amplifier [2] adjacent to the tip. The circuit is based on a low-capacitance, high- electron-mobility transistor (Fujitsu FHX35X). The input is a capacitance bridge formed by a low capacitance pinched-off HEMT transistor and tip-sample capacitance. We have achieved low noise level (0.13 e/VHz) and high spatial resolution (100 nm) for this technique, which promises to be a useful tool to study electronic behavior in nanoscale devices.
Photon induced non-linear quantized double layer charging in quaternary semiconducting quantum dots.
Nair, Vishnu; Ananthoju, Balakrishna; Mohapatra, Jeotikanta; Aslam, M
2018-03-15
Room temperature quantized double layer charging was observed in 2 nm Cu 2 ZnSnS 4 (CZTS) quantum dots. In addition to this we observed a distinct non-linearity in the quantized double layer charging arising from UV light modulation of double layer. UV light irradiation resulted in a 26% increase in the integral capacitance at the semiconductor-dielectric (CZTS-oleylamine) interface of the quantum dot without any change in its core size suggesting that the cause be photocapacitive. The increasing charge separation at the semiconductor-dielectric interface due to highly stable and mobile photogenerated carriers cause larger electrostatic forces between the quantum dot and electrolyte leading to an enhanced double layer. This idea was supported by a decrease in the differential capacitance possible due to an enhanced double layer. Furthermore the UV illumination enhanced double layer gives us an AC excitation dependent differential double layer capacitance which confirms that the charging process is non-linear. This ultimately illustrates the utility of a colloidal quantum dot-electrolyte interface as a non-linear photocapacitor. Copyright © 2017 Elsevier Inc. All rights reserved.
Quantum metrology with a transmon qutrit
NASA Astrophysics Data System (ADS)
Shlyakhov, A. R.; Zemlyanov, V. V.; Suslov, M. V.; Lebedev, A. V.; Paraoanu, G. S.; Lesovik, G. B.; Blatter, G.
2018-02-01
Making use of coherence and entanglement as metrological quantum resources allows us to improve the measurement precision from the shot-noise or quantum limit to the Heisenberg limit. Quantum metrology then relies on the availability of quantum engineered systems that involve controllable quantum degrees of freedom which are sensitive to the measured quantity. Sensors operating in the qubit mode and exploiting their coherence in a phase-sensitive measurement have been shown to approach the Heisenberg scaling in precision. Here, we show that this result can be further improved by operating the quantum sensor in the qudit mode, i.e., by exploiting d rather than two levels. Specifically, we describe the metrological algorithm for using a superconducting transmon device operating in a qutrit mode as a magnetometer. The algorithm is based on the base-3 semiquantum Fourier transformation and enhances the quantum theoretical performance of the sensor by a factor of 2. Even more, the practical gain of our qutrit implementation is found in a reduction of the number of iteration steps of the quantum Fourier transformation by the factor ln(2 )/ln(3 )≈0.63 compared to the qubit mode. We show that a two-tone capacitively coupled radio-frequency signal is sufficient for implementation of the algorithm.
2011-05-01
SdH) magnetotrans- port measurements at a low temperature (2–15 K ) and a high magnetic field (0–9 T). We also present an EOT scalability study that...Fig. 2. Measured and modeled (a) split Cg–Vg and (b) G−Vg characteristics of an InAs0.8Sb0.2 QW-MOSFET at 77 K . dielectric (0.7 nm EOT) and barrier...measured and modeled split Cg–Vg and G−Vg characteristics of InAs0.8Sb0.2 QW-MOSFET at 77 K and the frequency dispersion characteristics due to the in
Graphene quantum dots-carbon nanotube hybrid arrays for supercapacitors
NASA Astrophysics Data System (ADS)
Hu, Yue; Zhao, Yang; Lu, Gewu; Chen, Nan; Zhang, Zhipan; Li, Hui; Shao, Huibo; Qu, Liangti
2013-05-01
Graphene quantum dots (GQDs) have been successfully deposited onto aligned carbon nanotubes (CNTs) by a benign electrochemical method and the capacitive properties of the as-formed GQD/CNT hybrid arrays were evaluated in symmetrical supercapacitors. It was found that supercapacitors fabricated from GQD/CNT hybrid arrays exhibited a high capacitance of 44 mF cm-2, representing a more than 200% improvement over that of bare CNT electrodes.
Graphene quantum dots-carbon nanotube hybrid arrays for supercapacitors.
Hu, Yue; Zhao, Yang; Lu, Gewu; Chen, Nan; Zhang, Zhipan; Li, Hui; Shao, Huibo; Qu, Liangti
2013-05-17
Graphene quantum dots (GQDs) have been successfully deposited onto aligned carbon nanotubes (CNTs) by a benign electrochemical method and the capacitive properties of the as-formed GQD/CNT hybrid arrays were evaluated in symmetrical supercapacitors. It was found that supercapacitors fabricated from GQD/CNT hybrid arrays exhibited a high capacitance of 44 mF cm(-2), representing a more than 200% improvement over that of bare CNT electrodes.
NASA Astrophysics Data System (ADS)
Karzig, Torsten; Knapp, Christina; Lutchyn, Roman M.; Bonderson, Parsa; Hastings, Matthew B.; Nayak, Chetan; Alicea, Jason; Flensberg, Karsten; Plugge, Stephan; Oreg, Yuval; Marcus, Charles M.; Freedman, Michael H.
2017-06-01
We present designs for scalable quantum computers composed of qubits encoded in aggregates of four or more Majorana zero modes, realized at the ends of topological superconducting wire segments that are assembled into superconducting islands with significant charging energy. Quantum information can be manipulated according to a measurement-only protocol, which is facilitated by tunable couplings between Majorana zero modes and nearby semiconductor quantum dots. Our proposed architecture designs have the following principal virtues: (1) the magnetic field can be aligned in the direction of all of the topological superconducting wires since they are all parallel; (2) topological T junctions are not used, obviating possible difficulties in their fabrication and utilization; (3) quasiparticle poisoning is abated by the charging energy; (4) Clifford operations are executed by a relatively standard measurement: detection of corrections to quantum dot energy, charge, or differential capacitance induced by quantum fluctuations; (5) it is compatible with strategies for producing good approximate magic states.
Improving the gate fidelity of capacitively coupled spin qubits
NASA Astrophysics Data System (ADS)
Wang, Xin; Barnes, Edwin
2015-03-01
Precise execution of quantum gates acting on two or multiple qubits is essential to quantum computation. For semiconductor spin qubits coupled via capacitive interaction, the best fidelity for a two-qubit gate demonstrated so far is around 70%, insufficient for fault-tolerant quantum computation. In this talk we present control protocols that may substantially improve the robustness of two-qubit gates against both nuclear noise and charge noise. Our pulse sequences incorporate simultaneous dynamical decoupling protocols and are simple enough for immediate experimental realization. Together with existing control protocols for single-qubit gates, our results constitute an important step toward scalable quantum computation using spin qubits. This work is done in collaboration with Sankar Das Sarma and supported by LPS-NSA-CMTC and IARPA-MQCO.
Cross-correlation measurement of quantum shot noise using homemade transimpedance amplifiers
NASA Astrophysics Data System (ADS)
Hashisaka, Masayuki; Ota, Tomoaki; Yamagishi, Masakazu; Fujisawa, Toshimasa; Muraki, Koji
2014-05-01
We report a cross-correlation measurement system, based on a new approach, which can be used to measure shot noise in a mesoscopic conductor at milliKelvin temperatures. In contrast to other measurement systems in which high-speed low-noise voltage amplifiers are commonly used, our system employs homemade transimpedance amplifiers (TAs). The low input impedance of the TAs significantly reduces the crosstalk caused by unavoidable parasitic capacitance between wires. The TAs are designed to have a flat gain over a frequency band from 2 kHz to 1 MHz. Low-noise performance is attained by installing the TAs at a 4 K stage of a dilution refrigerator. Our system thus fulfills the technical requirements for cross-correlation measurements: low noise floor, high frequency band, and negligible crosstalk between two signal lines. Using our system, shot noise generated at a quantum point contact embedded in a quantum Hall system is measured. The good agreement between the obtained shot-noise data and theoretical predictions demonstrates the accuracy of the measurements.
Photo-induced electronic properties in single quantum well system: effect of excitonic lifetime
NASA Astrophysics Data System (ADS)
Patwari, Jayita; Ghadi, Hemant; Sardar, Samim; Singhal, Jashan; Tongbram, Binita; Shyamal, Sanjib; Bhattacharya, Chinmoy; Chakrabarti, Subhananda; Pal, Samir Kumar
2017-01-01
In the present study, we have established a correlation between the photo-induced electronic phenomena and excited state lifetime of the photo generated carriers in double barrier Al0.3Ga0.7As\\GaAs quantum well (QW) structures. The excited state lifetime was measured experimentally by picosecond time resolved photoluminescence spectroscopy for two samples with different well widths (5.3 nm and 16.5 nm). The faster nonradiative decay time of the narrower well can be attributed to the facile escape of electrons from well to barrier due to lower associated energy compared to that of the thicker well which resembles the simulated results of the energy level distribution. The proposed mechanism of carrier escape is further proven from the higher value of unconventional excitonic capacitance value in the thicker well, measured by impedance spectroscopy. The dependence of photo-induced capacitance on well thickness is explained by the lifetime of the excited carriers in this study. Dependence of the photo-generated capacitance (C) on externally applied bias voltage (V) was also studied to quantitatively establish a proportional relation between the carrier holding capacity of the well and the excitonic lifetime. The higher accumulation of charge and lower ground state energy of the thicker well is evident from the higher tunnelling current found for the same in the photocurrent (I) versus voltage (V) measurement. Thus the escape of electrons from the well to barrier is the key factor affecting the photo generated charge accumulation and its holding capacity which in turn influences the device performances.
NASA Astrophysics Data System (ADS)
Daniels, Lindsey; Scott, Matthew; Mišković, Z. L.
2018-06-01
We analyze the effects of dielectric decrement and finite ion size in an aqueous electrolyte on the capacitance of a graphene electrode, and make comparisons with the effects of dielectric saturation combined with finite ion size. We first derive conditions for the cross-over from a camel-shaped to a bell-shaped capacitance of the diffuse layer. We show next that the total capacitance is dominated by a V-shaped quantum capacitance of graphene at low potentials. A broad peak develops in the total capacitance at high potentials, which is sensitive to the ion size with dielectric saturation, but is stable with dielectric decrement.
QCAD simulation and optimization of semiconductor double quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, Erik; Gao, Xujiao; Kalashnikova, Irina
2013-12-01
We present the Quantum Computer Aided Design (QCAD) simulator that targets modeling quantum devices, particularly silicon double quantum dots (DQDs) developed for quantum qubits. The simulator has three di erentiating features: (i) its core contains nonlinear Poisson, e ective mass Schrodinger, and Con guration Interaction solvers that have massively parallel capability for high simulation throughput, and can be run individually or combined self-consistently for 1D/2D/3D quantum devices; (ii) the core solvers show superior convergence even at near-zero-Kelvin temperatures, which is critical for modeling quantum computing devices; (iii) it couples with an optimization engine Dakota that enables optimization of gate voltagesmore » in DQDs for multiple desired targets. The Poisson solver includes Maxwell- Boltzmann and Fermi-Dirac statistics, supports Dirichlet, Neumann, interface charge, and Robin boundary conditions, and includes the e ect of dopant incomplete ionization. The solver has shown robust nonlinear convergence even in the milli-Kelvin temperature range, and has been extensively used to quickly obtain the semiclassical electrostatic potential in DQD devices. The self-consistent Schrodinger-Poisson solver has achieved robust and monotonic convergence behavior for 1D/2D/3D quantum devices at very low temperatures by using a predictor-correct iteration scheme. The QCAD simulator enables the calculation of dot-to-gate capacitances, and comparison with experiment and between solvers. It is observed that computed capacitances are in the right ballpark when compared to experiment, and quantum con nement increases capacitance when the number of electrons is xed in a quantum dot. In addition, the coupling of QCAD with Dakota allows to rapidly identify which device layouts are more likely leading to few-electron quantum dots. Very efficient QCAD simulations on a large number of fabricated and proposed Si DQDs have made it possible to provide fast feedback for design comparison and optimization.« less
A Transfer Hamiltonian Model for Devices Based on Quantum Dot Arrays
Illera, S.; Prades, J. D.; Cirera, A.; Cornet, A.
2015-01-01
We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide. PMID:25879055
A transfer hamiltonian model for devices based on quantum dot arrays.
Illera, S; Prades, J D; Cirera, A; Cornet, A
2015-01-01
We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide.
Contribution of Dielectric Screening to the Total Capacitance of Few-Layer Graphene Electrodes.
Zhan, Cheng; Jiang, De-en
2016-03-03
We apply joint density functional theory (JDFT), which treats the electrode/electrolyte interface self-consistently, to an electric double-layer capacitor (EDLC) based on few-layer graphene electrodes. The JDFT approach allows us to quantify a third contribution to the total capacitance beyond quantum capacitance (CQ) and EDL capacitance (CEDL). This contribution arises from the dielectric screening of the electric field by the surface of the few-layer graphene electrode, and we therefore term it the dielectric capacitance (CDielec). We find that CDielec becomes significant in affecting the total capacitance when the number of graphene layers in the electrode is more than three. Our investigation sheds new light on the significance of the electrode dielectric screening on the capacitance of few-layer graphene electrodes.
A dominant electron trap in molecular beam epitaxial InAlN lattice-matched to GaN
NASA Astrophysics Data System (ADS)
Pandey, Ayush; Bhattacharya, Aniruddha; Cheng, Shaobo; Botton, Gianluigi A.; Mi, Zetian; Bhattacharya, Pallab
2018-04-01
Deep levels in lattice-matched undoped and Si-doped InAlN/GaN grown by plasma-assisted molecular beam epitaxy have been identified and characterized by capacitance and photocapacitance measurements. From x-ray diffraction, reflectance measurements, electron energy loss spectroscopy and high-resolution transmission electron microscopy it is evident that the material has two distinct phases with different compositions. These correspond to In compositions of 18.1% and 25.8%, with corresponding bandgaps of 4.6 eV and 4.1 eV, respectively. The lower bandgap material is present as columnar microstructures in the form of quantum wires. A dominant electron trap with an activation energy of 0.293 ± 0.01 eV, a small capture cross-section of (1.54 ± 0.25) × 10-18 cm2, and density increasing linearly with Si doping density is identified in all the samples. The characteristics of the electron trap and variation of diode capacitance are discussed in the context of carrier dynamics involving the dominant trap level and the quantum wires.
NASA Astrophysics Data System (ADS)
An, Yanbin; Shekhawat, Aniruddh; Behnam, Ashkan; Pop, Eric; Ural, Ant
2016-11-01
Metal-oxide-semiconductor (MOS) devices with graphene as the metal gate electrode, silicon dioxide with thicknesses ranging from 5 to 20 nm as the dielectric, and p-type silicon as the semiconductor are fabricated and characterized. It is found that Fowler-Nordheim (F-N) tunneling dominates the gate tunneling current in these devices for oxide thicknesses of 10 nm and larger, whereas for devices with 5 nm oxide, direct tunneling starts to play a role in determining the total gate current. Furthermore, the temperature dependences of the F-N tunneling current for the 10 nm devices are characterized in the temperature range 77-300 K. The F-N coefficients and the effective tunneling barrier height are extracted as a function of temperature. It is found that the effective barrier height decreases with increasing temperature, which is in agreement with the results previously reported for conventional MOS devices with polysilicon or metal gate electrodes. In addition, high frequency capacitance-voltage measurements of these MOS devices are performed, which depict a local capacitance minimum under accumulation for thin oxides. By analyzing the data using numerical calculations based on the modified density of states of graphene in the presence of charged impurities, it is shown that this local minimum is due to the contribution of the quantum capacitance of graphene. Finally, the workfunction of the graphene gate electrode is extracted by determining the flat-band voltage as a function of oxide thickness. These results show that graphene is a promising candidate as the gate electrode in metal-oxide-semiconductor devices.
High-speed absorption recovery in quantum well diodes by diffusive electrical conduction
NASA Astrophysics Data System (ADS)
Livescu, G.; Miller, D. A. B.; Sizer, T.; Burrows, D. J.; Cunningham, J. E.
1989-02-01
Picosecond time-resolved electroabsorption measurements in GaAs quantum well p-i-n diode structures are presented. While the dynamics of the vertical transport is not completely understood at present, the data reveal the importance of the 'lateral' propagatin of the photoexcited voltage pulse over the area of the doped regions. A two-dimensional 'diffusive conduction' mechanism is proposed which predicts a fast relaxation of the electrical pulse, with time constants ranging from 50 fs to 500 ps, determined by the size of the exciting spot, the resistivity of the doped regions, and the capacitance of the intrinsic region.
A Novel Optoelectronic Device Based on Correlated Two-Dimensional Fermions
NASA Astrophysics Data System (ADS)
Dianat, Pouya
Conventional metallic contacts can be replicated by quantum two dimensional charge (of Fermion) systems (2DFS). Unlike metals, the particle concentration of these "unconventional" systems can be accurately controlled in an extensive range and by means of external electronic or optical stimuli. A 2DFS can, hence, transition from a high-density kinetic liquid into a dilute-but highly correlated-gas state, in which inter-particle Coulombic interactions are significant. Such interactions contribute negatively, by so-called exchange-correlation energies, to the overall energetics of the system, and are manifested as a series negative quantum capacitance. This dissertation investigates the capacitive performance of a class of unconventional devices based on a planar metal-semiconductor-metal structure with an embedded 2DFS. They constitute an opto-electronically controlled variable capacitor, with record breaking figures-of-merit in capacitance tuning ranges of up to 7000 and voltage sensitivities as large as 400. Internal eld manipulations by localized depletion of a dense 2DFS account for the enlarged maximum and reduced minimum capacitances. The capacitance-voltage characteristics of these devices incur an anomalous "Batman" shape capacitance enhancement (CE) of up to 200% that may be triggered optically. The CE is attributed to the release and storage of exchange-correlation energies; from the "unconventional" plate and in the dielectric, respectively. This process is enforced by density manipulation of the 2DFS by a hybrid of an external eld and light-generated carriers. Under moderate optical powers, the capacitance becomes 43 times greater than the dark value; thus a new capacitance-based photodetection method is offered. This new capacitance based photodetection method has a range of applications in optoelectronics, particularly in the next generation of photonic integrated systems.
Cross-correlation measurement of quantum shot noise using homemade transimpedance amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashisaka, Masayuki, E-mail: hashisaka@phys.titech.ac.jp; Ota, Tomoaki; Yamagishi, Masakazu
We report a cross-correlation measurement system, based on a new approach, which can be used to measure shot noise in a mesoscopic conductor at milliKelvin temperatures. In contrast to other measurement systems in which high-speed low-noise voltage amplifiers are commonly used, our system employs homemade transimpedance amplifiers (TAs). The low input impedance of the TAs significantly reduces the crosstalk caused by unavoidable parasitic capacitance between wires. The TAs are designed to have a flat gain over a frequency band from 2 kHz to 1 MHz. Low-noise performance is attained by installing the TAs at a 4 K stage of amore » dilution refrigerator. Our system thus fulfills the technical requirements for cross-correlation measurements: low noise floor, high frequency band, and negligible crosstalk between two signal lines. Using our system, shot noise generated at a quantum point contact embedded in a quantum Hall system is measured. The good agreement between the obtained shot-noise data and theoretical predictions demonstrates the accuracy of the measurements.« less
Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices
NASA Technical Reports Server (NTRS)
Biegel, Bryan A.; Rafferty, Conor S.; Ancona, Mario G.; Yu, Zhi-Ping
2000-01-01
We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction to the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion or quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.
Interacton-driven phenomena and Wigner transition in two-dimensional systems
NASA Astrophysics Data System (ADS)
Knighton, Talbot
The formation of a quantum Wigner Cyrstal (WC) is one of the most anticipated predictions of electron-electron interaction. This is expected to occur in zero magnetic field when the Coulomb energy EC dominates over the Fermi energy EF (at a ratio rs ≡ EC/ EF ˜ 37) for temperatures T << EF / kB. The extremely low T and ultra dilute carrier concentrations necessary to meet these requirements are difficult to achieve. Alternatively, a perpendicular magnetic B-field can be used to quench the kinetic energy. As B increases, various energies compete to produce the ground state. High purity systems with large interaction rs >1 tend to exhibit reentrant insulating phases (RIP) between the integer and fractional Hall states. These are suspected to be a form of WC, but the evidence is not yet conclusive. We use transport measurements to identify a conduction threshold in the RIP at filling factor nu = 0.37 (close to the 1/3 state) that is several orders of magnitude larger than the pinning observed in many other systems. We analyze the temperature and electric E-field dependence of this insulating phase and find them to be consistent with a second-order phase transition to WC. The measurements are performed on dilute holes p = 4 x 1010 cm-2 of mobility mu = 1/perho ˜ 2.5 x 106 cm 2/Vs in 20 nm GaAs/AlGaAs quantum square wells. We also discuss various other projects related to the study of topological states and strongly interacting charges: direct testing of the bulk conduction in a developing quantum Hall state using a corbino-disk-like geometry (or "anti-Hall bar"); preliminary results for ultra dilute charges in undoped heterojunction insulated gated field effect transistors; quantum capacitance measurement of the density of states across the vanadium dioxide metal insulator transition; progress towards a scanning capacitance measurement using the tip of an atomic force microscope; and graphene devices for optical detection.
Contribution of dielectric screening to the total capacitance of few-layer graphene electrodes
Zhan, Cheng; Jiang, De-en
2016-02-17
We apply joint density functional theory (JDFT), which treats the electrode/electrolyte interface self-consistently, to an electric double-layer capacitor (EDLC) based on few-layer graphene electrodes. The JDFT approach allows us to quantify a third contribution to the total capacitance beyond quantum capacitance (C Q) and EDL capacitance (C EDL). This contribution arises from the dielectric screening of the electric field by the surface of the few-layer graphene electrode, and we therefore term it the dielectric capacitance (C Dielec). We find that C Dielec becomes significant in affecting the total capacitance when the number of graphene layers in the electrode is moremore » than three. In conclusion, our investigation sheds new light on the significance of the electrode dielectric screening on the capacitance of few-layer graphene electrodes.« less
Density functional theory and an experimentally-designed energy functional of electron density.
Miranda, David A; Bueno, Paulo R
2016-09-21
We herein demonstrate that capacitance spectroscopy (CS) experimentally allows access to the energy associated with the quantum mechanical ground state of many-electron systems. Priorly, electrochemical capacitance, C [small mu, Greek, macron] [ρ], was previously understood from conceptual and computational density functional theory (DFT) calculations. Thus, we herein propose a quantum mechanical experiment-based variational method for electron charging processes based on an experimentally-designed functional of the ground state electron density. In this methodology, the electron state density, ρ, and an energy functional of the electron density, E [small mu, Greek, macron] [ρ], can be obtained from CS data. CS allows the derivative of the electrochemical potential with respect to the electron density, (δ[small mu, Greek, macron][ρ]/δρ), to be obtained as a unique functional of the energetically minimised system, i.e., β/C [small mu, Greek, macron] [ρ], where β is a constant (associated with the size of the system) and C [small mu, Greek, macron] [ρ] is an experimentally observable quantity. Thus the ground state energy (at a given fixed external potential) can be obtained simply as E [small mu, Greek, macron] [ρ], from the experimental measurement of C [small mu, Greek, macron] [ρ]. An experimental data-set was interpreted to demonstrate the potential of this quantum mechanical experiment-based variational principle.
Harvesting dissipated energy with a mesoscopic ratchet
NASA Astrophysics Data System (ADS)
Roche, B.; Roulleau, P.; Jullien, T.; Jompol, Y.; Farrer, I.; Ritchie, D. A.; Glattli, D. C.
2015-04-01
The search for new efficient thermoelectric devices converting waste heat into electrical energy is of major importance. The physics of mesoscopic electronic transport offers the possibility to develop a new generation of nanoengines with high efficiency. Here we describe an all-electrical heat engine harvesting and converting dissipated power into an electrical current. Two capacitively coupled mesoscopic conductors realized in a two-dimensional conductor form the hot source and the cold converter of our device. In the former, controlled Joule heating generated by a voltage-biased quantum point contact results in thermal voltage fluctuations. By capacitive coupling the latter creates electric potential fluctuations in a cold chaotic cavity connected to external leads by two quantum point contacts. For unequal quantum point contact transmissions, a net electrical current is observed proportional to the heat produced.
Computational insight into the capacitive performance of graphene edge planes
Zhan, Cheng; Zhang, Yu; Cummings, Peter T.; ...
2017-02-01
Recent experiments have shown that electric double-layer capacitors utilizing electrodes consisting of graphene edge plane exhibit higher capacitance than graphene basal plane. However, theoretical understanding of this capacitance enhancement is still limited. Here we applied a self-consistent joint density functional theory calculation on the electrode/electrolyte interface and found that the capacitance of graphene edge plane depends on the edge type: zigzag edge has higher capacitance than armchair edge due to the difference in their electronic structures. We further examined the quantum, dielectric, and electric double-layer (EDL) contributions to the total capacitance of the edge-plane electrodes. Classical molecular dynamics simulation foundmore » that the edge planes have higher EDL capacitance than the basal plane due to better adsorption of counter-ions and higher solvent accessible surface area. Finally, our work therefore has elucidated the capacitive energy storage in graphene edge planes that take into account both the electrode's electronic structure and the EDL structure.« less
Equilibrium charge fluctuations of a charge detector and its effect on a nearby quantum dot
NASA Astrophysics Data System (ADS)
Ruiz-Tijerina, David; Vernek, Edson; Ulloa, Sergio
2014-03-01
We study the Kondo state of a spin-1/2 quantum dot (QD), in close proximity to a quantum point contact (QPC) charge detector near the conductance regime of the 0.7 anomaly. The electrostatic coupling between the QD and QPC introduces a remote gate on the QD level, which varies with the QPC gate voltage. Furthermore, models for the 0.7 anomaly [Y. Meir et al., PRL 89,196802(2002)] suggest that the QPC lodges a Kondo-screened level with charge-correlated hybridization, which may be also affected by capacitive coupling to the QD, giving rise to a competition between the two Kondo ground states. We model the QD-QPC system as two capacitively-coupled Kondo impurities, and explore the zero-bias transport of both the QD and the QPC for different local gate voltages and coupling strengths, using the numerical renormalization group and variational methods. We find that the capacitive coupling produces a remote gating effect, non-monotonic in the gate voltages, which reduces the gate voltage window for Kondo screening in either impurity, and which can also drive a quantum phase transition out of the Kondo regime. Our study is carried out for intermediate coupling strengths, and as such is highly relevant to experiments; particularly, to recent studies of decoherence effects on QDs. Supported by MWN/CIAM and NSF PIRE.
NASA Astrophysics Data System (ADS)
Stomp, Romain-Pierre
This thesis is devoted to the studies of self-assembled InAs quantum dots (QD) by low-temperature Atomic Force Microscopy (AFM) in frequency modulation mode. Several spectroscopic methods are developed to investigate single electron charging from a two-dimensional electron gas (2DEG) to an individual InAs QD. Furthermore, a new technique to measure the absolute tip-sample capacitance is also demonstrated. The main observables are the electrostatic force between the metal-coated AFM tip and sample as well as the sample-induced energy dissipation, and therefore no tunneling current has to be collected at the AFM tip. Measurements were performed by recording simultaneously the shift in the resonant frequency and the Q-factor degradation of the oscillating cantilever either as a function of tip-sample voltage or distance. The signature of single electron charging was detected as an abrupt change in the frequency shift as well as corresponding peaks in the dissipation. The main experimental features in the force agree well with the semi-classical theory of Coulomb blockade by considering the free energy of the system. The observed dissipation peaks can be understood as a back-action effect on the oscillating cantilever beam due to the fluctuation in time of electrons tunneling back and forth between the 2DEG and the QD. It was also possible to extract the absolute value of the tip-sample capacitance, as a consequence of the spectroscopic analysis of the electrostic force as a function of tip-sample distance for different values of the applied voltage. At the same time, the contact potential difference and the residual non-capacitive force could also be determined as a function of tip-sample distance.
Tunnel barrier design in donor nanostructures defined by hydrogen-resist lithography
NASA Astrophysics Data System (ADS)
Pascher, Nikola; Hennel, Szymon; Mueller, Susanne; Fuhrer, Andreas
2016-08-01
A four-terminal donor quantum dot (QD) is used to characterize potential barriers between degenerately doped nanoscale contacts. The QD is fabricated by hydrogen-resist lithography on Si(001) in combination with n-type doping by phosphine. The four contacts have different separations (d = 9, 12, 16 and 29 nm) to the central 6 nm × 6 nm QD island, leading to different tunnel and capacitive coupling. Cryogenic transport measurements in the Coulomb-blockade (CB) regime are used to characterize these tunnel barriers. We find that field enhancement near the apex of narrow dopant leads is an important effect that influences both barrier breakdown and the magnitude of the tunnel current in the CB transport regime. From CB-spectroscopy measurements, we extract the mutual capacitances between the QD and the four contacts, which scale inversely with the contact separation d. The capacitances are in excellent agreement with numerical values calculated from the pattern geometry in the hydrogen resist. Furthermore, we show that by engineering the source-drain tunnel barriers to be asymmetric, we obtain a much simpler excited-state spectrum of the QD, which can be directly linked to the orbital single-particle spectrum.
Interplay of Hofstadter and quantum Hall states in bilayer graphene
NASA Astrophysics Data System (ADS)
Spanton, Eric M.; Zibrov, Alexander A.; Zhou, Haoxin; Taniguchi, Takashi; Watanabe, Kenji; Young, Andrea
Electron interactions in ultraclean systems such as graphene lead to the fractional quantum Hall effect in an applied magnetic field. Long wavelength periodic potentials from a moiré pattern in aligned boron nitride-graphene heterostructures may compete with such interactions and favor spatially ordered states (e.g. Wigner crystals orcharge density waves). To investigate this competition, we studied the bulk phase diagram of asymmetrically moiré-coupled bilayer graphene via multi-terminal magnetocapacitance measurements at ultra-high magnetic fields. Two quantum numbers characterize energy gaps in this regime: t, which indexes the Bloch bands, and s, which indexes the Landau level. Similar to past experiments, we observe the conventional integer and fractional quantum Hall gaps (t = 0), integer Hofstadter gaps (integer s and integer t ≠ 0), and fractional Bloch states associated with an expanded superlattice unit cell (fractional s and integer t). Additionally, we find states with fractional values for both s and t. Measurement of the capacitance matrix shows that these states occur on the layer exposed to the strong periodic potential. We discuss the results in terms of possible fractional quantum hall states unique to periodically modulated systems.
Reconfigurable quadruple quantum dots in a silicon nanowire transistor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betz, A. C., E-mail: ab2106@cam.ac.uk; Broström, M.; Gonzalez-Zalba, M. F.
2016-05-16
We present a reconfigurable metal-oxide-semiconductor multi-gate transistor that can host a quadruple quantum dot in silicon. The device consists of an industrial quadruple-gate silicon nanowire field-effect transistor. Exploiting the corner effect, we study the versatility of the structure in the single quantum dot and the serial double quantum dot regimes and extract the relevant capacitance parameters. We address the fabrication variability of the quadruple-gate approach which, paired with improved silicon fabrication techniques, makes the corner state quantum dot approach a promising candidate for a scalable quantum information architecture.
NASA Astrophysics Data System (ADS)
Ma, Jiaju; Zhang, Yang; Wang, Xiaoxin; Ying, Lei; Masoodian, Saleh; Wang, Zhiyuan; Starkey, Dakota A.; Deng, Wei; Kumar, Rahul; Wu, Yang; Ghetmiri, Seyed Amir; Yu, Zongfu; Yu, Shui-Qing; Salamo, Gregory J.; Fossum, Eric R.; Liu, Jifeng
2017-05-01
This research investigates the fundamental limits and trade-space of quantum semiconductor photodetectors using the Schrödinger equation and the laws of thermodynamics.We envision that, to optimize the metrics of single photon detection, it is critical to maximize the optical absorption in the minimal volume and minimize the carrier transit process simultaneously. Integration of photon management with quantum charge transport/redistribution upon optical excitation can be engineered to maximize the quantum efficiency (QE) and data rate and minimize timing jitter at the same time. Due to the ultra-low capacitance of these quantum devices, even a single photoelectron transfer can induce a notable change in the voltage, enabling non-avalanche single photon detection at room temperature as has been recently demonstrated in Si quanta image sensors (QIS). In this research, uniform III-V quantum dots (QDs) and Si QIS are used as model systems to test the theory experimentally. Based on the fundamental understanding, we also propose proof-of-concept, photon-managed quantum capacitance photodetectors. Built upon the concepts of QIS and single electron transistor (SET), this novel device structure provides a model system to synergistically test the fundamental limits and tradespace predicted by the theory for semiconductor detectors. This project is sponsored under DARPA/ARO's DETECT Program: Fundamental Limits of Quantum Semiconductor Photodetectors.
A Food Chain Algorithm for Capacitated Vehicle Routing Problem with Recycling in Reverse Logistics
NASA Astrophysics Data System (ADS)
Song, Qiang; Gao, Xuexia; Santos, Emmanuel T.
2015-12-01
This paper introduces the capacitated vehicle routing problem with recycling in reverse logistics, and designs a food chain algorithm for it. Some illustrative examples are selected to conduct simulation and comparison. Numerical results show that the performance of the food chain algorithm is better than the genetic algorithm, particle swarm optimization as well as quantum evolutionary algorithm.
Computational Insights into Materials and Interfaces for Capacitive Energy Storage
Zhan, Cheng; Lian, Cheng; Zhang, Yu; Thompson, Matthew W.; Xie, Yu; Wu, Jianzhong; Kent, Paul R. C.; Cummings, Peter T.; Wesolowski, David J.
2017-01-01
Supercapacitors such as electric double‐layer capacitors (EDLCs) and pseudocapacitors are becoming increasingly important in the field of electrical energy storage. Theoretical study of energy storage in EDLCs focuses on solving for the electric double‐layer structure in different electrode geometries and electrolyte components, which can be achieved by molecular simulations such as classical molecular dynamics (MD), classical density functional theory (classical DFT), and Monte‐Carlo (MC) methods. In recent years, combining first‐principles and classical simulations to investigate the carbon‐based EDLCs has shed light on the importance of quantum capacitance in graphene‐like 2D systems. More recently, the development of joint density functional theory (JDFT) enables self‐consistent electronic‐structure calculation for an electrode being solvated by an electrolyte. In contrast with the large amount of theoretical and computational effort on EDLCs, theoretical understanding of pseudocapacitance is very limited. In this review, we first introduce popular modeling methods and then focus on several important aspects of EDLCs including nanoconfinement, quantum capacitance, dielectric screening, and novel 2D electrode design; we also briefly touch upon pseudocapactive mechanism in RuO2. We summarize and conclude with an outlook for the future of materials simulation and design for capacitive energy storage. PMID:28725531
Ilie, C C; Guzman, F; Swanson, B L; Evans, I R; Costa, P S; Teeter, J D; Shekhirev, M; Benker, N; Sikich, S; Enders, A; Dowben, P A; Sinitskii, A; Yost, A J
2018-05-10
Photoactive perovskite quantum dot films, deposited via an inkjet printer, have been characterized by x-ray diffraction and x-ray photoelectron spectroscopy. The crystal structure and bonding environment are consistent with CsPbBr 3 perovskite quantum dots. The current-voltage (I-V) and capacitance-voltage (C-V) transport measurements indicate that the photo-carrier drift lifetime can exceed 1 ms for some printed perovskite films. This far exceeds the dark drift carrier lifetime, which is below 50 ns. The printed films show a photocarrier density 10 9 greater than the dark carrier density, making these printed films ideal candidates for application in photodetectors. The successful printing of photoactive-perovskite quantum dot films of CsPbBr 3 , indicates that the rapid prototyping of various perovskite inks and multilayers is realizable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhtarova, Anna; Valdueza-Felip, Sirona; Redaelli, Luca
2016-04-18
We investigate the photovoltaic performance of pseudomorphic In{sub 0.1}Ga{sub 0.9}N/GaN multiple-quantum well (MQW) solar cells as a function of the total active region thickness. An increase in the number of wells from 5 to 40 improves the short-circuit current and the open-circuit voltage, resulting in a 10-fold enhancement of the overall conversion efficiency. Further increasing the number of wells leads to carrier collection losses due to an incomplete depletion of the active region. Capacitance-voltage measurements point to a hole diffusion length of 48 nm in the MQW region.
Readout for phase qubits without Josephson junctions
NASA Astrophysics Data System (ADS)
Steffen, Matthias; Kumar, Shwetank; DiVincenzo, David; Keefe, George; Ketchen, Mark; Rothwell, Mary Beth; Rozen, Jim
2010-03-01
We present a readout scheme for phase qubits which eliminates the read-out superconducting quantum interference device so that the entire qubit and measurement circuitry only require a single Josephson junction. Our scheme capacitively couples the phase qubit directly to a transmission line and detects its state after the measurement pulse by determining a frequency shift observable in the forward scattering parameter of the readout microwaves. This readout is extendable to multiple phase qubits coupled to a common readout line and can in principle be used for other flux biased qubits having two quasistable readout configurations.
NASA Astrophysics Data System (ADS)
Lü, Xiaozhou; Xie, Kai; Xue, Dongfeng; Zhang, Feng; Qi, Liang; Tao, Yebo; Li, Teng; Bao, Weimin; Wang, Songlin; Li, Xiaoping; Chen, Renjie
2017-10-01
Micro-capacitance sensors are widely applied in industrial applications for the measurement of mechanical variations. The measurement accuracy of micro-capacitance sensors is highly dependent on the capacitance measurement circuit. To overcome the inability of commonly used methods to directly measure capacitance variation and deal with the conflict between the measurement range and accuracy, this paper presents a capacitance variation measurement method which is able to measure the output capacitance variation (relative value) of the micro-capacitance sensor with a continuously variable measuring range. We present the principles and analyze the non-ideal factors affecting this method. To implement the method, we developed a capacitance variation measurement circuit and carried out experiments to test the circuit. The result shows that the circuit is able to measure a capacitance variation range of 0-700 pF linearly with a maximum relative accuracy of 0.05% and a capacitance range of 0-2 nF (with a baseline capacitance of 1 nF) with a constant resolution of 0.03%. The circuit is proposed as a new method to measure capacitance and is expected to have applications in micro-capacitance sensors for measuring capacitance variation with a continuously variable measuring range.
Probing the thermal Hall effect using miniature capacitive strontium titanate thermometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tinsman, Colin; Li, Gang; Asaba, Tomoya
2016-06-27
The thermal Hall effect is the thermal analog of the electrical Hall effect. Rarely observed in normal metals, thermal Hall signals have been argued to be a key property for a number of strongly correlated materials, such as high temperature superconductors, correlated topological insulators, and quantum magnets. The observation of the thermal Hall effect requires precise measurement of temperature in intense magnetic fields. Particularly at low temperature, resistive thermometers have a strong dependence on field, which makes them unsuitable for this purpose. We have created capacitive thermometers which instead measure the dielectric constant of strontium titanate (SrTiO{sub 3}). SrTiO{sub 3}more » approaches a ferroelectric transition, causing its dielectric constant to increase by a few orders of magnitude at low temperature. As a result, these thermometers are very sensitive at low temperature while having very little dependence on the applied magnetic field, making them ideal for thermal Hall measurements. We demonstrate this method by making measurements of the thermal Hall effect in Bismuth in magnetic fields of up to 10 T.« less
A real-time spectrum acquisition system design based on quantum dots-quantum well detector
NASA Astrophysics Data System (ADS)
Zhang, S. H.; Guo, F. M.
2016-01-01
In this paper, we studied the structure characteristics of quantum dots-quantum well photodetector with response wavelength range from 400 nm to 1000 nm. It has the characteristics of high sensitivity, low dark current and the high conductance gain. According to the properties of the quantum dots-quantum well photodetectors, we designed a new type of capacitive transimpedence amplifier (CTIA) readout circuit structure with the advantages of adjustable gain, wide bandwidth and high driving ability. We have implemented the chip packaging between CTIA-CDS structure readout circuit and quantum dots detector and tested the readout response characteristics. According to the timing signals requirements of our readout circuit, we designed a real-time spectral data acquisition system based on FPGA and ARM. Parallel processing mode of programmable devices makes the system has high sensitivity and high transmission rate. In addition, we realized blind pixel compensation and smoothing filter algorithm processing to the real time spectrum data by using C++. Through the fluorescence spectrum measurement of carbon quantum dots and the signal acquisition system and computer software system to realize the collection of the spectrum signal processing and analysis, we verified the excellent characteristics of detector. It meets the design requirements of quantum dot spectrum acquisition system with the characteristics of short integration time, real-time and portability.
Electric double-layer capacitance between an ionic liquid and few-layer graphene.
Uesugi, Eri; Goto, Hidenori; Eguchi, Ritsuko; Fujiwara, Akihiko; Kubozono, Yoshihiro
2013-01-01
Ionic-liquid gates have a high carrier density due to their atomically thin electric double layer (EDL) and extremely large geometrical capacitance Cg. However, a high carrier density in graphene has not been achieved even with ionic-liquid gates because the EDL capacitance CEDL between the ionic liquid and graphene involves the series connection of Cg and the quantum capacitance Cq, which is proportional to the density of states. We investigated the variables that determine CEDL at the molecular level by varying the number of graphene layers n and thereby optimising Cq. The CEDL value is governed by Cq at n < 4, and by Cg at n > 4. This transition with n indicates a composite nature for CEDL. Our finding clarifies a universal principle that determines capacitance on a microscopic scale, and provides nanotechnological perspectives on charge accumulation and energy storage using an ultimately thin capacitor.
Electric double-layer capacitance between an ionic liquid and few-layer graphene
Uesugi, Eri; Goto, Hidenori; Eguchi, Ritsuko; Fujiwara, Akihiko; Kubozono, Yoshihiro
2013-01-01
Ionic-liquid gates have a high carrier density due to their atomically thin electric double layer (EDL) and extremely large geometrical capacitance Cg. However, a high carrier density in graphene has not been achieved even with ionic-liquid gates because the EDL capacitance CEDL between the ionic liquid and graphene involves the series connection of Cg and the quantum capacitance Cq, which is proportional to the density of states. We investigated the variables that determine CEDL at the molecular level by varying the number of graphene layers n and thereby optimising Cq. The CEDL value is governed by Cq at n < 4, and by Cg at n > 4. This transition with n indicates a composite nature for CEDL. Our finding clarifies a universal principle that determines capacitance on a microscopic scale, and provides nanotechnological perspectives on charge accumulation and energy storage using an ultimately thin capacitor. PMID:23549208
Controlled Quantum Operations of a Semiconductor Three-Qubit System
NASA Astrophysics Data System (ADS)
Li, Hai-Ou; Cao, Gang; Yu, Guo-Dong; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping
2018-02-01
In a specially designed semiconductor device consisting of three capacitively coupled double quantum dots, we achieve strong and tunable coupling between a target qubit and two control qubits. We demonstrate how to completely switch on and off the target qubit's coherent rotations by presetting two control qubits' states. A Toffoli gate is, therefore, possible based on these control effects. This research paves a way for realizing full quantum-logic operations in semiconductor multiqubit systems.
Computational Insights into Materials and Interfaces for Capacitive Energy Storage
Zhan, Cheng; Lian, Cheng; Zhang, Yu; ...
2017-04-24
Supercapacitors such as electric double-layer capacitors (EDLCs) and pseudocapacitors are becoming increasingly important in the field of electrical energy storage. Theoretical study of energy storage in EDLCs focuses on solving for the electric double-layer structure in different electrode geometries and electrolyte components, which can be achieved by molecular simulations such as classical molecular dynamics (MD), classical density functional theory (classical DFT), and Monte-Carlo (MC) methods. In recent years, combining first-principles and classical simulations to investigate the carbon-based EDLCs has shed light on the importance of quantum capacitance in graphene-like 2D systems. More recently, the development of joint density functional theorymore » (JDFT) enables self-consistent electronic-structure calculation for an electrode being solvated by an electrolyte. In contrast with the large amount of theoretical and computational effort on EDLCs, theoretical understanding of pseudocapacitance is very limited. In this review, we first introduce popular modeling methods and then focus on several important aspects of EDLCs including nanoconfinement, quantum capacitance, dielectric screening, and novel 2D electrode design; we also briefly touch upon pseudocapactive mechanism in RuO 2. We summarize and conclude with an outlook for the future of materials simulation and design for capacitive energy storage.« less
NASA Astrophysics Data System (ADS)
Radin, Maxwell D.; Ogitsu, Tadashi; Biener, Juergen; Otani, Minoru; Wood, Brandon C.
2015-03-01
Understanding the impact of interfacial electric fields on electronic structure is crucial to improving the performance of materials in applications based on charged interfaces. Supercapacitors store energy directly in the strong interfacial field between a solid electrode and a liquid electrolyte; however, the complex interplay between the two is often poorly understood, particularly for emerging low-dimensional electrode materials that possess unconventional electronic structure. Typical descriptions tend to neglect the specific electrode-electrolyte interaction, approximating the intrinsic "quantum capacitance" of the electrode in terms of a fixed electronic density of states. Instead, we introduce a more accurate first-principles approach for directly simulating charge storage in model capacitors using the effective screening medium method, which implicitly accounts for the presence of the interfacial electric field. Applying this approach to graphene supercapacitor electrodes, we find that results differ significantly from the predictions of fixed-band models, leading to improved consistency with experimentally reported capacitive behavior. The differences are traced to two key factors: the inhomogeneous distribution of stored charge due to poor electronic screening and interfacial contributions from the specific interaction with the electrolyte. Our results are used to revise the conventional definition of quantum capacitance and to provide general strategies for improving electrochemical charge storage, particularly in graphene and similar low-dimensional materials.
Full-range electrical characteristics of WS{sub 2} transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Jatinder; Bellus, Matthew Z.; Chiu, Hsin-Ying, E-mail: chiu@ku.edu
We fabricated transistors formed by few layers to bulk single crystal WS{sub 2} to quantify the factors governing charge transport. We established a capacitor network to analyze the full-range electrical characteristics of the channel, highlighting the role of quantum capacitance and interface trap density. We find that the transfer characteristics are mainly determined by the interplay between quantum and oxide capacitances. In the OFF-state, the interface trap density (<10{sup 12} cm{sup –2}) is a limiting factor for the subthreshold swing. Furthermore, the superior crystalline quality and the low interface trap density enabled the subthreshold swing to approach the theoretical limit onmore » a back-gated device on SiO{sub 2}/Si substrate.« less
A 128 x 128 InGaAs detector array for 1.0 - 1.7 microns
NASA Technical Reports Server (NTRS)
Olsen, G.; Joshi, A.; Lange, M.; Woodruff, K.; Mykietyn, E.; Gay, D.; Ackley, D.; Erickson, G.; Ban, V.; Staller, C.
1990-01-01
A two-dimensional 128 x 128 detector array for the 1.0 - 1.7 micron spectral region has been demonstrated with indium gallium arsenide. The 30 micron square pixels had 60 micron spacing in both directions and were designed to be compatible with a 2D Reticon multiplexer. Dark currents below 100 pA, capacitance near 0.1 pF, and quantum efficiencies above 80 percent were measured. Probe maps of dark current and quantum efficiency are presented along with pixel dropout data and wafer yield which was as high as 99.89 percent (7 dropouts) in an area of 6528 pixels and 99.37 percent (103 dropouts) over an entire 128 x 128 pixel region.
Efficient quantum state transfer in an engineered chain of quantum bits
NASA Astrophysics Data System (ADS)
Sandberg, Martin; Knill, Emanuel; Kapit, Eliot; Vissers, Michael R.; Pappas, David P.
2016-03-01
We present a method of performing quantum state transfer in a chain of superconducting quantum bits. Our protocol is based on engineering the energy levels of the qubits in the chain and tuning them all simultaneously with an external flux bias. The system is designed to allow sequential adiabatic state transfers, resulting in on-demand quantum state transfer from one end of the chain to the other. Numerical simulations of the master equation using realistic parameters for capacitive nearest-neighbor coupling, energy relaxation, and dephasing show that fast, high-fidelity state transfer should be feasible using this method.
Multi-Dimensional Quantum Tunneling and Transport Using the Density-Gradient Model
NASA Technical Reports Server (NTRS)
Biegel, Bryan A.; Yu, Zhi-Ping; Ancona, Mario; Rafferty, Conor; Saini, Subhash (Technical Monitor)
1999-01-01
We show that quantum effects are likely to significantly degrade the performance of MOSFETs (metal oxide semiconductor field effect transistor) as these devices are scaled below 100 nm channel length and 2 nm oxide thickness over the next decade. A general and computationally efficient electronic device model including quantum effects would allow us to monitor and mitigate these effects. Full quantum models are too expensive in multi-dimensions. Using a general but efficient PDE solver called PROPHET, we implemented the density-gradient (DG) quantum correction to the industry-dominant classical drift-diffusion (DD) model. The DG model efficiently includes quantum carrier profile smoothing and tunneling in multi-dimensions and for any electronic device structure. We show that the DG model reduces DD model error from as much as 50% down to a few percent in comparison to thin oxide MOS capacitance measurements. We also show the first DG simulations of gate oxide tunneling and transverse current flow in ultra-scaled MOSFETs. The advantages of rapid model implementation using the PDE solver approach will be demonstrated, as well as the applicability of the DG model to any electronic device structure.
NASA Astrophysics Data System (ADS)
Al-Ameri, Talib; Georgiev, Vihar P.; Sadi, Toufik; Wang, Yijiao; Adamu-Lema, Fikru; Wang, Xingsheng; Amoroso, Salvatore M.; Towie, Ewan; Brown, Andrew; Asenov, Asen
2017-03-01
In this work we investigate the impact of quantum mechanical effects on the device performance of n-type silicon nanowire transistors (NWT) for possible future CMOS applications at the scaling limit. For the purpose of this paper, we created Si NWTs with two channel crystallographic orientations <1 1 0> and <1 0 0> and six different cross-section profiles. In the first part, we study the impact of quantum corrections on the gate capacitance and mobile charge in the channel. The mobile charge to gate capacitance ratio, which is an indicator of the intrinsic performance of the NWTs, is also investigated. The influence of the rotating of the NWTs cross-sectional geometry by 90° on charge distribution in the channel is also studied. We compare the correlation between the charge profile in the channel and cross-sectional dimension for circular transistor with four different cross-sections diameters: 5 nm, 6 nm, 7 nm and 8 nm. In the second part of this paper, we expand the computational study by including different gate lengths for some of the Si NWTs. As a result, we establish a correlation between the mobile charge distribution in the channel and the gate capacitance, drain-induced barrier lowering (DIBL) and the subthreshold slope (SS). All calculations are based on a quantum mechanical description of the mobile charge distribution in the channel. This description is based on the solution of the Schrödinger equation in NWT cross sections along the current path, which is mandatory for nanowires with such ultra-scale dimensions.
Measurement of Aharonov-Casher effect in a Josephson junction chain
NASA Astrophysics Data System (ADS)
Pop, Ioan Mihai; Lecocq, Florent; Pannetier, Bernard; Buisson, Olivier; Guichard, Wiebke
2011-03-01
We have recently measured the effect of superconducting phase-slips on the ground state of a Josephson junction chain and a rhombi chain. Here we report clear evidence of Aharonov-Casher effect in a chain of Josephson junctions. This phenomenon is the dual of the well known Aharonov-Bohm interference. Using a capacitively coupled gate to the islands of the chain, we induce oscillations of the supercurrent by tuning the polarization charges on the islands. We observe complex interference patterns for different quantum phase slip amplitudes, that we understand quantitatively as Aharonov-Casher vortex interferences. European STREP MIDAS.
Developments in Scanning Hall Probe Microscopy
NASA Astrophysics Data System (ADS)
Chouinard, Taras; Chu, Ricky; David, Nigel; Broun, David
2009-05-01
Low temperature scanning Hall probe microscopy is a sensitive means of imaging magnetic structures with high spatial resolution and magnetic flux sensitivity approaching that of a Superconducting Quantum Interference Device. We have developed a scanning Hall probe microscope with novel features, including highly reliable coarse positioning, in situ optimization of sensor-sample alignment and capacitive transducers for linear, long range positioning measurement. This has been motivated by the need to reposition accurately above fabricated nanostructures such as small superconducting rings. Details of the design and performance will be presented as well as recent progress towards time-resolved measurements with sub nanosecond resolution.
Entropy Flow Through Near-Critical Quantum Junctions
NASA Astrophysics Data System (ADS)
Friedan, Daniel
2017-05-01
This is the continuation of Friedan (J Stat Phys, 2017. doi: 10.1007/s10955-017-1752-8). Elementary formulas are derived for the flow of entropy through a circuit junction in a near-critical quantum circuit close to equilibrium, based on the structure of the energy-momentum tensor at the junction. The entropic admittance of a near-critical junction in a bulk-critical circuit is expressed in terms of commutators of the chiral entropy currents. The entropic admittance at low frequency, divided by the frequency, gives the change of the junction entropy with temperature—the entropic "capacitance". As an example, and as a check on the formalism, the entropic admittance is calculated explicitly for junctions in bulk-critical quantum Ising circuits (free fermions, massless in the bulk), in terms of the reflection matrix of the junction. The half-bit of information capacity per end of critical Ising wire is re-derived by integrating the entropic "capacitance" with respect to temperature, from T=0 to T=∞.
NASA Astrophysics Data System (ADS)
Smets, Quentin; Verreck, Devin; Verhulst, Anne S.; Rooyackers, Rita; Merckling, Clément; Van De Put, Maarten; Simoen, Eddy; Vandervorst, Wilfried; Collaert, Nadine; Thean, Voon Y.; Sorée, Bart; Groeseneken, Guido; Heyns, Marc M.
2014-05-01
Promising predictions are made for III-V tunnel-field-effect transistor (FET), but there is still uncertainty on the parameters used in the band-to-band tunneling models. Therefore, two simulators are calibrated in this paper; the first one uses a semi-classical tunneling model based on Kane's formalism, and the second one is a quantum mechanical simulator implemented with an envelope function formalism. The calibration is done for In0.53Ga0.47As using several p+/intrinsic/n+ diodes with different intrinsic region thicknesses. The dopant profile is determined by SIMS and capacitance-voltage measurements. Error bars are used based on statistical and systematic uncertainties in the measurement techniques. The obtained parameters are in close agreement with theoretically predicted values and validate the semi-classical and quantum mechanical models. Finally, the models are applied to predict the input characteristics of In0.53Ga0.47As n- and p-lineTFET, with the n-lineTFET showing competitive performance compared to MOSFET.
Local gate control in carbon nanotube quantum devices
NASA Astrophysics Data System (ADS)
Biercuk, Michael Jordan
This thesis presents transport measurements of carbon nanotube electronic devices operated in the quantum regime. Nanotubes are contacted by source and drain electrodes, and multiple lithographically-patterned electrostatic gates are aligned to each device. Transport measurements of device conductance or current as a function of local gate voltages reveal that local gates couple primarily to the proximal section of the nanotube, hence providing spatially localized control over carrier density along the nanotube length. Further, using several different techniques we are able to produce local depletion regions along the length of a tube. This phenomenon is explored in detail for different contact metals to the nanotube. We utilize local gating techniques to study multiple quantum dots in carbon nanotubes produced both by naturally occurring defects, and by the controlled application of voltages to depletion gates. We study double quantum dots in detail, where transport measurements reveal honeycomb charge stability diagrams. We extract values of energy-level spacings, capacitances, and interaction energies for this system, and demonstrate independent control over all relevant tunneling rates. We report rf-reflectometry measurements of gate-defined carbon nanotube quantum dots with integrated charge sensors. Aluminum rf-SETs are electrostatically coupled to carbon nanotube devices and detect single electron charging phenomena in the Coulomb blockade regime. Simultaneous correlated measurements of single electron charging are made using reflected rf power from the nanotube itself and from the rf-SET on microsecond time scales. We map charge stability diagrams for the nanotube quantum dot via charge sensing, observing Coulomb charging diamonds beyond the first order. Conductance measurements of carbon nanotubes containing gated local depletion regions exhibit plateaus as a function of gate voltage, spaced by approximately 1e2/h, the quantum of conductance for a single (non-degenerate) mode. Plateau structure is investigated as a function of bias voltage, temperature, and magnetic field. We speculate on the origin of this surprising quantization, which appears to lack band and spin degeneracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Küchler, R.; Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, Universitätsstrasse 2, 86135 Augsburg; Stingl, C.
2016-07-15
Thermal expansion and magnetostriction are directional dependent thermodynamic quantities. For the characterization of novel quantum phases of matter, it is required to study materials under multi-extreme conditions, in particular, down to very low temperatures, in very high magnetic fields or under high pressure. We developed a miniaturized capacitive dilatometer suitable for temperatures down to 20 mK and usage in high magnetic fields, which exerts a large spring force between 40 to 75 N on the sample. This corresponds to a uniaxial stress up to 3 kbar for a sample with cross section of (0.5 mm){sup 2}. We describe design andmore » performance test of the dilatometer which resolves length changes with high resolution of 0.02 Å at low temperatures. The miniaturized device can be utilized in any standard cryostat, including dilution refrigerators or the commercial physical property measurement system.« less
Panchal, A K; Rai, D K; Solanki, C S
2011-04-01
Post-deposition annealing of a-Si/SiN(x) multilayer films at different temperature shows varying shift in high frequency (1 MHz) capacitance-voltage (HFCV) characteristics. Various a-Si/SiN(x) multilayer films were deposited using hot wire chemical vapor deposition (HWCVD) and annealed in the temperature range of 800 to 900 degrees C to precipitate Si quantum dots (Si-QD) in a-Si layers. HFCV measurements of the as-deposited and annealed films in metal-insulator-semiconductor (MIS) structures show hysterisis in C-V curves. The hysteresis in the as-deposited films and annealed films is attributed to charge trapping in Si-dangling bonds in a-Si layer and in Si-QD respectively. The charge trapping density in Si-QD increases with temperature while the interface defects density (D(it)) remains constant.
Effects of Frequency Dependence of the External Quantum Efficiency of Perovskite Solar Cells.
Ravishankar, Sandheep; Aranda, Clara; Boix, Pablo P; Anta, Juan A; Bisquert, Juan; Garcia-Belmonte, Germà
2018-06-07
Perovskite solar cells are known to show very long response time scales, on the order of milliseconds to seconds. This generates considerable doubt over the validity of the measured external quantum efficiency (EQE) and consequently the estimation of the short-circuit current density. We observe a variation as high as 10% in the values of the EQE of perovskite solar cells for different optical chopper frequencies between 10 and 500 Hz, indicating a need to establish well-defined protocols of EQE measurement. We also corroborate these values and obtain new insights regarding the working mechanisms of perovskite solar cells from intensity-modulated photocurrent spectroscopy measurements, identifying the evolution of the EQE over a range of frequencies, displaying a singular reduction at very low frequencies. This reduction in EQE is ascribed to additional resistive contributions hindering charge extraction in the perovskite solar cell at short-circuit conditions, which are delayed because of the concomitant large low-frequency capacitance.
NASA Astrophysics Data System (ADS)
Xiong, Yong-Chen; Wang, Wei-Zhong; Yang, Jun-Tao; Huang, Hai-Ming
2015-02-01
The quantum phase transition and the electronic transport in a triangular quantum dot system are investigated using the numerical renormalization group method. We concentrate on the interplay between the interdot capacitive coupling V and the interdot tunnel coupling t. For small t, three dots form a local spin doublet. As t increases, due to the competition between V and t, there exist two first-order transitions with phase sequence spin-doublet-magnetic frustration phase-orbital spin singlet. When t is absent, the evolutions of the total charge on the dots and the linear conductance are of the typical Coulomb-blockade features with increasing gate voltage. While for sufficient t, the antiferromagnetic spin correlation between dots is enhanced, and the conductance is strongly suppressed for the bonding state is almost doubly occupied. Project supported by the National Natural Science Foundation of China (Grant Nos. 10874132 and 11174228) and the Doctoral Scientific Research Foundation of HUAT (Grant No. BK201407). One of the authors (Huang Hai-Ming) supported by the Scientific Research Items Foundation of Educational Committee of Hubei Province, China (Grant No. Q20131805).
Modelling and simulation of parallel triangular triple quantum dots (TTQD) by using SIMON 2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fathany, Maulana Yusuf, E-mail: myfathany@gmail.com; Fuada, Syifaul, E-mail: fsyifaul@gmail.com; Lawu, Braham Lawas, E-mail: bram-labs@rocketmail.com
2016-04-19
This research presents analysis of modeling on Parallel Triple Quantum Dots (TQD) by using SIMON (SIMulation Of Nano-structures). Single Electron Transistor (SET) is used as the basic concept of modeling. We design the structure of Parallel TQD by metal material with triangular geometry model, it is called by Triangular Triple Quantum Dots (TTQD). We simulate it with several scenarios using different parameters; such as different value of capacitance, various gate voltage, and different thermal condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radin, Maxwell D.; Ogitsu, Tadashi; Biener, Juergen
Understanding the impact of interfacial electric fields on electronic structure is crucial to improving the performance of materials in applications based on charged interfaces. Supercapacitors store energy directly in the strong interfacial field between a solid electrode and a liquid electrolyte; however, the complex interplay between the two is often poorly understood, particularly for emerging low-dimensional electrode materials that possess unconventional electronic structure. Typical descriptions tend to neglect the specific electrode-electrolyte interaction, approximating the intrinsic “quantum capacitance” of the electrode in terms of a fixed electronic density of states. Instead, we introduce a more accurate first-principles approach for directly simulatingmore » charge storage in model capacitors using the effective screening medium method, which implicitly accounts for the presence of the interfacial electric field. Applying this approach to graphene supercapacitor electrodes, we find that results differ significantly from the predictions of fixed-band models, leading to improved consistency with experimentally reported capacitive behavior. The differences are traced to two key factors: the inhomogeneous distribution of stored charge due to poor electronic screening and interfacial contributions from the specific interaction with the electrolyte. Lastly, our results are used to revise the conventional definition of quantum capacitance and to provide general strategies for improving electrochemical charge storage, particularly in graphene and similar low-dimensional materials.« less
Radin, Maxwell D.; Ogitsu, Tadashi; Biener, Juergen; ...
2015-03-11
Understanding the impact of interfacial electric fields on electronic structure is crucial to improving the performance of materials in applications based on charged interfaces. Supercapacitors store energy directly in the strong interfacial field between a solid electrode and a liquid electrolyte; however, the complex interplay between the two is often poorly understood, particularly for emerging low-dimensional electrode materials that possess unconventional electronic structure. Typical descriptions tend to neglect the specific electrode-electrolyte interaction, approximating the intrinsic “quantum capacitance” of the electrode in terms of a fixed electronic density of states. Instead, we introduce a more accurate first-principles approach for directly simulatingmore » charge storage in model capacitors using the effective screening medium method, which implicitly accounts for the presence of the interfacial electric field. Applying this approach to graphene supercapacitor electrodes, we find that results differ significantly from the predictions of fixed-band models, leading to improved consistency with experimentally reported capacitive behavior. The differences are traced to two key factors: the inhomogeneous distribution of stored charge due to poor electronic screening and interfacial contributions from the specific interaction with the electrolyte. Lastly, our results are used to revise the conventional definition of quantum capacitance and to provide general strategies for improving electrochemical charge storage, particularly in graphene and similar low-dimensional materials.« less
Bayesian view of single-qubit clocks, and an energy versus accuracy tradeoff
NASA Astrophysics Data System (ADS)
Gopalkrishnan, Manoj; Kandula, Varshith; Sriram, Praveen; Deshpande, Abhishek; Muralidharan, Bhaskaran
2017-09-01
We bring a Bayesian approach to the analysis of clocks. Using exponential distributions as priors for clocks, we analyze how well one can keep time with a single qubit freely precessing under a magnetic field. We find that, at least with a single qubit, quantum mechanics does not allow exact timekeeping, in contrast to classical mechanics, which does. We find the design of the single-qubit clock that leads to maximum accuracy. Further, we find an energy versus accuracy tradeoff—the energy cost is at least kBT times the improvement in accuracy as measured by the entropy reduction in going from the prior distribution to the posterior distribution. We propose a physical realization of the single-qubit clock using charge transport across a capacitively coupled quantum dot.
Development of a Si/ SiO 2-based double quantum dot charge qubit with dispersive microwave readout
NASA Astrophysics Data System (ADS)
House, M. G.; Henry, E.; Schmidt, A.; Naaman, O.; Siddiqi, I.; Pan, H.; Xiao, M.; Jiang, H. W.
2011-03-01
Coupling of a high-Q microwave resonator to superconducting qubits has been successfully used to prepare, manipulate, and read out the state of a single qubit, and to mediate interactions between qubits. Our work is geared toward implementing this architecture in a semiconductor qubit. We present the design and development of a lateral quantum dot in which a superconducting microwave resonator is capacitively coupled to a double dot charge qubit. The device is a silicon MOSFET structure with a global gate which is used to accumulate electrons at a Si/ Si O2 interface. A set of smaller gates are used to deplete these electrons to define a double quantum dot and adjacent conduction channels. Two of these depletion gates connect directly to the conductors of a 6 GHz co-planar stripline resonator. We present measurements of transport and conventional charge sensing used to characterize the double quantum dot, and demonstrate that it is possible to reach the few-electron regime in this system. This work is supported by the DARPA-QuEST program.
Measurement of Gas-Liquid Two-Phase Flow in Micro-Pipes by a Capacitance Sensor
Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing
2014-01-01
A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes. PMID:25587879
Measurement of gas-liquid two-phase flow in micro-pipes by a capacitance sensor.
Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing
2014-11-26
A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes.
Control of strong light-matter coupling using the capacitance of metamaterial nanocavities
Benz, Alexander; Campione, Salvatore; Klem, John Frederick; ...
2015-01-27
Metallic nanocavities with deep subwavelength mode volumes can lead to dramatic changes in the behavior of emitters placed in their vicinity. The resulting collocation and interaction often leads to strong coupling. We present for the first time experimental evidence that the Rabi splitting is directly proportional to the electrostatic capacitance associated with the metallic nanocavity. As a result, the system analyzed consists of different metamaterial geometries with the same resonance wavelength coupled to intersubband transitions in quantum wells.
Electron Heating and Quasiparticle Tunnelling in Superconducting Charge Qubits
NASA Technical Reports Server (NTRS)
Shaw, M. D.; Bueno, J.; Delsing, P.; Echternach, P. M.
2008-01-01
We have directly measured non-equilibrium quasiparticle tunnelling in the time domain as a function of temperature and RF carrier power for a pair of charge qubits based on the single Cooper-pair box, where the readout is performed with a multiplexed quantum capacitance technique. We have extracted an effective electron temperature for each applied RF power, using the data taken at the lowest power as a reference curve. This data has been fit to a standard T? electron heating model, with a reasonable correspondence with established material parameters.
Graphene quantum dots-three-dimensional graphene composites for high-performance supercapacitors.
Chen, Qing; Hu, Yue; Hu, Chuangang; Cheng, Huhu; Zhang, Zhipan; Shao, Huibo; Qu, Liangti
2014-09-28
Graphene quantum dots (GQDs) have been successfully deposited onto the three-dimensional graphene (3DG) by a benign electrochemical method and the ordered 3DG structure remains intact after the uniform deposition of GQDs. In addition, the capacitive properties of the as-formed GQD-3DG composites are evaluated in symmetrical supercapacitors. It is found that the supercapacitor fabricated from the GQD-3DG composite is highly stable and exhibits a high specific capacitance of 268 F g(-1), representing a more than 90% improvement over that of the supercapacitor made from pure 3DG electrodes (136 F g(-1)). Owing to the convenience of the current method, it can be further used in other well-defined electrode materials, such as carbon nanotubes, carbon aerogels and conjugated polymers to improve the performance of the supercapacitors.
Wang, Lin; Chen, Xiaoshuang; Hu, Yibin; Wang, Shao-Wei; Lu, Wei
2015-04-28
Plasma waves in graphene field-effect transistors (FETs) and nano-patterned graphene sheets have emerged as very promising candidates for potential terahertz and infrared applications in myriad areas including remote sensing, biomedical science, military, and many other fields with their electrical tunability and strong interaction with light. In this work, we study the excitations and propagation properties of plasma waves in nanometric graphene FETs down to the scaling limit. Due to the quantum-capacitance effect, the plasma wave exhibits strong correlation with the distribution of density of states (DOS). It is indicated that the electrically tunable plasma resonance has a power-dependent V0.8 TG relation on the gate voltage, which originates from the linear dependence of density of states (DOS) on the energy in pristine graphene, in striking difference to those dominated by classical capacitance with only V0.5 TG dependence. The results of different transistor sizes indicate the potential application of nanometric graphene FETs in highly-efficient electro-optic modulation or detection of terahertz or infrared radiation. In addition, we highlight the perspectives of plasma resonance excitation in probing the many-body interaction and quantum matter state in strong correlation electron systems. This study reveals the key feature of plasma waves in decorated/nanometric graphene FETs, and paves the way to tailor plasma band-engineering and expand its application in both terahertz and mid-infrared regions.
NASA Astrophysics Data System (ADS)
Takahashi, Hiroshi; Hashizume, Tamotsu; Hasegawa, Hideki
1999-02-01
In order to understand and optimize a novel oxide-free InP passivation process using a silicon surface quantum well, a detailed in situ X-ray photoelectron spectroscopy (XPS) and ultrahigh vacuum (UHV) contactless capacitance-voltage (C-V) study of the interface was carried out. Calculation of quantum levels in the silicon quantum well was performed on the basis of the band lineup of the strained Si3N4/Si/InP interface and the result indicated that the interface should become free of gap states when the silicon layer thickness is below 5 Å. Experimentally, such a delicate Si3N4/Si/InP structure was realized by partial nitridation of a molecular beam epitaxially (MBE) grown pseudomorphic silicon layer using an electron cyclotron resonance (ECR) N2 plasma. The progress of nitridation was investigated in detail by angle-resolved XPS. A newly developed UHV contactless C-V method realized in situ characterization of surface electronic properties of InP at each processing step for passivation. It was found that the interface state density decreased substantially into the 1010 cm-2 eV-1 range by optimizing the nitridation process of the silicon layer. It was concluded that both the surface bond termination and state removal by quantum confinement are responsible for the NSS reduction.
Aspheric surface measurement using capacitive probes
NASA Astrophysics Data System (ADS)
Tao, Xin; Yuan, Daocheng; Li, Shaobo
2017-02-01
With the application of aspheres in optical fields, high precision and high efficiency aspheric surface metrology becomes a hot research topic. We describe a novel method of non-contact measurement of aspheric surface with capacitive probe. Taking an eccentric spherical surface as the object of study, the averaging effect of capacitive probe measurement and the influence of tilting the capacitive probe on the measurement results are investigated. By comparing measurement results from simultaneous measurement of the capacitive probe and contact probe of roundness instrument, this paper indicates the feasibility of using capacitive probes to test aspheric surface and proposes the compensation method of measurement error caused by averaging effect and the tilting of the capacitive probe.
Helically coiled carbon nanotube forests for use as electrodes in supercapacitors
NASA Astrophysics Data System (ADS)
Childress, Anthony; Ferri, Kevin; Podila, Ramakrishna; Rao, Apparao
Supercapacitors are a class of devices which combine the high energy density of batteries with the power delivery of capacitors, and have benefitted greatly from the incorporation of carbon nanomaterials. In an effort to improve the specific capacitance of these devices, we have produced binder-free electrodes composed of helically coiled carbon nanotube forests grown on stainless steel current collectors with a performance superior to traditional carbon nanomaterials. By virtue of their helicity, the coiled nanotubes provide a greater surface area for energy storage than their straight counterparts, thus improving the specific capacitance. Furthermore, we used an Ar plasma treatment to increase the electronic density of states, and thereby the quantum capacitance, through the introduction of defects.
NASA Astrophysics Data System (ADS)
Wang, Lin; Chen, Xiaoshuang; Hu, Yibin; Wang, Shao-Wei; Lu, Wei
2015-04-01
Plasma waves in graphene field-effect transistors (FETs) and nano-patterned graphene sheets have emerged as very promising candidates for potential terahertz and infrared applications in myriad areas including remote sensing, biomedical science, military, and many other fields with their electrical tunability and strong interaction with light. In this work, we study the excitations and propagation properties of plasma waves in nanometric graphene FETs down to the scaling limit. Due to the quantum-capacitance effect, the plasma wave exhibits strong correlation with the distribution of density of states (DOS). It is indicated that the electrically tunable plasma resonance has a power-dependent V0.8TG relation on the gate voltage, which originates from the linear dependence of density of states (DOS) on the energy in pristine graphene, in striking difference to those dominated by classical capacitance with only V0.5TG dependence. The results of different transistor sizes indicate the potential application of nanometric graphene FETs in highly-efficient electro-optic modulation or detection of terahertz or infrared radiation. In addition, we highlight the perspectives of plasma resonance excitation in probing the many-body interaction and quantum matter state in strong correlation electron systems. This study reveals the key feature of plasma waves in decorated/nanometric graphene FETs, and paves the way to tailor plasma band-engineering and expand its application in both terahertz and mid-infrared regions.Plasma waves in graphene field-effect transistors (FETs) and nano-patterned graphene sheets have emerged as very promising candidates for potential terahertz and infrared applications in myriad areas including remote sensing, biomedical science, military, and many other fields with their electrical tunability and strong interaction with light. In this work, we study the excitations and propagation properties of plasma waves in nanometric graphene FETs down to the scaling limit. Due to the quantum-capacitance effect, the plasma wave exhibits strong correlation with the distribution of density of states (DOS). It is indicated that the electrically tunable plasma resonance has a power-dependent V0.8TG relation on the gate voltage, which originates from the linear dependence of density of states (DOS) on the energy in pristine graphene, in striking difference to those dominated by classical capacitance with only V0.5TG dependence. The results of different transistor sizes indicate the potential application of nanometric graphene FETs in highly-efficient electro-optic modulation or detection of terahertz or infrared radiation. In addition, we highlight the perspectives of plasma resonance excitation in probing the many-body interaction and quantum matter state in strong correlation electron systems. This study reveals the key feature of plasma waves in decorated/nanometric graphene FETs, and paves the way to tailor plasma band-engineering and expand its application in both terahertz and mid-infrared regions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07689c
Minority carrier diffusion length extraction in Cu2ZnSn(Se,S)4 solar cells
NASA Astrophysics Data System (ADS)
Gokmen, Tayfun; Gunawan, Oki; Mitzi, David B.
2013-09-01
We report measurement of minority carrier diffusion length (Ld) for high performance Cu2ZnSn(S,Se)4 (CZTSSe) solar cells in comparison with analogous Cu(In,Ga)(S,Se)2 (CIGSSe) devices. Our Ld extraction method involves performing systematic measurements of the internal quantum efficiency combined with separate capacitance-voltage measurement. This method also enables the measurement of the absorption coefficient of the absorber material as a function of wavelength in a finished device. The extracted values of Ld for CZTSSe samples are at least factor of 2 smaller than those for CIGSSe samples. Combined with minority carrier lifetime (τ) data measured by time-resolved photoluminescence, we deduce the minority carrier mobility (μe), which is also relatively low for the CZTSSe samples.
Electrical and optical characterizations of InAs/GaAs quantum dot solar cells
NASA Astrophysics Data System (ADS)
Han, Im Sik; Kim, Seung Hyun; Kim, Jong Su; Noh, Sam Kyu; Lee, Sang Jun; Kim, Honggyun; Kim, Deok-Kee; Leem, Jae-Young
2018-03-01
The electrical and optical characterizations of InAs/GaAs quantum dot solar cells (QDSCs) were investigated by frequency dependent capacitance-voltage ( C- V) measurements and photoreflectance (PR) spectroscopy. The C- V results confirmed that the frequency dependent junction capacitance ( C j) of QDSC is sensitive to the carrier exhaustion process through trapping and recapturing in the strain-induced defects and QD states caused by the interface strain between InAs and GaAs materials. As a result, at a low frequency (≤ 200 kHz), the C j of the QDSCs decreased with increasing InAs deposition thickness ( θ), leading to the decrease in carrier concentration ( N d) of the n-GaAs absorber layer due to the carrier losses processes caused by the trapping and re-capturing in the defects and the relatively large QDs. At θ ≤ 2.0 ML, the p-n junction electric field strength ( F pn) of the QDSCs which was evaluated by PR spectra decreased with increasing excitation photon intensity ( I ex) due to the typical field screening effect in the SC structure. On the other hand, the F pn of QDSCs with θ ≥ 2.5 ML approached a constant value with a relatively high I ex, which suggests that the decrease in photo-generated carriers in the QDSC was caused by the re-capturing and trapping process.
Tan, Wensheng; Fu, Renjun; Ji, Hong; Kong, Yong; Xu, Yueguo; Qin, Yong
2018-06-01
Nitrogen-doped carbon (N-C) is pyrolytically prepared by using the nanocomposites of graphene Quantum dots (GQDs) and chitosan (CS) as the precursor. Due to the existence of GQDs nanofiller, the three-dimensional (3D) interconnected frameworks of CS are well preserved after the pyrolysis treatment; meanwhile, CS in the nanocomposites functions as nitrogen source for the N-C. The obtained N-C exhibits a considerable specific capacitance (545Fg -1 at 1Ag -1 ), high rate capability and excellent cyclic stability (88.9% capacitance retention after 5000cycles at 10Ag -1 ) when it is used as the electrode materials in supercapacitors. The well-preserved 3D frameworks and N-doping are believed to be responsible for the excellent supercapacitive behaviors of the N-C. Copyright © 2018 Elsevier B.V. All rights reserved.
Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures.
Kaasbjerg, Kristen; Jauho, Antti-Pekka
2016-05-13
We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs)-a bias-driven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach that accounts for higher-order tunneling (cotunneling) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multielectron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters. Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments on Coulomb drag in CQD systems.
Lateral displacement and rotational displacement sensor
Duden, Thomas
2014-04-22
A position measuring sensor formed from opposing sets of capacitor plates measures both rotational displacement and lateral displacement from the changes in capacitances as overlapping areas of capacitors change. Capacitances are measured by a measuring circuit. The measured capacitances are provided to a calculating circuit that performs calculations to obtain angular and lateral displacement from the capacitances measured by the measuring circuit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chunhui; Wu, Huijue; Zhu, Lifeng
2014-02-15
Recently, negative signals are frequently observed during the measuring process of monochromatic incident photon-to-electron conversion efficiency (IPCE) for sensitized solar cells by DC method. This phenomenon is confusing and hindering the reasonable evaluation of solar cells. Here, cause of negative IPCE values is studied by taking quantum dot-sensitized solar cell (QDSC) as an example, and the accurate measurement method to avoid the negative value is suggested. The negative background signals of QDSC without illumination are found the direct cause of the negative IPCE values by DC method. Ambient noise, significant capacitance characteristics, and uncontrolled electrochemical reaction all can lead tomore » the negative background signals. When the photocurrent response of device under monochromatic light illumination is relatively weak, the actual photocurrent signals will be covered by the negative background signals and the resulting IPCE values will appear negative. To improve the signal-to-noise ratio, quasi-AC method is proposed for IPCE measurement of solar cells with weak photocurrent response based on the idea of replacing the absolute values by the relative values.« less
NASA Astrophysics Data System (ADS)
Schießl, Stefan P.; Rother, Marcel; Lüttgens, Jan; Zaumseil, Jana
2017-11-01
The field-effect mobility is an important figure of merit for semiconductors such as random networks of single-walled carbon nanotubes (SWNTs). However, owing to their network properties and quantum capacitance, the standard models for field-effect transistors cannot be applied without modifications. Several different methods are used to determine the mobility with often very different results. We fabricated and characterized field-effect transistors with different polymer-sorted, semiconducting SWNT network densities ranging from low (≈6 μm-1) to densely packed quasi-monolayers (≈26 μm-1) with a maximum on-conductance of 0.24 μS μm-1 and compared four different techniques to evaluate the field-effect mobility. We demonstrate the limits and requirements for each method with regard to device layout and carrier accumulation. We find that techniques that take into account the measured capacitance on the active device give the most reliable mobility values. Finally, we compare our experimental results to a random-resistor-network model.
Qubit Coupled Mechanical Resonator in an Electromechanical System
NASA Astrophysics Data System (ADS)
Hao, Yu
This thesis describes the development of a hybrid quantum electromechanical system. In this system the mechanical resonator is capacitively coupled to a superconducting transmon which is embedded in a superconducting coplanar waveguide (CPW) cavity. The difficulty of achieving high quality of superconducting qubit in a high-quality voltage-biased cavity is overcome by integrating a superconducting reflective T-filter to the cavity. Further spectroscopic and pulsed measurements of the hybrid system demonstrate interactions between the ultra-high frequency mechanical resonator and transmon qubit. The noise of mechanical resonator close to ground state is measured by looking at the spectroscopy of the transmon. At last, fabrication and tests of membrane resonators are discussed.
NASA Astrophysics Data System (ADS)
Ikhsanti, Mila Izzatul; Bouzida, Rana; Wijaya, Sastra Kusuma; Rohmadi, Muttakin, Imamul; Taruno, Warsito P.
2017-02-01
This research aims to explore the feasibility of capacitance-digital converter and impedance converter for measurement module in electrical capacitance tomography (ECT) system. ECT sensor used was a cylindrical sensor having 8 electrodes. Absolute capacitance measurement system based on Sigma Delta Capacitance-to-Digital-Converter AD7746 has been shown to produce measurement with high resolution. Whereas, capacitance measurement with wide range of frequency is possible using Impedance Converter AD5933. Comparison of measurement accuracy by both AD7746 and AD5933 with reference of LCR meter was evaluated. Biological matters represented in water and oil were treated as object reconstructed into image using linear back projection (LBP) algorithm.
Coherent Spin Amplification Using a Beam Splitter
NASA Astrophysics Data System (ADS)
Yan, Chengyu; Kumar, Sanjeev; Thomas, Kalarikad; See, Patrick; Farrer, Ian; Ritchie, David; Griffiths, Jonathan; Jones, Geraint; Pepper, Michael
2018-03-01
We report spin amplification using a capacitive beam splitter in n -type GaAs where the spin polarization is monitored via a transverse electron focusing measurement. It is shown that partially spin-polarized current injected by the emitter can be precisely controlled, and the spin polarization associated with it can be amplified by the beam splitter, such that a considerably high spin polarization of around 50% can be obtained. Additionally, the spin remains coherent as shown by the observation of quantum interference. Our results illustrate that spin-polarization amplification can be achieved in materials without strong spin-orbit interaction.
Ultrafast electric phase control of a single exciton qubit
NASA Astrophysics Data System (ADS)
Widhalm, Alex; Mukherjee, Amlan; Krehs, Sebastian; Sharma, Nandlal; Kölling, Peter; Thiede, Andreas; Reuter, Dirk; Förstner, Jens; Zrenner, Artur
2018-03-01
We report on the coherent phase manipulation of quantum dot excitons by electric means. For our experiments, we use a low capacitance single quantum dot photodiode which is electrically controlled by a custom designed SiGe:C BiCMOS chip. The phase manipulation is performed and quantified in a Ramsey experiment, where ultrafast transient detuning of the exciton energy is performed synchronous to double pulse π/2 ps laser excitation. We are able to demonstrate electrically controlled phase manipulations with magnitudes up to 3π within 100 ps which is below the dephasing time of the quantum dot exciton.
Measuring, modeling, and minimizing capacitances in heterojunction bipolar transistors
NASA Astrophysics Data System (ADS)
Anholt, R.; Bozada, C.; Dettmer, R.; Via, D.; Jenkins, T.; Barrette, J.; Ebel, J.; Havasy, C.; Sewell, J.; Quach, T.
1996-07-01
We demonstrate methods to separate junction and pad capacitances from on-wafer S-parameter measurements of HBTs with different areas and layouts. The measured junction capacitances are in good agreement with models, indicating that large-area devices are suitable for monitoring vendor epi-wafer doping. Measuring open HBTs does not give the correct pad capacitances. Finally, a capacitance comparison for a variety of layouts shows that bar-devices consistently give smaller base-collector values than multiple dot HBTs.
Tunable ohmic environment using Josephson junction chains
NASA Astrophysics Data System (ADS)
Rastelli, Gianluca; Pop, Ioan M.
2018-05-01
We propose a scheme to implement a tunable, wide frequency-band dissipative environment using a double chain of Josephson junctions. The two parallel chains consist of identical superconducting quantum interference devices (SQUIDs), with magnetic-flux tunable inductance, coupled to each other at each node via a capacitance much larger than the junction capacitance. Thanks to this capacitive coupling, the system sustains electromagnetic modes with a wide frequency dispersion. The internal quality factor of the modes is maintained as high as possible, and the damping is introduced by a uniform coupling of the modes to a transmission line, itself connected to an amplification and readout circuit. For sufficiently long chains, containing several thousands of junctions, the resulting admittance is a smooth function versus frequency in the microwave domain, and its effective dissipation can be continuously monitored by recording the emitted radiation in the transmission line. We show that by varying in situ the SQUIDs' inductance, the double chain can operate as a tunable ohmic resistor in a frequency band spanning up to 1 GHz, with a resistance that can be swept through values comparable to the resistance quantum Rq=h /(4 e2) ≃6.5 kΩ . We argue that the circuit complexity is within reach using current Josephson junction technology.
NASA Technical Reports Server (NTRS)
Weinstein, Leonard M. (Inventor)
1988-01-01
An ice detector is provided for the determination of the thickness of ice on the outer surface on an object (e.g., aircraft) independently of temperature or the composition of the ice. First capacitive gauge, second capacitive gauge, and temperature gauge are embedded in embedding material located within a hollowed out portion of the outer surface. This embedding material is flush with the outer surface to prevent undesirable drag. The first capacitive gauge, second capacitive gauge, and the temperature gauge are respectively connected to first capacitive measuring circuit, second capacitive measuring circuit, and temperature measuring circuit. The geometry of the first and second capacitive gauges is such that the ratio of the voltage outputs of the first and second capacitance measuring circuits is proportional to the thickness of ice, regardless of ice temperature or composition. This ratio is determined by offset and dividing circuit.
Trielectrode capacitive pressure transducer
NASA Technical Reports Server (NTRS)
Coon, G. W. (Inventor)
1976-01-01
A capacitive transducer and circuit especially suited for making measurements in a high-temperature environment are described. The transducer includes two capacitive electrodes and a shield electrode. As the temperature of the transducer rises, the resistance of the insulation between the capacitive electrode decreases and a resistive current attempts to interfere with the capacitive current between the capacitive electrodes. The shield electrode and the circuit coupled there reduce the resistive current in the transducer. A bridge-type circuit coupled to the transducer ignores the resistive current and measures only the capacitive current flowing between the capacitive electrodes.
NASA Astrophysics Data System (ADS)
Mizoguchi, Seiya; Shimatani, Naoki; Kobayashi, Mizuki; Makino, Takaomi; Yamaoka, Yu; Kodera, Tetsuo
2018-04-01
We study hole transport properties in physically defined p-type silicon quantum dots (QDs) on a heavily doped silicon-on-insulator (SOI) substrate. We observe Coulomb diamonds using single QDs and estimate the charging energy as ∼1.6 meV. We obtain the charge stability diagram of double QDs using single QDs as a charge sensor. This is the first demonstration of charge sensing in p-type heavily doped silicon QDs. For future time-resolved measurements, we apply radio-frequency reflectometry using impedance matching of LC circuits to the device. We observe the resonance and estimate the capacitance as ∼0.12 pF from the resonant frequency. This value is smaller than that of the devices with top gates on nondoped SOI substrate. This indicates that high-frequency signals can be applied efficiently to p-type silicon QDs without top gates.
Bai, Yang; Lu, Yunfeng; Hu, Pengcheng; Wang, Gang; Xu, Jinxin; Zeng, Tao; Li, Zhengkun; Zhang, Zhonghua; Tan, Jiubin
2016-01-01
A simple differential capacitive sensor is provided in this paper to measure the absolute positions of length measuring systems. By utilizing a shield window inside the differential capacitor, the measurement range and linearity range of the sensor can reach several millimeters. What is more interesting is that this differential capacitive sensor is only sensitive to one translational degree of freedom (DOF) movement, and immune to the vibration along the other two translational DOFs. In the experiment, we used a novel circuit based on an AC capacitance bridge to directly measure the differential capacitance value. The experimental result shows that this differential capacitive sensor has a sensitivity of 2 × 10−4 pF/μm with 0.08 μm resolution. The measurement range of this differential capacitive sensor is 6 mm, and the linearity error are less than 0.01% over the whole absolute position measurement range. PMID:27187393
Monajjemi, Majid
2015-12-01
Cell membrane has a unique feature of storing biological energies in a physiologically relevant environment. This study illustrates a capacitor model of biological cell membrane including DPPC structures. The electron density profile models, electron localization function (ELF) and local information entropy have been applied to study the interaction of proteins with lipid bilayers in the cell membrane. The quantum and coulomb blockade effects of different thicknesses in the membrane have also been specifically investigated. It has been exhibited the quantum effects can appear in a small region of the free space within the membrane thickness due to the number and type of phospholipid layers. In addition, from the viewpoint of quantum effects by Heisenberg rule, it is shown the quantum tunneling is allowed in some micro positions while it is forbidden in other forms of membrane capacitor systems. Due to the dynamical behavior of the cell membrane, its capacitance is not fixed which results a variable capacitor. In presence of the external fields through protein trance membrane or ions, charges exert forces that can influence the state of the cell membrane. This causes to appear the charge capacitive susceptibility that can resonate with self-induction of helical coils; the resonance of which is the main reason for various biological pulses. Copyright © 2015 Elsevier B.V. All rights reserved.
Andrews, W.H. Jr.
1984-08-01
A capacitance measuring circuit is provided in which an unknown capacitance is measured by comparing the charge stored in the unknown capacitor with that stored in a known capacitance. Equal and opposite voltages are repetitively simultaneously switched onto the capacitors through an electronic switch driven by a pulse generator to charge the capacitors during the ''on'' portion of the cycle. The stored charge is compared by summing discharge currents flowing through matched resistors at the input of a current sensor during the ''off'' portion of the switching cycle. The net current measured is thus proportional to the difference in value of the two capacitances. The circuit is capable of providing much needed accuracy and stability to a great variety of capacitance-based measurement devices at a relatively low cost.
Quantum Device Applications of Mesoscopic Superconductivity
NASA Astrophysics Data System (ADS)
Hakonen, P. J.
2006-08-01
A brief account is given on the possibilities of mesoscopic superconductivity in low-noise amplifier and detector applications. In particular, three devices will be described: 1) Bloch oscillating transistor (BOT), 2) Inductively-read superconducting Cooper pair transistor (L-SET), and 3) Quantum capacitive phase detector (C-SET). The BOT is a low-noise current amplifier while the L-SET and C-SET act as ultra-sensitive charge and phase detectors, respectively. The basic operating principles and the main characteristics of these devices will be reviewed and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Edward Namkyu; Shin, Yong Hyeon; Yun, Ilgu, E-mail: iyun@yonsei.ac.kr
2014-11-07
A compact quantum correction model for a symmetric double gate (DG) metal-oxide-semiconductor field-effect transistor (MOSFET) is investigated. The compact quantum correction model is proposed from the concepts of the threshold voltage shift (ΔV{sub TH}{sup QM}) and the gate capacitance (C{sub g}) degradation. First of all, ΔV{sub TH}{sup QM} induced by quantum mechanical (QM) effects is modeled. The C{sub g} degradation is then modeled by introducing the inversion layer centroid. With ΔV{sub TH}{sup QM} and the C{sub g} degradation, the QM effects are implemented in previously reported classical model and a comparison between the proposed quantum correction model and numerical simulationmore » results is presented. Based on the results, the proposed quantum correction model can be applicable to the compact model of DG MOSFET.« less
Incorporation of nanoparticles within mammalian spermatozoa using in vitro capacitation
USDA-ARS?s Scientific Manuscript database
There is still much unknown about the journey of spermatozoa within the female genital tract. Recent studies have investigated mammalian spermatozoa labeling with fluorescent quantum dot nanoparticles (QD) for non-invasive imaging. Furthermore, the incorporation of these QD within the spermatozoa ma...
NASA Astrophysics Data System (ADS)
Ko, Wai Son; Bhattacharya, Indrasen; Tran, Thai-Truong D.; Ng, Kar Wei; Adair Gerke, Stephen; Chang-Hasnain, Connie
2016-09-01
Highly sensitive and fast photodetectors can enable low power, high bandwidth on-chip optical interconnects for silicon integrated electronics. III-V compound semiconductor direct-bandgap materials with high absorption coefficients are particularly promising for photodetection in energy-efficient optical links because of the potential to scale down the absorber size, and the resulting capacitance and dark current, while maintaining high quantum efficiency. We demonstrate a compact bipolar junction phototransistor with a high current gain (53.6), bandwidth (7 GHz) and responsivity (9.5 A/W) using a single crystalline indium phosphide nanopillar directly grown on a silicon substrate. Transistor gain is obtained at sub-picowatt optical power and collector bias close to the CMOS line voltage. The quantum efficiency-bandwidth product of 105 GHz is the highest for photodetectors on silicon. The bipolar junction phototransistor combines the receiver front end circuit and absorber into a monolithic integrated device, eliminating the wire capacitance between the detector and first amplifier stage.
Ko, Wai Son; Bhattacharya, Indrasen; Tran, Thai-Truong D.; Ng, Kar Wei; Adair Gerke, Stephen; Chang-Hasnain, Connie
2016-01-01
Highly sensitive and fast photodetectors can enable low power, high bandwidth on-chip optical interconnects for silicon integrated electronics. III-V compound semiconductor direct-bandgap materials with high absorption coefficients are particularly promising for photodetection in energy-efficient optical links because of the potential to scale down the absorber size, and the resulting capacitance and dark current, while maintaining high quantum efficiency. We demonstrate a compact bipolar junction phototransistor with a high current gain (53.6), bandwidth (7 GHz) and responsivity (9.5 A/W) using a single crystalline indium phosphide nanopillar directly grown on a silicon substrate. Transistor gain is obtained at sub-picowatt optical power and collector bias close to the CMOS line voltage. The quantum efficiency-bandwidth product of 105 GHz is the highest for photodetectors on silicon. The bipolar junction phototransistor combines the receiver front end circuit and absorber into a monolithic integrated device, eliminating the wire capacitance between the detector and first amplifier stage. PMID:27659796
High mobility back-gated InAs/GaSb double quantum well grown on GaSb substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Binh-Minh, E-mail: mbnguyen@hrl.com, E-mail: MSokolich@hrl.com; Yi, Wei; Noah, Ramsey
2015-01-19
We report a backgated InAs/GaSb double quantum well device grown on GaSb substrate. The use of the native substrate allows for high materials quality with electron mobility in excess of 500 000 cm{sup 2}/Vs at sheet charge density of 8 × 10{sup 11} cm{sup −2} and approaching 100 000 cm{sup 2}/Vs near the charge neutrality point. Lattice matching between the quantum well structure and the substrate eliminates the need for a thick buffer, enabling large back gate capacitance and efficient coupling with the conduction channels in the quantum wells. As a result, quantum Hall effects are observed in both electron and hole regimes across the hybridizationmore » gap.« less
Calibration of micro-capacitance measurement system for thermal barrier coating testing
NASA Astrophysics Data System (ADS)
Ren, Yuan; Chen, Dixiang; Wan, Chengbiao; Tian, Wugang; Pan, Mengchun
2018-06-01
In order to comprehensively evaluate the thermal barrier coating system of an engine blade, an integrated planar sensor combining electromagnetic coils with planar capacitors is designed, in which the capacitance measurement accuracy of the planar capacitor is a key factor. The micro-capacitance measurement system is built based on an impedance analyzer. Because of the influence of non-ideal factors on the measuring system, there is an obvious difference between the measured value and the actual value. It is necessary to calibrate the measured results and eliminate the difference. In this paper, the measurement model of a planar capacitive sensor is established, and the relationship between the measured value and the actual value of capacitance is deduced. The model parameters are estimated with the least square method, and the calibration accuracy is evaluated with experiments under different dielectric conditions. The capacitance measurement error is reduced from 29% ˜ 46.5% to around 1% after calibration, which verifies the feasibility of the calibration method.
NASA Astrophysics Data System (ADS)
Tsao, Yu-Ching; Chang, Ting-Chang; Chen, Hua-Mao; Chen, Bo-Wei; Chiang, Hsiao-Cheng; Chen, Guan-Fu; Chien, Yu-Chieh; Tai, Ya-Hsiang; Hung, Yu-Ju; Huang, Shin-Ping; Yang, Chung-Yi; Chou, Wu-Ching
2017-01-01
This work demonstrates the generation of abnormal capacitance for amorphous indium-gallium-zinc oxide (a-InGaZnO4) thin-film transistors after being subjected to negative bias stress under ultraviolet light illumination stress (NBIS). At various operation frequencies, there are two-step tendencies in their capacitance-voltage curves. When gate bias is smaller than threshold voltage, the measured capacitance is dominated by interface defects. Conversely, the measured capacitance is dominated by oxygen vacancies when gate bias is larger than threshold voltage. The impact of these interface defects and oxygen vacancies on capacitance-voltage curves is verified by TCAD simulation software.
Screening length and quantum capacitance in graphene by scanning probe microscopy.
Giannazzo, F; Sonde, S; Raineri, V; Rimini, E
2009-01-01
A nanoscale investigation on the capacitive behavior of graphene deposited on a SiO2/n(+) Si substrate (with SiO2 thickness of 300 or 100 nm) was carried out by scanning capacitance spectroscopy (SCS). A bias V(g) composed by an AC signal and a slow DC voltage ramp was applied to the macroscopic n(+) Si backgate of the graphene/SiO(2)/Si capacitor, while a nanoscale contact was obtained on graphene by the atomic force microscope tip. This study revealed that the capacitor effective area (A(eff)) responding to the AC bias is much smaller than the geometrical area of the graphene sheet. This area is related to the length scale on which the externally applied potential decays in graphene, that is, the screening length of the graphene 2DEG. The nonstationary charges (electrons/holes) induced by the AC potential spread within this area around the contact. A(eff) increases linearly with the bias and in a symmetric way for bias inversion. For each bias V(g), the value of A(eff) is related to the minimum area necessary to accommodate the not stationary charges, according to the graphene density of states (DOS) at V(g). Interestingly, by decreasing the SiO(2) thickness from 300 to 100 nm, the slope of the A(eff) versus bias curve strongly increases (by a factor of approximately 50). The local quantum capacitance C(q) in the contacted graphene region was calculated starting from the screening length, and the distribution of the values of C(q) for different tip positions was obtained. Finally the lateral variations of the DOS in graphene was determined.
High-Coherence Hybrid Superconducting Qubit
NASA Astrophysics Data System (ADS)
Steffen, Matthias; Kumar, Shwetank; Divincenzo, David P.; Rozen, J. R.; Keefe, George A.; Rothwell, Mary Beth; Ketchen, Mark B.
2010-09-01
We report quantum coherence measurements of a superconducting qubit whose design is a hybrid of several existing types. Excellent coherence times are found: T2*˜T1˜1.5μs. The topology of the qubit is that of a traditional three-junction flux qubit, but it has a large shunting capacitance, and the ratio of the junction critical currents is chosen so that the qubit potential has a single-well form. The qubit has a sizable nonlinearity, but its sign is reversed compared with most other popular qubit designs. The qubit is read out dispersively using a high-Q resonator in a λ/2 configuration.
Ahmadi, Mahdi; Rajamani, Rajesh; Sezen, Serdar
2017-10-01
Capacitive micro-sensors such as accelerometers, gyroscopes and pressure sensors are increasingly used in the modern electronic world. However, the in vivo use of capacitive sensing for measurement of pressure or other variables inside a human body suffers from significant errors due to stray capacitance. This paper proposes a solution consisting of a transparent thin flexible Faraday cage that surrounds the sensor. By supplying the active sensing voltage simultaneously to the deformable electrode of the capacitive sensor and to the Faraday cage, the stray capacitance during in vivo measurements can be largely eliminated. Due to the transparency of the Faraday cage, the top and bottom portions of a capacitive sensor can be accurately aligned and assembled together. Experimental results presented in the paper show that stray capacitance is reduced by a factor of 10 by the Faraday cage, when the sensor is subjected to a full immersion in water.
Potentiometric Titrations for Measuring the Capacitance of Colloidal Photodoped ZnO Nanocrystals.
Brozek, Carl K; Hartstein, Kimberly H; Gamelin, Daniel R
2016-08-24
Colloidal semiconductor nanocrystals offer a unique opportunity to bridge molecular and bulk semiconductor redox phenomena. Here, potentiometric titration is demonstrated as a method for quantifying the Fermi levels and charging potentials of free-standing colloidal n-type ZnO nanocrystals possessing between 0 and 20 conduction-band electrons per nanocrystal, corresponding to carrier densities between 0 and 1.2 × 10(20) cm(-3). Potentiometric titration of colloidal semiconductor nanocrystals has not been described previously, and little precedent exists for analogous potentiometric titration of any soluble reductants involving so many electrons. Linear changes in Fermi level vs charge-carrier density are observed for each ensemble of nanocrystals, with slopes that depend on the nanocrystal size. Analysis indicates that the ensemble nanocrystal capacitance is governed by classical surface electrical double layers, showing no evidence of quantum contributions. Systematic shifts in the Fermi level are also observed with specific changes in the identity of the charge-compensating countercation. As a simple and contactless alternative to more common thin-film-based voltammetric techniques, potentiometric titration offers a powerful new approach for quantifying the redox properties of colloidal semiconductor nanocrystals.
NASA Astrophysics Data System (ADS)
Anantathanasarn, Sanguan; Hasegawa, Hideki
2002-05-01
A novel surface passivation technique for GaAs using an ultrathin GaN interface control layer (GaN ICL) formed by surface nitridation was characterized by ultrahigh vacuum (UHV) photoluminescence (PL) and capacitance-voltage ( C- V) measurements. The PL quantum efficiency was dramatically enhanced after being passivated by the GaN ICL structure, reaching as high as 30 times of the initial clean GaAs surface. Further analysis of PL data was done by the PL surface state spectroscopy (PLS 3) simulation technique. PL and C- V results are in good agreement indicating that ultrathin GaN ICL reduces the gap states and unpins the Fermi level, realizing a wide movement of Fermi level within the midgap region and reduction of the effective surface recombination velocity by a factor of 1/60. GaN layer also introduced a large negative surface fixed charge of about 10 12 cm -2. A further improvement took place by depositing a Si 3N 4 layer on GaN ICL/GaAs structure.
Studies on the Evaluation Methods for the Food Quality with a Non-contact type Capacitance Sensor.
NASA Astrophysics Data System (ADS)
Narumiya, Tadaoki; Hagura, Yoshio
Changes of capacitance and temperature of ethyl alcohol, hamburger and dough with cheese filling were measured with specially-made measuring devices during the freezing and thawing. The results of measurement of capacitance and temperature suggest a linear correlation for ethyl alcohol as a single constituent substance. The adequate correlation is too estimated from the results of food samples, though the capacitance of food sample varies greatly at the start and end of freezing and thawing process. It has been demonstrated that the quality or physical condition of food sample can be determined easily by the measurement of capacitance using the specially-made devices. Also the quality or physical condition of food can be determined easily by the non-contact and non-destructive measurements of capacitance. A variety application of the present technique is conceivable for the process control of the freezing and thawing foods.
Admittance Investigation of MIS Structures with HgTe-Based Single Quantum Wells.
Izhnin, Ihor I; Nesmelov, Sergey N; Dzyadukh, Stanislav M; Voitsekhovskii, Alexander V; Gorn, Dmitry I; Dvoretsky, Sergey A; Mikhailov, Nikolaj N
2016-12-01
This work presents results of the investigation of admittance of metal-insulator-semiconductor structure based on Hg1 - x Cd x Te grown by molecular beam epitaxy. The structure contains a single quantum well Hg0.35Cd0.65Te/HgTe/Hg0.35Cd0.65Te with thickness of 5.6 nm in the sub-surface layer of the semiconductor. Both the conductance-voltage and capacitance-voltage characteristics show strong oscillations when the metal-insulator-semiconductor (MIS) structure with a single quantum well based on HgTe is biased into the strong inversion mode. Also, oscillations on the voltage dependencies of differential resistance of the space charge region were observed. These oscillations were related to the recharging of quantum levels in HgTe.
Quantum Transport Properties in Two-Dimensional and Low Dimensional Systems
NASA Astrophysics Data System (ADS)
Fang, Hao
1991-02-01
The quantum transport properties in quasi two -dimensional and zero-dimensional systems have been studied at magnetic field of 0 - 8T and low temperatures down to 1.3K. In the (100) Si inversion layer, we investigated the effect of valley splitting on the value of the enhanced effective g factor by the tilted magnetic field measurement. The valley splitting is determined from the beat effect on samples with measurable valley splitting behavior due to misorientation effects. Experimental results illustrate that the effective g factor is enhanced by many body interactions and that the valley splitting has no obvious effect on the g-value. A simulation calculation with a Gaussian distribution of density of states has been carried out and the simulated results are in an excellent agreement with the experimental data. A new and very simple technique has been developed for fabricating two-dimensional periodic submicron structures with feature sizes down to about 300 A. The etching mask is made by coating the material surface with a monolayer of close-packed uniform latex particles. We have demonstrated the formation of a quasi zero-dimensional quantum dot array and performed capacitance measurements on GaAs/AlGaAs heterostructure samples with periodicities ranging from 3000 to 4000 A. A series of nearly equally spaced peaks in a curve of the derivative of capacitance with respect to gate voltage, which corresponds to the energy levels formed by the lateral electric confining potential, is observed. The energy spacings and effective dot widths estimated from a simple parabolic potential model are consistent with the experimental data. Novel magnetoresistance oscillations in a two -dimensional electron gas modulated by a two-dimensional triangular superlattice potential are observed in GaAs/AlGaAs heterostructures. The new oscillations appear at very low magnetic fields and the peak positions are directly determined by the magnetic field and the periodicity of the modulation structure. New oscillation results from the modulation-broadened Landau bandwidth and the induced density of states variation with magnetic field. Physical explanations and theoretical approaches for the commensurability problem in a two-dimensional triangular superlattice potential are presented. The differences in oscillation frequencies and phase factors for two kinds of samples correlate with structures differing in degree of depletion and the resulting geometry.
Ground Based Investigation of Electrostatic Accelerometer in HUST
NASA Astrophysics Data System (ADS)
Bai, Y.; Zhou, Z.
2013-12-01
High-precision electrostatic accelerometers with six degrees of freedom (DOF) acceleration measurement were successfully used in CHAMP, GRACE and GOCE missions which to measure the Earth's gravity field. In our group, space inertial sensor based on the capacitance transducer and electrostatic control technique has been investigated for test of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, and satellite Earth's field recovery. The significant techniques of capacitive position sensor with the noise level at 2×10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are carried out and all the six servo loop controls by using a discrete PID algorithm are realized in a FPGA device. For testing on ground, in order to compensate one g earth's gravity, the fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. A short distance and a simple double capsule equipment the valid duration about 0.5 second is set up in our lab for the free fall tests of the engineering model which can directly verify the function of six DOF control. Meanwhile, high voltage suspension method is also realized and preliminary results show that the horizontal axis of acceleration noise is about 10-8m/s2/Hz1/2 level which limited mainly by the seismic noise. Reference: [1] Fen Gao, Ze-Bing Zhou, Jun Luo, Feasibility for Testing the Equivalence Principle with Optical Readout in Space, Chin. Phys. Lett. 28(8) (2011) 080401. [2] Z. Zhu, Z. B. Zhou, L. Cai, Y. Z. Bai, J. Luo, Electrostatic gravity gradiometer design for the advanced GOCE mission, Adv. Sp. Res. 51 (2013) 2269-2276. [3] Z B Zhou, L Liu, H B Tu, Y Z Bai, J Luo, Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance, Class. Quantum Grav. 27 (2010) 175012. [4] H B Tu, Y Z Bai, Z B Zhou, L Liu, L Cai, and J Luo, Performance measurements of an inertial sensor with a two-stage controlled torsion pendulum, Class Quantum. Grav. 27 (2010) 205016.
Quantum electromechanics on silicon nitride nanomembranes
Fink, J. M.; Kalaee, M.; Pitanti, A.; Norte, R.; Heinzle, L.; Davanço, M.; Srinivasan, K.; Painter, O.
2016-01-01
Radiation pressure has recently been used to effectively couple the quantum motion of mechanical elements to the fields of optical or microwave light. Integration of all three degrees of freedom—mechanical, optical and microwave—would enable a quantum interconnect between microwave and optical quantum systems. We present a platform based on silicon nitride nanomembranes for integrating superconducting microwave circuits with planar acoustic and optical devices such as phononic and photonic crystals. Using planar capacitors with vacuum gaps of 60 nm and spiral inductor coils of micron pitch we realize microwave resonant circuits with large electromechanical coupling to planar acoustic structures of nanoscale dimensions and femtoFarad motional capacitance. Using this enhanced coupling, we demonstrate microwave backaction cooling of the 4.48 MHz mechanical resonance of a nanobeam to an occupancy as low as 0.32. These results indicate the viability of silicon nitride nanomembranes as an all-in-one substrate for quantum electro-opto-mechanical experiments. PMID:27484751
Quantum electromechanics on silicon nitride nanomembranes.
Fink, J M; Kalaee, M; Pitanti, A; Norte, R; Heinzle, L; Davanço, M; Srinivasan, K; Painter, O
2016-08-03
Radiation pressure has recently been used to effectively couple the quantum motion of mechanical elements to the fields of optical or microwave light. Integration of all three degrees of freedom-mechanical, optical and microwave-would enable a quantum interconnect between microwave and optical quantum systems. We present a platform based on silicon nitride nanomembranes for integrating superconducting microwave circuits with planar acoustic and optical devices such as phononic and photonic crystals. Using planar capacitors with vacuum gaps of 60 nm and spiral inductor coils of micron pitch we realize microwave resonant circuits with large electromechanical coupling to planar acoustic structures of nanoscale dimensions and femtoFarad motional capacitance. Using this enhanced coupling, we demonstrate microwave backaction cooling of the 4.48 MHz mechanical resonance of a nanobeam to an occupancy as low as 0.32. These results indicate the viability of silicon nitride nanomembranes as an all-in-one substrate for quantum electro-opto-mechanical experiments.
Gaubas, E; Ceponis, T; Kusakovskij, J
2011-08-01
A technique for the combined measurement of barrier capacitance and spreading resistance profiles using a linearly increasing voltage pulse is presented. The technique is based on the measurement and analysis of current transients, due to the barrier and diffusion capacitance, and the spreading resistance, between a needle probe and sample. To control the impact of deep traps in the barrier capacitance, a steady state bias illumination with infrared light was employed. Measurements of the spreading resistance and barrier capacitance profiles using a stepwise positioned probe on cross sectioned silicon pin diodes and pnp structures are presented.
Three-dimensional multichannel aerogel of carbon quantum dots for high-performance supercapacitors.
Lv, Lingxiao; Fan, Yueqiong; Chen, Qing; Zhao, Yang; Hu, Yue; Zhang, Zhipan; Chen, Nan; Qu, Liangti
2014-06-13
A three-dimensional (3D) carbon quantum dot (CQD) aerogel has been prepared by in situ assembling CQDs in the sol-gel polymerization of resorcinol (R) and formaldehyde (F) and subsequently pyrolyzing the formed CQD gel. Compared to the supercapacitor based on the CQD-free aerogel, the supercapacitor fabricated with the CQD aerogel showed 20-fold higher specific capacitance (294.7 F g(-1) at the current density of 0.5 A g(-1)) and an excellent stability over 1000 consecutive charge-discharge cycles.
Three-dimensional multichannel aerogel of carbon quantum dots for high-performance supercapacitors
NASA Astrophysics Data System (ADS)
Lv, Lingxiao; Fan, Yueqiong; Chen, Qing; Zhao, Yang; Hu, Yue; Zhang, Zhipan; Chen, Nan; Qu, Liangti
2014-06-01
A three-dimensional (3D) carbon quantum dot (CQD) aerogel has been prepared by in situ assembling CQDs in the sol-gel polymerization of resorcinol (R) and formaldehyde (F) and subsequently pyrolyzing the formed CQD gel. Compared to the supercapacitor based on the CQD-free aerogel, the supercapacitor fabricated with the CQD aerogel showed 20-fold higher specific capacitance (294.7 F g-1 at the current density of 0.5 A g-1) and an excellent stability over 1000 consecutive charge-discharge cycles.
Tunable UV Laser Photolysis of NF2: Quantum Yield for NF(a1 delta) Production.
1988-05-25
UV Laser Photolysis of NF2: Quantum Yield for NF(a A) Production ’v0 LR. F. HEIDNER, H . HELVAJIAN , 4and J. B. KOFFEND Aerophysics Laboratory...experiments, the chemistry of NF2 with various hydrocarbons has been studied. It has also been shown that the addition-elimination reaction between H and NF2...COMPLI R LEN SP, 3 ,HAND L BE AM~ H O [ I , , i 1 CAIHOC IAM COOLED GaAs CAPACITANCE PHOTOTUIBE MANOMETER _ LENS /’~ ~L + . ANMEE _.... BANDPASS FILTER
Wang, Haowei; Wang, Yishan; He, Bo; Li, Weile; Sulaman, Muhammad; Xu, Junfeng; Yang, Shengyi; Tang, Yi; Zou, Bingsuo
2016-07-20
With its properties of bandgap tunability, low cost, and substrate compatibility, colloidal quantum dots (CQDs) are becoming promising materials for optoelectronic applications. Additionally, solution-processed organic, inorganic, and hybrid ligand-exchange technologies have been widely used in PbS CQDs solar cells, and currently the maximum certified power conversion efficiency of 9.9% has been reported by passivation treatment of molecular iodine. Presently, there are still some challenges, and the basic physical mechanism of charge carriers in CQDs-based solar cells is not clear. Electrochemical impedance spectroscopy is a monitoring technology for current by changing the frequency of applied alternating current voltage, and it provides an insight into its electrical properties that cannot be measured by direct current testing facilities. In this work, we used EIS to analyze the recombination resistance, carrier lifetime, capacitance, and conductivity of two typical PbS CQD solar cells Au/PbS-TBAl/ZnO/ITO and Au/PbS-EDT/PbS-TBAl/ZnO/ITO, in this way, to better understand the charge carriers conduction mechanism behind in PbS CQD solar cells, and it provides a guide to design high-performance quantum-dots solar cells.
Study on effective MOSFET channel length extracted from gate capacitance
NASA Astrophysics Data System (ADS)
Tsuji, Katsuhiro; Terada, Kazuo; Fujisaka, Hisato
2018-01-01
The effective channel length (L GCM) of metal-oxide-semiconductor field-effect transistors (MOSFETs) is extracted from the gate capacitances of actual-size MOSFETs, which are measured by charge-injection-induced-error-free charge-based capacitance measurement (CIEF CBCM). To accurately evaluate the capacitances between the gate and the channel of test MOSFETs, the parasitic capacitances are removed by using test MOSFETs having various channel sizes and a source/drain reference device. A strong linear relationship between the gate-channel capacitance and the design channel length is obtained, from which L GCM is extracted. It is found that L GCM is slightly less than the effective channel length (L CRM) extracted from the measured MOSFET drain current. The reason for this is discussed, and it is found that the capacitance between the gate electrode and the source and drain regions affects this extraction.
Design of p-type cladding layers for tunnel-injected UV-A light emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih
Here, we discuss the engineering of p-AlGaN cladding layers for achieving efficient tunnel-injected III-Nitride ultraviolet light emitting diodes (UV LEDs) in the UV-A spectral range. We show that the capacitance-voltage measurements can be used to estimate the compensation and doping in the p-AlGaN layers located between the multi-quantum well region and the tunnel junction layer. By increasing the p-type doping concentration to overcome the background compensation, on-wafer external quantum efficiency and wall-plug efficiency of 3.37% and 1.62%, respectively, were achieved for the tunnel-injected UV LEDs emitting at 325 nm. We also show that interband tunneling hole injection can be usedmore » to realize UV LEDs without any acceptor doping. The work discussed here provides new understanding of hole doping and transport in AlGaN-based UV LEDs and demonstrates the excellent performance of tunnel-injected LEDs for the UV-A wavelength range.« less
Design of p-type cladding layers for tunnel-injected UV-A light emitting diodes
Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; ...
2016-11-09
Here, we discuss the engineering of p-AlGaN cladding layers for achieving efficient tunnel-injected III-Nitride ultraviolet light emitting diodes (UV LEDs) in the UV-A spectral range. We show that the capacitance-voltage measurements can be used to estimate the compensation and doping in the p-AlGaN layers located between the multi-quantum well region and the tunnel junction layer. By increasing the p-type doping concentration to overcome the background compensation, on-wafer external quantum efficiency and wall-plug efficiency of 3.37% and 1.62%, respectively, were achieved for the tunnel-injected UV LEDs emitting at 325 nm. We also show that interband tunneling hole injection can be usedmore » to realize UV LEDs without any acceptor doping. The work discussed here provides new understanding of hole doping and transport in AlGaN-based UV LEDs and demonstrates the excellent performance of tunnel-injected LEDs for the UV-A wavelength range.« less
Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials.
Ivić, Z; Lazarides, N; Tsironis, G P
2016-07-12
Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980's, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound "quantum breather" that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.
NASA Astrophysics Data System (ADS)
Santos-Sacchi, Joseph
2018-05-01
Measures of membrane capacitance (Cm) can be used to assess important characteristics of voltage-dependent membrane proteins (e.g., channels and transporters). In particular, a protein's time-dependent voltage-sensor charge movement is equivalently represented as a frequency-dependent component of Cm, telling much about the kinetics of the protein's conformational behavior. Recently, we have explored the frequency dependence of OHC voltage-dependent capacitance (aka nonlinear capacitance, NLC) to query rates of conformational switching within prestin (SLC26a5), the cell's lateral membrane molecular motor 1. Following removal of confounding stray capacitance effects, high frequency Cm measures using wide-band stimuli accurately reveal unexpected low pass behavior in prestin's molecular motions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yang; Yun, Dong Yeol; Kim, Tae Whan, E-mail: twk@hanyang.ac.kr
2014-12-08
Nonvolatile memory devices based on CuInS{sub 2} (CIS) quantum dots (QDs) embedded in a polymethylmethacrylate (PMMA) layer were fabricated using spin-coating method. The memory window widths of the capacitance-voltage (C-V) curves for the Al/CIS QDs embedded in PMMA layer/p-Si devices were 0.3, 0.6, and 1.0 V for sweep voltages of ±3, ±5, and ±7 V, respectively. Capacitance-cycle data demonstrated that the charge-trapping capability of the devices with an ON/OFF ratio value of 2.81 × 10{sup −10} was maintained for 8 × 10{sup 3} cycles without significant degradation and that the extrapolation of the ON/OFF ratio value to 1 × 10{sup 6} cycles converged to 2.40 × 10{sup −10}, indicative ofmore » the good stability of the devices. The memory mechanisms for the devices are described on the basis of the C-V curves and the energy-band diagrams.« less
NASA Astrophysics Data System (ADS)
Mukhin, S. I.; Gnezdilov, N. V.
2018-05-01
We found analytically a first-order quantum phase transition in a Cooper pair box array of N low-capacitance Josephson junctions capacitively coupled to resonant photons in a microwave cavity. The Hamiltonian of the system maps on the extended Dicke Hamiltonian of N spins 1 /2 with infinitely coordinated antiferromagnetic (frustrating) interaction. This interaction arises from the gauge-invariant coupling of the Josephson-junction phases to the vector potential of the resonant photons field. In the N ≫1 semiclassical limit, we found a critical coupling at which the ground state of the system switches to one with a net collective electric dipole moment of the Cooper pair boxes coupled to a super-radiant equilibrium photonic condensate. This phase transition changes from the first to second order if the frustrating interaction is switched off. A self-consistently "rotating" Holstein-Primakoff representation for the Cartesian components of the total superspin is proposed, that enables one to trace both the first- and the second-order quantum phase transitions in the extended and standard Dicke models, respectively.
Parasitic effects in superconducting quantum interference device-based radiation comb generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosisio, R., E-mail: riccardo.bosisio@nano.cnr.it; NEST, Instituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa; Giazotto, F., E-mail: giazotto@sns.it
2015-12-07
We study several parasitic effects on the implementation of a Josephson radiation comb generator based on a dc superconducting quantum interference device (SQUID) driven by an external magnetic field. This system can be used as a radiation generator similarly to what is done in optics and metrology, and allows one to generate up to several hundreds of harmonics of the driving frequency. First we take into account how the assumption of a finite loop geometrical inductance and junction capacitance in each SQUID may alter the operation of the devices. Then, we estimate the effect of imperfections in the fabrication ofmore » an array of SQUIDs, which is an unavoidable source of errors in practical situations. We show that the role of the junction capacitance is, in general, negligible, whereas the geometrical inductance has a beneficial effect on the performance of the device. The errors on the areas and junction resistance asymmetries may deteriorate the performance, but their effect can be limited to a large extent by a suitable choice of fabrication parameters.« less
Conductive polymer foam surface improves the performance of a capacitive EEG electrode.
Baek, Hyun Jae; Lee, Hong Ji; Lim, Yong Gyu; Park, Kwang Suk
2012-12-01
In this paper, a new conductive polymer foam-surfaced electrode was proposed for use as a capacitive EEG electrode for nonintrusive EEG measurements in out-of-hospital environments. The current capacitive electrode has a rigid surface that produces an undefined contact area due to its stiffness, which renders it unable to conform to head curvature and locally isolates hairs between the electrode surface and scalp skin, making EEG measurement through hair difficult. In order to overcome this issue, a conductive polymer foam was applied to the capacitive electrode surface to provide a cushioning effect. This enabled EEG measurement through hair without any conductive contact with bare scalp skin. Experimental results showed that the new electrode provided lower electrode-skin impedance and higher voltage gains, signal-to-noise ratios, signal-to-error ratios, and correlation coefficients between EEGs measured by capacitive and conventional resistive methods compared to a conventional capacitive electrode. In addition, the new electrode could measure EEG signals, while the conventional capacitive electrode could not. We expect that the new electrode presented here can be easily installed in a hat or helmet to create a nonintrusive wearable EEG apparatus that does not make users look strange for real-world EEG applications.
Surface plasmon effect in electrodeposited diamond-like carbon films for photovoltaic application
NASA Astrophysics Data System (ADS)
Ghosh, B.; Ray, Sekhar C.; Espinoza-González, Rodrigo; Villarroel, Roberto; Hevia, Samuel A.; Alvarez-Vega, Pedro
2018-04-01
Diamond-like carbon (DLC) films and nanocrystalline silver particles containing diamond-like carbon (DLC:Ag) films were electrodeposited on n-type silicon substrate (n-Si) to prepare n-Si/DLC and n-Si/DLC:Ag heterostructures for photovoltaic (PV) applications. Surface plasmon resonance (SPR) effect in this cell structure and its overall performance have been studied in terms of morphology, optical absorption, current-voltage characteristics, capacitance-voltage characteristics, band diagram and external quantum efficiency measurements. Localized surface plasmon resonance effect of silver nanoparticles (Ag NPs) in n-Si/DLC:Ag PV structure exhibited an enhancement of ∼28% in short circuit current density (JSC), which improved the overall efficiency of the heterostructures.
Improved circuit for measuring capacitive and inductive reactances
NASA Technical Reports Server (NTRS)
Dalins, I.; Mc Carty, V.
1967-01-01
Amplifier circuit measures very small changes of capacitive or inductive reactance, such as produced by a variable capacitance or a variable inductance displacement transducer. The circuit employs reactance-sensing oscillators in which field effect transistors serve as the active elements.
High quality factor graphene varactors for wireless sensing applications
NASA Astrophysics Data System (ADS)
Koester, Steven J.
2011-10-01
A graphene wireless sensor concept is described. By utilizing thin gate dielectrics, the capacitance in a metal-insulator-graphene structure varies with charge concentration through the quantum capacitance effect. Simulations using realistic structural and transport parameters predict quality factors, Q, >60 at 1 GHz. When placed in series with an ideal inductor, a resonant frequency tuning ratio of 25% (54%) is predicted for sense charge densities ranging from 0.32 to 1.6 μC/cm2 at an equivalent oxide thickness of 2.0 nm (0.5 nm). The resonant frequency has a temperature sensitivity, df/dT, less than 0.025%/K for sense charge densities >0.32 μC/cm2.
Universal non-adiabatic geometric manipulation of pseudo-spin charge qubits
NASA Astrophysics Data System (ADS)
Azimi Mousolou, Vahid
2017-01-01
Reliable quantum information processing requires high-fidelity universal manipulation of quantum systems within the characteristic coherence times. Non-adiabatic holonomic quantum computation offers a promising approach to implement fast, universal, and robust quantum logic gates particularly useful in nano-fabricated solid-state architectures, which typically have short coherence times. Here, we propose an experimentally feasible scheme to realize high-speed universal geometric quantum gates in nano-engineered pseudo-spin charge qubits. We use a system of three coupled quantum dots containing a single electron, where two computational states of a double quantum dot charge qubit interact through an intermediate quantum dot. The additional degree of freedom introduced into the qubit makes it possible to create a geometric model system, which allows robust and efficient single-qubit rotations through careful control of the inter-dot tunneling parameters. We demonstrate that a capacitive coupling between two charge qubits permits a family of non-adiabatic holonomic controlled two-qubit entangling gates, and thus provides a promising procedure to maintain entanglement in charge qubits and a pathway toward fault-tolerant universal quantum computation. We estimate the feasibility of the proposed structure by analyzing the gate fidelities to some extent.
NASA Astrophysics Data System (ADS)
Kovchavtsev, A. P.; Aksenov, M. S.; Tsarenko, A. V.; Nastovjak, A. E.; Pogosov, A. G.; Pokhabov, D. A.; Tereshchenko, O. E.; Valisheva, N. A.
2018-05-01
The accumulation capacitance oscillations behavior in the n-InAs metal-oxide-semiconductor structures with different densities of the built-in charge (Dbc) and the interface traps (Dit) at temperature 4.2 K in the magnetic field (B) 2-10 T, directed perpendicular to the semiconductor-dielectric interface, is studied. A decrease in the oscillation frequency and an increase in the capacitance oscillation amplitude are observed with the increase in B. At the same time, for a certain surface accumulation band bending, the influence of the Rashba effect, which is expressed in the oscillations decay and breakdown, is traced. The experimental capacitance-voltage curves are in a good agreement with the numeric simulation results of the self-consistent solution of Schrödinger and Poisson equations in the magnetic field, taking into account the quantization, nonparabolicity of dispersion law, and Fermi-Dirac electron statistics, with the allowance for the Rashba effect. The Landau quantum level broadening in a two-dimensional electron gas (Lorentzian-shaped density of states), due to the electron scattering mechanism, linearly depends on the magnetic field. The correlation between the interface electronic properties and the characteristic scattering times was established.
Characterization of Textile-Insulated Capacitive Biosensors
Ng, Charn Loong; Reaz, Mamun Bin Ibne
2017-01-01
Capacitive biosensors are an emerging technology revolutionizing wearable sensing systems and personal healthcare devices. They are capable of continuously measuring bioelectrical signals from the human body while utilizing textiles as an insulator. Different textile types have their own unique properties that alter skin-electrode capacitance and the performance of capacitive biosensors. This paper aims to identify the best textile insulator to be used with capacitive biosensors by analysing the characteristics of 6 types of common textile materials (cotton, linen, rayon, nylon, polyester, and PVC-textile) while evaluating their impact on the performance of a capacitive biosensor. A textile-insulated capacitive (TEX-C) biosensor was developed and validated on 3 subjects. Experimental results revealed that higher skin-electrode capacitance of a TEX-C biosensor yields a lower noise floor and better signal quality. Natural fabric such as cotton and linen were the two best insulating materials to integrate with a capacitive biosensor. They yielded the lowest noise floor of 2 mV and achieved consistent electromyography (EMG) signals measurements throughout the performance test. PMID:28287493
Vacuum-induced quantum memory in an opto-electromechanical system
NASA Astrophysics Data System (ADS)
Qin, Li-Guo; Wang, Zhong-Yang; Wu, Shi-Chao; Gong, Shang-Qing; Ma, Hong-Yang; Jing, Jun
2018-03-01
We propose a scheme to implement electrically controlled quantum memory based on vacuum-induced transparency (VIT) in a high-Q tunable cavity, which is capacitively coupled to a mechanically variable capacitor by a charged mechanical cavity mirror as an interface. We analyze the changes of the cavity photons arising from vacuum-induced-Raman process and discuss VIT in an atomic ensemble trapped in the cavity. By slowly adjusting the voltage on the capacitor, the VIT can be adiabatically switched on or off, meanwhile, the transfer between the probe photon state and the atomic spin state can be electrically and adiabatically modulated. Therefore, we demonstrate a vacuum-induced quantum memory by electrically manipulating the mechanical mirror of the cavity based on electromagnetically induced transparency mechanism.
Electronic Transport and Possible Superconductivity at Van Hove Singularities in Carbon Nanotubes.
Yang, Y; Fedorov, G; Shafranjuk, S E; Klapwijk, T M; Cooper, B K; Lewis, R M; Lobb, C J; Barbara, P
2015-12-09
Van Hove singularities (VHSs) are a hallmark of reduced dimensionality, leading to a divergent density of states in one and two dimensions and predictions of new electronic properties when the Fermi energy is close to these divergences. In carbon nanotubes, VHSs mark the onset of new subbands. They are elusive in standard electronic transport characterization measurements because they do not typically appear as notable features and therefore their effect on the nanotube conductance is largely unexplored. Here we report conductance measurements of carbon nanotubes where VHSs are clearly revealed by interference patterns of the electronic wave functions, showing both a sharp increase of quantum capacitance, and a sharp reduction of energy level spacing, consistent with an upsurge of density of states. At VHSs, we also measure an anomalous increase of conductance below a temperature of about 30 K. We argue that this transport feature is consistent with the formation of Cooper pairs in the nanotube.
Carmichael, J R; Diallo, S O
2013-01-01
We present our new development of a high pressure cell for inelastic neutron scattering measurements of helium at ultra-low temperatures. The cell has a large sample volume of ~140 cm(3) and a working pressure of ~7 MPa, with a relatively thin wall-thickness (1.1 mm)--thanks to the high yield strength aluminum used in the design. Two variants of this cell have been developed. The first cell is permanently joined components using electron-beam welding and explosion welding, methods that have little or no impact on the global heat treatment of the cell. The second cell discussed has modular and interchangeable components, which includes a capacitance pressure gauge, that can be sealed using the traditional indium wire technique. The performance of the cells have been tested in recent measurements on superfluid liquid helium near the solidification line.
NASA Astrophysics Data System (ADS)
Carmichael, J. R.; Diallo, S. O.
2013-01-01
We present our new development of a high pressure cell for inelastic neutron scattering measurements of helium at ultra-low temperatures. The cell has a large sample volume of ˜140 cm3 and a working pressure of ˜7 MPa, with a relatively thin wall-thickness (1.1 mm)—thanks to the high yield strength aluminum used in the design. Two variants of this cell have been developed. The first cell is permanently joined components using electron-beam welding and explosion welding, methods that have little or no impact on the global heat treatment of the cell. The second cell discussed has modular and interchangeable components, which includes a capacitance pressure gauge, that can be sealed using the traditional indium wire technique. The performance of the cells have been tested in recent measurements on superfluid liquid helium near the solidification line.
New experimental techniques for solar cells
NASA Technical Reports Server (NTRS)
Lenk, R.
1993-01-01
Solar cell capacitance has special importance for an array controlled by shunting. Experimental measurements of solar cell capacitance in the past have shown disagreements of orders of magnitude. Correct measurement technique depends on maintaining the excitation voltage less than the thermal voltage. Two different experimental methods are shown to match theory well, and two effective capacitances are defined for quantifying the effect of the solar cell capacitance on the shunting system.
NASA Astrophysics Data System (ADS)
Bosman, Sal J.; Gely, Mario F.; Singh, Vibhor; Bruno, Alessandro; Bothner, Daniel; Steele, Gary A.
In circuit QED, multi-mode extensions of the quantum Rabi model suffer from divergence problems. Here, we spectroscopically study multi-mode ultra-strong coupling using a transmon circuit architecture, which provides no clear guidelines on how many modes play a role in the dynamics of the system. As our transmon qubit, we employ a suspended island above the voltage anti-node of a λ / 4 coplanar microwave resonator, thereby realising a circuit where 88% of the qubit capacitance is formed by a vacuum-gap capacitor with the center conductor of the resonator. We measure vacuum Rabi splitting over multiple modes up to 2 GHz, reaching coupling ratios of g / ω = 0 . 18 , well within the ultra-strong coupling regime. We observe a qubit-mediated mode coupling, measurable up to the fifth mode at 38 GHz. Using a novel analytical quantum circuit model of this architecture, which includes all modes without introducing divergencies, we are able to fit the full spectrum and extract a vacuum fluctuations induced Bloch-Siegert shift of up to 62 MHz. This circuit architecture expands the versatility of the transmon technology platform and opens many possibilities in multi-mode physics in the ultra-strong coupling regime.
Kumar, Sudershan; Vashisht, Hemlata; Olasunkanmi, Lukman O.; Bahadur, Indra; Verma, Hemant; Singh, Gurmeet; Obot, Ime B.; Ebenso, Eno E.
2016-01-01
Polyurethane based tri-block copolymers namely poly(N-vinylpyrrolidone)-b-polyurethane-b-poly(N-vinylpyrrolidone) (PNVP-PU) and poly(dimethylaminoethylmethacrylate)-b-polyurethane-b-poly(dimethylaminoethylmethacrylate) (PDMAEMA-PU) were synthesized through atom transfer radical polymerization (ATRP) mechanism. The synthesized polymers were characterized using nuclear magnetic resonance (NMR) spectroscopy and gel permeation chromatography (GPC) methods. The corrosion inhibition performances of the compounds were investigated on mild steel (MS) in 0.5 M H2SO4 medium using electrochemical measurements, surface analysis, quantum chemical calculations and molecular dynamic simulations (MDS). Potentiodynamic polarization (PDP) measurements revealed that the polymers are mixed-type corrosion inhibitors. Electrochemical impedance spectroscopy (EIS) measurements showed that the polymers inhibit MS corrosion by adsorbing on MS surface to form pseudo-capacitive interface. The inhibitive effects of the polymers increase with increasing concentration and decrease with increasing temperature. The adsorption of both the polymers on MS surface obey the Langmuir adsorption isotherm and involves both physisorption and chemisorption mechanisms. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses showed that the polymers formed protective film on MS surface and shield it from direct acid attack. Quantum chemical calculations and molecular dynamic simulations studies corroborate experimental results. PMID:27515383
Method and apparatus for measuring low currents in capacitance devices
Kopp, M.K.; Manning, F.W.; Guerrant, G.C.
1986-06-04
A method and apparatus for measuring subnanoampere currents in capacitance devices is reported. The method is based on a comparison of the voltages developed across the capacitance device with that of a reference capacitor in which the current is adjusted by means of a variable current source to produce a stable voltage difference. The current varying means of the variable current source is calibrated to provide a read out of the measured current. Current gain may be provided by using a reference capacitor which is larger than the device capacitance with a corresponding increase in current supplied through the reference capacitor. The gain is then the ratio of the reference capacitance to the device capacitance. In one illustrated embodiment, the invention makes possible a new type of ionizing radiation dose-rate monitor where dose-rate is measured by discharging a reference capacitor with a variable current source at the same rate that radiation is discharging an ionization chamber. The invention eliminates high-megohm resistors and low current ammeters used in low-current measuring instruments.
Capacitance Measurement with a Sigma Delta Converter for 3D Electrical Capacitance Tomography
NASA Technical Reports Server (NTRS)
Nurge, Mark
2005-01-01
This paper will explore suitability of a newly available capacitance to digital converter for use in a 3D Electrical Capacitance Tomography system. A switch design is presented along with circuitry needed to extend the range of the capacitance to digital converter. Results are then discussed for a 15+ hour drift and noise test.
NASA Astrophysics Data System (ADS)
Matsuura, Masahiro; Mano, Takaaki; Noda, Takeshi; Shibata, Naokazu; Hotta, Masahiro; Yusa, Go
2018-02-01
Quantum energy teleportation (QET) is a proposed protocol related to quantum vacuum. The edge channels in a quantum Hall system are well suited for the experimental verification of QET. For this purpose, we examine a charge-density wave packet excited and detected by capacitively coupled front gate electrodes. We observe the waveform of the charge packet, which is proportional to the time derivative of the applied square voltage wave. Further, we study the transmission and reflection behaviors of the charge-density wave packet by applying a voltage to another front gate electrode to control the path of the edge state. We show that the threshold voltages where the dominant direction is switched in either transmission or reflection for dense and sparse wave packets are different from the threshold voltage where the current stops flowing in an equilibrium state.
A linear triple quantum dot system in isolated configuration
NASA Astrophysics Data System (ADS)
Flentje, Hanno; Bertrand, Benoit; Mortemousque, Pierre-André; Thiney, Vivien; Ludwig, Arne; Wieck, Andreas D.; Bäuerle, Christopher; Meunier, Tristan
2017-06-01
The scaling up of electron spin qubit based nanocircuits has remained challenging up till date and involves the development of efficient charge control strategies. Here, we report on the experimental realization of a linear triple quantum dot in a regime isolated from the reservoir. We show how this regime can be reached with a fixed number of electrons. Charge stability diagrams of the one, two, and three electron configurations where only electron exchange between the dots is allowed are observed. They are modeled with the established theory based on a capacitive model of the dot systems. The advantages of the isolated regime with respect to experimental realizations of quantum simulators and qubits are discussed. We envision that the results presented here will make more manipulation schemes for existing qubit implementations possible and will ultimately allow to increase the number of tunnel coupled quantum dots which can be simultaneously controlled.
Capacitance probe for detection of anomalies in non-metallic plastic pipe
Mathur, Mahendra P.; Spenik, James L.; Condon, Christopher M.; Anderson, Rodney; Driscoll, Daniel J.; Fincham, Jr., William L.; Monazam, Esmail R.
2010-11-23
The disclosure relates to analysis of materials using a capacitive sensor to detect anomalies through comparison of measured capacitances. The capacitive sensor is used in conjunction with a capacitance measurement device, a location device, and a processor in order to generate a capacitance versus location output which may be inspected for the detection and localization of anomalies within the material under test. The components may be carried as payload on an inspection vehicle which may traverse through a pipe interior, allowing evaluation of nonmetallic or plastic pipes when the piping exterior is not accessible. In an embodiment, supporting components are solid-state devices powered by a low voltage on-board power supply, providing for use in environments where voltage levels may be restricted.
Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials
Ivić, Z.; Lazarides, N.; Tsironis, G. P.
2016-01-01
Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980’s, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound ”quantum breather” that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing. PMID:27403780
Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials
NASA Astrophysics Data System (ADS)
Ivić, Z.; Lazarides, N.; Tsironis, G. P.
2016-07-01
Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980’s, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound ”quantum breather” that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.
Contamination of current-clamp measurement of neuron capacitance by voltage-dependent phenomena
White, William E.
2013-01-01
Measuring neuron capacitance is important for morphological description, conductance characterization, and neuron modeling. One method to estimate capacitance is to inject current pulses into a neuron and fit the resulting changes in membrane potential with multiple exponentials; if the neuron is purely passive, the amplitude and time constant of the slowest exponential give neuron capacitance (Major G, Evans JD, Jack JJ. Biophys J 65: 423–449, 1993). Golowasch et al. (Golowasch J, Thomas G, Taylor AL, Patel A, Pineda A, Khalil C, Nadim F. J Neurophysiol 102: 2161–2175, 2009) have shown that this is the best method for measuring the capacitance of nonisopotential (i.e., most) neurons. However, prior work has not tested for, or examined how much error would be introduced by, slow voltage-dependent phenomena possibly present at the membrane potentials typically used in such work. We investigated this issue in lobster (Panulirus interruptus) stomatogastric neurons by performing current clamp-based capacitance measurements at multiple membrane potentials. A slow, voltage-dependent phenomenon consistent with residual voltage-dependent conductances was present at all tested membrane potentials (−95 to −35 mV). This phenomenon was the slowest component of the neuron's voltage response, and failure to recognize and exclude it would lead to capacitance overestimates of several hundredfold. Most methods of estimating capacitance depend on the absence of voltage-dependent phenomena. Our demonstration that such phenomena make nonnegligible contributions to neuron responses even at well-hyperpolarized membrane potentials highlights the critical importance of checking for such phenomena in all work measuring neuron capacitance. We show here how to identify such phenomena and minimize their contaminating influence. PMID:23576698
NASA Astrophysics Data System (ADS)
Kruempelmann, J.; Mariappan, C. R.; Schober, C.; Roling, B.
2010-12-01
We have measured potential-dependent interfacial capacitances of two Na-Ca-phosphosilicate glasses and of an AgI-doped silver borate glass between ion-blocking Pt electrodes. An asymmetric electrode configuration with highly dissimilar electrode areas on both faces of the glass samples allowed us to determine the capacitance at the small-area electrode. Using equivalent circuit fitting we extract potential-dependent double-layer capacitances. The potential-dependent anodic capacitance exhibits a weak maximum and drops strongly at higher potentials. The cathodic capacitance exhibits a more pronounced maximum, this maximum being responsible for the maximum in the total capacitance observed in measurements in a symmetrical electrode configuration. The capacitance maxima of the Na-Ca phosphosilicate glasses show up at higher electrode potentials than the maxima of the AgI-doped silver borate glass. Remarkably, for both types of glasses, the potential of the cathodic capacitance maximum is closely related to the activation energy of the bulk ion transport. We compare our results to recent theoretical predictions by Shklovskii and co-workers.
NASA Astrophysics Data System (ADS)
Cougnon, C.; Lebègue, E.; Pognon, G.
2015-01-01
Modified activated carbon (Norit S-50) electrodes with electrochemical double layer (EDL) capacitance and redox capacitance contributions to the electric charge storage were tested in 1 M H2SO4 to quantify the benefit and the limitation of the surface redox reactions on the electrochemical performances of the resulting pseudo-capacitive materials. The electrochemical performances of an electrochemically anodized carbon electrode and a catechol-modified carbon electrode, which make use both EDL capacitance of the porous structure of the carbon and redox capacitance, were compared to the performances obtained for the pristine carbon. Nitrogen gas adsorption measurements have been used for studying the impact of the grafting on the BET surface area, pore size distribution, pore volume and average pore diameter. The electrochemical behavior of carbon materials was studied by cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The EIS data were discussed by using a complex capacitance model that allows defining the characteristic time constant, the global capacitance and the frequency at which the maximum charge stored is reached. The EIS measurements were achieved at different dc potential values where a redox activity occurs and the evolution of the capacitance and the capacitive relaxation time with the electrode potential are presented. Realistic galvanostatic charge/discharge measurements performed at different current rates corroborate the results obtained by impedance.
NASA Astrophysics Data System (ADS)
Wen, Xixing; Zeng, Xiangbin; Zheng, Wenjun; Liao, Wugang; Feng, Feng
2015-01-01
The charging/discharging behavior of Si quantum dots (QDs) embedded in amorphous silicon carbide (a-SiCx) was investigated based on the Al/insulating layer/Si QDs embedded in a-SiCx/SiO2/p-Si (metal-insulator-quantum dots-oxide-silicon) multilayer structure by capacitance-voltage (C-V) and conductance-voltage (G-V) measurements. Transmission electron microscopy and Raman scattering spectroscopy measurements reveal the microstructure and distribution of Si QDs. The occurrence and shift of conductance peaks indicate the carrier transfer and the charging/discharging behavior of Si QDs. The multilayer structure shows a large memory window of 5.2 eV at ±8 V sweeping voltage. Analysis of the C-V and G-V results allows a quantification of the Coulomb charging energy and the trapped charge density associated with the charging/discharging behavior. It is found that the memory window is related to the size effect, and Si QDs with large size or low Coulomb charging energy can trap two or more electrons by changing the charging voltage. Meanwhile, the estimated lower potential barrier height between Si QD and a-SiCx, and the lower Coulomb charging energy of Si QDs could enhance the charging and discharging effect of Si QDs and lead to an enlarged memory window. Further studies of the charging/discharging mechanism of Si QDs embedded in a-SiCx can promote the application of Si QDs in low-power consumption semiconductor memory devices.
Large Capacitance Measurement by Multiple Uses of MBL Charge Sensor
ERIC Educational Resources Information Center
Lee, Jung Sook; Chae, Min; Kim, Jung Bog
2010-01-01
A recent article by Morse described interesting electrostatics experiments using an MBL charge sensor. In this application, the charge sensor has a large capacitance compared to the charged test object, so nearly all charges can be transferred to the sensor capacitor from the capacitor to be measured. However, the typical capacitance of commercial…
NASA Astrophysics Data System (ADS)
Huang, Wenchao; Xia, Hui; Wang, Shaowei; Deng, Honghai; Wei, Peng; Li, Lu; Liu, Fengqi; Li, Zhifeng; Li, Tianxin
2011-12-01
Scanning capacitance microscopy (SCM) and scanning spreading resistance microscopy (SSRM) both are capable of mapping the 2-demensional carrier distribution in semiconductor device structures, which is essential in determining their electrical and optoelectronic performances. In this work, cross-sectional SCM1,2 is used to study the InGaAs/InP P-i-N junctions prepared by area-selective p-type diffusion. The diffusion lengths in the depth as well as the lateral directions are obtained for junctions under different window sizes in mask, which imply that narrow windows may result in shallow p-n junctions. The analysis is beneficial to design and fabricate focal plane array of near infrared photodetectors with high duty-cycle and quantum efficiency. On the other hand, SSRM provides unparalleled spatial resolution (<10 nm) in electrical characterization3 that is demanded for studying low-dimensional structures. However, to derive the carrier density from the measured local conductance in individual quantum structures, reliable model for SSRM is necessary but still not well established. Based on the carrier concentration related transport mechanisms, i.e. thermionic emission and thermionic field emission4,5, we developed a numerical model for the tip-sample Schottky contact4. The calculation is confronted with SSRM study on the dose-calibrated quantum wells (QWs).
Charge-induced fluctuation forces in graphitic nanostructures
Drosdoff, D.; Bondarev, Igor V.; Widom, Allan; ...
2016-01-21
Charge fluctuations in nanocircuits with capacitor components are shown to give rise to a novel type of long-ranged interaction, which coexist with the regular Casimir–van derWaals force. The developed theory distinguishes between thermal and quantum mechanical effects, and it is applied to capacitors involving graphene nanostructures. The charge fluctuations mechanism is captured via the capacitance of the system with geometrical and quantum mechanical components. The dependence on the distance separation, temperature, size, and response properties of the system shows that this type of force can have a comparable and even dominant effect to the Casimir interaction. Lastly, our results stronglymore » indicate that fluctuation-induced interactions due to various thermodynamic quantities can have important thermal and quantum mechanical contributions at the microscale and the nanoscale.« less
NASA Astrophysics Data System (ADS)
Blencowe, M. P.; Armour, A. D.
2008-09-01
We describe a possible implementation of the nanomechanical quantum superposition generation and detection scheme described in the preceding, companion paper (Armour A D and Blencowe M P 2008 New. J. Phys. 10 095004). The implementation is based on the circuit quantum electrodynamics (QED) set-up, with the addition of a mechanical degree of freedom formed out of a suspended, doubly-clamped segment of the superconducting loop of a dc SQUID located directly opposite the centre conductor of a coplanar waveguide (CPW). The relative merits of two SQUID based qubit realizations are addressed, in particular a capacitively coupled charge qubit and inductively coupled flux qubit. It is found that both realizations are equally promising, with comparable qubit-mechanical resonator mode as well as qubit-microwave resonator mode coupling strengths.
Development of a Capacitive Ice Sensor to Measure Ice Growth in Real Time
Zhi, Xiang; Cho, Hyo Chang; Wang, Bo; Ahn, Cheol Hee; Moon, Hyeong Soon; Go, Jeung Sang
2015-01-01
This paper presents the development of the capacitive sensor to measure the growth of ice on a fuel pipe surface in real time. The ice sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the ice formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the ice formation conditions. From the humidity, a water film is formed on the ice sensor, which results in an increase in capacitance. Ice nucleation occurs, followed by the rapid formation of frost ice that decreases the capacitance suddenly. The capacitance is saturated. The developed ice sensor explains the ice growth providing information about the icing temperature in real time. PMID:25808770
Development of a capacitive ice sensor to measure ice growth in real time.
Zhi, Xiang; Cho, Hyo Chang; Wang, Bo; Ahn, Cheol Hee; Moon, Hyeong Soon; Go, Jeung Sang
2015-03-19
This paper presents the development of the capacitive sensor to measure the growth of ice on a fuel pipe surface in real time. The ice sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the ice formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the ice formation conditions. From the humidity, a water film is formed on the ice sensor, which results in an increase in capacitance. Ice nucleation occurs, followed by the rapid formation of frost ice that decreases the capacitance suddenly. The capacitance is saturated. The developed ice sensor explains the ice growth providing information about the icing temperature in real time.
A split-cavity design for the incorporation of a DC bias in a 3D microwave cavity
NASA Astrophysics Data System (ADS)
Cohen, Martijn A.; Yuan, Mingyun; de Jong, Bas W. A.; Beukers, Ewout; Bosman, Sal J.; Steele, Gary A.
2017-04-01
We report on a technique for applying a DC bias in a 3D microwave cavity. We achieve this by isolating the two halves of the cavity with a dielectric and directly using them as DC electrodes. As a proof of concept, we embed a variable capacitance diode in the cavity and tune the resonant frequency with a DC voltage, demonstrating the incorporation of a DC bias into the 3D cavity with no measurable change in its quality factor at room temperature. We also characterize the architecture at millikelvin temperatures and show that the split cavity design maintains a quality factor Qi ˜ 8.8 × 105, making it promising for future quantum applications.
Isolating and moving single atoms using silicon nanocrystals
Carroll, Malcolm S.
2010-09-07
A method is disclosed for isolating single atoms of an atomic species of interest by locating the atoms within silicon nanocrystals. This can be done by implanting, on the average, a single atom of the atomic species of interest into each nanocrystal, and then measuring an electrical charge distribution on the nanocrystals with scanning capacitance microscopy (SCM) or electrostatic force microscopy (EFM) to identify and select those nanocrystals having exactly one atom of the atomic species of interest therein. The nanocrystals with the single atom of the atomic species of interest therein can be sorted and moved using an atomic force microscope (AFM) tip. The method is useful for forming nanoscale electronic and optical devices including quantum computers and single-photon light sources.
NASA Technical Reports Server (NTRS)
Sarma, Garimella R.; Barranger, John P.
1992-01-01
The analysis and prototype results of a dual-amplifier circuit for measuring blade-tip clearance in turbine engines are presented. The capacitance between the blade tip and mounted capacitance electrode within a guard ring of a probe forms one of the feedback elements of an operational amplifier (op amp). The differential equation governing the circuit taking into consideration the nonideal features of the op amp was formulated and solved for two types of inputs (ramp and dc) that are of interest for the application. Under certain time-dependent constraints, it is shown that (1) with a ramp input the circuit has an output voltage proportional to the static tip clearance capacitance, and (2) with a dc input, the output is proportional to the derivative of the clearance capacitance, and subsequent integration recovers the dynamic capacitance. The technique accommodates long cable lengths and environmentally induced changes in cable and probe parameters. System implementation for both static and dynamic measurements having the same high sensitivity is also presented.
NASA Astrophysics Data System (ADS)
Sarma, Garimella R.; Barranger, John P.
1992-10-01
The analysis and prototype results of a dual-amplifier circuit for measuring blade-tip clearance in turbine engines are presented. The capacitance between the blade tip and mounted capacitance electrode within a guard ring of a probe forms one of the feedback elements of an operational amplifier (op amp). The differential equation governing the circuit taking into consideration the nonideal features of the op amp was formulated and solved for two types of inputs (ramp and dc) that are of interest for the application. Under certain time-dependent constraints, it is shown that (1) with a ramp input the circuit has an output voltage proportional to the static tip clearance capacitance, and (2) with a dc input, the output is proportional to the derivative of the clearance capacitance, and subsequent integration recovers the dynamic capacitance. The technique accommodates long cable lengths and environmentally induced changes in cable and probe parameters. System implementation for both static and dynamic measurements having the same high sensitivity is also presented.
Dispersive Readout of a Superconducting Flux Qubit Using a Microstrip SQUID Amplifier
NASA Astrophysics Data System (ADS)
Johnson, J. E.; Hoskinson, E. M.; Macklin, C.; Siddiqi, I.; Clarke, John
2011-03-01
Dispersive techniques for the readout of superconducting qubits offer the possibility of high repetition-rate, quantum non-demolition measurement by avoiding dissipation close to the qubit. To achieve dispersive readout, we couple our three-junction aluminum flux qubit inductively to a 1-2 GHz non-linear oscillator formed by a capacitively shunted DC SQUID. The frequency of this resonator is modulated by the state of the qubit via the flux-dependent inductance of the SQUID. Readout is performed by probing the resonator in the linear (weak drive) regime with a microwave tone and monitoring the phase of the reflected signal. A microstrip SQUID amplifier (MSA) is used to increase the sensitivity of the measurement over that of a HEMT (high electron mobility transistor) amplifier. We report measurements of the performance of our amplification chain. Increased fidelity and reduced measurement backaction resulting from the implementation of the MSA will also be discussed. This work was funded in part by the U.S. Government and by BBN Technologies.
Quantum shot noise in tunnel junctions
NASA Technical Reports Server (NTRS)
Ben-Jacob, E.; Mottola, E.; Schoen, G.
1983-01-01
The current and voltage fluctuations in a normal tunnel junction are calculated from microscopic theory. The power spectrum can deviate from the familiar Johnson-Nyquist form when the self-capacitance of the junction is small, at low temperatures permitting experimental verification. The deviation reflects the discrete nature of the charge transfer across the junction and should be present in a wide class of similar systems.
Wei, Qun; Kim, Mi-Jung; Lee, Jong-Ha
2018-01-01
Drinking water has several advantages that have already been established, such as improving blood circulation, reducing acid in the stomach, etc. However, due to people not noticing the amount of water they consume every time they drink, most people drink less water than the recommended daily allowance. In this paper, a capacitive sensor for developing an automatic tumbler to measure water level is proposed. Different than in previous studies, the proposed capacitive sensor was separated into two sets: the main sensor for measuring the water level in the tumbler, and the reference sensor for measuring the incremental level unit. In order to confirm the feasibility of the proposed idea, and to optimize the shape of the sensor, a 3D model of the capacitive sensor with the tumbler was designed and subjected to Finite Element Analysis (FEA) simulation. According to the simulation results, the electrodes were made of copper and assembled in a tumbler manufactured by a 3D printer. The tumbler was filled with water and was subjected to experiments in order to assess the sensor's performance. The comparison of experimental results to the simulation results shows that the measured capacitance value of the capacitive sensor changed linearly as the water level varied. This proves that the proposed sensor can accurately measure the water level in the tumbler. Additionally, by use of the curve fitting method, a compensation algorithm was found to match the actual level with the measured level. The experimental results proved that the proposed capacitive sensor is able to measure the actual water level in the tumbler accurately. A digital control part with micro-processor will be designed and fixed on the bottom of the tumbler for developing a smart tumbler.
Capacitive Cells for Dielectric Constant Measurement
ERIC Educational Resources Information Center
Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco
2015-01-01
A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.
NASA Astrophysics Data System (ADS)
England, Troy; Curry, Matthew; Carr, Steve; Swartzentruber, Brian; Lilly, Michael; Bishop, Nathan; Carrol, Malcolm
2015-03-01
Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance typical of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will discuss calibration data, as well as modeling and simulation of cryogenic silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) circuits connected to a silicon SET and operating at 4 K. We find a continuum of solutions from simple, single-HBT amplifiers to more complex, multi-HBT circuits suitable for integration, with varying noise levels and power vs. bandwidth tradeoffs. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.
Counted Sb donors in Si quantum dots
NASA Astrophysics Data System (ADS)
Singh, Meenakshi; Pacheco, Jose; Bielejec, Edward; Perry, Daniel; Ten Eyck, Gregory; Bishop, Nathaniel; Wendt, Joel; Luhman, Dwight; Carroll, Malcolm; Lilly, Michael
2015-03-01
Deterministic control over the location and number of donors is critical for donor spin qubits in semiconductor based quantum computing. We have developed techniques using a focused ion beam and a diode detector integrated next to a silicon MOS single electron transistor to gain such control. With the diode detector operating in linear mode, the numbers of ions implanted have been counted and single ion implants have been detected. Poisson statistics in the number of ions implanted have been observed. Transport measurements performed on samples with counted number of implants have been performed and regular coulomb blockade and charge offsets observed. The capacitances to various gates are found to be in agreement with QCAD simulations for an electrostatically defined dot. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.
An Investigation of Quantum Dot Super Lattice Use in Nonvolatile Memory and Transistors
NASA Astrophysics Data System (ADS)
Mirdha, P.; Parthasarathy, B.; Kondo, J.; Chan, P.-Y.; Heller, E.; Jain, F. C.
2018-02-01
Site-specific self-assembled colloidal quantum dots (QDs) will deposit in two layers only on p-type substrate to form a QD superlattice (QDSL). The QDSL structure has been integrated into the floating gate of a nonvolatile memory component and has demonstrated promising results in multi-bit storage, ease of fabrication, and memory retention. Additionally, multi-valued logic devices and circuits have been created by using QDSL structures which demonstrated ternary and quaternary logic. With increasing use of site-specific self-assembled QDSLs, fundamental understanding of silicon and germanium QDSL charge storage capability, self-assembly on specific surfaces, uniform distribution, and mini-band formation has to be understood for successful implementation in devices. In this work, we investigate the differences in electron charge storage by building metal-oxide semiconductor (MOS) capacitors and using capacitance and voltage measurements to quantify the storage capabilities. The self-assembly process and distribution density of the QDSL is done by obtaining atomic force microscopy (AFM) results on line samples. Additionally, we present a summary of the theoretical density of states in each of the QDSLs.
Lv, Yi; Cui, Jian; Jiang, Zuimin M; Yang, Xinju
2012-11-29
The nanoscale electrical properties of individual self-assembled GeSi quantum rings (QRs) were studied by scanning probe microscopy-based techniques. The surface potential distributions of individual GeSi QRs are obtained by scanning Kelvin microscopy (SKM). Ring-shaped work function distributions are observed, presenting that the QRs' rim has a larger work function than the QRs' central hole. By combining the SKM results with those obtained by conductive atomic force microscopy and scanning capacitance microscopy, the correlations between the surface potential, conductance, and carrier density distributions are revealed, and a possible interpretation for the QRs' conductance distributions is suggested.
Graphene quantum dots as the electrolyte for solid state supercapacitors
Zhang, Su; Li, Yutong; Song, Huaihe; Chen, Xiaohong; Zhou, Jisheng; Hong, Song; Huang, Minglu
2016-01-01
We propose that graphene quantum dots (GQDs) with a sufficient number of acidic oxygen-bearing functional groups such as -COOH and -OH can serve as solution- and solid- type electrolytes for supercapacitors. Moreover, we found that the ionic conductivity and ion-donating ability of the GQDs could be markedly improved by simply neutralizing their acidic functional groups by using KOH. These neutralized GQDs as the solution- or solid-type electrolytes greatly enhanced the capacitive performance and rate capability of the supercapacitors. The reason for the enhancement can be ascribed to the fully ionization of the weak acidic oxygen-bearing functional groups after neutralization. PMID:26763275
Active Targets For Capacitive Proximity Sensors
NASA Technical Reports Server (NTRS)
Jenstrom, Del T.; Mcconnell, Robert L.
1994-01-01
Lightweight, low-power active targets devised for use with improved capacitive proximity sensors described in "Capacitive Proximity Sensor Has Longer Range" (GSC-13377), and "Capacitive Proximity Sensors With Additional Driven Shields" (GSC-13475). Active targets are short-distance electrostatic beacons; they generate known alternating electro-static fields used for alignment and/or to measure distances.
Rupp, Ghislain M.; Fleig, Jürgen
2018-01-01
La0.6Sr0.4FeO3–δ (LSF) thin films of different thickness were prepared by pulsed laser deposition on yttria stabilized zirconia (YSZ) and characterized by using three electrode impedance spectroscopy. Electrochemical film capacitance was analyzed in relation to oxygen partial pressure (0.25 mbar to 1 bar), DC polarization (0 m to –600 m) and temperature (500 to 650 °C). For most measurement parameters, the chemical bulk capacitance dominates the overall capacitive properties and the corresponding defect chemical state depends solely on the oxygen chemical potential inside the film, independent of atmospheric oxygen pressure and DC polarization. Thus, defect chemical properties (defect concentrations and defect formation enthalpies) could be deduced from such measurements. Comparison with LSF defect chemical bulk data from the literature showed good agreement for vacancy formation energies but suggested larger electronic defect concentrations in the films. From thickness-dependent measurements at lower oxygen chemical potentials, an additional capacitive contribution could be identified and attributed to the LSF|YSZ interface. Deviations from simple chemical capacitance models at high pressures are most probably due to defect interactions. PMID:29671421
Schmid, Alexander; Rupp, Ghislain M; Fleig, Jürgen
2018-05-03
La0.6Sr0.4FeO3-δ (LSF) thin films of different thickness were prepared by pulsed laser deposition on yttria stabilized zirconia (YSZ) and characterized by using three electrode impedance spectroscopy. Electrochemical film capacitance was analyzed in relation to oxygen partial pressure (0.25 mbar to 1 bar), DC polarization (0 m to -600 m) and temperature (500 to 650 °C). For most measurement parameters, the chemical bulk capacitance dominates the overall capacitive properties and the corresponding defect chemical state depends solely on the oxygen chemical potential inside the film, independent of atmospheric oxygen pressure and DC polarization. Thus, defect chemical properties (defect concentrations and defect formation enthalpies) could be deduced from such measurements. Comparison with LSF defect chemical bulk data from the literature showed good agreement for vacancy formation energies but suggested larger electronic defect concentrations in the films. From thickness-dependent measurements at lower oxygen chemical potentials, an additional capacitive contribution could be identified and attributed to the LSF|YSZ interface. Deviations from simple chemical capacitance models at high pressures are most probably due to defect interactions.
Superconducting quantum simulator for topological order and the toric code
NASA Astrophysics Data System (ADS)
Sameti, Mahdi; Potočnik, Anton; Browne, Dan E.; Wallraff, Andreas; Hartmann, Michael J.
2017-04-01
Topological order is now being established as a central criterion for characterizing and classifying ground states of condensed matter systems and complements categorizations based on symmetries. Fractional quantum Hall systems and quantum spin liquids are receiving substantial interest because of their intriguing quantum correlations, their exotic excitations, and prospects for protecting stored quantum information against errors. Here, we show that the Hamiltonian of the central model of this class of systems, the toric code, can be directly implemented as an analog quantum simulator in lattices of superconducting circuits. The four-body interactions, which lie at its heart, are in our concept realized via superconducting quantum interference devices (SQUIDs) that are driven by a suitably oscillating flux bias. All physical qubits and coupling SQUIDs can be individually controlled with high precision. Topologically ordered states can be prepared via an adiabatic ramp of the stabilizer interactions. Strings of qubit operators, including the stabilizers and correlations along noncontractible loops, can be read out via a capacitive coupling to read-out resonators. Moreover, the available single-qubit operations allow to create and propagate elementary excitations of the toric code and to verify their fractional statistics. The architecture we propose allows to implement a large variety of many-body interactions and thus provides a versatile analog quantum simulator for topological order and lattice gauge theories.
In vivo skin imaging for hydration and micro relief-measurement.
Kardosova, Z; Hegyi, V
2013-01-01
We present the results of our work with device used for measurement of skin capacitance before and after application of moisturizing creams and results of experiment performed on cellulose filter papers soaked with different solvents. The measurements were performed by a device built on capacitance sensor, which provides an investigator with a capacitance image of the skin. The capacitance values are coded in a range of 256 gray levels then the skin hydration can be characterized using parameters derived from gray level histogram by specific software. The images obtained by device allow a highly precise observation of skin topography. Measuring of skin capacitance brings new, objective, reliable information about topographical, physical and chemical parameters of the skin. The study shows that there is a good correlation between the average grayscale values and skin hydration. In future works we need to complete more comparison studies, interpret the average grayscale values to skin hydration levels and use it for follow-up of dynamics of skin micro-relief and hydration changes (Fig. 6, Ref. 15).
Anomalous effects on radiation detectors and capacitance measurements inside a modified Faraday cage
NASA Astrophysics Data System (ADS)
Milián-Sánchez, V.; Mocholí-Salcedo, A.; Milián, C.; Kolombet, V. A.; Verdú, G.
2016-08-01
We present experimental results showing certain anomalies in the measurements performed inside a modified Faraday cage of decay rates of Ra-226, Tl-204 and Sr-90/I-90, of the gamma spectrum of a Cs-137 preparation, and of the capacitance of both a class-I multilayer ceramic capacitor and of the interconnection cable between the radiation detector and the scaler. Decay rates fluctuate significantly up to 5% around the initial value and differently depending on the type of nuclide, and the spectrum photopeak increases in 4.4%. In the case of the capacitor, direct capacitance measurements at 100 Hz, 10 kHz and 100 kHz show variations up to 0.7%, the most significant taking place at 100 Hz. In the case of the interconnection cable, the capacitance varies up to 1%. Dispersion also tends to increase inside the enclosure. However, the measured capacitance variations do not explain the variations observed in decay rates.
An impedance bridge measuring the capacitance ratio in the high frequency range up to 1 MHz
NASA Astrophysics Data System (ADS)
Bee Kim, Dan; Kew Lee, Hyung; Kim, Wan-Seop
2017-02-01
This paper describes a 2-terminal-pair impedance bridge, measuring the capacitance ratio in the high frequency range up to 1 MHz. The bridge was configured with two voltage sources and a phase control unit which enabled the bridge balance by synchronizing the voltage sources with an enhanced phase resolution. Without employing the transformers such as inductive voltage divider, injection and detection transformers, etc, the bridge system is quite simple to set up, and the balance procedure is quick and easy. Using this dual-source coaxial bridge, the 1:1 and 10:1 capacitance ratios were measured with 1 pF-1 nF capacitors in the frequency range from 1 kHz to 1 MHz. The measurement values obtained by the dual-source bridge were then compared with reference values measured using a commercial precision capacitance bridge of AH2700A, the Z-matrix method developed by ourselves, and the 4-terminal-pair coaxial bridge by the Czech Metrological Institute. All the measurements agreed within the reference uncertainty range of an order of 10-6-10-5, proving the bridge ability as a trustworthy tool for measuring the capacitance ratio in the high frequency range.
A High Resolution Capacitive Sensing System for the Measurement of Water Content in Crude Oil
Aslam, Muhammad Zubair; Tang, Tong Boon
2014-01-01
This paper presents the design of a non-intrusive system to measure ultra-low water content in crude oil. The system is based on a capacitance to phase angle conversion method. Water content is measured with a capacitance sensor comprising two semi-cylindrical electrodes mounted on the outer side of a glass tube. The presence of water induces a capacitance change that in turn converts into a phase angle, with respect to a main oscillator. A differential sensing technique is adopted not only to ensure high immunity against temperature variation and background noise, but also to eliminate phase jitter and amplitude variation of the main oscillator that could destabilize the output. The complete capacitive sensing system was implemented in hardware and experiment results using crude oil samples demonstrated that a resolution of ±50 ppm of water content in crude oil was achieved by the proposed design. PMID:24967606
A high resolution capacitive sensing system for the measurement of water content in crude oil.
Zubair, Muhammad; Tang, Tong Boon
2014-06-25
This paper presents the design of a non-intrusive system to measure ultra-low water content in crude oil. The system is based on a capacitance to phase angle conversion method. Water content is measured with a capacitance sensor comprising two semi-cylindrical electrodes mounted on the outer side of a glass tube. The presence of water induces a capacitance change that in turn converts into a phase angle, with respect to a main oscillator. A differential sensing technique is adopted not only to ensure high immunity against temperature variation and background noise, but also to eliminate phase jitter and amplitude variation of the main oscillator that could destabilize the output. The complete capacitive sensing system was implemented in hardware and experiment results using crude oil samples demonstrated that a resolution of ± 50 ppm of water content in crude oil was achieved by the proposed design.
de Graaf, S E; Danilov, A V; Adamyan, A; Kubatkin, S E
2013-02-01
We report on the design and performance of a cryogenic (300 mK) near-field scanning microwave microscope. It uses a microwave resonator as the near-field sensor, operating at a frequency of 6 GHz and microwave probing amplitudes down to 100 μV, approaching low enough photon population (N ∼ 1000) of the resonator such that coherent quantum manipulation becomes feasible. The resonator is made out of a miniaturized distributed fractal superconducting circuit that is integrated with the probing tip, micromachined to be compact enough such that it can be mounted directly on a quartz tuning-fork, and used for parallel operation as an atomic force microscope (AFM). The resonator is magnetically coupled to a transmission line for readout, and to achieve enhanced sensitivity we employ a Pound-Drever-Hall measurement scheme to lock to the resonance frequency. We achieve a well localized near-field around the tip such that the microwave resolution is comparable to the AFM resolution, and a capacitive sensitivity down to 6.4 × 10(-20) F/Hz, limited by mechanical noise. We believe that the results presented here are a significant step towards probing quantum systems at the nanoscale using near-field scanning microwave microscopy.
Capacitively readout multi-element sensor array with common-mode cancellation
Britton, Jr., Charles L.; Warmack, Robert J.; Bryan, William L.; Jones, Robert L.; Oden, Patrick Ian; Thundat, Thomas
2001-01-01
An improved multi-element apparatus for detecting the presence of at least one chemical, biological or physical component in a monitored area comprising an array or single set of the following elements: a capacitive transducer having at least one cantilever spring element secured thereto, the cantilever element having an area thereof coated with a chemical having an affinity for the component to be detected; a pick-up plate positioned adjacent to the cantilever element at a distance such that a capacitance between the cantilever element and the pick-up plate changes as the distance between the cantilever element and the pick-up plate varies, the change in capacitance being a measurable variation; a detection means for measuring the measurable variation in the capacitance between the cantilever element and the pick-up plate that forms a measurement channel signal; and at least one feedback cantilever spring element positioned apart from the coated cantilever element, the cantilever element substantially unaffected by the component being monitored and providing a reference channel signal to the detection means that achieves a common mode cancellation between the measurement channel signal and reference channel signal.
Determination of the dissipation in superconducting Josephson junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mugnai, D., E-mail: d.mugnai@ifac.cnr.it; Ranfagni, A.; Cacciari, I.
2015-02-07
The results relative to macroscopic quantum tunneling rate, out of the metastable state of Josephson junctions, are examined in view of determining the effect of dissipation. We adopt a simple criterion in accordance to which the effect of dissipation can be evaluated by analyzing the shortening of the semiclassical traversal time of the barrier. In almost all the considered cases, especially those with relatively large capacitance values, the relative time shortening turns out to be about 20% and with a corresponding quality factor Q ≃ 5.5. However, beyond the specific cases here considered, still in the regime of moderate dissipation,more » the method is applicable also to different situations with different values of the quality factor. The method allows, within the error limits, for a reliable determination of the load resistance R{sub L}, the less accessible quantity in the framework of the resistively and capacitively shunted junction model, provided that the characteristics of the junction (intrinsic capacitance, critical current, and the ratio of the bias current to the critical one) are known with sufficient accuracy.« less
Zhan, Hualin; Garrett, David J.; Apollo, Nicholas V.; Ganesan, Kumaravelu; Lau, Desmond; Prawer, Steven; Cervenka, Jiri
2016-01-01
High surface area electrode materials are of interest for a wide range of potential applications such as super-capacitors and electrochemical cells. This paper describes a fabrication method of three-dimensional (3D) graphene conformally coated on nanoporous insulating substrate with uniform nanopore size. 3D graphene films were formed by controlled graphitization of diamond-like amorphous carbon precursor films, deposited by plasma-enhanced chemical vapour deposition (PECVD). Plasma-assisted graphitization was found to produce better quality graphene than a simple thermal graphitization process. The resulting 3D graphene/amorphous carbon/alumina structure has a very high surface area, good electrical conductivity and exhibits excellent chemically stability, providing a good material platform for electrochemical applications. Consequently very large electrochemical capacitance values, as high as 2.1 mF for a sample of 10 mm3, were achieved. The electrochemical capacitance of the material exhibits a dependence on bias voltage, a phenomenon observed by other groups when studying graphene quantum capacitance. The plasma-assisted graphitization, which dominates the graphitization process, is analyzed and discussed in detail. PMID:26805546
Triangulating the source of tunneling resonances in a point contact with nanometer scale sensitivity
NASA Astrophysics Data System (ADS)
Bishop, N. C.; Boras Pinilla, C.; Stalford, H. L.; Young, R. W.; Ten Eyck, G. A.; Wendt, J. R.; Eng, K.; Lilly, M. P.; Carroll, M. S.
2011-03-01
We observe resonant tunneling in split gate point contacts defined in a double gate enhancement mode Si-MOS device structure. We determine the capacitances from the resonant feature to each of the conducting gates and the source/drain two dimensional electron gas regions. In our device, these capacitances provide information about the resonance location in three dimensions. Semi-classical electrostatic simulations of capacitance, already used to map quantum dot size and position [Stalford et al., IEEE Nanotechnology], identify a combination of location and confinement potential size that satisfy our experimental observations. The sensitivity of simulation to position and size allow us to triangulate possible locations of the resonant level with nanometer resolution. We discuss our results and how they may apply to resonant tunneling through a single donor. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Zhan, Hualin; Garrett, David J; Apollo, Nicholas V; Ganesan, Kumaravelu; Lau, Desmond; Prawer, Steven; Cervenka, Jiri
2016-01-25
High surface area electrode materials are of interest for a wide range of potential applications such as super-capacitors and electrochemical cells. This paper describes a fabrication method of three-dimensional (3D) graphene conformally coated on nanoporous insulating substrate with uniform nanopore size. 3D graphene films were formed by controlled graphitization of diamond-like amorphous carbon precursor films, deposited by plasma-enhanced chemical vapour deposition (PECVD). Plasma-assisted graphitization was found to produce better quality graphene than a simple thermal graphitization process. The resulting 3D graphene/amorphous carbon/alumina structure has a very high surface area, good electrical conductivity and exhibits excellent chemically stability, providing a good material platform for electrochemical applications. Consequently very large electrochemical capacitance values, as high as 2.1 mF for a sample of 10 mm(3), were achieved. The electrochemical capacitance of the material exhibits a dependence on bias voltage, a phenomenon observed by other groups when studying graphene quantum capacitance. The plasma-assisted graphitization, which dominates the graphitization process, is analyzed and discussed in detail.
Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation.
Chen, Jian Z; Darhuber, Anton A; Troian, Sandra M; Wagner, Sigurd
2004-10-01
The design and performance of a miniaturized coplanar capacitive sensor is presented whose electrode arrays can also function as resistive microheaters for thermocapillary actuation of liquid films and droplets. Optimal compromise between large capacitive signal and high spatial resolution is obtained for electrode widths comparable to the liquid film thickness measured, in agreement with supporting numerical simulations which include mutual capacitance effects. An interdigitated, variable width design, allowing for wider central electrodes, increases the capacitive signal for liquid structures with non-uniform height profiles. The capacitive resolution and time response of the current design is approximately 0.03 pF and 10 ms, respectively, which makes possible a number of sensing functions for nanoliter droplets. These include detection of droplet position, size, composition or percentage water uptake for hygroscopic liquids. Its rapid response time allows measurements of the rate of mass loss in evaporating droplets.
2012-07-01
transimpedance amplifier (CTIA), an output sample and hold, and a switched output buffer. Polaris Sensor Technology designed the unit cell that has this...hold, a dual gain, capacitive transimpedance amplifier (CTIA), an output sample and hold, and a switched output buffer. 6 The detector bias... transimpedance amplifier (CTIA) is used to integrate the detector’s photocurrent. It is built around a differential amplifier , X3, shown in Figure 3. The
A numerical method for measuring capacitive soft sensors through one channel
NASA Astrophysics Data System (ADS)
Tairych, Andreas; Anderson, Iain A.
2018-03-01
Soft capacitive stretch sensors are well suited for unobtrusive wearable body motion capture. Conventional sensing methods measure sensor capacitances through separate channels. In sensing garments with many sensors, this results in high wiring complexity, and a large footprint of rigid sensing circuit boards. We have developed a more efficient sensing method that detects multiple sensors through only one channel, and one set of wires. It is based on a R-C transmission line assembled from capacitive conductive fabric stretch sensors, and external resistors. The unknown capacitances are identified by solving a system of nonlinear equations. These equations are established by modelling and continuously measuring transmission line reactances at different frequencies. Solving these equations numerically with a Newton-Raphson solver for the unknown capacitances enables real time reading of all sensors. The method was verified with a prototype comprising three sensors that is capable of detecting both individually and simultaneously stretched sensors. Instead of using three channels and six wires to detect the sensors, the task was achieved with only one channel and two wires.
Design of Moisture Content Detection System
NASA Astrophysics Data System (ADS)
Wang, W. C.; Wang, L.
In this paper, a method for measuring the moisture content of grain was presented based on single chip microcomputer and capacitive sensor. The working principle of measuring moisture content is introduced and a concentric cylinder type of capacitive sensor is designed, the signal processing circuits of system are described in details. System is tested in practice and discussions are made on the various factors affecting the capacitive measuring of grain moisture based on the practical experiments, experiment results showed that the system has high measuring accuracy and good controlling capacity.
Savage, Michael J.
2010-01-01
The possibility of reliable, reasonably accurate and relatively inexpensive estimates of sensible heat and latent energy fluxes was investigated using a commercial combination thin-film polymer capacitive relative humidity and adjacent temperature sensor instrument. Long-term and unattended water vapour pressure profile difference measurements using low-power combination instruments were compared with those from a cooled dewpoint mirror hygrometer, the latter often used with Bowen ratio energy balance (BREB) systems. An error analysis, based on instrument relative humidity and temperature errors, was applied for various capacitive humidity instrument models. The main disadvantage of a combination capacitive humidity instrument is that two measurements, relative humidity and temperature, are required for estimation of water vapour pressure as opposed to one for a dewpoint hygrometer. In a laboratory experiment using an automated procedure, water vapour pressure differences generated using a reference dewpoint generator were measured using a commercial model (Dew-10) dewpoint hygrometer and a combination capacitive humidity instrument. The laboratory measurement comparisons showed that, potentially, an inexpensive model combination capacitive humidity instrument (CS500 or HMP50), or for improved results a slightly more expensive model (HMP35C or HMP45C), could substitute for the more expensive dewpoint hygrometer. In a field study, in a mesic grassland, the water vapour pressure measurement noise for the combination capacitive humidity instruments was greater than that for the dewpoint hygrometer. The average water vapour pressure profile difference measured using a HMP45C was highly correlated with that from a dewpoint hygrometer with a slope less than unity. Water vapour pressure measurements using the capacitive humidity instruments were not as accurate, compared to those obtained using a dewpoint hygrometer, but the resolution magnitudes for the profile difference measurements were less than the minimum of 0.01 kPa required for BREB measurements when averaged over 20 min. Furthermore, the longer-term capacitive humidity measurements are more reliable and not dependent on a sensor bias adjustment as is the case for the dewpoint hygrometer. A field comparison of CS500 and HMP45C profile water vapour pressure differences yielded a slope of close to unity. However, the CS500 exhibited more variable water vapour pressure measurements mainly due to its increased variation in temperature measurements compared to the HMP45C. Comparisons between 20-min BREB sensible heat fluxes obtained using a HMP45C and a dewpoint hygrometer yielded a slope of almost unity. BREB sensible heat fluxes measured using a HMP45C were reasonably well correlated with those obtained using a surface-layer scintillometer and eddy covariance (slope of 0.9629 and 0.9198 respectively). This reasonable agreement showed that a combination capacitive humidity instrument, with similar relative humidity (RH) and temperature error magnitudes of at most 2% RH and 0.3 °C respectively, and similar measurement time response, would be an adequate and less expensive substitute for a dewpoint hygrometer. Furthermore, a combination capacitive humidity instrument requires no servicing compared to a dewpoint hygrometer which requires a bias adjustment and mirror cleaning each week. These findings make unattended BREB measurements of sensible heat flux and evaporation cheaper and more reliable with the system easier to assemble and service and with reduced instrument power. PMID:22163625
NASA Astrophysics Data System (ADS)
Yang, Xu-Chen; Wang, Xin
The manipulation of coupled quantum dot devices is crucial to scalable, fault-tolerant quantum computation. We present a theoretical study of a four-electron four-quantum-dot system based on molecular orbital methods, which depicts a pair of singlet-triplet (S-T) qubits. We find that while the two S-T qubits are coupled by the capacitive interaction when they are sufficiently far away, the admixture of wave functions undergoes a substantial change as the two S-T qubits get closer. We find that in certain parameter regime the exchange interaction may only be defined in the sense of an effective one when the computational basis states no longer dominate the eigenstates. We further discuss the gate crosstalk as a consequence of this wave function mixing. This work was supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (No. CityU 21300116) and the National Natural Science Foundation of China (No. 11604277).
Ferroelectric negative capacitance domain dynamics
NASA Astrophysics Data System (ADS)
Hoffmann, Michael; Khan, Asif Islam; Serrao, Claudy; Lu, Zhongyuan; Salahuddin, Sayeef; Pešić, Milan; Slesazeck, Stefan; Schroeder, Uwe; Mikolajick, Thomas
2018-05-01
Transient negative capacitance effects in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 capacitors are investigated with a focus on the dynamical switching behavior governed by domain nucleation and growth. Voltage pulses are applied to a series connection of the ferroelectric capacitor and a resistor to directly measure the ferroelectric negative capacitance during switching. A time-dependent Ginzburg-Landau approach is used to investigate the underlying domain dynamics. The transient negative capacitance is shown to originate from reverse domain nucleation and unrestricted domain growth. However, with the onset of domain coalescence, the capacitance becomes positive again. The persistence of the negative capacitance state is therefore limited by the speed of domain wall motion. By changing the applied electric field, capacitor area or external resistance, this domain wall velocity can be varied predictably over several orders of magnitude. Additionally, detailed insights into the intrinsic material properties of the ferroelectric are obtainable through these measurements. A new method for reliable extraction of the average negative capacitance of the ferroelectric is presented. Furthermore, a simple analytical model is developed, which accurately describes the negative capacitance transient time as a function of the material properties and the experimental boundary conditions.
Zheng, Panpan; Liu, Jinquan; Li, Zhu; Liu, Huafeng
2017-01-01
Encoder-like micro area-changed capacitive transducers are advantageous in terms of their better linearity and larger dynamic range compared to gap-changed capacitive transducers. Such transducers have been widely applied in rectilinear and rotational position sensors, lab-on-a-chip applications and bio-sensors. However, a complete model accounting for both the parasitic capacitance and fringe effect in area-changed capacitive transducers has not yet been developed. This paper presents a complete model for this type of transducer applied to a high-resolution micro accelerometer that was verified by both simulations and experiments. A novel optimization method involving the insertion of photosensitive polyimide was used to reduce the parasitic capacitance, and the capacitor spacing was decreased to overcome the fringe effect. The sensitivity of the optimized transducer was approximately 46 pF/mm, which was nearly 40 times higher than that of our previous transducer. The displacement detection resolution was measured as 50 pm/√Hz at 0.1 Hz using a precise capacitance detection circuit. Then, the transducer was applied to a sandwich in-plane micro accelerometer, and the measured level of the accelerometer was approximately 30 ng/√Hz at 1Hz. The earthquake that occurred in Taiwan was also detected during a continuous gravity measurement. PMID:28930176
NASA Technical Reports Server (NTRS)
1977-01-01
The 20x9 TDI array was developed to meet the LANDSAT Thematic Mapper Requirements. This array is based upon a self-aligned, transparent gate, buried channel process. The process features: (1) buried channel, four phase, overlapping gate CCD's for high transfer efficiency without fat zero; (2) self-aligned transistors to minimize clock feedthrough and parasitic capacitance; and (3) transparent tin oxide electrode for high quantum efficiency with front surface irradiation. The requirements placed on the array and the performance achieved are summarized. This data is the result of flat field measurements only, no imaging or dynamic target measurements were made during this program. Measurements were performed with two different test stands. The bench test equipment fabricated for this program operated at the 8 micro sec line time and employed simple sampling of the gated MOSFET output video signal. The second stand employed Correlated Doubled Sampling (CDS) and operated at 79.2 micro sec line time.
Sahu, Bibhuti Bhusan; Yin, Yongyi; Han, Jeon Geon; Shiratani, Masaharu
2016-06-21
The advanced materials process by non-thermal plasmas with a high plasma density allows the synthesis of small-to-big sized Si quantum dots by combining low-temperature deposition with superior crystalline quality in the background of an amorphous hydrogenated silicon nitride matrix. Here, we make quantum dot thin films in a reactive mixture of ammonia/silane/hydrogen utilizing dual-frequency capacitively coupled plasmas with high atomic hydrogen and nitrogen radical densities. Systematic data analysis using different film and plasma characterization tools reveals that the quantum dots with different sizes exhibit size dependent film properties, which are sensitively dependent on plasma characteristics. These films exhibit intense photoluminescence in the visible range with violet to orange colors and with narrow to broad widths (∼0.3-0.9 eV). The observed luminescence behavior can come from the quantum confinement effect, quasi-direct band-to-band recombination, and variation of atomic hydrogen and nitrogen radicals in the film growth network. The high luminescence yields in the visible range of the spectrum and size-tunable low-temperature synthesis with plasma and radical control make these quantum dot films good candidates for light emitting applications.
NASA Astrophysics Data System (ADS)
Snider, Gregory
2000-03-01
Quantum-dot Cellular Automata (QCA) [1] is a promising architecture which employs quantum dots for digital computation. It is a revolutionary approach that holds the promise of high device density and low power dissipation. A basic QCA cell consists of four quantum dots coupled capacitively and by tunnel barriers. The cell is biased to contain two excess electrons within the four dots, which are forced to opposite "corners" of the four-dot cell by mutual Coulomb repulsion. These two possible polarization states of the cell will represent logic "0" and "1". Properly arranged, arrays of these basic cells can implement Boolean logic functions. Experimental results from functional QCA devices built of nanoscale metal dots defined by tunnel barriers will be presented. The experimental devices to be presented consist of Al islands, which we will call quantum dots, interconnected by tunnel junctions and lithographically defined capacitors. Aluminum/ aluminum-oxide/aluminum tunnel junctions were fabricated using a standard e-beam lithography and shadow evaporation technique. The experiments were performed in a dilution refrigerator at a temperature of 70 mK. The operation of a cell is evaluated by direct measurements of the charge state of dots within a cell as the input voltage is changed. The experimental demonstration of a functioning cell will be presented. A line of three cells demonstrates that there are no metastable switching states in a line of cells. A QCA majority gate will also be presented, which is a programmable AND/OR gate and represents the basic building block of QCA systems. The results of recent experiments will be presented. 1. C.S. Lent, P.D. Tougaw, W. Porod, and G.H. Bernstein, Nanotechnology, 4, 49 (1993).
Facile synthesis of ultrafine cobalt oxide nanoparticles for high-performance supercapacitors.
Liu, Fangyan; Su, Hai; Jin, Long; Zhang, Haitao; Chu, Xiang; Yang, Weiqing
2017-11-01
The ultrafine Co 3 O 4 nanoparticles are successfully prepared by a novel solvothermal-precipitation approach which exploits the supernatant liquid of Co 3 O 4 nanoflake micropheres synthesized by solvothermal method before. Interestingly, the water is only employed to obtain the ultrafine nanoparticles in supernatant liquid which was usually thrown away before. The microstructure measurement results of the as-grown samples present the homogeneous disperse ultrafine Co 3 O 4 nanoparticles with the size of around 5-10nm. The corresponding synthesis mechanism of the ultrafine Co 3 O 4 nanoparticles is proposed. More importantly, these ultrafine Co 3 O 4 nanoparticles obtained at 250°C show the highest specific capacitance of 523.0Fg -1 at 0.5Ag -1 , 2.6 times that of Co 3 O 4 nanoflake micropheres due to the quantum size effect. Meanwhile, the sample annealed under 350°C possesses the best cycling stability with capacitance retention of 104.9% after 1500 cycles. These results unambiguously demonstrate that this work not only provides a novel, facile, and eco-friendly approach to prepare high-performance Co 3 O 4 nanoparticles electrode materials for supercapacitors but also develops a widely used method for the preparation of other materials on a large scale. Copyright © 2017 Elsevier Inc. All rights reserved.
An on-line calibration technique for improved blade by blade tip clearance measurement
NASA Astrophysics Data System (ADS)
Sheard, A. G.; Westerman, G. C.; Killeen, B.
A description of a capacitance-based tip clearance measurement system which integrates a novel technique for calibrating the capacitance probe in situ is presented. The on-line calibration system allows the capacitance probe to be calibrated immediately prior to use, providing substantial operational advantages and maximizing measurement accuracy. The possible error sources when it is used in service are considered, and laboratory studies of performance to ascertain their magnitude are discussed. The 1.2-mm diameter FM capacitance probe is demonstrated to be insensitive to variations in blade tip thickness from 1.25 to 1.45 mm. Over typical compressor blading the probe's range was four times the variation in blade to blade clearance encountered in engine run components.
NASA Astrophysics Data System (ADS)
Zeng, Ke; Singisetti, Uttam
2017-09-01
The interface trap density (Dit) of the SiO2/β-Ga2O3 interface in ( 2 ¯ 01), (010), and (001) orientations is obtained by the Hi-Lo method with the low frequency capacitance measured using the Quasi-Static Capacitance-Voltage (QSCV) technique. QSCV measurements are carried out at higher temperatures to increase the measured energy range of Dit in the bandgap. At room temperature, higher Dit is observed near the band edge for all three orientations. The measurement at higher temperatures led to an annealing effect that reduced the Dit value for all samples. Comparison with the conductance method and frequency dispersion of the capacitance suggests that the traps at the band edge are slow traps which respond to low frequency signals.
Conditions for observing emergent SU(4) symmetry in a double quantum dot
NASA Astrophysics Data System (ADS)
Nishikawa, Yunori; Curtin, Oliver J.; Hewson, Alex C.; Crow, Daniel J. G.; Bauer, Johannes
2016-06-01
We analyze conditions for the observation of a low-energy SU(4) fixed point in capacitively coupled quantum dots. One problem, due to dots with different couplings to their baths, has been considered by L. Tosi, P. Roura-Bas, and A. A. Aligia, J. Phys.: Condens. Matter 27, 335601 (2015), 10.1088/0953-8984/27/33/335601. They showed how symmetry can be effectively restored via the adjustment of individual gates voltages, but they make the assumption of infinite on-dot and interdot interaction strengths. A related problem is the difference in the magnitudes between the on-dot and interdot strengths for capacitively coupled quantum dots. Here we examine both factors, based on a two-site Anderson model, using the numerical renormalization group to calculate the local spectral densities on the dots and the renormalized parameters that specify the low-energy fixed point. Our results support the conclusions of Tosi et al. that low-energy SU(4) symmetry can be restored, but asymptotically achieved only if the interdot interaction U12 is greater than or of the order of the bandwidth of the coupled conduction bath D , which might be difficult to achieve experimentally. By comparing the SU(4) Kondo results for a total dot occupation ntot=1 and 2, we conclude that the temperature dependence of the conductance is largely determined by the constraints of the Friedel sum rule rather than the SU(4) symmetry and suggest that an initial increase of the conductance with temperature is a distinguishing characteristic feature of an ntot=1 universal SU(4) fixed point.
Capacitance spectroscopy on n-type GaNAs/GaAs embedded quantum structure solar cells
NASA Astrophysics Data System (ADS)
Venter, Danielle; Bollmann, Joachim; Elborg, Martin; Botha, J. R.; Venter, André
2018-04-01
In this study, both deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS) have been used to study the properties of electrically active deep level centers present in GaNAs/GaAs quantum wells (QWs) embedded in p-i-n solar cells. The structures were grown by molecular beam epitaxy (MBE). In particular, the electrical properties of samples with Si (n-type) doping of the QWs were investigated. DLTS revealed four deep level centers in the material, whereas only three were detected by AS. NextNano++ simulation software was used to model the sample band-diagrams to provide reasoning for the origin of the signals produced by both techniques.
Nonvolatile floating gate organic memory device based on pentacene/CdSe quantum dot heterojuction
NASA Astrophysics Data System (ADS)
Shin, Ik-Soo; Kim, Jung-Min; Jeun, Jun-Ho; Yoo, Seok-Hyun; Ge, Ziyi; Hong, Jong-In; Ho Bang, Jin; Kim, Yong-Sang
2012-04-01
An organic floating-gate memory device using CdSe quantum dots (QDs) as a charge-trapping element was fabricated. CdSe QDs were localized beneath a pentacene without any tunneling insulator, and the QD layer played a role as hole-trapping sites. The band bending formed at the junction between pentacene and QD layers inhibited back-injection of holes trapped in CdSe into pentacene, which appeared as a hysteretic capacitance-voltage response during the operation of the device. Nearly, 60% of trapped charge was sustained even after 104 s in programmed state, and this long retention time can be potentially useful in practical applications of non-volatile memory.
Reza, Ashif; Banerjee, Kumardeb; Das, Parnika; Ray, Kalyankumar; Bandyopadhyay, Subhankar; Dam, Bivas
2017-03-01
This paper presents the design and implementation of an in situ measurement setup for the capacitance of a five electrode Penning ion trap (PIT) facility at room temperature. For implementing a high Q resonant circuit for the detection of trapped electrons/ions in a PIT, the value of the capacitance of the trap assembly is of prime importance. A tunable Colpitts oscillator followed by a unity gain buffer and a low pass filter is designed and successfully implemented for a two-fold purpose: in situ measurement of the trap capacitance when the electric and magnetic fields are turned off and also providing RF power at the desired frequency to the PIT for exciting the trapped ions and subsequent detection. The setup is tested for the in situ measurement of trap capacitance at room temperature and the results are found to comply with those obtained from measurements using a high Q parallel resonant circuit setup driven by a standard RF signal generator. The Colpitts oscillator is also tested successfully for supplying RF power to the high Q resonant circuit, which is required for the detection of trapped electrons/ions.
Fringe Capacitance of a Parallel-Plate Capacitor.
ERIC Educational Resources Information Center
Hale, D. P.
1978-01-01
Describes an experiment designed to measure the forces between charged parallel plates, and determines the relationship among the effective electrode area, the measured capacitance values, and the electrode spacing of a parallel plate capacitor. (GA)
Löytynoja, T; Li, X; Jänkälä, K; Rinkevicius, Z; Ågren, H
2016-07-14
We study a newly devised quantum mechanics capacitance molecular mechanics (QMCMM) method for the calculation of core-electron binding energies in the case of molecules adsorbed on metal surfaces. This yet untested methodology is applied to systems with monolayer of methanol/methyl nitrite on an Ag(111) surface at 100 K temperature. It was found out that the studied C, N, and O 1s core-hole energies converge very slowly as a function of the radius of the metallic cluster, which was ascribed to build up of positive charge on the edge of the Ag slab. Further analysis revealed that an extrapolation process can be used to obtain binding energies that deviated less than 0.5 eV against experiments, except in the case of methanol O 1s where the difference was as large as 1.8 eV. Additional QM-cluster calculations suggest that the latter error can be connected to the lack of charge transfer over the QM-CMM boundary. Thus, the results indicate that the QMCMM and QM-cluster methods can complement each other in a holistic picture of molecule-adsorbate core-ionization studies, where all types of intermolecular interactions are considered.
NASA Astrophysics Data System (ADS)
Löytynoja, T.; Li, X.; Jänkälä, K.; Rinkevicius, Z.; Ågren, H.
2016-07-01
We study a newly devised quantum mechanics capacitance molecular mechanics (QMCMM) method for the calculation of core-electron binding energies in the case of molecules adsorbed on metal surfaces. This yet untested methodology is applied to systems with monolayer of methanol/methyl nitrite on an Ag(111) surface at 100 K temperature. It was found out that the studied C, N, and O 1s core-hole energies converge very slowly as a function of the radius of the metallic cluster, which was ascribed to build up of positive charge on the edge of the Ag slab. Further analysis revealed that an extrapolation process can be used to obtain binding energies that deviated less than 0.5 eV against experiments, except in the case of methanol O 1s where the difference was as large as 1.8 eV. Additional QM-cluster calculations suggest that the latter error can be connected to the lack of charge transfer over the QM-CMM boundary. Thus, the results indicate that the QMCMM and QM-cluster methods can complement each other in a holistic picture of molecule-adsorbate core-ionization studies, where all types of intermolecular interactions are considered.
Greenshields, Márcia W C C; Meruvia, Michelle S; Hümmelgen, Ivo A; Coville, Neil J; Mhlanga, Sabelo D; Ceragioli, Helder J; Quispe, Jose C Rojas; Baranauskas, Vitor
2011-03-01
We report the preparation of inexpensive ethanol sensor devices using multiwalled carbon nanotube-polyvinyl alcohol composite films deposited onto interdigitated electrodes patterned on phenolite substrates. We investigate the frequency dependent response of the device conductance and capacitance showing that higher sensitivity is obtained at higher frequency if the conductance is used as sensing parameter. In the case of capacitance measurements, higher sensitivity is obtained at low frequency. Ethanol detection at a concentration of 300 ppm in air is demonstrated. More than 80% of the sensor conductance and capacitance variation response occurs in less than 20 s.
Maskow, Thomas; Röllich, Anita; Fetzer, Ingo; Yao, Jun; Harms, Hauke
2008-09-15
Electrical capacitance has been discussed as a real time measure for living biomass concentration in technical bioreactors such as brewery (fermentation) tanks. Commonly, a linear correlation between biomass concentration and capacitance is assumed. While following the growth and subsequent lipid formation of the yeast Arxula adeninivorans we observed non-linearity between biomass concentration and capacitance. Capacitance deviation from linearity coincided with incipient lipid formation and depended on the intracellular lipid content. As the extent of deviation between capacitance and biomass concentration was proportional to the lipid concentration, it was considered as a quantitative measure of intracellular product formation. The correlation between shifts in dielectric relaxation (summarized as characteristic frequency of the Cole-Cole equation) and lipid content could not be explained by interfacial polarization on the lipid droplets alone. However, the parameters of the Cole-Cole equation were found to be a clear indicator for different phases of growth and lipid production. Integrating all results in a redundancy analysis (RDA), we were able to accurately describe the formation of cellular lipid inclusions. Our measurements are thus potentially valuable as components of future bioprocess control strategies targeting intracellular products such as proteins or biopolyesters.
Bistability and displacement fluctuations in a quantum nanomechanical oscillator
NASA Astrophysics Data System (ADS)
Avriller, R.; Murr, B.; Pistolesi, F.
2018-04-01
Remarkable features have been predicted for the mechanical fluctuations at the bistability transition of a classical oscillator coupled capacitively to a quantum dot [Micchi et al., Phys. Rev. Lett. 115, 206802 (2015), 10.1103/PhysRevLett.115.206802]. These results have been obtained in the regime ℏ ω0≪kBT ≪ℏ Γ , where ω0, T , and Γ are the mechanical resonating frequency, the temperature, and the tunneling rate, respectively. A similar behavior could be expected in the quantum regime of ℏ Γ ≪kBT ≪ℏ ω0 . We thus calculate the energy- and displacement-fluctuation spectra and study their behavior as a function of the electromechanical coupling constant when the system enters the Frank-Condon regime. We find that in analogy with the classical case, the energy-fluctuation spectrum and the displacement spectrum widths show a maximum for values of the coupling constant at which a mechanical bistability is established.
Gate-Sensing the Potential Landscape of a GaAs Two-Dimensional Electron Gas
NASA Astrophysics Data System (ADS)
Croot, Xanthe; Mahoney, Alice; Pauka, Sebastian; Colless, James; Reilly, David; Watson, John; Fallahi, Saeed; Gardner, Geoff; Manfra, Michael; Lu, Hong; Gossard, Arthur
In situ dispersive gate sensors hold potential as a means of enabling the scalable readout of quantum dot arrays. Sensitive to quantum capacitance, dispersive sensors have been used to detect inter- and intra-dot transitions in GaAs double quantum dots, and can distinguish the spin states of singlet triplet qubits. In addition, the gate-sensing technique is likely of value in probing the physics of Majorana zero modes in nanowire devices. Beyond the readout signatures associated with charge and spin configurations of qubits, gate-sensing is sensitive to trapped charge in the potential landscape. Here, we report gate-sensing signals arising from tunnelling of electrons between puddles of trapped charge in a GaAs 2DEG. We examine these signals in a family of different devices with varying mobilities, and as a function of temperature and bias. Implications for qubit readout using the gate-sensing technique are discussed.
NASA Astrophysics Data System (ADS)
Zhang, Xu; Chen, Ye-Hong; Wu, Qi-Cheng; Shi, Zhi-Cheng; Song, Jie; Xia, Yan
2017-01-01
We present an efficient scheme to quickly generate three-qubit Greenberger-Horne-Zeilinger (GHZ) states by using three superconducting qubits (SQs) separated by two coplanar waveguide resonators (CPWRs) capacitively. The scheme is based on quantum Zeno dynamics and the approach of transitionless quantum driving to construct shortcuts to adiabatic passage. In order to highlight the advantages, we compare the present scheme with the traditional one with adiabatic passage. The comparison result shows the shortcut scheme is closely related to the adiabatic scheme but is better than it. Moreover, we discuss the influence of various decoherences with numerical simulation. The result proves that the present scheme is less sensitive to the energy relaxation, the decay of CPWRs and the deviations of the experimental parameters the same as the adiabatic passage. However, the shortcut scheme is effective and robust against the dephasing of SQs in comparison with the adiabatic scheme.
Nonreciprocal quantum Hall devices with driven edge magnetoplasmons in two-dimensional materials
NASA Astrophysics Data System (ADS)
Bosco, S.; DiVincenzo, D. P.
2017-05-01
We develop a theory that describes the response of nonreciprocal devices employing two-dimensional materials in the quantum Hall regime capacitively coupled to external electrodes. As the conduction in these devices is understood to be associated to the edge magnetoplasmons (EMPs), we first investigate the EMP problem by using the linear response theory in the random phase approximation. Our model can incorporate several cases that were often treated on different grounds in literature. In particular, we analyze plasmonic excitations supported by a smooth and sharp confining potential in a two-dimensional electron gas, and in monolayer graphene, and we point out the similarities and differences in these materials. We also account for a general time-dependent external drive applied to the system. Finally, we describe the behavior of a nonreciprocal quantum Hall device: the response contains additional resonant features, which were not foreseen from previous models.
Is there a relationship between curvature and inductance in the Josephson junction?
NASA Astrophysics Data System (ADS)
Dobrowolski, T.; Jarmoliński, A.
2018-03-01
A Josephson junction is a device made of two superconducting electrodes separated by a very thin layer of isolator or normal metal. This relatively simple device has found a variety of technical applications in the form of Superconducting Quantum Interference Devices (SQUIDs) and Single Electron Transistors (SETs). One can expect that in the near future the Josephson junction will find applications in digital electronics technology RSFQ (Rapid Single Flux Quantum) and in the more distant future in construction of quantum computers. Here we concentrate on the relation of the curvature of the Josephson junction with its inductance. We apply a simple Capacitively Shunted Junction (CSJ) model in order to find condition which guarantees consistency of this model with prediction based on the Maxwell and London equations with Landau-Ginzburg current of Cooper pairs. This condition can find direct experimental verification.
NASA Astrophysics Data System (ADS)
Nurge, Mark A.
2007-05-01
An electrical capacitance volume tomography system has been created for use with a new image reconstruction algorithm capable of imaging high contrast dielectric distributions. The electrode geometry consists of two 4 × 4 parallel planes of copper conductors connected through custom built switch electronics to a commercially available capacitance to digital converter. Typical electrical capacitance tomography (ECT) systems rely solely on mutual capacitance readings to reconstruct images of dielectric distributions. This paper presents a method of reconstructing images of high contrast dielectric materials using only the self-capacitance measurements. By constraining the unknown dielectric material to one of two values, the inverse problem is no longer ill-determined. Resolution becomes limited only by the accuracy and resolution of the measurement circuitry. Images were reconstructed using this method with both synthetic and real data acquired using an aluminium structure inserted at different positions within the sensing region. Comparisons with standard two-dimensional ECT systems highlight the capabilities and limitations of the electronics and reconstruction algorithm.
Electrical capacitance volume tomography of high contrast dielectrics using a cuboid geometry
NASA Astrophysics Data System (ADS)
Nurge, Mark A.
An Electrical Capacitance Volume Tomography system has been created for use with a new image reconstruction algorithm capable of imaging high contrast dielectric distributions. The electrode geometry consists of two 4 x 4 parallel planes of copper conductors connected through custom built switch electronics to a commercially available capacitance to digital converter. Typical electrical capacitance tomography (ECT) systems rely solely on mutual capacitance readings to reconstruct images of dielectric distributions. This dissertation presents a method of reconstructing images of high contrast dielectric materials using only the self capacitance measurements. By constraining the unknown dielectric material to one of two values, the inverse problem is no longer ill-determined. Resolution becomes limited only by the accuracy and resolution of the measurement circuitry. Images were reconstructed using this method with both synthetic and real data acquired using an aluminum structure inserted at different positions within the sensing region. Comparisons with standard two dimensional ECT systems highlight the capabilities and limitations of the electronics and reconstruction algorithm.
Electrical Capacitance Volume Tomography: Design and Applications
Wang, Fei; Marashdeh, Qussai; Fan, Liang-Shih; Warsito, Warsito
2010-01-01
This article reports recent advances and progress in the field of electrical capacitance volume tomography (ECVT). ECVT, developed from the two-dimensional electrical capacitance tomography (ECT), is a promising non-intrusive imaging technology that can provide real-time three-dimensional images of the sensing domain. Images are reconstructed from capacitance measurements acquired by electrodes placed on the outside boundary of the testing vessel. In this article, a review of progress on capacitance sensor design and applications to multi-phase flows is presented. The sensor shape, electrode configuration, and the number of electrodes that comprise three key elements of three-dimensional capacitance sensors are illustrated. The article also highlights applications of ECVT sensors on vessels of various sizes from 1 to 60 inches with complex geometries. Case studies are used to show the capability and validity of ECVT. The studies provide qualitative and quantitative real-time three-dimensional information of the measuring domain under study. Advantages of ECVT render it a favorable tool to be utilized for industrial applications and fundamental multi-phase flow research. PMID:22294905
Nanofabrication for On-Chip Optical Levitation, Atom-Trapping, and Superconducting Quantum Circuits
NASA Astrophysics Data System (ADS)
Norte, Richard Alexander
Researchers have spent decades refining and improving their methods for fabricating smaller, finer-tuned, higher-quality nanoscale optical elements with the goal of making more sensitive and accurate measurements of the world around them using optics. Quantum optics has been a well-established tool of choice in making these increasingly sensitive measurements which have repeatedly pushed the limits on the accuracy of measurement set forth by quantum mechanics. A recent development in quantum optics has been a creative integration of robust, high-quality, and well-established macroscopic experimental systems with highly-engineerable on-chip nanoscale oscillators fabricated in cleanrooms. However, merging large systems with nanoscale oscillators often require them to have extremely high aspect-ratios, which make them extremely delicate and difficult to fabricate with an experimentally reasonable repeatability, yield and high quality. In this work we give an overview of our research, which focused on microscopic oscillators which are coupled with macroscopic optical cavities towards the goal of cooling them to their motional ground state in room temperature environments. The quality factor of a mechanical resonator is an important figure of merit for various sensing applications and observing quantum behavior. We demonstrated a technique for pushing the quality factor of a micromechanical resonator beyond conventional material and fabrication limits by using an optical field to stiffen and trap a particular motional mode of a nanoscale oscillator. Optical forces increase the oscillation frequency by storing most of the mechanical energy in a nearly loss-less optical potential, thereby strongly diluting the effects of material dissipation. By placing a 130 nm thick SiO2 pendulum in an optical standing wave, we achieve an increase in the pendulum center-of-mass frequency from 6.2 to 145 kHz. The corresponding quality factor increases 50-fold from its intrinsic value to a final value of Qm = 5.8(1.1) x 105, representing more than an order of magnitude improvement over the conventional limits of SiO2 for a pendulum geometry. Our technique may enable new opportunities for mechanical sensing and facilitate observations of quantum behavior in this class of mechanical systems. We then give a detailed overview of the techniques used to produce high-aspect-ratio nanostructures with applications in a wide range of quantum optics experiments. The ability to fabricate such nanodevices with high precision opens the door to a vast array of experiments which integrate macroscopic optical setups with lithographically engineered nanodevices. Coupled with atom-trapping experiments in the Kimble Lab, we use these techniques to realize a new waveguide chip designed to address ultra-cold atoms along lithographically patterned nanobeams which have large atom-photon coupling and near 4pi Steradian optical access for cooling and trapping atoms. We describe a fully integrated and scalable design where cold atoms are spatially overlapped with the nanostring cavities in order to observe a resonant optical depth of d0 ≈ 0.15. The nanodevice illuminates new possibilities for integrating atoms into photonic circuits and engineering quantum states of atoms and light on a microscopic scale. We then describe our work with superconducting microwave resonators coupled to a phononic cavity towards the goal of building an integrated device for quantum-limited microwave-to-optical wavelength conversion. We give an overview of our characterizations of several types of substrates for fabricating a low-loss high-frequency electromechanical system. We describe our electromechanical system fabricated on a SiN membrane which consists of a 12 GHz superconducting LC resonator coupled capacitively to the high frequency localized modes of a phononic nanobeam. Using our suspended membrane geometry we isolate our system from substrates with significant loss tangents, drastically reducing the parasitic capacitance of our superconducting circuit to ≈ 2.5 fF. This opens up a number of possibilities in making a new class of low-loss high-frequency electromechanics with relatively large electromechanical coupling. We present our substrate studies, fabrication methods, and device characterization.
Capacitance-level/density monitor for fluidized-bed combustor
Fasching, George E.; Utt, Carroll E.
1982-01-01
A multiple segment three-terminal type capacitance probe with segment selection, capacitance detection and compensation circuitry and read-out control for level/density measurements in a fluidized-bed vessel is provided. The probe is driven at a high excitation frequency of up to 50 kHz to sense quadrature (capacitive) current related to probe/vessel capacitance while being relatively insensitive to the resistance current component. Compensation circuitry is provided for generating a negative current of equal magnitude to cancel out only the resistive component current. Clock-operated control circuitry separately selects the probe segments in a predetermined order for detecting and storing this capacitance measurement. The selected segment acts as a guarded electrode and is connected to the read-out circuitry while all unselected segments are connected to the probe body, which together form the probe guard electrode. The selected probe segment capacitance component signal is directed to a corresponding segment channel sample and hold circuit dedicated to that segment to store the signal derived from that segment. This provides parallel outputs for display, computer input, etc., for the detected capacitance values. The rate of segment sampling may be varied to either monitor the dynamic density profile of the bed (high sampling rate) or monitor average bed characteristics (slower sampling rate).
NASA Astrophysics Data System (ADS)
Goh, Chin-Teng; Cruden, Andrew
2014-11-01
Capacitance and resistance are the fundamental electrical parameters used to evaluate the electrical characteristics of a supercapacitor, namely the dynamic voltage response, energy capacity, state of charge and health condition. In the British Standards EN62391 and EN62576, the constant capacitance method can be further improved with a differential capacitance that more accurately describes the dynamic voltage response of supercapacitors. This paper presents a novel bivariate quadratic based method to model the dynamic voltage response of supercapacitors under high current charge-discharge cycling, and to enable the derivation of the differential capacitance and energy capacity directly from terminal measurements, i.e. voltage and current, rather than from multiple pulsed-current or excitation signal tests across different bias levels. The estimation results the author achieves are in close agreement with experimental measurements, within a relative error of 0.2%, at various high current levels (25-200 A), more accurate than the constant capacitance method (4-7%). The archival value of this paper is the introduction of an improved quantification method for the electrical characteristics of supercapacitors, and the disclosure of the distinct properties of supercapacitors: the nonlinear capacitance-voltage characteristic, capacitance variation between charging and discharging, and distribution of energy capacity across the operating voltage window.
Channel Modeling of Miniaturized Battery-Powered Capacitive Human Body Communication Systems.
Park, Jiwoong; Garudadri, Harinath; Mercier, Patrick P
2017-02-01
The purpose of this contribution is to estimate the path loss of capacitive human body communication (HBC) systems under practical conditions. Most prior work utilizes large grounded instruments to perform path loss measurements, resulting in overly optimistic path loss estimates for wearable HBC devices. In this paper, small battery-powered transmitter and receiver devices are implemented to measure path loss under realistic assumptions. A hybrid electrostatic finite element method simulation model is presented that validates measurements and enables rapid and accurate characterization of future capacitive HBC systems. Measurements from form-factor-accurate prototypes reveal path loss results between 31.7 and 42.2 dB from 20 to 150 MHz. Simulation results matched measurements within 2.5 dB. Comeasurements using large grounded benchtop vector network analyzer (VNA) and large battery-powered spectrum analyzer (SA) underestimate path loss by up to 33.6 and 8.2 dB, respectively. Measurements utilizing a VNA with baluns, or large battery-powered SAs with baluns still underestimate path loss by up to 24.3 and 6.7 dB, respectively. Measurements of path loss in capacitive HBC systems strongly depend on instrumentation configurations. It is thus imperative to simulate or measure path loss in capacitive HBC systems utilizing realistic geometries and grounding configurations. HBC has a great potential for many emerging wearable devices and applications; accurate path loss estimation will improve system-level design leading to viable products.
An HF coaxial bridge for measuring impedance ratios up to 1 MHz
NASA Astrophysics Data System (ADS)
Kucera, J.; Sedlacek, R.; Bohacek, J.
2012-08-01
A four-terminal pair coaxial ac bridge developed for calibrating both resistance and capacitance ratios and working in the frequency range from 100 kHz up to 1 MHz is described. A reference inductive voltage divider (IVD) makes it possible to calibrate ratios 1:1 and 10:1 with uncertainty of a few parts in 105. The IVD is calibrated by means of a series-parallel capacitance device (SPCD). Use of the same ac bridge with minimal changes for calibrating the SPCD, IVD and unknown impedances simplifies the whole calibration process. The bridge balance conditions are fulfilled with simple capacitance and resistance decades and by injecting voltage supplied from the auxiliary direct digital synthesizer. Bridge performance was checked on the basis of resistance ratio measurements and also capacitance ratio measurements.
Side-gate modulation effects on high-quality BN-Graphene-BN nanoribbon capacitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yang; Chen, Xiaolong; Ye, Weiguang
High-quality BN-Graphene-BN nanoribbon capacitors with double side-gates of graphene have been experimentally realized. The double side-gates can effectively modulate the electronic properties of graphene nanoribbon capacitors. By applying anti-symmetric side-gate voltages, we observed significant upward shifting and flattening of the V-shaped capacitance curve near the charge neutrality point. Symmetric side-gate voltages, however, only resulted in tilted upward shifting along the opposite direction of applied gate voltages. These modulation effects followed the behavior of graphene nanoribbons predicted theoretically for metallic side-gate modulation. The negative quantum capacitance phenomenon predicted by numerical simulations for graphene nanoribbons modulated by graphene side-gates was not observed,more » possibly due to the weakened interactions between the graphene nanoribbon and side-gate electrodes caused by the Ga{sup +} beam etching process.« less
Nozaki, Kengo; Matsuo, Shinji; Takeda, Koji; Sato, Tomonari; Kuramochi, Eiichi; Notomi, Masaya
2013-08-12
Ultrasmall InGaAs photodetectors based on a photonic crystal waveguide with a buried heterostructure (BH) were demonstrated for the first time. A sufficiently high DC responsivity of ~1 A/W was achieved for the 3.4-μm-long detector. The dynamic response revealed a 3-dB bandwidth of 6 GHz and a 10-Gb/s eye pattern. These results were thanks to the strong confinement of both photons and carriers in a small BH and will pave the way for unprecedented nano-photodetectors with a high quantum efficiency and small capacitance. Our device potentially has an ultrasmall junction capacitance of much less than 1 fF and may enable us to eliminate electrical amplifiers for future optical receivers and subsequent ultralow-power optical links on a chip.
Wavelet approach to artifact noise removal from Capacitive coupled Electrocardiograph.
Lee, Seung Min; Kim, Ko Keun; Park, Kwang Suk
2008-01-01
Capacitive coupled Electrocardiography (ECG) is introduced as non-invasive measurement technology for ubiquitous health care and appliance are spread out widely. Although it has many merits, however, capacitive coupled ECG is very weak for motion artifacts for its non-skin-contact property. There are many studies for artifact problems which treats all artifact signals below 0.8Hz. In our capacitive coupled ECG measurement system, artifacts exist not only below 0.8Hz but also over than 10Hz. Therefore, artifact noise removal algorithm using wavelet method is tested to reject artifact-wandered signal from measured signals. It is observed that using power calculation each decimation step, artifact-wandered signal is removed as low frequency artifacts as high frequency artifacts. Although some original ECG signal is removed with artifact signal, we could level the signal quality for long term measure which shows the best quality ECG signals as we can get.
NASA Astrophysics Data System (ADS)
Khanna, Ravi
1992-01-01
A selectively contacted dual-channel high electron mobility transistor (SCD-CHEMT) has been designed, fabricated, and electrically characterized, in order to better understand the properties of two layers of two-dimensional electron gases (2DEGs) confined within a quantum well. The 2DEGs are placed under a Schottky barrier control gate which modulates their sheet charge densities, and by use of auxiliary Schottky barrier gates and two levels of ohmic contacts, electrical contacts to the individual channels in which each 2DEG resides is achieved. The design of the dual channel FET structure, and its practical realization by recourse to process development and fabrication are described, as are the techniques, results, and interpretations of electrical characterizations used to analyze the completed device. Critical fabrication procedures involving photolithography, etching, deposition, shallow and deep ohmic contact formation, and gate formation are developed, and a simple technique to reduce gate leakage by photo-oxidation is demonstrated. Analysis of the completed device is performed using one-dimensional band diagram simulations, magnetotransport and electrical measurements. Magnetotransport studies establish the existence of two 2DEGs within the quantum well at 4K. Drain current vs. drain voltage, and transconductance vs. gate voltage characteristics at room temperature confirm the presence of two 2DEGs and show that current flow between them occurs easily at room temperature. Carrier electron mobility profiles are taken of the 2DEGs and show that the lower 2DEG has a mobility comparable to that of a 2DEG formed at a normal interface, indicating that the "inverted interface problem" has been overcome. Capacitance vs. gate voltage measurements are taken, which are consistent with a simple device model consisting of gate depletion and interelectrode parasitic capacitances. It is concluded from the analysis that the dual channel system resides in three basic states: (1) Both channels are occupied by 2DEGs or (2) The upper channel is depleted, or (3) Both channels depleted. Finally, increase in isolation between the two 2DEGs is dramatically demonstrated at 77K by the drain current vs. drain voltage, and transconductance vs. gate voltage characteristics.
Measuring charge nonuniformity in MOS devices
NASA Technical Reports Server (NTRS)
Maserjian, J.; Zamani, N.
1980-01-01
Convenient method of determining inherent lateral charge non-uniformities along silicon dioxide/silicon interface of metal-oxide-semiconductor (MOS) employs rapid measurement of capacitance of interface as function of voltage at liquid nitrogen temperature. Charge distribution is extracted by fast-Fourier-transform analysis of capacitance voltage (C-V) measurement.
Modeling methodology for a CMOS-MEMS electrostatic comb
NASA Astrophysics Data System (ADS)
Iyer, Sitaraman V.; Lakdawala, Hasnain; Mukherjee, Tamal; Fedder, Gary K.
2002-04-01
A methodology for combined modeling of capacitance and force 9in a multi-layer electrostatic comb is demonstrated in this paper. Conformal mapping-based analytical methods are limited to 2D symmetric cross-sections and cannot account for charge concentration effects at corners. Vertex capacitance can be more than 30% of the total capacitance in a single-layer 2 micrometers thick comb with 10 micrometers overlap. Furthermore, analytical equations are strictly valid only for perfectly symmetrical finger positions. Fringing and corner effects are likely to be more significant in a multi- layered CMOS-MEMS comb because of the presence of more edges and vertices. Vertical curling of CMOS-MEMS comb fingers may also lead to reduced capacitance and vertical forces. Gyroscopes are particularly sensitive to such undesirable forces, which therefore, need to be well-quantified. In order to address the above issues, a hybrid approach of superposing linear regression models over a set of core analytical models is implemented. Design of experiments is used to obtain data for capacitance and force using a commercial 3D boundary-element solver. Since accurate force values require significantly higher mesh refinement than accurate capacitance, we use numerical derivatives of capacitance values to compute the forces. The model is formulated such that the capacitance and force models use the same regression coefficients. The comb model thus obtained, fits the numerical capacitance data to within +/- 3% and force to within +/- 10%. The model is experimentally verified by measuring capacitance change in a specially designed test structure. The capacitance model matches measurements to within 10%. The comb model is implemented in an Analog Hardware Description Language (ADHL) for use in behavioral simulation of manufacturing variations in a CMOS-MEMS gyroscope.
Taylor, Graham J.; Venkatesan, Guru A.; Collier, C. Patrick; ...
2015-08-05
In this study, thickness and tension are important physical parameters of model cell membranes. However, traditional methods to measure these quantities require multiple experiments using separate equipment. This work introduces a new multi-step procedure for directly accessing in situ multiple physical properties of droplet interface bilayers (DIB), including specific capacitance (related to thickness), lipid monolayer tension in the Plateau-Gibbs border, and bilayer tension. The procedure employs a combination of mechanical manipulation of bilayer area followed by electrowetting of the capacitive interface to examine the sensitivities of bilayer capacitance to area and contact angle to voltage, respectively. These data allow formore » determining the specific capacitance of the membrane and surface tension of the lipid monolayer, which are then used to compute bilayer thickness and tension, respectively. The use of DIBs affords accurate optical imaging of the connected droplets in addition to electrical measurements of bilayer capacitance, and it allows for reversibly varying bilayer area. After validating the accuracy of the technique with diphytanoyl phosphatidylcholine (DPhPC) DIBs in hexadecane, the method is applied herein to quantify separately the effects on membrane thickness and tension caused by varying the solvent in which the DIB is formed and introducing cholesterol into the bilayer. Because the technique relies only on capacitance measurements and optical images to determine both thickness and tension, this approach is specifically well-suited for studying the effects of peptides, biomolecules, natural and synthetic nanoparticles, and other species that accumulate within membranes without altering bilayer conductance.« less
NASA Astrophysics Data System (ADS)
Hyun Jo, Dong; Lee, Rimi; Hyoung Kim, Jin; Oh Jun, Hyoung; Geol Lee, Tae; Hun Kim, Jeong
2015-06-01
Vascular integrity is important in maintaining homeostasis of brain microenvironments. In various brain diseases including Alzheimer’s disease, stroke, and multiple sclerosis, increased paracellular permeability due to breakdown of blood-brain barrier is linked with initiation and progression of pathological conditions. We developed a capacitance sensor array to monitor dielectric responses of cerebral endothelial cell monolayer, which could be utilized to evaluate the integrity of brain microvasculature. Our system measured real-time capacitance values which demonstrated frequency- and time-dependent variations. With the measurement of capacitance at the frequency of 100 Hz, we could differentiate the effects of vascular endothelial growth factor (VEGF), a representative permeability-inducing factor, on endothelial cells and quantitatively analyse the normalized values. Interestingly, we showed differential capacitance values according to the status of endothelial cell monolayer, confluent or sparse, evidencing that the integrity of monolayer was associated with capacitance values. Another notable feature was that we could evaluate the expression of molecules in samples in our system with the reference of real-time capacitance values. We suggest that this dielectric spectroscopy system could be successfully implanted as a novel in vitro assay in the investigation of the roles of paracellular permeability in various brain diseases.
Development of a programmable standard of ultra-low capacitance values.
Khan, M S; Séron, O; Thuillier, G; Thévenot, O; Gournay, P; Piquemal, F
2017-05-01
A set of ultra-low value capacitance standards together with a programmable coaxial multiplexer (mux) have been developed. The mux allows the connection of these capacitances in parallel configuration and they together form the programmable capacitance standard. It is capable of producing decadic standard capacitances from 10 aF to at least 0.1 pF, which are later used to calibrate commercial precision capacitance bridges. This paper describes the realization and the characterization of this standard together with results obtained during the calibration of Andeen-Hagerling AH2700A bridges with a maximum uncertainty of 0.8 aF for all the capacitances generated ranging from 10 aF to 0.1 pF, at 1 kHz. These latter could be then integrated to functionalized AFMs or probe stations for quantitative capacitance measurements. Sources of uncertainties of the programmable capacitance standard, such as parasitic effects due to stray impedances, are evaluated and a method to overcome these hindrances is also discussed.
Capacitive Biosensors and Molecularly Imprinted Electrodes.
Ertürk, Gizem; Mattiasson, Bo
2017-02-17
Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications.
Programmable differential capacitance-to-voltage converter for MEMS accelerometers
NASA Astrophysics Data System (ADS)
Royo, G.; Sánchez-Azqueta, C.; Gimeno, C.; Aldea, C.; Celma, S.
2017-05-01
Capacitive MEMS sensors exhibit an excellent noise performance, high sensitivity and low power consumption. They offer a huge range of applications, being the accelerometer one of its main uses. In this work, we present the design of a capacitance-to-voltage converter in CMOS technology to measure the acceleration from the capacitance variations. It is based on a low-power, fully-differential transimpedance amplifier with low input impedance and a very low input noise.
The importance of ion size and electrode curvature on electrical double layers in ionic liquids.
Feng, Guang; Qiao, Rui; Huang, Jingsong; Dai, Sheng; Sumpter, Bobby G; Meunier, Vincent
2011-01-21
Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF(6)], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF(6)] (near the positive electrode) ≈ [BMIM][Cl] (near the negative electrode) ≈ [BMIM][PF(6)] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a "Multiple Ion Layers with Overscreening" (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.
Ramp-integration technique for capacitance-type blade-tip clearance measurement
NASA Astrophysics Data System (ADS)
Sarma, Garimella R.; Barranger, John P.
The analysis of a proposed new technique for capacitance type blade tip clearance measurement is presented. The capacitance between the blade tip and a mounted capacitance electrode within a guard ring forms one of the feedback elements of a high speed operational amplifier. The differential equation governing the operational amplifier circuit is formulated and solved for two types of inputs to the amplifier - a constant voltage and a ramp. The resultant solution shows an output that contains a term that is proportional to the derivative of the product of the input voltage and the time constant of the feedback network. The blade tip clearance capacitance is obtained by subtracting the output of a balancing reference channel followed by integration. The proposed sampled data algorithm corrects for environmental effects and varying rotor speeds on-line, making the system suitable for turbine instrumentation. System requirements, block diagrams, and a typical application are included.
Ramp-integration technique for capacitance-type blade-tip clearance measurement
NASA Astrophysics Data System (ADS)
Sarma, G. R.; Barranger, J. P.
1986-05-01
The analysis of a proposed new technique for capacitance type blade tip clearance measurement is presented. The capacitance between the blade tip and a mounted capacitance electrode within a guard ring forms one of the feedback elements of a high speed operational amplifier. The differential equation governing the operational amplifier circuit is formulated and solved for two types of inputs to the amplifier - a constant voltage and a ramp. The resultant solutions shows an output that contains a term that is proportional to the derivative of the product of the input voltage and the time constant of the feedback network. The blade tip clearance capacitance is obtained by subtracting the output of a balancing reference channel followed by integration. The proposed sampled data algorithm corrects the environmental effects and varying rotor speeds on-line, making the system suitable for turbine instrumentation. System requirements, block diagrams, and typical application are included.
Ramp-integration technique for capacitance-type blade-tip clearance measurement
NASA Technical Reports Server (NTRS)
Sarma, Garimella R.; Barranger, John P.
1986-01-01
The analysis of a proposed new technique for capacitance type blade tip clearance measurement is presented. The capacitance between the blade tip and a mounted capacitance electrode within a guard ring forms one of the feedback elements of a high speed operational amplifier. The differential equation governing the operational amplifier circuit is formulated and solved for two types of inputs to the amplifier - a constant voltage and a ramp. The resultant solution shows an output that contains a term that is proportional to the derivative of the product of the input voltage and the time constant of the feedback network. The blade tip clearance capacitance is obtained by subtracting the output of a balancing reference channel followed by integration. The proposed sampled data algorithm corrects for environmental effects and varying rotor speeds on-line, making the system suitable for turbine instrumentation. System requirements, block diagrams, and a typical application are included.
Ramp-integration technique for capacitance-type blade-tip clearance measurement
NASA Technical Reports Server (NTRS)
Sarma, G. R.; Barranger, J. P.
1986-01-01
The analysis of a proposed new technique for capacitance type blade tip clearance measurement is presented. The capacitance between the blade tip and a mounted capacitance electrode within a guard ring forms one of the feedback elements of a high speed operational amplifier. The differential equation governing the operational amplifier circuit is formulated and solved for two types of inputs to the amplifier - a constant voltage and a ramp. The resultant solutions shows an output that contains a term that is proportional to the derivative of the product of the input voltage and the time constant of the feedback network. The blade tip clearance capacitance is obtained by subtracting the output of a balancing reference channel followed by integration. The proposed sampled data algorithm corrects the environmental effects and varying rotor speeds on-line, making the system suitable for turbine instrumentation. System requirements, block diagrams, and typical application are included.
Kline, D; Stewart-Savage, J
1994-03-01
To determine the temporal relationship between cortical granule exocytosis and the repetitive calcium transients, which are characteristic of mammalian fertilization, we monitored membrane addition from exocytosis during fertilization of hamster eggs. Continuous measurement of membrane capacitance by applying a 3.1-nA alternating current at 375 Hz showed addition of cortical granule membrane. Simultaneous measurement of membrane potential revealed each calcium transient by the appearance of transient hyperpolarizing responses due to calcium-activated potassium channels in the egg. The initial membrane capacitance of the eggs averaged 736 +/- 44 pF (mean +/- SD; n = 7) and an increase in capacitance of 61 +/- 19 pF occurred within 4 sec of the start of the first hyperpolarizing response (HR) after fertilization. Immediately after the first increase in capacitance there was a gradual decline in membrane capacitance in all eggs and in five/seven eggs the capacitance returned to the unfertilized level in 7.8 +/- 4.4 min. The gradual decline in capacitance after the first increase indicated endocytosis, which was confirmed by the internalization of fluorescently labeled dextran. Superimposed on the gradual decline in membrane capacitance were smaller increases in capacitance that occurred with the second and later HRs. The total increase in capacitance from the first three events averaged 72 +/- 19 pF, representing an average increase in capacitance of about 10% of the capacitance of the unfertilized egg. By labeling eggs before and after permeabilization with two different fluorochromes attached to Lens culinaris agglutinin, we demonstrate that the dispersal of the cortical granules contents does not occur immediately after exocytosis. Our results demonstrate that cortical granule exocytosis in hamster eggs is closely coupled to the periodic increases in calcium, that the contents of the cortical granules are slow to disperse, and that after exocytosis, the surface area of the egg returns to the unfertilized level because of a period of endocytosis.
In-Line Capacitance Sensor for Real-Time Water Absorption Measurements
NASA Technical Reports Server (NTRS)
Nurge, Mark A.; Perusich, Stephen A.
2010-01-01
A capacitance/dielectric sensor was designed, constructed, and used to measure in real time the in-situ water concentration in a desiccant water bed. Measurements were carried out with two experimental setups: (1) passing nitrogen through a humidity generator and allowing the gas stream to become saturated at a measured temperature and pressure, and (2) injecting water via a syringe pump into a nitrogen stream. Both water vapor generating devices were attached to a downstream vertically-mounted water capture bed filled with 19.5 g of Moisture Gone desiccant. The sensor consisted of two electrodes: (1) a 1/8" dia stainless steel rod placed in the middle of the bed and (2) the outer shell of the stainless steel bed concentric with the rod. All phases of the water capture process (background, heating, absorption, desorption, and cooling) were monitored with capacitance. The measured capacitance was found to vary linearly with the water content in the bed at frequencies above 100 kHz indicating dipolar motion dominated the signal; below this frequency, ionic motion caused nonlinearities in the water concentration/capacitance relationship. The desiccant exhibited a dielectric relaxation whose activation energy was lowered upon addition of water indicating either a less hindered rotational motion or crystal reorientation.
Structure and Fabrication of a Microscale Flow-Rate/Skin Friction Sensor
NASA Technical Reports Server (NTRS)
Chandrasekharan, Vijay (Inventor); Sells, Jeremy (Inventor); Sheplak, Mark (Inventor); Arnold, David P. (Inventor)
2014-01-01
A floating element shear sensor and method for fabricating the same are provided. According to an embodiment, a microelectromechanical systems (MEMS)-based capacitive floating element shear stress sensor is provided that can achieve time-resolved turbulence measurement. In one embodiment, a differential capacitive transduction scheme is used for shear stress measurement. The floating element structure for the differential capacitive transduction scheme incorporates inter digitated comb fingers forming differential capacitors, which provide electrical output proportional to the floating element deflection.
Breneman, Kathryn D; Highstein, Stephen M; Boyle, Richard D; Rabbitt, Richard D
2009-01-01
Somatic measurements of whole-cell capacitance are routinely used to understand physiologic events occurring in remote portions of cells. These studies often assume the intracellular space is voltage-clamped. We questioned this assumption in auditory and vestibular hair cells with respect to their stereocilia based on earlier studies showing that neurons, with radial dimensions similar to stereocilia, are not always isopotential under voltage-clamp. To explore this, we modeled the stereocilia as passive cables with transduction channels located at their tips. We found that the input capacitance measured at the soma changes when the transduction channels at the tips of the stereocilia are open compared to when the channels are closed. The maximum capacitance is felt with the transducer closed but will decrease as the transducer opens due to a length-dependent voltage drop along the stereocilium length. This potential drop is proportional to the intracellular resistance and stereocilium tip conductance and can produce a maximum capacitance error on the order of fF for single stereocilia and pF for the bundle.
An Annular Mechanical Temperature Compensation Structure for Gas-Sealed Capacitive Pressure Sensor
Hao, Xiuchun; Jiang, Yonggang; Takao, Hidekuni; Maenaka, Kazusuke; Higuchi, Kohei
2012-01-01
A novel gas-sealed capacitive pressure sensor with a temperature compensation structure is reported. The pressure sensor is sealed by Au-Au diffusion bonding under a nitrogen ambient with a pressure of 100 kPa and integrated with a platinum resistor-based temperature sensor for human activity monitoring applications. The capacitance-pressure and capacitance-temperature characteristics of the gas-sealed capacitive pressure sensor without temperature compensation structure are calculated. It is found by simulation that a ring-shaped structure on the diaphragm of the pressure sensor can mechanically suppress the thermal expansion effect of the sealed gas in the cavity. Pressure sensors without/with temperature compensation structures are fabricated and measured. Through measured results, it is verified that the calculation model is accurate. Using the compensation structures with a 900 μm inner radius, the measured temperature coefficient is much reduced as compared to that of the pressure sensor without compensation. The sensitivities of the pressure sensor before and after compensation are almost the same in the pressure range from 80 kPa to 100 kPa. PMID:22969385
Study on photoelectric parameter measurement method of high capacitance solar cell
NASA Astrophysics Data System (ADS)
Zhang, Junchao; Xiong, Limin; Meng, Haifeng; He, Yingwei; Cai, Chuan; Zhang, Bifeng; Li, Xiaohui; Wang, Changshi
2018-01-01
The high efficiency solar cells usually have high capacitance characteristic, so the measurement of their photoelectric performance usually requires long pulse width and long sweep time. The effects of irradiance non-uniformity, probe shielding and spectral mismatch on the IV curve measurement are analyzed experimentally. A compensation method for irradiance loss caused by probe shielding is proposed, and the accurate measurement of the irradiance intensity in the IV curve measurement process of solar cell is realized. Based on the characteristics that the open circuit voltage of solar cell is sensitive to the junction temperature, an accurate measurement method of the temperature of solar cell under continuous irradiation condition is proposed. Finally, a measurement method with the characteristic of high accuracy and wide application range for high capacitance solar cell is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Graham J.; Heberle, Frederick A.; Seinfeld, Jason S.
In-plane lipid organization and phase separation in natural membranes play key roles in regulating many cellular processes. Highly cooperative, first-order phase transitions in model membranes consisting of few lipid components are well understood and readily detectable via calorimetry, densitometry, and fluorescence. However, far less is known about natural membranes containing numerous lipid species and high concentrations of cholesterol, for which thermotropic transitions are undetectable by the above-mentioned techniques. We demonstrate that membrane capacitance is highly sensitive to low-enthalpy thermotropic transitions taking place in complex lipid membranes. Specifically, we measured the electrical capacitance as a function of temperature for droplet interfacemore » bilayer model membranes of increasing compositional complexity, namely, (a) a single lipid species, (b) domain-forming ternary mixtures, and (c) natural brain total lipid extract (bTLE). We observed that, for single-species lipid bilayers and some ternary compositions, capacitance exhibited an abrupt, temperature-dependent change that coincided with the transition detected by other techniques. In addition, capacitance measurements revealed transitions in mixed-lipid membranes that were not detected by the other techniques. Most notably, capacitance measurements of bTLE bilayers indicated a transition at ~38 °C not seen with any other method. Likewise, capacitance measurements detected transitions in some well-studied ternary mixtures that, while known to yield coexisting lipid phases, are not detected with calorimetry or densitometry. These results indicate that capacitance is exquisitely sensitive to low-enthalpy membrane transitions because of its sensitivity to changes in bilayer thickness that occur when lipids and excess solvent undergo subtle rearrangements near a phase transition. Our findings also suggest that heterogeneity confers stability to natural membranes that function near transition temperatures by preventing unwanted defects and macroscopic demixing associated with high-enthalpy transitions commonly found in simpler mixtures.« less
Taylor, Graham J.; Heberle, Frederick A.; Seinfeld, Jason S.; ...
2017-08-15
In-plane lipid organization and phase separation in natural membranes play key roles in regulating many cellular processes. Highly cooperative, first-order phase transitions in model membranes consisting of few lipid components are well understood and readily detectable via calorimetry, densitometry, and fluorescence. However, far less is known about natural membranes containing numerous lipid species and high concentrations of cholesterol, for which thermotropic transitions are undetectable by the above-mentioned techniques. We demonstrate that membrane capacitance is highly sensitive to low-enthalpy thermotropic transitions taking place in complex lipid membranes. Specifically, we measured the electrical capacitance as a function of temperature for droplet interfacemore » bilayer model membranes of increasing compositional complexity, namely, (a) a single lipid species, (b) domain-forming ternary mixtures, and (c) natural brain total lipid extract (bTLE). We observed that, for single-species lipid bilayers and some ternary compositions, capacitance exhibited an abrupt, temperature-dependent change that coincided with the transition detected by other techniques. In addition, capacitance measurements revealed transitions in mixed-lipid membranes that were not detected by the other techniques. Most notably, capacitance measurements of bTLE bilayers indicated a transition at ~38 °C not seen with any other method. Likewise, capacitance measurements detected transitions in some well-studied ternary mixtures that, while known to yield coexisting lipid phases, are not detected with calorimetry or densitometry. These results indicate that capacitance is exquisitely sensitive to low-enthalpy membrane transitions because of its sensitivity to changes in bilayer thickness that occur when lipids and excess solvent undergo subtle rearrangements near a phase transition. Our findings also suggest that heterogeneity confers stability to natural membranes that function near transition temperatures by preventing unwanted defects and macroscopic demixing associated with high-enthalpy transitions commonly found in simpler mixtures.« less
NASA Astrophysics Data System (ADS)
Ko, Yohan; Son, Dong Ick
2018-05-01
We report on the in-situ chemical growth of unique core-shell quantum dots (QDs) with single layer graphene on the surfaces of the Mn3O4 QDs and on their structural, optical and electrical properties. The Mn3O4-graphene QDs were synthesized through a simple hydrothermal technique. In order to enhance performance for electrochemical energy storage, we developed core (active material) - shell (conductive material)-type Mn3O4 - graphene QDs as electrode materials by using an aqueous electrolyte (6M KOH). As a result, the performance of electrochemical energy storage exhibit a specific capacitance of 452.72 Fg-1 at a current density of 1 Ag-1.
Scanning Capacitance Microscopy | Materials Science | NREL
obtained using scanning capacitance microscopy. Top Right: Image of p-type and n-type material, obtained 'fingers' of light-colored n-type material on a yellow and blue background representing p-type material ; measurement data were obtained using scanning capacitance microscopy. Bottom Right: Image of p-type and n-type
A T-Type Capacitive Sensor Capable of Measuring 5-DOF Error Motions of Precision Spindles
Xiang, Kui; Qiu, Rongbo; Mei, Deqing; Chen, Zichen
2017-01-01
The precision spindle is a core component of high-precision machine tools, and the accurate measurement of its error motions is important for improving its rotation accuracy as well as the work performance of the machine. This paper presents a T-type capacitive sensor (T-type CS) with an integrated structure. The proposed sensor can measure the 5-degree-of-freedom (5-DOF) error motions of a spindle in-situ and simultaneously by integrating electrode groups in the cylindrical bore of the stator and the outer end face of its flange, respectively. Simulation analysis and experimental results show that the sensing electrode groups with differential measurement configuration have near-linear output for the different types of rotor displacements. What’s more, the additional capacitance generated by fringe effects has been reduced about 90% with the sensing electrode groups fabricated based on flexible printed circuit board (FPCB) and related processing technologies. The improved signal processing circuit has also been increased one times in the measuring performance and makes the measured differential output capacitance up to 93% of the theoretical values. PMID:28846631
Jianhua, Liu; Junwei, An; Yecheng, Zhou; Yuxiao, Ma; Mengliu, Li; Mei, Yu; Songmei, Li
2012-06-27
Polyaniline (PANI) nanofiber is grafted onto graphene to obtain a novel graphene-polyaniline (GP) hybrid. Graphene is activated using SOCl2 and reacts with PANI to form an amide group that intimately connects graphene and PANI. The existence of the amide group and its anchoring effect in the GP hybrid are confirmed and characterized by SEM, TEM, FT-IR, Raman, XPS and quantum chemistry analyses. Electrochemical tests reveal that the GP hybrid has high capacitance performances of 579.8 and 361.9 F g(-1) at current densities of 0.3 and 1 A g(-1). These values indicate superiority to materials interacted by van der Waals force. Long-term charge/discharge tests at high current densities show that the GP hybrid preserves 96% of its initial capacitance, demonstrating good electrochemical stability. The improved electrochemical performance suggests promising application of the GP hybrid in high-performance supercapacitors.
Amorphous titanium-oxide supercapacitors.
Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko
2016-10-21
The electric capacitance of an amorphous TiO 2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7 mF/cm 2 , accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large resistance and small capacitance on the amorphous TiO 2-x surface, illuminated a red LED for 37 ms after it was charged with 1 mA at 10 V. The fabricated device showed no dielectric breakdown up to 1,100 V. Based on this approach, further advances in the development of amorphous titanium-dioxide supercapacitors might be attained by integrating oxide ribbons with a micro-electro mechanical system.
Amorphous titanium-oxide supercapacitors
NASA Astrophysics Data System (ADS)
Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko
2016-10-01
The electric capacitance of an amorphous TiO2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7 mF/cm2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large resistance and small capacitance on the amorphous TiO2-x surface, illuminated a red LED for 37 ms after it was charged with 1 mA at 10 V. The fabricated device showed no dielectric breakdown up to 1,100 V. Based on this approach, further advances in the development of amorphous titanium-dioxide supercapacitors might be attained by integrating oxide ribbons with a micro-electro mechanical system.
NASA Astrophysics Data System (ADS)
Buterakos, Donovan; Throckmorton, Robert E.; Das Sarma, S.
2018-01-01
In addition to magnetic field and electric charge noise adversely affecting spin-qubit operations, performing single-qubit gates on one of multiple coupled singlet-triplet qubits presents a new challenge: crosstalk, which is inevitable (and must be minimized) in any multiqubit quantum computing architecture. We develop a set of dynamically corrected pulse sequences that are designed to cancel the effects of both types of noise (i.e., field and charge) as well as crosstalk to leading order, and provide parameters for these corrected sequences for all 24 of the single-qubit Clifford gates. We then provide an estimate of the error as a function of the noise and capacitive coupling to compare the fidelity of our corrected gates to their uncorrected versions. Dynamical error correction protocols presented in this work are important for the next generation of singlet-triplet qubit devices where coupling among many qubits will become relevant.
NASA Technical Reports Server (NTRS)
Cockrum, R. H.
1982-01-01
One method being used to determine energy level(s) and electrical activity of impurities in silicon is described. The method is called capacitance transient spectroscopy (CTS). It can be classified into three basic categories: the thermally stimulated capacitance method, the voltage-stimulated capacitance method, and the light-stimulated capacitance method; the first two categories are discussed. From the total change in capacitance and the time constant of the capacitance response, emission rates, energy levels, and trap concentrations can be determined. A major advantage of using CTS is its ability to detect the presence of electrically active impurities that are invisible to other techniques, such as Zeeman effect atomic absorption, and the ability to detect more than one electrically active impurity in a sample. Examples of detection of majority and minority carrier traps from gold donor and acceptor centers in silicon using the capacitance transient spectrometer are given to illustrate the method and its sensitivity.
NASA Technical Reports Server (NTRS)
Skowronski, M.; Lagowski, J.; Gatos, H. C.
1986-01-01
A high-resolution optical study was carried out on GaAs crystals grown by horizontal Bridgman and liquid-encapsulated-Czochralski methods. An excellent correlation was found between the intensity of the 1.039-eV no-phonon line and the characteristic absorption of EL2, the major deep donor level in GaAs. A correlation was also found between the characteristic optical absorption of EL2 and its concentration as determined by junction capacitance measurements. The presence of EL0, another midgap level contained in heavily oxygen-doped crystals at concentration always less than those of EL2, had no effect on the optical spectra, but altered the capacitance measurements. Accordingly, an accurate calibration for the determination of EL2 by optical absorption was obtained from capacitance measurements on crystals containing only EL2; in this way the uncertainties introduced by other midgap levels were eliminated.
Temperature and pressure effects on capacitance probe cryogenic liquid level measurement accuracy
NASA Technical Reports Server (NTRS)
Edwards, Lawrence G.; Haberbusch, Mark
1993-01-01
The inaccuracies of liquid nitrogen and liquid hydrogen level measurements by use of a coaxial capacitance probe were investigated as a function of fluid temperatures and pressures. Significant liquid level measurement errors were found to occur due to the changes in the fluids dielectric constants which develop over the operating temperature and pressure ranges of the cryogenic storage tanks. The level measurement inaccuracies can be reduced by using fluid dielectric correction factors based on measured fluid temperatures and pressures. The errors in the corrected liquid level measurements were estimated based on the reported calibration errors of the temperature and pressure measurement systems. Experimental liquid nitrogen (LN2) and liquid hydrogen (LH2) level measurements were obtained using the calibrated capacitance probe equations and also by the dielectric constant correction factor method. The liquid levels obtained by the capacitance probe for the two methods were compared with the liquid level estimated from the fluid temperature profiles. Results show that the dielectric constant corrected liquid levels agreed within 0.5 percent of the temperature profile estimated liquid level. The uncorrected dielectric constant capacitance liquid level measurements deviated from the temperature profile level by more than 5 percent. This paper identifies the magnitude of liquid level measurement error that can occur for LN2 and LH2 fluids due to temperature and pressure effects on the dielectric constants over the tank storage conditions from 5 to 40 psia. A method of reducing the level measurement errors by using dielectric constant correction factors based on fluid temperature and pressure measurements is derived. The improved accuracy by use of the correction factors is experimentally verified by comparing liquid levels derived from fluid temperature profiles.
Method and means for measuring acoustic emissions
Renken, Jr., Claus J.
1976-01-06
The detection of acoustic emissions emanating from an object is achieved with a capacitive transducer coupled to the object. The capacitive transducer is charged and then allowed to discharge with the rate of discharge being monitored. Oscillations in the rate of discharge about the normally exponential discharge curve for the capacitive transducer indicate the presence of acoustic emissions.
In-Plane Impedance Spectroscopy measurements in Vanadium Dioxide thin films
NASA Astrophysics Data System (ADS)
Ramirez, Juan; Patino, Edgar; Schmidt, Rainer; Sharoni, Amos; Gomez, Maria; Schuller, Ivan
2012-02-01
In plane Impedance Spectroscopy measurements have been done in Vanadium Dioxide thin films in the range of 100 Hz to 1 MHz. Our measurements allows distinguishing between the resistive and capacitive response of the Vanadium Dioxide films across the metal-insulator transition. A non ideal RC behavior was found in our thin films from room temperature up to 334 K. Around the MIT, an increase of the total capacitance is observed. A capacitor-network model is able to reproduce the capacitance changes across the MIT. Above the MIT, the system behaves like a metal as expected, and a modified equivalent circuit is necessary to describe the impedance data adequately.
NASA Astrophysics Data System (ADS)
Frolov, D. S.; Zubkov, V. I.
2016-12-01
The frequency dispersion of capacitance-voltage characteristics and derived charge carrier concentration with application to the junction between an electrolyte and wide band-gap semiconductors are investigated. To expand the measurement frequency range, the precision LCR-meter Agilent E4980A was connected to the electrochemical cell ECVPro Nanometrics via a specially designed switch unit. The influence of series resistance and degree of dopant ionization on the frequency dispersion of CV-measured characteristics are discussed. It was shown that in wide band-gap semiconductors one can get both total and ionized dopant concentration, depending on the test frequency choice for capacitance measurements.
Qubit-Based Memcapacitors and Meminductors
NASA Astrophysics Data System (ADS)
Shevchenko, Sergey N.; Pershin, Yuriy V.; Nori, Franco
2016-07-01
It is shown that superconducting charge and flux quantum bits (qubits) can be classified as memory capacitive and inductive systems, respectively. We demonstrate that such memcapacitive and meminductive devices offer remarkable and rich response functionalities. In particular, when subjected to periodic input, qubit-based memcapacitors and meminductors exhibit unusual hysteresis curves. Our work not only extends the set of known memcapacitive and meminductive systems to qubit-based devices, but also highlights their unique properties potentially useful for future technological applications.
Coherent Transport in a Linear Triple Quantum Dot Made from a Pure-Phase InAs Nanowire.
Wang, Ji-Yin; Huang, Shaoyun; Huang, Guang-Yao; Pan, Dong; Zhao, Jianhua; Xu, H Q
2017-07-12
A highly tunable linear triple quantum dot (TQD) device is realized in a single-crystalline pure-phase InAs nanowire using a local finger gate technique. The electrical measurements show that the charge stability diagram of the TQD can be represented by three kinds of current lines of different slopes and a simulation performed based on a capacitance matrix model confirms the experiment. We show that each current line observable in the charge stability diagram is associated with a case where a QD is on resonance with the Fermi level of the source and drain reservoirs. At a triple point where two current lines of different slopes move together but show anticrossing, two QDs are on resonance with the Fermi level of the reservoirs. We demonstrate that an energetically degenerated quadruple point at which all three QDs are on resonance with the Fermi level of the reservoirs can be built by moving two separated triple points together via sophistically tuning of energy levels in the three QDs. We also demonstrate the achievement of direct coherent electron transfer between the two remote QDs in the TQD, realizing a long-distance coherent quantum bus operation. Such a long-distance coherent coupling could be used to investigate coherent spin teleportation and superexchange effects and to construct a spin qubit with an improved long coherent time and with spin state detection solely by sensing the charge states.
High-mobility capacitively-induced two-dimensional electrons in a lateral superlattice potential
Lu, Tzu -Ming; Laroche, Dominique; Huang, S. -H.; ...
2016-01-01
In the presence of a lateral periodic potential modulation, two-dimensional electrons may exhibit interesting phenomena, such as a graphene-like energy-momentum dispersion, Bloch oscillations, or the Hofstadter butterfly band structure. To create a sufficiently strong potential modulation using conventional semiconductor heterostructures, aggressive device processing is often required, unfortunately resulting in strong disorder that masks the sought-after effects. Here, we report a novel fabrication process flow for imposing a strong lateral potential modulation onto a capacitively induced two-dimensional electron system, while preserving the host material quality. Using this process flow, the electron density in a patterned Si/SiGe heterostructure can be tuned overmore » a wide range, from 4.4 × 10 10 cm –2 to 1.8 × 10 11 cm –2, with a peak mobility of 6.4 × 10 5 cm 2/V·s. The wide density tunability and high electron mobility allow us to observe sequential emergence of commensurability oscillations as the density, the mobility, and in turn the mean free path, increase. Magnetic-field-periodic quantum oscillations associated with various closed orbits also emerge sequentially with increasing density. We show that, from the density dependence of the quantum oscillations, one can directly extract the steepness of the imposed superlattice potential. Lastly, this result is then compared to a conventional lateral superlattice model potential.« less
Towards a standard for the dynamic measurement of pressure based on laser absorption spectroscopy
Douglass, K O; Olson, D A
2016-01-01
We describe an approach for creating a standard for the dynamic measurement of pressure based on the measurement of fundamental quantum properties of molecular systems. From the linewidth and intensities of ro-vibrational transitions we plan on making an accurate determination of pressure and temperature. The goal is to achieve an absolute uncertainty for time-varying pressure of 5 % with a measurement rate of 100 kHz, which will in the future serve as a method for the traceable calibration of pressure sensors used in transient processes. To illustrate this concept we have used wavelength modulation spectroscopy (WMS), due to inherent advantages over direct absorption spectroscopy, to perform rapid measurements of carbon dioxide in order to determine the pressure. The system records the full lineshape profile of a single ro-vibrational transition of CO2 at a repetition rate of 4 kHz and with a systematic measurement uncertainty of 12 % for the linewidth measurement. A series of pressures were measured at a rate of 400 Hz (10 averages) and from these measurements the linewidth was determined with a relative uncertainty of about 0.5 % on average. The pressures measured using WMS have an average difference of 0.6 % from the absolute pressure measured with a capacitance diaphragm sensor. PMID:27881884
Analysis of Fluid Gauge Sensor for Zero or Microgravity Conditions using Finite Element Method
NASA Technical Reports Server (NTRS)
Deshpande, Manohar D.; Doiron, Terence a.
2007-01-01
In this paper the Finite Element Method (FEM) is presented for mass/volume gauging of a fluid in a tank subjected to zero or microgravity conditions. In this approach first mutual capacitances between electrodes embedded inside the tank are measured. Assuming the medium properties the mutual capacitances are also estimated using FEM approach. Using proper non-linear optimization the assumed properties are updated by minimizing the mean square error between estimated and measured capacitances values. Numerical results are presented to validate the present approach.
NASA Astrophysics Data System (ADS)
Fukuda, Koichi; Asai, Hidehiro; Hattori, Junichi; Shimizu, Mitsuaki; Hashizume, Tamotsu
2018-04-01
In this study, GaN MOS capacitance-voltage device simulations considering various interface and bulk traps are performed in the transient mode. The simulations explain various features of capacitance-voltage curves, such as plateau, hysteresis, and frequency dispersions, which are commonly observed in measurements of GaN MOS capacitors and arise from complicated combinations of interface and bulk deep-level traps. The objective of the present study is to provide a good theoretical tool to understand the physics of various nonideal measured curves.
Li, Jian; Kong, Ming; Xu, Chuanlong; Wang, Shimin; Fan, Ying
2015-12-10
The online and continuous measurement of velocity, concentration and mass flow rate of pneumatically conveyed solid particles for the high-efficiency utilization of energy and raw materials has become increasingly significant. In this paper, an integrated instrumentation system for the velocity, concentration and mass flow rate measurement of dense phase pneumatically conveyed solid particles based on electrostatic and capacitance sensorsis developed. The electrostatic sensors are used for particle mean velocity measurement in combination with the cross-correlation technique, while the capacitance sensor with helical surface-plate electrodes, which has relatively homogeneous sensitivity distribution, is employed for the measurement of particle concentration and its capacitance is measured by an electrostatic-immune AC-based circuit. The solid mass flow rate can be further calculated from the measured velocity and concentration. The developed instrumentation system for velocity and concentration measurement is verified and calibrated on a pulley rig and through static experiments, respectively. Finally the system is evaluated with glass beads on a gravity-fed rig. The experimental results demonstrate that the system is capable of the accurate solid mass flow rate measurement, and the relative error is within -3%-8% for glass bead mass flow rates ranging from 0.13 kg/s to 0.9 kg/s.
NASA Astrophysics Data System (ADS)
Batır, G. Güven; Arık, Mustafa; Caldıran, Zakir; Turut, Abdulmecit; Aydogan, Sakir
2018-01-01
Reduced graphene oxide (rGO)-rhodamine 101 (Rh101) nanocomposites with different ratios of rGO have been synthesized in aqueous medium by ultrasonic homogenization. The fluorescence of Rh101 as measured using a laser dye with high fluorescence quantum yield was substantially quenched with increasing amount of rGO in the nanocomposite. Formation of rGO-Rh101 nanocomposites was confirmed by x-ray diffraction analysis, scanning electron microscopy, ultraviolet-visible (UV-Vis) spectroscopy, and fluorescence microscopy. Furthermore, rGO-Rh101 nanocomposite/ p-Si heterojunctions were synthesized, all of which showed good rectifying behavior. The electrical characteristics of these devices were analyzed using current-voltage ( I- V) measurements to determine the ideality factor and barrier height. The experimental results confirmed the presence of lateral inhomogeneity in the effective barrier height of the rGO-Rh101 nanocomposite/ p-Si heterojunctions. In addition to I- V measurements, one device was analyzed in more detail using frequency-dependent capacitance-voltage measurements. All electrical measurements were carried out at room temperature and in the dark.
Pan, Pengmin; McDonald, Timothy; Fulton, John; Via, Brian; Hung, John
2016-12-23
An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor's tomographic mode. Tests were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor's performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. In situations where flows could not be impeded, however, the tomographic approach would likely be more useful.
NASA Astrophysics Data System (ADS)
Li, Ming; Sinclair, Derek C.; West, Anthony R.
2011-04-01
Although the origins of the high effective permittivity observed in CaCu3Ti4O12 (CCTO) ceramics and single crystals at ˜100-400 K have been resolved, the relaxorlike temperature- and frequency-dependence of permittivity obtained from fixed frequency capacitance measurements at higher temperatures reported in the literature remains unexplained, especially as CCTO adopts a centrosymmetric cubic crystal structure in the range of ˜35-1273 K. Impedance spectroscopy studies reveal that this type of relaxorlike behavior is an artifact induced mainly by a nonohmic sample-electrode contact impedance. In addition, an instrument-related parasitic series inductance and resistance effect modifies the measured capacitance values as the sample resistance decreases with increasing temperature. This can lead to an underestimation of the sample capacitance and, in extreme cases, to so-called `negative capacitance.' Such a relaxorlike artifact and negative capacitance behavior are not unique to CCTO and may be expected in other leaky dielectrics whose resistance is low.
Online capacitive densitometer
Porges, K.G.
1988-01-21
This invention is an apparatus for measuring fluid density of mixed phase fluid flow. The apparatus employs capacitive sensing of the mixed phased flow combined with means for uniformizing the electric field between the capacitor plates to account for flow line geometry. From measurement of fluid density, the solids feedrate can be ascertained. 7 figs.
Online capacitive densitometer
Porges, Karl G.
1990-01-01
This invention is an apparatus for measuring fluid density of mixed phase fluid flow. The apparatus employs capacitive sensing of the mixed phased flow combined with means for uniformizing the electric field between the capacitor plates to account for flow line geometry. From measurement of fluid density, the solids feedrate can be ascertained.
Single layer of Ge quantum dots in HfO2 for floating gate memory capacitors.
Lepadatu, A M; Palade, C; Slav, A; Maraloiu, A V; Lazanu, S; Stoica, T; Logofatu, C; Teodorescu, V S; Ciurea, M L
2017-04-28
High performance trilayer memory capacitors with a floating gate of a single layer of Ge quantum dots (QDs) in HfO 2 were fabricated using magnetron sputtering followed by rapid thermal annealing (RTA). The layer sequence of the capacitors is gate HfO 2 /floating gate of single layer of Ge QDs in HfO 2 /tunnel HfO 2 /p-Si wafers. Both Ge and HfO 2 are nanostructured by RTA at moderate temperatures of 600-700 °C. By nanostructuring at 600 °C, the formation of a single layer of well separated Ge QDs with diameters of 2-3 nm at a density of 4-5 × 10 15 m -2 is achieved in the floating gate (intermediate layer). The Ge QDs inside the intermediate layer are arranged in a single layer and are separated from each other by HfO 2 nanocrystals (NCs) about 8 nm in diameter with a tetragonal/orthorhombic structure. The Ge QDs in the single layer are located at the crossing of the HfO 2 NCs boundaries. In the intermediate layer, besides Ge QDs, a part of the Ge atoms is segregated by RTA at the HfO 2 NCs boundaries, while another part of the Ge atoms is present inside the HfO 2 lattice stabilizing the tetragonal/orthorhombic structure. The fabricated capacitors show a memory window of 3.8 ± 0.5 V and a capacitance-time characteristic with 14% capacitance decay in the first 3000-4000 s followed by a very slow capacitance decrease extrapolated to 50% after 10 years. This high performance is mainly due to the floating gate of a single layer of well separated Ge QDs in HfO 2 , distanced from the Si substrate by the tunnel oxide layer with a precise thickness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, S. K.; Chang, H. Y.
To elucidate plasma nonuniformity in high frequency capacitive discharges, Langmuir probe and B-dot probe measurements were carried out in the radial direction in a cylindrical capacitive discharge driven at 90 MHz with argon pressures of 50 and 400 mTorr. Through the measurements, a significant inductive electric field (i.e., time-varying magnetic field) was observed at the radial edge, and it was found that the inductive electric field creates strong plasma nonuniformity at high pressure operation. The plasma nonuniformity at high pressure operation is physically similar to the E-H mode transition typically observed in inductive discharges. This result agrees well with themore » theories of electromagnetic effects in large area and/or high frequency capacitive discharges.« less
Preamplifiers for non-contact capacitive biopotential measurements.
Peng, GuoChen; Ignjatovic, Zeljko; Bocko, Mark F
2013-01-01
Non-contact biopotential sensing is an attractive measurement strategy for a number of health monitoring applications, primarily the ECG and the EEG. In all such applications a key technical challenge is the design of a low-noise trans-impedance preamplifier for the typically low-capacitance, high source impedance sensing electrodes. In this paper, we compare voltage and charge amplifier designs in terms of their common mode rejection ratio, noise performance, and frequency response. Both amplifier types employ the same operational-transconductance amplifier (OTA), which was fabricated in a 0.35 um CMOS process. The results show that a charge amplifier configuration has advantages for small electrode-to-subject coupling capacitance values (less than 10 pF--typical of noncontact electrodes) and that the voltage amplifier configuration has advantages for electrode capacitances above 10 pF.
Ogilvie, R I; Zborowska-Sluis, D
1995-11-01
The relationship between stressed and total blood volume, total vascular capacitance, central blood volume, cardiac output (CO), and pulmonary capillary wedge pressure (Ppcw) was investigated in pacing-induced acute and chronic heart failure. Acute heart failure was induced in anesthetized splenectomized dogs by a volume load (20 mL/kg over 10 min) during rapid right ventricular pacing at 250 beats/min (RRVP) for 60 min. Chronic heart failure was induced by continuous RRVP for 2-6 weeks (average 24 +/- 2 days). Total vascular compliance and capacitance were calculated from the mean circulatory filling pressure (Pmcf) during transient circulatory arrest after acetylcholine at three different circulating volumes. Stressed blood volume was calculated as a product of compliance and Pmcf, with the total blood volume measured by a dye dilution. Central blood volume (CBV) and CO were measured by thermodilution. Central (heart and lung) vascular capacitance was estimated from the plot of Ppcw against CBV. Acute volume loading without RRVP increased capacitance and CO, whereas after volume loading with RRVP, capacitance and CO were unaltered from baseline. Chronic RRVP reduced capacitance and CO. All interventions, volume +/- RRVP or chronic RRVP, increased stressed and central blood volumes and Ppcw. Acute or chronic RRVP reduced central vascular capacitance. Cardiac output was increased when stressed and unstressed blood volumes increased proportionately as during volume loading alone. When CO was reduced and Ppcw increased, as during chronic RRVP or acute RRVP plus a volume load, stressed blood volume was increased and unstressed blood volume was decreased. Thus, interventions that reduced CO and increased Ppcw also increased stressed and reduced unstressed blood volume and total vascular capacitance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kano, Shinya; Maeda, Kosuke; Majima, Yutaka, E-mail: majima@msl.titech.ac.jp
2015-10-07
We present the analysis of chemically assembled double-dot single-electron transistors using orthodox model considering offset charges. First, we fabricate chemically assembled single-electron transistors (SETs) consisting of two Au nanoparticles between electroless Au-plated nanogap electrodes. Then, extraordinary stable Coulomb diamonds in the double-dot SETs are analyzed using the orthodox model, by considering offset charges on the respective quantum dots. We determine the equivalent circuit parameters from Coulomb diamonds and drain current vs. drain voltage curves of the SETs. The accuracies of the capacitances and offset charges on the quantum dots are within ±10%, and ±0.04e (where e is the elementary charge),more » respectively. The parameters can be explained by the geometrical structures of the SETs observed using scanning electron microscopy images. Using this approach, we are able to understand the spatial characteristics of the double quantum dots, such as the relative distance from the gate electrode and the conditions for adsorption between the nanogap electrodes.« less
Capacitance scaling of grain boundaries with colossal permittivity of CaCu3Ti4O12-based materials
NASA Astrophysics Data System (ADS)
De Almeida-Didry, Sonia; Autret, Cécile; Honstettre, Christophe; Lucas, Anthony; Pacreau, François; Gervais, François
2015-04-01
Samples of copper-deficient CaCu3Ti4O12 (CCTO) compared to the nominal composition, all synthesized via organic gel-assisted citrate process, show huge change of grain boundaries capacitance as deduced from a fit of an RC element model to the impedance spectroscopic data. The grain boundary capacitance is found to scale with the permittivity measured at 1 kHz weighted by the size of the grains. This result is found consistent with the internal barrier layer capacitance (IBLC) model.
Sinha, Shayandev; Sachar, Harnoor Singh; Das, Siddhartha
2018-01-30
Electric double layers (or EDLs) formed at the membrane-electrolyte interface (MEI) and membrane-cytosol interface (MCI) of a charged lipid bilayer plasma membrane develop finitely large capacitances. However, these EDL capacitances are often much larger than the intrinsic capacitance of the membrane, and all of these capacitances are in series. Consequently, the effect of these EDL capacitances in dictating the overall membrane-EDL effective capacitance C eff becomes negligible. In this paper, we challenge this conventional notion pertaining to the membrane-EDL capacitances. We demonstrate that, on the basis of the system parameters, the EDL capacitance for both the permeable and semipermeable membranes can be small enough to influence C eff . For the semipermeable membranes, however, this lowering of the EDL capacitance can be much larger, ensuring a reduction of C eff by more than 20-25%. Furthermore, for the semipermeable membranes, the reduction in C eff is witnessed over a much larger range of system parameters. We attribute such an occurrence to the highly nonintuitive electrostatic potential distribution associated with the recently discovered phenomena of charge-inversion-like electrostatics and the attainment of a positive zeta potential at the MCI for charged semipermeable membranes. We anticipate that our findings will impact the quantification and the identification of a large number of biophysical phenomena that are probed by measuring the plasma membrane capacitance.
A Self-Adaptive Capacitive Compensation Technique for Body Channel Communication.
Mao, Jingna; Yang, Huazhong; Lian, Yong; Zhao, Bo
2017-10-01
In wireless body area network, capacitive-coupling body channel communication (CC-BCC) has the potential to attain better energy efficiency over conventional wireless communication schemes. The CC-BCC scheme utilizes the human body as the forward signal transmission medium, reducing the path loss in wireless body-centric communications. However, the backward path is formed by the coupling capacitance between the ground electrodes (GEs) of transmitter (Tx) and receiver (Rx), which increases the path loss and results in a body posture dependent backward impedance. Conventional methods use a fixed inductor to resonate with the backward capacitor to compensate the path loss, while it's not effective in compensating the variable backward impedance induced by the body movements. In this paper, we propose a self-adaptive capacitive compensation (SACC) technique to address such a problem. A backward distance detector is introduced to estimate the distance between two GEs of Tx and Rx, and a backward capacitance model is built to calculate the backward capacitance. The calculated backward capacitance at varying body posture is compensated by a digitally controlled tunable inductor (DCTI). The proposed SACC technique is validated by a prototype CC-BCC system, and measurements are taken on human subjects. The measurement results show that 9dB-16 dB channel enhancement can be achieved at a backward path distance of 1 cm-10 cm.
Graphene Quantum Capacitors for High Frequency Tunable Analog Applications.
Moldovan, Clara F; Vitale, Wolfgang A; Sharma, Pankaj; Tamagnone, Michele; Mosig, Juan R; Ionescu, Adrian M
2016-08-10
Graphene quantum capacitors (GQC) are demonstrated to be enablers of radio-frequency (RF) functions through voltage-tuning of their capacitance. We show that GQC complements MEMS and MOSFETs in terms of performance for high frequency analog applications and tunability. We propose a CMOS compatible fabrication process and report the first experimental assessment of their performance at microwaves frequencies (up to 10 GHz), demonstrating experimental GQCs in the pF range with a tuning ratio of 1.34:1 within 1.25 V, and Q-factors up to 12 at 1 GHz. The figures of merit of graphene variable capacitors are studied in detail from 150 to 350 K. Furthermore, we describe a systematic, graphene specific approach to optimize their performance and predict the figures of merit achieved if such a methodology is applied.
Multilevel Effects in a Driven Generalized Rabi Model
NASA Astrophysics Data System (ADS)
Pietikäinen, I.; Danilin, S.; Kumar, K. S.; Tuorila, J.; Paraoanu, G. S.
2018-01-01
We study numerically the onset of higher-level excitations and resonance frequency shifts in the generalized multilevel Rabi model with dispersive coupling under strong driving. The response to a weak probe is calculated using the Floquet method, which allows us to calculate the probe spectrum and extract the resonance frequency. We test our predictions using a superconducting circuit consisting of a transmon coupled capacitively to a coplanar waveguide resonator. This system is monitored by a weak probe field and at the same time driven at various powers by a stronger microwave tone. We show that the transition from the quantum to the classical regime is accompanied by a rapid increase of the transmon occupation and consequently that the qubit approximation is valid only in the extreme quantum limit.
Multilevel Effects in a Driven Generalized Rabi Model
NASA Astrophysics Data System (ADS)
Pietikäinen, I.; Danilin, S.; Kumar, K. S.; Tuorila, J.; Paraoanu, G. S.
2018-06-01
We study numerically the onset of higher-level excitations and resonance frequency shifts in the generalized multilevel Rabi model with dispersive coupling under strong driving. The response to a weak probe is calculated using the Floquet method, which allows us to calculate the probe spectrum and extract the resonance frequency. We test our predictions using a superconducting circuit consisting of a transmon coupled capacitively to a coplanar waveguide resonator. This system is monitored by a weak probe field and at the same time driven at various powers by a stronger microwave tone. We show that the transition from the quantum to the classical regime is accompanied by a rapid increase of the transmon occupation and consequently that the qubit approximation is valid only in the extreme quantum limit.
Pairing Symmetry Transitions in the Even-Denominator FQHE System
NASA Astrophysics Data System (ADS)
Nomura, Kentaro; Yoshioka, Daijiro
2001-12-01
Transitions from a paired quantum Hall state to another quantum Hall state in bilayer systems are discussed in the framework of the edge theory. Starting from the edge theory for the Haldane Rezayi state, it is shown that the charging effect of a bilayer system which breaks the SU(2) symmetry of the pseudospin shifts the central charge and the conformal dimensions of the fermionic fields which describe the pseudospin sector in the edge theory. This corresponds to the transition from the Haldane Rezayi state to Halperin's 331 state, or from a singlet d-wave to a triplet p-wave ABM type paired state in the composite fermion picture. Considering interlayer tunneling, the tunneling rate-capacitance phase diagram for the ν=5/2 paired bilayer system is discussed.
NASA Astrophysics Data System (ADS)
Koehler-Sidki, A.; Dynes, J. F.; Lucamarini, M.; Roberts, G. L.; Sharpe, A. W.; Yuan, Z. L.; Shields, A. J.
2018-04-01
Fast-gated avalanche photodiodes (APDs) are the most commonly used single photon detectors for high-bit-rate quantum key distribution (QKD). Their robustness against external attacks is crucial to the overall security of a QKD system, or even an entire QKD network. We investigate the behavior of a gigahertz-gated, self-differencing (In,Ga)As APD under strong illumination, a tactic Eve often uses to bring detectors under her control. Our experiment and modeling reveal that the negative feedback by the photocurrent safeguards the detector from being blinded through reducing its avalanche probability and/or strengthening the capacitive response. Based on this finding, we propose a set of best-practice criteria for designing and operating fast-gated APD detectors to ensure their practical security in QKD.
Issues of nanoelectronics: a possible roadmap.
Wang, Kang L
2002-01-01
In this review, we will discuss a possible roadmap in scaling a nanoelectronic device from today's CMOS technology to the ultimate limit when the device fails. In other words, at the limit, CMOS will have a severe short channel effect, significant power dissipation in its quiescent (standby) state, and problems related to other essential characteristics. Efforts to use structures such as the double gate, vertical surround gate, and SOI to improve the gate control have continually been made. Other types of structures using SiGe source/drain, asymmetric Schottky source/drain, and the like will be investigated as viable structures to achieve ultimate CMOS. In reaching its scaling limit, tunneling will be an issue for CMOS. The tunneling current through the gate oxide and between the source and drain will limit the device operation. When tunneling becomes significant, circuits may incorporate tunneling devices with CMOS to further increase the functionality per device count. We will discuss both the top-down and bottom-up approaches in attaining the nanometer scale and eventually the atomic scale. Self-assembly is used as a bottom-up approach. The state of the art is reviewed, and the challenges of the multiple-step processing in using the self-assembly approach are outlined. Another facet of the scaling trend is to decrease the number of electrons in devices, ultimately leading to single electrons. If the size of a single-electron device is scaled in such a way that the Coulomb self-energy is higher than the thermal energy (at room temperature), a single-electron device will be able to operate at room temperature. In principle, the speed of the device will be fast as long as the capacitance of the load is also scaled accordingly. The single-electron device will have a small drive current, and thus the load capacitance, including those of interconnects and fanouts, must be small to achieve a reasonable speed. However, because the increase in the density (and/or functionality) of integrated circuits is the principal driver, the wiring or interconnects will increase and become the bottleneck for the design of future high-density and high-functionality circuits, particularly for single-electron devices. Furthermore, the massive interconnects needed in the architecture used today will result in an increase in load capacitance. Thus for single-electron device circuits, it is critical to have minimal interconnect loads. And new types of architectures with minimal numbers of global interconnects will be needed. Cellular automata, which need only nearest-neighbor interconnects, are discussed as a plausible example. Other architectures such as neural networks are also possible. Examples of signal processing using cellular automata are discussed. Quantum computing and information processing are based on quantum mechanical descriptions of individual particles correlated among each other. A quantum bit or qubit is described as a linear superposition of the wave functions of a two-state system, for example, the spin of a particle. With the interaction of two qubits, they are connected in a "wireless fashion" using wave functions via quantum mechanical interaction, referred to as entanglement. The interconnection by the nonlocality of wave functions affords a massive parallel nature for computing or so-called quantum parallelism. We will describe the potential and solid-state implementations of quantum computing and information, using electron spin and/or nuclear spin in Si and Ge. Group IV elements have a long coherent time and other advantages. The example of using SiGe for g factor engineering will be described.
Separation of neural stem cells by whole cell membrane capacitance using dielectrophoresis.
Adams, Tayloria N G; Jiang, Alan Y L; Vyas, Prema D; Flanagan, Lisa A
2018-01-15
Whole cell membrane capacitance is an electrophysiological property of the plasma membrane that serves as a biomarker for stem cell fate potential. Neural stem and progenitor cells (NSPCs) that differ in ability to form neurons or astrocytes are distinguished by membrane capacitance measured by dielectrophoresis (DEP). Differences in membrane capacitance are sufficient to enable the enrichment of neuron- or astrocyte-forming cells by DEP, showing the separation of stem cells on the basis of fate potential by membrane capacitance. NSPCs sorted by DEP need not be labeled and do not experience toxic effects from the sorting procedure. Other stem cell populations also display shifts in membrane capacitance as cells differentiate to a particular fate, clarifying the value of sorting a variety of stem cell types by capacitance. Here, we describe methods developed by our lab for separating NSPCs on the basis of capacitance using several types of DEP microfluidic devices, providing basic information on the sorting procedure as well as specific advantages and disadvantages of each device. Copyright © 2017 Elsevier Inc. All rights reserved.
Capacitively coupled RF voltage probe having optimized flux linkage
Moore, James A.; Sparks, Dennis O.
1999-02-02
An RF sensor having a novel current sensing probe and a voltage sensing probe to measure voltage and current. The current sensor is disposed in a transmission line to link all of the flux generated by the flowing current in order to obtain an accurate measurement. The voltage sensor is a flat plate which operates as a capacitive plate to sense voltage on a center conductor of the transmission line, in which the measured voltage is obtained across a resistance leg of a R-C differentiator circuit formed by the characteristic impedance of a connecting transmission line and a capacitance of the plate, which is positioned proximal to the center conductor.
Moisture content measurement in paddy
NASA Astrophysics Data System (ADS)
Klomklao, P.; Kuntinugunetanon, S.; Wongkokua, W.
2017-09-01
Moisture content is an important quantity for agriculture product, especially in paddy. In principle, the moisture content can be measured by a gravimetric method which is a direct method. However, the gravimetric method is time-consuming. There are indirect methods such as resistance and capacitance methods. In this work, we developed an indirect method based on a 555 integrated circuit timer. The moisture content sensor was capacitive parallel plates using the dielectric constant property of the moisture. The instrument generated the output frequency that depended on the capacitance of the sensor. We fitted a linear relation between periods and moisture contents. The measurement results have a standard uncertainty of 1.23 % of the moisture content in the range of 14 % to 20 %.
High efficiency and enhanced ESD properties of UV LEDs by inserting p-GaN/p-AlGaN superlattice
NASA Astrophysics Data System (ADS)
Huang, Yong; Li, PeiXian; Yang, Zhuo; Hao, Yue; Wang, XiaoBo
2014-05-01
Significantly improved electrostatic discharge (ESD) properties of InGaN/GaN-based UV light-emitting diode (LED) with inserting p-GaN/p-AlGaN superlattice (p-SLs) layers (instead of p-AlGaN single layer) between multiple quantum wells and Mg-doped GaN layer are reported. The pass yield of the LEDs increased from 73.53% to 93.81% under negative 2000 V ESD pulses. In addition, the light output power (LOP) and efficiency droop at high injection current were also improved. The mechanism of the enhanced ESD properties was then investigated. After excluding the effect of capacitance modulation, high-resolution X-ray diffraction (XRD) and atomic force microscope (AFM) measurements demonstrated that the dominant mechanism of the enhanced ESD properties is the material quality improved by p-SLs, which indicated less leakage paths, rather than the current spreading improved by p-SLs.
Design of Supercapacitor Electrodes Using Molecular Dynamics Simulations
NASA Astrophysics Data System (ADS)
Bo, Zheng; Li, Changwen; Yang, Huachao; Ostrikov, Kostya; Yan, Jianhua; Cen, Kefa
2018-06-01
Electric double-layer capacitors (EDLCs) are advanced electrochemical devices for energy storage and have attracted strong interest due to their outstanding properties. Rational optimization of electrode-electrolyte interactions is of vital importance to enhance device performance for practical applications. Molecular dynamics (MD) simulations could provide theoretical guidelines for the optimal design of electrodes and the improvement of capacitive performances, e.g., energy density and power density. Here we discuss recent MD simulation studies on energy storage performance of electrode materials containing porous to nanostructures. The energy storage properties are related to the electrode structures, including electrode geometry and electrode modifications. Altering electrode geometry, i.e., pore size and surface topography, can influence EDL capacitance. We critically examine different types of electrode modifications, such as altering the arrangement of carbon atoms, doping heteroatoms and defects, which can change the quantum capacitance. The enhancement of power density can be achieved by the intensified ion dynamics and shortened ion pathway. Rational control of the electrode morphology helps improve the ion dynamics by decreasing the ion diffusion pathway. Tuning the surface properties (e.g., the affinity between the electrode and the ions) can affect the ion-packing phenomena. Our critical analysis helps enhance the energy and power densities of EDLCs by modulating the corresponding electrode structures and surface properties.[Figure not available: see fulltext.
Atomic and molecular gas phase spectrometry
NASA Astrophysics Data System (ADS)
Winefordner, J. D.
1985-10-01
The major goals of this research have been to develop diagnostical spectroscopic methods for measuring spatial/temporal temperatures and species of combustion flames and plasmas and to develop sensitive, selective, precise, reliable, rapid spectrometric methods of trace analysis of elements present in jet engine lubricating oils, metallurgical samples, and engine exhausts. The diagnostical approaches have been based upon the measurement of metal probes introduced into the flame or plasmas and the measurement of OH in flames. The measurement approaches have involved the use of laser-excited fluorescence, saturated absorption, polarization, and linear absorption. The spatial resolution in most studies is less than 1 cu mm and the temporal resolution is less than 10 ns with the use of pulsed lasers. Single pulse temperature and species measurements have also been carried out. Other diagnostical studies have involved the measurement of collisional redistribution of radiatively excited levels of Na and Tl in acetylene/02/Ar flames and the measurement of lifetimes and quantum efficiencies of atoms and ions in the inductively coupled plasmas, ICP. The latter studies indicate that the high electron number densities in ICPs are not efficient quenchers of excited atoms/ions. Temperatures of microwave atmospheric plasmas produced capacitatively and cool metastable N2 discharge produced by a dielectric discharge have also been measured.
High sensitivity 1.06 micron optical receiver for precision laser range finding. [YAG laser design
NASA Technical Reports Server (NTRS)
Scholl, F. W.; Harris, J. S., Jr.
1977-01-01
Aluminum gallium antimonide avalanche photodiodes with average gain of 10, internal quantum efficiency of greater than 60%, capacitance less than 0.2pf, and dark current of less than 1 micron were designed and fabricated for use in a low noise optical receiver suitable for 2 cm accuracy rangefinding. Topics covered include: (1) design of suitable photodetector structures; (2) epitaxial growth of AlGaSb devices; (3) fabrication of photodetectors; and (4) electro-optics characterization.
2012-09-18
Smooth scaling of valence electronic properties in fullerenes: from one carbon atom , to C60, to graphene Greyson R. Lewis,1 William E. Bunting,1...pacitance scaling lines of the fullerenes. Lastly, it is found that points representing the carbon atom and the graphene limit lie on scaling lines for...icosahedral fullerenes, so their quantum capacitances and their detachment energies scale smoothly from one C atom , through C60, to graphene. I
Alhoshany, Abdulaziz; Sivashankar, Shilpa; Mashraei, Yousof; Omran, Hesham; Salama, Khaled N
2017-08-23
This paper presents a biosensor-CMOS platform for measuring the capacitive coupling of biorecognition elements. The biosensor is designed, fabricated, and tested for the detection and quantification of a protein that reveals the presence of early-stage cancer. For the first time, the spermidine/spermine N1 acetyltransferase (SSAT) enzyme has been screened and quantified on the surface of a capacitive sensor. The sensor surface is treated to immobilize antibodies, and the baseline capacitance of the biosensor is reduced by connecting an array of capacitors in series for fixed exposure area to the analyte. A large sensing area with small baseline capacitance is implemented to achieve a high sensitivity to SSAT enzyme concentrations. The sensed capacitance value is digitized by using a 12-bit highly digital successive-approximation capacitance-to-digital converter that is implemented in a 0.18 μm CMOS technology. The readout circuit operates in the near-subthreshold regime and provides power and area efficient operation. The capacitance range is 16.137 pF with a 4.5 fF absolute resolution, which adequately covers the concentrations of 10 mg/L, 5 mg/L, 2.5 mg/L, and 1.25 mg/L of the SSAT enzyme. The concentrations were selected as a pilot study, and the platform was shown to demonstrate high sensitivity for SSAT enzymes on the surface of the capacitive sensor. The tested prototype demonstrated 42.5 μS of measurement time and a total power consumption of 2.1 μW.
Alhoshany, Abdulaziz; Sivashankar, Shilpa; Mashraei, Yousof; Omran, Hesham; Salama, Khaled N.
2017-01-01
This paper presents a biosensor-CMOS platform for measuring the capacitive coupling of biorecognition elements. The biosensor is designed, fabricated, and tested for the detection and quantification of a protein that reveals the presence of early-stage cancer. For the first time, the spermidine/spermine N1 acetyltransferase (SSAT) enzyme has been screened and quantified on the surface of a capacitive sensor. The sensor surface is treated to immobilize antibodies, and the baseline capacitance of the biosensor is reduced by connecting an array of capacitors in series for fixed exposure area to the analyte. A large sensing area with small baseline capacitance is implemented to achieve a high sensitivity to SSAT enzyme concentrations. The sensed capacitance value is digitized by using a 12-bit highly digital successive-approximation capacitance-to-digital converter that is implemented in a 0.18 μm CMOS technology. The readout circuit operates in the near-subthreshold regime and provides power and area efficient operation. The capacitance range is 16.137 pF with a 4.5 fF absolute resolution, which adequately covers the concentrations of 10 mg/L, 5 mg/L, 2.5 mg/L, and 1.25 mg/L of the SSAT enzyme. The concentrations were selected as a pilot study, and the platform was shown to demonstrate high sensitivity for SSAT enzymes on the surface of the capacitive sensor. The tested prototype demonstrated 42.5 μS of measurement time and a total power consumption of 2.1 μW. PMID:28832523
Two-dimensional nickel hydroxide nanosheets as high performance pseudo-capacitor electrodes
NASA Astrophysics Data System (ADS)
Bhat, Karthik S.; Nagaraja, H. S.
2018-04-01
Electrochemical supercapacitor is a vital technology for the progress of consistent energy harvesting devices. Herein, we report the fabrication of supercapacitor electrodes based on nickel hydroxide nanosheets synthesized via one-pot hydrothermal method. Structure and shape of synthesized materials were analyzed with XRD and SEM measurements. Pseudo-capacitive performances of the fabricated electrodes were evaluated through cyclic voltammetry and galvanostatic charge-discharge measurements with three-electrode configurations. Results indicated the specific capacitance of l80 F g-1 at 5 mV s-1 scan rate and complimented with capacitance retention of 76% for l500 cycles.
NASA Astrophysics Data System (ADS)
Bucher, François-Xavier; Cao, Frédéric; Viard, Clément; Guichard, Frédéric
2014-03-01
We present in this paper a novel capacitive device that stimulates the touchscreen interface of a smartphone (or of any imaging device equipped with a capacitive touchscreen) and synchronizes triggering with the DxO LED Universal Timer to measure shooting time lag and shutter lag according to ISO 15781:2013. The device and protocol extend the time lag measurement beyond the standard by including negative shutter lag, a phenomenon that is more and more commonly found in smartphones. The device is computer-controlled, and this feature, combined with measurement algorithms, makes it possible to automatize a large series of captures so as to provide more refined statistical analyses when, for example, the shutter lag of "zero shutter lag" devices is limited by the frame time as our measurements confirm.
A precision analogue integrator system for heavy current measurement in MFDC resistance spot welding
NASA Astrophysics Data System (ADS)
Xia, Yu-Jun; Zhang, Zhong-Dian; Xia, Zhen-Xin; Zhu, Shi-Liang; Zhang, Rui
2016-02-01
In order to control and monitor the quality of middle frequency direct current (MFDC) resistance spot welding (RSW), precision measurement of the welding current up to 100 kA is required, for which Rogowski coils are the only viable current transducers at present. Thus, a highly accurate analogue integrator is the key to restoring the converted signals collected from the Rogowski coils. Previous studies emphasised that the integration drift is a major factor that influences the performance of analogue integrators, but capacitive leakage error also has a significant impact on the result, especially in long-time pulse integration. In this article, new methods of measuring and compensating capacitive leakage error are proposed to fabricate a precision analogue integrator system for MFDC RSW. A voltage holding test is carried out to measure the integration error caused by capacitive leakage, and an original integrator with a feedback adder is designed to compensate capacitive leakage error in real time. The experimental results and statistical analysis show that the new analogue integrator system could constrain both drift and capacitive leakage error, of which the effect is robust to different voltage levels of output signals. The total integration error is limited within ±0.09 mV s-1 0.005% s-1 or full scale at a 95% confidence level, which makes it possible to achieve the precision measurement of the welding current of MFDC RSW with Rogowski coils of 0.1% accuracy class.
Preamplifiers for non-contact capacitive biopotential measurements*
Peng, GuoChen; Ignjatovic, Zeljko; Bocko, Mark F.
2014-01-01
Non-contact biopotential sensing is an attractive measurement strategy for a number of health monitoring applications, primarily the ECG and the EEG. In all such applications a key technical challenge is the design of a low-noise trans-impedance preamplifier for the typically low-capacitance, high source impedance sensing electrodes. In this paper, we compare voltage and charge amplifier designs in terms of their common mode rejection ratio, noise performance, and frequency response. Both amplifier types employ the same operational-transconductance amplifier (OTA), which was fabricated in a 0.35um CMOS process. The results show that a charge amplifier configuration has advantages for small electrode-to-subject coupling capacitance values (less than 10 pF - typical of noncontact electrodes) and that the voltage amplifier configuration has advantages for electrode capacitances above 10 pF. PMID:24109979
On Machine Capacitance Dimensional and Surface Profile Measurement System
NASA Technical Reports Server (NTRS)
Resnick, Ralph
1993-01-01
A program was awarded under the Air Force Machine Tool Sensor Improvements Program Research and Development Announcement to develop and demonstrate the use of a Capacitance Sensor System including Capacitive Non-Contact Analog Probe and a Capacitive Array Dimensional Measurement System to check the dimensions of complex shapes and contours on a machine tool or in an automated inspection cell. The manufacturing of complex shapes and contours and the subsequent verification of those manufactured shapes is fundamental and widespread throughout industry. The critical profile of a gear tooth; the overall shape of a graphite EDM electrode; the contour of a turbine blade in a jet engine; and countless other components in varied applications possess complex shapes that require detailed and complex inspection procedures. Current inspection methods for complex shapes and contours are expensive, time-consuming, and labor intensive.
Developing a polymeric sensor to monitor intracellular conditions
NASA Astrophysics Data System (ADS)
Mudarri, Timothy C.; Leo, Donald J.; Wood, Brett C.; Shires, Peter K.
2004-07-01
Ionic electroactive polymers have been developed as mechanical sensors or actuators, taking advantage of the electromechanical coupling of the materials. This research attempts to take advantage of the chemomechanical and chemoelectrical coupling by characterizing the transient response as the polymer undergoes an ion exchange, thus using the polymer for ionic sensing. Nafion is a biocompatible material, and an implantable polymeric ion sensor which has applications in the biomedical field for bone healing research. An ion sensor and a strain gauge could determine the effects of motion allowed at the fracture site, thus improving rehabilitation procedures for bone fractures. The charge sensitivity of the material and the capacitance of the material were analyzed to determine the transient response. Both measures indicate a change when immersed in ionic salt solutions. It is demonstrated that measuring the capacitance is the best indicator of an ion exchange. Relative to a flat response in deionized water (+/-2%), the capacitance of the polymer exhibits an exponential decay of ~25% of its peak when placed in a salt solution. A linear correlation between the time constant of the decay and the ionic size of the exchanging ion was developed that could reasonably predict a diffusing ion. Tests using an energy dispersive spectrometer (EDS) indicate that 90% of the exchange occurs in the first 20 minutes, shown by both capacitance decay and an atomic level scan. The diffusion rate time constant was found to within 0.3% of the capacitance time constant, confirming the ability of capacitance to measure ion exchange.
NASA Astrophysics Data System (ADS)
Liu, Wenwen; Yan, Xingbin; Chen, Jiangtao; Feng, Yaqiang; Xue, Qunji
2013-06-01
In comparison with graphene sheets, graphene quantum dots (GQDs) exhibit novel chemical/physical properties including nanometer-size, abundant edge defects, good electrical conductivity, high mobility, chemical inertia, stable photoluminescence and better surface grafting, making them promising for fabricating various novel devices. In the present work, an asymmetric micro-supercapacitor, using GQDs as negative active material and polyaniline (PANI) nanofibers as positive active material, is built for the first time by a simple and controllable two-step electro-deposition on interdigital finger gold electrodes. Electrochemical measurements reveal that the as-made GQDs//PANI asymmetric micro-supercapacitor has a more excellent rate capability (up to 1000 V s-1) than previously reported electrode materials, as well as faster power response capability (with a very short relaxation time constant of 115.9 μs) and better cycling stability after 1500 cycles in aqueous electrolyte. On this basis, an all-solid-state GQDs//PANI asymmetric micro-supercapacitor is fabricated using H3PO4-polyvinyl alcohol gel as electrolyte, which also exhibits desirable electrochemical capacitive performances. These encouraging results presented here may open up new insight into GQDs with highly promising applications in high-performance energy-storage devices, and further expand the potential applications of GQDs beyond the energy-oriented application of GQDs discussed above.In comparison with graphene sheets, graphene quantum dots (GQDs) exhibit novel chemical/physical properties including nanometer-size, abundant edge defects, good electrical conductivity, high mobility, chemical inertia, stable photoluminescence and better surface grafting, making them promising for fabricating various novel devices. In the present work, an asymmetric micro-supercapacitor, using GQDs as negative active material and polyaniline (PANI) nanofibers as positive active material, is built for the first time by a simple and controllable two-step electro-deposition on interdigital finger gold electrodes. Electrochemical measurements reveal that the as-made GQDs//PANI asymmetric micro-supercapacitor has a more excellent rate capability (up to 1000 V s-1) than previously reported electrode materials, as well as faster power response capability (with a very short relaxation time constant of 115.9 μs) and better cycling stability after 1500 cycles in aqueous electrolyte. On this basis, an all-solid-state GQDs//PANI asymmetric micro-supercapacitor is fabricated using H3PO4-polyvinyl alcohol gel as electrolyte, which also exhibits desirable electrochemical capacitive performances. These encouraging results presented here may open up new insight into GQDs with highly promising applications in high-performance energy-storage devices, and further expand the potential applications of GQDs beyond the energy-oriented application of GQDs discussed above. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01139a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Pengmin; McDonald, Timothy; Fulton, John
An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Testsmore » were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. As a result, in situations where flows could not be impeded, however, the tomographic approach would likely be more useful.« less
Pan, Pengmin; McDonald, Timothy; Fulton, John; ...
2016-12-23
An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Testsmore » were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. As a result, in situations where flows could not be impeded, however, the tomographic approach would likely be more useful.« less
Pan, Pengmin; McDonald, Timothy; Fulton, John; Via, Brian; Hung, John
2016-01-01
An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Tests were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. In situations where flows could not be impeded, however, the tomographic approach would likely be more useful. PMID:28025536
Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ya'akobovitz, A.; Department of Mechanical Engineering, Faculty of Engineering Sciences, Ben-Gurion University, Beer-Sheva; Bedewy, M.
2015-02-02
Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we findmore » that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.« less
Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests
NASA Astrophysics Data System (ADS)
Ya'akobovitz, A.; Bedewy, M.; Hart, A. J.
2015-02-01
Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.
Liu, Wenwen; Yan, Xingbin; Chen, Jiangtao; Feng, Yaqiang; Xue, Qunji
2013-07-07
In comparison with graphene sheets, graphene quantum dots (GQDs) exhibit novel chemical/physical properties including nanometer-size, abundant edge defects, good electrical conductivity, high mobility, chemical inertia, stable photoluminescence and better surface grafting, making them promising for fabricating various novel devices. In the present work, an asymmetric micro-supercapacitor, using GQDs as negative active material and polyaniline (PANI) nanofibers as positive active material, is built for the first time by a simple and controllable two-step electro-deposition on interdigital finger gold electrodes. Electrochemical measurements reveal that the as-made GQDs//PANI asymmetric micro-supercapacitor has a more excellent rate capability (up to 1000 V s(-1)) than previously reported electrode materials, as well as faster power response capability (with a very short relaxation time constant of 115.9 μs) and better cycling stability after 1500 cycles in aqueous electrolyte. On this basis, an all-solid-state GQDs//PANI asymmetric micro-supercapacitor is fabricated using H3PO4-polyvinyl alcohol gel as electrolyte, which also exhibits desirable electrochemical capacitive performances. These encouraging results presented here may open up new insight into GQDs with highly promising applications in high-performance energy-storage devices, and further expand the potential applications of GQDs beyond the energy-oriented application of GQDs discussed above.
Higgins, Thomas M; Coleman, Jonathan N
2015-08-05
This work describes the potential of thin, spray-deposited, large-area poly(3,4-ethylenedioxythiophene)/poly(styrene-4-sulfonate) ( PSS) conducting polymer films for use as transparent supercapacitor electrodes. To facilitate this, we provide a detailed explanation of the factors limiting the performance of such electrodes. These films have a very low optical conductivity of σop = 24 S/cm (at 550 nm), crucial for this application, and a reasonable volumetric capacitance of CV = 41 F/cm(3). Secondary doping with formic acid gives these films a DC conductivity of σDC = 936 S/cm, allowing them to perform both as a transparent conductor/current collector and transparent supercapacitor electrode. Small-area films (A ∼ 1 cm(2)) display measured areal capacitance as high as 1 mF/cm(2), even for reasonably transparent electrodes (T ∼ 80%). However, in real devices, the absolute capacitance will be maximized by increasing the device area. As such, here, we measure the electrode performance as a function of its length and width. We find that the measured areal capacitance falls dramatically with scan rate and sample length but is independent of width. We show that this is because the measured areal capacitance is limited by the electrical resistance of the electrode. We have derived an equation for the measured areal capacitance as a function of scan rate and electrode lateral dimensions that fits the data extremely well up to scan rates of ∼1000 mV/s (corresponding to charge/discharge times > 0.6 s). These results are self-consistent with independent analysis of the electrical and impedance properties of the electrodes. These results can be used to find limiting combinations of electrode length and scan rate, beyond which electrode performance falls dramatically. We use these insights to build large-area (∼100 cm(2)) supercapacitors using electrodes that are 95% transparent, providing a capacitance of ∼12 mF (at 50 mV/s), significantly higher than that of any previously reported transparent supercapacitor.
Frequency-Dependent Capacitance of Hydrophobic Membranes Containing Fixed Negative Charges
Ilani, Asher
1968-01-01
Filters containing fixed negative charges were saturated with hydrophobic solvent and interposed between aqueous solutions. The capacitance of such membranes was measured in the frequency range of 0.05-30 kc. The capacitance increased with decrease in frequency. The frequency dependence of the capacitance was sensitive to nature of the cation present and to salt concentration in the aqueous solution. It is suggested that variation of membrane resistivity in the space charge region of the membrane is responsible for this phenomenon. Possible effects of the potential and counterion concentration profiles at the membrane-water interface are discussed. PMID:5699796
Temperature aspect of degradation of electrochemical double-layer capacitors (EDLC)
NASA Astrophysics Data System (ADS)
Baek, Dong-Cheon; Kim, Hyun-Ho; Lee, Soon-Bok
2015-03-01
Electric double layer capacitors (EDLC) cells have a process variation and temperature dependency in capacitance so that balancing is required when they are connected in series, which includes electronic voltage management based on capacitance monitoring. This paper measured temperature aspect of capacitance periodically to monitor health and degradation behavior of EDLC stressed under high temperatures and zero below temperatures respectively, which enables estimation of the state of health (SOH) regardless of temperature. At high temperature, capacitance saturation and delayed expression of degradation was observed. After cyclic stress at zero below temperature, less effective degradation and time recovery phenomenon were occurred.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estevez, Ivan; Concept Scientific Instruments, ZA de Courtaboeuf, 2 rue de la Terre de Feu, 91940 Les Ulis; Chrétien, Pascal
2014-02-24
On the basis of a home-made nanoscale impedance measurement device associated with a commercial atomic force microscope, a specific operating process is proposed in order to improve absolute (in sense of “nonrelative”) capacitance imaging by drastically reducing the parasitic effects due to stray capacitance, surface topography, and sample tilt. The method, combining a two-pass image acquisition with the exploitation of approach curves, has been validated on sets of calibration samples consisting in square parallel plate capacitors for which theoretical capacitance values were numerically calculated.
Gulati, Parul; Singh, Pawandeep; Chatterjee, Arun Kumar; Ghosh, Moushumi
2017-09-01
This study reports the applicability of a capacitance-based technique for evaluating the biofilm progression of Sphingomonas sp. One hundred and forty isolates of Sphingomonas were screened from public drinking water sites, and one potential strain with biofilm-forming ability was used for the study. The biofilm production by this strain was established in microtiter plates and aluminum coupons. The standard biofilm-forming strain Sphingomonas terrae MTCC 7766 was used for comparison. Changes in biofilm were analyzed by energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscope (SEM). Capacitance values were measured at 1, 100 and 200 kHz frequency; however, 1 kHz was selected since resulted in reproducible values, which could be correlated to biofilm age measured as dry weight over a time of 96 h (4 days) depicting the biofilm growth/progression over time. The EDX, SEM and capacitance values obtained in parallel indicated the related physiological profile usually displayed by biofilms upon growth, suggesting authenticity to the observed capacitance profile. The results of this study demonstrated the feasibility of a capacitance-based method for analyzing biofilm development/progression by Sphingomonas sp. and suggested a simple approach for developing an online system to detect biofilms by this opportunistic pathogen of concern in drinking water.
A Capacitance-To-Digital Converter for MEMS Sensors for Smart Applications.
Pérez Sanjurjo, Javier; Prefasi, Enrique; Buffa, Cesare; Gaggl, Richard
2017-06-07
The use of MEMS sensors has been increasing in recent years. To cover all the applications, many different readout circuits are needed. To reduce the cost and time to market, a generic capacitance-to-digital converter (CDC) seems to be the logical next step. This work presents a configurable CDC designed for capacitive MEMS sensors. The sensor is built with a bridge of MEMS, where some of them function with pressure. Then, the capacitive to digital conversion is realized using two steps. First, a switched-capacitor (SC) preamplifier is used to make the capacitive to voltage (C-V) conversion. Second, a self-oscillated noise-shaping integrating dual-slope (DS) converter is used to digitize this magnitude. The proposed converter uses time instead of amplitude resolution to generate a multibit digital output stream. In addition it performs noise shaping of the quantization error to reduce measurement time. This article shows the effectiveness of this method by measurements performed on a prototype, designed and fabricated using standard 0.13 µm CMOS technology. Experimental measurements show that the CDC achieves a resolution of 17 bits, with an effective area of 0.317 mm², which means a pressure resolution of 1 Pa, while consuming 146 µA from a 1.5 V power supply.
A Capacitance-To-Digital Converter for MEMS Sensors for Smart Applications
Pérez Sanjurjo, Javier; Prefasi, Enrique; Buffa, Cesare; Gaggl, Richard
2017-01-01
The use of MEMS sensors has been increasing in recent years. To cover all the applications, many different readout circuits are needed. To reduce the cost and time to market, a generic capacitance-to-digital converter (CDC) seems to be the logical next step. This work presents a configurable CDC designed for capacitive MEMS sensors. The sensor is built with a bridge of MEMS, where some of them function with pressure. Then, the capacitive to digital conversion is realized using two steps. First, a switched-capacitor (SC) preamplifier is used to make the capacitive to voltage (C-V) conversion. Second, a self-oscillated noise-shaping integrating dual-slope (DS) converter is used to digitize this magnitude. The proposed converter uses time instead of amplitude resolution to generate a multibit digital output stream. In addition it performs noise shaping of the quantization error to reduce measurement time. This article shows the effectiveness of this method by measurements performed on a prototype, designed and fabricated using standard 0.13 µm CMOS technology. Experimental measurements show that the CDC achieves a resolution of 17 bits, with an effective area of 0.317 mm2, which means a pressure resolution of 1 Pa, while consuming 146 µA from a 1.5 V power supply. PMID:28590425
NASA Technical Reports Server (NTRS)
Neudeck, P.; Kang, S.; Petit, J.; Tabib-Azar, M.
1994-01-01
Dry-oxidized n-type 6H-SiC metal-oxide-semiconductor capacitors are investigated using quasistatic capacitance versus voltage (C-V), high-frequency C-V, and pulsed high-frequency capacitance transient (C-t) analysis over the temperature range from 297 to 573 K. The quasistatic C - V characteristics presented are the first reported for 6H-SiC MOS capacitors, and exhibit startling nonidealities due to nonequilibrium conditions that arise from the fact that the recombination/generation process in 6H-SiC is extraordinarily slow even at the highest measurement temperature employed. The high-frequency dark C-V characteristics all showed deep depletion with no observable hysteresis. The recovery of the high-frequency capacitance from deep depletion to inversion was used to characterize the minority-carrier generation process as a function of temperature. Zerbst analysis conducted on the resulting C-t transients, which were longer than 1000 s at 573 K, showed a generation lifetime thermal activation energy of 0.49 eV.
NASA Astrophysics Data System (ADS)
Scholkmann, F.; Milián-Sánchez, V.; Mocholí-Salcedo, A.; Milián, C.; Kolombet, V. A.; Verdú, G.
2017-03-01
Recently we reported (Milián-Sánchez V. et al., Nucl. Instrum. Methods A, 828 (2016) 210) our experimental results involving 226Ra decay rate and capacitance measurements inside a modified Faraday cage. Our measurements exhibited anomalous effects of unknown origin. In this letter we report new results regarding our investigation into the origins of the observed effects. We report preliminary findings of a correlation analysis between the radioactive decay rates and capacitance time series and space weather related variables (geomagnetic field disturbances and cosmic-ray neutron counts). A significant correlation was observed for specific data sets. The results are presented and possible implications for future work discussed.
High-Speed, capacitance-based tip clearance sensing
NASA Astrophysics Data System (ADS)
Haase, W. C.; Haase, Z. S.
This paper discusses recent advances in tip clearance measurement systems for turbine engines using capacitive probes. Real time measurements of individual blade pulses are generated using wideband signal processing providing 3 dB bandwidths of typically 5 MHz. Subsequent mixed-signal processing circuitry provide real-time measurements of maximum, minimum, and average clearance with latencies of one blade-to-blade time interval. Both guarded and unguarded probe configurations are possible with the system. Calibration techniques provide high accuracy measurements.
Zhang, Song; Ding, Jingjing; Liu, Ying; Kong, Jilie; Hofstetter, Oliver
2006-11-01
This work describes a highly enantioselective and sensitive immunosensor for the detection of chiral amino acids based on capacitive measurement. The sensor was prepared by first binding mercaptoacetic acid to the surface of a gold electrode, followed by modification with tyramine utilizing carbodiimide activation. The hapten 4-amino-D-phenylalanine was then covalently immobilized onto the electrode by diazotization. Stereoselective binding of an anti-D-amino acid antibody to the hapten-modified sensor surface resulted in capacitance changes that were detected with high sensitivity by a potentiostatic step method. Using capacitance measurement, detection limits of 5 pg of antibody/mL were attained. The exquisite stereoselectivity of the antibody was also utilized in a competitive setup to quantitatively determine the concentration of the analyte d-phenylalanine in nonracemic samples containing both enantiomers of this amino acid. Trace impurities of d-phenylalanine as low as 0.001% could be detected.
A parallel input composite transimpedance amplifier.
Kim, D J; Kim, C
2018-01-01
A new approach to high performance current to voltage preamplifier design is presented. The design using multiple operational amplifiers (op-amps) has a parasitic capacitance compensation network and a composite amplifier topology for fast, precision, and low noise performance. The input stage consisting of a parallel linked JFET op-amps and a high-speed bipolar junction transistor (BJT) gain stage driving the output in the composite amplifier topology, cooperating with the capacitance compensation feedback network, ensures wide bandwidth stability in the presence of input capacitance above 40 nF. The design is ideal for any two-probe measurement, including high impedance transport and scanning tunneling microscopy measurements.
A parallel input composite transimpedance amplifier
NASA Astrophysics Data System (ADS)
Kim, D. J.; Kim, C.
2018-01-01
A new approach to high performance current to voltage preamplifier design is presented. The design using multiple operational amplifiers (op-amps) has a parasitic capacitance compensation network and a composite amplifier topology for fast, precision, and low noise performance. The input stage consisting of a parallel linked JFET op-amps and a high-speed bipolar junction transistor (BJT) gain stage driving the output in the composite amplifier topology, cooperating with the capacitance compensation feedback network, ensures wide bandwidth stability in the presence of input capacitance above 40 nF. The design is ideal for any two-probe measurement, including high impedance transport and scanning tunneling microscopy measurements.
Combined electrical transport and capacitance spectroscopy of a MoS2-LiNbO3 field effect transistor
NASA Astrophysics Data System (ADS)
Michailow, Wladislaw; Schülein, Florian J. R.; Möller, Benjamin; Preciado, Edwin; Nguyen, Ariana E.; von Son, Gretel; Mann, John; Hörner, Andreas L.; Wixforth, Achim; Bartels, Ludwig; Krenner, Hubert J.
2017-01-01
We have measured both the current-voltage ( ISD - VGS ) and capacitance-voltage (C- VGS ) characteristics of a MoS2-LiNbO3 field effect transistor. From the measured capacitance, we calculate the electron surface density and show that its gate voltage dependence follows the theoretical prediction resulting from the two-dimensional free electron model. This model allows us to fit the measured ISD - VGS characteristics over the entire range of VGS . Combining this experimental result with the measured current-voltage characteristics, we determine the field effect mobility as a function of gate voltage. We show that for our device, this improved combined approach yields significantly smaller values (more than a factor of 4) of the electron mobility than the conventional analysis of the current-voltage characteristics only.
Comparison of measurement methods for capacitive tactile sensors and their implementation
NASA Astrophysics Data System (ADS)
Tarapata, Grzegorz; Sienkiewicz, Rafał
2015-09-01
This paper presents a review of ideas and implementations of measurement methods utilized for capacity measurements in tactile sensors. The paper describes technical method, charge amplification method, generation and as well integration method. Three selected methods were implemented in dedicated measurement system and utilised for capacitance measurements of ourselves made tactile sensors. The tactile sensors tested in this work were fully fabricated with the inkjet printing technology. The tests result were presented and summarised. The charge amplification method (CDC) was selected as the best method for the measurement of the tactile sensors.
Quantum dots in single electron transistors with ultrathin silicon-on-insulator structures
NASA Astrophysics Data System (ADS)
Ihara, S.; Andreev, A.; Williams, D. A.; Kodera, T.; Oda, S.
2015-07-01
We report on fabrication and transport properties of lithographically defined single quantum dots (QDs) in single electron transistors with ultrathin silicon-on-insulator (SOI) substrate. We observed comparatively large charging energy E C ˜ 20 meV derived from the stability diagram at a temperature of 4.2 K. We also carried out three-dimensional calculations of the capacitance matrix and transport properties through the QD for the real structure geometry and found an excellent quantitative agreement with experiment of the calculated main parameters of stability diagram (charging energy, period of Coulomb oscillations, and asymmetry of the diamonds). The obtained results confirm fabrication of well-defined integrated QDs as designed with ultrathin SOI that makes it possible to achieve relatively large QD charging energies, which is useful for stable and high temperature operation of single electron devices.
Electrochemical and Capacitive Properties of Carbon Dots/Reduced Graphene Oxide Supercapacitors.
Dang, Yong-Qiang; Ren, Shao-Zhao; Liu, Guoyang; Cai, Jiangtao; Zhang, Yating; Qiu, Jieshan
2016-11-14
There is much recent interest in graphene-based composite electrode materials because of their excellent mechanical strengths, high electron mobilities, and large specific surface areas. These materials are good candidates for applications in supercapacitors. In this work, a new graphene-based electrode material for supercapacitors was fabricated by anchoring carbon dots (CDs) on reduced graphene oxide (rGO). The capacitive properties of electrodes in aqueous electrolytes were systematically studied by galvanostatic charge-discharge measurements, cyclic voltammetry, and electrochemical impedance spectroscopy. The capacitance of rGO was improved when an appropriate amount of CDs were added to the material. The CD/rGO electrode exhibited a good reversibility, excellent rate capability, fast charge transfer, and high specific capacitance in 1 M H₂SO₄. Its capacitance was as high as 211.9 F/g at a current density of 0.5 A/g. This capacitance was 74.3% higher than that of a pristine rGO electrode (121.6 F/g), and the capacitance of the CD/rGO electrode retained 92.8% of its original value after 1000 cycles at a CDs-to-rGO ratio of 5:1.
Capacitive Sensors for Measuring Masses of Cryogenic Fluids
NASA Technical Reports Server (NTRS)
Nurge, Mark; Youngquist, Robert
2003-01-01
An effort is under way to develop capacitive sensors for measuring the masses of cryogenic fluids in tanks. These sensors are intended to function in both microgravitational and normal gravitational settings, and should not be confused with level sensors, including capacitive ones. A sensor of this type is conceptually simple in the sense that (1) it includes only one capacitor and (2) if properly designed, its single capacitance reading should be readily convertible to a close approximation of the mass of the cryogenic fluid in the tank. Consider a pair of electrically insulated electrodes used as a simple capacitive sensor. In general, the capacitance is proportional to the permittivity of the dielectric medium (in this case, a cryogenic fluid) between the electrodes. The success of design and operation of a sensor of the present type depends on the accuracy of the assumption that to a close approximation, the permittivity of the cryogenic fluid varies linearly with the density of the fluid. Data on liquid nitrogen, liquid oxygen, and liquid hydrogen, reported by the National Institute of Standards and Technology, indicate that the permittivities and densities of these fluids are, indeed, linearly related to within a few tenths of a percent over the pressure and temperature regions of interest. Hence, ignoring geometric effects for the moment, the capacitance between two electrodes immersed in the fluid should vary linearly with the density, and, hence, with the mass of the fluid. Of course, it is necessary to take account of the tank geometry. Because most cryogenic tanks do not have uniform cross sections, the readings of level sensors, including capacitive ones, are not linearly correlated with the masses of fluids in the tanks. In a sensor of the present type, the capacitor electrodes are shaped so that at a given height, the capacitance per unit height is approximately proportional to the cross-sectional area of the tank in the horizontal plane at that height (see figure).
NASA Astrophysics Data System (ADS)
Kumar, S.; Gerhardt, R. A.
2012-03-01
The effects of film thickness, electrode size and substrate thickness on the impedance parameters of alternating frequency dielectric measurements of insulating thin films deposited on conductive substrates were studied through parametric finite-element simulations. The quasi-static forms of Maxwell's electromagnetic equations in a time harmonic mode were solved using COMSOL Multiphysics® for several types of 2D models (linear and axisymmetric). The full 2D model deals with a configuration in which the impedance is measured between two surface electrodes on top of a film deposited on a conductive substrate. For the simplified 2D models, the conductive substrate is ignored and the two electrodes are placed on the top and bottom of the film. By comparing the full model and the simplified models, approximations and generalizations are deduced. For highly insulating films, such as the case of insulating SiO2 films on a conducting Si substrate, even the simplified models predict accurate capacitance values at all frequencies. However, the edge effects on the capacitance are found to be significant when the film thickness increases and/or the top electrode contact size decreases. The thickness of the substrate affects predominantly the resistive components of the dielectric response while having no significant effect on the capacitive components. Changing the electrode contact size or the film thickness determines the specific values of the measured resistance or capacitance while the material time constant remains the same, and thus this affects the frequency dependence that is able to be detected. This work highlights the importance of keeping in mind the film thickness and electrode contact size for the correct interpretation of the measured dielectric properties of micro/nanoscale structures that are often investigated using nanoscale capacitance measurements.
Biomedical applications of a commercial capacitance transducer.
DOT National Transportation Integrated Search
1968-03-01
A capacitive displacement transducer with a linear response and constant sensitivity for a frequency range of 0-1,000 Hz is described. Its application to measurement of chest wall motions was verified using static displacements from flat and curved s...
Criteria for the Choice of a Capacitive Device for Mechanical Measurements
NASA Technical Reports Server (NTRS)
Lucifredi, A. L.
1970-01-01
The advantages and disadvantages of different models of capacitive transducers and of various signal conditioning circuits are discussed with particular emphasis on the field of applications. A practical example of a design procedure is discussed.
NASA Astrophysics Data System (ADS)
Moraila-Martínez, Carmen Lucía; Guerrero-García, Guillermo Iván; Chávez-Páez, Martín; González-Tovar, Enrique
2018-04-01
The capacitive compactness has been introduced very recently [G. I. Guerrero-García et al., Phys. Chem. Chem. Phys. 20, 262-275 (2018)] as a robust and accurate measure to quantify the thickness, or spatial extension, of the electrical double layer next to either an infinite charged electrode or a spherical macroion. We propose here an experimental/theoretical scheme to determine the capacitive compactness of a spherical electrical double layer that relies on the calculation of the electrokinetic charge and the associated mean electrostatic potential at the macroparticle's surface. This is achieved by numerically solving the non-linear Poisson-Boltzmann equation of point ions around a colloidal sphere and matching the corresponding theoretical mobility, predicted by the O'Brien and White theory [J. Chem. Soc., Faraday Trans. 2 74, 1607-1626 (1978)], with experimental measurements of the electrophoretic mobility under the same conditions. This novel method is used to calculate the capacitive compactness of NaCl and CaCl2 electrolytes surrounding a negatively charged polystyrene particle as a function of the salt concentration.
Analysis of capacitive force acting on a cantilever tip at solid/liquid interfaces
NASA Astrophysics Data System (ADS)
Umeda, Ken-ichi; Kobayashi, Kei; Oyabu, Noriaki; Hirata, Yoshiki; Matsushige, Kazumi; Yamada, Hirofumi
2013-04-01
Dielectric properties of biomolecules or biomembranes are directly related to their structures and biological activities. Capacitance force microscopy based on the cantilever deflection detection is a useful scanning probe technique that can map local dielectric constant. Here we report measurements and analysis of the capacitive force acting on a cantilever tip at solid/liquid interfaces induced by application of an alternating voltage to explore the feasibility of the measurements of local dielectric constant by the voltage modulation technique in aqueous solutions. The results presented here suggest that the local dielectric constant measurements by the conventional voltage modulation technique are basically possible even in polar liquid media. However, the cantilever deflection is not only induced by the electrostatic force, but also by the surface stress, which does not include the local dielectric information. Moreover, since the voltage applied between the tip and sample are divided by the electric double layer and the bulk polar liquid, the capacitive force acting on the apex of the tip are strongly attenuated. For these reasons, the lateral resolution in the local dielectric constant measurements is expected to be deteriorated in polar liquid media depending on the magnitude of dielectric response. Finally, we present the criteria for local dielectric constant measurements with a high lateral resolution in polar liquid media.
Capacitance probe for fluid flow and volume measurements
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)
1995-01-01
Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a microgravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.
Capacitance Probe for Fluid Flow and Volume Measurements
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)
1997-01-01
Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a micro-gravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.
Design and electrical performance of CdS/Sb2Te3 tunneling heterojunction devices
NASA Astrophysics Data System (ADS)
Khusayfan, Najla M.; Qasrawi, A. F.; Khanfar, Hazem K.
2018-02-01
In the current work, a tunneling barrier device made of 20 nm thick Sb2Te3 layer deposited onto 500 nm thick CdS is designed and characterized. The design included a Yb metallic substrate and Ag point contact of area of 10-3 cm2. The heterojunction properties are investigated by means of x-ray diffraction and impedance spectroscopy techniques. It is observed that the coating of the Sb2Te3 onto the surface of CdS causes a further deformation to the already strained structure of hexagonal CdS. The designed energy band diagram for the CdS/Sb2Te3 suggests a straddling type of heterojunction with an estimated conduction and valence band offsets of 0.35 and 1.74 eV, respectively. In addition, the analysis of the capacitance-voltage characteristic curve revealed a depletion region width of 14 nm. On the other hand, the capacitance and conductivity spectra which are analyzed in the frequency domain of 0.001-1.80 GHz indicated that the conduction in the device is dominated by the quantum mechanical tunneling in the region below 0.26 GHz and by the correlated barrier hopping in the remaining region. While the modeling of the conductivity spectra allowed investigation of the density of states near Fermi levels and an average scattering time of 1.0 ns, the capacitance spectra exhibited resonance at 0.26 GHz followed by negative differential capacitance effect in the frequency domain of 0.26-1.8 GHz. Furthermore, the evaluation of the impedance and reflection coefficient spectra indicated the usability of these devices as wide range low pass filters with ideal values of voltage standing wave ratios.
Leptin Improves Sperm Cryopreservation via Antioxidant Defense
Fontoura, Paula; Mello, Mariana Duque; Gallo-Sá, Paulo; Erthal-Martins, Maria Cecília; Cardoso, Maria Cecília Almeida; Ramos, Cristiane
2017-01-01
Background: Leptin and its receptor are present in spermatozoa; however, the role of leptin in sperm function is still controversial. Our present study aimed at demonstrating the effect of cryopreservation on sperm DNA fragmentation (DNAf) and investigating the possible effects of sperm capacitation techniques and leptin in vitro incubation on frozen-thawed sperm DNAf and oxidative stress. Methods: Samples of 45 normospermic men attending for infertility investigation at Vida Centro de Fertilidade, Rio de Janeiro, Brazil, were frozen and thawed with or without capacitation and leptin incubation prior to freezing. Sperm DNA fragmentation was evaluated by Sperm Chromatin Dispersion Assay before and after cryopreservation and oxidative stress parameters were measured by spectrophotometry with and without leptin incubation. Statistical analysis was performed using paired t test to compare DNAf between groups before and after freeze-thaw cycle, to compare groups before and after capacitation and leptin incubation and oxidative measurements before and after leptin incubation. Statistical significance was considered when p≤0.05. Results: Our results revealed a significant post-thaw rise in sperm DNAf compared with fresh samples (p=0.0003). Sperm DNAf was significantly reduced when sperm capacitation was performed before freezing, when compared to those frozen with no previous capacitation (p=0.01). The addition of leptin to capacitated sperm before freezing reduced DNAf (p<0.0001) and enhanced superoxide dismutase (p=0.001) and glutathione peroxidase (p=0.02) antioxidant enzymes activity. Conclusion: The addition of leptin to capacitated sperm can improve sperm DNA quality following cryopreservation, possibly by inducing the activity of certain antioxidant enzymes. PMID:28377896
The capacitive proximity sensor based on transients in RC-circuits
NASA Astrophysics Data System (ADS)
Yakunin, A. G.
2018-05-01
The principle of operation of the capacitive proximity sensor is described. It can be used in various robotic complexes, automation systems and alarm devices to inform the control device of the approach to the sensor sensitive surface of an object. At the heart of the device is the measurement of the change in the current of the transient accompanying the charge of the reference capacitor because of the parallel connection to it the capacitance formed by the sensitive sensor surface and the external object. At the heart of the device is the measurement of the change in the current of the transient accompanying the charge of the reference capacitor caused by the parallel connection to it the capacitance formed by the sensitive sensor surface and the external object. As shown by theoretical and experimental studies, the value of this capacity, depending on the purpose of the device, can vary within very wide limits. In this case, the sensitive surface can be both a piece of ordinary wire several centimeters long, and a metall plate or grid, the area of which can reach units and even tens of square meters. The main advantage of the proposed solution is a significant reduction in the effect of spurious leakage currents arising at the capacitance of the measuring electrode under the influence of pollution and humidity of the environment.
Tan, Mingsheng; Stone, Douglas R; Triana, Joseph C; Almagri, Abdulgader F; Fiksel, Gennady; Ding, Weixing; Sarff, John S; McCollam, Karsten J; Li, Hong; Liu, Wandong
2017-02-01
A 40-channel capacitive probe has been developed to measure the electrostatic fluctuations associated with the tearing modes deep into Madison Symmetric Torus (MST) reversed field pinch plasma. The capacitive probe measures the ac component of the plasma potential via the voltage induced on stainless steel electrodes capacitively coupled with the plasma through a thin annular layer of boron nitride (BN) dielectric (also serves as the particle shield). When bombarded by the plasma electrons, BN provides a sufficiently large secondary electron emission for the induced voltage to be very close to the plasma potential. The probe consists of four stalks each with ten cylindrical capacitors that are radially separated by 1.5 cm. The four stalks are arranged on a 1.3 cm square grid so that at each radial position, there are four electrodes forming a square grid. Every two adjacent radial sets of four electrodes form a cube. The fluctuating electric field can be calculated by the gradient of the plasma potential fluctuations at the eight corners of the cube. The probe can be inserted up to 15 cm (r/a = 0.7) into the plasma. The capacitive probe has a frequency bandwidth from 13 Hz to 100 kHz, amplifier-circuit limit, sufficient for studying the tearing modes (5-30 kHz) in the MST reversed-field pinch.
Smart measurement system for resistive (bridge) or capacitive sensors
NASA Astrophysics Data System (ADS)
Wang, Guijie; Meijer, Gerard C. M.
1998-07-01
A low-cost smart measurement system for resistive (bridge) and capacitive sensors is presented and demonstrated. The measurement system consists of three main parts: the sensor element, a universal transducer interface (UTI) and a microcontroller. The UTI is a sensor-signal-to-time converter, based on a period-modulated oscillator, which is equipped with front-ends for many types of resistive (bridge) and capacitive sensors, and which generates a microcontroller-compatible output signal. The microcontroller performs data acquisition of the output signals from the interface UTI, controls the working status of the UTI for a specified application and communicates with a personal computer. Continuous auto-calibration of the offset and the gain of the complete system is applied to eliminate many nonidealities. Experimental results show that the accuracy and resolution are 14 bits and 16 bits, respectively, for a measurement time of about 100 ms.
Bozym, David J; Uralcan, Betül; Limmer, David T; Pope, Michael A; Szamreta, Nicholas J; Debenedetti, Pablo G; Aksay, Ilhan A
2015-07-02
We use electrochemical impedance spectroscopy to measure the effect of diluting a hydrophobic room temperature ionic liquid with miscible organic solvents on the differential capacitance of the glassy carbon-electrolyte interface. We show that the minimum differential capacitance increases with dilution and reaches a maximum value at ionic liquid contents near 5-10 mol% (i.e., ∼1 M). We provide evidence that mixtures with 1,2-dichloroethane, a low-dielectric constant solvent, yield the largest gains in capacitance near the open circuit potential when compared against two traditional solvents, acetonitrile and propylene carbonate. To provide a fundamental basis for these observations, we use a coarse-grained model to relate structural variations at the double layer to the occurrence of the maximum. Our results reveal the potential for the enhancement of double-layer capacitance through dilution.
Electrical characteristics of pentacene-based Schottky diodes
NASA Astrophysics Data System (ADS)
Lee, Y. S.; Park, J. H.; Choi, J. S.
2003-01-01
The current-voltage ( I-V), capacitance-frequency ( C-f), and capacitance-voltage ( C-V) characteristics of organic diodes with a pentacene/aluminum Sckottky contact have been investigated. From the measured diode capacitances, it is revealed that the frequency-dependent properties are related to the localized traps in the band gap of pentacene. The C-V characteristics for different test frequencies are presented. In the low frequency region, the capacitance is nearly constant with reverse bias and increase with the forward bias. With even higher forward bias, the capacitance gradually decreases, which is due to the detrapping of the trapped charges. The intrinsic charge carrier concentration in pentacene was extracted as 3.1×10 17 cm -3 from the C-V characteristics. The C-V properties of the pentacene-based metal-oxide-semiconductor structure have also studied.
Electrically Variable or Programmable Nonvolatile Capacitors
NASA Technical Reports Server (NTRS)
Shangqing, Liu; NaiJuan, Wu; Ignatieu, Alex; Jianren, Li
2009-01-01
Electrically variable or programmable capacitors based on the unique properties of thin perovskite films are undergoing development. These capacitors show promise of overcoming two important deficiencies of prior electrically programmable capacitors: Unlike in the case of varactors, it is not necessary to supply power continuously to make these capacitors retain their capacitance values. Hence, these capacitors may prove useful as components of nonvolatile analog and digital electronic memories. Unlike in the case of ferroelectric capacitors, it is possible to measure the capacitance values of these capacitors without changing the values. In other words, whereas readout of ferroelectric capacitors is destructive, readout of these capacitors can be nondestructive. A capacitor of this type is a simple two terminal device. It includes a thin film of a suitable perovskite as the dielectric layer, sandwiched between two metal or metal oxide electrodes (for example, see Figure 1). The utility of this device as a variable capacitor is based on a phenomenon, known as electrical-pulse-induced capacitance (EPIC), that is observed in thin perovskite films and especially in those thin perovskite films that exhibit the colossal magnetoresistive (CMR) effect. In EPIC, the application of one or more electrical pulses that exceed a threshold magnitude (typically somewhat less than 1 V) gives rise to a nonvolatile change in capacitance. The change in capacitance depends on the magnitude duration, polarity, and number of pulses. It is not necessary to apply a magnetic field or to cool the device below (or heat it above) room temperature to obtain EPIC. Examples of suitable CMR perovskites include Pr(1-x)Ca(x)MnO3, La(1-x)S-r(x)MnO3,and Nb(1-x)Ca(x)MnO3. Figure 2 is a block diagram showing an EPIC capacitor connected to a circuit that can vary the capacitance, measure the capacitance, and/or measure the resistance of the capacitor.
NASA Astrophysics Data System (ADS)
Neis, Patrick; Smit, Herman G. J.; Rohs, Susanne; Rolf, Christian; Krämer, Martina; Ebert, Volker; Buchholz, Bernhard; Bundke, Ulrich; Finger, Fanny; Klingebiel, Marcus; Petzold, Andreas
2015-04-01
Water vapour is a major parameter in weather prediction and climate research but the interaction between the water vapour in the upper troposphere and lowermost stratosphere (UT/LS) and tropopause dynamics are not well understood. A continuous measurement of upper tropospheric humidity (UTH) is difficult because the abundance of UTH is highly variable on spatial and temporal scales that cannot be resolved, neither by the global radiosondes network nor by satellites. Since 1994, data with high spatial and temporal resolution for relative humidity are provided by the in-situ measurements aboard civil passenger aircraft from the MOZAIC/IAGOS-programme (www.iagos.org). The data set emerging from this long-term observation effort builds the backbone of the ongoing in-situ UTH climatology and trend analyses. In order to assess the validity of the long-term water vapour data and its limitations, an analysis of the humidity data sets of two field campaigns is presented. The validation of applied measurement methods, i.e. the MOZAIC/IAGOS Capacitive Hygrometer, is valued on the basis of the aircraft campaigns CIRRUS-III (2006) and AIRTOSS-ICE (2013), where research-grade water vapour instruments were operated simultaneously to the MOZAIC/IAGOS Capacitive Hygrometers. The performance of the MOZAIC Capacitive Hygrometer (MCH; operated from 1994 to 2014 on MOZAIC aircraft) and the advanced IAGOS Capacitive Hygrometer (ICH; operated since 2011 on IAGOS aircraft) are explored in clear sky, in the vicinity of and inside cirrus clouds as a blind intercomparison to the research-grade water vapour instruments. From these intercomparisons the qualification of the Capacitive Hygrometer for the use in long-term observation programmes is successfully demonstrated and the continuation of high data quality is confirmed for the transition from MCH to ICH. In particular the Capacitive Hygrometer response time to changes in relative humidity could be determined for the full range of temperatures in the comparison against the research-grade instruments.
Erfani, Reza; Marefat, Fatemeh; Sodagar, Amir M; Mohseni, Pedram
2018-05-01
This paper reports on the modeling and characterization of capacitive elements with tissue as the dielectric material, representing the core building block of a capacitive link for wireless power transfer to neural implants. Each capacitive element consists of two parallel plates that are aligned around the tissue layer and incorporate a grounded, guarded, capacitive pad to mitigate the adverse effect of stray capacitances and shield the plates from external interfering electric fields. The plates are also coated with a biocompatible, insulating, coating layer on the inner side of each plate in contact with the tissue. A comprehensive circuit model is presented that accounts for the effect of the coating layers and is validated by measurements of the equivalent capacitance as well as impedance magnitude/phase of the parallel plates over a wide frequency range of 1 kHz-10 MHz. Using insulating coating layers of Parylene-C at a thickness of and Parylene-N at a thickness of deposited on two sets of parallel plates with different sizes and shapes of the guarded pad, our modeling and characterization results accurately capture the effect of the thickness and electrical properties of the coating layers on the behavior of the capacitive elements over frequency and with different tissues.
NASA Astrophysics Data System (ADS)
Xie, Edwar; Deppe, Frank; Renger, Michael; Repp, Daniel; Eder, Peter; Fischer, Michael; Goetz, Jan; Pogorzalek, Stefan; Fedorov, Kirill G.; Marx, Achim; Gross, Rudolf
2018-05-01
Superconducting 3D microwave cavities offer state-of-the-art coherence times and a well-controlled environment for superconducting qubits. In order to realize at the same time fast readout and long-lived quantum information storage, one can couple the qubit to both a low-quality readout and a high-quality storage cavity. However, such systems are bulky compared to their less coherent 2D counterparts. A more compact and scalable approach is achieved by making use of the multimode structure of a 3D cavity. In our work, we investigate such a device where a transmon qubit is capacitively coupled to two modes of a single 3D cavity. External coupling is engineered so that the memory mode has an about 100 times larger quality factor than the readout mode. Using an all-microwave second-order protocol, we realize a lifetime enhancement of the stored state over the qubit lifetime by a factor of 6 with a fidelity of approximately 80% determined via quantum process tomography. We also find that this enhancement is not limited by fundamental constraints.
Carbon-polyaniline nanocomposites as supercapacitor materials
NASA Astrophysics Data System (ADS)
Sathish Kumar, M.; Yamini Yasoda, K.; Batabyal, Sudip Kumar; Kothurkar, Nikhil K.
2018-04-01
Polyaniline-based nanocomposites containing carbon nanotubes (CNT), reduced graphene oxide (rGO) and mixture of CNTs and rGO were synthesized. UV-visible spectroscopy and FT-IR spectroscopy confirmed the presence of polyaniline (PANi) and carbon nanomaterials. Scanning electron microscopy revealed that the neat PANi had a granular morphology, which can lead to increased electrical resistance to high interfacial resistance between domains of PANi. Cyclic voltammetry of PANi, PANi/CNT, PANi/rGO and PANi/CNT/rGO showed that in general, specific capacitance reduces with increasing scan rate within the range (10–100 mV s‑1). Also the specific capacitance values at any given scan rate within the above range, for PANi, PANi/CNT, PANi/rGO and PANi/CNT/rGO were found to be in increasing order. The specific capacitance of the PANi/CNT/rGO nanocomposite as measured by galvanostatic charge-discharge measurements, was found to be 312.5 F g‑1. The introduction of the carbon nanomaterials (CNTs, rGO) in PANi in general leads to improved specific capacitance, while the addition of CNTs and rGO together leads to synergistic improvement in the specific capacitance, owing to a combination of factors.
Noise characteristics analysis of short wave infrared InGaAs focal plane arrays
NASA Astrophysics Data System (ADS)
Yu, Chunlei; Li, Xue; Yang, Bo; Huang, Songlei; Shao, Xiumei; Zhang, Yaguang; Gong, Haimei
2017-09-01
The increasing application of InGaAs short wave infrared (SWIR) focal plane arrays (FPAs) in low light level imaging requires ultra-low noise FPAs. This paper presents the theoretical analysis of FPA noise, and point out that both dark current and detector capacitance strongly affect the FPA noise. The impact of dark current and detector capacitance on FPA noise is compared in different situations. In order to obtain low noise performance FPAs, the demand for reducing detector capacitance is higher especially when pixel pitch is smaller, integration time is shorter, and integration capacitance is larger. Several InGaAs FPAs were measured and analyzed, the experiments' results could be well fitted to the calculated results. The study found that the major contributor of FPA noise is coupled noise with shorter integration time. The influence of detector capacitance on FPA noise is more significant than that of dark current. To investigate the effect of detector performance on FPA noise, two kinds of photodiodes with different concentration of the absorption layer were fabricated. The detectors' performance and noise characteristics were measured and analyzed, the results are consistent with that of theoretical analysis.
A microfabricated fringing field capacitive pH sensor with an integrated readout circuit
NASA Astrophysics Data System (ADS)
Arefin, Md Shamsul; Bulut Coskun, M.; Alan, Tuncay; Redoute, Jean-Michel; Neild, Adrian; Rasit Yuce, Mehmet
2014-06-01
This work presents a microfabricated fringe-field capacitive pH sensor using interdigitated electrodes and an integrated modulation-based readout circuit. The changes in capacitance of the sensor result from the permittivity changes due to pH variations and are converted to frequency shifts using a crossed-coupled voltage controlled oscillator readout circuit. The shift in resonant frequency of the readout circuit is 30.96 MHz for a change in pH of 1.0-5.0. The sensor can be used for the measurement of low pH levels, such as gastric acid, and can be integrated with electronic pills. The measurement results show high repeatability, low noise, and a stable output.
Anomalous change in dielectric constant of CaCu3Ti4O12 under violet-to-ultraviolet irradiation
NASA Astrophysics Data System (ADS)
Masingboon, C.; Eknapakul, T.; Suwanwong, S.; Buaphet, P.; Nakajima, H.; Mo, S.-K.; Thongbai, P.; King, P. D. C.; Maensiri, S.; Meevasana, W.
2013-05-01
The influence of light illumination on the dielectric constant of CaCu3Ti4O12 (CCTO) polycrystals is studied in this work. When exposed to 405-nm laser light, a reversible enhancement in the room temperature capacitance as high as 22% was observed, suggesting application of light-sensitive capacitance devices. To uncover the microscopic mechanisms mediating this change, we performed electronic structure measurements, using photoemission spectroscopy, and measured the electrical conductivity of the CCTO samples under different conditions of light exposure and oxygen partial pressure. Together, these results suggest that the large capacitance enhancement is driven by oxygen vacancies induced by the irradiation.
Gamma radiation in ceramic capacitors: a study for space missions
NASA Astrophysics Data System (ADS)
dos Santos Ferreira, Eduardo; Sarango Souza, Juliana
2017-10-01
We studied the real time effects of the gamma radiation in ceramic capacitors, in order to evaluate the effects of cosmic radiation on these devices. Space missions have electronic circuits with various types of devices, many studies have been done on semiconductor devices exposed to gamma radiation, but almost no studies for passive components, in particular ceramic capacitors. Commercially sold ceramic capacitors were exposed to gamma radiation, and the capacitance was measured before and after exposure. The results clearly show that the capacitance decreases with exposure to gamma radiation. We confirmed this observation in a real time capacitance measurement, obtained using a data logging system developed by us using the open source Arduino platform.
Electrically Small Folded Slot Antenna Utilizing Capacitive Loaded Slot Lines
NASA Technical Reports Server (NTRS)
Scardelletti, Maximilian C.; Ponchak, George E.; Merritt, Shane; Minor, John S.; Zorman, Christian A.
2007-01-01
This paper presents an electrically small, coplanar waveguide fed, folded slot antenna that uses capacitive loading. Several antennas are fabricated with and without capacitive loading to demonstrate the ability of this design approach to reduce the resonant frequency of the antenna, which is analogous to reducing the antenna size. The antennas are fabricated on Cu-clad Rogers Duriod(TM) 6006 with multilayer chip capacitors to load the antennas. Simulated and measured results show close agreement, thus, validating the approach. The electrically small antennas have a measured return loss greater than 15 dB and a gain of 5.4, 5.6, and 2.7 dBi at 4.3, 3.95, and 3.65 GHz, respectively.
High-Capacitance Hybrid Supercapacitor Based on Multi-Colored Fluorescent Carbon-Dots.
Genc, Rukan; Alas, Melis Ozge; Harputlu, Ersan; Repp, Sergej; Kremer, Nora; Castellano, Mike; Colak, Suleyman Gokhan; Ocakoglu, Kasim; Erdem, Emre
2017-09-11
Multi-colored, water soluble fluorescent carbon nanodots (C-Dots) with quantum yield changing from 4.6 to 18.3% were synthesized in multi-gram using dated cola beverage through a simple thermal synthesis method and implemented as conductive and ion donating supercapacitor component. Various properties of C-Dots, including size, crystal structure, morphology and surface properties along with their Raman and electron paramagnetic resonance spectra were analyzed and compared by means of their fluorescence and electronic properties. α-Manganese Oxide-Polypyrrole (PPy) nanorods decorated with C-Dots were further conducted as anode materials in a supercapacitor. Reduced graphene oxide was used as cathode along with the dicationic bis-imidazolium based ionic liquid in order to enhance the charge transfer and wetting capacity of electrode surfaces. For this purpose, we used octyl-bis(3-methylimidazolium)diiodide (C8H16BImI) synthesized by N-alkylation reaction as liquid ionic membrane electrolyte. Paramagnetic resonance and impedance spectroscopy have been undertaken in order to understand the origin of the performance of hybrid capacitor in more depth. In particular, we obtained high capacitance value (C = 17.3 μF/cm 2 ) which is exceptionally related not only the quality of synthesis but also the choice of electrode and electrolyte materials. Moreover, each component used in the construction of the hybrid supercapacitor is also played a key role to achieve high capacitance value.
USDA-ARS?s Scientific Manuscript database
Vera et al. (2009) compared estimates of soil profile water content (mm) to a depth of 0.8 m made with the neutron moisture meter (NMM) and a multi-depth capacitance probe (MDCP), using measurements replicated in four drainage lysimeters (5 m x 5 m x 1.5-m deep). The NMM estimates of water content w...
NASA Astrophysics Data System (ADS)
de Waal, V. J.
1983-02-01
The present investigation deals with the design, fabrication, and limitations of very sensitive SQUID (Superconducting Quantum Interference Device) magnetometers. The SQUID magnetometer is based on a utilization of the Josephson effect. A description of the theoretical background is provided, and high performance DC SQUIDs with submicron niobium Josephson junctions are discussed, taking into account design considerations, fabrication, junction characterization, the performance of the SQUID and input coil, and the gradiometer performance. The simulation and optimization of a DC SQUID with finite capacitance is considered, giving attention to the implementation of a simulation procedure on a hybrid computer.
Advances in Spectral Electrical Impedance Tomography (EIT) for Near-Surface Geophysical Exploration
NASA Astrophysics Data System (ADS)
Huisman, J. A.; Zimmermann, E.; Kelter, M.; Zhao, Y.; Bukhary, T. H.; Vereecken, H.
2016-12-01
Recent advances in spectral Electrical Impedance Tomography (EIT) now allow to obtain the complex electrical conductivity distribution in near-surface environments with a high accuracy for a broad range of frequencies (mHz - kHz). One of the key advances has been the development of correction methods to account for inductive coupling effects between wires used for current and potential measurements and capacitive coupling between cables and the subsurface environment. In this study, we first review these novel correction methods and then illustrate how the consideration of capacitive and inductive coupling improves spectral EIT results. For this, borehole EIT measurements were made in a shallow aquifer using a custom-made EIT system with two electrode chains each consisting of eight active electrodes with a separation of 1 m. The EIT measurements were inverted with and without consideration of inductive and capacitive coupling effects. The inversion results showed that spatially and spectrally consistent imaging results can only be obtained when inductive coupling effects are considered (phase accuracy of 1-2 mrad at 1 kHz). Capacitive coupling effects were found to be of secondary importance for the set-up used here, but its importance will increase when longer cables are used. Although these results are promising, the active electrode chains can only be used with our custom-made EIT system. Therefore, we also explored to what extent EIT measurements with passive electrode chains amenable to commercially available EIT measurement systems can be corrected for coupling effects. It was found that EIT measurements with passive unshielded cables could not be corrected above 100 Hz because of the strong but inaccurately known capacitive coupling between the electrical wires. However, it was possible to correct EIT measurements with passive shielded cables, and the final accuracy of the phase measurements was estimated to be 2-4 mrad at 1 kHz.
Oltedal, Leif; Hartveit, Espen
2010-05-01
Presynaptic transmitter release has mostly been studied through measurements of postsynaptic responses, but a few synapses offer direct access to the presynaptic terminal, thereby allowing capacitance measurements of exocytosis. For mammalian rod bipolar cells, synaptic transmission has been investigated in great detail by recording postsynaptic currents in AII amacrine cells. Presynaptic measurements of the dynamics of vesicular cycling have so far been limited to isolated rod bipolar cells in dissociated preparations. Here, we first used computer simulations of compartmental models of morphologically reconstructed rod bipolar cells to adapt the 'Sine + DC' technique for capacitance measurements of exocytosis at axon terminals of intact rod bipolar cells in retinal slices. In subsequent physiological recordings, voltage pulses that triggered presynaptic Ca(2+) influx evoked capacitance increases that were proportional to the pulse duration. With pulse durations 100 ms, the increase saturated at 10 fF, corresponding to the size of a readily releasable pool of vesicles. Pulse durations 400 ms evoked additional capacitance increases, probably reflecting recruitment from additional pools of vesicles. By using Ca(2+) tail current stimuli, we separated Ca(2+) influx from Ca(2+) channel activation kinetics, allowing us to estimate the intrinsic release kinetics of the readily releasable pool, yielding a time constant of 1.1 ms and a maximum release rate of 2-3 vesicles (release site)(1) ms(1). Following exocytosis, we observed endocytosis with time constants ranging from 0.7 to 17 s. Under physiological conditions, it is likely that release will be transient, with the kinetics limited by the activation kinetics of the voltage-gated Ca(2+) channels.
Park, Seongchong; Hong, Kee-Suk; Kim, Wan-Seop
2016-03-20
This work introduces a switched integration amplifier (SIA)-based photocurrent meter for femtoampere (fA)-level current measurement, which enables us to measure a 107 dynamic range of spectral responsivity of photometers even with a common lamp-based monochromatic light source. We described design considerations and practices about operational amplifiers (op-amps), switches, readout methods, etc., to compose a stable SIA of low offset current in terms of leakage current and gain peaking in detail. According to the design, we made six SIAs of different integration capacitance and different op-amps and evaluated their offset currents. They showed an offset current of (1.5-85) fA with a slow variation of (0.5-10) fA for an hour under opened input. Applying a detector to the SIA input, the offset current and its variation were increased and the SIA readout became noisier due to finite shunt resistance and nonzero shunt capacitance of the detector. One of the SIAs with 10 pF nominal capacitance was calibrated using a calibrated current source at the current level of 10 nA to 1 fA and at the integration time of 2 to 65,536 ms. As a result, we obtained a calibration formula for integration capacitance as a function of integration time rather than a single capacitance value because the SIA readout showed a distinct dependence on integration time at a given current level. Finally, we applied it to spectral responsivity measurement of a photometer. It is demonstrated that the home-made SIA of 10 pF was capable of measuring a 107 dynamic range of spectral responsivity of a photometer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovchavtsev, A. P., E-mail: kap@isp.nsc.ru; Tsarenko, A. V.; Guzev, A. A.
The influence of electron energy quantization in a space-charge region on the accumulation capacitance of the InAs-based metal-oxide-semiconductor capacitors (MOSCAPs) has been investigated by modeling and comparison with the experimental data from Au/anodic layer(4-20 nm)/n-InAs(111)A MOSCAPs. The accumulation capacitance for MOSCAPs has been calculated by the solution of Poisson equation with different assumptions and the self-consistent solution of Schrödinger and Poisson equations with quantization taken into account. It was shown that the quantization during the MOSCAPs accumulation capacitance calculations should be taken into consideration for the correct interface states density determination by Terman method and the evaluation of gate dielectric thicknessmore » from capacitance-voltage measurements.« less
MnO2-Based Electrochemical Supercapacitors on Flexible Carbon Substrates
NASA Astrophysics Data System (ADS)
Tadjer, Marko J.; Mastro, Michael A.; Rojo, José M.; Mojena, Alberto Boscá; Calle, Fernando; Kub, Francis J.; Eddy, Charles R.
2014-04-01
Manganese dioxide films were grown on large area flexible carbon aerogel substrates. Characterization by x-ray diffraction confirmed α-MnO2 growth. Three types of films were compared as a function of hexamethylenetetramine (HMTA) concentration during growth. The highest concentration of HM TA produced MnO2 flower-like films, as observed by scanning electron microscopy, whose thickness and surface coverage lead to both a higher specific capacitance and higher series resistance. Specific capacitance was measured to be 64 F/g using a galvanostatic setup, compared to the 47 F/g-specific capacitance of the carbon aerogel substrate. Such supercapacitor devices can be fabricated on large area sheets of carbon aerogel to achieve high total capacitance.
Generation of a pulsed low-energy electron beam using the channel spark device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgarhy, M. A. I., E-mail: elgarhy@azhar.edu.eg; Hassaballa, S. E.; Rashed, U. M.
2015-12-15
For the generation of low-energy electron beam, the design and characteristics of channel spark discharge (CSD) operating at a low voltage are presented in this paper. The discharge voltage, discharge current, X-ray emissions, and electron beam current were experimentally determined. The effects of the applied voltage, working gas pressure, and external capacitance on the CSD and beam parameters were measured. At an applied voltage of 11 kV, an oxygen gas pressure of 25 mTorr, and an external capacitance of 16.45 nF, the maximum measured current was 900 A. The discharge current increased with the increase in the pressure and capacitance,more » while its periodic time decreased with the increase in the pressure. Two types of the discharge were identified and recorded: the hollow cathode discharge and the conduction discharge. A Faraday cup was used to measure the beam current. The maximum measured beam current was 120 A, and the beam signal exhibited two peaks. The increase in both the external capacitance and the applied discharge voltage increased the maximum electron beam current. The electron-beam pulse time decreased with the increase in the gas pressure at a constant voltage and increased with the decrease in the applied discharge voltage. At an applied voltage of 11 kV and an oxygen gas pressure of 15 mTorr, the maximum beam energy was 2.8 keV. The X-ray signal intensity decreased with the increase in the gas pressure and increased with the increase in the capacitance.« less
Investigation and Modeling of Capacitive Human Body Communication.
Zhu, Xiao-Qi; Guo, Yong-Xin; Wu, Wen
2017-04-01
This paper presents a systematic investigation of the capacitive human body communication (HBC). The measurement of HBC channels is performed using a novel battery-powered system to eliminate the effects of baluns, cables and instruments. To verify the measured results, a numerical model incorporating the entire HBC system is established. Besides, it is demonstrated that both the impedance and path gain bandwidths of HBC channels is affected by the electrode configuration. Based on the analysis of the simulated electric field distribution, an equivalent circuit model is proposed and the circuit parameters are extracted using the finite element method. The transmission capability along the human body is also studied. The simulated results using the numerical and circuit models coincide very well with the measurement, which demonstrates that the proposed circuit model can effectively interpret the operation mechanism of the capacitive HBC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sermage, B.; Essa, Z.; Taleb, N.
2016-04-21
The electrochemical capacitance voltage technique has been used on highly boron doped SiGe and Si layers. Although the boron concentration is constant over the space charge depth, the 1/C{sup 2} versus voltage curves are not linear. They indeed present a negative curvature. This can be explained by the existence of deep acceptors which ionise under a high electric field (large inverse voltage) and not at a low inverse voltage. The measured doping concentration in the electrochemical capacitance voltage increases strongly as the inverse voltage increases. Thanks to a comparison with the boron concentration measured by secondary ions mass spectrometry, wemore » show that the relevant doping concentrations in device layers are obtained for small inverse voltage in agreement with the existence of deep acceptors. At the large inverse voltage, the measured doping can be more than twice larger than the boron concentration measured with a secondary ion mass spectroscopy.« less
Direct measurement of exciton dissociation energy in polymers
NASA Astrophysics Data System (ADS)
Toušek, J.; Toušková, J.; Chomutová, R.; Paruzel, B.; Pfleger, J.
2017-01-01
Exciton dissociation energy was obtained based on the comparison of thickness of the space charge region estimated from the measurement of capacitance of prepared Schottky diode and from the measurement of photovoltage spectra. While the capacitance measurements provide information about the total width of the space charge region (SCR) the surface photovoltaic effect brings information only about the part of the SCR where electric field is sufficiently high to cause dissociation. For determination of the dissociation energy it is sufficient to find the electric potential in the SCR where the process starts.
Kumar, Bharat; Crittenden, Scott R
2013-11-01
We demonstrate the ability to measure Stern potential and Debye length in dilute ionic solution with atomic force microscopy. We develop an analytic expression for the second harmonic force component of the capacitive force in an ionic solution from the linearized Poisson-Boltzmann equation. This allows us to calibrate the AFM tip potential and, further, obtain the Stern potential of sample surfaces. In addition, the measured capacitive force is independent of van der Waals and double layer forces, thus providing a more accurate measure of Debye length.
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.
1996-01-01
The flat-band voltage is the Schottky junction voltage required to shrink the depletion width to zero. At cryogenic temperatures, mixer diodes are generally biased and/or pumped beyond the flat-band condition to minimize conversion loss and noise figure. This occurs despite the presumed sharp increase in junction capacitance near flat-band, which should instead limit mixer performance. Past moderate forward bias, the diode C-V relationship is difficult to measure. A simple analytic expression for C(V) is usually used to model and predict mixer performance. This letter provides experimental data on C(V) at 77 K based on a microwave measurement and modeling technique. Data is also provided on the conversion loss of a singly balanced mixer optimized for 77 K operation. The connection between junction capacitance, flat-band potential, and conversion loss is examined. It is shown that the analytic expression greatly overestimates the junction capacitance that occurs as flat-band is approached.
Evaluation of excitation strategy with multi-plane electrical capacitance tomography sensor
NASA Astrophysics Data System (ADS)
Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Zhang, Jiaolong; Yang, Wuqiang
2016-11-01
Electrical capacitance tomography (ECT) is an imaging technique for measuring the permittivity change of materials. Using a multi-plane ECT sensor, three-dimensional (3D) distribution of permittivity may be represented. In this paper, three excitation strategies, including single-electrode excitation, dual-electrode excitation in the same plane, and dual-electrode excitation in different planes are investigated by numerical simulation and experiment for two three-plane ECT sensors with 12 electrodes in total. In one sensor, the electrodes on the middle plane are in line with the others. In the other sensor, they are rotated 45° with reference to the other two planes. A linear back projection algorithm is used to reconstruct the images and a correlation coefficient is used to evaluate the image quality. The capacitance data and sensitivity distribution with each measurement strategy and sensor model are analyzed. Based on simulation and experimental results using noise-free and noisy capacitance data, the performance of the three strategies is evaluated.
NASA Astrophysics Data System (ADS)
Baidillah, Marlin R.; Takei, Masahiro
2017-06-01
A nonlinear normalization model which is called exponential model for electrical capacitance tomography (ECT) with external electrodes under gap permittivity conditions has been developed. The exponential model normalization is proposed based on the inherently nonlinear relationship characteristic between the mixture permittivity and the measured capacitance due to the gap permittivity of inner wall. The parameters of exponential equation are derived by using an exponential fitting curve based on the simulation and a scaling function is added to adjust the experiment system condition. The exponential model normalization was applied to two dimensional low and high contrast dielectric distribution phantoms by using simulation and experimental studies. The proposed normalization model has been compared with other normalization models i.e. Parallel, Series, Maxwell and Böttcher models. Based on the comparison of image reconstruction results, the exponential model is reliable to predict the nonlinear normalization of measured capacitance in term of low and high contrast dielectric distribution.
The Chemical Capacitance as a Fingerprint of Defect Chemistry in Mixed Conducting Oxides.
Fleig, Juergen; Schmid, Alexander; Rupp, Ghislain M; Slouka, Christoph; Navickas, Edvinas; Andrejs, Lukas; Hutter, Herbert; Volgger, Lukas; Nenning, Andreas
2016-01-01
The oxygen stoichiometry of mixed conducting oxides depends on the oxygen chemical potential and thus on the oxygen partial pressure in the gas phase. Also voltages may change the local oxygen stoichiometry and the amount to which such changes take place is quantified by the chemical capacitance of the sample. Impedance spectroscopy can be used to probe this chemical capacitance. Impedance measurements on different oxides ((La,Sr)FeO3-δ = LSF, Sr(Ti,Fe)O3-δ = STF, and Pb(Zr,Ti)O3 = PZT) are presented, and demonstrate how the chemical capacitance may affect impedance spectra in different types of electrochemical cells. A quantitative analysis of the spectra is based on generalized equivalent circuits developed for mixed conducting oxides by J. Jamnik and J. Maier. It is discussed how defect chemical information can be deduced from the chemical capacitance.
Simulating quantum spin Hall effect in the topological Lieb lattice of a linear circuit network
NASA Astrophysics Data System (ADS)
Zhu, Weiwei; Hou, Shanshan; Long, Yang; Chen, Hong; Ren, Jie
2018-02-01
Inspired by the topological insulator circuit experimentally proposed by Jia Ningyuan et al. [Phys. Rev. X 5, 021031 (2015), 10.1103/PhysRevX.5.021031], we theoretically realize the topological Lieb lattice, a line-centered square lattice with rich topological properties, in a radio-frequency circuit. We design a specific capacitor-inductor connection to resemble the intrinsic spin-orbit coupling and construct the analog spin by mixing degrees of freedom of voltages. As such, we are able to simulate the quantum spin Hall effect in the topological Lieb lattice of linear circuits. We then investigate the spin-resolved topological edge mode and the topological phase transition of the band structure varied with capacitances. Finally, we discuss the extension of the π /2 phase change of hopping between sites to arbitrary phase values. Our results may find implications in engineering microwave topological metamaterials for signal transmission and energy harvesting.
SQUID amplifiers for axion search experiments
NASA Astrophysics Data System (ADS)
Matlashov, Andrei; Schmelz, Matthias; Zakosarenko, Vyacheslav; Stolz, Ronny; Semertzidis, Yannis K.
2018-04-01
In the experiments for dark-matter QCD-axion searches, very weak microwave signals from a low-temperature High-Q resonant cavity should be detected using the highest sensitivity. The best commercial low-noise cryogenic semiconductor amplifiers based on high electron mobility transistors have a lowest noise temperature above 1.0 K, even if they are cooled well below 1 K. Superconducting quantum interference devices can work as microwave amplifiers with temperature noise close to the standard quantum limit. Previous SQUID-based RF amplifiers designed for axion search experiments have a microstrip resonant input coil and are thus called micro-strip SQUID amplifiers or MSAs. Due to the resonant input coupling they usually have narrow bandwidth. In this paper we report on a SQUID-based wideband microwave amplifier fabricated using sub-micron size Josephson junctions with very low capacitance. A single amplifier can be used in a frequency range of approximately 1-5 GHz.
Chemical potential and compressibility of quantum Hall bilayer excitons,.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skinner, Brian
2016-02-25
I consider a system of two parallel quantum Hall layers with total filling factor 0 or 1. When the distance between the layers is small enough, electrons and holes in opposite layers can form inter-layer excitons, which have a finite effective mass and interact via a dipole-dipole potential. I present results for the chemical potential u of the resulting bosonic system as a function of the exciton concentration n and the interlayer separation d. I show that both u and the interlayer capacitance have an unusual nonmonotonic dependence on d, owing to the interplay between an increasing dipole moment andmore » an increasing effective mass with increasing d. Finally, I discuss the transition between the superfluid and Wigner crystal phases, which is shown to occur at d x n-1/10. Results are derived first via simple intuitive arguments, and then verified with more careful analytic derivations and numeric calculations.« less
NASA Astrophysics Data System (ADS)
Lin, Jianqiang; Kim, Tae-Woo; Antoniadis, Dimitri A.; del Alamo, Jesús A.
2012-06-01
We present a novel n-type InGaAs quantum-well metal-oxide-semiconductor field-effect transistor (QW-MOSFET) fabricated by a self-aligned gate-last process and investigate relevant Si-like manufacturing issues in future III-V MOSFETs. The device structure features a composite InP/Al2O3 gate barrier with a capacitance equivalent thickness (CET) of 3 nm and non alloyed Mo ohmic contacts. We have found that RIE introduces significant damage to the intrinsic device resulting in poor current drive and subthreshold swing. The effect is largely removed through a thermal annealing step. Thermally annealed QW-MOSFETs exhibit a subthreshold swing of 95 mV/dec, indicative of excellent interfacial characteristics. The peak mobility of the MOSFET is 2780 cm2 V-1 s-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bochkareva, N. I.; Rebane, Yu. T.; Shreter, Yu. G., E-mail: y.shreter@mail.ioffe.ru
It is shown that the efficiency droop observed as the current through a GaN-based light-emitting diode increases is due to a decrease in the Shockley–Read–Hall nonradiative lifetime. The lifetime decreases with increasing current because a steadily growing number of traps in the density-of-states tails of InGaN/GaN quantum wells become nonradiative recombination centers upon the approach of quasi-Fermi levels to the band edges. This follows from the correlation between the efficiency droop and the appearance of negative differential capacitance, observed in the study. The correlation appears due to slow trap recharging via the trap-assisted tunneling of electrons through the n-type barriermore » of the quantum well and to the inductive nature of the diode-current variation with forward bias.« less
Puncture detecting barrier materials
Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.
1998-03-31
A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.
Puncture detecting barrier materials
Hermes, Robert E.; Ramsey, David R.; Stampfer, Joseph F.; Macdonald, John M.
1998-01-01
A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material.
An experimental system for symmetric capacitive rf discharge studies
NASA Astrophysics Data System (ADS)
Godyak, V. A.; Piejak, R. B.; Alexandrovich, B. M.
1990-09-01
An experimental system has been designed and built to comprehensively study the electrical and plasma characteristics in symmetric capacitively coupled rf discharges at low gas pressures. Descriptions of the system concept, the discharge chamber, the vacuum-gas control system, and the rf matching and electrical measurement system are presented together with some results of electrical measurements carried out in an argon discharge at 13.56 MHz. The system has been specifically designed to facilitate external discharge parameter measurements and probe measurements and to be compatible with a wide variety of other diagnostics. External electrical measurements and probe measurements within the discharge show that it is an ideal vehicle to study low-pressure rf discharge physics. Measurements from this system should be comparable to one-dimensional rf symmetric capacitive discharge theories and may help to verify them. Although only a few results are given here, the system has been operated reliably over a wide range of gas pressures and should give reproducible and accurate results for discharge electrical characteristics and plasma parameters over a wide range of driving frequency and gas components.
Superlattice barrier varactors
NASA Technical Reports Server (NTRS)
Raman, C.; Sun, J. P.; Chen, W. L.; Munns, G.; East, J.; Haddad, G.
1992-01-01
SBV (Single Barrier Varactor) diodes have been proposed as alternatives to Schottky barrier diodes for harmonic multiplier applications. However, these show a higher current than expected. The excess current is due to X valley transport in the barrier. We present experimental results showing that the use of a superlattice barrier and doping spikes in the GaAs depletion regions on either side of the barrier can reduce the excess current and improve the control of the capacitance vs. voltage characteristic. The experimental results consist of data taken from two types of device structures. The first test structure was used to study the performance of AlAs/GaAs superlattice barriers. The wafer was fabricated into 90 micron diameter mesa diodes and the resulting current vs. voltage characteristics were measured. A 10 period superlattice structure with a total thickness of approximately 400 A worked well as an electron barrier. The structure had a current density of about one A/sq cm at one volt at room temperature. The capacitance variation of these structures was small because of the design of the GaAs cladding layers. The second test structure was used to study cladding layer designs. These wafers were InGaAs and InAlAs layers lattice matched to an InP substrate. The layers have n(+) doping spikes near the barrier to increase the zero bias capacitance and control the shape of the capacitance vs. voltage characteristic. These structures have a capacitance ratio of 5:1 and an abrupt change from maximum to minimum capacitance. The measurements were made at 80 K. Based on the information obtained from these two structures, we have designed a structure that combines the low current density barrier with the improved cladding layers. The capacitance and current-voltage characteristics from this structure are presented.
NASA Technical Reports Server (NTRS)
Wolf, Michael
2012-01-01
A document describes an algorithm created to estimate the mass placed on a sample verification sensor (SVS) designed for lunar or planetary robotic sample return missions. A novel SVS measures the capacitance between a rigid bottom plate and an elastic top membrane in seven locations. As additional sample material (soil and/or small rocks) is placed on the top membrane, the deformation of the membrane increases the capacitance. The mass estimation algorithm addresses both the calibration of each SVS channel, and also addresses how to combine the capacitances read from each of the seven channels into a single mass estimate. The probabilistic approach combines the channels according to the variance observed during the training phase, and provides not only the mass estimate, but also a value for the certainty of the estimate. SVS capacitance data is collected for known masses under a wide variety of possible loading scenarios, though in all cases, the distribution of sample within the canister is expected to be approximately uniform. A capacitance-vs-mass curve is fitted to this data, and is subsequently used to determine the mass estimate for the single channel s capacitance reading during the measurement phase. This results in seven different mass estimates, one for each SVS channel. Moreover, the variance of the calibration data is used to place a Gaussian probability distribution function (pdf) around this mass estimate. To blend these seven estimates, the seven pdfs are combined into a single Gaussian distribution function, providing the final mean and variance of the estimate. This blending technique essentially takes the final estimate as an average of the estimates of the seven channels, weighted by the inverse of the channel s variance.
Feasibility of novel four degrees of freedom capacitive force sensor for skin interface force
2012-01-01
Background The objective of our study was to develop a novel capacitive force sensor that enables simultaneous measurements of yaw torque around the pressure axis and normal force and shear forces at a single point for the purpose of elucidating pressure ulcer pathogenesis and establishing criteria for selection of cushions and mattresses. Methods Two newly developed sensors (approximately 10 mm×10 mm×5 mm (10) and 20 mm×20 mm×5 mm (20)) were constructed from silicone gel and four upper and lower electrodes. The upper and lower electrodes had sixteen combinations that had the function as capacitors of parallel plate type. The full scale (FS) ranges of force/torque were defined as 0–1.5 N, –0.5-0.5 N and −1.5-1.5 N mm (10) and 0–8.7 N, –2.9-2.9 N and −16.8-16.8 N mm (20) in normal force, shear forces and yaw torque, respectively. The capacitances of sixteen capacitors were measured by an LCR meter (AC1V, 100 kHz) when displacements corresponding to four degrees of freedom (DOF) forces within FS ranges were applied to the sensor. The measurement was repeated three times in each displacement condition (10 only). Force/torque were calculated by corrected capacitance and were evaluated by comparison to theoretical values and standard normal force measured by an universal tester. Results In measurements of capacitance, the coefficient of variation was 3.23% (10). The Maximum FS errors of estimated force/torque were less than or equal to 10.1 (10) and 16.4% (20), respectively. The standard normal forces were approximately 1.5 (10) and 9.4 N (20) when pressure displacements were 3 (10) and 2 mm (20), respectively. The estimated normal forces were approximately 1.5 (10) and 8.6 N (10) in the same condition. Conclusions In this study, we developed a new four DOF force sensor for measurement of force/torque that occur between the skin and a mattress. In measurement of capacitance, the repeatability was good and it was confirmed that the sensor had characteristics that enabled the correction by linear approximation for adjustment of gain and offset. In estimation of forces/torque, we considered accuracy to be within an acceptable range. PMID:23186069
Miniature electrometer preamplifier effectively compensates for input capacitance
NASA Technical Reports Server (NTRS)
Burrous, C. N.; Deboo, G. J.
1966-01-01
Negative capacitance preamplifier using a dual MOS /Metal Oxide Silicon/ transistor in conjunction with bipolar transistors is used with intracellular microelectrodes in recording bioelectric potentials. Applications would include use as a pickup plate video amplifier in storage tube tests and for pH and ionization chamber measurements.
Experimental study of a variable-capacitance micromotor with electrostatic suspension
NASA Astrophysics Data System (ADS)
Han, F. T.; Wu, Q. P.; Wang, L.
2010-11-01
A variable-capacitance micromotor where the rotor is supported electrostatically in five degrees of freedom was designed, fabricated and tested in order to study the behavior of this electrostatic motor. The micromachined device is based on a glass/silicon/glass stack bonding structure, fabricated by bulk micromachining and initially operated in atmospheric environment. The analytical torque model is obtained by calculating the capacitances between different stator electrodes and the rotor. Capacitance values in the order of 10-13 pF and torque values in the order of 10-10 N m have been calculated from the motor geometry and attainable drive voltage. A dynamic model of the motor is proposed by further estimating the air-film damping effect in an effort to explain the experimental rotation measurements. Experimental results of starting voltage, continuous operation, switching response and electric bearing of the micromotor are presented and discussed. Preliminary measurements indicate that a rotor rotating speed of 73.3 r min-1 can be achieved at a drive voltage of 28.3 V, equivalent to a theoretical motive torque of 517 pN m. Starting voltage results obtained from experimental measurement are in agreement with the developed dynamic model.
NASA Technical Reports Server (NTRS)
Barranger, John P.
1993-01-01
Higher operating temperatures required for increased engine efficiency can be achieved by using ceramic materials for engine components. Ceramic turbine rotors are subject to the same limitations with regard to gas path efficiency as their superalloy predecessors. In this study, a modified frequency-modulation system is proposed for the measurement of blade tip clearance on ceramic rotors. It is expected to operate up to 1370 C (2500 F), the working temperature of present engines with ceramic turbine rotors. The design of the system addresses two special problems associated with nonmetallic blades: the capacitance is less than that of a metal blade and the effects of temperature may introduce uncertainty with regard to the blade tip material composition. To increase capacitance and stabilize the measurement, a small portion of the rotor is modified by the application of 5-micron-thick platinum films. The platinum surfaces on the probe electrodes and rotor that are exposed to the high-velocity gas stream are coated with an additional 10-micron-thick protective ceramic topcoat. A finite-element method is applied to calculate the capacitance as a function of clearance.
Biochemical capacitance of Geobacter sulfurreducens biofilms.
Bueno, Paulo R; Schrott, Germán D; Bonanni, Pablo S; Simison, Silvia N; Busalmen, Juan P
2015-08-10
An electrical model able to decouple the electron pathway from microbial cell machinery impedance terms is introduced. In this context, capacitance characteristics of the biofilm are clearly resolved. In other words, the model allows separating, according to the advantage of frequency and spectroscopic response approach, the different terms controlling the performance of the microbial biofilm respiratory process and thus the directly related electricity production process. The model can be accurately fitted to voltammetry measurements obtained under steady-state conditions and also to biofilm discharge amperometric measurements. The implications of biological aspects of the electrochemical or redox capacitance are discussed theoretically in the context of current knowledge with regard to structure and physiological activity of microbial Geobacter biofilms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization of dielectric materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Danny J.; Babinec, Susan; Hagans, Patrick L.
2017-06-27
A system and a method for characterizing a dielectric material are provided. The system and method generally include applying an excitation signal to electrodes on opposing sides of the dielectric material to evaluate a property of the dielectric material. The method can further include measuring the capacitive impedance across the dielectric material, and determining a variation in the capacitive impedance with respect to either or both of a time domain and a frequency domain. The measured property can include pore size and surface imperfections. The method can still further include modifying a processing parameter as the dielectric material is formedmore » in response to the detected variations in the capacitive impedance, which can correspond to a non-uniformity in the dielectric material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masingboon, C.; Faculty of Science and Engineering, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000; Eknapakul, T.
2013-05-20
The influence of light illumination on the dielectric constant of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) polycrystals is studied in this work. When exposed to 405-nm laser light, a reversible enhancement in the room temperature capacitance as high as 22% was observed, suggesting application of light-sensitive capacitance devices. To uncover the microscopic mechanisms mediating this change, we performed electronic structure measurements, using photoemission spectroscopy, and measured the electrical conductivity of the CCTO samples under different conditions of light exposure and oxygen partial pressure. Together, these results suggest that the large capacitance enhancement is driven by oxygen vacancies induced by the irradiation.
Gokirmak, Ali; Inaltekin, Hazer; Tiwari, Sandip
2009-08-19
A high resolution capacitance-voltage (C-V) characterization technique, enabling direct measurement of electronic properties at the nanoscale in devices such as nanowire field effect transistors (FETs) through the use of random fluctuations, is described. The minimum noise level required for achieving sub-aF (10(-18) F) resolution, the leveraging of stochastic resonance, and the effect of higher levels of noise are illustrated through simulations. The non-linear DeltaC(gate-source/drain)-V(gate) response of FETs is utilized to determine the inversion layer capacitance (C(inv)) and carrier mobility. The technique is demonstrated by extracting the carrier concentration and effective electron mobility in a nanoscale Si FET with C(inv) = 60 aF.
NASA Astrophysics Data System (ADS)
Xu, Yongjie; Li, Xinyu; Hu, Guanghui; Wu, Ting; Luo, Yi; Sun, Lang; Tang, Tao; Wen, Jianfeng; Wang, Heng; Li, Ming
2017-11-01
Nitrogen-enriched graphene was fabricated via a facile strategy. Graphene oxide (GO) nanosheets and graphene oxide quantum dots (GQDs) were used as a structure-directing agent and in situ activating agent, respectively, after photoreduction under NH3 atmosphere. The combination of photoreduction and NH3 not only reduced GO and GQD composites (GO/GQDs) within a shorter duration but also doped a high level of nitrogen on the composites (NrGO/GQDs). The nitrogen content of NrGO/GQDs reached as high as 18.86 at% within 5 min of irradiation. Benefiting from the nitrogen-enriched GO/GQDs hybrid structure, GQDs effectively prevent the agglomeration of GO sheets and increased the numbers of ion channels in the material. Meanwhile, the high levels of nitrogen improved electrical conductivity and strengthened the binding energy between GQD and GO sheets. Compared with reduced GO and low nitrogen-doped reduced GO, NrGO/GQD electrodes exhibited better electrochemical characteristics with a high specific capacitance of 344 F g-1 at a current density of 0.25 A g-1. Moreover, the NrGO/GQD electrodes exhibited 82% capacitance retention after 3000 cycles at a current density of 0.8 A g-1 in 6 M KOH electrolyte. More importantly, the NrGO/GQD electrodes deliver a high energy density of 43 Wh kg-1 at a power density of 417 W kg-1 in 1 M Li2SO4 electrolyte. The nitrogen-doped graphene and corresponding supercapacitor presented in this study are novel materials with potential applications in advanced energy storage systems.
Rothe, C F; Maass-Moreno, R; Flanagan, A D
1990-09-01
Aortic chemoreceptor influences on vascular capacitance after changes in blood carbon dioxide and oxygen were studied in mongrel dogs anesthetized with methoxyflurane and nitrous oxide. The mean circulatory filling pressure (Pmcf), measured during transient cardiac fibrillation, provided a measure of capacitance vessel tone. Hypercapnia, hypoxia, and hypoxic hypercapnia significantly increased most variables, except that hypercapnia caused the total peripheral resistance (TPR) to decrease. Hypocapnia caused a significant decrease in mean systemic (Psa) and pulmonary (Ppa) arterial blood pressures, cardiac output (CO), and central blood volume and an increase in TPR and heart rate. The changes in Pmcf on changing blood gas tensions could be described by the equation delta Pmcf = -1.60 + 0.036 (arterial PCO2) + 50.8/arterial PO2. Thus a 10 mmHg increase in arterial PCO2 caused a 0.36 mmHg increase in Pmcf with receptors intact. Cold block (2 degrees C) of the cervical vagosympathetic trunks did not significantly influence the measured variables at control. During severe hypercapnia, vagal cooling caused a small but significant decrease in Pmcf, Psa, Ppa, and CO but not TPR. During hypoxia, vagal cooling caused the Pmcf, Psa, and TPR to decrease. We conclude that although hypercapnia or hypoxia acts reflexly to increase the capacitance vessel tone (an increase in Pmcf), the aortic and cardiopulmonary chemoreceptors with afferents in the vagi have only a small influence on the capacitance system, accounting for only approximately 25% of the total body response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Maolong; Ryals, Matthew; Ali, Amir
2016-08-01
A variety of instruments are being developed and qualified to support the Accident Tolerant Fuels (ATF) program and future transient irradiations at the Transient Reactor Test (TREAT) facility at Idaho National Laboratory (INL). The University of New Mexico (UNM) is working with INL to develop capacitance-based void sensors for determining the timing of critical boiling phenomena in static capsule fuel testing and the volume-averaged void fraction in flow-boiling in-pile water loop fuel testing. The static capsule sensor developed at INL is a plate-type configuration, while UNM is utilizing a ring-type capacitance sensor. Each sensor design has been theoretically and experimentallymore » investigated at INL and UNM. Experiments are being performed at INL in an autoclave to investigate the performance of these sensors under representative Pressurized Water Reactor (PWR) conditions in a static capsule. Experiments have been performed at UNM using air-water two-phase flow to determine the sensitivity and time response of the capacitance sensor under a flow boiling configuration. Initial measurements from the capacitance sensor have demonstrated the validity of the concept to enable real-time measurement of void fraction. The next steps include designing the cabling interface with the flow loop at UNM for Reactivity Initiated Accident (RIA) ATF testing at TREAT and further characterization of the measurement response for each sensor under varying conditions by experiments and modeling.« less
NASA Astrophysics Data System (ADS)
Uematsu, Yuki; Netz, Roland R.; Bonthuis, Douwe Jan
2018-02-01
Using a box profile approximation for the non-electrostatic surface adsorption potentials of anions and cations, we calculate the differential capacitance of aqueous electrolyte interfaces from a numerical solution of the Poisson-Boltzmann equation, including steric interactions between the ions and an inhomogeneous dielectric profile. Preferential adsorption of the positive (negative) ion shifts the minimum of the differential capacitance to positive (negative) surface potential values. The trends are similar for the potential of zero charge; however, the potential of zero charge does not correspond to the minimum of the differential capacitance in the case of asymmetric ion adsorption, contrary to the assumption commonly used to determine the potential of zero charge. Our model can be used to obtain more accurate estimates of ion adsorption properties from differential capacitance or electrocapillary measurements. Asymmetric ion adsorption also affects the relative heights of the characteristic maxima in the differential capacitance curves as a function of the surface potential, but even for strong adsorption potentials the effect is small, making it difficult to reliably determine the adsorption properties from the peak heights.
High resolution CMOS capacitance-frequency converter for biosensor applications
NASA Astrophysics Data System (ADS)
Ghoor, I. S.; Land, K.; Joubert, T.-H.
2016-02-01
This paper presents the design of a low-complexity, linear and sub-pF CMOS capacitance-frequency converter for reading out a capacitive bacterial bio/sensors with the endeavour of creating a universal bio/sensor readout module. Therefore the priority design objectives are a high resolution as well as an extensive dynamic range. The circuit is based on a method which outputs a digital frequency signal directly from a differential capacitance by the accumulation of charges produced by repetitive charge integration and charge preservation1. A prototype has been designed for manufacture in the 0.35 μm, 3.3V ams CMOS technology. At a 1MHz clock speed, the most pertinent results obtained for the designed converter are: (i) power consumption of 1.37mW; (ii) a resolution of at least 5 fF for sensitive capacitive transduction; and (iii) an input dynamic range of at least 43.5 dB from a measurable capacitance value range of 5 - 750 fF (iv) and a Pearson's coefficient of linearity of 0.99.
Cell-based capacitance sensor for analysis of EGFR expression on cell membrane
NASA Astrophysics Data System (ADS)
Shin, Dong-Myeong; Shin, Yong-Cheol; Ha, Ji Hye; Lee, Jong-Ho; Han, Dong-Wook; Kim, Jong-Man; Kim, Hyung Kook; Hwang, Yoon-Hwae
2013-02-01
Cancer cells have many kinds of cancer biomarkers. Among them, the epidermal growth factor (EGF) receptors can show a possibility for a cancer marker because the over-expression of EGF receptor is related with fibrous, colorectal, cervical and gastric tumorigenesis. We fabricated the capacitance sensor with a gap area of 50 μm × 200 μm by using photolithography and lift-off method. Using the capacitance sensor, we investigated the time dependent capacitance changes of different kinds of fibrous cells, such as HT1080 fibrosarcoma, L-929 fibroblast cell line and nHDF dermal fibroblast primary cell. We found that when we put the EGF, the capacitance decreased due to the immobilization of EGF to EGF receptor on the cell membrane. The quantitative determination of EGF receptor level for various fibrous cells was carried out and the results showed good correlation with conventional method. Based on our results, we suggest that the capacitance sensor can measure the expression level of the EGF receptor on cell membrane and be a good candidate as a cancer diagnosis.
Quantum Dynamics of a d-wave Josephson Junction
NASA Astrophysics Data System (ADS)
Bauch, Thilo
2007-03-01
Thilo Bauch ^1, Floriana Lombardi ^1, Tobias Lindstr"om ^2, Francesco Tafuri ^3, Giacomo Rotoli ^4, Per Delsing ^1, Tord Claeson ^1 1 Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, S-412 96 G"oteborg, Sweden. 2 National Physical Laboratory, Queens Road, Teddington, Middlesex TW11 0LW, UK. 3 Istituto Nazionale per la Fisica della Materia-Dipartimento Ingegneria dell'Informazione, Seconda Universita di Napoli, Aversa (CE), Italy. 4 Dipartimento di Ingegneria Meccanica, Energetica e Gestionale, Universita of L'Aquila, Localita Monteluco, L'Aquila, Italy. We present direct observation of macroscopic quantum properties in an all high critical temperature superconductor d-wave Josephson junction. Although dissipation caused by low energy excitations is expected to strongly suppress quantum effects we demonstrate macroscopic quantum tunneling [1] and energy level quantization [2] in our d-wave Josephson junction. The results clearly indicate that the role of dissipation mechanisms in high temperature superconductors has to be revised, and may also have consequences for a new class of solid state ``quiet'' quantum bit with superior coherence time. We show that the dynamics of the YBCO grain boundary Josephson junctions fabricated on a STO substrate are strongly affected by their environment. As a first approximation we model the environment by the stray capacitance and stray inductance of the junction electrodes. The total system consisting of the junction and stray elements has two degrees of freedom resulting in two characteristic resonance frequencies. Both frequencies have to be considered to describe the quantum mechanical behavior of the Josephson circuit. [1] T. Bauch et al, Phys. Rev. Lett. 94, 087003 (2005). [2] T. Bauch et al, Science 311, 57 (2006).
Mathematical calibration procedure of a capacitive sensor-based indexed metrology platform
NASA Astrophysics Data System (ADS)
Brau-Avila, A.; Santolaria, J.; Acero, R.; Valenzuela-Galvan, M.; Herrera-Jimenez, V. M.; Aguilar, J. J.
2017-03-01
The demand for faster and more reliable measuring tasks for the control and quality assurance of modern production systems has created new challenges for the field of coordinate metrology. Thus, the search for new solutions in coordinate metrology systems and the need for the development of existing ones still persists. One example of such a system is the portable coordinate measuring machine (PCMM), the use of which in industry has considerably increased in recent years, mostly due to its flexibility for accomplishing in-line measuring tasks as well as its reduced cost and operational advantages compared to traditional coordinate measuring machines. Nevertheless, PCMMs have a significant drawback derived from the techniques applied in the verification and optimization procedures of their kinematic parameters. These techniques are based on the capture of data with the measuring instrument from a calibrated gauge object, fixed successively in various positions so that most of the instrument measuring volume is covered, which results in time-consuming, tedious and expensive verification and optimization procedures. In this work the mathematical calibration procedure of a capacitive sensor-based indexed metrology platform (IMP) is presented. This calibration procedure is based on the readings and geometric features of six capacitive sensors and their targets with nanometer resolution. The final goal of the IMP calibration procedure is to optimize the geometric features of the capacitive sensors and their targets in order to use the optimized data in the verification procedures of PCMMs.
Cochems, P; Kirk, A; Zimmermann, S
2014-12-01
Parasitic elements play an important role in the development of every high performance circuit. In the case of high gain, high bandwidth transimpedance amplifiers, the most important parasitic elements are parasitic capacitances at the input and in the feedback path, which significantly influence the stability, the frequency response, and the noise of the amplifier. As these parasitic capacitances range from a few picofarads down to only a few femtofarads, it is nearly impossible to measure them accurately using traditional LCR meters. Unfortunately, they also cannot be easily determined from the transfer function of the transimpedance amplifier, as it contains several overlapping effects and its measurement is only possible when the circuit is already stable. Therefore, we developed an in-circuit measurement method utilizing minimal modifications to the input stage in order to measure its parasitic capacitances directly and with unconditional stability. Furthermore, using the data acquired with this measurement technique, we both proposed a model for the complicated frequency response of high value thick film resistors as they are used in high gain transimpedance amplifiers and optimized our transimpedance amplifier design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Bing-Ang; Li, Bin; Lin, Jie
This paper aims to understand the effect of nanoarchitecture on the performance of pseudocapacitive electrodes consisting of conducting scaffold coated with pseudocapacitive material. To do so, two-dimensional numerical simulations of ordered conducting nanorods coated with a thin film of pseudocapacitive material were performed. The simulations reproduced three-electrode cyclic voltammetry measurements based on a continuum model derived from first principles. Two empirical approaches commonly used experimentally to characterize the contributions of surface-controlled and diffusion-controlled charge storage mechanisms to the total current density with respect to scan rate were theoretically validated for the first time. Moreover, the areal capacitive capacitance, attributed tomore » EDL formation, remained constant and independent of electrode dimensions, at low scan rates. However, at high scan rates, it decreased with decreasing conducting nanorod radius and increasing pseudocapacitive layer thickness due to resistive losses. By contrast, the gravimetric faradaic capacitance, due to reversible faradaic reactions, decreased continuously with increasing scan rate and pseudocapacitive layer thickness but was independent of conducting nanorod radius. Note that the total gravimetric capacitance predicted numerically featured values comparable to experimental measurements. Finally, an optimum pseudocapacitive layer thickness that maximizes total areal capacitance was identified as a function of scan rate and confirmed by scaling analysis.« less
Mei, Bing-Ang; Li, Bin; Lin, Jie; ...
2017-10-27
This paper aims to understand the effect of nanoarchitecture on the performance of pseudocapacitive electrodes consisting of conducting scaffold coated with pseudocapacitive material. To do so, two-dimensional numerical simulations of ordered conducting nanorods coated with a thin film of pseudocapacitive material were performed. The simulations reproduced three-electrode cyclic voltammetry measurements based on a continuum model derived from first principles. Two empirical approaches commonly used experimentally to characterize the contributions of surface-controlled and diffusion-controlled charge storage mechanisms to the total current density with respect to scan rate were theoretically validated for the first time. Moreover, the areal capacitive capacitance, attributed tomore » EDL formation, remained constant and independent of electrode dimensions, at low scan rates. However, at high scan rates, it decreased with decreasing conducting nanorod radius and increasing pseudocapacitive layer thickness due to resistive losses. By contrast, the gravimetric faradaic capacitance, due to reversible faradaic reactions, decreased continuously with increasing scan rate and pseudocapacitive layer thickness but was independent of conducting nanorod radius. Note that the total gravimetric capacitance predicted numerically featured values comparable to experimental measurements. Finally, an optimum pseudocapacitive layer thickness that maximizes total areal capacitance was identified as a function of scan rate and confirmed by scaling analysis.« less
NASA Astrophysics Data System (ADS)
Hayati, Mohsen; Roshani, Sobhan; Zirak, Ali Reza
2017-05-01
In this paper, a class E power amplifier (PA) with operating frequency of 1 MHz is presented. MOSFET non-linear drain-to-source parasitic capacitance, linear external capacitance at drain-to-source port and linear shunt capacitance in the output structure are considered in design theory. One degree of freedom is added to the design of class E PA, by assuming the shunt capacitance in the output structure in the analysis. With this added design degree of freedom it is possible to achieve desired values for several parameters, such as output voltage, load resistance and operating frequency, while both zero voltage and zero derivative switching (ZVS and ZDS) conditions are satisfied. In the conventional class E PA, high value of peak switch voltage results in limitations for the design of amplifier, while in the presented structure desired specifications could be achieved with the safe margin of peak switch voltage. The results show that higher operating frequency and output voltage can also be achieved, compared to the conventional structure. PSpice software is used in order to simulate the designed circuit. The presented class E PA is designed, fabricated and measured. The measured results are in good agreement with simulation and theory results.
Spatial mapping and statistical reproducibility of an array of 256 one-dimensional quantum wires
NASA Astrophysics Data System (ADS)
Al-Taie, H.; Smith, L. W.; Lesage, A. A. J.; See, P.; Griffiths, J. P.; Beere, H. E.; Jones, G. A. C.; Ritchie, D. A.; Kelly, M. J.; Smith, C. G.
2015-08-01
We utilize a multiplexing architecture to measure the conductance properties of an array of 256 split gates. We investigate the reproducibility of the pinch off and one-dimensional definition voltage as a function of spatial location on two different cooldowns, and after illuminating the device. The reproducibility of both these properties on the two cooldowns is high, the result of the density of the two-dimensional electron gas returning to a similar state after thermal cycling. The spatial variation of the pinch-off voltage reduces after illumination; however, the variation of the one-dimensional definition voltage increases due to an anomalous feature in the center of the array. A technique which quantifies the homogeneity of split-gate properties across the array is developed which captures the experimentally observed trends. In addition, the one-dimensional definition voltage is used to probe the density of the wafer at each split gate in the array on a micron scale using a capacitive model.
Detection of single ion channel activity with carbon nanotubes
NASA Astrophysics Data System (ADS)
Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.
2015-03-01
Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.
NASA Astrophysics Data System (ADS)
Jahangir, Ifat; Uddin, M. Ahsan; Singh, Amol K.; Koley, Goutam; Chandrashekhar, M. V. S.
2017-10-01
We demonstrate a large area MoS2/graphene barristor, using a transfer-free method for producing 3-5 monolayer (ML) thick MoS2. The gate-controlled diodes show good rectification, with an ON/OFF ratio of ˜103. The temperature dependent back-gated study reveals Richardson's coefficient to be 80.3 ± 18.4 A/cm2/K and a mean electron effective mass of (0.66 ± 0.15)m0. Capacitance and current based measurements show the effective barrier height to vary over a large range of 0.24-0.91 eV due to incomplete field screening through the thin MoS2. Finally, we show that this barristor shows significant visible photoresponse, scaling with the Schottky barrier height. A response time of ˜10 s suggests that photoconductive gain is present in this device, resulting in high external quantum efficiency.
Singh, Ambrish; Lin, Yuanhua; Quraishi, Mumtaz A; Olasunkanmi, Lukman O; Fayemi, Omolola E; Sasikumar, Yesudass; Ramaganthan, Baskar; Bahadur, Indra; Obot, Ime B; Adekunle, Abolanle S; Kabanda, Mwadham M; Ebenso, Eno E
2015-08-18
The inhibition of the corrosion of N80 steel in 3.5 wt. % NaCl solution saturated with CO2 by four porphyrins, namely 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphyrin (HPTB), 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphyrin (T4PP), 4,4',4″,4‴-(porphyrin-5,10,15,20-tetrayl)tetrakis(benzoic acid) (THP) and 5,10,15,20-tetraphenyl-21H,23H-porphyrin (TPP) was studied using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, scanning electrochemical microscopy (SECM) and scanning electron microscopy (SEM) techniques. The results showed that the inhibition efficiency, η% increases with increasing concentration of the inhibitors. The EIS results revealed that the N80 steel surface with adsorbed porphyrins exhibited non-ideal capacitive behaviour with reduced charge transfer activity. Potentiodynamic polarization measurements indicated that the studied porphyrins acted as mixed type inhibitors. The SECM results confirmed the adsorption of the porphyrins on N80 steel thereby forming a relatively insulated surface. The SEM also confirmed the formation of protective films of the porphyrins on N80 steel surface thereby protecting the surface from direct acid attack. Quantum chemical calculations, quantitative structure activity relationship (QSAR) were also carried out on the studied porphyrins and the results showed that the corrosion inhibition performances of the porphyrins could be related to their EHOMO, ELUMO, ω, and μ values. Monte Carlo simulation studies showed that THP has the highest adsorption energy, while T4PP has the least adsorption energy in agreement with the values of σ from quantum chemical calculations.
NASA Technical Reports Server (NTRS)
Hunt, W. D.; Brennan, K. F.; Summers, C. J.; Yun, Ilgu
1994-01-01
Reliability modeling and parametric yield prediction of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiodes (APDs), which are of interest as an ultra-low noise image capture mechanism for high definition systems, have been investigated. First, the effect of various doping methods on the reliability of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiode (APD) structures fabricated by molecular beam epitaxy is investigated. Reliability is examined by accelerated life tests by monitoring dark current and breakdown voltage. Median device lifetime and the activation energy of the degradation mechanism are computed for undoped, doped-barrier, and doped-well APD structures. Lifetimes for each device structure are examined via a statistically designed experiment. Analysis of variance shows that dark-current is affected primarily by device diameter, temperature and stressing time, and breakdown voltage depends on the diameter, stressing time and APD type. It is concluded that the undoped APD has the highest reliability, followed by the doped well and doped barrier devices, respectively. To determine the source of the degradation mechanism for each device structure, failure analysis using the electron-beam induced current method is performed. This analysis reveals some degree of device degradation caused by ionic impurities in the passivation layer, and energy-dispersive spectrometry subsequently verified the presence of ionic sodium as the primary contaminant. However, since all device structures are similarly passivated, sodium contamination alone does not account for the observed variation between the differently doped APDs. This effect is explained by the dopant migration during stressing, which is verified by free carrier concentration measurements using the capacitance-voltage technique.
Open quantum systems, effective Hamiltonians, and device characterization
NASA Astrophysics Data System (ADS)
Duffus, S. N. A.; Dwyer, V. M.; Everitt, M. J.
2017-10-01
High fidelity models, which are able to both support accurate device characterization and correctly account for environmental effects, are crucial to the engineering of scalable quantum technologies. As it ensures positivity of the density matrix, one preferred model of open systems describes the dynamics with a master equation in Lindblad form. In practice, Linblad operators are rarely derived from first principles, and often a particular form of annihilator is assumed. This results in dynamical models that miss those additional terms which must generally be added for the master equation to assume the Lindblad form, together with the other concomitant terms that must be assimilated into an effective Hamiltonian to produce the correct free evolution. In first principles derivations, such additional terms are often canceled (or countered), frequently in a somewhat ad hoc manner, leading to a number of competing models. Whilst the implications of this paper are quite general, to illustrate the point we focus here on an example anharmonic system; specifically that of a superconducting quantum interference device (SQUID) coupled to an Ohmic bath. The resulting master equation implies that the environment has a significant impact on the system's energy; we discuss the prospect of keeping or canceling this impact and note that, for the SQUID, monitoring the magnetic susceptibility under control of the capacitive coupling strength and the externally applied flux results in experimentally measurable differences between a number of these models. In particular, one should be able to determine whether a squeezing term of the form X ̂P ̂+P ̂X ̂ should be present in the effective Hamiltonian or not. If model generation is not performed correctly, device characterization will be prone to systemic errors.
Capacitive Extensometer Particularly Suited for Measuring in Vivo Bone Strain
NASA Technical Reports Server (NTRS)
Perusek, Gail P. (Inventor)
2000-01-01
The present invention provides for in vivo measurements of the principal strain magnitudes and directions, and maximum shear strain that occurs in a material, such as human bone, when it is loaded (or subjected to a load). In one embodiment the invention includes a capacitive delta extensometer arranged with six sensors in a three piece configuration, with each sensor of each pair spaced apart from each other by 120 degrees.
Common source cascode amplifiers for integrating IR-FPA applications
NASA Technical Reports Server (NTRS)
Woolaway, James T.; Young, Erick T.
1989-01-01
Space based astronomical infrared measurements present stringent performance requirements on the infrared detector arrays and their associated readout circuitry. To evaluate the usefulness of commercial CMOS technology for astronomical readout applications a theoretical and experimental evaluation was performed on source follower and common-source cascode integrating amplifiers. Theoretical analysis indicates that for conditions where the input amplifier integration capacitance is limited by the detectors capacitance the input referred rms noise electrons of each amplifier should be equivalent. For conditions of input gate limited capacitance the source follower should provide lower noise. Measurements of test circuits containing both source follower and common source cascode circuits showed substantially lower input referred noise for the common-source cascode input circuits. Noise measurements yielded 4.8 input referred rms noise electrons for an 8.5 minute integration. The signal and noise gain of the common-source cascode amplifier appears to offer substantial advantages in acheiving predicted noise levels.
NASA Astrophysics Data System (ADS)
Zonno, Irene; Martinez-Otero, Alberto; Hebig, Jan-Christoph; Kirchartz, Thomas
2017-03-01
The Mott-Schottky analysis in the dark is a frequently used method to determine the doping concentration of semiconductors from capacitance-voltage measurements, even for such complex systems as polymer:fullerene blends used for organic solar cells. While the analysis of capacitance-voltage measurements in the dark is relatively well established, the analysis of data taken under illumination is currently not fully understood. Here, we present experiments and simulations to show which physical mechanisms affect the Mott-Schottky analysis under illumination. We show that the mobility of the blend has a major influence on the shape of the capacitance-voltage curve and can be obtained from data taken under reverse bias. In addition, we show that the apparent shift of the built-in voltage observed previously can be explained by a shift of the onset of space-charge-limited collection with illumination intensity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, C.A.
In experiments involving pulsed high magnetic fields the appearance of the full induced voltage at the output terminals of large-area inductive sensors such as diamagnetic loops and Rogowski belts imposes severe requirements on the insulation near the output. Capacitive detection of the inductive-sensor output voltage provides an ideal geometry for high-voltage insulation, and also accomplishes the necessary voltage division. An inductive-shunt current monitor was designed to utilize the capacitive-detection principle. The contruction of this device and its performance are described in this paper.
NASA Astrophysics Data System (ADS)
Zhang, Min; Wang, Wen; Xiang, Kui; Lu, Keqing; Fan, Zongwei
2015-02-01
This paper describes a novel cylindrical capacitive sensor (CCS) to measure the spindle five degree-of-freedom (DOF) motion errors. The operating principle and mathematical models of the CCS are presented. Using Ansoft Maxwell software to calculate the different capacitances in different configurations, structural parameters of end face electrode are then investigated. Radial, axial and tilt motions are also simulated by making comparisons with the given displacements and the simulation values respectively. It could be found that the proposed CCS has a high accuracy for measuring radial motion error when the average eccentricity is about 15 μm. Besides, the maximum relative error of axial displacement is 1.3% when the axial motion is within [0.7, 1.3] mm, and the maximum relative error of the tilt displacement is 1.6% as rotor tilts around a single axis within [-0.6, 0.6]°. Finally, the feasibility of the CCS for measuring five DOF motion errors is verified through simulation and analysis.
Thermal decay of Coulomb blockade oscillations
NASA Astrophysics Data System (ADS)
Idrisov, Edvin G.; Levkivskyi, Ivan P.; Sukhorukov, Eugene V.
2017-10-01
We study transport properties and the charge quantization phenomenon in a small metallic island connected to the leads through two quantum point contacts (QPCs). The linear conductance is calculated perturbatively with respect to weak tunneling and weak backscattering at QPCs as a function of the temperature T and gate voltage. The conductance shows Coulomb blockade (CB) oscillations as a function of the gate voltage that decay with the temperature as a result of thermally activated fluctuations of the charge in the island. The regimes of quantum T ≪EC and thermal T ≫EC fluctuations are considered, where EC is the charging energy of an isolated island. Our predictions for CB oscillations in the quantum regime coincide with previous findings by Furusaki and Matveev [Phys. Rev. B 52, 16676 (1995), 10.1103/PhysRevB.52.16676]. In the thermal regime the visibility of Coulomb blockade oscillations decays with the temperature as √{T /EC }exp(-π2T /EC) , where the exponential dependence originates from the thermal averaging over the instant charge fluctuations, while the prefactor has a quantum origin. This dependence does not depend on the strength of couplings to the leads. The differential capacitance, calculated in the case of a single tunnel junction, shows the same exponential decay, however the prefactor is linear in the temperature. This difference can be attributed to the nonlocality of the quantum effects. Our results agree with the recent experiment [Nature (London) 536, 58 (2016), 10.1038/nature19072] in the whole range of the parameter T /EC .
Ho, Wen-Jeng; Sue, Ruei-Siang; Lin, Jian-Cheng; Syu, Hong-Jang; Lin, Ching-Fuh
2016-08-10
This paper reports impressive improvements in the optical and electrical performance of metal-oxide-semiconductor (MOS)-structure silicon solar cells through the incorporation of plasmonic indium nanoparticles (In-NPs) and an indium-tin-oxide (ITO) electrode with periodic holes (perforations) under applied bias voltage. Samples were prepared using a plain ITO electrode or perforated ITO electrode with and without In-NPs. The samples were characterized according to optical reflectance, dark current voltage, induced capacitance voltage, external quantum efficiency, and photovoltaic current voltage. Our results indicate that induced capacitance voltage and photovoltaic current voltage both depend on bias voltage, regardless of the type of ITO electrode. Under a bias voltage of 4.0 V, MOS cells with perforated ITO and plain ITO, respectively, presented conversion efficiencies of 17.53% and 15.80%. Under a bias voltage of 4.0 V, the inclusion of In-NPs increased the efficiency of cells with perforated ITO and plain ITO to 17.80% and 16.87%, respectively.
Brozek, Carl K; Zhou, Dongming; Liu, Hongbin; Li, Xiaosong; Kittilstved, Kevin R; Gamelin, Daniel R
2018-05-09
Colloidal ZnO semiconductor nanocrystals have previously been shown to accumulate multiple delocalized conduction-band electrons under chemical, electrochemical, or photochemical reducing conditions, leading to emergent semimetallic characteristics such as quantum plasmon resonances and raising prospects for application in multielectron redox transformations. Here, we demonstrate a dramatic enhancement in the capacitance of colloidal ZnO nanocrystals through aliovalent Fe 3+ -doping. Very high areal and volumetric capacitances (33 μF cm -2 , 233 F cm -3 ) are achieved in Zn 0.99 Fe 0.01 O nanocrystals that rival those of the best supercapacitors used in commercial energy-storage devices. The redox properties of these nanocrystals are probed by potentiometric titration and optical spectroscopy. These data indicate an equilibrium between electron localization by Fe 3+ dopants and electron delocalization within the ZnO conduction band, allowing facile reversible charge storage and removal. As "soluble supercapacitors", colloidal iron-doped ZnO nanocrystals constitute a promising class of solution-processable electronic materials with large charge-storage capacity attractive for future energy-storage applications.
Ho, Wen-Jeng; Sue, Ruei-Siang; Lin, Jian-Cheng; Syu, Hong-Jang; Lin, Ching-Fuh
2016-01-01
This paper reports impressive improvements in the optical and electrical performance of metal-oxide-semiconductor (MOS)-structure silicon solar cells through the incorporation of plasmonic indium nanoparticles (In-NPs) and an indium-tin-oxide (ITO) electrode with periodic holes (perforations) under applied bias voltage. Samples were prepared using a plain ITO electrode or perforated ITO electrode with and without In-NPs. The samples were characterized according to optical reflectance, dark current voltage, induced capacitance voltage, external quantum efficiency, and photovoltaic current voltage. Our results indicate that induced capacitance voltage and photovoltaic current voltage both depend on bias voltage, regardless of the type of ITO electrode. Under a bias voltage of 4.0 V, MOS cells with perforated ITO and plain ITO, respectively, presented conversion efficiencies of 17.53% and 15.80%. Under a bias voltage of 4.0 V, the inclusion of In-NPs increased the efficiency of cells with perforated ITO and plain ITO to 17.80% and 16.87%, respectively. PMID:28773801
Jeong, Y J; Oh, T I; Woo, E J; Kim, K J
2017-07-01
Recently, highly flexible and soft pressure distribution imaging sensor is in great demand for tactile sensing, gait analysis, ubiquitous life-care based on activity recognition, and therapeutics. In this study, we integrate the piezo-capacitive and piezo-electric nanowebs with the conductive fabric sheets for detecting static and dynamic pressure distributions on a large sensing area. Electrical impedance tomography (EIT) and electric source imaging are applied for reconstructing pressure distribution images from measured current-voltage data on the boundary of the hybrid fabric sensor. We evaluated the piezo-capacitive nanoweb sensor, piezo-electric nanoweb sensor, and hybrid fabric sensor. The results show the feasibility of static and dynamic pressure distribution imaging from the boundary measurements of the fabric sensors.
Characterization of pixel sensor designed in 180 nm SOI CMOS technology
NASA Astrophysics Data System (ADS)
Benka, T.; Havranek, M.; Hejtmanek, M.; Jakovenko, J.; Janoska, Z.; Marcisovska, M.; Marcisovsky, M.; Neue, G.; Tomasek, L.; Vrba, V.
2018-01-01
A new type of X-ray imaging Monolithic Active Pixel Sensor (MAPS), X-CHIP-02, was developed using a 180 nm deep submicron Silicon On Insulator (SOI) CMOS commercial technology. Two pixel matrices were integrated into the prototype chip, which differ by the pixel pitch of 50 μm and 100 μm. The X-CHIP-02 contains several test structures, which are useful for characterization of individual blocks. The sensitive part of the pixel integrated in the handle wafer is one of the key structures designed for testing. The purpose of this structure is to determine the capacitance of the sensitive part (diode in the MAPS pixel). The measured capacitance is 2.9 fF for 50 μm pixel pitch and 4.8 fF for 100 μm pixel pitch at -100 V (default operational voltage). This structure was used to measure the IV characteristics of the sensitive diode. In this work, we report on a circuit designed for precise determination of sensor capacitance and IV characteristics of both pixel types with respect to X-ray irradiation. The motivation for measurement of the sensor capacitance was its importance for the design of front-end amplifier circuits. The design of pixel elements, as well as circuit simulation and laboratory measurement techniques are described. The experimental results are of great importance for further development of MAPS sensors in this technology.
Santos-Sacchi, Joseph; Song, Lei
2014-04-11
The outer hair cell is electromotile, its membrane motor identified as the protein SLC26a5 (prestin). An area motor model, based on two-state Boltzmann statistics, was developed about two decades ago and derives from the observation that outer hair cell surface area is voltage-dependent. Indeed, aside from the nonlinear capacitance imparted by the voltage sensor charge movement of prestin, linear capacitance (Clin) also displays voltage dependence as motors move between expanded and compact states. Naturally, motor surface area changes alter membrane capacitance. Unit linear motor capacitance fluctuation (δCsa) is on the order of 140 zeptofarads. A recent three-state model of prestin provides an alternative view, suggesting that voltage-dependent linear capacitance changes are not real but only apparent because the two component Boltzmann functions shift their midpoint voltages (Vh) in opposite directions during treatment with salicylate, a known competitor of required chloride binding. We show here using manipulations of nonlinear capacitance with both salicylate and chloride that an enhanced area motor model, including augmented δCsa by salicylate, can accurately account for our novel findings. We also show that although the three-state model implicitly avoids measuring voltage-dependent motor capacitance, it registers δCsa effects as a byproduct of its assessment of Clin, which increases during salicylate treatment as motors are locked in the expanded state. The area motor model, in contrast, captures the characteristics of the voltage dependence of δCsa, leading to a better understanding of prestin.
Measurement strategy for rectangular electrical capacitance tomography sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Jiamin; Ge, Ruihuan; Qiu, Guizhi
2014-04-11
To investigate the influence of the measurement strategy for the rectangular electrical capacitance tomography (ECT) sensor, a Finite Element Method (FEM) is utilized to create the model for simulation. The simulation was carried out using COMSOL Multiphysics(trade mark, serif) and Matlab(trade mark, serif). The length-width ratio of the rectangular sensing area is 5. Twelve electrodes are evenly arranged surrounding the pipe. The covering ratio of the electrodes is 90%. The capacitances between different electrode pairs are calculated for a bar distribution. The air of the relative permittivity 1.0 and the material of the permittivity 3.0 are used for the calibration.more » The relative permittivity of the second phase is 3.0. The noise free and noise data are used for the image reconstruction using the Linear Back Projection (LBP). The measurement strategies with 1-, 2- and 4- electrode excitation are compared using the correlation coefficient. Preliminary results show that the measurement strategy with 2-electrode excitation outperforms other measurement strategies with 1- or 4-electrode excitation.« less
Detailed studies of full-size ATLAS12 sensors
NASA Astrophysics Data System (ADS)
Hommels, L. B. A.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Arratia, M.; Klein, C. T.; Ullan, M.; Fleta, C.; Fernandez-Tejero, J.; Bloch, I.; Gregor, I. M.; Lohwasser, K.; Poley, L.; Tackmann, K.; Trofimov, A.; Yildirim, E.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Mori, R.; Parzefall, U.; Clark, A.; Ferrere, D.; Gonzalez Sevilla, S.; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O`Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.
2016-09-01
The "ATLAS ITk Strip Sensor Collaboration" R&D group has developed a second iteration of single-sided n+-in-p type micro-strip sensors for use in the tracker upgrade of the ATLAS experiment at the High-Luminosity (HL) LHC. The full size sensors measure approximately 97 × 97mm2 and are designed for tolerance against the 1.1 ×1015neq /cm2 fluence expected at the HL-LHC. Each sensor has 4 columns of 1280 individual 23.9 mm long channels, arranged at 74.5 μm pitch. Four batches comprising 120 sensors produced by Hamamatsu Photonics were evaluated for their mechanical, and electrical bulk and strip characteristics. Optical microscopy measurements were performed to obtain the sensor surface profile. Leakage current and bulk capacitance properties were measured for each individual sensor. For sample strips across the sensor batches, the inter-strip capacitance and resistance as well as properties of the punch-through protection structure were measured. A multi-channel probecard was used to measure leakage current, coupling capacitance and bias resistance for each individual channel of 100 sensors in three batches. The compiled results for 120 unirradiated sensors are presented in this paper, including summary results for almost 500,000 strips probed. Results on the reverse bias voltage dependence of various parameters and frequency dependence of tested capacitances are included for validation of the experimental methods used. Comparing results with specified values, almost all sensors fall well within specification.
He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho
2017-06-16
In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g -1 at a scan rate of 20 mV s -1 , which is almost twice that of ZnO NWs (191.5 F g -1 ). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g -1 at a current density of 1.33 A g -1 with an energy density of 25.2 W h kg -1 at the power density of 896.44 W kg -1 . In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.
NASA Astrophysics Data System (ADS)
He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho
2017-06-01
In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g-1 at a scan rate of 20 mV s-1, which is almost twice that of ZnO NWs (191.5 F g-1). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g-1 at a current density of 1.33 A g-1 with an energy density of 25.2 W h kg-1 at the power density of 896.44 W kg-1. In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.
USDA-ARS?s Scientific Manuscript database
Fisher’s linear discriminant (FLD) models for wheat variety classification were developed and validated. The inputs to the FLD models were the capacitance (C), impedance (Z), and phase angle ('), measured at two frequencies. Classification of wheat varieties was obtained as output of the FLD mod...
USDA-ARS?s Scientific Manuscript database
Capacitance probes (CP) have been used to measure soil water contents in various applications. Effects of large macropores, cracks and other large heterogeneities within the CP sensitivity volume are sources of concerns related to such applications. The objective of this work was to evaluate the sen...
NASA Astrophysics Data System (ADS)
Chzhan, Michael; Kuppusamy, Periannan; Samouilov, Alexandre; He, Guanglong; Zweier, Jay L.
1999-04-01
There has been a need for development of microwave resonator designs optimized to provide high sensitivity and high stability for EPR spectroscopy and imaging measurements ofin vivosystems. The design and construction of a novel reentrant resonator with transversely oriented electric field (TERR) and rectangular sample opening cross section for EPR spectroscopy and imaging ofin vivobiological samples, such as the whole body of mice and rats, is described. This design with its transversely oriented capacitive element enables wide and simple setting of the center frequency by trimming the dimensions of the capacitive plate over the range 100-900 MHz with unloadedQvalues of approximately 1100 at 750 MHz, while the mechanical adjustment mechanism allows smooth continuous frequency tuning in the range ±50 MHz. This orientation of the capacitive element limits the electric field based loss of resonatorQobserved with large lossy samples, and it facilitates the use of capacitive coupling. Both microwave performance data and EPR measurements of aqueous samples demonstrate high sensitivity and stability of the design, which make it well suited forin vivoapplications.
Measurement of intestinal edema using an impedance analyzer circuit.
Radhakrishnan, Ravi S; Shah, Kunal; Xue, Hasen; Moore-Olufemi, Stacey D; Moore, Frederick A; Weisbrodt, Norman W; Allen, Steven J; Gill, Brijesh; Cox, Charles S
2007-03-01
Acute intestinal edema adversely affects intestinal transit, permeability, and contractility. Current resuscitation modalities, while effective, are associated with development of acute intestinal edema. Knowledge of levels of tissue edema would allow clinicians to monitor intestinal tissue water and may help prevent the detrimental effects of edema. However, there is no simple method to measure intestinal tissue water without biopsy. We sought to develop a tissue impedance analyzer to measure tissue edema, without the need for invasive biopsy. Oscillating voltage input was applied to the analyzer circuit and an oscilloscope measured the voltage output across any load. Rats were randomized to three groups: sham, mild edema (80 mL/kg of NS resuscitation), and severe edema (80 mL/kg of NS resuscitation with intestinal venous hypertension). Intestinal edema was measured by wet-to-dry tissue weight ratio. Bowel impedance was measured and converted to capacitance using a standard curve. Acute intestinal edema causes a significant increase in bowel capacitance. This capacitance can be used to predict tissue water concentration. Using an impedance analyzer circuit, it is possible to measure intestinal edema reliably and quickly. This may prove to be a useful tool in the resuscitation of critically ill patients.
Development of a micro hole measuring system based on the capacitance principle
NASA Astrophysics Data System (ADS)
Chang, Ting-Yen; Liao, Yunn-Shiuan; Liu, Wei-Cheng
2009-10-01
A new 3D micro hole measuring system has been developed in this paper. The system is mainly composed of a probe, a rotary stage and a program which can convert data points to a 3D profile. The principle of capacitance is adopted and a device to sense the variation of capacitance when the probe touches the workpiece is designed and implemented. With the aid of rotation stage, positions around the contour are measured. The measured coordinates are calculated by an algorithm proposed in this paper. The developed system is capable of measuring the interior profile of a high aspect ratio micro hole and calculating its roundness. A grade A gauge block is used to verify the developed system. It is found that the repeatability error of the system is within ±0.78 µm. The linearity error can approach 1 µm and the maximum measuring depth is 15 mm. Finally, a micro hole of 1.0 mm in diameter and 10 mm in depth is successfully measured and the 3D profile is constructed accordingly. The roundness of each layer spacing 1 mm apart and the inclination of the axis of the micro hole are calculated as well.
Negative capacitance in a ferroelectric capacitor.
Khan, Asif Islam; Chatterjee, Korok; Wang, Brian; Drapcho, Steven; You, Long; Serrao, Claudy; Bakaul, Saidur Rahman; Ramesh, Ramamoorthy; Salahuddin, Sayeef
2015-02-01
The Boltzmann distribution of electrons poses a fundamental barrier to lowering energy dissipation in conventional electronics, often termed as Boltzmann Tyranny. Negative capacitance in ferroelectric materials, which stems from the stored energy of a phase transition, could provide a solution, but a direct measurement of negative capacitance has so far been elusive. Here, we report the observation of negative capacitance in a thin, epitaxial ferroelectric film. When a voltage pulse is applied, the voltage across the ferroelectric capacitor is found to be decreasing with time--in exactly the opposite direction to which voltage for a regular capacitor should change. Analysis of this 'inductance'-like behaviour from a capacitor presents an unprecedented insight into the intrinsic energy profile of the ferroelectric material and could pave the way for completely new applications.
3D capacitive tactile sensor using DRIE micromachining
NASA Astrophysics Data System (ADS)
Chuang, Chiehtang; Chen, Rongshun
2005-07-01
This paper presents a three dimensional micro capacitive tactile sensor that can detect normal and shear forces which is fabricated using deep reactive ion etching (DRIE) bulk silicon micromachining. The tactile sensor consists of a force transmission plate, a symmetric suspension system, and comb electrodes. The sensing character is based on the changes of capacitance between coplanar sense electrodes. High sensitivity is achieved by using the high aspect ratio interdigital electrodes with narrow comb gaps and large overlap areas. The symmetric suspension mechanism of this sensor can easily solve the coupling problem of measurement and increase the stability of the structure. In this paper, the sensor structure is designed, the capacitance variation of the proposed device is theoretically analyzed, and the finite element analysis of mechanical behavior of the structures is performed.
NASA Astrophysics Data System (ADS)
Allagui, Anis; Alami, Abdul Hai; Baranova, Elena A.; Wüthrich, Rolf
2014-09-01
NiO nanoparticles of 70, 91 and 107 nm average diameter are synthesized by cathodic contact glow discharge electrolysis at 30, 36 and 42 VDC respectively, in 2 M H2SO4 + 0.5 M ethanol + 2.5 mg ml-1 of PVP, and are investigated for electrochemical energy storage. From the cyclic voltammetry and galvanostatic charge-discharge measurements in 1 M KOH, it was found that a maximum specific capacitance of 218 F g-1 is achieved with the 70 nm NiO nanoparticles at 2.7 A g-1. Larger nanoparticles of 91 and 107 nm diameter exhibit specific capacitances of 106 and 63 F g-1, respectively, suggesting a size-dependent capacitive performance enhanced with decreasing particles size.
Waves, particles, and interactions in reduced dimensions
NASA Astrophysics Data System (ADS)
Zhang, Yiming
This thesis presents a set of experiments that study the interplay between the wave-particle duality of electrons and the interaction effects in systems of reduced dimensions. Both dc transport and measurements of current noise have been employed in the studies; in particular, techniques for efficiently measuring current noise have been developed specifically for these experiments. The first four experiments study current noise auto- and cross correlations in various mesoscopic devices, including quantum point contacts, single and double quantum dots, and graphene devices. In quantum point contacts, shot noise at zero magnetic field exhibits an asymmetry related to the 0.7 structure in conductance. The asymmetry in noise evolves smoothly into the symmetric signature of spin-resolved electron transmission at high field. Comparison to a phenomenological model with density-dependent level splitting yields good quantitative agreement. Additionally, a device-specific contribution to the finite-bias noise, particularly visible on conductance plateaus where shot noise vanishes, agrees with a model of bias-dependent electron heating. In a three-lead single quantum dot and a capacitively coupled double quantum dot, sign reversal of noise cross correlations have been observed in the Coulomb blockade regime, and found to be tunable by gate voltages and source-drain bias. In the limit of weak output tunneling, cross correlations in the three-lead dot are found to be proportional to the two-lead noise in excess of the Poissonian value. These results can be reproduced with master equation calculations that include multi-level transport in the single dot, and inter-dot charging energy in the double dot. Shot noise measurements in single-layer graphene devices reveal a Fano factor independent of carrier type and density, device geometry, and the presence of a p-n junction. This result contrasts with theory for ballistic graphene sheets and junctions, suggesting that the transport is disorder dominated. The next two experiments study magnetoresistance oscillations in electronic Fabry-Perot interferometers in the integer quantum Hall regime. Two types of resistance oscillations, as a function of perpendicular magnetic field and gate voltages, in two interferometers of different sizes can be distinguished by three experimental signatures. The oscillations observed in the small (2.0 mum2) device are understood to arise from Coulomb blockade, and those observed in the big (18 mum2) device from Aharonov-Bohm interference. Nonlinear transport in the big device reveals a checkerboard-like pattern of conductance oscillations as a function of dc bias and magnetic field. Edge-state velocities extracted from the checkerboard data are compared to model calculations and found to be consistent with a crossover from skipping orbits at low fields to E⃗ x B⃗ drift at high fields. Suppression of visibility as a function of bias and magnetic field is accounted for by including energy- and field-dependent dephasing of edge electrons.
NASA Astrophysics Data System (ADS)
Yagati, Ajay Kumar; Park, Jinsoo; Kim, Jungsuk; Ju, Heongkyu; Chang, Keun-A.; Cho, Sungbo
2016-06-01
An interdigitated electrodes (IDE) modified with gold nanoparticles (AuNPs) was fabricated to enhance the capacitive detection of tumor necrosis factor-α (TNF-α) and compared with a bare IDE. A TNF-α immunosensor was developed by covalently conjugating TNF-α antibodies with 3-mercaptopropionic acid by a carbodiimide/N-hydroxysuccinimide reaction on the AuNP/IDE. After the application of human serum samples containing various concentrations of TNF-α to the sensing electrode, changes in both the impedance spectrum and the electrode interfacial capacitance were measured. The capacitance changes were dependent on the TNF-α concentration in the range of 1 pg ml-1 to 10 ng ml-1, and the device had the calculated detection limit of 0.83 pg ml-1. The developed AuNP/IDE-based immunosensor was successfully used for the capacitive detection of the binding of TNF-α to its antibody, and was found to be feasible for the analysis of TNF-α in human blood serum.
Design of capacitive sensor for water level measurement
NASA Astrophysics Data System (ADS)
Qurthobi, A.; Iskandar, R. F.; Krisnatal, A.; Weldzikarvina
2016-11-01
Capacitive sensor for water level detection has been fabricated. It has, typically, high-impedance sensor, particularly at low frequencies, as clear from the impedance (reactance) expression for a capacitor. Also, capacitive sensor is a noncontacting device in the common usage. In this research, water level sensor based on capacitive principal created using two copper plates with height (h), width (b), and distance (l) between two plates, respectively, 0.040 m, 0.015 m, and 0.010 m. 5 V pp 3 kHz AC signal is used as input signal for the system. Dielectric constant between two plates is proportional to water level. Hence, it can be used to determine water level from electrical characteristic as it inversely proportional to sensor impedance. Linearization, inverting amplifier, and rectifier circuits are used as signal conditioning for the system. Based on conducted experiment, the relationship between water level (x), capacitance (C), and output voltage (Vdc ) can be expressed as C(x) = 2.756x + 0.333 nF and Vdc (x) = 15.755 + 0.316 V.
Frequency Combs in a Lumped-Element Josephson-Junction Circuit
NASA Astrophysics Data System (ADS)
Khan, Saeed; Türeci, Hakan E.
2018-04-01
We investigate the dynamics of a microwave-driven Josephson junction capacitively coupled to a lumped-element L C oscillator. In the regime of driving where the Josephson junction can be approximated as a Kerr oscillator, this minimal nonlinear system has been previously shown to exhibit a bistability in phase and amplitude. In the present study, we characterize the full phase diagram and show that besides a parameter regime exhibiting bistability, there is also a regime of self-oscillations characterized by a frequency comb in its spectrum. We discuss the mechanism of comb generation which appears to be different from those studied in microcavity frequency combs and mode-locked lasers. We then address the fate of the comblike spectrum in the regime of strong quantum fluctuations, reached when nonlinearity becomes the dominant scale with respect to dissipation. We find that the nonlinearity responsible for the emergence of the frequency combs also leads to its dephasing, leading to broadening and ultimate disappearance of sharp spectral peaks. Our study explores the fundamental question of the impact of quantum fluctuations for quantum systems which do not possess a stable fixed point in the classical limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evtukh, A. A., E-mail: dept_5@isp.kiev.ua; Kaganovich, E. B.; Manoilov, E. G.
2006-02-15
Electroluminescent structures that emit in the visible region of the spectrum and are based on porous silicon (por-Si) formed on the p-Si substrate electrolytically using an internal current source are fabricated. The photoluminescent and electroluminescent properties, as well as the current-and capacitance-voltage characteristics of the structures are studied. Electroluminescence is observed only if the forward bias voltage is applied to the structure; the electroluminescence mechanism is based on the injection and is related to the radiative recombination of electrons and holes in quantum-dimensional Si nanocrystals. The injection of holes is controlled by the condition of their accumulation in the space-chargemore » region of p-Si and by a comparatively low concentration of electronic states at the por-Si/p-Si interface. The charge transport in por-Si is caused by the direct tunneling of charge carriers between the quantum-mechanical levels, which is ensured by an appreciable number of quantum-dimensional Si nanocrystals. The leakage currents are low as a result of a small variance in the sizes of Si nanocrystals and the absence of comparatively large nanocrystals.« less
Ren, Shangjie; Dong, Feng
2016-01-01
Electrical capacitance tomography (ECT) is a non-destructive detection technique for imaging the permittivity distributions inside an observed domain from the capacitances measurements on its boundary. Owing to its advantages of non-contact, non-radiation, high speed and low cost, ECT is promising in the measurements of many industrial or biological processes. However, in the practical industrial or biological systems, a deposit is normally seen in the inner wall of its pipe or vessel. As the actual region of interest (ROI) of ECT is surrounded by the deposit layer, the capacitance measurements become weakly sensitive to the permittivity perturbation occurring at the ROI. When there is a major permittivity difference between the deposit and the ROI, this kind of shielding effect is significant, and the permittivity reconstruction becomes challenging. To deal with the issue, an interface and permittivity simultaneous reconstruction approach is proposed. Both the permittivity at the ROI and the geometry of the deposit layer are recovered using the block coordinate descent method. The boundary and finite-elements coupling method is employed to improve the computational efficiency. The performance of the proposed method is evaluated with the simulation tests. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185960
Electrical quantum standards and their role in the SI
NASA Astrophysics Data System (ADS)
Robinson, Ian; Georgakopoulos, Dimitrios
2012-12-01
The International System of Units, SI, is poised to make a quantum change and become a measurement system based entirely on the fundamental properties of the natural world. In the next version of the SI, the Planck constant h, the elementary charge e, the Avogadro constant NA and the Boltzmann constant k will be fixed, in addition to the already fixed values of the speed of light c and the ground state hyperfine splitting in caesium-133. As a result, six out of the seven base units of the SI will be based directly on true invariants of nature. A major part of this change has been enabled by the ready availability of electrical quantum standards of exquisite precision and mechanisms for using them to make measurements outside the electrical arena. The overall effect will be to eliminate the remaining imprecise definitions of physical units associated with the use of artefact standards and aid direct SI measurements without problems of scaling. Fixing the Planck constant and the elementary charge will have the effect of incorporating the best physical realizations of electrical quantities into the SI, providing a system of units fit for the 21st century. The purpose of this special feature is to review the status of electrical quantum standards and report the latest developments in those areas and their applications to other areas of metrology. The special feature coincides with the 50th anniversary of the seminal paper of Josephson, 'Possible new effects in superconductive tunnelling' [1], which established the basic physical principle upon which the quantum voltage standards are based. Josephson voltage standards are based on the inverse Josephson effect. When a junction of two superconducting electrodes, weakly linked through a thin insulator or a normal metal, is irradiated with a radiofrequency electromagnetic field of frequency f and is biased by a dc current, then the voltage across the junction is quantized (i.e. small changes in either the dc current or the power of the rf irradiation, or both, do not change the voltage). The value of this quantized Josephson voltage is equal to nfh/2e, where n is the quantum step of the current-voltage characteristic curve. In this special feature there are three papers on dc Josephson voltage standards. Solve and Stock review the programme conducted by the Bureau International des Poids et Mesures (BIPM) to perform on-site comparisons of Josephson voltage standards, and give a comprehensive analysis of the possible sources of errors of such comparisons. Behr et al summarize the developments of Josephson voltage standards at Physikalisch-Technische Bundesanstalt (PTB) and their applications in dc voltage and other areas of metrology. Finally, Georgakopoulos et al report a reduction, by a factor of a thousand, in the smallest voltage that can be generated by dc Josephson voltage standards. Although dc voltage standards are well established, significant challenges exist when extending this extremely precise technology to ac. There are two approaches to producing accurate ac voltages using the inverse Josephson effect: the programmable Josephson voltage standard (PJVS) and the pulse-driven ac voltage standard. The PJVS contains an array of Josephson junctions, organized into independently biased segments. By biasing chosen, binary-related, segments on the first quantum step (positive or negative) or zero, the array can be made to behave as a quantum digital to analogue converter. The PJVS approach can produce stepwise approximated sine waves with rms values of some volts, but it suffers from parasitic capacitances and inductances distributed in the different parts of the system and, more importantly, the voltage is not quantized during the finite transition time between successive voltage levels. Hence the output frequency of PJVS-based systems is limited to a few kilohertz. In this special feature, Jeanneret et al review the Josephson locked synthesizer, a PJVS-based system where the effect of transients between successive steps on the output voltage is reduced. This special feature also presents two applications of PJVS-based quantum voltage standards: the evaluation of conventional ac voltage standards based on thermal converters (Budovsky et al) and the measurement of the settling time of a high resolution digital voltmeter (Henderson et al). In the pulse-driven ac voltage standard, arbitrary voltages can be produced by modulating the rf irradiation of an array of Josephson junctions by a series of high frequency pulses, usually by means of Δ-Σ modulation. The output voltage of the array of junctions is a series of quantized voltage pulses that correspond to the desired waveform after the high frequency components are removed. The pulse-driven standard can operate at much higher frequencies than the PJVS. Eliminating the effects of parasitic impedances of the, necessarily long, connecting leads therefore becomes a significant challenge. In this special feature, van den Brom and Houtzager report a voltage lead correction technique. Quantum resistance standards are based on the quantum Hall effect in which the resistance of a two-dimensional electron gas in a strong magnetic field is quantized. The value of the quantized Hall resistance is h/ie2, where i is the number of the quantum step in the resistance-magnetic field curve. Quantum Hall resistance devices can be combined in series to form a resistive voltage divider with low uncertainty in the ratio. In this special feature, Domae et al report the realization of such a resistive voltage divider on a chip. Quantum Hall resistance standards have been routinely used at dc for over two decades. However, the operation of quantum Hall devices at ac is complicated by the flow of current in capacitances around the device, which can compromise measurement of its resistance. Schurr et al review the status of ac quantum Hall resistance standards and their role in the SI. Ohm's law can be applied to quantum realizations of voltage, resistance and current to test their consistency. Active research into this 'metrological triangle' is underway and, at present, there is no evidence to indicate a discrepancy at any level. However, work is continuing on current sources which utilize a countable flow of electrons (the electric current produced is proportional to ef, f being the operating frequency of the device), but the work has some way to go before the question of consistency can be resolved at levels approaching 1 part in 109. In this special feature, Scherer and Camarota review the state-of-the-art of metrological triangle experiments and Devoille et al report on the status of the metrological triangle experiment at the Laboratoire National de Métrologie et d'Essais (LNE), France. The availability of precise representations of the volt and the ohm based on quantum mechanics has enabled the watt balance, an apparatus which relates electrical and mechanical power, to link the kilogram to the Planck constant. This has paved the way for the proposed redefinition of the kilogram, the last artefact standard in the SI, in terms of a fixed value of the Planck constant. In the past few years a number of papers, e.g. [2, 3], have been published describing the working principles of the watt balance and the characteristics of the existing implementations of the experiment. The measurements of the principal quantities—mass, velocity, gravitational acceleration, resistance and voltage—are reasonably well documented but the ultimate precision of the apparatus depends on a number of techniques that are required to eliminate second-order effects. In this special feature, Robinson provides details of these general alignment techniques with special reference to the NPL Mark II watt balance. Acknowledgments We would like to thank the authors for supporting the special feature with their excellent contributions; the guardians of the quality of a scientific paper, the referees, for their valuable comments and suggestions; Professor Wuqiang Yang and the members of the editorial board of Measurement Science and Technology for their support. Finally, we would like to thank Dr Sharon D'Souza, James Dimond and all the editorial and publication staff at Measurement Science and Technology, for their help in making the special feature a reality. References [1] Josephson B D 1962 Possible new effects in superconductive tunnelling Phys. Lett. 1 251-3 [2] Li S, Han B, Li Z and Lan J 2012 Precisely measuring the Planck constant by electromechanical balances Measurement 45 1-13 [3] Stock M 2011 The watt balance: determination of the Planck constant and redefinition of the kilogram Phil. Trans. R. Soc. A 369 3936-53
Microscopic Theory of Supercapacitors
NASA Astrophysics Data System (ADS)
Skinner, Brian Joseph
As new energy technologies are designed and implemented, there is a rising demand for improved energy storage devices. At present the most promising class of these devices is the electric double-layer capacitor (EDLC), also known as the supercapacitor. A number of recently created supercapacitors have been shown to produce remarkably large capacitance, but the microscopic mechanisms that underlie their operation remain largely mysterious. In this thesis we present an analytical, microscopic-level theory of supercapacitors, and we explain how such large capacitance can result. Specifically, we focus on four types of devices that have been shown to produce large capacitance. The first is a capacitor composed of a clean, low-temperature two-dimensional electron gas adjacent to a metal gate electrode. Recent experiments have shown that such a device can produce capacitance as much as 40% larger than that of a conventional plane capacitor. We show that this enhanced capacitance can be understood as the result of positional correlations between electrons and screening by the gate electrode in the form of image charges. Thus, the enhancement of the capacitance can be understood primarily as a classical, electrostatic phenomenon. Accounting for the quantum mechanical properties of the electron gas provides corrections to the classical theory, and these are discussed. We also present a detailed numerical calculation of the capacitance of the system based on a calculation of the system's ground state energy using the variational principle. The variational technique that we develop is broadly applicable, and we use it here to make an accurate comparison to experiment and to discuss quantitatively the behavior of the electrons' correlation function. The second device discussed in this thesis is a simple EDLC composed of an ionic liquid between two metal electrodes. We adopt a simple description of the ionic liquid and show that for realistic parameter values the capacitance can be as much as three times larger than that of a plane capacitor with thickness equal to the ion diameter. As in the previous system, this large capacitance is the result of image charge formation in the metal electrode and positional correlations between discrete ions that comprise the electric double-layer. We show that the maximum capacitance scales with the temperature to the power -1/3, and that at moderately large voltage the capacitance also decays as the inverse one third power of voltage. These results are confirmed by a Monte Carlo simulation. The third type of device we consider is that of a porous supercapacitor, where the electrode is made from a conducting material with a dense arrangement of narrow, planar pores into which ionic liquid can enter when a voltage is applied. In this case we show that when the electrode is metallic the narrow pores aggressively screen the interaction between neighboring ions in a pore, leading to an interaction energy between ions that decays exponentially. This exponential interaction between ions allows the capacitance to be nearly an order of magnitude larger than what is predicted by mean-field theories. This result is confirmed by a Monte Carlo simulation. We also present a theory for the capacitance when the electrode is not a perfect metal, but has a finite electronic screening radius. When this screening radius is larger than the distance between pores, ions begin to interact across multiple pores and the capacitance is determined by the Yukawa-like interaction of a three-dimensional, correlated arrangement of ions. Finally, we consider the case of supercapacitor electrodes made from a stack of graphene sheets with randomly-inserted "spacer" molecules. For such devices, experiments have produced very large capacitance despite the small density of states of the electrode material, which would seem to imply poor screening of the ionic charge. We show that these large capacitance values can be understood as the result of collective entrance of ions into the graphene stack (GS) and the renormalization of the ionic charge produced by nonlinear screening. The collective behavior of ions results from the strong elastic energy associated with intercalated ions deforming the GS, which creates an effective attraction between them. The result is the formation of "disks" of charge that enter the electrode collectively and have their charge renormalized by the strong, nonlinear screening of the surrounding graphene layers. This renormalization leads to a capacitance that at small voltages increases linearly with voltage and is enhanced over mean-field predictions by a large factor proportional to the number of ions within the disk to the power 9/4. At large voltages, the capacitance is dictated by the physics of graphite intercalation compounds and is proportional to the voltage raised to the power -4/5. We also examine theoretically the case where the effective fine structure constant of the GS is a small parameter, and we uncover a wealth of scaling regimes.
Hybrid solar cells based on dc magnetron sputtered films of n-ITO on APMOVPE grown p-InP
NASA Technical Reports Server (NTRS)
Coutts, T. J.; Li, X.; Wanlass, M. W.; Emery, K. A.; Gessert, T. A.
1988-01-01
Hybrid indium-tin-oxide (ITO)/InP solar cells are discussed. The cells are constructed by dc magnetron sputter deposition of ITO onto high-quality InP films grown by atmospheric pressure metal-organic vapor-phase epitaxy (APMOVPE). A record efficiency of 18.9 percent, measured under standard Solar Energy Research Institute reporting conditions, has been obtained. The p-InP surface is shown to be type converted, principally by the ITO, but with the extent of conversion being modified by the nature of the sputtering gas. The deposition process, in itself, is not responsible for the type conversion. Dark currents have been suppressed by more than three orders of magnitude by the addition of hydrogen to the sputtering gas during deposition of a thin (5 nm) interface layer. Without this layer, and using only the more usual argon/oxygen mixture, the devices had poorer efficiencies and were unstable. A discussion of associated quantum efficiencies and capacitance/voltage measurements is also presented from which it is concluded that further improvements in efficiency will result from better control over the type-conversion process.
Visualization of peripheral vasodilative indices in human skin by use of red, green, blue images
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Tanaka, Noriyuki; Kawase, Tatsuya; Maeda, Takaaki; Yuasa, Tomonori; Aizu, Yoshihisa; Yuasa, Tetsuya; Niizeki, Kyuichi
2013-06-01
We propose a method to visualize the arterial inflow, the vascular resistance, and the venous capacitance in the skin tissue from red, green, blue (RGB) digital color images. The arterial inflow and the venous capacitance in the skin tissue are visualized based on an increase in the rate of change in the total blood concentration and the change of the total blood concentration during upper limb occlusion at a pressure of 50 mmHg. The resultant arterial inflow with the measured mean arterial pressure also provides an image of the vascular resistance in human skin. The arterial inflow, the vascular resistance, and the venous capacitance acquired by the method are well correlated with those obtained from the conventional strain-gauge plethysmograph. The correlation coefficients R between the estimated values by the method and the measurements by the SPG are calculated to be 0.83 (P<0.001) for the arterial inflow, 0.77 (P<0.01) for the vascular resistance, and 0.77 (P<0.01) for the venous capacitance. The arterial inflow and the venous capacitance in the skin tissue are significantly higher in active subjects compared with the sedentary subjects, whereas the vascular resistance was significantly lower in the active subjects compared with the sedentary subjects. The results of the present study indicate the possibility of using the proposed method for evaluating the peripheral vascular functions in human skin.
Differential capacitance probe for process control involving aqueous dielectric fluids
Svoboda, John M.; Morrison, John L.
2002-10-08
A differential capacitance probe device for process control involving aqueous dielectric fluids is disclosed. The device contains a pair of matched capacitor probes configured in parallel, one immersed in a sealed container of reference fluid, and the other immersed in the process fluid. The sealed container holding the reference fluid is also immersed in the process fluid, hence both probes are operated at the same temperature. Signal conditioning measures the difference in capacitance between the reference probe and the process probe. The resulting signal is a control error signal that can be used to control the process.
Squeezing effects applied in nonclassical superposition states for quantum nanoelectronic circuits
NASA Astrophysics Data System (ADS)
Choi, Jeong Ryeol
2017-06-01
Quantum characteristics of a driven series RLC nanoelectronic circuit whose capacitance varies with time are studied using an invariant operator method together with a unitary transformation approach. In particular, squeezing effects and nonclassical properties of a superposition state composed of two displaced squeezed number states of equal amplitude, but 180° out of phase, are investigated in detail. We applied our developments to a solvable specific case obtained from a suitable choice of time-dependent parameters. The pattern of mechanical oscillation of the amount of charges stored in the capacitor, which are initially displaced, has exhibited more or less distortion due to the influence of the time-varying parameters of the system. We have analyzed squeezing effects of the system from diverse different angles and such effects are illustrated for better understanding. It has been confirmed that the degree of squeezing is not constant, but varies with time depending on specific situations. We have found that quantum interference occurs whenever the two components of the superposition meet together during the time evolution of the probability density. This outcome signifies the appearance of nonclassical features of the system. Nonclassicality of dynamical systems can be a potential resource necessary for realizing quantum information technique. Indeed, such nonclassical features of superposition states are expected to play a key role in upcoming information science which has attracted renewed attention recently.
Three dimensional stress vector sensor array and method therefor
Pfeifer, Kent Bryant; Rudnick, Thomas Jeffery
2005-07-05
A sensor array is configured based upon capacitive sensor techniques to measure stresses at various positions in a sheet simultaneously and allow a stress map to be obtained in near real-time. The device consists of single capacitive elements applied in a one or two dimensional array to measure the distribution of stresses across a mat surface in real-time as a function of position for manufacturing and test applications. In-plane and normal stresses in rolling bodies such as tires may thus be monitored.
Raman spectrum method for characterization of pull-in voltages of graphene capacitive shunt switches
NASA Astrophysics Data System (ADS)
Li, Peng; You, Zheng; Cui, Tianhong
2012-12-01
An approach using Raman spectrum method is reported to measure pull-in voltages of graphene capacitive shunt switches. When the bias excesses the pull-in voltage, the Raman spectrum's intensity largely decreases. Two factors that contribute to the intensity reduction are investigated. Moreover, by monitoring the frequency shift of G peak and 2D band, we are able to detect the pull-in voltage and measure the strain change in graphene beams during switching.
NASA Astrophysics Data System (ADS)
Kubodera, Shinji; Tanzawa, Tsutomu; Morisawa, Masayuki; Kiyohiro, Noriaki
Carrier type dynamic strain amplifiers are frequently used for stress measurement with strain gages. That is because the carrier type dynamic strain amplifier can conduct high precision measurement since it is highly resistant against hum noise from the power supply frequency in principle and is free from the thermoelectomotive force even if a metal contact is used in wiring to a Wheatstone bridge for measuring. A problem of the carrier type dynamic strain amplifier is generation of Capacitive component (hereinafter referred to as the C component) in an input cable connecting from the amplifier to the input sensor (Wheatstone bridge for measuring). The C component varies with cable length, cable materials, or ambient temperature change. The aforementioned changing adversely affects the stability of the amplifier. In this paper, we realize and analyze the method that increases the stability of amplifier by detecting, eliminating and self tracking the above C component constantly. Used carrier frequency at 12kHz and 28kHz. We made amplifiers with noise resistant and wide band frequency of measurement range and verified the theory of the Capacitance Self Tracing with the above amplifiers.
Serrano, João M; Shahidian, Shakib; Marques da Silva, José Rafael
2016-02-01
Estimation of pasture productivity is an important step for the farmer in terms of planning animal stocking, organizing animal lots, and determining supplementary feeding needs throughout the year. The main objective of this work was to evaluate technologies which have potential for monitoring aspects related to spatial and temporal variability of pasture green and dry matter yield (respectively, GM and DM, in kg/ha) and support to decision making for the farmer. Two types of sensors were evaluated: an active optical sensor ("OptRx(®)," which measures the NDVI, "Normalized Difference Vegetation Index") and a capacitance probe ("GrassMaster II" which estimates plant mass). The results showed the potential of NDVI for monitoring the evolution of spatial and temporal patterns of vegetative growth of biodiverse pasture. Higher NDVI values were registered as pasture approached its greatest vegetative vigor, with a significant fall in the measured NDVI at the end of Spring, when the pasture began to dry due to the combination of higher temperatures and lower soil moisture content. This index was also effective for identifying different plant species (grasses/legumes) and variability in pasture yield. Furthermore, it was possible to develop calibration equations between the capacitance and the NDVI (R(2) = 0.757; p < 0.01), between capacitance and GM (R(2) = 0.799; p < 0.01), between capacitance and DM (R(2) =0.630; p < 0.01), between NDVI and GM (R(2) = 0.745; p < 0.01), and between capacitance and DM (R(2) = 0.524; p < 0.01). Finally, a direct relationship was obtained between NDVI and pasture moisture content (PMC, in %) and between capacitance and PMC (respectively, R(2) = 0.615; p < 0.01 and R(2) = 0.561; p < 0.01) in Alentejo dryland farming systems.
Resilience of the quantum Rabi model in circuit QED
NASA Astrophysics Data System (ADS)
E Manucharyan, Vladimir; Baksic, Alexandre; Ciuti, Cristiano
2017-07-01
In circuit quantum electrodynamics (circuit QED), an artificial ‘circuit atom’ can couple to a quantized microwave radiation much stronger than its real atomic counterpart. The celebrated quantum Rabi model describes the simplest interaction of a two-level system with a single-mode boson field. When the coupling is large enough, the bare multilevel structure of a realistic circuit atom cannot be ignored even if the circuit is strongly anharmonic. We explored this situation theoretically for flux (fluxonium) and charge (Cooper pair box) type multi-level circuits tuned to their respective flux/charge degeneracy points. We identified which spectral features of the quantum Rabi model survive and which are renormalized for large coupling. Despite significant renormalization of the low-energy spectrum in the fluxonium case, the key quantum Rabi feature—nearly-degenerate vacuum consisting of an atomic state entangled with a multi-photon field—appears in both types of circuits when the coupling is sufficiently large. Like in the quantum Rabi model, for very large couplings the entanglement spectrum is dominated by only two, nearly equal eigenvalues, in spite of the fact that a large number of bare atomic states are actually involved in the atom-resonator ground state. We interpret the emergence of the two-fold degeneracy of the vacuum of both circuits as an environmental suppression of flux/charge tunneling due to their dressing by virtual low-/high-impedance photons in the resonator. For flux tunneling, the dressing is nothing else than the shunting of a Josephson atom with a large capacitance of the resonator. Suppression of charge tunneling is a manifestation of the dynamical Coulomb blockade of transport in tunnel junctions connected to resistive leads.
Moisture Determination of Nuts and Dry Fruits using a Capacitance Sensor
USDA-ARS?s Scientific Manuscript database
Impedance (Z), and phase angle (') of a cylindrical parallel-plate capacitor with in-shell peanuts between the plates was measured earlier, using a CI meter (Chari’s Impedance meter), at 1 and 5 MHz . Capacitance C, was derived from Z and ', and using the C, ', and Z values of a set of peanuts whos...
Note: a transimpedance amplifier for remotely located quartz tuning forks.
Kleinbaum, Ethan; Csáthy, Gábor A
2012-12-01
The cable capacitance in cryogenic and high vacuum applications of quartz tuning forks imposes severe constraints on the bandwidth and noise performance of the measurement. We present a single stage low noise transimpedance amplifier with a bandwidth exceeding 1 MHz and provide an in-depth analysis of the dependence of the amplifier parameters on the cable capacitance.
Frequency dependent ac transport of films of close-packed carbon nanotube arrays
NASA Astrophysics Data System (ADS)
Endo, A.; Katsumoto, S.; Matsuda, K.; Norimatsu, W.; Kusunoki, M.
2018-03-01
We have measured low-temperature ac impedance of films of closely-packed, highly-aligned carbon nanotubes prepared by thermal decomposition of silicon carbide wafers. The measurement was performed on films with the thickness (the length of the nanotubes) ranging from 6.5 to 65 nm. We found that the impedance rapidly decreases with the frequency. This can be interpreted as resulting from the electric transport via capacitive coupling between adjacent nanotubes. We also found numbers of sharp spikes superposed on frequency vs. impedance curves, which presumably represent resonant frequencies seen in the calculated conductivity of random capacitance networks. Capacitive coupling between the nanotubes was reduced by the magnetic field perpendicular to the films at 8.2 mK, resulting in the transition from negative to positive magnetoresistance with an increase of the frequency.
Fabrication of a printed capacitive air-gap touch sensor
NASA Astrophysics Data System (ADS)
Lee, Sang Hoon; Seo, Hwiwon; Lee, Sangyoon
2018-05-01
Unlike lithography-based processes, printed electronics does not require etching, which makes it difficult to fabricate electronic devices with an air gap. In this study, we propose a method to fabricate capacitive air-gap touch sensors via printing and coating. First, the bottom electrode was fabricated on a flexible poly(ethylene terephthalate) (PET) substrate using roll-to-roll gravure printing with silver ink. Then poly(dimethylsiloxane) (PDMS) was spin coated to form a sacrificial layer. The top electrode was fabricated on the sacrificial layer by spin coating with a stretchable silver ink. The sensor samples were then put in a tetrabutylammonium (TBAF) bath to generate the air gap by removing the sacrificial layer. The capacitance of the samples was measured for verification, and the results show that the capacitance increases in proportion to the applied force from 0 to 2.5 N.
NASA Astrophysics Data System (ADS)
Rafhay, Quentin; Beug, M. Florian; Duane, Russell
2007-04-01
This paper presents an experimental comparison of dummy cell extraction methods of the gate capacitance coupling coefficient for floating gate non-volatile memory structures from different geometries and technologies. These results show the significant influence of mismatching floating gate devices and reference transistors on the extraction of the gate capacitance coupling coefficient. In addition, it demonstrates the accuracy of the new bulk bias dummy cell extraction method and the importance of the β function, introduced recently in [Duane R, Beug F, Mathewson A. Novel capacitance coupling coefficient measurement methodology for floating gate non-volatile memory devices. IEEE Electr Dev Lett 2005;26(7):507-9], to determine matching pairs of floating gate memory and reference transistor.
Capacitive behavior of highly-oxidized graphite
NASA Astrophysics Data System (ADS)
Ciszewski, Mateusz; Mianowski, Andrzej
2014-09-01
Capacitive behavior of a highly-oxidized graphite is presented in this paper. The graphite oxide was synthesized using an oxidizing mixture of potassium chlorate and concentrated fuming nitric acid. As-oxidized graphite was quantitatively and qualitatively analyzed with respect to the oxygen content and the species of oxygen-containing groups. Electrochemical measurements were performed in a two-electrode symmetric cell using KOH electrolyte. It was shown that prolonged oxidation causes an increase in the oxygen content while the interlayer distance remains constant. Specific capacitance increased with oxygen content in the electrode as a result of pseudo-capacitive effects, from 0.47 to 0.54 F/g for a scan rate of 20 mV/s and 0.67 to 1.15 F/g for a scan rate of 5 mV/s. Better cyclability was observed for the electrode with a higher oxygen amount.